WorldWideScience

Sample records for biotechnology-based chemical industry

  1. Enzyme catalysts for a biotechnology-based chemical industry. Quarterly progress report, January 1--April 1, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, F.H.

    1998-04-20

    The goal of this research is to engineer enzymes to be efficient and economically attractive catalysts for the chemical industry. The author is attempting to demonstrate generally-applicable approaches to enzyme improvement as well as develop specific catalysts for potential industrial application. The research is focused on the following areas: (1) Random mutagenesis of pNB esterase: improved activity and stability; (2) Directed evolution of subtilisin E to enhance thermostability; and (3) Methods for in vitro recombination.

  2. Enzyme catalysts for a biotechnology-based chemical industry. Quarterly progress report, April 1--July 1, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, F.H.

    1998-07-08

    The goal of this research is to engineer enzymes to be efficient and economically attractive catalysts for the chemical industry. The author is attempting to demonstrate generally-applicable approaches to enzyme improvement as well as develop specific catalysts for potential industrial application. Progress on three tasks are described: Random mutagenesis of pNB esterase--improved activity and stability; Directed evolution of subtilisin E to enhance thermostability; and Methods for invitro recombination.

  3. Enzyme catalysts for a biotechnology-based chemical industry. Quarterly progress report, April 1--June 28, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, F.H.

    1996-07-22

    The goal of this research is to engineer enzymes to be efficient and economically attractive catalysts for the chemical industry. The author is attempted to demonstrate generally-applicable approaches to enzyme improvement as well as develop specific catalysts for potential industrial application. The paper describes the progress in two projects: (a) Random mutagenesis of pNB esterase: Improved activity and stability; and (2) Subtilisin mutants exhibiting improved ligase activity in organic solvents.

  4. Enzyme catalysts for a biotechnology-based chemical industry. Quarterly progress report, September 29--December 28, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, F.H.

    1998-01-15

    The goal of this research is to engineer enzymes to be efficient and economically attractive catalysts for the chemical industry. The author is attempting to demonstrate generally-applicable approaches to enzyme improvement as well as develop specific catalysts for potential industrial application. In this report attention is focused on random mutagenesis of pNB esterase -- improved activity and stability. The most thermostable esterases obtained by sequential random mutagenesis (6H7) and random mutagenesis plus recombination (6sF9) each contain 9 amino acid mutations and a number of silent mutations, relative to the wild-type sequence. Eight of the mutations are present in both genes, for a total of ten potentially adaptive mutations. Because several of these mutations occurred in the same generation, it is difficult to identify the mutations responsible for the increases in activity and stability. In order to aid in this identification, the thermostable genes were recombined with the wild-type gene, in hopes of removing neutral mutations. The gene from the first-generation variant, with five amino acid substitutions was also recombined with wild-type.

  5. Enzyme catalysts for a biotechnology-based chemical industry. Final report, September 29, 1993--September 28, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, F.H.

    1998-11-16

    Enzymes have enormous potential for reducing energy requirements and environmental problems in the chemicals and pharmaceutical industries. The explosion of tools that has come out of molecular biology during the last 20 years has made it possible to evolve enzymes for features never required in nature. Scientists can speed up the rate and channel the direction of evolution by controlling mutagenesis and the accompanying selection pressures. Darwinian evolution carried out in the test tube offers a unique opportunity for biotechnology: the ability to tailor enzymes for optimal performance in a wide range of applications. Thus it is possible, for example, to evolve enzymes that carry out reactions on nonnatural substrates or even to carry out reactions for which there is no counterpart in nature. Due to the vast size of the potential sequence space, however, explorations by directed evolution must be guided by sound principles and workable strategies. During the course of this group, this laboratory has continued to make significant progress in the evolution of industrial enzymes as well as in developing general methods for in vitro evolution.

  6. Chemicals Industry Vision

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1996-12-01

    Chemical industry leaders articulated a long-term vision for the industry, its markets, and its technology in the groundbreaking 1996 document Technology Vision 2020 - The U.S. Chemical Industry. (PDF 310 KB).

  7. The renewable chemicals industry

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Rass-Hansen, J.; Marsden, Charlotte Clare;

    2008-01-01

    The possibilities for establishing a renewable chemicals industry featuring renewable resources as the dominant feedstock rather than fossil resources are discussed in this Concept. Such use of biomass can potentially be interesting from both an economical and ecological perspective. Simple and e...

  8. China's Chemical Pharmaceutical Industry Rebounding

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ After reorganization in 2006, China's chemical pharmaceutical industry began to pick up in 2007. According to the China Pharmaceutical Industry Association,China's chemical pharmaceutical industry achieved sales revenues of RMB202.5 billion in the first eight months this year, a growth of 24.6% - 5.6 percentage points faster than January to May this year. The net profit was RMB17.4 billion, an increase of 50.8% over the same period of 2006.

  9. Chemical Industry Bandwidth Study

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-12-01

    The Chemical Bandwidth Study provides a snapshot of potentially recoverable energy losses during chemical manufacturing. The advantage of this study is the use of "exergy" analysis as a tool for pinpointing inefficiencies.

  10. Economic Aspects of the Chemical Industry

    Science.gov (United States)

    Koleske, Joseph V.

    Within the formal disciplines of science at traditional universities, through the years, chemistry has grown to have a unique status because of its close correspondence with an industry and with a branch of engineering—the chemical industry and chemical engineering. There is no biology industry, but aspects of biology have closely related disciplines such as fish raising and other aquaculture, animal cloning and other facets of agriculture, ethical drugs of pharmaceutical manufacture, genomics, water quality and conservation, and the like. Although there is no physics industry, there are power generation, electricity, computers, optics, magnetic media, and electronics that exist as industries. However, in the case of chemistry, there is a named industry. This unusual correspondence no doubt came about because in the chemical industry one makes things from raw materials—chemicals—and the science, manufacture, and use of chemicals grew up together during the past century or so.

  11. Better Tomorrow of China Rubber Chemicals Industry

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    I. Development of China Rubber Chemicals Industry During the "11th Five-Year Plan" period, China rubber Chemicals industry fully implemented the development guideline of "Adhering to science and technology development, developing green chemistry with environmental protection, safety and energy conservation as the core, and building enterprise and world brands". With the great support of the state,

  12. New Prospects for Chemical Fiber industry

    Institute of Scientific and Technical Information of China (English)

    Zhao Zihan

    2012-01-01

    The 12th five years' planning is thoroughly implemented this year, chemical fiber industry in our country including the standardization work, fast and efficiently developing, and achieving a number of significant gains, which contribute significantly to the prosperity of economic in nation, industry and location, as well as the economic revival of the global industrial chain.

  13. Sustainable Development in Chemical Fiber Industry

    Institute of Scientific and Technical Information of China (English)

    Flora Zhao

    2012-01-01

    The 18th China International Man-Made Fiber Conference (Xiaoshan 2012), themed on "How does Chemical Fiber Industry to Realize Sustainable Development against the Background of High-cost Era?", kicked off in Hangzhou on September 6th, 2012. More than 600 representatives from nearly 20 major chemical fiber manufacturing countries and regions all over the world were gathered together to discuss the sustainable development strategies of international chemical fiber industry in the context of the current compficated environment from different perspectives.

  14. Beyond petrochemicals: The renewable chemicals industry

    DEFF Research Database (Denmark)

    Vennestrøm, P.N.R.; Osmundsen, Christian Mårup; Christensen, C.H.;

    2011-01-01

    From petroleum to bioleum: Since biomass is a limited resource, it is necessary to consider its best use. The production of select chemicals from biomass, rather than its use as fuel, could effectively replace the use of petroleum in the chemical industry, but the inherent functionality of biomass...

  15. Chemicals Industry New Process Chemistry Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2000-08-01

    The Materials Technology I workshop was held in November 1998 to address future research needs for materials technology that will support the chemical industry. Areas covered included disassembly, recovery, reuse and renewable technology; new materials; and materials measurement and characterization. The Materials Technology II workshop was held in September 1999 and covered additives, modeling and prediction and an additional segment on new materials. Materials Technology Institute (MTI) for the Chemical Process Industries, Inc. and Air Products & Chemicals lead the workshops. The Materials Technology Roadmap presents the results from both workshops.

  16. Chemical hazards in the biotechnology industry.

    Science.gov (United States)

    Ducatman, A M; Coumbis, J J

    1991-01-01

    The modern biotechnology industry employs thousands of people and is growing rapidly. The numbers of toxic chemicals encountered are substantial and the applications are largely novel. Health care professionals face a formidable task in identifying occupational hazards and safeguarding the health of employees.

  17. Continuous intensified separations for the chemicals industry

    NARCIS (Netherlands)

    Ngene, I.S.; Roelands, C.P.M.

    2012-01-01

    Today, a lot of effort is going into intensifying reactions within the chemicals industry. Intensified processes are expected to delìver significant improvements in manufacturing processes, reducing equipment size and waste streams and increasing product yields and thereby delivering more sustainabl

  18. Carbon dioxide utilisation in the chemical industry

    Energy Technology Data Exchange (ETDEWEB)

    Aresta, M.; Tommasi, I. [Universita di Bari (Italy). Centro METEA e Dipartimento di Chimica

    1997-12-31

    The amount of carbon dioxide available for industrial utilisation may expand to unprecedented levels if the recovery of carbon dioxide from energy plants flue gases is implemented. The potential of each of the three possible uses (technological, chemical, and biological) is far from being clearly defined. The chemical utilisation option, that has intrinsic thermodynamic and kinetic constraints, may raise controversial positions, depending on the criteria used for the analysis. The estimate of its real potential demands a thorough comparative analysis, using the Life Cycle Assessment methodology, of existing processes/products with the new ones based on CO{sub 2}, in order to establish whether, or not, the latter avoid carbon dioxide (either directly or indirectly) and their economics. The rejection/consideration assessment methodology will produce reliable results only if an exhaustive number of parameters is used. The analysis cannot be limited to practiced industrial processes, but must be extended to an exhaustive inventory of cases. (Author)

  19. Industrial emerging chemicals in the environment

    Directory of Open Access Journals (Sweden)

    Vojinović-Miloradov Mirjana B.

    2014-01-01

    Full Text Available In the recent time, considerable interest has grown concerning the presence of the emerging industrial chemicals, EmIC. They are contaminants that have possible pathway to enter to the environment and they are dominantly released by industrial and anthropogenic activities. EmIC are applied in different fields using as industrial chemicals (new and recently recognized, global organic contaminants (flame retardant chemicals, pharmaceuticals (for both human and animal uses, endocrine-modulating compounds, biological metabolites, personal care products, household chemicals, nanomaterial (energy storage products, lubricants, anticorrosive and agriculture chemicals and others that are applied to a wide variety of everyday items such as clothing, upholstery, electronics and automobile interiors. NORMAN (Network of reference laboratories for monitoring of emerging environmental pollutants has established an open, dynamic, list of emerging substances and pollutants. EmIC have been recently detected in the environment due to their long-term presence, pseudo-persistence and increased use. Improvements in sophisticated analytical methods and time integrative passive sampling have enabled the identification and quantification of EmIC, in very low concentrations (ppb, ppt and lower, which likely have been present in all environmental mediums for decades. Passive technology is an innovative technique for the time-integrated measurement of emerging contaminants in water, sediment, soil and air. Passive samplers are simple handling cost-effective tool that could be used in environmental monitoring programmes. These devices are now being considered as a part of an emerging strategy for monitoring a range of emerging industrial chemicals and priority pollutants in the aquatic environment. EmIC are substances that are not included in the routine monitoring programmes and whose fate, behaviour and (ecotoxicological effects are still not well understood. Emerging

  20. Methods in industrial biotechnology for chemical engineers

    CERN Document Server

    Kandasamy, W B Vasantha

    2008-01-01

    In keeping with the definition that biotechnology is really no more than a name given to a set of techniques and processes, the authors apply some set of fuzzy techniques to chemical industry problems such as finding the proper proportion of raw mix to control pollution, to study flow rates, to find out the better quality of products. We use fuzzy control theory, fuzzy neural networks, fuzzy relational equations, genetic algorithms to these problems for solutions. When the solution to the problem can have certain concepts or attributes as indeterminate, the only model that can tackle such a situation is the neutrosophic model. The authors have also used these models in this book to study the use of biotechnology in chemical industries. This book has six chapters. First chapter gives a brief description of biotechnology. Second chapter deals will proper proportion of mix of raw materials in cement industries to minimize pollution using fuzzy control theory. Chapter three gives the method of determination of te...

  1. Vacuum technology in the chemical industry

    CERN Document Server

    Jorisch, Wolfgang

    2015-01-01

    Based on the very successful German edition and a seminar held by the German Engineers` Association (VDI) on a regular basis for years now, this English edition has been thoroughly updated and revised to reflect the latest developments. It supplies in particular the special aspects of vacuum technology, applied vacuum pump types and vacuum engineering in the chemical, pharmaceutical and process industry application-segments. The text includes chapters dedicated to latest European regulations for operating in hazardous zones with vacuum systems, methods for process pressure control and regulati

  2. Ultrasonic filtration of industrial chemical solutions

    Science.gov (United States)

    Cosma, T.

    1974-01-01

    The practical results obtained as a result of filtering industrial chemical solutions under continuous flow conditions with the aid of an ultrasonic filter are presented. The main part of the assembly consists of an ultrasonic generator with an output power of about 400 W and the filtration assembly, in which there is a magnetostrictive amplifier constructed for 20.5 kHz. In addition to ensuring a continuous flow of filtered solution, ultrasonic filters can be replaced or cleaned at intervals of time that are 8-10 times greater than in the case of mechanical filters. They yield considerably better results as far as the size of the filtered particles is concerned. The parameters on which filtration quality depends are also presented.

  3. Carbon dioxide utilization in the chemical industry

    Energy Technology Data Exchange (ETDEWEB)

    Aresta, M.; Quaranta, E.; Tommasi, I. [Univ. of Bari (Italy)

    1996-12-31

    Carbon dioxide as a raw material for the Chemical Industry is receiving growing attention because: (i) if recovery of CO{sub 2} from flue gases will be implemented, huge amounts of CO{sub 2} will be available; (ii) environmental issues urge to develop new processes/products, avoiding toxic materials. Several uses of CO{sub 2} appear to be responding to both (i) and (ii), i.e. use as a solvent (supplanting organic solvents) use as a building block for carboxylates/carbonates (supplanting phosgene); use as carbon-source in the synthesis of fuels (supplanting CO or coal/hydrocarbons). These options will be evaluated and their potentiality discussed.

  4. NCIP: An Environment-Friendly Chemical Industry Park

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Nanjing Chemical Industry Park (NCIP) was established in October 2001. The planned area of the park is 45 km2 and the development focus includes oil/ gas chemicals, basic organic chemical raw materials, fine chemicals, polymeric materials, life pharmaceuticals and new chemical materials.

  5. Using game theory to improve safety within chemical industrial parks

    CERN Document Server

    Reniers, Genserik

    2013-01-01

    Though the game-theoretic approach has been vastly studied and utilized in relation to economics of industrial organizations, it has hardly been used to tackle safety management in multi-plant chemical industrial settings. Using Game Theory for Improving Safety within Chemical Industrial Parks presents an in-depth discussion of game-theoretic modelling which may be applied to improve cross-company prevention and -safety management in a chemical industrial park.   By systematically analyzing game-theoretic models and approaches in relation to managing safety in chemical industrial parks, Using Game Theory for Improving Safety within Chemical Industrial Parks explores the ways game theory can predict the outcome of complex strategic investment decision making processes involving several adjacent chemical plants. A number of game-theoretic decision models are discussed to provide strategic tools for decision-making situations.   Offering clear and straightforward explanations of methodologies, Using Game Theor...

  6. The changing landscape of careers in the chemical industry

    Science.gov (United States)

    Watson, Keith J.

    2011-09-01

    Changes in the chemical industry over the past decade -- ranging from globalization to an increased focus on speciality chemicals -- threaten to leave the aspiring industrial chemist unprepared. This Commentary discusses those changes and outlines strategies to enter the job market as well equipped as possible.

  7. Biobased chemicals: the convergence of green chemistry with industrial biotechnology.

    Science.gov (United States)

    Philp, Jim C; Ritchie, Rachael J; Allan, Jacqueline E M

    2013-04-01

    Policy issues around biobased chemicals are similar to those for biobased plastics. However, there are significant differences that arise from differences in production volumes and the more specific applications of most chemicals. The drivers for biobased chemicals production are similar to those for biobased plastics, particularly the environmental drivers. However, in Europe, biobased chemical production is further driven by the need to improve the competitiveness of the chemicals industry.

  8. The Second 50 Industrial Chemicals, Part 1.

    Science.gov (United States)

    Chenier, Philip J.; Artibee, Danette S.

    1988-01-01

    Provides an introduction to and summaries of the manufacturing methods and uses of chemicals 51-75 on the list of chemicals arranged in order of decreasing production in the United States. Gives production in pounds, annual growth, average price per pound, and organization according to the seven basic organic chemicals. (CW)

  9. Recent Development and Status of CNPC's Refining and Chemical Industry

    Institute of Scientific and Technical Information of China (English)

    Zhou Weiyong

    1997-01-01

    @@ In the past one and halfyear since carrying China National Petroleum Corporation's (CNPC) Ninth Five-Year Plan (1996-2000), CNPC's oil refining and chemical industry has made considerable progress.

  10. Biobased industrial chemicals from glutamic acid

    NARCIS (Netherlands)

    Lammens, T.M.

    2011-01-01

    In dit onderzoek is op zoek gegaan naar routes om van glutaminezuur vier producten te maken die van waarde zijn voor de industrie, die nu uit olie gemaakt worden. Dat zijn grondstoffen voor allerlei soorten kunststof, zoals nylon en rubbers. Het onderzoek laat zien dat alle vier die producten inderd

  11. Profit opportunities for the chemical process industries

    Science.gov (United States)

    1971-01-01

    Papers given at a seminar designed to assist industry in the utilization of NASA-developed technology are presented. The topics include the following: the Technology Utilization program, NASA patent policy changes, transfer of Hysttl resin technology, nonflammable cellulosic materials development, nonflammable paper technology, circuit board laminates and construction, polymide resins and other polymers, and intumescent coatings.

  12. Chemical Modification of Cotton for Industrial Applications

    Science.gov (United States)

    Cotton (cellulose) is a known favorite in the textile industry and is the most used natural fiber-cloth to date. As we move to use more biodegradable, renewable and sustainable resources, cellulose, a natural polymer, is attracting attention and finding application in oil recovery, cosmetics, surfac...

  13. Olefin Recovery from Chemical Industry Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    A.R. Da Costa; R. Daniels; A. Jariwala; Z. He; A. Morisato; I. Pinnau; J.G. Wijmans

    2003-11-21

    The objective of this project was to develop a membrane process to separate olefins from paraffins in waste gas streams as an alternative to flaring or distillation. Flaring these streams wastes their chemical feedstock value; distillation is energy and capital cost intensive, particularly for small waste streams.

  14. Renewable raw materials new feedstocks for the chemical industry

    CERN Document Server

    Ulber, Roland; Hirth, Thomas

    2011-01-01

    One of the main challenges facing the chemical industry is the transition to sustainable operations. Industries are taking initiatives to reduce resource intensities or footprints, and by adopting safer materials and processes. Such efforts need to be supported by techniques that can quantify the broad economic and environmental implications of industrial operations, retrofi t options and provide new design alternatives. This contemporary overview focuses on cradle-to-grave life cycle assessments of existing or conceptual processes for producing valueadded fuels, chemicals, and/or material

  15. Assessment of Hazardous Chemicals Risk in Fur Industry in Lithuania

    Directory of Open Access Journals (Sweden)

    Birutė Vaitelytė

    2010-04-01

    Full Text Available The article describes the research on the possibilities of hazardous chemicals replacement with less hazardous substances. This issue has become of special importance to industrial companies after the adoption of the REACH Regulation. The article examines fur industry and traditional chemicals used in it, namely, sodium dichromate, formaldehyde, and naphthalene. Because of their properties these chemicals are pretending to be included in the REACH Regulation lists of the authorised chemicals. The risks of quasi-materials to the workplaces and the environment have been studied. This research has also looked for the alternatives to hazardous chemicals and has conducted their risk assessment. The analyzed chemicals have been compared with their alternatives with a view of disclosing specific risk reduction.

  16. News from Online: Industrial Chemicals and Polymers

    Science.gov (United States)

    Sweeney Judd, Carolyn

    1999-02-01

    of the American Chemical Society Divisions of Polymer Chemistry and Polymeric Materials: Science and Engineering and General Electric Corporation. The POLYED site, http:/ /chemdept.uwsp.edu/polyed/index.htm, is hosted by the University of Wisconsin at Stevens Point. This National Center for Polymer Education is another good place to go for information. More education is available at the Ziegler Research Group Home Page at http://www.chem.ucalgary.ca/groups/ziegler/index.html . Go to Metallocene as Olefin Polymerization Catalysis: An Introduction ( http://www.chem.ucalgary.ca/groups/ziegler/met_intro.html ) for historical accounts of metallocene and Ziegler-Natta catalysts. Movies are available here too. This Canadian site is well-documented and educational. Back at the University of Wisconsin-Madison, The Why Files site at http://whyfiles.news.wisc.edu helps bring important chemical and technology news to the public. Go to the archived files of October 1997 ( http://whyfiles.news.wisc.edu/shorties/catalyst.html ) to find information about the importance of low-temperature metallocene catalysts. The Why Files received funding from the National Science Foundation. Go here for science information in an easy-to-read format. One of the driving forces toward better catalysis is the attempt to reach 100% product, combining efficiency with lowered pollution. Companies can look to the Environmental Protection Agency for information: Environsense at http://es.epa.gov/ is pledged to offer "Common Sense Solutions to Environmental Problems". So where can we get these polymers? The American Chemical Society can help. Go to Chemcylopedia at http://pubs.acs.org/chemcy99/ for great information. Both purchasers and users of chemicals can benefit from this site. Searches can be made on the chemical or on the supplier. Information provided includes CAS Registry Numbers and special shipping requirements as well as potential applications. Do you remember that we started with paper? Let

  17. Motivation of chemical industry social responsibility through Responsible Care.

    Science.gov (United States)

    Givel, Michael

    2007-04-01

    Advocates of corporate social responsibility argue corporations should not only meet the needs of shareholders, but other key stakeholders including the community, customers, suppliers, and employees. Since 1988, the chemical industry has engaged in a major self-regulatory "Responsible Care" industry-wide social responsibility campaign to ensure environmental, public health, safety, and security performance among member companies. Contrary to the arguments of advocates of corporate social responsibility that such efforts meet the needs of stakeholders other than shareholders such as the community, the primary goal of the Responsible Care effort has been to change public concerns and opinion about chemical industry environmental and public health practices while also opposing support for stronger and more expensive public health and environmental legislation and regulation of chemical products, even if warranted.

  18. Sequential anaerobic-adsorption treatment of chemical industry wastewater.

    Science.gov (United States)

    Daga, Kailash; Pallavi, V; Patel, Dharmendra

    2011-10-01

    Treatment technologies needed to reduce the pollutant load of chemical industry effluent have been found to involve exorbitantly high costs. The present investigation aimed to treat the wastewater from chemical industry by cost effective sequential anaerobic-adsorption treatment. Wastewaters from chemical industry that are rich in biodegradable organics are tested for anaerobic treatability. The efficiency of anaerobic reactor is relatively lower 79.3%, and therefore post treatment of effluent was done by adsorption using Poly vinyl alcohol coated Datura stramonium (PVAC-DS) as an adsorbent. An overall COD removal of 93.8 % was achieved after sequential Anaerobic-Adsorption treatment, which lead to a better final effluent and a more economical treatment system.

  19. Nylon and Chemical Fiber Industry of Shifeng Developing Synchronously

    Institute of Scientific and Technical Information of China (English)

    Du Yinshi

    2012-01-01

    Recently, over 40 people of the investigation group of the 10th Chinese Caprolactam and Nylon Market Forum went to Shifeng Group for visitation and investigation. They learnt the overall general situation of Shifeng Group in details, visited the factory areas such as chemical fiber & tire industrial park and agricultural automobile industrial park, and listened to the development process of Shifeng Group, the present production and future development of such products as nylon chip, nylon yarn and flat chafer fabric under nylon and chemical fiber project, and the market growth in recent two years. The investigation group showed great cooperation intention on the caprolactam project of Shifeng Group.

  20. Chemical dosing for sulfide control in Australia: An industry survey.

    Science.gov (United States)

    Ganigue, Ramon; Gutierrez, Oriol; Rootsey, Ray; Yuan, Zhiguo

    2011-12-01

    Controlling sulfide (H(2)S) production and emission in sewer systems is critical due to the corrosion and malodour problems that sulfide causes. Chemical dosing is one of the most commonly used measures to mitigate these problems. Many chemicals have been reported to be effective for sulfide control, but the extent of success varies between chemicals and is also dependent on how they are applied. This industry survey aims to summarise the current practice in Australia with the view to assist the water industry to further improve their practices and to identify new research questions. Results showed that dosing is mainly undertaken in pressure mains. Magnesium hydroxide, sodium hydroxide and nitrate are the most commonly used chemicals for sewers with low flows. In comparison, iron salts are preferentially used for sulfide control in large systems. The use of oxygen injection has declined dramatically in the past few years. Chemical dosing is mainly conducted at wet wells and pumping stations, except for oxygen, which is injected into the pipe. The dosing rates are normally linked to the control mechanisms of the chemicals and the dosing locations, with constant or profiled dosing rates usually applied. Finally, key opportunities for improvement are the use of mathematical models for the selection of chemicals and dosing locations, on-line dynamic control of the dosing rates and the development of more cost-effective chemicals for sulfide control.

  1. Chemical dehumidification and thermal regeneration: Applications in industrial processes

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.; Longo, G.A.; Piccininni, F.

    1991-11-01

    Chemical dehumidification may be used in industrial dessiccation treatments operating with new air or closed cycle. The authors suggest a few schemes and analyze operation parameters and performance. Finally, comparisons are made with the most efficient systems that have been used so far: energy savings are between 25 and 40 per cent.

  2. Top 100 of China's Petroleum and Chemical Industry

    Institute of Scientific and Technical Information of China (English)

    CPCIA

    2007-01-01

    @@ According to the statistic report of the National Bureau of Statistics of China, there are 24 159 scaled companies (all state-owned companies, and non-state-owned companies those have achieved a main business revenue of over RMB5 million for the fiscal 2005) nationwide majored in petroleum and chemical industry in 2006.

  3. Process Control Systems in the Chemical Industry: Safety vs. Security

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Hahn; Thomas Anderson

    2005-04-01

    Traditionally, the primary focus of the chemical industry has been safety and productivity. However, recent threats to our nation’s critical infrastructure have prompted a tightening of security measures across many different industry sectors. Reducing vulnerabilities of control systems against physical and cyber attack is necessary to ensure the safety, security and effective functioning of these systems. The U.S. Department of Homeland Security has developed a strategy to secure these vulnerabilities. Crucial to this strategy is the Control Systems Security and Test Center (CSSTC) established to test and analyze control systems equipment. In addition, the CSSTC promotes a proactive, collaborative approach to increase industry's awareness of standards, products and processes that can enhance the security of control systems. This paper outlines measures that can be taken to enhance the cybersecurity of process control systems in the chemical sector.

  4. Fifty-Year Trends in the Chemical Industry: What Do They Mean for Chemical Education?

    Science.gov (United States)

    Tolman, Chadwick A.; Parshall, George W.

    1999-01-01

    Describes major changes that have occurred in the chemical industry over the last 50 years including trends in the development of products and processes, changes in chemical manufacturing, the globalization of business, and modifications of research laboratory practices. Discusses implications for chemistry education and predictions for future…

  5. 40 CFR Table 1 to Subpart F of... - Synthetic Organic Chemical Manufacturing Industry Chemicals

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Synthetic Organic Chemical Manufacturing Industry Chemicals 1 Table 1 to Subpart F of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National...

  6. [Occupational digestive diseases in chemical industry workers of West Siberia].

    Science.gov (United States)

    Pomytkina, T E; Pershin, A N

    2010-01-01

    The high incidence of chronic digestive diseases is recorded in chemical industry workers exposed to the isolated action of noxious substances. The aim of the investigation was to make a hygienic assessment of the risk for occupational digestive diseases in chemical industry workers exposed to a combination of noxious drugs. The working conditions and the prevalence of digestive diseases were studied in 4120 workers engaged in chemical and auxiliary processes. Under the isolated action of noxious substances, the workers had an average of 35% increase in the incidence of digestive diseases than unexposed ones (p 4.0-11.1 and 3.5-10.7 times higher, respectively (p < 0.05) than in the unexposed subjects.

  7. PROVIDING INDUSTRIAL SAFETY IN THE DESIGN OF CHEMICAL FACILITIES

    Directory of Open Access Journals (Sweden)

    S. V. Danilova

    2015-01-01

    Full Text Available Designing of chemical destination requires developers’ particular, careful approach, as malfunctions are dangerous for the whole area in which the facility is located. Efficient and uninterrupted operation of a chemical entity assumes certain tasks, and at the design stage, and during the construction, reconstruction, repair, and maintenance. When designing a crucial question: placing equipment in the technological scheme (nature and the order and connection of separate devices; determine the input parameters of raw materials; establishment of technological parameters of the system; determine the structural characteristics of the devices of the system; selection of process parameters in devices that affect the speed of the process, output and product quality. The main document containing the requirements of industrial safety, chemical and other dangerous objects is the Federal Law of July 21, 1997 № 116-FZ "On industrial safety of hazardous production facilities", as amended on December 31, 2014. It defines and regulates the framework for ensuring the safe operation of hazardous production facilities. The most important part in the development and design of hazardous chemicals is the examination of industrial safety, which is held on the basis of the principles of independence, objectivity, comprehensiveness and completeness of the research carried out by using modern science and technology. Design of chemical facilities is a complex, multifactorial and time-consuming process, which should be regarded as a series of socio-organizational and engineering stages. It is a systematic approach to solving design problems and control of all stages of the life cycle of chemical facilities will provide a high level of safe operation of industrial facilities.

  8. Applications of lipid based formulation technologies in the delivery of biotechnology-based therapeutics.

    Science.gov (United States)

    du Plessis, Lissinda H; Marais, Etienne B; Mohammed, Faruq; Kotzé, Awie F

    2014-01-01

    In the last decades several new biotechnologically-based therapeutics have been developed due to progress in genetic engineering. A growing challenge facing pharmaceutical scientists is formulating these compounds into oral dosage forms with adequate bioavailability. An increasingly popular approach to formulate biotechnology-based therapeutics is the use of lipid based formulation technologies. This review highlights the importance of lipid based drug delivery systems in the formulation of oral biotechnology based therapeutics including peptides, proteins, DNA, siRNA and vaccines. The different production procedures used to achieve high encapsulation efficiencies of the bioactives are discussed, as well as the factors influencing the choice of excipient. Lipid based colloidal drug delivery systems including liposomes and solid lipid nanoparticles are reviewed with a focus on recent advances and updates. We further describe microemulsions and self-emulsifying drug delivery systems and recent findings on bioactive delivery. We conclude the review with a few examples on novel lipid based formulation technologies.

  9. Enhanced formulations for neutralization of chemical, biological and industrial toxants

    Science.gov (United States)

    Tucker, Mark D [Albuqueque, NM

    2008-06-24

    An enhanced formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The enhanced formulation according to the present invention is non-toxic and non-corrosive and can be delivered by a variety of means and in different phases. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a bleaching activator and water.

  10. Creative research in the chemical industry - Four decades in retrospect

    Indian Academy of Sciences (India)

    Kuppuswamy Nagarajan

    2006-07-01

    My professional research career spanning more than four decades has been largely devoted to synthetic medicinal chemistry (Ciba, Bombay - now Mumbai - 21 years) followed by an equal number of years in process development of drugs, crop protection chemicals (Searle, Bombay) and drugs and speciality chemicals (Recon and Hikal, Bangalore). These efforts have involved several collaborators including many from other institutions and offered multitudinous challenges calling for continuous creativity in industrial setups. I was fortunate to have had a conducive environment to be able to respond to these challenges. I attempt to offer the readers in the ensuing pages a flavour of the excitement that has marked these years.

  11. Probabilistic safety assessment in the chemical and nuclear industries

    CERN Document Server

    Fullwood, Ralph R

    2000-01-01

    Probabilistic Safety Analysis (PSA) determines the probability and consequences of accidents, hence, the risk. This subject concerns policy makers, regulators, designers, educators and engineers working to achieve maximum safety with operational efficiency. Risk is analyzed using methods for achieving reliability in the space program. The first major application was to the nuclear power industry, followed by applications to the chemical industry. It has also been applied to space, aviation, defense, ground, and water transportation. This book is unique in its treatment of chemical and nuclear risk. Problems are included at the end of many chapters, and answers are in the back of the book. Computer files are provided (via the internet), containing reliability data, a calculator that determines failure rate and uncertainty based on field experience, pipe break calculator, event tree calculator, FTAP and associated programs for fault tree analysis, and a units conversion code. It contains 540 references and many...

  12. Lignin as a renewable aromatic resource for the chemical industry

    OpenAIRE

    Gosselink, R.J.A.

    2011-01-01

    Valorization of lignin plays a key role in the further development of lignocellulosic biorefinery processes for biofuels and biobased materials production. Today’s increased demand for alternatives to fossil carbon-based products expands the interest and the need to create added value to the unconverted lignin fraction. The aim of the research was to study the potential of lignin to become a renewable aromatic resource for the chemical industry. Lignin can be considered as an abundantly...

  13. Reactive formulations for a neutralization of toxic industrial chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Mark D. (Albuqueruqe, NM); Betty, Rita G. (Rio Rancho, NM)

    2006-10-24

    Decontamination formulations for neutralization of toxic industrial chemicals, and methods of making and using same. The formulations are effective for neutralizing malathion, hydrogen cyanide, sodium cyanide, butyl isocyanate, carbon disulfide, phosgene gas, capsaicin in commercial pepper spray, chlorine gas, anhydrous ammonia gas; and may be effective at neutralizing hydrogen sulfide, sulfur dioxide, formaldehyde, ethylene oxide, methyl bromide, boron trichloride, fluorine, tetraethyl pyrophosphate, phosphorous trichloride, arsine, and tungsten hexafluoride.

  14. Profit of Chemical Fibre Industry Surges on Efficiency Improvement

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    According to data collected from 1935 statistics-worthy Chinese chemical fibre enterprises surveyed by National Bureau of Statistics of China, the total profits reached CNY8.066 billion in Jan. -May, 2010, up 200.08 per cent y/y, 234.78 percentage points higher than the Jan.-May 2009 period. Technology improvement and industrial structural adjustment played a very major role on profi t growth.

  15. Probing into the Development Trends of Coal Chemical Industry, Refining Industry and Chemical Industry Integration%煤油化一体化发展趋势探讨

    Institute of Scientific and Technical Information of China (English)

    孥赤宏; 高敏惠

    2012-01-01

    与国外相比,我国煤化工产业虽起步较晚,但发展迅速,煤制烯烃、煤制油和煤制乙二醇等技术已处于世界领先地位。由于煤化工是资金和技术高度集中的产业,且受煤炭资源、水资源、资金、技术、环保法规等制约,因此发展建设时必须考虑经济性、碳排放、水资源、产品选择等诸方面因素。煤油化一体化可实现煤炭一清洁燃料一化工产品的协调发展,对于促进我国煤炭资源合理高效利用具有现实意义。%Compared with foreign coal chemical industry, although China's coal chemical industry began late, it developed fast. The technologies such as coal-to-olefin process, coal liquefaction process and coal-to-ethylene glycol process have been at world advanced position. Because coal funds and technologies are highly concentrated in coal chemical industry and the industry is restricted by coal resources, water resources, funds, technologies and environmental protection laws and regulations, various factors such as economics, carbon emission and water resources should be considered when development and construction are carried out. Coal chemical industry, refining industry and chemical industry integration can realize the coordinated development of coal, clean fuels and chemical products, having practical significance to promote rational and high-efficient utilization of China's coal resources.

  16. [The pharmaceutical industry in the industrial chemical group: the National Union of Chemical-Pharmaceutical Laboratories (1919-1936)].

    Science.gov (United States)

    Nozal, Raúl Rodríquez

    2011-01-01

    The pharmaceutical industry associations, as it happened with other businesses, had a significant rise during the dictatorship of Primo de Rivera and II Republic. The 'Cámara Nacional de Industrias Químicas', in Barcelona, represented the national chemical industry to its ultimate assimilation by the 'Organización Sindical' in 1939. In this association, matters relating to pharmaceutical products -- which we will especially deal with in this work -- were managed by the 'Unión Nacional de Laboratorios Químico-Farmacéuticos', which defended the interests of pharmaceutical companies in the presence of government authorities, using the resources and mechanisms also managed by business pressure groups. The inclusion of industrial pharmacy in the Chemical lobby separated the pharmaceutical industry from traditional exercise and its corporate environment. this created ups and downs, conflicts of interests and finally, love and hate relationships with their colleagues of the pharmacy work placement and, of course, with the association that represented them: the 'Unión Farmacéutica Nacional'.

  17. Meeting the challenges related to material issues in chemical industries

    Indian Academy of Sciences (India)

    Baldev Raj; U Kamachi Mudali; T Jayakumar; K V Kasiviswanathn; K Natarajan

    2000-12-01

    Reliable performance and profitability are two important requirements for any chemical industry. In order to achieve high level of reliability and excellent performance, several issues related to design, materials selection, fabrication, quality assurance, transport, storage, inputs from condition monitoring, failure analysis etc. have to be adequately addressed and implemented. Technology related to nondestructive testing and monitoring of the plant is also essential for precise identification of defect sites and to take appropriate remedial decision regarding repair, replacement or modification of process conditions. The interdisciplinary holistic approach enhances the life of critical engineering components in chemical plants. Further, understanding the failure modes of the components through the analysis of failed components throws light on the choice of appropriate preventive measures to be taken well in advance, to have a control over the overall health of the plant. The failure analysis also leads to better design modification and condition monitoring methodologies, for the next generation components and plants. At the Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, a unique combination of the expertise in design, materials selection, fabrication, NDT development, condition monitoring, life prediction and failure analysis exists to obtain desired results for achieving high levels of reliability and performance assessment of critical engineering components in chemical industries. Case studies related to design, materials selection and fabrication aspects of critical components in nuclear fuel reprocessing plants, NDT development and condition monitoring of various components of nuclear power plants, and important failure investigations on critical engineering components in chemical and allied industries are discussed in this paper. Future directions are identified and planned approaches are briefly described.

  18. Two Decades of Laccases: Advancing Sustainability in the Chemical Industry.

    Science.gov (United States)

    Cannatelli, Mark D; Ragauskas, Arthur J

    2017-01-01

    Given the current state of environmental affairs and that our future on this planet as we know it is in jeopardy, research and development into greener and more sustainable technologies within the chemical and forest products industries is at its peak. Given the global scale of these industries, the need for environmentally benign practices is propelling new green processes. These challenges are also impacting academic research and our reagents of interest are laccases. These enzymes are employed in a variety of biotechnological applications due to their native function as catalytic oxidants. They are about as green as it gets when it comes to chemical processes, requiring O2 as their only co-substrate and producing H2 O as the sole by-product. The following account will review our twenty year journey on the use of these enzymes within our research group, from their initial use in biobleaching of kraft pulps and for fiber modification within the pulp and paper industry, to their current application as green catalytic oxidants in the field of synthetic organic chemistry.

  19. Chemical production from industrial by-product gases: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lyke, S.E.; Moore, R.H.

    1981-04-01

    The potential for conservation of natural gas is studied and the technical and economic feasibility and the implementation of ventures to produce such chemicals using carbon monoxide and hydrogen from byproduct gases are determined. A survey was performed of potential chemical products and byproduct gas sources. Byproduct gases from the elemental phosphorus and the iron and steel industries were selected for detailed study. Gas sampling, preliminary design, market surveys, and economic analyses were performed for specific sources in the selected industries. The study showed that production of methanol or ammonia from byproduct gas at the sites studied in the elemental phosphorus and the iron and steel industries is technically feasible but not economically viable under current conditions. Several other applications are identified as having the potential for better economics. The survey performed identified a need for an improved method of recovering carbon monoxide from dilute gases. A modest experimental program was directed toward the development of a permselective membrane to fulfill that need. A practical membrane was not developed but further investigation along the same lines is recommended. (MCW)

  20. BIOMASS AS A RENEWABLE SOURCE OF CHEMICALS FOR INDUSTRIAL APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Ahmed, M. Murtala

    2012-02-01

    Full Text Available Worldwide demand for cleaner burning fuels and ‘clean’ chemicals has been increasing from the global issues of environmental concern. This lead to a greater utilization of renewable resources to replace the old and existing fossil based feedstock for liquid fuels and chemicals. The ability to re-grow harvested biomass and recapture the carbon emitted to the atmosphere through photosynthesis allows the possibility of carbon neutrality encouraged the use of biomass. Moreso, the unstable rise of oil prices, the negative effects of petroleum on the environment and the advantages of biomass towards sustainability of resources accelerated the development and utilization of unused biomass. This paper reviewed some of the potentials of biomass as a source of chemicals for industrial applications. Pyrolysis is considered to be one of the most employed technologies for the conversion of biomass into bio-oil, char and gases. The utilization of biomass for chemical manufacture can significantly eliminate the harmful effects of fossil based chemicals on the environment.

  1. Microfabricated Instrumentation for Chemical Sensing in Industrial Process Control

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, J. M.

    2000-06-01

    The monitoring of chemical constituents in manufacturing processes is of economic importance to most industries. The monitoring and control of chemical constituents may be of importance for product quality control or, in the case of process effluents, of environmental concern. The most common approach now employed for chemical process control is to collect samples which are returned to a conventional chemical analysis laboratory. This project attempts to demonstrate the use of microfabricated structures, referred to as 'lab-on-a-chip' devices, that accomplish chemical measurement tasks that emulate those performed in the conventional laboratory. The devices envisioned could be used as hand portable chemical analysis instruments where samples are analyzed in the field or as emplaced sensors for continuous 'real-time' monitoring. This project focuses on the development of filtration elements and solid phase extraction elements that can be monolithically integrated onto electrophoresis and chromatographic structures pioneered in the laboratory. Successful demonstration of these additional functional elements on integrated microfabricated devices allows lab-on-a-chip technologies to address real world samples that would be encountered in process control environments. The resultant technology has a broad application to industrial environmental monitoring problems. such as monitoring municipal water supplies, waste water effluent from industrial facilities, or monitoring of run-off from agricultural activities. The technology will also be adaptable to manufacturing process control scenarios. Microfabricated devices integrating sample filtration, solid phase extraction, and chromatographic separation with solvent programming were demonstrated. Filtering of the sample was accomplished at the same inlet with an array of seven channels each 1 {micro}m deep and 18 {micro}m wide. Sample concentration and separation were performed on channels 5 {micro}m deep

  2. THE INDUSTRIAL UTILIZATION OF CHEMICAL MODIFIED AGRICULTURAL RESIDUES

    Institute of Scientific and Technical Information of China (English)

    Feng Xu; Runcang Sun; Huaiyu Zhan

    2004-01-01

    Various lignocellulosic materials such as wood,agricultural and forest residues has the potential to be valuable substitute for, or complement to,commercial sorbents for removing heavy metal ions or dyes from waste water or spilled oil from inland water or sea. More than 9 million tons of straw pulp are produced annually in china, which account for about 90% of the world′s total straw pulp. However,huge quantity of remain straw is not used as industrial raw material and is burnt in the fields or on the side of road. These resources can be chemical modified such as acetylation. Modified straws have the characteristics of low cost, high capacity, quick uptake, and easy to desorb. This paper reviews the current status of the technology for modified agricultural residues, which focus on hemicellulose and cellulose. The potential of these natural sorbents in main industry is also indicated.

  3. THE INDUSTRIAL UTILIZATION OF CHEMICAL MODIFIED AGRICULTURAL RESIDUES

    Institute of Scientific and Technical Information of China (English)

    FengXu; RuncangSun; HuaiyuZhan

    2004-01-01

    Various lignocellulosic materials such as wood, agricultural and forest residues has the potential to be valuable substitute for, or complement to, commercial sorbents for removing heavy metal ions or dyes from waste water or spilled oil from inland water or sea. More than 9 million tons of straw pulp are produced annually in china, which account for about 90% of the world's total straw pulp. However, huge quantity of remain straw is not used as industrial raw material and is burnt in the fields or on the side of road. These resources can be chemical modified such as acetylation. Modified straws have the characteristics of low cost, high capacity, quick uptake, and easy to desorb. This paper reviews the current status of the technology for modified agricultural residues, which focus on hemicellulose and cellulose. The potential of these natural sorbents in main industry is also indicated.

  4. Chemical industry: Government regulations. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The bibliography contains citations concerning government regulation effects on the chemical industry. Regulations pertaining to industrial wastes, energy consumption and conservation, and industrial emissions are discussed. Emission standards and control, toxic substances control, and economic impacts of regulations affecting the chemical industry are considered.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  5. Cogeneration handbook for the chemical process industries. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    Fassbender, A.G.; Fassbender, L.L.; Garrett-Price, B.A.; Moore, N.L.; Eakin, D.E.; Gorges, H.A.

    1984-03-01

    The desision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the chemical industry. Appendices B through O provide specific information that will be called out in subsequent chapters.

  6. The pharmaceutical industry in the industrial chemical group: The National Union of Chemical-Pharmaceutical Laboratories (1919-1936

    Directory of Open Access Journals (Sweden)

    Rodríguez Nozal, Raúl

    2011-12-01

    Full Text Available The pharmaceutical industry associations, as it happened with other businesses, had a significant rise during the dictatorship of Primo de Rivera and II Republic. The Cámara Nacional de Industrias Químicas, in Barcelona, represented the national chemical industry to its ultimate assimilation by the Organización Sindical in 1939. In this association, matters relating to pharmaceutical products —which we will specially deal with in this work— were managed by the Unión Nacional de Laboratorios Químico-Farmacéuticos, which defended the interests of pharmaceutical companies in the presence of government authorities, using the resources and mechanisms also managed by business pressure groups. The inclusion of industrial pharmacy in the Chemical lobby separated the pharmaceutical industry from traditional exercise and its corporate environment. This created ups and downs, conflicts of interests and finally, love and hate relationships with their colleagues of the pharmacy work placement and, of course, with the association that represented them: the Unión Farmacéutica Nacional.

    El asociacionismo farmacéutico industrial, al igual que ocurriera con otras actividades empresariales, experimentó un notable auge durante la Dictadura de Primo de Rivera y la II República. La Cámara Nacional de Industrias Químicas, desde Barcelona, representó a la industria química nacional hasta su asimilación definitiva por la Organización Sindical franquista, en 1939. Dentro de esta asociación, los asuntos relacionados con los productos farmacéuticos, a los que prestaremos especial atención en este trabajo, fueron gestionados por la Unión Nacional de Laboratorios Químico- Farmacéuticos, que defendió los intereses de los productores de medicamentos industriales ante las autoridades gubernamentales, utilizando para ello recursos y mecanismos también manejados por otros grupos empresariales de presión. La inclusión de la farmacia industrial

  7. Comprehensive chemical characterization of industrial PM2.5 from steel industry activities

    Science.gov (United States)

    Sylvestre, Alexandre; Mizzi, Aurélie; Mathiot, Sébastien; Masson, Fanny; Jaffrezo, Jean L.; Dron, Julien; Mesbah, Boualem; Wortham, Henri; Marchand, Nicolas

    2017-03-01

    Industrial sources are among the least documented PM (Particulate Matter) source in terms of chemical composition, which limits our understanding of their effective impact on ambient PM concentrations. We report 4 chemical emission profiles of PM2.5 for multiple activities located in a vast metallurgical complex. Emissions profiles were calculated as the difference of species concentrations between an upwind and a downwind site normalized by the absolute PM2.5 enrichment between both sites. We characterized the PM2.5 emissions profiles of the industrial activities related to the cast iron (complex 1) and the iron ore conversion processes (complex 2), as well as 2 storage areas: a blast furnace slag area (complex 3) and an ore terminal (complex 4). PM2.5 major fractions (Organic Carbon (OC) and Elemental Carbon (EC), major ions), organic markers as well as metals/trace elements are reported for the 4 industrial complexes. Among the trace elements, iron is the most emitted for the complex 1 (146.0 mg g-1 of PM2.5), the complex 2 (70.07 mg g-1) and the complex 3 (124.4 mg g-1) followed by Al, Mn and Zn. A strong emission of Polycyclic Aromatic Hydrocarbons (PAH), representing 1.3% of the Organic Matter (OM), is observed for the iron ore transformation complex (complex 2) which merges the activities of coke and iron sinter production and the blast furnace processes. In addition to unsubstituted PAHs, sulfur containing PAHs (SPAHs) are also significantly emitted (between 0.011 and 0.068 mg g-1) by the complex 2 and could become very useful organic markers of steel industry activities. For the complexes 1 and 2 (cast iron and iron ore converters), a strong fraction of sulfate ranging from 0.284 to 0.336 g g-1) and only partially neutralized by ammonium, is observed indicating that sulfates, if not directly emitted by the industrial activity, are formed very quickly in the plume. Emission from complex 4 (Ore terminal) are characterized by high contribution of Al (125.7 mg

  8. Survey on the Use of LCA in European Chemical Industry

    DEFF Research Database (Denmark)

    Olsen, Stig Irving

    1999-01-01

    During 1997 a questionnaire was sent to 40 European chemical manufacturers representing different positions in the supply chain. 25 companies (62.5%) responded, of which 23 had been involved in LCA to some degree. The questionnaire consisted of 30 questions divided into four parts dealing...... industry has taken up the LCA methodology and is testing its applicability for their purposes, although they still feel the methodology is a bit immature. The resources devoted to LCA depends to a great extent on the company's position in the supply chain and on the size of the company. Many of the LCA......'s has been undertaken to comply with customers' requirements for LCA data, but also process development and marketing were important purposes of the work. Interestingly, in about 40% of the companies the LCA's actually revealed results that would not have been anticipated without doing the LCA...

  9. Valorization of rendering industry wastes and co-products for industrial chemicals, materials and energy: review.

    Science.gov (United States)

    Mekonnen, Tizazu; Mussone, Paolo; Bressler, David

    2016-01-01

    Over the past decades, strong global demand for industrial chemicals, raw materials and energy has been driven by rapid industrialization and population growth across the world. In this context, long-term environmental sustainability demands the development of sustainable strategies of resource utilization. The agricultural sector is a major source of underutilized or low-value streams that accompany the production of food and other biomass commodities. Animal agriculture in particular constitutes a substantial portion of the overall agricultural sector, with wastes being generated along the supply chain of slaughtering, handling, catering and rendering. The recent emergence of bovine spongiform encephalopathy (BSE) resulted in the elimination of most of the traditional uses of rendered animal meals such as blood meal, meat and bone meal (MBM) as animal feed with significant economic losses for the entire sector. The focus of this review is on the valorization progress achieved on converting protein feedstock into bio-based plastics, flocculants, surfactants and adhesives. The utilization of other rendering streams such as fat and ash rich biomass for the production of renewable fuels, solvents, drop-in chemicals, minerals and fertilizers is also critically reviewed.

  10. Benchmarking in the chemical industry in the Netherlands; Chemie laat zich benchmarken

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, A.; Van Nifterik, G. [eds.

    2000-04-13

    July 6, 1999, several Dutch governmental and institutional organizations undersigned a Covenant Benchmarking with six sectoral associations, representing the chemical industry, petroleum refineries, basic metals industry, paper industry and the electric power generating sector. The Covenant implies the commitment for those industries to invest in energy saving measures.

  11. Chemical Industry R&D Roadmap for Nanomaterials By Design. From Fundamentals to Function

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2003-12-01

    Vision2020 agreed to join NNI and the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (DOE/EERE) in sponsoring the "Nanomaterials and the Chemical Industry Roadmap Workshop" on September 30-October 2, 2002. This roadmap, Chemical Industry R&D Roadmap for Nanomaterials By Design: From Fundamentals to Function, is based on the scientific priorities expressed by workshop participants from the chemical industry, universities, and government laboratories.

  12. Technology Development Road for Chemical Fiber Industry in Ghina [Part Two

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Ⅲ.Technology development direction for China's chemical fiber industry in the"11th Five-year Plan" period and the longer run Presently,China's chemical fiber industry is in a critical period for development,or important transition period.Fully implement and fulfill the "'scientific development concept"put forward by the nation,and take a sustainable development road.The growth model of chemical fiber industry must undergo fundamental transformation from "quantitative"development into "qualitative" development.

  13. Potential applications of carbon dioxide in chemical industry; Moegliche Nutzungen von Kohlendioxid in der chemischen Industrie

    Energy Technology Data Exchange (ETDEWEB)

    Behr, Arno; Neuberg, Stefan [Technische Univ. Dortmund (Germany)

    2009-10-15

    Up to now, the use of carbon dioxide as a renewable C. carbon source plays in the current public debate on CCS technology only a minor role. Though, the chemical utilization of the generally unreactive classified molecule provides same very interesting synthesis routes, which take place without toxic starting materials like phosgene. In this review a number of syntheses using CO{sub 2}, which are currently in development, will be briefly presented. Although most of them have only been investigated on laboratory or miniplant scale and require further development, they demonstrate the high potential of carbon dioxide in industrial syntheses far beyond the traditional applications such as urea or salicylic acid syntheses. Concepts for the synthesis of formic acid and a {delta}-lactone, as well as developments in photosynthesis will be presented. A crucial role in nearly all these conversions plays the catalytic activation of carbon dioxide. (orig.)

  14. Destruction of Hazardous Industrial Chemicals Using an Arcjet Plasma Torch*

    Science.gov (United States)

    Fleddermann, C. B.; Snyder, H. R.; Gahl, J. M.

    1996-10-01

    A small-scale thermal plasma torch has been used for the disposal of hazardous industrial chemicals including alcohols, ketones, and chlorinated hydrocarbons. The plasma jet is operated at currents up to 200 Amperes and waste flow rates up to 600 ml/hr. Argon is used as the plasma gas with oxygen added to the reactor to alter the reaction chemistry. Destruction of the waste and by-product formation are monitored using a residual gas analyzer, and the temperature of the plasma plume is measured using an enthalpy probe. The by-products of the destruction of acetone are primarily carbon dioxide, carbon monoxide, and small amounts of hydrocarbons. Adding oxygen to the reactor increases the production of carbon dioxide and significantly decreases the amount of acetone in the exhaust gases. This reactor has achieved greater than 99 percent destruction efficiency for acetone when oxygen is added to the reaction mixture at an arcjet current of 75 Amperes, with similar destruction efficiencies observed for ethanol and trichloroethylene. *Supported by the U.S. DOE through the WERC program administered by New Mexico State University.

  15. STANDARD CALCULATION PER PRODUCT IN THE CHEMICAL FERTILIZER INDUSTRY

    Directory of Open Access Journals (Sweden)

    Ion Ionescu

    2016-12-01

    Full Text Available The main goal of the research is to present a way of organising the managerial accounting of totally and semi finished product obtained in chemical fertilizer industry entities. For this study, we analyzed the current principle of managerial accounting to an entity in the studied area, in order to emphasize the need of organizing and implementing a modern accounting management to control the cost and increase the performance of the entities in this area, starting from the premise that there are sufficient similarities between entities in the field. Research carried out has revealed that currently, the costing is organized in terms of using traditional methods and that it is necessary to organize and implement an accounting management based on the use of modern methods, namely the method of standard costs combined with the method of centres of costs. The major implications of the proposed system for the investigated field consist of determining a relevant cost-oriented management entity, highlighting the shortcomings of traditional methods of cost

  16. Environmental profiles on chemicals (EPC): A substitution tool i.a. used in the textile industry

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hansen, John; Laursen, Søren E.;

    2002-01-01

    When dealing with cleaner technology and product development within industries using a lot of different chemicals, substitution is essential. In many cases substitution of hazardous chemicals with less hazardous ones will diminish the environmental impact from the industry in question. But among ...

  17. A future perspective on the role of industrial biotechnology for chemicals production

    DEFF Research Database (Denmark)

    Woodley, John; Breuer, Michael; Mink, Daniel

    2013-01-01

    The development of recombinant DNA technology, the need for renewable raw materials and a green, sustainable profile for future chemical processes have been major drivers in the implementation of industrial biotechnology. The use of industrial biotechnology for the production of chemicals is well...

  18. Fate of chemical warfare agents and toxic industrial chemicals in landfills.

    Science.gov (United States)

    Bartelt-Hunt, Shannon L; Barlaz, Morton A; Knappe, Detlef R U; Kjeldsen, Peter

    2006-07-01

    One component of preparedness for a chemical attack is planning for the disposal of contaminated debris. To assess the feasibility of contaminated debris disposal in municipal solid waste (MSW) landfills, the fate of selected chemical warfare agents (CWAs) and toxic industrial chemicals (TICs) in MSW landfills was predicted with a mathematical model. Five blister agents [sulfur mustard (HD), nitrogen mustard (HN-2), lewisite (L), ethyldichloroarsine (ED), and phosgene oxime (CX)], eight nerve agents [tabun (GA), sarin (GB), soman (GD), GE, GF, VX, VG, and VM], one riot-control agent [CS], and two TICs [furan and carbon disulfide] were studied. The effects of both infiltration (climate) and contaminant biodegradability on fate predictions were assessed. Model results showed that hydrolysis and gas-phase advection were the principal fate pathways for CWAs and TICs, respectively. Apart from CX and the TICs, none of the investigated compounds was predicted to persist in a landfill for more than 5 years. Climate had little impact on CWA/TIC fate, and biodegradability was only important for compounds with long hydrolysis half-lives. Monte Carlo simulations were performed to assess the influence of uncertainty in model input parameters on CWA/TIC fate predictions. Correlation analyses showed that uncertainty in hydrolysis rate constants was the primary contributor to variance of CWA fate predictions, while uncertainty in the Henry's Law constant and landfill gas-production rate accounted for most of the variance of TIC fate predictions. CWA hydrolysates were more persistent than the parent CWAs, but limited information is available on abiotic or biotic transformation rates for these chemicals.

  19. Research on the competitiveness and development strategy of china's modern coal chemical industry

    Science.gov (United States)

    Wang, Q.; Han, Y. J.; Yu, Z. F.

    2016-08-01

    China's modern coal chemical industry has grown into a certain scale after over a decade of development, and remarkable progress has been made in key technologies. But as oil price collapsed since 2015, the economic benefit of the industry also slumped, with loud controversies in China over the necessity of modern coal chemical industry. The research believes that the modern coal chemical industry plays a positive role in the clean and sustainable exploitation of coal in China. It makes profit when oil price is no lower than 60/bbl, and outperforms petrochemical in terms of cost effectiveness when the price is between 60/bbl and 80/bbl. Given the low oil price and challenges posed by environmental protection and water restraints, we suggest that the state announce a guideline quickly, with adjusted tax policies and an encouragement to technological innovation, so that the modern coal chemical industry in China can grow sound and stable.

  20. Evaluating the environmental hazard of industrial chemicals from data collected during the REACH registration process.

    Science.gov (United States)

    Gustavsson, Mikael B; Hellohf, Andreas; Backhaus, Thomas

    2017-02-22

    Registration dossiers for 11,678 industrial chemicals were retrieved from the database of the European Chemicals Agency, of which 3566 provided a numerical entry for the corresponding predicted no effect concentration for the freshwater environment (PNEC). A distribution-based examination of 2244 of these entries reveals that the average PNEC of an industrial chemical in Europe is 238nmol/L, covering a span of 9 orders of magnitude. A comparison with biocides, pesticides, pharmaceuticals and WFD-priority pollutants reveals that, in average, industrial chemicals are least hazardous (hazard ranking: industrial chemicals≪pharmaceuticalsindustrial chemicals have a lower environmental threshold than the median pesticide and 73 have a lower environmental threshold than even the median biocide. Industrial chemicals produced and/or imported in higher tonnages have, on average, higher PNECs which most likely is due to the lower assessment factors used for the PNEC determination. This pattern indicates that the initial AF of 1000 comprises a measure of conservatism. The vast majority of PNEC values are driven by EC50 and NOEC data from tests with Daphnia magna. Tests with marine species are rarely provided for the hazard characterization of industrial chemicals.

  1. Profile of the chemicals industry in California: Californiaindustries of the future program

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Worrell, Ernst

    2004-06-01

    The U.S. Department of Energy (DOE) Office of Industrial Technologies (OIT) established the Industries of the Future (IOF) program to increase energy efficiency, reduce waste production and to improve competitiveness, currently focusing on nine sectors. The IOF is a partnership strategy involving industry, the research community and the government, working together to identify technology needs, promote industrial partnerships and implement joint measures with all partners involved. The State Industries of the Future (SIOF) program delivers the accomplishments of the national Industries of the Future strategy to the local level, to expand the technology opportunities to a larger number of partners and reach smaller businesses and manufacturers that were not initially involved in the IOF effort. The state programs bring together industry, academia, and state agencies to address the important issues confronting industry in the state. These public-private coalitions facilitate industry solutions locally and enhance economic development. California has started a State Industries of the Future effort, in collaboration with the U.S. Department of Energy. The California Energy Commission (CEC) is leading the SIOF program in California, as part of many other programs to improve the energy efficiency and performance of industries in California. The California State IOF program aims to build a network of participants from industry, academia and government in four selected industrial sectors as a basis for the development of a strategic partnership for industrial energy efficient technology in the state. In California the IOF effort focuses petroleum refining, chemical processing, food processing and electronics. As part of this effort, the SIOF program will develop roadmaps for technology development for the selected sectors. On the basis of the roadmap, the program will develop successful projects with co-funding from state and federal government, and promote industry

  2. Profile of the chemicals industry in California: Californiaindustries of the future program

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Worrell, Ernst

    2004-06-01

    The U.S. Department of Energy (DOE) Office of Industrial Technologies (OIT) established the Industries of the Future (IOF) program to increase energy efficiency, reduce waste production and to improve competitiveness, currently focusing on nine sectors. The IOF is a partnership strategy involving industry, the research community and the government, working together to identify technology needs, promote industrial partnerships and implement joint measures with all partners involved. The State Industries of the Future (SIOF) program delivers the accomplishments of the national Industries of the Future strategy to the local level, to expand the technology opportunities to a larger number of partners and reach smaller businesses and manufacturers that were not initially involved in the IOF effort. The state programs bring together industry, academia, and state agencies to address the important issues confronting industry in the state. These public-private coalitions facilitate industry solutions locally and enhance economic development. California has started a State Industries of the Future effort, in collaboration with the U.S. Department of Energy. The California Energy Commission (CEC) is leading the SIOF program in California, as part of many other programs to improve the energy efficiency and performance of industries in California. The California State IOF program aims to build a network of participants from industry, academia and government in four selected industrial sectors as a basis for the development of a strategic partnership for industrial energy efficient technology in the state. In California the IOF effort focuses petroleum refining, chemical processing, food processing and electronics. As part of this effort, the SIOF program will develop roadmaps for technology development for the selected sectors. On the basis of the roadmap, the program will develop successful projects with co-funding from state and federal government, and promote industry

  3. Factors Influencing the Spatial Distribution of Organochlorine Pesticides in Soils surrounding Chemical Industrial Parks

    NARCIS (Netherlands)

    Wang, G.; Lu, Y.L.; Wang, T.Y.; Zhang, X.; Han, J.Y.; Luo, W.; Shi, Y.J.; Li, J.; Jiao, W.T.

    2009-01-01

    Topsoil samples (n = 105) were collected to Study the distribution of dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH) residues in the vicinity of chemical industrial parks in Tianjin, China. The occurrence and distribution of target organochlorine pesticides (OCPs) were mapped

  4. Regional differences and sources of organochlorine pesticides in soils surrounding chemical industrial parks

    NARCIS (Netherlands)

    Wang, G.; Lu, Y.L.; Li, J.; Wang, T.Y.; Han, Jingyi; Luo, W.; Shi, Y.J.; Jiao, W.T.

    2009-01-01

    Concentrations of organochlorine pesticides (OCPs; dichlorodiphenyltrichloroethanes (DDTs), hexachlorocyclohexanes (HCHs), hexachlorobenzene (HCB)) were investigated in 105 soil samples collected in vicinity of the chemical industrial parks in Tianjin, China. OCP concentrations significantly varied

  5. Implementation Plan for Chemical Industry R&D Roadmap for Nanomaterials by Design

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-04-01

    The purpose of this effort is to develop an implementation plan to realize the vision and goals identified in the Chemical Industry R&D Roadmap for Nanomaterials By Design: From Fundamentals to Function.

  6. Possibilities for recovery and prospects of the Serbian chemical industry in the light of sustainable development

    Directory of Open Access Journals (Sweden)

    Đukić Petar M.

    2014-01-01

    Full Text Available There are numerous dilemmas related to the meaning of common terms associated with modern economic sectors, and especially the ones concerning industry. Chemical industry is a typical example of a term which changes rapidly and qualitatively, exactly with the pace of changing of the very technology based on knowledge, procedure, processes, raw materials, energy, as well as on the products themselves and on the way of their use. Numerous difficulties caused by huge changes in global market, by transition of command economies towards market system, as well as by the latest global economic-financial crisis, have brought the chemical industry in modern Serbia to an unenviable position. We cannot generally claim that chemical industry is collapsing, but the recovery of the whole chemical industry, as well as of the industry in general, necessitates many favourable presumptions from the environment, as well as strategic, systemic and operative measures, of the state within the so-called industry policy, as well as of the very companies which deal with chemical industry. The re-industrialization strategy, adopted officially during the first crisis blow, but to the full extent only during the prolonged crisis period in Serbia (2009-2013 should not be based on direct state incentives, but above all on the institutional infrastructure and business environment improvement which will lead to the investments in technological reconstruction and re-organization of the entire sector. However, chemical industry cannot be observed as a chance for economic growth per se, nor it can lead to higher employment rate in such a short period of time, but above all to productive use of profession, or of growth potential based on knowledge factor. This is why a proper evolution and prosperity of the Serbian chemical industry can be comprehended, not only through contribution of one separate sector, but as complementary and useful technologies within many other industries

  7. Roles of chemical metrology in electronics industry and associated environment in Korea: a tutorial.

    Science.gov (United States)

    Kang, Namgoo; Kim, Kyung Joong; Kim, Jin Seog; Lee, Joung Hae

    2015-03-01

    Chemical metrology is gaining importance in electronics industry that manufactures semiconductors, electronic displays, and microelectronics. Extensive and growing needs from this industry have raised the significance of accurate measurements of the amount of substances and material properties. For the first time, this paper presents information on how chemical metrology is being applied to meet a variety of needs in the aspects of quality control of electronics products and environmental regulations closely associated with electronics industry. For a better understanding of the roles of the chemical metrology within electronics industry, the recent research activities and results in chemical metrology are presented using typical examples in Korea where electronic industry is leading a national economy. Particular attention is paid to the applications of chemical metrology for advancing emerging electronics technology developments. Such examples are a novel technique for the accurate quantification of gas composition at nano-liter levels within a MEMS package, the surface chemical analysis of a semiconductor device. Typical metrological tools are also presented for the development of certified reference materials for fluorinated greenhouse gases and proficiency testing schemes for heavy metals and chlorinated toxic gas in order to cope properly with environmental issues within electronics industry. In addition, a recent technique is presented for the accurate measurement of the destruction and removal efficiency of a typical greenhouse gas scrubber.

  8. Toxic Industrial Chemicals: A Future Weapons of Mass Destruction Threat

    Science.gov (United States)

    2007-11-02

    dependent on factors, such as temperature , pressure, and wind speed (US Army 1990; 1994; and 1998a). In addition to CW agents’ toxicities, their chemical...expected to be at especially high risk of shigellosis, malaria, sandfly fever, and cutaneous leishmaniasis (Quin 1992). Studies conducted since the war

  9. Value chain management for commodities: a case study from the chemical industry

    NARCIS (Netherlands)

    Kannegiesser, M.; Günther, H.O.; Beek, van P.; Grunow, M.; Habla, C.

    2009-01-01

    We present a planning model for chemical commodities related to an industry case. Commodities are standard chemicals characterized by sales and supply volatility in volume and value. Increasing and volatile prices of crude oil-dependent raw materials require coordination of sales and supply decision

  10. Management of change: Lessons learned from staff reductions in the chemical process industry

    NARCIS (Netherlands)

    Zwetsloot, G.I.J.M.; Gort, J.; Steijger, N.; Moonen, C.

    2007-01-01

    Increasing global competition and shareholder pressure are causing major changes in the chemical industry. Over the last decade companies have been continuously improving staff efficiency. As a result, most modern chemical plants can be regarded as lean. Plans to further reduce the number of staff h

  11. Workshop on Indian Chemical Industry: perspectives on safety, cleaner production and environment production

    NARCIS (Netherlands)

    Ham, J.M.

    1996-01-01

    A Workshop on "Indian Chemical Industry: Perspectives on Safety, Cleaner Production and Environmental Protection" was held on 3, 4 and 5 January 1996, in Bombay, India. The main objective of the workshop, which was organised jointly by the Government of India, UNIDO/UNDP and the Indian Chemical Manu

  12. Technology Roadmap: Energy and GHG reductions in the chemical industry via catalytic processes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    The chemical industry is a large energy user; but chemical products and technologies also are used in a wide array of energy saving and/or renewable energy applications so the industry has also an energy saving role. The chemical and petrochemical sector is by far the largest industrial energy user, accounting for roughly 10% of total worldwide final energy demand and 7% of global GHG emissions. The International Council of Chemical Associations (ICCA) has partnered with the IEA and DECHEMA (Society for Chemical Engineering and Biotechnology) to describe the path toward further improvements in energy efficiency and GHG reductions in the chemical sector. The roadmap looks at measures needed from the chemical industry, policymakers, investors and academia to press on with catalysis technology and unleash its potential around the globe. The report uncovers findings and best practice opportunities that illustrate how continuous improvements and breakthrough technology options can cut energy use and bring down greenhouse gas (GHG) emission rates. Around 90% of chemical processes involve the use of catalysts – such as added substances that increase the rate of reaction without being consumed by it – and related processes to enhance production efficiency and reduce energy use, thereby curtailing GHG emission levels. This work shows an energy savings potential approaching 13 exajoules (EJ) by 2050 – equivalent to the current annual primary energy use of Germany.

  13. Producing Bio-Based Bulk Chemicals Using Industrial Biotechnology Saves Energy and Combats Climate Change

    NARCIS (Netherlands)

    Hermann, B.G.; Blok, K.; Patel, M.K.

    2007-01-01

    The production of bulk chemicals from biomass can make a significant contribution to solving two of the most urgent environmental problems: climate change and depletion of fossil energy. We analyzed current and future technology routes leading to 15 bulk chemicals using industrial biotechnology and

  14. Essentials of water systems design in the oil, gas, and chemical processing industries

    CERN Document Server

    Bahadori, Alireza; Boyd, Bill

    2013-01-01

    Essentials of Water Systems Design in the Oil, Gas and Chemical Processing Industries provides valuable insight for decision makers by outlining key technical considerations and requirements of four critical systems in industrial processing plants—water treatment systems, raw water and plant water systems, cooling water distribution and return systems, and fire water distribution and storage facilities. The authors identify the key technical issues and minimum requirements related to the process design and selection of various water supply systems used in the oil, gas, and chemical processing industries. This book is an ideal, multidisciplinary work for mechanical engineers, environmental scientists, and oil and gas process engineers.

  15. Development of A Flexible System for the Simultaneous Conversion of Biomass to Industrial Chemicals and the Production of Industrial Biocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Johnway; Hooker, Brian S.; Skeen, R S.; Anderson, D B.; Lankey, R. L.; Anastas, P. T.

    2002-01-01

    A flexible system was developed for the simultaneous conversion of biomass to industrial chemicals and the production of industrial biocatalysts. In particular, the expression of a bacterial enzyme, beta-glucuronidase (GUS), was investigated using a genetically modified starch-degrading Saccharomyces strain in suspension cultures in starch media. Different sources of starch including corn and waste potato starch were used for yeast biomass accumulation and GUS expression studies under controls of inducible and constitutive promoters. A thermostable bacterial cellulase, Acidothermus cellulolyticus E1 endoglucanase gene was also cloned into an episomal plasmid expression vector and expressed in the starch-degrading Saccharomyces strain.

  16. Acid-resistant organic coatings for the chemical industry: a review

    DEFF Research Database (Denmark)

    Møller, Victor Buhl; Dam-Johansen, Kim; Frankær, Sarah Maria Grundahl

    2017-01-01

    Industries that work with acidic chemicals in their processes need to make choices on how to properly contain the substances and avoid rapid corrosion of equipment. Certain organic coatings and linings can be used in such environments, either to protect vulnerable construction materials, or......, in combination with fiber reinforcement, to replace them. However, degradation mechanisms of organic coatings in acid service are not thoroughly understood and relevant quantitative investigations are scarce. This review describes the uses and limitations of acid-resistant coatings in the chemical industry...... knowledge on chemical and physical degradation mechanisms is required, and that improvements in resistance to elevated temperatures and abrasion would decrease the risk of use and increase the potential application areas of organic coatings exposed to acidic environments in the chemical industry....

  17. Alternative routes for the chemical industry regarding US shale gas

    Energy Technology Data Exchange (ETDEWEB)

    Kneissel, B. [Stratley AG, Koeln (Germany)

    2013-11-01

    Cracking ethane from wet shale gas in North America sets a bench mark to global ethylene production costs. Regarding very attractive ethane prices from extraction of low cost wet shale gas we suggest in North America ethylene production costs will roughly vary between 400 and 600 $/ t. As in other parts of the world, except Middle East, the availability of ethane seems to be more limited other sources for ethylene, such as methane, coal and biomass are investigated. Oxidative coupling of methane (OCM) has its limits and may only lead to competitive production costs for large scale operations. Coal converted to ethylene via calcium carbide and subsequent hydrogenation may hardly be a viable answer. Ethylene derived by dehydration of ethanol from fermentation of corn sugar may be an answer for very low crop prices. Further research on the conversion of methane with emphasis on its industrial implementation as a major carbon resource is recommended. (orig.)

  18. Co-Exposure with Fullerene May Strengthen Health Effects of Organic Industrial Chemicals

    DEFF Research Database (Denmark)

    Lehto, M.; Karilainen, T.; Rog, T.;

    2014-01-01

    In vitro toxicological studies together with atomistic molecular dynamics simulations show that occupational co-exposure with C-60 fullerene may strengthen the health effects of organic industrial chemicals. The chemicals studied are acetophenone, benzaldehyde, benzyl alcohol, m-cresol, and toluene...... which can be used with fullerene as reagents or solvents in industrial processes. Potential co-exposure scenarios include a fullerene dust and organic chemical vapor, or a fullerene solution aerosolized in workplace air. Unfiltered and filtered mixtures of C-60 and organic chemicals represent different...... co-exposure scenarios in in vitro studies where acute cytotoxicity and immunotoxicity of C-60 and organic chemicals are tested together and alone by using human THP-1-derived macrophages. Statistically significant co-effects are observed for an unfiltered mixture of benzaldehyde and C-60 that is more...

  19. Federal agencies active in chemical industry-related research and development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-29

    The Energy Policy Act of 1992 calls for a program to further the commercialization of renewable energy and energy efficient technologies for the industrial sector.. The primary objective of the Office of Industrial Technologies Chemical Industry Team is to work in partnership with the US chemical industry to maximize economic, energy, and environmental benefits through research and development of innovative technologies. This document was developed to inventory organizations within the federal government on current chemical industry-related research and development. While an amount of funding or number of projects specifically relating to chemical industry research and development was not defined in all organizations, identified were about 60 distinct organizations representing 7 cabinet-level departments and 4 independent agencies, with research efforts exceeding $3.5 billion in fiscal year 1995. Effort were found to range from less than $500 thousand per year at the Departments of Agriculture and the Interior to over $100 million per year at the Departments of Commerce, Defense, Energy, and Health and Human Services and the National Aeronautics and Space Administration. The total number of projects in these programs exceeded 10,000. This document is complete to the extent that agencies volunteered information. Additions, corrections, and changes are encouraged and will be incorporated in future revisions.

  20. Lipids: From Chemical Structures, Biosynthesis, and Analyses to Industrial Applications.

    Science.gov (United States)

    Li-Beisson, Yonghua; Nakamura, Yuki; Harwood, John

    2016-01-01

    Lipids are one of the major subcellular components, and play numerous essential functions. As well as their physiological roles, oils stored in biomass are useful commodities for a variety of biotechnological applications including food, chemical feedstocks, and fuel. Due to their agronomic as well as economic and societal importance, lipids have historically been subjected to intensive studies. Major current efforts are to increase the energy density of cell biomass, and/or create designer oils suitable for specific applications. This chapter covers some basic aspects of what one needs to know about lipids: definition, structure, function, metabolism and focus is also given on the development of modern lipid analytical tools and major current engineering approaches for biotechnological applications. This introductory chapter is intended to serve as a primer for all subsequent chapters in this book outlining current development in specific areas of lipids and their metabolism.

  1. Prioritization of the Oral (Ingestive) Hazard of Industrial Chemicals

    Science.gov (United States)

    2011-10-28

    Space Science. English Translation of Kosmicheskaya Biologiya Meditsina. 1967-70. Volume(issue)/page/year: 2,289,1968 130 Cyclohexanone #(T3) 108-94...135 Ethanolamine #(T3) 141-43-5 1720.00 1.00 0.00 5.00 2.50 8.50 20.00 136 Cyclohexanone #(T3) 108-94-1 1800.00 1.00 0.00 5.00 2.50 8.50 25.00 137...38 Chemical CAS NumberRank 135 Ethanolamine #(T3) 141-43-5 136 Cyclohexanone #(T3) 108-94-1 137 Cadmium 7440-43-9 138 Sodium borate 12179-04-3 139

  2. Undisclosed chemicals--implications for risk assessment: a case study from the mining industry.

    Science.gov (United States)

    Singh, Khareen; Oates, Christopher; Plant, Jane; Voulvoulis, Nikolaos

    2014-07-01

    Many of the chemicals used in industry can be hazardous to human health and the environment, and some formulations can have undisclosed ingredients and hazards, increasing the uncertainty of the risks posed by their use. The need for a better understanding of the extent of undisclosed information in chemicals arose from collecting data on the hazards and exposures of chemicals used in typical mining operations (copper, platinum and coal). Four main categories of undisclosed chemicals were defined (incomplete disclosure; chemicals with unspecific identities; relative quantities of ingredients not stated; and trade secret ingredients) by reviewing material safety data sheet (MSDS) omissions in previous studies. A significant number of chemicals (20% of 957 different chemicals) across the three sites had a range of undisclosed information, with majority of the chemicals (39%) having unspecific identities. The majority of undisclosed information was found in commercially available motor oils followed by cleaning products and mechanical maintenance products, as opposed to reagents critical to the main mining processes. All three types of chemicals had trade secrets, unspecific chemical identities and incomplete disclosures. These types of undisclosed information pose a hindrance to a full understanding of the hazards, which is made worse when combined with additional MSDS omissions such as acute toxicity endpoints (LD50) and/or acute aquatic toxicity endpoints (LC50), as well as inadequate hazard classifications of ingredients. The communication of the hazard information in the MSDSs varied according to the chemical type, the manufacturer and the regulations governing the MSDSs. Undisclosed information can undermine occupational health protection, compromise the safety of workers in industry, hinder risk assessment procedures and cause uncertainty about future health. It comes down to the duty of care that industries have towards their employees. With a wide range of

  3. Physico Chemical Properties of higher polymers in petroleum Industry

    Directory of Open Access Journals (Sweden)

    Sudhaker Dubey

    2016-07-01

    Full Text Available This paper deals with the phase inversion and the stability of emulsion. This phenomenon of inversion of emulsion is the sudden reversal of phase by which an oil/water emulsions becomes a water/oil emulsion. As the percentage of kerosene and turpentine oil increases from 10% to 90% in the oil/water emulsion, the oil/water type emulsion changes into water/oil types. There is a sudden fall in the conductance when oil phase concentration changes from 70-80% in all cases. The plots of log conductance against oil percentage shows that in all the cases horizontal portions are obtained. Thus for all the surfactants phase inversion from oil/water to water/oil occurs at an oil concentration of 70% in the case of both kerosene oil and turpentine oil. The lowest horizontal portion is indicative of water/oil emulsions. The highest horizontal portion corresponding to oil/water emulsions is case of RL-1, RL-2 & RL-3 up to a concentration of 30% oil, it is mainly oil/water emulsions. The study of stability shows that kerosene oil/water emulsion stabilized by adding 1% surfactant viz RL-1, RL-2,RL-3 remain stable upto 9 days, 9days and 19 days respectively. A demulsifier used in the petroleum industry to demulsify and the emulsion was tested here and found that emulsion stabilized by adding 1% RL-1 and RL-2 surfactant were stable upto 4 hours while emulsion stabilized by RL-3 surfactant remain stable upto 5 hrs respectively. After 10 hrs 100% demulsification is noticed in the case of all the emulsion.

  4. Chemical industrial wastewater treated by combined biological and chemical oxidation process.

    Science.gov (United States)

    Guomin, Cao; Guoping, Yang; Mei, Sheng; Yongjian, Wang

    2009-01-01

    Wastewaters from phenol and rubber synthesis were treated by the activated sludge process in a large-scale chemical factory in Shanghai, but the final effluent quality cannot conform with the local discharge limit without using river water for dilution. Therefore, this chemical factory had to upgrade its wastewater treatment plant. To fully use the present buildings and equipment during upgrading of the chemical factory's wastewater treatment plant and to save operation costs, a sequential biological pre-treatement, chemical oxidation, and biological post-treatment (or BCB for short) process had been proposed and investigated in a pilot trial. The pilot trial results showed that about 80% COD in the chemical wastewater could be removed through anoxic and aerobic degradation in the biological pre-treatement section, and the residual COD in the effluent of the biological pre-treatment section belongs to refractory chemicals which cannot be removed by the normal biological process. The refractory chemicals were partial oxidized using Fenton's reagent in the chemical oxidation section to improve their biodegradability; subsequently the wastewater was treated by the SBR process in the biological post-treatment section. The final effluent COD reached the first grade discharge limit (process, the operation cost of the BCB process increased by about 0.5 yuan (RMB) per cubic metre wastewater, but about 1,240,000 m(3) a(-1) dilution water could be saved and the COD emission could be cut down by 112 tonne each year.

  5. Evaluation model for safety capacity of chemical industrial park based on acceptable regional risk

    Institute of Scientific and Technical Information of China (English)

    Guohua Chen; Shukun Wang; Xiaoqun Tan

    2015-01-01

    The paper defines the Safety Capacity of Chemical Industrial Park (SCCIP) from the perspective of acceptable regional risk. For the purpose of exploring the evaluation model for the SCCIP, a method based on quantitative risk assessment was adopted for evaluating transport risk and to confirm reasonable safety transport capacity of chemical industrial park, and then by combining with the safety storage capacity, a SCCIP evaluation model was put forward. The SCCIP was decided by the smaller one between the largest safety storage capacity and the maximum safety transport capacity, or else, the regional risk of the park will exceed the acceptable level. The developed method was applied to a chemical industrial park in Guangdong province to obtain the maximum safety transport capacity and the SCCIP. The results can be realized in the regional risk control of the park effectively.

  6. Producing bio-based bulk chemicals using industrial biotechnology saves energy and combats climate change.

    Science.gov (United States)

    Hermann, B G; Blok, K; Patel, M K

    2007-11-15

    The production of bulk chemicals from biomass can make a significant contribution to solving two of the most urgent environmental problems: climate change and depletion of fossil energy. We analyzed current and future technology routes leading to 15 bulk chemicals using industrial biotechnology and calculated their CO2 emissions and fossil energy use. Savings of more than 100% in non-renewable energy use and greenhouse gas emissions are already possible with current state of the art biotechnology. Substantial further savings are possible for the future by improved fermentation and downstream processing. Worldwide CO2 savings in the range of 500-1000 million tons per year are possible using future technology. Industrial biotechnology hence offers excellent opportunities for mitigating greenhouse gas emissions and decreasing dependence on fossil energy sources and therefore has the potential to make inroads into the existing chemical industry.

  7. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals.

    Science.gov (United States)

    Jullesson, David; David, Florian; Pfleger, Brian; Nielsen, Jens

    2015-11-15

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes.

  8. 76 FR 63304 - Guidance for Industry on Incorporation of Physical-Chemical Identifiers Into Solid Oral Dosage...

    Science.gov (United States)

    2011-10-12

    ... [Docket No. FDA-2009-D-0212] Guidance for Industry on Incorporation of Physical-Chemical Identifiers Into... availability of a guidance for industry entitled ``Incorporation of Physical-Chemical Identifiers Into Solid... design considerations for incorporating physical-chemical identifiers (PCIDs) into solid oral...

  9. Chemical and biological evaluation of rejects from the wood industry

    Directory of Open Access Journals (Sweden)

    Daniel Granato

    2005-06-01

    Full Text Available This study aimed chemical characterization and microbiological evaluation of extracts obtained from the waste of woods marketed in Paraná State: Peroba-Rosa (Aspidosperma sp., Roxinho (Peltogyne sp., Jatobá(Hymenaea sp., Curupixá (Micropholis sp., Itaúba (Mezilaurus sp., Cedrilho (Erisma sp. and Imbúia (Licaria sp., whose botanical identifications were based on anatomical studies. The extracts were prepared with different solvents, analyzed by TLC and UV/VIS techniques, and tested against: Proteus mirabilis ATCC15290, Staphylococcus aureus ATCC25923, Escherichia coli ATCC25922, Enterobacter aerogenes ATCC13048, Micrococcus luteus ATCC9341, Klebsiella pneumoniae ATCC13883, Pseudomonas aeroginosa ATCC27853, Staphylococcus aureus, Streptococcus mutans and Bacillus cereus isolated from the clinic. The ethanol extract from Peroba-rosa containing alkaloids showed activity against P. mirabilis. Itaúba, Jatobá and Imbúia methanol extracts containing phenolics, and the Roxinho ethyl acetate extract containing terpenoids and phenolics were active against K. pneumoniae, M. luteus, E. coli, S. aureus and P. mirabilis. P. aeroginosa, S. mutans and E. aerogenes were resistant to the extracts.Este estudo visa a caracterização química e a avaliação da atividade antimicrobiana de extratos obtidos a partir de rejeitos resultantes do beneficiamento de madeiras nobres comercializadas no Paraná: Peroba-Rosa (Aspidosperma sp., Roxinho (Peltogyne sp., Jatobá (Hymenaea sp., Curupixá (Micropholis sp., Itaúba (Mezilaurus sp., Cedrilho (Erisma sp. e Imbúia-do-Norte (Licaria sp., cujas identificações botânicas basearam-se em estudos anatômicos. Os extratos foram preparados com diversos solventes, analisados por CCD e espectrometria UV/VIS, testando-se contra: Proteus mirabilis ATCC15290, Escherichia coli ATCC25922, Enterobacter aerogenes ATCC13048, Staphylococcus aureus ATCC25923, Micrococcus luteus ATCC9341, Klebsiella pneumoniae ATCC13883

  10. Tailor-made biocatalysts enzymes for the fine chemical industry in China.

    Science.gov (United States)

    Jiang, Yu; Tao, Rongsheng; Yang, Sheng

    2016-09-01

    The Center of Industrial Biotechnology (CIBT) was established in Huzhou for fine chemicals in 2006 and CIBT Shanghai was founded for bulk chemicals in 2008. CIBT is a non-profit organization under auspices of the Shanghai Institutes for Biological Sciences, Shanghai Branch of the Chinese Academy of Sciences (CAS) and Huzhou Municipal Government. CIBT is affiliated with the CAS, which enables it to take advantage of the rich R&D resources and support from CAS; yet CIBT operates as an independent legal entity. The goal of CIBT is to incubate industrial biotechnologies and accelerate the commercialization of these technologies with corporate partners in China.

  11. Petroleum Refining, Industrial Chemical, Drug, and Paper and Allied Products Industries. Reprinted from the Occupational Outlook Handbook, 1978-79 Edition.

    Science.gov (United States)

    Bureau of Labor Statistics (DOL), Washington, DC.

    Focusing on occupations in refining and industrial chemical, drug, and paper manufacturing industries, this document is one in a series of forty-one reprints from the Occupational Outlook Handbook providing current information and employment projections for individual occupations and industries through 1985. The specific occupations covered in…

  12. Used solid catalysts from chemical and petrochemical industries; Les catalyseurs solides uses de l`industrie chimique et du raffinage petrolier

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    A comprehensive survey of the solid catalysts used in the chemical and petrochemical industries is presented; information on solid catalyst market demand prospective for 1998, the nature of solid catalysts used in the various industrial sectors and for the various chemical products production, the european catalysts manufacturers, solid catalyst poisons and inhibitors according to the various types of chemical reactions, mean compositions of used solid catalysts, an assessment of the volume of used solid catalysts generated by chemical and petrochemical industries, the various ways of solid catalyst regeneration and disposal, the potential for off-site regeneration of used catalysts, and French and European regulations, is presented

  13. Implementation of Responsible Care in the chemical industry: Evidence from Greece

    Energy Technology Data Exchange (ETDEWEB)

    Evangelinos, K.I. [University of the Aegean, Department of Environment, University Hill, 81100, Mytilini (Greece); Nikolaou, I.E., E-mail: inikol@env.duth.gr [Democritus University of Thrace, Department of Environmental Engineering, Vas. Sofias 12, 67100, Xanthi (Greece); Karagiannis, A. [General Chemical State Laboratory Division of Rhodos, Haritou Square 17, 85100, Rodos (Greece)

    2010-05-15

    The chemical industry can be held accountable for numerous large-scale accidents which have led to the release of dangerous hazardous materials, pollutants and toxic chemicals into the environment, two well-known examples being the Union Carbide Bhopal disaster and the Three Mile Island tragedy). To ensure environmental protection and the Health and Safety (H and S) of communities, the chemical industry has voluntarily adopted integrated management programs such as the Responsible Care Program. The theoretical body of relevant literature attempts to explain the origin of the Responsible Care Program (RCP) through socio-political and economic theories. At the same time, the empirical research examines the ways in which various factors affect the choice of the chemical industry in their adoption of the RCP. This paper contributes to the debate by examining the challenges and barriers faced by the Greek chemical industry when adopting RCP, the environmental and H and S issues that prevail and finally, the extent of participation of stakeholders in the planning of RCP in the sector.

  14. Reducing aquatic hazards of industrial chemicals: probabilistic assessment of sustainable molecular design guidelines.

    Science.gov (United States)

    Connors, Kristin A; Voutchkova-Kostal, Adelina M; Kostal, Jakub; Anastas, Paul; Zimmerman, Julie B; Brooks, Bryan W

    2014-08-01

    Basic toxicological information is lacking for the majority of industrial chemicals. In addition to increasing empirical toxicity data through additional testing, prospective computational approaches to drug development aim to serve as a rational basis for the design of chemicals with reduced toxicity. Recent work has resulted in the derivation of a "rule of 2," wherein chemicals with an octanol-water partition coefficient (log P) less than 2 and a difference between the lowest unoccupied molecular orbital and the highest occupied molecular orbital (ΔE) greater than 9 (log P9 eV) are predicted to be 4 to 5 times less likely to elicit acute or chronic toxicity to model aquatic organisms. The present study examines potential reduction of aquatic toxicity hazards from industrial chemicals if these 2 molecular design guidelines were employed. Probabilistic hazard assessment approaches were used to model the likelihood of encountering industrial chemicals exceeding toxicological categories of concern both with and without the rule of 2. Modeling predicted that utilization of these molecular design guidelines for log P and ΔE would appreciably decrease the number of chemicals that would be designated to be of "high" and "very high" concern for acute and chronic toxicity to standard model aquatic organisms and end points as defined by the US Environmental Protection Agency. For example, 14.5% of chemicals were categorized as having high and very high acute toxicity to the fathead minnow model, whereas only 3.3% of chemicals conforming to the design guidelines were predicted to be in these categories. Considerations of specific chemical classes (e.g., aldehydes), chemical attributes (e.g., ionization), and adverse outcome pathways in representative species (e.g., receptor-mediated responses) could be used to derive future property guidelines for broader classes of contaminants.

  15. Industry

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  16. Co-exposure with fullerene may strengthen health effects of organic industrial chemicals.

    Directory of Open Access Journals (Sweden)

    Maili Lehto

    Full Text Available In vitro toxicological studies together with atomistic molecular dynamics simulations show that occupational co-exposure with C60 fullerene may strengthen the health effects of organic industrial chemicals. The chemicals studied are acetophenone, benzaldehyde, benzyl alcohol, m-cresol, and toluene which can be used with fullerene as reagents or solvents in industrial processes. Potential co-exposure scenarios include a fullerene dust and organic chemical vapor, or a fullerene solution aerosolized in workplace air. Unfiltered and filtered mixtures of C60 and organic chemicals represent different co-exposure scenarios in in vitro studies where acute cytotoxicity and immunotoxicity of C60 and organic chemicals are tested together and alone by using human THP-1-derived macrophages. Statistically significant co-effects are observed for an unfiltered mixture of benzaldehyde and C60 that is more cytotoxic than benzaldehyde alone, and for a filtered mixture of m-cresol and C60 that is slightly less cytotoxic than m-cresol. Hydrophobicity of chemicals correlates with co-effects when secretion of pro-inflammatory cytokines IL-1β and TNF-α is considered. Complementary atomistic molecular dynamics simulations reveal that C60 co-aggregates with all chemicals in aqueous environment. Stable aggregates have a fullerene-rich core and a chemical-rich surface layer, and while essentially all C60 molecules aggregate together, a portion of organic molecules remains in water.

  17. Genomic mechanisms of stress tolerance for the industrial yeast Saccharomyces cerevisiae against major chemical classes of inhibitors

    Science.gov (United States)

    Numerous toxic chemical compounds liberated from lignocellulosic biomass pretreatment inhibit subsequent microbial fermentation that pose a significant challenge to a sustainable and renewable bio-based fermentation industry. Toxin removal procedures by physical or chemical means are essentially imp...

  18. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals

    DEFF Research Database (Denmark)

    Jullesson, David; David, Florian; Pfleger, Brian

    2015-01-01

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played...

  19. Potential Challenges Faced by the U.S. Chemicals Industry under a Carbon Policy

    Directory of Open Access Journals (Sweden)

    Andrea Bassi

    2009-09-01

    Full Text Available Chemicals have become the backbone of manufacturing within industrialized economies. Being energy-intensive materials to produce, this sector is threatened by policies aimed at combating and adapting to climate change. This study examines the worst-case scenario for the U.S. chemicals industry when a medium CO2 price policy is employed. After examining possible industry responses, the study goes on to identify and provide a preliminary evaluation of potential opportunities to mitigate these impacts. If climate regulations are applied only in the United States, and no action is taken to invest in advanced low- and no-carbon technologies to mitigate the impacts of rising energy costs, the examination shows that climate policies that put a price on carbon could have substantial impacts on the competiveness of the U.S. chemicals industry over the next two decades. In the long run, there exist technologies that are available to enable the chemicals sector to achieve sufficient efficiency gains to offset and manage the additional energy costs arising from a climate policy.

  20. Physical, microscopic and chemical characterisation of industrial rye and wheat brans from the Nordic countries

    DEFF Research Database (Denmark)

    Kamal-Eldin, A; Lærke, Helle Nygaard; Bach Knudsen, Knud Erik

    2009-01-01

    Background: Epidemiological studies show inverse relationship between intake of wholegrain cereals and several chronic diseases. Components and mechanisms behind possible protective effects of wholegrain cereals are poorly understood. Objective: To characterise commercial rye bran preparations, c...... variation in the chemical composition of industrially produced rye brans calls for the need of standardisation of this commodity, especially when used as a functional ingredient in foods....

  1. Status and direction of waste minimization in the chemical and petrochemical industries

    Energy Technology Data Exchange (ETDEWEB)

    Englande Junior, A.J. [Tulane Univ., New Orleans, LA (United States). School of Public Health and Tropical Medicine

    1993-12-31

    This paper presents an evaluation of the status and direction of toxic/hazardous waste reduction in chemical and petrochemical industries from an international perspective. In almost all cases studied savings have resulted. The importance of pollution prevention by `clean technologies` instead of remediation is stressed. 6 refs., 4 tabs.

  2. An Alternative Educational Approach for an Inorganic Chemistry Laboratory Course in Industrial and Chemical Engineering

    Science.gov (United States)

    Garces, Andres; Sanchez-Barba, Luis Fernando

    2011-01-01

    We describe an alternative educational approach for an inorganic chemistry laboratory module named "Experimentation in Chemistry", which is included in Industrial Engineering and Chemical Engineering courses. The main aims of the new approach were to reduce the high levels of failure and dropout on the module and to make the content match the…

  3. Communicating CSR and Business Identity in the Chemical Industry through Mission Slogans

    Science.gov (United States)

    Verboven, Hans

    2011-01-01

    This article analyzes the communication of corporate social responsibility (CSR) and corporate image in the chemical industry through mission slogans. Morsing's (2006) CSR communication framework is adapted for a comparative analysis of the strategies behind mission slogans. By grouping rhetorical strategies in a mission slogan into a mission…

  4. Towards consistent and reliable Dutch and international energy statistics for the chemical industry

    NARCIS (Netherlands)

    Neelis, M.L.; Pouwelse, J.W.

    2008-01-01

    Consistent and reliable energy statistics are of vital importance for proper monitoring of energy-efficiency policies. In recent studies, irregularities have been reported in the Dutch energy statistics for the chemical industry. We studied in depth the company data that form the basis of the energy

  5. Effects of endocrine disrupting chemicals from leather industry effluents on male reproductive system.

    Science.gov (United States)

    Kumar, Vikas; Majumdar, Chandrajeetbalo; Roy, Partha

    2008-09-01

    The leather tanning industry is characterized by the production of different kinds of effluents, generated in each step of leather processing. These effluents have various chemical compounds which may cause toxicity and endocrine disruption and are thus known as endocrine disrupting chemicals (EDC). This study was aimed to examine the androgenic potential of leather industry effluents collected from northern region of India. Hershberger assay data showed a significant increase (pGC-MS, it was found to contain various aromatic compounds (nonylphenol, hexaclrobenzene and several azo dyes) some of which independently demonstrated similar effects as shown by water samples. Our data suggests that the effluents from leather industry have potential EDC demonstrating androgenic activities.

  6. Guangzhou Chemical Industry%Assessment on Uncertainy for Anline Compounds in Industrial Sewage

    Institute of Scientific and Technical Information of China (English)

    马经纬

    2016-01-01

    在水质监测市场化模式下,第三方检测机构在接受监管部门委托对排水户进行水质监测时,有必要对检测结果的不确定度进行说明,以提供更为充分的监测依据。苯胺是工业废水中常含的污染物之一,通过对N-(1-萘基)乙二胺偶氮分光光度法测定工业废水中苯胺的实验过程进行分析。建立数学模型,对造成检测结果不确定度的要素进行评定,从而得出标准溶液浓度、标准曲线,实验仪器,回收率等因素对测定结果造成的影响。%Under the marketization of water quality monitoring, when inspection agencies accept the commission of regulators to monitor drainage water, it’s necessary for the uncertainty of test results, to provide moreadequate monitoring basis. Aniline is one of common pollutants in industrial wastewater. The determination of aniline by spectrophotometric method using N-(1-naphthyl) ethylenediamine was analyzed to find out the cause of uncertainty of measurement results in the process of experiment. Establishing mathematical model and calculating elements caused the uncertainty of test results, to get the impact of standard curve, capacity of the vessel, spectrophotometer, recovery rate and other factors on the determination results.

  7. Energy use and energy intensity of the U.S. chemical industry

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, E.; Phylipsen, D.; Einstein, D.; Martin, N.

    2000-04-01

    The U.S. chemical industry is the largest in the world, and responsible for about 11% of the U.S. industrial production measured as value added. It consumes approximately 20% of total industrial energy consumption in the U.S. (1994), and contributes in similar proportions to U.S. greenhouse gas emissions. Surprisingly, there is not much information on energy use and energy intensity in the chemical industry available in the public domain. This report provides detailed information on energy use and energy intensity for the major groups of energy-intensive chemical products. Ethylene production is the major product in terms of production volume of the petrochemical industry. The petrochemical industry (SIC 2869) produces a wide variety of products. However, most energy is used for a small number of intermediate compounds, of which ethylene is the most important one. Based on a detailed assessment we estimate fuel use for ethylene manufacture at 520 PJ (LHV), excluding feedstock use. Energy intensity is estimated at 26 GJ/tonne ethylene (LHV), excluding feedstocks.The nitrogenous fertilizer production is a very energy intensive industry, producing a variety of fertilizers and other nitrogen-compounds. Ammonia is the most important intermediate chemical compound, used as basis for almost all products. Fuel use is estimated at 268 PJ (excluding feedstocks) while 368 PJ natural gas is used as feedstock. Electricity consumption is estimated at 14 PJ. We estimate the energy intensity of ammonia manufacture at 39.3 GJ/tonne (including feedstocks, HHV) and 140 kWh/tonne, resulting in a specific primary energy consumption of 40.9 GJ/tonne (HHV), equivalent to 37.1 GJ/tonne (LHV). Excluding natural gas use for feedstocks the primary energy consumption is estimated at 16.7 GJ/tonne (LHV). The third most important product from an energy perspective is the production of chlorine and caustic soda. Chlorine is produced through electrolysis of a salt-solution. Chlorine production is

  8. Chemical mass balance source apportionment of PM 10 in an industrialized urban area of Northern Greece

    Science.gov (United States)

    Samara, C.; Kouimtzis, Th; Tsitouridou, R.; Kanias, G.; Simeonov, V.

    Ambient PM 10 were sampled at three sites in an industrialized urban area of Northern Greece during June 1997-June 1998 and analyzed for 17 chemical elements, 5 water-soluble ions and 13 polycyclic aromatic hydrocarbons. In addition, chemical source profiles consisting of the same particulate components were obtained for a number of industrial activities (cement, fertilizer and asphalt production, quarry operations, metal electroplating, metal welding and tempering, steel manufacture, lead and bronze smelters, metal scrap incineration), residential oil burning, non-catalyst and catalyst-equipped passenger cars, diesel fuelled taxis and buses, as well as for geological fugitive sources (paved road dust and soil from open lands). Ambient and source data were used in a chemical mass balance (CMB) receptor model for source identification and apportionment. Results of CMB modeling showed that major source of ambient PM 10 at all three sites was diesel vehicle exhaust. Significant contribution from industrial oil burning was also evidenced at the site located closest to the industrial area.

  9. CO{sub 2} emissions and reduction potential in China's chemical industry

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Bing [Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China); International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361 Laxenburg (Austria); Zhou, Wenji; Hu, Shanying; Li, Qiang; Jin, Yong [Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China); Griffy-Brown, Charla [Graziadio School of Business, Pepperdine University, Los Angeles, CA 90045 (United States)

    2010-12-15

    GHG (Increasing greenhouse gas) emissions in China imposes enormous pressure on China's government and society. The increasing GHG trend is primarily driven by the fast expansion of high energy-intensive sectors including the chemical industry. This study investigates energy consumption and CO{sub 2} emissions in the processes of chemical production in China through calculating the amounts of CO{sub 2} emissions and estimating the reduction potential in the near future. The research is based on a two-level perspective which treats the entire industry as Level one and six key sub-sectors as Level two, including coal-based ammonia, calcium carbide, caustic soda, coal-based methanol, sodium carbonate, and yellow phosphorus. These two levels are used in order to address the complexity caused by the fact that there are more than 40 thousand chemical products in this industry and the performance levels of the technologies employed are extremely uneven. Three scenarios with different technological improvements are defined to estimate the emissions of the six sub-sectors and analyze the implied reduction potential in the near future. The results highlight the pivotal role that regulation and policy administration could play in controlling the CO{sub 2} emissions by promoting average technology performances in this industry. (author)

  10. 78 FR 68461 - Guidance for Industry: Studies To Evaluate the Utility of Anti-Salmonella Chemical Food Additives...

    Science.gov (United States)

    2013-11-14

    ... Anti- Salmonella Chemical Food Additives in Feeds; Request for Comments AGENCY: Food and Drug... revising the guidance entitled ``Guidance for Industry: Studies to Evaluate the Utility of Anti-Salmonella... Guidance for Industry: Studies to Evaluate the Utility of Anti-Salmonella Chemical Food Additives in...

  11. Biogeochemical features technogenic pollution of soils under the influence chemical industry

    Directory of Open Access Journals (Sweden)

    Kuraeva I.V.

    2015-09-01

    Full Text Available The physico-chemical properties of soil (pH, organic matter content, cation exchange capacity. The regularities of the distribution of total and mobile forms of heavy metals in soil sediments in the territory of Shostka Sumy region under the influence of the chemical industry and in the background areas. Biogeochemical indicators obtained content of microscopic fungi and their species, the most characteristic of the study of soils, which can be used as an additional criterion for ecological and geochemical studies.

  12. Modelling of associating mixtures for applications in the oil & gas and chemical industries

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Folas, Georgios; Muro Sunè, Nuria

    2007-01-01

    -alcohol (glycol)-alkanes and certain acid and amine-containing mixtures. Recent results include glycol-aromatic hydrocarbons including multiphase, multicomponent equilibria and gas hydrate calculations in combination with the van der Waals-Platteeuw model. This article will outline some new applications...... of the model of relevance to the petroleum and chemical industries: high pressure vapor-liquid and liquid-liquid equilibrium in alcohol-containing mixtures, mixtures with gas hydrate inhibitors and mixtures with polar and hydrogen bonding chemicals including organic acids. Some comparisons with conventional...

  13. Value chain management for commodities: a case study from the chemical industry

    DEFF Research Database (Denmark)

    Kannegiesser, M.; Gunther, H.O.; van Beek, P.

    2009-01-01

    quantity, price and supply decisions throughout the value chain. A two-phase optimization approach supports robust planning ensuring minimum profitability even in case of worst-case spot sales price scenarios. Model evaluations with industry case data demonstrate the impact of elasticities, variable raw......We present a planning model for chemical commodities related to an industry case. Commodities are standard chemicals characterized by sales and supply volatility in volume and value. Increasing and volatile prices of crude oil-dependent raw materials require coordination of sales and supply...... decisions by volume and value throughout the value chain to ensure profitability. Contract and spot demand differentiation with volatile and uncertain spot prices, spot sales quantity flexibility, spot sales price-quantity functions and variable raw material consumption rates in production are problem...

  14. Industrialization of Biology. A Roadmap to Accelerate the Advanced Manufacturing of Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Douglas C. [National Academy of Sciences, Washington, DC (United States)

    2015-09-01

    The report stresses the need for efforts to inform the public of the nature of industrial biotechnology and of its societal benefits, and to make sure that concerns are communicated effectively between the public and other stakeholders. In addition to scientific advances, a number of governance and societal factors will influence the industrialization of biology. Industry norms and standards need to be established in areas such as read/write accuracy for DNA, data and machine technology specifications, and organism performance in terms of production rates and yields. An updated regulatory regime is also needed to accelerate the safe commercialization of new host organisms, metabolic pathways, and chemical products, and regulations should be coordinated across nations to enable rapid, safe, and global access to new technologies and products.

  15. Integrated environmental risk assessment and whole-process management system in chemical industry parks.

    Science.gov (United States)

    Shao, Chaofeng; Yang, Juan; Tian, Xiaogang; Ju, Meiting; Huang, Lei

    2013-04-19

    Chemical industry parks in China are considered high-risk areas because they present numerous risks that can damage the environment, such as pollution incidents. In order to identify the environmental risks and the principal risk factors in these areas, we have developed a simple physical model of a regional environmental risk field (ERF) using existing dispersal patterns and migration models. The regional ERF zoning was also conducted and a reference value for diagnostic methods was developed to determine risk-acceptable, risk-warning, and risk-mitigation zones, which can provide a risk source layout for chemical industry parks. In accordance with the environmental risk control requirements, this study focused on the three stages of control and management of environmental risk and established an environmental risk management system including risk source identification and assessment, environmental safety planning, early risk warning, emergency management, assessment of environmental effects, and environmental remediation of pollution accidents. By using this model, the environmental risks in Tianjin Binhai New Area, the largest chemical industry park in China, were assessed and the environmental risk zoning map was drawn, which suggested the existence of many unacceptable environmental risks in this area. Thus, relevant suggestions have been proposed from the perspective of the adjustment of risk source layout, intensified management of environmental risk control and so on.

  16. Integrated Environmental Risk Assessment and Whole-Process Management System in Chemical Industry Parks

    Directory of Open Access Journals (Sweden)

    Lei Huang

    2013-04-01

    Full Text Available Chemical industry parks in China are considered high-risk areas because they present numerous risks that can damage the environment, such as pollution incidents. In order to identify the environmental risks and the principal risk factors in these areas, we have developed a simple physical model of a regional environmental risk field (ERF using existing dispersal patterns and migration models. The regional ERF zoning was also conducted and a reference value for diagnostic methods was developed to determine risk-acceptable, risk-warning, and risk-mitigation zones, which can provide a risk source layout for chemical industry parks. In accordance with the environmental risk control requirements, this study focused on the three stages of control and management of environmental risk and established an environmental risk management system including risk source identification and assessment, environmental safety planning, early risk warning, emergency management, assessment of environmental effects, and environmental remediation of pollution accidents. By using this model, the environmental risks in Tianjin Binhai New Area, the largest chemical industry park in China, were assessed and the environmental risk zoning map was drawn, which suggested the existence of many unacceptable environmental risks in this area. Thus, relevant suggestions have been proposed from the perspective of the adjustment of risk source layout, intensified management of environmental risk control and so on.

  17. Genotoxicity--threshold or not? Introduction of cases of industrial chemicals.

    Science.gov (United States)

    Bolt, Hermann M

    2003-04-11

    Many industrially and environmentally important industrial carcinogens display effects that lead them to be viewed and regulated as 'genotoxic compounds'. Some of these chemicals cause experimental tumours only at high or toxic doses. The current view is that non-threshold principles should be applied for risk assessments and to define permissible exposure values. The toxicological impact of underlying mechanisms is frequently not well investigated and understood. The classification of carcinogens is now in a state of discussion. In Germany, the 'MAK-Commission' has issued new recommendations to distinguish between 5 groups of proven and suspected carcinogens. This proposal includes a category of 'substances with carcinogenic potential for which genotoxicity plays no or at most a minor role'. Another category comprises 'substances with carcinogenic and genotoxic potential, the potency of which is considered so low that, provided that the MAK-value is observed, no significant contribution to human cancer risk is to be expected'. There is also a number of apparently genotoxic carcinogens where the existence of 'practical thresholds' is at least debated. One outstanding example is vinyl acetate, which must be viewed against the background of discussions on other industrial high-volume chemicals like formaldehyde, acrylonitrile, acrylamide and trichloroethylene. Main arguments in favour or against thresholds of carcinogenicity of these individual compounds are summarised. Current instruments of regulation should be adjusted to allow adequate consideration of carcinogenic effects of chemicals that are practically relevant at high doses only. Also, research into this field is encouraged.

  18. The removal of dinitrochlorobenzene from industrial residuals by liquid-liquid extraction with chemical reaction

    Directory of Open Access Journals (Sweden)

    G. C. M. Ferreira

    2007-09-01

    Full Text Available Nitrochlorobenzenes (NCBs are very important in the chemical industry since they have been used as raw material for the manufacture of crop protection products, as active ingredients in the pharmaceutical industry, as pigments and as antioxidants as well as for other uses. In industrial processes, NCBs are produced by monochlorobenzene (MCB nitration reactions and one of the main residuals formed is dinitrochlorobenzene (DNCB, which is mainly composed of the isomer 2,4DNCB. This subproduct, although of commercial interest when in its pure state, is generally incinerated due to the high costs of recovery treatment and purification. The objective of this study is to present an alternative to the treatment of industrial residuals containing DNCB. The technique consists of converting DNCB into sodium dinitrophenolate, which is very soluble in water and is also easy to reuse. For this purpose, liquid-liquid extraction with chemical reaction (alkaline hydrolysis with a rotating disc contactor (RDC is used. Experimental data on MCB nitration reactions as well as alkaline hydrolysis using a rotating disc contactor are presented.

  19. A Study on an Executive Technique and Activation of Clean Production in Chemical Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Seong Yong; Lee, Hee Seok; Kim, Kang Seok [Korea Environment Institute, Seoul (Korea)

    2000-12-01

    Clean production does not only make the sustainable development possible through preventing the deterioration of the environmental pollution from the expansion of industrialization but also enhance the company's competitiveness. Clean production is required by all industrial fields but is the most important in chemical industry. The Government has made efforts to change the domestic industrial structure to the environmental-friendly structure through developing the research. However, the domestic industry has not yet activated overall except some large companies, which has concretized the activation of clean production. Especially, the medium and small companies are more sluggish due to the inferiority of capital and technology. With recognizing that the main body of clean production is a company, the effort based on the Government and the academic world, without companies' positive, will cannot help being limited in effects. Therefore, it is necessary to trigger the schemes that urge the companies' motivation to show the effects from the support that have concentrated in hardware like technology until now. It seems to be very important that the guidebook for clean production, which a company can easily adopt, is developed and spread. This report provides the guidebook for clean production that managers and engineers can easily understand and approach in a producing field and presents the scheme to promote clean production, for chemical industry that is seriously required clean production. Even if the presented contents are not perfect, they can be applied to the development of the Government's policy and the administrative activities of companies for clean production as a useful data. 53 refs., 5 figs., 30 tabs.

  20. Evolution and prospects of Spanish chemical sector. An overview from its Industrial Observatory; Evolucion y perspectivas del sector quimico espanol. Vision desde su observatorio industrial

    Energy Technology Data Exchange (ETDEWEB)

    Collado Bravo, J.; Sanchez Sanchez, F.

    2012-07-01

    The Industrial Observatory of the Chemical Sector was created in 2005 in order to follow the evolution of the Spanish chemical sector and to improve the competitiveness of the chemical companies operating in Spain. For this sector and its evolution over the years, know their main problems and the actions can be undertaken to solve or minimize them and, ultimately, learn how improve its competitiveness, the Industrial Observatory of the Chemical Sector is a good source of information. This article analyzes the Spanish chemical sector and its evolution in the period 2003-2010 using the field and the data produced within the Observatory, and then to state, through competitive factors discussed in it, what are the main measures proposed to improve the chemical sector. (Author)

  1. Risk assessment and hierarchical risk management of enterprises in chemical industrial parks based on catastrophe theory.

    Science.gov (United States)

    Chen, Yu; Song, Guobao; Yang, Fenglin; Zhang, Shushen; Zhang, Yun; Liu, Zhenyu

    2012-12-03

    According to risk systems theory and the characteristics of the chemical industry, an index system was established for risk assessment of enterprises in chemical industrial parks (CIPs) based on the inherent risk of the source, effectiveness of the prevention and control mechanism, and vulnerability of the receptor. A comprehensive risk assessment method based on catastrophe theory was then proposed and used to analyze the risk levels of ten major chemical enterprises in the Songmu Island CIP, China. According to the principle of equal distribution function, the chemical enterprise risk level was divided into the following five levels: 1.0 (very safe), 0.8 (safe), 0.6 (generally recognized as safe, GRAS), 0.4 (unsafe), 0.2 (very unsafe). The results revealed five enterprises (50%) with an unsafe risk level, and another five enterprises (50%) at the generally recognized as safe risk level. This method solves the multi-objective evaluation and decision-making problem. Additionally, this method involves simple calculations and provides an effective technique for risk assessment and hierarchical risk management of enterprises in CIPs.

  2. Anaerobic baffled reactor coupled with chemical precipitation for treatment and toxicity reduction of industrial wastewater.

    Science.gov (United States)

    Laohaprapanona, Sawanya; Marquesa, Marcia; Hogland, William

    2014-01-01

    This study describes the reduction of soluble chemical oxygen demand (CODs) and the removal of dissolved organic carbon (DOC), formaldehyde (FA) and nitrogen from highly polluted wastewater generated during cleaning procedures in wood floor manufacturing using a laboratory-scale biological anaerobic baffled reactor followed by chemical precipitation using MgCI2 .6H20 + Na2HPO4. By increasing the hydraulic retention time from 2.5 to 3.7 and 5 days, the reduction rates of FA, DOC and CODs of nearly 100%, 90% and 83%, respectively, were achieved. When the Mg:N:P molar ratio in the chemical treatment was changed from 1:1:1 to 1.3:1:1.3 at pH 8, the NH4+ removal rate increased from 80% to 98%. Biologically and chemically treated wastewater had no toxic effects on Vibrio fischeri and Artemia salina whereas chemically treated wastewater inhibited germination of Lactuca sativa owing to a high salt content. Regardless of the high conductivity of the treated wastewater, combined biological and chemical treatment was found to be effective for the removal of the organic load and nitrogen, and to be simple to operate and to maintain. A combined process such as that investigated could be useful for on-site treatment of low volumes of highly polluted wastewater generated by the wood floor and wood furniture industries, for which there is no suitable on-site treatment option available today.

  3. Analysis of the comprehensibility of chemical hazard communication tools at the industrial workplace.

    Science.gov (United States)

    Ta, Goh Choo; Mokhtar, Mazlin Bin; Mohd Mokhtar, Hj Anuar Bin; Ismail, Azmir Bin; Abu Yazid, Mohd Fadhil Bin Hj

    2010-01-01

    Chemical classification and labelling systems may be roughly similar from one country to another but there are significant differences too. In order to harmonize various chemical classification systems and ultimately provide consistent chemical hazard communication tools worldwide, the Globally Harmonized System of Classification and Labelling of Chemicals (GHS) was endorsed by the United Nations Economic and Social Council (ECOSOC). Several countries, including Japan, Taiwan, Korea and Malaysia, are now in the process of implementing GHS. It is essential to ascertain the comprehensibility of chemical hazard communication tools that are described in the GHS documents, namely the chemical labels and Safety Data Sheets (SDS). Comprehensibility Testing (CT) was carried out with a mixed group of industrial workers in Malaysia (n=150) and factors that influence the comprehensibility were analysed using one-way ANOVA. The ability of the respondents to retrieve information from the SDS was also tested in this study. The findings show that almost all the GHS pictograms meet the ISO comprehension criteria and it is concluded that the underlying core elements that enhance comprehension of GHS pictograms and which are also essential in developing competent persons in the use of SDS are training and education.

  4. Investigating positive leadership, psychological empowerment, work engagement and satisfaction with life in a chemical industry

    Directory of Open Access Journals (Sweden)

    Tersia Nel

    2015-02-01

    Full Text Available Orientation: The predominant theme of this research attends to the role of perceived positive leadership behaviour in relation to employee outcomes (psychological empowerment, work engagement, and satisfaction with life.Research purpose: The objective of this study was to investigate whether perceived positive leadership behaviour could predict psychological empowerment, work engagement, and satisfaction with life of employees in a chemical organisation in South Africa and whether positive leadership behaviour has an indirect effect on employees work engagement and satisfaction with life by means of psychological empowerment. Motivation for the study: The motivation for this study arose from the evident gap in academic literature as well as in terms of practical implications for the chemical industry regarding positive leadership behaviour, psychological empowerment, work engagement and satisfaction with life of employees. Research design, approach and method: A cross-sectional survey design was used with a convenience sample (n = 322. Structural equation modelling (SEM was used to examine the structural relationships between the constructs. Main findings: Statistically significant relationships were found between positive leadership behaviour, psychological empowerment, work engagement and satisfaction with life of employees. Positive leadership has an indirect effect on work engagement and satisfaction with life via psychological empowerment.Practical/managerial implications: This study adds to the lack of literature in terms of positive leadership, psychological empowerment, work engagement and satisfaction with life within a chemical industry. It can also assist managers and personnel within the chemical industry to understand and perhaps further investigate relationships that exist between the above mentioned concepts.Contribution/value-add: It is recommended that leadership discussions, short training programs and individual coaching about

  5. Use of wastes in high-temperature processes of the chemical industry; Verwertung von Abfaellen in Hochtemperaturprozessen der chemischen Industrie

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany); Domschke, T.; Steinebrunner, K. [BASF AG, Ludwigshafen am Rhein (Germany)

    1998-09-01

    The examples presented in this paper from diverse application areas of the chemical industry serve as an illustration of the many different ways in which wastes can be used for high-temperature processes in this branch. A review of the environmentally friendly concepts implemented at BASF AG in Ludwigshafen in the course of the past five years gives an idea of the immense potential opened up by a consistent application of the four-stage model for the prevention, reduction, and utilisation of wastes. In this period it was possible to reduce waste arisings by 34%, down from a potential 2 million tons, physically recycle 51%, and convert 11.5% to energy. This left a comparatively small fraction of 3.5%, or 70,000 tons, to be disposed of in an environmentally acceptable way. Furthermore, the amount of pollutants produced per tonne of products sold fell from 40.6 kg in 1987 to 6.7 kg in 1997. [Deutsch] Die Beispiele aus den unterschiedlichsten Anwendungsbereichen der chemischen Industrie koennen als Auswahl der vielfaeltigen Verwertungsmoeglichkeiten von Abfaellen in Hochtemperaturprozessen der Chemie betrachtet werden. Das immense Potential, das sich durch konsequente Anwendung des 4-Stufen-Modells zur Vermeidung, Verminderung und Verwertung von Abfaellen eroeffnet, zeigt sich in einer Fuenfjahresbilanz der umgesetzten Umweltschutzbetrachtungen in der BASF AG in Ludwigshafen. So konnten in diesem Zeitraum von potentiellen 2 Mio t Abfall/a ca. 34% vermieden und vermindert, 51% stofflich und 11,5% energetisch verwertet werden, so dass nur noch ein geringer Anteil von 3,5%, entsprechend ca. 70000 t/a, umweltgerecht entsorgt werden musste. Dies fuehrte auch zu einer drastischen Reduktion der auf der Tonne Verkaufsprodukt bezogenen Menge an umweltbelastenden Stoffen von 40,6 kg im Jahre 1987 auf 6,7 kg im Jahre 1997. (orig.)

  6. Risk analysis in the chemical industry; Analisis de riesgos en la industria quimica

    Energy Technology Data Exchange (ETDEWEB)

    Rea Soto, Rogelio; Sandoval Valenzuela, Salvador [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    2000-07-01

    The Instituto de Investigaciones Electricas has a group of risk analysis (GAR), specialized in the most advanced methodologies to apply them in diverse industries of the productive sector, such as the nuclear, the oil and the chemical industries. In this work the integrated methodology that the GAR uses to make risk analysis in the chemical and oil industries is described. These analyses have as an objective to make a meticulous evaluation of the system design, the operation practices, the maintenance and inspection policies and the emergency plans. [Spanish] El Instituto de Investigaciones Electricas cuenta con un grupo de analisis de riesgo (GAR), especializado en las metodologias mas avanzadas para aplicarlas en diversas industrias del sector productivo, como lo son la nuclear, la petrolera y la quimica. En este trabajo se describe la metodologia integrada que el GAR utiliza para realizar analisis de riesgos en las industrias quimica y petrolera. Estos analisis tienen como objetivo realizar una minuciosa evaluacion del diseno del sistema, las practicas de operacion, las politicas de mantenimiento e inspeccion y los planes de emergencia.

  7. Patterns of waste generation, treatment and disposal in the chemical and allied industries in Ghana

    Directory of Open Access Journals (Sweden)

    Osei-Wusu Achaw

    2012-09-01

    Full Text Available Environmental pollution and degradation in urban Ghana has been on the increase as a result of the nations drive towards industrialization, a generally weak regulatory regime, and a lack of capacity to manage the environment. This situation is affecting the well-being and livelihood of affected communities. As part of an effort to address the issue, a thirteen (13 item questionnaire was designed and distributed to seventy (70 companies in the chemical and allied industry to solicit and analyze data and information on the their waste management situation. Forty-seven, representing 67.1%, of the distributed questionnaires were completed and returned. The responses were analyzed using tables, percentages and bar charts. The results revealed that while 80.9% of the respondents generate waste as a result of the operation of the plants, 23.3% directly dump their waste into the environment without any prior treatment. Only one company was found that incinerate its waste, and only four (8.5% had comprehensive waste water treatment plants. The low numbers of companies treating the waste they generate prior to disposal means that the chemical and allied industry is contributing to the environmental pollution and degradation in the country.

  8. Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production.

    Science.gov (United States)

    Chen, Xianzhong; Zhou, Li; Tian, Kangming; Kumar, Ashwani; Singh, Suren; Prior, Bernard A; Wang, Zhengxiang

    2013-12-01

    In order to decrease carbon emissions and negative environmental impacts of various pollutants, more bulk and/or fine chemicals are produced by bioprocesses, replacing the traditional energy and fossil based intensive route. The Gram-negative rod-shaped bacterium, Escherichia coli has been studied extensively on a fundamental and applied level and has become a predominant host microorganism for industrial applications. Furthermore, metabolic engineering of E. coli for the enhanced biochemical production has been significantly promoted by the integrated use of recent developments in systems biology, synthetic biology and evolutionary engineering. In this review, we focus on recent efforts devoted to the use of genetically engineered E. coli as a sustainable platform for the production of industrially important biochemicals such as biofuels, organic acids, amino acids, sugar alcohols and biopolymers. In addition, representative secondary metabolites produced by E. coli will be systematically discussed and the successful strategies for strain improvements will be highlighted. Moreover, this review presents guidelines for future developments in the bio-based chemical production using E. coli as an industrial platform.

  9. Chemical Fiber Industry: No Need to Worry about Benefit Drop%Chemical Fiber Industry: No Need to Worry about Benefit Drop

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    During the first three quarters of this year, the chemical fiber industry maintained an overall steady economy with growing production and investment, but due to the influence of macroeconomic environment, there is no much downstream demand; therefore, the majority product prices continued to fall with increased inventory, making the chemical fiber enterprises profit suffer obvious shrinkage.

  10. In vitro methods for hazard assessment of industrial chemicals – opportunities and challenges

    Directory of Open Access Journals (Sweden)

    Chin Lin eWong

    2015-05-01

    Full Text Available Allergic contact dermatitis (ACD is a delayed-type hypersensitivity immune reaction mediated by T-lymphocytes as a result of repeated exposure of an allergen primarily on skin. ACD accounts for up to 95% of occupational skin diseases (OSDs, with epoxy resins implicated as one of the most common causes of ACD. Efficient high-throughput in vitro screening for accurate identification of compounds and materials that may pose hazardous risks in the workplace is crucial. At present, the murine local lymph node assay (LLNA is the ‘method of choice’ for predicting the sensitizing potency of contact allergens. As the 3Rs principles of reduction, refinement and replacement in animal testing has gained political and economic momentum, several in vitro screening methods have been developed for identifying potential contact allergens. To date, these latter methods have been utilized primarily to assess the skin sensitizing potential of the chemical components of cosmetic products with scant research attention as to the applicability of these methods to industrial chemicals, particularly epoxy resins. Herein we review the currently utilized in vitro methods and identify the knowledge gaps with regard to assessing the generalizability of in vitro screening methods for assessing the skin sensitizing potential of industrial chemicals.

  11. Policy to support marine biotechnology-based solutions to global challenges.

    Science.gov (United States)

    Ritchie, Rachael J; Guy, Ken; Philp, Jim C

    2013-03-01

    Recent advances in science and technology are igniting new interest in marine biotechnology. Governments are recognizing the potential of marine biotechnology to provide solutions to grand global challenges of population health, food, and energy security and sustainable industry. This paper examines some of the challenges to and policy options for the development of marine biotechnology.

  12. The impact of semiconductor, electronics and optoelectronic industries on downstream perfluorinated chemical contamination in Taiwanese rivers

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Angela Yu-Chen [National Taiwan University, Graduate Institute of Environmental Engineering, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China)], E-mail: yuchenlin@ntu.edu.tw; Panchangam, Sri Chandana; Lo, Chao-Chun [National Taiwan University, Graduate Institute of Environmental Engineering, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China)

    2009-04-15

    This study provides the first evidence on the influence of the semiconductor and electronics industries on perfluorinated chemicals (PFCs) contamination in receiving rivers. We have quantified ten PFCs, including perfluoroalkyl sulfonates (PFASs: PFBS, PFHxS, PFOS) and perfluoroalkyl carboxylates (PFCAs: PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnA, PFDoA) in semiconductor, electronic, and optoelectronic industrial wastewaters and their receiving water bodies (Taiwan's Keya, Touchien, and Xiaoli rivers). PFOS was found to be the major constituent in semiconductor wastewaters (up to 0.13 mg/L). However, different PFC distributions were found in electronics plant wastewaters; PFOA was the most significant PFC, contributing on average 72% to the effluent water samples, followed by PFOS (16%) and PFDA (9%). The distribution of PFCs in the receiving rivers was greatly impacted by industrial sources. PFOS, PFOA and PFDA were predominant and prevalent in all the river samples, with PFOS detected at the highest concentrations (up to 5.4 {mu}g/L). - The semiconductor, electronics and optoelectronic industries are the primary source of PFC contamination in downstream aqueous environments.

  13. Physical and ergonomic hazards in the textile, chemical, food, metal products, and woodworking industries in Turkey.

    Science.gov (United States)

    Soytas, Ugur

    2006-01-01

    Questionnaires were administered in 272 textile, chemical, food, metal products and woodworking firms in ten cities in industry-dense areas to assess the general OHS situation in Turkey. This paper explores the portion related to exposures of workers to physical and ergonomic hazards. OHS experts where available, firm owners, partners, or engineers responsible for safety were asked to answer structured questions regarding percentages of workers exposed to specific hazards. About 65% of respondents reported exposures to noise risks among at least some percentage of employees; 26.3% reported more than 50% of employees were so exposed. In more than 60% of the firms employees were exposed to ergonomic risks related to the need to meet production quotas and the need to maintain constant posture. The most prevalent risk factors in five industries and the relative frequencies of exposed employees are described.

  14. AICD -- Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program. 1993 Annual summary report

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, G.; Bair, K.; Ross, J. [eds.

    1994-03-01

    The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.

  15. Chemical, procedural and economical evaluation of carbon dioxide as feedstock in the chemical industry; Chemische, verfahrenstechnische und oekonomische Bewertung von Kohlendioxid als Rohstoff in der chemischen Industrie

    Energy Technology Data Exchange (ETDEWEB)

    Otto, Alexander

    2015-07-01

    The utilisation of CO{sub 2} as feedstock in the chemical industry represents an alternative to the geological storage, which is legally limited and socially debated. Generally, scientific publications about the utilisation of CO{sub 2} in chemical reactions typically address the feasibility of the syntheses without paying attention to the CO{sub 2} reduction potential or the economy in contrast to the conventional process of production. The aim of this doctoral thesis is to identify chemical reactions with CO{sub 2} as feedstock, which have the potential to reduce CO{sub 2} emissions. These reactions are evaluated concerning the industrial realization, CO{sub 2} balance and economy compared to the conventional processes. To achieve this, 123 reactions from the literature were collected and evaluated with the help of selection criteria developed specifically for this application. The criteria consider both, the quantitative potential to reduce CO{sub 2} and possible economical interests in these reactions. Additional to the process of the evaluation of the reactions, a CO{sub 2} reduction potential of 1.33 % of the greenhouse gas emissions within the European Union could be calculated. For the chemicals formic acid, oxalic acid, formaldehyde, methanol, urea and dimethyl ether, which most fully satisfy the selection criteria, a direct comparison of the CO{sub 2} based process with the conventional process is performed. By literature data, process designs, and simulations, it has been shown that the highest reductions of CO{sub 2} emissions can be achieved for methanol with 1.43 kg{sub CO2}/kg{sub MeOH} and dimethyl ether with 2.17 kg{sub CO2}/kg{sub DME}, but only with the assumption that the necessary hydrogen for the CO{sub 2} based reaction is produced by electrolysis operated with renewable energy. Overall, the CO{sub 2} based production processes of methanol and dimethyl ether could reduce 0.059 % of the greenhouse gas emissions of the European Union (EU) if

  16. Estimated Energy Savings and Financial Impacts of Nanomaterials by Design on Selected Applications in the Chemical Industry

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, Gary R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Roach, J. Fred [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dauelsberg, Lori [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2006-03-01

    This study provides a preliminary analysis of the potential impact that nanotechnology could have on energy efficiency, economic competitiveness, waste reduction, and productivity, in the chemical and related industries.

  17. The Assessment of Comprehensive Vulnerability of Chemical Industrial Park Based on Entropy Method and Matter-element Extension Model

    Directory of Open Access Journals (Sweden)

    Yan Jingyi

    2016-01-01

    Full Text Available The paper focuses on studying connotative meaning, evaluation methods and models for chemical industry park based on in-depth analysis of relevant research results in China and abroad, it summarizes and states the feature of menacing vulnerability and structural vulnerability and submits detailed influence factors such as personnel vulnerability, infrastructural vulnerability, environmental vulnerability and the vulnerability of safety managerial defeat. Using vulnerability scoping diagram establishes 21 evaluation indexes and an index system for the vulnerability evaluation of chemical industrial park. The comprehensive weights are calculated with entropy method, combining matter-element extension model to make the quantitative evaluation, then apply to evaluate some chemical industrial park successfully. This method provides a new ideas and ways for enhancing overall safety of the chemical industrial park.

  18. Steam system opportunity assessment for the pulp and paper, chemical manufacturing, and petroleum refining industries: Main report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2002-10-01

    This report assesses steam generation and use in the pulp and paper, chemical, and petroleum refining industries, and estimates the potential for energy savings from implementation of steam system performance and efficiency improvements.

  19. The chemical industry of uranium in France; L'industrie chimique de l'uranium en France

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, B. [Commissariat a l' Energie Atomique, Paris (France). Centre d' Etudes Nucleaires

    1955-07-01

    The actual CEA program is concerned with the construction of two large graphite reactors, each of those containing at least one hundred tons of uranium metal with nuclear purity. The uranium for these two reactors will be regularly supplied by new resources discovered in France and Madagascar in the last five years. The working and treatment of such ore have led to the creation of an important french industry of which the general outline and principle are described. The operated ores have got different natures and concentration, individual characteristics are described for the main ores.The most high-grade ore are transported to a central plant in Bouchet near Paris; the low-grade ore are concentrated by physical methods or chemical processes of which principles and economy are studied with constancy. The acid processes are the only used until now, although the carbonated alkaline processes has been studied in France. The next following steps after the acid process until the obtention of uranium rich concentrate are described. The purification steps of uranium compounds to nuclear purity material are described as well as the steps to elaborate metal of which the purity grade will be specify. Finally, the economic aspects of uranium production difficulty will be considered in relation with technical progresses which we can expect to achieve in the future. (M.P.)

  20. Fungi as chemical industries and genetic engineering for the production of biologically active secondary metabolites

    Institute of Scientific and Technical Information of China (English)

    Abid; Ali; Khan; Nafees; Bacha; Bashir; Ahmad; Ghosia; Lutfullah; Umar; Farooq; Russell; John; Cox

    2014-01-01

    Fungi is somewhere in between the micro and macro organisms which is a good source of producing biologically active secondary metabolites.Fungi have been used as tool for producing different types of secondary metabolites by providing different nutrients at different laboratory conditions.The fungi have been engineered for the desired secondary metabolites by using different laboratory techniques,for example,homologous and heterologous expressions.This review reported how the fungi are used as chemical industry for the production of secondary metabolites and how they are engineered in laboratory for the production of desirable metabolites:also the biosynthetic pathways of the bio-organic-molecules were reported.

  1. The chemical industry in the Eureka program; La industria quimica dentro del programa Eureka

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Camus, J.M. [Ministerio de Industria y Energia. Madrid (Spain)

    1998-07-01

    Worldwide markets within the chemical industry imply the internationalization of the Spanish technology. In this sense, EUREKA is a necessary tool for the promotion of the R+D cooperative in Europe. The aim is to improve the future global competitiveness and employment capacity of European enterprises and to contribute to the future prosperity of European economies. Its guiding principle is that enterprises can best identify the project which will achieve this end. Through its network, the initiative promotes and facilitates the generation of high quality collaborative projects incorporating advanced technologies that correspond to market demands. (Author)

  2. Development of an Electrolyte CPA Equation of state for Applications in the Petroleum and Chemical Industries

    DEFF Research Database (Denmark)

    Maribo-Mogensen, Bjørn

    This thesis extends the Cubic Plus Association (CPA) equation of state (EoS) to handle mixtures containing ions from fully dissociated salts. The CPA EoS has during the past 18 years been applied to thermodynamic modeling of a wide range of industrially important chemicals, mainly in relation...... to provide sufficient driving forces for electrolytes towards the most polar phase. The static permittivity of the mixture was found to be the most important property; yet it was shown that the empirical models suggested by literature could lead to unphysical behavior of the equation of state. A new...

  3. Fungi as chemical industries and genetic engineering for the production of biologically active secondary metabolites

    Institute of Scientific and Technical Information of China (English)

    Abid Ali Khan; Nafees Bacha; Bashir Ahmad; Ghosia Lutfullah; Umar Farooq; Russell John Cox

    2014-01-01

    Fungi is somewhere in between the micro and macro organisms which is a good source of producing biologically active secondary metabolites. Fungi have been used as tool for producing different types of secondary metabolites by providing different nutrients at different laboratory conditions. The fungi have been engineered for the desired secondary metabolites by using different laboratory techniques, for example, homologous and heterologous expressions. This review reported how the fungi are used as chemical industry for the production of secondary metabolites and how they are engineered in laboratory for the production of desirable metabolites;also the biosynthetic pathways of the bio-organic-molecules were reported.

  4. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    Directory of Open Access Journals (Sweden)

    Magbubah Essack

    2014-10-01

    Full Text Available In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review.

  5. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    KAUST Repository

    Essack, Magbubah

    2014-10-29

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review.

  6. Thermodynamic properties for applications in chemical industry via classical force fields.

    Science.gov (United States)

    Guevara-Carrion, Gabriela; Hasse, Hans; Vrabec, Jadran

    2012-01-01

    Thermodynamic properties of fluids are of key importance for the chemical industry. Presently, the fluid property models used in process design and optimization are mostly equations of state or G (E) models, which are parameterized using experimental data. Molecular modeling and simulation based on classical force fields is a promising alternative route, which in many cases reasonably complements the well established methods. This chapter gives an introduction to the state-of-the-art in this field regarding molecular models, simulation methods, and tools. Attention is given to the way modeling and simulation on the scale of molecular force fields interact with other scales, which is mainly by parameter inheritance. Parameters for molecular force fields are determined both bottom-up from quantum chemistry and top-down from experimental data. Commonly used functional forms for describing the intra- and intermolecular interactions are presented. Several approaches for ab initio to empirical force field parameterization are discussed. Some transferable force field families, which are frequently used in chemical engineering applications, are described. Furthermore, some examples of force fields that were parameterized for specific molecules are given. Molecular dynamics and Monte Carlo methods for the calculation of transport properties and vapor-liquid equilibria are introduced. Two case studies are presented. First, using liquid ammonia as an example, the capabilities of semi-empirical force fields, parameterized on the basis of quantum chemical information and experimental data, are discussed with respect to thermodynamic properties that are relevant for the chemical industry. Second, the ability of molecular simulation methods to describe accurately vapor-liquid equilibrium properties of binary mixtures containing CO(2) is shown.

  7. Occupational and Qualification Structures in the Field of Environmental Protection in the Metal and Chemical Industries in Italy.

    Science.gov (United States)

    Stanzani, Claudio

    This report provides an initial analysis of the occupational and qualification structures in the field of environmental protection in the Italian metal and chemical industries. The first two chapters review the legislative background, situation in industry, and provision of environmental education and training. The third chapter presents results…

  8. High-grade use of waste propane streams in the Dutch chemical industry. An exploratory study in the context of the Chemical Industry Roadmap; Hoogwaardig gebruik van reststromen propaan in de Nederlandse chemische industrie. Een verkenning binnen de Routekaart Chemie

    Energy Technology Data Exchange (ETDEWEB)

    De Buck, A.; Afman, M.R.; Croezen, H.J.; Van Lieshout, M.

    2012-09-15

    In the context of the Dutch chemical industry's Roadmap the industry is actively seeking concrete ways of improving the efficiency of its products and processes. One option is to make higher-grade use of current waste streams, as feedstocks for other products, for example. This study focuses on propane waste streams from the oil and gas processing industry. Today these are used partly as fuel (fuel gas) but there are no technical barriers to converting propane to propylene, which can then be used as a feedstock. Higher-grade use of this particular waste stream leads to CO2 emission reductions in the production chain. Given the high market price of propylene, such a move may also be economically attractive. The study focuses on the Rotterdam region, because propane suppliers and companies seeking propylene are in closest proximity there [Dutch] In het kader van de Routekaart Chemie is de chemische industrie actief op zoek naar concrete opties om in haar processen en producten de efficiency te verhogen. Een route is daarbij om reststromen hoogwaardiger te benutten en in te zetten als grondstof voor andere producten. Dit onderzoek richt zich op reststromen propaan uit de olie- en gasverwerkende industrie. Deze worden nu deels als brandstof (stookgas) ingezet maar technisch is het mogelijk propaan om te zetten in propeen, dat als grondstof voor de chemische industrie kan worden gebruikt. Door het hoogwaardiger benutten van deze reststroom wordt in de keten een reductie van CO2 gerealiseerd. Tegelijk kan het economisch interessant zijn, vanwege de hoge marktprijzen van propeen. De studie focust op de regio Rotterdam, omdat leveranciers van propaan en afnemers van propeen daar het meest dichtbij elkaar gevestigd zijn.

  9. Multivariate Statistical Process Monitoring and Control:Recent Developments and Applications to Chemical Industry

    Institute of Scientific and Technical Information of China (English)

    梁军; 钱积新

    2003-01-01

    Multivariate statistical process monitoring and control (MSPM& C) methods for chemical process monitoring with statistical projection techniques such as principal component analysis (PCA) and partial least squares (PLS) are surveyed in this paper,The four-step procedure of performing MSPM &C for chemical process ,modeling of processes ,detecting abnormal events or faults,identifying the variable(s) responible for the faults and diagnosing the source cause for the abnormal behavior,is analyzed,Several main research directions of MSPM&C reported in the literature are discussed,such as multi-way principal component analysis (MPCA) for batch process ,statistical monitoring and control for nonlinear process,dynamic PCA and dynamic PLS,and on -line quality control by infer-ential models,Industrial applications of MSPM&C to several typical chemical processes ,such as chemical reactor,distillation column,polymeriztion process ,petroleum refinery units,are summarized,Finally,some concluding remarks and future considerations are made.

  10. VARIOUS PHARMACEUTICALS INCLUDING DRUGS AND INDUSTRIAL CHEMICALS AS ENVIRONMENTAL HEALTH HAZARDS

    Directory of Open Access Journals (Sweden)

    Anita Kirrolia and Vikas Nehra*

    2012-11-01

    Full Text Available This review describes the potential and, in particular, some relevant hazards associated with the use of veterinary drugs, various pharmaceuticals and industrial chemicals that have produced serious environmental risks and affected the life of people along with other animals by posing great health risks. Risk analysis regarding these problems has also been discussed with the measures to handle the problem at global level. The most contentious residues which occur in meat, milk and eggs along with the environment are antibacterial drugs, hormonal growth promoters, heavy metals and industrial chemicals that are producing potential toxic health effects that include systemic toxicity, mutations, cancer, birth defects and reproductive disorders. Systemic toxicity involves changes in the structure and function of organs and organ systems: weight change, structural alterations and changes in organ system or whole animal function. Functional effects may include changes in the lungs, liver, kidneys, cardiovascular function, brain, nervous system activity, behavior and in production of resistance to disease. Furthermore, continued monitoring and periodic reassessment of risks posed by these contaminants is needed to detect or anticipate new problems so that appropriate action can be taken in the interests of public safety.

  11. Chemical waste treatment and recovery laboratory: an alternative for industrial waste of southern Minas Gerais

    Directory of Open Access Journals (Sweden)

    Luciano Tavares da Costa

    2015-06-01

    Full Text Available This manuscript consisted to obtain data, such as costs, equipments and investments necessary for the implementation of a Waste Treatment and Recovery Laboratory at UNIFAL-MG, campus II in Alfenas. In order to give support for the implementation and operation of this laboratory, in a way to guarantee a sustainable investment from the economic point of view, the EVTE was applied. This work was performed following the steps: identification and quantification of the wastes, EVTE elaboration, draft of the physical laboratory architecture and the analysis of the potential financial resources. It was verified that the implementation and management of the Chemical Waste Treatment Laboratory get to support an initial waste volume of 372 L/month and 3.5 kg/month of inorganic salts, beyond other industrial wastes from the neighborhood region. The implementation and maintenance of this laboratory are economic viable depending on the treated, recovered and recycled waste volume as well as on the provided service for the industry client. It is necessary to highlight the environmental benefits, especially due to the chemical waste disposal reduction, the academic formation opportunity and the social awareness promoted by the action of the laboratory. It can be add on the principle related to the Sustainable Logistic Plan in the Federal Public Administration.JEL-Code | Q01; QR3; L65.

  12. Emergency Response System for Pollution Accidents in Chemical Industrial Parks, China.

    Science.gov (United States)

    Duan, Weili; He, Bin

    2015-07-10

    In addition to property damage and loss of lives, environment pollution, such as water pollution and air pollution caused by accidents in chemical industrial parks (CIPs) is a significant issue in China. An emergency response system (ERS) was therefore planned to properly and proactively cope with safety incidents including fire and explosions occurring in the CIPs in this study. Using a scenario analysis, the stages of emergency response were divided into three levels, after introducing the domino effect, and fundamental requirements of ERS design were confirmed. The framework of ERS was composed mainly of a monitoring system, an emergency command center, an action system, and a supporting system. On this basis, six main emergency rescue steps containing alarm receipt, emergency evaluation, launched corresponding emergency plans, emergency rescue actions, emergency recovery, and result evaluation and feedback were determined. Finally, an example from the XiaoHu Chemical Industrial Park (XHCIP) was presented to check on the integrality, reliability, and maneuverability of the ERS, and the result of the first emergency drill with this ERS indicated that the developed ERS can reduce delays, improve usage efficiency of resources, and raise emergency rescue efficiency.

  13. Emergency Response System for Pollution Accidents in Chemical Industrial Parks, China

    Directory of Open Access Journals (Sweden)

    Weili Duan

    2015-07-01

    Full Text Available In addition to property damage and loss of lives, environment pollution, such as water pollution and air pollution caused by accidents in chemical industrial parks (CIPs is a significant issue in China. An emergency response system (ERS was therefore planned to properly and proactively cope with safety incidents including fire and explosions occurring in the CIPs in this study. Using a scenario analysis, the stages of emergency response were divided into three levels, after introducing the domino effect, and fundamental requirements of ERS design were confirmed. The framework of ERS was composed mainly of a monitoring system, an emergency command center, an action system, and a supporting system. On this basis, six main emergency rescue steps containing alarm receipt, emergency evaluation, launched corresponding emergency plans, emergency rescue actions, emergency recovery, and result evaluation and feedback were determined. Finally, an example from the XiaoHu Chemical Industrial Park (XHCIP was presented to check on the integrality, reliability, and maneuverability of the ERS, and the result of the first emergency drill with this ERS indicated that the developed ERS can reduce delays, improve usage efficiency of resources, and raise emergency rescue efficiency.

  14. [Technology upgrades and exposure to chemical agents: results of the PPTP study in the footwear industry].

    Science.gov (United States)

    Gianoli, Enrica; Brusoni, Daniela; Cornaggia, Nicoletta; Saretto, Gianni

    2012-01-01

    In the present work the chemical compositions of the products used in shoes manufacturing are reported. The data were collected over the period 2004-2007 in 156 shoe factories in Vigevano area during a study aiming the evaluation of safety conditions and occupational exposure to hazardous chemicals of the employees. The study was part of a regional project for "Occupational cancer prevention in the footwear industry". In the first phase of the study an information form on production cycle, products used and their composition was filled during preliminary audit. In the second phase of the study an in depth qualitative/quantitative evaluation of professional exposure was conducted in 13 selected shoe factories. Data analysis showed the increase in use of water-based adhesives at expense of solvent-based adhesives, the reduction to less than 3.5 weight %, and up to 1 weight %, of n-hexane concentration in solvent mixtures, the increase in use of products containing less hazardous ketones, esters, cyclohexane and heptane. Only in very few cases, products containing from 4 to 12 weight% of toluene were used. These data attest a positive trend in workers risks prevention in shoes industry.

  15. Host Response to Environmental Hazards: Using Literature, Bioinformatics, and Computation to Derive Candidate Biomarkers of Toxic Industrial Chemical Exposure

    Science.gov (United States)

    2015-10-01

    routine manufacturing and industry operations in a megacity environment [8]. Inaccurate chemical inventories and inadequate regulation by centralized...effectively broadens the tools applicable to chemical exposure scenarios. BHSAI, Biotechnology HPC Software Applications Institute. 2.0 METHODS 2.1...comprising toxicity, stability, and physical state scores. Critical and high priority sub-lists were developed based on additional scoring algorithms

  16. Occupational and Qualification Structures in the Field of Environmental Protection in the Metal and Chemical Industries in the United Kingdom.

    Science.gov (United States)

    European Centre for the Development of Vocational Training, Berlin (Germany).

    A study analyzed the occupational structure and qualifications associated with the field of environmental protection in the metal and chemical industries in the United Kingdom. The analysis included nine case studies based on interviews with firms in the chemicals and metals sectors. Information was gathered within an analytical framework that…

  17. Postdeployment evaluation of health risk communication after exposure to a toxic industrial chemical.

    Science.gov (United States)

    Mancuso, James D; Ostafin, Margaret; Lovell, Mark

    2008-04-01

    Increasing emphasis is being placed on the appropriate communication of deployment-related risks among military service members. This report validates risk communication on the postdeployment health assessment (PDHA), in the context of a known, low-level exposure to a toxic industrial chemical. In late 2003, 245 soldiers were exposed to hexavalent chromium at an industrial site in Iraq; of those, 227 had completed PDHAs on file for review. Despite being directed to document this exposure upon redeployment, only 55 soldiers (24.2%) specifically reported chromium exposure. Increasing age and time at the industrial site were associated with increased reporting of exposure. Although providers documented deployment exposure concerns for only 65.4% of this population, this was much more often than for other redeploying service members. The PDHA is a risk assessment and risk communication tool that has sources of misclassification, and results must be interpreted with caution when individual or population occupational and environmental risks resulting from deployment are assessed.

  18. Modeling the binding affinity of structurally diverse industrial chemicals to carbon using the artificial intelligence approaches.

    Science.gov (United States)

    Gupta, Shikha; Basant, Nikita; Rai, Premanjali; Singh, Kunwar P

    2015-11-01

    Binding affinity of chemical to carbon is an important characteristic as it finds vast industrial applications. Experimental determination of the adsorption capacity of diverse chemicals onto carbon is both time and resource intensive, and development of computational approaches has widely been advocated. In this study, artificial intelligence (AI)-based ten different qualitative and quantitative structure-property relationship (QSPR) models (MLPN, RBFN, PNN/GRNN, CCN, SVM, GEP, GMDH, SDT, DTF, DTB) were established for the prediction of the adsorption capacity of structurally diverse chemicals to activated carbon following the OECD guidelines. Structural diversity of the chemicals and nonlinear dependence in the data were evaluated using the Tanimoto similarity index and Brock-Dechert-Scheinkman statistics. The generalization and prediction abilities of the constructed models were established through rigorous internal and external validation procedures performed employing a wide series of statistical checks. In complete dataset, the qualitative models rendered classification accuracies between 97.04 and 99.93%, while the quantitative models yielded correlation (R(2)) values of 0.877-0.977 between the measured and the predicted endpoint values. The quantitative prediction accuracies for the higher molecular weight (MW) compounds (class 4) were relatively better than those for the low MW compounds. Both in the qualitative and quantitative models, the Polarizability was the most influential descriptor. Structural alerts responsible for the extreme adsorption behavior of the compounds were identified. Higher number of carbon and presence of higher halogens in a molecule rendered higher binding affinity. Proposed QSPR models performed well and outperformed the previous reports. A relatively better performance of the ensemble learning models (DTF, DTB) may be attributed to the strengths of the bagging and boosting algorithms which enhance the predictive accuracies. The

  19. ECOSAR model performance with a large test set of industrial chemicals.

    Science.gov (United States)

    Reuschenbach, Peter; Silvani, Maurizio; Dammann, Martina; Warnecke, Dietmar; Knacker, Thomas

    2008-05-01

    The widely used ECOSAR computer programme for QSAR prediction of chemical toxicity towards aquatic organisms was evaluated by using large data sets of industrial chemicals with varying molecular structures. Experimentally derived toxicity data covering acute effects on fish, Daphnia and green algae growth inhibition of in total more than 1,000 randomly selected substances were compared to the prediction results of the ECOSAR programme in order (1) to assess the capability of ECOSAR to correctly classify the chemicals into defined classes of aquatic toxicity according to rules of EU regulation and (2) to determine the number of correct predictions within tolerance factors from 2 to 1,000. Regarding ecotoxicity classification, 65% (fish), 52% (Daphnia) and 49% (algae) of the substances were correctly predicted into the classes "not harmful", "harmful", "toxic" and "very toxic". At all trophic levels about 20% of the chemicals were underestimated in their toxicity. The class of "not harmful" substances (experimental LC/EC(50)>100 mg l(-1)) represents nearly half of the whole data set. The percentages for correct predictions of toxic effects on fish, Daphnia and algae growth inhibition were 69%, 64% and 60%, respectively, when a tolerance factor of 10 was allowed. Focussing on those experimental results which were verified by analytically measured concentrations, the predictability for Daphnia and algae toxicity was improved by approximately three percentage points, whereas for fish no improvement was determined. The calculated correlation coefficients demonstrated poor correlation when the complete data set was taken, but showed good results for some of the ECOSAR chemical classes. The results are discussed in the context of literature data on the performance of ECOSAR and other QSAR models.

  20. Cassava Peels for Alternative Fibre in Pulp and Paper Industry: Chemical Properties and Morphology Characterization

    Directory of Open Access Journals (Sweden)

    Ashuvila Mohd Aripin

    2013-11-01

    Full Text Available Without a proper waste management, the organic wastes such as cassava peels could result in increased amount of solid waste dump into landfill. This study aims to use non-wood organic wastes as pulp for paper making industries; promoting the concept of ‘from waste to wealth and recyclable material’. The objective  of this study is to determine the potential of casssava peel as alternative fibre in pulp and paper based on its chemical properties and surface morphology characteristic. Quantified parameters involved are holocellulose, cellulose, hemicellulose, lignin, one percent of sodium hydroxide, hot water solubility and ash content. The chemical characterization was in accordance with relevant TAPPI Test, Kurscher-Hoffner and Chlorite methods. Scanning electron microscopy (SEM was used to observe and determine the morphological characteristic of untreated cassava peels fibre. In order to propose the suitability of the studied plant as an alternative fibre resource in pulp and paper making, the obtained results are compared to other published literatures especially from wood sources. Results indicated that the amount of holocellulose contents in cassava peels (66% is the lowest than of wood (70 - 80.5% and canola straw (77.5%; however this value is still within the limit suitability to produce paper. The lignin content (7.52% is the lowest than those of all wood species (19.9-26.22%. Finally, the SEM images showed that untreated cassava peel contains abundance fibre such as hemicellulose and cellulose that is hold by the lignin in it. In conclusion, chemical properties and morphological characteristics of cassava peel indicated that it is suitable to be used as an alternative fibre sources for pulp and paper making industry, especially in countries with limited wood resources

  1. Long-term energy efficiency analysis requires solid energy statistics. The case of the German basic chemical industry

    Energy Technology Data Exchange (ETDEWEB)

    Saygin, D.; Worrell, E.; Weiss, M.; Patela, M.K. [Utrecht University, Copernicus Institute of Sustainable Development, Faculty of Geosciences, Heidelberglaan 2, 3584 CS Utrecht (Netherlands); Tam, C.; Trudeau, N. [International Energy Agency IEA, 9 rue de la Federation, 75739 Paris Cedex 15 (France); Gielen, D.J. [International Renewable Energy Agency IRENA, IITC, Robert-Schuman-Platz 3, 53175 Bonn (Germany)

    2012-08-15

    Analyzing the chemical industry's energy use is challenging because of the sector's complexity and the prevailing uncertainty in energy use and production data. We develop an advanced bottom-up model (PIE-Plus) which encompasses the energy use of the 139 most important chemical processes. We apply this model in a case study to analyze the German basic chemical industry's energy use and energy efficiency improvements in the period between 1995 and 2008. We compare our results with data from the German Energy Balances and with data published by the International Energy Agency (IEA). We find that our model covers 88% of the basic chemical industry's total final energy use (including non-energy use) as reported in the German Energy Balances. The observed energy efficiency improvements range between 2.2 and 3.5% per year, i.e., they are on the higher side of the values typically reported in literature. Our results point to uncertainties in the basic chemical industry's final energy use as reported in the energy statistics and the specific energy consumption values. More efforts are required to improve the quality of the national and international energy statistics to make them usable for reliable monitoring of energy efficiency improvements of the chemical industry.

  2. Physico-chemical properties of Brazilian cocoa butter and industrial blends. Part I Chemical composition, solid fat content and consistency

    Directory of Open Access Journals (Sweden)

    Ribeiro, A. P. B.

    2012-03-01

    Full Text Available A comparative study of the primary properties of six cocoa butter samples, representative of industrial blends and cocoa butter extracted from fruits cultivated in different geographical areas in Brazil is presented. The samples were evaluated according to fatty acid composition, triacylglycerol composition, regiospecific distribution, melting point, solid fat content and consistency. The results allowed for differentiating the samples according to their chemical compositions, thermal resistance properties, hardness characteristics, as well as technological adequacies and potential use in regions with tropical climates.

    En este trabajo se presenta un estudio comparativo de las propiedades primarias de mantecas de cacao, representativas de las mezclas industriales, y de la manteca de cacao original de diferentes zonas geográficas de Brasil. Las muestras fueron evaluadas de acuerdo a la composición de ácidos grasos, composición de triglicéridos, distribución de los ácidos grasos en las moléculas de triglicéridos, punto de fusión, contenido de grasa sólida y consistencia. Los resultados permitieron diferenciar las muestras por su composición química, propiedades de resistencia térmica, características de dureza, así como en materia de adecuaciones tecnológicas y los usos potenciales en las regiones de clima tropical.

  3. Prospects for conversion of solar energy into chemical fuels: the concept of a solar fuels industry.

    Science.gov (United States)

    Harriman, Anthony

    2013-08-13

    There is, at present, no solar fuels industry anywhere in the world despite the well-publicized needs to replace our depleting stock of fossil fuels with renewable energy sources. Many obstacles have to be overcome in order to store sunlight in the form of chemical potential, and there are severe barriers to surmount in order to produce energy on a massive scale, at a modest price and in a convenient form. It is also essential to allow for the intermittent nature of sunlight, its diffusiveness and variability and to cope with the obvious need to use large surface areas for light collection. Nonetheless, we have no alternative but to devise viable strategies for storage of sunlight as biomass or chemical feedstock. Simple alternatives, such as solar heating, are attractive in terms of quick demonstrations but are not the answer. Photo-electrochemical devices might serve as the necessary machinery by which to generate electronic charge but the main problem is to couple these charges to the multi-electron catalysis needed to drive energy-storing chemical reactions. Several potential fuels (CO, H₂, HCOOH, NH₃, O₂, speciality organics, etc.) are possible, but the photochemical reduction of CO₂ deserves particular mention because of ever-growing concerns about overproduction of greenhouse gases. The prospects for achieving these reactions under ambient conditions are considered herein.

  4. Sorghum as a renewable feedstock for production of fuels and industrial chemicals

    Directory of Open Access Journals (Sweden)

    Nhuan P. Nghiem

    2016-01-01

    Full Text Available Considerable efforts have been made in the USA and other countries to develop renewable feedstocks for production of fuels and chemicals. Among these, sorghum has attracted strong interest because of its many good characteristics such as rapid growth and high sugar accumulation, high biomass production potential, excellent nitrogen usage efficiency, wide adaptability, drought resistance, and water lodging tolerance and salinity resistance. The ability to withstand severe drought conditions and its high water usage efficiency make sorghum a good renewable feedstock suitable for cultivation in arid regions, such as the southern US and many areas in Africa and Asia. Sorghum varieties include grain sorghum, sweet sorghum, and biomass sorghum. Grain sorghum, having starch content equivalent to corn, has been considered as a feedstock for ethanol production. Its tannin content, however, may cause problems during enzyme hydrolysis. Sweet sorghum juice contains sucrose, glucose and fructose, which are readily fermentable by Saccharomyces cerevisiae and hence is a good substrate for ethanol fermentation. The enzyme invertase, however, needs to be added to convert sucrose to glucose and fructose if the juice is used for production of industrial chemicals in fermentation processes that employ microorganisms incapable of metabolizing sucrose. Biomass sorghum requires pretreatment prior to enzymatic hydrolysis to generate fermentable sugars to be used in the subsequent fermentation process. This report reviews the current knowledge on bioconversion of sorghum to fuels and chemicals and identifies areas that deserve further studies.

  5. Coupled Physical/Chemical and Biofiltration Technologies to Reduce Air Emissions from Forest Products Industries

    Energy Technology Data Exchange (ETDEWEB)

    Gary D. McGinnis

    2001-12-31

    The research is a laboratory and bench-scale investigation of a system to concentrate and destroy volatile organic compounds (VOCs), including hazardous air pollutants, formed from the drying of wood and the manufacture of wood board products (e.g., particle board and oriented strandboard). The approach that was investigated involved concentrating the dilute VOCs (<500 ppmv) with a physical/chemical adsorption unit, followed by the treatment of the concentrated voc stream (2,000 to 2,500 ppmv) with a biofiltration unit. The research program lasted three years, and involved three research organizations. Michigan Technological University was the primary recipient of the financial assistance, the USDA Forest Products Laboratory (FPL) and Mississippi State University (MSU) were subcontractors to MTU. The ultimate objective of this research was to develop a pilot-scale demonstration of the technology with sufficient data to provide for the design of an industrial system. No commercialization activities were included in this project.

  6. Metabolic engineering of strains: from industrial-scale to lab-scale chemical production.

    Science.gov (United States)

    Sun, Jie; Alper, Hal S

    2015-03-01

    A plethora of successful metabolic engineering case studies have been published over the past several decades. Here, we highlight a collection of microbially produced chemicals using a historical framework, starting with titers ranging from industrial scale (more than 50 g/L), to medium-scale (5-50 g/L), and lab-scale (0-5 g/L). Although engineered Escherichia coli and Saccharomyces cerevisiae emerge as prominent hosts in the literature as a result of well-developed genetic engineering tools, several novel native-producing strains are gaining attention. This review catalogs the current progress of metabolic engineering towards production of compounds such as acids, alcohols, amino acids, natural organic compounds, and others.

  7. [Emission characteristics and hazard assessment analysis of volatile organic compounds from chemical synthesis pharmaceutical industry].

    Science.gov (United States)

    Li, Yan; Wang, Zhe-Ming; Song, Shuang; Xu, Zhi-Rong; Xu, Ming-Zhu; Xu, Wei-Li

    2014-10-01

    In this study, volatile organic compounds (VOCs) released from chemical synthesis pharmaceutical industry in Taizhou, Zhejiang province were analyzed quantitatively and qualitatively. The total volatile organic compounds (TVOCs) was in the range of 14.9-308.6 mg · m(-3). Evaluation models of ozone formation potentials (OFP) and health risk assessment were adopted to preliminarily assess the environmental impact and health risk of VOCs. The results showed that the values of OFP of VOCs were in the range of 3.1-315.1 mg · m(-3), based on the maximum incremental reactivity, the main principal contribution was toluene, tetrahydrofuran (THF), acetic ether etc. The non-carcinogenic risk and the carcinogen risk fell in the ranges of 9.48 x 10(-7)-4.98 x 10(-4) a(-1) and 3.17 x 10(-5)- 6.33 x 10(-3). The principal contribution of VOCs was benzene, formaldehyde and methylene chloride.

  8. Environmental Cracking of Corrosion Resistant Alloys in the Chemical Process Industry - A Review

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R B

    2006-12-04

    A large variety of corrosion resistant alloys are used regularly in the chemical process industry (CPI). The most common family of alloys include the iron (Fe)-based stainless steels, nickel (Ni) alloys and titanium (Ti) alloys. There also other corrosion resistant alloys but their family of alloys is not as large as for the three groups mentioned above. All ranges of corrosive environments can be found in the CPI, from caustic solutions to hot acidic environments, from highly reducing to highly oxidizing. Stainless steels are ubiquitous since numerous types of stainless steels exist, each type tailored for specific applications. In general, stainless steels suffer stress corrosion cracking (SCC) in hot chloride environments while high Ni alloys are practically immune to this type of attack. High nickel alloys are also resistant to caustic cracking. Ti alloys find application in highly oxidizing solutions. Solutions containing fluoride ions, especially acid, seem to be aggressive to almost all corrosion resistant alloys.

  9. High-Throughput Industrial Coatings Research at The Dow Chemical Company.

    Science.gov (United States)

    Kuo, Tzu-Chi; Malvadkar, Niranjan A; Drumright, Ray; Cesaretti, Richard; Bishop, Matthew T

    2016-09-12

    At The Dow Chemical Company, high-throughput research is an active area for developing new industrial coatings products. Using the principles of automation (i.e., using robotic instruments), parallel processing (i.e., prepare, process, and evaluate samples in parallel), and miniaturization (i.e., reduce sample size), high-throughput tools for synthesizing, formulating, and applying coating compositions have been developed at Dow. In addition, high-throughput workflows for measuring various coating properties, such as cure speed, hardness development, scratch resistance, impact toughness, resin compatibility, pot-life, surface defects, among others have also been developed in-house. These workflows correlate well with the traditional coatings tests, but they do not necessarily mimic those tests. The use of such high-throughput workflows in combination with smart experimental designs allows accelerated discovery and commercialization.

  10. Effect of a high strength chemical industry wastewater on microbial community dynamics and mesophilic methane generation.

    Science.gov (United States)

    Venkatakrishnan, Harish; Tan, Youming; Majid, Maszenan Bin Abdul; Pathak, Santosh; Sendjaja, Antonius Yudi; Li, Dongzhe; Liu, Jerry Jian Lin; Zhou, Yan; Ng, Wun Jern

    2014-04-01

    A high strength chemical industry wastewater was assessed for its impact on anaerobic microbial community dynamics and consequently mesophilic methane generation. Cumulative methane production was 251 mL/g total chemical oxygen demand removed at standard temperature and pressure at the end of 30 days experimental period with a highest recorded methane percentage of 80.6% of total biogas volume. Volatile fatty acids (VFAs) analysis revealed that acetic acid was the major intermediate VFAs produced with propionic acid accumulating over the experimental period. Quantitative analysis of microbial communities in the test and control groups with quantitative real time polymerase chain reaction highlighted that in the test group, Eubacteria (96.3%) was dominant in comparison with methanogens (3.7%). The latter were dominated by Methanomicrobiales and Methanobacteriales while Methanosarcinaceae in test groups increased over the experimental period, reaching a maximum on day 30. Denaturing gradient gel electrophoresis profile was performed, targeting the 16S rRNA gene of Eubacteria and Archaea, with the DNA samples extracted at 3 different time points from the test groups. A phylogenetic tree was constructed for the sequences using the neighborhood joining method. The analysis revealed that the presence of organisms resembling Syntrophomonadaceae could have contributed to increased production of acetic and propionic acid intermediates while decrease of organisms resembling Pelotomaculum sp. could have most likely contributed to accumulation of propionic acid. This study suggested that the degradation of organic components within the high strength industrial wastewater is closely linked with the activity of certain niche microbial communities within eubacteria and methanogens.

  11. PM2.5 in an industrial district of Zhengzhou, China: Chemical composition and source apportionment

    Institute of Scientific and Technical Information of China (English)

    Ningbo Geng; Jia Wang; Yifei Xu; Wending Zhang; Chun Chen; Ruiqin Zhang

    2013-01-01

    Zhengzhou is a developing city in China,that is heavily polluted by high levels of particulate matter.In this study,fine particulate matter (PM2.5) was collected and analyzed for their chemical composition (soluble ions,elements,elemental carbon (EC) and organic carbon (OC)) in an industrial district of Zhengzhou in 2010.The average concentrations of PM2.5 were 181,122,186 and 211 μg/m3 for spring,summer,autumn and winter,respectively,with an annual average of 175 μg/m3,far exceeding the PM2.5 regulation of USA National Air Quality Standards (15 μg/m3).The dominant components of PM2.5 in Zhengzhou were secondary ions (sulphate and nitrate) and carbon fractions.Soluble ions,total carbon and elements contributed 41%,13% and 3% of PM2.5 mass,respectively.Soil dust,secondary aerosol and coal combustion,each contributing about 26%,24% and 23% of total PM2.5 mass,were the major sources of PM2.5,according to the result of positive matrix factorization analysis.A mixed source of biomass burning,oil combustion and incineration contributed 13% of PM2.5.Fine particulate matter arising from vehicles and industry contributed about 10% and 4% of PM2.5,respectively.

  12. Chemical properties of soils treated with biological sludge from gelatin industry

    Directory of Open Access Journals (Sweden)

    Rita de Cássia Melo Guimarães

    2012-04-01

    Full Text Available The impact of agro-industrial organic wastes in the environment can be reduced when used in agriculture. From the standpoint of soil fertility, residue applications can increase the organic matter content and provide nutrients for plants. This study evaluated the effect of biological sludge from gelatin industry on the chemical properties of two Ultisols (loamy sand and sandy clay and an Oxisol (clay. The experiment lasted 120 days and was carried out in laboratory in a completely randomized design with factorial arrangement, combining the three soils and six biological sludge rates (0, 100, 200, 300, 400, and 500 m³ ha-1, with three replications. Biological sludge rates of up to 500 m³ ha-1 decreased soil acidity and increased the effective cation exchange capacity (CEC and N, Ca, Mg, and P availability, without exceeding the tolerance limit for Na. The increase in exchangeable base content, greater than the effective CEC, indicates that the major part of cations added by the sludge remains in solution and can be lost by leaching.

  13. Extremely Thermophilic Microorganisms as Metabolic Engineering Platforms for Production of Fuels and Industrial Chemicals

    Directory of Open Access Journals (Sweden)

    Benjamin M Zeldes

    2015-11-01

    Full Text Available Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye towards potential technological

  14. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals.

    Science.gov (United States)

    Zeldes, Benjamin M; Keller, Matthew W; Loder, Andrew J; Straub, Christopher T; Adams, Michael W W; Kelly, Robert M

    2015-01-01

    Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus, and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye toward potential technological advantages for high

  15. Physico-chemical characterization of banana varieties resistant to black leaf streak disease for industrial purposes

    Directory of Open Access Journals (Sweden)

    Rossana Catie Bueno de Godoy

    2016-01-01

    Full Text Available ABSTRACT: Cultivated bananas have very low genetic diversity making them vulnerable to diseases such as black-Sigatoka leaf spot. However, the decision to adopt a new banana variety needs to be based on a robust evaluation of agronomical and physical-chemical characteristics. Here, we characterize new banana varieties resistant to black-Sigatoka leaf spot and compare them to the most widely used traditional variety (Grand Naine. Each variety was evaluated for a range of physic-chemical attributes associated with industrial processing and flavor: pH, TTA, TSS/TTA, total sugars, reducing sugars and non-reducing sugars, humidity, total solids and yield. The Thap Maeo variety had the highest potential as a substitute for the Grand Naine variety, having higher levels of total soluble solids, reducing sugars, total sugars and humidity. The Caipira and FHIA 2 varieties also performed well in comparison with the Grand Naine variety. Cluster analysis indicated that the Grand Naine variety was closely associated with varieties from the Gross Michel subgroup (Bucaneiro, Ambrosia and Calipso and the Caipira variety, all of which come from the same AAA genomic group. It was concluded that several of the new resistant varieties could potentially substitute the traditional variety in areas affected by black-Sigatoka leaf spot disease.

  16. Palm Olein as Renewable Raw Materials for Industrial and Pharmaceutical Products Applications: Chemical Characterization and Physicochemical Properties Studies

    Directory of Open Access Journals (Sweden)

    Darfizzi Derawi

    2014-01-01

    Full Text Available Palm olein (POo is widely produced as edible oil in tropical countries. POo is considered as renewable raw material for the new industrial and pharmaceutical products synthesis based on its characterization. Palm olein was good on its viscosity index, oxidative stability, and flash and fire point. POo contained unsaturated triacylglycerols (TAGs: POO (33.3%; POP (29.6% which plays an important role in chemical modification process to produce new industrial products. The double bond was detected on 1H-NMR (5.3 ppm and 13C-NMR (130 ppm spectra. The chemical compositions of POo were tested by using high performance liquid chromatography (HPLC and gas chromatography (GC techniques. This unsaturated oil is potentially to be used as renewable raw materials in chemical modification process to synthesise polyols, polyurethane, and biolubricant for industrial and pharmaceutical products application.

  17. Impact of the 11 March, 2011, Tohoku earthquake and tsunami on the chemical industry

    Science.gov (United States)

    Krausmann, E.; Cruz, A. M.

    2012-04-01

    An earthquake of magnitude 9.0 occurred off the Pacific coast of Tohoku, Japan, on March 11, 2011, at 14:46:23 Japan Standard Time (5:46:23 UTC). It generated a tsunami 130 km off the coast of Miyagi Prefecture in northeast Japan, which inundated over 400 km2 of land. The death toll has reached >15,800 according to the Japan National Policy Agency with over 3,700 still missing as of 26 October 2011. Significant damage to or complete collapse of houses also resulted. The earthquake generated strong ground motion; nevertheless most damage was caused by the tsunami, which is a tribute to the effectiveness of Japan's earthquake damage reduction measures in saving lives and property. Nonetheless, the direct losses amount to more than 200 billion US dollars (not counting the costs of the accident at the Fukushima nuclear power plant). The earthquake and tsunami had a significant impact on all types of industry, and in particular on the petrochemical and chemical industry in the affected areas, resulting in hazardous-materials releases, fires and explosions and forcing businesses to interrupt production. These so-called Natech accidents pose an immediate or even long-term threat to the population and the environment, and can also interrupt the supply chain. Overall, the earthquake and tsunami took over 30% of Japan's oil production offline, and two refineries are still not or only partially in operation to repair the damage caused by the fires and explosions. The fire-fighting efforts could only be started 4 days after the disaster due to the absence of personnel that had been evacuated and because of the continuing tsunami alerts. In one of the affected refineries the fires could only be extinguished 10 days after the disasters. Many petrochemical and chemical companies reported problems either due to damage to facilities or because of power outages. In fact, in facilities that suffered no or only minor damage the resuming of operations was hampered by continuous

  18. An Integrative Model of the Strategic Management Accounting at the Enterprises of Chemical Industry

    Directory of Open Access Journals (Sweden)

    Aleksandra Vasilyevna Glushchenko

    2016-06-01

    Full Text Available Currently, the issues of information and analytical support of strategic management enabling to take timely and high-quality management decisions, are extremely relevant. Conflicting and poor information, haphazard collected in the practice of large companies from unreliable sources, affects the effective implementation of their development strategies and carries the threat of risk, by the increasing instability of the external environment. Thus chemical industry is one of the central places in the industry of Russia and, of course, has its specificity in the formation of the informationsupport system. Such an information system suitable for the development and implementation of strategic directions, changes in recognized competitive advantages of strategic management accounting. The issues of the lack of requirements for strategic accounting information, its inconsistency in the result of simultaneous accumulation in different parts and using different methods of calculation and assessment of indicators is impossible without a well-constructed model of organization of strategic management accounting. The purpose of this study is to develop such a model, the implementation of which will allow realizing the possibility of achieving strategic goals by harmonizing information from the individual objects of the strategic account to increase the functional effectiveness of management decisions with a focus on strategy. Case study was based on dialectical logic and methods of system analysis, and identifying causal relationships in building a model of strategic management accounting that contributes to the forecasts of its development. The study proposed to implement an integrative model of organization of strategic management accounting. The purpose of a phased implementation of this model defines the objects and tools of strategic management accounting. Moreover, it is determined that from the point of view of increasing the usefulness of management

  19. Assessment of the impact of the European CO{sub 2} emissions trading scheme on the Portuguese chemical industry

    Energy Technology Data Exchange (ETDEWEB)

    Tomas, R.A.F. [Artenius Sines, Zona Industrial, 7520 Sines (Portugal); Ramoa Ribeiro, F.; Bordado, J.C.M. [Centro de Engenharia Quimica e Biologica, IBB-Instituto de Biotecnologia e Bioengenharia, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Santos, V.M.S. [Instituto Superior de Economia e Gestao, R. do Quelhas, 6, 1200-781 Lisboa (Portugal); Gomes, J.F.P. [Centro de Engenharia Quimica e Biologica, IBB-Instituto de Biotecnologia e Bioengenharia, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Departamento de Engenharia Quimica, Instituto Superior de Engenharia de Lisboa, R. Conselheiro Emidio Navarro 1949-014 Lisboa (Portugal)

    2010-01-15

    This paper describes an assessment of the impact of the enforcement of the European carbon dioxide (CO{sub 2}) emissions trading scheme on the Portuguese chemical industry, based on cost structure, CO{sub 2} emissions, electricity consumption and allocated allowances data from a survey to four Portuguese representative units of the chemical industry sector, and considering scenarios that allow the estimation of increases on both direct and indirect production costs. These estimated cost increases were also compared with similar data from other European Industries, found in the references and with conclusions from simulation studies. Thus, it was possible to ascertain the impact of buying extra CO{sub 2} emission permits, which could be considered as limited. It was also found that this impact is somewhat lower than the impacts for other industrial sectors. (author)

  20. Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers.

    Science.gov (United States)

    Koutinas, Apostolis A; Vlysidis, Anestis; Pleissner, Daniel; Kopsahelis, Nikolaos; Lopez Garcia, Isabel; Kookos, Ioannis K; Papanikolaou, Seraphim; Kwan, Tsz Him; Lin, Carol Sze Ki

    2014-04-21

    The transition from a fossil fuel-based economy to a bio-based economy necessitates the exploitation of synergies, scientific innovations and breakthroughs, and step changes in the infrastructure of chemical industry. Sustainable production of chemicals and biopolymers should be dependent entirely on renewable carbon. White biotechnology could provide the necessary tools for the evolution of microbial bioconversion into a key unit operation in future biorefineries. Waste and by-product streams from existing industrial sectors (e.g., food industry, pulp and paper industry, biodiesel and bioethanol production) could be used as renewable resources for both biorefinery development and production of nutrient-complete fermentation feedstocks. This review focuses on the potential of utilizing waste and by-product streams from current industrial activities for the production of chemicals and biopolymers via microbial bioconversion. The first part of this review presents the current status and prospects on fermentative production of important platform chemicals (i.e., selected C2-C6 metabolic products and single cell oil) and biopolymers (i.e., polyhydroxyalkanoates and bacterial cellulose). In the second part, the qualitative and quantitative characteristics of waste and by-product streams from existing industrial sectors are presented. In the third part, the techno-economic aspects of bioconversion processes are critically reviewed. Four case studies showing the potential of case-specific waste and by-product streams for the production of succinic acid and polyhydroxyalkanoates are presented. It is evident that fermentative production of chemicals and biopolymers via refining of waste and by-product streams is a highly important research area with significant prospects for industrial applications.

  1. Chemical and Physical Characteristics of Soy Proteins for New Industrial Applications

    Science.gov (United States)

    Arboleda Fernandez, Julio Cesar

    Despite of being environmentally friendly, biocompatible, rich in chemical functionality and abundant as residual materials, soy proteins (SPs) are used for low added value applications. In this work, SPs were studied and used as potentially useful biomacromolecules for different industrial applications with high added value. Initially the effect of acid hydrolysis of soy proteins as a potential route for subsequent surface modification was studied, finding that SP hydrolysates tend to form less aggregates and to adsorb at faster rates compared with unmodified SP; nevertheless, it was also found that the amount of protein adsorbed and water contact angle of the treated surface does not change significantly. Secondly, the gel forming properties of SPs were used to produce aerogels with densities in the order of 0.1 g/cm3. To improve their mechanical properties, the reinforcement of these materials with cellulose nanofibers was studied, obtaining composite aerogels with SP loadings as high as ca. 70% that display a compression modulus of 4.4 MPa, very close to the value obtained from the pure nanofibers aerogels. The composite materials gain moisture (up to 5%) in equilibrium with 50% RH air. Futhermore, their physical integrity is unchanged upon immersion in polar and non-polar solvents, exhibiting sorption rates dependent on the aerogel composition, morphology and swelling abilities. Finally, different soy protein based products and derivatives were used to enhance the dry strength properties of wood fibers in paper production. Experiments using soy flour, soy protein isolate, soy protein isolate hydrolysates, cationized soy flour, and soy flour combined with cationic starch and chitosan were done, obtaining satisfactory results when soy protein flour was utilized in combination with conventional treatments involving cationic polymers. The current results confirm the opportunity to valorize residual soy products that are underutilized today as alternatives to oil

  2. Detection and reduction of diffuse liquid and gas emissions in chemical and petrochemical industries; Ermittlung und Verminderung diffuser fluessiger und gasfoermiger Emissionen in der chemischen und petrochemischen Industrie

    Energy Technology Data Exchange (ETDEWEB)

    Koeppke, K.E. [Witten-Herdecke Univ. gGmbH, Witten (Germany). Inst. fuer Umwelttechnik und Management; Cuhls, C. [Halle-Wittenberg Univ., Halle (Germany). Inst. fuer Umwelttechnik

    2002-09-01

    In order to improve environmental protection, VOC emissions from diffuse sources are of growing importance. For the first time in Germany the present research report gives a detailed presentation of: constructive measures for the avoidance and reduction of diffuse emissions, adequate assembling procedures for equipments and installations, technical possibilities of leak detection and, different methods for the estimation of total emissions from chemical and petrochemical production plants. On the basis of own investigations and monitoring measures taken at various plants of chemical and petrochemical industries different measuring techniques for leak detection as well as methods for the estimation of total emissions from diffuse sources are analysed and their limits are described. (orig.)

  3. Metal levels in street sediment from an industrial city. Spatial trends, chemical fractionation, and management implications

    Energy Technology Data Exchange (ETDEWEB)

    Irvine, Kim N.; Perrelli, Mary F. [State Univ. of New Yrok, Buffalo, NY (United States). Geography and Planning Dept., Buffalo State; Ngoen-klan, Ratchadawan [Chiang Mai Univ. (Thailand). Dept. of Parasitology; Droppo, Ian G. [Water Science and Technology Directorate, Science and Technology Branch, Environment Canada, Burlington, ONT (Canada). Aquatic Ecosystem Management Research Div.

    2009-08-15

    Background, aim and scope: Street sediment samples were collected at 50 locations in a mixed land use area of Hamilton, Ontario, Canada, and metal levels were analyzed using a sequential extraction procedure for different particle size classes to provide an estimate of potential toxicity as well as the potential for treatment through best management practices (BMPs). Methodology: The street sediment samples were dry sieved into four different particle size categories and a sequential extraction procedure was done on each size category following the methodology proposed by Tessier et al. 1979 using a Hitachi 180-80 Polarized Zeeman Atomic Absorption Spectrophotometer. Results and discussion: Analysis of variance, post hoc least-significant difference tests, and kriging analysis showed that spatially Mn and Fe levels were associated with a well-defined heavy industrial area that includes large iron- and steel-making operations; Cu and Pb were associated with both the industrial and high-volume traffic areas, while Zn tended to be more associated with high-volume traffic areas. The potential bioavailability of the metals, based on the sum of chemical fractions 1 (exchangeable) and 2 (carbonate-bound), decreased in order: Zn > Cd > Mn > Pb > Cu > Fe. Based on aquatic sediment quality guidelines, there is some concern regarding the potential impact of the street sediment when runoff reaches receiving waters. Conclusions: It is possible that a combination of BMPs, including street sweeping and constructed wetlands, could help to reduce street sediment impact on environmental quality in the Hamilton region. The data presented here would be important in developing and optimizing the design of these BMPs. (orig.)

  4. Plasma-chemical treatment of industrial wastewaters from brewery “Brasseries du Cameroun”, Bafoussam factory

    Directory of Open Access Journals (Sweden)

    Estella T. Njoyim

    2016-01-01

    Full Text Available This work focuses on the study of the chemical reactivity of an advanced oxidation process (AOP, called the plasma technique, in order to prevent industrial effluent from pollution and better cope to several damage of environment. The oxidizing and acidifying properties of an electric discharge of the gliding arc plasma and its application to a target which is a real effluent (wastewater from Brasseries du Cameroun -Bafoussam plant fascinated this study. Samples were collected from the central collecting point (CCP of the effluent. The collected effluent samples were analyzed by volumetric and instrumental methods, and then exposed to the gliding discharge during specific time periods of 3-60 min to exhibit the desired decontamination effects. At the end of 60 min of exposure time to the discharge, 52.22% and 50.19% obtained respectively to abatement of turbidity and rate of fall in absorbance. This reduction can be explained by the fact that the coloured compounds were degraded and this degradation gave rise to the transparent appearance observed. After stopping the discharge process, the abatement percentage of BOD5, COD and TOC, were obtained at the same time (60min with values of 52.05%, 68.63% and 69.37% respectively. These results reflect the considerable reduction of the pollution load of the wastewaters collected from CCP of the brewery. These results showed that the effectiveness of the gliding arc plasma depends not only on the physico-chemical parameters of the target, but also on the exposure time and concluded that the non-thermal plasma process alone provides good reduction of organic pollutants in wastewater. Moreover, the phenomenon of post- discharge, even though not studied in details demonstrated that, after switching the discharge, the evolution of parameters such as pH, electrical conductivity and TDS increase.

  5. Bioflocculation: chemical free, pre-treatment technology for the desalination industry.

    Science.gov (United States)

    Bar-Zeev, Edo; Belkin, Natalia; Liberman, Boris; Berman-Frank, Ilana; Berman, Tom

    2013-06-01

    Rapid sand filtration (RSF), proceeded by chemical coagulation and flocculation, is a commonly used, effective pretreatment in the desalination industry. We designed and tested a novel, large pilot-scale, two-stage granular Rapid Bioflocculation Filter (RBF) based on a first-stage Bioflocculator (BF) unit followed by a mixed-media bed filter (MBF). The BF filter bed consisted of an extremely porous volcanic Tuff granular medium which provided an enlarged surface area for microbial development and biofilm proliferation. We compared the efficiency of the pilot RBF to that of a full-scale RSF, operating with upstream chemical coagulation, by measuring the removal from the same untreated seawater feed of key factors related to membrane clogging: SDI, turbidity, chlorophyll a (Chl a) and transparent exopolymer particles (TEP). After 2 weeks of operation, the Tuff grains were colonized extensively by coccoid bacteria that formed biofilm along the entire BF. With bacterial colonization and biofilm development, numerous aggregates of bacteria and some algal cells embedded in an amorphous organic matrix were formed on and within the Tuff grains. By 1-3 months, the biotic diversity within the Tuff filter bed had increased to include filamentous bacteria, cyanobacteria, fungi, protista and even crustaceans and marine worms. During and for ≈ 24 h after each cleaning cycle (carried out every 5 to 7 days by upward flushing with air and water), large numbers of floc-like particles, from ≈ 15 μm to ≈ 2 mm in size were observed in the filtrate of the BF unit. Microscopic examination of these flocs (stained with Alcian Blue and SYTO(R) 9) showed that they were aggregates of many smaller particles with associated bacteria and algae within a polysaccharide gel-like matrix. These biogenic flocs (bioflocs) were observed to form during normal operation of the RBF, accumulating as aggregates of inorganic and organic material on the Tuff surfaces. With each flush cleaning cycle

  6. A model for reliability analysis and calculation applied in an example from chemical industry

    Directory of Open Access Journals (Sweden)

    Pejović Branko B.

    2010-01-01

    Full Text Available The subject of the paper is reliability design in polymerization processes that occur in reactors of a chemical industry. The designed model is used to determine the characteristics and indicators of reliability, which enabled the determination of basic factors that result in a poor development of a process. This would reduce the anticipated losses through the ability to control them, as well as enabling the improvement of the quality of production, which is the major goal of the paper. The reliability analysis and calculation uses the deductive method based on designing of a scheme for fault tree analysis of a system based on inductive conclusions. It involves the use standard logical symbols and rules of Boolean algebra and mathematical logic. The paper eventually gives the results of the work in the form of quantitative and qualitative reliability analysis of the observed process, which served to obtain complete information on the probability of top event in the process, as well as objective decision making and alternative solutions.

  7. Environmental Disclosure of Chemical Industry:Evidence from Chinese A-Share Market

    Institute of Scientific and Technical Information of China (English)

    Tang Jiufang; Lin Xiaohua; Tang Jiuhong

    2009-01-01

    Environmental pollution and environmental reporting have increasingly drawn the attention of the countries around the world.The paper selects A-share listed companies of chemical industry in China.Using logistic model,we research the impact of financial performance of listed companies upon environmental reporting.The conclusion of the study shows that the total number of enterprises which disclosed environmental information (EI) has increased year by year,and El content and volume disclosed by heavy pollution corporations have increased annually.And the more profitability the listed companies attain,the more EI they are inclined to disclose.Moreover,companies will have an ability to disclose EI so as to reduce the agency costs arising from information asymmetry.Furthermore,the development capability of companies is of negative correlation to environmental reporting,and the liabilities degree of listed companies is of negative correlation to environmental reporting,but it is not significant.This paper also offers policy recommendations that enhance EI transparency and regulate EI reporting of listed companies.

  8. Chemical profiles of PM emitted from the iron and steel industry in northern China

    Science.gov (United States)

    Guo, Yangyang; Gao, Xiang; Zhu, Tingyu; Luo, Lei; Zheng, Yang

    2017-02-01

    Source-level sampling methods were adopted in this study to sample six iron and steel plants referring four main manufacturing processes, with over 150 samples collected and measured in this study, the latest data for iron and steel industry in China has been demonstrated. The emission factors of CO2, CO, SO2, NOx, TSP, PM2.5 and PM10 were calculated, and the majority of pollutants were emitted from the sintering process. The virtual impactor divided the PM sample into three size fractions for chemical profiles and the profiles indicate that SO42-, NH4+ and OC distribute more into fine particles. The elements in PM from the sintering, pelletizing, puddling and steelmaking processes were measured and compared using the coefficient of divergence. The divergence between PM2.5 and PM10 for the same process is not obvious, with CD values ranging from 0.1697 to 0.2578. PM2.5 profiles of four process were notably different from one another, with CD values ranging from 0.4802 to 0.7500. More efforts are needed to update the PM profiles in China. PAHs in PM were investigated, and most of the PAHs in PM are from the sintering process. The total PAH concentration in PM2.5 from the sintering process is 73.28 ± 1.45 μg/m3 with a BaPE value calculated at 9.92 μg/m3.

  9. A study on manufacturing technology of materials for fine chemical industry use (muscovite, sericite)

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jung-Il; Shin, Hee-Young; Hwang, Seon-Kook; Ahn, Ji-Hwan; Bae, Kwang-Hyun [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    For the technical development on utilization of unused mineral resources, the study was carried out on the highly purification and mineral processing of domestic Sericite and Muscovite. This study was also carried out to make the functional materials for the use of fine chemical industry. Scope and content of study: 1) A study on the high purification and mineral processing for sericite and muscovite. 2) A study on the surface treatment of fine particles of sericite and muscovite. EDAX analysis on surface treated Mica shows that absorbed area on mica surface appears about 56 wt% when reaction period of 75 min. The result on image analysis on the surface treated mica comparing with that of EDAX analysis appears that the material was stabilized when passing the 1st yielding point. The dry process of surface modification on mica was applied by using {Theta}-composer. The result shows that whiteness of the mica increases upto 91 at 20 min. grinding period. Polymer microcapsulation was carried out on the mica surface. The result shows that materials appear excellent hydrophobic property which is one of important factors for making cosmetics. Based on the applying test of mineral processing on Dong-jin mica, the result shows that high quality mica is recovered. Especially, lithium mica produced in the mine will be further studied in the next year project. (author). 26 refs., 36 tabs., 61 figs.

  10. Performance of membrane bioreactors used for the treatment of wastewater from the chemical and textile industries.

    Science.gov (United States)

    Baumgarten, S; Schröder, H F; Pinnekamp, J

    2006-01-01

    Within the scope of the study, nine waste waters from the chemical and textile industries were treated in bench-scale (laboratory scale) and small-scale (pilot scale) membrane bioreactors. Depending on wastewater characteristics, the resulting performance varied significantly. It was observed that MBR effectiveness was determined primarily by the degree of biodegradability of the wastewater. In the course of several months of operation, no significant changes associated with the complete retention of the biomass by the membranes were observed. In some cases, it was possible to improve effluent quality by using smaller molecular separation sizes. The flux performance of the membrane modules was dependent on wastewater composition. Occasionally, non-degradable macromolecular substances concentrated in the bioreactor, resulting in strongly reduced filterability and flow performance of the membrane modules, consequently also reducing the economic viability of the process. The results demonstrate that wastewater-specific pilot tests are absolutely necessary, in particular if the technology is to be used for new applications.

  11. Chemical Industry Corrosion Management: A Comprehensive Information System (ASSET 2). Final Report

    Energy Technology Data Exchange (ETDEWEB)

    John, Randy C. [Shell Global Solutions, Houston, TX (United States); Young, Arthur L. [Humberside Solutions, Toronto, ON (Canada); Pelton, Arthur D. [CRCT, Ecole Polytechnique de Montreal, Quebec (Canada); Thompson, William T. [Royal Military College of Canada, Kingston, ON (Canada); Wright, Ian G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2008-10-10

    The research sponsored by this project has greatly expanded the ASSET corrosion prediction software system to produce a world-class technology to assess and predict engineering corrosion of metals and alloys corroding by exposure to hot gases. The effort included corrosion data compilation from numerous industrial sources and data generation at Shell Oak Ridge National Laboratory and several other companies for selected conditions. These data were organized into groupings representing various combinations of commercially available alloys and corrosion by various mechanisms after acceptance via a critical screening process to ensure the data were for alloys and conditions, which were adequately well defined, and of sufficient repeatability. ASSET is the largest and most capable, publicly-available technology in the field of corrosion assessment and prediction for alloys corroding by high temperature processes in chemical plants, hydrogen production, energy conversion processes, petroleum refining, power generation, fuels production and pulp/paper processes. The problems addressed by ASSET are: determination of the likely dominant corrosion mechanism based upon information available to the chemical engineers designing and/or operating various processes and prediction of engineering metal losses and lifetimes of commercial alloys used to build structural components. These assessments consider exposure conditions (metal temperatures, gas compositions and pressures), alloy compositions and exposure times. Results of the assessments are determination of the likely dominant corrosion mechanism and prediction of the loss of metal/alloy thickness as a function of time, temperature, gas composition and gas pressure. The uses of these corrosion mechanism assessments and metal loss predictions are that the degradation of processing equipment can be managed for the first time in a way which supports efforts to reduce energy consumption, ensure structural integrity of equipment

  12. Bioelectrochemical Integration of Waste Heat Recovery, Waste-to- Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes

    Energy Technology Data Exchange (ETDEWEB)

    Mac Dougall, James [Air Products and Chemicals, Inc., Allentown, PA (United States)

    2016-02-05

    Many U.S. manufacturing facilities generate unrecovered, low-grade waste heat, and also generate or are located near organic-content waste effluents. Bioelectrochemical systems, such as microbial fuel cells and microbial electrolysis cells, provide a means to convert organic-content effluents into electric power and useful chemical products. A novel biochemical electrical system for industrial manufacturing processes uniquely integrates both waste heat recovery and waste effluent conversion, thereby significantly reducing manufacturing energy requirements. This project will enable the further development of this technology so that it can be applied across a wide variety of US manufacturing segments, including the chemical, food, pharmaceutical, refinery, and pulp and paper industries. It is conservatively estimated that adoption of this technology could provide nearly 40 TBtu/yr of energy, or more than 1% of the U.S. total industrial electricity use, while reducing CO2 emissions by more than 6 million tons per year. Commercialization of this technology will make a significant contribution to DOE’s Industrial Technology Program goals for doubling energy efficiency and providing a more robust and competitive domestic manufacturing base.

  13. Predicting the future: opportunities and challenges for the chemical industry to apply 21st-century toxicity testing.

    Science.gov (United States)

    Settivari, Raja S; Ball, Nicholas; Murphy, Lynea; Rasoulpour, Reza; Boverhof, Darrell R; Carney, Edward W

    2015-03-01

    Interest in applying 21st-century toxicity testing tools for safety assessment of industrial chemicals is growing. Whereas conventional toxicology uses mainly animal-based, descriptive methods, a paradigm shift is emerging in which computational approaches, systems biology, high-throughput in vitro toxicity assays, and high-throughput exposure assessments are beginning to be applied to mechanism-based risk assessments in a time- and resource-efficient fashion. Here we describe recent advances in predictive safety assessment, with a focus on their strategic application to meet the changing demands of the chemical industry and its stakeholders. The opportunities to apply these new approaches is extensive and include screening of new chemicals, informing the design of safer and more sustainable chemical alternatives, filling information gaps on data-poor chemicals already in commerce, strengthening read-across methodology for categories of chemicals sharing similar modes of action, and optimizing the design of reduced-risk product formulations. Finally, we discuss how these predictive approaches dovetail with in vivo integrated testing strategies within repeated-dose regulatory toxicity studies, which are in line with 3Rs principles to refine, reduce, and replace animal testing. Strategic application of these tools is the foundation for informed and efficient safety assessment testing strategies that can be applied at all stages of the product-development process.

  14. One year online chemical speciation of submicron particulate matter (PM1) sampled at a French industrial and coastal site

    Science.gov (United States)

    Zhang, Shouwen; Riffault, Véronique; Dusanter, Sébastien; Augustin, Patrick; Fourmentin, Marc; Delbarre, Hervé

    2015-04-01

    The harbor of Dunkirk (Northern France) is surrounded by different industrial plants (metallurgy, petrochemistry, food processing, power plant, etc.), which emit gaseous and particulate pollutants such as Volatile Organic Compounds (VOCs), oxides of nitrogen (NOx) and sulfur (SO2), and submicron particles (PM1). These emissions are poorly characterized and their impact on neighboring urban areas has yet to be assessed. Studies are particularly needed in this type of complex environments to get a better understanding of PM1sources, especially from the industrial sector, their temporal variability, and their transformation. Several instruments, capable of real-time measurements (temporal resolution ≤ 30 min), were deployed at a site located downwind from the industrial area of Dunkirk for a one-year duration (July 2013-September 2014). An Aerosol Chemical Speciation Monitor (ACSM) and an Aethalometer monitored the main chemical species in the non-refractory submicron particles and black carbon, respectively. Concomitant measurements of trace gases and wind speed and direction were also performed. This dataset was analyzed considering four wind sectors, characteristics of marine, industrial, industrial-urban, and urban influences, and the different seasons. We will present a descriptive analysis of PM1, showing strong variations of ambient concentrations, as well as evidences of SO2 to SO4 gas-particle conversion when industrial plumes reached the monitoring site. The organic fraction measured by ACSM (37% of the total mass on average) was analyzed using a source-receptor model based on Positive Matrix Factorization (PMF) to identify chemical signatures of main emission sources and to quantify the contribution of each source to the PM1 budget given the wind sector. Four main factors were identified: hydrocarbon organic aerosol (HOA), oxygenated organic aerosol (OOA), biomass burning organic aerosol (BBOA) and cooking-like organic aerosol (COA). Overall, the total PM

  15. Chemical characterization of atmospheric particles and source apportionment in the vicinity of a steelmaking industry

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, S.M., E-mail: smarta@ctn.ist.utl.pt [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 139.7 km, 2695-066 Bobadela LRS (Portugal); Lage, J. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 139.7 km, 2695-066 Bobadela LRS (Portugal); Fernández, B. [Global R& D, ArcelorMittal, Avilés (Spain); Garcia, S. [Instituto de Soldadura e Qualidade, Av. Prof. Dr. Cavaco Silva, 33, 2740-120 Porto Salvo (Portugal); Reis, M.A.; Chaves, P.C. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 139.7 km, 2695-066 Bobadela LRS (Portugal)

    2015-07-15

    The objective of this work was to provide a chemical characterization of atmospheric particles collected in the vicinity of a steelmaking industry and to identify the sources that affect PM{sub 10} levels. A total of 94 PM samples were collected in two sampling campaigns that occurred in February and June/July of 2011. PM{sub 2.5} and PM{sub 2.5–10} were analyzed for a total of 22 elements by Instrumental Neutron Activation Analysis and Particle Induced X-ray Emission. The concentrations of water soluble ions in PM{sub 10} were measured by Ion Chromatography and Indophenol-Blue Spectrophotometry. Positive Matrix Factorization receptor model was used to identify sources of particulate matter and to determine their mass contribution to PM{sub 10}. Seven main groups of sources were identified: marine aerosol identified by Na and Cl (22%), steelmaking and sinter plant represented by As, Cr, Cu, Fe, Ni, Mn, Pb, Sb and Zn (11%), sinter plant stack identified by NH{sub 4}{sup +}, K and Pb (12%), an unidentified Br source (1.8%), secondary aerosol from coke making and blast furnace (19%), fugitive emissions from the handling of raw material, sinter plant and vehicles dust resuspension identified by Al, Ca, La, Si, Ti and V (14%) and sinter plant and blast furnace associated essentially with Fe and Mn (21%). - Highlights: • Emissions from steelworks are very complex. • The larger steelworks contribution to PM{sub 10} was from blast furnace and sinter plant. • Sinter plant stack emissions contributed for 12% of the PM{sub 10} mass. • Secondary aerosol from coke making and blast furnace contributed for 19% of the PM{sub 10}. • Fugitive dust emissions highly contribute to PM{sub 10} mass.

  16. Bentonite chemical modification for use in industrial effluents; Modificacao quimica de bentonita para uso em efluentes industriais

    Energy Technology Data Exchange (ETDEWEB)

    Laranjeira, E.; Pinto, M.R.O.; Rodrigues, D.P.; Costa, B.P.; Guimaraes, P.L.F. [Universidade Estadual da Paraiba (DQ/CCT/UEPB), Campina Grande (Brazil). CCT. Dept. de Quimica

    2010-07-01

    The present work aims at synthesizing organoclays using a layered silicate of regional importance, bentonite clay, for the treatment of industrial effluents. The choice of clay to be organophilized was based on cation exchange capacity (CEC). Bentonite with higher CTC was called AN 35 (92 meq/100 g), and therefore was the one that suffered the chemical modification with salt cetyl trimethyl ammonium Cetremide, provided by Vetec.The unmodified and modified clays were characterized by FTIR and XDR. The data obtained through the characterizations confirmed the acquisition of bentonite organoclay thus suggesting its subsequent application in the treatment of industrial effluents. (author)

  17. The future of discovery chemistry: quo vadis? Academic to industrial--the maturation of medicinal chemistry to chemical biology.

    Science.gov (United States)

    Hoffmann, Torsten; Bishop, Cheryl

    2010-04-01

    At Roche, we set out to think about the future role of medicinal chemistry in drug discovery in a project involving both Roche internal stakeholders and external experts in drug discovery chemistry. To derive a coherent strategy, selected scientists were asked to take extreme positions and to derive two orthogonal strategic options: chemistry as the traditional mainstream science and chemistry as the central entrepreneurial science. We believe today's role of medicinal chemistry in industry has remained too narrow. To provide the innovation that industry requires, medicinal chemistry must play its part and diversify at pace with our increasing understanding of chemical biology and network pharmacology.

  18. New Biocatalysts: Essential Tools for a Sustainable 21st Century Chemical Industry

    Science.gov (United States)

    2005-01-01

    some very impressive facts vis-á-vis societal and financial impacts. • In 1999, the biotechnology industry accounted for $13.4 billion in sales and...representation will be sought from the Biotechnology Institute Organization (BIO), which represents the biotechnology industry and other trade and...experience in this type of tracking and monitoring work include the Rand Corporation, Biotechnology Industry Organiza- tion (BIO), the National Science

  19. Sustainable catalysis challenges and practices for the pharmaceutical and fine chemical industries

    CERN Document Server

    Dunn, Peter J; Krische, Michael J; Williams, Michael T

    2013-01-01

    Opens the door to the sustainable production of pharmaceuticals and fine chemicals Driven by both public demand and government regulations, pharmaceutical and fine chemical manufacturers are increasingly seeking to replace stoichiometric reagents used in synthetic transformations with catalytic routes in order to develop greener, safer, and more cost-effective chemical processes. This book supports the discovery, development, and implementation of new catalytic methodologies on a process scale, opening the door to the sustainable production of pharmaceuticals and fine chemicals

  20. IMPLEMENTATION OF A SAFETY PROGRAM FOR THE WORK ACCIDENTS’ CONTROL. A CASE STUDY IN THE CHEMICAL INDUSTRY

    Directory of Open Access Journals (Sweden)

    Edison Cesar de Faria Nogueira

    2015-03-01

    Full Text Available This article presents a case study related to the implementation of a Work Safety Program in a chemical industry, based on the Process Safety Program, PSP, of a huge energy company. The research was applied, exploratory, qualitative and with and data collection method through documentary and bibliographical research. There will be presented the main practices adopted in order to make the Safety Program a reality inside a chemical industry, its results and contributions for its better development. This paper proposes the implementation of a Safety Program must be preceded by a diagnosis of occupational safety and health management system and with constant critical analysis in order to make the necessary adjustments.

  1. Huge Pressure from Energy Supply and Overheated Investment——analysis of China's Petrochemical and Chemical Industry

    Institute of Scientific and Technical Information of China (English)

    Feng Shiliang

    2007-01-01

    @@ The economic performance of China's petroleum and chemical industry is comprehensively decided by four major factors now: a. economy grows rapidly,boosting consumption demand; b. supply of energy and products consuming resources tends to be tighter; c. global crude oil price will continue to stay high,driving the production cost of its downstream products; d. the overly rapid increase of investment in fixed assets is difficult to control, so more and more products will face surplus production capacity.

  2. Proceedings of the 3. International conference on waste management in the chemical and petrochemical industries. Volume 1 and 2.

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Francisco F.; Pereira Filho, Francisco A.; Almeida, Sergio A.S. [eds.

    1993-12-31

    To produce without pollution is today a mandate for the preservation of our society. To produce cleaner means to conserve energy and natural resources, to reduce the use of toxic substances, to invest in the evolution of products and production processes towards a minimum of residues. The Third International Conference on Waste Minimization in the Chemical and Petrochemical Industries addresses these challenging questions regarding waste minimization

  3. Physical-chemical characteristics of an eco-friendly binder using ternary mixture of industrial wastes

    Directory of Open Access Journals (Sweden)

    Nguyen, Hoang-Anh

    2015-09-01

    Full Text Available This study explores the physical-chemical characteristics of paste and mortar with an eco-friendly binder named as SFC cement, produced by a ternary mixture of industrial waste materials of ground granulated blast furnace slag (S, Class F fly ash (FFA, and circulating fluidized bed combustion fly ash (CFA. To trigger the hydration, the CFA, which acted as an alkaline-sulfate activator, was added to the blended mixture of slag and FFA. The water to binder ratio (W/B, curing regime, and FFA addition significantly affected the engineering performances and shrinkage/expansion of the SFC pastes and mortars. The SFC mortars had higher workability than that of ordinary Portland cement (OPC. With similar workability, the SFC mortars had compressive strengths and expansions comparable to OPC mortars. The main hydration products of the hardened SFC cement were ettringite (AFt and C-S-H/C-A-S-H. The transformation of the AFt to the monosulfates was observed as the hydration time increased.Este trabajo estudia las características fisicoquímicas de pastas y morteros con un ligante eco-amigable llamado cemento SFC, producido por una mezcla ternaria de materiales a partir de residuos industriales tales como escorias granuladas de alto horno (S, ceniza volante clase F (FFA, y cenizas volantes de combustión en lecho fluidizado circulante (CFA. Para desencadenar la hidratación, el CFA que actuó como un activador alcalino-sulfato se añadió a la mezcla combinada de escoria y FFA. La relación de agua/ligante (W/B, el tipo de curado, y la adición de FFA afectaron significativamente a las prestaciones mecánicas así como a la retracción/expansión de pastas y morteros de SFC. Los morteros SFC presentaron una trabajabilidad mayor que los correspondientes de cemento de Portland (OPC. Con una trabajabilidad similar, los morteros SFC presentaron resistencias mecánicas y expansión comparables a los morteros de OPC. Los principales productos de hidratación del

  4. Analysis and treatment of industrial wastewater through chemical coagulation-adsorption process-A case study of Clariant Pakistan limited

    Science.gov (United States)

    Ali Shah, Syed Farman; Shah, Abdul Karim; Mehdi, Ahmad; Memon, Aziza Aftab; Harijan, Khanji; Ali, Zeenat M.

    2012-05-01

    Textile dye manufacture processes are known as the most polluting chemical processes of industrial sectors of the world. Colored wastewaters along with many polluting agents are troublesome. They are heavily polluted with dyes, textile auxiliaries and chemicals. Current study applies a coupled technology for wastewater treatment. Combined coagulation-adsorption process was utilized for treatment of complex nature effluents of dyes, binder emulsion, pigments and textile chemicals plants at Clariant Pakistan. Cost effective coagulant and adsorbent was selected by using waste material from a power generation unit of Water and Power Development Authority (WAPDA), Pakistan. The treated effluent could be reused. Alum+ Activated Carbon, Ferrous sulfate+ Activated Carbon, Ferric chloride + Activated Carbon. Almost complete decolourization was achieved along with reduction in COD up to 65%. Pre and post treatment, TDS, COD, Turbidity and suspended solids were improved.

  5. The impact of conventional and nuclear industries on the population A comparative study of the radioactive and chemical aspects

    CERN Document Server

    Coulon, R; Anguenot, F

    1988-01-01

    This study was carried out to make it possible to assess and localize in an objective manner the extent of the hazards and associated detrimental effects which are inherent in nuclear and non-nuclear industrial activities, among all the hazards to which the population of a given region is exposed. Rather than carry out a purely theoretical and speculative study a region was chosen as a basis to carry out a full- scale exercise, taking into account the existing real situation. The region chosen is situated in the south-east of France (Greater Rhone Delta) where almost all industrial activities can be found: electricity generating industries (thermal and nuclear power stations), the activities associated with them (extraction, processing, storage of waste, etc.) and industrial activities which are sources of pollution (refineries, chemical industries, etc.). To put the risks of all these activities (to workers, the public and the environment) in perspective, the case of other sources of risk, such as certain ag...

  6. 15 CFR 710.4 - Overview of scheduled chemicals and examples of affected industries.

    Science.gov (United States)

    2010-01-01

    ... provides examples of the types of industries that may be affected by the CWCR (parts 710 through 729 of...; (5) Epoxy resins; and (6) Insecticides, herbicides, fungicides, defoliants, and rodenticides....

  7. Biotechnology for a renewable resources chemicals and fuels industry, biochemical engineering R and D

    Energy Technology Data Exchange (ETDEWEB)

    Villet, R.H.

    1980-04-01

    To establish an effective biotechnology of biomass processing for the production of fuels and chemicals, an integration of research in biochemical engineering, microbial genetics, and biochemistry is required. Reduction of the costs of producing chemicals and fuels from renewable resources will hinge on extensive research in biochemical engineering.

  8. Industrial Scale Synthesis of Carbon Nanotubes Via Fluidized Bed Chemical Vapor Deposition: A Senior Design Project

    Science.gov (United States)

    Smith, York R.; Fuchs, Alan; Meyyappan, M.

    2010-01-01

    Senior year chemical engineering students designed a process to produce 10 000 tonnes per annum of single wall carbon nanotubes (SWNT) and also conducted bench-top experiments to synthesize SWNTs via fluidized bed chemical vapor deposition techniques. This was an excellent pedagogical experience because it related to the type of real world design…

  9. Discussion on Fluorine Chemical Industry 4.0 Construction%氟化工的工业4.0之路浅议

    Institute of Scientific and Technical Information of China (English)

    王水耀; 方国洪

    2015-01-01

    The basic meaning and essence of industry 4.0 were introduced. Characteristics of fluorine chemical industry and informationization construction of enterprises was analyzed. The industry 4.0 for fluo-rine chemical industry construction was discussed.%介绍了工业4.0的基本内涵和实质,剖析了氟化工企业的行业特点和信息化建设水平,论述了适合氟化工行业发展的工业4.0建设思路。

  10. Differences in chemical, physical and microbiological characteristics of Italian burrata cheeses made in artisanal and industrial plants of Apulia Region

    Directory of Open Access Journals (Sweden)

    Stefano Rea

    2016-06-01

    Full Text Available The burrata cheese is a traditional product from Southern Italy, consisting of an envelope of pasta filata (stretched curd filled with cream and pasta filata strips (usually leftovers from mozzarella production. Physical [water activity (aw, pH], chemical (moisture, NaCl content and microbiological [total viable count (TVC, Listeria monocytogenes, Salmonella spp., Yersinia enterocolitica, Bacillus cereus, Escherichia coli, Enterobacteriaceae, coagulase-positive staphylococci] characteristics of burrata cheeses manufactured in artisanal and industrial plants were evaluated. The artisanal burrata showed lower aw values in the filling and the final product. The same was recorded in the filling for the moisture, probably due to differences between the types of cream used in the artisanal and the industrial cheesemaking. The pH value of the filling differed between the two groups but no difference was recorded in the final product. Microbiological differences were also recorded, with higher values for TVC and E. coli in artisanal than industrial burrata. All samples were negative for the other microbial determinations, with the exception of coagulase-positive staphylococci and Y. enterocolitica, which were detected in artisanal burrata. Differences in cheesemaking process were probably responsible for the strong variability of the physical and chemical data between the two cheeses; furthermore, differences in the hygienic features were also recorded. Even though artisanal products showed lower aw and pH values and higher NaCl concentration, the higher E. coli loads highlighted the need for a more accurate compliance with hygienic procedures along the artisanal cheesemaking process.

  11. Levels and spatial distribution of airborne chemical elements in a heavy industrial area located in the north of Spain.

    Science.gov (United States)

    Lage, J; Almeida, S M; Reis, M A; Chaves, P C; Ribeiro, T; Garcia, S; Faria, J P; Fernández, B G; Wolterbeek, H T

    2014-01-01

    The adverse health effects of airborne particles have been subjected to intense investigation in recent years; however, more studies on the chemical characterization of particles from pollution emissions are needed to (1) identify emission sources, (2) better understand the relative toxicity of particles, and (3) pinpoint more targeted emission control strategies and regulations. The main objective of this study was to assess the levels and spatial distribution of airborne chemical elements in a heavy industrial area located in the north of Spain. Instrumental and biomonitoring techniques were integrated and analytical methods for k0 instrumental neutron activation analysis and particle-induced x-ray emission were used to determine element content in aerosol filters and lichens. Results indicated that in general local industry contributed to the emissions of As, Sb, Cu, V, and Ni, which are associated with combustion processes. In addition, the steelwork emitted significant quantities of Fe and Mn and the cement factory was associated with Ca emissions. The spatial distribution of Zn and Al also indicated an important contribution of two industries located outside the studied area.

  12. Engineering propionibacteria as versatile cell factories for the production of industrially important chemicals: advances, challenges, and prospects.

    Science.gov (United States)

    Guan, Ningzi; Zhuge, Xin; Li, Jianghua; Shin, Hyun-Dong; Wu, Jing; Shi, Zhongping; Liu, Long

    2015-01-01

    Propionibacteria are actinobacteria consisting of two principal groups: cutaneous and dairy. Cutaneous propionibacteria are considered primary pathogens to humans, whereas dairy propionibacteria are widely used in the food and pharmaceutical industries. Increasing attention has been focused on improving the performance of dairy propionibacteria for the production of industrially important chemicals, and significant advances have been made through strain engineering and process optimization in the production of flavor compounds, nutraceuticals, and antimicrobial compounds. In addition, genome sequencing of several propionibacteria species has been completed, deepening understanding of the metabolic and physiological features of these organisms. However, the metabolic engineering of propionibacteria still faces several challenges owing to the lack of efficient genome manipulation tools and the existence of various types of strong restriction-modification systems. The emergence of systems and synthetic biology provides new opportunities to overcome these bottlenecks. In this review, we first introduce the major species of propionibacteria and their properties and provide an overview of their functions and applications. We then discuss advances in the genome sequencing and metabolic engineering of these bacteria. Finally, we discuss systems and synthetic biology approaches for engineering propionibacteria as efficient and robust cell factories for the production of industrially important chemicals.

  13. Recent advances of pore system construction in zeolite-catalyzed chemical industry processes.

    Science.gov (United States)

    Shi, Jing; Wang, Yangdong; Yang, Weimin; Tang, Yi; Xie, Zaiku

    2015-12-21

    The kaleidoscopic applications of zeolite catalysts (zeo-catalysts) in petrochemical processes has been considered as one of the major accomplishments in recent decades. About twenty types of zeolite have been industrially applied so far, and their versatile porous architectures have contributed their most essential features to affect the catalytic efficiency. This review depicts the evolution of pore models in zeolite catalysts accompanied by the increase in industrial and environmental demands. The indispensable roles of modulating pore models are outlined for zeo-catalysts for the enhancement of their catalytic performances in various industrial processes. The zeolites and related industrial processes discussed range from the uni-modal micropore system of zeolite Y (12-ring micropore, 12-R) in fluid catalytic cracking (FCC), zeolite ZSM-5 (10-R) in xylene isomerization and SAPO-34 (8-R) in olefin production to the multi-modal micropore system of MCM-22 (10-R and 12-R pocket) in aromatic alkylation and the hierarchical pores in FCC and catalytic cracking of C4 olefins. The rational construction of pore models, especially hierarchical features, is highlighted with a careful classification from an industrial perspective accompanied by a detailed analysis of the theoretical mechanisms.

  14. Water quality improvement of a lagoon containing mixed chemical industrial wastewater by micro-electrolysis-contact oxidization

    Institute of Scientific and Technical Information of China (English)

    Ya-fei ZHOU; Mao LIU; Qiong WU

    2011-01-01

    A lagoon in the New Binhai District, a high-speed developing area, Tianjin, China, has long been receiving the mixed chemical industrial wastewater from a chemical industrial park. This lagoon contained complex hazardous substances such as heavy metals and accumulative pollutants which stayed over time with a poor biodegradability. According to the characteristics of wastewater in the lagoon, the micro-electrolysis process was applied to improve the biodegradability before the bioprocess treatment. By the orthogonal experimental study of main factors influencing the efficiency of the treatment method, the best control parameters were obtained, including pH=2.0, a volume ratio of Fe and reaction wastewater of 0.03750, a volume ratio of Fe and the granular activated carbon (GAC) of 2.0, a mixing speed of 200 r/min, and a hydraulic retention time (HRT) of 1.5 h. In the meantime, the removal rate of chemical oxygen demand (COD) was up to 64.6%, and NH4-N and Pb in the influent were partly removed. After the micro-electrolysis process, the ratio of biochemical oxygen demand (BOD) to COD (B/C ratio) was greater than 0.6, thus providing a favorable basis for bioprocess treatment.

  15. Review of the impact of the Ukraine-EU free trade agreement on manufacturing industries (mechanical engineering, chemical and light industry

    Directory of Open Access Journals (Sweden)

    Olga Usenko

    2007-03-01

    Full Text Available The article gives a definition to the concept of ‘deep integration’ taken by the Ukrainian Government as a framework concept for the establishment of a Ukraine-EU free trade area. The paper uses the term ‘deep free trade’ or ‘free trade area +’. It offers a review of the Ukrainian economy and its readiness to open such industries as mechanical engineering, chemical and light industry to free trade with the EU. It examines which cooperative steps might be taken in the sectors in question in the framework of a free trade area by identifying specific features of those sectors in Ukraine and the EU through SWOT analysis and review of certain provisions in relevant agreements between the EU and other countries. It proposes to forecast the possible impact of a free trade area on stakeholders’ position regarding the agreement by using the ‘stakeholder approach’ (identifying and classifying interest groups and the European Commission’s method of ‘impact assessment’. Based on the results of this research, conclusions are made concerning the fundamental negotiation principles for talks between Ukraine and the EU as to the economic and trade component of the new ‘enhanced agreement.

  16. Impact analysis of the implemented quality management system on business performances in pharmaceutical-chemical industry in Serbia

    Directory of Open Access Journals (Sweden)

    Marinković Valentina D.

    2013-01-01

    Full Text Available International quality management standard (QMS ISO 9001 became widely accepted as a framework for product and/or services quality improvement. There are recent research conducted in order to define relationships and effects between the applied QMS and financial and/or non-financial business parameters. The effects of the applied pharmaceutical quality system (PQS on the business performances in Serbian pharmaceutical-chemical industry are analyzed in this paper using multivariate linear regression analysis. The empirical data were collected using a survey that was performed among experts from Serbian pharmaceutical-chemical industrial sector during 2010. An extensive questionnaire was used in the survey, grouping the questions in eight groups: Implementation of pharmaceutical quality system (AQ, Quality/strategy planning (QP, Human resource management (HR, Supply management (SM, Customer focus (CF, Process management (PM, Continuous improvement (CI, and Business results (BR. The primary goal of the research was to analyze the effects of the elements of first seven groups (AQ, QP, HR, SM, CF, PM, and CI that present various aspects of the implementation of PQS, on the elements of business results (BR. Based on empirical data, regression relations were formed to present the effects of all considered elements of PQS implementation on the business performance parameters (BR. The positive effects of PQS implementation on the business performances such as the assessment of performance indicators, continual products and/or services quality improvement, and efficient problem solving, are confirmed in the presented research for the Serbian pharmaceutical-chemical industrial sector. The results of the presented research will create a room for the improvement of the existing models in application, and for attracting interested parties that aim to commence this business standardization process. Hence, implementation of PQS is not only the regulatory

  17. Eco-Driven Chemical Research in the Boundary between Academia and Industry

    Science.gov (United States)

    Sjöström, Jesper

    2013-01-01

    This paper examines and discusses the views on science and society held among PhD students working in two different industrially and environmentally driven research programmes in the broad area of green chemistry. It is based on thirteen in-depth interviews. The analysis shows three main ways of handling the situation as "post-academic"…

  18. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 13: CHEMICAL INJECTION PUMPS

    Science.gov (United States)

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  19. Solvation phenomena in association theories with applications to oil & gas and chemical industries

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Folas, Georgios; Muro Sunè, Nuria

    2008-01-01

    Association theories e.g. those belonging to the SAFT family account explicitly for self- and cross-association (solvation) phenomena. Such phenomena are of great practical importance as they affect, often dramatically, the phase behaviour of many mixtures of industrial relevance. From the scient...

  20. Summaries of the 40. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry; Streszczenia 40. Zjazdu Naukowego Polskiego Towarzystwa Chemicznego i Stowarzyszenia Inzynierow i Technikow Przemyslu Chemicznego

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Annual 40. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry has been held in Gdansk on 22-26 September 1997. The most valuable scientific results obtained in Polish Laboratories have been presented in 22 main sections and 7 symposia directed especially at following subjects: analytical chemistry, biochemistry, solid state chemistry and material science, physical chemistry, heteroorganic and coordination chemistry, medical and pharmaceutical chemistry, metalorganic chemistry, inorganic and organic chemistry, polymers chemistry, chemistry and environment protection, theoretical chemistry, chemical didactics, photochemistry, radiation chemistry and chemical kinetics, chemical engineering, catalysis, crystallochemistry, chemical technology, electrochemistry, and instrumental methods.

  1. Conversion of bioprocess ethanol to industrial chemical products - Applications of process models for energy-economic assessments

    Science.gov (United States)

    Rohatgi, Naresh K.; Ingham, John D.

    1992-01-01

    An assessment approach for accurate evaluation of bioprocesses for large-scale production of industrial chemicals is presented. Detailed energy-economic assessments of a potential esterification process were performed, where ethanol vapor in the presence of water from a bioreactor is catalytically converted to ethyl acetate. Results show that such processes are likely to become more competitive as the cost of substrates decreases relative to petrolium costs. A commercial ASPEN process simulation provided a reasonably consistent comparison with energy economics calculated using JPL developed software. Detailed evaluations of the sensitivity of production cost to material costs and annual production rates are discussed.

  2. Utilisation of fly ash for the management of heavy metal containing primary chemical sludge generated in a leather manufacturing industry

    Energy Technology Data Exchange (ETDEWEB)

    Sekaran, G.; Rao, B.P.; Ghanamani, A.; Rajamani, S. [Central Leather Research Institute, Chennai (India). Dept. of Environmental Technology

    2003-07-01

    The present study aims at disposal of primary chemical sludge generated in the tanning industry by solidification and stabilization process using flyash generated from thermal power plant along with binders and also on evaluating the leachability of heavy metal from the solidified product. The primary chemical sludge containing heavy metals iron and chromium were obtained from a garment leather manufacturing company at Chennai in India. The sludge was dried in open environment and it was powdered to fine size in a grinder. Binding increases stabilization of heavy metal in calcined sludge with refractory binders such as clay, fly ash, lime and ordinary Portland cement. Fly ash can be considered as the additional binder for producing stronger bricks, with high metal fixation efficiency, and minimum rate of removal of heavy metal and minimum diffusion co-efficient. 15 refs., 5 figs., 5 tabs.

  3. Carbon Dioxide Separation Technology: R&D Needs for the Chemical and Petrochemical Industries

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2007-11-01

    This report, the second in a series, is designed to summarize and present recommendations for improved CO2 separation technology for industrial processes. This report provides an overview of 1) the principal CO2 producing processes, 2) the current commercial separation technologies and 3) emerging adsorption and membrane technologies for CO2 separation, and makes recommendations for future research.

  4. Development and Scale Up Of a Chemical Process in Pharmaceutical Industry: A Case Study

    Directory of Open Access Journals (Sweden)

    Savita Belwal

    2016-07-01

    Full Text Available Every process has its own significance and one has to study factors which impact to the process and its procedure to be followed. This paper is more concerned of how a process is scaled up from lab scale to pilot plant scale, which is the major step in any industry because moving directly towards manufacturing level consumes time and money. The report introduces about pharmaceutical industry and how it is different from the other industries and provides firsthand experience for all the engineers to explore the equipment, process and unit operations included in it. First aspect of scale up is safety and then comes economy, purity and optimums. It includes the process and its unit operations such as reactors, distillation, filtration, crystallization, drying and the equipment involving these operations. Consequently, the scale up rules, factors influenced strategies and other considerations are observed. To learn and understand the unit process and operations with their importance, a case study taking one of the stages of production is discussed here

  5. Towards benchmarking of multivariable controllers in chemical/biochemical industries: Plantwide control for ethylene glycol production

    DEFF Research Database (Denmark)

    Huusom, Jakob Kjøbsted; Bialas, Dawid Jan; Jørgensen, John Bagterp

    2011-01-01

    In this paper we discuss a simple yet realistic benchmark plant for evaluation and comparison of advanced multivariable control for chemical and biochemical processes. The benchmark plant is based on recycle-separator-recycle systems for ethylene glycol production and implemented in Matlab...

  6. Chemically extracted nanocellulose from sisal fibres by a simple and industrially relevant process

    DEFF Research Database (Denmark)

    Trifol Guzman, Jon; Sillard, Cecile; Plackett, D.

    2017-01-01

    the impact of the intermolecular hydrogen bonds in the nanocellulose. The result of this sequence of up-scalable chemical treatments was a pulp consisting mainly of micro-sized fibres, which allowed simpler handling through filtration and purification steps and permitted the isolation of an intermediate...

  7. Sorghum as a renewable feedstock for production of fuels and industrial chemicals

    Science.gov (United States)

    Considerable efforts have been made in the USA and other countries to develop renewable feedstocks for production of fuels and chemicals. Among these, sorghum has attracted strong interest because of its many good characteristics such as rapid growth and high sugar accumulation, high biomass product...

  8. The Cooperation Between Poison Control Center and Organized Industrial District for Chemical Disaster Prevention

    Science.gov (United States)

    2001-09-01

    prevention efforts. A hotline line between center and district was established, while Tomes Plus and Intox Programmes adding Micromedex Computer Programme...to be 10342. Questionnaires revealed 47 different chemical agents. Two Safety discettes for each plant were prepared with reference to Micromedex Tomes

  9. Biomarker of Exposure and Mechanism of Action of Toxic Industrial Chemicals (TICs)

    Science.gov (United States)

    2013-07-01

    primary chemicals used, 10 employee 37 samples with a rank of 1 and 10 with a rank of 6. In addition, since AN is a constituent of tobacco smoke and...is/are at least partly responsible for the toxicity and perhaps carcinogenicity of acrylonitrile. Using proteomic approaches we identified 385

  10. Peak expiratory flow rate in asymptomatic male workers exposed to chemical fumes, in various industries of Hyderabad

    Directory of Open Access Journals (Sweden)

    Padaki Samata K, Dambal Amrut , Kokiwar Prashant

    2014-11-01

    Full Text Available Context: The prevalence of occupational health hazards and mortality has been reported to be unusually high among people of India. Although developed countries are very much careful about the health in occupations it is quite neglected in the developing countries like India. Aims: To record PEFR in asymptomatic male workers exposed to chemical fumes for more than 2 years and compare the results with age matched unexposed, healthy male controls. Methods and Material: This was a comparative study between 50 asymptomatic male workers exposed to chemical fumes for more than 2 years in various industries located at Jeedimetla Industrial Area and 50 unexposed healthy male individuals from general population. The sampling was done by simple random sampling (lottery method. The data was collected in the Research Laboratory of Physiology. Anthropometry like weight, height, was measured and the PEFR test was performed in the standing position by taking a deep inspiration and then blowing out as hard and as quickly as possible with their nose closed. Data was analyzed by using SPSS package and was expressed in terms of mean ± SD. Results: It was observed that mean PEFR was statistically highly significant in cases (p = 0.0001, and PEFR decreased with increase in duration of exposure. Conclusions: Thus, it can be concluded that apparently healthy individuals may also have abnormal PEFR findings. Hence, a regular check on these parameters will help them in reducing the chances of its manifestation at a future date.

  11. Biotechnology-based foods: is there a third way between the precaution principle and an overly enthusiastic dissemination of GMO?

    Science.gov (United States)

    Meningaud, J P; Moutel, G; Herv, C

    2000-01-01

    The demand for consumer safety with regard to the food-processing industry is becoming, legitimately, more and more urgent. If ingested drugs can carry deleterious effects that exceed the beneficial effect that the research was initially undertaken for, then the same can only be the case for foods that stem from the same new biotechnologies, zero risk being non existent.

  12. Default values for assessment of potential dermal exposure of the hands to industrial chemicals in the scope of regulatory risk assessments

    NARCIS (Netherlands)

    Marquart, H.; Warren, N.D.; Laitinen, J.; Hemmen, J.J. van

    2006-01-01

    Dermal exposure needs to be addressed in regulatory risk assessment of chemicals. The models used so far are based on very limited data. The EU project RISKOFDERM has gathered a large number of new measurements on dermal exposure to industrial chemicals in various work situations, together with info

  13. Evaluation of Titania Nanotubes for the Removal of Toxic Industrial Chemicals

    Science.gov (United States)

    2008-05-01

    2008). As summarized in Table 1, the nanotubes consist of both micropores and large mesopores , possibly providing adsorption sites for chemicals of...cause of the hysteresis seen in Figure 6. Data presented in Figure 7 show that over most of the relative pressure range, ASZM-TEDA provides more...Additionally, hysteresis data can be used to determine pore interconnectivity. The AE data for the titania nanotubes and baseline samples are shown in

  14. Properties and Performances of High Purity Corundum Bricks for Chemical and Petrochemical Industries in China

    Institute of Scientific and Technical Information of China (English)

    CHENRen-pin; LINYu-lian; 等

    1995-01-01

    The properties and performances of high purity corundum bricks for the refractory linings of the gasifiers in the ammonia and ethene synthesis and carbon black reaction furnaces in China are described.The high purity corundum bricks are characterized by high refractoriness,hot strength,dimensional stability and chemical inertness at elevated temperature,Their performances in the gasifiers and carbon black furnaces are very satisfied ,The failure mechansims of the refractory lining are discussed on the basis of the petrographic analysis.

  15. Aspects and Views on Mathematical Optimization in Logistics in the Chemical Process Industry

    OpenAIRE

    Kallrath, Josef

    2009-01-01

    In large chemical companies, traffic logistics and supply chain logistics contain many decision problems which are suitable to be solved by mathematical optimization. The objectives are to exploit resources (traffic infrastructure such as roads and rail lines, production equipment) in a cost optimal way and to maximize profit. We present two cases: optimal sequences of rail cars in trains visiting various plants in a large company complex, and production and distributio...

  16. Skin irritation: prevalence, variability, and regulatory classification of existing in vivo data from industrial chemicals.

    Science.gov (United States)

    Hoffmann, Sebastian; Cole, Thomas; Hartung, Thomas

    2005-04-01

    In vivo rabbit data for skin irritation registered in the European New Chemicals Database (NCD) and an ECETOC Database were evaluated to characterise the distribution of irritation potential among chemicals and to assess the variability of the animal test. These databases could be used to determine experimental and rudimentarily within-laboratory variability, but not between-laboratory variability. Our evaluation suggests that experimental variability is small. Using two classification systems--the system currently used in Europe and the Globally Harmonised System (GHS)--the prevalence of skin irritation data obtained from NCD was analysed. This analysis revealed that out of 3121 chemicals tested, less than 10% showed an irritation potential in rabbits which would require an appropriate hazard label and 64% did not cause any irritation. Furthermore, it appears that in practical use the European classification system introduces bias towards overclassification. Based on these findings, we conclude, that the classification systems should be refined taking prevalence into account. Additionally, prevalence should be incorporated into the design and analysis of validation studies for in vitro test methods and in the definition of testing strategies.

  17. Respiratory Health and Allergies from Chemical Exposures among Machining Industry Workers in Selangor, Malaysia

    Directory of Open Access Journals (Sweden)

    Soo Hui LIAW

    2015-10-01

    Full Text Available Background: This study was to determine the prevalence of respiratory health complaints, allergy symptom, lung functions, and the association between airborne concentrations of chromium and aluminium with respiratory health and allergy symptoms among machining industry workers in Selangor, Malaysia.Methods: The study design was a cross-sectional comparative study. The respiratory and allergy symptoms were obtained through the American Thoracic Society (ATS Adult Respiratory Questionnaire (ATS-DLD-78  modified questionnaire. Results: The MWFs unexposed group had significantly higher TWA8 airborne aluminum concentration (median = 0.24 µg/m3 than the exposed group (median = 0.13 µg/m3 (P=0.027. However, no significant difference was found in the airborne chromium between both groups. Significantly higher skin itchiness was reported by the MWFs exposed group. This was further supported by the serum total IgE concentrations which was significantly higher among MWFs exposed group than the unexposed group (P=0.024. The prevalence of total serum IgE was significantly higher for the exposed group (54.3% than the unexposed group (36.9%. The exposed group reported significantly higher prevalence of cough symptom, morning cough with sputum and health worries caused by metalworking fluids than the unexposed group. Conclusion: This study showed significantly higher allergy and respiratory symptoms among the MWFs exposed group than the unexposed group.   Keywords: Machining industry, Metalworking fluids, Allergy symptoms, IgE, Lung function

  18. INTEGRATION OF REFINING AND CHEMICAL INDUSTRY ——Development Strategy for Petrochemicals in New Century

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    With the rapid progress of the national economy in China, petroleum refining and petrochemical industry have grown with leaps and bounds correspondingly in 1990s. The amount of crude oil processed reached 152.39 Mt in 1998, 1.13 times that in 1993.   The refining capacity ranks the fourth in the world. Ethylene production was 3.77 Mt in 1998, 1.87 times that in 1993. The capacity of ethylene ranks the sixth in the world.   It can be expected that the petrochemical industry in China will develop faster than the refining in 21st century. The basic reason therefore is that petrochemical products can not satisfy the demand of domestic market by far so that there should be a great import. In 1998, for example, imported synthetic resin was as much as 11.71 Mt, of which five bulk plastics were 8.03 Mt. Imported synthetic rubber, synthetic fiber and fertilizer were 0.474 Mt, 1.519 Mt and 1392 Mt, respectively. The situation showed that the domestic market in China has an enormous demand for ethylene, i.e. the total demand for ethylene in 2010 is estimated as 17~18 Mt. Even if the production capacity could be 10 Mt, the self-supporting ratio will only be about 55.5%.      Please read the details of this paper in the journal of China Petroleum Processing & Petrochemical Technology.

  19. Capital market of China daily chemical industry%纵览中国日化资本市场

    Institute of Scientific and Technical Information of China (English)

    沙克

    2012-01-01

    This paper introduced the capital market of China daily chemical industry from washing,cosmetics,oral care products and daily chemical raw material four aspects,and analyzed the development of representative enterprise in each aspect.Finally,it pointed out that listing and financing were not necessary for their long term development.Daily chemical enterprises should pay more attention to the change of whole market competitive environment.%从洗涤、化妆品、口腔护理以及日化原材料4个板块介绍了中国日化资本市场。分析了各个板块中具有代表性的企业发展状况。指出了日化企业上市融资并不是企业长远发展的必经之路,企业应当更加注重整个日化市场大的竞争环境的改变。

  20. AOX removal from industrial wastewaters using advanced oxidation processes: assessment of a combined chemical-biological oxidation.

    Science.gov (United States)

    Luyten, J; Sniegowski, K; Van Eyck, K; Maertens, D; Timmermans, S; Liers, Sven; Braeken, L

    2013-01-01

    In this paper, the abatement of adsorbable halogenated organic compounds (AOX) from an industrial wastewater containing relatively high chloride concentrations by a combined chemical and biological oxidation is assessed. For chemical oxidation, the O(3)/UV, H(2)O(2)/UV and photo-Fenton processes are evaluated on pilot scale. Biological oxidation is simulated in a 4 h respirometry experiment with periodic aeration. The results show that a selective degradation of AOX with respect to the matrix compounds (expressed as chemical oxygen demand) could be achieved. For O(3)/UV, lowering the ratio of O(3) dosage to UV intensity leads to a better selectivity for AOX. During O(3)-based experiments, the AOX removal is generally less than during the H(2)O(2)-based experiments. However, after biological oxidation, the AOX levels are comparable. For H(2)O(2)/UV, optimal operating parameters for UV and H(2)O(2) dosage are next determined in a second run with another wastewater sample.

  1. Sequential chemical-biological processes for the treatment of industrial wastewaters: review of recent progresses and critical assessment.

    Science.gov (United States)

    Guieysse, Benoit; Norvill, Zane N

    2014-02-28

    When direct wastewater biological treatment is unfeasible, a cost- and resource-efficient alternative to direct chemical treatment consists of combining biological treatment with a chemical pre-treatment aiming to convert the hazardous pollutants into more biodegradable compounds. Whereas the principles and advantages of sequential treatment have been demonstrated for a broad range of pollutants and process configurations, recent progresses (2011-present) in the field provide the basis for refining assessment of feasibility, costs, and environmental impacts. This paper thus reviews recent real wastewater demonstrations at pilot and full scale as well as new process configurations. It also discusses new insights on the potential impacts of microbial community dynamics on process feasibility, design and operation. Finally, it sheds light on a critical issue that has not yet been properly addressed in the field: integration requires complex and tailored optimization and, of paramount importance to full-scale application, is sensitive to uncertainty and variability in the inputs used for process design and operation. Future research is therefore critically needed to improve process control and better assess the real potential of sequential chemical-biological processes for industrial wastewater treatment.

  2. The Application of Aspen Plus Simulation in Chemical Industry%Aspen Plus在化工中的应用

    Institute of Scientific and Technical Information of China (English)

    张治山; 杨超龙

    2012-01-01

    Aspen Plus是基于稳态化工模拟、优化、灵敏度分析和经济评价的大型化工流程模拟软件,其广泛应用于化学与石油工业、炼油加工、生物及医药等方面。文章介绍了该软件的功能特点,综述了近几年来该流程模拟软件在化工工程中的应用成果及发展情况。%Aspen Plus is based on the steady-state chemical simulation, optimization, sensitivity analysis and economic evaluation of large-scale chemical process simulation software, which is widely used in chemistry and petroleum industry, oil refining process, biology and medicine and so on. The function characteristics of the software were introduced in the paper, the application results and the development situation of chemical process simulation software on process in recent years are summarized.

  3. Effect of an industrial chemical waste on the uptake of cations by green oat

    Directory of Open Access Journals (Sweden)

    HORTENSIA RADULESCU

    2007-06-01

    Full Text Available Calcium carbonate, obtained as a waste in the industrial manufacture of magnesium carbonate and magnesium oxide from dolomites, can be applied in agriculture. The appreciable amounts of calcium and magnesium in this waste, together with impurities such as iron, zinc, manganese, chromium and copper compounds can be useful in soil amendment and plant nutrition. This paper presents preliminary results of the testing of several waste doses on soil, pursuing their effect on the uptake of cations by green oat (Avena sativa L.. The obtained results show an increase in the amount of calcium, magnesium, zinc and copper found in green oat plants, as well as a decrease of the content of iron and manganese with increasing waste dose. These results may be explained by lower absorptions of iron andmanganese because of the antagonistic effect created by high amounts of calcium and magnesium, as well as by the presence of copper and zinc.

  4. Spent solid catalysts of chemical industry and petroleum refining; Les catalyseurs solides uses de l`industrie chimique et du raffinage petrolier

    Energy Technology Data Exchange (ETDEWEB)

    Paillier, A.; Briand, Y.

    1996-12-31

    The aim of this work is the analysis of the heterogeneous catalysis. In a first part are given the utilizing sectors. There are mainly the petroleum refining, the chemical industry and the environment. A catalyst is chosen according to its selectivity and velocity, its cost and the wastes it induces. Thus are found three main heterogeneous catalysts series: the bulky metals, the supported metals: precious or heavy or their compounds, the zeolites and other silico-aluminates. Their most frequent uses are given. The catalysts used in the main petroleum refining processes (distillation, catalytic hydro-treatment, desulfurization, catalytic reforming, catalytic cracking, catalytic hydrocracking, alkylation) are also detailed. The second part deals with the spent solid catalysts. The reasons of the deactivation (poisons or contaminants, structure modification) are given. The spent catalysts are either regenerated or eliminated. The regeneration methods are described. The solid catalysts cannot be stored without being stabilized (decrease of its water permeability and of its leachable fraction). The stabilization methods are reviewed. The regulations on the spent solid catalysts are given in the last part. (O.M.)

  5. Analysis of Innovation and Its Environmental Impacts on the Chemical Industry

    Directory of Open Access Journals (Sweden)

    Dusan Schreiber

    2016-01-01

    Full Text Available Globalization of the economy and the need to achieve competitiveness drive organizations to invest in technology and in innovation, in order to find solutions that will provide advantages in an ever-more competitive market. The conflict between dwindling natural resources and the demand for economic growth has created a growing need to find means for making environmental conservation compatible with economic growth. The objective of this study is to contribute to the debate by analyzing the innovations implemented by chemical companies in the Sinos Valley region, Rio Grande do Sul, Brazil, and by identifying the motivations that drive them to develop environmental technologies. The study is exploratory and descriptive, with a quantitative data collection component in the form of a survey sent to all chemical companies in the Sinos Valley region, listed in a local business association database. The study results indicate that development of innovations is predominantly of an incremental nature and that novelty is generally restricted to the new-for-firm level. The environmental technologies implemented are generally designed to prevent or remedy environmental damage and are primarily motivated by the need to comply with environmental standards and legislation.

  6. Chemical and biochemical transformations during the industrial process of sherry vinegar aging.

    Science.gov (United States)

    Palacios, Victor; Valcárcel, Manuel; Caro, Ildefonso; Pérez, Luis

    2002-07-17

    The work described here concerns a study of the chemical and biochemical transformations in sherry vinegar during the different aging stages. The main factors that contribute to the nature and special characteristics of sherry vinegar are the raw sherry wine, the traditional process of acetic acid fermentation in butts (the solera system), and the physicochemical activity during the aging process in the solera system. A number of chemical and biochemical changes that occur during sherry vinegar aging are similar to those that take place in sherry wine during its biological activity process (where the wine types obtained are fino and manzanilla) or physicochemical activity process (to give oloroso wines). Significant increase in acetic acid levels was observed during the biological activity phase. In addition, the concentrations of tartaric, gluconic, succinic, and citric acids increased during the aging, as did levels of amino acids and acetoin. A color change was also produced during this stage. Glycerol was not consumed by acetic acid bacteria, and levels of higher alcohols decreased because of the synthesis of acetates. On the other hand, in the physicochemical phase the microbiological activity was lower. Concentrations of some cations increased because of evaporation of water through the wood. A color change was also produced in this stage. Concentrations of different amino acids decreased because of reaction with carbonyl compounds. A precipitation of potassium with tartaric acid was also observed.

  7. Chemical Process R&D for Pharmaceutical Industry in the New Millennium, Challenges and Opportunities

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Tony; Yantao

    2001-01-01

    The genomic revolution has offered scientists in the world with unprecedented number of targets and opportunities to eradicate human diseases. High throughput screening technology using enzymatic and receptor binding assays has shifted the bottleneck in drug discovery to the laboratories of chemistry. Recent upsurge of interest in combinatorial chemistry is a testimony to the urgency of increasing the efficiency of how drug-like molecules are made. What the implication of all these on chemical process research? If the Internet has revolutionized the distribution and of data, information, and knowledge, how can this powerful tool be utilized to harness the collective intellect of chemists all across the world? If the effort of a few thousands people was able to send men to the moon, can the cross-pollination of ideas from chemists all over the world, each of them thinking in his or her unique way, produce the most cost effective way of making a particular molecule, reduce pollution of a current process, or deliver a cure for cancer? We will examine the brief history of modern organic chemistry and provide some personal musings on different course one can take in the area of chemical process R&D.  ……

  8. Chemical Process R&D for Pharmaceutical Industry in the New Millennium, Challenges and Opportunities

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tony Yantao; BINGHAM Alphus

    2001-01-01

    @@ The genomic revolution has offered scientists in the world with unprecedented number of targets and opportunities to eradicate human diseases. High throughput screening technology using enzymatic and receptor binding assays has shifted the bottleneck in drug discovery to the laboratories of chemistry. Recent upsurge of interest in combinatorial chemistry is a testimony to the urgency of increasing the efficiency of how drug-like molecules are made. What the implication of all these on chemical process research? If the Internet has revolutionized the distribution and of data, information, and knowledge, how can this powerful tool be utilized to harness the collective intellect of chemists all across the world? If the effort of a few thousands people was able to send men to the moon, can the cross-pollination of ideas from chemists all over the world, each of them thinking in his or her unique way, produce the most cost effective way of making a particular molecule, reduce pollution of a current process, or deliver a cure for cancer? We will examine the brief history of modern organic chemistry and provide some personal musings on different course one can take in the area of chemical process R&D.

  9. What would be the effects of a carbon tax in Japan: an historic analysis of subsidies and fuel pricing on the iron & steel, chemical, and machinery industries

    Directory of Open Access Journals (Sweden)

    Takako Wakiyama

    2016-06-01

    Full Text Available This study examines how a carbon tax could affect industrial-related carbon dioxide (CO2 emissions in Japan. Rather than forecasting the effects of a tax, the paper employs a time-series autoregressive moving average (ARMA model to determine how past subsidies and fuel price changes affected investments in energy and carbon intensity in Japan’s iron & steel, chemical, and machinery industries from 1993 to 2004. The results suggest the impacts varied greatly across industries. In the iron & steel industry, subsidies and price changes produced negligible effects on investments in energy and carbon intensity. This may be because existing iron & steel technologies have long lifetimes and substantial replacement costs. It may also be because the few large companies dominating the industry were relatively immune to subsidy provisions and pricing changes. In the chemical industry, subsidies and fuel prices gave rise to investments that improved carbon and energy intensity. This may be because the industry has relatively higher operation costs that could be cut easily given financial incentives. In the machinery industry, two of three fuel price changes (oil and gas, but not subsidy provisions, yielded improvements in carbon and energy intensity. This may reflect the heterogeneity of companies and products comprising the industry. Overall, the study underscores that policymakers need to tailor the rates and revenue recycling provisions of a carbon tax to an industry’s unique features to stimulate CO2 reductions.

  10. Threshold of toxicological concern values for non-genotoxic effects in industrial chemicals: re-evaluation of the Cramer classification.

    Science.gov (United States)

    Kalkhof, H; Herzler, M; Stahlmann, R; Gundert-Remy, U

    2012-01-01

    The TTC concept employs available data from animal testing to derive a distribution of NOAELs. Taking a probabilistic view, the 5th percentile of the distribution is taken as a threshold value for toxicity. In this paper, we use 824 NOAELs from repeated dose toxicity studies of industrial chemicals to re-evaluate the currently employed TTC values, which have been derived for substances grouped according to the Cramer scheme (Cramer et al. in Food Cosm Toxicol 16:255-276, 1978) by Munro et al. (Food Chem Toxicol 34:829-867, 1996) and refined by Kroes and Kozianowski (Toxicol Lett 127:43-46, 2002), Kroes et al. 2000. In our data set, consisting of 756 NOAELs from 28-day repeated dose testing and 57 NOAELs from 90-days repeated dose testing, the experimental NOAEL had to be extrapolated to chronic TTC using regulatory accepted extrapolation factors. The TTC values derived from our data set were higher than the currently used TTC values confirming the safety of the latter. We analysed the prediction of the Cramer classification by comparing the classification by this tool with the guidance values for classification according to the Globally Harmonised System of classification and labelling of the United Nations (GHS). Nearly 90% of the chemicals were in Cramer class 3 and assumed as highly toxic compared to 22% according to the GHS. The Cramer classification does underestimate the toxicity of chemicals only in 4.6% of the cases. Hence, from a regulatory perspective, the Cramer classification scheme might be applied as it overestimates hazard of a chemical.

  11. Stability guide for chemical industry : shelf life definition and retest period proposition

    OpenAIRE

    Luciana Rodrigues Oriqui

    2012-01-01

    Resumo: A indústria química no mundo todo vem passando por um momento bastante particular de readequação em função da implementação do regulamento europeu REACH - acrônimo de Registration, Evaluation, Authorization and Restriction of Chemicals -, que visa a uma abordagem integrada a respeito do controle de fabricação, importação e uso de substâncias químicas na Europa. No Brasil, além da necessidade de se adequar à extensa quantidade de informações solicitadas, o segmento também não tem um gu...

  12. Subjective and objective measurement of websites quality in a chemical industry

    Directory of Open Access Journals (Sweden)

    Julius Jillbert

    2014-10-01

    Full Text Available This paper assesses the Website of a chemical company, Deza, relative to strategy and Website quality. In an attempt to obtain both an objective and subjective measure of the quality of the Deza website, two assessment methods have been used. Firstly, a subjective assessment was conducted based on the WebQual survey instrument proposed by Barnes and Vidgen (2000. Secondly, a more objective assessment was conducted via an “informational content analysis”, based on the work of Carlson et. al. (2001. Analysis of the results of the WebQual survey suggest that overall, the Deza Website is perceived by the user as being of a higher quality than the Koppers Website, but a lower quality then the Nalon Website. The Information content analysis also ranks the Deza website as being superior to Koppers and inferior to Nalon.

  13. Neurodevelopmental toxicity risks due to occupational exposure to industrial chemicals during pregnancy

    DEFF Research Database (Denmark)

    Julvez, Jordi; Grandjean, Philippe

    2009-01-01

    demonstrates the vulnerability of the developing brain to substances like lead and methylmercury. Despite the evident hazards involved, the number of occupational cohort studies carried out in this field is very low. However, the lack of evidence for assumed neurotoxicants should not divert the attention......Exposure to neurotoxic chemicals is of particular concern when it occurs during early development. The immature brain is highly vulnerable prenatally and is therefore at risk due to occupational exposures incurred by pregnant women. A systematic search of the literature has been performed...... with emphasis on epidemiological studies on female workers and the neurodevelopment of their children. The majority of recent occupational studies focused on organic solvents and pesticides, which were associated with neurobehavioral impairments in the progeny. Additional evidence on environmental exposures...

  14. The Northwest Infrared (NWIR) gas-phase spectral database of industrial and environmental chemicals: Recent updates

    Energy Technology Data Exchange (ETDEWEB)

    Brauer, Carolyn S.; Johnson, Timothy J.; Blake, Thomas A.; Sharpe, Steven W.; Sams, Robert L.; Tonkyn, Russell G.

    2014-05-22

    With continuing improvements in both standoff- and point-sensing techniques, there is an ongoing need for high-quality infrared spectral databases. The Northwest Infrared Database (NWIR) contains quantitative, gas-phase infrared spectra of nearly 500 pure chemical species that can be used for a variety of applications such as atmospheric monitoring, biomass burning studies, etc. The data, recorded at 0.1 cm-1 resolution, are pressure broadened to one atmosphere (N2) in order to mimic atmospheric conditions. Each spectrum is a composite composed of multiple individual measurements. Recent updates to the database include over 60 molecules that are known or suspected biomass-burning effluents. Examples from this set of measurements will be presented and experimental details will be discussed in the context of the utility of NWIR for environmental applications.

  15. Industrialization of Hot Wire Chemical Vapor Deposition for thin film applications

    Energy Technology Data Exchange (ETDEWEB)

    Schropp, R.E.I., E-mail: r.e.i.schropp@tue.nl

    2015-11-30

    The consequences of implementing a Hot Wire Chemical Vapor Deposition (HWCVD) chamber into an existing in-line or roll-to-roll reactor are described. The hardware and operation of the HWCVD production reactor is compared to that of existing roll-to-roll reactors based on Plasma Enhanced Chemical Vapor Deposition. The most important consequences are the technical consequences and the economic consequences, which are both discussed. The technical consequences are adaptations needed to the hardware and to the processing sequences due to the different interaction of the HWCVD process with the substrate and already deposited layers. The economic consequences are the reduced investments in radio frequency (RF) supplies and RF components. This is partially offset by investments that have to be made in higher capacity pumping systems. The most mature applications of HWCVD are moisture barrier coatings for thin film flexible devices such as Organic Light Emitting Diodes and Organic Photovoltaics, and passivation layers for multicrystalline Si solar cells, high mobility field effect transistors, and silicon heterojunction cells (also known as heterojunction cells with intrinsic thin film layers). Another example is the use of Si in thin film photovoltaics. The cost perspective per unit of thin film photovoltaic product using HWCVD is estimated at 0.07 €/Wp for the Si thin film component. - Highlights: • Review of consequences of implementing Hot Wire CVD into a manufacturing plant • Aspects of scaling up to large area and continuous manufacturing are discussed • Economic advantage of introducing a HWCVD process in a production system is estimated • Using HWCVD, the cost for the Si layers in photovoltaic products is 0.08 €/Wp.

  16. Strategic of Applying Free Chemical Usage In Purified Water System For Pharmaceutical Industry Toward CPOB (Cara Pembuatan Obat yang Baik Indonesia To Reducing Environmental Pollution

    Directory of Open Access Journals (Sweden)

    Kartono R.

    2014-03-01

    Full Text Available The purpose of this paper is to examine the sets of model and literature review to prove that strategy of applying free chemical usage in purified water system for pharmaceutical industry would be help the existing and new pharmaceutical companies to comply with part of Natioanal Agency of Drug and Food Control / Badan Pengawas Obat dan Makanan (NADFC/BPOM regulation in order to achieve “Cara Pembuatan Obat yang Baik” (CPOB of Indonesia pharmaceutical industry. One of the main reasons is when we figured out the number of Indonesian pharmaceutical industries in 2012 are kept reducing compare to the increasing numbers of Indonesian population growth. This strategy concept also might help the industries to reducing environmental pollution, and operational cost in pharmaceutical industries, by reducing of the chemical usage for water treatment process in floculation and cougulation and chlorination for sterillization. This new model is free usage of chemicals for purified water generation system process and sterilization. The concept offering of using membrane technology- Reverse Osmosis (RO membrane base treatment to replace traditional chemical base treatment, following enhance Electrodeionization (EDI as final polisher for controlling conductivity, and finally Ultra Violet (UV disinfectant technology as final guard for bacteria controls instead of chemical base system in purified water generation system.

  17. [Pollution status of phenolic compounds in the soil and sediment from a chemical industrial park along the Yangtze River].

    Science.gov (United States)

    Chen, Jiexia; Wei, Enze; Xian, Qiming

    2014-08-01

    A determination method of 12 phenolic compounds in soil and sediment samples by gas chromatography-mass spectrometry (GC-MS) analysis coupled with accelerated solvent extraction (ASE) and gel permeation chromatography (GPC) for clean-up was developed. The method detection limits (MDLs) varied from 0. 410 μg/kg to 13. 1 μg/kg (dry weight), and the average recoveries ranged from 70. 7% to 122% with the relative standard deviations (RSDs) of 1. 2% to 16%. Based on this method, the levels of 12 phenolic compounds were investigated in 17 soil surrounding a chemical industrial park along the Yangtze River and seven sediment samples collected in the river. It was found that 11 of the 12 phenolic compounds were detected in all of the 24 samples, and only hydroquinone was below the MDL. The contents of the total 12 phenolic compounds were 10. 16-30. 66 mg/kg in the soil and 18. 00-29. 83 mg/kg in the sediment, with the average contents of 18. 26 and 22. 51 mg/kg respectively. It showed that 4-nitro- phenol, 4-chloro-3-methylphenol, 2-chlorohydroquinone, 2-methyl-4,6-dinitrophenol and 2,4,6- trichlorophenol were five major phenolic contaminants in the soil and sediment in this study. The pollution levels of the 12 phenolic compounds were low in the soil of the chemical industrial park as well as in the sediment of the Yangtze River, which implied a comparatively low risk for the environment.

  18. The chemical equilibrium under non-ideal conditions: industrial applications; El equilibrio quimico bajo condiciones no ideales: aplicaciones industriales

    Energy Technology Data Exchange (ETDEWEB)

    Silva Martinez, Susana; Alvarez Gallegos, Alberto; Quere, Alain [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1993-05-01

    In this paper is described the application of a computer program to the chemical equilibrium in non-ideal conditions (aqueous solutions of multicomponent electrolytes in the ionic forces interval: 0 < 1 < 6 mol/Kg H{sub 2}O and temperatures close to 25 celsius degrees), and its importance at industrial scale. The calculation of the thermodynamic properties of the solution (activity coefficients, osmotic coefficient, and water activity) is based in one of the most modern theories of the electrolytes; the theoretical results, compared with the experimental ones have an error of 10% or better. [Espanol] En este trabajo se describe la aplicacion de un programa de computo al equilibrio quimico en condiciones no ideales (soluciones acuosas de electrolitos multicomponentes en el intervalo de fuerzas ionicas: 0 < 1 < 6 mol/Kg H{sub 2}O y temperaturas cercanas a 25 grados celsius) y su importancia a escala industrial. El calculo de las propiedades termodinamicas (coeficientes de actividad, coeficiente osmotico y actividad del agua) de la solucion, esta basado en una de las teorias mas modernas de los electrolitos; los resultados teoricos comparados con los experimentales tienen un error del 10% o mejor.

  19. How to make the production of methanol/DME "GREENER"-Integration of wind power with modern coal chemical industry

    Institute of Scientific and Technical Information of China (English)

    Weidou NI; Jian GAO; Zhen CHEN; Zheng LI

    2009-01-01

    The urgency and necessity of alternative fuels give an impetus to the development of modern coal chemical industry. Coal-based methanol/DME is the key element of this industry. Wind power, whose installed capacity increased at a rate of more than 100% in recent years, has the most developed technologies in renewable energy. However, there still exist many unsolved problems in wind power for on-grid utilization. A new integrated system which combines coal-based methanol/DME production with wind power is proposed in this paper. In this system, wind power is used to electrolyze water to produce H2 and O2. The O2 is fed to the gasifier as gasification agent. The H2 is mixed with the CO-rich gas to adjust the H2/CO to an appropriate ratio for methanol synthesis. In comparison with conventional coal-based methanol/DME system, the proposed system omits the expensive and energy-consuming ASU and greatly reduces the water gas shift process, which brings both advantages in the utilization of all raw materials and significant mitigation of CO2 emission. This system will be attractive in the regions of China which have abundant wind and coal resources.

  20. A New Graphical Technique for Energy Efficient Design of Heat Recovery System in Chemical/Refining Industries

    Directory of Open Access Journals (Sweden)

    Dina Ahmed Kamel

    2016-12-01

    Full Text Available Chemical processes are energy intensive industries; the majority of energy consumed in industrial processes is mainly used for heating and cooling requirements. This results in increasing the interest in obtaining the optimum design of the heat exchanger networks to reduce the energy consumption and face the growing energy crises. Most of the published literature over the last fifty years promotes the process integration technology as a main part of the process system engineering science. Graphical Pinch Analysis method normally includes two key steps, firstly obtaining the energy targets which include the minimum energy required for the HEN design, then designing the heat exchanger network (HEN. This paper introduces a new graphical approach for the design of new heat exchanger networks (HENs based on pinch analysis rules. The HEN is represented on a simple graph, where the cold stream temperatures are plotted on the X-axis while the driving forces for each exchanger are plotted on the Y-axis. This graphical technique can describe the energy analysis problems in term of temperature driving force inside the heat exchanger, which is an important factor in the design process as the differences in these driving forces are involved in calculating the area of heat exchangers, and consequently affecting the cost.

  1. Chemical guide parameters for Punica granatum cv. 'Mollar' fruit juices processed at industrial scale.

    Science.gov (United States)

    Vegara, Salud; Martí, Nuria; Lorente, José; Coll, Luís; Streitenberger, Sergio; Valero, Manuel; Saura, Domingo

    2014-03-15

    To contribute for setting reference guideline for commercial juice from the pomegranate variety 'Mollar', chemical composition of eighteen samples directly obtained and commercialised in 2012 from three different fruit juice factories was investigated. According to the findings, the relative density of direct pomegranate juices varied between 1.061 and 1.064, which correspond to 15.15 and 15.71°Brix; titratable acidity changed between 2.6 and 2.8g/L, citric acid between 2.3 and 2.8 g/L, l-malic acid in a range of 1.3-1.4 g/L, and d-isocitric acid at levels less than 20mg/L. Glucose values ranged from 61.4 to 65.0 g/L, whereas fructose displayed values between 65.3 and 68.0 g/L. The predominant mineral was potassium (2,400-2,900 mg/L), followed by phosphorous, magnesium, calcium and sodium at levels of 81-89 mg/L, 17.6-28.5mg/L, 5.8-7.5mg/L and 4.3-5.3mg/L, respectively. Chemical determinations of anthocyanin and ellagitannin profiles and amino acids contents were also carry out. Concentrations of anthocyanins in commercialised samples were Cy3,5dG (19.30 ± 3.47 mg/L), followed by Dp3,5dG (17.87 ± 6.74 mg/L) and Cy3G (12.91 ± 6.32 mg/L). Punicalagin levels ranged between 503.70 and 762.85 mg/L, punicalins between 239.9 and 364.5mg/L, and free ellagic acid level was typically between 268.67 and 389.64 mg/L. The juice samples exhibited high amount of total phenolics (1,136-3,581 mg/L) as well as high ABTS radical scavenging activity (18-31 mmol Trolox/L).

  2. Carbon-supported platinum alloy catalysts for phenol hydrogenation for making industrial chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, S.T.; Song, C.

    1999-07-01

    Phenol is available in large quantities in liquids derived from coal and biomass. Phenol hydrogenation is an industrially important reaction to produce cyclohexanone and cyclohexanol. Cyclohexane, cyclohexene and benzene are obtained as minor products in this reaction. Cyclohexanone is an important intermediate in the production of caprolactam for nylon 6 and cyclohexanol for adipic acid production. In USA, cyclohexanol and cyclohexanone are produced by benzene hydrogenation to cyclohexane over nickel or noble metal catalysts, followed by oxidation of cyclohexane to produce a mixture of cyclohexanol and cyclohexanone. Then cyclohexanol is dehydrogenated in the presence of Cu-Zn catalyst to cyclohexanone. Usually phenol hydrogenation is also carried out by using Ni catalyst in liquid phase. However, a direct single-step vapor phase hydrogenation of phenol to give cyclohexanone selectively is more advantageous in terms of energy savings and process economics, since processing is simplified and the endothermic step of cyclohexanol dehydrogenation can be avoided, as demonstrated by Montedipe and Johnson Matthey using promoted Pd/Al{sub 2}O{sub 3} catalyst. While it is not the purpose of this paper to dwell on the relative merits of these routes, it is necessary to mention that while using monometallic catalysts, generally the problem of catalyst deactivation of sintering as well as coking is frequently encountered. Addition and alloying of noble metal (e.g. Pt) with a second metal can result in a catalyst with better selectivity and activity in the reaction which is more resistant to deactivation. This paper presents the results on the single-step vapor phase hydrogenation of phenol over carbon-supported Pt-M (M=Cr, V, Zr) alloy catalysts to yield mainly cyclohexanone or cyclohexanol.

  3. Guangzhou Chemical Industry%Research Progress on Detection Method for Methyl Testosterone

    Institute of Scientific and Technical Information of China (English)

    赵冬艳; 王彩萍; 丁超梦

    2016-01-01

    甲基睾酮作为激素类药物由于可以促进水产品种的性别转变及口服稳定有效的特点在养殖业广泛使用。但在我国农业部235号公告规定甲基睾酮为禁止使用兽药,在所有食用动物的所有可食组织中不得检出。本文对甲基睾酮现有的检测方法进行详细介绍,分析其优缺点,进一步介绍甲基睾酮检测方法的新动态,为加强进出口农产品中违禁药物残留的检测提供一定的思路。%Methyl testosterone,as hormone drugs of the promotion of aquatic species change sex and oral stable and effective features, is widely used in the aquaculture industry. But in China the Ministry of Agriculture Bulletin No. 235 stipulates that methyl testosterone is prohibited in the use of veterinary drugs, can’t be detected inall edible tissues inall food animals. Methyl testosterone existing detection methods was described in detail. Its strengths and weaknesses wereanalyzed,and new dynamic detection methods of methyl testosterone were further introduced, to provide some ideasabout the import and export of agricultural products to detect illegal drug residues.

  4. Methods used for testing toxicity of industrial chemicals and the need of their international unification.

    Science.gov (United States)

    Vyskocil, A; Tusl, M

    1989-01-01

    The work presented here provides a demonstration of approaches in testing chemical substances in the world, comparison of various guidelines, shows differences in them with the aim to unify them as much as possible and thus to achieve their international comparability. First chapter includes a comparison of American and European approaches to Good Laboratory Practice (GLP). Some parts of American GLP seem to be specific for the USA only and thus they are not suitable for application on the international level where countries having different systems of government and various levels of their economy would have to observe them. GLP published in OECD and ECETOC guidelines seem to be most beneficial for needs of socialist countries. OECD, EEC, EPA/FIFRA, EPA/TSCA, Japan/MAFF and UK/HSC guidelines are compared in subsequent chapters and recommendations given by ECETOC and the authors of this work for unification of the guidelines are presented as well. Some parts of OECD guidelines are specified in detail there especially those which are most suitable for CMEA countries. Differences or supplements contained in CMEA recommendations are presented in the end of each chapter. Acute, subchronic and chronic toxicity tests were compared as well as carcinogenicity, combined carcinogenicity/chronic toxicity studies and reproductive toxicity tests.

  5. Chemical and Microbial Dynamics during Composting of Herbal Pharmaceutical Industrial Waste

    Directory of Open Access Journals (Sweden)

    Farhan Zameer

    2010-01-01

    Full Text Available A study was performed to analyze the dynamics of chemical, biochemical and microbial parameters during composting of herbal pharmaceutical waste. All the parameters were analyzed at three different intervals of composting (1st, 15th and 60th days. Temperature of the compost pile was initially high (46.2 °C and on 60th day it dropped to 33.3 °C. The pH of the sample was initially acidic (2.39 and with the progress of decomposition gradually changed to neutrality (7.55. Electrical conductivity (EC value was high (3.8 mS during last day of composting compared to other stages. The activity of degradative enzymes namely amylase, invertase and urease were initially high (4.1, 4.79 mg of glucose/g/h and 0.19 mg of ammonia/g/h respectively while it decreased with composting. The beneficial microbial load was initially low and very high at the last stages of decomposition. The bioassay studies using compost extracts revealed that the 60th day old sample was not phytotoxic in nature.

  6. Degradation of organic pollutants and characteristics of activated sludge in an anaerobic/anoxic/oxic reactor treating chemical industrial wastewater

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2014-09-01

    Full Text Available A laboratory-scale anaerobic/anoxic/oxic system operated at the hydraulic retention times (HRT of 20, 40, and 60 h with mixed liquor suspended solids (MLSS concentrations of 3 g/L and 6 g/L was considered for treating chemical industrial wastewater rich in complex organic compounds and total dissolved solids. Extending the HRT and increasing the MLSS concentration resulted in higher removal efficiency for chemical oxygen demand at 72%. Organic compounds in wastewater could be classified into easily-removed and refractory compounds during treatment. The easily-removed compounds consisted primarily of ethers, alcohols, and aldehydes, whereas the refractory compounds included mainly oxygen-containing heterocyclic and benzene-containing compounds. Results from energy-dispersive X-ray spectroscopy showed that several metal ions accumulated in activated sludge, particularly Fe(III. Fe accumulated mainly on the surface of sludge floc pellets and resulted in the compactness of activated sludge, which caused the values of mixed liquor volatile suspended solids /MLSS and sludge volume index to decrease.

  7. Discussion on the Development of Coal Chemical Industry in Jining%济宁市煤化工产业发展探讨

    Institute of Scientific and Technical Information of China (English)

    满杰; 陆希峰; 吕庆銮

    2016-01-01

    为了促进济宁煤化工产业转型升级,助力济宁煤化工产业扭亏增赢,本文结合济宁煤化工产业发展现状,针对煤炭产业政策及市场需求,对济宁市煤化工产业发展提出看法和建议.%In order to promote the transformation and upgrading of Jining coal chemical industry, and contribute to make up deficits and increase surpluses for coal industry, aiming at the industrial policy of coal and markt demand, views and recommendations are proposed for the development of Jining coal chemical industry combining with current sitation.

  8. 化学工业发展与化工过程强化的内在关系分析%Development of Chemical Industry and Chemical Process Intensification of Internal Relation

    Institute of Scientific and Technical Information of China (English)

    肖素光

    2013-01-01

    In recent years, with the in-depth study of chemistry, chemical industry has been rapid development of fast. Chemical industry in today's society applications continue to increase, is the development of future society mainstream industry. Industry development in addition to technical theory support, the production process is also very important. However, with the current environmental protection and energy saving of the mainstream of the world, the development of chemical industry still faces a challenge. The intensification of chemical engineering process, to a certain extent in the solution of chemical industry of high pollution, high energy consumption, high material consumption and abuse. Therefore, for the development of chemical industry, chemical process intensification will play a very big role in promoting. This article will focus on development of chemical industry and chemical strengthening inner relationship.%近年来,随着化学研究的不断深入,化学工业得以快速迅猛的发展。化学工业在当今社会应用领域不断加大,是未来社会发展的主流工业。行业发展除了需要技术理论的支持,对于其生产加工过程也是非常重要的。但是,伴随着当前环保节能的世界主流,化学工业发展还是面临着一定的挑战。化工过程强化,能够在一定程度上解决化学工业中高污染、高能耗以及高物耗等弊端。因此,对于化学工业发展而言,化工过程强化必然会起到非常大的推动作用。文章就将重点谈论化学工业发展与化工强化的内在关系。

  9. Sense of coherence and burnout in the energy and chemicals industry: The moderating role of age

    Directory of Open Access Journals (Sweden)

    Sanet van der Westhuizen

    2015-03-01

    Full Text Available Orientation: Organisations are accommodating four different social generations in the working environment. This poses a challenge for Human Resources departments to manage these diverse age cohorts in the workforce, as they are likely to have different needs, values and variables affecting their wellness.Research purpose: The objective of the present study was to assess whether various age groups differ with regard to their sense of coherence and burnout, and whether age significantly moderates the relationship between sense of coherence and burnout.Motivation for the study: Although the literature review suggests that age groups may differ with regard to their sense of coherence and burnout, the findings seem to be somewhat inconclusive in this regard. There also seems to be a paucity of research examining the interaction effect between sense of coherence, burnout and age. Research approach, design and method: A cross-sectional quantitative survey approach was used. A nonprobability convenience sample of adults (N = 246 – employed in South Africa by an international integrated energy and chemicals company – participated in the study. Correlation, analysis of variance (ANOVA and hierarchical multiple regression analyses were performed to achieve the objectives of the study.Main findings: The results showed that employees between the ages of 51 and 60 years of age experienced higher levels of comprehensibility and lower levels of reduced professional efficacy than their younger counterparts. The relationship between sense of coherence and exhaustion was also stronger for employees between 51 and 60 years old than for younger age categories.Practical/managerial implications: The results of the study can be useful when planning human resource interventions to enhance the well-being of employees from different age groups.Contribution: The results of the study add new insights to the well-being literature by showing that employees’ age is

  10. Studies on manufacturing technology of materials for fine chemical and electronic industry use

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S.K.; Kim, B.G.; Chung, H.S.; Lee, J.C. [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    Fine natural crystalline graphite which is used as a source material of a high electrically conductive film and an addition of advanced high functional solid lubricant. For use high electrically conductive film and advanced high functional solid lubricant, add new and advanced high functional properties to fine graphite powder through surface modification with gas and organic materials. Surface modification methods: 1) Searching for suitable surfactant to improve dispersing characteristics in aqueous system. 2) Adsorption with oxygen on graphite surface to improve dispersing characteristics in oil. 3) Mechanochemical process using hybridization system is to shape control and spontaneous re-arrangement of the surface layer and interaction between the particle surface and extraneous molecules. In aqueous system, the optimum conditions for graphite to disperse is with 0.3-0.5% concentrations of surfactant Lomar D PWA-40 at pH range 10-11. In order to improve dispersing characteristics in oil, the optimum conditions to adsorb over 3.5% with oxygen on graphite surface are as follows: - Tip speed {yields} 3.9 m/sec, - Reaction time {yields} at least 30 min. at 120 deg.C - inert gas and pressure {yields} dried air, 1 kgf/cm{sup 2}. The oxygen contents acts critical point for dispersing graphite in oil system so needs to control oxygen contents by use of air pressure in reacting mill. Chemical methods for coating with Stearic acid and Paraffin need above 15 weight % to graphite powders. Mechanochemical process using hybridization system is to shape control and spontaneous re-arrangement of the surface layer and interaction between the particle surface and extraneous molecules. (author). 45 refs., 9 tabs., 23 figs.

  11. Discussion on the Safe Usage and Management of University Research Laboratories%Guangzhou Chemical Industry

    Institute of Scientific and Technical Information of China (English)

    王玉明; 许妍妍; 李遇伯

    2016-01-01

    In recent years, laboratory safety accidents occur frequently. As a place where personnel-intensive and people gathered, university should keep in mind for safety skills and security knowledge. Tianjin “8. 12” sparked the university research laboratories safe usage and management thinking. In the laboratory, safety is always the top priority. Through the promotion of safety culture, laboratory equipmentand chemicals were used in the process of managementandachieved the goal of safety management and security, thus ensured the safe operation of laboratories.%近年来,高校实验室安全事故时有发生。高校作为人才密集和人流聚集的地方,更要时刻谨记安全操作技能和相关安全知识。天津“8.12”特大爆炸案再次引发了各高校对大学科研实验室的安全使用与管理的反思。在实验室里,安全问题一向是重中之重,文章主要通过对安全文化的宣传、实验室中的仪器设备和实验过程中的化学品的使用的管理,达到安全意识、安全管理、安全救治的目的,从而保证实验室的安全运行。

  12. Chemical composition of flours made of residues from the king palm (Archontophoenix alexandrae industry

    Directory of Open Access Journals (Sweden)

    Manoela Alano Vieira

    2009-08-01

    Full Text Available Residues from King palm (Archontophoenix alexandrae processing were used for the production of flours, which were then chemically characterized. The protein content in these flours ranged from 3.62 to 9.75 g/100g and was higher in sifted leaf flour (SLF. The dietary fiber contents varied from 64 to 72 g/100g. These values were high when compared to those of flours used in human nutrition. Analysis of anti-nutritional factors showed phytate contents to be below the levels that affected the bioavailability of minerals in human diet. Tannin contents were compatible with those found in legumes, between 0 and 2000 mg/100g. These flours showed high mineral content, which suggested a possibility for them to be used as food supplement. However, the bioavailability of these minerals could be affected by high total dietary fibre concentrations and anti-nutritional components contained in the samples.Resíduos do processamento de palmeira-real (Archontophoenix alexandrae foram utilizados para produção de farinha e caracterizados quimicamente. O conteúdo de proteína encontrado nas farinhas variam de 3,62 a 9,75, sendo maior na farinha da folha peneirada. Os teores de fibra dietética total variaram de 64.00 a 72 g/100g, valores altos quando comparados com farinhas tradicionalmente utilizadas na alimentação humana. A análise de fatores antinutricionais indicou teores de fitato abaixo dos níveis que afetam a biodisponibilidade de minerais na dieta. Os teores de tanino foram significativos, compatíveis aos encontrados nas leguminosas entre 0 e 2000 mg/100g. As farinhas de palmeirareal apresentaram elevados teores de minerais, podendo ser indicadas como suplementos em alimentos, porém, deve-se considerar que a biodisponibilidade destes minerais pode ser afetada pela alta concentração de fibras dietéticas totais e de outros componentes antinutricionais contidos na amostra.

  13. Study on Management of Environmental Cost on Modern Salt Chemical Industry%现代盐化工企业环境成本管理研究

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    As ecological and green development policy of haze governance of our nation is determined, the chemical industry as high-polluting industries has faced a very serious challenge. Salt chemical companies have special characteristics, and its raw material even products were more flammable, explosive, toxic and hazardous substances. With the growing of the salt chemical industries, maturing of environmental protection systems, their chemical cost of production have an increasing obviously. So management and effective cost control of the salt chemical industry has its important economic and social significance. The paper analyzed production features of the salt chemical industry and salt chemical analysis of environmental cost management, and also improved new production concept of salt chemical industry to raise new reforms for the development of salt chemical industry.%随着国家治霾的生态化、绿色化发展方针的确定,化学工业作为一个容易产生高污染的行业面临严峻挑战。盐化工企业有着特殊的行业特征,其原材料和产品种类繁多,且多为易燃、易爆、有毒、有害的物质。随着盐化工业规模的不断壮大,环境保护制度的日趋完善,盐化工企业的生产成本越来越高,所以盐化工企业成本的管理和有效控制具有重要意义。本文从盐化工的生产特点及构成等入手,对盐化工企业环境成本管理进行分析,完善盐化工企业的新生产理念,为盐化工企业的发展提出改革思路。

  14. Interaction of biochar and organic residues from sugarcane industry in soil chemical attributes and greenhouse gases emissions.

    Science.gov (United States)

    Fernanda Abbruzzini, Thalita; Feola Conz, Rafaela; Pellegrino Cerri, Carlos Eduardo

    2014-05-01

    Researchers have highlighted the importance of providing soil quality in agricultural systems, besides mitigating greenhouse gases (GHG) emissions to the atmosphere and increasing soil carbon sequestration. Therefore, several studies have demonstrated the effectiveness of biochar as a soil conditioner, both in relation to increased C sequestration and improvements in soil chemical, physical and biological attributes, resulting in better conditions for plant growth. The aim of this study was to assess the impact of applying biochar produced from sugarcane straw to soils in relation to changes in soil chemical attributes and mitigation of greenhouse gases emissions into the atmosphere. To do so, we conducted a laboratory incubation under controlled environmental conditions (ie temperature and humidity) with and without the application of filter cake and vinasse (ie organic residues from sugarcane industry) and rates of biochar application (0, 10, 20 and 50 Mg ha-1). The fluxes of CO2, N2O and CH4 of each incubation unity were measured periodically (in days 1, 2, 5, 9, 13, 16, 20, 24, 28, 30, 47, 60, 91, 105, 123, 130, 138 and 150). Each treatment consisted of eight replicates with destructive samples evaluated at 30, 60, 90 and 150 days after incubation to characterize the chemical attributes of the incubated soil, besides GHG (CO2, N2O and CH4) emissions. In general, there was an increase in carbon dioxide (CO2) fluxes over time due to the application of filter cake and vinasse and increasing dose of biochar. Regarding nitrous oxide (N2O) emissions, there was an increase of 82.35% with the application of vinasse and filter cake compared to the control treatment. However, different doses of biochar (10, 20 and 50 Mg ha-1) reduced N2O emissions by 29, 38.7 and 70.9%, respectively. The methane (CH4) flux was negligible in all treatments. We observed improvements in soil chemical attributes, such as higher pH, a substantial increase in the soil CEC, reduced exchangeable

  15. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  16. Controle químico da mancha-bacteriana do tomate para processamento industrial em campo Field chemical control of bacterial spot on tomato for industrial processing

    Directory of Open Access Journals (Sweden)

    Abadia dos R Nascimento

    2013-03-01

    cloretos de benzalcônio. ASM e famoxadona + mancozebe foram os que promoveram uma relação benefício/custo superior a 1.In order to evaluate chemical control of bacterial spot on tomato for industrial processing, two field trials were carried out at the Unilever Bestfoods experimental station, in Goiânia, Goias state, Brazil. The first trial was in a randomized complete block design, with 15 treatments and three replications, using the hybrid Heinz 9992 inoculated with Xanthomonas perforans. The second trial was in a split-plot randomized complete block design with chemical foliar applications (10 treatments and hybrids (Hypeel 108 and U2006 as factors. Plants were inoculated with X. perforans and X. gardneri. In both trials the chemicals, in different number of applications and combinations, were: acibenzolar-S-methyl (ASM; famoxadone + mancozeb; metiram + pyraclostrobin; phosphite PK; benzalkonium chlorides; cuprous oxide, and copper hydroxide (SC, WP and WG. For both trials, disease severity on leaves, number of fruits with symptoms and yield were evaluated. In the second one, sunscald was also evaluated. For the first trial, significant severity differences (p>0.05 among treatments were observed only in the first two evaluations, but none of them differed from the water check control. In the second trial, significant differences were detected only in foliar severity in first evaluation for hybrids. For number of fruits with symptoms and sunscald, besides hybrids, interaction among factors was also significant. 'U2006' was more resistant than 'Hypeel 108', which also had highest sunscald values, but concerning fruits with symptoms, the opposite was observed. The two factors were significant for yield data, 'U2006' yielded better than 'Hypeel 108'. Despite none of the treatments have differed in yield from the water control, famoxadone + mancozeb, which resulted in the highest yield, differed from copper hydroxide, ASM - famoxadone + mancozeb, and benzalkonium

  17. The Effects of Chronic Lifelong Activation of the AHR Pathway by Industrial Chemical Pollutants on Female Human Reproduction.

    Directory of Open Access Journals (Sweden)

    Aldo Cavallini

    Full Text Available Environmental chemicals, such as heavy metals, affect female reproductive function. A biological sensor of the signals of many toxic chemical compounds seems to be the aryl hydrocarbon receptor (AHR. Previous studies demonstrated the environmental of heavy metals in Taranto city (Italy, an area that has been influenced by anthropogenic factors such as industrial activities and waste treatments since 1986. However, the impact of these elements on female fertility in this geographic area has never been analyzed. Thus, in the present study, we evaluated the AHR pathway, sex steroid receptor pattern and apoptotic process in granulosa cells (GCs retrieved from 30 women, born and living in Taranto, and 30 women who are living in non-contaminated areas (control group, who were undergoing in vitro fertilization (IVF protocol. In follicular fluids (FFs of both groups the toxic and essential heavy metals, such as chromiun (Cr, Manganese (Mn, iron (Fe, cobalt (Co, nickel (Ni, copper (Cu, zinc (Zn, cadmium (Cd and lead (Pb, were also analyzed. Higher levels of Cr, Fe, Zn and Pb were found in the FFs of the women from Taranto as compared to the control group, as were the levels of AHR and AHR-dependent cytochrome P450 1A1 and 1B1; while CYP19A1 expression was decreased. The anti-apoptotic process found in the GCs of women fromTaranto was associated with the highest levels of progesterone receptor membrane component 1 (PGRMC1, a novel progesterone receptor, the expression of which is subjected to AHR activated by its highest affinity ligands (e.g., dioxins or indirectly by other environmental pollutants, such as heavy metals. In conclusion, decreased production of estradiol and decreased number of retrieved mature oocytes found in women from Taranto could be due to chronic exposure to heavy metals, in particular to Cr and Pb.

  18. Genomic mechanisms of stress tolerance for the industrial yeast Saccharomyces cerevisiae against the major chemical classes of inhibitors derived from lignocellulosic biomass conversion

    Science.gov (United States)

    Scientists at ARS developed tolerant industrial yeast that is able to reduce major chemical classes of inhibitors into less toxic or none toxic compounds while producing ethanol. Using genomic studies, we defined mechanisms of in situ detoxification involved in novel gene functions, vital cofactor r...

  19. Waste water pollution and control in fine chemical industry%浅析精细化工行业废水污染及控制策略

    Institute of Scientific and Technical Information of China (English)

    孙伟民

    2015-01-01

    This article presents the issues of waste water pollution and control in fine chemical industry to provide some solutions for reference.%本文分析了精细化工废水的污染和控制问题,并提出了具体的解决策略.

  20. Occupational and Qualification Structures in the Field of Environmental Protection in the Metal and Chemical Industries--Study on the Federal Republic of Germany.

    Science.gov (United States)

    Nitschke, Christoph; And Others

    A study focused on new occupational and qualification structures in the field of environmental protection in the metal and chemical industries in the Federal Republic of Germany. A total of 22 interviews were conducted with representatives of 11 firms. The public debate on occupational requirements in the field of environmental protection and on…

  1. Assessment of the toxicity of wastewater from the metalworking industry treated using a conventional physico-chemical process.

    Science.gov (United States)

    Machado, Rodrigo Matuella; Monteggia, Luiz Olinto; Arenzon, Alexandre; Curia, Ana Cristina

    2016-06-01

    This article presents results from a toxicity reduction evaluation program intended to describe wastewater from the metalworking industry that was treated using a conventional physico-chemical process. The toxicity of the wastewater for the microcrustacean Daphnia magna was predominantly expressive. Alkaline cyanide wastewater generated from electroplating accounted for the largest number of samples with expressive toxicity. When the raw wastewater concentrations in the batches were repeated, inexpressive toxicity variations were observed more frequently among the coagulated-flocculated samples. At the coagulation-flocculation step, 22.2 % of the treatments had reduced acute toxicity, 30.6 % showed increased toxicity, and 47.2 % remained unchanged. The conductivity and total dissolved solids contents of the wastewater indicated the presence of salts with charges that were inappropriate for the survival of daphnid. The wastewaters treated by neutralization and coagulation-flocculation had average metallic compound contents that were greater than the reference toxic concentrations reported in other studies, suggesting that metals likely contributed to the toxic effects of the wastewater on freshwater microcrustaceans. Thus, alternative coagulants and flocculants should be assessed, and feasible doses should be determined to improve wastewater treatment. In addition, advanced treatment processes should be assessed for their abilities to remove dissolved toxic salts and ions.

  2. Chemical and functional properties of the different by-products of artichoke (Cynara scolymus L.) from industrial canning processing.

    Science.gov (United States)

    Ruiz-Cano, Domingo; Pérez-Llamas, Francisca; Frutos, María José; Arnao, Marino B; Espinosa, Cristóbal; López-Jiménez, José Ángel; Castillo, Julián; Zamora, Salvador

    2014-10-01

    In this study, the basic chemical composition and functional properties of six by-product fractions collected from different steps of artichoke industrial processing were evaluated. Fractions differed in thermal treatment, the bract position in the artichoke head and the cutting size. Contents of moisture, ash, protein, fat, dietary fibre, inulin, total phenolics, total flavonoids, caffeoyl derivatives and flavones were analysed. Antioxidant activity values were also determined. All assessed artichoke by-product fractions contained high-dietary fibre (53.6-67.0%) and low fat (2.5-3.7%). Artichoke by-product fractions contained high levels of inulin, especially in the boiled inner bracts (30%). Total phenolic and flavonoid contents and antioxidant activity (153-729 μmol gallic acid equivalents, 6.9-19.2 μmol quercetin equivalents and 85-234 μmol ascorbic acid equivalents per gram of dry matter, respectively) varied widely with the bract positions in the artichoke head and the thermal treatments. The more interesting fractions for use as functional ingredients were those situated closer to the artichoke heart and thermally treated.

  3. Treatment of olive-mill wastewater from a two-phase process by chemical oxidation on an industrial scale.

    Science.gov (United States)

    Nieto, L M; Hodaifa, G; Vives, S R; Casares, J A G; Driss, S B; Grueso, R

    2009-01-01

    This study offers a solution for reducing the environmental effect of wastewaters generated by the olive-oil industry. Olive-oil companies produce variable quantities of wastewaters, which require treatment for disposal or reuse. Today, regulations are becoming increasingly strict regarding the parameters measured in these effluents. In Spain, the resolution by the president of the Hydrographical Confederation of the Guadalquivir on water use 2004 set parameter limits as follows: pH = 6.0-9.0, total suspended solid = 500 mg/L; and COD and BOD(5) (20)=1,500 mg O(2)/L. For the year 2006, maximum values for COD and BOD(5) (20) were fixed at 1,000 mg O(2)/L. To solve this problem, a study has been made to derive irrigation water from the above-mentioned effluents through chemical oxidation based on the Fenton's process. This would be first step towards using a closed-circuit system in olive-oil mills to treat and reuse effluents.

  4. Chemical fractionation and speciation modelling for optimization of ion-exchange processes to recover palladium from industrial wastewater.

    Science.gov (United States)

    Folens, K; Van Hulle, S; Vanhaecke, F; Du Laing, G

    2016-01-01

    Palladium is used in several industrial applications and, given its high intrinsic value, intense efforts are made to recover the element. In this hydrometallurgic perspective, ion-exchange (IEX) technologies are principal means. Yet, without incorporating the chemical and physical properties of the Pd present in real, plant-specific conditions, the recovery cannot reach its technical nor economic optimum. This study characterized a relevant Pd-containing waste stream of a mirror manufacturer to provide input for a speciation model, predicting the Pd speciation as a function of pH and chloride concentration. Besides the administered neutral PdCl2 form, both positively and negatively charged [PdCln](2-n) species occur depending on the chloride concentration in solution. Purolite C100 and Relite 2AS IEX resins were selected and applied in combination with other treatment steps to optimize the Pd recovery. A combination of the cation and anion exchange resins was found successful to quantitatively recover Pd. Given the fact that Pd was also primarily associated with particles, laboratory-scale experiments focused on physical removal of the Pd-containing flow were conducted, which showed that particle-bound Pd can already be removed by physical pre-treatment prior to IEX, while the ionic fraction remains fully susceptible to the IEX mechanism.

  5. Processo químico industrial de extração de óleo vegetal: um experimento de química geral Chemical industrial process of vegetable oil extraction: an experiment for teaching general chemistry

    Directory of Open Access Journals (Sweden)

    José Francisco Vianna

    1999-09-01

    Full Text Available In this study we describe an experimental procedure based on a chemical industrial process of soya-bean oil extraction applied in general chemistry for undergraduate students. The experiment was planned according to the Science, Technology and Society (STS approach to teach basic chemical concepts and provide grounding in the management of environmental care. The use of real life chemistry problems seems to salient the relevance of chemistry to our students and enhances their motivation to learn both the practical and theoretical components of the discipline.

  6. Chemical process research and development in the 21st century: challenges, strategies, and solutions from a pharmaceutical industry perspective.

    Science.gov (United States)

    Federsel, Hans-Jürgen

    2009-05-19

    In process research and development (PR&D), the generation and manipulation of small-molecule drugs ranges from bench-scale (laboratory) chemistry to pilot plant manufacture to commercial production. A broad range of disciplines, including process chemistry (organic synthesis), analytical chemistry, process engineering (mass and heat transfer, unit operations), process safety (chemical risk assessment), regulatory compliance, and plant operation, must be effectively applied. In the critical handover between medicinal chemistry and PR&D, compound production is typically scaled up from a few hundred grams to several kilograms. Can the methodologies applied to the former also satisfy the technical, safety, and scalability aspects that come into play in the latter? Occasionally, the transition might occur smoothly, but more often the situation is the opposite: much work and resources must be invested to design a process that is feasible for manufacturing on pilot scale and, eventually, for commercial production. Authentic examples provide enlightening illustrations of dos and don'ts for developing syntheses designed for round-flask operation into production-scale processes. Factors that are easily underestimated or even neglected in the laboratory, such as method robustness, chemical hazards, safety concerns, environmental impact, availability of starting materials and building blocks in bulk quantities, intellectual property (IP) issues, and the final cost of the product, will come into play and need to be addressed appropriately. The decision on which route will be the best for further development is a crucial event and should come into focus early on the R&D timeline. In addition to scientific and technical concerns, the parameter of speed has come to the forefront in the pharmaceutical arena. Although historically the drug industry has tolerated a total time investment of far more than 10 years from idea to market, the current worldwide paradigm requires a

  7. Methods and instruments for the ecological assessment of the treatment of solvent wastes in the chemical industry; Methoden und Instrumente zur oekologischen Bewertung der Abfall-Loesungsmittelbehandlung in der chemischen Industrie

    Energy Technology Data Exchange (ETDEWEB)

    Capello, Ch.

    2006-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a project which looked at the treatment of solvent wastes in the chemical industry and its ecological impact. The development of a method based on the life-cycle-analysis (LCA) approach is described. The LCA methodology is to provide support for decision-making in the area of solvent waste disposal in the chemical industry. Various methods of disposal, such as distillation or incineration are looked at. The results of calculations using a software tool called 'ecosolvent' are presented and discussed. The 15 most important solvents and their quantities as used in the 6 facilities examined, are listed. The functioning of the ecosolvent software is discussed and illustrated in a flow-diagram. Along with detailed results, a few qualitative rules of thumb are quoted for the treatment of solvent wastes.

  8. Chemical Industry Energy Saving and Emission Reduction Management%化工企业的节能减排管理

    Institute of Scientific and Technical Information of China (English)

    汪洋; 李文金; 杜建东

    2015-01-01

    The energy saving and emission reduction management should be a long-term strategic goals for chemical industry. Enterprise should encourage all the staffs participating actively in this management through internal promotion, training and variety of incentives. Through mass equilibrium analysis and cost analysis, the optimized direction and solve the emission issue from source could be fixed. By increasing automation controlling, the plant could also run more stability and reliability without more safety and environment incident happened. During the plant running and maintenance, we should continue to tap the potential benefits, standardize production management and catch all the details in order to do well for the energy saving and emission reduction management.%企业要做好节能减排管理,必须将其作为长期的战略目标,加强企业内部的宣传和培训,通过多种激励机制鼓励员工积极参与到节能减排管理中。生产装置要从源头进行节能减排,通过平衡分析和成本分析等手段,明确优化方向,通过提高装置运行的自动化程序,提高运行的稳定性和可靠性。在装置运行及停车检修过程中,不断挖掘潜在效益,规范生产管理,在细节上做好节能减排管理。

  9. Semi-Quantitative Assessment of the Health Risk of Occupational Exposure to Chemicals and Evaluation of Spirometry Indices on the Staff of Petrochemical Industry

    Directory of Open Access Journals (Sweden)

    Hajar Dazi

    2017-01-01

    Full Text Available Background & Aims of the Study: Petrochemical industry is an important industry in the economic development of the country that causes employees have exposure with several kinds of contamination. The aim of this study was Semi-quantitative assessment of the health risk of occupational exposure to chemical materials and investigation of spirometry indices between employees of petrochemical industry. Material & Methods: This cross-sectional study was conducted in one of the petrochemical industry complex in a special area of Assaluyeh in Iran in 2016. Health risk assessment of exposure to harmful chemical agents was performed in all of units and during three stages (identification of harmful material, determination of hazard rate of the chemical material, exposure rate and estimate of risk rate. Spirometry indices were measured using spirometry. Results: The results of chemical materials risk assessment showed that Raffinate in Butadiene unit has identified the highest amount of risk rank among 27 chemical materials in investigated units. In comparison with spirometry indices in Olefine unit between age with FVC parameter and history work with FVC and FEV1 parameters has observed a significant and negative correlation (P<0.05. Conclusion: The results of risk assessment in all of the petrochemical units showed that 48.14% of materials were at low risk level, 29.62% medium risk, 18.51% high risk and 3.7% had very high risk level. The variables affecting on spirometry employees such as age and work experience play an important role in reducing the pulmonary function tests in exposed subjects.

  10. Practical Application of the Nanofiltration Membrane in Chemical Industry Wastewater Treatment%纳滤膜在化工废水处理中的实际应用

    Institute of Scientific and Technical Information of China (English)

    韩洪晶; 刘鑫

    2014-01-01

    Along with the advance of science and technology in our country, the wastewater treatment technology in the chemical industry is also gradually increasing, various kinds of new technologies have been applied into the actual production, especially the nanofiltration technology. As a new separation technique, it not only can effectively treat chemical wastewater, but also can recover useful materials from chemical industry wastewater, so the nanofiltration technology has been widely used in chemical industry wastewater treatment. In this article, starting from the working principle of nanofiltration membrane separation technology, taking the salt chemical industry wastewater treatment as an example, the practical application of nanofiltration membrane was analyzed.%随着我国科学技术的不断进步,化工业中的废水处理水平也在逐步提高,各种新型技术被应用到实际生产中,其中比较典型的就是纳滤。作为一种新型的分离技术,它不仅可以有效处理化工废水,还能将其中的有效物质进行回收,提高利用率,所以在化工废水处理中的应用范围也越来越广。从纳滤膜分离技术的工作原理出发,以盐化工的废水处理为例,对纳滤膜实际应用进行了具体分析。

  11. Study of establishing intellectual property for chemical industrial park%面向化工园区的知识产权建设研究

    Institute of Scientific and Technical Information of China (English)

    纪红兵; 林名钦

    2016-01-01

    With the deepening of China's New Normal,the strategy of innovation-driven development is becoming the only way out for future Chinese economy. The industry in Chemical Industry Park is one of the main components among Chinese economy industries. Therefore, how to use intellectual property to promote the innovation and industrial upgrade in Chemical Industry Park is the target of this paper. This paper investigates the development of intellectual property for Chemical Industrial Park according to the national strategy of creative-activated development in industrial upgrading. Domestic petrochemical enterprises own not only less application amount of patent than overseas,but also poorer patent quality and usage. In the aspect of patent layout for Chemical Industry Park,the government should have global view and establish management system of intellectual property accorded with the Park; the manager should plan strategy of patent layout according to industry chain; and the enterprise should pay much more attention to patent technique and industry connection. In the aspect of patent conversion,the patent could be effectively converted by solving the value of patent and bilateral information docking. The industry upgrade for Chemical Industry Park could be motivated.%随着中国经济进入新常态,创新驱动成为未来中国经济的唯一出路。化工园区所承载的产业是中国经济产业的重要组成部分,如何利用知识产权推动化工园区的创新与产业升级是本文的研究目的。本文以国家创新推动产业升级的大战略为重要背景面向化工园区的知识产权建设进行了研究,指出我国石油化工企业不仅在专利申请量上落后于国外,在专利质量和运用方面也远不如。提出在化工园区专利布局方面,作为园区的政府部门,应具有全局观,建立一套符合化工园区的知识产权管理制度;作为化工园区的管理者,应根据园区的产业链

  12. 计算机在化工中应用的研究进展∗%Research Progress on Computer Application in Chemical Industry

    Institute of Scientific and Technical Information of China (English)

    郭妍婷; 黄雪; 陈曼; 冯光炷

    2016-01-01

    The application of computer in chemical industry was mainly introduced, including the design of chemical industry, chemical production, scientific research and teaching. Present situation of the computer application of the aspects of aided drawing, chemical simulation design, data processing, chemical simulation and information retrieval was discussed. In the future, computer software will develop into intelligent and integrated tool. The researchers’ rich knowledge and experience will blend in. The computer will continuously improve the production efficiency of enterprises, promote the prosperity of the chemical industry and flourish.%主要介绍了计算机在化工中的应用,包含化工设计、化工生产、化工科研及教学等,讲述了在上述几个领域内国内外最常用的计算机软件,并讨论了计算机在辅助制图、化工模拟设计、数据处理、化工仿真、信息检索等方面的的应用现状,未来计算机软件将发展成智能、综合的工具,把研究人员丰富的知识、经验融入其中,将不断提高企业的生产效率,促进化工产业的繁荣和兴盛。

  13. Genome-wide Escherichia coli stress response and improved tolerance towards industrially relevant chemicals

    DEFF Research Database (Denmark)

    Rau, Martin Holm; Calero Valdayo, Patricia; Lennen, Rebecca

    2016-01-01

    , hydroxy-γ-butyrolactone, 1,4-butanediol, furfural), organic acids (acetate, itaconic acid, levulinic acid, succinic acid), amino acids (serine, threonine) and membrane-intercalating chemicals (decanoic acid, geraniol). The transcriptional response towards these chemicals revealed large overlaps...

  14. Failed solutions to the energy crises: nuclear power, coal conversion, and the chemical industry in West Germany since the 1960s

    OpenAIRE

    Marx, Christian

    2014-01-01

    By the end of the economic boom in the 1960s, the oil crisis caused an enormous rise in energy prices. Chemical companies, especially, faced a huge challenge due to their dependency on oil as an energy resource and raw material. This paper explores the reaction of West German chemical corporations to the energy crises of the 1970s and their attempts to anticipate future energy crises. First, the companies tried to implement their own industrial nuclear power stations to cut costs and to becom...

  15. Plant-beneficial elements status assessment in soil-plant system in the vicinity of a chemical industry complex: shedding light on forage grass safety issues.

    Science.gov (United States)

    Anjum, Naser A; Duarte, Armando C; Pereira, Eduarda; Ahmad, Iqbal

    2015-02-01

    Human health is closely linked with soils via plants, grazers, or plant-based products. This study estimated plant-beneficial elements (macronutrients: K, P; secondary macronutrients: Ca, Mg; micronutrients: Mo, Mn, Na, Ni, Se) in both soils and shoots of two forage grass species (Eriophorum angustifolium and Lolium perenne) prevalent in the vicinity of a chemical industry complex (Estarreja, Portugal). Both soils and plants from the chemical industrial areas exhibited differential concentrations of the studied elements. In soils, the role of contamination was evidenced as insignificant in context of its impact on all the tested macro and secondary macronutrients except P, and micronutrients such as Mo and Ni. In forage grass plant shoots, the role of contamination was evidenced as insignificant in relation to its impact on all the tested macro and secondary macronutrients except K. Between the two forage grass plants, high Se-harboring L. perenne cannot be recommended for its use as animal feed.

  16. Significant Breakthrough in Industrial Test of the "Methanol to Olefins" Process Developed by Dalian Institute of Chemical Physics, Chinese Academy of Sciences

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ A process of "Methanol or Dimethylether to Olefins" developed by Dalian Institute of Chemical Physics (DICP), designated as the DMTO process, has attained great success in industrial scaling up testing. DICP, by collaborating with the Xinxing Coal Chemical Co., Ltd. of Shaanxi Province and the Luoyang Petrochemical Engineering Co. of the SINOPEC Group, operated successfully a 50t(methanol)/d unit for the conversion of methanol to lower olefins, with a methanol conversion of close to 100%, and a selectivity to lower olefins(ethylene, propylene and butylenes) of higher than 90%. On 23rd August, the industrial test project has passed a state appraisal. The experts of the Appraisal Group, headed by Prof.

  17. Chemical amendment and phytostabilization of an industrial residue contaminated with Zn and Cd Correção química e fitoestabilização de um resíduo industrial contaminado com Zn e Cd

    Directory of Open Access Journals (Sweden)

    Fabiana Soares dos Santos

    2007-10-01

    Full Text Available Phytostabilisation of a contaminated soil with heavy metals is considered a very appropriate technology to reduce erosion and dispersion of contaminants. A greenhouse study was conducted to evaluate the effects of both chemical amendments (calcium silicate and brewery sludge, and phytoremediation using the grass Brachiaria decumbens, on an industrial residue contaminated with Zn and Cd (industrial residue. Industrial residue samples placed into 30 L containers were amended with 20% brewery sludge, calcium silicate (2%, 3%, and 20% of brewery sludge + calcium silicate (2.5%, 4%, and were compared to the control treatment (non-amended residue. After pH stabilization, B. decumbens plants were grown on all treatments in order to evaluate the ability of the species to tolerate high Zn and Cd concentrations from the residue. Samples were collected twice, at planting and harvesting, for pH determination and simple extractions with water, sodium nitrate, acetic acid and DTPA. Differences in Zn and Cd concentrations in extracts allowed to estimate the concentrations of these elements in the most likely chemical forms they are found in the residue. Alkaline and organic industrial amendments reduced Zn and Cd percentages, both in the soluble and exchangeable fractions, as well as caused the predominance of Zn and Cd in the most stable chemical fractions, such as complexed and precipitated compounds. B. decumbens was tolerant to Zn and Cd from the industrial residue after addition of the amendments.A fitoestabilização de solos contaminados com metais pesados é considerada uma boa alternativa para reduzir a erosão e dispersão de contaminantes no ambiente. Foi conduzido um experimento em casa-de-vegetação com o objetivo de avaliar a contenção química (silicato de cálcio e lodo do biodigestor de uma cervejaria e a fitorremediação pela Brachiaria decumbens, de um resíduo industrial contaminado com Zn e Cd, utilizando vasos de 30 L. Os tratamentos

  18. Importance of Company Reputation and its Customer-Oriented Culture for Strengthening of Relationships with Customers on Industrial Market with Chemical Products

    OpenAIRE

    Lostakova, H; Stejskalova, I

    2014-01-01

    The aim of this paper is to explain the nature of customer-oriented business culture and its various components and to summarize the results of quantitative marketing research among managers of selected chemical industry businesses in the Czech Republic focused on mapping of what is their perception of the usefulness of various aspects of the customer-oriented corporate culture, image and goodwill of the company for strengthening business relationships with customers and how they perceive the...

  19. Benefits of chemical fibre industry down evidently in the first half of 2008 Industrial production growth rate dropped slightly, imports decreased evidently while exports grew steadily

    Institute of Scientific and Technical Information of China (English)

    Gracie; Guo

    2008-01-01

    Production From January to May, China’s chemical fiber production rose 7.4 percent from a year earlier to 10.04 million tons, but that was 10.49 percentage points less than the growth rate during the same five- month period last year,the China National Textile and Apparel

  20. A nova lei de patentes, a indústria química e a universidade The new patent law, the chemical industry and the university

    Directory of Open Access Journals (Sweden)

    Alexandre de Oliveira Rodrigues

    1998-04-01

    Full Text Available This paper aims to present some features of the Industrial Property Law now in force in Brazil, as far as they could be regarded to the activities of research and development in the field of Chemistry and related areas, not only in the chemical industry but also in the university. By means of analysis of the main articles and paragraphs, which could deal with the mentioned activities, the author points out the scope and limitations of that law and explains the meaning of common technical terms usually found in patent concerns. Ultimately, a brief discussion on the actual and the potential role of the Brazilian university in the sphere of the Industrial Property is made.

  1. Final Technical Report - High-Performance, Oxide-Dispersion-Strengthened Tubes for Production of Ethylene adn Other Industrial Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    McKimpson, Marvin G.

    2006-04-06

    This project was undertaken by Michigan Technological University and Special Metals Corporation to develop creep-resistant, coking-resistant oxide-dispersion-strengthened (ODS) tubes for use in industrial-scale ethylene pyrolysis and steam methane reforming operations. Ethylene pyrolysis tubes are exposed to some of the most severe service conditions for metallic materials found anywhere in the chemical process industries, including elevated temperatures, oxidizing atmospheres and high carbon potentials. During service, hard deposits of carbon (coke) build up on the inner wall of the tube, reducing heat transfer and restricting the flow of the hydrocarbon feedstocks. About every 20 to 60 days, the reactor must be taken off-line and decoked by burning out the accumulated carbon. This decoking costs on the order of $9 million per year per ethylene plant, accelerates tube degradation, and requires that tubes be replaced about every 5 years. The technology developed under this program seeks to reduce the energy and economic cost of coking by creating novel bimetallic tubes offering a combination of improved coking resistance, creep resistance and fabricability not available in current single-alloy tubes. The inner core of this tube consists of Incoloy(R) MA956, a commercial ferritic Fe-Cr-Al alloy offering a 50% reduction in coke buildup combined with improved carburization resistance. The outer sheath consists of a new material - oxide dispersion strengthened (ODS) Alloy 803(R) developed under the program. This new alloy retains the good fireside environmental resistance of Alloy 803, a commercial wrought alloy currently used for ethylene production, and provides an austenitic casing to alleviate the inherently-limited fabricability of the ferritic Incoloy(R) MA956 core. To provide mechanical compatibility between the two alloys and maximize creep resistance of the bimetallic tube, both the inner Incoloy(R) MA956 and the outer ODS Alloy 803 are oxide dispersion

  2. Fine and coarse particulate matter chemical characterization in a heavily industrialized city in central Mexico during Winter 2003.

    Science.gov (United States)

    Vega, Elizabeth; Ruiz, Hugo; Martínez-Villa, Gerardo; Sosa, Gustavo; González-Avalos, Eugenio; Reyes, Elizabeth; García, José

    2007-05-01

    This paper presents the results of the first reported study on fine particulate matter (PM) chemical composition at Salamanca, a highly industrialized urban area of Central Mexico. Samples were collected at six sites within the urban area during February and March 2003. Several trace elements, organic carbon (OC), elemental carbon (EC), and six ions were analyzed to characterize aerosols. Average concentrations of PM with aerodynamic diameter of less than 10 microm (PM10) and fine PM with aerodynamic diameter of less than 2.5 microm (PM2.5) ranged from 32.2 to 76.6 [g m(-3) and 11.1 to 23.7 microg m(-3), respectively. OC (34%), SO4= (25.1%), EC (12.9%), and geological material (12.5%) were the major components of PM2.5. For PM10 geological material (57.9%), OC (17.3%), and SO4= (9.7%) were the major components. Coarse fraction (PM,, -PM2.5), geological material (81.7%), and OC (8.6%) were the dominant species, which amounted to 90.4%. Correlation analysis showed that sulfate in PM2.5 was present as ammonium sulfate. Sulfate showed a significant spatial variation with higher concentrations to the north resulting from predominantly southwesterly winds above the surface layer and by major SO2 sources that include a power plant and refinery. At the urban site of Cruz Roja it was observed that PM2.5 mass concentrations were similar to the submicron fraction concentrations. Furthermore, the correlation between EC in PM2.5 and EC measured from an aethalometer was r(2) = 0.710. Temporal variations of SO2 and nitrogen oxide were observed during a day when the maximum concentration of PM2.5 was measured, which was associated with emissions from the nearby refinery and power plant. From cascade impactor measurements, the three measured modes of airborne particles corresponded with diameters of 0.32, 1.8, and 5.6 microm.

  3. A Synthetic Method for Atmospheric Diffusion Simulation and Environmental Impact Assessment of Accidental Pollution in the Chemical Industry in a WEBGIS Context

    Directory of Open Access Journals (Sweden)

    Haochen Ni

    2014-09-01

    Full Text Available The chemical industry poses a potential security risk to factory personnel and neighboring residents. In order to mitigate prospective damage, a synthetic method must be developed for an emergency response. With the development of environmental numeric simulation models, model integration methods, and modern information technology, many Decision Support Systems (DSSs have been established. However, existing systems still have limitations, in terms of synthetic simulation and network interoperation. In order to resolve these limitations, the matured simulation model for chemical accidents was integrated into the WEB Geographic Information System (WEBGIS platform. The complete workflow of the emergency response, including raw data (meteorology information, and accident information management, numeric simulation of different kinds of accidents, environmental impact assessments, and representation of the simulation results were achieved. This allowed comprehensive and real-time simulation of acute accidents in the chemical industry. The main contribution of this paper is that an organizational mechanism of the model set, based on the accident type and pollutant substance; a scheduling mechanism for the parallel processing of multi-accident-type, multi-accident-substance, and multi-simulation-model; and finally a presentation method for scalar and vector data on the web browser on the integration of a WEB Geographic Information System (WEBGIS platform. The outcomes demonstrated that this method could provide effective support for deciding emergency responses of acute chemical accidents.

  4. A synthetic method for atmospheric diffusion simulation and environmental impact assessment of accidental pollution in the chemical industry in a WEBGIS context.

    Science.gov (United States)

    Ni, Haochen; Rui, Yikang; Wang, Jiechen; Cheng, Liang

    2014-09-05

    The chemical industry poses a potential security risk to factory personnel and neighboring residents. In order to mitigate prospective damage, a synthetic method must be developed for an emergency response. With the development of environmental numeric simulation models, model integration methods, and modern information technology, many Decision Support Systems (DSSs) have been established. However, existing systems still have limitations, in terms of synthetic simulation and network interoperation. In order to resolve these limitations, the matured simulation model for chemical accidents was integrated into the WEB Geographic Information System (WEBGIS) platform. The complete workflow of the emergency response, including raw data (meteorology information, and accident information) management, numeric simulation of different kinds of accidents, environmental impact assessments, and representation of the simulation results were achieved. This allowed comprehensive and real-time simulation of acute accidents in the chemical industry. The main contribution of this paper is that an organizational mechanism of the model set, based on the accident type and pollutant substance; a scheduling mechanism for the parallel processing of multi-accident-type, multi-accident-substance, and multi-simulation-model; and finally a presentation method for scalar and vector data on the web browser on the integration of a WEB Geographic Information System (WEBGIS) platform. The outcomes demonstrated that this method could provide effective support for deciding emergency responses of acute chemical accidents.

  5. APPLICATION OF ELECTROCHEMICAL METHODS FOR DECREASING OF CHEMICAL OXYGEN DEMAND (COD AND TOTAL SUSPENDED SOLID (TSS OF TOFU INDUSTRIAL WASTEWATER

    Directory of Open Access Journals (Sweden)

    Suyata

    2015-05-01

    Full Text Available Tofu industrial wastewater has high COD and TSS level, which it cause an environmental pollution. Therefore, it is necessary to decrease the value of COD and TSS of tofu industrial wastewater before discharge into the water body. Decreasing of COD and TSS values can be carried out using an electrochemical method. The purpose of this research was to determine the effect of potential, electrode distance, pH, and time to decrease of COD and TSS value of the tofu industrial wastewater. The experiment has been performed by electrolysis tofu industrial wastewater using PbO2 as anode and Pb as cathode. The result of the research showed that under the optimum conditions of 12 V voltage, 1 cm electrode distance, pH 1, and electrolysis time of 120 minutes, decreasing COD and TSS of 96.33% and 87.87% respectively

  6. Asymmetric catalysis in Brazil: development and potential for advancement of Brazilian chemical industry; Catalise assimetrica no Brasil: desenvolvimento e potencialidades para o avanco da industria quimica brasileira

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Antonio Luiz, E-mail: braga.antonio@ufsc.br [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Departamento de Quimica; Luedtke, Diogo Seibert; Schneider, Paulo Henrique [Universidade Federal do Rio Grande do Sul (UFRS), Porto Alegre, RS (Brazil). Instituto de Quimica; Andrade, Leandro Helgueira [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Quimica; Paixao, Marcio Weber [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Quimica

    2013-07-01

    The preparation of enantiomerically pure or enriched substances is of fundamental importance to pharmaceutical, food, agrochemical, and cosmetics industries and involves a growing market of hundreds of billions of dollars. However, most chemical processes used for their production are not environmentally friendly because in most cases, stoichiometric amounts of chiral inductors are used and substantial waste is produced. In this context, asymmetric catalysis has emerged as an efficient tool for the synthesis of enantiomerically enriched compounds using chiral catalysts. More specifically, considering the current scenario in the Brazilian chemical industry, especially that of pharmaceuticals, the immediate prospect for the use of synthetic routes developed in Brazil in an enantioselective fashion or even the discovery of new drugs is practically null. Currently, the industrial production of drugs in Brazil is primarily focused on the production of generic drugs and is basically supported by imports of intermediates from China and India. In order to change this panorama and move forward toward the gradual incorporation of genuinely Brazilian synthetic routes, strong incentive policies, especially those related to continuous funding, will be needed. These incentives could be a breakthrough once we establish several research groups working in the area of organic synthesis and on the development and application of chiral organocatalysts and ligands in asymmetric catalysis, thus contributing to boost the development of the Brazilian chemical industry. Considering these circumstances, Brazil can benefit from this opportunity because we have a wide biodiversity and a large pool of natural resources that can be used as starting materials for the production of new chiral catalysts and are creating competence in asymmetric catalysis and related areas. This may decisively contribute to the growth of chemistry in our country. (author)

  7. LongTerm Energy Efficiency Analysis Requires Solid Energy Statistics: The case of the German Basic Chemical Industry

    NARCIS (Netherlands)

    Saygin, D.; Worrell, E.; Tam, C.; Trudeau, N.; Gielen, D.J.; Weiss, M.; Patel, M.K.

    2012-01-01

    Analyzing the chemical industry’s energy use is challenging because of the sector’s complexity and the prevailing uncertainty in energy use and production data. We develop an advanced bottom-up model (PIE-Plus) which encompasses the energy use of the 139 most important chemical processes. We apply t

  8. The Chemistry Scoring Index (CSI: A Hazard-Based Scoring and Ranking Tool for Chemicals and Products Used in the Oil and Gas Industry

    Directory of Open Access Journals (Sweden)

    Tim Verslycke

    2014-06-01

    Full Text Available A large portfolio of chemicals and products is needed to meet the wide range of performance requirements of the oil and gas industry. The oil and gas industry is under increased scrutiny from regulators, environmental groups, the public, and other stakeholders for use of their chemicals. In response, industry is increasingly incorporating “greener” products and practices but is struggling to define and quantify what exactly constitutes “green” in the absence of a universally accepted definition. We recently developed the Chemistry Scoring Index (CSI which is ultimately intended to be a globally implementable tool that comprehensively scores and ranks hazards to human health, safety, and the environment for products used in oil and gas operations. CSI scores are assigned to products designed for the same use (e.g., surfactants, catalysts on the basis of product composition as well as intrinsic hazard properties and data availability for each product component. As such, products with a lower CSI score within a product use group are considered to have a lower intrinsic hazard compared to other products within the same use group. The CSI provides a powerful tool to evaluate relative product hazards; to review and assess product portfolios; and to aid in the formulation of products.

  9. 化学工业园的系统动力学仿真与调控%Simulation and Adjustment of System Dynamics for a Chemical Industrial Park

    Institute of Scientific and Technical Information of China (English)

    郑斯瑞; 钱新; 瞿庆玲

    2011-01-01

    化学工业园属行业类工业园,入区企业主要为生产和销售化学工业品的化工企业,其排放的化学品污染物极易造成水环境和大气环境质量的恶化,为避免环境风险事故,必须对化学工业园的发展过程进行模拟和控制.以泰兴经济开发区为研究对象,在其现阶段发展基础上,根据该园区的实际情况,采用系统动力学(System Dynamics)模拟不同情景下的远期发展目标.基础仿真结果表明,泰兴经济开发区的环境现状不容乐观,尤其是大气环境污染几乎达到环境容量极限.情景分析表明,该开发园区必须将产业发展速度控制在 18%,同时降低工业能耗,提高脱硫效率至 90%以上,污水处理厂规模日处理量达 4.9×10t,才能保证其持续、稳定、健康的发展.%Chemical industrial parks, a type of industrial park, mainly consist of chemical enterprises which produce and sell chemical industrial products. Their chemical pollution-containing emissions tend to cause water and air environmental quality degradation. To avoid environmental accidents, it is necessary to simulate and control the whole development process of chemical industrial parks. Using Taixing economic development zone as an example, long-term goals based on the current situation were simulated under different scenarios through applying system dynamics. The base runs tell us that the current environmental quality of the park is far from optimistic, especially the air pollution, which has almost reached the environmental capacity limit. Scenario analysis shows that to maintain sustainable development during the planning period, the development speed should be 18%.Simultaneously, energy consumption should be lowered, desulphurization efficiency should be improved to above 90% , and the capacity of the sewage treatment plants should reach 4.9 × 104 t/d.

  10. Characterizing ozone pollution in a petrochemical industrial area in Beijing, China: a case study using a chemical reaction model.

    Science.gov (United States)

    Wei, Wei; Lv, Zhaofeng; Cheng, Shuiyuan; Wang, Lili; Ji, Dongsheng; Zhou, Ying; Han, Lihui; Wang, Litao

    2015-06-01

    This study selected a petrochemical industrial complex in Beijing, China, to understand the characteristics of surface ozone (O3) in this industrial area through the on-site measurement campaign during the July-August of 2010 and 2011, and to reveal the response of local O3 to its precursors' emissions through the NCAR-Master Mechanism model (NCAR-MM) simulation. Measurement results showed that the O3 concentration in this industrial area was significantly higher, with the mean daily average of 124.6 μg/m(3) and mean daily maximum of 236.8 μg/m(3), which are, respectively, 90.9 and 50.6 % higher than those in Beijing urban area. Moreover, the diurnal O3 peak generally started up early in 11:00-12:00 and usually remained for 5-6 h, greatly different with the normal diurnal pattern of urban O3. Then, we used NCAR-MM to simulate the average diurnal variation of photochemical O3 in sunny days of August 2010 in both industrial and urban areas. A good agreement in O3 diurnal variation pattern and in O3 relative level was obtained for both areas. For example of O3 daily maximum, the calculated value in the industrial area was about 51 % higher than in the urban area, while measured value in the industrial area was approximately 60 % higher than in the urban area. Finally, the sensitivity analysis of photochemical O3 to its precursors was conducted based on a set of VOCs/NOx emissions cases. Simulation results implied that in the industrial area, the response of O3 to VOCs was negative and to NOx was positive under the current conditions, with the sensitivity coefficients of -0.16~-0.43 and +0.04~+0.06, respectively. By contrast, the urban area was within the VOCs-limitation regime, where ozone enhancement in response to increasing VOCs emissions and to decreasing NOx emission. So, we think that the VOCs emissions control for this petrochemical industrial complex will increase the potential risk of local ozone pollution aggravation, but will be helpful to inhibit the

  11. 化工生产中解决使用钠安全性方案一例%Case Study of Using Sodium Safely in the Chemical Industry

    Institute of Scientific and Technical Information of China (English)

    梁孟洋; 陈淳

    2011-01-01

    Usually,some minor or major fire accidents occurred while using sodium in lab experiments or in the chemical industry.Based on the chemical reactions and their mechanism,a solution to using sodium safely in the chemical industry was presented,and the security hidden danger caused by the left sodium that didn't react completely can be easily removed.%钠在化学(实验室与工业)上的应用中,或多或少会出现或大或小的起火事故。本文从化学反应本身着手,根据反应机理,阐述了以一种简单的方式来解决原工艺反应不完全导致钠残留而致使安全隐患,从而使钠完全反应来消除安全隐患的解决实例。

  12. Detection of formaldehyde emissions from an industrial zone in the Yangtze River Delta region of China using a proton transfer reaction ion-drift chemical ionization mass spectrometer

    Science.gov (United States)

    Ma, Yan; Diao, Yiwei; Zhang, Bingjie; Wang, Weiwei; Ren, Xinrong; Yang, Dongsen; Wang, Ming; Shi, Xiaowen; Zheng, Jun

    2016-12-01

    A proton transfer reaction ion-drift chemical ionization mass spectrometer (PTR-ID-CIMS) equipped with a hydronium (H3+O) ion source was developed and deployed near an industrial zone in the Yangtze River Delta (YRD) region of China in spring 2015 to investigate industry-related emissions of volatile organic compounds (VOCs). Air pollutants including formaldehyde (HCHO), aromatics, and other trace gases (O3 and CO) were simultaneously measured. Humidity effects on the sensitivity of the PTR-ID-CIMS for HCHO detection were investigated and quantified. The performances of the PTR-ID-CIMS were also validated by intercomparing with offline HCHO measurement technique using 2,4-dinitrophenylhydrazone (DNPH) cartridges and the results showed fairly good agreement (slope = 0.81, R2 = 0.80). The PTR-ID-CIMS detection limit of HCHO (10 s, three-duty-cycle averages) was determined to be 0.9-2.4 (RH = 1-81.5 %) parts per billion by volume (ppbv) based on 3 times the standard deviations of the background signals. During the field study, observed HCHO concentrations ranged between 1.8 and 12.8 ppbv with a campaign average of 4.1 ± 1.6 ppbv, which was comparable with previous HCHO observations in other similar locations of China. However, HCHO diurnal profiles showed few features of secondary formation. In addition, time series of both HCHO and aromatic VOCs indicated strong influence from local emissions. Using a multiple linear regression fit model, on average the observed HCHO can be attributed to secondary formation (13.8 %), background level (27.0 %), and industry-related emissions, i.e., combustion sources (43.2 %) and chemical productions (16.0 %). Moreover, within the plumes the industry-related emissions can account for up to 69.2 % of the observed HCHO. This work has provided direct evidence of strong primary emissions of HCHO from industry-related activities. These primary HCHO sources can potentially have a strong impact on local and regional air pollution formation

  13. The Application of Membrane Separation Technology in Chemical Industry%膜分离技术在化学工业中的应用

    Institute of Scientific and Technical Information of China (English)

    王少兵; 王厚朋

    2016-01-01

    阐述了膜分离技术在化学工业过程中的部分应用,如用于合成氨中的氢气回收、有机蒸汽的分离回收、催化裂化中的富氧再生、海水淡化、卤水提炼及工业废水处理等工艺过程中,并对膜分离技术的强化和未来进行了展望。%In this paper, the application of membrane separation process in the processes of chemical industry is illustrated, such as for synthetic ammonia hydrogen recovery, organic vapor separation, oxygen enrichment regeneration in catalytic cracking, desalination of sea water, brine refining and industrial wastewater treatment process. And the strengthening and the future of the membrane separation technology are forecasted.

  14. Application of chemical, biological and membrane separation processes in textile industry with recourse to zero effluent discharge--a case study.

    Science.gov (United States)

    Nandy, T; Dhodapkar, R S; Pophali, G R; Kaul, S N; Devotta, S

    2005-09-01

    Environmental concerns associated with textile processing had placed the textile sector in a Southern State of India under serious threat of survival. The textile industries were closed under the orders of the Statutory Board for reason of inadequate compliance to environmental discharge norms of the State for the protection of the drinking water source of the State capital. In compliance with the direction of the Board for zero effluent discharge, advanced treatment process have been implemented for recovery of boiler feed quality water with recourse to effluent recycling/reuse. The paper describes to a case study on the adequacy assessment of the full scale effluent treatment plant comprising chemical, biological and filtration processes in a small scale textile industry. In addition, implementation of measures for discernable improvement in the performance of the existing units through effective operation & maintenance, and application of membrane separation processes leading to zero effluent discharge is also highlighted.

  15. 泡沫类灭火剂在化工企业火灾的应用%Application of Foam Extinguishers in the Fire of Chemical Industry

    Institute of Scientific and Technical Information of China (English)

    邬勇

    2011-01-01

    针对化工企业复杂多变的火灾情况,分析了不同种类的泡沫灭火剂灭火原理、性质以及适应扑救的化工火灾场所,为化工企业火灾扑救起到了一定的指导作用。%Focused on fire suppression principle, nature and applying areas of different kinds of foam extinguishers. It would be give some guidance to fight the chemical industry fire.

  16. 浅议陕西煤化集团并购重组工作%Discussion of mergers and acquisitions work in Shaanxi Coal and Chemical Industry Group

    Institute of Scientific and Technical Information of China (English)

    邹贵武

    2015-01-01

    This paper introduced the main methods of mergers and acquisitions work , summarized the experiences of mergers and acquisitions work and analyzed the effects of mergers and acquisitions work during the development process of Shaanxi Coal and Chemical Industry Group .%介绍了陕煤化集团在发展过程中,实施并购重组工作的主要做法,总结了开展并购重组工作经验,并以具体实例说明了集团实施并购重组工作的效果。

  17. 热管技术在化工领域中的应用综述%Overview of Heat Pipe Technology and Its Application in Chemical Industry

    Institute of Scientific and Technical Information of China (English)

    乔桂芝

    2011-01-01

    The sketch of development history, working theory and advantages of heat pipe technology were given, and its application in chemical industry and latest development were discussed.%时热管的发展历史、工作原理及其优点作了简单的阐述,主要介绍了热管技术在化工领城的几个方面的应用情况,并探讨了热管技术最新的发展方向.

  18. In silico prediction of toxicity of non-congeneric industrial chemicals using ensemble learning based modeling approaches

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Kunwar P., E-mail: kpsingh_52@yahoo.com; Gupta, Shikha

    2014-03-15

    Ensemble learning approach based decision treeboost (DTB) and decision tree forest (DTF) models are introduced in order to establish quantitative structure–toxicity relationship (QSTR) for the prediction of toxicity of 1450 diverse chemicals. Eight non-quantum mechanical molecular descriptors were derived. Structural diversity of the chemicals was evaluated using Tanimoto similarity index. Stochastic gradient boosting and bagging algorithms supplemented DTB and DTF models were constructed for classification and function optimization problems using the toxicity end-point in T. pyriformis. Special attention was drawn to prediction ability and robustness of the models, investigated both in external and 10-fold cross validation processes. In complete data, optimal DTB and DTF models rendered accuracies of 98.90%, 98.83% in two-category and 98.14%, 98.14% in four-category toxicity classifications. Both the models further yielded classification accuracies of 100% in external toxicity data of T. pyriformis. The constructed regression models (DTB and DTF) using five descriptors yielded correlation coefficients (R{sup 2}) of 0.945, 0.944 between the measured and predicted toxicities with mean squared errors (MSEs) of 0.059, and 0.064 in complete T. pyriformis data. The T. pyriformis regression models (DTB and DTF) applied to the external toxicity data sets yielded R{sup 2} and MSE values of 0.637, 0.655; 0.534, 0.507 (marine bacteria) and 0.741, 0.691; 0.155, 0.173 (algae). The results suggest for wide applicability of the inter-species models in predicting toxicity of new chemicals for regulatory purposes. These approaches provide useful strategy and robust tools in the screening of ecotoxicological risk or environmental hazard potential of chemicals. - Graphical abstract: Importance of input variables in DTB and DTF classification models for (a) two-category, and (b) four-category toxicity intervals in T. pyriformis data. Generalization and predictive abilities of the

  19. THE CHEMICAL COMPOSITION ASSESSMENT OF THE FETEASCĂ NEAGRĂ GRAPE POMACE AND ITS FRACTIONS OBTAINED FROM WINE INDUSTRY IN DIFFERENT YEARS

    Directory of Open Access Journals (Sweden)

    Pascariu Mariana Silvia

    2015-12-01

    Full Text Available The aim of the hereby study was to analyze and to compare the chemical content of the grape pomace and its fractions: skins and seeds from the red grape variety Fetească neagră (from Iași area, obtained in different years 2013 and 2014 respectively, from the winemaking process. Measurements targeted the dry matter content (DM%, organic matter (OM%, crude ash (CA%, crude protein (CP%, crude fat (EE%, crude fiber (CF%, neazotate extractive substances (SEN%, total polyphenols (TP% and tannins (Ta%. The results obtained showed significant differences in the chemical composition in favour of the grape pomace obtained in the 2014 climatic conditions: in the case of the seed for the content of DM%, SEN%, TP% and Ta%, in the case of the skins for the content of DM%, OM%, CF%, TP%, Ta% and in the case of the grape pomace for the content of DM%, OM%, CF%, SEN%, TP%, and Ta%. Comparative analysis of the chemical composition showed an annual variation of the chemical components, which may be due to climatic conditions and winemaking process. Therefore, an annual chemical quality assessment of the grape pomace is necessary, for the efficient use in the animal feed.

  20. The organization of industry-science collaboration in the Dutch chemical industry : an exploratory study on the organizational arrangements applied for knowledge transfer in industrial R&D-projects

    NARCIS (Netherlands)

    Gils, M.J.G.M. van

    2010-01-01

    Nowadays, industry-science collaboration is a hot topic. A main reason is that both universities and public research institutes are considered to be able to act as an external source of new skills and knowledge that firms can use as input in their innovation processes. There are many possibilities (

  1. Research on safety guarantee system for chemical industrial parks%化工园区安全保障体系探究

    Institute of Scientific and Technical Information of China (English)

    陈国华; 贾梅生; 黄庭枫

    2013-01-01

    This paper is inclined to introduce and synthesize some new ideas and research results about safety control and secure engineering technology in running chemical industrial parks.As is well known,chemical industrial parks involve more safety and security problems for their own particular nature.Yet,there is still shortage of a systematic framework and comprehensive measures to ensure their regular production practice.To meet the actual need,we would like to bring forward a set of safety production and management warranty including three strategies.The first one deals with a set of inherent safety-ensuring strategies through eliminating or getting rid of likely hazards to prevent likely accidents.In our suggested framework,the inherent safety strategy is supposed to include three key techniques,i.e.optimized layout of management goals,idealistic chain of their industrial products and safety and security controlling power.As a rule,the operating goals should be oriented to guide the stage of designing a new chemical industrial park or the stage of introducing a new chemical plant to a well managed chemical park so that the park is always in a position to keep on its successful production and implement the most effective measures for accident prevention.The second strategy of the framework is to make sure successful risk control with the so-called four key techniques thoroughly carried out,i.e.identifying and recognizing hidden hazards,analyzing and controlling Domino effect accidents,early-warning and always aware of community emergencies.The said risk control strategy should be oriented to decrease the accident frequency or alleviating the accident detrimental influence.PDCA is needed for this strategy to heighten the safety control rate of the chemical industrial parks.And,now,the last strategy is to establish necessary institutions and cuhivate safety culture.There exists a vast need for the chemical industrial parks to ask for the managers and workers to display

  2. Caracterização físico-química da erva mate: influência das etapas do processamento industrial Effects of industrial processing steps on the physico-chemical characteristics of mate tea leaves

    Directory of Open Access Journals (Sweden)

    Maria Carolina Esmelindro

    2002-08-01

    Full Text Available A erva-mate é uma matéria-prima de grande importância para a região Sul do Brasil, sendo que a produção anual é de aproximadamente 650.000 toneladas de folhas. Atualmente, problemas com o excesso de oferta têm incentivado pesquisadores e empresários a buscar alternativas para a utilização da erva-mate como matéria-prima para o desenvolvimento de novos produtos bem como promover melhorias no processamento industrial visando a obtenção de características organolépticas desejáveis. Neste sentido, o presente trabalho teve por objetivo realizar a caracterização físico-química da erva-mate em função das etapas do processamento industrial (sapeco, secagem e tempo de cancheamento e verificar como estas etapas influem nos teores de cinzas, fibras, gorduras, proteínas, glicose, sacarose e cafeína presentes na matéria-prima. Os resultados obtidos permitiram verificar que as etapas do processamento industrial influem diretamente nos teores dos compostos citados, mostrando a relevância em se analisar estes resultados quando o objetivo é utilizar esta matéria-prima para o desenvolvimento de novos produtos alimentícios que podem exigir características específicas.Mate tea leaves is a raw material of great importance to Southern Brazil, considering its annual production of approximately 650,000 tons of leaves. Currently the excess of mate tea leaves supply in the market has encouraged researchers and entrepreneurs to search for alternatives involving the application of this raw material in the development of new products, as well as the improvement the industrial process, seeking to obtain desirable organoleptic properties. Thus, the present work performed the physical-chemical characterization of mate tea leaves, correlating its qualities to the industrial processing steps ("sapeco", drying and time of "cancheamento". The effect of these steps on the content of ash, fiber, fat, protein, glucose, sucrose and caffeine in the raw

  3. Economic survey of designing HCL vapors and mist elimination system from the output air flow in the chemical industries (Case study, Shahid Meisami complex

    Directory of Open Access Journals (Sweden)

    Fatemeh Saeedi

    2016-09-01

    Full Text Available Hydrochloric acid vapors are among the toxic and irritant gases which emit as pollutant from the chimney in the chemical industries. This pollutant has adverse effects on the health and environment. HCL vapors cause damages to upper respiratory system and have toxic and corrosive environmental effects on the soil and water. In order to prevent air pollution and environmental degradation, different standards have been adopted. According to the Department of Environment standard, the permissible amount of HCl gas output of the chemical industries has been recommended as (67 ppm 100 mg / m3. After designing absorption tower, the economic reviewing is needed. Here we study the design economically. Total costs include Tower construction, the packing, consumption Solvent (absorbent, electrical power costs, and so on. Cost of pomp, electricity and used sodium hydroxide estimated as $ 3048, 1556.34 and 13525. In the final stage, hydraulic similarity relations determined and using it, the absorption tower technical specifications were calculated and estimated for different real models.

  4. Polycyclic organic material (POM) in urban air. Fractionation, chemical analysis and genotoxicity of particulate and vapour phases in an industrial town in Finland

    Science.gov (United States)

    Pyysalo, Heikki; Tuominen, Jari; Wickström, Kim; Skyttä, Eija; Tikkanen, Leena; Salomaa, Sisko; Sorsa, Marja; Nurmela, Tuomo; Mattila, Tiina; Pohjola, Veijo

    Polycyclic organic material (POM) was collected by high-volume sampling on filter and on XAD-2 resin from the air of a small industrial town in Finland. Concurrent chemical analysis and the assays for genotoxic activity were performed on the particulate and the vapour phases of ambient air POM and their chemical fractions. Furthermore, correlations between seasonal meteorological parameters and POM concentrations were studied to reveal characteristic POM profiles for various emission sources. The range of total POM concentrations varied from 115 to 380 ng m -3 in late spring and from 17 to 83 ng m -3 in early winter. No direct correlation of ambient POM was seen with the temperature, but rather with the wind direction from various emission sources. Especially the low molecular weight compounds were associated with wind direction from industrial sources. Genotoxic activity, as detected by the Ames Salmonella/microsome test and the SCE assay in CHO cells, was found not only in the paniculate phase samples but also in the vapour phase. The polar fractions of some of the samples showed genotoxic activity, and also direct mutagenicity was observed with both the assay systems; these facts support the significance of compounds other than conventional polycyclic aromatic hydrocarbons (PAH) in the samples.

  5. A quantitative chemical industry area risk assessment model%化工园区区域定量风险评价及其应用研究

    Institute of Scientific and Technical Information of China (English)

    马月鹏; 李竹霞; 倪凯; 杨柳

    2012-01-01

    讨论了化工园区域定量风险评价的基本程序和评价指标,提出了定量风险计算的个人风险和社会风险计算模型.利用SAFETI软件对碳一分公司进行定量风险计算,得出碳一分公司区域的个人风险等值线图和社会风险曲线图.依据计算结果分析碳一分公司化工园区域的风险现状.%The present paper aims to introduce our work in developing the quantitative chemical industry zone risk assessment model. As is known, with the ever-increasing rate of chemical works accidents, such as fire, explosion and toxic diffusion, it has become more and more urgent to enhance the research on how to analyze such disastrous accidents and prevent them more effectively, particularly, close attention to the study of the hazards taking place in industrial zones. As a matter of fact, most risk evaluation methods concerning the safety distance between the industrial zones and the human residential areas. Such research and evaluation items have been remarkably valuable due to their high subjective factors. On the contrary, industrial area quantitative risk assessment (IAQRA) is generally regarded as an effective method for evaluating the risks of chemical industry parks. It is just for the purpose of such research of the IAQRA, this paper has introduced the procedures of IAQRA and its evaluation criteria along with the calculation model of personal and social insurance risks. To increase the reliability of the evaluation results, we have done investigations over all the accidental scenarios concerning the e-valuation model and accumulate large amounts of related data from the actual process of the realistic disasters. Since the evaluation involves huge amounts of calculation in the IAQRA model, we have accomplished the whole work via computer-aided processing. In addition, we have also adopted SAFETI software developed by DNV for the risk assessment. With the help of SAFETI software, both the standards of the personal

  6. Physiological and chemical response of lichens transplanted in and around an industrial area of south Italy: relationship with the lichen diversity.

    Science.gov (United States)

    Paoli, Luca; Pisani, Tommaso; Guttová, Anna; Sardella, Giovanni; Loppi, Stefano

    2011-05-01

    The lichen Evernia prunastri (L.) Ach. has been exposed for 3 months in and around an industrial area of Mediterranean Italy for monitoring physiological (photosynthetic efficiency, membrane lipids peroxidation and cell membrane integrity) and chemical (bioaccumulation of the heavy metals Cr, Ni, Pb, V and Zn) effects and investigate the consistency with the environmental quality status depicted by the diversity of epiphytic lichens (index of lichen diversity (ILD)). The results showed that thalli transplanted close to the industrial area exhibited early stress symptoms, as revealed by the increase in electrical conductivity indicating a damage endured by lichen cell membranes. The electrical conductivity was inversely correlated with the diversity of epiphytic lichens recorded at the same sites. The ILD negatively correlated also with membrane lipid peroxidation and the rate of accumulation of Pb, V and Zn. Reciprocal correlations found among trace elements pinpointed vehicular traffic and metal processing in the industrial area as main sources. The damage endured by cell membranes was the best physiological indicator consistent with the air quality status depicted by the diversity of epiphytic lichens.

  7. Analysis on the health status in chemical industry workers%化工行业工人健康状况分析

    Institute of Scientific and Technical Information of China (English)

    李宾

    2012-01-01

    The main features of occupational health in chemical workers were analyzed on the basis of references review in this paper, which indicating that the important impact factors on those features includes: environmental and biological factors, psychological and behavior factors, lifestyle factors, health services, etc. While the main characteristics of occupational health in chemical workers included serious occupational hazard in the chemical industry, low knowing rate on occupational hazards, high industrial accident incidence in young and poor educated workers, obvious mal-effect on female reproduction function, the main impact factor of health is chronic non-communicable diseases, lower psychological health status, lack of good health service etc. Facing these problems, the paper also offers the way on workplace health promotion.%通过复习文献,对化工行业工人职业健康状况的特点进行分析.表明影响化工行业工人健康状况的因素包括环境、生物学、心理行为与生活方式、卫生服务等方面.化工行业工人职业健康状况的特点主要是:职业危害程度重、劳动者职业病危害知识总知晓率低、年轻劳动者和文化程度较低者工伤事故频率高、女工生殖机能影响较为明显、慢性非传染性疾病是影响健康的主要因素、劳动者心理健康状态普遍较低、卫生服务不够全面等,文章对存在的问题提出工作场所健康促进办法.

  8. Distinguishing between chemical and physical promotion mechanisms by CeO{sub 2} in Pt, Rh three-way automotive catalysts under practical industrial conditions

    Energy Technology Data Exchange (ETDEWEB)

    Robota, H.J.; Nunan, J.G. [Allied-Signal Research and Technology, Des Plains, IL (United States)

    1993-12-31

    Under practical industrial conditions, aged, rather than fresh, catalyst performances is required to meet various regulatory emissions levels. While CeO{sub 2} is recognized as critical in allowing practically aged Pt, Rh catalysts to meet these performance targets, debate continues concerning the physicochemical mechanisms responsible for the performance enhancement. Suppressed precious metal sintering and stabilization of support {gamma}-Al{sub 2}O{sub 3} against surface area loss and structural phase changes are the principle physical mechanisms suggested. Chemical promotion by CeO2 has been attributed to oxygen storage, enhanced water gas shift activity, and enhanced CO oxidation activity through a precious metal-CeO2 coupling mechanisms. The authors have attempted to distinguish the relative contributions of these physical and chemical mechanisms to the performance of practical Pt, Rh catalysts. Two catalysts were aged in tandem using standard dynamometer methods. One was a fully formulated reference catalyst and the other was a CeO{sub 2}-free catalyst. Several potential chemical promotional mechanisms of CO oxidation via a more facile reaction pathway involving coupling between the precious metals and CeO{sub 2}.

  9. Genetic k-Means Clustering Approach for Mapping Human Vulnerability to Chemical Hazards in the Industrialized City: A Case Study of Shanghai, China

    Directory of Open Access Journals (Sweden)

    Weihua Zeng

    2013-06-01

    Full Text Available Reducing human vulnerability to chemical hazards in the industrialized city is a matter of great urgency. Vulnerability mapping is an alternative approach for providing vulnerability-reducing interventions in a region. This study presents a method for mapping human vulnerability to chemical hazards by using clustering analysis for effective vulnerability reduction. Taking the city of Shanghai as the study area, we measure human exposure to chemical hazards by using the proximity model with additionally considering the toxicity of hazardous substances, and capture the sensitivity and coping capacity with corresponding indicators. We perform an improved k-means clustering approach on the basis of genetic algorithm by using a 500 m × 500 m geographical grid as basic spatial unit. The sum of squared errors and silhouette coefficient are combined to measure the quality of clustering and to determine the optimal clustering number. Clustering result reveals a set of six typical human vulnerability patterns that show distinct vulnerability dimension combinations. The vulnerability mapping of the study area reflects cluster-specific vulnerability characteristics and their spatial distribution. Finally, we suggest specific points that can provide new insights in rationally allocating the limited funds for the vulnerability reduction of each cluster.

  10. Chlorinated and parent polycyclic aromatic hydrocarbons in environmental samples from an electronic waste recycling facility and a chemical industrial complex in China.

    Science.gov (United States)

    Ma, Jing; Horii, Yuichi; Cheng, Jinping; Wang, Wenhua; Wu, Qian; Ohura, Takeshi; Kannan, Kurunthachalam

    2009-02-01

    Chlorinated polycyclic aromatic hydrocarbons (CIPAHs) are a class of halogenated contaminants found in the urban atmosphere; they have toxic potential similar to that of dioxins. Information on the sources of CIPAHs is limited. In this study, concentrations of 20 CIPAHs and 16 parent PAHs were measured in electronic wastes, workshop-floor dust, vegetation, and surface soil collected from the vicinity of an electronic waste (e-waste) recycling facility and in surface soil from a chemical industrial complex (comprising a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant), and agricultural areas in central and eastern China. High concentrations of SigmaCIPAHs were found in floor dust (mean, 103 ng/g dry wt), followed in order of decreasing concentration by leaves (87.5 ng/g drywt), electronic shredder waste (59.1 ng/g dry wt), and soil (26.8 ng/g dry wt) from an e-waste recycling facility in Taizhou. The mean concentration of SigmaCIPAHs in soil from the chemical industrial complex (88 ng/g dry wt) was approximately 3-fold higher than the concentration in soil from e-waste recycling facilities. The soils from e-waste sites and industrial areas contained mean concentrations of SigmaCIPAHs 2 to 3 orders of magnitude higher than the concentrations in agricultural soils (ND-0.76 ng/g), suggesting that e-waste recycling and chlorine-chemical industries are potential emission sources of CIPAHs. The profiles of CIPAHs in soil and dust were similar to a profile that has been reported previously for fly ash from municipal solid waste incinerators (6-CIBaP was the predominant compound), but the profiles in vegetation and electronic shredder waste were different from those found in fly ash. Concentrations of 16 parent PAHs were high (150-49,700 ng/g) in samples collected from the e-waste recycling facility. Significant correlation between SigmaCIPAH and SigmaPAH concentrations suggests that direct chlorination of parent PAHs is the major pathway of formation of

  11. Development of waxy cassava with different Biological and physico-chemical characteristics of starches for industrial applications.

    Science.gov (United States)

    Zhao, Shan-Shan; Dufour, Dominique; Sánchez, Teresa; Ceballos, Hernan; Zhang, Peng

    2011-08-01

    The quality of cassava starch, an important trait in cassava breeding programs, determines its applications in various industries. For example, development of waxy (having a low level of amylose) cassava is in demand. Amylose is synthesized by granule-bound starch synthase I (GBSSI) in plants, and therefore, down-regulation of GBSSI expression in cassava might lead to reduced amylose content. We produced 63 transgenic cassava plant lines that express hair-pin dsRNAs homologous to the cassava GBSSI conserved region under the control of the vascular-specific promoter p54/1.0 from cassava (p54/1.0::GBSSI-RNAi) or cauliflower mosaic virus (CaMV) 35S (35S::GBSSI-RNAi). After the screening storage roots and starch granules from field-grown plants with iodine staining, the waxy phenotype was discovered: p54/1.0::GBSSI-RNAi line A8 and 35S::GBSSI-RNAi lines B9, B10, and B23. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that there was no detectable GBSSI protein in the starch granules of plants with the waxy phenotype. Further, the amylose content of transgenic starches was significantly reduced (starch granules from the wild-type (about 25%). The inner structure of the waxy starch granules differed from that of the untransformed ones, as revealed by transmission electron microscopy analysis as well as morphological changes in the iodine-starch complex. Endothermic enthalpy was reduced in waxy cassava starches, according to differential scanning calorimeter analysis. Except B9, all waxy starches displayed the A-type X-ray diffraction pattern. Amylogram patterns of the waxy cassava starches were analyzed using a rapid viscosity analyzer and found to have increased values for clarity, peak viscosity, gel breakdown, and swelling index. Setback, consistency, and solubility were notably reduced. Therefore, waxy cassava with novel starch in its storage roots was produced using the biotechnological approach, promoting its industrial utilization.

  12. [Remediation efficiency of lead-contaminated soil at an industrial site by ultrasonic-assisted chemical extraction].

    Science.gov (United States)

    Wang, Xin-jie; Huang, Jin-lou; Liu, Zhi-qiang; Yue, Xi

    2013-09-01

    This research chose five lead-contaminated sites of a lead-acid battery factory to analyze the speciation distribution and concentration of lead. Under the same conditions (0.1 mol x L(-1) EDTA,30 min, 25 degrees C), the removal effect of heavy metal was compared between ultrasonic-assisted chemical extraction (UCE) and conventional chemical extraction ( CCE), and the variation of lead speciation was further explored. The results showed that the lead removal efficiency of UCE was significantly better than CCE. The lead removal efficiency of WS, A, B, C and BZ was 10.06%, 48.29%, 48.69%, 53.28% and 36.26% under CCE. While the removal efficiency of the UCE was 22.42%, 69.31%, 71.00%, 74.49% and 71.58%, with the average efficiency higher by 22%. By comparing the speciation distribution of the two washing methods, it was found that the acid extractable content maintained or decreased after UCE, whereas it showed an increasing trend after CCE. The reduction effect of the reducible was as high as 98% by UCE. UCE also showed a more efficient reduction effect of the organic matter-sulfite bounded form and the residual form. Hence, it is feasible to improve the washing efficiency of heavy metal contained in soil by conducting the cleaning process with the help of ultrasonic wave, which is a simple and fast mean to remove lead from contaminated sites.

  13. Compositional Simulation of a Refinery Coker Furnace - An Industrial Example of Two-Phase Flow with Chemical Reaction

    Directory of Open Access Journals (Sweden)

    Sigurd Skogestad

    1986-01-01

    Full Text Available A computer program (KOKSOVN has been developed for compositional steady-state simulation of a refinery delayed coker furnace. The main objective of this work has been to establish a tool for studying the effects that influence the deposition of coke on the inside walls of the tubes in order to maximize the time of operation (cycle time between each cleaning of the tubes with a resulting stop in production. The program basically consists of a standard integration package which steps along the reactor (or pipeline while solving the vapour-liquid equilibrium (VLE and estimating physical properties for each step. Using a modular approach in the development, the resulting computer program has some general features which make it a possible simulation tool for any non-adiabatic plug flow reactor with two-phase flow. Depending on the chemical system, the routines for thermophysical and transport properties, phase equilibria and chemical reaction may be replaced by other methods. The program may also be used to simulate a pipeline with one or two-phase flow. Since, however, the total composition in this case is constant, it would probably be more efficient to use tables based on the pressure values, instead of performing tedious VLE calculations along the pipeline as is done in the present program.

  14. 不确定条件下煤化工技术经济评价方法%Techno-economic assessment method under uncertainty in coal chemical industry

    Institute of Scientific and Technical Information of China (English)

    周文戟; 朱兵; 费维扬

    2009-01-01

    To develop coal chemical industry would enable taking full advantage of China's coal resource,and has great significance for national energy security.Howeve,huge uncertainty is faced by coal chemical industry,which is not only reflected by deepening market-oriented reform but also by constraint from policies regarding environmental and climate issues.This paper introduces the application of real options analysis(ROA) into techno-economic appraisal of energy utilization technologies,involving analysis of uncertain factors,modeling and solving techniques.Based on review of current research status,in combination with development background for China's coal chemical industry,the necessity and feasibility of application of the ROA theory is analyzed,indicating that the ROA theory has much potential for application.%发展煤化工对保障我国能源安全,充分利用煤炭资源有重大的意义.但我国煤化工行业发展存在较大的不确定性.这种不确定性不仅体现在原料,市场的迅速变化和工程技术的发展趋势,也体现在环境政策和应对气候变化的约束性要求.本文介绍了不确定条件下的投资决策理论(real options analysis,简称为ROA)的基本原理,不确定因素分析方法、建模和求解及其应用于能源利用技术投资领域的研究进展.在此基础上,结合我国煤化工产业发展背景,分析了该理论方法应用于我国煤化工领域相关投资决策和行业发展政策研究的必要性、可行性和应用前景.

  15. Repositioning the Government Function in the Heavy and Chemical Industries Era%重化工业时代政府功能的重新定位

    Institute of Scientific and Technical Information of China (English)

    赵津; 李健英

    2012-01-01

    20世纪20年代末,中国的社会变革在提速,国内化工产业正轰轰烈烈地壮大起来。重化工业的发展离不开政府的介入和扶持,南京政府相应制订了规模宏大的发展计划,然而技术劣势是政府发展计划的软肋。对于以永利为代表的新生力量来说,只要获得足够的发展资金,它们就有机会创造新的辉煌。永利利用外资因未获得政府的长期免税权而取消,加入公股的计划又因政府财政困难而搁浅,种种尝试未改变永利资金困难的局面。但加入公股的举措却使永利开始带有明显的官商合办色彩,由此迂回地获得政府的政策扶持和保护。%The domestic chemical industry had been vigorously growing up in a rapid changing Chinese social in the late 1920s. The Nanjing government had correspondingly made a largescale development plans since heavy chemical industry couldnt develop without the government'ssupport, however, the technical disadvantage was the soft underbelly of the government development plans. As a representative of the new force, the Yung Lee Soda Company ( also known as the Pacific Chemical Industries, Ltd. ) would have the opportunity to create new glories if the company got sufficient funds for development. The company couldnt change the funds difficult situation because it had to cancel the use of foreign capital since it failed to obtain the Government's long term tax free right, and failed to join the public shares because of the Government financial difficulties. At last, in a roundabout way the company got support and protection from the Government by joining the public shares.

  16. Present Status of Growth of Domestic Chemical Fertilizer Industry from View Point of Trend in World Chemical Fertilizer Structure%从世界化肥结构动态看我国化肥行业发展现状

    Institute of Scientific and Technical Information of China (English)

    朱东方; 何建芳; 陈明良

    2011-01-01

    On the basis of the growth trend in fertilizers of world developed nations, an analysis is done of the present status of development of the domestic compound fertilizer industry, fertilizer utilization ratio, fertilizer application based on soil analysis and formulation, pollution from application of chemical fertilizers, and new types of fertilizers. Based on the development status of domestic chemical fertilizers, suggestions for sustained growth are proposed, viz., the compound fertilizer industry should improve the product quality, lower the cost; the nitrogenous fertilizer industry should change the present pattern of urea alone taking the greatest share and may vigorously increase nitric acid and ammonia-based nitrogenous fertilizer; however, the phosphatic fertilizer industry, in the light of the domestic conditions and the limitation of the mineral resources, should continue to produce low-analysis phosphatic fertilizers, and slow down the growth of high-analysis ones; and it should attach great importance to developing organic fertilizers, especially organic-inorganic compound fertilizers.%根据世界发达国家肥料发展的趋势,对我国复合混肥行业、肥料利用率、测土配方施肥、化肥施用污染、新型肥料的发展现状等进行了分析.根据我国化肥行业的发展现状,提出了可持续发展的建议,即:复合肥行业应提升产品品质,降低成本;氮肥行业应改变目前尿素独大的格局,可大力发展硝酸氨基氮肥;而磷肥行业应根据我国的国情和矿产资源的有限性,应保留低浓度磷肥,减缓高浓度磷肥的发展;重视有机肥的开发,尤其是有机-无机复混肥.

  17. Software User’s Manual for the RAILCAR4.1 Toxic Industrial Chemical Source Characterization Program

    Science.gov (United States)

    2015-04-01

    Establishment  GUI      Graphical User Interface  JECP  Joint Expeditionary Collective Protection  LNG  Liquefied   Natural   Gas   LPG  Liquefied  Propane  Gas ...Thorney Island dense  gas  field trials, as summarized in the Modelers’ Data Archive (MDA)13   Methane ( liquefied   natural   gas  (LNG)) — a flammable...chemical used in the Burro,  Coyote, and Maplin Sands dense  gas  field trials, as summarized in the MDA   Propane ( liquefied  propane  gas  (LPG)) — a

  18. Phenanthrene removal from aqueous solutions using well-characterized, raw, chemically treated, and charred malt spent rootlets, a food industry by-product.

    Science.gov (United States)

    Valili, Styliani; Siavalas, George; Karapanagioti, Hrissi K; Manariotis, Ioannis D; Christanis, Kimon

    2013-10-15

    Malt spent rootlets (MSR) are biomaterials produced in big quantities by beer industry as by-products. A sustainable solution is required for their management. In the present study, MSR are examined as sorbents of a hydrophobic organic compound, phenanthrene, from aqueous solutions. Raw MSR sorb phenanthrene but their sorptive properties are not competitive with the respective properties of commercial sorbents (e.g., activated carbons). Organic petrography is used as a tool to characterize MSR after treatment in order to produce an effective sorbent for phenanthrene. Chemical and thermal (at low temperature under nitrogen atmosphere) treatments of MSR did not result in highly effective sorbents. Based on organic petrography characterization, the pores of the treated materials were filled with humic colloids. When pyrolysis at 800 °C was used to treat MSR, a sorbent with new and empty pores was produced. Phenanthrene sorption capacity was 2 orders of magnitude higher for the pyrolized MSR than for raw MSR.

  19. Removal of color and chemical oxygen demand using a coupled coagulation-electrocoagulation-ozone treatment of industrial wastewater that contains offset printing dyes

    Energy Technology Data Exchange (ETDEWEB)

    Roa M, G.; Barrera D, C.; Balderas H, P.; Zaldumbide O, F. [Centro Conjunto de Investigacion en Quimica Sustentable UAEM-UNAM, Km 14.5 Carretera Toluca-Atlacomulco, 50200 San Cayetano-Toluca, Estado de Mexico (Mexico); Reyes P, H. [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Paseo Colon y Paseo Tollocan s/n, 50120 Toluca, Estado de Mexico (Mexico); Bilyeu, B., E-mail: groam@uaemex.mx [Xavier University of Louisiana, Department of Chemistry, 1 Drexel Drive, New Orleans, LA 70125 (United States)

    2014-07-01

    Industrial offset printing processes generate wastewater with highly colored obtaining values of 5 x 10{sup 6}Pt-Co units and great values of chemical oxygen demand (COD) 5.3 x 10{sup -5} mg L{sup -1}. Thus, conventional technologies such as biologicals treatment fail in reaching the discharge limits. In this research, a sequential treatment was applied: coagulation with aluminum hydroxychloride (AHC), electrocoagulation with Al anodes and finally ozonation. Optimal conditions are found when adding 20 mg L{sup -1} AHC, followed by electrocoagulation at 4 A for 50 min, and finally alkaline ozonation for 15 min, resulting in an overall color removal of 99.99% color and 99.35 COD. The sludge generated by the coagulation process was analyzed by scanning electron microscopy and energy dispersive X-ray (EDX) microanalysis. (Author)

  20. The chemical, coal and petroleum products, and rubber industries in Italy's regions, 1861-1913: time-series estimates

    Energy Technology Data Exchange (ETDEWEB)

    Carlo Ciccarelli; Stefano Fenoaltea

    2007-05-15

    The paper presents time-series estimates of the output of chemicals and related products in post-Unification Italy, disaggregated by region and industry. In the large, one observes a growing concentration of production, accompanied by a northward shift. The star regional performers were Piedmont and Lombardy from the early 1870s to the early 1890s, and then, from the turn of the century, Liguria, Tuscany, and (thanks to its electrochemicals) Umbria. The Southern regions were leading producers at Unification; their output steadily increased, but at growth rates that fell short of the national average, and by 1913 their share of the total had been halved. 16 refs., 3 figs., 6 tabs., 5 apps.

  1. Recycling of metal-organic chemical vapor deposition waste of GaN based power device and LED industry by acidic leaching: Process optimization and kinetics study

    Science.gov (United States)

    Swain, Basudev; Mishra, Chinmayee; Kang, Leeseung; Park, Kyung-Soo; Lee, Chan Gi; Hong, Hyun Seon; Park, Jeung-Jin

    2015-05-01

    Recovery of metal values from GaN, a metal-organic chemical vapor deposition (MOCVD) waste of GaN based power device and LED industry is investigated by acidic leaching. Leaching kinetics of gallium rich MOCVD waste is studied and the process is optimized. The gallium rich waste MOCVD dust is characterized by XRD and ICP-AES analysis followed by aqua regia digestion. Different mineral acids are used to find out the best lixiviant for selective leaching of the gallium and indium. Concentrated HCl is relatively better lixiviant having reasonably faster kinetic and better leaching efficiency. Various leaching process parameters like effect of acidity, pulp density, temperature and concentration of catalyst on the leaching efficiency of gallium and indium are investigated. Reasonably, 4 M HCl, a pulp density of 50 g/L, 100 °C and stirring rate of 400 rpm are the effective optimum condition for quantitative leaching of gallium and indium.

  2. Influence of kidney disease on drug disposition: An assessment of industry studies submitted to the FDA for new chemical entities 1999-2010.

    Science.gov (United States)

    Matzke, Gary R; Dowling, Thomas C; Marks, Samantha A; Murphy, John E

    2016-04-01

    In 1998, the United States Food and Drug Administration (FDA) released the first guidance for industry regarding pharmacokinetic (PK) studies in renally impaired patients. This study aimed to determine if the FDA renal PK guidance influenced the frequency and rigor of renal studies conducted for new chemical entities (NCEs). FDA-approved package inserts (APIs) and clinical pharmacology review documents were analyzed for 194 NCEs approved from 1999 to 2010. Renal studies were conducted in 71.6% of NCEs approved from 1999 to 2010, a significant increase over the 56.3% conducted from 1996 to 1997 (P = .0242). Renal studies were more likely to be completed in highly renally excreted drugs (fe ≥ 30%) compared with drugs with low renal excretion, fe FDA guidance has resulted in improved availability of PK and drug-dosing recommendations, particularly for high fe drugs.

  3. Toxic State–Corporate Crimes, Neo-liberalism and Green Criminology: The Hazards and Legacies of the Oil, Chemical and Mineral Industries

    Directory of Open Access Journals (Sweden)

    Vincenzo Ruggiero

    2013-11-01

    Full Text Available This paper uses examples from the history and practices of multi-national and large companies in the oil, chemical and asbestos industries to examine their legal and illegal despoiling and destruction of the environment and impact on human and non-human life. The discussion draws on the literature on green criminology and state-corporate crime and considers measures and arrangements that might mitigate or prevent such damaging acts. This paper is part of ongoing work on green criminology and crimes of the economy. It places these actions and crimes in the context of a global neo-liberal economic system and considers and critiques the distorting impact of the GDP model of ‘economic health’ and its consequences for the environment.

  4. Insight into professionals building mechanism in chemical industry park%化工园区专业人才队伍构建机制的探讨

    Institute of Scientific and Technical Information of China (English)

    吴欣; 纪红兵

    2015-01-01

    化工园区是化学工业的必不可少的载体,是由当地政府及企业组成的一个专业复杂系统,其运行中需要大量具有专业知识的领导干部、企业经营管理人才、专业技术专业人才及高级技能人才。这些人才作为化工园区发展的最重要资源,其引进机制、培育机制以及激励机制在本文进行了探索,认为化工园区专业人才的引进机制应注重岗位与人才相匹配,项目引进与人才建设并举,不断优化专业人才引进体系;化工园区专业人才的培育机制要坚持理论与实践培训相结合,采用“走出去,引进来”等多形式、开放性的人才培育体系,全面提升园区专业人才综合素养;化工园区的激励机制应坚持物质与精神激励相结合,不断提升专业人才的社会影响力,创造专业人才“扎根”化工园区的良好环境。%As the essential carrier for nowadays chemical industry,chemical industry park is a complex system consisting of local governments and companies,in which human resources of leading cadres, enterprise managers,specialized technical professionals and people with high-level skills are required. Human resource is the most important resource in the development of chemical industry park,and the introduction mechanism,cultivation mechanism,and motivation mechanism are discussed in this paper. The matching of position and abilities,introducing projects and professionals simultaneously and constantly optimizing the introduction system are very important for the professionals’ introduction. In order to build a reasonable cultivation mechanism,the chemical industry park should combine theoretical with practical training,adopt different and opening cultivation forms to improve the comprehensive abilities of professionals. It is good to motivate professionals by combining material and spiritual incentives,enhancing the influence of professionals and creating favorable

  5. Application of PLC Control System in the Energy Chemical Industry%浅析PLC控制系统在能源化工的应用

    Institute of Scientific and Technical Information of China (English)

    胡青龙

    2015-01-01

    Different models of Siemens PLC control system are introduced in the energy chemical industry, the application of detailed Siemens S7-200 PLC and FS300 Modbus RTU communication program between gas alarm controller, and Siemens S7-200 and S7-300 DP communication between partial sent procedures,simple and convenient system programming,reliable operation.%介绍西门子不同型号的PLC控制系统在能源化工中的应用,详细叙述西门子S7-200PLC与FS300气体报警控制器之间的Modbus RTU通讯程序以及西门子S7-200与S7-300之间DP通讯分批发送程序,系统编程简单方便,运行可靠。

  6. 生物催化技术在化学工业中的应用(二)%Application of Biocatalysis in the Chemical Industry(Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    李祖义; 陈颖

    2003-01-01

    @@ (接上期) 3.2合成丙烯酰胺 在日用化学品的生物催化生产中,最成功的一个例子是将丙烯腈转化为丙烯酰胺[27].现年产2万t丙烯酰胺的Mitsubishi Rayon有限公司(日本东京)使用第三代生物催化剂--Rhodococcus rhodo-chrous J1,该催化剂是由Kobayashi和Yamada最先分离出来的[28],Nitto Chemical Industries(现为Mit-subishi Rayon有限公司的一部分)开发了其商业应用.

  7. Petrochemical Industrial Development Flourishes in China

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    @@ Cangzhou to construct world·class chemical industrial park To make full use of its advantages in coastline and harbors,local industries, traffic conditions and land use, Cangzhou City, Hebei Province, planned to construct the largest chemical industrial park in North China - Lingang Chemical Industrial Park, which has already captured attention of the Chinese and foreign chemicals enterprises.

  8. Dioxin body burden in women with long term residency near and away from major chemical industries in Teesside, UK

    Energy Technology Data Exchange (ETDEWEB)

    Pless-Mulloli, T.; Howel, D. [Univ. of Newcastle upon Tyne (United Kingdom); Edwards, R. [Univ. of Manchester (United Kingdom); Paepke, O. [ergo Forschungs Gesellschaft, Hamburg (Germany); Hermann, T.

    2004-09-15

    Retrospective exposure assessment poses a major challenge for environmental epidemiology studies. Body burden measures may act as markers for long-term exposure if biomarkers can be found with sufficiently long half lives in the human body. Some studies of human exposures have reported data from exposures over several years and before and after sources started production, however none have investigated the usefulness of such approach when exposure is estimated over more than a decade. Whilst for the general population food intake forms the major source of long term dioxin exposures other occupational and environmental sources can contribute to elevated body burdens. The UK has rich data sets for dioxin levels in food, but no body burden data are yet available for a general population sample. We tested the hypothesis that women with long term residence close to an industrial complex have a higher body burden and a distinct pattern of dioxins, furans (PCDD/F) and polychlorinated biphenyls (PCBs). We estimated exposure by recording residential history and food intakes and compared this information with body burden measurements as proxy for all forms of exposure.

  9. Effect of alkalinity on nitrite accumulation in treatment of coal chemical industry wastewater using moving bed biofilm reactor.

    Science.gov (United States)

    Hou, Baolin; Han, Hongjun; Jia, Shengyong; Zhuang, Haifeng; Zhao, Qian; Xu, Peng

    2014-05-01

    Nitrogen removal via nitrite (the nitrite pathway) is more suitable for carbon-limited industrial wastewater. Partial nitrification to nitrite is the primary step to achieve nitrogen removal via nitrite. The effect of alkalinity on nitrite accumulation in a continuous process was investigated by progressively increasing the alkalinity dosage ratio (amount of alkalinity to ammonia ratio, mol/mol). There is a close relationship among alkalinity, pH and the state of matter present in aqueous solution. When alkalinity was insufficient (compared to the theoretical alkalinity amount), ammonia removal efficiency increased first and then decreased at each alkalinity dosage ratio, with an abrupt removal efficiency peak. Generally, ammonia removal efficiency rose with increasing alkalinity dosage ratio. Ammonia removal efficiency reached to 88% from 23% when alkalinity addition was sufficient. Nitrite accumulation could be achieved by inhibiting nitrite oxidizing bacteria (NOB) by free ammonia (FA) in the early period and free nitrous acid in the later period of nitrification when alkalinity was not adequate. Only FA worked to inhibit the activity of NOB when alkalinity addition was sufficient.

  10. Utilization of inulin-containing waste in industrial fermentations to produce biofuels and bio-based chemicals.

    Science.gov (United States)

    Hughes, Stephen R; Qureshi, Nasib; López-Núñez, Juan Carlos; Jones, Marjorie A; Jarodsky, Joshua M; Galindo-Leva, Luz Ángela; Lindquist, Mitchell R

    2017-04-01

    Inulins are polysaccharides that belong to an important class of carbohydrates known as fructans and are used by many plants as a means of storing energy. Inulins contain 20 to several thousand fructose units joined by β-2,1 glycosidic bonds, typically with a terminal glucose unit. Plants with high concentrations of inulin include: agave, asparagus, coffee, chicory, dahlia, dandelion, garlic, globe artichoke, Jerusalem artichoke, jicama, onion, wild yam, and yacón. To utilize inulin as its carbon and energy source directly, a microorganism requires an extracellular inulinase to hydrolyze the glycosidic bonds to release fermentable monosaccharides. Inulinase is produced by many microorganisms, including species of Aspergillus, Kluyveromyces, Penicillium, and Pseudomonas. We review various inulinase-producing microorganisms and inulin feedstocks with potential for industrial application as well as biotechnological efforts underway to develop sustainable practices for the disposal of residues from processing inulin-containing crops. A multi-stage biorefinery concept is proposed to convert cellulosic and inulin-containing waste produced at crop processing operations to valuable biofuels and bioproducts using Kluyveromyces marxianus, Yarrowia lipolytica, Rhodotorula glutinis, and Saccharomyces cerevisiae as well as thermochemical treatments.

  11. 中国磷化工行业现状和发展方向%Present status and developmental direction of phosphorus chemical industry in China

    Institute of Scientific and Technical Information of China (English)

    陶俊法; 杨建中

    2011-01-01

    从产业布局、产品品种、节能降耗、"三废"及伴生资源的综合利用4个方面总结了中国磷化工行业的现状,提出了"继续嗣绕基础产品的生产开展节能、降耗、减排,实施清洁生产和循环经济,提升中间产品的品质,大力发展高端、精细、专用产品"的发展方向,并举例说明了黄磷、二水法磷酸和三聚磷酸钠生产中未来需要优先解决的技术问题,以及高端电子级产品、磷系阻燃剂和有机磷药物中的部分产品.%Present status of China's phosphorus chemical industry in terms of the industrial distribution, product variety,energy conservation and consumption reduction,and the comprehensive utilization of the three wastes and associated resources was summarized.Development direction that continue to carry out energy conservation, consumption and emission reduction, and implement cleaner production and recycling economy in terms of the production of basic products,improve the quality of intermediate products, vigorously develop high-end, fine, and special products was proposed.Some technological problems that have priority to be solved in future production of yellow phosphorus, dihydrate wet-process phosphoric acid,and sodium tripolyphosphate were exemplified.In addition, some products in respect of high-tech electronic phosphorus chemical materials,phosphorus flame retardants, and organophosphorous drugs were discussed as well.

  12. Physico-chemical properties of quartz from industrial manufacturing and its cytotoxic effects on alveolar macrophages: The case of green sand mould casting for iron production.

    Science.gov (United States)

    Di Benedetto, Francesco; Gazzano, Elena; Tomatis, Maura; Turci, Francesco; Pardi, Luca A; Bronco, Simona; Fornaciai, Gabriele; Innocenti, Massimo; Montegrossi, Giordano; Muniz Miranda, Maurizio; Zoleo, Alfonso; Capacci, Fabio; Fubini, Bice; Ghigo, Dario; Romanelli, Maurizio

    2016-07-15

    Industrial processing of materials containing quartz induces physico-chemical modifications that contribute to the variability of quartz hazard in different plants. Here, modifications affecting a quartz-rich sand during cast iron production, have been investigated. Composition, morphology, presence of radicals associated to quartz and reactivity in free radical generation were studied on a raw sand and on a dust recovered after mould dismantling. Additionally, cytotoxicity of the processed dust and ROS and NO generation were evaluated on MH-S macrophages. Particle morphology and size were marginally affected by casting processing, which caused only a slight increase of the amount of respirable fraction. The raw sand was able to catalyze OH and CO2(-) generation in cell-free test, even if in a lesser extent than the reference quartz (Min-U-Sil), and shows hAl radicals, conventionally found in any quartz-bearing raw materials. Enrichment in iron and extensive coverage with amorphous carbon were observed during processing. They likely contributed, respectively, to increasing the ability of processed dust to release CO2- and to suppressing OH generation respect to the raw sand. Carbon coverage and repeated thermal treatments during industrial processing also caused annealing of radiogenic hAl defects. Finally, no cellular responses were observed with the respirable fraction of the processed powder.

  13. Ethical acceptability, health policy and foods biotechnology based foods: is there a third way between the precaution principle and an overly enthusiastic dissemination of GMO?

    Science.gov (United States)

    Meningaud, J P; Moutel, G; Hervé, C

    2001-01-01

    The demand for consumer safety with regard to the food-processing industry is becoming, legitimately, more and more urgent. If ingested drugs can carry deleterious effects that exceed the beneficial effect that the research was initially undertaken for, then the same can only be the case for foods that stem from the same new biotechnologies, zero risk being non existent. There are two conflicting viewpoints about the possible risks linked to genetically modified organisms: a posteriori protection (based on vigilance once the product is on the market) and an a priori protection (at present usually supported by the precaution principle). We suggest a third way, which ensures consumer safety, but doesn't hinder scientific progress. Just as there are regulations for the protection of human subjects in biomedical research and regulations for the use of drugs after they are marketed, so should such regulations be introduced in the domains of food production that use biotechnologies. We therefore suggest that the scientific community and the food-processing industry develop evaluation protocols for new foods like the ones that exist for drugs. We thus offer thirteen regulations, based on the Helsinki declaration, in order to establish these protocols. These proposals, applied to food-processing research, would enable the industry to return confidence to consumers and thus avoid the random blocking of scientific progress, which is a source of health for the greater population.

  14. Aspects Regarding the Gross Chemical Composition and Fatty Acids Content of Some By-Products Obtained from the Biofuel Industry

    Directory of Open Access Journals (Sweden)

    Olimpia Colibar

    2010-05-01

    Full Text Available Samples of by-products, obtained from the production of biofuels were collected. These products were introduced in different proportions in feed rations of fattening lambs. Gross chemical composition of feed was analyzed and compared with mean reference values. Ash and cellulose content does not influence the results. The percentage of raw protein, specific for each feed, is correlated with the body weight gain. Fat quantity of rape meal is the closest to that of granulated feed and also the highest compared with the other groups, so that it can justify the higher productive performance achieved by group 1, who received rape meal in ratio. The concentration of fatty acids was determined from analyzed feed after oils extraction, their saponification and their reading with a HPLC. The data showed that the fatty acid level is relatively close to that specified in the literature. Euricic acid, that is responsible for the toxic potential of the rape, has been found in rape meal.

  15. Hydrolysis technology for producing sugars from biomass as raw material for the chemical industry - SugarTech

    Energy Technology Data Exchange (ETDEWEB)

    Kallioinen, A.; Haekkinen, M.; Pakula, T. (and others) (VTT Technical Research Centre of Finland, Espoo (Finland)), Email: anne.kallioinen@vtt.fi

    2010-10-15

    In SugarTech project, spruce, forest residue, birch and sugar cane bagasse have been studied as a raw material for production of sugars to be processed further to ethanol and other chemicals. These raw materials containing high proportion of carbohydrates have been analysed and pretreated for enzyme hydrolysis by steam explosion and oxidative methods. The pretreated materials have been studied in respect to yield and enzymatic hydrolysability. Birch and bagasse could easily be pretreated with steam explosion. Catalytic and alkaline oxidation treatment of spruce produced material with superior hydrolysability to steam exploded material. Enzyme adsorption and desorption were studied with lignocellulosic substrates aiming at recycling of enzymes in the hydrolysis process. After enzymatic hydrolysis, a major part of the enzymes remained bound to substrate in spite of high degree of hydrolysis. Desorption of enzymes could be detected only with catalytically oxidised spruce. In addition, the hydrolytic system of Trichoderma reesei, which is a widely used fungus for cellulase enzyme production, has been studied in the presence of different substrates. The substrate and the pretreatment method had clear effects on gene expression profile. (orig.)

  16. Comparison the Physico-Chemical Model of Ferrosilicon Smelting Process with Results Observations of the Process under the Industrial Conditions

    Directory of Open Access Journals (Sweden)

    Machulec B.

    2016-03-01

    Full Text Available Based on the minimum Gibbs Free Enthalpy algorithm (FEM, model of the ferrosilicon smelting process has been presented. It is a system of two closed isothermal reactors: an upper one with a lower temperature T1, and a lower one with a higher temperature T2. Between the reactors and the environment as well as between the reactors inside the system, a periodical exchange of mass occurs at the moments when the equilibrium state is reached. The condensed products of chemical reactions move from the top to the bottom, and the gas phase components move in the opposite direction. It can be assumed that in the model, the Reactor 1 corresponds to the charge zone of submerged arc furnace where heat is released as a result of resistive heating, and the Reactor 2 corresponds to the zones of the furnace where heat is produced by electric arc. Using the model, a series of calculations was performed for the Fe-Si-O-C system and was determined the influence of temperatures T1, T2 on the process. The calculation results show a good agreement model with the real ferrosilicon process. It allows for the determination of the effects of temperature conditions in charge zones and arc zones of the ferrosilicon furnace on the carbothermic silica reduction process. This allows for an explanation of many characteristic states in the ferrosilicon smelting process.

  17. Hydrolysis technology for producing sugars from biomass as raw material for the chemical industry- SugarTech

    Energy Technology Data Exchange (ETDEWEB)

    Kallioinen, A.; Hytoenen, E.; Haekkinen, M. (VTT Technical Research Centre of Finland, Espoo (Finland)), email: anne.kallioinen@vtt.fi (and others)

    2011-11-15

    In the SugarTech project, spruce, forest residue, birch and sugar cane bagasse have been studied as raw materials for production of sugars to be processed further to ethanol or other chemicals. These raw materials, containing high proportion of carbohydrates have been analysed and pretreated for enzymatic hydrolysis by steam explosion and oxidative methods. The pretreated materials have been studied in respect to yield and enzymatic hydrolysability. Small carboxylic acids were an interesting side product from oxidation pretreatment. For feasibility study, 8 process cases have been selected and will be compared. Optimal enzyme mixtures have been determined for hydrolysis of pretreated materials. Results show that optimal enzyme composition depends clearly on the raw material and the pretreatment method. Pretreated raw materials were also hydrolysed efficiently in high dry matter conditions with commercial enzymes. Enzyme adsorption and desorption were studied with lignocellulosic substrates aiming at recycling of enzymes in the hydrolysis process. After enzymatic hydrolysis, a major part of the enzymes remained bound to substrate in spite of high degree of hydrolysis. Desorption of enzymes could only be detected with catalytically oxidised spruce. In addition, the induction of hydrolytic system of Trichoderma reesei, which is a widely used fungus for cellulase enzyme production, has been studied in the presence of different substrates. The substrate and the pretreatment method had clear effects on gene expression profile. (orig.)

  18. Combination of physico-chemical analysis, Allium cepa test system and Oreochromis niloticus erythrocyte based comet assay/nuclear abnormalities tests for cyto-genotoxicity assessments of treated effluents discharged from textile industries.

    Science.gov (United States)

    Hemachandra, Chamini K; Pathiratne, Asoka

    2016-09-01

    Bioassays for cyto-genotoxicity assessments are generally not required in current textile industry effluent discharge management regulations. The present study applied in vivo plant and fish based toxicity tests viz. Allium cepa test system and Oreochromis niloticus erythrocyte based comet assay and nuclear abnormalities tests in combination with physico-chemical analysis for assessing potential cytotoxic/genotoxic impacts of treated textile industry effluents reaching a major river (Kelani River) in Sri Lanka. Of the treated effluents tested from two textile industries, color in the Textile industry 1 effluents occasionally and color, biochemical oxygen demand and chemical oxygen demand in the Textile industry 2 effluents frequently exceeded the specified Sri Lankan tolerance limits for discharge of industrial effluents into inland surface waters. Exposure of A. cepa bulbs to 100% and 12.5% treated effluents from both industries resulted in statistically significant root growth retardation, mito-depression, and induction of chromosomal abnormalities in root meristematic cells in comparison to the dilution water in all cases demonstrating cyto-genotoxicity associated with the treated effluents. Exposure of O. niloticus to the 100% and 12.5% effluents, resulted in erythrocytic genetic damage as shown by elevated total comet scores and induction of nuclear abnormalities confirming the genotoxicity of the treated effluents even with 1:8 dilution. The results provide strong scientific evidence for the crucial necessity of incorporating cyto-genotoxicity impact assessment tools in textile industry effluent management regulations considering human health and ecological health of the receiving water course under chronic exposure.

  19. A indústria de processamento químico no Brasil: suas motivações para pesquisa e desenvolvimento e suas interfaces com as políticas governamentais The chemical process industry in Brazil: its motivations for research and development and its interfaces with public policies

    Directory of Open Access Journals (Sweden)

    Alberto Ramy Mansur

    2005-12-01

    Full Text Available As the Chemical Science is an experimental one a Chemical Industry require technical people in all its staff level: from Directors and Managers to Operators. This chemical and chemical engineering based education is the foundation of the innovate process and motivation. The paper discusses this and the role of Public Policies to improve the R&D and innovation in the Brazilian Chemical Industry.

  20. Iranian wheat flours from rural and industrial mills: Exploitation of the chemical and technology features, and selection of autochthonous sourdough starters for making breads.

    Science.gov (United States)

    Pontonio, Erica; Nionelli, Luana; Curiel, José Antonio; Sadeghi, Alireza; Di Cagno, Raffaella; Gobbetti, Marco; Rizzello, Carlo Giuseppe

    2015-05-01

    This study aimed at describing the main chemical and technology features of eight Iranian wheat flours collected from industrial and artisanal mills. Their suitability for bread making was investigated using autochthonous sourdough starters. Chemical analyses showed high concentration of fibers and ash, and technology aptitude for making breads. As shown through 2-DE analyses, gliadin and glutenin subunits were abundant and varied among the flours. According to the back slopping procedure, type I sourdoughs were prepared from Iranian flours, and lactic acid bacteria were typed and identified. Strains of Pediococcus pentosaceus, Weissella cibaria, Weissella confusa, and Leuconostoc citreum were the most abundant. Based on the kinetics of growth and acidification, quotient of fermentation and concentration of total free amino acids, lactic acid bacteria were selected and used as sourdough mixed starters for bread making. Compared to spontaneous fermentation, sourdoughs fermented with selected and mixed starters favored the increase of the concentrations of organic acids and total free amino acids, the most suitable quotient of fermentation, and the most intense phytase and antioxidant activities. Although the high concentration of fibers, selected and mixed starters improved the textural features of the breads. This study might had contribute to the exploitation of the potential of Iranian wheat flours and to extend the use of sourdough, showing positive technology, nutritional and, probably, economic repercussions.

  1. Review on the Treatment of Wastewater from A Chemical Industrial Park in Chongqing%重庆某化工园区废水处理综述

    Institute of Scientific and Technical Information of China (English)

    刘思琪; 谭建红; 韩露

    2016-01-01

    With the continuous development of industry and society, most chemical products bring economic benefits and life convenience to human beings, but also have brought serious environment pollutions to us. Among these pollutions, chemical wastewater is especially typical. The basic characteristics of several typical enterprise wastewater were summarized, and the effect of wastewater treatment and wastewater treatment method were compared, a prospect of the method was given to choose the processing method.%随着工业的不断进步和社会的不断发展,大多数化工产品在给人类带来经济效益和生活便捷的同时也造成了严重的环境污染。在造成的众多污染中,化工废水又是尤其典型的。本文通过对几种具有典型意义的企业废水的基本特征进行综述,以及对几种废水处理方法的介绍和废水处理前后效果比较,从而对相应企业选择该种处理方法的合理性进行说明,由此给出展望,以期能为相关企业提供参考。

  2. Chemical composition of scales generated from oil industry and correlation to radionuclide contents and gamma-ray measurements of (210)Pb.

    Science.gov (United States)

    Al Attar, Lina; Safia, Bassam; Abdul Ghani, Basem

    2016-03-01

    Scale generated from the maintenance of equipment contaminated by naturally occurring radioactive materials may contain also chemical components that cause hazardous pollution to human health and the environment. This study spotlights the characterisation of chemical pollutants in scales in relation to home-made comparison samples as no reference material for such waste exists. Analysis by energy dispersive x-ray fluorescence, with accuracy and precision better than 90%, revealed that barium was the most abundant element in scale samples, ranging from 1.4 to 38.2%. The concentrations of the toxic elements such as lead and chromium were as high as 2.5 and 1.2% respectively. Statistically, high correlation was observed between the concentration of Ba and Sr, sample density, radionuclide contents ((210)Pb and (226)Ra) and self-attenuation factor used for the radio-measurements. However, iron showed a reverse correlation. Interpretation of data with regards to the mineralogical components indicated that (226)Ra and (210)Pb co-precipitated with the insoluble salt Ba0.75Sr0.25SO4. Since both Ba and Sr have high Z, samples of high density (ρ) were accompanied with high values of self-attenuation correction factors (Cf) for the emitted radiation; correlation matrix of Pearson reached 0.935 between ρ and Cf. An attempt to eliminate the effect of the elemental composition and improve gamma measurements of (210)Pb activity concentration in scale samples was made, which showed no correction for self-attenuation was needed when sample densities were in the range 1.0-1.4 g cm(-3). For denser samples, a mathematical model was developed. Accurate determinations of radionuclide and chemical contents of scale would facilitate future Environmental Impact Assessment for the petroleum industry.

  3. Estudo termoanalítico, CLAE e francionamento físico e químico do subproduto industrial do milho Thermoalytical study, HPLC and physical and chemical cracking from corn industry co-product

    Directory of Open Access Journals (Sweden)

    Cheila G. Mothé

    2005-03-01

    Full Text Available O fracionamento do farelo de milho desengordurado (fubá grosso, subproduto do processamento industrial do milho, para obtenção de frações de amido, proteínas e fibras, utilizando métodos físicos e químicos, foi investigado. O fracionamento do fubá grosso por meio de tratamento químico com soluções de bissulfito de sódio e de etanol, foi satisfatório, pois produziu fração de amido com aceitável rendimento; já o fracionamento físico não foi muito eficiente, visto que não produziu fração enriquecida de proteínas e amido. Tanto o fubá grosso como as frações obtidas, foram caracterizados por meio de CLAE (Cromatografia Líquida de Alta Eficiência e Análise Térmica (TG, DTG e DSC. O fubá grosso possui mais de 50% de amido (CLAE, e perda de 52% de sua massa entre 270 e 450ºC (TG e DTG. O estudo cinético, a partir de curvas DSC, mostrou que os processos de gelatinização da fração de amido e de desnaturação da fração de proteínas são eventos endotérmicos, com diferentes valores de entalpia e de energia de ativação.The cracking of the defatted corn germ (thick corn meal, co-product from corn industry processing, to obtain starch, proteins and fiber fractions using physical and chemical methods has been investigated. The chemical separation of the thick corn meal with sodium disulfide and ethanol solutions was satisfactory, since it had product starch fraction with acceptable yield. However, the physical separation (boll mill was not successful, because it has not yielded enriched fractions of starch and proteins. Both thick corn meal and all the fractions obtained were characterized by HPLC (High Performance Liquid Chromatography and Thermal Analysis (TG, DTG and DSC. The thick corn meal is composed of more than 50% of starch (CLAE. It has showed mass loss of 52% between 270 - 450ºC (TG and DTG. The kinetic parameters from DSC curves exhibited for gelatinization process of the starch fractions and

  4. Energy Saving and Emission Control——an Inevitable Choice for China Coal Chemical Industry Development%节能减排是我国煤化工发展的必然选择

    Institute of Scientific and Technical Information of China (English)

    顾宗勤

    2012-01-01

    对煤化工产业进行节能减排的重要性和紧迫性进行系统分析,并对煤化工产业的发展方向和节能减排的新措施进行介绍。%To analyze the importance and urgency of energy saving and emission control in China coal chemical industry.To introduce the development trend of coal chemical industry.The new measures of energy saving and emission control are put forward.

  5. The Influence of Industrial Processing on the Physico-Chemical Characteristics and Lipid and Antioxidant Contents of Rice Bran; Influencia del procesado industrial sobre las caracteristicas quimico-fisicas y contenido en lipidos y antioxidantes del salvado de arroz

    Energy Technology Data Exchange (ETDEWEB)

    Pestana, V. R.; Zambiazi, R.; Mendonca, C. R. B.; Bruscatto, M. H.; Ramis-Ramos, G.

    2009-07-01

    A comparative study of the physico-chemical characteristics of rice bran during the successive steps of its industrial processing was carried out and included white and parboiled rice brans and pelletized and defatted rice brans. Moisture, acidity and peroxide index were determined. Using extracts in petroleum ether and gas chromatography, the total fat contents and the profiles of the fatty acids were established. The tocopherols and {gamma}-oryzanol were determined using high performance liquid chromatography. The bran of parboiled rice showed the largest fat content and the lowest acidity, indicating that parboiling is the most effective process for bran stabilization. Oleic, linoleic and palmitic acids predominated in all the samples. Pelletization did not produce a loss in lipids, tocopherols or {gamma}-oryzanol. All the samples showed higher contents of {alpha}-tocopherol, intermediate contents of {gamma}-tocopherol and much lower concentrations of {delta}-tocopherol. Nine components of {gamma}- oryzanol were detected, with a major proportion of the component that eluted in the fourth position, probably ferulate of 24-methylene cycloartenol. Pelletized rice bran showed the highest tocopherol content, whereas parboiled rice bran yielded the largest {gamma}-oryzanol content. (Author) 31 refs.

  6. Concentrations, profiles, and estimated human exposures for polychlorinated dibenzo-p-dioxins and dibenzofurans from electronic waste recycling facilities and a chemical industrial complex in Eastern China.

    Science.gov (United States)

    Ma, Jing; Kannan, Kurunthachalam; Cheng, Jinping; Horii, Yuichi; Wu, Qian; Wang, Wenhua

    2008-11-15

    Environmental pollution arising from electronic waste (e-waste) disposal and recycling has received considerable attention in recent years. Treatment, at low temperatures, of e-wastes that contain polyvinylchloride and related polymers can release polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Although several studies have reported trace metals and polybrominated diphenyl ethers (PBDEs) released from e-waste recycling operations, environmental contamination and human exposure to PCDD/Fs from e-waste recycling operations are less well understood. In this study, electronic shredder waste and dust from e-waste facilities, and leaves and surface soil collected in the vicinity of a large scale e-waste recycling facility in Taizhou, Eastern China, were analyzed for total PCDD/ Fs including 2,3,7,8-substituted congeners. We also determined PCDD/Fs in surface agricultural soils from several provinces in China for comparison with soils from e-waste facilities. Concentrations of total PCDD/Fs were high in all of the matrices analyzed and ranged from 30.9 to 11400 pg/g for shredder waste, 3460 to 9820 pg/g dry weight for leaves, 2560 to 148000 pg/g dry weight for workshop-floor dust, and 854 to 10200 pg/g dry weight for soils. We also analyzed surface soils from a chemical industrial complex (a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) in Shanghai. Concentrations of total PCDD/Fs in surface soil (44.5-531 pg/g dry wt) from the chemical industrial complex were lower than the concentrations found in soils from e-waste recycling plants, but higher than the concentrations found in agricultural soils. Agricultural soils from six cities in China contained low levels (3.44-33.8 pg/g dry wt) of total PCDD/Fs. Profiles of dioxin toxic equivalents (TEQs) of 2,3,7,8-PCDD/Fs in soils from e-waste facilities in Taizhou differed from the profiles found in agricultural soils. The estimated daily intakes of TEQs of PCDD/ Fs via soil/dust ingestion

  7. Comparison of Poly Aluminum Chloride and Chlorinated Cuprous for Chemical Oxygen Demand and Color Removal from Kashan Textile Industries Company Wastewater

    Directory of Open Access Journals (Sweden)

    Hoseindoost Gh.1 MSPH,

    2016-08-01

    Full Text Available Aims Textile wastewaters are the most important health and environmental problems in Kashan. This research was aimed to compare the poly aluminum chloride and chlorinated cuprous efficiency for removal of Chemical Oxygen Demand (COD and color from Kashan Textile Industries Company wastewater. Materials & Methods This experimental bench scale study in a batch system was conducted on 20 composed wastewater samples collected from Kashan Textile Industries Company raw wastewater. During 5 months, in the beginning of every week a day was selected randomly and in the day a composed sample was taken and studied. PAC at the doses of 10, 20, 30, 40 and 50mg.l-1 and chlorinated cuprous at the doses of 100, 200, 300, 400 and 500mg.l-1 were applied. The optimum pH also optimum concentration of PAC and chlorinated cuprous were determined using Jar test. The data was analyzed by SPSS 16 using descriptive statistics and Fisher Exact test. Findings The average concentration of COD in the raw textile wastewater was 2801.56±1398.29mg.l-1. The average COD concentration has been decreased to 1125.47±797.55mg.l-1. There was a significant difference between the effects of these two coagulants efficiency (p<0.05. The average COD removal efficiency for chlorinated cuprous and PAC was 58.52% and 72.56%, respectively. Also, the average color removal efficiency by chlorinated cuprous and PAC were 17.23 and 64.45%, respectively. Conclusion PAC is more efficient than chlorinated cuprous for both COD and color removal from KTIC wastewater.

  8. Antagonistic activity of Bacillus sp. obtained from an Algerian oilfield and chemical biocide THPS against sulfate-reducing bacteria consortium inducing corrosion in the oil industry.

    Science.gov (United States)

    Gana, Mohamed Lamine; Kebbouche-Gana, Salima; Touzi, Abdelkader; Zorgani, Mohamed Amine; Pauss, André; Lounici, Hakim; Mameri, Nabil

    2011-03-01

    The present study enlightens the role of the antagonistic potential of nonpathogenic strain B21 against sulfate-reducing bacteria (SRB) consortium. The inhibitor effects of strain B21 were compared with those of the chemical biocide tetrakishydroxymethylphosphonium sulfate (THPS), generally used in the petroleum industry. The biological inhibitor exhibited much better and effective performance. Growth of SRB in coculture with bacteria strain B21 antagonist exhibited decline in SRB growth, reduction in production of sulfides, with consumption of sulfate. The observed effect seems more important in comparison with the effect caused by the tested biocide (THPS). Strain B21, a dominant facultative aerobic species, has salt growth requirement always above 5% (w/v) salts with optimal concentration of 10-15%. Phylogenetic analysis based on partial 16S rRNA gene sequences showed that strain B21 is a member of the genus Bacillus, being most closely related to Bacillus qingdaonensis DQ115802 (94.0% sequence similarity), Bacillus aidingensis DQ504377 (94.0%), and Bacillus salarius AY667494 (92.2%). Comparative analysis of partial 16S rRNA gene sequence data plus physiological, biochemical, and phenotypic features of the novel isolate and related species of Bacillus indicated that strain B21 may represent a novel species within the genus Bacillus, named Bacillus sp. (EMBL, FR671419). The results of this study indicate the application potential of Bacillus strain B21 as a biocontrol agent to fight corrosion in the oil industry.

  9. A Study on Environmental Risk Classification for Chemical Industry in Jinan City%济南市企业环境风险分级研究

    Institute of Scientific and Technical Information of China (English)

    胡绳

    2016-01-01

    According to environmental risk substances, risk control levels and the sensitivity of environmental risk receptors, industrial environmental risk levels were determined. The results showed that there were 42 significant risk sources and 58 high risk sources in Jinan, accounting for 43.48% of the total evaluated enterprises. Most of significant risk and high risk sources belonged to manufactures of chemical materials and products which situated in Zhangqiu and Licheng. Finally, the risk control countermeasures were proposed for the primary environmental risk districts, such as Zhangqiu and Licheng. For Zhangqiu, measures like reducing industrial environmental risks and preventing chemical transportation vehicle accidents were advised to be taken. For Licheng, some should be carried out to improve the enterprises' risks control and protect the environmental sensitive points.%在综合考虑企业环境风险物质、环境风险控制水平和环境风险受体敏感性的基础上,对济南市企业进行了环境风险等级评估。结果显示,全市有重大环境风险源42家,较大环境风险源58家,二者占企业总数的43.48%,主要是化学原料及化学制品制造业企业,集中存在于章丘市、历城区。针对环境风险较大的区域,提出章丘市要从降低企业固有风险和防范化学品运输车辆事故方面采取措施,历城区要从提高企业风险控制水平和保护环境敏感目标方面采取措施。

  10. 浅议低碳背景下的煤化工发展%On Development of Coal Chemical Industry Under Background of Low Carbon

    Institute of Scientific and Technical Information of China (English)

    孙玉泉

    2013-01-01

    People are aware of the source of carbon dioxide emissions, mainly coal, itself, constituted by carbon fossil fuels, so in the current advocacy to reduce carbon emissions, energy conservation appeal, as more carbon emissions in China, also increasing emphasis on the concept of low-carbon economy. According to China's actual use of coal production, in order to achieve the goal of low-carbon economy, we need to enhance the utilization of coal and recovery. This article will be under the conditions of a low -carbon economy to achieve the efficient development of coal chemical issues, pointed out that the concept of a variety of industrial symbiosis in detail, combined with state-of-the-art scientific and technological means, efforts to build a modern coal chemical industry, to achieve low-carbon development prospects for the road.%人们都了解CO2排放量的来源,主要是煤这种自身由碳元素构成的化石原料,所以当前在倡导减少碳排放、节能减排呼吁下,作为碳排量较多的中国,也越来越重视低碳经济的概念了。根据我国实际使用煤生产的情况,要想实现低碳经济目标,就需要提升煤炭的利用率以及回收率。文章就将以低碳经济条件下,实现煤化工的高效发展为课题,详细指出多种产业化共生的理念,再结合先进的科技手段,努力构建现代煤化工,实现低碳发展的道路前景。

  11. 化工行业“安全观察与沟通”的初步探索%Safety Observation and Communication Exploration on Chemical Industry

    Institute of Scientific and Technical Information of China (English)

    赵林; 王述存; 孟力

    2016-01-01

    安全观察与沟通是落实有感领导、展现领导承诺的一种有效手段[1]。通过对杜邦公司安全文化体系的认知,深刻剖析在化工危险作业中应该如何做好安全观察与沟通。结合当前在化工生产中的重点应用及注意事项,本文分别对安全观察与沟通的概况、内容及应用等,进行了较详细的分析与阐述。在工作中倡导并积极开展安全观察与沟通,将达到较好的安全管理效果。%Security Watch is to implement felt leadership and communication, as a means to show leadership commitments. Through the perception of the state company's safety culture system, a profound analysis of the chemical industry should be how to do dangerous work safety observation and communication. Combined with the current focus on the application and precautions in chemical production, the significance of safety observation and communication, content and applications were carried on for a more detailed exposition and analysis. Advocacy at work and actively carrying out safety observation and communication will achieve better security management effectiveness.

  12. 丹阳市化工行业发展与环境污染现状及对策研究%Current Situation and Countermeasures of Development of Chemical Industry and Environmental Pollution in Danyang City

    Institute of Scientific and Technical Information of China (English)

    黄玲群

    2012-01-01

    指出了丹阳市化工行业经过多年的发展,产品种类日益繁多,但在发展经济的同时又会产生大量有毒物质而影响生态环境、危及人类健康。对该市化工行业发展及其污染现状进行了调研,分析了该化工企业的基本情况、存在的问题,并提出了建设思路和管理对策,供相关部门决策参考,以进一步促进该市化工行业的可持续发展。%Chemical industry has various categories and complex process,which can emit large quantities of high toxicity pollutants in the production. Danyang City has developed the chemical industry for years, and it has developed the economy and also produces large amounts of toxic substances which affect the ecological environment and human health. Therefore,this article studies the development and environmental pollutions of the chemical industry,and proposes some construction ideas and management measures about how to fur- ther promote the sustainable development of chemical industry in Dandong City.

  13. Physico-chemical characteristics of activated carbons based on a copolymer of furfural and mineral raw materials of the Republic of Kazakhstan and their application in extracting gold from industrial solutions

    Directory of Open Access Journals (Sweden)

    Kanagat Kishibayev

    2013-09-01

    Full Text Available Activated carbons are widely used in different industries for cleaning a variety of natural objects from of technogenic pollutants. In the article presents the results of physico-chemical investigations of activated carbons. The investigations on the sorption of gold in cyanide solutions activated sorbent based on furfural and sorbent based on shungit.

  14. Valorization/Recognition of Environmental Protection Qualifications in the Chemical and Metal Industries. Synthesis of the National Reports: Federal Republic of Germany, France, Italy, Spain, United Kingdom. CEDEFOP Panorama. First Edition.

    Science.gov (United States)

    Gay, Catherine

    Reports on the development and recognition of environmental protection qualifications in the chemical and metal industries in Germany, France, Italy, Spain, and the United Kingdom were synthesized. The synthesis focused on companies' and social partners' current and planned strategies and obligations of companies regarding recognizing…

  15. 化工生产环境中QR码的检测识别方法研究%QR Code Detection and Recognition in Chemical Industry

    Institute of Scientific and Technical Information of China (English)

    黄江平; 吴昊

    2012-01-01

    Considering the fact that chemical industry employs QR codes as the electronic label for the materials and products, and the kind of background noises can be seen in most collected QR codes due to the environmental impact, the binarization algorithm based on expectation maximization was proposed and applied to preprocess QR code images. The experimental results prove its better effect in removing background noises.%以某化工生产企业在生产过程中使用QR码作为物料和产品的电子标签为背景,针对在化工生产中因受环境影响,致使采集到的QR码的图像大多存在一定的背景噪声,需要对图像进行二值化预处理以去除背景噪声,提出一种基于最大期望值的二值化算法并应用于QR码图像预处理中,取得了较好的效果.

  16. Investigation into the analysis method of total ecobalance in chemical industry products. 3; Kagaku kogyo seihin ni okeru total eko balance no bunseki shuho ni kansuru chosa. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    For the purpose of establishing a total life-cycle ecobalance analysis (LCA) method, the paper studied making of a general computer program for chemical industry products. The study has been made on general-purpose plastics (PET/PSP (polystyrene paper)) since fiscal 1993 aiming at making the CO2 emission computing program covering the entire process of production from extraction of raw materials through waste disposal. In fiscal 1995, the following were conducted for enhancement of generalization of the method: expansion of environmental load items and increase in validity of the concept, and expansion of database. Notice was taken of not only CO2 but SOx, NOx and water quality load items. The survey was made on the recycling situation in Japan and abroad and the PET recycling plant , and environmental load item data are collected to expand database. The program was verified by analyzing an example of reusing PET bottle to carpet, and one-step development can be made toward the establishment of the method. Moreover, an analysis was made for the environmental assessment of the related programs abroad, and a tentative original plan can be proposed for the standardization of environmental load analysis and the integrated assessment method. 39 refs., 130 figs., 76 tabs.

  17. Characterization of Plasma Enhanced Chemical Vapor Deposition-Physical Vapor Deposition transparent deposits on textiles to trigger various antimicrobial properties to food industry textiles

    Energy Technology Data Exchange (ETDEWEB)

    Brunon, Celine [Universite de Lyon, Universite Lyon 1, Laboratoire des Sciences Analytiques (LSA), CNRS, UMR 5180, Bat. J. Raulin 5eme etage, F-69622 Villeurbanne Cedex (France); Chadeau, Elise; Oulahal, Nadia [Universite de Lyon, Universite Lyon 1, Laboratoire de Recherche en Genie Industriel Alimentaire (LRGIA, E.A. 3733), Rue Henri de Boissieu, F-01000 Bourg en Bresse (France); Grossiord, Carol [Science et Surface, 64, Chemin des Mouilles, F-69130 Ecully (France); Dubost, Laurent [HEF, ZI SUD, Rue Benoit Fourneyron, F-42166 Andrezieux Boutheon (France); Bessueille, Francois [Universite de Lyon, Universite Lyon 1, Laboratoire des Sciences Analytiques (LSA), CNRS, UMR 5180, Bat. J. Raulin 5eme etage, F-69622 Villeurbanne Cedex (France); Simon, Farida [TDV Industrie, 43 Rue du Bas des Bois, BP 121, F-53012 Laval Cedex (France); Degraeve, Pascal [Universite de Lyon, Universite Lyon 1, Laboratoire de Recherche en Genie Industriel Alimentaire (LRGIA, E.A. 3733), Rue Henri de Boissieu, F-01000 Bourg en Bresse (France); Leonard, Didier, E-mail: didier.leonard@univ-lyon1.fr [Universite de Lyon, Universite Lyon 1, Laboratoire des Sciences Analytiques (LSA), CNRS, UMR 5180, Bat. J. Raulin 5eme etage, F-69622 Villeurbanne Cedex (France)

    2011-07-01

    Textiles for the food industry were treated with an original deposition technique based on a combination of Plasma Enhanced Chemical Vapor Deposition and Physical Vapor Deposition to obtain nanometer size silver clusters incorporated into a SiOCH matrix. The optimization of plasma deposition parameters (gas mixture, pressure, and power) was focused on textile transparency and antimicrobial properties and was based on the study of both surface and depth composition (X-ray Photoelectron Spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), as well as Transmission Electron Microscopy, Atomic Force Microscopy, SIMS depth profiling and XPS depth profiling on treated glass slides). Deposition conditions were identified in order to obtain a variable and controlled quantity of {approx} 10 nm size silver particles at the surface and inside of coatings exhibiting acceptable transparency properties. Microbiological characterization indicated that the surface variable silver content as calculated from XPS and ToF-SIMS data directly influences the level of antimicrobial activity.

  18. Evaluation of laboratory and industrial meat and bone meal combustion residue as cadmium immobilizing material for remediation of polluted aqueous solutions: "chemical and ecotoxicological studies".

    Science.gov (United States)

    Coutand, M; Deydier, E; Cyr, M; Mouchet, F; Gauthier, L; Guilet, R; Savaete, L Bernues; Cren, S; Clastres, P

    2009-07-30

    Meat and Bone Meals (MBM) combustion residues (ashes) are calcium and phosphate-rich materials. The aim of this work is to evaluate ashes efficiency for remediation of cadmium-contaminated aqueous solutions, and to assess the bioavailability of cadmium on Xenopus laevis larvae. In this study both industrial (MBM-BA) and laboratory (MBM-LA) ashes are compared regarding their efficiency. Kinetic investigations reveal that cadmium ions are quickly immobilized, with a maximum cadmium uptake at 57 mg Cd(2+)/g of ashes for MBM-LA, two times higher than metal uptake quantity of MBM-BA, in our experimental conditions. Chemical and X-ray diffraction analysis (XRD) reveal that Cd(2+) is mainly immobilized as Ca(10-x)Cd(x)(PO(4))(6)(OH)(2) by both ashes, whereas otavite, Cd(CO(3)), is also involved for MBM-LA in cadmium uptake. Otavite formation could be explained by the presence of carbonates in MBM-LA, as observed by IR. Genotoxicity of cadmium solution on Xenopus larvae is observed at 0.02, 0.2 and 2mg Cd(2+)/L. However addition of only 0.1g/L MBM-LA inhibits these effects for the above concentration values whereas Cd(2+) bioaccumulation in larvae's liver is similar for both experiments, with and without ashes.

  19. Industrial diamond

    Science.gov (United States)

    Olson, D.W.

    2013-01-01

    Estimated 2012 world production of natural and synthetic industrial diamond was about 4.45 billion carats. During 2012, natural industrial diamonds were produced in at least 20 countries, and synthetic industrial diamond was produced in at least 12 countries. About 99 percent of the combined natural and synthetic global output was produced in Belarus, China, Ireland, Japan, Russia, South Africa and the United States. During 2012, China was the world’s leading producer of synthetic industrial diamond followed by the United States and Russia. In 2012, the two U.S. synthetic producers, one in Pennsylvania and the other in Ohio, had an estimated output of 103 million carats, valued at about $70.6 million. This was an estimated 43.7 million carats of synthetic diamond bort, grit, and dust and powder with a value of $14.5 million combined with an estimated 59.7 million carats of synthetic diamond stone with a value of $56.1 million. Also in 2012, nine U.S. firms manufactured polycrystalline diamond (PCD) from synthetic diamond grit and powder. The United States government does not collect or maintain data for either domestic PCD producers or domestic chemical vapor deposition (CVD) diamond producers for quantity or value of annual production. Current trade and consumption quantity data are not available for PCD or for CVD diamond. For these reasons, PCD and CVD diamond are not included in the industrial diamond quantitative data reported here.

  20. 化学工业4.0新范式及其关键技术%New Paradigm and Key Technologies of Chemical Industry 4.0

    Institute of Scientific and Technical Information of China (English)

    吉旭; 许娟娟; 卫柯丞; 唐盛伟

    2015-01-01

    Following the trend towards the networking of manufacturing industries, a new paradigm of chemical industry, called chemical industry 4.0, was proposed, which is characterized by the integration of supply chain network,flexibility, serviceability and intellectualization. Chemical industry 4.0 helps enterprises to make accurate judgments and real-time response to the complex and changeable condition of the daily production and operation, by means of unimpeded information exchanging between people and people, people and machines, machines and machines on the platform of Cyber-Physical System (CPS). Then the key technologies of Chemical industry 4.0 were discussed, including the CPS architecture of chemical industry, the flexible chemical manufacturing system, the digital technology for the chemical CPS and knowledge management system based on CPS. As an example, the structure of a smart distillation unit based on CPS was proposed.%全球化背景下,为应对化学工业绿色和可持续发展挑战,提出了化学工业4.0新范式。核心是通过人与人、人与机器和机器与机器间无障碍的信息交换,帮助企业对生产经营中复杂多变的状况做出精准判断和实时反应,其特点是“供应链网”整合、柔性化、服务化和智能化。进而讨论了化学工业4.0的关键性技术,包括化学工业的信息物理系统架构(Cyber - Physical System,CPS)、基于CPS的柔性化生产体系、CPS的数字化技术和基于CPS的知识管理体系,作为例,分析了基于CPS的智能化精馏单元架构。

  1. Industry Raps OSHA's Proposed Cancer Policy

    Science.gov (United States)

    Chemical and Engineering News, 1978

    1978-01-01

    Presents the response of the American Industrial Health Council (AIHC) to the Occupational Safety and Health Administration's (OSHA's) genetic proposal for regulating chemical carcinogens in industry. (HM)

  2. Leuconostoc bacteriophages from blue cheese manufacture: long-term survival, resistance to thermal treatments, high pressure homogenization and chemical biocides of industrial application.

    Science.gov (United States)

    Pujato, Silvina A; Guglielmotti, Daniela M; Ackermann, Hans-W; Patrignani, Francesca; Lanciotti, Rosalba; Reinheimer, Jorge A; Quiberoni, Andrea

    2014-05-01

    chemical treatments for inactivating phages in industrial plants and laboratory environments.

  3. A robotic system for the educational chemistry laboratory: Integrating a SCARA light industrial robot with ordinary laboratory devices to perform chemical operations

    Science.gov (United States)

    Johnson, Wes W.

    Laboratory robotics had its origins in devices constructed to perform specific and invariant mechanical operations in the chemical laboratory. Examples of this type of automation equipment include: automatic titrators, fraction collectors, and autoanalyzers. With the advancements in the electronics and computer industries, it has been possible to build more flexible automated devices, which we now call robots. Programmable robots can be taught to do a variety of routine procedures and are a valuable asset in the chemical laboratory. However, it is becoming increasingly difficult to be able to initially set up or modify an existing automation without the assistance of a vendor expert. Automation manufacturers often impose restrictions on how a device may be used and reconfiguration of the device by the user is usually too complex for the average technician. Also, it is not uncommon to find automated systems that only support the use of one manufacturer's balance, diluter, or other device. This approach simplifies the work needed in the development and manufacturing processes of the robotic system. But, by neglecting to design systems that can accept a wide range of third party equipment, the manufacturer restricts the user's ability to independently design unique applications. To address these issues, an example robotic system was constructed at the University of Cincinnati (UC). In this work, the feasibility of creating a simple and flexible automation using ordinary laboratory devices controlled via RS-232 was investigated. The system devised can control any device that is RS-232 compatible and can be reconfigured to accept new devices easily. The basis for this system is ASCII text definition files used by the control software. The software uses the configuration information, including ASCII command sets, to implement control of the RS-232 devices. A common pharmacuetical analysis (The Acid Neutralizing Capacity of OTC Antacids) was selected and implemented using

  4. Investigation on mosquito and fly species in the port of Shanghai Chemical Industry Park%上海化工区口岸蚊蝇调查研究

    Institute of Scientific and Technical Information of China (English)

    孙义涛; 郭光亮; 曹敏

    2014-01-01

    Objective To know the composition and distribution of mosquito and fly species through field investigation in the port of Shanghai Chemical Industry Park,so as to provide scientific evidence for the prevention and treatment of biological vectors.Methods Lamp-baiting and scooping method were used for the investigation of mosquitoes,and cage-trap method was used for the catching of flies.Results During the investigation from 2009 to 2011,10 species of mosquitoes belonging to 6 genera were monitored,with Culex tritaeniorhynchus being the dominant specie.The ecological wetland was the prime breeding place of mosquitoes,and its peak time of activity was from June to August.Coquillettidia ochracea and Ochlerotatus dorsalis,which were rarely found in Shanghai,were also collected during the investigation there.Fifty-nine species of flies belonging to 31 genera of 5 families were monitored,with Chrysomya megacephala,Hemipyrellia liqurriens and Atherigona oryzae being the dominant species,and its peak time of activity was from June to September.Population distribution displayed the feature of diversification.Conclusions Culex tritaeniorhynchus and Chrysomya megacephala were the dominant species in the port of Shanghai Chemical Industry Park and were the prime vectors for prevention and control,and comprehensive prevention and control measures should be taken in accordance with their breeding habits and features,as well as changes in seasons of a year.%目的 调查上海化工区口岸蚊蝇,了解本区域蚊蝇种群的组成和分布,为口岸病媒防治工作提供科学依据.方法 蚊类调查采用灯诱法和捞勺法,蝇类采用诱蝇笼法.结果 2009-2011年,化工区口岸蚊类有6属10种,三带喙库蚊为优势种群,活动高峰在6-8月,生态湿地周围是蚊虫主要孳生地,捕获到上海地区较少见的黄色轲蚊和背点骚扰蚊;蝇类有5科31属59种,优势蝇种为大头金蝇、瘦叶带绿蝇和芒蝇,6-9月是活动高峰,种群分

  5. Financial analysis of phosphate chemical industry listed companies in China%我国磷化工行业上市公司财务分析

    Institute of Scientific and Technical Information of China (English)

    张海波; 刘颖

    2012-01-01

    从财务的角度,对我国磷化工行业主要上市公司2006--2010年度的财务报表分别从偿债能力、营运能力、盈利能力和发展能力四个方面进行了分析。分析结果表明,兴发集团在最近5年内对流动资产的管理水平是同类企业中最高的,偿债能力在不断提高,权益净利率保持稳定,企业的规模也在不断扩大。此外,杜邦分析体系分析表明,兴发集团的权益净利率的波动主要受销售净利率的影响。%Based on financial perspective, 2006--2010 annual financial statement of main listed company of phosphate chemical industry in China are analyzed from the debt paying ability, operation ability, profitability and development ability. The analysis results show that, in recent five years management level of current assets in Xingfa Group is the highest, its solvency is ceaselessly risen, the return rate on equity is stable and the enterprise scale is expanding continually. In addition, the DuPont analysis system shows that the return rate on equity of Xingfa Group is mainly affected by the sales net rates.

  6. Network structure of inter-industry flows

    CERN Document Server

    McNerney, James; Silverberg, Gerald

    2012-01-01

    We study the structure of inter-industry relationships using networks of money flows between industries in 20 national economies. We find these networks vary around a typical structure characterized by a Weibull link weight distribution, exponential industry size distribution, and a common community structure. The community structure is hierarchical, with the top level of the hierarchy comprising five industry communities: food industries, chemical industries, manufacturing industries, service industries, and extraction industries.

  7. 多变量统计过程监控:进展及其在化学工业的应用%Multivariate Statistical Process Monitoring and Control: Recent Developments and Applications to Chemical Industry

    Institute of Scientific and Technical Information of China (English)

    梁军; 钱积新

    2003-01-01

    Multivariate statistical process monitoring and control (MSPM&C) methods for chemical process monitoring with statistical projection techniques such as principal component analysis (PCA) and partial least squares (PLS) are surveyed in this paper. The four-step procedure of performing MSPM&C for chemical process, modeling of processes, detecting abnormal events or faults, identifying the variable(s) responsible for the faults and diagnosing the source cause for the abnormal behavior, is analyzed. Several main research directions of MSPM&C reported in the literature are discussed, such as multi-way principal component analysis (MPCA) for batch process, statistical monitoring and control for nonlinear process, dynamic PCA and dynamic PLS, and on-line quality control by inferential models. Industrial applications of MSPM&C to several typical chemical processes, such as chemical reactor, distillation column, polymerization process, petroleum refinery units, are summarized. Finally, some concluding remarks and future considerations are made.

  8. Application Research of Object-Oriented Programming in Design of Chemical Industry Process Control System%面向对象方法在化工过程控制系统设计中的应用研究

    Institute of Scientific and Technical Information of China (English)

    文汉云

    2000-01-01

    通过分析传统软件设计方法在化工控制系统软件设计中的不足,从而引入面向对象方法,包括面向对象分析和面向对象设计。在给出计算机过程控制基本模型之后,以化工过程控制为例,给出了其中一些对象类的C++描述。%By way of analysing the shortcoming of traditional software design method in the chemical industry control system, the object-oriented method is led, includes object-oriented analysis and object-oriented design. After giving the basic model of computer process control, serve as the example with chemical industry process control, some C + + descriptions are given out.

  9. Analysis on Influence Factors of Modern Coal Chemical Industry Development in China%我国现代煤化工发展的影响因素分析

    Institute of Scientific and Technical Information of China (English)

    刘立麟

    2012-01-01

    Base on the rapid development of the modern coal chemical industry in the recent years in China as a main line,the paper introduced the technical development tendency and the industrial policy of the modern coal chemistry.From the view of coal resources to effectively replace and supplement the petroleum,natural gas and chemical products to the modern coal chemical industry,an analysis on the advantages,disadvantages,opportunity and threats was conducted and thus a development countermeasures of the modern coal chemistry in China were provided.%以我国近年来快速发展的现代煤化工产业为主线,介绍了我国现代煤化工的技术发展趋势和产业政策,从煤炭资源对石油、天然气和化工产品进行有效替代和补充的角度对现代煤化工产业进行了优势、劣势、机会和威胁分析,提出我国现代煤化工的发展对策。

  10. Biotechnology based processes for arsenic removal

    NARCIS (Netherlands)

    Huisman, J.; Olde Weghuis, M.; Gonzalez-Contreras, P.A.

    2011-01-01

    The regulations for arsenic control have become strict. Therefore, better technologies to remove arsenic from bleeds and effluents are desired. In addition, no single solution is suitable for all cases. The properties of the process streams and the storage facilities are major factors determining th

  11. Biotechnology-based allergy diagnosis and vaccination.

    Science.gov (United States)

    Bhalla, Prem L; Singh, Mohan B

    2008-03-01

    The diagnosis and immunotherapy currently applied to allergic diseases involve the use of crude extracts of the allergen source without defining the allergy-eliciting molecule(s). Advances in recombinant DNA technology have made identification, cloning, expression and epitope mapping of clinically significant allergens possible. Recombinant allergens that retain the immunological features of natural allergens form the basis of accurate protein-chip-based methods for diagnosing allergic conditions. The ability to produce rationally designed hypoallergenic forms of allergens is leading to the development of novel and safe forms of allergy vaccines with improved efficacy. The initial clinical tests on recombinant-allergen-based vaccine preparations have provided positive results, and ongoing developments in areas such as alternative routes of vaccine delivery will enhance patient compliance.

  12. 煤制油化工基地式一体化建设模式思考%On the Base-integration Construction Mode of Coal Liquefaction Chemical Industry

    Institute of Scientific and Technical Information of China (English)

    万国杰

    2011-01-01

    Considering the industrial properties of coal liquefaction chemical industry, referring to the other country's exploration of the construction model on coal liquefaction chemical industry, together with the successful experience of domestic constructing demonstration projects on coal liquefaction chemical industry and national reality of diverse energy resources, various techniques and products are synthetically integrated from the systemic view, focus on the coal liquefaction chemical industry to build a circulating eco-industrial park of the base-integration with step conversion of coal to various of products and step utilization of the energy, in the end, to achieve the optimum of integrated ener- gy system. Through the overall planning of the coal mine, processing of coal, coal gasification (including paralysis), syngas processing, IGCC, coal chemical industry, fuels production from coal, byproducts processing and products deep processing, system of public works, system of public logistics and public service systems, with the form of co-production as well as mutual supply on variety of products, taking the advan- tage of the base-integration, while producing dimensions beneficial result, diversify and fine the products are pursued, and economic benefit, products competition, environmental benefit, social benefit are organically combined with the country's industrial policies. An integrated coal liquefaction chemical industry base is to be built with the highest energy efficiency, the best system benefits, refining division, the professional management, large-scale operation, harmonious relationship between local government and coal mining enterprise, and the environment friendly nature.%鉴于煤制油化工的产业特点,借鉴国际上对煤制油化工建设模式的探索,结合我国煤制油化工示范工程建设的成功经验和我国能源结构及分布的国情,从系统的角度综合集成各种技术和产品组合,围绕煤制

  13. 我国化学原料药企业产业升级的内容与途径%Contents and approaches of industrial upgrading of chemical raw drug enterprises in China

    Institute of Scientific and Technical Information of China (English)

    戴开金; 胡炜

    2011-01-01

    The chemical raw drug industry is the superior sub-industry of the pharmaceutical industry in China, but the chemical raw drug industry of China as a whole is on the bottom of the pharmaceutical industry value chain. As a result, industry development is in urgent needs of industrial upgrading. This paper has analyzed the contents and approaches of industrial upgrading from the perspective of global value chain. The proposed contents and approaches of industrial upgrad -ing include integrating the supply chain, optimizing the varieties, applying for international certification, strengthening tech -nical transformation and innovation, extending the industry chain, striving for international research and development out -sourcing, implementing industrial re-transfer, etc. It also proposes to take integrating the supply chain, improving products quality, optimizing the product structure and strengthening technology transformation and technological innovation as the core of industrial upgrading, strengthening rush imitation of raw drugs with expired patent or expiring patent, developing the formulation industry at the right time and extending the industry chain under mature conditions. It can develop into the generic drug supplier gradually by relying on technological innovation, and realize the industrial upgrading through innova -tive new drugs development, production and marketing, as the reference for persons concerned.%化学原料药是我国医药行业的优势子行业,但我国化学原料药行业整体上处于国际医药行业价值链的底端,产业升级是行业发展的迫切需求.本文从全球价值链的角度分析产业升级的内容和途径,提出产业升级的内容与途径有:整合供应链、优化品种、争取国际认证、加强技术改造和技术创新、延伸产业链、争取国际研发外包以及实行产业再转移等.本文同时提出把整合供应链、提高产品质量、优化产品结构、加大技术改造和

  14. Industrial applications of nanoparticles.

    Science.gov (United States)

    Stark, W J; Stoessel, P R; Wohlleben, W; Hafner, A

    2015-08-21

    Research efforts in the past two decades have resulted in thousands of potential application areas for nanoparticles - which materials have become industrially relevant? Where are sustainable applications of nanoparticles replacing traditional processing and materials? This tutorial review starts with a brief analysis on what makes nanoparticles attractive to chemical product design. The article highlights established industrial applications of nanoparticles and then moves to rapidly emerging applications in the chemical industry and discusses future research directions. Contributions from large companies, academia and high-tech start-ups are used to elucidate where academic nanoparticle research has revolutionized industry practice. A nanomaterial-focused analysis discusses new trends, such as particles with an identity, and the influence of modern instrument advances in the development of novel industrial products.

  15. Ullmann's Encyclopedia of Industrial Chemistry.

    Science.gov (United States)

    Chadwick, Sharon S.

    1988-01-01

    This review compares "Ullmann's Encyclopedia of Industrial Chemistry" with the "Kirk-Othmer Encyclopedia of Chemical Technology," two prominent encyclopedias of chemical technology and industry. Cost, quantity of information, organization, illustrations, authorship, abbreviations, online availability, and content of articles are discussed. (MES)

  16. Trend of the strategy of European and American chemical industry in the restructuring; Obei kagaku sangyo no saihen ni miru senryaku no doko

    Energy Technology Data Exchange (ETDEWEB)

    Niimi, M.; Yamabe, T.

    1999-12-01

    The business of life science is the cover products which connect directly with life such as medical supplies, functional food, nutriments, agricultural chemicals or seeds. The wave of the reorganization of enterprises in the life science field also spread to the integration of the medicine specialty enterprises, and new association trees mainly on medical supplies such as Novartis in Switzerland, Zeneca, Astra Zeneca and Glaxo Wellcome in England were born. Many major chemistry manufacturers are also agricultural chemical manufacturers. Though agricultural chemicals were being shifted to one which being effective at the low use owing to the environmental problems, with the advance of the popularization of gene recombination crops, sales decreased on the agricultural chemical business more, and participation and restructuring to the seed business were accelerated. In this paper, the outline of business restructuring and strengthening the basic strategy in the main chemistry enterprises in Europe and the U.S.A. are described. As a trend of the restructuring, some examples on Du Pont, Dow chemical, Monsanto, ICI, Akzo Nobel, Novartis, Shell Chemicals, BASF, Hoechst and Bayer are introduced. (NEDO)

  17. Classification of chemicals as endocrinally active compounds. Critical review of the classification of selected pesticides and industrial chemicals as endocrinally active chemicals; Einstufung von Schadstoffen als endokrin wirksame Substanzen. Kritische Ueberpruefung der Einstufung von ausgewaehlten Pestiziden und Industriechemikalien als endokrin wirksame Substanzen

    Energy Technology Data Exchange (ETDEWEB)

    Bruhn, T.; Guelden, M.; Ludewig, S. [Kiel Univ. (Germany). Inst. fuer Toxikologie; Seibert, H.

    1999-10-01

    Different authors have published lists of chemicals, especially pesticides and industrial chemicals, reported to have 'reproductive and endocrine disrupting activities' or 'estrogenic/antiestrogenic' activities. The objective of this study was to examine what is the basis for and whether it is justified to classify chemical compounds as 'endocrine disrupters' that are contained in frequently cited overviews, but have not been discussed in a previous report (UBA-TEXTE 46/97). Depending on the level of evidence derived from literature data, substances are classified either as (i) endocrinally active or (ii) potentially endocrinally active or (iii) without sufficient data on endocrine activity. The criteria used for the classification are based on the definitions by US-EPA and the Weybridge conference. (orig.) [German] Von verschiedenen Autoren sind umfangreiche Listen mit Chemikalien, insbesondere Pestiziden und Industriechemikalien, veroeffentlicht worden, die als 'endokrin wirksam und reproduktionstoxisch' oder als 'oestrogen- bzw. 'antioestrogen wirksam' bezeichnet werden. Aufgabe der vorliegenden Studie ist es, zu untersuchen, auf welchen Grundlagen die Einstufung als 'endokrin wirksam' beruht, und zu ueberpruefen, ob sie gerechtfertigt ist. Je nach den Ergebnissen der Literaturrecherchen werden die Substanzen einer von drei Gruppen zugeordnet: 1. endokrin wirksam, 2. potentiell endokrin wirksam, 3. ohne ausreichende Hinweise auf endokrine Wirksamkeit. Die verwendeten Kritetien fuer die Zuordnung lehnen sich an die Definitionen der EPA und der Weybridge-Konferenz an. Schon in einem vorangegengenen Bericht (UBA-TEXTE 46/97) diskutierte Verbindungen werden nicht erneut behandelt. (orig.)

  18. Industrial biotechnology: tools and applications.

    Science.gov (United States)

    Tang, Weng Lin; Zhao, Huimin

    2009-12-01

    Industrial biotechnology involves the use of enzymes and microorganisms to produce value-added chemicals from renewable sources. Because of its association with reduced energy consumption, greenhouse gas emissions, and waste generation, industrial biotechnology is a rapidly growing field. Here we highlight a variety of important tools for industrial biotechnology, including protein engineering, metabolic engineering, synthetic biology, systems biology, and downstream processing. In addition, we show how these tools have been successfully applied in several case studies, including the production of 1, 3-propanediol, lactic acid, and biofuels. It is expected that industrial biotechnology will be increasingly adopted by chemical, pharmaceutical, food, and agricultural industries.

  19. 2011年上半年日化行业上市公司分析%Analysis of listed company of daily chemical industry in the first half of 2011

    Institute of Scientific and Technical Information of China (English)

    沙克

    2011-01-01

    介绍了日化行业的发展状况,从上市公司的2011年上半年报业绩、产品竞争力、项目进展情况、公司的财务状况以及投资可行性方面给予深入的分析。%State of development of daily chemical industry was introduced.Half annals performance of listed company,product competitiveness,state of play of investment project,financial situation of company and investment feasibility were analyzed in depth.

  20. 开阳化工50万t/a合成氨项目设计总结%Design summary of 500000 t/a synthesis ammonia project of Kaiyang Chemical Industry

    Institute of Scientific and Technical Information of China (English)

    杜晓丹

    2015-01-01

    The paper introduces technology choice and design situation of 500 000 t/a synthesis ammonia project of Guizhou Kaiyang Chemical Industry Co., Ltd. And the paper also summarizes design features of the project.%简要介绍贵州开阳化工有限公司50万t/a合成氨项目的工艺技术的选择及设计情况,并总结了该项目的设计特色。

  1. Environmental Risk Prevention and Control Measures of Rainwater Drainage System in Chemical Industry Park%化工园区雨排系统环境风险防控对策

    Institute of Scientific and Technical Information of China (English)

    冯鸣凤; 谢志成; 田顺; 贺立争

    2016-01-01

    In terms of chemical industry park, rainwater drainage system is an important infrastructure. Reviewing the water environment pollution accident of chemical industrial park, it was found that the main carrier of pollutant diffusion to the external environment was park rain drainage pipe and flood channel, so there were environmental security concerns about the park rain drainage system. At present in our country's chemical industrial park, mandatory measures, corresponding standards and technical specifications were lacking in the prevention and control of the environmental risk, this resulted in lacking of effective daily supervision means in the environmental protection department, and the imperfect coordination mechanism of park planning stage also increased the difficulty of the post supervision. In order to effectively prevent and control the environmental risk of chemical industrial park, it was recommended that the state and local administrations formulated the mandatory and uniform regulatory standards as soon as possible, optimized the rainwater drainage system, and strengthened the supervision of the park and corporate.%雨排系统是化工园区重要的基础设施。回顾近年化工园区水环境污染事故发现,污染物扩散至外环境的主要载体为园区的雨排管渠及防洪排涝河道,园区雨排系统存在环境安全隐患。目前,我国对化工园区雨排系统的环境风险防控缺少强制性的措施要求和相应的标准、技术规范,导致环保部门缺乏行之有效的日常监管手段,园区规划阶段协同机制的不健全也增加了后期监管的难度。为有效防控化工园区雨排系统的环境风险,建议国家和地方尽快出台强制性和统一性法规标准,优化园区雨排系统,同时加强园区及企业的监管。

  2. 矿产资源型产业集群的风险分析及政策选择--以陕北能源化工基地为例%Risk Analysis and Policy Selection on Mineral Resource-based Industrial Cluster:a Case of Energy Chemical Industry of North Shaanxi

    Institute of Scientific and Technical Information of China (English)

    白嘉

    2013-01-01

    矿产资源型产业集群具有资源诅咒效应显著、产业链短、产业结构单一、可持续性差等风险。陕北能源化工产业在自然资源优势、政策优势和科教优势的基础上,已初步形成以煤炭、石油和天然气开采、加工、利用为核心的矿产资源型产业集群。但由于区位环境和体制因素的影响,陕北矿产资源型产业集群面临自主创新能力弱,产业结构与布局不合理以及环境成本高三种风险。根据陕北地区的实际情况,可以通过提高区域自主创新能力,优化产业结构以及建立循环经济产业园来推动陕北矿产资源型产业集群的持续发展。%Mineral resource-based industrial cluster is confronted with risk of resource curse, short industrial chain, single industrial structure and poor sustainability. On the basis of advantages of natural resource, policy, science and technology, and education, energy chemical industry of north Shaanxi has come into being mineral resource-based industrial clusters with characteristics of exploitation, processing and utilization of coal, petroleum and natural gas. Nevertheless, mineral resource -based industrial clusters of north Shaanxi faces risk of inferior capability of independent innovation, unreasonableness of structure and layout of industries, and high cost of environment. According to current situation of north Shaanxi, policies of enhancing capability of regional independent innovation, optimizing industrial structure and establishing industrial park based on cyclic economy can be adopted to propel sustained development of mineral resource-based industrial clusters of north Shaanxi.

  3. Chemical Recycle of Plastics

    Directory of Open Access Journals (Sweden)

    Sara Fatima

    2014-11-01

    Full Text Available Various chemical processes currently prevalent in the chemical industry for plastics recycling have been discussed. Possible future scenarios in chemical recycling have also been discussed. Also analyzed are the effects on the environment, the risks, costs and benefits of PVC recycling. Also listed are the various types of plastics and which plastics are safe to use and which not after rcycle

  4. Chemicals for worldwide aquaculture

    Science.gov (United States)

    Schnick, R.A.

    1991-01-01

    Regulations and therapeutants or other safe chemicals that are approved or acceptable for use in the aquaculture industry in the US, Canada, Europe and Japan are presented, discussing also compounds that are unacceptable for aquaculture. Chemical use practices that could affect public health are considered and details given regarding efforts to increase the number of registered and acceptable chemicals.

  5. Existing chemicals: international activities.

    Science.gov (United States)

    Purchase, J F

    1989-01-01

    The standards of care used in the protection of the health and safety of people exposed to chemicals has increased dramatically in the last decade. Standards imposed by regulation and those adopted by industry have required a greater level of knowledge about the hazards of chemicals. In the E.E.C., the 6th amendment of the dangerous substances directive imposed the requirement that al new chemicals should be tested according to prescribed programme before introduction on to the market. The development of a European inventory of existing chemicals was an integral part of the 6th amendment. It has now become clear that increased standards of care referred to above must be applied to the chemicals on the inventory list. There is, however, a considerable amount of activity already under way in various international agencies. The OECD Chemicals Programme has been involved in considering the problem of existing chemicals for some time, and is producing a priority list and action programme. The International Programme on Chemical Safety produces international chemical safety cards, health and safety guides and environmental health criteria documents. The international register of potentially toxic compounds (part of UNEP) has prepared chemical data profiles on 990 compounds. The International Agency for Research on Cancer prepared monographs on the carcinogenic risk of chemicals to man. So far 42 volumes have been prepared covering about 900 substances. IARC and IPCS also prepare periodic reports on ongoing research on carcinogenicity or toxicity (respectively) of chemicals. The chemical industry through ECETOC (the European Chemical Industry Ecology and Toxicology Centre) has mounted a major initiative on existing chemicals. Comprehensive reviews of the toxicity of selected chemicals are published (Joint Assessment of Commodity Chemicals). In its technical report no. 30 ECETOC lists reviews and evaluations by major national and international organisations, which provides

  6. Report on the operational analysis and the development for China daily chemical product industry in 2011%2011年中国日化行业经济运行分析

    Institute of Scientific and Technical Information of China (English)

    李双双

    2012-01-01

    Daily chemical industry completed a total industrial output value of 333.424 billion yuan,an increase of 25.90 % in 2011,with the traditional advantages of soap and synthetic detergent,cosmetics manufacturing accounted for nearly 70% of the output value of share,flavors,spices manufacturing,oral care industry in the effectiveness showed faster growth in 2011,the state in the industry as a whole the development of the macro-economic environment,technology,standards,use of safety aspects of the introduction of relevant policies,accelerates the industry transformation and upgrading,the pace with the international standards.%2011年,中国日化行业完成累计工业总产值3 334.24亿元,同比增长25.90%,其中:具有传统优势的肥皂及合成洗涤剂、化妆品制造占近70%的产值份额,香精香料制造业、口腔清洁用品制造业在效益方面呈现较快增长态势。2011年,国家在行业整体发展宏观环境、技术、标准以及使用安全等方面均出台了相关政策,加快了行业转型升级、与国际接轨的步伐。

  7. 2011 Joint Program Executive Office for Chemical and Biological Defense Advance Planning Briefing for Industry (APBI) Held in Baltimore, Maryland on September 7-9, 2011

    Science.gov (United States)

    2011-09-09

    Biological Medical Systems ( Biosurveillance Trail Boss) Joint Project Manager Transformational Medical Technology Joint Project Manager Contamination...Systems ( Biosurveillance Trail Boss) Joint Project Manager Transformational Medical Technology Joint Project Manager Contamination Avoidance (Non...lifesaving medical countermeasure drug capabilities against chemical, biological, radiological and nuclear threats – Biosurveillance (CBMS-BSV) • Develop

  8. Key Technology R&D Program of Rubber Chemicals Industry in the "11th Five-year Plan" Passed National Acceptance

    Institute of Scientific and Technical Information of China (English)

    Yu Tao

    2012-01-01

    As a project under National Key Technology R&D Program in the "11th Five-year Plan", "Develop- ment of Rubber Chemicals Cleaning Technology and Special Functional Products" passed the acceptance of the Ministry of Science and Technology recently.

  9. Research on the Design of Automatic Instrument in Chemical Industry%化工企业中自动化仪表的设计探究

    Institute of Scientific and Technical Information of China (English)

    鞠伟亚

    2015-01-01

    The production and operation environment of chemical enterprises is high pressure, high temperature, vacuum and other special environment, but in this special environment, automatic instrument plays a very important role. Therefore, we must do a good job in the design of chemical enterprise automation instrument; improve the stability and reliability of the automation instrument. Through the analysis of common chemical enterprise automatic instrument classification and instrument design selection, this paper describes the chemical enterprise automation instrument design technology, for reference.%化工企业的生产运营环境多是高压、高温、真空等特殊环境,而在这种特殊环境中,自动化仪表发挥着非常重要的作用.因此,必须做好化工企业的自动化仪表设计工作,提高自动化仪表的稳定性和可靠性.通过分析常见的化工企业自动化仪表分类和仪表设计选型,阐述了化工企业自动化仪表设计技术,以供参考.

  10. Integrated automation for continuous high-throughput synthetic chromosome assembly and transformation to identify improved yeast strains for industrial production of biofuels and bio-based chemicals

    Science.gov (United States)

    An exponential increase in our understanding of genomes, proteomes, and metabolomes provides greater impetus to address critical biotechnological issues such as sustainable production of biofuels and bio-based chemicals and, in particular, the development of improved microbial biocatalysts for use i...

  11. Comparison between bioconcentration factor (BCF) data provided by industry to the European Chemicals Agency (ECHA) and data derived from QSAR models.

    Science.gov (United States)

    Petoumenou, Maria I; Pizzo, Fabiola; Cester, Josep; Fernández, Alberto; Benfenati, Emilio

    2015-10-01

    The bioconcentration factor (BCF) is the ratio of the concentration of a chemical in an organism to the concentration in the surrounding environment at steady state. It is a valuable indicator of the bioaccumulation potential of a substance. BCF is an essential environmental property required for regulatory purposes within the Registration, Evaluation, Authorization and restriction of Chemicals (REACH) and Globally Harmonized System (GHS) regulations. In silico models for predicting BCF can facilitate the risk assessment for aquatic toxicology and reduce the cost and number of animals used. The aim of the present study was to examine the correlation of BCF data derived from the dossiers of registered chemicals submitted to the European Chemical Agency (ECHA) with the results of a battery of Quantitative Structure-Activity Relationship (QSAR). After data pruning, statistical analysis was performed using the predictions of the selected models. Results in terms of R(2) had low rating around 0.5 for the pruned dataset. The use of the model applicability domain index (ADI) led to an improvement of the performance for compounds falling within it. The variability of the experimental data and the use of different parameters to define the applicability domain can influence the performance of each model. All available information should be adapted to the requirements of the regulation to obtain a safe decision.

  12. DECHEMA annual meetings `96. Summaries. Vol. 2. Plenary papers, technical meeting on safety technology, technical meeting on computer applications in the chemical industry, technical meeting on membranes in process technology, technical meeting on dispersions, technical meeting on reaction technology, information day on sonochemistry; DECHEMA-Jahrestagungen `96. Kurzfassungen. Bd. 2. Plenarvortraege - Fachtreffen Sicherheitstechnik - Fachtreffen Computeranwendung in der Chemischen Industrie - Fachtreffen Membranen in der Prozesstechnik - Fachtreffen Dispersionen - Fachtreffen Reaktionstechnik - Informationstag Sonochemie

    Energy Technology Data Exchange (ETDEWEB)

    Kreysa, G. [ed.

    1996-08-01

    This volume comprises the programme of the annual meeting and the summaries of the lectures given. The following subjects were discussed: Safety technology, computer applications in the chemical industry, membranes in process technology, dispersions, reaction technology, sonochemistry. (SR) [Deutsch] Dieser Band enthaelt das Programm der Jahrestagung und die Kurzfassungen der Vortraege. Folgende Gebiete werden behandelt: Sicherheitstechnik, Computeranwendungen in der Chemischen Industrie, Membranen in der Prozesstechnik, Dispersionen, Reaktionstechnik, Sonochemie. (SR)

  13. Enhance international competitive power in the chemical industry to meet challenges from economic globalization%提高化学工业国际竞争力迎接经济全球化的挑战

    Institute of Scientific and Technical Information of China (English)

    郭镇华; 李丹

    2001-01-01

    As is seen from the analysis of the development trends of chemical industry globalization,chemical enterprises need to enhance their international competitive power to meet new challenges from the globalization.Among others,improving innovation and management is the critical method.Three issues concerned include the analysis of the competitive environment in industrial sectors and enterprises,the use of the advanced methodology and the improvement on the information system.%通过分析化学工业全球化的发展趋势,指出化工企业必须提高其国际竞争力以迎接全球化带来的挑战。为了提高企业竞争力,改进创新能力和管理水平是主要途径。以下3方面应予以重点关注:分析竞争环境、使用先进方法和改进信息系统。

  14. Ningxia will Focus on Construction of Ecological Textile Industry

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    During the" Twelfth Five-Year plan", Ningxia province will focus on construction of ecological textile industry demonstration garden, with multi-color textile environmental protection and new materials as a starting point, construction of environmental chemical fiber textile industry to match petrochemical, natural gas chemical industry, coal chemical industry, energy and power industry, build whole ecological textile industry system including the new textile material ,the color spinning, yarn-dyed fabric, apparel, home textiles, and decorative products,

  15. Sustainability in the Chemical Industry. By Eric Johnson, Springer, 2012; 173 pages. Price CHF 133.50, ISBN 978-94-007-3834-8

    Directory of Open Access Journals (Sweden)

    Shu-Kun Lin

    2013-01-01

    Full Text Available It’s the new rock and roll. It’s the new black. Sustainability is trendy, and not just among hipsters and pop stars. The uncool chemical sector helped pioneer it, and today, companies inside and outside the sector have embraced it. But what have they embraced? Surely not the Brundtland definition of meeting “the needs of the present without compromising the ability of future generations to meet their own needs.”

  16. Mixture effects at very low doses with combinations of anti-androgenic pesticides, antioxidants, industrial pollutant and chemicals used in personal care products

    Energy Technology Data Exchange (ETDEWEB)

    Orton, Frances; Ermler, Sibylle; Kugathas, Subramaniam [Institute for the Environment, Brunel University, Kingston Lane, Uxbridge UB8 3PH (United Kingdom); Rosivatz, Erika [Institute of Chemical Biology, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Scholze, Martin [Institute for the Environment, Brunel University, Kingston Lane, Uxbridge UB8 3PH (United Kingdom); Kortenkamp, Andreas, E-mail: andreas.kortenkamp@brunel.ac.uk [Institute for the Environment, Brunel University, Kingston Lane, Uxbridge UB8 3PH (United Kingdom)

    2014-08-01

    Many xenobiotics have been identified as in vitro androgen receptor (AR) antagonists, but information about their ability to produce combined effects at low concentrations is missing. Such data can reveal whether joint effects at the receptor are induced at low levels and may support the prioritisation of in vivo evaluations and provide orientations for the grouping of anti-androgens in cumulative risk assessment. Combinations of 30 AR antagonists from a wide range of sources and exposure routes (pesticides, antioxidants, parabens, UV-filters, synthetic musks, bisphenol-A, benzo(a)pyrene, perfluorooctane sulfonate and pentabromodiphenyl ether) were tested using a reporter gene assay (MDA-kb2). Chemicals were combined at three mixture ratios, equivalent to single components' effect concentrations that inhibit the action of dihydrotesterone by 1%, 10% or 20%. Concentration addition (CA) and independent action were used to calculate additivity expectations. We observed complete suppression of dihydrotestosterone effects when chemicals were combined at individual concentrations eliciting 1%, 10% or 20% AR antagonistic effect. Due to the large number of mixture components, the combined AR antagonistic effects occurred at very low concentrations of individual mixture components. CA slightly underestimated the combined effects at all mixture ratios. In conclusion, large numbers of AR antagonists from a wide variety of sources and exposure routes have the ability of acting together at the receptor to produce joint effects at very low concentrations. Significant mixture effects are observed when chemicals are combined at concentrations that individually do not induce observable AR antagonistic effects. Cumulative risk assessment for AR antagonists should apply grouping criteria based on effects where data are available, rather than on criteria of chemical similarity. - Highlights: • Mixtures of AR antagonists at low individual concentrations cause complete inhibition

  17. In vitro evaluation of the antimicrobial effect of a raw bacteriocin extract in combination with chemical preservatives employed in meat industry

    OpenAIRE

    Luis A. Aguado Bautista; Yenizey M. Álvarez Cisneros; Edith Ponce Alquicira

    2010-01-01

    Biopreservation can be defined as the foods shelf life extension employing antibacterial products like bacteriocins. The objective of this work was to determinate the efficacy of E. faecium MXVK29 bacteriocin in combination with chemical preservatives against spoilage and pathogens microorganisms. Bacteriocin raw extrac antimicrobial activity was 46.34 UA/g of protein. Growth of Pseudomonas putida was not affected by the preservatives employed at the conditions employed. Antimicrobial respon...

  18. Valorization of GaN based metal-organic chemical vapor deposition dust a semiconductor power device industry waste through mechanochemical oxidation and leaching: A sustainable green process.

    Science.gov (United States)

    Swain, Basudev; Mishra, Chinmayee; Lee, Chan Gi; Park, Kyung-Soo; Lee, Kun-Jae

    2015-07-01

    Dust generated during metal organic vapor deposition (MOCVD) process of GaN based semiconductor power device industry contains significant amounts of gallium and indium. These semiconductor power device industry wastes contain gallium as GaN and Ga0.97N0.9O0.09 is a concern for the environment which can add value through recycling. In the present study, this waste is recycled through mechanochemical oxidation and leaching. For quantitative recovery of gallium, two different mechanochemical oxidation leaching process flow sheets are proposed. In one process, first the Ga0.97N0.9O0.09 of the MOCVD dust is leached at the optimum condition. Subsequently, the leach residue is mechanochemically treated, followed by oxidative annealing and finally re-leached. In the second process, the MOCVD waste dust is mechanochemically treated, followed by oxidative annealing and finally leached. Both of these treatment processes are competitive with each other, appropriate for gallium leaching and treatment of the waste MOCVD dust. Without mechanochemical oxidation, 40.11 and 1.86 w/w% of gallium and Indium are leached using 4M HCl, 100°C and pulp density of 100 kg/m(3,) respectively. After mechanochemical oxidation, both these processes achieved 90 w/w% of gallium and 1.86 w/w% of indium leaching at their optimum condition.

  19. Eco-Driven Chemical Research in the Boundary Between Academia and Industry. PhD Students' Views on Science and Society

    Science.gov (United States)

    Sjöström, Jesper

    2013-10-01

    This paper examines and discusses the views on science and society held among PhD students working in two different industrially and environmentally driven research programmes in the broad area of green chemistry. It is based on thirteen in-depth interviews. The analysis shows three main ways of handling the situation as "post-academic" PhD student: (1) the student sees the PhD work mainly as a job and does not reflect about his/her research or the research funding, (2) the student is satisfied with the post-academic situation, accepts the established innovation policy discourse and is sceptical to traditional academic research, and (3) the student sees collaborative research programmes as a way to get funding, which can be used for secretly done basic research. Most PhD students either emphasise usefulness—in line with the dominating research policy discourse—or they adopt the positivistic view of science as objective and independent of the surrounding society. However, there are only a few signs of "double problematisation", that is a critical view where both disciplinary-oriented and industry-dependent research are problematised.

  20. 医药化工的变压吸附(PSA)制氮技术探讨%Discussion on the Pressure Swing Absorption (PSA) Nitrogen Production Technology in Pharmaceutical Chemical Industry

    Institute of Scientific and Technical Information of China (English)

    商成喜

    2015-01-01

    In chemical production, nitrogen is inert gas, relatively stable chemical properties; it is not easy to react with other substances, thus widely used as shielding gas, gas seal and etc. In pharmaceutical production, the use of nitrogen is more. At present the nitrogen production technologies mainly include pressure swing adsorption (PSA) method, low temperature method and membrane separation. Application of PSA is the widest. In this article, the pressure swing absorption (PSA) nitrogen production technology in pharmaceutical chemical industry was introduced.%在化工生产中,氮气属于惰性气体,化学性质较为稳定,不容易与其他物质发生反应,因此广泛用作保护气、密封气等。在医药生产中,氮气的使用较多,目前制氮技术主要有 PSA 变压吸附法、低温法、膜分离法,而应用最为广泛的一种制氮技术为 PSA 制氮技术。从医药化工的变压吸附(PSA)制氮技术,以及相关的内容进行了分析。

  1. Chemical industry, how to adapt and invest facing new regulations; Chimie, comment s`adapter et investir face aux nouvelles regles?

    Energy Technology Data Exchange (ETDEWEB)

    Paules, B. [Elf Atochem, 92 - Puteaux (France). Direction Technique

    1997-12-31

    In order to reduce NOx emission levels from a fuel oil or gas burning boiler for a chemical plant, a system using injection of gaseous ammoniacal compounds in fumes combined to hydrogen injection for controlling reaction kinetics, is presented (Thermal De-NOx process from Exxon Research and Engineering); its implementation in a cogeneration plant (gas and fuel oil) is described. NOx, NH{sub 3} and oxygen are combined to form nitrogen and water. The process equipment and control system are presented. Emission levels are compared to limit values according to the system configuration (boiler or turbine) and to post-combustion operation

  2. In vitro evaluation of the antimicrobial effect of a raw bacteriocin extract in combination with chemical preservatives employed in meat industry

    Directory of Open Access Journals (Sweden)

    Luis A. Aguado Bautista

    2010-12-01

    Full Text Available Biopreservation can be defined as the foods shelf life extension employing antibacterial products like bacteriocins. The objective of this work was to determinate the efficacy of E. faecium MXVK29 bacteriocin in combination with chemical preservatives against spoilage and pathogens microorganisms. Bacteriocin raw extrac antimicrobial activity was 46.34 UA/g of protein. Growth of Pseudomonas putida was not affected by the preservatives employed at the conditions employed. Antimicrobial response was different for other microorganisms since a synergetic effect of the preservatives combination inhibited Brochothrix thermosphacta and Escherichia coli growth. Sodium lactate had additive effect only against Listeria innocua.

  3. Qualidade físico-química da carne bovina in natura aprovada na recepção de restaurante industrial / Physical and chemical quality of vacuum packed beef approved at reception in industrial restaurant

    Directory of Open Access Journals (Sweden)

    Marizete Oliveira de Mesquita

    2014-08-01

    Full Text Available O objetivo deste estudo foi avaliar os parâmetros físico-químicos da carne bovina in na-tura, embalada a vácuo, por meio de métodos analíticos de rápida execução. O estudo ocorreu em restaurante universitário de uma Instituição Federal de Ensino Superior, du-rante maio e junho de 2012. Foram realizadas análises físico-químicas logo após a recep-ção das amostras. Os cortes utilizados foram os músculos: Coxão duro (Bíceps femoris; Contrafilé (Longissimus dorsi; Coxão mole (Semimembranosus; Patinho (Quadriceps femoris; Lagarto (Semitendinosus, fornecidos por frigoríficos. Na análise dos dados utilizou-se estatística descritiva (frequência e média e o teste Exato de Fisher para comparação entre variáveis categóricas. O perfil bioquímico indicou 40,0% das amostras consideradas em bom estado de conservação de acordo com o teste de resazurina, 53,3% apresentaram resultado negativo para prova de cocção, 16,7% foram consideradas como carne fresca pela prova de filtração, 90% apresentaram resultado negativo na prova de Nessler e 13,3% com pH 5,8-6,2. Conclui-se que o perfil físico-químico das carnes rece-bidas neste serviço de alimentação não apresenta plena conformidade com as normas do Ministério da Agricultura para carne in natura (não embalada. Considerando que a estabilidade das moléculas em produtos embalados a vácuo é alterada, sugere-se o desenvolvimento de normas específicas. ---------------------------------------------------------------------------- The objective of this study was to evaluate the physical and chemical parameters of fresh beef, packaged under vacuum, through fast analytical methods. The study took place at a university restaurant of a Federal Institution of Higher Education, during May and June of 2012. Physical and chemical analyses were made upon receipt. The mus-cles cuts used were: Biceps femoris; Longissimus dorsi; Semimembranosus; Quadriceps femoris; Semitendinosus

  4. Industrial Chain: Industrial Vertical Definition

    Institute of Scientific and Technical Information of China (English)

    YifeiDu; GuojunJiang; ShimingLi

    2004-01-01

    Like value chain and supply chain, “industrial chain” becomes the focus of attention. The implication of “industrial chain” has gained a large range of extension. It not only expresses the industrial “chain” structure and relationship of “back and forward”in order or “up and down” in direction, but also it represents a cluster of large scale of firms in an area or colony. It is a network, or a community. Consequently, we conclude that “industrial chain” is a synthesis of industrial chain, industrial cluster, or industrial network.In this article, firstly we will distinguish industry chain from industry. An industry is the collection of firms that have the same attribute, so an industry can be defined by firm collection of certain attribute. We indicate that industrial chain is a kind of vertical and orderly industrial link. It is defined according to a series of specific product or service created. Secondly we analyze the vertical orderly defiinition process from the aspects of social division of labor and requirement division, self-organization system, and value analysis.Non-symmetry and depending on system or community of large scale of industrial units lead to entire industry to “orderly” structure. On the other hand, the draught of diversity and complexity of requirement simultaneously lead to entire industry to be more “orderly”. Along with processes of self-organization, industrial will appi'oach the state of more orderly and steady, and constantly make industrial chain upgrade. Each firm or unit, who will gain the value, has to establish channels of value, which we called “industrial value chain”. Lastly,we discuss the consequence of vertical and orderly definition, which is exhibited by a certain relationship body. The typical forms of industrial chain include industrial cluster, strategy alliance and vertical integration etc.

  5. Quantum chemical calculations and spectroscopic measurements of spectroscopic and thermodynamic properties of given uranyl complexes in aqueous solutions with possible environmental and industrial applications

    Directory of Open Access Journals (Sweden)

    Višňak Jakub

    2016-01-01

    Full Text Available A brief introduction into computational methodology and preliminary results for spectroscopic (excitation energies, vibrational frequencies in ground and excited electronic states and thermodynamic (stability constants, standard enthalpies and entropies of complexation reactions properties of some 1:1, 1:2 and 1:3 uranyl sulphato- and selenato- complexes in aqueos solutions will be given. The relativistic effects are included via Effective Core Potential (ECP, electron correlation via (TDDFT/B3LYP (dispersion interaction corrected and solvation is described via explicit inclusion of one hydration sphere beyond the coordinated water molecules. We acknowledge limits of this approximate description – more accurate calculations (ranging from semi-phenomenological two-component spin-orbit coupling up to four-component Dirac-Coulomb-Breit hamiltonian and Molecular Dynamics simulations are in preparation. The computational results are compared with the experimental results from Time-resolved Laser-induced Fluorescence Spectroscopy (TRLFS and UV-VIS spectroscopic studies (including our original experimental research on this topic. In case of the TRLFS and UV-VIS speciation studies, the problem of complex solution spectra decomposition into individual components is ill-conditioned and hints from theoretical chemistry could be very important. Qualitative agreement between our quantum chemical calculations of the spectroscopic properties and experimental data was achieved. Possible applications for geochemical modelling (e.g. safety studies of nuclear waste repositories, modelling of a future mining site and analytical chemical studies (including natural samples are discussed.

  6. Quantum chemical calculations and spectroscopic measurements of spectroscopic and thermodynamic properties of given uranyl complexes in aqueous solutions with possible environmental and industrial applications

    Science.gov (United States)

    Višňak, Jakub; Sobek, Lukáš

    2016-11-01

    A brief introduction into computational methodology and preliminary results for spectroscopic (excitation energies, vibrational frequencies in ground and excited electronic states) and thermodynamic (stability constants, standard enthalpies and entropies of complexation reactions) properties of some 1:1, 1:2 and 1:3 uranyl sulphato- and selenato- complexes in aqueos solutions will be given. The relativistic effects are included via Effective Core Potential (ECP), electron correlation via (TD)DFT/B3LYP (dispersion interaction corrected) and solvation is described via explicit inclusion of one hydration sphere beyond the coordinated water molecules. We acknowledge limits of this approximate description - more accurate calculations (ranging from semi-phenomenological two-component spin-orbit coupling up to four-component Dirac-Coulomb-Breit hamiltonian) and Molecular Dynamics simulations are in preparation. The computational results are compared with the experimental results from Time-resolved Laser-induced Fluorescence Spectroscopy (TRLFS) and UV-VIS spectroscopic studies (including our original experimental research on this topic). In case of the TRLFS and UV-VIS speciation studies, the problem of complex solution spectra decomposition into individual components is ill-conditioned and hints from theoretical chemistry could be very important. Qualitative agreement between our quantum chemical calculations of the spectroscopic properties and experimental data was achieved. Possible applications for geochemical modelling (e.g. safety studies of nuclear waste repositories, modelling of a future mining site) and analytical chemical studies (including natural samples) are discussed.

  7. Biotechnology for renewable chemicals

    DEFF Research Database (Denmark)

    Borodina, Irina; Kildegaard, Kanchana Rueksomtawin; Jensen, Niels Bjerg

    2014-01-01

    The majority of the industrial organic chemicals are derived from fossil sources. With the oil and gas resources becoming limiting, biotechnology offers a sustainable alternative for production ofchemicals from renewable feedstocks. Yeast is an attractive cell factory forsustainable production...

  8. Polybrominated dibenzo-p-dioxins/ dibenzofurans and polybrominated diphenyl ethers in soil, vegetation, workshop-floor dust, and electronic shredder residue from an electronic waste recycling facility and in soils from a chemical industrial complex in eastern China.

    Science.gov (United States)

    Ma, Jing; Addink, Rudolf; Yun, Sehun; Cheng, Jinping; Wang, Wenhua; Kannan, Kurunthachalam

    2009-10-01

    The formation and release of polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) from the incineration of electronic wastes (e-waste) that contain brominated flame retardants (BFRs) are a concern. However, studies on the determination of PBDD/Fs in environmental samples collected from e-waste recycling facilities are scarce. In this study, 11 2,3,7,8-substituted PBDD/Fs and 10 polybrominated diphenyl ether (PBDE) congeners were determined in electronic shredder waste, workshop-floor dust soil, and leaves (of plants on the grounds of the facility) from a large-scale e-waste recycling facility and in surface soil from a chemical-industrial complex (comprising a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) as well as agricultural areas in eastern China. Total PBDD/F concentrations in environmental samples were in the range of 113-818 pg/g dry wt (dw) for leaves, 392-18500 pg/g dw for electronic shredder residues, 716-800000 pg/g dw for soil samples, and 89600-pg/g dw for workshop-floor dust from the e-waste recycling facility and in a range from nondetect (ND) to 427 pg/g dw in soil from the chemical-industrial complex. The highest mean concentrations of total PBDD/Fs were found in soil samples and workshop-floor dust from the e-waste recycling facility. The dioxin-like toxic equivalent (measured as TEQ) concentrations of PBDD/Fs were greater than the TEQs of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) reported in our previous study for the same set of samples. The concentrations of PBDFs were several orders of magnitude higher than the concentrations of PBDDs in samples from the e-waste facility or from soil from the chemical-industrial complex. A significant correlation was found between the concentrations of sigmaPBDD/Fs and sigmaPBDEs (r = 0.769, p waste recycling facilities were higher than the intakes of TEQs contributed by PCDD/ Fs, calculated in our previous study.

  9. Bright Prospect Ahead for Petrochemical Industry

    Institute of Scientific and Technical Information of China (English)

    Cui Shuhong

    2010-01-01

    @@ China's petrochemical industry will show better performance in the year of 2010,Feng Shili,deputy secretary general with the China Petroleum and Chemical Industry Association(CPCIA),recently told China's news media in Beijing.

  10. Sawmill chemicals and carcinogenesis.

    OpenAIRE

    Huff, J

    2001-01-01

    Workers in wood industries are exposed to variable medleys of chemicals, both natural and synthetic. Additional exposures include fungi, bacteria, bark and wood dusts, solvents, paints, and various other wood coatings. These individual and conglomerate exposures have been associated with diverse occupational illnesses and hazards, including cancers. In this commentary, I summarize both experimental and epidemiologic carcinogenesis results for several chemicals used in the wood industry, as we...

  11. 浅谈化工园区企业无组织排放有机废气的防治对策研究%Countermeasures of Non-organization Waste Gas Discharged from Chemical Industry Park

    Institute of Scientific and Technical Information of China (English)

    曹进; 蔡邦成

    2016-01-01

    At present, China has basically achieved the goal of including chemical enterprises into the industrial parks .Al-though these enterprises have achieved the emission standards , chemical odor has become the focus of environmental supervision and the public complaints due to the impact of the superposition effect and other factors .Based on the analysis of the characteristics and toxicity of various organic waste gases, the non-organization waste gases which discharged from chemical industry park can be effi-ciently treated and controlled by the methods of collecting, treating and the corresponding control technology, In the future, to strengthen the supervision of the chemical enterprises and the application of new treatment techniques , regional environmental air quality and the mass of the people to the environment satisfaction rate must be significantly improved .%当前,中国已基本实现了化工类企业的进园入区,虽然各企业实现了废气的达标排放,但由于叠加效应等因素的影响,化工异味已经成为环境监管的难点和群众投诉的焦点。通过对化工园区内企业无组织排放的各类有机废气的特点、毒性、种类和来源进行剖析,探讨了无组织排放有机废气的收集处理方法和相应治理措施对策,对该类废气的日常环境监管提出了具体建议,并结合实际案例强化了对无组织废气进行防治是完全可行和必要的。未来,加强化工园区内企业无组织排放废气的监管和新废气治理技术的研发应用,区域环境空气质量和群众对环境满意率必将得到显著提高。

  12. Forging an Industrial Center

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Ningdong Development Zone, an important national-level base for the coal and chemical industries, is located in the eastern part of Yinchuan, capital of Ningxia Hui Autonomous Region. It is an energy development base for transforming electricity from west to east in the country and a trial base for promoting a cyclic economy.

  13. Introduction to industrial crops

    Science.gov (United States)

    While any seed oil can fill certain non-food applications, there are hundreds of seed oils containing a different complement of fatty acids that impart physical and chemical properties making the oil and associated fatty acids especially useful for industrial and other non-food uses. These differenc...

  14. Air Pollution and Industry.

    Science.gov (United States)

    Ross, R. D., Ed.

    This book is an authoritative reference and practical guide designed to help the plant engineer identify and solve industrial air pollution problems in order to be able to meet current air pollution regulations. Prepared under the editorial supervision of an experienced chemical engineer, with each chapter contributed by an expert in his field,…

  15. Caracterização química do "pitch" em indústria de celulose e papel de Eucalyptus Chemical characterization of pitch in Eucalyptus pulp and paper industry

    Directory of Open Access Journals (Sweden)

    Mariluze P. Cruz

    2006-06-01

    Full Text Available The chemical analysis of the acetone, chloroform, toluene and methanol extracts of a pitch sample was carried out by IR and GC-MS, leading to the identification of sixty nine compounds, including fatty acids, alcohols and hydrocarbons. Analysis of the acetone extractive of a eucalyptus wood used in Brazil for pulp production was also carried out, resulting in identification of fifty nine compounds, including mainly fatty acids, phenolic compounds, beta-sitosterol and other steroids. This analysis showed that pitch formation had a contribution from wood extractives and other sources of contamination. The results obtained and the methodology applied can be used by the pulp industry to develop new methods of pitch control.

  16. Application of MBBR in Wastewater Treatment in Chemical Industry Park%移动床生物膜反应器在化工园区污水处理中的应用

    Institute of Scientific and Technical Information of China (English)

    钱晓辉; 游亮

    2014-01-01

    移动床生物膜反应器工艺具有良好的抗水质水力冲击的能力,因而在化工园区污水处理中得到广泛应用。简单介绍了移动床生物膜反应器(MBBR)工艺应用的设计参数。%A new process name Moving bed bio-film reactor(MBBR) was employed to treat the wastewater in chemical industrial park. It’s found that the MBBR process is flexible on COD load and flow rate load. Simply design parameters were also introduced in the article.

  17. 化工企业成批烧伤患者致伤因素与防范措施%Countermeasures of Wounding Factors for Mass Burn in Chemical Industries

    Institute of Scientific and Technical Information of China (English)

    李传吉; 邓兴旺; 李俊; 吴少军; 张龙; 金少华

    2012-01-01

      Objective To analyze the wounding factors for mass burn in the chemical industries along Ningxia and Mongolia Region and to explore the first aid measures and countermeasures. Methods Between Jan. , 2007 and Nov. , 2011, 195 patients in 12 accidents affecting 9 ~ 12 patients each were classified properly following the leader’s instruction. The preventive tracheotomy, systemic and topical treatment, surgical skin grafting and other interventions were performed to rescue the patients. Professional knowledge trainings on self-rescue, escape, transferring were given to more than 12000 staffs of the chemical industries, during which corresponding countermeasures were proposed. Results Among the 195 pa-tients, 186 were cured with a curative rate of 95. 36% and 9 died with a mortality of 4. 61% . After the trainings, mass and individual burn victims of the chemical industries can perform the correct first aid and transferring immediately on the spot. Conclusion Early-time performance of the scheduled rescue plan on mass burn can improve work efficiency and the trained staff in the chemical industries can carry out the correct first aid and transferring measures on the spot, which can help win much more precious time for hospital rescue and treatment.%  目的分析宁蒙周边化工企业成批烧伤患者致伤因素,探讨早期救治方法与应对措施.方法将2007年1月至2011年11月收治的9~21例/批的成批烧伤患者12批共195例,按组织领导,合理分类,行预防性气管切开,全身与局部治疗,手术植皮等方法治疗.深入化工企业对12000余人做自救、逃生、转送的专业知识培训,提出了相应的应对措施.结果本组病例治愈186例(治愈率95.36%);死亡9例(死亡率4.61%).经过培训的企业发生群体和个体烧伤时,现场均能正确施救与转送.结论对成批烧伤患者早期执行预定救治方案处理,可提高救治成功率,经过专业培训的工人、干

  18. Insights into solid phase characteristics and release of heavy metals and arsenic from industrial sludge via combined chemical, mineralogical, and microanalysis.

    Science.gov (United States)

    Dung, Tran Thi Thu; Golreihan, Asefeh; Vassilieva, Elvira; Phung, Nguyen Ky; Cappuyns, Valérie; Swennen, Rudy

    2015-02-01

    This study investigates the solid phase characteristics and release of heavy metals (i.e., Cd, Co, Cu, Cr, Mo, Ni, Pb, and Zn) and arsenic (As) from sludge samples derived from industrial wastewater treatment plants. The emphasis is determining the influence of acidification on element mobilization based on a multidisciplinary approach that combines cascade and pHstat leaching tests with solid phase characterization through X-ray diffraction (XRD), field emission gun electron probe micro analysis (FEG-EPMA), and thermodynamic modeling (Visual MinteQ 3.0). Solid phase characterization and thermodynamic modeling results allow prediction of Ni and Zn leachabilities. FEG-EPMA is useful for direct solid phase characterization because it provides information on additional phases including specific element associations that cannot be detected by XRD analysis. Cascade and pHstat leaching test results indicate that disposal of improperly treated sludges at landfills may lead to extreme environmental risks due to high leachable concentrations of Zn, Ni, Cu, Cr, and Pb. However, high leachabilities under acid conditions of Ni and Zn as observed from pHstat leaching test results may provide a potential opportunity for acid extraction recovery of Ni and Zn from such sludges.

  19. Biological treatment of chemical industry wastewater having toxic components; Degradazione per via biologica di reflui a componenti tossiche prodotti da una industria farmaceutica

    Energy Technology Data Exchange (ETDEWEB)

    Fabbricino, M.; Pepe, G. [Naples Univ. Federico 2., Naples (Italy). Dipt. di Ingegneria Idraulica ed Ambientale Girolamo Ippolito; Scevola, D. [Novartis Farma SpA, Torre Annunziata, NA (Italy); Fiorillo, S. [Impianto di depurazione di Cuma, Napoli Ovest, Licola di Pozzuoli, NA (Italy)

    2001-09-01

    In order to understand the capacity of an existing biomass to front the variations of wastewater influent characteristics and to evaluate the possibility of toxic components removal using biological processes, it is single out the intervention required to obtain the envisage efficiency of the activated sludge phase, following the arrival of toxic components. Together with experimental results on pilot scale, the performance of the industrial treatment plant is presented too, showing the effectiveness of activated carbon dosage in the biological phase to preserve the efficiency of the process despite of influent wastewater toxicity. [Italian] Il lavoro presenta l'indagine sperimentale condotta per rilevare la capacita' di adattamento della biomassa dell'impianto di depurazione di una industria farmaceutica a seguito della variazione delle caratteristiche del liquame influente, e la possibilita' di degradazione, per via biologica, delle componenti tossiche presenti nel refluo. Attraverso prove in scala pilota vengono evidenziati gli effetti causati dall'arrivo di tali componenti su di un impianto di ossidazione a fanghi attivi a regime, e vengono individuati gli interventi da apportare per garantire il raggiungimento degli standard richiesti nell'effluente. I risultati ottenuti vengono estesi all'impianto a scala reale di cui vengono illustrati i rendimenti depurativi in termini di abbattimento del carico inquinante.

  20. Potential use of a chemical leaching reject from a kaolin industry as agricultural fertilizer Uso potencial do resíduo químico lixiviado duma indústria de caulim como adubo de terras agrícolas

    Directory of Open Access Journals (Sweden)

    Fabiana Rodrigues Ribeiro

    2007-10-01

    Full Text Available The industrial refining of kaolin involves the removal of iron oxides and hydroxides along with other impurities that cause discoloration of the final product and depreciate its commercial value, particularly undesirable if destined to the paper industry. The chemical leaching in the industrial processing requires treatments with sodium hyposulfite, metallic zinc, or sulfuric and phosphoric acids, in order to reduce, dissolve and remove ferruginous compounds. To mitigate the environmental impact, the acidic effluent from the leaching process must be neutralized, usually with calcium oxide. The resulting solid residue contains phosphorous, zinc, and calcium, among other essential nutrients for plant growth, suggesting its use as a macro and micronutrient source. Samples of such a solid industrial residue were used here to evaluate their potential as soil fertilizer in an incubation greenhouse experiment with two soil samples (clayey and medium-textured. The small pH shift generated by applying the residue to the soil was not a limiting factor for its use in agriculture. The evolution of the concentrations of exchangeable calcium, and phosphorous and zinc extractability by Mehlich-1 extractant during the incubation period confirms the potential use of this industrial residue as agricultural fertilizer.O beneficiamento industrial do caulim envolve a remoção de óxidos e hidróxidos de ferro e outras impurezas, que conferem coloração indesejável ao produto final e depreciam seu valor comercial, particularmente se destinado à indústria de papel. A lixiviação química, na linha de processamento industrial, pode ser feita com tratamentos com hipossulfito de sódio, zinco metálico e ácidos sulfúrico e fosfórico, para redução, solubilização e remoção de compostos ferruginosos. A fim de minimizar o impacto ambiental, o efluente ácido, procedente da etapa de lixiviação, deve ser inicialmente neutralizado, usualmente por óxido de c

  1. ELECTROCHEMICAL TREATMENT OF CHEMICAL INDUSTRY WASTEWATER USING STEEL AND TIRUO2 ELECTRODES = TRATAMENTO ELETROQUÍMICO DE EFLUENTE DE INDÚSTRIA QUÍMICA UTILIZANDO ELETRODOS DE AÇO E TIRUO2

    Directory of Open Access Journals (Sweden)

    Edério D. Bidoia

    2006-01-01

    Full Text Available The treatment of chemical industry wastewater by an electrochemical method was investigated using steel and TiRuO2 electrodes. Visible-UV spectrophotometric analyses have been performed in samples electrolyzed at 0, 10, 20, 30 and 40 min to determine the molecular changes in the wastewater. Although the steel electrode caused changes in molecules present in the raw effluent, the TiRuO2 electrode showed to promote more significant changes. It has been observed an increase in the cellular viability after electrolysis; this could be a decrease in the biological toxicity after the treatment. The electrolytic process is an efficient method to modify persistent molecules, normally, found in wastewater of rubber chemical industry and, turn then biocompatible to the environment. = O tratamento eletroquímico de efluente de uma indústria química produtora de aditivos para borracha utilizando eletrodos de aço e TiRuO2 foi estudado. Análises espectrofotométricas na região UV-visível foram realizadas em amostras eletrolisadas do efluente nos tempos de 0, 10, 20, 30 e 40 min para determinar se transformações moleculares ocorreram. As eletrólises causaram transformações moleculares no efluente com o eletrodo de TiRuO2 mais acentuadas do que com o de aço. Também, a toxicidade biológica diminuiu após as eletrólises com eletrodo de aço, o que permite inferir que o tratamento eletrolítico modifica as moléculas persistentes tornando-as mais biodegradáveis.

  2. 化工区混合废水的膜法处理应用实例%Application Example of Mixed Wastewater Treatment of Chemical Industrial Area by Membrane Technology

    Institute of Scientific and Technical Information of China (English)

    易志强

    2014-01-01

    化工区混合废水一般具有多种多样、成分复杂、多数有剧毒、可生化性差、色度高、盐度高等特性。膜生物反应器技术是将膜分离技术与传统的生化处理技术相结合的一种新型、高效的污水处理方法,具有占地面积小、活性污泥浓度高、抗冲击能力强、出水水质好、剩余污泥量少等特点。通过对某化工区综合废水选用膜技术处理的实际运行情况的分析和讨论,对此类废水采用此种技术的应用给出了指导性的结论。%Mixed wastewater of chemical industrial area was generally varied , complex composition , and most were highly toxic , but poor biochemical characteristics , high chromaticity and high salinity.Membrane bioreactor technology was a new efficient wastewater treatment technology , which combined membrane separation process with traditional biochemical treatment process.This technology was special for cover an area of an area small , high activated sludge concentration , strong shock resistance , better outlet water quality and less quantity of sludge , etc.Through analyzing and discussing the practical operation of treating a mixed wastewater of chemical industrial area using membrane bioreactor , the guidance conclusions of this kind of technology was used on treating wastewater were proposed .

  3. 浅谈如何在煤化工行业更好地开展职业技能鉴定工作%How to Carry Out Occupation Skill Appraisal Work Better in Coal Chemical Industry

    Institute of Scientific and Technical Information of China (English)

    冯占军

    2014-01-01

    受环境污染、国际煤价的冲击,煤炭企业经营形式从过去的买方市场向卖方市场转变,煤炭产品的利用也从粗放式燃烧,逐步向煤炭深加工利用领域延伸,这是煤炭企业发展的必然趋势。与此同时,职业技能鉴定工作也应及时进行调整,确保煤炭企业在转型阶段对稀缺技能人才的接续和培养,切实做好人才保障工作。通过一系列详实的调研数据,为煤化工行业技能鉴定提供可靠、准确的参考依据,更加深入地了解煤化工行业操作岗位工种、人员结构现状。%Affected by environmental pollution and international coal prices, coal enterprise management form transform from buy-er's market to a seller's market, the use of coal products also gradually extended from extensive combustion to the field of deep processing of coal utilization, which is the inevitable trend of development of coal enterprises. At the same time, occupation skill appraisal also should be adjusted in time, ensure the continuing of scarce skilled workers in the transition stage, and personnel security work earnestly. Through a series of detailed survey data, it provide reliable, accurate reference for the coal chemical in-dustry skill appraisal, and in-depth understanding operation post work situation, personnel structure of coal chemical industry.

  4. Industrial Engineering

    DEFF Research Database (Denmark)

    Karlsson, Christer

    2015-01-01

    Industrial engineering is a discipline that is concerned with increasing the effectiveness of (primarily) manufacturing and (occasionally).......Industrial engineering is a discipline that is concerned with increasing the effectiveness of (primarily) manufacturing and (occasionally)....

  5. Characterization of chemical compounds for dosimetry of the radiation in industrial processes; Caracterizacao de compostos quimicos para dosimetria das radiacaoes em processos industriais

    Energy Technology Data Exchange (ETDEWEB)

    Galante, Ana Maria Sisti

    1999-07-01

    Different chemical compounds have been studied to optimize dosimetric systems in irradiation processes. In this study 2,3,5 Triphenyl -2H- Tetrazolium Chloride, Brilliant Cresyl Blue, Bromocresol Green and Potassium Nitrate were investigated for their merits or faults, for {sup 60} Co gamma field, in order to verify if can be considered as dosimeters. Fricke solution was used as reference dosimeter to determine absorption dose rates at the gamma facilities.Only Bromocresol Green and Potassium Nitrate are recommended for dosimetry purposes since the main characteristics were achieved. The other two compounds could be used in dosimetry with changes in their formulation. Bromocresol Green and potassium Nitrate are reproducible and radiation sensitive for absorbed doses from 300 Gy to 150 kGy Bromocresol Green was used in liquid form and Potassium Nitrate was prepared in solid pellets form. Spectrophotometry in the visible region was used as the main detection technique, which allows relating optical absorption, before and after irradiation, with the absorbed dose. The maximum absorption wavelength for each compound was observed at 450-460nm for bromocresol Green and 546nm for Potassium Nitrate. Dose calibration curves are linear for both compounds in all dose intervals. When irradiated with accelerated electrons, with energies between o,9 MeV and 1,5MeV, optical absorption intensification, of about 2,6 times, was observed when comparing results for Potassium Nitrate, with those for gamma rays. All the evaluations are presented in this work. (author)

  6. Modelling of environmental impacts of 140 years of open pit lignite mining and chemical industry on groundwater contaminants in the Bitterfeld area, Germany

    Energy Technology Data Exchange (ETDEWEB)

    Gossel, W.; Stollberg, R.; Wycisk, P. [Martin Luther Univ., Halle (Germany). Inst. of Geosciences, Dept. of Hydrogeology and Environmental Geology

    2010-07-01

    In this study, a groundwater flow and transport model was used to estimate the contamination of watersheds located in the Bitterfeld area in Germany. The contamination was caused by previous open pit lignite mining activities in the region as well as by contaminants from a chemical plant. A high resolution geological model of the area was used to parametrize the model. The region is geologically complex, with Pleistocene channels and gullies from the Saalenian age. The mining activities also disturbed or destroyed many geological structures in the region. A geological description was provided, as well as details of hydraulic conductivity, lithology, and hydrostratigraphy. The model was based on borehole data and maps covering a total area of 60 km{sup 2}. The time-dependent groundwater recharge and boundary conditions were set. Dispersivity and diffusivity parameters were also considered. The model accurately characterized the successive spreading of groundwater contamination over the last 100 years in the area. The study showed that the contamination will spread to nature reserve zones in the region over the next few decades. 3 refs. 1 tab., 2 figs.

  7. Treatment of wastewater from a low-temperature carbonization process industry through biological and chemical oxidation processes for recycle/reuse: a case study.

    Science.gov (United States)

    Biswas, R; Bagchi, S; Urewar, C; Gupta, D; Nandy, T

    2010-01-01

    Low-temperature carbonization (LTC) of coal generates highly complex wastewater warranting stringent treatment. Developing a techno-economically viable treatment facility for such wastewaters is a challenging task. The paper discusses a case study pertaining to an existing non-performing effluent treatment plant (ETP). The existing ETP comprising an ammonia stripper followed by a single stage biological oxidation was unable to treat 1,050 m(3)/d of effluent as per the stipulated discharge norms. The treated effluent from the existing ETP was characterized with high concentrations of ammonia (75-345 mg N/l), COD (313-1,422 mg/l) and cyanide (0.5-4 mg/l). Studies were undertaken to facilitate recycling/reuse of the treated effluent within the plant. A second stage biooxidation process was investigated at pilot scale for the treatment of the effluent from the ETP. This was further subjected to tertiary treatment with 0.5% dose of 4% hypochlorite which resulted in effluent with pH: 6.6-6.8, COD: 73-121 mg/l, and BOD(5):recycle and reuse. Thus, a modified treatment scheme comprising ammonia pre-stripping followed by two-stage biooxidation process and a chemical oxidation step with hypochlorite at tertiary stage was proposed for recycle/reuse of LTC wastewater.

  8. Influence of Electronic Commerce on the Traditional Chemical Industry%电子商务对传统化工产业的影响

    Institute of Scientific and Technical Information of China (English)

    柳拴全

    2011-01-01

    目前,电子商务已经成为化工企业商务活动的主导形式,在化工企业运营中发挥着重要作用。介绍了电子商务的作用、化工企业开展电子商务方法、影响电子商务发展的因素,提出了完善中小化工企业电子商务应用的方法以及加快电子商务发展的主要措施。%Currently,electronic commerce(e-commerce) has been becoming the dominant form in the business activities of chemical enterprises,and plays an important role in the operation of these companies.To introduce the function,ways and of e-commerce,influence factors,and put forward the methods which may completes the application of the e-com-merce in the small and medium enterprises and the measures that accelerate development.

  9. Comparison of acute toxicity of process chemicals used in the oil refinery industry, tested with the diatom Chaetoceros gracilis, the flagellate Isochrysis galbana, and the zebra fish, Brachydanio rerio

    Energy Technology Data Exchange (ETDEWEB)

    Roseth, S.; Edvardsson, T.; Botten, T.M.; Fuglestad, J.; Fonnum, F.; Stenersen, J. [Univ. of Oslo (Norway)

    1996-07-01

    Chemicals under the trade names Nalco 537-DA, Nalco 625, Nalco 7607, Nalco 5165, Ivamin, and technical monoethanolamine are used extensively in the oil refinery industry. Aquatic toxicity tests were conducted using zebra fish fry (Brachydanio rerio) and the unicellular algae Isochrysis galbana (a flagellate) and Chaetoceros gracilis (a diatom). Inhibition of cell division, chlorophyll content, and {sup 14}CO{sub 2} uptake in the algae were sensitive end points. The effective concentrations (EC50s) of growth inhibition were 0.1 mg/L (Ivamin; I. galbana), 0.8 mg/L (Nalco 7607; I. galbana), 6 mg/L (Nalco 625; I. galbana), 10 mg/L (Nalco 5165; C. gracilis), and 15 mg/L (Nalco 537-DA; C. gracilis). The lethal concentrations (LC50s) (96 h) toward zebra fish fry was 1 mg/L for Nalco 7607, 6.5 mg/L for Nalco 537-DA, 7.1 mg/L for Nalco 625, and 20 mg/L for Ivamin 803. Monoethanolamine had an LC50 higher than 5,000 mg/L. Nalco 5165 was not tested on fish fry. The heartbeat frequency of fish embryos was reduced by 2.5 mg/L Nalco 537-DA, but this was an insensitive end point for the other chemicals.

  10. Progress of cleaner production technologies in chemical industry in China%我国化学工业中清洁生产技术的研究进展

    Institute of Scientific and Technical Information of China (English)

    陈和平; 包存宽

    2013-01-01

      分析了我国化学工业清洁生产研究概况,指出我国有关清洁生产研究的主要内容集中在循环经济、生态工业园、节能减排、绿色化学和产业链以及清洁生产的评价与审核等方面。总结了我国化学工业中的各种清洁生产技术,包括过程模拟技术、过程集成技术、清洁生产工艺、清洁反应体系、超常规生产技术、催化技术、化工设备的发展和清洁能源等,指出未来清洁生产技术的发展趋势必然是化工生产技术与信息技术、计算机技术、检测技术、智能信息处理技术和装备制造技术等的有机结合,并提出了从生命周期全过程考察清洁生产技术的清洁性以及在清洁生产技术基础上发展循环经济的建议。%This review analyzed the research overview of cleaner production in the chemical industry in China. Most research on cleaner production focused on circular economics,ecologic industrial parks,energy-saving and emission-reduction,green chemistry and industry chains,evaluation and audit of cleaner production. This paper also summarized the cleaner production technologies,including process simulation,process integration,new processes,new raw materials,cleaner reaction systems, new energy resources and catalytic technologies. The development trend of cleaner production would be the organic combination of chemical production and other technologies,such as information, computer development,detection,intelligent information processing,and equipment manufacturing technologies. The cleaner production technologies should be evaluated by life cycle assessment (LCA) and the circular economics should be developed on the basis of cleaner production.

  11. Energy End-Use : Industry

    NARCIS (Netherlands)

    Banerjee, R.; Gong, Y; Gielen, D.J.; Januzzi, G.; Marechal, F.; McKane, A.T.; Rosen, M.A.; Es, D. van; Worrell, E.

    2012-01-01

    The industrial sector accounts for about 30% of the global final energy use and accounts for about 115 EJ of final energy use in 2005. 1Cement, iron and steel, chemicals, pulp and paper and aluminum are key energy intensive materials that account for more than half the global industrial use. There i

  12. 煤化工产业与二氧化碳地质封存%Coal chemical industry and geological storage of carbon dioxide in China

    Institute of Scientific and Technical Information of China (English)

    曾荣树; 石晓闪; 肖建新; 田兴有

    2014-01-01

    CO2在地下深部封存可有效减少燃烧化石燃料产生的温室气体向大气层的排放。然而,现在碳捕集成本高、能耗大,在CO2捕集与封存( CCS)链条中碳捕集成本占60%,成为实施CCS的瓶颈。煤化工厂排放高浓度CO2可能为中国实现全链条的CCS提供早期的机会。目前经过国家发改委批准的煤化工企业排放的高浓度CO2总量已达亿吨规模,如果这些企业能够实现CO2封存,对于中国减少温室气体排放将具有重要意义。中国的沉积盆地拥有适合CO2地质封存的储盖层组合,其中有些油田适合利用CO2驱油来提高石油采收率( EOR),高浓度CO2排放源靠近封存场地将有效减少运输成本和工程操作的复杂性。高浓度CO2气源与EOR或深部咸水层封存的耦合将给中国提供在全球率先实现碳捕集、利用与封存( CCUS)的机会。%Deep geological storage of CO2 can provide an essential solution to mitigate greenhouse gas emissions from the continuous use of fossil fuels.However,the cost and energy consumption of CO2 capture is high at present.About 60% of carbon capture and storage(CCS) cost is for the carbon capture which causes a bottleneck in advancement of CCS in China.High levels of CO2 from coal chemical plants pro-vides sufficient CO2 for full-chain CCS implementation.The total amount of high concentration CO2 that will be emitted( or is being emit-ted) by the coal chemical factories approved by the National Development and Reform Commission is up to hundred million tones per year. If all projects could store CO2 underground,it would be of great significance for mitigating greenhouse gas emissions.Basins located in North China are characterized by several sets of reservoir-caprock strata which is suitable for CO2 storage.Some oil fields are potentially suitable for CO2 enhanced oil recovery(EOR).The short distance between the high concentration CO2 sources and potential storage sites reduce

  13. 热力除氧辅助化学除氧技术的工业应用%Industrial applications of thermal deaeration-assisted chemical deaeration technology

    Institute of Scientific and Technical Information of China (English)

    钱淑芳; 杨承谱

    2012-01-01

    介绍了云南云天化国际化工股份有限公司云峰分公司硫酸厂废热锅炉给水热力除氧系统存在的问题和改进措施。采用热力除氧辅助二甲基酮肟法化学除氧后,除氧水ρ(O2)≤0.015 mg/L,200 kt/a和300 kt/a硫酸装置锅炉水指标均达到正常生产要求。今后可考虑将热力除氧温度降低6~7℃,综合除氧成本将降低0.6元/t,预计改进后硫酸厂每年可节省运行费用约63万元。%Problems and improvements of thermal deaeration system for waste heat boiler feed water in Yunnan Yuntianhua International Yunfeng Branch' s sulphuric acid plant are described.After using thermal deaeration-assisted chemical deaeration with dimethyl ketoxime,O2 concentration in treated water was lower than 0.015 mg/L and the boiler water met the normal production requirements of 200 kt/a and 300 kt/a sulphuric acid plants.The temperature of thermal deaerator shall be considered to lower 6-7 ℃ in the future,so the total deaerattion cost will be reduced 0.6 yuan/t and the operating cost will be saved about 630 000 yuan per year.

  14. "A High Speed Laser Profiling Device for Refractory Lininig Thickness Measurements In a Gasifier with Cross-Cut to the Metals, Forest Products, Chemical and Power Generation Industries"

    Energy Technology Data Exchange (ETDEWEB)

    Michel Bonin; Tom Harvill; Jared Hoog; Don Holve; Alan Alsing; Bob Clark; Steve Hrivnak

    2007-11-01

    Process Metrix began this project with the intent of modifying an existing ranging system and combining the same with a specially designed optical scanner to yield three dimensional range images that could be used to determine the refractory lining thickness in a gasifier. The goal was to make these measurements during short outages while the gasifier was at or near operating temperature. Our initial estimates of the photon counts needed for the modulation-based range finder were optimistic, and we were forced to undertake a redesign of the range finder portion of the project. This ultimately created significant and unanticipated time delays that were exacerbated when Acuity Technologies, the subcontractor responsible for delivering the redesigned range finder, failed to deliver electrical components capable of meeting the specific range error requirements needed for accurate lining thickness measurement. An extensive search for an alternate, off-the-shelf solution was unsuccessful, and Process Metrix was forced to undertake the electronics development internally without project funds. The positive outcome of this effort is a documented set of range finder electronics that have exceptional accuracy, simplicity, temperature stability and detection limit; in sum a package perfectly suited to the measurement requirements and within our control. It is unfortunate yet understandable, given the time delays involved in reaching this milestone, that the Department of Energy decided not to continue the project to completion. The integration of this electronics set into the optomechanical hardware also developed within the scope of the project remains as follow-on project that Process Metrix will finish within the calendar year 2008. Testing in the gasifier is, at this point, not certain pending the award of additional funding needed for field trials. Eastman, our industrial partner in this project, remains interested in evaluating a finished system, and working together we

  15. Chemical and Biological Catalytic Enhancement of Weathering of Silicate Minerals and industrial wastes as a Novel Carbon Capture and Storage Technology

    Science.gov (United States)

    Park, A. H. A.

    2014-12-01

    Increasing concentration of CO2 in the atmosphere is attributed to rising consumption of fossil fuels around the world. The development of solutions to reduce CO2 emissions to the atmosphere is one of the most urgent needs of today's society. One of the most stable and long-term solutions for storing CO2 is via carbon mineralization, where minerals containing metal oxides of Ca or Mg are reacted with CO2 to produce thermodynamically stable Ca- and Mg-carbonates that are insoluble in water. Carbon mineralization can be carried out in-situ or ex-situ. In the case of in-situ mineralization, the degree of carbonation is thought to be limited by both mineral dissolution and carbonate precipitation reaction kinetics, and must be well understood to predict the ultimate fate of CO2 within geological reservoirs. While the kinetics of in-situ mineral trapping via carbonation is naturally slow, it can be enhanced at high temperature and high partial pressure of CO2. The addition of weak organic acids produced from food waste has also been shown to enhance mineral weathering kinetics. In the case of the ex-situ carbon mineralization, the role of these ligand-bearing organic acids can be further amplified for silicate mineral dissolution. Unfortunately, high mineral dissolution rates often lead to the formation of a silica-rich passivation layer on the surface of silicate minerals. Thus, the use of novel solvent mixture that allows chemically catalyzed removal of this passivation layer during enhanced Mg-leaching surface reaction has been proposed and demonstrated. Furthermore, an engineered biological catalyst, carbonic anhydrase, has been developed and evaluated to accelerate the hydration of CO2, which is another potentially rate-limiting step of the carbonation reaction. The development of these novel catalytic reaction schemes has significantly improved the overall efficiency and sustainability of in-situ and ex-situ mineral carbonation technologies and allowed direct

  16. Industrial systems biology.

    Science.gov (United States)

    Otero, José Manuel; Nielsen, Jens

    2010-02-15

    The chemical industry is currently undergoing a dramatic change driven by demand for developing more sustainable processes for the production of fuels, chemicals, and materials. In biotechnological processes different microorganisms can be exploited, and the large diversity of metabolic reactions represents a rich repository for the design of chemical conversion processes that lead to efficient production of desirable products. However, often microorganisms that produce a desirable product, either naturally or because they have been engineered through insertion of heterologous pathways, have low yields and productivities, and in order to establish an economically viable process it is necessary to improve the performance of the microorganism. Here metabolic engineering is the enabling technology. Through metabolic engineering the metabolic landscape of the microorganism is engineered such that there is an efficient conversion of the raw material, typically glucose, to the product of interest. This process may involve both insertion of new enzymes activities, deletion of existing enzyme activities, but often also deregulation of existing regulatory structures operating in the cell. In order to rapidly identify the optimal metabolic engineering strategy the industry is to an increasing extent looking into the use of tools from systems biology. This involves both x-ome technologies such as transcriptome, proteome, metabolome, and fluxome analysis, and advanced mathematical modeling tools such as genome-scale metabolic modeling. Here we look into the history of these different techniques and review how they find application in industrial biotechnology, which will lead to what we here define as industrial systems biology.

  17. ACS Proposes Industrial Internship Program

    Science.gov (United States)

    Chemical and Engineering News, 1972

    1972-01-01

    The American Chemical Society has proposed a federal program which would enable 1500 unemployed chemists and chemical engineers possessing master's or higher degrees to serve from one to two years as interns in industrial research and development installations. (Author/TS)

  18. Industrial Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    generation rates and material composition as well as determining factors are discussed in this chapter. Characterizing industrial waste is faced with the problem that often only a part of the waste is handled in the municipal waste system, where information is easily accessible. In addition part...... of the system industry has to inform at the planning stage and afterwards in yearly reports on their waste arising and how the waste is managed. If available such information is very helpful in obtaining information about that specific industry. However, in many countries there is very little information...... available about industrial waste – maybe also influenced by the policy of the industry as to making information publicly available. The data presented in this chapter is scarce and maybe not fully representative for the industrial sectors and hence should be used with caution only....

  19. Longshoring Industry

    Science.gov (United States)

    2001-01-01

    a)(1). (5) ANSI Z-89.1-1986, Personnel Protection-Protective Headwear for Industrial Workers-Requirements; IBR approved for 1917.93(b). (6) ANSI Z-41... Headwear for Industrial Workers-Requirements.” (c) Protective hats previously worn shall be cleaned and disinfected before issuance by the employer to... Headwear for Industrial Workers-Requirements; IBR approved for §1918.103(b). (6) ANSI Z-41-1991, American National Standard for Personal Protection

  20. Biotechnology Industry

    Science.gov (United States)

    2007-01-01

    Countries Growing GMO , 2007). Herbicide and insect resistance traits will continue to be pursued since 25% of food crops are lost each year to insect...daily lives from the clothing we wear, the fuel we use, the food we eat, and the medicines we take. From the earliest days, humans have used the...industry is very broad and includes health care, food , agriculture, industrial, and environmental industries. It is one of the fastest growing sciences

  1. Report on the surveys in fiscal 1999 on foundations for establishing industrial technology strategies. Technological strategies by fields (Field of nurturing human resources in chemical technologies); 1999 nendo sangyo gijutsu senryaku sakutei kiban chosa hokokusho. Bun'yabetsu senryaku (kagaku gijutsusha jinzai ikusei bun'ya)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This paper describes nurturing of human resources in chemical technologies, as part of the surveys in fiscal 1999 on foundations for establishing industrial technology strategies. In association with the progress in scientific technologies, convenience of living has been enhanced exceptionally. On the other hand, however, problems lie in a heap, such as in global environment, energy, resources and population. Safety of chemical substances is questioned. Industrial world is greeted with the times of bubble collapse, information orientation, internationalization, and great competition. Chemical industries are aiming at differentiation and power strengthening, but demanded of conversion into making more independent developments. A large number of problems difficult of solving must be overcome by progress of scientific technologies. The core of the progress is in innovation and creation of new chemical technologies. Since what shoulders the requirements is people, nurturing chemical engineers is the urgent and important issue. Chemical engineers are demanded of having knowledge and experience in environment and safety, and ethics to accomplish social responsibilities, not to speak of their specialty technologies. Human resource nurturing must be carried out effectively under collaboration and cooperation of universities and corporations, rather than they do it independently. This paper describes problems and solution ideas, such as institutions and programs, to achieve the goal. (NEDO)

  2. 我国化工园区特种设备风险隐患管理优化研究%Research on Optimal Risk Management for Special Equipment in Chinese Chemical Industrial Park

    Institute of Scientific and Technical Information of China (English)

    梁华; 王爽; 业成

    2015-01-01

    以南京化工园区为例,通过对我国化工园区特种设备风险隐患管理的研究探讨,提出了我国化工园区特种设备风险隐患管理存在的各类问题。针对风险定量简单、缺乏参考价值的问题,引入了定性和定量两类风险隐患分析方法,使特种设备风险隐患的定量分析更具科学合理性;针对特种设备风险评价系统操作复杂、实用性差的问题,结合南京化工园区特种设备管理情况和设备的固有危险性原理合理定义了设备风险影响因子,并采用层次分析法和定量加权平均法完善了特种设备风险等级的科学划分;针对化工园区特种设备安全管理与设备风险管理脱节的问题,引入法律中特种设备分类监管理念,设计了具备5级水平的分类监管模型,科学优化了特种设备风险隐患的管理模式。提出的化工园区特种设备风险隐患管理优化方法有助于工程实际应用,使得风险定量更加精确可行,突出了特种设备的监督管理重点,有利于政府、企业的风险监管工作。%Regarding Nanjing chemical industrial park as the case ,this paper discusses the optimal risk management for special equipment in chemical industrial park and puts forward problems existed .Aimed at the simple quantification and lack of references value for management risk , two kinds of calculation methods , quantitative and qualitative , are proposed to make special equipment potential risks analyses more rational .In view of the operative complexity for the risk assessment system ,the risk factors are defined scientifically in accordance with the special equipment management status of Nanjing chemical industrial park and the inherent risks of equipment and the AHP method and the quantitative weighted average method are introduced to improve the division for risk grades .Based on the disconnection between safety management and risk management ,the classified

  3. Analysis of Coal-Oil-Gas Comprehensive Utilization and Energy Consumption Status for Chemical Industrial Park%化工园区煤油气资源综合利用及能耗状况分析

    Institute of Scientific and Technical Information of China (English)

    陈亮; 苏涛

    2014-01-01

    论述了陕西延长石油(集团)有限责任公司依托自身在陕北地区同时拥有的油、气、煤、盐资源优势,实施油气煤盐综合发展、构建具有延长石油集团特色的现代产业体系。建设中的延安富县化工园区通过煤、油田伴生气联合制180万吨/年甲醇,碳氢互补后增产甲醇21万吨/年、 CO2减排266万吨/年,减排幅度63%;煤油气三种资源综合转化率高达54.36%。%Coal -Oil -Gas -Salt comprehensive development and construction of modern industry featured by Yanchang Petroleum Group was introduced , based on the resources of oil , gas, coal and salt in north of Shaanxi province owned by Shaanxi Yanchang Petroleum Group.1800 kTA methanol was produced by coal and oilfield associated gas , another 210 kTA methanol was increased to produce after carbon and hydrogen mutual complementation.2 660 000 tons of CO2 were reduced to emit and the extent of emission reduction reach 63%.Comprehensive conversion rate of three resources coal-oil-gas reached up to 54.36%in Chemical Industry Park in Fu county of Yanan City which was under construction.

  4. Industrial Communications.

    Science.gov (United States)

    Lindsay, Dan

    Intended for seniors planning a career in industry as skilled laborers, this specialized course in Industrial Communications offers the student basic communications skills which he will need in his work and in his daily life. Since class activities center around short, factual oral reports, class size will be limited to 20, providing a maximum of…

  5. Industry honoured

    CERN Multimedia

    2008-01-01

    CERN has organised a day to thank industry for its exceptional contributions to the LHC project. Lucio Rossi addresses CERN’s industrial partners in the Main Auditorium.The LHC inauguration provided an opportunity for CERN to thank all those who have contributed to transforming this technological dream into reality. Industry has been a major player in this adventure. Over the last decade it has lent its support to CERN’s teams and participating institutes in developing, building and assembling the machine, its experiments and the computing infrastructure. CERN involved its industrial partners in the LHC inauguration by organising a special industry prize-giving day on 20 October. Over 70 firms accepted the invitation. The firms not only made fundamental contributions to the project, but some have also supported LHC events in 2008 and the inauguration ceremony through generous donations, which have been coordinated by Carmen Dell’Erba, who is responsible for secu...

  6. The Nuclear Industry

    Science.gov (United States)

    Congedo, Tom; Lahoda, Edward; Matzie, Regis; Task, Keith

    The objective of the nuclear industry is to pro-duce energy in the forms of heat from either fission reactions or radioactive decay and radiation from radioactive decay or by accelerator methods. For fission heat applications, the nuclear fuel has a very high specific energy content that currently has two principal uses, for military explosives and for electricity generation. As higher temperature reactors become more widely available, the high temperature heat (>900°C) will also be useful for making chemicals such as hydrogen. For radiation applications, the emissions from radioactive decay of unstable nuclides are employed in research, medicine, and industry for diagnostic purposes and for chemical reaction initiation. Radioactive decay heat is also employed to generate electricity from thermoelectric generators for low-power applications in space or remote terrestrial locations.

  7. Soft Bamboo: Calling for an Industrial Integration

    Institute of Scientific and Technical Information of China (English)

    Wang Ting

    2007-01-01

    @@ On August 29-31, the First YunZhu Cup China Bamboo Fiber Industrial Development Summit, organized by the China Knitting Industrial Association, the China Textile Engineer Institute and the China Textile Resources PuDong Ltd, China Chemical Fiber Economic Information Network, was held in Shanghai, aiming to promote the communication and development of Chinese bamboo fiber industry.

  8. 某大型化工区周边儿童肺功能现况分析%Analysis of pulmonary function of children close to a large chemical industrial park

    Institute of Scientific and Technical Information of China (English)

    许明佳; 程薇

    2016-01-01

    Objective To investigate pulmonary function of the children close to a large chemical industrial park and its influencing factors . Methods Date of daily average air PM10 ,SO2 and NO2 levels from two communities ( Area A near a chemical industrial area , area B far away from the chemical industrial area ) of Shanghai were collected .Questionnaires and pulmonary functions tests were performed among children of grade 3 to 5 in two primary schools from the two communities . Results The annual PM10 levels were 75.12 μg/m3 in area A and 79.46 μg/m3 in area B, which were both slightly higher than the secondary standard of Ambient Air Quality Standard, GB 3095-2012 ( 70 μg/m3 ) .The annual NO 2 level (40.67μg/m3)in area B was slightly higher than the secondary standard of Ambient Air Quality Standard, GB 3095-2012(40 μg/m3).There were no significant differences in PM10, SO2 and NO2 levels between the two communities .The height and some pulmonary functions parameters such as forced vital capacity ( FVC) and forced expiratory volume in one second ( FEV1 ) of children in are A were lower than those in area B.After reference predicted values of lung function were balanced , there were no significant differences in children's pulmonary function parameters between the two areas , FVC% and FEV1% were both above 87%, FEF50% and FEF75% were both above 72%.Bad condition of the ventilation in the kitchen and passive smoking had adverse effects on FEV 1%or FVC%and FEF50%%(r about -0.1). Conclusion The air quality close to the large chemical industrial park was not so bad , and there is no significant differences in the children's pulmonary function between area A and area B .The children's pulmonary may be more sensitive to the indoor environment in the low levels of atmosphere pollution .%目的:了解某大型化工区周边儿童肺功能现况和影响因素。方法对上海某区两地小学(A位于某化工区周边,B远离该化工区)的3~5年级学生进行

  9. 基于主因子分析法的化纤行业上市公司投资价值评析%Investment value of listed companies in chemical fiber industry based on principal factor analysis

    Institute of Scientific and Technical Information of China (English)

    马娇

    2013-01-01

    In view of the problems in listed company's intrinsic investment value, factor analysis was adopted to study the investment value of listed companies of the chemical fi-ber industry from an investor's perspective in order to get a reasonable judgment on the in-vestment value of these companies. Results will help construct a suitable portfolio to re-duce investment risk.%  针对上司公司的内在投资价值问题,从投资者的角度出发,采用因子分析方法,对化纤行业上市公司投资价值进行研究,从而得到关于中国化纤行业上市公司投资价值的合理判断,有利于构造出适合的投资组合来降低投资风险。

  10. Use of agro-industrial organic sludge amendment to remediate degraded soil: chemical and eco(geno)toxicological differences between fresh and stabilized sludge and establishment of application rates.

    Science.gov (United States)

    Chiochetta, Claudete G; Cotelle, Sylvie; Masfaraud, Jean-François; Toumi, Hela; Quaranta, Gaetana; Adani, Fabrizio; Radetski, Claudemir M

    2016-02-01

    Soil degraded by coal mining activities can be remediated by amendment with agro-industrial organic sludge. However, the environmental impacts associated with this management practice must be properly addressed. In this context, the objective of this study was to evaluate the eco(geno)toxicity of a fresh and a stabilized sludge before use in a laboratory soil remediation test. Chemical analysis of the complex mixtures (degraded soil, fresh sludge, and stabilized sludge) was carried out, as well as a battery of eco(geno)toxicity tests on microbiological enzymes (fluorescein hydrolysis), earthworms, and higher plants (including Vicia faba genotoxicity test), according to published methodologies. The results of these tests showed that fresh sludge was more toxic than sludge stabilized over 6 months toward earthworms and higher plants (lettuce, corn, and wild cabbage), while phyto(geno)toxicity tests with V. faba indicated the same genotoxicity levels for the two types of sludge. In the soil remediation simulation using different mixtures of degraded soil and stabilized sludge, the proportions of 50:50% (dry weight basis) provided the lowest phyto(geno)toxicity effects and this mixture can be used for the revegetation of the contaminated site.

  11. Evaluation of laboratory and industrial meat and bone meal combustion residue as cadmium immobilizing material for remediation of polluted aqueous solutions: 'Chemical and ecotoxicological studies'

    Energy Technology Data Exchange (ETDEWEB)

    Coutand, M., E-mail: marie.coutand@iut-tlse3.fr [Universite de Toulouse (France); UPS, INSA (France); LMDC - Laboratoire Materiaux et Durabilite des Constructions, 135, avenue de Rangueil, F-31 077 Toulouse Cedex 04 (France); Deydier, E., E-mail: eric.deydier@iut-tlse3.fr [Universite de Toulouse, Laboratoire de Chimie de Coordination du CNRS (UPR 8241), lie par convention a l' Universite Paul Sabatier - IUT A, Avenue Georges Pompidou, BP258, 81104 Castres (France); Cyr, M. [Universite de Toulouse (France); UPS, INSA (France); LMDC - Laboratoire Materiaux et Durabilite des Constructions, 135, avenue de Rangueil, F-31 077 Toulouse Cedex 04 (France); and others

    2009-07-30

    Meat and Bone Meals (MBM) combustion residues (ashes) are calcium and phosphate-rich materials. The aim of this work is to evaluate ashes efficiency for remediation of cadmium-contaminated aqueous solutions, and to assess the bioavailability of cadmium on Xenopuslaevis larvae. In this study both industrial (MBM-BA) and laboratory (MBM-LA) ashes are compared regarding their efficiency. Kinetic investigations reveal that cadmium ions are quickly immobilized, with a maximum cadmium uptake at 57 mg Cd{sup 2+}/g of ashes for MBM-LA, two times higher than metal uptake quantity of MBM-BA, in our experimental conditions. Chemical and X-ray diffraction analysis (XRD) reveal that Cd{sup 2+} is mainly immobilized as Ca{sub 10-x}Cd{sub x}(PO{sub 4}){sub 6}(OH){sub 2} by both ashes, whereas otavite, Cd(CO{sub 3}), is also involved for MBM-LA in cadmium uptake. Otavite formation could be explained by the presence of carbonates in MBM-LA, as observed by IR. Genotoxicity of cadmium solution on Xenopus larvae is observed at 0.02, 0.2 and 2 mg Cd{sup 2+}/L. However addition of only 0.1 g/L MBM-LA inhibits these effects for the above concentration values whereas Cd{sup 2+} bioaccumulation in larvae's liver is similar for both experiments, with and without ashes.

  12. Industrial coal utilization

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The effects of the National Energy Act on the use of coal in US industrial and utility power plants are considered. Innovative methods of using coal in an environmentally acceptable way are discussed: furnace types, fluidized-bed combustion, coal-oil-mixtures, coal firing in kilns and combustion of synthetic gas and liquid fuels. Fuel use in various industries is discussed with trends brought about by uncertain availability and price of natural gas and fuel oils: steel, chemical, cement, pulp and paper, glass and bricks. The symposium on Industrial Coal Utilization was sponsored by the US DOE, Pittsburgh Energy Technology Center, April 3 to 4, 1979. Twenty-one papers have been entered individually into the EDB. (LTN)

  13. Industrial vision

    DEFF Research Database (Denmark)

    Knudsen, Ole

    1998-01-01

    This dissertation is concerned with the introduction of vision-based application s in the ship building industry. The industrial research project is divided into a natural seq uence of developments, from basic theoretical projective image generation via CAD and subpixel analysis to a description...... of the experienc e achieved during the project is provided. The project is industrial oriented. An essential part of the project has been focused on the possi-bilities for immediate use of the results. A full implemented application doing vision ba sed positioning is described. It is concluded that visionbased...

  14. Chemical Industry Security: Voluntary or Mandatory Approach?

    Science.gov (United States)

    2007-03-01

    Risk and Uncertainty, 26(2/3), (2003): 121-136. 98 James M. Breckenridge and Philip G. Zimbardo , Psychology of Terrorism (New York: Oxford University...James N. and Philip G. Zimbardo . Psychology of Terrorism. New York: Oxford University Press, 2007. Cilluffo, Frank J. Testimony Before the

  15. Chemical ameliorant containing boron from industrial wastes

    Directory of Open Access Journals (Sweden)

    L. Beisembayevа

    2011-12-01

    Full Text Available Sorption parameters were studied sorbents consisting of a mixture of phosphogypsum (PG, borogipsa (BG as a function of mixing time, pH, concentration of P2O5 in the initial solution and the ratio of solid and liquid phases (S: L. The developed method makes it possible under certain conditions, to convert a mixture of phosphogypsum and phosphogypsum with borogipsom a product with a high enough content in it are useful for plant components.

  16. Industrial pioneers

    NARCIS (Netherlands)

    Wassink, J.

    2014-01-01

    With their knowledge of metallurgy, mechanics and thermodynamics, mechanical engineers had to give shape to the industrial revolution in the Netherlands 150 years ago. This revolution only slowly gathered momentum, however, especially in comparison with England.

  17. Electronics Industry

    Science.gov (United States)

    2006-01-01

    companies to begin listing stock options as expenses on financial reports (Chappell, 2005). The industry had used stock options extensively to help... stock options (Chappell, 2005). Industry representatives interviewed by the group argued against the requirement since they predict U.S. companies...may be less inclined now to offer stock options , and subsequently talent may be lost to aggressive foreign competition (Anonymous interviews, 2006

  18. 基于风险和成本的化工园区供电网络优化设计%Optimized design for the power supply network of the chemical industry park based on the risk and cost evaluation

    Institute of Scientific and Technical Information of China (English)

    刘储朝; 钱新明; 段在鹏; 候云娟

    2016-01-01

    化工园区供电网络优化设计是国家综合管理部门、电网工程项目法人及融资方进行项目决策的重要依据.化工园区内企业在生产活动中极易释放易燃易爆气体,供电危险极大.主要目的是运用程序优化方法,找到一种既经济又安全的供电线路布局方案,最终得到基于风险和成本的安全决策.基于前人在计算机智能算法优化数学模型得到的经验,运用图论Floyd算法和GA遗传算法研究了图论算法和人工智能算法在基于风险和成本的化工园区供电网络优化中的设计和应用.设计了一个化工园区,总降变电站为源点,8个可选择的化工园区内具有火灾或爆炸高危险性生产企业位置为网络节点.建立了无浓度约束范围和有浓度约束范围两种模型,并在有浓度约束范围模型的优化中运用广度优先遍历和深度优先遍历相结合的思想.给出了3套方案并且得到了理想的优化结果.首次应用计算机智能算法优化的方法研究了化工园区供电网络安全性,研究表明,图论算法和人工智能算法在化工园区供电网络优化上的应用是可行的.对于网络节点较多的实际化工园区供电布局,GA遗传算法一般能得到比Floyd算法更快更好的全局最优解.%In this paper we would like to present two optimized methods on the optimal design for the power supply network to be used for the chemical industry parks based on the risk and cost evaluation.For this purpose,we have developed two simulated chemical park models with a domain transformer substation as a power source,and eight high-risk fire or explosion producers as the network nodes.In proceeding with our research,we have prepared two simulated models,one of which is working without the gas concentration restriction whereas the other is working under the strict gas concentration restriction and limitation.With the above two models in hand,we have combined the breadth

  19. Hand chemical burns.

    Science.gov (United States)

    Robinson, Elliot P; Chhabra, A Bobby

    2015-03-01

    There is a vast and ever-expanding variety of potentially harmful chemicals in the military, industrial, and domestic landscape. Chemical burns make up a small proportion of all skin burns, yet they can cause substantial morbidity and mortality. Additionally, the hand and upper extremity are the most frequently involved parts of the body in chemical burns, and therefore these injuries may lead to severe temporary or permanent loss of function. Despite this fact, discussion of the care of these injuries is sparse in the hand surgery literature. Although most chemical burns require only first response and wound care, some require the attention of a specialist for surgical debridement and, occasionally, skin coverage and reconstruction. Exposure to certain chemicals carries the risk of substantial systemic toxicity and even mortality. Understanding the difference between thermal and chemical burns, as well as special considerations for specific compounds, will improve patient treatment outcomes.

  20. Chemical Emergencies

    Science.gov (United States)

    When a hazardous chemical has been released, it may harm people's health. Chemical releases can be unintentional, as in the case of an ... the case of a terrorist attack with a chemical weapon. Some hazardous chemicals have been developed by ...