WorldWideScience

Sample records for biotechnology specimen temperature

  1. Specimen loading list for the varying temperature experiment

    International Nuclear Information System (INIS)

    Qualls, A.L.; Sitterson, R.G.

    1998-01-01

    The varying temperature experiment HFIR-RB-13J has been assembled and inserted in the reactor. Approximately 5300 specimens were cleaned, inspected, matched, and loaded into four specimen holders. A listing of each specimen loaded into the steady temperature holder, its position in the capsule, and the identification of the corresponding specimen loaded into the varying temperature holder is presented in this report

  2. Biotechnology

    International Nuclear Information System (INIS)

    Lewanika, Mbikusita Mwananyanda

    2005-01-01

    The article sets out to explain in simple terms the main concepts of Biotechnology beginning with traditional biotechnology to modern biotechnology. It outlines fundamentals of Recombinant Deoxyribonucleic Acid (DNA), Genetically Modified Organisms (GMOs) and Genetic Engineering. The article offers a discussion of the benefits, disadvantages and the general public and policy concerns regarding genetically modified organisms

  3. Influence of thermal conditioning media on Charpy specimen test temperature

    International Nuclear Information System (INIS)

    Nanstad, R.K.; Swain, R.L.; Berggren, R.G.

    1989-01-01

    The Charpy V-notch (CVN) impact test is used extensively for determining the toughness of structural materials. Research programs in many technologies concerned with structural integrity perform such testing to obtain Charpy energy vs temperature curves. American Society for Testing and Materials Method E 23 includes rather strict requirements regarding determination and control of specimen test temperature. It specifies minimum soaking times dependent on the use of liquids or gases as the medium for thermally conditioning the specimen. The method also requires that impact of the specimen occur within 5 s removal from the conditioning medium. It does not, however, provide guidance regarding choice of conditioning media. This investigation was primarily conducted to investigate the changes in specimen temperature which occur when water is used for thermal conditioning. A standard CVN impact specimen of low-alloy steel was instrumented with surface-mounted and embedded thermocouples. Dependent on the media used, the specimen was heated or cooled to selected temperatures in the range -100 to 100 degree C using cold nitrogen gas, heated air, acetone and dry ice, methanol and dry ice, heated oil, or heated water. After temperature stabilization, the specimen was removed from the conditioning medium while the temperatures were recorded four times per second from all thermocouples using a data acquisition system and a computer. The results show that evaporative cooling causes significant changes in the specimen temperatures when water is used for conditioning. Conditioning in the other media did not result in such significant changes. The results demonstrate that, even within the guidelines of E 23, significant test temperature changes can occur which may substantially affect the Charpy impact test results if water is used for temperature conditioning. 7 refs., 11 figs

  4. Biotechnology

    International Nuclear Information System (INIS)

    2008-01-01

    The guidelines of the Biotechnology Program are research and development aiming to develop and manufacture products of pharmaceutical interest. This program has two main research areas, namely Pituitary Hormones and Biopharmaceuticals. The first one comprises a group with a long experience on Recombinant Human Pituitary Hormone synthesis, purification and characterization. The Biopharmaceutical area is dedicated to the research of isolation, structural analysis and biological activities in different biological system of macromolecules

  5. Biotechnology

    International Nuclear Information System (INIS)

    2011-01-01

    The guidelines of the Biotechnology Program are research and development aiming to develop and manufacture products of pharmaceutical interest. This Program has two main research areas, namely Pituitary Hormones and Biopharmaceuticals. The first one comprises a group with a long experience on Recombinant Human Pituitary Hormone synthesis, purification and characterization. The Biopharmaceutical area is dedicated to the research of isolation, structural analysis and biological activities in different biological system of macromolecules. The Animal Laboratory Division of IPEN is responsible for the breeding and production of small laboratory animal.

  6. Biotechnology

    International Nuclear Information System (INIS)

    2014-01-01

    The guidelines of the Biotechnology Program are research and development aiming at developing and manufacturing products of pharmaceutical interest. This Program has two main research areas, namely Pituitary Hormones and Biopharmaceuticals. The first one comprises a group with a long experience on Recombinant Human Pituitary Hormone synthesis, purification and characterization. Up to now they have worked mostly with human growth hormone (hGH), human prolactin (hPRL), human thyrotropin (hTSH), human follicle stimulating hormone (hFSH) and human luteotropin (hLH), with a particular emphasis on glycoprotein carbohydrate structures. An important research line is devoted to Growth Hormone Gene Therapy, working mostly on animal models: immunocompetent and immunodeficient-dwarf mice. For several years this development has been based on ex vivo grafting of transduced keratinocytes, while more recently very promising results have been obtained with the injections and electroporation of naked plasmid DNA. Besides research, they have also activities in the Biotechnological Production and Downstream Processing of the same recombinant hormones, which are produced in both E. coli and mammalian cells and in the development of joint-ventures with the National Industry. The biological effects of radiation on cells are also studied, specially concerning the administration of 131 I together with thyroid-stimulating hormone in thyroid cancer. The Biopharmaceutical area is dedicated to the research of isolation, structural analysis and biological activities in different biological systems of macromolecules. These macromolecules are peptides or proteins, either native or recombinant with medical or pharmaceutical interest. During this period new proteins related to serine protease activity, breast cancer development and angiogenesis were described. The effects of ionizing radiation on macromolecules have also been investigated to detoxify animal venoms in order to improve antigens for

  7. Biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The guidelines of the Biotechnology Program are research and development aiming at developing and manufacturing products of pharmaceutical interest. This Program has two main research areas, namely Pituitary Hormones and Biopharmaceuticals. The first one comprises a group with a long experience on Recombinant Human Pituitary Hormone synthesis, purification and characterization. Up to now they have worked mostly with human growth hormone (hGH), human prolactin (hPRL), human thyrotropin (hTSH), human follicle stimulating hormone (hFSH) and human luteotropin (hLH), with a particular emphasis on glycoprotein carbohydrate structures. An important research line is devoted to Growth Hormone Gene Therapy, working mostly on animal models: immunocompetent and immunodeficient-dwarf mice. For several years this development has been based on ex vivo grafting of transduced keratinocytes, while more recently very promising results have been obtained with the injections and electroporation of naked plasmid DNA. Besides research, they have also activities in the Biotechnological Production and Downstream Processing of the same recombinant hormones, which are produced in both E. coli and mammalian cells and in the development of joint-ventures with the National Industry. The biological effects of radiation on cells are also studied, specially concerning the administration of {sup 131}I together with thyroid-stimulating hormone in thyroid cancer. The Biopharmaceutical area is dedicated to the research of isolation, structural analysis and biological activities in different biological systems of macromolecules. These macromolecules are peptides or proteins, either native or recombinant with medical or pharmaceutical interest. During this period new proteins related to serine protease activity, breast cancer development and angiogenesis were described. The effects of ionizing radiation on macromolecules have also been investigated to detoxify animal venoms in order to improve antigens

  8. Biotechnologies

    Directory of Open Access Journals (Sweden)

    Rival Alain

    2001-07-01

    Full Text Available Today, a range of biotechnological approaches, from somatic embryogenesis to biomolecular research, play an increasingly important role in breeding strategies for oil palm (Elaeis guineensis Jacq.. Clonal micropropagation. Methods of cloning by in vitro culture led to the development of a micropropagation technique for oil palm based on somatic embryogenesis which was tested at the pilot stage on elite genotypes, thus enabling the production of high oil yielding clones. This phase allowed the identification of limiting factors associated with scaling-up, with respect in particular to the scale of mass production required to meet the needs of planters and to the problem of ensuring genetic fidelity in the regenerated plant material. These two concerns led researchers to look further into the underlying physiological and/or molecular mechanisms involved in somatic embryogenesis and the somaclonal variation events induced by the in vitro cloning procedure. Structural and functional genomics. Marker-assisted breeding in oil palm is a long-term multi-stage project including: molecular analysis of genetic diversity in both E. guineensis and E. oleifera germplasms; large scale development of PCR-based microsatellite markers; and parallel development of three genome mapping and QTL detection projects studying key agronomic characters. Post-genomics. In order to tackle the problem of the mantled flowering abnormality, which is induced during the micropropagation process, studies of gene expression have been carried out in tissue cultures as a means of establishing an early clonal conformity testing procedure. It is important to assess what kind of methodology is the most appropriate for clonal conformity testing by comparing RNA, protein and DNA (PCR based approaches. Parallel studies on genomic DNA methylation changes induced by tissue culture suggest that the latter may play an important role in the determination of the mantled abnormality.

  9. Measurement of temperature fields in specimens of quartz ceramic during surface ablation

    Science.gov (United States)

    Frolov, G. A.; Pasichnyi, V. V.; Suzdal'Tsev, E. I.; Tsyganenko, V. S.

    1989-08-01

    The authors propose a method of mounting thermocouples and have obtained temperature fields within specimens of pure and doped quartz ceramic. The linearity of the dependenceΔ * = fleft( {sqrt tau } right) for deep isotherms has been proved experimentally.

  10. Effect of laser power and specimen temperature on atom probe analyses of magnesium alloys

    International Nuclear Information System (INIS)

    Oh-ishi, K.; Mendis, C.L.; Ohkubo, T.; Hono, K.

    2011-01-01

    The influence of laser power, wave length, and specimen temperature on laser assisted atom probe analyses for Mg alloys was investigated. Higher laser power and lower specimen temperature led to improved mass and spatial resolutions. Background noise and mass resolutions were degraded with lower laser power and higher specimen temperature. By adjusting the conditions for laser assisted atom probe analyses, atom probe results with atomic layer resolutions were obtained from all the Mg alloys so far investigated. Laser assisted atom probe investigations revealed detailed chemical information on Guinier-Preston zones in Mg alloys. -- Research highlights: → We study performance of UV laser assisted atom probe analysis for Mg alloys. → There is an optimized range of laser power and specimen temperature. → Optimized UV laser enables atom probe data of Mg alloys with high special resolution.

  11. Method for independent strain and temperature measurement in polymeric tensile test specimen using embedded FBG sensors

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira; McGugan, Malcolm; Mikkelsen, Lars Pilgaard

    2016-01-01

    to calculate independently the strain and temperature are presented in the article, together with a measurement resolution study. This multi-parameter measurement method was applied to an epoxy tensile specimen, tested in a unidirectional tensile test machine with a temperature controlled cabinet. A full......A novel method to obtain independent strain and temperature measurements using embedded Fibre Bragg Grating (FBG) in polymeric tensile test specimens is presented in this paper. The FBG strain and temperature cross-sensitivity was decoupled using two single mode FBG sensors, which were embedded...... of temperature, from 40 C to -10 C. The consistency of the expected theoretical results with the calibration procedure and the experimental validation shows that this proposed method is applicable to measure accurate strain and temperature in polymers during static or fatigue tensile testing. Two different...

  12. Effect of Heat Flux on the Specimen Temperature of an LBE Capsule

    International Nuclear Information System (INIS)

    Kang, Y. H.; Park, S. J.; Cho, M. S.; Choo, K. N.; Lee, Y. S.

    2011-01-01

    For application of high-temperature irradiation tests in the HANARO reactor for Gen IV reactor material development, a number of newly designed LBE capsules have been investigated at KAERI since 2008. Recent study on heat transfer experiment of an LBE capsule with a single heater has shown that the specimen temperature of the mock-up increased linearly with an increase of heat input. The work highlighted only the heat transfer capability of an LBE capsule with a single heater as a simulated specimen in a liquid metal medium. Hence, a new LBE capsule with multi specimen sets has been designed and fabricated for the heat transfer experiment of an LBE capsule of 11M-01K. In this paper, a series of thermal analyses and heat transfer experiments for a newly designed LBE capsule was implemented to study the effect of an increase in the value of heat input and its influence on temperature distribution in the capsule mock-up

  13. Going Green and Cold: Biosurfactants from Low-Temperature Environments to Biotechnology Applications.

    Science.gov (United States)

    Perfumo, Amedea; Banat, Ibrahim M; Marchant, Roger

    2018-03-01

    Approximately 80% of the Earth's biosphere is cold, at an average temperature of 5°C, and is populated by a diversity of microorganisms that are a precious source of molecules with high biotechnological potential. Biosurfactants from cold-adapted organisms can interact with multiple physical phases - water, ice, hydrophobic compounds, and gases - at low and freezing temperatures and be used in sustainable (green) and low-energy-impact (cold) products and processes. We review the biodiversity of microbial biosurfactants produced in cold habitats and provide a perspective on the most promising future applications in environmental and industrial technologies. Finally, we encourage exploring the cryosphere for novel types of biosurfactants via both culture screening and functional metagenomics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Size effect studies on smooth tensile specimens at room temperature and 400 oC

    International Nuclear Information System (INIS)

    Krompholz, K.; Kamber, J.; Groth, E.; Kalkhof, D.

    2000-06-01

    One of the objectives of the REVISA project (REactor Vessel Integrity in Severe Accidents) is to assess the size effect related to deformation and failure models as well as material data under quasistatic and dynamic conditions in homogeneous and non-homogeneous states of strain. For these investigations the reactor pressure vessel material 20 MnMoNi 55 was selected. It was subjected to a size effect study on smooth scaled tensile specimens of three sizes. Two strain rates (2*10 -5 /s and 10 -3 /s) and two temperatures (room temperature and 400 o C) were selected. The investigations are aimed at a support for a gradient plasticity approach to size effects. Test on the small specimens (diameters 3 and 9 mm) were performed at an electromechanical test machine, while the large specimens (diameter 30 mm) had to be tested at a servohydraulical closed loop test machine with a force capacity of 1000 kN

  15. Size effect studies on smooth tensile specimens at room temperature and 400 {sup o}C

    Energy Technology Data Exchange (ETDEWEB)

    Krompholz, K.; Kamber, J.; Groth, E.; Kalkhof, D

    2000-06-15

    One of the objectives of the REVISA project (REactor Vessel Integrity in Severe Accidents) is to assess the size effect related to deformation and failure models as well as material data under quasistatic and dynamic conditions in homogeneous and non-homogeneous states of strain. For these investigations the reactor pressure vessel material 20 MnMoNi 55 was selected. It was subjected to a size effect study on smooth scaled tensile specimens of three sizes. Two strain rates (2*10{sup -5}/s and 10{sup -3}/s) and two temperatures (room temperature and 400 {sup o}C) were selected. The investigations are aimed at a support for a gradient plasticity approach to size effects. Test on the small specimens (diameters 3 and 9 mm) were performed at an electromechanical test machine, while the large specimens (diameter 30 mm) had to be tested at a servohydraulical closed loop test machine with a force capacity of 1000 kN.

  16. Radiation damage relative to transmission electron microscopy of biological specimens at low temperature: a review

    International Nuclear Information System (INIS)

    Glaeser, R.M.; Taylor, K.A.

    1978-01-01

    When biological specimens are irradiated by the electron beam in the electron microscope, the specimen structure is damaged as a result of molecular excitation, ionization, and subsequent chemical reactions. The radiation damage that occurs in the normal process of electron microscopy is known to present severe limitations for imaging high resolution detail in biological specimens. The question of radiation damage at low temperatures has therefore been investigated with the view in mind of reducing somewhat the rate at which damage occurs. The radiation damage protection found for small molecule (anhydrous) organic compounds is generally rather limited or even non-existent. However, large molecule, hydrated materials show as much as a 10-fold reduction at low temperature in the rate at which radiation damage occurs, relative to the damage rate at room temperature. In the case of hydrated specimens, therefore, low temperature electron microscopy offers an important advantage as part of the overall effort required in obtaining high resolution images of complex biological structures. (author)

  17. Temperature-Switchable Agglomeration of Magnetic Particles Designed for Continuous Separation Processes in Biotechnology.

    Science.gov (United States)

    Paulus, Anja S; Heinzler, Raphael; Ooi, Huey Wen; Franzreb, Matthias

    2015-07-08

    The purpose of this work was the synthesis and characterization of thermally switchable magnetic particles for use in biotechnological applications such as protein purification and enzymatic conversions. Reversible addition-fragmentation chain-transfer polymerization was employed to synthesize poly(N-isopropylacrylamide) brushes via a "graft-from" approach on the surface of magnetic microparticles. The resulting particles were characterized by infrared spectroscopy and thermogravimetric analysis and their temperature-dependent agglomeration behavior was assessed. The influence of several factors on particle agglomeration (pH, temperature, salt type, and particle concentration) was evaluated. The results showed that a low pH value (pH 3-4), a kosmotropic salt (ammonium sulfate), and a high particle concentration (4 g/L) resulted in improved agglomeration at elevated temperature (40 °C). Recycling of particles and reversibility of the temperature-switchable agglomeration were successfully demonstrated for ten heating-cooling cycles. Additionally, enhanced magnetic separation was observed for the modified particles. Ionic monomers were integrated into the polymer chain to create end-group functionalized particles as well as two- and three-block copolymer particles for protein binding. The adsorption of lactoferrin, bovine serum albumin, and lysozyme to these ion exchange particles was evaluated and showed a binding capacity of up to 135 mg/g. The dual-responsive particles combined magnetic and thermoresponsive properties for switchable agglomeration, easy separability, and efficient protein adsorption.

  18. Some like it hot, some like it cold: Temperature dependent biotechnological applications and improvements in extremophilic enzymes.

    Science.gov (United States)

    Siddiqui, Khawar Sohail

    2015-12-01

    The full biotechnological exploitation of enzymes is still hampered by their low activity, low stability and high cost. Temperature-dependent catalytic properties of enzymes are a key to efficient and cost-effective translation to commercial applications. Organisms adapted to temperature extremes are a rich source of enzymes with broad ranging thermal properties which, if isolated, characterized and their structure-function-stability relationship elucidated, could underpin a variety of technologies. Enzymes from thermally-adapted organisms such as psychrophiles (low-temperature) and thermophiles (high-temperature) are a vast natural resource that is already under scrutiny for their biotechnological potential. However, psychrophilic and thermophilic enzymes show an activity-stability trade-off that necessitates the use of various genetic and chemical modifications to further improve their properties to suit various industrial applications. This review describes in detail the properties and biotechnological applications of both cold-adapted and thermophilic enzymes. Furthermore, the review critically examines ways to improve their value for biotechnology, concluding by proposing an integrated approach involving thermally-adapted, genetically and magnetically modified enzymes to make biocatalysis more efficient and cost-effective. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Size effect studies on notched tensile specimens at room temperature and 400 {sup o}C

    Energy Technology Data Exchange (ETDEWEB)

    Krompholz, K.; Kamber, J.; Groth, E.; Kalkhof, D

    2000-07-01

    One of the objectives of the REVISA project (REactor Vessel Integrity in Severe Accidents) is to assess the size effect related to deformation and failure models as well as material data under quasistatic and dynamic conditions in homogeneous and non-homogeneous states of strain. For these investigations the reactor pressure vessel material 20 MnMoNi 55 was selected. It was subjected to a size effect study on notched scaled tensile specimens of three sizes. Two strain rates (2*10{sup -5}/s and 10{sup -3}/s) and two temperatures (room temperature and 400 {sup o}C) were selected. The investigations are aimed at a support for a gradient plasticity approach to size effects. Test on the small specimens (diameters 2.4 and 7.2 mm) were performed at an electromechanical test machine, while the large specimens (diameter 24 mm) had to be tested at a servohydraulical closed loop test machine with a force capacity of 1000 kN. All characteristic values were found to be size dependent. A selected semicircular notch retains its shape. The notch opening becomes a chord of a segment of a circle, the notch shape at fracture is a segment of a circle. (author)

  20. Room temperature fatigue behavior of OFHC copper and CuAl25 specimens of two sizes

    DEFF Research Database (Denmark)

    Singhal, A.; Stubbins, J.F.; Singh, B.N.

    1994-01-01

    requiring an understanding of their fatigue behavior.This paper describes the room temperature fatigue behavior of unirradiated OFHC (oxygen-free high-conductivity) copper and CuAl25 (copper strengthened with a 0.25% atom fraction dispersion of alumina). The response of two fatigue specimen sizes to strain......Copper and its alloys are appealing for application in fusion reactor systems for high heat flux components where high thermal conductivities are critical, for instance, in divertor components. The thermal and mechanical loading of such components will be, at least in part, cyclic in nature, thus...

  1. Irradiation temperature measurement of the reactor pressure vessel surveillance specimen in the programmes of radiation degradation monitoring

    International Nuclear Information System (INIS)

    Kupca, L.; Stanc, S.; Simor, S.

    2001-01-01

    The information's about the special system of irradiation temperature measurement, used for reactor pressure vessel surveillance specimen, which are placed in reactor thermal shielding canals are presented in the paper. The system was designed and realized in the frame of Extended Surveillance Specimen Programme for NPP V-2 Jaslovske Bohunice and Modern Surveillance Specimen Programme for NPP Mochovce. Base design aspects, technical parameters of realization and results of measurement on the two units in Bohunice and Mochovce NPPs are presented too. (Authors)

  2. Use of miniature and standard specimens to evaluate effects of irradiation temperature on pressure vessel steels

    International Nuclear Information System (INIS)

    Haggag, F.M.; Nanstad, R.K.; Byrne, S.T.

    1991-01-01

    The effects of neutron irradiation on the steel reactor vessel for the modular high-temperature gas-cooled reactor (MHTGR) are being investigated, primarily because the operating temperatures are low [121 to 210 degrees C (250--410 degrees F)] compared to those for commercial light-water reactors (LWRs) [∼288 degrees C (550 degrees F)]. The need for design data on the reference temperature shift necessitated the irradiation at different temperatures of A 533 grade B class 1 plate. A 508 class 3 forging, and welds used for the vessel shell, vessel closure head, the vessel flange. This paper presents results from the first four irradiation capsules of this program. The four capsules were irradiated in the University of Buffalo Reactor to an effective fast fluence of 1 x10 18 neutron/cm 2 [0.68 x 10 18 neutron/cm 2 (>1 MeV)] at temperatures of 288, 204, 163, and 121 degrees C (550, 400, 325, and 250 degrees F), respectively. The yield and ultimate strengths of both steel plate materials of the MHTGR Program increased with decreasing irradiation temperature. Similarly, the 41-J Charpy V-notch (CVN) transition temperature shift increased with decreasing irradiation temperature (in agreement with the increase in yield strength). The miniature tensile and automated ball indentation (ABI) test results (yield strength and flow properties) were in good agreement with those from standard tensile specimens. The miniature tensile and ABI test results were also used in a model that utilizes the changes in yield strength to estimate the CVN ductile-to-brittle transition temperature shift due to irradiation. The model predictions were compared with CVN test results obtained here and in earlier work. 5 refs., 11 figs., 6 tabs

  3. The Effect of Specimen Size on the Results of Concrete Adiabatic Temperature Rise Test with Commercially Available Equipment

    Directory of Open Access Journals (Sweden)

    Byung Jae Lee

    2014-12-01

    Full Text Available In this study, adiabatic temperature rise tests depending on binder type and adiabatic specimen volume were performed, and the maximum adiabatic temperature rises and the reaction factors for each mix proportion were analyzed and suggested. The results indicated that the early strength low heat blended cement mixture had the lowest maximum adiabatic temperature rise (Q∞ and the ternary blended cement mixture had the lowest reaction factor (r. Also, Q and r varied depending on the adiabatic specimen volume even when the tests were conducted with a calorimeter, which satisfies the recommendations for adiabatic conditions. Test results show a correlation: the measurements from the 50 L specimens were consistently higher than those from the 6 L specimens. However, the Q∞ and r values of the 30 L specimen were similar to those of the 50 L specimen. Based on the above correlation, the adiabatic temperature rise of the 50 L specimen could be predicted using the results of the 6 L and 30 L specimens. Therefore, it is thought that this correlation can be used for on-site concrete quality control and basic research.

  4. The Effect of Specimen Size on the Results of Concrete Adiabatic Temperature Rise Test with Commercially Available Equipment.

    Science.gov (United States)

    Lee, Byung Jae; Bang, Jin Wook; Shin, Kyung Joon; Kim, Yun Yong

    2014-12-08

    In this study, adiabatic temperature rise tests depending on binder type and adiabatic specimen volume were performed, and the maximum adiabatic temperature rises and the reaction factors for each mix proportion were analyzed and suggested. The results indicated that the early strength low heat blended cement mixture had the lowest maximum adiabatic temperature rise ( Q ∞ ) and the ternary blended cement mixture had the lowest reaction factor ( r ). Also, Q and r varied depending on the adiabatic specimen volume even when the tests were conducted with a calorimeter, which satisfies the recommendations for adiabatic conditions. Test results show a correlation: the measurements from the 50 L specimens were consistently higher than those from the 6 L specimens. However, the Q ∞ and r values of the 30 L specimen were similar to those of the 50 L specimen. Based on the above correlation, the adiabatic temperature rise of the 50 L specimen could be predicted using the results of the 6 L and 30 L specimens. Therefore, it is thought that this correlation can be used for on-site concrete quality control and basic research.

  5. Pre-analytical variation in glucose concentration due to atmospheric temperature and clot in blood specimens

    International Nuclear Information System (INIS)

    Butt, T.; Masud, K.; Khan, J.A.; Bhatti, M.S.

    2016-01-01

    Objective: To determine the effect of temperature and contact of clot with serum on laboratory results of glucose concentration in blood. Study Design: Quasi-experimental study. Place and Duration of Study: December 2014 to August 2015 at the laboratory of Shoaib Hospital, Fateh Jang, Attock Pakistan. Material and Methods: Samples were collected for estimation of blood glucose (Random) concentration from patients reporting to the hospital. Blood specimens (n=94) of such volunteers were analyzed for glucose level. Each sample was put up in five tubes. When the blood clotted the serum from tube-1 was analyzed for glucose level within 30 minutes. In tube-2 and tube-3 serum was kept for 24 hours at room temperature and refrigerator temperature respectively before glucose estimation. In tube-4 and tube-5 serum was not separated from clot and kept at room temperature and refrigerator temperature respectively before glucose estimation. The value of tube 1 was taken as reference value for comparison with other parts of the specimen. The equipment used for blood glucose level estimation was semi auto chemistry analyzer (Rayto, China). The kit used for analysis was Glucose - Liquizyme (Germany). Results: The difference between the mean reference value (tube-1) and refrigerated serum without clot (tube-3) was 4.63 mg/100 ml while that of unrefrigerated portion (tube-2) had a difference of 10.68 mg/100 ml. The mean of unrefrigerated (tube-4) and refrigerated (tube-5) portions of serum kept with the clot had difference of 42.05 mg/100 ml and 25.84 mg/100 ml respectively. The fall in the blood glucose level in all (n=94) the samples in the tube number 3 (serum separated and kept at refrigerated temperature) was 4.63 mg/100 ml +- 3.68 (Mean +- SD) and it ranged from 0 to 20 mg/100 ml whereas fall was maximum in the tube number 4 (serum with clotted blood and kept at room temperature) was 42.04 mg/100 ml +- 10.61 (Mean +- SD) and it ranged from 13 to 82 mg/100 ml. The sample in

  6. Thermal analysis on the specimens for low irradiation temperature below 100degC in the HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Myoung-Hwan; Kim, Bong-Goo; Lee, Byung-Chul; Kim, Tae-Kyu [Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of)

    2012-03-15

    A capsule has been used for an irradiation test of various nuclear materials in the research reactor, HANARO. As a part of the research reactor development project with a plate type fuel, the irradiation tests of beryllium, zircaloy-4 and graphite materials using the capsule will be carried out to obtain the mechanical characteristics at low temperatures below 100degC with 30 MW reactor power. In this study, in order to obtain the preliminary design data of the capsule with various specimens and the temperature of specimens, a thermal analysis is performed by using an ANSYS program. The finite element models for the cross section of the capsule containing the specimen are generated, and the temperatures are evaluated. The analysis results show that most specimens meet the irradiation target temperature. However, some canned graphite specimens have a slightly high temperature, and the gap size has a significant effect on the specimen temperature. Based on those results a detailed design and analysis of the capsule will be completed this year. (author)

  7. Biotechnology 2007

    International Nuclear Information System (INIS)

    2007-12-01

    This book deals with Bio-vision 2016 on the meaning and important contents Next, it reveals vision of biotechnology, current condition of biotechnology in the main countries such as the U.S, Japan, Eu and China, promoting nation biotechnology with promotion policy, support policy for biotechnology such as agriculture and forestry and information and communication, competitiveness of biotechnology, research development by fields and related industries and regulation and system on biotechnology.

  8. Summary of the U.S. specimen matrix for the HFIR 13J varying temperature irradiation capsule

    International Nuclear Information System (INIS)

    Zinkle, S.J.

    1998-01-01

    The US specimen matrix for the collaborative DOE/Monbusho HFIR 13J varying temperature irradiation capsule contains two ceramics and 29 different metals, including vanadium alloys, ferritic/martensitic steels, pure iron, austenitic stainless steels, nickel alloys, and copper alloys. This experiment is designed to provide fundamental information on the effects of brief low-temperature excursions on the tensile properties and microstructural evolution of a wide range of materials irradiated at nominal temperatures of 350 and 500 C to a dose of ∼5 dpa. A total of 340 miniature sheet tensile specimens and 274 TEM disks are included in the US-supplied matrix for the irradiation capsule

  9. Progress report on irradiation experiment on small size specimens in high temperature flux module

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh, M.; Jacquet, P.; Chaouadi, R.

    2011-02-15

    This report describes the progress made in IFREC/DEMO Research and Development Program during the year 2010 at SCK/CEN. This task is part of demonstrating the possibility to irradiate small specimens in the HFTM modules that will be used in DEMO. Different small specimens of three candidate materials of DEMO fusion reactor will be irradiated with the objective of validating the specimen geometry and size to reliably characterize the mechanical properties of unirradiated and in future of irradiated materials.

  10. In situ TEM and synchrotron characterization of U–10Mo thin specimen annealed at the fast reactor temperature regime

    International Nuclear Information System (INIS)

    Yun, Di; Mo, Kun; Mohamed, Walid; Ye, Bei; Kirk, Marquis A.; Baldo, Peter; Xu, Ruqing; Yacout, Abdellatif M.

    2015-01-01

    U–Mo metallic alloys have been extensively used for the Reduced Enrichment for Research and Test Reactors (RERTR) program, which is now known as the Office of Material Management and Minimization under the Conversion Program. This fuel form has also recently been proposed as fast reactor metallic fuels in the recent DOE Ultra-high Burnup Fast Reactor project. In order to better understand the behavior of U–10Mo fuels within the fast reactor temperature regime, a series of annealing and characterization experiments have been performed. Annealing experiments were performed in situ at the Intermediate Voltage Electron Microscope (IVEM-Tandem) facility at Argonne National Laboratory (ANL). An electro-polished U–10Mo alloy fuel specimen was annealed in situ up to 700 °C. At an elevated temperature of about 540 °C, the U–10Mo specimen underwent a relatively slow microstructure transition. Nano-sized grains were observed to emerge near the surface. At the end temperature of 700 °C, the near-surface microstructure had evolved to a nano-crystalline state. In order to clarify the nature of the observed microstructure, Laue diffraction and powder diffraction experiments were carried out at beam line 34-ID of the Advanced Photon Source (APS) at ANL. Phases present in the as-annealed specimen were identified with both Laue diffraction and powder diffraction techniques. The U–10Mo was found to recrystallize due to thermally-induced recrystallization driven by a high density of pre-existing dislocations. A separate in situ annealing experiment was carried out with a Focused Ion Beam processed (FIB) specimen. A similar microstructure transition occurred at a lower temperature of about 460 °C with a much faster transition rate compared to the electro-polished specimen. - Highlights: • TEM annealing experiments were performed in situ at the IVEM facility up to fast reactor temperature. • At 540 °C, the U-10Mo specimen underwent a slow microstructure transition

  11. In situ TEM and synchrotron characterization of U–10Mo thin specimen annealed at the fast reactor temperature regime

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Di, E-mail: diyun1979@xjtu.edu.cn [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Xi' an Jiao Tong University, 28 Xian Ning West Road, Xi' an 710049 (China); Mo, Kun; Mohamed, Walid; Ye, Bei; Kirk, Marquis A.; Baldo, Peter; Xu, Ruqing; Yacout, Abdellatif M. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2015-12-15

    U–Mo metallic alloys have been extensively used for the Reduced Enrichment for Research and Test Reactors (RERTR) program, which is now known as the Office of Material Management and Minimization under the Conversion Program. This fuel form has also recently been proposed as fast reactor metallic fuels in the recent DOE Ultra-high Burnup Fast Reactor project. In order to better understand the behavior of U–10Mo fuels within the fast reactor temperature regime, a series of annealing and characterization experiments have been performed. Annealing experiments were performed in situ at the Intermediate Voltage Electron Microscope (IVEM-Tandem) facility at Argonne National Laboratory (ANL). An electro-polished U–10Mo alloy fuel specimen was annealed in situ up to 700 °C. At an elevated temperature of about 540 °C, the U–10Mo specimen underwent a relatively slow microstructure transition. Nano-sized grains were observed to emerge near the surface. At the end temperature of 700 °C, the near-surface microstructure had evolved to a nano-crystalline state. In order to clarify the nature of the observed microstructure, Laue diffraction and powder diffraction experiments were carried out at beam line 34-ID of the Advanced Photon Source (APS) at ANL. Phases present in the as-annealed specimen were identified with both Laue diffraction and powder diffraction techniques. The U–10Mo was found to recrystallize due to thermally-induced recrystallization driven by a high density of pre-existing dislocations. A separate in situ annealing experiment was carried out with a Focused Ion Beam processed (FIB) specimen. A similar microstructure transition occurred at a lower temperature of about 460 °C with a much faster transition rate compared to the electro-polished specimen. - Highlights: • TEM annealing experiments were performed in situ at the IVEM facility up to fast reactor temperature. • At 540 °C, the U-10Mo specimen underwent a slow microstructure transition

  12. The effect of specimen size on the ductile/brittle transition temperature in an A533B pressure vessel steel

    International Nuclear Information System (INIS)

    Green, G.; Knott, J.F.

    It was ascertained that it is possible to relate critical crack opening displacement (COD) values, deltasub(crit), obtained on small specimens of A 533-B pressure vessel steel to the fracture toughness value representing the initiation of fracture in a large structure. The variation of deltasub(crit) with temperature is given. A sharp increase in deltasub(crit) is observed above a temperature of approximately -100 degC and this was found to be associated with the initiation of small amounts of fibrous fracture, prior to a cleavage instability. An upper limit to the deltasub(crit) values was obtained above -50 degC, where the fracture was found to be fully ductile. Values of deltasub(crit) estimated from the valid fracture toughness results are shown for comparison. At low temperatures the estimated deltasub(crit) values are seen to be less than those measured in the small bend specimens and the sharp increase in the estimated deltasub(crit) values occurs at a higher temperature, approximately 0 degC. The room temperature deltasub(crit) value, estimated from the valid toughness results (0.15 mm) compares well with COD for the initiation of fibrous fracture, measured at the same temperature in small bend specimens (0.175 mm). The following conclusions were drawn from the experiments: 1. The ductile/brittle transition temperature, determined by critical COD measurements, is influenced by the relaxation of triaxial stresses in small specimens. 2. It is possible to relate critical COD values for the initiation of fibrous fracture, measured in small specimens, to the fracture toughness representing this behaviour in a large structure

  13. In-situ tritium recovery from Li2O irradiated in fast neutron flux - Beatrix-II temperature change specimen

    International Nuclear Information System (INIS)

    Slagle, O.D.; Hollenberg, G.W.; Kurasawa, T.; Verrall, R.A.

    1992-01-01

    The Beatrix-II irradiation experiment is an in-situ tritium release experiment to evaluate the stability and tritium release characteristics of Li 2 O under fast neutron irradiation to extended burnups. A thin annular ring specimen capable of temperature changes was irradiated in Phase I of the experiment to a lithium burnup of 5%. The primary emphasis of the test plan was to determine the effect and interrelationship of gas composition and temperature on the tritium inventory with increasing temperature and a series of specific temperature changes were carried out at intervals throughout the experiment to characterize the effect of burnup. Decreasing the amount of hydrogen in the sweep gas resulted in an increase in the tritium inventory in the Li 2 O specimen. The tritium recovery during startup and shutdown was observed to be strongly influenced by the composition of the sweep gas

  14. Calorimeters for biotechnology

    International Nuclear Information System (INIS)

    Russell, Donald J.; Hansen, Lee D.

    2006-01-01

    The isothermal and temperature scanning calorimeters manufactured by Calorimetry Sciences Corporation are briefly described. Applications of calorimetry to determine thermodynamics and kinetics of reactions of interest in biotechnology are described with illustrative examples

  15. Method for determining thermo-physical properties of specimens. [photographic recording of changes in thin film phase-change temperature indicating material in wind tunnel

    Science.gov (United States)

    Jones, R. A. (Inventor)

    1974-01-01

    The square root of the product of thermophysical properties q, c and k, where p is density, c is specific heat and k is thermal conductivity, is determined directly on a test specimen such as a wind tunnel model. The test specimen and a reference specimen of known specific heat are positioned at a given distance from a heat source. The specimens are provided with a coating, such as a phase change coating, to visually indicate that a given temperature was reached. A shutter interposed between the heat source and the specimens is opened and a motion picture camera is actuated to provide a time record of the heating step. The temperature of the reference specimen is recorded as a function of time. The heat rate to which both the test and reference specimens were subjected is determined from the temperature time response of the reference specimen by the conventional thin-skin calorimeter equation.

  16. Estimation of Surface Temperature and Heat Flux by Inverse Heat Transfer Methods Using Internal Temperatures Measured While Radiantly Heating a Carbon/Carbon Specimen up to 1920 F

    Science.gov (United States)

    Pizzo, Michelle; Daryabeigi, Kamran; Glass, David

    2015-01-01

    The ability to solve the heat conduction equation is needed when designing materials to be used on vehicles exposed to extremely high temperatures; e.g. vehicles used for atmospheric entry or hypersonic flight. When using test and flight data, computational methods such as finite difference schemes may be used to solve for both the direct heat conduction problem, i.e., solving between internal temperature measurements, and the inverse heat conduction problem, i.e., using the direct solution to march forward in space to the surface of the material to estimate both surface temperature and heat flux. The completed research first discusses the methods used in developing a computational code to solve both the direct and inverse heat transfer problems using one dimensional, centered, implicit finite volume schemes and one dimensional, centered, explicit space marching techniques. The developed code assumed the boundary conditions to be specified time varying temperatures and also considered temperature dependent thermal properties. The completed research then discusses the results of analyzing temperature data measured while radiantly heating a carbon/carbon specimen up to 1920 F. The temperature was measured using thermocouple (TC) plugs (small carbon/carbon material specimens) with four embedded TC plugs inserted into the larger carbon/carbon specimen. The purpose of analyzing the test data was to estimate the surface heat flux and temperature values from the internal temperature measurements using direct and inverse heat transfer methods, thus aiding in the thermal and structural design and analysis of high temperature vehicles.

  17. Biotechnology 2009

    International Nuclear Information System (INIS)

    2009-12-01

    This book first reveals prospect on biotechnology with low-carbon green growth Next, it consists of four chapters, which deal with vision of biotechnology, trend of biotechnology in main countries like the U.S, Eu, Japan and China, current condition for biotechnology with support and promoting policy such as health and medical treatment and maritime and fisheries, major product on investment, human power, paper and pattern, research development such as genomic, system biology, bio new medicine, agriculture, stock breeding and food, biological resources and legal system related biotechnology.

  18. Technique for the residual life assessment of high temperature components based on creep-rupture testing on welded miniature specimens

    Energy Technology Data Exchange (ETDEWEB)

    Garzillo, A.; Guardamagna, C.; Moscotti, L.; Ranzani, L. [Ente Nazionale per l`Energia Elettrica, Milan (Italy)

    1995-06-01

    Following the present trend in the development of advanced methodologies for residual life assessment of high temperature components operating in power plants, particularly in non destructive methods, a testing technique has been set up at ENEL-CRAM based on creep-rupture testa in an argon on welded miniature specimens. Five experimental systems for creep-rupture tests in an argon atmosphere have been set up which include high accuracy systems, vacuum chambers and exrwnsometer devices. With the aim of establishing and validating the suitability of the experimental methodology, creep-rupture and interrupted creep testing programmes have been performed on miniature specimens (2 mm diameter and 10 mm gauge lenght). On the basis of experience gathered by various European research laboratories, a miniature specimen construction procedure has been developed using a laser welding technique for joining threaded heads to sample material. Low alloy ferritic steels, such as virgin 2.25CrlMo, 0.5Cr 0.5Mo 0.25V, and IN 738 superalloy miniature specimens have been investigated and the results, compared with those from standard specimens, show a regular trend in deformation vs time. Additional efforts to provide guidelines for material sampling from each plant component will be required in order to reduce uncertainties in residual life prediction.

  19. The role of specimen temperature difference in the elevated temperature pitting/transfer of PE16 and 20/25/Nb SS during impact wear

    International Nuclear Information System (INIS)

    Morri, J.

    1989-01-01

    A previous study of the impact fretting wear characteristics of PE16 + impacting 20/25 Nb SS (carried out on the BNL twin vibrator rig) identified a pitting-transfer form of wear at 480 0 C. This behaviour was thought to be dependent upon the temperature difference ΔT(ΔT = T 20/25 -T PE 16 ) between the two specimens. In that series of tests, however, no localised temperature control over the specimens was possible and specimen temperature effects could only be assessed by interchanging their positions in the rig. The introduction of locally positioned auxilliary heaters permitted a degree of control over the specimen temperature difference. The effect of ΔT upon pitting and transfer of the PE16 and 20/25 was then assessed and is reported in this paper. The study confirmed that the pitting transfer process was dependent on the temperature difference between the two surfaces. The direction and size of the transfer/pitting effect was independent of the material. Under the particular set of conditions employed in the test, pitting occurred only when the magnitude of ΔT exceeded 20 0 C. At high ΔT the initial period of high friction was extended and was associated with the tendency for gross transfer and pitting. (author)

  20. Characteristics on Temperature Evolution in the Metallic Specimen by Ultrasound-Excited Thermography

    Energy Technology Data Exchange (ETDEWEB)

    Choi, M. Y.; Park, J. H. [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Kang, K. S. [Hyundai Steel Co., Dangjin (Korea, Republic of); Kim, W. T. [Kongju National University, Gongju (Korea, Republic of)

    2010-06-15

    In ultrasound-excited thermography, the injected ultrasound to an object is transformed to heat and the appearance of defects can be visualized by thermography camera. The advantage of this technology is selectively sensitive to thermally active defects. Despite the apparent simplicity of the scheme, there are a number of experimental considerations that can complicate the implementation of ultrasound excitation thermography inspection. Factors including acoustic horn location, horn-crack proximity, horn-sample coupling, and effective detection range all significantly affect the detect ability of this technology. As conclusions, the influence of coupling pressures between ultrasound exciter and specimen was analyzed, which was dominant factor in frictional heating model

  1. Damages detection in cylindrical metallic specimens by means of statistical baseline models and updated daily temperature profiles

    Science.gov (United States)

    Villamizar-Mejia, Rodolfo; Mujica-Delgado, Luis-Eduardo; Ruiz-Ordóñez, Magda-Liliana; Camacho-Navarro, Jhonatan; Moreno-Beltrán, Gustavo

    2017-05-01

    In previous works, damage detection of metallic specimens exposed to temperature changes has been achieved by using a statistical baseline model based on Principal Component Analysis (PCA), piezodiagnostics principle and taking into account temperature effect by augmenting the baseline model or by using several baseline models according to the current temperature. In this paper a new approach is presented, where damage detection is based in a new index that combine Q and T2 statistical indices with current temperature measurements. Experimental tests were achieved in a carbon-steel pipe of 1m length and 1.5 inches diameter, instrumented with piezodevices acting as actuators or sensors. A PCA baseline model was obtained to a temperature of 21º and then T2 and Q statistical indices were obtained for a 24h temperature profile. Also, mass adding at different points of pipe between sensor and actuator was used as damage. By using the combined index the temperature contribution can be separated and a better differentiation of damages respect to undamaged cases can be graphically obtained.

  2. Contribution to the explanation of the spalling of small specimen without any mechanical restraint exposed to high temperature

    International Nuclear Information System (INIS)

    Morais, Marcus V.G. de; Pliya, Prosper; Noumowe, Albert; Beaucour, Anne-Lise; Ortola, Sophie

    2010-01-01

    The behaviour of concrete subjected to high temperature is studied. The aim of the study is to explain the spalling or bursting phenomenon observed during experimental studies in the laboratory. Mechanical computations are carried out with the finite element code CAST3M developed at the French Atomic Energy Agency (CEA). Heat gradient and water vapour pressure inside the concrete element are determined by using a thermo-hydrous model. Then, the mechanical stresses generated in the studied concrete element are calculated according to two behaviour assumptions: the linear isotropic elastic law and an elastoplastic model. Numerical simulations show that, during the heating cycles, tension stresses are developed in the central part and compression stresses at the surface of the cylindrical concrete element. The highest stresses appear when the surface temperature of the concrete element is about 300 o C. The tension stresses in the specimens then exceed the concrete tensile strength.

  3. Contribution to the explanation of the spalling of small specimen without any mechanical restraint exposed to high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Marcus V.G. de, E-mail: mvmorais@unb.b [Cergy-Pontoise University - L2MGC, 5 mail Gay-Lussac Neuville sur Oise, 95031 Cergy-Pontoise Cedex (France); Pliya, Prosper [Cergy-Pontoise University - L2MGC, 5 mail Gay-Lussac Neuville sur Oise, 95031 Cergy-Pontoise Cedex (France); Noumowe, Albert, E-mail: Albert.Noumowe@u-cergy.f [Cergy-Pontoise University - L2MGC, 5 mail Gay-Lussac Neuville sur Oise, 95031 Cergy-Pontoise Cedex (France); Beaucour, Anne-Lise; Ortola, Sophie [Cergy-Pontoise University - L2MGC, 5 mail Gay-Lussac Neuville sur Oise, 95031 Cergy-Pontoise Cedex (France)

    2010-10-15

    The behaviour of concrete subjected to high temperature is studied. The aim of the study is to explain the spalling or bursting phenomenon observed during experimental studies in the laboratory. Mechanical computations are carried out with the finite element code CAST3M developed at the French Atomic Energy Agency (CEA). Heat gradient and water vapour pressure inside the concrete element are determined by using a thermo-hydrous model. Then, the mechanical stresses generated in the studied concrete element are calculated according to two behaviour assumptions: the linear isotropic elastic law and an elastoplastic model. Numerical simulations show that, during the heating cycles, tension stresses are developed in the central part and compression stresses at the surface of the cylindrical concrete element. The highest stresses appear when the surface temperature of the concrete element is about 300 {sup o}C. The tension stresses in the specimens then exceed the concrete tensile strength.

  4. Freeze-Thaw Cycle Test on Basalt, Diorite and Tuff Specimens with the Simulated Ground Temperature of Antarctica

    Science.gov (United States)

    Park, J.; Hyun, C.; Cho, H.; Park, H.

    2010-12-01

    Physical weathering caused by freeze-thaw action in cold regions was simulated with artificial weathering simulator in laboratory. Physical weathering of rock in cold regions usually depends on the temperature, rock type and moisture content. Then these three variables were considered in this study. The laboratory freeze-thaw tests were conducted on the three types of rocks, e.g. diorite, basalt and tuff, which are the major rock types around Sejong Station, King George Island, Antarctica. Nine core samples composed of three samples from each rock type were prepared in NX core, and 50 cycles of freeze-thaw test was carried out under dried and saturated water conditions. In this study, the physical weathering of rocks was investigated after each 10 cycles by measuring P-wave velocity, bulk density, effective porosity, Schmidt hardness and uniaxial compression strength(UCS). The experimental result of the diorite and the tuff specimens showed that P-wave velocity, bulk density, effective porosity, Schmidt hardness and UCS were gradually decreased as weathering progresses, but the result of the basalt specimens did not show typical trends due to the characteristics of irregular pore distribution and various pore sizes. Scanning electron microscopy(SEM) photographs of diorite, basalt and tuff specimens weathered in dried and saturated conditions were also acquired to investigate the role of water during physical weathering processes. The number and size of microcracks were increased as weathering progresses. This work was supported by the National Research Foundation of Korea(NRF) Grant(NRF-2010-0027753).

  5. Standard Test Method for Normal Spectral Emittance at Elevated Temperatures of Nonconducting Specimens

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1971-01-01

    1.1 This test method describes an accurate technique for measuring the normal spectral emittance of electrically nonconducting materials in the temperature range from 1000 to 1800 K, and at wavelengths from 1 to 35 μm. It is particularly suitable for measuring the normal spectral emittance of materials such as ceramic oxides, which have relatively low thermal conductivity and are translucent to appreciable depths (several millimetres) below the surface, but which become essentially opaque at thicknesses of 10 mm or less. 1.2 This test method requires expensive equipment and rather elaborate precautions, but produces data that are accurate to within a few percent. It is particularly suitable for research laboratories, where the highest precision and accuracy are desired, and is not recommended for routine production or acceptance testing. Because of its high accuracy, this test method may be used as a reference method to be applied to production and acceptance testing in case of dispute. 1.3 This test metho...

  6. Determination of the Glass-Transition Temperature of GRPS and CFRPS Using a Torsion Pendulum in Regimes of Freely Damped Vibrations and Quasi-Stastic Torsion of Specimens

    Science.gov (United States)

    Startsev, V. O.; Lebedev, M. P.; Molokov, M. V.

    2018-03-01

    A method to measure the glass-transition temperature of polymers and polymeric matrices of composite materials with the help of an inverse torsion pendulum over a wide range of temperatures is considered combining the method of free torsional vibrations and a quasi-static torsion of specimens. The glass-transition temperature Tg of a KMKS-1-80. T10 fiberglass, on increasing the frequency of freely damped torsional vibrations from 0.7 to 9.6 Hz, was found to increase from 132 to 140°C. The value of Tg of these specimens, determined by measuring the work of their torsion through a small fixed angle was 128.6°C ± 0.8°C. It is shown that the use of a torsion pendulum allows one to determine the glass-transition temperature of polymeric or polymer matrices of PCMs in dynamic and quasi-static deformation regimes of specimens.

  7. Biotechnology bibliographies

    Energy Technology Data Exchange (ETDEWEB)

    Beaudette, L.A.; McCready, R.G.L.

    1986-01-01

    This bibliography consists of articles and scientific papers on biotechnology in areas in which BIOMINET is currently involved. The reports are categorized in four areas: 1) acid mine drainage (coals and metals) and bioadsorption of metals; 2) solution mining; 3) metabolism and physiology of Thiobacillus and other microorganisms; and 4) bacterial leaching of metals.

  8. Characterizing the transition region of an A508 cl3 steel using small specimens by the reference temperature and the weak-link distances

    International Nuclear Information System (INIS)

    Miranda, C.A.J.

    2001-01-01

    An experimental program was developed to characterize the transition region of an A508 cl3 steel. Some fracture mechanic specimens were tested in the transition region using three geometries with thickness B c values, the reference temperature values, To, associated with each geometry and test temperature, and the measured r wl distances and the theoretical ones. (author)

  9. The phenology of Rubus fruticosus in Ireland: herbarium specimens provide evidence for the response of phenophases to temperature, with implications for climate warming

    Science.gov (United States)

    Diskin, E.; Proctor, H.; Jebb, M.; Sparks, T.; Donnelly, A.

    2012-11-01

    To date, phenological research has provided evidence that climate warming is impacting both animals and plants, evidenced by the altered timing of phenophases. Much of the evidence supporting these findings has been provided by analysis of historic records and present-day fieldwork; herbaria have been identified recently as an alternative source of phenological data. Here, we used Rubus specimens to evaluate herbaria as potential sources of phenological data for use in climate change research and to develop the methodology for using herbaria specimens in phenological studies. Data relevant to phenology (collection date) were recorded from the information cards of over 600 herbarium specimens at Ireland's National Herbarium in Dublin. Each specimen was assigned a score (0-5) corresponding to its phenophase. Temperature data for the study period (1852 - 2007) were obtained from the University of East Anglia's Climate Research Unit (CRU); relationships between temperature and the dates of first flower, full flower, first fruit and full fruit were assessed using weighted linear regression. Of the five species of Rubus examined in this study, specimens of only one ( R. fruticosus) were sufficiently abundant to yield statistically significant relationships with temperature. The results revealed a trend towards earlier dates of first flower, full flower and first fruit phenophases with increasing temperature. Through its multi-phenophase approach, this research serves to extend the most recent work—which validated the use of herbaria through use of a single phenophase—to confirm herbarium-based research as a robust methodology for use in future phenological studies.

  10. Avian Biotechnology.

    Science.gov (United States)

    Nakamura, Yoshiaki

    2017-01-01

    Primordial germ cells (PGCs) generate new individuals through differentiation, maturation and fertilization. This means that the manipulation of PGCs is directly linked to the manipulation of individuals, making PGCs attractive target cells in the animal biotechnology field. A unique biological property of avian PGCs is that they circulate temporarily in the vasculature during early development, and this allows us to access and manipulate avian germ lines. Following the development of a technique for transplantation, PGCs have become central to avian biotechnology, in contrast to the use of embryo manipulation and subsequent transfer to foster mothers, as in mammalian biotechnology. Today, avian PGC transplantation combined with recent advanced manipulation techniques, including cell purification, cryopreservation, depletion, and long-term culture in vitro, have enabled the establishment of genetically modified poultry lines and ex-situ conservation of poultry genetic resources. This chapter introduces the principles, history, and procedures of producing avian germline chimeras by transplantation of PGCs, and the current status of avian germline modification as well as germplasm cryopreservation. Other fundamental avian reproductive technologies are described, including artificial insemination and embryo culture, and perspectives of industrial applications in agriculture and pharmacy are considered, including poultry productivity improvement, egg modification, disease resistance impairment and poultry gene "pharming" as well as gene banking.

  11. Study of physical and chemical properties of Y-Ba-Cu-O ceramic specimens treated with temperature-electric domains for the texture formation

    International Nuclear Information System (INIS)

    Khirnyj, V.F.; Seminozhenko, V.P.; Zagoskin, V.T.

    1995-01-01

    Study of temperature-electric domain (TED) behaviour is conducted and physico-chemical properties of specimens treated by moving TED are investigated. According to the data obtained, texture does not appear during such a treatment. To reduce v of TED the specimen is placed to a longitudinal magnetic field. TED stop at H=0.4 T and V=3.2 V is observed when the direction of the north magnetic pole coincides with the point of the positive electrode junction. Domain movement rate, at which texture occurrence is possible, is achieved by means of magnetic field intensity H variation. 10 refs.; 3 figs.; 1 tab

  12. Small punch tensile/fracture test data and 3D specimen surface data on Grade 91 ferritic/martensitic steel from cryogenic to room temperature.

    Science.gov (United States)

    Bruchhausen, Matthias; Lapetite, Jean-Marc; Ripplinger, Stefan; Austin, Tim

    2016-12-01

    Raw data from small punch tensile/fracture tests at two displacement rates in the temperature range from -196 °C to room temperature on Grade 91 ferritic/martensitic steel are presented. A number of specimens were analyzed after testing by means of X-ray computed tomography (CT). Based on the CT volume data detailed 3D surface maps of the specimens were established. All data are open access and available from Online Data Information Network (ODIN)https://odin.jrc.ec.europa.eu. The data presented in the current work has been analyzed in the research article "On the determination of the ductile to brittle transition temperature from small punch tests on Grade 91 ferritic-martensitic steel" (M. Bruchhausen, S. Holmström, J.-M. Lapetite, S. Ripplinger, 2015) [1].

  13. Editorial: Biotechnology Journal brings more than biotechnology.

    Science.gov (United States)

    Jungbauer, Alois; Lee, Sang Yup

    2015-09-01

    Biotechnology Journal always brings the state-of-the-art biotechnologies to our readers. Different from other topical issues, this issue of Biotechnology Journal is complied with a series of exiting reviews and research articles from spontaneous submissions, again, addressing society's actual problems and needs. The progress is a real testimony how biotechnology contributes to achievements in healthcare, better utilization of resources, and a bio-based economy. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Determination of necking time in tensile test specimens, under high-temperature creep conditions, subjected to distribution of stresses over the cross-section

    Science.gov (United States)

    Lokoshchenko, A.; Teraud, W.

    2018-04-01

    The work describes an experimental research of creep of cylindrical tensile test specimens made of aluminum alloy D16T at a constant temperature of 400°C. The issue to be examined was the necking at different values of initial tensile stresses. The use of a developed noncontacting measuring system allowed us to see variations in the specimen shape and to estimate the true stress in various times. Based on the obtained experimental data, several criteria were proposed for describing the point of time at which the necking occurs (necking point). Calculations were carried out at various values of the parameters in these criteria. The relative interval of deformation time in which the test specimen is uniformly stretched was also determined.

  15. Effect of holes on the room temperature tensile behaviors of thin wall specimens with (210) side surface of Ni-base single crystal superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.J.; Liu, T.; Pu, S. [Superalloys Division, Institute of Metal Research, Chinese Academy of Sciences, No. 72, Wenhua Road, Shenyang 110016 (China); Xu, H. [Materials Fatigue and Fracture Division, Institute of Metal Research, Chinese Academy of Sciences, No. 72, Wenhua Road, Shenyang 110016 (China); Wang, L., E-mail: wangli@imr.ac.cn [Superalloys Division, Institute of Metal Research, Chinese Academy of Sciences, No. 72, Wenhua Road, Shenyang 110016 (China); Lou, L.H. [Superalloys Division, Institute of Metal Research, Chinese Academy of Sciences, No. 72, Wenhua Road, Shenyang 110016 (China)

    2015-10-25

    Tensile properties of Ni-base single crystal superalloy plate specimens with and without a hole at room temperature were studied in the present paper. During the testing process, an ARAMIS system based on the digital image correlation technique and in-situ scanning electron microscopy were employed to in-situ observe the strain distribution and slip traces development on the sample surfaces. It was demonstrated that the yield stress was decreased with the appearance of a hole due to the stress concentration. The results were analyzed based on the stress and strain states of specimens and the slip traces development observed on specimen surfaces. - Graphical abstract: The strain distribution for samples without and with a hole, respectively. - Highlights: • Tensile tests of plate specimens without and with a hole were performed. • Surface strain fields were in-situ observed by ARAMIS system. • Slip traces development on sample surfaces was in-situ observed by SEM. • The hole deteriorated both the tensile strength and elongation of the samples. • Tensile strength of specimens without and with a hole was discussed respectively.

  16. Miniature Precracked Charpy Specimens for Measuring the Master Curve Reference Temperature of RPV Steels at Impact Loading Rates

    Energy Technology Data Exchange (ETDEWEB)

    Lucon, E.; Scibetta, M.; Puzzolante, L.

    2008-10-15

    In the framework of the 2006 Convention, we investigated the applicability of fatigue precracked miniature Charpy specimens of KLST type (MPCC - B = 3 mm, W = 4 mm and L = 27 mm) for impact toughness measurements, using the well-characterized JRQ RPV steel. In the ductile to-brittle transition region, MPCC tests analyzed using the Master Curve approach and compared to data previously obtained from PCC specimens had shown a more ductile behavior and therefore un conservative results. In the investigation presented in this report, two additional RPV steels have been used to compare the performance of impact-tested MPCC and PCC specimens in the transition regime: the low-toughness JSPS steel and the high-toughness 20MnMoNi55 steel. The results obtained (excellent agreement for 20MnMoNi55 and considerable differences between T0 values for JSPS) are contradictory and do not presently allow qualifying the MPCC specimens as a reliable alternative to PCC samples for impact toughness measurements.

  17. Inter- and intra-specimen variability masks reliable temperature control on shell Mg/Ca ratios in laboratory- and field-cultured Mytilus edulis and Pecten maximus (bivalvia

    Directory of Open Access Journals (Sweden)

    H. A. Kennedy

    2008-09-01

    Full Text Available The Mg/Ca ratios of biogenic calcite is commonly seen as a valuable palaeo-proxy for reconstructing past ocean temperatures. The temperature dependence of Mg/Ca ratios in bivalve calcite has been the subject of contradictory observations. The palaeoceanographic use of a geochemical proxy is dependent on initial, rigorous calibration and validation of relationships between the proxy and the ambient environmental variable to be reconstructed. Shell Mg/Ca ratio data are reported for the calcite of two bivalve species, Mytilus edulis (common mussel and Pecten maximus (king scallop, which were grown in laboratory culturing experiments at controlled and constant aquarium seawater temperatures over a range from ~10 to ~20°C. Furthermore, Mg/Ca ratio data of laboratory- and field-grown M. edulis specimens were compared. Only a weak, albeit significant, shell Mg/Ca ratio–temperature relationship was observed in the two bivalve species: M. edulis (r2=0.37, p0.001 for laboratory-cultured specimens and r2=0.50, p0.001 for field-cultured specimens and P. maximus (r2=0.21, p0.001 for laboratory-cultured specimens only. In the two species, shell Mg/Ca ratios were not found to be controlled by shell growth rate or salinity. The Mg/Ca ratios in the shells exhibited a large degree of variability among and within species and individuals. The results suggest that the use of bivalve calcite Mg/Ca ratios as a temperature proxy is limited, at least in the species studied to date. Such limitations are most likely due to the presence of physiological effects on Mg incorporation in bivalve calcite. The utilization is further limited by the great variability both within and among shells of the same species that were precipitated under the same ambient conditions.

  18. Monitoring of crack growth and crack mouth opening displacement in compact tension specimens at high temperatures : Development and implementation of the Direct Current Potential Drop (DCPD) method

    OpenAIRE

    Malmqvist, Philip

    2016-01-01

    The mechanical engineering department at the University of Idaho is conducting a project with the purpose of developing a complete system for investigating creep-, creep-fatigue- and fatigue properties of metallic materials at elevated temperatures up to 650 ˚C with Compact Tension (CT) specimens. Considerable efforts have been made to study and understand these phenomena, although numerous problems still exist. It is important to explore more extensively the complicated phenomena of creep, f...

  19. The Application of Miniaturized Three-Point-Bend Specimens for Determination of the Reference Temperature of A533 Cl.1 Steel

    Czech Academy of Sciences Publication Activity Database

    Stratil, Luděk; Šiška, Filip; Dlouhý, Ivo; Serrano, M.

    2017-01-01

    Roč. 139, č. 4 (2017), č. článku 041410. ISSN 0094-9930 R&D Projects: GA ČR GJ15-21292Y; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : fracture toughness * Master Curve * the reference temperature * JRQ steel * miniaturized specimens Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis Impact factor: 0.729, year: 2016

  20. Effects of cavity surface temperature on mechanical properties of specimens with and without a weld line in rapid heat cycle molding

    International Nuclear Information System (INIS)

    Wang, Guilong; Zhao, Guoqun; Wang, Xiaoxin

    2013-01-01

    Highlights: ► Higher cavity surface temperature reduces tensile strength of non-weldline part. ► Higher cavity surface temperature increases weldline tensile strength for PS and PP. ► Higher cavity surface temperature reduces weldline tensile strength for ABS, ABS/PMMA, ABS/PMMA/nano-C a CO 3 and FRPP. ► Tensile strength is reduced more by the weldline than impact strength. ► FRPP has the lowest weld line factor than other plastics without reinforced fibers. - Abstract: Rapid heat cycle molding (RHCM) is a recently developed injection molding technology to enhance surface esthetic of the parts. By rapid heating and cooling of mold cavity surfaces in molding process, it can greatly alleviate or even eliminate the surface defects such as flow mark, weld line, glass fiber rich surface, silver mark, jetting mark, and swirl mark, and also improve gloss finish and dimensional accuracy without prolonging the molding cycle. Besides surface esthetic, mechanical property is also a very import issue for the molded plastic part. The aim of this study is focusing on the effects of the cavity surface temperature just before filling, T cs , in RHCM on the mechanical strength of the specimen with and without weld line. Six kinds of typical plastics including polystyrene (PS), polypropylene (PP), acrylonitrile butadiene styrene (ABS), acrylonitrile butadiene styrene/polymethylmethacrylate (ABS/PMMA), ABS/PMMA/nano-C a CO 3 and glass fiber reinforced polypropylene (FRPP) are used in experiments. The specimens with and without a weld line are produced with the different T cs on the developed electric-heating RHCM system. Tensile tests and notched Izod impact tests are conducted to characterize the mechanical strength of the specimens molded with different cavity surface temperatures. Simulations, differential scanning calorimetry (DSC), scanning electron microscope (SEM) and optical microscope are implemented to explain the impact mechanism of T cs on mechanical properties

  1. High temperature corrosion behavior of different grain size specimens of 2.25 Cr-1 Mo steel in SO2+O2 environment

    International Nuclear Information System (INIS)

    Ghosh, D.; Mitra, S.K.

    2011-01-01

    The investigation is primarily aimed at the high temperature corrosion behavior of different grain sizes of 2.25 Cr-1 Mo steel at SO 2 +O 2 (mixed oxidation and sulfidation). The various grain sizes (18 μm,26 μm, 48 μm, and 72 μm) are obtained by different annealing treatment. Isothermal corrosion studies are carried out in different grain size specimens at 973K for 8 hours. The corrosion growth rate and the reaction kinetics are studied by weight gain method. The external scales of the post corroded specimen are studied in Scanning Electron Microscope (SEM) to examine the corrosion products morphology on the scale. X-ray mapping analysis of the different elements (Fe, O, Cr and S) is carried out by Energy Dispersive Spectroscopy (EDS) attached with SEM. The X-ray Diffraction Analysis (XRD) is also carried out to identify the corrosion products in the external scale. Finally, it is concluded that that the corrosion rate of 2.25 Cr-1 Mo steel strongly depend on grain sizes of the specimens. The corrosion rate increases with the decreases of grain size. The finer grain (18 μm) show higher corrosion rate than the coarse grains (72 μm). The weight gain kinetics follows the parabolic growth rate which further indicates that the corrosion process is diffusion controlled. The scale analysis shows the thicker scale and extensive scale cracking and spallations in case of finer grain size specimen (18 μm), whereas the coarse grain specimen (72 μm) shows compact and adherent layer. The XRD analysis shows that the corrosion products consist of mixtures of iron oxides( Fe 3 O 4 and Fe 2 O 3 ) and iron sulfides (FeS). The details mechanism of the corrosion is discussed to explain the difference in corrosion rate for different grain sizes. (author)

  2. Biotechnology organizations in action

    DEFF Research Database (Denmark)

    Norus, Jesper

    This volume analyzes the dynamics and interactive processes among the players (individuals, institutions, and organizations/firms) that have constituted and legitimized the development of the biotechnology industries. The unit of analysis is small entrepreneurial firms developing biotechnological...

  3. Controlled Environment Specimen Transfer

    DEFF Research Database (Denmark)

    Damsgaard, Christian Danvad; Zandbergen, Henny W.; Hansen, Thomas Willum

    2014-01-01

    an environmental transmission electron microscope to an in situ X-ray diffractometer through a dedicated transmission electron microscope specimen transfer holder, capable of sealing the specimen in a gaseous environment at elevated temperatures. Two catalyst material systems have been investigated; Cu/ZnO/Al2O3...... transferred in a reactive environment to the environmental transmission electron microscope where further analysis on the local scale were conducted. The Co/Al2O3 catalyst was reduced in the environmental microscope and successfully kept reduced outside the microscope in a reactive environment. The in situ......Specimen transfer under controlled environment conditions, such as temperature, pressure, and gas composition, is necessary to conduct successive complementary in situ characterization of materials sensitive to ambient conditions. The in situ transfer concept is introduced by linking...

  4. One-Step Preservation of Phosphoproteins and Tissue Morphology at Room Temperature for Diagnostic and Research Specimens

    Science.gov (United States)

    Mueller, Claudius; Edmiston, Kirsten H.; Carpenter, Calvin; Gaffney, Eoin; Ryan, Ciara; Ward, Ronan; White, Susan; Memeo, Lorenzo; Colarossi, Cristina; Petricoin, Emanuel F.; Liotta, Lance A.; Espina, Virginia

    2011-01-01

    Background There is an urgent need to measure phosphorylated cell signaling proteins in cancer tissue for the individualization of molecular targeted kinase inhibitor therapy. However, phosphoproteins fluctuate rapidly following tissue procurement. Snap-freezing preserves phosphoproteins, but is unavailable in most clinics and compromises diagnostic morphology. Formalin fixation preserves tissue histomorphology, but penetrates tissue slowly, and is unsuitable for stabilizing phosphoproteins. We originated and evaluated a novel one-step biomarker and histology preservative (BHP) chemistry that stabilizes signaling protein phosphorylation and retains formalin-like tissue histomorphology with equivalent immunohistochemistry in a single paraffin block. Results Total protein yield extracted from BHP-fixed, routine paraffin-embedded mouse liver was 100% compared to snap-frozen tissue. The abundance of 14 phosphorylated proteins was found to be stable over extended fixation times in BHP fixed paraffin embedded human colon mucosa. Compared to matched snap-frozen tissue, 8 phosphoproteins were equally preserved in mouse liver, while AMPKβ1 Ser108 was slightly elevated after BHP fixation. More than 25 tissues from mouse, cat and human specimens were evaluated for preservation of histomorphology. Selected tissues were evaluated in a multi-site, independent pathology review. Tissue fixed with BHP showed equivalent preservation of cytoplasmic and membrane cytomorphology, with significantly better nuclear chromatin preservation by BHP compared to formalin. Immunohistochemical staining of 13 non-phosphorylated proteins, including estrogen receptor alpha, progesterone receptor, Ki-67 and Her2, was equal to or stronger in BHP compared to formalin. BHP demonstrated significantly improved immunohistochemical detection of phosphorylated proteins ERK Thr202/Tyr204, GSK3-α/β Ser21/Ser9, p38-MAPK Thr180/Tyr182, eIF4G Ser1108 and Acetyl-CoA Carboxylase Ser79. Conclusion In a single

  5. One-step preservation of phosphoproteins and tissue morphology at room temperature for diagnostic and research specimens.

    Directory of Open Access Journals (Sweden)

    Claudius Mueller

    Full Text Available BACKGROUND: There is an urgent need to measure phosphorylated cell signaling proteins in cancer tissue for the individualization of molecular targeted kinase inhibitor therapy. However, phosphoproteins fluctuate rapidly following tissue procurement. Snap-freezing preserves phosphoproteins, but is unavailable in most clinics and compromises diagnostic morphology. Formalin fixation preserves tissue histomorphology, but penetrates tissue slowly, and is unsuitable for stabilizing phosphoproteins. We originated and evaluated a novel one-step biomarker and histology preservative (BHP chemistry that stabilizes signaling protein phosphorylation and retains formalin-like tissue histomorphology with equivalent immunohistochemistry in a single paraffin block. RESULTS: Total protein yield extracted from BHP-fixed, routine paraffin-embedded mouse liver was 100% compared to snap-frozen tissue. The abundance of 14 phosphorylated proteins was found to be stable over extended fixation times in BHP fixed paraffin embedded human colon mucosa. Compared to matched snap-frozen tissue, 8 phosphoproteins were equally preserved in mouse liver, while AMPKβ1 Ser108 was slightly elevated after BHP fixation. More than 25 tissues from mouse, cat and human specimens were evaluated for preservation of histomorphology. Selected tissues were evaluated in a multi-site, independent pathology review. Tissue fixed with BHP showed equivalent preservation of cytoplasmic and membrane cytomorphology, with significantly better nuclear chromatin preservation by BHP compared to formalin. Immunohistochemical staining of 13 non-phosphorylated proteins, including estrogen receptor alpha, progesterone receptor, Ki-67 and Her2, was equal to or stronger in BHP compared to formalin. BHP demonstrated significantly improved immunohistochemical detection of phosphorylated proteins ERK Thr202/Tyr204, GSK3-α/β Ser21/Ser9, p38-MAPK Thr180/Tyr182, eIF4G Ser1108 and Acetyl-CoA Carboxylase Ser79

  6. Design of measurement system for Doppler broadening profiles of annihilation radiations as a function of controlled specimen temperature and its applications for a study of metals in the thermal equilibrium state

    International Nuclear Information System (INIS)

    Uedono, Akira; Tanigawa, Shoichiro; Kawano, Takao.

    1992-01-01

    The measurement system for Doppler broadening profiles of annihilation radiation was developed. This system reads out data for energies of γ-rays from an analog to digital converter and those for specimen temperature from a digital-voltmeter coupled to a thermocouple. These two types of digital-quantities were stored in a memory matrix of 512 channels (energy) x 128 channels (temperature) x 4 byte (count). For this purpose, a memory board of 256 kbyte with 32-dynamic RAMs (64 kbits) was used. The data acquisition was controlled by a microcomputer. Temperature of the specimen was controlled by a programmable temperature controller, thus it can be varied in a desired way. This was useful for measurements in repeated temperature cycles. A sample heater with a compact size was developed in order to obtain a homogeneous temperature distribution in the specimen. Application of this system for a study of thermal vacancies in Al-dilute alloys was also shown. (author)

  7. Progress towards the 'Golden Age' of biotechnology.

    Science.gov (United States)

    Gartland, K M A; Bruschi, F; Dundar, M; Gahan, P B; Viola Magni, M p; Akbarova, Y

    2013-07-01

    Biotechnology uses substances, materials or extracts derived from living cells, employing 22 million Europeans in a € 1.5 Tn endeavour, being the premier global economic growth opportunity this century. Significant advances have been made in red biotechnology using pharmaceutically and medically relevant applications, green biotechnology developing agricultural and environmental tools and white biotechnology serving industrial scale uses, frequently as process feedstocks. Red biotechnology has delivered dramatic improvements in controlling human disease, from antibiotics to overcome bacterial infections to anti-HIV/AIDS pharmaceuticals such as azidothymidine (AZT), anti-malarial compounds and novel vaccines saving millions of lives. Green biotechnology has dramatically increased food production through Agrobacterium and biolistic genetic modifications for the development of 'Golden Rice', pathogen resistant crops expressing crystal toxin genes, drought resistance and cold tolerance to extend growth range. The burgeoning area of white biotechnology has delivered bio-plastics, low temperature enzyme detergents and a host of feedstock materials for industrial processes such as modified starches, without which our everyday lives would be much more complex. Biotechnological applications can bridge these categories, by modifying energy crops properties, or analysing circulating nucleic acid elements, bringing benefits for all, through increased food production, supporting climate change adaptation and the low carbon economy, or novel diagnostics impacting on personalized medicine and genetic disease. Cross-cutting technologies such as PCR, novel sequencing tools, bioinformatics, transcriptomics and epigenetics are in the vanguard of biotechnological progress leading to an ever-increasing breadth of applications. Biotechnology will deliver solutions to unimagined problems, providing food security, health and well-being to mankind for centuries to come. Copyright © 2013

  8. Biotechnology essay competition: biotechnology and sustainable food practices.

    Science.gov (United States)

    Peng, Judy; Schoeb, Helena; Lee, Gina

    2013-06-01

    Biotechnology Journal announces our second biotechnology essay competition with the theme "biotechnology and sustainable food practices", open to all undergraduate students. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Biotechnology : A Dutch perspective

    NARCIS (Netherlands)

    Van Apeldoorn, J.H.F.

    1981-01-01

    Biotechnology: a Dutch Perspective assesses the future potential of biotechnology in the Netherlands. It has been published in English because it is felt that the Dutch case could be of relevance to other industrialised nations. Although the report is aimed primarily at policy planners and decision

  10. Biotechnology Industry, 2006

    Science.gov (United States)

    2006-01-01

    for commercial or other purposes. Because it is a process resting on the understanding of genetics, proteomics , and life science, biotechnology has...Luhnow & Samor, 2006). Novel biotechnologies could bring down the costs of making ethanol. Iogen Corporation has genetically modified a fungus to

  11. Healthcare biotechnology in India

    OpenAIRE

    Srivastava, L. M.

    2005-01-01

    Biotechnology in India has made great progress in the development of infrastructure, manpower, research and development and manufacturing of biological reagents, biodiagnostics, biotherapeutics, therapeutic and, prophylactic vaccines and biodevices. Many of these indigenous biological reagents, biodiagnostics, therapeutic and prophylactic vaccines and biodevices have been commercialized. Commercially when biotechnology revenue has reached $25 billions in the U.S. alone in 2000 excluding the r...

  12. Biotechnology and Agriculture.

    Science.gov (United States)

    Kenney, Martin

    Even at this early date in the application of biotechnology to agriculture, it is clear that agriculture may provide the largest market for new or less expensive biotechnologically manufactured products. The chemical and pharmaceutical industries that hold important positions in agricultural inputs are consolidating their positions by purchasing…

  13. Biotechnology in China

    National Research Council Canada - National Science Library

    Hamer, Dean H; Kung, Shain-dow

    1989-01-01

    ... and Shain-dow Kung Center for Agricultural Biotechnology Maryland Biotechnology Institute Department of Botany University of Maryland College Park, Maryland Committee on Scholarly Communication with the People's Republic of China National Academy of Sciences National Academy Press Washington, DC 1989 i Copyrightthe cannot be not from bo...

  14. Notch effects in uniaxial tension specimens

    International Nuclear Information System (INIS)

    Delph, T.J.

    1979-03-01

    Results of a literature survey on the effect of notches on the time-dependent failure of uniaxial tension specimens at elevated temperatures are presented. Particular attention is paid to the failure of notched specimens containing weldments

  15. Healthcare biotechnology in India.

    Science.gov (United States)

    Srivastava, L M

    2005-01-01

    Biotechnology in India has made great progress in the development of infrastructure, manpower, research and development and manufacturing of biological reagents, biodiagnostics, biotherapeutics, therapeutic and, prophylactic vaccines and biodevices. Many of these indigenous biological reagents, biodiagnostics, therapeutic and prophylactic vaccines and biodevices have been commercialized. Commercially when biotechnology revenue has reached $25 billions in the U.S. alone in 2000 excluding the revenues of biotech companies that were acquired by pharmaceutical companies, India has yet to register a measurable success. The conservative nature and craze of the Indian Industry for marketing imported biotechnology products, lack of Government support, almost non-existing national healthcare system and lack of trained managers for marketing biological and new products seem to be the important factors responsible for poor economic development of biotechnology in India. With the liberalization of Indian economy, more and more imported biotechnology products will enter into the Indian market. The conditions of internal development of biotechnology are not likely to improve in the near future and it is destined to grow only very slowly. Even today biotechnology in India may be called to be in its infancy.

  16. Biotechnology for energy

    International Nuclear Information System (INIS)

    Malik, K.A.; Naqvi, S.H.M.

    1991-01-01

    The present volume comprises paper presented and discussed in the symposium. The main purpose of this symposium was to collect researchers in the area of bioconversion of biomass into biofuels, petroleum biotechnology and biohydrometallurgy. This book has been divided into four main sections which includes molecular biology of biomass conversion, microbial conversion of biomass, petroleum biotechnology and biohydrometallurgy. It is becoming clear that biotechnology play a role in production and conservation of energy and can contribute to the overall energy situation. (A.B.)

  17. Traditional Chinese Biotechnology

    Science.gov (United States)

    Xu, Yan; Wang, Dong; Fan, Wen Lai; Mu, Xiao Qing; Chen, Jian

    The earliest industrial biotechnology originated in ancient China and developed into a vibrant industry in traditional Chinese liquor, rice wine, soy sauce, and vinegar. It is now a significant component of the Chinese economy valued annually at about 150 billion RMB. Although the production methods had existed and remained basically unchanged for centuries, modern developments in biotechnology and related fields in the last decades have greatly impacted on these industries and led to numerous technological innovations. In this chapter, the main biochemical processes and related technological innovations in traditional Chinese biotechnology are illustrated with recent advances in functional microbiology, microbial ecology, solid-state fermentation, enzymology, chemistry of impact flavor compounds, and improvements made to relevant traditional industrial facilities. Recent biotechnological advances in making Chinese liquor, rice wine, soy sauce, and vinegar are reviewed.

  18. Biotechnology of marine fungi

    Digital Repository Service at National Institute of Oceanography (India)

    Damare, S.R.; Singh, P.; Raghukumar, S.

    Filamentous fungi are the most widely used eukaryotes in industrial and pharmaceutical applications. Their biotechnological uses include the production of enzymes, vitamins, polysaccharides, pigments, lipids and others. Marine fungi are a still...

  19. Biotechnology for renewable chemicals

    DEFF Research Database (Denmark)

    Borodina, Irina; Kildegaard, Kanchana Rueksomtawin; Jensen, Niels Bjerg

    2014-01-01

    The majority of the industrial organic chemicals are derived from fossil sources. With the oil and gas resources becoming limiting, biotechnology offers a sustainable alternative for production ofchemicals from renewable feedstocks. Yeast is an attractive cell factory forsustainable production...

  20. Nigerian Journal of Biotechnology

    African Journals Online (AJOL)

    Nigerian Journal of Biotechnology is a publisher of multidisciplinary ... Assessment of microalgae-influenced biodeterioration of concrete structures · EMAIL FREE ... A study on 3-mercaptopyruvate sulphurtransferase (3-MST) produced under ...

  1. Biotechnological research in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Rehm, H J

    1982-01-01

    The current research possibilities in the expanding field of biotechnology in Europe are very briefly described. Remarks on research and development are limited to six topics: fermented food products; biomass production; product formation; bioreactors; waste-water treatment, environmental processes and methane formation; central research institutions. It is summarised that increased efforts at co-operation on all levels are vital for an improved development in the field of biotechnology throughout Europe.

  2. BIOTECHNOLOGY : AN OVERVIEW

    Directory of Open Access Journals (Sweden)

    John I. Bruce

    2012-09-01

    Full Text Available Biotechnology as a science includes various aspects of the management and manipulation of biological systems. Recent advances in immunology, molecular biology, cell culture and other associated areas provide an opportunity for scientists to move biology out of the laboratory and into the realms of society. This has many implications which mankind on a whole may not be prepared to cope with at this time. This new capability has been referred to as "Biotechnology". Biotechnology has also been defined as "the integrated use of biochemistry, microbiology, and chemical engineering in order to achieve the capacities of microbes and culture cells". Genetic engineering which includes gene splicing and recombinant DNA-cloning is an example of a recent offshoot of biotechnology. Because of the advent of biotechnology, one can now think of the prospect of engineering tomorrows vaccines. In the past, vaccine development has been laborious and in many instances an unrewarding task. After years of effort only a handful of safe, effective vaccines have emerged. In the biotechnology arena, new methodologies and strategies for immunizing humans and domestic animals against infectious diseases are providing new hope for discovering successful vaccines. While most of the effort in the past has focused on viral vaccine development, attention is now being directed towards vaccines for protection against parasitic diseases. Currently, considerable effort is being made to develop vaccines for malaria, coccidiosis (in fowl, cholera, malaria, schistosomiasis and trypanosomiasis among others.

  3. Fungal biodiversity to biotechnology.

    Science.gov (United States)

    Chambergo, Felipe S; Valencia, Estela Y

    2016-03-01

    Fungal habitats include soil, water, and extreme environments. With around 100,000 fungus species already described, it is estimated that 5.1 million fungus species exist on our planet, making fungi one of the largest and most diverse kingdoms of eukaryotes. Fungi show remarkable metabolic features due to a sophisticated genomic network and are important for the production of biotechnological compounds that greatly impact our society in many ways. In this review, we present the current state of knowledge on fungal biodiversity, with special emphasis on filamentous fungi and the most recent discoveries in the field of identification and production of biotechnological compounds. More than 250 fungus species have been studied to produce these biotechnological compounds. This review focuses on three of the branches generally accepted in biotechnological applications, which have been identified by a color code: red, green, and white for pharmaceutical, agricultural, and industrial biotechnology, respectively. We also discuss future prospects for the use of filamentous fungi in biotechnology application.

  4. Urine culture - catheterized specimen

    Science.gov (United States)

    Culture - urine - catheterized specimen; Urine culture - catheterization; Catheterized urine specimen culture ... urinary tract infections may be found in the culture. This is called a contaminant. You may not ...

  5. [Biotechnology's macroeconomic impact].

    Science.gov (United States)

    Dones Tacero, Milagros; Pérez García, Julián; San Román, Antonio Pulido

    2008-12-01

    This paper tries to yield an economic valuation of biotechnological activities in terms of aggregated production and employment. This valuation goes beyond direct estimation and includes the indirect effects derived from sectorial linkages between biotechnological activities and the rest of economic system. To deal with the proposed target several sources of data have been used, including official data from National Statistical Office (INE) such us national accounts, input-output tables, and innovation surveys, as well as, firms' level balance sheets and income statements and also specific information about research projects compiled by Genoma Spain Foundation. Methodological approach is based on the estimation of a new input-output table which includes the biotechnological activities as a specific branch. This table offers both the direct impact of these activities and the main parameters to obtain the induced effects over the rest of the economic system. According to the most updated available figures, biotechnological activities would have directly generated almost 1,600 millions of euros in 2005, and they would be employed more than 9,000 workers. But if we take into account the full linkages with the rest of the system, the macroeconomic impact of Biotechnological activities would reach around 5,000 millions euros in production terms (0.6% of total GDP) and would be responsible, directly or indirectly, of more than 44,000 employments.

  6. Biotechnology and human rights.

    Science.gov (United States)

    Feuillet-Le Mintier, B

    2001-12-01

    Biotechnology permits our world to progress. It's a tool to better apprehend the human being, but as well to let him go ahead. Applied to the living, biotechnologies present the same finality. But since their matter concerns effectively the living, they are the sources of specific dangers and particularly of that one to use the improvements obtained on the human to modify the human species. The right of the persons has to find its place to avoid that the fundamental rights of the human personality shall undergo harm. This mission assigned to the right of the persons is as so much invaluable that the economical stakes are particularly important in the domain of the biotechnologies.

  7. Biotechnological production of vanillin.

    Science.gov (United States)

    Priefert, H; Rabenhorst, J; Steinbüchel, A

    2001-08-01

    Vanillin is one of the most important aromatic flavor compounds used in foods, beverages, perfumes, and pharmaceuticals and is produced on a scale of more than 10 thousand tons per year by the industry through chemical synthesis. Alternative biotechnology-based approaches for the production are based on bioconversion of lignin, phenolic stilbenes, isoeugenol, eugenol, ferulic acid, or aromatic amino acids, and on de novo biosynthesis, applying fungi, bacteria, plant cells, or genetically engineered microorganisms. Here, the different biosynthesis routes involved in biotechnological vanillin production are discussed.

  8. Biotechnology in diagnostics

    International Nuclear Information System (INIS)

    Koprowski, H.; Ferrone, S.; Albertini, A.

    1985-01-01

    In recent years much progress has been made in the area of biotechnology. The cellular and molecular cloning methodology to develop monoclonal antibodies and DNA probes have been extensively utilized in basic and clinical research. These investigations have provided the necessary information to apply these reagents to diagnostic problems. The RIA 85 meeting focused on the application of monoclonal antibodies and DNA probes in laboratory medicine. The papers presented at this meeting clearly indicate that biotechnology has already had a significant impact on clinical medicine. (Auth.)

  9. Colloids in Biotechnology

    CERN Document Server

    Fanun, Monzer

    2010-01-01

    Colloids have come a long way from when Thomas Graham coined the term colloid to describe 'pseudo solutions'. This book enables scientists to close the gap between extensive research and translation into commercial options in biomedicine and biotechnology. It covers biosurfactants and surface properties, phase behavior, and orientational change of surfactant mixtures with peptides at the interface. It also covers adsorption of polymers and biopolymers on the surface and interface, discusses colloidal nanoparticles and their use in biotechnology, and delves into bioadhesion and microencapsulati

  10. Agave biotechnology: an overview.

    Science.gov (United States)

    Nava-Cruz, Naivy Y; Medina-Morales, Miguel A; Martinez, José L; Rodriguez, R; Aguilar, Cristóbal N

    2015-01-01

    Agaves are plants of importance both in Mexican culture and economy and in other Latin-American countries. Mexico is reported to be the place of Agave origin, where today, scientists are looking for different industrial applications without compromising its sustainability and preserving the environment. To make it possible, a deep knowledge of all aspects involved in production process, agro-ecological management and plant biochemistry and physiology is required. Agave biotechnology research has been focusing on bio-fuels, beverages, foods, fibers, saponins among others. In this review, we present the advances and challenges of Agave biotechnology.

  11. Disclosing Biology Teachers' Beliefs about Biotechnology and Biotechnology Education

    Science.gov (United States)

    Fonseca, Maria Joao; Costa, Patricio; Lencastre, Leonor; Tavares, Fernando

    2012-01-01

    Teachers have been shown to frequently avoid addressing biotechnology topics. Aiming to understand the extent to which teachers' scarce engagement in biotechnology teaching is influenced by their beliefs and/or by extrinsic constraints, such as practical limitations, this study evaluates biology teachers' beliefs about biotechnology and…

  12. Concepts in Biotechnology An Affordable Overview of Biotechnology ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 9. Concepts in Biotechnology An Affordable Overview of Biotechnology Through Self Study ... Author Affiliations. Narayan S Punekar1. Molecular Enzymology Group, Biotechnology Centre, Indian Institute of Technology, Mumbai 400 076, India.

  13. ENVIRONMENTAL RISK MANAGEMENT OF BIOTECHNOLOGY

    Science.gov (United States)

    The last two decades have shown remarkable advances in the field of biotechnology. We have processes using biotechnology to produce materials from commodity chemicals to pharmaceuticals. The application to agriculture has shown the introduction of transgenic crops with pesticidal...

  14. National Center for Biotechnology Information

    Science.gov (United States)

    ... to NCBI Sign Out NCBI National Center for Biotechnology Information Search database All Databases Assembly Biocollections BioProject ... Search Welcome to NCBI The National Center for Biotechnology Information advances science and health by providing access ...

  15. Biotechnologies and Human Dignity

    Science.gov (United States)

    Sweet, William; Masciulli, Joseph

    2011-01-01

    In this article, the authors review some contemporary cases where biotechnologies have been employed, where they have had global implications, and where there has been considerable debate. The authors argue that the concept of dignity, which lies at the center of such documents as the 2005 Universal Declaration on Bioethics and Human Rights, the…

  16. Biotechnological Innovations in Aquaculture

    Directory of Open Access Journals (Sweden)

    Mangesh M. Bhosale

    2016-04-01

    Full Text Available Aquaculture is gaining commendable importance to meet the required protein source for ever increasing human population. The aquaculture industry is currently facing problems on developing economically viable production systems by reducing the impact on environment. Sustainable and enhanced fish production from aquaculture may be better achieved through application of recent biotechnological innovations. Utilisation of transgenic technology has led to production of fishes with faster growth rate with disease resistance. The full advantage of this technology could not be achieved due to concern of acceptance for Genetically Modified Organisms (GMOs. The biotechnological intervention in developing plant based feed ingredient in place of fish meal which contain high phosphorus is of prime area of attention for fish feed industry. The replacement of fish meal will also reduce fish feed cost to a greater extent. Year round fish seed production of carps through various biotechnological interventions is also need of the hour. This paper discusses technical, environmental and managerial considerations regarding the use of these biotechnological tools in aquaculture along with the advantages of research application and its commercialization.

  17. Biotechnology: challenges and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Sasson, A.

    1985-04-01

    Rapidly occurring technological breakthroughs in the wake of numerous discoveries in different fields, such as biochemistry, genetic engineering as well as cellular and molecular biology as described in this paper have a variety of industrial applications, and forcasts covering these and various other fields have been made. The emerging bio-industry, covering diverse industries, such as chemical, food, pharmaceutical, etc., as well as the domains of health, environmental protection and abatement of pollution present challenging prospects. Several biotechnology processes relating to bioenergy, fermentation, waste transformation, vaccines, etc. are of particular interest to the developing countries. The 'functioning systems' resulting from the breakthrouth in genetic engineering, entailing extraordinary refinement of analytical techniques and technological progress, pose the challenging task of harnessing them to the advantage of mankind. Providing effective legal protection, conducive to the development of biotechnologies-their innovative process and technological change-is a matter of serious concern, involving practical and economical considerations. Several other issues and questions, such as risk prevention and management of potential dangers and hazards in genetic recombination operation by way of safety regulations and necessary guidelines, questions relating to the clinical trials of the interferons-the wonder drug-as well as questions of professional ethics are raised by biotechnologies. Industry-funded research in biotechnology, where scientific and commercial imperatives are interlocked, has for instance, its repercussions on the traditional thrust of university system, specially the sanctity of autonomy for basic research.

  18. Biotechnology--Biotechnical Systems.

    Science.gov (United States)

    Ruggles, Stanford

    1990-01-01

    The perspective of biotechnology and its development in the K-12 technology education curriculum are described. The content curriculum development and implications for activities are discussed. The difference between a curriculum focused on the activities of industry compared to one that addresses technology as it pervades all human endeavors is…

  19. Biotechnology of trees: Chestnut

    Science.gov (United States)

    C.D. Nelson; W.A. Powell; S.A. Merkle; J.E. Carlson; F.V. Hebard; N Islam-Faridi; M.E. Staton; L. Georgi

    2014-01-01

    Biotechnology has been practiced on chestnuts (Castanea spp.) for many decades, including vegetative propagation, controlled crossing followed by testing and selection, genetic and cytogenetic mapping, genetic modifi cation, and gene and genome sequencing. Vegetative propagation methods have ranged from grafting and rooting to somatic embryogenesis, often in...

  20. Biotechnology in weed control

    Science.gov (United States)

    Biotechnology can be used to enhance the management of weeds in several ways. Crops have been made resistant to herbicides by inserting transgenes that impart herbicide resistance into the plant genome. Glyphosate and glufosinate-resistant crops are commercialized in North America and crops made res...

  1. State responses to biotechnology.

    Science.gov (United States)

    Harris, Rebecca C

    2015-01-01

    This article reviews biotechnology legislation in the 50 states for 11 policy areas spanning 1990-2010, an era of immense growth in biotechnology, genetic knowledge, and significant policy development. Policies regarding health insurance, life insurance, long-term care insurance, DNA data bank collection, biotech research protection, biotech promotion and support, employment discrimination, genetic counselor licensing, human cloning, and genetic privacy each represent major policy responses arising from biotechnology and coinciding with key areas of state regulation (insurance, criminal justice, economic development, labor law, health and safety, privacy, and property rights). This analysis seeks to answer three questions regarding biotechnology legislation at the state level: who is acting (policy adoption), when is policy adopted (policy timing), and what is policy doing (policy content). Theoretical concerns examine state ideology (conservative or liberal), policy type (economic or moral), and the role of external events (federal law, news events, etc.) on state policy adoption. Findings suggest ideological patterns in adoption, timing, and content of biotech policy. Findings also suggest economic policies tend to be more uniform in content than moral policies, and findings also document a clear link between federal policy development, external events, and state policy response.

  2. TSCA Biotechnology Notifications Status

    Science.gov (United States)

    This Notifications Table lists only those submissions received under the Biotechnology Regulation, beginning in 1998. From the Table, you can link to a brief summary of select submission and, in many cases, to a fact sheet on the decision reached by OPPT.

  3. Specimen size effects in Charpy impact testing

    International Nuclear Information System (INIS)

    Alexander, D.J.; Klueh, R.L.

    1989-01-01

    Full-size , half-size, and third-size specimens from several different steels have been tested as part of an ongoing alloy development program. The smaller specimens permit more specimens to be made from small trail heats and are much more efficient for irradiation experiments. The results of several comparisons between the different specimen sizes have shown that the smaller specimens show qualitatively similar behavior to large specimens, although the upper-shelf energy level and ductile-to-ductile transition temperature are reduced. The upper-shelf energy levels from different specimen sizes can be compared by using a simple volume normalization method. The effect of specimen size and geometry on the ductile-to-ductile transition temperature is more difficult to predict, although the available data suggest a simple shift in the transition temperature due to specimen size changes.The relatively shallower notch used in smaller specimens alters the deformation pattern, and permits yielding to spread back to the notched surface as well as through to the back. This reduces the constraint and the peak stresses, and thus the initiation of cleavage is more difficult. A better understanding of the stress and strain distributions is needed. 19 refs., 3 figs., 3 tabs

  4. Oil and biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Yoshiaki

    1988-06-01

    The secondary oil recovery due to microorganisms and the production of useful substances from oil distillates using microorganisms are described as examples to solidify the relationship between oil and biotechnology. The secondary crude-oil recovery has been carried out due to the microorganism drive process, which includes the on-the-ground and underground processes. Although the microorganism drive process has been investigated for many years, the selection of the microorganisms is not completely established. Many uncertainties still remain regarding the technical and economic aspects. The single cell protein (SCP) is an example of industrial success in the production of useful substances from the oil. Rumania has produced SCP from normal paraffin and the U. K. from the methanol and the products are used as the protein source for animals. Remarkable progress in the functional efficiency of microorganisms is expected due to the biotechnology for both applications. (4 tabs)

  5. Environmental Biotechnology in China

    Science.gov (United States)

    Liu, Shuang Jiang; Liu, Lei; Chaudhry, Muhammad Tausif; Wang, Lei; Chen, Ying Guang; Zhou, Qi; Liu, He; Chen, Jian

    Environmental biotechnology has emerged as an important measure to tackle the environmental pollution as China experiences great economic success. Over the past decade, much emphasis has been paid to the following fields in environmental biotechnology: microbial degradation of toxic and organic chemicals, bio-treatment of wastewater, waste recycling. The Chinese researchers have done a lot of work to understand the natural degradation processes for organic and toxic compounds and finally to clean these compounds from polluted environments. For the treatment of wastewater, many new processes were proposed and optimized to meet the more strict effluent standards in China. Finally, more and more attention has been paid to the reuse of discharged wastes. In this chapter we review the development in the above fields.

  6. Opportunities in biotechnology.

    Science.gov (United States)

    Gartland, Kevan M A; Gartland, Jill S

    2018-06-08

    Strategies for biotechnology must take account of opportunities for research, innovation and business growth. At a regional level, public-private collaborations provide potential for such growth and the creation of centres of excellence. By considering recent progress in areas such as genomics, healthcare diagnostics, synthetic biology, gene editing and bio-digital technologies, opportunities for smart, strategic and specialised investment are discussed. These opportunities often involve convergent or disruptive technologies, combining for example elements of pharma-science, molecular biology, bioinformatics and novel device development to enhance biotechnology and the life sciences. Analytical applications use novel devices in mobile health, predictive diagnostics and stratified medicine. Synthetic biology provides opportunities for new product development and increased efficiency for existing processes. Successful centres of excellence should promote public-private business partnerships, clustering and global collaborations based on excellence, smart strategies and innovation if they are to remain sustainable in the longer term. Copyright © 2018. Published by Elsevier B.V.

  7. Electron shuttles in biotechnology.

    Science.gov (United States)

    Watanabe, Kazuya; Manefield, Mike; Lee, Matthew; Kouzuma, Atsushi

    2009-12-01

    Electron-shuttling compounds (electron shuttles [ESs], or redox mediators) are essential components in intracellular electron transfer, while microbes also utilize self-produced and naturally present ESs for extracellular electron transfer. These compounds assist in microbial energy metabolism by facilitating electron transfer between microbes, from electron-donating substances to microbes, and/or from microbes to electron-accepting substances. Artificially supplemented ESs can create new routes of electron flow in the microbial energy metabolism, thereby opening up new possibilities for the application of microbes to biotechnology processes. Typical examples of such processes include halogenated-organics bioremediation, azo-dye decolorization, and microbial fuel cells. Herein we suggest that ESs can be applied widely to create new microbial biotechnology processes.

  8. Biotechnology in maize breeding

    Directory of Open Access Journals (Sweden)

    Mladenović-Drinić Snežana

    2004-01-01

    Full Text Available Maize is one of the most important economic crops and the best studied and most tractable genetic system among monocots. The development of biotechnology has led to a great increase in our knowledge of maize genetics and understanding of the structure and behaviour of maize genomes. Conventional breeding practices can now be complemented by a number of new and powerful techniques. Some of these often referred to as molecular methods, enable scientists to see the layout of the entire genome of any organism and to select plants with preferred characteristics by "reading" at the molecular level, saving precious time and resources. DNA markers have provided valuable tools in various analyses ranging from phylogenetic analysis to the positional cloning of genes. Application of molecular markers for genetic studies of maize include: assessment of genetic variability and characterization of germ plasm, identification and fingerprinting of genotypes, estimation of genetic distance, detection of monogamic and quantitative trait loci, marker assisted selection, identification of sequence of useful candidate genes, etc. The development of high-density molecular maps which has been facilitated by PCR-based markers, have made the mapping and tagging of almost any trait possible and serve as bases for marker assisted selection. Sequencing of maize genomes would help to elucidate gene function, gene regulation and their expression. Modern biotechnology also includes an array of tools for introducing or deieting a particular gene or genes to produce plants with novel traits. Development of informatics and biotechnology are resulted in bioinformatic as well as in expansion of microarrey technique. Modern biotechnologies could complement and improve the efficiency of traditional selection and breeding techniques to enhance agricultural productivity.

  9. BIOTECHNOLOGY BIOPRODUCTS "HEALING-1"

    Directory of Open Access Journals (Sweden)

    S. I. Artiukhova

    2014-01-01

    Full Text Available Summary. The article presents data on the development of technology and qualitative research, bio-products «Healing-1». One of the promising directions in food biotechnology is the development of new integrated starter-based consortia of microorganisms, which have higher activity compared with cultures prepared using pure cultures. So it was interesting studies on the development of new biotechnology and bio-based microbial consortium of lactic acid bacteria. Based on the analysis of biotechnological properties of native cultures created a new consortium of microorganisms containing lactic acid streptococci and bacilli, allowing the maximum extent possible to implement the physiological, biochemical and technological potential of microorganisms. Scientifically substantiated and experimentally developed a new biotechnology production of bioproducts «Healing-1», obtained on the basis of microbial consortium with broad spectrum antimicrobial activity. Experimentally investigated quality parameters of organic food «Healing-1» using a new microbial consortium as freshly prepared and during storage. Found that antagonistic activity of microflora bio «Healing-1» with respect to pathogenic and conditionally pathogenic bacteria, as well as its resistance to substances in the gastrointestinal tract of man is more pronounced compared to bioproducts obtained using a separate starter, members of the microbial consortium. It should be noted a more pronounced synthesis of exopolysaccharides in bioproduct «Healing-1», which leads to increased viscosity of the system and improves the consistency of bio. New bioproducts have good organoleptic characteristics and contain a high number of viable cells of lactic acid bacteria. High stability and survival of lactic acid bacteria during storage. In the study of attacked proteins bioproducts digestive proteinases «in vitro» found that the fermentation of milk microbial consortium increases the digestibility

  10. Practicing environmental biotechnology

    OpenAIRE

    Bruce E.Rittmann

    2014-01-01

    Environmental biotechnology involves ″managing microbial communities to provide services to society″.Its success comes from partnering with prokaryotic microorganisms,whose wideranging metabolic capabilities can be harnessed to destroy pollutants and to generate renewable materials.Partnering with microorganisms requires that we understand them well,and important advances in molecular microbial ecology,analytical chemistry,and mathematical modeling are making it possible to look inside the b...

  11. Biotechnology's foreign policy.

    Science.gov (United States)

    Feldbaum, Carl

    2002-01-01

    From its inception, biotechnology has been a uniquely international enterprise. An American and an Englishman working together elucidated the structure of DNA almost 50 years ago; more recently, the Human Genome Project linked researchers around the world, from the Baylor College of Medicine in Houston to the Beijing Human Genome Center. Today our industry's researchers hail from African villages and Manhattan high rises; from Munich and Melbourne; from London, Ontario, and London, England; from Scotland and Nova Scotia--New Scotland; from Calcutta and Calgary. But in the beginning, the infrastructure that supported these efforts--intellectual property, venture capital, streamlined technology transfer--was less widely dispersed and the world's brightest biotech researchers clustered in only half a dozen scientific Meccas. Previous technological revolutions have spread around the world. Following in their footsteps, biotechnology's global diaspora seems inevitable, especially since governments are promoting it. But as our science and business emigrate from early strongholds in the United States, Canada and Europe across oceans and borders and into new cultures, international tensions over biotechnology continue to grow. In just the last few years, controversies have rolled over R&D spending priorities, genetic patents, bioprospecting, transgenic agriculture and drug pricing. My premise today is that our industry needs to formulate its first foreign policy, one which is cognizant of the miserable judgments and mistakes of other industries--and avoids them.

  12. Practicing environmental biotechnology

    Directory of Open Access Journals (Sweden)

    Bruce E.Rittmann

    2014-02-01

    Full Text Available Environmental biotechnology involves ″managing microbial communities to provide services to society″.Its success comes from partnering with prokaryotic microorganisms,whose wideranging metabolic capabilities can be harnessed to destroy pollutants and to generate renewable materials.Partnering with microorganisms requires that we understand them well,and important advances in molecular microbial ecology,analytical chemistry,and mathematical modeling are making it possible to look inside the black box of microbial communities.Also crucial is translating the understanding to biotechnological processes that ″work for the microorganisms so that they work for us″.Successful translation demands novel reactor designs,application of advanced materials,and partnering with practitioners and users.The Swette Center for Environmental Biotechnology,founded in at Arizona State University in 2005,brings together the science and engineering tools in an interdisciplinary environment.The Center emphasizes teamwork and collaborations with research and practice partners around the world.Three new technologies illustrate how the Center applies these principles to ″work for the microorganisms″:the H2-based membrane biofilm reactor (MBfR for reducing many oxidized contaminants in water,the microbial electrochemical cells (MXCs for converting organic wastes into renewable products,and Intimately Coupled PhotoBioCatalysis (ICPBC to detoxify very difficult to biodegrade organic pollutants.

  13. Construction Biotechnology: a new area of biotechnological research and applications.

    Science.gov (United States)

    Stabnikov, Viktor; Ivanov, Volodymyr; Chu, Jian

    2015-09-01

    A new scientific and engineering discipline, Construction Biotechnology, is developing exponentially during the last decade. The major directions of this discipline are selection of microorganisms and development of the microbially-mediated construction processes and biotechnologies for the production of construction biomaterials. The products of construction biotechnologies are low cost, sustainable, and environmentally friendly microbial biocements and biogrouts for the construction ground improvement. The microbial polysaccharides are used as admixtures for cement. Microbially produced biodegradable bioplastics can be used for the temporarily constructions. The bioagents that are used in construction biotechnologies are either pure or enrichment cultures of microorganisms or activated indigenous microorganisms of soil. The applications of microorganisms in the construction processes are bioaggregation, biocementation, bioclogging, and biodesaturation of soil. The biotechnologically produced construction materials and the microbially-mediated construction technologies have a lot of advantages in comparison with the conventional construction materials and processes. Proper practical implementations of construction biotechnologies could give significant economic and environmental benefits.

  14. "Othering" agricultural biotechnology: Slovenian media representation of agricultural biotechnology.

    Science.gov (United States)

    Zajc, Jožica; Erjavec, Karmen

    2014-08-01

    While studies on media representations of agricultural biotechnology mostly analyse media texts, this work is intended to fill a research gap with an analysis of journalistic interpretations of media representations. The purpose of this project was to determine how news media represent agricultural biotechnology and how journalists interpret their own representations. A content and critical discourse analysis of news texts published in the Slovenian media over two years and in-depth interviews with their authors were conducted. News texts results suggest that most of the news posts were "othering" biotechnology and biotechnologists: biotechnology as a science and individual scientists are represented as "they," who are socially irresponsible, ignorant, arrogant, and "our" enemies who produce unnatural processes and work for biotechnology companies, whose greed is destroying people, animals, and the environment. Most journalists consider these representations to be objective because they have published the biotechnologists' opinions, despite their own negative attitudes towards biotechnology.

  15. Biotechnology worldwide and the 'European Biotechnology Thematic Network' Association (EBTNA).

    Science.gov (United States)

    Bruschi, F; Dundar, M; Gahan, P B; Gartland, K; Szente, M; Viola-Magni, M P; Akbarova, Y

    2011-09-01

    The European Biotechnology Congress 2011 held under the auspices of the European Biotechnology Thematic Network Association (EBTNA) in conjunction with the Turkish Medical Genetics Association brings together a broad spectrum of biotechnologists from around the world. The subsequent abstracts indicate the manner in which biotechnology has permeated all aspects of research from the basic sciences through to small and medium enterprises and major industries. The brief statements before the presentation of the abstracts aim to introduce not only Biotechnology in general and its importance around the world, but also the European Biotechnology Thematic Network Association and its aims especially within the framework of education and ethics in biotechnology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Biotechnology: reality or dream

    Directory of Open Access Journals (Sweden)

    Konstantinov Kosana

    2002-01-01

    Full Text Available The development of molecular biology and molecular genetics, especially of the recombinant DNA technology enabled improvement of experimental methods that provide manipulation within a cell-free system, such as cell and tissue cultures. Such methods resulted in the development of different new technologies with specific properties in relation to the conventional definitions. According to PERSLEY and lantin (2000 the following components are essential for the contemporary biotechnology: (i genomics - a molecular characterization of all genes and gene products of an organism (ii bioinformatics - the assembly of data from genomic analysis into accessible forms; (iii transformation - the introduction of genes controlling a trait of interest into a genome of a desired organism (micro organisms, plants, animal systems. By the application of cotemporary biotechnology new methods in the field of diagnostic are developed such as rapid and more accurate identification of the presence and absence of genes in the genome of the organism of interest (identification of pathogens prenatal diagnostics, molecular markers assisted breeding for plants, etc. The traits of an organism are determined by its genetic material, i.e. by a molecule of deoxyribonucleic acid (DNA. watson and crick (1953 were the first scientists to describe the structure of DNA as a double-stranded helix. Higher organisms contain a set of linear DNA molecules - chromosomes and a full set of chromosomes of an organism is a genome. Each genome is divided into a series of functional units, i.e. genes. The traits of an organism depend on genes, but their expression depends not only on genes but also on many other factors, including whether a gene, controlling the trait, expresses, specific cells in which it expresses and specially the mode by which the gene and its product interact with the environment. A special aspect within the application of biotechnology occurs as an interaction of a

  17. Laparoscopic specimen retrieval bags.

    Science.gov (United States)

    Smorgick, Noam

    2014-10-01

    Specimen retrieval bags have long been used in laparoscopic gynecologic surgery for contained removal of adnexal cysts and masses. More recently, the concerns regarding spread of malignant cells during mechanical morcellation of myoma have led to an additional use of specimen retrieval bags for contained "in-bag" morcellation. This review will discuss the indications for use retrieval bags in gynecologic endoscopy, and describe the different specimen bags available to date.

  18. Magnetic separations in biotechnology.

    Science.gov (United States)

    Borlido, L; Azevedo, A M; Roque, A C A; Aires-Barros, M R

    2013-12-01

    Magnetic separations are probably one of the most versatile separation processes in biotechnology as they are able to purify cells, viruses, proteins and nucleic acids directly from crude samples. The fast and gentle process in combination with its easy scale-up and automation provide unique advantages over other separation techniques. In the midst of this process are the magnetic adsorbents tailored for the envisioned target and whose complex synthesis spans over multiple fields of science. In this context, this article reviews both the synthesis and tailoring of magnetic adsorbents for bioseparations as well as their ultimate application. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Research Foundation Institute Joint Symposium '97. Ion, marine biotechnology, microgravity, ultrahigh temperature, and laser; Kenkyu kiban shisetsu godo symposium '97. Ion kaiyo bio mujuryoku chokoon laser

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-10

    Presentations were jointly made by NEDO (New Energy and Industrial Technology Development Organization)-financed Ion Engineering Center Corporation, Research Center for the Industrial Utilization of Marine Organisms, Japan Microgravity Center, Japan Ultrahigh Temperature Materials Research Institute, Applied Laser Engineering Center, and organizations annexed to them. The subjects taken up were 'Omnidirectional ion beam technology and titanium ion implantation,' 'Application of ion engineering technology to the prevention of contact allergy,' 'Research on metal/semiconductor transition phase creation for silicon ions,' 'Research on technologies of microalgae-aided CO2 fixation and effective utilization,' 'Construction of gyrB database,' 'Marine microbe-produced antibiotics and assessment of activity,' 'Research on combustion under microgravitational conditions and application to industrial combustors,' 'Research on tube-contained gas/liquid two-phase fluid under microgravitational conditions and application to power generation boiler,' 'Measurement of physical properties of molten semiconductor under microgravitational conditions and research on analysis of heat flow in silicon crystal growing furnace,' 'High temperature oxidation of Mo(Si, Al){sub 2} intermetallic compounds,' 'Development of Nb-based ultrahigh temperature materials,' 'Functional characteristics of Al{sub 2}O{sub 3}/TiC/Ni-based functionally inclined materials,' 'Control of epitaxial crystal growth in CxBE process,' and 'Manufacture of intermetallic compounds by laser plasma hybrid spraying and characteristics.' (NEDO)

  20. Georeferencing Animal Specimen Datasets

    NARCIS (Netherlands)

    van Erp, M.G.J.; Hensel, R.; Ceolin, D.; van der Meij, M.

    2014-01-01

    For biodiversity research, the field of study that is concerned with the richness of species of our planet, it is of the utmost importance that the location of an animal specimen find is known with high precision. Due to specimens often having been collected over the course of many years, their

  1. Low upper-shelf toughness, high transition temperature test insert in HSST [Heavy Section Steel Technology] PTSE-2 [Pressurized Thermal Shock Experiment-2] vessel and wide plate test specimens: Final report

    International Nuclear Information System (INIS)

    Domian, H.A.

    1987-02-01

    A piece of A387, Grade 22 Class 2 (2-1/4 Cr - 1 Mo) steel plate specially heat treated to produce low upper-shelf (LUS) toughness and high transition temperature was installed in the side wall of Heavy Section Steel Technology (HHST) vessel V-8. This vessel is to be tested by the Oak Ridge National Laboratory (ORNL) in the Pressurized Thermal Shock Experiment-2 (PTSE-2) project of the HSST program. Comparable pieces of the plate were made into six wide plate specimens and other samples. These samples underwent tensile tests, Charpy tests, and J-integral tests. The results of these tests are given in this report

  2. Research Foundation Institute Joint Symposium '97. Ion, marine biotechnology, microgravity, ultrahigh temperature, and laser; Kenkyu kiban shisetsu godo symposium '97. Ion kaiyo bio mujuryoku chokoon laser

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-10

    Presentations were jointly made by NEDO (New Energy and Industrial Technology Development Organization)-financed Ion Engineering Center Corporation, Research Center for the Industrial Utilization of Marine Organisms, Japan Microgravity Center, Japan Ultrahigh Temperature Materials Research Institute, Applied Laser Engineering Center, and organizations annexed to them. The subjects taken up were 'Omnidirectional ion beam technology and titanium ion implantation,' 'Application of ion engineering technology to the prevention of contact allergy,' 'Research on metal/semiconductor transition phase creation for silicon ions,' 'Research on technologies of microalgae-aided CO2 fixation and effective utilization,' 'Construction of gyrB database,' 'Marine microbe-produced antibiotics and assessment of activity,' 'Research on combustion under microgravitational conditions and application to industrial combustors,' 'Research on tube-contained gas/liquid two-phase fluid under microgravitational conditions and application to power generation boiler,' 'Measurement of physical properties of molten semiconductor under microgravitational conditions and research on analysis of heat flow in silicon crystal growing furnace,' 'High temperature oxidation of Mo(Si, Al){sub 2} intermetallic compounds,' 'Development of Nb-based ultrahigh temperature materials,' 'Functional characteristics of Al{sub 2}O{sub 3}/TiC/Ni-based functionally inclined materials,' 'Control of epitaxial crystal growth in CxBE process,' and 'Manufacture of intermetallic compounds by laser plasma hybrid spraying and characteristics.' (NEDO)

  3. Development of biotechnology in India.

    Science.gov (United States)

    Ghose, T K; Bisaria, V S

    2000-01-01

    India has embarked upon a very ambitious program in biotechnology with a view to harnessing its available human and unlimited biodiversity resources. It has mainly been a government sponsored effort with very little private industry participation in investment. The Department of Biotechnology (DBT) established under the Ministry of Science and Technology in 1986 was the major instrument of action to bring together most talents, material resources, and budgetary provisions. It began sponsoring research in molecular biology, agricultural and medical sciences, plant and animal tissue culture, biofertilizers and biopesticides, environment, human genetics, microbial technology, and bioprocess engineering, etc. The establishment of a number of world class bioscience research institutes and provision of large research grants to some existing universities helped in developing specialized centres of biotechnology. Besides DBT, the Department of Science & Technology (DST), also under the Ministry of S&T, sponsors research at universities working in the basic areas of life sciences. Ministry of Education's most pioneering effort was instrumental in the creation of Biochemical Engineering Research Centre at IIT Delhi with substantial assistance from the Swiss Federal Institute of Technology, Zurich, Switzerland to make available state-of-the-art infrastructure for education, training, and research in biochemical engineering and biotechnology in 1974. This initiative catalysed biotechnology training and research at many institutions a few years later. With a brief introduction, the major thrust areas of biotechnology development in India have been reviewed in this India Paper which include education and training, agricultural biotechnology, biofertilizers and biopesticides, tissue culture for tree and woody species, medicinal and aromatic plants, biodiversity conservation and environment, vaccine development, animal, aquaculture, seri and food biotechnology, microbial

  4. Biotechnology Towards Energy Crops.

    Science.gov (United States)

    Margaritopoulou, Theoni; Roka, Loukia; Alexopoulou, Efi; Christou, Myrsini; Rigas, Stamatis; Haralampidis, Kosmas; Milioni, Dimitra

    2016-03-01

    New crops are gradually establishing along with cultivation systems to reduce reliance on depleting fossil fuel reserves and sustain better adaptation to climate change. These biological assets could be efficiently exploited as bioenergy feedstocks. Bioenergy crops are versatile renewable sources with the potential to alternatively contribute on a daily basis towards the coverage of modern society's energy demands. Biotechnology may facilitate the breeding of elite energy crop genotypes, better suited for bio-processing and subsequent use that will improve efficiency, further reduce costs, and enhance the environmental benefits of biofuels. Innovative molecular techniques may improve a broad range of important features including biomass yield, product quality and resistance to biotic factors like pests or microbial diseases or environmental cues such as drought, salinity, freezing injury or heat shock. The current review intends to assess the capacity of biotechnological applications to develop a beneficial bioenergy pipeline extending from feedstock development to sustainable biofuel production and provide examples of the current state of the art on future energy crops.

  5. Ethical perception of modern biotechnology

    African Journals Online (AJOL)

    Jane

    2011-09-30

    Sep 30, 2011 ... 1Social Impact of Biotechnology Development in Malaysia Research ... purpose of this paper is to examine the ethical perception of modern ... and social benefits of modern biotechnology, consumer .... Company or organisation directly involved in the production of ...... Food safety battle: organic vs. biotech.

  6. Teachers' Concerns about Biotechnology Education

    Science.gov (United States)

    Borgerding, Lisa A.; Sadler, Troy D.; Koroly, Mary Jo

    2013-01-01

    The impacts of biotechnology are found in nearly all sectors of society from health care and food products to environmental issues and energy sources. Despite the significance of biotechnology within the sciences, it has not become a prominent trend in science education. In this study, we seek to more fully identify biology teachers' concerns…

  7. A Case for Teaching Biotechnology

    Science.gov (United States)

    Lazaros, Edward; Embree, Caleb

    2016-01-01

    Biotechnology is an innovative field that is consistently growing in popularity. It is important that students are taught about this technology at an early age, so they are motivated to join the field, or at least motivated to become informed citizens and consumers (Gonzalez, et al, 2013). An increase in biotechnology knowledge can result in an…

  8. Environmental biotechnology: concepts and applications

    National Research Council Canada - National Science Library

    Winter, Josef; Jördening, Hans-Joachim

    2005-01-01

    ... for the - development of new and environmentally improved production technologies with less purified substrates and generation of fewer by-products - bioproducts as non-toxic matters, mostly recyclable. Some impressive studies on industrial applications of biotechnology are published in two OECD reports, which summarized, that biotechnology has the potential o...

  9. Microalgal symbiosis in biotechnology.

    Science.gov (United States)

    Santos, Carla A; Reis, Alberto

    2014-07-01

    This review provides an analysis of recent published work on interactions between microorganisms, especially the ones involving mainly nutrient exchanges and at least with one microalga species. Examples of microbial partners are given, with a remark to the potential application of cultures of an autotroph and a heterotroph, which grow simultaneously, taking advantage of the complementary metabolisms. These are particularly interesting, either due to economic or sustainable aspects, and some applications have already reached the commercial stage of development. The added advantages of these symbiotic cultures are biomass, lipid, and other products productivity enhancement a better utilization of resources and the reduction or even elimination of process residues (including carbon dioxide and other greenhouse gases) to conduct an increasingly greener biotechnology. Among the several symbiotic partners referred, the microalgae and yeast cultures are the most used. The interaction between these two microorganisms shows how to enhance the lipid production for biodiesel purposes compared with separated (stand-alone) cultures.

  10. Biotechnological applications of transglutaminases.

    Science.gov (United States)

    Rachel, Natalie M; Pelletier, Joelle N

    2013-10-22

    In nature, transglutaminases catalyze the formation of amide bonds between proteins to form insoluble protein aggregates. This specific function has long been exploited in the food and textile industries as a protein cross-linking agent to alter the texture of meat, wool, and leather. In recent years, biotechnological applications of transglutaminases have come to light in areas ranging from material sciences to medicine. There has also been a substantial effort to further investigate the fundamentals of transglutaminases, as many of their characteristics that remain poorly understood. Those studies also work towards the goal of developing transglutaminases as more efficient catalysts. Progress in this area includes structural information and novel chemical and biological assays. Here, we review recent achievements in this area in order to illustrate the versatility of transglutaminases.

  11. Biotechnology in Turkey: an overview.

    Science.gov (United States)

    Ozdamar, Tunçer H

    2009-07-01

    The term biotechnology first appeared in the programs of the Scientific and Technological Research Council of Turkey (TUBITAK) in 1982. The State Planning Organization (SPO) in 1988 defined biotechnology and the scientific fields. Moreover, it put forward an institutional framework and suggested priority areas for research and development. Turkey has been researching and investing in biotechnology for almost four decades. This review covers the development of science and technology policy with its history, consensus and consequences, bio-industries in Turkey, and research activities in biotechnology at Turkish Universities. Details are provided by the research groups in response to a common request for information on their activities and major publications in the field. The information provided has been grouped under thematic topics within the broad theme of biotechnology, and summarized within these topics. Although many aspects of biotechnological research are being pursued in Turkey, it appears that the most common research activities of the field are in fermentation processes, environmental biotechnology, and biomedical engineering.

  12. Bioceres: AG Biotechnology from Argentina

    Directory of Open Access Journals (Sweden)

    Roberto Feeney

    2016-04-01

    Full Text Available In this case we present a business decision-making situation in which the CEO of an Argentine Ag Biotech company, Bioceres, has to decide the best way to commercialize a new drought-tolerant transgenic technology. The company was founded by twenty three farmers, who shared a common dream that Argentina could become a benchmark in the development of Ag biotechnology. The case has strategic and financial implications, as well as decision-making situation involving a joint venture with an American biotechnology company. It also introduces to discussion the business models of Ag biotechnology companies in developing countries.

  13. Development of fatigue life evaluation technique using miniature specimen

    International Nuclear Information System (INIS)

    Nogami, Shuhei; Nishimura, Arata; Fujiwara, Masaharu; Hisaka, Tomoaki

    2012-01-01

    To develop the fatigue life evaluation technique using miniature specimen, the investigation of the effect of specimen size and specimen shape on the fatigue life and the development of the fatigue testing machine, especially the extensometer, were carried out. The effect of specimen size on the fatigue life was almost negligible for the round-bar specimens. The shorter fatigue life at relatively low strain range conditions for the hourglass specimen that the standard specimen were observed. Therefore the miniature round-bar specimen was considered to be adequate for the fatigue life evaluation using small specimen. Several types of the extensometer system using a strain gauge and a laser has been developed for realizing the fatigue test of the miniature round-bar specimen at high temperature in vacuum. (author)

  14. Proceedings of the International Symposium on Biotechnology

    International Nuclear Information System (INIS)

    2008-01-01

    This is a book of abstracts of oral communications and posters that were presented during the International Symposium on Biotechnology that was held in Sfax, Tunisia from May 4th to 8th, 2008. The following themes were covered : - Biotechnology for animal and human health and biopharmaceuticals; - Microbial and environmental biotechnology; - Agricultural, Food and marine biotechnology

  15. World Biotechnology Leaders to Gather for Conference

    Science.gov (United States)

    Biotechnology Leaders to Gather for Conference For more information contact: e:mail: Public Affairs biotechnology leaders gather in Fort Collins, CO May 2-6 for the 21st Symposium on Biotechnology for Fuels and special session on funding opportunities for U.S. biotechnology projects. More than 175 presentations are

  16. African Journal of Biotechnology: Submissions

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH ... The African Journal of Biotechnology (AJB) (ISSN 1684-5315) provides rapid publication of .... Authors may still request (in advance) that the editorial board waive some of the handling fee ...

  17. STRENGTHENING BIOTECHNOLOGY RESEARCH IN INDONESIA

    Directory of Open Access Journals (Sweden)

    S. Sastrapradja

    2012-09-01

    Full Text Available The wave of biotechnology promises has struck not only the developed countries but the developing countries as well. The scientific community in Indonesia is aware of the opportunities and is eager to take an active part in this particular endeavour. Meanwhile resources are required to welcoming the biotech­nology era. The need of trained manpower, appropriate infrastructure and equipment, operational and maintenance costs requires serious consideration if a unit or a laboratory is expected to be functional in biotechnology. There is a good opportunity of applying biotechnology in the field of agriculture and industry considering the availability of biological resources in Indonesia. This paper outlines what have been done so far, the difficulties encountered and the efforts made to strengthening biotechnology research in Indonesia.

  18. Preserve specimens for reproducibility

    Czech Academy of Sciences Publication Activity Database

    Krell, F.-T.; Klimeš, Petr; Rocha, L. A.; Fikáček, M.; Miller, S. E.

    2016-01-01

    Roč. 539, č. 7628 (2016), s. 168 ISSN 0028-0836 Institutional support: RVO:60077344 Keywords : reproducibility * specimen * biodiversity Subject RIV: EH - Ecology, Behaviour Impact factor: 40.137, year: 2016 http://www.nature.com/nature/journal/v539/n7628/full/539168b.html

  19. Biaxial Creep Specimen Fabrication

    International Nuclear Information System (INIS)

    JL Bump; RF Luther

    2006-01-01

    This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Naval Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments

  20. Biaxial Creep Specimen Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    JL Bump; RF Luther

    2006-02-09

    This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Naval Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments.

  1. Environmental biotechnology: Reducing risks from environmental chemicals through biotechnology

    International Nuclear Information System (INIS)

    Omenn, G.S.

    1988-01-01

    This book contains 34 papers on various aspects of hazardous waste management through biotechnology. The articles stress the three basic strategies of waste management; minimize the amount of waste generated; reduce the toxicity of the wastes; and find more satisfactory ways of disposing of wastes. Part I of this collection describes the use of microbial ecology, molecular biology, and other scientific disciplines to combat these problems. Part II describes the application of present technology to current problems. Part III describes the effect of policy and regulations on biotechnology. Individual papers are processed separately for the data base

  2. Development of fatigue life evaluation method using small specimen

    International Nuclear Information System (INIS)

    Nogami, Shuhei; Nishimura, Arata; Wakai, Eichi; Tanigawa, Hiroyasu; Itoh, Takamoto; Hasegawa, Akira

    2013-01-01

    For developing the fatigue life evaluation method using small specimen, the effect of specimen size and shape on the fatigue life of the reduced activation ferritic/martensitic steels (F82H-IEA, F82H-BA07 and JLF-1) was investigated by the fatigue test at room temperature in air using round-bar and hourglass specimens with various specimen sizes (test section diameter: 0.85–10 mm). The round-bar specimen showed no specimen size and no specimen shape effects on the fatigue life, whereas the hourglass specimen showed no specimen size effect and obvious specimen shape effect on it. The shorter fatigue life of the hourglass specimen observed under low strain ranges could be attributed to the shorter micro-crack initiation life induced by the stress concentration dependent on the specimen shape. On the basis of this study, the small round-bar specimen was an acceptable candidate for evaluating the fatigue life using small specimen

  3. NASA Biological Specimen Repository

    Science.gov (United States)

    McMonigal, K. A.; Pietrzyk, R. A.; Sams, C. F.; Johnson, M. A.

    2010-01-01

    The NASA Biological Specimen Repository (NBSR) was established in 2006 to collect, process, preserve and distribute spaceflight-related biological specimens from long duration ISS astronauts. This repository provides unique opportunities to study longitudinal changes in human physiology spanning may missions. The NBSR collects blood and urine samples from all participating ISS crewmembers who have provided informed consent. These biological samples are collected once before flight, during flight scheduled on flight days 15, 30, 60, 120 and within 2 weeks of landing. Postflight sessions are conducted 3 and 30 days after landing. The number of in-flight sessions is dependent on the duration of the mission. Specimens are maintained under optimal storage conditions in a manner that will maximize their integrity and viability for future research The repository operates under the authority of the NASA/JSC Committee for the Protection of Human Subjects to support scientific discovery that contributes to our fundamental knowledge in the area of human physiological changes and adaptation to a microgravity environment. The NBSR will institute guidelines for the solicitation, review and sample distribution process through establishment of the NBSR Advisory Board. The Advisory Board will be composed of representatives of all participating space agencies to evaluate each request from investigators for use of the samples. This process will be consistent with ethical principles, protection of crewmember confidentiality, prevailing laws and regulations, intellectual property policies, and consent form language. Operations supporting the NBSR are scheduled to continue until the end of U.S. presence on the ISS. Sample distribution is proposed to begin with selections on investigations beginning in 2017. The availability of the NBSR will contribute to the body of knowledge about the diverse factors of spaceflight on human physiology.

  4. Management in biophotonics and biotechnologies

    Science.gov (United States)

    Meglinski, I. V.; Tuchin, V. V.

    2005-10-01

    Biophotonics, one of the most exciting and rapidly growing areas, offers vast potential for changing traditional approaches to meeting many critical needs in medicine, biology, pharmacy, food, health care and cosmetic industries. Follow the market trends we developed new MSc course Management in Biophotonics and Biotechnologies (MBB) that provide students of technical disciplines with the necessary training, education and problem-solving skills to produce professionals and managers who are better equipped to handle the challenges of modern science and business in biophotonics and biotechnology. A major advantage of the course is that it provides skills not currently available to graduates in other Master programs.

  5. Biotechnology opportunities on Space Station

    Science.gov (United States)

    Deming, Jess; Henderson, Keith; Phillips, Robert W.; Dickey, Bernistine; Grounds, Phyllis

    1987-01-01

    Biotechnology applications which could be implemented on the Space Station are examined. The advances possible in biotechnology due to the favorable microgravity environment are discussed. The objectives of the Space Station Life Sciences Program are: (1) the study of human diseases, (2) biopolymer processing, and (3) the development of cryoprocessing and cryopreservation methods. The use of the microgravity environment for crystal growth, cell culturing, and the separation of biological materials is considered. The proposed Space Station research could provide benefits to the fields of medicine, pharmaceuticals, genetics, agriculture, and industrial waste management.

  6. Patenting Biotechnological Inventions in Europe

    Directory of Open Access Journals (Sweden)

    Peter Raspor

    2002-01-01

    Full Text Available The patent system has been able to provide the protection for the achievements of different technologies and in that way it has supported further development and growth of the industry where those achievements were implemented. Modern technologies like information technology and biotechnology with genetic engineering that appeared in the 70s have overgrown the frames of the existing patent system because of their exponential development during the last thirty years. Industry that invests a huge amount of money in these technologies, especially in the field of biotechnology, where the results are very uncertain, has started to claim changes in the patent system.

  7. Rotating specimen rack repair

    International Nuclear Information System (INIS)

    Miller, G.E.; Rogers, P.J.; Nabor, W.G.; Bair, H.

    1984-01-01

    In 1980, an operator at the UCI TRIGA Reactor noticed difficulties with the rotation of the specimen rack. Investigations showed that the drive bearing in the rack had failed and allowed the bearings to enter the rack. After some time of operation in static mode it was decided that installation of a bearing substitute - a graphite sleeve - would be undertaken. Procedures were written and approved for removal of the rack, fabrication and installation of the sleeve, and re-installation of the rack. This paper describes these procedures in some detail. Detailed drawings of the necessary parts may be obtained from the authors

  8. Method for thinning specimen

    Science.gov (United States)

    Follstaedt, David M.; Moran, Michael P.

    2005-03-15

    A method for thinning (such as in grinding and polishing) a material surface using an instrument means for moving an article with a discontinuous surface with an abrasive material dispersed between the material surface and the discontinuous surface where the discontinuous surface of the moving article provides an efficient means for maintaining contact of the abrasive with the material surface. When used to dimple specimens for microscopy analysis, a wheel with a surface that has been modified to produce a uniform or random discontinuous surface significantly improves the speed of the dimpling process without loss of quality of finish.

  9. BIOTECHNOLOGY CAN IMPROVE FOOD SECURITY IN AFRICA ...

    African Journals Online (AJOL)

    BIOTECHNOLOGY CAN IMPROVE FOOD SECURITY IN AFRICA. ... and capacity to innovate and patent new materials as well as enforce biosafety requirements. In order for countries to access biotechnology products or technologies, it will ...

  10. Biotechnology Process Engineering Center at MIT - Overview

    Science.gov (United States)

    | Facsimile (617) 253-2400 | e-mail: bpec-www@mit.edu THERAPEUTIC GENE BIOTECHNOLOGY INDUSTRIAL CONSORTIUM Board (ICAB) in Therapeutic Gene Biotechnology. ICAB Member Representatives review our research progress

  11. Modernizing the Regulatory System for Biotechnology Products

    Science.gov (United States)

    This Web page describes the continuing effort to modernize the federal regulatory system for biotechnology products as well as clarify various roles of EPA, FDA and USDA in evaluating new biotechnology products.

  12. Applied thermodynamics: A new frontier for biotechnology

    DEFF Research Database (Denmark)

    Mollerup, Jørgen

    2006-01-01

    The scientific career of one of the most outstanding scientists in molecular thermodynamics, Professor John M. Prausnitz at Berkeley, reflects the change in the agenda of molecular thermodynamics, from hydrocarbon chemistry to biotechnology. To make thermodynamics a frontier for biotechnology...

  13. Linking Biotechnology and Agricultural Biodiversity Resources in ...

    African Journals Online (AJOL)

    komla

    on how to best manage the strategic interplay between biotechnology and diversity in ... Therefore, it is imperative that, in formulating a biotechnology ..... Acknowledgement, indicating the source of any financial support or personal assistance.

  14. Brief Note on the Development of Biotechnology

    OpenAIRE

    Karl Bayer

    2014-01-01

    Biotechnology, with the main applications in food and nutrition, dates back to the early times of mankind. In the recent decades the progress in natural sciences, mathematics and computer science has led to a new branch termed molecular biotechnology, which finally developed as an autonomous scientific discipline. The field of biotechnology, in the past generally empirically driven, now largely benefits from molecular biotechnology by improved systems, knowledge and understanding. Thereby, co...

  15. BIOTECHNOLOGY OF THE FISH AQUACULTURE

    Directory of Open Access Journals (Sweden)

    L. P. Buchatsky

    2013-12-01

    Full Text Available The latest progress in biotechnology on fish aquaculture and different modern methods of investigations for increasing of fish productivity in aquaculture are analyzed. Except for the applied aspect, the use of modern biotechnological methods of investigations opens new possibilities for fundamental researches of sex-determining mechanisms, polyploidy, distant hybridization, and developmental biology of bony fishes. Review contains examples of utilizing modern biotechnology methods to obtain transgenic fishes with accelerated growth and for designing surrogate fishes. Methods for receiving unisexual shoals of salmon and sturgeon female fishes with the view of obtaining a large quantity of caviar, as well as receiving sterile (triploid fishes are analyzed. Great attention is given to androgenesis, particularly to disperm one, in connection with the problem of conserving rare and vanishing fish species using only sperm genetic material. Examples how distant hybrids may be obtained with the use of disperm androgenesis and alkylated DNA are given. Methods of obtaining fish primordium germ cells, recent developments in cultivation of fish stem cells and their use in biotechnology, as well as ones of transplantation of oogonium and spermatogonium to obtain surrogate fishes. The examples of successful experiments on spermatogonial xenotransplantation and characteristic of antifreezing fish proteins and also the prospect of their practical usage are given.

  16. Re-Framing Biotechnology Regulation.

    Science.gov (United States)

    Peck, Alison

    Biotechnology is about to spill the banks of federal regulation. New genetic engineering techniques like CRISPR-Cas9 promise revolutionary breakthroughs in medicine, agriculture, and public health—but those techniques would not be regulated under the terms of the Coordinated Framework for Regulation of Biotechnology. This revolutionary moment in biotechnology offers an opportunity to correct the flaws in the framework, which was hastily patched together at the advent of the technology. The framework has never captured all relevant technologies, has never satisfied the public that risk is being effectively managed, and has never been accessible to small companies and publicly-funded labs that increasingly are positioned to make radical, life-saving innovations. This Article offers a proposal for new legislation that would reshape biotechnology regulation to better meet these goals. Key reforms include tying regulation to risk rather than technology category; consolidating agency review; capturing distinct regulatory expertise through inter-agency consultations; creating a clearinghouse to help guide applicants and disseminate information; setting up more comprehensive monitoring of environmental effects; and providing federal leadership to fill key data gaps and address socio-economic impacts.

  17. Acinetobacter: environmental and biotechnological applications ...

    African Journals Online (AJOL)

    Among microbial communities involved in different ecosystems such as soil, freshwater, wastewater and solid wastes, several strains belonging to the genus of Acinetobacter have been attracting growing interest from medical, environmental and a biotechnological point of view. Bacteria of this genus are known to be ...

  18. Biotechnological applications of bacterial cellulases

    Czech Academy of Sciences Publication Activity Database

    Menéndez, E.; García-Fraile, Paula; Rivas, R.

    2015-01-01

    Roč. 2, č. 3 (2015), s. 163-182 ISSN 2306-5354 R&D Projects: GA MŠk(CZ) EE2.3.30.0003 Institutional support: RVO:61388971 Keywords : Biotechnological applications * Bacterial cellulases * Cellulose degradation Subject RIV: EE - Microbiology, Virology

  19. Biotechnological sulphide removal with oxygen

    NARCIS (Netherlands)

    Buisman, C.

    1989-01-01

    This thesis deals with the development of a new process for biotechnological sulphide removal from wastewater, in which it is attempted to convert sulphide into elemental sulphur by colourless sulphur bacteria. The toxicity, corrosive properties, unpleasant odor and high oxygen demand of sulphide

  20. Biotechnology Process Engineering Center at MIT Home

    Science.gov (United States)

    has provided a focal point for biotechnology research and education at MIT. Prominent examples include the NIH Training Program in Biotechnology and the NIH Training Program in Genomics; both of these are -genomic biology. Another example is the new DuPont-MIT Alliance (DMA), focused on materials biotechnology

  1. Biotechnology: An Era of Hopes and Fears

    Science.gov (United States)

    2016-01-01

    Strategic Studies Quarterly ♦ Fall 2016 23 Biotechnology An Era of Hopes and Fears LTC Douglas R. Lewis, PhD, US Army Abstract Biotechnology ......ignored. The idea of advances in biotechnology increasing the biological weapons threat is not new. In 2003 an analysis of gene sequencing and

  2. Biotechnology: Challenge for the food industry

    Directory of Open Access Journals (Sweden)

    Popov Stevan

    2007-01-01

    Full Text Available According to the broadest definition, biotechnology is the use of living matter (plants, animals and microorganisms in industry, environment protection, medicine and agriculture. Biotechnology takes a key position in the field of food processing during thousands of years. Last about fifty years brought dynamical development of knowledges in the natural sciences especially in domain of genetics and manipulation of genes. Biotechnology for which active role in the on-coming times could be foreseen, not only with respect of R&D, but also in general technological development represents scope of priority in the USA and in European Union (EU as well. It is accepted that the results achieved in biotechnology oversize scientific domain and find their entrance into economics, legislation, quality of life and even of politics. Corresponding with the definition of biotechnology as "the integration of natural sciences and engineering in the application of microorganisms, cells, their components and molecular analogues in production (General assembly of the European federation for Biotechnology, 1989 European Commission (1999 adopted the biotechnological taxonomy, i.e. fields and sub-fields of biotechnology. R&D activities in this domain are oriented to eight fields and branched through them. Fields of biotechnology (EC, 1999 are: 1 Plant biotechnology (agricultural cultivars, trees, bushes etc; 2 Animal biotechnology; 3 Biotechnology in environment protection; 4 Industrial biotechnology (food, feed, paper, textile, pharmaceutical and chemical productions; 5 Industrial biotechnology (production of cells and research of cells - producers of food and of other commodities; 6 Development of humane and veterinarian diagnostics (therapeutical systems 7 Development of the basic biotechnology, and 8 Nontechnical domains of biotechnology. In concordance with some judgments, in the World exist about 4000 biotechnological companies. World market of biotechnological

  3. Comparative study on Charpy specimen reconstitution techniques

    International Nuclear Information System (INIS)

    Bourdiliau, B.; Decroix, G.-M.; Averty, X.; Wident, P.; Bienvenu, Y.

    2011-01-01

    Highlights: → Welding processes are used to reconstitute previously tested Charpy specimens. → Stud welding is preferred for a quick installation, almost immediately operational. → Friction welding produces better quality welds, but requires a development effort. - Abstract: Reconstitution techniques are often used to allow material from previously fractured Charpy-V specimens to be reused for additional experiments. This paper presents a comparative experimental study of various reconstitution techniques and evaluates the feasibility of these methods for future use in shielded cells. The following techniques were investigated: arc stud welding, 6.0 kW CO 2 continuous wave laser welding, 4.5 kW YAG continuous wave laser welding and friction welding. Subsize Charpy specimens were reconstituted using a 400 W YAG pulsed wave laser. The best result was obtained with arc stud welding; the resilience of the reconstituted specimens and the load-displacement curves agreed well with the reference specimens, and the temperature elevation caused by the welding process was limited to the vicinity of the weld. Good results were also obtained with friction welding; this process led to the best quality welds. Laser welding seems to have affected the central part of the specimens, thus leading to different resilience values and load-displacement curves.

  4. Halophiles, coming stars for industrial biotechnology.

    Science.gov (United States)

    Yin, Jin; Chen, Jin-Chun; Wu, Qiong; Chen, Guo-Qiang

    2015-11-15

    Industrial biotechnology aims to produce chemicals, materials and biofuels to ease the challenges of shortage on petroleum. However, due to the disadvantages of bioprocesses including energy consuming sterilization, high fresh water consumption, discontinuous fermentation to avoid microbial contamination, highly expensive stainless steel fermentation facilities and competing substrates for human consumption, industrial biotechnology is less competitive compared with chemical processes. Recently, halophiles have shown promises to overcome these shortcomings. Due to their unique halophilic properties, some halophiles are able to grow in high pH and high NaCl containing medium under higher temperature, allowing fermentation processes to run contamination free under unsterile conditions and continuous way. At the same time, genetic manipulation methods have been developed for halophiles. So far, halophiles have been used to produce bioplastics polyhydroxyalkanoates (PHA), ectoines, enzymes, and bio-surfactants. Increasing effects have been made to develop halophiles into a low cost platform for bioprocessing with advantages of low energy, less fresh water consumption, low fixed capital investment, and continuous production. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Thermal endurance tests on silicone rubber specimens

    International Nuclear Information System (INIS)

    Warburton, C.

    1977-07-01

    Thermal endurance tests have been performed on a range of silicone rubber specimens at temperature above 300 0 C. It is suggested that the rubber mix A2426, the compound from which Wylfa sealing rings are manufactured, will fail at temperatures above 300 0 C within weeks. Hardness measurements show that this particular rubber performs in a similar manner to Walker's S.I.L./60. (author)

  6. The costly benefits of opposing agricultural biotechnology.

    Science.gov (United States)

    Apel, Andrew

    2010-11-30

    Rigorous application of a simple definition of what constitutes opposition to agricultural biotechnology readily encompasses a wide array of key players in national and international systems of food production, distribution and governance. Even though the sum of political and financial benefits of opposing agricultural biotechnology appears vastly to outweigh the benefits which accrue to providers of agricultural biotechnology, technology providers actually benefit from this opposition. If these barriers to biotechnology were removed, subsistence farmers still would not represent a lucrative market for improved seed. The sum of all interests involved ensures that subsistence farmers are systematically denied access to agricultural biotechnology. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Current state of biotechnology in Turkey.

    Science.gov (United States)

    Dundar, Munis; Akbarova, Yagut

    2011-09-01

    Biotechnology is an interdisciplinary branch of science that encompasses a wide range of subjects like genetics, virology, microbiology, immunology, engineering to develop vaccines, and so on and plays a vital role in health systems, crop and seed management, yield improvement, agriculture, soil management, ecology, animal farming, cellular process, bio statistics, and so on. This article is about activities in medical and pharmaceutical biotechnology, environmental biotechnology, agricultural biotechnology and nanobiotechnology carried out in Turkey. Turkey has made some progress in biotechnology projects for research and development. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. The rise (and decline?) of biotechnology.

    Science.gov (United States)

    Kinch, Michael S

    2014-11-01

    Since the 1970s, biotechnology has been a key innovator in drug development. An analysis of FDA-approved therapeutics demonstrates pharmaceutical companies outpace biotechs in terms of new approvals but biotechnology companies are now responsible for earlier-stage activities (patents, INDs or clinical development). The number of biotechnology organizations that contributed to an FDA approval began declining in the 2000s and is at a level not seen since the 1980s. Whereas early biotechnology companies had a decade from first approval until acquisition, the average acquisition of a biotechnology company now occurs months before their first FDA approval. The number of hybrid organizations that arise when pharmaceutical companies acquire biotechnology is likewise declining, raising questions about the sustainability of biotechnology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Bioenergy/Biotechnology projects

    Energy Technology Data Exchange (ETDEWEB)

    Napper, Stan [Louisiana Tech Univ., Ruston, LA (United States); Palmer, James [Louisiana Tech Univ., Ruston, LA (United States); Wilson, Chester [Louisiana Tech Univ., Ruston, LA (United States); Guilbeau, Eric [Louisiana Tech Univ., Ruston, LA (United States); Allouche, Erez [Louisiana Tech Univ., Ruston, LA (United States)

    2012-06-30

    This report describes the progress of five different projects. The first is an enzyme immobilization study of cellulase to reduce costs of the cellulosic ethanol process. High reusability and use of substrates applicable to large scale production were focus areas for this study. The second project was the development of nanostructured catalysts for conversion of syngas to diesel. Cobalt nanowire catalyst was used in Fischer-Tropsch synthesis. The third project describes work on developing a microfluidic calorimeter to measure reaction rates of enzymes. The fourth project uses inorganic polymer binders that have the advantage of a lower carbon footprint than Portland cement while also providing excellent performance in elevated temperature, high corrosion resistance, high compressive and tensile strengths, and rapid strength gains. The fifth project investigates the potential of turbines in drop structures (such as sewer lines in tall buildings) to recover energy.

  10. Biodiesel production by microalgal biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Huang, GuanHua [School of Chemical Engineering and Technology, China University of Mining and Technology (China); Chen, Feng [School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong (China); College of Light Industry and Food Sciences, South China University of Technology, Guangzhou (China); Wei, Dong; Zhang, XueWu; Chen, Gu [College of Light Industry and Food Sciences, South China University of Technology, Guangzhou (China)

    2010-01-15

    Biodiesel has received much attention in recent years. Although numerous reports are available on the production of biodiesel from vegetable oils of terraneous oil-plants, such as soybean, sunflower and palm oils, the production of biodiesel from microalgae is a newly emerging field. Microalgal biotechnology appears to possess high potential for biodiesel production because a significant increase in lipid content of microalgae is now possible through heterotrophic cultivation and genetic engineering approaches. This paper provides an overview of the technologies in the production of biodiesel from microalgae, including the various modes of cultivation for the production of oil-rich microalgal biomass, as well as the subsequent downstream processing for biodiesel production. The advances and prospects of using microalgal biotechnology for biodiesel production are discussed. (author)

  11. Biotechnological improvement of ornamental plants

    OpenAIRE

    Flavia Soledad Darqui; Laura Mabel Radonic; Horacio Esteban Hopp; Marisa Lopez Bilbao

    2017-01-01

    The discovery of commercial transgenic varieties of orange petunias sold in Europe and the United States although they had never reached the approved status, and the consequent recommendation to destroy them, was the trigger to discuss about biotechnological improvement of ornamental plants. Inside the restricted world of 26 vegetal transgenic species, according to the ISAAA’s reports (http://www.isaaa.org), there are three ornamental species: carnation, rose and the Beijing University develo...

  12. Interface of nuclear and biotechnologies

    International Nuclear Information System (INIS)

    Castro Diaz-Balart, F.

    2005-01-01

    Addressing nuclear and biotechnologies in the International Year of Physics should begin by highlighting the important role that this science has played in the development of both branches of science and technologies. The first as a direct consequence of the Theory of Relativity, the further was considerably influenced by Schroedinger's remarks that there must be a code of some kind that allowed molecules in cells to carry information, making a connection between genes and proteins. Both, like any highly technical endeavor, have also in common that the use of technologies demands a vast accumulation of knowledge, i.e. volumes of scientific research, engineering analysis, strict regulatory controls and a huge amount of information combined with a complex assortment of people with the required educational background, expertise and skills to master it. This presentation briefly explores the ways in which nuclear technology has been used in the last decades of the 20th century in the field of biomedicine applications, which includes the use of radiation to obtain accurate images as well as in diagnosis and therapy. The paper looks at the present prospects of some nuclear methods and instrumentation in the so-called Red biotechnology and its genetically engineered therapeutic agents and diagnostic tests as well as some related perspectives in the field of bioinformatics. As an example of biotechnology being successfully applied to health problems in developing countries the presentation gives an outlook of relevant Cuban achievements in this field. (author)

  13. [Biotechnological aspects in "loco" larvae].

    Science.gov (United States)

    Inestrosa, N C; Labarca, R; Perelman, A; Campos, E O; Araneda, R; González, M; Brandan, E; Sánchez, J P; González-Plaza, R

    1990-10-01

    The biology of planktotrophic larvae of Concholepas concholepas is the main bottleneck towards developing biotechnologies to rear this muricid. Data concerning planktonic larvae development, diets and environmental signals triggering larval settlement and recruitment is scarce. We have begun the study of the molecular and cell biology of embryos, larvae and recruits having as a final goal, the development of appropriate biotechnologies to rear this gastropod. First, an inverse ratio between BuChE and AChE enzyme activities was established. This ratio may be a precise developmental marker for this species. Second, for the first time a phosphoinositide related regulatory pathway is reported in a muricid, opening a new approach to the biotechnological management of larvae. Third, the relation between sulfate in sea water and larval motility was studied. Concentrations below 125 microM sulfate decreases larval motility. The sulfate is incorporated in proteoglycans which participate in different developmental phenomena. Lastly, a genomic Concholepas concholepas DNA sequence, similar to that of a human growth hormone probe was detected. This is very interesting since growth factors are key molecules during development, growth and are involved in food conversion rates in fish and also, in a variety of marine invertebrates.

  14. Splitting tests on rock specimens

    Energy Technology Data Exchange (ETDEWEB)

    Davies, J D; Stagg, K G

    1970-01-01

    Splitting tests are described for a square-section sandstone specimens line loaded through steel or timber packings on the top face and supported on the bottom face either on similar packings (type A specimen) or directly on the lower platen plate of the testing machine (type B specimens). The stress distribution across the vertical central plane and the horizontal central plane were determined from a linear elastic finite element analysis for both types. Two solutions were obtained for the type B specimen: one assuming no friction between the base of the specimen and the platen plate and the other assuming no relative slip between the surfaces. Vertical and horizontal strains were measured at the center of the specimens for all loads up to failure.

  15. Environmental biotechnology for waste treatment, environmental science research, Volume 41

    Energy Technology Data Exchange (ETDEWEB)

    Saylor, G.S.; Fox, R.; Blackburn, J.W.

    1991-01-01

    This book contains the proceedings of the symposium entitled [open quotes]Environmental Biotechnology: Moving from the Flask to the Field[close quotes] held in October 17th through 19th, 1990, in Knoxville, Tennessee. Environmental biotechnology involves the use of microorganisms and their processes for the clean-up of environmental contamination, specific examples of which include ground-water treatment, treatment of leachates, and clean-up of contaminated soils, sludges, and sediments. In comparison with other technologies, environmental biotechnology (or bioremediation) has the advantages of affecting mineralization of toxic compounds to innocuous end-products, being energy-effective with processes able to take place at a moderate temperature and pressure, safety, and economy and is, therefore, perceived to hold great potential for environmental clean-up. Bioremediation treatment technologies for contaminated soils and groundwater can take the form of: (1) solid-phase biotreatment; (2) slurry-phase treatment; (3) in situ treatment; and (4) combination biological and physical/chemical treatment. The goal of the symposium was to pressure technical accomplishments at the laboratory and field-scale levels, future technical directions and economic, public and regulatory concerns in environmental biotechnology. The book is divided into five major sections on Current Perceptions, Field-Scale Studies, Technical Issues and Concerns in Implementation, Nontechnical Issues and Concerns in Implementation, International Activities, and ends with a critical review of the symposium.

  16. Janka hardness using nonstandard specimens

    Science.gov (United States)

    David W. Green; Marshall Begel; William Nelson

    2006-01-01

    Janka hardness determined on 1.5- by 3.5-in. specimens (2×4s) was found to be equivalent to that determined using the 2- by 2-in. specimen specified in ASTM D 143. Data are presented on the relationship between Janka hardness and the strength of clear wood. Analysis of historical data determined using standard specimens indicated no difference between side hardness...

  17. Hyperthermostable cellulolytic and hemicellulolytic enzymes and their biotechnological applications

    Directory of Open Access Journals (Sweden)

    Tipparat Hongpattarakere

    2002-07-01

    Full Text Available Hyperthermal cellulases and hemicellulases have been intensively studied due to their highly potential applications at extreme temperatures, which mimic industrial processes involving cellulose and hemicellulose degradation. More than 50 species of hyperthermophiles have been isolated, many of which possess hyperthermal enzymes required for hydrolyzing cellulose and hemicelluloses. Endoglucanases, exoglucanases, cellobiohydrolases, xylanases, β-glucosidase and β-galactosidase, which are produced by the hyperthermophiles, are resistant to boiling temperature. The characteristics of these enzymes and the ability to maintain their functional integrity at high temperature as well as their biotechnological application are discussed.

  18. Editorial: Latest methods and advances in biotechnology.

    Science.gov (United States)

    Lee, Sang Yup; Jungbauer, Alois

    2014-01-01

    The latest "Biotech Methods and Advances" special issue of Biotechnology Journal continues the BTJ tradition of featuring the latest breakthroughs in biotechnology. The special issue is edited by our Editors-in-Chief, Prof. Sang Yup Lee and Prof. Alois Jungbauer and covers a wide array of topics in biotechnology, including the perennial favorite workhorses of the biotech industry, Chinese hamster ovary (CHO) cell and Escherichia coli. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Biotechnology information service of the GDR

    International Nuclear Information System (INIS)

    Poetzsch, E.

    1990-05-01

    The paper gives a survey of the biotechnology information in the GDR and describes the establishment of the Biotechnology Information Service of the GDR (BioInfo GDR). BioInfo GDR is a referral database and is to provide information on information sources available in the GDR, and on institutions working in the various fields of biotechnology in the GDR. In addition, some general problems of the building and use of databases are discussed. (author). 8 refs

  20. Biotechnology: Challenge for the food industry

    OpenAIRE

    Popov Stevan

    2007-01-01

    According to the broadest definition, biotechnology is the use of living matter (plants, animals and microorganisms) in industry, environment protection, medicine and agriculture. Biotechnology takes a key position in the field of food processing during thousands of years. Last about fifty years brought dynamical development of knowledges in the natural sciences especially in domain of genetics and manipulation of genes. Biotechnology for which active role in the on-coming times could be fore...

  1. Application of biotechnology to fossil fuels explored

    Energy Technology Data Exchange (ETDEWEB)

    Haggin, J

    1989-02-13

    A review is presented of the December 1988 symposium on coal, oil and gas biotechnology held in New Orleans, organised by the Institute of Gas Technology. Papers discussed include: opportunities for R D in desulfurization, coal gasification and environmental cleanup; an assessment of the economic constraints that new energy biotechnology must overcome; biotechnology research at EPRI; microbial conversion of coal; bioconversion of low rank coal; and bioremediation of ground containing PAHs. 2 figs.

  2. Biotechnology information service of the GDR

    Energy Technology Data Exchange (ETDEWEB)

    Poetzsch, E [Academy of Sciences, Berlin (Germany). Scientific Information Center

    1990-05-01

    The paper gives a survey of the biotechnology information in the GDR and describes the establishment of the Biotechnology Information Service of the GDR (BioInfo GDR). BioInfo GDR is a referral database and is to provide information on information sources available in the GDR, and on institutions working in the various fields of biotechnology in the GDR. In addition, some general problems of the building and use of databases are discussed. (author). 8 refs.

  3. Brief Note on the Development of Biotechnology

    Directory of Open Access Journals (Sweden)

    Karl Bayer

    2014-01-01

    Full Text Available Biotechnology, with the main applications in food and nutrition, dates back to the early times of mankind. In the recent decades the progress in natural sciences, mathematics and computer science has led to a new branch termed molecular biotechnology, which finally developed as an autonomous scientific discipline. The field of biotechnology, in the past generally empirically driven, now largely benefits from molecular biotechnology by improved systems, knowledge and understanding. Thereby, compliance with the recently published initiatives of the regulatory authorities to accelerate the approval process for the manufacturing of biopharmaceuticals can be gained.

  4. Current status of biotechnology in Slovakia.

    Science.gov (United States)

    Stuchlík, Stanislav; Turna, Ján

    2013-07-01

    The United Nations Convention on Biological Diversity defines biotechnology as: 'Any technological application that uses biological systems, living organisms, or derivatives thereof, to make or modify products or processes for specific use.' In other words biotechnology is 'application of scientific and technical advances in life science to develop commercial products' or briefly 'the use of molecular biology for useful purposes'. This short overview is about different branches of biotechnology carried out in Slovakia and it shows that Slovakia has a good potential for further development of modern biotechnologies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Spring 2008 Industry Study: Biotechnology Industry

    National Research Council Canada - National Science Library

    Anttonen, John; Darnauer, Trish; Douglas, Tim; Ferrari, John; Zimdahl, Jennifer; Hall, Ian M; King, William; Klotzsche, Carl; Miller, Doug; Packard, Doug; Renegar, Mike; Rimback, Ed; Rogers, Gordon; Schnedar, Chris; Sekulovski, Zoran

    2008-01-01

    Defined broadly as the manipulation of genetic material in living organisms or the derivatives thereof, biotechnology represents a veritable gold mine of possibilities for improving the human condition...

  6. Infusing Authentic Inquiry into Biotechnology

    Science.gov (United States)

    Hanegan, Nikki L.; Bigler, Amber

    2009-10-01

    Societal benefit depends on the general public's understandings of biotechnology (Betsch in World J Microbiol Biotechnol 12:439-443, 1996; Dawson and Cowan in Int J Sci Educ 25(1):57-69, 2003; Schiller in Business Review: Federal Reserve Bank of Philadelphia (Fourth Quarter), 2002; Smith and Emmeluth in Am Biol Teach 64(2):93-99, 2002). A National Science Foundation funded survey of high school biology teachers reported that hands-on biotechnology education exists in advanced high school biology in the United States, but is non-existent in mainstream biology coursework (Micklos et al. in Biotechnology labs in American high schools, 1998). The majority of pre-service teacher content preparation courses do not teach students appropriate content knowledge through the process of inquiry. A broad continuum exists when discussing inquiry-oriented student investigations (Hanegan et al. in School Sci Math J 109(2):110-134, 2009). Depending on the amount of structure in teacher lessons, inquiries can often be categorized as guided or open. The lesson can be further categorized as simple or authentic (Chinn and Malhotra in Sci Educ 86(2):175-218, 2002). Although authentic inquiries provide the best opportunities for cognitive development and scientific reasoning, guided and simple inquiries are more often employed in the classroom (Crawford in J Res Sci Teach 37(9):916-937, 2000; NRC in Inquiry and the national science education standards: a guide for teaching and learning, 2000). For the purposes of this study we defined inquiry as "authentic" if original research problems were resolved (Hanegan et al. in School Sci Math J 109(2):110-134, 2009; Chinn and Malhotra in Sci Educ 86(2):175-218, 2002; Roth in Authentic school science: knowing and learning in open-inquiry science laboratories, 1995). The research question to guide this study through naturalistic inquiry research methods was: How will participants express whether or not an authentic inquiry experience enhanced

  7. Biotechnology

    Science.gov (United States)

    2005-01-01

    again at their meeting in Malaysia in May 2005.96 Although the WTO dispute has not been settled, the EU has recently taken steps to open up trade...outlined.” Obesity , Fitness & Wellness Week, 16 October 2004, 321. Cohen, Bonner R, “Proving A Negative: The Precautionary Principle at Odds with...Life sciences company to acquire Shanghai- based Bio Asia,” Obesity , Fitness & Wellness Week, 15 January 2005, 910, <http://proquest.umi.com/pqdweb

  8. Students' Knowledge of, and Attitudes towards Biotechnology Revisited, 1995-2014: Changes in Agriculture Biotechnology but Not in Medical Biotechnology

    Science.gov (United States)

    Chen, Shao-Yen; Chu, Yih-Ru; Lin, Chen-Yung; Chiang, Tzen-Yuh

    2016-01-01

    Modern biotechnology is one of the most important scientific and technological revolutions in the 21st century, with an increasing and measurable impact on society. Development of biotechnology curriculum has become important to high school bioscience classrooms. This study has monitored high school students in Taiwan on their knowledge of and…

  9. Food biotechnology: benefits and concerns.

    Science.gov (United States)

    Falk, Michael C; Chassy, Bruce M; Harlander, Susan K; Hoban, Thomas J; McGloughlin, Martina N; Akhlaghi, Amin R

    2002-06-01

    Recent advances in agricultural biotechnology have highlighted the need for experimental evidence and sound scientific judgment to assess the benefits and risks to society. Nutrition scientists and other animal biologists need a balanced understanding of the issues to participate in this assessment. To date most modifications to crop plants have benefited producers. Crops have been engineered to decrease pesticide and herbicide usage, protect against stressors, enhance yields and extend shelf life. Beyond the environmental benefits of decreased pesticide and herbicide application, consumers stand to benefit by development of food crops with increased nutritional value, medicinal properties, enhanced taste and esthetic appeal. There remains concern that these benefits come with a cost to the environment or increased risk to the consumer. Most U.S. consumers are not aware of the extent that genetically modified foods have entered the marketplace. Consumer awareness of biotechnology seems to have increased over the last decade, yet most consumers remain confused over the science. Concern over the impact on the safety of the food supply remains low in the United States, but is substantially elevated in Europe. Before a genetically engineered crop is introduced into commerce it must pass regulatory scrutiny by as many as four different federal regulatory bodies to ensure a safe food supply and minimize the risk to the environment. Key areas for more research are evaluation of the nutritional benefits of new crops, further investigation of the environmental impact, and development of better techniques to identify and track genetically engineered products.

  10. Some recent innovations in small specimen testing

    International Nuclear Information System (INIS)

    Odette, G.R.; He, M.; Gragg, D.; Klingensmith, D.; Lucas, G.E.

    2002-01-01

    New innovative small specimen test techniques are described. Finite element simulations show that combinations of cone indentation pile-up geometry and load-penetration depth relations can be used to determine both the yield stress and strain-hardening behavior of a material. Techniques for pre-cracking and testing sub-miniaturized fracture toughness bend bars, with dimensions of 1.65x1.65x9 mm 3 , or less, are described. The corresponding toughness-temperature curves have a very steep transition slope, primarily due to rapid loss of constraint, which has advantages in some experiments to characterize the effects of specified irradiation variables. As one example of using composite specimens, an approach to evaluating helium effects is proposed, involving diffusion bonding small wires of a 54 Fe-based ferritic-martensitic alloy to a surrounding fracture specimen composed of an elemental Fe-based alloy. Finally, we briefly outline some potential approaches to multipurpose specimens and test automation

  11. Students' knowledge of, and attitudes towards biotechnology revisited, 1995-2014: Changes in agriculture biotechnology but not in medical biotechnology.

    Science.gov (United States)

    Chen, Shao-Yen; Chu, Yih-Ru; Lin, Chen-Yung; Chiang, Tzen-Yuh

    2016-09-10

    Modern biotechnology is one of the most important scientific and technological revolutions in the 21st century, with an increasing and measurable impact on society. Development of biotechnology curriculum has become important to high school bioscience classrooms. This study has monitored high school students in Taiwan on their knowledge of and attitudes towards biotechnology for nearly two decades. Not surprisingly, knowledge of biotechnology of current students has increased significantly (p students have learned some definitions and examples of biotechnology. There was a positive correlation between biotechnology knowledge and attitudes toward biotechnology for current students who study Advanced Biology (AB). However, for current students who did not study AB, there was a negative correlation.The attitude results showed that students today expressed less favorable opinions toward agricultural biotechnology (p students today and 18 years ago in opinions towards medical biotechnology. In addition, current students showed a greater concern involving environmental risks than former students. Interestingly, the high school curriculum did affect students' attitudes toward genetically engineered (GE) plants but not GE animals. Our current study also found that the students' attitude towards GE animals was influenced more by their limited knowledge than by their moral belief. On the basis of findings from this study, we suggest that more materials of emerging animal biotechnology should be included in high school curriculum and recommend that high school teachers and university faculty establish a collaborative framework in the near future. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):475-491, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  12. Biotechnology and species development in aquaculture | Ayoola ...

    African Journals Online (AJOL)

    The use of biotechnology in various aspects of human endeavour have obviously created a great impact but not without some risks. Not withstanding, there is still the need for its adoption as more of the already adopted biotechnologies are being improved upon with lesser demerits. Aquaculture is not also left out in the ...

  13. Biotechnology Education and the Internet. ERIC Digest.

    Science.gov (United States)

    Lee, Thomas

    The world of modern biotechnology is based on recent developments in molecular biology, especially those in genetic engineering. Since this is a relatively new and rapidly advancing field of study, there are few traditional sources of information and activities. This digest highlights biotechnology resources including those that can be found on…

  14. Biotechnology issues in four Malaysian mainstream newspapers ...

    African Journals Online (AJOL)

    Biotechnology has been identified as the new engine of growth for the transformation of Malaysia into a developed nation by 2020. The objective of this paper is to analyze the impact of National Policy on biotechnology on media reporting in four Malaysian newspapers. Towards this end, a content analysis of four Malaysian ...

  15. Cancer Biotechnology | Center for Cancer Research

    Science.gov (United States)

    Biotechnology advances continue to underscore the need to educate NCI fellows in new methodologies. The Cancer Biotechnology course will be held on the NCI-Frederick campus on January 29, 2016 (Bldg. 549, Main Auditorium) and the course will be repeated on the Bethesda campus on February 9, 2016 (Natcher Balcony C). The latest advances in DNA, protein and image analysis will

  16. Undergraduate Biotechnology Students' Views of Science Communication

    Science.gov (United States)

    Edmondston, Joanne Elisabeth; Dawson, Vaille; Schibeci, Renato

    2010-01-01

    Despite rapid growth of the biotechnology industry worldwide, a number of public concerns about the application of biotechnology and its regulation remain. In response to these concerns, greater emphasis has been placed on promoting biotechnologists' public engagement. As tertiary science degree programmes form the foundation of the biotechnology…

  17. Biotechnology issues in four Malaysian mainstream newspapers

    African Journals Online (AJOL)

    Jane

    2011-09-30

    Sep 30, 2011 ... Biotechnology has been identified as the new engine of growth for the transformation of Malaysia into a developed nation by 2020. The objective of this paper is to analyze the impact of National Policy on biotechnology on media reporting in four Malaysian newspapers. Towards this end, a content analysis.

  18. Biotechnology and species development in aquaculture

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... The use of biotechnology in various aspects of human endeavour have obviously created a great ... the already adopted biotechnologies are being improved upon with lesser demerits. ... potential to improve the quality and quantity of fish reared .... become easier with the development of artificial breeding.

  19. Agricultural biotechnology research and development in Ethiopia ...

    African Journals Online (AJOL)

    Ethiopia is an agrarian country that can have enormous benefit from the applications of biotechnology for increasing its agricultural productivity. The country is at initial stages of research and development in agricultural biotechnology with scattered efforts underway in various public institutions. Research efforts and ...

  20. Supporting Biotechnology Regulatory Policy Processes in Southeast ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Supporting Biotechnology Regulatory Policy Processes in Southeast Asia. Biotechnology innovations or bio-innovations can provide solutions to problems associated with food security, poverty and environmental degradation. Innovations such as genetically engineered (GE) crops can increase food production and ...

  1. Journal of Tropical Microbiology and Biotechnology

    African Journals Online (AJOL)

    The Journal of Tropical Microbiology and Biotechnology (JTMB) formerly Journal of Tropical Microbiology gives preeminence to the central role of modern biotechnology and microorganisms as tools and targets in current research, which is largely multidisciplinary. JTMB covers a broad range of topics, such as disease ...

  2. Termites as targets and models for biotechnology.

    Science.gov (United States)

    Scharf, Michael E

    2015-01-07

    Termites have many unique evolutionary adaptations associated with their eusocial lifestyles. Recent omics research has created a wealth of new information in numerous areas of termite biology (e.g., caste polyphenism, lignocellulose digestion, and microbial symbiosis) with wide-ranging applications in diverse biotechnological niches. Termite biotechnology falls into two categories: (a) termite-targeted biotechnology for pest management purposes, and (b) termite-modeled biotechnology for use in various industrial applications. The first category includes several candidate termiticidal modes of action such as RNA interference, digestive inhibition, pathogen enhancement, antimicrobials, endocrine disruption, and primer pheromone mimicry. In the second category, termite digestomes are deep resources for host and symbiont lignocellulases and other enzymes with applications in a variety of biomass, industrial, and processing applications. Moving forward, one of the most important approaches for accelerating advances in both termite-targeted and termite-modeled biotechnology will be to consider host and symbiont together as a single functional unit.

  3. The current biotechnology outlook in Malaysia

    Directory of Open Access Journals (Sweden)

    Khairiah Salwa MOKHTAR

    2010-06-01

    Full Text Available Blessed with extremely rich biodiversity, Malaysia is all geared up to explore new high technology to utilize the advantage it possesses whilst to protect its environment. Biotechnology has been identified as an appropriate driver that can deliver economic gains through research and development, improvement of food security, creation of entrepreneurial opportunities for industrial growth, health and environmental sustainability. This paper attempts to address the evolution of biotechnology institutions and the stumbling blocks in developing the Malaysian biotechnology industry. This paper identifies three main impediments in the current Malaysian biotechnology, namely lack of skilled human capital; weak industrial base; and lack of commercialization effort. Besides, a set of strategies are discussed with aim to further improve and strengthen the Malaysian biotechnology industry. In general, the arguments are presented by mapping out the symbiotic relationship between data from elite interviews, archival data and observations.

  4. Screen-film specimen radiography

    International Nuclear Information System (INIS)

    Shepard, S.J.; Hogan, J.; Schreck, B.

    1990-01-01

    This paper reports on the reproducibility and quality of biopsy specimen radiographs, a unique phototimed cabinet x-ray system is being developed. The system utilizes specially modified Kodal Min-R cassettes and will be compatible with current mammographic films. Tube voltages are in the 14-20-kVp range with 0.1-1.0-second exposure times. A top-hat type compression device is used (1) to compress the specimen to uniform thickness, (2) to measure the specimen thickness and determine optimum kVp, and (3) to superimpose a grid over the specimen for identification of objects of radiographic interest. The phototiming circuit developed specifically for this purpose will be described along with the modified Min-R cassette. Characteristics of the generator and cabinet will also be described. Tests will be performed on phantoms to evaluate the system limitations

  5. An Overview on Indian Patents on Biotechnology.

    Science.gov (United States)

    Mallick, Anusaya; Chandra Santra, Subhas; Samal, Alok Chandra

    2015-01-01

    The application of biotechnology is a potential tool for mitigating the present and future fooding and clothing demands in developing countries like India. The commercialization of biotechnological products might benefiting the poor`s in developing countries are unlikely to be developed. Biotechnology has the potential to provide a wide range of products and the existing production skills in the industrial, pharmaceuticals and the agricultural sector. Ownership of the intellectual property rights is the key factors in determining the success of any technological invention, which was introduced in the market. It provides the means for technological progress to continue of the industry of the country. The new plans, animal varieties, new methods of treatments, new crops producing food articles as such are the inventions of biotechnology. Biotechnology is the result of the application of human intelligence and knowledge to the biological processes. Most of the tools of biotechnology have been developed, by companies, governments, research in- stitutes and universities in developed nations. These human intellectual efforts deserve protection. India is a developing country with advance biotechnology based segments of pharmaceutical and agricultural industries. The Trade Related Intellectual Property Rights (TRIPS) is not likely to have a significant impact on incentives for innovation creation in the biotechnology sectors. In the recent years, the world has seen the biotechnology sector as one of greatest investment area through the Patent Law and will giving huge profit in future. The Research and Development in the field of biotechnology should be encouraged for explor- ing new tools and improve the biological systems for interest of the common people. Priority should be given to generation, evaluation, protection and effective commercial utilization of tangible products of intellectual property in agriculture and pharmaceuticals. To support the future growth and

  6. DNA extraction from herbarium specimens.

    Science.gov (United States)

    Drábková, Lenka Záveská

    2014-01-01

    With the expansion of molecular techniques, the historical collections have become widely used. Studying plant DNA using modern molecular techniques such as DNA sequencing plays an important role in understanding evolutionary relationships, identification through DNA barcoding, conservation status, and many other aspects of plant biology. Enormous herbarium collections are an important source of material especially for specimens from areas difficult to access or from taxa that are now extinct. The ability to utilize these specimens greatly enhances the research. However, the process of extracting DNA from herbarium specimens is often fraught with difficulty related to such variables as plant chemistry, drying method of the specimen, and chemical treatment of the specimen. Although many methods have been developed for extraction of DNA from herbarium specimens, the most frequently used are modified CTAB and DNeasy Plant Mini Kit protocols. Nine selected protocols in this chapter have been successfully used for high-quality DNA extraction from different kinds of plant herbarium tissues. These methods differ primarily with respect to their requirements for input material (from algae to vascular plants), type of the plant tissue (leaves with incrustations, sclerenchyma strands, mucilaginous tissues, needles, seeds), and further possible applications (PCR-based methods or microsatellites, AFLP).

  7. Tensile and Creep Testing of Sanicro 25 Using Miniature Specimens

    Science.gov (United States)

    Dymáček, Petr; Jarý, Milan; Dobeš, Ferdinand; Kloc, Luboš

    2018-01-01

    Tensile and creep properties of new austenitic steel Sanicro 25 at room temperature and operating temperature 700 °C were investigated by testing on miniature specimens. The results were correlated with testing on conventional specimens. Very good agreement of results was obtained, namely in yield and ultimate strength, as well as short-term creep properties. Although the creep rupture time was found to be systematically shorter and creep ductility lower in the miniature test, the minimum creep rates were comparable. The analysis of the fracture surfaces revealed similar ductile fracture morphology for both specimen geometries. One exception was found in a small area near the miniature specimen edge that was cut by electro discharge machining, where an influence of the steel fracture behavior at elevated temperature was identified. PMID:29337867

  8. Tensile and Creep Testing of Sanicro 25 Using Miniature Specimens.

    Science.gov (United States)

    Dymáček, Petr; Jarý, Milan; Dobeš, Ferdinand; Kloc, Luboš

    2018-01-16

    Tensile and creep properties of new austenitic steel Sanicro 25 at room temperature and operating temperature 700 °C were investigated by testing on miniature specimens. The results were correlated with testing on conventional specimens. Very good agreement of results was obtained, namely in yield and ultimate strength, as well as short-term creep properties. Although the creep rupture time was found to be systematically shorter and creep ductility lower in the miniature test, the minimum creep rates were comparable. The analysis of the fracture surfaces revealed similar ductile fracture morphology for both specimen geometries. One exception was found in a small area near the miniature specimen edge that was cut by electro discharge machining, where an influence of the steel fracture behavior at elevated temperature was identified.

  9. Flashing light in microalgae biotechnology.

    Science.gov (United States)

    Abu-Ghosh, Said; Fixler, Dror; Dubinsky, Zvy; Iluz, David

    2016-03-01

    Flashing light can enhance photosynthesis and improve the quality and quantity of microalgal biomass, as it can increase the products of interest by magnitudes. Therefore, the integration of flashing light effect into microalgal cultivation systems should be considered. However, microalgae require a balanced mix of the light/dark cycle for higher growth rates, and respond to light intensity differently according to the pigments acquired or lost during the growth. This review highlights recently published results on flashing light effect on microalgae and its applications in biotechnology, as well as the recently developed bioreactors designed to fulfill this effect. It also discusses how this knowledge can be applied in selecting the optimal light frequencies and intensities with specific technical properties for increasing biomass production and/or the yield of the chemicals of interest by microalgae belonging to different genera. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Optical trapping for analytical biotechnology.

    Science.gov (United States)

    Ashok, Praveen C; Dholakia, Kishan

    2012-02-01

    We describe the exciting advances of using optical trapping in the field of analytical biotechnology. This technique has opened up opportunities to manipulate biological particles at the single cell or even at subcellular levels which has allowed an insight into the physical and chemical mechanisms of many biological processes. The ability of this technique to manipulate microparticles and measure pico-Newton forces has found several applications such as understanding the dynamics of biological macromolecules, cell-cell interactions and the micro-rheology of both cells and fluids. Furthermore we may probe and analyse the biological world when combining trapping with analytical techniques such as Raman spectroscopy and imaging. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. New technologies in agricultural biotechnology

    Directory of Open Access Journals (Sweden)

    Andras Szekacs

    2016-12-01

    Full Text Available Technologies that emerged during the last decade as new tools occasionally represent fundamentally new means of genome modification, which, in addition to the scientific novelty, faces legislators with new challenge by giving a new meaning to both the biochemical/molecular biological and legal meaning to genetically modified organisms (GMOs. Emerging plant genetic technologies are categorized as zinc finger nuclease (ZFN technology; oligonucleotide directed mutagenesis; cisgenesis and intragenesis; RNA-dependent DNA methylation by RNA interference; grafting on GM rootstock; reverse breeding; agro-infiltration; and synthetic genomics. Although all these methods apply biotechnology processes to create new plant varieties, it debated whether all result in GMOs according to the current legal definition. Official risk assessment of these technologies is a task of outstanding weight of the authority.

  12. Biotechnology and bioforensics new trends

    CERN Document Server

    Kumar, Amit

    2015-01-01

    This Brief covers broad areas of Applied Biology specifically into the domains of Biotechnology/Biomedicine and Forensic Science. Chapters included here would also explain the role of bioinformatics in protein and gene characterization, modeling of the protein structure, survey related to the chromosomal effect on Human Disorders like Diabetes and Cardiac Problems. This Brief is full of Innovative Literature like Use of Microbes in Electricity Production, Brain connection to Type 2 Diabetes etc. Interesting issues in Forensic biology and the aspects of Bioforensics like STR profiling of exhumed bones makes this brief truly useful and informative for Researchers. It also includes the advancements and new ideologies in understanding crop improvements & crop quality. This Brief witnesses Innovative Research related to the Bio and Agri software development too which are capable of accelerating Insilico biological data analysis.

  13. Drugs obtained by biotechnology processing

    Directory of Open Access Journals (Sweden)

    Hugo Almeida

    2011-06-01

    Full Text Available In recent years, the number of drugs of biotechnological origin available for many different diseases has increased exponentially, including different types of cancer, diabetes mellitus, infectious diseases (e.g. AIDS Virus / HIV as well as cardiovascular, neurological, respiratory, and autoimmune diseases, among others. The pharmaceutical industry has used different technologies to obtain new and promising active ingredients, as exemplified by the fermentation technique, recombinant DNA technique and the hybridoma technique. The expiry of the patents of the first drugs of biotechnological origin and the consequent emergence of biosimilar products, have posed various questions to health authorities worldwide regarding the definition, framework, and requirements for authorization to market such products.Nos últimos anos, tem aumentado exponencialmente o número de fármacos de origem biotecnológica ao dispor das mais diversas patologias, entre elas destacam-se, os diferentes tipos de cancêr, as doenças infecciosas (ex. vírus AIDS/HIV, as doenças autoimunes, as doenças cardiovasculares, a Diabetes Mellitus, as doenças neurológicas, as doenças respiratórias, entre outras. A indústria farmacêutica tem recorrido a diferentes tecnologias para a obtenção de novos e promissores princípios ativos, como são exemplo a fermentação, a técnica de DNA Recombinante, a técnica de hidridoma, entre outras. A queda das patentes dos primeiros fármacos de origem biotecnológica e o consequente aparecimento dos produtos biossimilares têm colocado diferentes questões às autoridades de saúde mundiais, sobre a definição, enquadramento e exigências para a autorização de entrada no mercado deste tipo de produtos.

  14. Turkish university students' knowledge of biotechnology and attitudes toward biotechnological applications.

    Science.gov (United States)

    Öztürk-Akar, Ebru

    2017-03-04

    This study questions the presumed relation between formal schooling and scientific literacy about biotechnologies. Comparing science and nonscience majors' knowledge of and attitudes toward biotechnological applications, conclusions are drawn if their formal learnings improve pupils' understandings of and attitudes toward biotechnology applications. Sample of the study consists of 403 undergraduate and graduate students, 198 nonscience, and 205 science majors. The Biotechnology Knowledge Questionnaire and the Biotechnology Attitude Questionnaire were administered. Descriptive statistics (mean and percentages), t test, and correlations were used to examine the participants' knowledge of biotechnology and attitudes toward biotechnological applications and differences as regards their majors. Although the science majors had higher knowledge and attitude scores than the nonscience majors, it is not possible to say that they have sufficient knowledge of biotechnologies. Besides, the participants' attitudes toward biotechnological applications were not considerably related to their knowledge of biotechnology. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(2):115-125, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  15. Frontiers in biomedical engineering and biotechnology.

    Science.gov (United States)

    Liu, Feng; Goodarzi, Ali; Wang, Haifeng; Stasiak, Joanna; Sun, Jianbo; Zhou, Yu

    2014-01-01

    The 2nd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2013), held in Wuhan on 11–13 October 2013, is an annual conference that aims at providing an opportunity for international and national researchers and practitioners to present the most recent advances and future challenges in the fields of Biomedical Information, Biomedical Engineering and Biotechnology. The papers published by this issue are selected from this conference, which witnesses the frontier in the field of Biomedical Engineering and Biotechnology, which particularly has helped improving the level of clinical diagnosis in medical work.

  16. [The past 30 years of Chinese Journal of Biotechnology].

    Science.gov (United States)

    Jiang, Ning

    2015-06-01

    This review addresses the association of "Chinese Journal of Biotechnology" and the development of biotechnology in China in the past 30 years. Topics include relevant awards and industrialization, development of the biotechnology discipline, and well know scientists in biotechnology, as well as perspectives on the journal.

  17. Biotechnology, nanotechnology, and pharmacogenomics and pharmaceutical compounding, Part 1.

    Science.gov (United States)

    Allen, Loyd V

    2015-01-01

    The world of pharmaceuticals is changing rapidly as biotechnology continues to grow and nanotechnology appears on the horizon. Biotechnology is gaining in importance in extemporaneous pharmaceutical compounding, and nanotechnology and pharmacogenomics could drastically change the practice of pharmacy. This article discusses biotechnology and the factors to consider when compounding biotechnology drugs.

  18. Strain Measurement System Developed for Biaxially Loaded Cruciform Specimens

    Science.gov (United States)

    Krause, David L.

    2000-01-01

    A new extensometer system developed at the NASA Glenn Research Center at Lewis Field measures test area strains along two orthogonal axes in flat cruciform specimens. This system incorporates standard axial contact extensometers to provide a cost-effective high-precision instrument. The device was validated for use by extensive testing of a stainless steel specimen, with specimen temperatures ranging from room temperature to 1100 F. In-plane loading conditions included several static biaxial load ratios, plus cyclic loadings of various waveform shapes, frequencies, magnitudes, and durations. The extensometer system measurements were compared with strain gauge data at room temperature and with calculated strain values for elevated-temperature measurements. All testing was performed in house in Glenn's Benchmark Test Facility in-plane biaxial load frame.

  19. Fracture toughness measurements with subsize disk compact specimens

    International Nuclear Information System (INIS)

    Alexander, D.J.

    1994-01-01

    Special fixtures and test methods have been developed for testing small disk compact specimens (1.25 mm diam by 4.6 mm thick). Specimens of European type 316L austenitic stainless steel were irradiated to damage levels of about 3 dpa at nominal irradiation temperatures of either 90 or 250 C and tested over a temperature range from 20 to 250 C. Results show that irradiation to this dose level at these temperatures reduces the fracture toughness but the toughness remains quite high. The toughness decreases as the test temperature increases. Irradiation at 250 C is more damaging than at 90 C, causing larger decreases in the fracture toughness. The testing shows that it is possible to generate useful fracture toughness data with a small disk compact specimens

  20. Influence of specimen size on the creep of rock salt

    International Nuclear Information System (INIS)

    Senseny, P.E.

    1982-01-01

    Triaxial compression creep data for Avery Island dome salt are analyzed to determine the influence of specimen size on creep deformation. Laboratory experiments were performed on 50- and 100-mm-diameter specimens in the temperature range from 25 to 200 0 C and the axial stress difference range from 2.5 to 31.0 MPa. The strain-vs-time data from each test are divided into transient and steady-state components. Results of statistical analysis of these data show that transient creep of the small specimens is a stronger function of stress, temperature, and time than is transient creep of the larger specimens. Analysis of the steady-state data show no size effect, however. 14 references, 7 figures, 3 tables

  1. The Impact of Biotechnology upon Pharmacy Education.

    Science.gov (United States)

    Speedie, Marilyn K.

    1990-01-01

    Biotechnology is defined, and its impact on pharmacy practice, the professional curriculum (clinical pharmacy, pharmacy administration, pharmacology, medicinal chemistry, pharmaceutics, basic sciences, and continuing education), research in pharmacy schools, and graduate education are discussed. Resulting faculty, library, and research resource…

  2. Science Academies' Refresher Course on Modern Biotechnology ...

    Indian Academy of Sciences (India)

    IAS Admin

    , PCR and RT-PCR. A variety of teaching methods like lectures by eminent ... knowledge to boost their confidence in handling modern instruments used in the discipline of life sciences and modern biotechnology. Skills gained during this ...

  3. Biotechnology in plant nutrient management for agricultural ...

    African Journals Online (AJOL)

    Biotechnology in plant nutrient management for agricultural production in the tropics: ... and yields, marker assisted selection breeding, to develop new uses for agricultural products, to facilitate early maturation and to improve food and feed ...

  4. The dynamic and ubiquitous nature of biotechnology

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-18

    Aug 18, 2008 ... In agriculture, gene cloning, an aspect of biotechnology has provided new ... which genetic engineering techniques are used to inactivate one or more ..... medicine, research regulatory agencies, ethics and legal experts in the ...

  5. Mechatronics design principles for biotechnology product development.

    Science.gov (United States)

    Mandenius, Carl-Fredrik; Björkman, Mats

    2010-05-01

    Traditionally, biotechnology design has focused on the manufacture of chemicals and biologics. Still, a majority of biotechnology products that appear on the market today is the result of mechanical-electric (mechatronic) construction. For these, the biological components play decisive roles in the design solution; the biological entities are either integral parts of the design, or are transformed by the mechatronic system. This article explains how the development and production engineering design principles used for typical mechanical products can be adapted to the demands of biotechnology products, and how electronics, mechanics and biology can be integrated more successfully. We discuss three emerging areas of biotechnology in which mechatronic design principles can apply: stem cell manufacture, artificial organs, and bioreactors. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Assessment of technology generating institutions in biotechnology ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-18

    May 18, 2009 ... biotechnology innovation system of South-Eastern. Nigeria. E. N. Ajani ... technology is the application of indigenous and / or scientific knowledge to ... developing societies, with the exception of China and. Argentina, (James ...

  7. Biotechnological applications of extremophiles, extremozymes and extremolytes

    KAUST Repository

    Raddadi, Noura; Cherif, Ameur; Daffonchio, Daniele; Neifar, Mohamed; Fava, Fabio

    2015-01-01

    produce extremozymes and extremolytes that have the potential to be valuable resources for the development of a bio-based economy through their application to white, red, and grey biotechnologies. Here, we provide an overview of extremophile ecology

  8. Agricultural biotechnology research and development in Ethiopia

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-29

    Dec 29, 2009 ... Review. Agricultural biotechnology research and development in Ethiopia ... seed micropropagation, virus-cleaning ongoing, good progress. Garlic meristem ... large quantities of disease-free planting materials in short time.

  9. Biotechnology Education: A Multiple Instructional Strategies Approach.

    Science.gov (United States)

    Dunham, Trey; Wells, John; White, Karissa

    2002-01-01

    Provides a rationale for inclusion of biotechnology in technology education. Describes an instructional strategy that uses behaviorist, cognitive, and constructivist learning theories in two activities involving photobioreactors and bovine somatotropin (growth hormone). (Contains 39 references.) (SK)

  10. Department of Biotechnology | Women in Science | Initiatives ...

    Indian Academy of Sciences (India)

    ... Proceedings – Mathematical Sciences · Resonance – Journal of Science ... Year: 2012 Innovative Young Biotechnologist Award ... Indian Institute of Science Education and Research, Mohali ... International Centre for Genetic Engineering and Biotechnology, New Delhi ... Institute of Microbial Technology, Chandigarh

  11. Awareness and knowledge on modern biotechnology

    African Journals Online (AJOL)

    Jane

    2011-09-30

    Sep 30, 2011 ... food; MABIC, Malaysian Biotechnology Information Centre. on public ... in Malaysia and provide linkage to several international website on modern ... scholars and university students) possess at least tertiary level of education ...

  12. Fostering biotechnology entrepreneurship in developing countries

    African Journals Online (AJOL)

    Fred

    countries cheaper and potentially easier to administer. Efficient sewage treatment ... developing countries, start-up funding for biotechnology companies is still very ... Business incubators are unique in stimulating spin-offs from universities and ...

  13. Application of biotechnology to improve livestock products

    Directory of Open Access Journals (Sweden)

    Swati Gupta

    Full Text Available Biotechnological achievements of recent years have emerged as powerful tool to improve quality attributes of livestock products including milk and meat products. Biotechnological approaches can be employed for improving productivity, economy, physicochemical and nutritional attributes of a wide range of livestock products. The target areas of biotechnological research in the field of livestock products can be envisaged as production of high yielding food animal, improvement in quality of their products, enhanced production of natural food grade preservatives, efficient byproduct utilization and so forth. Many of the biotechnological techniques can be explored in the area of quality assurance programmes, which would be of great help to produce livestock products of assured quality and public health safety. [Vet World 2012; 5(10.000: 634-638

  14. Gas, oil, and environmental biotechnology IV

    Energy Technology Data Exchange (ETDEWEB)

    Akin, C; Markuszewski, R; Smith, J [eds.; Institute of Gas Technology, Chicago, IL (United States)

    1992-01-01

    Contains 32 papers presented at the 4th international IGT symposium on gas, oil and environmental biotechnology. Topics covered were: hydrocarbon bioremediation; groundwater, soil and explosives bioremediation; gas and oil reservoir souring; and biodesulfurization. 2 papers have been abstracted separately.

  15. BIOTECHNOLOGIES OF MEAT PRODUCTS MANUFACTURE. CURRENT STATE

    OpenAIRE

    Bal-Prilipko L. V.; Leonova B. I.

    2014-01-01

    The analysis of literature and patents related to the possibilities of biotechnology for optimizing the domestic meat processing plants was the aim of the article. The analysis of the results of the use of biotechnological methods in the meat processing industry is given. The prospects for their implementation are evaluated. The main development strategy of technological meat processing to develop the methods of obtaining high quality and safe meat products is highlighted. Targeted use of spe...

  16. Proteomics: a biotechnology tool for crop improvement

    OpenAIRE

    Eldakak, Moustafa; Milad, Sanaa I. M.; Nawar, Ali I.; Rohila, Jai S.

    2013-01-01

    A sharp decline in the availability of arable land and sufficient supply of irrigation water along with a continuous steep increase in food demands have exerted a pressure on farmers to produce more with fewer resources. A viable solution to release this pressure is to speed up the plant breeding process by employing biotechnology in breeding programs. The majority of biotechnological applications rely on information generated from various -omic technologies. The latest outstanding improve...

  17. Biotechnology for the extractive metals industries

    Science.gov (United States)

    Brierley, James A.

    1990-01-01

    Biotechnology is an alternative process for the extraction of metals, the beneficiation of ores, and the recovery of metals from aqueous systems. Currently, microbial-based processes are used for leaching copper and uranium, enhancing the recovery of gold from refractory ores, and treating industrial wastewater to recover metal values. Future developments, emanating from fundamental and applied research and advances through genetic engineering, are expected to increase the use and efficiency of these biotechnological processes.

  18. BIOTECHNOLOGICAL ASPECTS ANALYSIS OF AGRICULTURAL POULTRY MICROFLORA

    OpenAIRE

    Garda S. A.; S. G. Danilenko; G. S. Litvinov

    2014-01-01

    Probiotics based on normal microflora of the birds using perspective strains become increasingly popular for treatment and prophylaxis of dysbacteriosis in poultry. The purpose of the work is the biotechnological data analysis of the composition and functions of the microflora of different birds’ biotopes. One of biotechnological methods for the study of bacterial flora in the birds is a method of in vivo bacteriological control — analysis of group samples of fresh droppings. To study bir...

  19. Comprehensive biotechnology education and rural economic development

    OpenAIRE

    Holmes, L.; Brooks, J.

    2006-01-01

    North Carolina is home to the third largest biotechnology industry in the United States. With over 200 companies involved in manufacturing, research, testing or services and growing at a rate of 12 % per year, this North Carolina industry is aggressively expanding its biotechnology efforts in all domains: pharmaceuticals, agriculture, environment, foods and energy. The North Carolina Department of Commerce along with other state and regional entities are developing strategies to attract new c...

  20. Outer Limits of Biotechnologies: A Jewish Perspective

    Directory of Open Access Journals (Sweden)

    John D. Loike

    2018-01-01

    Full Text Available A great deal of biomedical research focuses on new biotechnologies such as gene editing, stem cell biology, and reproductive medicine, which have created a scientific revolution. While the potential medical benefits of this research may be far-reaching, ethical issues related to non-medical applications of these technologies are demanding. We analyze, from a Jewish legal perspective, some of the ethical conundrums that society faces in pushing the outer limits in researching these new biotechnologies.

  1. Ethics in biotechnology and biosecurity

    Directory of Open Access Journals (Sweden)

    S Jameel

    2011-01-01

    Full Text Available Great advances in technology produce unique challenges. Every technology also has a dual use, which needs to be understood and managed to extract maximum benefits for mankind and the development of civilization. The achievements of physicists in the mid-20th century resulted in the nuclear technology, which gave us the destructive power of the atomic bomb as also a source of energy. Towards the later part of the 20th century, information technology empowered us with fast, easy and cheap access to information, but also led to intrusions into our privacy. Today, biotechnology is yielding life- saving and life-enhancing advances at a fast pace. But, the same tools can also give rise to fiercely destructive forces. How do we construct a security regime for biology? What have we learnt from the management of earlier technological advances? How much information should be in the public domain? Should biology, or more broadly science, be regulated? Who should regulate it? These and many other ethical questions need to be addressed.

  2. Biology and biotechnology of Trichoderma.

    Science.gov (United States)

    Schuster, André; Schmoll, Monika

    2010-07-01

    Fungi of the genus Trichoderma are soilborne, green-spored ascomycetes that can be found all over the world. They have been studied with respect to various characteristics and applications and are known as successful colonizers of their habitats, efficiently fighting their competitors. Once established, they launch their potent degradative machinery for decomposition of the often heterogeneous substrate at hand. Therefore, distribution and phylogeny, defense mechanisms, beneficial as well as deleterious interaction with hosts, enzyme production and secretion, sexual development, and response to environmental conditions such as nutrients and light have been studied in great detail with many species of this genus, thus rendering Trichoderma one of the best studied fungi with the genome of three species currently available. Efficient biocontrol strains of the genus are being developed as promising biological fungicides, and their weaponry for this function also includes secondary metabolites with potential applications as novel antibiotics. The cellulases produced by Trichoderma reesei, the biotechnological workhorse of the genus, are important industrial products, especially with respect to production of second generation biofuels from cellulosic waste. Genetic engineering not only led to significant improvements in industrial processes but also to intriguing insights into the biology of these fungi and is now complemented by the availability of a sexual cycle in T. reesei/Hypocrea jecorina, which significantly facilitates both industrial and basic research. This review aims to give a broad overview on the qualities and versatility of the best studied Trichoderma species and to highlight intriguing findings as well as promising applications.

  3. New biotechnologies in Serbian forestry

    Directory of Open Access Journals (Sweden)

    Galović Vladislava

    2014-01-01

    Full Text Available This paper presents an overview of the results achieved in the laboratory for molecular studies of the Institute of Lowland Forestry and Environment, University of Novi Sad, in the field of biotechnology, mainly in molecular genetics, genomics and functional genomics. Researches are designed to serve as a breeding tool. The aim was to clarify the processes of classical genetics by applying modern methods and enable a qualitative and rapid progress in understanding the processes that occur at the level of genes in the genome of forest plant species and thus help the processes of conservation of valuable taxa at the time of global climate change. The results are presented within various research fields and by type of forest trees that were given priority by importance in forest ecosystems. Studies have in most cases been of applicative character with the aim of solving the major problems in forestry, but also of fundamental nature when they were necessary to elucidate the response of forest species to the induced stress, which is an inevitable component of the time characterized by tolerance and adaptation as keywords. [Projekat Ministarstva nauke Republike SRbije, br. III 43002: Biosenzing tehnologije i globalni sistem za kontinuirano istraživanje i integrisano upravljanje ekosistemima i br. III 43007: Istraživanje klimatskih promena i njihovog uticaja na životnu sredinu - praćenje uticaja, adaptacija i ublažavanje i IPA - OXIT

  4. Biotechnological improvement of ornamental plants

    Directory of Open Access Journals (Sweden)

    Flavia Soledad Darqui

    2017-10-01

    Full Text Available The discovery of commercial transgenic varieties of orange petunias sold in Europe and the United States although they had never reached the approved status, and the consequent recommendation to destroy them, was the trigger to discuss about biotechnological improvement of ornamental plants. Inside the restricted world of 26 vegetal transgenic species, according to the ISAAA’s reports (http://www.isaaa.org, there are three ornamental species: carnation, rose and the Beijing University developed petunia; all of them with the same trait, a change in their colour. On the other hand, in 2014, the whole-genome sequence of carnation appeared which was the first and until now the only one among ornamental species. In this context, we review the publications from the last five years in petunia, rose, chrysanthemum and carnation. In these papers there are detailed descriptions of modification of the cascade of genes and transcription factors involved in stress situations, in different developmental stages and their regulation through different plant hormones. This knowledge will allow breeding for better and new varieties with changes in their abiotic or biotic stress tolerance, altered growth or yield and modified product quality as colour or fragrance.

  5. Ethics in biotechnology and biosecurity.

    Science.gov (United States)

    Jameel, S

    2011-01-01

    Great advances in technology produce unique challenges. Every technology also has a dual use, which needs to be understood and managed to extract maximum benefits for mankind and the development of civilization. The achievements of physicists in the mid-20th century resulted in the nuclear technology, which gave us the destructive power of the atomic bomb as also a source of energy. Towards the later part of the 20th century, information technology empowered us with fast, easy and cheap access to information, but also led to intrusions into our privacy. Today, biotechnology is yielding life- saving and life-enhancing advances at a fast pace. But, the same tools can also give rise to fiercely destructive forces. How do we construct a security regime for biology? What have we learnt from the management of earlier technological advances? How much information should be in the public domain? Should biology, or more broadly science, be regulated? Who should regulate it? These and many other ethical questions need to be addressed.

  6. A cylindrical specimen holder for electron cryo-tomography

    International Nuclear Information System (INIS)

    Palmer, Colin M.; Löwe, Jan

    2014-01-01

    The use of slab-like flat specimens for electron cryo-tomography restricts the range of viewing angles that can be used. This leads to the “missing wedge” problem, which causes artefacts and anisotropic resolution in reconstructed tomograms. Cylindrical specimens provide a way to eliminate the problem, since they allow imaging from a full range of viewing angles around the tilt axis. Such specimens have been used before for tomography of radiation-insensitive samples at room temperature, but never for frozen-hydrated specimens. Here, we demonstrate the use of thin-walled carbon tubes as specimen holders, allowing the preparation of cylindrical frozen-hydrated samples of ribosomes, liposomes and whole bacterial cells. Images acquired from these cylinders have equal quality at all viewing angles, and the accessible tilt range is restricted only by the physical limits of the microscope. Tomographic reconstructions of these specimens demonstrate that the effects of the missing wedge are substantially reduced, and could be completely eliminated if a full tilt range was used. The overall quality of these tomograms is still lower than that obtained by existing methods, but improvements are likely in future. - Highlights: • The missing wedge is a serious problem for electron cryo-tomography. • Cylindrical specimens allow the missing wedge to be eliminated. • Carbon nanopipettes can be used as cylindrical holders for tomography of frozen-hydrated specimens. • Cryo-tomography of cylindrical biological samples demonstrates a reduction of deleterious effects associated with the missing wedge

  7. Design and construction of OGL-1 Specimen Transfer System

    International Nuclear Information System (INIS)

    Nakamura, Kunio; Saruta, Tohru; Nabeya, Hideaki; Nakagaki, Shogo; Nishizaki, Tadashi.

    1977-11-01

    OGL-1 is the first high temperature gas in-pile loop in Japan, which is installed in JMTR of Oarai Research Establishment, JAERI. As the JMTR is the PWR type, specimens must be set in the loop with a remote control system ''OGL-1 Specimen Transfer System'' because of the needs for moisture prevention and radiation shielding. Described in this report are design philosophy, loop development, problems in construction, inspection and operation. (auth.)

  8. Medical Biotechnology Trends and Achievements in Iran

    Science.gov (United States)

    Mahboudi, Fereidoun; Hamedifar, Haleh; Aghajani, Hamideh

    2012-01-01

    A healthcare system has been the most important priority for all governments worldwide. Biotechnology products have affected the promotion of health care over the last thirty years. During the last several decades, Iran has achieved significant success in extending healthcare to the rural areas and in reducing the rates of infant mortality and increasing population growth. Biomedical technology as a converging technology is considered a helpful tool to fulfill the Iranian healthcare missions. The number of biotechnology products has reached 148 in 2012. The total sales have increased to 98 billion USD without considering vaccines and plasma derived proteins in 2012. Iran is one of the leading countries in the Middle East and North Africa in the area of Medical biotechnology. The number of biotechnology medicines launched in Iran is 13 products until 2012. More than 15 products are in pipelines now. Manufacturers are expecting to receive the market release for more than 8 products by the end of 2012. Considering this information, Iran will lead the biotechnology products especially in area of biosimilars in Asia after India in next three years. The present review will discuss leading policy, decision makers’ role, human resource developing system and industry development in medical biotechnology. PMID:23407888

  9. Stem cells in pharmaceutical biotechnology.

    Science.gov (United States)

    Zuba-Surma, Ewa K; Józkowicz, Alicja; Dulak, Józef

    2011-11-01

    Multiple populations of stem cells have been indicated to potentially participate in regeneration of injured organs. Especially, embryonic stem cells (ESC) and recently inducible pluripotent stem cells (iPS) receive a marked attention from scientists and clinicians for regenerative medicine because of their high proliferative and differentiation capacities. Despite that ESC and iPS cells are expected to give rise into multiple regenerative applications when their side effects are overcame during appropriate preparation procedures, in fact their most recent application of human ESC may, however, reside in their use as a tool in drug development and disease modeling. This review focuses on the applications of stem cells in pharmaceutical biotechnology. We discuss possible relevance of pluripotent cell stem populations in developing physiological models for any human tissue cell type useful for pharmacological, metabolic and toxicity evaluation necessary in the earliest steps of drug development. The present models applied for preclinical drug testing consist of primary cells or immortalized cell lines that show limitations in terms of accessibility or relevance to their in vivo counterparts. The availability of renewable human cells with functional similarities to their in vivo counterparts is the first landmark for a new generation of cell-based assays. We discuss the approaches for using stem cells as valuable physiological targets of drug activity which may increase the strength of target validation and efficacy potentially resulting in introducing new safer remedies into clinical trials and the marketplace. Moreover, we discuss the possible applications of stem cells for elucidating mechanisms of disease pathogenesis. The knowledge about the mechanisms governing the development and progression of multitude disorders which would come from the cellular models established based on stem cells, may give rise to new therapeutical strategies for such diseases. All

  10. The Effect of Biotechnology Education on Australian High School Students' Understandings and Attitudes about Biotechnology Processes

    Science.gov (United States)

    Dawson, Vaille; Soames, Christina

    2006-01-01

    Our education system aims to equip young people with the knowledge, problem-solving skills and values to cope with an increasingly technological society. The aim of this study was to determine the effect of biotechnology education on adolescents' understanding and attitudes about processes associated with biotechnology. Data were drawn from…

  11. Life sciences today and tomorrow: emerging biotechnologies.

    Science.gov (United States)

    Williamson, E Diane

    2017-08-01

    The purpose of this review is to survey current, emerging and predicted future biotechnologies which are impacting, or are likely to impact in the future on the life sciences, with a projection for the coming 20 years. This review is intended to discuss current and future technical strategies, and to explore areas of potential growth during the foreseeable future. Information technology approaches have been employed to gather and collate data. Twelve broad categories of biotechnology have been identified which are currently impacting the life sciences and will continue to do so. In some cases, technology areas are being pushed forward by the requirement to deal with contemporary questions such as the need to address the emergence of anti-microbial resistance. In other cases, the biotechnology application is made feasible by advances in allied fields in biophysics (e.g. biosensing) and biochemistry (e.g. bio-imaging). In all cases, the biotechnologies are underpinned by the rapidly advancing fields of information systems, electronic communications and the World Wide Web together with developments in computing power and the capacity to handle extensive biological data. A rationale and narrative is given for the identification of each technology as a growth area. These technologies have been categorized by major applications, and are discussed further. This review highlights: Biotechnology has far-reaching applications which impinge on every aspect of human existence. The applications of biotechnology are currently wide ranging and will become even more diverse in the future. Access to supercomputing facilities and the ability to manipulate large, complex biological datasets, will significantly enhance knowledge and biotechnological development.

  12. The effect of biotechnology education on Australian high school students' understandings and attitudes about biotechnology processes

    Science.gov (United States)

    Dawson, Vaille; Soames, Christina

    2006-11-01

    Our education system aims to equip young people with the knowledge, problem-solving skills and values to cope with an increasingly technological society. The aim of this study was to determine the effect of biotechnology education on adolescents’ understanding and attitudes about processes associated with biotechnology. Data were drawn from teacher and student interviews and surveys in the context of innovative Year 10 biotechnology courses conducted in three Western Australian high schools. The results indicate that after completing a biotechnology course students’ understanding increased but their attitudes remained constant with the exception of their views about human uses of gene technology. The findings of this study have ramifications for the design and implementation of biotechnology education courses in high schools.

  13. Medical Biotechnology: Problems and Prospects in Bangladesh

    Directory of Open Access Journals (Sweden)

    Shaikh Mizan

    2013-01-01

    Full Text Available Biotechnology is the knowledge and techniques of developing and using biological systems for deriving special products and services. The age-old technology took a new turn with the advent of recombinant DNA techniques, and boosted by the development of other molecular biological techniques, cell culture techniques and bioinformatics. Medical biotechnology is the major thrust area of biotechnology. It has brought revolutions in medicine – quick methods for diagnosing diseases, generation of new drugs and vaccines, completely novel approach of treatment are only a few to mention. The industrial and financial bulk of the industry mushroomed very rapidly in the last three decades, led by the USA and western advanced nations. Asian countries like China, India, South Korea, Taiwan and Singapore joined late, but advancing forward in a big way. In all the Asian countries governments supported the initiatives of the expert and entrepreneur community, and invested heavily in its development. Bangladesh has got great potential in developing biotechnology and reaping its fruits. However, lack of commitment and patriotism, and too much corruption and irresponsibility in political and bureaucratic establishment are the major hindrance to the development of biotechnology in Bangladesh.

  14. Biotechnology in Georgia for Various Applications

    International Nuclear Information System (INIS)

    Mosulishvili, L.; Tsibakhashvili, N.; Kirkesali, E.; Tsertsvadze, L.; Frontasyeva, M.; Pavlov, S.

    2008-01-01

    The results of collaborative work carried out in the field of biotechnology at the Frank Laboratory of Neutron Physics (FLNP) of the Joint Institute for Nuclear Research (JINR) (Dubna, Russia) jointly with scientists from Georgia are presented. Using instrumental neutron activation analysis (NAA), significant results were ontained in the following directions - medical biotechnology, environmental biotechnology and industrial biotechnology. In the biomedical experiments a blue-green alga Spirulina platensis biomass has been used as a matrix for the development of pharmaceutical substances containing such vitally important trace elements as selenium, chromium and iodine. The feasibility of target-oriented introduction of these elements into Spirulina platensis biocomplexes retaining its protain composition and natural beneficial properties has been proved. The adsorption of such toxic metal as mercury by Spirulina platensis biomass in dynamics of growth has been studied also. NAA has been successfully applied to investigate the biotechnology of toxic Cr(VI) transformation into less toxic Cr(III) complexes by Cr(VI)-reducer bacteria isolated from polluted basalts in Georgia. This method was used to track accumulation of chromium in the bacterial cells. To monitor and identify Cr(III) complexes in these bacteria, electron spin resonance (ESR) spectrometry was employed. For the first time, the elemental composition of Cr(VI)-reducer bacteria has been studied using epithermal NAA. The natural organic mass of vegetal origin - peat - was applied as a source of microorganisms to study the bacterial leaching of some metals from lean ores, rocks and industrial wastes. (author)

  15. Proteomics: A Biotechnology Tool for Crop Improvement

    Directory of Open Access Journals (Sweden)

    Moustafa eEldakak

    2013-02-01

    Full Text Available A sharp decline in the availability of arable land and sufficient supply of irrigation water along with a continuous steep increase in food demands have exerted a pressure on farmers to produce more with fewer resources. A viable solution to release this pressure is to speed up the plant breeding process by employing biotechnology in breeding programs. The majority of biotechnological applications rely on information generated from various -omic technologies. The latest outstanding improvements in proteomic platforms and many other but related advances in plant biotechnology techniques offer various new ways to encourage the usage of these technologies by plant scientists for crop improvement programs. A combinatorial approach of accelerated gene discovery through genomics, proteomics, and other associated -omic branches of biotechnology, as an applied approach, is proving to be an effective way to speed up the crop improvement programs worldwide. In the near future, swift improvements in -omic databases are becoming critical and demand immediate attention for the effective utilization of these techniques to produce next-generation crops for the progressive farmers. Here, we have reviewed the recent advances in proteomics, as tools of biotechnology, which are offering great promise and leading the path towards crop improvement for sustainable agriculture.

  16. Stability studies needed to define the handling and transport conditions of sensitive pharmaceutical or biotechnological products.

    Science.gov (United States)

    Ammann, Claude

    2011-12-01

    Many pharmaceutical or biotechnological products require transport using temperature-controlled systems to keep their therapeutic properties. There are presently no official guidelines for testing pharmaceutical products in order to define suitable transport specifications. After reviewing the current guidance documents, this paper proposes a methodology for testing pharmaceutical products and defining appropriate transport conditions.

  17. Validity of fracture toughness determined with small bend specimens

    International Nuclear Information System (INIS)

    Wallin, K.; Rintamaa, R.; Valo, M.

    1994-02-01

    This report considers the validity of fracture toughness estimates obtained with small bend specimens in relation to fracture toughness estimates obtained with large specimens. The study is based upon the analysis and comparison of actual test results. The results prove the validity of the fracture toughness determined based upon small bend specimens, especially when the results are only used to determine the fracture toughness transition temperature T o . In this case the possible error is typically less than 5 deg C and at most 10 deg C. It can be concluded that small bend specimens are very suitable for the estimation of fracture toughness in the case of brittle fracture, provided the results are corrected for statistical size effects. (orig.). (20 refs., 17 figs.)

  18. African Journal of Biotechnology Vol

    African Journals Online (AJOL)

    Gaga E Tonukari

    List of the random primers used, their nucleotide sequence and annealing temperatures. Primers. Sequence 5`- 3`. Annealing. Temperature. °C/time (s). 1. ATG ACG TTG A. 2. GGG CTA GGG T. 3. ACC GGG AAC G. 4. AGC AGG TGG A. 45/30. 5. AGG CCC CTG T. 6. ATG CCC CTG T. 7. AAA GCT GCG G. 8. ACC GCC GAA ...

  19. Risk evaluation in biotechnology of environment

    International Nuclear Information System (INIS)

    Mazaheri Asadi, M.

    2003-01-01

    It is the Era of technology and many countries are adjusting their economy with it. The research on biotechnology is done with a logarithmic rate at different technologies such as pharmacy, agriculture, environment, food, oil, and etc. The relevant research would result in the production of new materials which are released into the environment. In many developed countries biotechnology is regarded as a firm base for economic development and without doubt plays a determined role in humane wealth and well-being, but this technology should be sustainable and controllable. The producer and consumer of biotechnology must think deeply about this matter and take into account the health and sustain ability of earth and the environment. Evaluation of ecological impacts of micro- organisms and manipulated genetically organism should be considered in all countries of the world and such an activities should be regulated and controlled as it was don in Canada under the supervision of Dept

  20. Organisation of biotechnological information into knowledge.

    Science.gov (United States)

    Boh, B

    1996-09-01

    The success of biotechnological research, development and marketing depends to a large extent on the international transfer of information and on the ability to organise biotechnology information into knowledge. To increase the efficiency of information-based approaches, an information strategy has been developed and consists of the following stages: definition of the problem, its structure and sub-problems; acquisition of data by targeted processing of computer-supported bibliographic, numeric, textual and graphic databases; analysis of data and building of specialized in-house information systems; information processing for structuring data into systems, recognition of trends and patterns of knowledge, particularly by information synthesis using the concept of information density; design of research hypotheses; testing hypotheses in the laboratory and/or pilot plant; repeated evaluation and optimization of hypotheses by information methods and testing them by further laboratory work. The information approaches are illustrated by examples from the university-industry joint projects in biotechnology, biochemistry and agriculture.

  1. Plant biotechnology for food security and bioeconomy.

    Science.gov (United States)

    Clarke, Jihong Liu; Zhang, Peng

    2013-09-01

    This year is a special year for plant biotechnology. It was 30 years ago, on January 18 1983, one of the most important dates in the history of plant biotechnology, that three independent groups described Agrobacterium tumefaciens-mediated genetic transformation at the Miami Winter Symposium, leading to the production of normal, fertile transgenic plants (Bevan et al. in Nature 304:184-187, 1983; Fraley et al. in Proc Natl Acad Sci USA 80:4803-4807, 1983; Herrera-Estrella et al. in EMBO J 2:987-995, 1983; Vasil in Plant Cell Rep 27:1432-1440, 2008). Since then, plant biotechnology has rapidly advanced into a useful and valuable tool and has made a significant impact on crop production, development of a biotech industry and the bio-based economy worldwide.

  2. Biotechnological Aspects of Microbial Extracellular Electron Transfer

    Science.gov (United States)

    Kato, Souichiro

    2015-01-01

    Extracellular electron transfer (EET) is a type of microbial respiration that enables electron transfer between microbial cells and extracellular solid materials, including naturally-occurring metal compounds and artificial electrodes. Microorganisms harboring EET abilities have received considerable attention for their various biotechnological applications, in addition to their contribution to global energy and material cycles. In this review, current knowledge on microbial EET and its application to diverse biotechnologies, including the bioremediation of toxic metals, recovery of useful metals, biocorrosion, and microbial electrochemical systems (microbial fuel cells and microbial electrosynthesis), were introduced. Two potential biotechnologies based on microbial EET, namely the electrochemical control of microbial metabolism and electrochemical stimulation of microbial symbiotic reactions (electric syntrophy), were also discussed. PMID:26004795

  3. Biotechnology: Health care, agriculture, industry, environment

    Energy Technology Data Exchange (ETDEWEB)

    Sikyta, B; Pavlasova, E; Stejskalova, E

    1986-01-01

    New developments in different branches of biotechnology are discussed. The production of peptide hormones, new interferons and other lymphokines by the microbial and cell cultures, and new enzyme inhibitors of microbial origin are the most important for health care and pharmacy. The main direction in research in the agriculture represents the development of the new, very effective methods of nitrogen fixation and the production of animal growth hormones by gene manipulated microorganisms. One of the most important field of application of biotechnology is the chemical industry, c.f. microbial production of polymers and biotransformation of compounds previously produced by chemical methods (acrylamide, adipic acid, naphthalene conversion, etc.). Several novel methods of degradation of the cellulosic materials are mentioned and exploitation of biotechnology in environmental protection is also discussed.

  4. Perspectives on biotechnological applications of archaea

    Science.gov (United States)

    Schiraldi, Chiara; Giuliano, Mariateresa; De Rosa, Mario

    2002-01-01

    Many archaea colonize extreme environments. They include hyperthermophiles, sulfur-metabolizing thermophiles, extreme halophiles and methanogens. Because extremophilic microorganisms have unusual properties, they are a potentially valuable resource in the development of novel biotechnological processes. Despite extensive research, however, there are few existing industrial applications of either archaeal biomass or archaeal enzymes. This review summarizes current knowledge about the biotechnological uses of archaea and archaeal enzymes with special attention to potential applications that are the subject of current experimental evaluation. Topics covered include cultivation methods, recent achievements in genomics, which are of key importance for the development of new biotechnological tools, and the application of wild-type biomasses, engineered microorganisms, enzymes and specific metabolites in particular bioprocesses of industrial interest. PMID:15803645

  5. Progress Report on Alloy 617 Notched Specimen Testing

    Energy Technology Data Exchange (ETDEWEB)

    McMurtrey, Michael David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wright, Richard Neil [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lillo, Thomas Martin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    Creep behavior of Alloy 617 has been extensively characterized to support the development of a draft Code Case to qualify Alloy 617 in Section III division 5 of the ASME Boiler and Pressure Vessel Code. This will allow use of Alloy 617 in construction of nuclear reactor components at elevated temperatures and longer periods of time (up to 950°C and 100,000 hours). Prior to actual use, additional concerns not considered in the ASME code need to be addressed. Code Cases are based largely on uniaxial testing of smooth gage specimens. In service conditions, components will generally be under multi axial loading. There is also the concern of the behavior at discontinuities, such as threaded components. To address the concerns of multi axial creep behavior and at geometric discontinuities, notched specimens have been designed to create conditions representative of the states that service components experience. Two general notch geometries have been used for these series of tests: U notch and V notch specimens. The notches produce a tri axial stress state, though not uniform across the specimen. Characterization of the creep behavior of the U notch specimens and the creep rupture behavior of the V notch specimens provides a good approximation of the behavior expected of actual components. Preliminary testing and analysis have been completed and are reported in this document. This includes results from V notch specimens tested at 900°C and 800°C. Failure occurred in the smooth gage section of the specimen rather than at the root of the notch, though some damage was present at the root of the notch, where initial stress was highest. This indicates notch strengthening behavior in this material at these temperatures.

  6. Biotechnological processes in the Canadian mining industry

    International Nuclear Information System (INIS)

    McCready, R.G.L.

    1991-01-01

    Since the initiation of the Federal Government's National Strategy on Biotechnology in 1983, CANMET has coordinated the development of numerous biotechnological processes both for economical metal recovery and for the protection of the environment. This presentation will give a brief overview of the development of in-place, underground bacterial leaching of uranium, the development of in-situ bacterial leaching of copper and zinc, bio recovery of metallic selenium from smelter effluents, the degradation of an organic pollutant from a metal smelter and biological treatment of acidic mine drainage. (author)

  7. Biotechnological applications of extremophiles, extremozymes and extremolytes

    KAUST Repository

    Raddadi, Noura

    2015-08-14

    In the last decade, attention to extreme environments has increased because of interests to isolate previously unknown extremophilic microorganisms in pure culture and to profile their metabolites. Microorganisms that live in extreme environments produce extremozymes and extremolytes that have the potential to be valuable resources for the development of a bio-based economy through their application to white, red, and grey biotechnologies. Here, we provide an overview of extremophile ecology, and we review the most recent applications of microbial extremophiles and the extremozymes and extremolytes they produce to biotechnology.

  8. Microbial biotechnology addressing the plastic waste disaster.

    Science.gov (United States)

    Narancic, Tanja; O'Connor, Kevin E

    2017-09-01

    Oceans are a major source of biodiversity, they provide livelihood, and regulate the global ecosystem by absorbing heat and CO 2 . However, they are highly polluted with plastic waste. We are discussing here microbial biotechnology advances with the view to improve the start and the end of life of biodegradable polymers, which could contribute to the sustainable use of marine and coastal ecosystems (UN Sustainability development goal 14). © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  9. Biotechnology and hazardous waste treatment; Part 1. The state of the art

    Energy Technology Data Exchange (ETDEWEB)

    Stroo, H F [Remediation Technologies, Inc., Kent, WA (USA)

    1990-04-01

    There is considerable speculation regarding the use of biotechnology for improving the treatment of hazardous waste. Biotechnology may be able to improve waste treatment capabilities by overcoming the limits of biological treatment (bioremediation). The contaminant is usually one of the sources of food and energy for the organisms thriving in the contaminated environment. The viability of these organisms is controlled by several environmental factors, notably, nutrient, water, oxygen, temperature and pH levels; the presence of toxic organic compounds, metals, or high salt content can inhibit their activities. Carbon:nitrogen:phosphorous ratios must be monitored to assure that only the contaminant is the limiting nutrient. Several innovative bioremediation practices which can be considered biotechnological are being tested: anaerobic dehalogenation of PCBs and DDT; cometabolic degradation; denitrification; and gene amplification.

  10. Thermal expansion of epoxy-fiberglass composite specimens

    International Nuclear Information System (INIS)

    McElroy, D.L.; Weaver, F.J.; Bridgman, C.

    1986-01-01

    The thermal expansion behavior of three epoxy-fiberglass composite specimens was measured from 20 to 120 0 C (70 to 250 0 F) using a fused quartz push-rod dilatometer. Billets produced by vacuum impregnating layers of two types of fiberglass cloth with an epoxy resin were core-drilled to produce cylindrical specimens. These were used to study expansion perpendicular and parallel to the fiberglass layers. The dilatometer is held at a preselected temperature until steady-state is indicated by stable length and temperature data. Before testing the composite specimens, a reliability check of the dilatometer was performed using a copper secondary standard. This indicated thermal expansion coefficient (α) values within +-2% of expected values from 20 to 200 0 C

  11. Cleaning and sterilization in biotechnological clean system. Biotechnological clean system no senjo sakkin

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, M.

    1994-02-20

    Despite their usefulness for mankind, many of microorganisms are generally emphasized of the aspect of their harmfulness as decomposable and pathogenic microorganisms, apt to implant people with wrong preconception. Moreover, the food industries have a habitual practice that they leave unexpectedly unclean conditions unattended. This paper indicates such actual circumstances by quoting various examples, and introduces characteristics and test results on commercially available chemicals having excellent cleansing and sterilizing effects. High-pressure and high-temperature sterilization processes fit the purpose of preservation, but secondary contamination may occur in subsequent processing, for example, from the ceiling and walls of a work room, or operators' fingers. Problems exist there that should be considered in biotechnological clean systems. Technologies have been advanced that mix a small amount of chemicals into plastic sheets, wall materials, and floor materials so that their surfaces are kept away from growth of microorganisms for extended periods of time. About 300 kinds of chemicals have been developed, and are available commercially. 3 refs., 8 figs.

  12. The present status and perspectives of Biotechnology in Cameroon ...

    African Journals Online (AJOL)

    ... for the rapid exploitation of biotechnology for the socioeconomic development of Cameroon, subject to the mobilization of the necessary venture capital. Keywords: Cameroon, Biotechnology, GMO, Biodiversity, Economic Development, Recombinant DNA JOURNAL OF THE CAMEROON ACADEMY OF SCIENCES Vol.

  13. A bibliometric assessment of ASEAN collaboration in plant biotechnology

    KAUST Repository

    Payumo, Jane; Sutton, Taurean C.

    2015-01-01

    , influence, and overall collaboration of ASEAN countries in plant biotechnology over time. Research performance and collaboration (domestic, regional, and international) of the region in plant biotechnology are linked to the status of the economic development

  14. Nuclear technology and biotechnology for enhancing agricultural production in Malaysia

    International Nuclear Information System (INIS)

    Mohamad Osman

    2005-04-01

    The presentation discussed the following subjects: sustainable development, agriculture in Malaysia, role of biotechnology, role of nuclear technology, improving crops through induced mutations with Malaysian experience in rice and roselle, fusion of nuclear and biotechnology challenges and opportunities

  15. White House Announcement on the Regulation of Biotechnology

    Science.gov (United States)

    The White House posted a blog unveiling documents as part of the Administration’s continuing effort to modernize the federal regulatory system for biotechnology products as well as clarify various roles of the EPA, FDA in evaluating new biotechnologies.

  16. Biotechnology for site restoration: scope of the problem

    Energy Technology Data Exchange (ETDEWEB)

    Bitchaeva, O

    1996-09-18

    The potential of modern biotechnology for solving problems related with the nuclear industry, especially site restoration, are investigated. The advantages of biotechnology, the current applications in Russia, main points of international collaboration, and political considerations are discussed.

  17. National Strategy for Modernizing the Regulatory System for Biotechnology Products

    Science.gov (United States)

    This National Strategy for Modernizing the Regulatory System for Biotechnology Products sets forth a vision for ensuring that the federal regulatory system is prepared to efficiently assess the risks, if any, of the future products of biotechnology.

  18. Perceptions and attitudes of geography teachers to biotechnology: A ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-03

    Dec 3, 2008 ... perceptions of geography teachers towards biotechnology and GM foods but also provided an ... Key words: Biotechnology, GM foods, perceptions, attitudes, geography education, Turkey. ..... Brazilian high school students.

  19. What Ideas Do Students Associate with "Biotechnology" and "Genetic Engineering"?

    Science.gov (United States)

    Hill, Ruaraidh; Stanisstreet, Martin; Boyes, Edward

    2000-01-01

    Explores the ideas that students aged 16-19 associate with the terms 'biotechnology' and 'genetic engineering'. Indicates that some students see biotechnology as risky whereas genetic engineering was described as ethically wrong. (Author/ASK)

  20. Biotechnology Commercialization Strategies: Risk and Return in interfirm cooperation.

    NARCIS (Netherlands)

    Fernald, K.D.S.; Pennings, e; Claassen, E.

    2014-01-01

    The management and exploitation of biotechnological product innovation have proven to be more difficult than initially expected because the number of currently marketed biotechnological products is far from sufficient to counter deficits in pharmaceutical innovation. This study provides insight into

  1. Biotechnology Commercialization Strategies: Risk and Return in Interfirm Cooperation

    NARCIS (Netherlands)

    Fernald, K.D.S.; Pennings, H.P.G.; Claassen, E.

    2015-01-01

    The management and exploitation of biotechnological product innovation have proven to be more difficult than initially expected because the number of currently marketed biotechnological products is far from sufficient to counter deficits in pharmaceutical innovation. This study provides insight into

  2. MHSS 2020 Focused Study on Biotechnology & Nanotechnology, 29 July 1997

    National Research Council Canada - National Science Library

    1998-01-01

    .... This focused study on biotechnology and nanotechnology has two primary goals: (1) examine the future strategic impact of biotechnology and nanotechnology as it relates to the military health system, and (2...

  3. Biotechnology Computing: Information Science for the Era of Molecular Medicine.

    Science.gov (United States)

    Masys, Daniel R.

    1989-01-01

    The evolution from classical genetics to biotechnology, an area of research involving key macromolecules in living cells, is chronicled and the current state of biotechnology is described, noting related advances in computing and clinical medicine. (MSE)

  4. Measuring the Contribution of Modern Biotechnology to the Canadian Economy

    OpenAIRE

    Ricardo de Avillez

    2011-01-01

    The role of modern biotechnology in agriculture, medicine, and industry has increased dramatically since the 1970s. Despite its growing importance, few efforts have been made so far to estimate the economic contribution of modern biotechnology to the Canadian economy. This report provides an overview of biotechnology activities in Canada, and, using an income-based approach, estimates that biotechnology activities accounted for approximately $15 billion in 2005, equivalent to 1.19 per cent of...

  5. Dendritic platforms for biomimicry and biotechnological applications.

    Science.gov (United States)

    Nagpal, Kalpana; Mohan, Anand; Thakur, Sourav; Kumar, Pradeep

    2018-02-15

    Dendrimers, commonly referred to as polymeric trees, offer endless opportunities for biotechnological and biomedical applications. By controlling the type, length, and molecular weight of the core, branches and end groups, respectively, the chemical functionality and topology of dendrimeric archetypes can be customized which further can be applied to achieve required solubility, biodegradability, diagnosis and other applications. Given the physicochemical variability of the dendrimers and their hybrids, this review attempts to discuss a full spectrum of recent advances and strides made by these "perfectly designed structures". An extensive biotech/biomimicry application profiling of dendrimers is provided with focus on complex archetypical designs such as protein biomimicry (angiogenic inhibitors, regenerative hydroxyapatite and collagen) and biotechnology applications. In terms of biotechnological advances, dendrimers have provided distinctive advantages in the fields of biocatalysis, microbicides, artificial lights, mitochondrial function modulation, vaccines, tissue regeneration and repair, antigen carriers and even biosensors. In addition, this review provides overview of the extensive chemo-functionalization opportunities available with dendrimers which makes them a perfect candidate for forming drug conjugates, protein hybrids, bio mimics, lipidic derivatives, metal deposits and nanoconjugates thereby making them the most multifunctional platforms for diverse biotechnological applications.

  6. Biotechnological production of limonene in microorganisms

    NARCIS (Netherlands)

    Jongedijk, Esmer; Cankar, Katarina; Buchhaupt, Markus; Schrader, Jens; Bouwmeester, Harro; Beekwilder, Jules

    2016-01-01

    This mini review describes novel, biotechnology-based, ways of producing the monoterpene limonene. Limonene is applied in relatively highly priced products, such as fragrances, and also has applications with lower value but large production volume, such as biomaterials. Limonene is currently

  7. Innovation Dynamics and Agricultural Biotechnology in Kenya

    NARCIS (Netherlands)

    H.S. Odame (Hannington)

    2014-01-01

    markdownabstract__Abstract__ Modern agricultural biotechnology is being flaunted in global policy de-bates as a powerful technology for improving agricultural productivity and food security in Africa. These debates often conveniently lump to-gether the controversial GMOs and the less contentious

  8. Magnetic nano- and microparticles in biotechnology

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Šafaříková, Miroslava

    2009-01-01

    Roč. 63, - (2009), s. 497-505 ISSN 0366-6352 R&D Projects: GA MPO 2A-1TP1/094; GA MŠk(CZ) OC 157 Institutional research plan: CEZ:AV0Z60870520 Keywords : magnetic particles * smart material Subject RIV: EI - Biotechnology ; Bionics Impact factor: 0.791, year: 2009

  9. Realizing the promises of marine biotechnology

    NARCIS (Netherlands)

    Luiten, EEM; Akkerman, [No Value; Koulman, A; Kamermans, P; Reith, H; Barbosa, MJ; Sipkema, D; Wijffels, RH

    High-quality research in the field of marine biotechnology is one of the key-factors for successful innovation in exploiting the vast diversity of marine life. However, fascinating scientific research with promising results and claims on promising potential applications (e.g. for pharmaceuticals,

  10. Realizing the promises of marine biotechnology

    NARCIS (Netherlands)

    Luiten, E.E.M.; Akkerman, I.; Koulman, A.; Kamermans, P.; Reith, H.; Barbosa, M.J.; Sipkema, D.; Wijffels, R.H.

    2003-01-01

    High-quality research in the field of marine biotechnology is one of the key-factors for successful innovation in exploiting the vast diversity of marine life. However, fascinating scientific research with promising results and claims on promising potential applications (e.g. for pharmaceuticals,

  11. Biotechnologizing Jatropha for local sustainable development

    NARCIS (Netherlands)

    Puente, D.

    2010-01-01

    This article explores whether and how the biotechnologization process that the fuel-plant Jatropha curcas is undergoing might strengthen local sustainable development. It focuses on the ongoing efforts of the multi-stakeholder network Gota Verde to harness Jatropha within local small-scale

  12. PUTTING PLANT BIOTECHNOLOGY TO WORK FOR FOOD ...

    African Journals Online (AJOL)

    Plant biotechnology is safely bringing valuable new benefits to farmers around the world, including those in developing countries where the needs for food, nutrition and overall development may be greatest. >From the current base of experience, it is reasonable to expect even greater benefits in the future, provided that ...

  13. Developing legal regulatory frameworks for modern biotechnology ...

    African Journals Online (AJOL)

    This paper looks at attempts that have been made to develop legal regulatory frameworks for modern biotechnology. The discussion is limited to the regulation of Genetically Modified Organisms (GMO) technology by the two leading producers and exporters of GMOs in Africa: South Africa and Kenya. The international and ...

  14. Lignocellulose biotechnology: issues of bioconversion and enzyme ...

    African Journals Online (AJOL)

    Lignocellulose biotechnology: issues of bioconversion and enzyme production. ... and secondly to highlight some of the modern approaches which potentially could be used to tackle one of the major impediments, namely high enzyme cost, to speed-up the extensive commercialisation of the lignocellulose bioprocessing.

  15. Personality and Impersonality in Biotechnology Discourse

    DEFF Research Database (Denmark)

    Lassen, Inger

    2006-01-01

    With the emergence of biotechnology, the field account has been replaced by something that we may refer to as a laboratory account - a kind of narrative that constitutes the Materials and Methods section of the IMRD model (introduction, methods, results and discussion). Research focusing on field...

  16. Biotechnology Education in India: An Overview

    Science.gov (United States)

    Joshi, Kirti; Mehra, Kavita; Govil, Suman; Singh, Nitu

    2013-01-01

    Among the developing countries, India is one of those that recognises the importance of biotechnology. The trajectory of different policies being formulated over time is proof that the government is progressing towards achieving self-sufficiency. However, to cater to the ever-growing biotech industry, skilled manpower is required. This article…

  17. Industrial use of Biotechnology in Agriculture

    International Nuclear Information System (INIS)

    But, S.J.

    2006-01-01

    In the past the biological research was restricted within the boundary of laboratories and the subsequent results were often employed merely to strengthen the research knowledge and information. In life sciences, the traditional methods took years in proving the biological facts. At the leg of last century, the practical application of biotechnology provided a powerful tool to mankind that has led to a revolutionary change in modern agriculture. In the present era, the economy of agro-based countries all over the world is dependent on the adaptation of the pattern of crop-production and their improvement through modern biotechnological means. Biotechnology is in fact the name of a combination of techniques involved to make the full use of living organisms, either in total or in part, for the benefit of plants, animals or human beings. Progressive and dynamic investors, associated with researches/scientists, should be encouraged to step forward for the mobilization of emerging trend of biotechnological industry in agriculture. Researcher/Scientists of biological programmes in Pakistan should be encouraged at Government level to come forward in contributing their tremendous role to boost Agr- industry in the country. (author)

  18. Biotechnology and Consumer Decision-Making.

    Science.gov (United States)

    Sax, Joanna K

    Society is facing major challenges in climate change, health care and overall quality of life. Scientific advances to address these areas continue to grow, with overwhelming evidence that the application of highly tested forms of biotechnology is safe and effective. Despite scientific consensus in these areas, consumers appear reluctant to support their use. Research that helps to understand consumer decision-making and the public’s resistance to biotechnologies such as vaccines, fluoridated water programs and genetically engineered food, will provide great social value. This article is forward-thinking in that it suggests that important research in behavioral decision-making, specifically affect and ambiguity, can be used to help consumers make informed choices about major applications of biotechnology. This article highlights some of the most controversial examples: vaccinations, genetically engineered food, rbST treated dairy cows, fluoridated water, and embryonic stem cell research. In many of these areas, consumers perceive the risks as high, but the experts calculate the risks as low. Four major thematic approaches are proposed to create a roadmap for policymakers to consider for policy design and implementation in controversial areas of biotechnology. This article articulates future directions for studies that implement decision-making research to allow consumers to appropriately assign risk to their options and make informed decisions.

  19. Novel gene expression tools for rice biotechnology

    Science.gov (United States)

    Biotechnology is an effective and important method of improving both quality and agronomic traits in rice. We are developing novel molecular tools for genetic engineering, with a focus on developing novel transgene expression control elements (i.e. promoters) for rice. A suite of monocot grass promo...

  20. Modern trends in biochemistry and biotechnology

    International Nuclear Information System (INIS)

    1996-01-01

    On the conference 'Modern trends in biochemistry and biotechnology' several lectures concerned influence of ionizing radiation on the animal cells. Changes in the cell division caused by radiation induced DNA damage were discussed. Application of single cell gel electrophoresis assay (comet assay) in assessment of DNA damages was the subject of dedicated session

  1. [The new Colombian criminal code and biotechnology].

    Science.gov (United States)

    González de Cancino, Emilssen

    2002-01-01

    The author describes the process by which new offenses concerning biotechnology have been included in Colombia's Penal Code and discusses some of the more controversial aspects involved. She examines the various stages of the passage of the Bill through Parliament and the modifications undergone. She also provides well-argued criticism of the text, with appropriate reference to Constitutional provisions regarding the rights concerned.

  2. The biotechnology and bioeconomy landscape in Malaysia.

    Science.gov (United States)

    Arujanan, Mahaletchumy; Singaram, Muthu

    2018-01-25

    Since 1990s Malaysia aspired to make biotechnology and bioeconomy as her engines of economic growth to utlise the abundance of natural resources and biodiversity. The public sector plays an integral role in developing the sector and various incentives are in place for the private sector to be actively involved and to forge collaboration with the public sector. The country launched its National Biotechnology Policy in 2005 and later launched its National Bioeconomy Programme in 2010 to become the first country in South East Asia and second in Asia after China to have such an initiative. Malaysia is also very proactive in its biosafety law and regulations and has most of the related legal instrument in place. A lot of success has been recorded since the inception of the National Biotechnology Policy in terms of job creation, contribution to GDP through biobusinesses and investment from foreign companies, but the sector is not spared from challenges too. Due to the nature of the discipline that is multidisciplinary and that requires huge amount of investment, expertise and political will, there are a lot of barriers before the country emerges as a bioeconomy player. This paper discusses the public policies, initiatives and funding mechanisms in place in Malaysia that drive its research, development and commercialisation in the area of biotechnology and bioeconomy. The authors also discuss the challenges faced in Malaysia in implementing the policies. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The Current Developments of Agricultural Biotechnologies Market

    Directory of Open Access Journals (Sweden)

    Anna M. Shkolyarenko

    2016-01-01

    Full Text Available Population growth in the context of limited land resources makes the global scientific society research new ways to increase the agricultural yields. Over the past 20 years, biotechnology and GM crops have become widely spread and now are cultivated in 28 countries. The total area of crops has tripled, and it suggests the further vertical and horizontal integration in short term. In 2015, the US Department of Agriculture authorized the commercial use of GM farm animals. The development of agricultural biotechnology market is constrained by opponents of GM crops in more than 160 countries, which include Russia and the European Union, where the production of GM crops is banned due to economic, ethical, ideological and biological reasons. Currently, the EU is seeking to reduce the imports of GM crops and products; Russia's GM imports and exports are prohibited, and the deadline of designing a consolidated position on agricultural biotechnology has been moved to 2017. The author seeks to analyze the volume of production and international trade of agricultural products based on biotechnologies and to describe the main trends in the global market, which could be integrated into the food value chain in Russia. In the context of the worsening economic indicators, the article proposes the possibility of extending the use of GM crops in Russia non-food sector.

  4. Regulation of Biotechnology in Cameroon W

    African Journals Online (AJOL)

    ... security and public health are high on government's policy agenda. ... tion by the Cameroon Development Corporation. (CDC) of a ... can model law on Safety in Biotechnology (and the Convention ..... its biosafety regulation on liability and redress in due course. ... in Kuala Lumpur, Malaysia in February this year. (2004).

  5. Biotechnology for energy production. Biotechnologie zur Energieerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, J.; Hall, D.O.; Chartier, P.

    1985-01-01

    Starting from the mechanisms of photosynthesis in plants and the environmental parameters influencing growth generally the book deals with the various possibilities for improving productivity in growing biomass. In particular, the modern methods of biotechnology are considered. The investigation submitted was carried through with a view to future energy farms in Europe.

  6. Wheaten ferments spontaneous fermantation in biotechnological methods

    OpenAIRE

    KAKHRAMON SANOQULOVICH RAKHMONOV; ISABAEV ISMAIL BABADJANOVICH

    2016-01-01

    In article are shown results of research of biotechnological properties of wheaten leavens of spontaneous fermentation (in the example of pea-anisetree leaven) and their analysis. Also is established influence of the given type of leavens on the basic biopolymers of the flour, on the property of the pastry and quality of bread from wheaten flour.

  7. Biotechnology, genetic conservation and sustainable use of ...

    African Journals Online (AJOL)

    Admin

    technologies. The use of biotechnological tools and “bioprospecting” will open new vistas in medicine, agriculture, silviculture, horticulture, environment and other important issues. This paper reviews ... E-mail: rankangani@yahoo.com. human needs ..... (iii) Particle mediated gene transfer, using gene gun. REFERENCES.

  8. Assessment of technology generating institutions in biotechnology ...

    African Journals Online (AJOL)

    The study was carried out in Southeastern agro-ecological zones of Nigeria. Questionnaire was used to collect data from a sample of forty-three heads of departments from research institutes and universities involved in biotechnology research. Results of the study revealed that some of the institutions have been involved in ...

  9. Mathematical Modelling of Continuous Biotechnological Processes

    Science.gov (United States)

    Pencheva, T.; Hristozov, I.; Shannon, A. G.

    2003-01-01

    Biotechnological processes (BTP) are characterized by a complicated structure of organization and interdependent characteristics. Partial differential equations or systems of partial differential equations are used for their behavioural description as objects with distributed parameters. Modelling of substrate without regard to dispersion…

  10. Nigerian Journal of Biotechnology: Editorial Policies

    African Journals Online (AJOL)

    Nigerian Journal of Biotechnology publishes original research papers, shot ... State Univ., Mubi, Nigeria. yada525@adsu.edu.ng, Molecular biology and bioremediation ... Dr. Kelechi C. Njoku, Dept. of Cell Biology & Genetics, University of Lagos, Lagos, kecynjoku@gmail.com, Environmental Biology ... HOW TO USE AJOL.

  11. Venture capitalists as gatekeepers for biotechnological innovation

    NARCIS (Netherlands)

    Fernald, Kenneth; Hoeben, Ruud; Claassen, H.J.H.M.

    2015-01-01

    Venture capitalists (VCs) aim at trade sales as a preferred exit-strategy for biotechnology companies they invest in. Therefore, VCs pay close attention to the wishes of larger (bio)pharmaceutical acquirers. In this paper we explore VCs' behavior and strategies by analyzing the technology fields and

  12. South-South Collaboration in Health Biotechnology

    International Development Research Centre (IDRC) Digital Library (Canada)

    5.3 The geography of China's health biotechnology collaboration ..... and Argentina, Brazil, Chile, Mexico, Paraguay, Peru and Uruguay, for example, established ...... “Nations team up to share R&D skills in HIV/AIDS battle”, SciDev. ...... This reduces both dependence on international imports, and leads to the availability of ...

  13. National strategy of safety of biotechnology

    International Nuclear Information System (INIS)

    1999-10-01

    This document was drafted in the frame of the sustainable development, the social fairness, the citizen participation; in Bolivia the management of the biotechnology and the security of the same one are identified for the first time to the actors involved in constituting in a document for the sustainable management of the conservation and sustainable use of the biodiversity in Bolivia [es

  14. Collagen Quantification in Tissue Specimens.

    Science.gov (United States)

    Coentro, João Quintas; Capella-Monsonís, Héctor; Graceffa, Valeria; Wu, Zhuning; Mullen, Anne Maria; Raghunath, Michael; Zeugolis, Dimitrios I

    2017-01-01

    Collagen is the major extracellular protein in mammals. Accurate quantification of collagen is essential in the biomaterials (e.g., reproducible collagen scaffold fabrication), drug discovery (e.g., assessment of collagen in pathophysiologies, such as fibrosis), and tissue engineering (e.g., quantification of cell-synthesized collagen) fields. Although measuring hydroxyproline content is the most widely used method to quantify collagen in biological specimens, the process is very laborious. To this end, the Sircol™ Collagen Assay is widely used due to its inherent simplicity and convenience. However, this method leads to overestimation of collagen content due to the interaction of Sirius red with basic amino acids of non-collagenous proteins. Herein, we describe the addition of an ultrafiltration purification step in the process to accurately determine collagen content in tissues.

  15. High School Students' Knowledge and Attitudes regarding Biotechnology Applications

    Science.gov (United States)

    Ozel, Murat; Erdogan, Mehmet; Usak, Muhammet; Prokop, Pavol

    2009-01-01

    The purpose of this study was to investigate high school students' knowledge and attitudes regarding biotechnology and its various applications. In addition, whether students' knowledge and attitudes differed according to age and gender were also explored. The Biotechnology Knowledge Questionnaire (BKQ) with 16 items and the Biotechnology Attitude…

  16. Acceptance of biotechnology and social-cultural implications in Ghana

    African Journals Online (AJOL)

    take pride in what they eat. A proposal is made to set biotechnology research agenda in the context of social choices; social scientific coalition of biotechnology with endogenous development pathways' as opposed to 'exogenous biotechnology research'. Also there is the need for adequate capacity building of the existing ...

  17. Environmental Biotechnology Research and Development Program 1989-1992

    NARCIS (Netherlands)

    Brinkman J; Rulkens WH; Visscher K

    1989-01-01

    This report is an English translation of the Dutch Research and Development Program on environmental biotechnology 1989-1992. In this program an overview is given of the recent developments in environmental biotechnology. Based on this overview, the possibilities of biotechnology for management

  18. Measurements and Counts for Notacanthidae Specimens

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Taxonomic data were collected for specimens of deep-sea spiny eels (Notacanthidae) from the Hawaiian Ridge by Bruce C. Mundy. Specimens were collected off the north...

  19. Fiscal 1998 'Plant Biotechnology in the 21st Century' workshop report; '21 seiki no shokubutsu biotechnology' workshop 1998 nendo seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The workshop was opened with the opening remarks by Yamada (President of Nara Institute of Science and Technology (NIST)), the overview of plant biotechnology in the 21st century from academia by Shinmyo (Professor of NIST), and the overview of such technology from Ministry of International Trade and Industry by Katao (Chief of Chemical Industry Division). Lectures and discussions of various topics were conducted for 2 days as follows. The effectiveness of a genomic DNA array method for obtaining the genes for switching genes according to daytime, nighttime, drying, salt, high temperature and low temperature for every plant. Current transfer technology of large DNA fragments into plant cell nuclei and chloroplast. Biological evaluation of the physiological functions and complex stress tolerance capacity transformed by transferring complex stress tolerance genes and useful genes for productivity improvement and value addition. Discussion was also held on the importance of a basic research for biotechnology in the 21st century. (NEDO)

  20. Fiscal 1998 'Plant Biotechnology in the 21st Century' workshop report; '21 seiki no shokubutsu biotechnology' workshop 1998 nendo seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The workshop was opened with the opening remarks by Yamada (President of Nara Institute of Science and Technology (NIST)), the overview of plant biotechnology in the 21st century from academia by Shinmyo (Professor of NIST), and the overview of such technology from Ministry of International Trade and Industry by Katao (Chief of Chemical Industry Division). Lectures and discussions of various topics were conducted for 2 days as follows. The effectiveness of a genomic DNA array method for obtaining the genes for switching genes according to daytime, nighttime, drying, salt, high temperature and low temperature for every plant. Current transfer technology of large DNA fragments into plant cell nuclei and chloroplast. Biological evaluation of the physiological functions and complex stress tolerance capacity transformed by transferring complex stress tolerance genes and useful genes for productivity improvement and value addition. Discussion was also held on the importance of a basic research for biotechnology in the 21st century. (NEDO)

  1. Ethical limitations in patenting biotechnological inventions.

    Science.gov (United States)

    Lugagnani, V

    1999-01-01

    In order to connect ethical considerations with practical limits to patentability, the moral judgement should possibly move from the exploitation of the invention to the nature and/or objectives of Research and Development (R&D) projects which have produced it: in other words, it appears quite reasonable and logical that Society is not rewarding unethical R&D activities by granting intellectual property rights. As far as biotechnology R&D is concerned, ethical guidance can be derived from the 1996 Council of EuropeOs OConvention for the protection of human rights and dignity of the human being with regard to the application of biology and medicineO, whose Chapter V - Scientific research - provides guidelines on: i. protection of persons undergoing research (e.g. informed consent); ii. protection of persons not able to consent to research; iii. research on embryos in vitro. As far as the specific point of patenting biotechnology inventions is concerned, the four exclusions prescribed by Directive 98/44/EC (i.e. human cloning, human germ-line gene therapy, use of human embryos for commercial purposes, unjustified animal suffering for medical purposes) are all we have in Europe in terms of ethical guidance to patentability. In Italy, in particular, we certainly need far more comprehensive legislation, expressing SocietyOs demand to provide ethical control of modern biotechnology. However it is quite difficult to claim that ethical concerns are being raised by currently awarded biotechnology patents related to living organisms and material thereof; they largely deal with the results of genomic R&D, purposely and usefully oriented toward improving health-care and agri-food processes, products and services. ONo patents on lifeOO can be an appealing slogan of militants against modern biotechnology, but it is far too much of an over-simplified abstraction to become the Eleventh Commandment our Society.

  2. [Health risks in the biotechnological industry].

    Science.gov (United States)

    Colombi, A; Maroni, M; Foà, V

    1989-01-01

    Biotechnology has been defined as the application of biological organisms, systems or processes to manufacturing and service industries. In considering health aspects of biotechnological development it must be underlined that the use of microorganisms in traditional industries, such as the production of food, bread, beer and dairy products, has not added significantly to the more usual industrial hazards. The risk factors encountered in the biotechnology industry can be defined as general, i.e., common to other industrial activities, and specific, i.e., depending on the presence of microorganisms and/or their metabolic products. The specific health risks vary according to the type of process, but can be grouped into three main categories: immunological diseases, toxic effects; pathological effects of microorganisms. Allergic immunological diseases such as bronchial asthma, contact dermatitis, oculo-rhinitis and extrinsic allergic alveolitis are by far the most frequent and well known diseases occurring among workers employed on biotechnological production. Toxic effects were observed among workers employed on the production of antibiotics and hormones or single cell proteins, where absorption of endotoxins has been described. Infectious diseases may arise from uncontrolled dissemination of pathogenic microorganisms through aerosols, dusts, aqueous and semisolid sludge effluents from biotechnological plants. The greatest risks occur in the production of antiviral vaccines, in research laboratories and in waste-water treatment plants. Risk of pathogenic effects has also been speculated from exposure to engineered microorganisms in laboratory and environmental or agricultural applications. Safety precautions consisting of protective measures, and effective barriers of containment (both physical and biological) have to be advised according to the hazardous characteristics of the organisms.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Recent Advances in Marine Enzymes for Biotechnological Processes.

    Science.gov (United States)

    Lima, R N; Porto, A L M

    In the last decade, new trends in the food and pharmaceutical industries have increased concern for the quality and safety of products. The use of biocatalytic processes using marine enzymes has become an important and useful natural product for biotechnological applications. Bioprocesses using biocatalysts like marine enzymes (fungi, bacteria, plants, animals, algae, etc.) offer hyperthermostability, salt tolerance, barophilicity, cold adaptability, chemoselectivity, regioselectivity, and stereoselectivity. Currently, enzymatic methods are used to produce a large variety of products that humans consume, and the specific nature of the enzymes including processing under mild pH and temperature conditions result in fewer unwanted side-effects and by-products. This offers high selectivity in industrial processes. The marine habitat has been become increasingly studied because it represents a huge source potential biocatalysts. Enzymes include oxidoreductases, hydrolases, transferases, isomerases, ligases, and lyases that can be used in food and pharmaceutical applications. Finally, recent advances in biotechnological processes using enzymes of marine organisms (bacterial, fungi, algal, and sponges) are described and also our work on marine organisms from South America, especially marine-derived fungi and bacteria involved in biotransformations and biodegradation of organic compounds. © 2016 Elsevier Inc. All rights reserved.

  4. Oleochemical industry future through biotechnology.

    Science.gov (United States)

    Abdelmoez, Wael; Mustafa, Ahmad

    2014-01-01

    Lipases are the most widely used class of enzymes in organic synthesis. Enzymatic processes have been implemented in a broad range of industries as they are specific, save raw materials, energy and chemicals, environmentally friendly and fast in action compared to conventional processes. The most notable benefit is the moderate process temperature and pressure with no unwanted side reactions. In the past two decades, intensive research was carried out towards enzymatic synthesis of oleochemicals. This review has a sharp focus on the current implemented enzymatic processes for producing different oleochemicals such as fatty acids, glycerin, biodiesel, biolubricant and different alkyl esters via different processes including hydrolysis, esterification, transesterification and intraesterification.

  5. On impact testing of subsize Charpy V-notch type specimens

    International Nuclear Information System (INIS)

    Mikhail, A.S.; Nanstad, R.K.

    1994-01-01

    The potential for using subsize specimens to determine the actual properties of reactor pressure vessel steels is receiving increasing attention for improved vessel condition monitoring that could be beneficial for light-water reactor plant-life extension. This potential is made conditional upon, on the one hand, by the possibility of cutting samples of small volume from the internal surface of the pressure vessel for determination of actual properties of the operating pressure vessel. The plant-life extension will require supplemental surveillance data that cannot be provided by the existing surveillance programs. Testing of subsize specimens manufactured from broken halves of previously tested surveillance Charpy V-notch (CVN) specimens offers an attractive means of extending existing surveillance programs. Using subsize CVN type specimens requires the establishment of a specimen geometry that is adequate to obtain a ductile-to-brittle transition curve similar to that obtained from full-size specimens. This requires the development of a correlation of transition temperature and upper-shelf toughness between subsize and full-size specimens. The present study was conducted under the Heavy-Section Steel Irradiation Program. Different published approaches to the use of subsize specimens were analyzed and five different geometries of subsize specimens were selected for testing and evaluation. The specimens were made from several types of pressure vessel steels with a wide range of yield strengths, transition temperatures, and upper-shelf energies (USEs). Effects of specimen dimensions, including depth, angle, and radius of notch have been studied. The correlation of transition temperature determined from different types of subsize specimens and the full-size specimen is presented. A new procedure for transforming data from subsize specimens was developed and is presented

  6. Editorial: from plant biotechnology to bio-based products.

    Science.gov (United States)

    Stöger, Eva

    2013-10-01

    From plant biotechnology to bio-based products - this Special Issue of Biotechnology Journal is dedicated to plant biotechnology and is edited by Prof. Eva Stöger (University of Natural Resources and Life Sciences, Vienna, Austria). The Special Issue covers a wide range of topics in plant biotechnology, including metabolic engineering of biosynthesis pathways in plants; taking advantage of the scalability of the plant system for the production of innovative materials; as well as the regulatory challenges and society acceptance of plant biotechnology. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Development of Reconstitution Technology for Surveillance Specimens

    International Nuclear Information System (INIS)

    Yasushi Atago; Shunichi Hatano; Eiichiro Otsuka

    2002-01-01

    The Japan Power Engineering and Inspection Corporation (JAPEIC) has been carrying out the project titled 'Nuclear Power Plant Integrated Management Technology (PLIM)' consigned by Japanese Ministry of Economy, Trade and Industry (METI) since 1996FY as a 10-years project. As one of the project themes, development of reconstitution technology for reactor pressure vessel (RPV/RV) surveillance specimens, which are installed in RPVs to monitor the neutron irradiation embrittlement on RPV/RV materials, is now on being carried out to deal with the long-term operation of nuclear power plants. The target of this theme is to establish the technical standard for applicability of reconstituted surveillance specimens including the reconstitution of the Charpy specimens and Compact Tension (CT) specimens. With the Charpy specimen reconstitution, application of 10 mm length inserts is used, which enables the conversion of tests from the LT-direction to the TL-direction. This paper presents the basic data from Charpy and CT specimens of RPV materials using the surveillance specimens obtained for un-irradiated materials including the following. 1) Reconstitution Technology of Charpy Specimens. a) The interaction between plastic zone and Heat Affected Zone (HAZ). b) The effects of the possible deviations from the standard specimens for the reconstituted specimens. 2) Reconstitution Technology of CT specimens. a) The correlation between fracture toughness and plastic zone width. Because the project is now in progress, this paper describes the outline of the results obtained as of the end of 2000 FY. (authors)

  8. Microstructural characterization of an irradiated RERTR-6 U-7Mo/AA4043 alloy dispersion fuel plate specimen blister-tested to a final temperature of 500 °C

    Science.gov (United States)

    Keiser, Dennis D.; Jue, Jan-Fong; Gan, Jian; Miller, Brandon D.; Robinson, Adam B.; Madden, James W.; Ross Finlay, M.; Moore, Glenn; Medvedev, Pavel; Meyer, Mitch

    2017-05-01

    The Material Management and Minimization (M3) Reactor Conversion Program, in the past called the Reduced Enrichment for Research and Test Reactor (RERTR) Program, is developing low-enriched uranium (LEU) fuels for application in research and test reactors. U-Mo alloy dispersion fuel is one type being developed. Blister testing has been performed on different fuel plate samples to determine the margin to failure for fuel plates irradiated to different fission densities. Microstructural characterization was performed using scanning electron microscopy and transmission electron microscopy on a sample taken from a U-7Mo/AA4043 matrix dispersion fuel plate irradiated in the RERTR-6 experiment that was blister-tested up to a final temperature of 500 °C. The results indicated that two types of grain/cell boundaries were observed in the U-7Mo fuel particles, one with a relatively low Mo content and fission gas bubbles and a second type enriched in Si, due to interdiffusion from the Si-containing matrix, with little evidence of fission gas bubbles. With respect to the behavior of the major fission gas Xe, a significant amount of the Xe was still observed within the U-7Mo fuel particle, along with microns into the AA4043 matrix. For the fuel/matrix interaction layers that form during fabrication and then grow during irradiation, they change from the as-irradiated amorphous structure to one that is crystalline after blister testing. In the AA4043 matrix, the original Si-rich precipitates, which are typically observed in as-irradiated U-Mo dispersion fuel, get consumed due to interdiffusion with the U-7Mo fuel particles during the blister test. Finally, the fission gas bubbles that were originally around 3 nm in diameter and resided on a fission gas superlattice (FGS) in the intragranular regions of as-irradiated U-7Mo fuel grew in size (up to ∼20 nm diameter) during blister testing and, in many areas, are no longer organized as a superlattice.

  9. Microstructural characterization of an irradiated RERTR-6 U-7Mo/AA4043 alloy dispersion fuel plate specimen blister-tested to a final temperature of 500 °C

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, Dennis D., E-mail: dennis.keiser@inl.gov [Nuclear Fuels and Materials Division, Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID 83415-6146 (United States); Jue, Jan-Fong; Gan, Jian; Miller, Brandon D.; Robinson, Adam B.; Madden, James W. [Nuclear Fuels and Materials Division, Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID 83415-6146 (United States); Ross Finlay, M. [Australian Nuclear Science and Technology Organization, PMB 1, Menai, NSW 2234 (Australia); Moore, Glenn; Medvedev, Pavel; Meyer, Mitch [Nuclear Fuels and Materials Division, Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID 83415-6146 (United States)

    2017-05-15

    The Material Management and Minimization (M3) Reactor Conversion Program, in the past called the Reduced Enrichment for Research and Test Reactor (RERTR) Program, is developing low-enriched uranium (LEU) fuels for application in research and test reactors. U–Mo alloy dispersion fuel is one type being developed. Blister testing has been performed on different fuel plate samples to determine the margin to failure for fuel plates irradiated to different fission densities. Microstructural characterization was performed using scanning electron microscopy and transmission electron microscopy on a sample taken from a U-7Mo/AA4043 matrix dispersion fuel plate irradiated in the RERTR-6 experiment that was blister-tested up to a final temperature of 500 °C. The results indicated that two types of grain/cell boundaries were observed in the U-7Mo fuel particles, one with a relatively low Mo content and fission gas bubbles and a second type enriched in Si, due to interdiffusion from the Si-containing matrix, with little evidence of fission gas bubbles. With respect to the behavior of the major fission gas Xe, a significant amount of the Xe was still observed within the U-7Mo fuel particle, along with microns into the AA4043 matrix. For the fuel/matrix interaction layers that form during fabrication and then grow during irradiation, they change from the as-irradiated amorphous structure to one that is crystalline after blister testing. In the AA4043 matrix, the original Si-rich precipitates, which are typically observed in as-irradiated U-Mo dispersion fuel, get consumed due to interdiffusion with the U-7Mo fuel particles during the blister test. Finally, the fission gas bubbles that were originally around 3 nm in diameter and resided on a fission gas superlattice (FGS) in the intragranular regions of as-irradiated U-7Mo fuel grew in size (up to ∼20 nm diameter) during blister testing and, in many areas, are no longer organized as a superlattice.

  10. AGC-2 Specimen Post Irradiation Data Package Report

    Energy Technology Data Exchange (ETDEWEB)

    Windes, William Enoch [Idaho National Lab. (INL), Idaho Falls, ID (United States); Swank, W. David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rohrbaugh, David T. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cottle, David L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    This report documents results of the post-irradiation examination material property testing of the creep, control, and piggyback specimens from the irradiation creep capsule Advanced Graphite Creep (AGC)-2 are reported. This is the second of a series of six irradiation test trains planned as part of the AGC experiment to fully characterize the neutron irradiation effects and radiation creep behavior of current nuclear graphite grades. The AGC-2 capsule was irradiated in the Idaho National Laboratory Advanced Test Reactor at a nominal temperature of 600°C and to a peak dose of 5 dpa (displacements per atom). One-half of the creep specimens were subjected to mechanical stresses (an applied stress of either 13.8, 17.2, or 20.7 MPa) to induce irradiation creep. All post-irradiation testing and measurement results are reported with the exception of the irradiation mechanical strength testing, which is the last destructive testing stage of the irradiation testing program. Material property tests were conducted on specimens from 15 nuclear graphite grades using a similar loading configuration as the first AGC capsule (AGC-1) to provide easy comparison between the two capsules. However, AGC-2 contained an increased number of specimens (i.e., 487 total specimens irradiated) and replaced specimens of the minor grade 2020 with the newer grade 2114. The data reported include specimen dimensions for both stressed and unstressed specimens to establish the irradiation creep rates, mass and volume data necessary to derive density, elastic constants (Young’s modulus, shear modulus, and Poisson’s ratio) from ultrasonic time-of-flight velocity measurements, Young’s modulus from the fundamental frequency of vibration, electrical resistivity, and thermal diffusivity and thermal expansion data from 100–500°C. No data outliers were determined after all measurements were completed. A brief statistical analysis was performed on the irradiated data and a limited comparison between

  11. Methods and devices for small specimen testing at the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Jitsukawa, Shiro; Kizaki, Minoru; Umino, Akira; Shiba, Kiyoyuki; Hishinuma, Akimichi

    1993-01-01

    Devices for a punch test on annular notched specimens, small punch (SP) tests, and miniaturized tension tests in hot cells were developed. A micro-manipulator to handle small specimens and an electro-discharge machine (EDM) to extract miniaturized tension specimens and annular notched specimens from transmission electron microscopy (TEM) disks were also fabricated. These devices were designed and made for remote operation in hot cells. Preliminary tests to evaluate the applicability of test methods were carried out. Correlation between SP test results and tensile properties was not strong. Miniaturized tensile results were reasonably similar to the results with larger specimens. The ductile-brittle transition temperature (DBTT) by the punch test on annular notched specimens was higher than that obtained from the SP test. However, materials dependence of the DBTT was different from that measured by standard Charpy V-notch (CVN) tests. This may be due to a specimen size effect

  12. Protein engineering approaches to chemical biotechnology.

    Science.gov (United States)

    Chen, Zhen; Zeng, An-Ping

    2016-12-01

    Protein engineering for the improvement of properties of biocatalysts and for the generation of novel metabolic pathways plays more and more important roles in chemical biotechnology aiming at the production of chemicals from biomass. Although widely used in single-enzyme catalysis process, protein engineering is only being increasingly explored in recent years to achieve more complex in vitro and in vivo biocatalytic processes. This review focuses on major contributions of protein engineering to chemical biotechnology in the field of multi-enzymatic cascade catalysis and metabolic engineering. Especially, we discuss and highlight recent strategies for combining pathway design and protein engineering for the production of novel products. Copyright © 2016. Published by Elsevier Ltd.

  13. Foundations for a Colombian Biotechnology policy

    Directory of Open Access Journals (Sweden)

    Óscar Castellanos

    2001-07-01

    Full Text Available Globalisation has created challenges for industry related to the constant need for improving national and international productivity and competitivity. Biological knowledge today has growing industrial application as it proposes innovative production methods. This type of biotechnology is becoming more relevant in Colombia's economic and social development all the time. The Colombian Ministry of Development, Colciencias and the National University of Colombia have therefore been jointly developing an integral set of guidelines. These are framed within Colombia's biotechnology policy to create concrete goals, objectives, strategies and direct action from the State, academic institutions and the business world. They encompass six fundamental approaches: markets and management; normativity and legislation; research and development (R&D; economic resources; human resources; and integration training. They al so explicitly raise the question of who shall be responsible for follow-up and the way that the policy's execution and achievements will be evaluated.

  14. Histopathologic analysis of appendectomy specimens

    Directory of Open Access Journals (Sweden)

    R Shrestha

    2012-03-01

    Full Text Available Background: Acute appendicitis is one of the common conditions requiring emergency surgery. A retrospective study was performed to determine various histopathological diagnoses, their demographics and the rates of perforated appendicitis, negative appendectomy and incidental appendectomy. Materials and Methods: Histopathological records of resected appendices submitted to histopathology department Chitwan medical college teaching hospital over the period of 2 yrs from May, 2009 to April 2011 were reviewed retrospectively. Results: Out of 930 specimens of appendix, appendicitis accounted for 88.8% with peak age incidence in the age group of 11 to 30 yrs in both sexes. Histopathologic diagnoses included acute appendicitis (45.6%, acute suppurative (20.8%, gangrenous (16.3%, perforated (1.7%, resolving /recurrent/non specific chronic appendicitis (2.5%, acute eosinophilic appendicitis (1.2%, periappendicitis (0.2%, and carcinoid tumour (0.1%. Other important coexisting pathologies were parasitic infestation (0.2% and Meckel’s diverticulum (0.2%. Negative appendectomy rate was 10.8% and three times more common in females with peak occurrence in the age group of 21-30 yrs. There were 10 cases of acute appendicitis in incidental appendectomies (2.5%, 24 cases with 7 times more common in females of age group of 31- 60 yrs. Conclusion: There is a high incidence of appendicitis in adolescents and young adults in central south region of Nepal. Negative appendectomy is also very common in females. Incidental appendectomy in elderly females may have preventive value. DOI: http://dx.doi.org/10.3126/jpn.v2i3.6025 JPN 2012; 2(3: 215-219

  15. Biotechnology for Chemical Production: Challenges and Opportunities.

    Science.gov (United States)

    Burk, Mark J; Van Dien, Stephen

    2016-03-01

    Biotechnology offers a new sustainable approach to manufacturing chemicals, enabling the replacement of petroleum-based raw materials with renewable biobased feedstocks, thereby reducing greenhouse gas (GHG) emissions, toxic byproducts, and the safety risks associated with traditional petrochemical processing. Development of such bioprocesses is enabled by recent advances in genomics, molecular biology, and systems biology, and will continue to accelerate as access to these tools becomes faster and cheaper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Canadian biotechnological developments in fossil fuels

    International Nuclear Information System (INIS)

    McCready, R.G.L.

    1991-01-01

    CANMET recently initiated a Biotechnology program in cooperation with various oil companies and university personnel to develop biological processes and to determine various biological mechanisms associated with coal, oil and gas recovery. This presentation will give a brief overview of the ongoing projects including the microbial decomposition of refinery sludges and wastes, microbial internal and external corrosion of pipeline, the use of microbial exopolymers in secondary oil recovery and in the prevention of loss of drilling lubricants. (author)

  17. Bacterial Siderophores and their Biotechnological applications

    Digital Repository Service at National Institute of Oceanography (India)

    Mohandass, C.

    Siderophores and their Biotechnological applications C. Mohandass Biological Oceanography Division National Institute of Oceanography Dona-paula, Goa.403 004.India. Introduction Siderophore is the Greek phrase for ?iron bearer? and is applied to molecules... the efficiency of the biological carbon pump. Phytoplankton must have developed a sophisticated mechanism to uptake iron. However, little is known about the uptake mechanism. Given the importance of the biological pump in controlling atmospheric CO2, elucidating...

  18. MIPs as Tools in Environmental Biotechnology.

    Science.gov (United States)

    Mattiasson, Bo

    2015-01-01

    Molecular imprints are potentially fantastic constructions. They are selective, robust, and nonbiodegradable if produced from stable polymers. A range of different applications has been presented, everything from separation of enantiomers, via adsorbents for sample preparation before analysis to applications in wastewater treatment. This chapter deals with molecularly imprinted polymers (MIPs) as tools in environmental biotechnology, a field that has the potential to become very important in the future.

  19. Biotechnology and where it is going

    Energy Technology Data Exchange (ETDEWEB)

    Malik, V.S.

    From some of the selected highlights in this paper, it is apparent that biotechnology is becoming increasingly popular in meeting the world's expanding needs. There are endless tasks which can be accomplished by the judicious application of recombinant DNA technology for engineering of microorganisms. Use of microbes will accelerate in the next decade and fermentation processes may be used to produce many products that are presently derived from petrochemicals or chemical synthesis. (Refs. 17).

  20. Biotechnological production of limonene in microorganisms

    OpenAIRE

    Jongedijk, Esmer; Cankar, Katarina; Buchhaupt, Markus; Schrader, Jens; Bouwmeester, Harro; Beekwilder, Jules

    2016-01-01

    This mini review describes novel, biotechnology-based, ways of producing the monoterpene limonene. Limonene is applied in relatively highly priced products, such as fragrances, and also has applications with lower value but large production volume, such as biomaterials. Limonene is currently produced as a side product from the citrus juice industry, but the availability and quality are fluctuating and may be insufficient for novel bulk applications. Therefore, complementary microbial producti...

  1. Microbial biotechnology addressing the plastic waste disaster

    OpenAIRE

    Narancic, Tanja; O'Connor, Kevin E.

    2017-01-01

    Oceans are a major source of biodiversity, they provide livelihood, and regulate the global ecosystem by absorbing heat and CO 2. However, they are highly polluted with plastic waste. We are discussing here microbial biotechnology advances with the view to improve the start and the end of life of biodegradable polymers, which could contribute to the sustainable use of marine and coastal ecosystems (UN Sustainability development goal 14).

  2. UNIVERSITY BASIC RESEARCH AND APPLIED AGRICULTURAL BIOTECHNOLOGY

    OpenAIRE

    Xia, Yin

    2004-01-01

    I examine the effects of R&D inputs on the subset of life-science outputs which demonstrably has influenced later technology, as evidenced by literature citations in agricultural biotechnology patents. Universities are found to be a principal seedbed for cutting-edge technology development. A university's life-science research budget strongly affects its technology-relevant life-science output as well as graduate education.

  3. Preliminary investigation of candidate specimens for the Egyptian environmental specimen bank

    International Nuclear Information System (INIS)

    Shawky, S.; Amer, H.; Schladot, J.D.; Ostapczuk, P.; Emons, H.; Abou El-Nour, F.

    2000-01-01

    In the frame of establishing an environmental monitoring program related to environmental specimen banking in egypt, some candidate specimens from the aquatic environment (Fish muscle, fish liver; mussels) were investigated. The selection of specimens and sampling sites is described. Specimens are chemically characterised with respect to some major and trace elements and the results are compared with data obtained from comparable specimens collected in aquatic ecosystems of germany

  4. SOME TRENDS IN MATHEMATICAL MODELING FOR BIOTECHNOLOGY

    Directory of Open Access Journals (Sweden)

    O. M. Klyuchko

    2018-02-01

    Full Text Available The purpose of present research is to demonstrate some trends of development of modeling methods for biotechnology according to contemporary achievements in science and technique. At the beginning the general approaches are outlined, some types of classifications of modeling methods are observed. The role of mathematic methods modeling for biotechnology in present époque of information computer technologies intensive development is studied and appropriate scheme of interrelation of all these spheres is proposed. Further case studies are suggested: some mathematic models in three different spaces (1D, 2D, 3D models are described for processes in living objects of different levels of hierarchic organization. In course of this the main attention was paid to some processes modeling in neurons as well as in their aggregates of different forms, including glioma cell masses (1D, 2D, 3D brain processes models. Starting from the models that have only theoretical importance for today, we describe at the end a model which application may be important for the practice. The work was done after the analysis of approximately 250 current publications in fields of biotechnology, including the authors’ original works.

  5. Cacao biotechnology: current status and future prospects.

    Science.gov (United States)

    Wickramasuriya, Anushka M; Dunwell, Jim M

    2018-01-01

    Theobroma cacao-The Food of the Gods, provides the raw material for the multibillion dollar chocolate industry and is also the main source of income for about 6 million smallholders around the world. Additionally, cocoa beans have a number of other nonfood uses in the pharmaceutical and cosmetic industries. Specifically, the potential health benefits of cocoa have received increasing attention as it is rich in polyphenols, particularly flavonoids. At present, the demand for cocoa and cocoa-based products in Asia is growing particularly rapidly and chocolate manufacturers are increasing investment in this region. However, in many Asian countries, cocoa production is hampered due to many reasons including technological, political and socio-economic issues. This review provides an overview of the present status of global cocoa production and recent advances in biotechnological applications for cacao improvement, with special emphasis on genetics/genomics, in vitro embryogenesis and genetic transformation. In addition, in order to obtain an insight into the latest innovations in the commercial sector, a survey was conducted on granted patents relating to T. cacao biotechnology. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Biotechnology of temperate fruit trees and grapevines.

    Science.gov (United States)

    Laimer, Margit; Mendonça, Duarte; Maghuly, Fatemeh; Marzban, Gorji; Leopold, Stephan; Khan, Mahmood; Balla, Ildiko; Katinger, Hermann

    2005-01-01

    Challenges concerning fruit trees and grapevines as long lived woody perennial crops require adapted biotechnological approaches, if solutions are to be found within a reasonable time frame. These challenges are represented by the need for correct identification of genetic resources, with the foreseen use either in conservation or in breeding programmes. Molecular markers provide most accurate information and will be the major solution for questions about plant breeders rights. Providing healthy planting material and rapid detection of newly introduced pathogens by reliable methods involving serological and molecular biological tools will be a future challenge of increases importance, given the fact that plant material travels freely in the entire European Union. But also new breeding goals and transgenic solutions are part of the biotechnological benefits, e.g. resistance against biotic and abiotic stress factors, modified growth habits, modified nutritional properties and altered processing and storage qualities. The successful characterization of transgenic grapevines and stone fruit trees carrying genes of viral origin in different vectors constructed under ecological consideration, will be presented. Beyond technical feasibility, efficiency of resistance, environmental safety and Intellectual Property Rights, also public acceptance needs consideration and has been addressed in a specific project. The molecular determination of internal quality parameters of food can also be addressed by the use of biotechnological tools. Patient independent detection tools for apple allergens have been developed and should allow to compare fruits from different production systems, sites, and genotypes for their content of health threatening compounds.

  7. Improved molecular tools for sugar cane biotechnology.

    Science.gov (United States)

    Kinkema, Mark; Geijskes, Jason; Delucca, Paulo; Palupe, Anthony; Shand, Kylie; Coleman, Heather D; Brinin, Anthony; Williams, Brett; Sainz, Manuel; Dale, James L

    2014-03-01

    Sugar cane is a major source of food and fuel worldwide. Biotechnology has the potential to improve economically-important traits in sugar cane as well as diversify sugar cane beyond traditional applications such as sucrose production. High levels of transgene expression are key to the success of improving crops through biotechnology. Here we describe new molecular tools that both expand and improve gene expression capabilities in sugar cane. We have identified promoters that can be used to drive high levels of gene expression in the leaf and stem of transgenic sugar cane. One of these promoters, derived from the Cestrum yellow leaf curling virus, drives levels of constitutive transgene expression that are significantly higher than those achieved by the historical benchmark maize polyubiquitin-1 (Zm-Ubi1) promoter. A second promoter, the maize phosphonenolpyruvate carboxylate promoter, was found to be a strong, leaf-preferred promoter that enables levels of expression comparable to Zm-Ubi1 in this organ. Transgene expression was increased approximately 50-fold by gene modification, which included optimising the codon usage of the coding sequence to better suit sugar cane. We also describe a novel dual transcriptional enhancer that increased gene expression from different promoters, boosting expression from Zm-Ubi1 over eightfold. These molecular tools will be extremely valuable for the improvement of sugar cane through biotechnology.

  8. Biotechnology for uranium extraction and environmental control

    International Nuclear Information System (INIS)

    Natarajan, K.A.

    2012-01-01

    India is looking forward to augmenting mining and extraction of uranium mineral for its nuclear energy needs. Being a radio-active mineral, mining and processing of uranium ore deposits need be carried out in an environmentally acceptable fashion. In this respect, a biotechnological approach holds great promise since it is environment-friendly, cost-effective and energy-efficient. There are several types of microorganisms which inhabit uranium ore bodies and biogenesis plays an important role in the mineralisation and transport of uranium-bearing minerals under the earth's crust. Uranium occurrences in India are only meagre and it becomes essential to tap effectively all the available resources. Uraninite and pitchblende occurring along with sulfide mineralisation such as pyrite are ideal candidates for bioleaching. Acidithiobacillus ferrooxidans present ubiquitously in the ore deposits can be isolated, cultured and utilised to bring about efficient acidic dissolution of uranium. Many such commercial attempts to extract uranium from even lean ores using acidophilic autotrophic bacteria have been made in different parts of the world. Anaerobes such a Geobacter and Sulfate Reducing Bacteria (SRB) can be effectively used in uranium mining for environmental control. Radioactive uranium mined wastes and tailing dumps can be cleaned and protected using microorganisms. In this lecture use of biotechnology in uranium extraction and bioremediation is illustrated with practical examples. Applicability of environment-friendly biotechnology for mining and extraction of uranium from Indian deposits is outlined. Commercial potentials for bioremediation in uranium-containing wastes are emphasised. (author)

  9. Independent Biotechnology: The Innovation-Regulation Dilemma

    Energy Technology Data Exchange (ETDEWEB)

    Althouse, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Prosnitz, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Velsko, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-03

    The Center for Global Security Research at Lawrence Livermore National Laboratory convened a workshop on August 19, 2016 to consider “Independent Biotechnology: The Innovation-­Regulation Dilemma”. The topic was motivated by the observation that non-­government funded biotechnology research and development activities have grown and diversified tremendously over the past decade. This sector encompasses a broad range of actors and activities: individuals with private laboratories, community “hackerspaces,” biotechnology incubators, and individual startups. Motivations and aspirations are diverse and include such things as personal curiosity, community education, the invention of new products or services, and even the realization of certain economic, political, or social goals. One driving force is the “democratization” of ever more powerful biological technologies, allowing individual citizens and groups access to capabilities that have traditionally only been available to researchers in universities, research institutes, national laboratories, and large commercial concerns. Another is the rise of alternative financing mechanisms such as “crowdsourcing,” which ostensibly provide greater freedom to innovate, and greater public visibility, but entail looser management oversight and transparency.

  10. International Marine Biotechnology Culture Collection (IMBCC)

    Energy Technology Data Exchange (ETDEWEB)

    Zaborsky, O.R.; Baker, K. [Univ. of Hawaii at Manoa, Honolulu, HI (United States)

    1996-10-01

    The objective of this project is to establish a premier culture collection of tropical marine microorganisms able to generate hydrogen from water or organic substances. Both eukaryotic and prokaryotic microorganisms will serve as the biological reservoir or {open_quotes}library{close_quotes} for other DOE Hydrogen Program contractors, the biohydrogen research community and industry. This project consists of several tasks: (a) transfer of the Mitsui-Miami strains to Hawaii`s International Marine Biotechnology Culture Collection (IMBCC) housed at the Hawaii Natural Energy Institute (HNEI); (b) maintain and distribute Mitsui-Miami strains; (c) characterize key strains by traditional and advanced biotechnological techniques; (d) expand Hawaii`s IMBCC; and (e) establish and operate an information resource (database). The project was initiated only late in the summer of 1995 but progress has been made on all tasks. Of the 161 cyanobacterial strains imported, 147 survived storage and importation and 145 are viable. with most exhibiting growth. Of the 406 strains of other photosynthetic bacteria imported, 392 survived storage and importation and 353 are viable, with many exhibiting growth. This project is linked to cooperative efforts being supported by the Japanese Ministry of International Trade and Industry (MITI) through its Marine Biotechnology Institute (MBI) and Research Institute of Innovative Technology for the Earth (RITE).

  11. Biodiversity, biotechnologies and the philosophy of biology.

    Science.gov (United States)

    Galleni, Lodovico

    2004-01-01

    The thesis of this paper is that in front of the development of biotechnology and of the capacity of techniques of altering the living, there is still a very old philosophy of biology. A rapid historical view is given where the rise and diffusion of the reductionistic paradigm is presented and the connections between this paradigm and biotechnologies are traced. Curiously biotechnologies are still based on the philosophy of F. Bacon. Then the necessity of a new paradigm in biology based on the recent discoveries of complexity is underlined. It is reminded that the main discovery of science of the XX century is that we are living in a small planet of limited resources and frail equilibriums. This discovery asks for a different view of the scientific progress, more linked to the conservation of the Biosphere than to its alteration. Stability is the task for the future interactions of human-kind with nature. For this reason the relationships between stability and diversity are summarised. Finally, as the species is the main step of Biodiversity, a brief discussion of the problems posed by the altering of species barriers is presented.

  12. Small specimen technique for assessing mechanical properties of metallic components

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, Raquel M.; Andrade, Arnaldo H.P.; Morcelli, Aparecido E., E-mail: rmlobo@ipen.br, E-mail: morcelliae@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    Small Punch Test (SPT) is one of the most promising techniques of small specimen test, which was originally applied in testing of irradiated materials in nuclear engineering. Then it was introduced to other fields as an almost nondestructive method to measure the local mechanical properties that are difficult to be obtained using conventional mechanical tests. Most studies to date are focused on metallic materials, although SPT applications are recently spreading to other materials. The small punch test (SPT) employs small-sized specimens (for example, samples measuring 8 mm in diameter and 0.5 mm thick). The specimen is firmly clamped between two circular dies and is bi-axially strained until failure into a circular hole using a hemispherical punch. The 'load-punch displacement' record can be used to estimate the yield strength, the ultimate tensile strength, the tensile elongation, and the temperature of the ductile-to-brittle transition. Recently, some researchers are working on the use of miniature notched or pre-cracked specimens (denoted as p-SPT) to validate its geometry and dimensions for obtaining the fracture properties of metallic materials. In a first approach, the technique makes it possible to convert primary experimental data into conventional mechanical properties of a massive specimen. In this paper a comprehensive review of the different STP applications is presented with the aim of clarifying its usefulness. (author)

  13. Small specimen technique for assessing mechanical properties of metallic components

    International Nuclear Information System (INIS)

    Lobo, Raquel M.; Andrade, Arnaldo H.P.; Morcelli, Aparecido E.

    2017-01-01

    Small Punch Test (SPT) is one of the most promising techniques of small specimen test, which was originally applied in testing of irradiated materials in nuclear engineering. Then it was introduced to other fields as an almost nondestructive method to measure the local mechanical properties that are difficult to be obtained using conventional mechanical tests. Most studies to date are focused on metallic materials, although SPT applications are recently spreading to other materials. The small punch test (SPT) employs small-sized specimens (for example, samples measuring 8 mm in diameter and 0.5 mm thick). The specimen is firmly clamped between two circular dies and is bi-axially strained until failure into a circular hole using a hemispherical punch. The 'load-punch displacement' record can be used to estimate the yield strength, the ultimate tensile strength, the tensile elongation, and the temperature of the ductile-to-brittle transition. Recently, some researchers are working on the use of miniature notched or pre-cracked specimens (denoted as p-SPT) to validate its geometry and dimensions for obtaining the fracture properties of metallic materials. In a first approach, the technique makes it possible to convert primary experimental data into conventional mechanical properties of a massive specimen. In this paper a comprehensive review of the different STP applications is presented with the aim of clarifying its usefulness. (author)

  14. Approaches to education of pharmaceutical biotechnology in faculties of pharmacy.

    Science.gov (United States)

    Calis, S; Oner, F; Kas, S; Hincal, A A

    2001-06-01

    Pharmaceutical biotechnology is developing rapidly both in academic institutions and in the biopharmaceutical industry. For this reason, FIP Special Interest Group of Pharmaceutical Biotechnology decided to develop a questionnaire concerning pharmaceutical biotechnology education. After preliminary studies were completed, questionnaires were sent to the leading scientists in academia and research directors or senior managers of various Pharmaceutical Biotechnology Companies in order to gather their views about how to create a satisfactory program. The objectives of this study were as follows: -To review all of the graduate and undergraduate courses which are presently available worldwide on pharmaceutical biotechnology in Faculties of Pharmacy. -To review all of the text books, references and scientific sources available worldwide in the area of pharmaceutical biotechnology. When replying to the questionnaires, the respondents were asked to consider the present status of pharmaceutical biotechnology education in academia and future learning needs in collaboration with the biotechnology industry. The data from various pharmacy faculties and biotechnology industry representatives from Asia, Europe and America were evaluated and the outcome of the survey showed that educational efforts in training qualified staff in the rapidly growing field of pharmaceutical biotechnology is promising. Part of the results of this questionnaire study have already been presented at the 57th International Congress of FIP Vancouver, Canada in 1997.

  15. Evaluation of A-1 reactor heavy-water calandria specimens

    International Nuclear Information System (INIS)

    Brumovsky, M.

    1976-01-01

    Container chains with surveillance specimens were placed in two special channels of the core peripheral part to test changes in mechanical properties due to reactor operation of caisson tube material. The specimens were made from the caisson tube material and placed by eight pieces on the outer surface of the containers. The first removed specimens were tested for corrosion losses, tensile strength, and fractured surfaces were then assessed. The changes in strength properties were found to be similar in both base material and welded joints. The corrosion film on surveillance specimens did not practically affect strength properties nor ductility. It was found that the Al-Mg-Si alloy used for the heavy water vessel caisson tubes following stabilization annealing was fully stable at operating temperatures of up to 100 degC. Slio.ht changes in properties can be attributed to the effect of a high neutron dose. Thus, the high radiation and temperature stability of the alloy was confirmed. (O.K.)

  16. ISS Biotechnology Facility - Overview of Analytical Tools for Cellular Biotechnology Investigations

    Science.gov (United States)

    Jeevarajan, A. S.; Towe, B. C.; Anderson, M. M.; Gonda, S. R.; Pellis, N. R.

    2001-01-01

    The ISS Biotechnology Facility (BTF) platform provides scientists with a unique opportunity to carry out diverse experiments in a microgravity environment for an extended period of time. Although considerable progress has been made in preserving cells on the ISS for long periods of time for later return to Earth, future biotechnology experiments would desirably monitor, process, and analyze cells in a timely way on-orbit. One aspect of our work has been directed towards developing biochemical sensors for pH, glucose, oxygen, and carbon dioxide for perfused bioreactor system developed at Johnson Space Center. Another aspect is the examination and identification of new and advanced commercial biotechnologies that may have applications to on-orbit experiments.

  17. Role of biotechnology in future agriculture. Korekarano nogyo to biotechnology eno kitai

    Energy Technology Data Exchange (ETDEWEB)

    Komano, T. (Kyoto Univ., Kyoto (Japan). Faculty of Agriculture)

    1992-09-01

    In comparison with ancient times when everything is handled empirically, biological matter suitable for purposes can be produced and utilized faster and more reliably these days when life science has made a great advance. The advancement is related to new breeding technology and production means, and those means offer the point of contact between biotechnology and agriculture. The application fields of biotechnology are microbiology, cell technology, enzyme technology (bioreactor), and gene engineering. High yield, high content of high value ingredients as foods, adaptability to environment, resistance to disease and insect damage, etc. may be the subjects expected for future agricultural organisms. There may be many areas where biotechnology is related to those organisms, but a discussion is made in this report centering around the problem in breeding. Outlines are given on the applied cases of cell technological method, gene engineering method, and recombinant DNA technology, as well as on gene engineering for plants and animals. 10 refs., 7 figs.

  18. Ultrasonic absorption in solid specimens

    International Nuclear Information System (INIS)

    Siwabessy, P.J. W.; Stewart, G.A.

    1996-01-01

    As part of a project to measure the absorption of high frequency (50 - 500 kHz) sonar signals in warm sea-water, a laboratory apparatus has been constructed and tested against room temperature distilled water and various solutions of MgSO 4 (chemical relaxation of MgSO 4 is the major contribution to absorption below 200 kHz). The technique involves monitoring the decay of an acoustic signal for different sizes of vessels of water suspended in an evacuated chamber. So far, all containing vessels used have been spherical in shape. Extrapolation of the results to infinite volume yields the absorption due to the water alone. In order to accommodate variations in temperature and pressure, and to make the system more robust (e.g. for ship deck usage), it is desirable to employ stainless steel vessels. However, it was found that the quality of the data was greatly improved when pyrex glass spheres were used. The stainless steel spheres were manufactured by welding together mechanically spun hemispheres. The linear frequency dependence characteristic of acoustic absorption in solids was observed (in contrast to the quadratic frequency dependence of acoustic absorption in water), and the acoustic absorption was found to depend strongly on the thermal history of the steel

  19. Improvement of rotary specimen rack design

    International Nuclear Information System (INIS)

    Batch, J.M.; Gietzen, A.J.

    1978-01-01

    A redesign and verification test program has been completed on a new Rotary Specimen Rack ('Lazy Susan') design for the TRIGA Mark III. The purpose of the redesign was to solve a rotation problem which occurred at power levels of about 1 MW and above. The previous redesign effort on the Mark II-type lazy susan was made in 1967 when the bearing was changed to use stellite balls, spring-type separators and stainless-steel bearing races. An extensive test program at that time showed that the design gave excellent service under all anticipated operating conditions. Fifteen of these units have been installed in the past ten years and have been essentially trouble-free. Although the bearing design for the Mark III was very similar, the component layout was such that irradiation-induced heating with associated thermal expansion resulted in decreased bearing clearance and an increase in the required driving torque. The solution involved redesign and re-arrangement of the rack drive mechanism. A series of stringent operational proof tests were made under high temperature and temperature differential conditions which proved successful operation of the new design. The severe conditions under which these tests were performed uncovered further difficulties with the bearing and led to a re-evaluation of the bearing design. A new design was developed in which the spring separators were replaced by similar sized, cylindrical graphite spacers. The entire series of operational and life tests were repeated and the performance was outstanding. Acceptable wear characteristics of the spacers were verified and the bearing was noticeably smoother and quieter than with previous designs. A Mark III lazy susan of this new design was installed in a TRIGA about one year ago and operated at power levels up to 2 MW with excellent performance. The Mark II design has now been changed to incorporate the new drive and bearing design proven for the Mark III. (author)

  20. Advancement of Marketing Developing Biotechnology-Based Business

    OpenAIRE

    Vilmantas, Vaidas; Melnikas, Borisas

    2014-01-01

    The article, in a complex way, analyzes the needs of marketing improvement in developing biotechnology-based business and highlights its role in the context of modern society and globalization challenges. The article distinguishes between the existing problems of biotechnology business, the present perspectives and specific characteristics of developing the marketing of biotechnological business. The paper represents the possibility of the substantial modernization of marketing tools with reg...

  1. The role of plant biotechnology methods in sustainable agriculture

    OpenAIRE

    Koleva Gudeva, Liljana; Trajkova, Fidanka

    2016-01-01

    Plant biotechnology is set of different scientific approaches and methods that are utilized to improve and modify plants for human and environmental benefit. Plant biotechnology can be used to meet the increasing need for food by improving yields, improving the nutritional quality of crops and recuing the impact on the environment. Plant biotechnology can assist to creation of varieties resistant to frost, droughts and floods, pests and disease, and other abiotic and biotic stresses. Similarl...

  2. UNCOVERING FACTORS INFLUENCING PUBLIC PERCEPTIONS OF FOOD BIOTECHNOLOGY

    OpenAIRE

    Hossain, Ferdaus; Onyango, Benjamin M.; Adelaja, Adesoji O.; Schilling, Brian J.; Hallman, William K.

    2002-01-01

    Significant divergence exists in public opinions about biotechnology. Although there is broad support for plant biotechnology for health benefits, opinions differ on the issue of animal genetics for pure economic benefits. While some are opposed to it, many are undecided about genetically modified foods. Considerable skepticism exists about scientists, corporations and government which have negative influence on public acceptance of food biotechnology. Consumers' personal attributes have sign...

  3. Environmental Biotechnology Research and Development Program 1989-1992

    OpenAIRE

    Brinkman J; Rulkens WH; Visscher K

    1989-01-01

    This report is an English translation of the Dutch Research and Development Program on environmental biotechnology 1989-1992. In this program an overview is given of the recent developments in environmental biotechnology. Based on this overview, the possibilities of biotechnology for management of the environment are evaluated. In this program two kinds of research are distinguished. Applied research directly focusses on specific environmental problems. Fundamental research aims at developing...

  4. Biotechnology 2000: a new German R&D programme

    OpenAIRE

    Ekkehard Warmuth

    1991-01-01

    Biotechnology 2000 is a German programme to continue the development of biotechnology started in 1982. It includes two new scientific fields for industrial innovation — genome research and neurobiology. Together with industry and the science community, the biotechnology programme will create a basis for future generations of biologically derived products and processes, including the development of safety precautions for the contained use of genetically modified organisms (GMOs) and of univers...

  5. PLANT BIOTECHNOLOGY IN THE 21ST CENTURY: THE CHALLENGES AHEAD

    OpenAIRE

    Altman, Arie

    1999-01-01

    In a world where population growth is outstripping food supply agricultural -and especially plant-biotechnology, needs to be swiftly implemented in all walks of life. Achievements today in plant biotechnology have already surpassed all previous expectations, and the future is even more promising. The full realisation of the agricultural biotechnology revolution depends on both continued successful and innovative research and development activities and on a favourable regulatory climate and pu...

  6. International Trade in Biotechnology Products and Strategic Mandatory Labelling

    OpenAIRE

    Jinji, Naoto

    2003-01-01

    This paper examines strategic motives to impose mandatory labelling of biotechnology products when consumers perceive these products as being of lower quality. When a foreign dominant firm produces a biotechnology product, it is shown that without mandatory labelling fringe firms, which produce a conventional product, provide voluntary labelling as long as voluntary labelling is fully credible. Information on which product is biotechnologically engineered is hence completely disclosed without...

  7. Biotechnology as a competitive edge for the Finnish forest cluster

    OpenAIRE

    Hakala, Terhi

    2007-01-01

    In this study we have collected information by interviewing all identified parties within the Finnish forest sector who might have a potential biotechnology connection : university research groups, research institutions, small and medium-sized biotechnology-companies and up to the largest forest companies. The ultimate goal was to assess how resources have been allocated and biotechnologies utilized within the value chain of the entire forest sector. This study aimed at providing answers to t...

  8. Biotechnology as a Competitive Edge for the Finnish Forest Cluster

    OpenAIRE

    Hakala, Terhi; Haltia, Olli; Hermans, Raine; Kulvik, Martti; Nikinmaa, Hanna; Porcar-Castell, Albert; Pursula, Tiina

    2007-01-01

    In this study we have collected information by interviewing all identified parties within the Finnish forest sector who might have a potential biotechnology connection : university research groups, research institutions, small and medium-sized biotechnology-companies and up to the largest forest companies. The ultimate goal was to assess how resources have been allocated and biotechnologies utilized within the value chain of the entire forest sector. This study aimed at providing answers to t...

  9. 7 CFR 97.8 - Specimen requirements.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Specimen requirements. 97.8 Section 97.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... required by the examiner to furnish representative specimens of the variety, or its flower, fruit, or seeds...

  10. Industrial College of the Armed Forces Industry Studies 2003: Biotechnology

    National Research Council Canada - National Science Library

    Aichouche, Abdelaziz

    2003-01-01

    Biotechnology is a discipline that integrates biology, chemistry, physiology, information technology, engineering, and nanotechnology with the potential to revolutionize every aspect of modern life...

  11. Industrial College of the Armed Forces Industry Studies 2002: Biotechnology

    National Research Council Canada - National Science Library

    2002-01-01

    The biotechnology industry is critically important to the development of products that will improve health care, agriculture, industrial processes, environmental remediation, and biological defense...

  12. [Trends of microalgal biotechnology: a view from bibliometrics].

    Science.gov (United States)

    Yang, Xiaoqiu; Wu, Yinsong; Yan, Jinding; Song, Haigang; Fan, Jianhua; Li, Yuanguang

    2015-10-01

    Microalgae is a single-cell organism with the characteristics of high light energy utilization rate, fast growth rate, high-value bioactive components and high energy material content. Therefore, microalgae has broad application prospects in food, feed, bioenergy, carbon sequestration, wastewater treatment and other fields. In this article, the microalgae biotechnology development in recent years were fully consulted, through analysis from the literature and patent. The progress of microalgal biotechnology at home and abroad is compared and discussed. Furthermore, the project layout, important achievements and development bottlenecks of microalgae biotechnology in our country were also summarized. At last, future development directions of microalgae biotechnology were discussed.

  13. Recent advances on Charpy specimen reconstitution techniques

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Arnaldo H.P.; Lobo, Raquel M.; Miranda, Carlos Alexandre J., E-mail: aandrade@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    Charpy specimen reconstitution is widely used around the world as a tool to enhance or supplement surveillance programs of nuclear reactor pressure vessels. The reconstitution technique consists in the incorporation of a small piece from a previously tested specimen into a compound specimen, allowing to increase the number of tests. This is especially important if the available materials is restricted and fracture mechanics parameter have to be determined. The reconstitution technique must fulfill some demands, among them tests results like the original standard specimens and the loaded material of the insert must not be influenced by the welding and machining procedure. It is known that reconstitution of Charpy specimens may affect the impact energy in a consequence of the constraint of plastic deformation by the hardened weldment and HAZ. This paper reviews some recent advances of the reconstitution technique and its applications. (author)

  14. Recent advances on Charpy specimen reconstitution techniques

    International Nuclear Information System (INIS)

    Andrade, Arnaldo H.P.; Lobo, Raquel M.; Miranda, Carlos Alexandre J.

    2017-01-01

    Charpy specimen reconstitution is widely used around the world as a tool to enhance or supplement surveillance programs of nuclear reactor pressure vessels. The reconstitution technique consists in the incorporation of a small piece from a previously tested specimen into a compound specimen, allowing to increase the number of tests. This is especially important if the available materials is restricted and fracture mechanics parameter have to be determined. The reconstitution technique must fulfill some demands, among them tests results like the original standard specimens and the loaded material of the insert must not be influenced by the welding and machining procedure. It is known that reconstitution of Charpy specimens may affect the impact energy in a consequence of the constraint of plastic deformation by the hardened weldment and HAZ. This paper reviews some recent advances of the reconstitution technique and its applications. (author)

  15. The biotechnology innovation machine: a source of intelligent biopharmaceuticals for the pharma industry--mapping biotechnology's success.

    Science.gov (United States)

    Evens, R P; Kaitin, K I

    2014-05-01

    The marriage of biotechnology and the pharmaceutical industry (pharma) is predicated on an evolution in technology and product innovation. It has come as a result of advances in both the science and the business practices of the biotechnology sector in the past 30 years. Biotechnology products can be thought of as "intelligent pharmaceuticals," in that they often provide novel mechanisms of action, new approaches to disease control, higher clinical success rates, improved patient care, extended patent protection, and a significant likelihood of reimbursement. Although the first biotechnology product, insulin, was approved just 32 years ago in 1982, today there are more than 200 biotechnology products commercially available. Research has expanded to include more than 900 biotechnology products in clinical trials. Pharma is substantially engaged in both the clinical development of these products and their commercialization.

  16. LPTR irradiation of LLL vanadium tensile specimens and LLL Nb--1Zr tensile specimens

    International Nuclear Information System (INIS)

    MacLean, S.C.; Rowe, C.L.

    1977-01-01

    The LPTR irradiation of 14 LLL vanadium tensile specimens and 14 LLL Nb-1Zr tensile specimens is described. Sample packaging, the irradiation schedule and neutron fluences for three energy ranges are given

  17. Biotechnologies and biomimetics for civil engineering

    CERN Document Server

    Labrincha, J; Diamanti, M; Yu, C-P; Lee, H

    2015-01-01

    Putting forward an innovative approach to solving current technological problems faced by human society, this book encompasses a holistic way of perceiving the potential of natural systems. Nature has developed several materials and processes which both maintain an optimal performance and are also totally biodegradable, properties which can be used in civil engineering. Delivering the latest research findings to building industry professionals and other practitioners, as well as containing information useful to the public, ‘Biotechnologies and Biomimetics for Civil Engineering’ serves as an important tool to tackle the challenges of a more sustainable construction industry and the future of buildings.

  18. Chrysanthemum biotechnology: discoveries from the recent literature

    Directory of Open Access Journals (Sweden)

    Teixeira da Silva Jaime A.

    2014-12-01

    Full Text Available The in vitro propagation of chrysanthemum (Chrysanthemum × grandiflorum (Ramat. Kitam., one of the world’s most important ornamentals, is a very well-studied topic and shows numerous strides each year. This mini-review condenses the knowledge that has been published on chrysanthemum biotechnology, especially in vitro culture in the wider plant science literature. In 2013 and 2014, important strides were made in molecular breeding, particularly anti-viral strategies, including through transgenics, and our understanding of flower genetics and flowering regulation.

  19. COPASI and its applications in biotechnology.

    Science.gov (United States)

    Bergmann, Frank T; Hoops, Stefan; Klahn, Brian; Kummer, Ursula; Mendes, Pedro; Pahle, Jürgen; Sahle, Sven

    2017-11-10

    COPASI is software used for the creation, modification, simulation and computational analysis of kinetic models in various fields. It is open-source, available for all major platforms and provides a user-friendly graphical user interface, but is also controllable via the command line and scripting languages. These are likely reasons for its wide acceptance. We begin this review with a short introduction describing the general approaches and techniques used in computational modeling in the biosciences. Next we introduce the COPASI package, and its capabilities, before looking at typical applications of COPASI in biotechnology. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Biotechnology network promotes knowledge of transgenics

    International Nuclear Information System (INIS)

    Blanco Picado, Patricia; Valdez Melara, Marta

    2015-01-01

    Red de Ingenieria Genetica Aplicada al Mejoramiento de Cultivos Tropicales (Rigatrop) integrated by a group of scientists from the Universidad de Costa Rica (UCR), Universidad Nacional (UNA) and of the Instituto Tecnologico de Costa Rica (TEC) have organized two forums on the topic of transgenics. The first forum has shown successful experiences of development of transgenic crops in Latin America, as for example: the transgenic bean, project realized in Brazil and transgenic eggplant in Bangladesh. The second forum has been about transgenics and environment effected at the UCR, on the occasion of World Environment Day. Rigatrop members are working currently in two projects applying biotechnological tools to coffee [es

  1. Financial Risk in the Biotechnology Industry

    OpenAIRE

    Joseph H. Golec; John A. Vernon

    2007-01-01

    The biotechnology industry has been an engine of innovation for the U.S. healthcare system and, more generally, the U.S. economy. It is by far the most research intensive industry in the U.S. In our analyses in the current paper, for example, we find that, over the past 25 years, average R&D intensity (R&D spending to total firm assets) for this industry was 38 percent. Consider that over this same period average R&D intensity for all industries was only about 3 percent. In the current paper ...

  2. Biotechnological Processes in Microbial Amylase Production.

    Science.gov (United States)

    Gopinath, Subash C B; Anbu, Periasamy; Arshad, M K Md; Lakshmipriya, Thangavel; Voon, Chun Hong; Hashim, Uda; Chinni, Suresh V

    2017-01-01

    Amylase is an important and indispensable enzyme that plays a pivotal role in the field of biotechnology. It is produced mainly from microbial sources and is used in many industries. Industrial sectors with top-down and bottom-up approaches are currently focusing on improving microbial amylase production levels by implementing bioengineering technologies. The further support of energy consumption studies, such as those on thermodynamics, pinch technology, and environment-friendly technologies, has hastened the large-scale production of the enzyme. Herein, the importance of microbial (bacteria and fungi) amylase is discussed along with its production methods from the laboratory to industrial scales.

  3. New challenges and opportunities for industrial biotechnology.

    Science.gov (United States)

    Chen, Guo-Qiang

    2012-08-20

    Industrial biotechnology has not developed as fast as expected due to some challenges including the emergences of alternative energy sources, especially shale gas, natural gas hydrate (or gas hydrate) and sand oil et al. The weaknesses of microbial or enzymatic processes compared with the chemical processing also make industrial biotech products less competitive with the chemical ones. However, many opportunities are still there if industrial biotech processes can be as similar as the chemical ones. Taking advantages of the molecular biology and synthetic biology methods as well as changing process patterns, we can develop bioprocesses as competitive as chemical ones, these including the minimized cells, open and continuous fermentation processes et al.

  4. Financial Times Global Pharmaceutical & Biotechnology Conference 2009.

    Science.gov (United States)

    Scattereggia, Jennifer

    2010-01-01

    The Financial Times Global Pharmaceutical & Biotechnology conference, held in London, included topics covering the current and future challenges confronting the pharma and biotech industry, and presented possible solutions to those challenges. This conference report highlights selected presentations on the industry challenges for big pharma companies, diversification as a solution to industry problems, overcoming challenges with collaborations and M&As, and the role of emerging markets in the pharma industry. Other subjects discussed included the expected impact of personalized medicine on the industry, the entry of big pharma into the generics market and the problems that are confronting the small pharma and biotech industry.

  5. Biotechnological Processes in Microbial Amylase Production

    Directory of Open Access Journals (Sweden)

    Subash C. B. Gopinath

    2017-01-01

    Full Text Available Amylase is an important and indispensable enzyme that plays a pivotal role in the field of biotechnology. It is produced mainly from microbial sources and is used in many industries. Industrial sectors with top-down and bottom-up approaches are currently focusing on improving microbial amylase production levels by implementing bioengineering technologies. The further support of energy consumption studies, such as those on thermodynamics, pinch technology, and environment-friendly technologies, has hastened the large-scale production of the enzyme. Herein, the importance of microbial (bacteria and fungi amylase is discussed along with its production methods from the laboratory to industrial scales.

  6. Production of vanillin: a biotechnological opportunity

    International Nuclear Information System (INIS)

    Daugsch, Andreas; Pastores, Glaucia . E-daugsch@fea.unicamp.br

    2005-01-01

    Natural aroma compounds are of major interest to the food and fragrance industry. Vanillin (3-methoxy-4-hydroxybenzaldehyde) was isolated from the vanilla beans in 1816 and its world consumption has reached today about 12000 tons per year. But only approximately 50 tons per year are extracted from vanilla pods (Vanilla planifolia). The remainder is provided by synthetic vanillin. This review is about alternative processes to produce natural vanillin de novo or by biotransformation using biotechnological methods involving enzymes, microorganisms and plant cells. (author)

  7. Biotechnology Education as Social and Cultural Production/Reproduction of the Biotechnology Community

    Science.gov (United States)

    Andrée, Maria

    2014-01-01

    This paper is a commentary to a paper by Anne Solli, Frank Bach and Björn Åkerman on how students at a technical university learn to argue as biotechnologists. Solli and her colleagues report from an ethnographic study performed during the first semester of a 5-year program in biotechnology at a technical university in Sweden. Their study…

  8. Biotechnology education as social and cultural production/reproduction of the biotechnology community

    Science.gov (United States)

    Andrée, Maria

    2014-03-01

    This paper is a commentary to a paper by Anne Solli, Frank Bach and Björn Åkerman on how students at a technical university learn to argue as biotechnologists. Solli and her colleagues report from an ethnographic study performed during the first semester of a 5-year program in biotechnology at a technical university in Sweden. Their study demonstrates how students begin to acquire `the right way' of approaching the controversial issue of producing and consuming genetically modified organisms. In my response I discuss the ethnographic account of this particular educational practice in terms of social and cultural production/reproduction of a biotechnology community and how the participants (students and teaching professors) deal with the dialectic of individual and collective transformation. In the perspective of the biotechnology community, the work done by the teaching professor becomes a way of ensuring the future of the biotechnology community in terms of what values and objectives are held highly in the community of practice.

  9. Tensile tests and metallography of brazed AISI 316L specimens after irradiation

    International Nuclear Information System (INIS)

    Groot, P.; Franconi, E.

    1994-01-01

    Stainless steel type 316L tensile specimens were vacuum brazed with three kinds of alloys: BNi-5, BNi-6, and BNi-7. The specimens were irradiated up to 0.7 dpa at 353 K in the High Flux Reactor at JRC Petten, the Netherlands. Tensile tests were performed at a constant displacement rate of 10 -3 s -1 at room temperature in the ECN hot cell facility. BNi-5 brazed specimens showed ductile behaviour. Necking and fractures were localized in the plate material. BNi-6 and BNi-7 brazed specimens failed brittle in the brazed zone. This was preceded by uniform deformation of the plate material. Tensile test results of irradiated specimens showed higher stresses due to radiation hardening and a reduction of the elongation of the plate material compared to the reference. SEM examination of the irradiated BNi-6 and BNi-7 fracture surfaces showed nonmetallic phases. These phases were not found in the reference specimens. ((orig.))

  10. 16 CFR Figure 3 to Part 1610 - Specimen Holder Supported in Specimen Rack

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Specimen Holder Supported in Specimen Rack 3 Figure 3 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT... Holder Supported in Specimen Rack ER25MR08.002 ...

  11. Mannan biotechnology: from biofuels to health.

    Science.gov (United States)

    Yamabhai, Montarop; Sak-Ubol, Suttipong; Srila, Witsanu; Haltrich, Dietmar

    2016-01-01

    Mannans of different structure and composition are renewable bioresources that can be widely found as components of lignocellulosic biomass in softwood and agricultural wastes, as non-starch reserve polysaccharides in endosperms and vacuoles of a wide variety of plants, as well as a major component of yeast cell walls. Enzymatic hydrolysis of mannans using mannanases is essential in the pre-treatment step during the production of second-generation biofuels and for the production of potentially health-promoting manno-oligosaccharides (MOS). In addition, mannan-degrading enzymes can be employed in various biotechnological applications, such as cleansing and food industries. In this review, fundamental knowledge of mannan structures, sources and functions will be summarized. An update on various aspects of mannan-degrading enzymes as well as the current status of their production, and a critical analysis of the potential application of MOS in food and feed industries will be given. Finally, emerging areas of research on mannan biotechnology will be highlighted.

  12. Biotechnological production of vanillin using immobilized enzymes.

    Science.gov (United States)

    Furuya, Toshiki; Kuroiwa, Mari; Kino, Kuniki

    2017-02-10

    Vanillin is an important and popular plant flavor, but the amount of this compound available from plant sources is very limited. Biotechnological methods have high potential for vanillin production as an alternative to extraction from plant sources. Here, we report a new approach using immobilized enzymes for the production of vanillin. The recently discovered oxygenase Cso2 has coenzyme-independent catalytic activity for the conversion of isoeugenol and 4-vinylguaiacol to vanillin. Immobilization of Cso2 on Sepabeads EC-EA anion-exchange carrier conferred enhanced operational stability enabling repetitive use. This immobilized Cso2 catalyst allowed 6.8mg yield of vanillin from isoeugenol through ten reaction cycles at a 1mL scale. The coenzyme-independent decarboxylase Fdc, which has catalytic activity for the conversion of ferulic acid to 4-vinylguaiacol, was also immobilized on Sepabeads EC-EA. We demonstrated that the immobilized Fdc and Cso2 enabled the cascade synthesis of vanillin from ferulic acid via 4-vinylguaiacol with repetitive use of the catalysts. This study is the first example of biotechnological production of vanillin using immobilized enzymes, a process that provides new possibilities for vanillin production. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Biosurfactants: Promising Molecules for Petroleum Biotechnology Advances

    Directory of Open Access Journals (Sweden)

    DARNE GERMANO DE ALMEIDA

    2016-10-01

    Full Text Available The growing global demand for sustainable technologies that improves the efficiency of petrochemical processes in the oil industry has driven advances in petroleum biotechnology in recent years. Petroleum industry uses substantial amounts of petrochemical-based synthetic surfactants in its activities as mobilizing agents to increase the availability or recovery of hydrocarbons as well as many other applications related to extraction, treatment, cleaning and transportation. However, biosurfactants have several potential applications for use across the oil processing chain and in the formulations of petrochemical products such as emulsifying/demulsifying agents, anticorrosive, biocides for sulphate-reducing bacteria, fuel formulation, extraction of bitumen from tar sands and many other innovative applications. Due to their versatility and proven efficiency, biosurfactants are often presented as valuable versatile tools that can transform and modernise petroleum biotechnology in an attempt to provide a true picture of state of the art and directions or use in the oil industry. We believe that biosurfactants are going to have a significant role in many future applications in the oil industries and in this review therefore, we highlight recent important relevant applications, patents disclosures and potential future applications for biosurfactants in petroleum and related industries.

  14. Biosurfactants: Promising Molecules for Petroleum Biotechnology Advances.

    Science.gov (United States)

    De Almeida, Darne G; Soares Da Silva, Rita de Cássia F; Luna, Juliana M; Rufino, Raquel D; Santos, Valdemir A; Banat, Ibrahim M; Sarubbo, Leonie A

    2016-01-01

    The growing global demand for sustainable technologies that improves the efficiency of petrochemical processes in the oil industry has driven advances in petroleum biotechnology in recent years. Petroleum industry uses substantial amounts of petrochemical-based synthetic surfactants in its activities as mobilizing agents to increase the availability or recovery of hydrocarbons as well as many other applications related to extraction, treatment, cleaning, and transportation. However, biosurfactants have several potential applications for use across the oil processing chain and in the formulations of petrochemical products such as emulsifying/demulsifying agents, anticorrosive, biocides for sulfate-reducing bacteria, fuel formulation, extraction of bitumen from tar sands, and many other innovative applications. Due to their versatility and proven efficiency, biosurfactants are often presented as valuable versatile tools that can transform and modernize petroleum biotechnology in an attempt to provide a true picture of state of the art and directions or use in the oil industry. We believe that biosurfactants are going to have a significant role in many future applications in the oil industries and in this review therefore, we highlight recent important relevant applications, patents disclosures and potential future applications for biosurfactants in petroleum and related industries.

  15. BIOTECHNOLOGIES OF MEAT PRODUCTS MANUFACTURE. CURRENT STATE

    Directory of Open Access Journals (Sweden)

    Bal-Prilipko L. V.

    2014-10-01

    Full Text Available The analysis of literature and patents related to the possibilities of biotechnology for optimizing the domestic meat processing plants was the aim of the article. The analysis of the results of the use of biotechnological methods in the meat processing industry is given. The prospects for their implementation are evaluated. The main development strategy of technological meat processing to develop the methods of obtaining high quality and safe meat products is highlighted. Targeted use of special strains of microorganisms in production of functional meat products offers some opportunities. Thus, such action is associated with formation of the following specific dietary components: organic acids, bactericins, enzymes, vitamins and others. They promote to improve the sanitary microbiological, organoleptic, functional and technological parameters of meat products. Using of denitrifying microbial strains could reduce the residual content of sodium nitrite in the finished product, minimizing the possible carcinogenic and mutagenic impact of this compound on a human body, producing functional safe products while maintaining its high organoleptic characteristics.

  16. Governing nanobiotechnology: lessons from agricultural biotechnology regulation

    International Nuclear Information System (INIS)

    Johnson, Robbin S.

    2011-01-01

    This article uses lessons from biotechnology to help inform the design of oversight for nanobiotechnology. Those lessons suggest the following: first, oversight needs to be broadly defined, encompassing not just regulatory findings around safety and efficacy, but also public understanding and acceptance of the technology and its products. Second, the intensity of scrutiny and review should reflect not just risks but also perceptions of risk. Finally, a global marketplace argues for uniform standards or commercially practical solutions to differences in standards. One way of designing oversight to achieve these purposes is to think about it in three phases—precaution, prudence, and promotion. Precaution comes early in the technology or product’s development and reflects real and perceived uncertainties. Prudence governs when risks and hazards have been identified, containment approaches established, and benefits broadly defined. Transparency and public participation rise to the fore. The promotional phase moves toward shaping public understanding and acceptance and involves marketing issues rather than safety ones. This flexible, three-phase approach to oversight would have avoided some of the early regulatory problems with agricultural biotechnology. It also would have led to a more risk-adjusted pathway to regulatory approval. Furthermore, it would avoid some of the arbitrary, disruptive marketing issues that have arisen.

  17. Nuclear energy in the age of biotechnology

    International Nuclear Information System (INIS)

    Deocaris, C.C.

    2002-01-01

    The unprecedented rate of discovery in molecular biology and biotechnology, in particular, the human genome sciences, has already far surpassed advancements in aerospace and nuclear science. Its influence will not only permanently mold perspectives in health, medicine and the life sciences, but will also create an impact in the field of nuclear energy development. In the next 50 years, nuclear power run by fission-reactions will be relaunched. It is bound to present more diverse applications, e.g., in propelling ships, in the production of heat for industry and for space heating, and perhaps in the desalination of water. The general public will be more at ease with nuclear power knowing that there is no other form of energy capable of delivering so much power at reasonable cost with negligible impact on climate and environment in what is perceived to be the coming of a nuclear rennaissance (Blix, 2001). This paper surveys opportunities for future nuclear energy applications in biotechnology, including DNA-damage sensors, bioelectronics and computers, genetic testing of nuclear workers and upgrading of biofuels. The relevance of these myriads of biosystems applications may not 'ust complement requirements of a nuclear power program in improving overall efficiency and safety but may also provide more diverse uses of nuclear power that may find use for developing nations. (Author)

  18. Scientific underpinnings of biotechnology regulatory frameworks.

    Science.gov (United States)

    Gleim, Savannah; Smyth, Stuart J

    2018-05-25

    Part of what is presently missing at domestic regulatory levels (and that is important at the international level as well) is a detailed understanding of what the rules of, and for, regulation should be, who the actors, stakeholders and major decision makers are and finally, how to get agreement about the rules. Greater insights into the system of rules that underpin regulatory frameworks for agri-food and biotechnology products in genetically modified (GM) crop- adopting nations will provide value by clarifying the evidence used to commercialize these technologies. This article examines the public documents available from Canada, the United States, the European Union and the Organisation for Economic Cooperation and Development regarding the development of regulatory risk assessment frameworks for products of biotechnology to determine what science grounds these frameworks. The documentation used to provide the initial structure to the existing regulatory frameworks identifies the linkages, connections and relationships that exist between science, risk assessment and regulatory policy. The relationship between risk and regulation has never been more critical to the commercialization of innovative agricultural products. Documenting the role of science-based risk assessment in regulations and how this has changed over the 20 years of experience in regulating GM crops will identify changes in the risk/regulation relationship. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  19. BIOTECHNOLOGICAL ASPECTS ANALYSIS OF AGRICULTURAL POULTRY MICROFLORA

    Directory of Open Access Journals (Sweden)

    Garda S. A.

    2014-07-01

    Full Text Available Probiotics based on normal microflora of the birds using perspective strains become increasingly popular for treatment and prophylaxis of dysbacteriosis in poultry. The purpose of the work is the biotechnological data analysis of the composition and functions of the microflora of different birds’ biotopes. One of biotechnological methods for the study of bacterial flora in the birds is a method of in vivo bacteriological control — analysis of group samples of fresh droppings. To study bird bacterial microflora the method based on vital bacteriological control (group sample study of fresh brood is the most effective. Only 60–70% of microorganisms are identified during the analysis of bowels bird microflora. It is shown that the normal microflora of the birds has a protective function because it is colonized on epithelial intestinal area and competes for power sources, has a wider set of enzymes, and also produces a wide range of exometabolites that determine their antagonistic action on pathogenic and conditionally pathogenic transient microorganisms. To improve modern technologies concerning cultivation of various breeds of birds with high genetic potential it needs full understanding of endogenous microflora role in a bird body. We found that as a source of probiotic strains it is better to use gastrointestinal tract laying hens and/or to make a selection of group tests of their fresh litter. Thus the best probiotic properties are characterized by microorganisms genera Bifidobacterium and Lactobacillus. The results could be used for selection of promising strains to create a acomplex probiotic.

  20. Uses of biotechnology in waste treatment

    International Nuclear Information System (INIS)

    Holmes, R.G.G.; Benson, J.

    1996-01-01

    BNFL have invested in a Biotechnology programme to address waste treatment problems. The use of biotechnology to destroy organic pollutants is well known and has been successfully employed both in-situ and ex-situ. The BNFL approach has been to concentrate on the interaction of microbial systems with inorganic materials. This study has resulted in two major programmes of work that show every indication of being suitable for large scale application. The first programme of work investigated using, to decontaminate concrete surfaces, the phenomena of concrete degradation by sulphur oxidizing bacteria. Laboratory tests proved encouraging and have resulted in a Co-operative Research and Development Agreement (CRADA), between BNFL and Lockheed Martin Idaho Technologies Company for the INEL site. The CRADA will lead to a demonstration of the technology. The second major area of investigation is the development of an integrated bioremediation process for the removal and recovery of toxic heavy metals from contaminated land. The two stage process, which can be employed in an in-situ or ex-situ mode, involves the use of indigenous micro-organisms to generate sulphuric acid and environmental consortia to generate hydrogen sulphide. This project has reached the point of field trials. Results from both programmes will be presented and their applications at nuclear sites detailed

  1. Biosurfactants: Promising Molecules for Petroleum Biotechnology Advances

    Science.gov (United States)

    De Almeida, Darne G.; Soares Da Silva, Rita de Cássia F.; Luna, Juliana M.; Rufino, Raquel D.; Santos, Valdemir A.; Banat, Ibrahim M.; Sarubbo, Leonie A.

    2016-01-01

    The growing global demand for sustainable technologies that improves the efficiency of petrochemical processes in the oil industry has driven advances in petroleum biotechnology in recent years. Petroleum industry uses substantial amounts of petrochemical-based synthetic surfactants in its activities as mobilizing agents to increase the availability or recovery of hydrocarbons as well as many other applications related to extraction, treatment, cleaning, and transportation. However, biosurfactants have several potential applications for use across the oil processing chain and in the formulations of petrochemical products such as emulsifying/demulsifying agents, anticorrosive, biocides for sulfate-reducing bacteria, fuel formulation, extraction of bitumen from tar sands, and many other innovative applications. Due to their versatility and proven efficiency, biosurfactants are often presented as valuable versatile tools that can transform and modernize petroleum biotechnology in an attempt to provide a true picture of state of the art and directions or use in the oil industry. We believe that biosurfactants are going to have a significant role in many future applications in the oil industries and in this review therefore, we highlight recent important relevant applications, patents disclosures and potential future applications for biosurfactants in petroleum and related industries. PMID:27843439

  2. Potential applications of insect symbionts in biotechnology.

    Science.gov (United States)

    Berasategui, Aileen; Shukla, Shantanu; Salem, Hassan; Kaltenpoth, Martin

    2016-02-01

    Symbiotic interactions between insects and microorganisms are widespread in nature and are often the source of ecological innovations. In addition to supplementing their host with essential nutrients, microbial symbionts can produce enzymes that help degrade their food source as well as small molecules that defend against pathogens, parasites, and predators. As such, the study of insect ecology and symbiosis represents an important source of chemical compounds and enzymes with potential biotechnological value. In addition, the knowledge on insect symbiosis can provide novel avenues for the control of agricultural pest insects and vectors of human diseases, through targeted manipulation of the symbionts or the host-symbiont associations. Here, we discuss different insect-microbe interactions that can be exploited for insect pest and human disease control, as well as in human medicine and industrial processes. Our aim is to raise awareness that insect symbionts can be interesting sources of biotechnological applications and that knowledge on insect ecology can guide targeted efforts to discover microorganisms of applied value.

  3. The application of biotechnology in animal nutrition

    Directory of Open Access Journals (Sweden)

    Šefer Dragan

    2015-01-01

    Full Text Available Animal food has to incorporate multiple objectives, ie. it should provide good animal health, good production and reproductive performance, reduce pollution of the environment as well as have the impact on food of animal origin, by supplying it, in addition to basic nutrients, with certain useful substances that can act preventively on the occurrence of various diseases in humans in modern living conditions. This complex task implies the application of scientific knowledge concerning biotechnology in the field of animal feed production, and also includes the use of specific nutrients that are the result of the latest developments in specific disciplines such as molecular biology and genetic engineering. As a result of researches in these areas there were created some varieties of cereals and legumes with improved nutritional properties. On the other hand, obtaining a safe food of animal origin product imposes the use of substances of natural origin (such as probiotics, prebiotics, phytobiotics, enzymes, chelating forms .., which provide better digestibility and more complete utilization of certain nutrients from the feedstuff. In this way, the quantity of undigested substances are significantly reduced as well as soil and the atmosphere pollution. The use of specific additives in animal nutrition resulting from biotechnological research is most frequent when a problem concerning certain level of production or animal health has to be overcome. This implies a group of non-nutritional ingredients which are aimed to regulate the digestive tract microflora, pH, weight gain, as well as to modify metabolic processes etc.

  4. Microbial lipases: Production, properties and biotechnological applications

    Directory of Open Access Journals (Sweden)

    Josana Maria Messias

    2011-09-01

    Full Text Available Lipases belong to the group of hydrolases that catalyze the hydrolysis of triacylglycerol lipids to free fatty acids and glycerol. They have significant potential biotechnological applications in catalyzing organic synthesis reactions in non-aqueous solvents using simplified procedures resulting in conversions of high yields. Lipase production has conventionally been performed by submerged fermentation; however, solid-state fermentation processes have been prominent when residues are used as substrates because they serve as low-cost nutrient sources. Microbial lipases can be used as additives in foods to modify and enhance organoleptic properties, as well as in detergents to hydrolyse fats in the treatment of oily effluents, and also have value for pharmaceutical, cosmetic, agrochemical, and oil chemical industries. More recently, they are used in transesterification reactions to convert plant seed oils into biodiesel. The objective of this work was to review the published literature on the production, properties and applications of microbial lipases, and its biotechnological role in producing biodiesel.

  5. Handling of biological specimens for electron microscopy

    International Nuclear Information System (INIS)

    Bullock, G.

    1987-01-01

    There are many different aspects of specimen preparation procedure which need to be considered in order to achieve good results. Whether using the scanning or transmission microscope, the initial handling procedures are very similar and are selected for the information required. Handling procedures and techniques described are: structural preservation; immuno-and histo-chemistry; x-ray microanalysis and autoradiography; dehydration and embedding; mounting and coating specimens for scanning electron microscopy; and sectioning of resin embedded material. With attention to detail and careful choice of the best available technique, excellent results should be obtainable whatever the specimen. 6 refs

  6. Evaluation of irradiated coating material specimens

    International Nuclear Information System (INIS)

    Lee, Yong Jin; Nam, Seok Woo; Cho, Lee Moon

    2007-12-01

    Evaluation result of irradiated coating material specimens - Coating material specimens radiated Gamma Energy(Co 60) in air condition. - Evaluation conditions was above 1 X 10 4 Gy/hr, and radiated TID 2.0 X 10 6 Gy. - The radiated coating material specimens, No Checking, Cracking, Flaking, Delamination, Peeling and Blistering. - Coating system at the Kori no. 1 and APR 1400 Nuclear power plant, evaluation of irradiated coating materials is in accordance with owner's requirement(2.0 X 10 6 Gy)

  7. 75 FR 1749 - Syngenta Biotechnology, Inc.; Availability of Petition and Environmental Assessment for...

    Science.gov (United States)

    2010-01-13

    ...] Syngenta Biotechnology, Inc.; Availability of Petition and Environmental Assessment for Determination of... Health Inspection Service has received a petition from Syngenta Biotechnology, Inc., seeking a....gov ). FOR FURTHER INFORMATION CONTACT: Dr. Subray Hegde, Biotechnology Regulatory Services, APHIS...

  8. 78 FR 27977 - Office of Biotechnology Activities; Recombinant DNA Research: Proposed Actions Under the NIH...

    Science.gov (United States)

    2013-05-13

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology... Recombinant or Synthetic Nucleic Acid Molecules (NIH Guidelines) SUMMARY: The NIH Office of Biotechnology... of Biotechnology Activities, National Institutes of Health, 6705 Rockledge Drive, Suite 750, Bethesda...

  9. Hairy root biotechnology of Rauwolfia serpentina: a potent approach for the production of pharmaceutically important terpenoid indole alkaloids.

    Science.gov (United States)

    Mehrotra, Shakti; Goel, Manoj K; Srivastava, Vikas; Rahman, Laiq Ur

    2015-02-01

    Hairy root cultures of Rauwolfia serpentina induced by Agrobacterium rhizogenes have been investigated extensively for the production of terpenoid indole alkaloids. Various biotechnological developments, such as scaling up in bioreactors, pathway engineering etc., have been explored to improve their metabolite production potential. These hairy roots are competent for regenerating into complete plants and show survival and unaltered biosynthetic potential during storage at low temperature. This review provides a comprehensive account of the hairy root cultures of R. serpentina, their biosynthetic potential and various biotechnological methods used to explore the production of pharmaceutically important terpenoid indole alkaloids. The review also indicates how biotechnological endeavors might improve the future progress of research for production of alkaloids using Rauwolfia hairy roots.

  10. The influence of specimen size on creep crack growth rate in cross-weld CT specimens cut out from a welded component

    International Nuclear Information System (INIS)

    Andersson, Peder; Segle, Peter; Samuelson, Lars Aa.

    1999-04-01

    A 3D finite element study of creep crack growth in cross-weld CT specimens with material properties of 2.25Cr1Mo at 550 deg C is carried out, where large strain and displacement theory is used. The creep crack growth rate is calculated using a creep ductility based damage model, in which the creep strain rate perpendicular to the crack plane ahead of the crack tip is integrated, considering the multiaxial stress state. The influence of specimen size on creep crack growth rate under constant load is given special attention, but the possibility to transfer results from cross-weld CT specimens to welded high temperature components is also investigated. The creep crack growth rate of a crack in a circumferentially welded pipe is compared with the creep crack growth rate of cross-weld CT specimens of three different sizes, cut out from the pipe. Although the constraint ahead of the crack tip is higher for a larger CT specimen, the creep crack growth rate is higher for a smaller specimen than for a larger one if they are loaded to attain the same stress intensity factor. If the specimens are loaded to the same C* value, however, a more complicated pattern occurs; depending on the material properties of the weldment constituents, the CT specimen with the intermediate size will either yield the highest or the lowest creep crack growth rate

  11. The plant biotechnology flight: Is Africa on board? | Obembe | African ...

    African Journals Online (AJOL)

    The development of plant biotechnologies has been very rapid in recent times, especially in the developed countries. The technologies have created a new branch of biotechnology known as molecular farming, where plants are engineered to produce pharmaceutical and technical proteins in large quantities. An evaluation ...

  12. A systems engineering perspective on process integration in industrial biotechnology

    NARCIS (Netherlands)

    Kiss, Anton A.; Grievink, Johan; Rito-Palomares, Marco

    2015-01-01

    Biotechnology has many applications in health care, agriculture, industry and the environment. By using renewable raw materials, biotechnology contributes to lowering greenhouse gas emissions and moving away from a petro-based towards a circular sustainable economy. However, major developments are

  13. Application of biotechnology for the domestication of Dacryodes edulis

    African Journals Online (AJOL)

    Biotechnology applications give a scope for rapid improvement and also facilitate the breeding program. Advantages of biotechnology application using molecular markers in breeding programs includes: study of genetic diversity, DNA fingerprinting of individuals, easy identification of specific traits or genes of interest, rapid ...

  14. Sectoral innovation foresight. Biotechnology sector. Final Reeport. Task 2

    NARCIS (Netherlands)

    Valk, T. van der; Gijsbers, G.W.; Meis, M.

    2010-01-01

    Biotechnology has evolved from a single set of technologies in the mid 1970s (e.g. recombinant DNA technology) into the full grown economic activity of today. The set of technologies that constitute the field of biotechnology thus find their applications in different sectors, most notably in

  15. Using the Mystery of the Cyclopic Lamb to Teach Biotechnology

    Science.gov (United States)

    Jensen, Jamie L.

    2010-01-01

    I present a learning cycle that explores different biotechnologies using the process of in situ hybridization as a platform. Students are presented with a cyclopic lamb and must use biotechnology to discover the mechanism behind the deformity. Through this activity, students learn about signal transduction and discover the processes of polymerase…

  16. Current and Future Leaders' Perceptions of Agricultural Biotechnology

    Science.gov (United States)

    Wingenbach, Gary J.; Miller, Rene P.

    2009-01-01

    Were elected state FFA officers' attitudes toward agricultural biotechnology significantly different from elected Texas legislators' attitudes about the same topic? The purpose of this study was to determine if differences existed in agricultural biotechnology perceptions or information source preferences when compared by leadership status:…

  17. Multidimensional Analysis of High-School Students' Perceptions about Biotechnology

    Science.gov (United States)

    Fonseca, Maria Joao; Costa, Patricio; Lencastre, Leonor; Tavares, Fernando

    2012-01-01

    Concerns about public understanding of biotechnology have motivated educational initiatives to improve students' competency to make scientifically sustained decisions regarding controversial issues. Understanding students' perceptions about biotechnology is essential to determine the effectiveness of these programmes. To assess how students'…

  18. Application of biotechnology in genetics and breeding of tall fescue

    International Nuclear Information System (INIS)

    Huang Xin; Ye Hongxia; Shu Xiaoli; Wu Dianxing

    2008-01-01

    Tall fescue (Festuca arundinacea Schred.) is an important lawn and pasture grass in agriculture, animal husbandy and lawn industry. The historical and present situations of tall fescue breeding were briefly introduced, and advances in the researches of molecular biology and germplasm enhancement by biotechnology in tall fescue were reviewed in the paper, which would provide the references for tall fescue breeding by biotechnology. (authors)

  19. Students' Biotechnology Literacy: The Pillars of STEM Education in Malaysia

    Science.gov (United States)

    Bahri, Nurnadiah Mohamed; Suryawati, Evi; Osman, Kamisah

    2014-01-01

    Biotechnology has been widely applied in various products throughout the 21st century. Malaysia selected the biotechnology sector as one of the key strategic technologies that would enable Malaysia to transform into a fully developed nation by the year 2020. However, to date, there has been very little research on the level of biotechnology…

  20. Feeding the world with induced mutations and biotechnology

    International Nuclear Information System (INIS)

    Mohan Jain, S.

    2002-01-01

    The paper discussed the following subjects: biotechnology - somaclonal variation, somatic embryogenesis, somatic cell hybridization; induced mutations - in banana, ornamental plants; in vitro mutagenesis; T-DNA insertional mutagenesis. Suggestions for improving biotechnology in the developing countries also presented in the paper

  1. Too New for Textbooks: The Biotechnology Discoveries & Applications Guidebook

    Science.gov (United States)

    Loftin, Madelene; Lamb, Neil E.

    2013-01-01

    The "Biotechnology Discoveries and Applications" guidebook aims to provide teachers with an overview of the recent advances in genetics and biotechnology, allowing them to share these findings with their students. The annual guidebook introduces a wealth of modern genomic discoveries and provides teachers with tools to integrate exciting…

  2. Agricultural Communications Students' Awareness and Perceptions of Biotechnology Issues.

    Science.gov (United States)

    Wingenbach, Gary J.; Rutherford, Tracy A.; Dunsford, Deborah W.

    2003-01-01

    Agricultural communications students (n=330) from 11 universities were most aware of biotechnology effects on food, less aware of effects on health and the environment. They were somewhat accepting of genetic modifications for plants, not humans. Sources of biotechnology knowledge were science classes, labs, and university professors' beliefs.…

  3.   Biotechnology in Danish forestry - Christmas trees and Biofuels

    DEFF Research Database (Denmark)

    Find, Jens

    for development of additional biotechnological breeding technologies as e.g. genetic transformation, and because SE allows for storage of elite germ plasm over extended periods in liquid nitrogen. The combination of SE and other biotechnological breeding tools permit for relative fast and market oriented breeding...

  4. Of Apples and Animals: An Introduction to Biotechnology.

    Science.gov (United States)

    Mourad, Teresa M.; And Others

    This guide is designed to foster an understanding of the basic concepts underlying biotechnology through simple activities that are fun and creative for students in grades 3-5. It contains four units that will lead young students to an appreciation of how biotechnology is possible and some of its applications. The process of learning is intended…

  5. Western Australian High School Students' Attitudes towards Biotechnology Processes

    Science.gov (United States)

    Dawson, Vaille; Schibeci, Renato

    2003-01-01

    This study reports on the attitudes towards biotechnology of 905, 15-16 year-old students from 11 Western Australian schools. Students were asked to read 15 statements about biotechnology processes and to draw a line to separate what they considered "acceptable" statements from those they considered "unacceptable". Overall, the…

  6. Sectoral Innovation Watch Biotechnology Sector. Final sector report

    NARCIS (Netherlands)

    Enzing, C.

    2011-01-01

    Biotechnology has evolved from a single set of technologies in the mid 1970s into a full grown technological field that is the driving force in innovation processes in many industrial sectors (pharmaceutical, medical, agriculture, food, chemical, environment, instruments). Nowadays, biotechnology is

  7. Biotechnology Patenting in the BRICS Countries: Strategies and Dynamics.

    Science.gov (United States)

    Streltsova, Ekaterina; Linton, Jonathan D

    2018-01-05

    The BRICS countries (Brazil, Russia, India, China, South Africa) account for 25% of global biotechnology patents. To understand the current and future landscape of the domain, it is important to better understand the capacity of these contributors. Here, we consider the thematic priorities, strategies, and key players of the BRICS countries in biotechnology patenting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. 50 CFR 14.24 - Scientific specimens.

    Science.gov (United States)

    2010-10-01

    ..., POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS... international mail system. Provided, that this exception will not apply to any specimens or parts thereof taken...

  9. Impact of specimen adequacy on the assessment of renal allograft biopsy specimens.

    Science.gov (United States)

    Cimen, S; Geldenhuys, L; Guler, S; Imamoglu, A; Molinari, M

    2016-01-01

    The Banff classification was introduced to achieve uniformity in the assessment of renal allograft biopsies. The primary aim of this study was to evaluate the impact of specimen adequacy on the Banff classification. All renal allograft biopsies obtained between July 2010 and June 2012 for suspicion of acute rejection were included. Pre-biopsy clinical data on suspected diagnosis and time from renal transplantation were provided to a nephropathologist who was blinded to the original pathological report. Second pathological readings were compared with the original to assess agreement stratified by specimen adequacy. Cohen's kappa test and Fisher's exact test were used for statistical analyses. Forty-nine specimens were reviewed. Among these specimens, 81.6% were classified as adequate, 6.12% as minimal, and 12.24% as unsatisfactory. The agreement analysis among the first and second readings revealed a kappa value of 0.97. Full agreement between readings was found in 75% of the adequate specimens, 66.7 and 50% for minimal and unsatisfactory specimens, respectively. There was no agreement between readings in 5% of the adequate specimens and 16.7% of the unsatisfactory specimens. For the entire sample full agreement was found in 71.4%, partial agreement in 20.4% and no agreement in 8.2% of the specimens. Statistical analysis using Fisher's exact test yielded a P value above 0.25 showing that - probably due to small sample size - the results were not statistically significant. Specimen adequacy may be a determinant of a diagnostic agreement in renal allograft specimen assessment. While additional studies including larger case numbers are required to further delineate the impact of specimen adequacy on the reliability of histopathological assessments, specimen quality must be considered during clinical decision making while dealing with biopsy reports based on minimal or unsatisfactory specimens.

  10. Specimen environments in thermal neutron scattering experiments

    International Nuclear Information System (INIS)

    Cebula, D.J.

    1980-11-01

    This report is an attempt to collect into one place outline information concerning the techniques used and basic design of sample environment apparatus employed in neutron scattering experiments. Preliminary recommendations for the specimen environment programme of the SNS are presented. The general conclusion reached is that effort should be devoted towards improving reliability and efficiency of operation of specimen environment apparatus and developing systems which are robust and easy to use, rather than achieving performance at the limits of technology. (author)

  11. Introduction to Pharmaceutical Biotechnology, Volume 1; Basic techniques and concepts

    Science.gov (United States)

    Bhatia, Saurabh; Goli, Divakar

    2018-05-01

    Animal biotechnology is a broad field including polarities of fundamental and applied research, as well as DNA science, covering key topics of DNA studies and its recent applications. In Introduction to Pharmaceutical Biotechnology, DNA isolation procedures followed by molecular markers and screening methods of the genomic library are explained. Interesting areas like isolation, sequencing and synthesis of genes, with the broader coverage on synthesis of genes, are also described. The book begins with an introduction to biotechnology and its main branches, explaining both the basic science and the applications of biotechnology-derived pharmaceuticals, with special emphasis on their clinical use. It then moves on to historical development and scope of biotechnology with an overall review of early applications that scientists employed long before the field was defined.

  12. MPACT OF GENETIC BIOTECHNOLOGIES ON BIOSECURITY AND FOOD SAFETY

    Directory of Open Access Journals (Sweden)

    NICA-BADEA DELIA

    2014-05-01

    Full Text Available Biosecurity is a relatively new area global, being promoted by the significant results, particularly in the last 20 years, fundamental and applied research. Biotechnology is a collection of techniques that can be used in the agro-food, medical and industrial. The paper examines the potential impact of transgenic biotechnology, vulnerabilities, implications, benefits and risks, quality of life and health. Introduction into the environment, cross-border trade and use of GMOs resulting from modern biotechnology can untoward effects on the conservation and sustainable use of biological diversity, food security and safety. It is openly acknowledged that modern biotechnology has great potential to promote human welfare, in particular, to overcome the critical needs in food, agriculture and human health. Establish appropriate safety measures when using genetically modified organisms (biosecurity policy, regulatory regime, scientific and technical measures is a highly sensitive process, aiming both to maximize the benefits of modern biotechnology and to minimize potential risk

  13. Fossil energy biotechnology: A research needs assessment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    The Office of Program Analysis of the US Department of Energy commissioned this study to evaluate and prioritize research needs in fossil energy biotechnology. The objectives were to identify research initiatives in biotechnology that offer timely and strategic options for the more efficient and effective uses of the Nation`s fossil resource base, particularly the early identification of new and novel applications of biotechnology for the use or conversion of domestic fossil fuels. Fossil energy biotechnology consists of a number of diverse and distinct technologies, all related by the common denominator -- biocatalysis. The expert panel organized 14 technical subjects into three interrelated biotechnology programs: (1) upgrading the fuel value of fossil fuels; (2) bioconversion of fossil feedstocks and refined products to added value chemicals; and, (3) the development of environmental management strategies to minimize and mitigate the release of toxic and hazardous petrochemical wastes.

  14. Thermal property testing technique on micro specimen

    International Nuclear Information System (INIS)

    Baba, Tetsuya; Kishimoto, Isao; Taketoshi, Naoyuki

    2000-01-01

    This study aims at establishment of further development on some testing techniques on the nuclear advanced basic research accumulated by the National Research Laboratory of Metrology for ten years. For this purpose, a technology to test heat diffusion ratio and specific heat capacity of less than 3 mm in diameter and 1 mm in thickness of micro specimen and technology to test heat diffusion ratio at micro area of less than 1 mm in area along cross section of less than 10 mm in diameter of column specimen were developed to contribute to common basic technology supporting the nuclear power field. As a result, as an element technology to test heat diffusion ratio and specific heat capacity of the micro specimen, a specimen holding technique stably to hold a micro specimen with 3 mm in diameter could be developed. And, for testing the specific heat capacity by using the laser flush differential calorimetry, a technique to hold two specimen of 5 mm in diameter at their proximities was also developed. In addition, by promoting development of thermal property data base capable of storing thermal property data obtained in this study and with excellent workability in this 1998 fiscal year a data in/out-put program with graphical user interface could be prepared. (G.K.)

  15. Study of Biological Pigments by Single Specimen Derivative Spectrophotometry

    Science.gov (United States)

    Goldstein, Jack M.

    1970-01-01

    The single specimen derivative (SSD) method provides an absolute absorption spectrum of a substance in the absence of a suitable reference. Both a reference and a measuring monochromatic beam pass through a single sample, and the specimen itself acts as its own reference. The two monochromatic beams maintain a fixed wavelength difference upon scanning, and the difference in absorbance of the two beams is determined. Thus, the resulting spectrum represents the first derivative of the conventional type absorption spectrum. Tissues and cell fractions have been examined at room and liquid N2 temperature and chromophoric molecules such as the mitochondrial cytochromes and blood pigments have been detectable in low concentrations. In the case of isolated cellular components, the observed effects of substrates and inhibitors confirm similar studies by conventional spectrophotometry. The extension of the SSD concept to the microscopic level has permitted the study of the tissue compartmentalization and function of cytochromes and other pigments within layered tissue. PMID:4392452

  16. Complex Biochemistry and Biotechnological Production of Betalains

    Directory of Open Access Journals (Sweden)

    Marijana Krsnik-Rasol

    2011-01-01

    Full Text Available The demand for natural food colourants is increasing because of public awareness of their health benefits. Betalains are nitrogen-containing plant pigments whose colours range from red-violet betacyanins to yellow betaxanthins. They are used for colouring dairy products, meat and frozen desserts. Betalains have attracted additional interest because of their antioxidative, anti-inflammatory and anticarcinogenic properties. The main source of commercially produced betalains is red beet root, but alternative sources are found in plants from the Amaranthaceae and Cactaceae families. Another alternative source is plant cell culture in bioreactors, although optimization of pigment production seems necessary. In this paper we synthesize the results of recent studies on betalain biosynthesis, chemical properties, sources, biotechnology and applications.

  17. Nonclinical statistics for pharmaceutical and biotechnology industries

    CERN Document Server

    2016-01-01

    This book serves as a reference text for regulatory, industry and academic statisticians and also a handy manual for entry level Statisticians. Additionally it aims to stimulate academic interest in the field of Nonclinical Statistics and promote this as an important discipline in its own right. This text brings together for the first time in a single volume a comprehensive survey of methods important to the nonclinical science areas within the pharmaceutical and biotechnology industries. Specifically the Discovery and Translational sciences, the Safety/Toxiology sciences, and the Chemistry, Manufacturing and Controls sciences. Drug discovery and development is a long and costly process. Most decisions in the drug development process are made with incomplete information. The data is rife with uncertainties and hence risky by nature. This is therefore the purview of Statistics. As such, this book aims to introduce readers to important statistical thinking and its application in these nonclinical areas. The cha...

  18. Essentials of Conservation Biotechnology: A mini review

    Science.gov (United States)

    Merlyn Keziah, S.; Subathra Devi, C.

    2017-11-01

    Equilibrium of biodiversity is essential for the maintenance of the ecosystem as they are interdependent on each other. The decline in biodiversity is a global problem and an inevitable threat to the mankind. Major threats include unsustainable exploitation, habitat destruction, fragmentation, transformation, genetic pollution, invasive exotic species and degradation. This review covers the management strategies of biotechnology which include sin situ, ex situ conservation, computerized taxonomic analysis through construction of phylogenetic trees, calculating genetic distance, prioritizing the group for conservation, digital preservation of biodiversities within the coding and decoding keys, molecular approaches to asses biodiversity like polymerase chain reaction, real time, randomly amplified polymorphic DNA, restriction fragment length polymorphism, amplified fragment length polymorphism, single sequence repeats, DNA finger printing, single nucleotide polymorphism, cryopreservation and vitrification.

  19. Identification of Conceptual Understanding in Biotechnology Learning

    Science.gov (United States)

    Suryanti, E.; Fitriani, A.; Redjeki, S.; Riandi, R.

    2018-04-01

    Research on the identification of conceptual understanding in the learning of Biotechnology, especially on the concept of Genetic Engineering has been done. The lesson is carried out by means of discussion and presentation mediated-powerpoint media that contains learning materials with relevant images and videos. This research is a qualitative research with one-shot case study or one-group posttest-only design. Analysis of 44 students' answers show that only 22% of students understand the concept, 18% of students lack understanding of concepts, 57% of students have misconceptions, and 3% of students are error. It can be concluded that most students has misconceptions in learning the concept of Genetic Engineering.

  20. New challenges and opportunities for industrial biotechnology

    Science.gov (United States)

    2012-01-01

    Industrial biotechnology has not developed as fast as expected due to some challenges including the emergences of alternative energy sources, especially shale gas, natural gas hydrate (or gas hydrate) and sand oil et al. The weaknesses of microbial or enzymatic processes compared with the chemical processing also make industrial biotech products less competitive with the chemical ones. However, many opportunities are still there if industrial biotech processes can be as similar as the chemical ones. Taking advantages of the molecular biology and synthetic biology methods as well as changing process patterns, we can develop bioprocesses as competitive as chemical ones, these including the minimized cells, open and continuous fermentation processes et al. PMID:22905695

  1. New challenges and opportunities for industrial biotechnology

    Directory of Open Access Journals (Sweden)

    Chen Guo-Qiang

    2012-08-01

    Full Text Available Abstract Industrial biotechnology has not developed as fast as expected due to some challenges including the emergences of alternative energy sources, especially shale gas, natural gas hydrate (or gas hydrate and sand oil et al. The weaknesses of microbial or enzymatic processes compared with the chemical processing also make industrial biotech products less competitive with the chemical ones. However, many opportunities are still there if industrial biotech processes can be as similar as the chemical ones. Taking advantages of the molecular biology and synthetic biology methods as well as changing process patterns, we can develop bioprocesses as competitive as chemical ones, these including the minimized cells, open and continuous fermentation processes et al.

  2. Biotechnology and the Mine of Tomorrow.

    Science.gov (United States)

    Dunbar, W Scott

    2017-01-01

    Biotechnology could provide many innovative alternatives for changing the way metals are obtained. Microbes have been used to dissolve metallic minerals and release metal ions into solution, from which pure metal can be obtained by electrolysis. Plants that accumulate metals in their roots and leaves have been used to concentrate metals, and mineral-binding peptides might be used to separate minerals. However, for billions of years microbes have been interacting with metals. Microbial communities in and near mineral sources are therefore a rich source of genetic information which could be used to create synthetic or modified microbiomes that concentrate metals. This would be a complete paradigm-change with enormous scope for transforming the way metals are obtained. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Membrane engineering in biotechnology: quo vamus?

    Science.gov (United States)

    Rios, Gilbert M; Belleville, Marie-Pierre; Paolucci-Jeanjean, Delphine

    2007-06-01

    Membranes are essential to a range of applications, including the production of potable water, energy generation, tissue repair, pharmaceutical production, food packaging, and the separations needed for the manufacture of chemicals, electronics and a range of other products. Therefore, they are considered to be "dominant technologies" by governments and industry in several prominent countries--for example, USA, Japan and China. When combined with catalysts, membranes are at the basis of life, and membrane-based biomimetism is a key tool to obtain better quality products and environmentally friendly developments for our societies. Biology has a main part in this global landscape because it simultaneously provides the "model" (with natural biological membranes) and represents a considerable field of applications for new artificial membranes (biotreatments, bioconversions and artificial organs). In this article, our objective is to open up this enthralling area and to give our views about the future of membranes in biotechnology.

  4. Application of biofilm bioreactors in white biotechnology.

    Science.gov (United States)

    Muffler, K; Lakatos, M; Schlegel, C; Strieth, D; Kuhne, S; Ulber, R

    2014-01-01

    The production of valuable compounds in industrial biotechnology is commonly done by cultivation of suspended cells or use of (immobilized) enzymes rather than using microorganisms in an immobilized state. Within the field of wastewater as well as odor treatment the application of immobilized cells is a proven technique. The cells are entrapped in a matrix of extracellular polymeric compounds produced by themselves. The surface-associated agglomerate of encapsulated cells is termed biofilm. In comparison to common immobilization techniques, toxic effects of compounds used for cell entrapment may be neglected. Although the economic impact of biofilm processes used for the production of valuable compounds is negligible, many prospective approaches were examined in the laboratory and on a pilot scale. This review gives an overview of biofilm reactors applied to the production of valuable compounds. Moreover, the characteristics of the utilized materials are discussed with respect to support of surface-attached microbial growth.

  5. Bacteriophage ecology in environmental biotechnology processes.

    Science.gov (United States)

    Shapiro, Orr H; Kushmaro, Ariel

    2011-06-01

    Heterotrophic bacteria are an integral part of any environmental biotechnology process (EBP). Therefore, factors controlling bacterial abundance, activity, and community composition are central to the understanding of such processes. Among these factors, top-down control by bacteriophage predation has so far received very limited attention. With over 10(8) particles per ml, phage appear to be the most numerous biological entities in EBP. Phage populations in EBP appear to be highly dynamic and to correlate with the population dynamics of their hosts and genomic evidence suggests bacteria evolve to avoid phage predation. Clearly, there is much to learn regarding bacteriophage in EBP before we can truly understand the microbial ecology of these globally important systems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Biotechnological production of limonene in microorganisms.

    Science.gov (United States)

    Jongedijk, Esmer; Cankar, Katarina; Buchhaupt, Markus; Schrader, Jens; Bouwmeester, Harro; Beekwilder, Jules

    2016-04-01

    This mini review describes novel, biotechnology-based, ways of producing the monoterpene limonene. Limonene is applied in relatively highly priced products, such as fragrances, and also has applications with lower value but large production volume, such as biomaterials. Limonene is currently produced as a side product from the citrus juice industry, but the availability and quality are fluctuating and may be insufficient for novel bulk applications. Therefore, complementary microbial production of limonene would be interesting. Since limonene can be derivatized to high-value compounds, microbial platforms also have a great potential beyond just producing limonene. In this review, we discuss the ins and outs of microbial limonene production in comparison with plant-based and chemical production. Achievements and specific challenges for microbial production of limonene are discussed, especially in the light of bulk applications such as biomaterials.

  7. Biotechnological interventions in Withania somnifera (L.) Dunal.

    Science.gov (United States)

    Singh, Pritika; Guleri, Rupam; Singh, Varinder; Kaur, Gurpreet; Kataria, Hardeep; Singh, Baldev; Kaur, Gurcharan; Kaul, Sunil C; Wadhwa, Renu; Pati, Pratap Kumar

    2015-01-01

    Withania somnifera is one of the most valued plants and is extensively used in Indian, Unani, and African systems of traditional medicine. It possess a wide array of therapeutic properties including anti-arthritic, anti-aging, anti-cancer, anti-inflammatory, immunoregulatory, chemoprotective, cardioprotective, and recovery from neurodegenerative disorders. With the growing realization of benefits and associated challenges in the improvement of W. somnifera, studies on exploration of genetic and chemotypic variations, identification and characterization of important genes, and understanding the secondary metabolites production and their modulation has gained significant momentum. In recent years, several in vitro and in vivo preclinical studies have facilitated the validation of therapeutic potential of the phytochemicals derived from W. somnifera and have provided necessary impetus for gaining deeper insight into the mechanistic aspects involved in the mode of action of these important pharmaceutically active constituents. The present review highlights some of the current developments and future prospects of biotechnological intervention in this important medicinal plant.

  8. Interfacing microbiology and biotechnology. Conference abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Maupin, Julia A.

    2001-05-19

    The Interfacing Microbiology and Biotechnology Conference was attended by over 100 faculty, post-docs, students, and research scientists from the US, Europe, and Latin America. The conference successfully stimulated communication and the dissemination of knowledge among scientists involved in basic and applied research. The focus of the conference was on microbial physiology and genetics and included sessions on C1 metabolism, archaeal metabolism, proteases and chaperones, gene arrays, and metabolic engineering. The meeting provided the setting for in-depth discussions between scientists who are internationally recognized for their research in these fields. The following objectives were met: (1) The promotion of interaction and future collaborative projects among scientists involved in basic and applied research which incorporates microbial physiology, genetics, and biochemistry; (2) the facilitation of communication of new research findings through seminars, posters, and abstracts; (3 ) the stimulation of enthusiasm and education among participants including graduate and undergraduate students.

  9. Anaerobes in Industrial- and Environmental Biotechnology.

    Science.gov (United States)

    Hatti-Kaul, Rajni; Mattiasson, Bo

    Anaerobic microorganisms present in diverse ecological niches employ alternative strategies for energy conservation in the absence of oxygen which enables them to play a key role in maintaining the global cycles of carbon, nitrogen, and sulfur, and the breakdown of persistent compounds. Thereby they become useful tools in industrial and environmental biotechnology. Although anaerobes have been relatively neglected in comparison to their aerobic counterparts, with increasing knowledge about their diversity and metabolic potential and the development of genetic tools and process technologies to utilize them, we now see a rapid expansion of their applications in the society. This chapter summarizes some of the developments in the use of anaerobes as tools for biomass valorization, in production of energy carriers and chemicals, wastewater treatment, and the strong potential in soil remediation. The ability of several autotrophic anaerobes to reduce carbon dioxide is attracting growing attention as a means for developing a platform for conversion of waste gases to chemicals, materials, and biofuels.

  10. A sign-theoretic approach to biotechnology

    DEFF Research Database (Denmark)

    Bruni, Luis Emilio

    ” semiotic networks across hierarchical levels and for relating the different emergent codes in living systems. I consider this an important part of the work because there I define some of the main concepts that will help me to analyse different codes and semiotic processes in living systems in order...... to exemplify what is the relevance of a sign-theoretic approach to biotechnology. In particular, I introduce the notion of digital-analogical consensus as a semiotic pattern for the creation of complex logical products that constitute specific signs. The chapter ends with some examples of conspicuous semiotic...... to exemplify how a semiotic approach can be of help when organising the knowledge that can lead us to understanding the relevance, the role and the position of signal transduction networks in relation to the larger semiotic networks in which they function, i.e.: in the hierarchical formal processes of mapping...

  11. Biotechnology in petroleum recovery. The microbial EOR

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ramkrishna [Department of Biotechnology, Indian Institute of Technology (IIT), Kharagpur, West Bengal 721302 (India)

    2008-12-15

    Biotechnology has played a significant role in enhancing crude oil recovery from the depleted oil reservoirs to solve stagnant petroleum production, after a three-stage recovery process employing mechanical, physical and chemical methods. Biotechnologically enhanced oil recovery processes, known as microbial enhanced oil recovery (MEOR), involve stimulating indigenous reservoir microbes or injecting specially selected consortia of natural bacteria into the reservoir to produce specific metabolic events that lead to improved oil recovery. This also involves flooding with oil recovery agents produced ex situ by industrial or pilot scale fermentation. This paper essentially reviews the operating mechanisms and the progress made in enhanced oil recovery through the use of microbes and their metabolic products. Improvement in oil recovery by injecting solvents and gases or by energizing the reservoir microflora to produce them in situ for carbonate rock dissolution and reservoir re-pressurization has been enunciated. The role of biosurfactants in oil mobilization through emulsification and that of biopolymers for selective plugging of oil-depleted zones and for biofilm formation have been delineated. The spoil sport played by sulfate-reducing bacteria (SRB) in MEOR has also been briefly reviewed. The importance of mathematical models used in predicting the applicability of an MEOR strategy and the microbial growth and transport has been qualitatively discussed. The results of some laboratory studies and worldwide field trials applying ex situ and in situ MEOR technologies were compiled and interpreted. However, the potential of the MEOR technologies has not been fully realized due to poor yield of the useful microbial metabolic products, growth inhibition by accumulated toxic metabolites and longer time of incubation. A complete evaluation and assessment of MEOR from an engineering standpoint based on economics, applicability and performance is required to further

  12. Development of agriculture biotechnology in Pakistan.

    Science.gov (United States)

    Zafar, Yusuf

    2007-01-01

    Agriculture plays an important role in the national economy of Pakistan, where most of the rapidly increasing population resides in rural areas and depends on agriculture for subsistence. Biotechnology has considerable potential for promoting the efficiency of crop improvement, food production, and poverty reduction. Use of modern biotechnology started in Pakistan since 1985. Currently, there are 29 biotech centers/institutes in the country. However, few centers have appropriate physical facilities and trained manpower to develop genetically modified (GM) crops. Most of the activities have been on rice and cotton, which are among the top 5 crops of Pakistan. Biotic (virus/bacterial/insect) and abiotic (salt) resistant and quality (male sterility) genes have already been incorporated in some crop plants. Despite acquiring capacity to produce transgenic plants, no GM crops, either produced locally or imported, have been released in the country. Pakistan is signatory to the World Trade Organization, Convention on Biological Diversity, and Cartagena protocols. Several legislations under the Agreement on Trade-Related Aspects of Intellectual Property Rights have been promulgated in the country. National Biosafety Guidelines have been promulgated in April 2005. The Plant Breeders Rights Act, Amendment in Seed Act-1976, and Geographical Indication for Goods are still passing through discussion, evaluation, and analysis phases. Meanwhile, an illegal GM crop (cotton) has already sneaked into farmer's field. Concerted and coordinated efforts are needed among various ministries for implementation of regulation and capacity building for import/export and local handling of GM crops. Pakistan could easily benefit from the experience of Asian countries, especially China and India, where conditions are similar and the agriculture sector is almost like that of Pakistan. Thus, the exchange of information and experiences is important among these nations.

  13. Sustainable Use of Biotechnology for Bioenergy Feedstocks

    Science.gov (United States)

    Moon, Hong S.; Abercrombie, Jason M.; Kausch, Albert P.; Stewart, C. Neal

    2010-10-01

    Done correctly, cellulosic bioenergy should be both environmentally and economically beneficial. Carbon sequestration and decreased fossil fuel use are both worthy goals in developing next-generation biofuels. We believe that biotechnology will be needed to significantly improve yield and digestibility of dedicated perennial herbaceous biomass feedstocks, such as switchgrass and Miscanthus, which are native to the US and China, respectively. This Forum discusses the sustainability of herbaceous feedstocks relative to the regulation of biotechnology with regards to likely genetically engineered traits. The Forum focuses on two prominent countries wishing to develop their bioeconomies: the US and China. These two countries also share a political desire and regulatory frameworks to enable the commercialization and wide release of transgenic feedstocks with appropriate and safe new genetics. In recent years, regulators in both countries perform regular inspections of transgenic field releases and seriously consider compliance issues, even though the US framework is considered to be more mature and stringent. Transgene flow continues to be a pertinent environmental and regulatory issue with regards to transgenic plants. This concern is largely driven by consumer issues and ecological uncertainties. Regulators are concerned about large-scale releases of transgenic crops that have sexually compatible crops or wild relatives that can stably harbor transgenes via hybridization and introgression. Therefore, prior to the commercialization or extensive field testing of transgenic bioenergy feedstocks, we recommend that mechanisms that ensure biocontainment of transgenes be instituted, especially for perennial grasses. A cautionary case study will be presented in which a plant’s biology and ecology conspired against regulatory constraints in a non-biomass crop perennial grass (creeping bentgrass, Agrostis stolonifera), in which biocontainment was not attained. Appropriate

  14. Closeout of JOYO-1 Specimen Fabrication Efforts

    International Nuclear Information System (INIS)

    ME Petrichek; JL Bump; RF Luther

    2005-01-01

    Fabrication was well under way for the JOYO biaxial creep and tensile specimens when the NR Space program was canceled. Tubes of FS-85, ASTAR-811C, and T-111 for biaxial creep specimens had been drawn at True Tube (Paso Robles, CA), while tubes of Mo-47.5 Re were being drawn at Rhenium Alloys (Cleveland, OH). The Mo-47.5 Re tubes are now approximately 95% complete. Their fabrication and the quantities produced will be documented at a later date. End cap material for FS-85, ASTAR-811C, and T-111 had been swaged at Pittsburgh Materials Technology, Inc. (PMTI) (Large, PA) and machined at Vangura (Clairton, PA). Cutting of tubes, pickling, annealing, and laser engraving were in process at PMTI. Several biaxial creep specimen sets of FS-85, ASTAR-811C, and T-111 had already been sent to Pacific Northwest National Laboratory (PNNL) for weld development. In addition, tensile specimens of FS-85, ASTAR-811C, T-111, and Mo-47.5 Re had been machined at Kin-Tech (North Huntington, PA). Actual machining of the other specimen types had not been initiated. Flowcharts 1-3 detail the major processing steps each piece of material has experienced. A more detailed description of processing will be provided in a separate document [B-MT(SRME)-51]. Table 1 lists the in-process materials and finished specimens. Also included are current metallurgical condition of these materials and specimens. The available chemical analyses for these alloys at various points in the process are provided in Table 2

  15. Clinical evaluation of a mobile digital specimen radiography system for intraoperative specimen verification.

    Science.gov (United States)

    Wang, Yingbing; Ebuoma, Lilian; Saksena, Mansi; Liu, Bob; Specht, Michelle; Rafferty, Elizabeth

    2014-08-01

    Use of mobile digital specimen radiography systems expedites intraoperative verification of excised breast specimens. The purpose of this study was to evaluate the performance of a such a system for verifying targets. A retrospective review included 100 consecutive pairs of breast specimen radiographs. Specimens were imaged in the operating room with a mobile digital specimen radiography system and then with a conventional digital mammography system in the radiology department. Two expert reviewers independently scored each image for image quality on a 3-point scale and confidence in target visualization on a 5-point scale. A target was considered confidently verified only if both reviewers declared the target to be confidently detected. The 100 specimens contained a total of 174 targets, including 85 clips (49%), 53 calcifications (30%), 35 masses (20%), and one architectural distortion (1%). Although a significantly higher percentage of mobile digital specimen radiographs were considered poor quality by at least one reviewer (25%) compared with conventional digital mammograms (1%), 169 targets (97%), were confidently verified with mobile specimen radiography; 172 targets (98%) were verified with conventional digital mammography. Three faint masses were not confidently verified with mobile specimen radiography, and conventional digital mammography was needed for confirmation. One faint mass and one architectural distortion were not confidently verified with either method. Mobile digital specimen radiography allows high diagnostic confidence for verification of target excision in breast specimens across target types, despite lower image quality. Substituting this modality for conventional digital mammography can eliminate delays associated with specimen transport, potentially decreasing surgical duration and increasing operating room throughput.

  16. A bibliometric assessment of ASEAN collaboration in plant biotechnology

    KAUST Repository

    Payumo, Jane

    2015-04-03

    This study draws on publication and citation data related to plant biotechnology from a 10-year (2004–2013) period to assess the research performance, impact, and collaboration of member states of the Association of Southeast Asian Nations (ASEAN). Plant biotechnology is one of the main areas of cooperation between ASEAN member states and among the research areas promoted to achieve regional food security and sustainable development. In general, findings indicate increased scientific output, influence, and overall collaboration of ASEAN countries in plant biotechnology over time. Research performance and collaboration (domestic, regional, and international) of the region in plant biotechnology are linked to the status of the economic development of each member country. Thailand produced the most publications of the ASEAN member states while Singapore had the highest influence as indicated by its citation activity in plant biotechnology among the ASEAN countries. Domestic and international collaborations on plant biotechnology are numerous. Regional collaboration or partnership among ASEAN countries was, however, was found to be very limited, which is a concern for the region’s goal of economic integration and science and technology cooperation. More studies using bibliometric data analysis need to be conducted to understand plant biotechnology cooperation and knowledge flows between ASEAN countries. © 2015 Akadémiai Kiadó, Budapest, Hungary

  17. Test methodology and technology of fracture toughness for small size specimens

    Energy Technology Data Exchange (ETDEWEB)

    Wakai, E.; Takada, F.; Ishii, T.; Ando, M. [Japan Atomic Energy Agency, Naga-gun, Ibaraki-ken (Japan); Matsukawa, S. [JNE Techno-Research Co., Kanagawa-ken (Japan)

    2007-07-01

    Full text of publication follows: Small specimen test technology (SSTT) is required to investigate mechanical properties in the limited availability of effective irradiation volumes in test reactors and accelerator-based neutron and charged particle sources. The test methodology guideline and the manufacture processes for very small size specimens have not been established, and we would have to formulate it. The technology to control exactly the load and displacement is also required in the test technology under the environment of high dose radiation produced from the specimens. The objective of this study is to examine the test technology and methodology of fracture toughness for very small size specimens. A new bend test machine installed in hot cell has been manufactured to obtain fracture toughness and DBTT (ductile - brittle transition temperature) of reduced-activation ferritic/martensitic steels for small bend specimens of t/2-1/3PCCVN (pre-cracked 1/3 size Charpy V-notch) with 20 mm length and DFMB (deformation and fracture mini bend specimen) with 9 mm length. The new machine can be performed at temperatures from -196 deg. C to 400 deg. C under unloading compliance method. Neutron irradiation was also performed at about 250 deg. C to about 2 dpa in JMTR. After the irradiation, fracture toughness and DBTT were examined by using the machine. Checking of displacement measurement between linear gauge of cross head's displacement and DVRT of the specimen displacement was performed exactly. Conditions of pre-crack due to fatigue in the specimen preparation were also examined and it depended on the shape and size of the specimens. Fracture toughness and DBTT of F82H steel for t/2-1/3PCCVN, DFMB and 0.18DCT specimens before irradiation were examined as a function of temperature. DBTT of smaller size specimens of DFMB was lower than that of larger size specimen of t/2-1/3PCCVN and 0.18DCT. The changes of fracture toughness and DBTT due to irradiation were also

  18. Sequencing historical specimens: successful preparation of small specimens with low amounts of degraded DNA.

    Science.gov (United States)

    Sproul, John S; Maddison, David R

    2017-11-01

    Despite advances that allow DNA sequencing of old museum specimens, sequencing small-bodied, historical specimens can be challenging and unreliable as many contain only small amounts of fragmented DNA. Dependable methods to sequence such specimens are especially critical if the specimens are unique. We attempt to sequence small-bodied (3-6 mm) historical specimens (including nomenclatural types) of beetles that have been housed, dried, in museums for 58-159 years, and for which few or no suitable replacement specimens exist. To better understand ideal approaches of sample preparation and produce preparation guidelines, we compared different library preparation protocols using low amounts of input DNA (1-10 ng). We also explored low-cost optimizations designed to improve library preparation efficiency and sequencing success of historical specimens with minimal DNA, such as enzymatic repair of DNA. We report successful sample preparation and sequencing for all historical specimens despite our low-input DNA approach. We provide a list of guidelines related to DNA repair, bead handling, reducing adapter dimers and library amplification. We present these guidelines to facilitate more economical use of valuable DNA and enable more consistent results in projects that aim to sequence challenging, irreplaceable historical specimens. © 2017 John Wiley & Sons Ltd.

  19. How can developing countries harness biotechnology to improve health?

    Directory of Open Access Journals (Sweden)

    Persad Deepa L

    2007-12-01

    Full Text Available Abstract Background The benefits of genomics and biotechnology are concentrated primarily in the industrialized world, while their potential to combat neglected diseases in the developing world has been largely untapped. Without building developing world biotechnology capacity to address local health needs, this disparity will only intensify. To assess the potential of genomics to address health needs in the developing world, the McLaughlin-Rotman Centre for Global Health, along with local partners, organized five courses on Genomics and Public Health Policy in the developing world. The overall objective of the courses was to collectively explore how to best harness genomics to improve health in each region. This article presents and analyzes the recommendations from all five courses. Discussion In this paper we analyze recommendations from 232 developing world experts from 58 countries who sought to answer how best to harness biotechnology to improve health in their regions. We divide their recommendations into four categories: science; finance; ethics, society and culture; and politics. Summary The Courses' recommendations can be summarized across the four categories listed above: Science - Collaborate through national, regional, and international networks - Survey and build capacity based on proven models through education, training, and needs assessments Finance - Develop regulatory and intellectual property frameworks for commercialization of biotechnology - Enhance funding and affordability of biotechnology - Improve the academic-industry interface and the role of small and medium enterprise Ethics, Society, Culture - Develop public engagement strategies to inform and educate the public about developments in genomics and biotechnology - Develop capacity to address ethical, social and cultural issues - Improve accessibility and equity Politics - Strengthen understanding, leadership and support at the political level for biotechnology

  20. The role of biotechnology in combating climate change

    DEFF Research Database (Denmark)

    Aerni, Philipp; Gagalac, Florabelle; Scholderer, Joachim

    2016-01-01

    on biotechnology and climate change was conducted with 55 representatives of 44 institutions. The results of a perception pattern analysis show that the majority of stakeholder representatives had a neutral or positive attitude towards the use of biotechnology and regarded its potential to address climate change...... problems as significant. The survey results further reveal a significant relationship between a representative’s institutional and disciplinary background and his or her attitude. The respective background appears to determine to a considerable extent whether biotechnology is framed as a risk...

  1. Yeast biotechnology: teaching the old dog new tricks

    Science.gov (United States)

    2014-01-01

    Yeasts are regarded as the first microorganisms used by humans to process food and alcoholic beverages. The technology developed out of these ancient processes has been the basis for modern industrial biotechnology. Yeast biotechnology has gained great interest again in the last decades. Joining the potentials of genomics, metabolic engineering, systems and synthetic biology enables the production of numerous valuable products of primary and secondary metabolism, technical enzymes and biopharmaceutical proteins. An overview of emerging and established substrates and products of yeast biotechnology is provided and discussed in the light of the recent literature. PMID:24602262

  2. Microbial biotechnology and circular economy in wastewater treatment.

    Science.gov (United States)

    Nielsen, Per Halkjaer

    2017-09-01

    Microbial biotechnology is essential for the development of circular economy in wastewater treatment by integrating energy production and resource recovery into the production of clean water. A comprehensive knowledge about identity, physiology, ecology, and population dynamics of process-critical microorganisms will improve process stability, reduce CO2 footprints, optimize recovery and bioenergy production, and help finding new approaches and solutions. Examples of research needs and perspectives are provided, demonstrating the great importance of microbial biotechnology. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  3. Advances in biomedical engineering and biotechnology during 2013-2014.

    Science.gov (United States)

    Liu, Feng; Wang, Ying; Burkhart, Timothy A; González Penedo, Manuel Francisco; Ma, Shaodong

    2014-01-01

    The 3rd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2014), held in Beijing from the 25th to the 28th of September 2014, is an annual conference that intends to provide an opportunity for researchers and practitioners around the world to present the most recent advances and future challenges in the fields of biomedical engineering, biomaterials, bioinformatics and computational biology, biomedical imaging and signal processing, biomechanical engineering and biotechnology, amongst others. The papers published in this issue are selected from this conference, which witnesses the advances in biomedical engineering and biotechnology during 2013-2014.

  4. Yeast biotechnology: teaching the old dog new tricks.

    Science.gov (United States)

    Mattanovich, Diethard; Sauer, Michael; Gasser, Brigitte

    2014-03-06

    Yeasts are regarded as the first microorganisms used by humans to process food and alcoholic beverages. The technology developed out of these ancient processes has been the basis for modern industrial biotechnology. Yeast biotechnology has gained great interest again in the last decades. Joining the potentials of genomics, metabolic engineering, systems and synthetic biology enables the production of numerous valuable products of primary and secondary metabolism, technical enzymes and biopharmaceutical proteins. An overview of emerging and established substrates and products of yeast biotechnology is provided and discussed in the light of the recent literature.

  5. The impact of plant biotechnology on food allergy.

    Science.gov (United States)

    Herman, Eliot M; Burks, A Wesley

    2011-04-01

    Concerns about food allergy and its societal growth are intertwined with the growing advances in plant biotechnology. The knowledge of plant genes and protein structures provides the key foundation to understanding biochemical processes that produce food allergy. Biotechnology offers the prospect of producing low-allergen or allergen null plants that could mitigate the allergic response. Modified low-IgE binding variants of allergens could be used as a vaccine to build immunotolerance in sensitive individuals. The potential to introduce new allergens into the food supply by biotechnology products is a regulatory concern. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Comparing the Governance of Novel Products and Processes of Biotechnology

    DEFF Research Database (Denmark)

    Hansen, Janus

    The emergence of novel products and processes of biotechnology in medicine, industry and agriculture has been accompanied by promises of healthier, safer and more productive lives and societies. However, biotechnology has also served as cause and catalyst of social controversy about the physical...... to start to fill this gap and develop a conceptual framework for comparing and analysing new and emerging modes of governance affiliated with biotechnology in the light of more general approaches to governance. We aim for a framework that can facilitate comparative inquiries and learning across different...

  7. Observation and control of hepatic specimens with MRI and MRS

    International Nuclear Information System (INIS)

    Ludescher, B.; Wietek, B.; Machann, J.; Graf, H.; Schick, F.; Subke, J.; Claussen, C.D.

    2004-01-01

    Purpose: The purpose of this study was to observe the process of fixation in liver specimens non-invasively by means of magnetic resonance. The fixation process of several formaldehyde-containing solutions was monitored with MRI and MRS at two different temperatures. Materials and Methods: Liver specimens were conserved in aqueous fixative solutions containing formaldehyde concentrations of 0.7, 1.8, 4 and 7.2% and at different temperatures of 5 C and 20 C. MRI was performed with T1-, T2- and PD-weighted TSE sequences, a 2D FLASH-sequence with and without magnetization transfer, and a FISP 3D-sequence on a clinical 1.5 Tesla MR whole-body unit, and MRS with 1 H-spectroscopic methods (STEAM-sequence) on a 3 Tesla MR whole-body unit. Results: The diffusion of formaldehyde into the tissue was best identified on PD- and T1-weighted images as a band under the liver surface with increasing thickness, penetrating especially fast during the first three days. Spectroscopic measurements revealed the rising formaldehyde concentration in the inner part of the organs. Temperature had no significant influence on the velocity of immersing, but cooling conditions produced less gas-filled caverns due to reduced undesired decomposition processes. Conclusion: The spatial and temporal process of ongoing fixation in the liver can be monitored by MRI. MRS confirms a rising concentration of formaldehyde during ongoing fixation. (orig.) [de

  8. Research activities on supercritical fluid science in food biotechnology.

    Science.gov (United States)

    Khosravi-Darani, Kianoush

    2010-06-01

    This article serves as an overview, introducing the currently popular area of supercritical fluids and their uses in food biotechnology. Within each application, and wherever possible, the basic principles of the technique, as well as a description of the history, instrumentation, methodology, uses, problems encountered, and advantages over the traditional, non-supercritical methods are given. Most current commercial application of the supercritical extraction involve biologically-produced materials; the technique may be particularly relevant to the extraction of biological compounds in cases where there is a requirement for low-temperature processing, high mass-transfer rates, and negligible carrying over of the solvent into the final product. Special applications to food processing include the decaffeination of green coffee beans, the production of hops extracts, the recovery of aromas and flavors from herbs and spices, the extraction and fractionation of edible oils, and the removal of contaminants, among others. New advances, in which the extraction is combined with reaction or crystallization steps, may further increase the attractiveness of supercritical fluids in the bioprocess industries. To develop and establish a novel and effective alternative to heating treatment, the lethal action of high hydrostatic pressure CO(2) on microorganisms, with none or only a minimal heating process, has recently received a great deal of attention.

  9. Enhanced extracellular chitinase production in Pseudomonas fluorescens: biotechnological implications

    Directory of Open Access Journals (Sweden)

    Azhar Alhasawi

    2017-06-01

    Full Text Available Chitin is an important renewable biomass of immense commercial interest. The processing of this biopolymer into value-added products in an environmentally-friendly manner necessitates its conversion into N-acetyl glucosamine (NAG, a reaction mediated by the enzyme chitinase. Here we report on the ability of the soil microbe Pseudomonas fluorescens to secrete copious amounts of chitinase in the spent fluid when cultured in mineral medium with chitin as the sole source of carbon and nitrogen. Although chitinase was detected in various cellular fractions, the enzyme was predominantly localized in the extracellular component that was also rich in NAG and glucosamine. Maximal amounts of chitinase with a specific activity of 80 µmol NAG produced mg–1 protein min–1 was obtained at pH 8 after 6 days of growth in medium with 0.5 g of chitin. In-gel activity assays and Western blot studies revealed three isoenzymes. The enzyme had an optimal activity at pH 10 and a temperature range of 22–38 ℃. It was stable for up to 3 months. Although it showed optimal specificity toward chitin, the enzyme did readily degrade shrimp shells. When these shells (0.1 g were treated with the extracellular chitinase preparation, NAG [3 mmoles (0.003 g-mol] was generated in 6 h. The extracellular nature of the enzyme coupled with its physico-chemical properties make this chitinase an excellent candidate for biotechnological applications.

  10. Extremophilic micro-algae and their potential contribution in biotechnology.

    Science.gov (United States)

    Varshney, Prachi; Mikulic, Paulina; Vonshak, Avigad; Beardall, John; Wangikar, Pramod P

    2015-05-01

    Micro-algae have potential as sustainable sources of energy and products and alternative mode of agriculture. However, their mass cultivation is challenging due to low survival under harsh outdoor conditions and competition from other, undesired, species. Extremophilic micro-algae have a role to play by virtue of their ability to grow under acidic or alkaline pH, high temperature, light, CO2 level and metal concentration. In this review, we provide several examples of potential biotechnological applications of extremophilic micro-algae and the ranges of tolerated extremes. We also discuss the adaptive mechanisms of tolerance to these extremes. Analysis of phylogenetic relationship of the reported extremophiles suggests certain groups of the Kingdom Protista to be more tolerant to extremophilic conditions than other taxa. While extremophilic microalgae are beginning to be explored, much needs to be done in terms of the physiology, molecular biology, metabolic engineering and outdoor cultivation trials before their true potential is realized. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Carotenoids from Haloarchaea and Their Potential in Biotechnology

    Science.gov (United States)

    Rodrigo-Baños, Montserrat; Garbayo, Inés; Vílchez, Carlos; Bonete, María José; Martínez-Espinosa, Rosa María

    2015-01-01

    The production of pigments by halophilic archaea has been analysed during the last half a century. The main reasons that sustains this research are: (i) many haloarchaeal species possess high carotenoids production availability; (ii) downstream processes related to carotenoid isolation from haloarchaea is relatively quick, easy and cheap; (iii) carotenoids production by haloarchaea can be improved by genetic modification or even by modifying several cultivation aspects such as nutrition, growth pH, temperature, etc.; (iv) carotenoids are needed to support plant and animal life and human well-being; and (v) carotenoids are compounds highly demanded by pharmaceutical, cosmetic and food markets. Several studies about carotenoid production by haloarchaea have been reported so far, most of them focused on pigments isolation or carotenoids production under different culture conditions. However, the understanding of carotenoid metabolism, regulation, and roles of carotenoid derivatives in this group of extreme microorganisms remains mostly unrevealed. The uses of those haloarchaeal pigments have also been poorly explored. This work summarises what has been described so far about carotenoids production by haloarchaea and their potential uses in biotechnology and biomedicine. In particular, new scientific evidence of improved carotenoid production by one of the better known haloarchaeon (Haloferax mediterranei) is also discussed. PMID:26308012

  12. Ecology and biotechnological potential of the thermophilic fermentative Coprothermobacter spp.

    Science.gov (United States)

    Gagliano, M C; Braguglia, C M; Petruccioli, M; Rossetti, S

    2015-05-01

    Thermophilic bacteria have been isolated from several terrestrial, marine and industrial environments. Anaerobic digesters treating organic wastes are often an important source of these microorganisms, which catalyze a wide array of metabolic processes. Moreover, organic wastes are primarily composed of proteins, whose degradation is often incomplete. Coprothermobacter spp. are proteolytic anaerobic thermophilic microbes identified in several studies focused on the analysis of the microbial community structure in anaerobic thermophilic reactors. They are currently classified in the phylum Firmicutes; nevertheless, several authors showed that the Coprothermobacter group is most closely related to the phyla Dictyoglomi and Thermotoga. Since only a few proteolytic anaerobic thermophiles have been characterized so far, this microorganism has attracted the attention of researchers for its potential applications with high-temperature environments. In addition to proteolysis, Coprothermobacter spp. showed several metabolic abilities and may have a biotechnological application either as source of thermostable enzymes or as inoculum in anaerobic processes. Moreover, they can improve protein degradation by establishing a syntrophy with hydrogenotrophic archaea. To gain a better understanding of the phylogenesis, metabolic capabilities and adaptations of these microorganisms, it is of importance to better define the role in thermophilic environments and to disclose properties not yet investigated. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Carotenoids from Haloarchaea and Their Potential in Biotechnology.

    Science.gov (United States)

    Rodrigo-Baños, Montserrat; Garbayo, Inés; Vílchez, Carlos; Bonete, María José; Martínez-Espinosa, Rosa María

    2015-08-25

    The production of pigments by halophilic archaea has been analysed during the last half a century. The main reasons that sustains this research are: (i) many haloarchaeal species possess high carotenoids production availability; (ii) downstream processes related to carotenoid isolation from haloarchaea is relatively quick, easy and cheap; (iii) carotenoids production by haloarchaea can be improved by genetic modification or even by modifying several cultivation aspects such as nutrition, growth pH, temperature, etc.; (iv) carotenoids are needed to support plant and animal life and human well-being; and (v) carotenoids are compounds highly demanded by pharmaceutical, cosmetic and food markets. Several studies about carotenoid production by haloarchaea have been reported so far, most of them focused on pigments isolation or carotenoids production under different culture conditions. However, the understanding of carotenoid metabolism, regulation, and roles of carotenoid derivatives in this group of extreme microorganisms remains mostly unrevealed. The uses of those haloarchaeal pigments have also been poorly explored. This work summarises what has been described so far about carotenoids production by haloarchaea and their potential uses in biotechnology and biomedicine. In particular, new scientific evidence of improved carotenoid production by one of the better known haloarchaeon (Haloferax mediterranei) is also discussed.

  14. Preparation of TEM specimen by cross-section technique

    International Nuclear Information System (INIS)

    Hamada, Shozo

    1986-01-01

    Transmission electron microscopy (TEM) is applied to the direct observation of the depth dependent damage structure in ion-irradiated stainless steel by using the cross-section technique; obtaining the TEM specimen from a slice of the irradiated stainless steel with thick Ni plating. Here has been developed the specimen preparation method of cross-section technique without heat treatment, which was necessary in the conventional method to strengthen the bonding between Ni and stainless steel. Nickel plating with good bonding to stainless steel is enabled by the following manner. First, the irradiated stainless steel is immersed in the Wood's nickel solution at room temperature for 60s to activate the surface, followed by the stricking for 300s at a current density of 300 A/m 2 in the solution to make fine and homogeneous nucleation of Ni on the stainless steel. Then, the sample is plated with Ni in the Watt's nickel plating solution at 333 K with current density of 900 ∼ 1,000 A/m 2 . The TEM disc is obtained by mechanical slicing from the specimen with Ni plating of more than 3 mm thickness. Electropolishing is accomplished by using both Ballmann method and jet electropolishing to perforate the disc accurately at the aimed point for the observation of the damage structure. (author)

  15. Siderophilic Cyanobacteria for the Development of Extraterrestrial Photoautotrophic Biotechnologies

    Science.gov (United States)

    Brown, I. I.; McKay, D. S.

    2010-01-01

    In-situ production of consumables (mainly oxygen) using local resources (In-Situ Resource Utilization-ISRU) will significantly facilitate current plans for human exploration and settlement of the solar system, starting with the Moon. With few exceptions, nearly all technologies developed to date have employed an approach based on inorganic chemistry. None of these technologies include concepts for integrating the ISRU system with a bioregenerative life support system and a food production system. Therefore, a new concept based on the cultivation of cyanobacteria (CB) in semi-closed biogeoreactor, linking ISRU, a biological life support system, and food production, has been proposed. The key feature of the biogeoreactor is to use lithotrophic CB to extract many needed elements such as Fe directly from the dissolved regolith and direct them to any technological loop at an extraterrestrial outpost. Our studies showed that siderophilic (Fe-loving) CB are capable to corrode lunar regolith stimulants because they secrete chelating agents and can tolerate [Fe] up to 1 mM. However, lunar and Martian environments are very hostile (very high UV and gamma-radiation, extreme temperatures, deficit of water). Thus, the selection of CB species with high potential for extraterrestrial biotechnologies that may be utilized in 15 years must be sponsored by NASA as soon as possible. The study of the genomes of candidate CB species and the metagenomes of the terrestrial environments which they inhabit is critical to make this decision. Here we provide preliminary results about peculiarities of the genomes of siderophilic CB revealed by analyzing the genome of siderophilic cyanobacterium JSC-1 and the metagenome of iron depositing hot spring (IDHS) Chocolate Pots (Yellowstone National Park, Wyoming, USA). It has been found that IDHS are richer with ferrous iron than the majority of hot springs around the world. Fe2+ is known to increase the magnitude of oxidative stress in prokaryotes

  16. Microalgal lipids biochemistry and biotechnological perspectives.

    Science.gov (United States)

    Bellou, Stamatia; Baeshen, Mohammed N; Elazzazy, Ahmed M; Aggeli, Dimitra; Sayegh, Fotoon; Aggelis, George

    2014-12-01

    In the last few years, there has been an intense interest in using microalgal lipids in food, chemical and pharmaceutical industries and cosmetology, while a noteworthy research has been performed focusing on all aspects of microalgal lipid production. This includes basic research on the pathways of solar energy conversion and on lipid biosynthesis and catabolism, and applied research dealing with the various biological and technical bottlenecks of the lipid production process. In here, we review the current knowledge in microalgal lipids with respect to their metabolism and various biotechnological applications, and we discuss potential future perspectives. The committing step in fatty acid biosynthesis is the carboxylation of acetyl-CoA to form malonyl-CoA that is then introduced in the fatty acid synthesis cycle leading to the formation of palmitic and stearic acids. Oleic acid may also be synthesized after stearic acid desaturation while further conversions of the fatty acids (i.e. desaturations, elongations) occur after their esterification with structural lipids of both plastids and the endoplasmic reticulum. The aliphatic chains are also used as building blocks for structuring storage acylglycerols via the Kennedy pathway. Current research, aiming to enhance lipogenesis in the microalgal cell, is focusing on over-expressing key-enzymes involved in the earlier steps of the pathway of fatty acid synthesis. A complementary plan would be the repression of lipid catabolism by down-regulating acylglycerol hydrolysis and/or β-oxidation. The tendency of oleaginous microalgae to synthesize, apart from lipids, significant amounts of other energy-rich compounds such as sugars, in processes competitive to lipogenesis, deserves attention since the lipid yield may be considerably increased by blocking competitive metabolic pathways. The majority of microalgal production occurs in outdoor cultivation and for this reason biotechnological applications face some difficulties

  17. 75 FR 41798 - Solicitation of Letters of Interest to Participate in Biotechnology Quality Management System...

    Science.gov (United States)

    2010-07-19

    ...] Solicitation of Letters of Interest to Participate in Biotechnology Quality Management System Program AGENCY... participate in the APHIS Biotechnology Quality Management System Program. The Biotechnology Quality Management..., audit-based compliance assistance program known as the Biotechnology Quality Management System Program...

  18. The Future of Bio-technology

    Science.gov (United States)

    Trent, Jonathan

    2005-01-01

    Hosts of technologies, most notably in electronics, have been on the path of miniaturization for decades and in 2005 they have crossed the threshold of the nano-scale. Crossing the nano-scale threshold is a milestone in miniaturization, setting impressive new standards for component-packing densities. It also brings technology to a scale at which quantum effects and fault tolerance play significant roles and approaches the feasible physical limit form many conventional "top-down" manufacturing methods. I will suggest that the most formidable manufacturing problems in nanotechnology will be overcome and major breakthroughs will occur in a host of technologies, when nanotechnology converges with bio-technology; i.e. I will argue that the future of bio-technology is in nanotechnology. In 2005, methods in molecular biology, microscopy, bioinformatics, biochemistry, and genetic engineering have focused considerable attention on the nano-scale. On this scale, biology is a kind of recursive chemistry in which molecular recognition, self-assembly, self-organization and self-referencing context-control lead to the emergence of the complexity of structures and processes that are fundamental to all life forms. While we are still far from understanding this complexity, we are on the threshold of being able to use at least some of these biological properties for .technology. I will discuss the use of biomolecules, such as DNA, RNA, and proteins as "tools" for the bio-technologist of the future. More specifically, I will present in some detail an example of how we are using a genetically engineered 60-kDa protein (HSP60) from an organism living in near boiling sulfuric acid to build nano-scale templates for arranging metallic nanoparticles. These "extremophile" HSP60s self-assemble into robust double-ring structures called "chaperonins," which further assemble into filaments and arrays with nanometer accuracy. I will discuss our efforts to use chaperonins to organize quantum

  19. Full thickness crack arrest investigations on compact specimens and a heavy wide-plate

    International Nuclear Information System (INIS)

    Kussmaul, K.; Gillot, R.; Elenz, T.

    1993-01-01

    In order to determine the influence of specimen size and testing procedure on the crack arrest toughness K Ia at various temperatures, investigations were carried out on a wide-plate and compact specimens using a highly brittle material. Test interpretation included static as well as dynamic methods. The comparison of the measured K Ia -values shows good agreement although there is a distinct difference in specimen size. In general, the (static) ASTM test method yields a lower and thus conservative estimate of the crack arrest toughness K Ia . 14 refs., 27 figs., 3 tabs

  20. Virus isolation: Specimen type and probable transmission

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Virus isolation: Specimen type and probable transmission. Over 500 CHIK virus isolations were made. 4 from male Ae. Aegypti (?TOT). 6 from CSF (neurological involvement). 1 from a 4-day old child (transplacental transmission.

  1. The role of biotechnology on the treatment of wastes | Buyukgungor ...

    African Journals Online (AJOL)

    The role of biotechnology on the treatment of wastes. ... treatment, gas treatment and disposal of solid wastes in environmental engineering. Also ... units and biogas reactors are used extensively among the waste treatment technologies.

  2. Recognizing biotechnology as a tool for sustainable development ...

    African Journals Online (AJOL)

    Knowledge of space science, information technology and biotechnology in ... It is indeed an essential panacea to the pervasive poverty and food security problem ... the nation and its citizens in such a way that the ecosystem is not threatened.

  3. African Journal of Biotechnology - Vol 7, No 23 (2008)

    African Journals Online (AJOL)

    Oryza sativa) and Tog5681 (Oryza glaberrima) · EMAIL FREE FULL TEXT EMAIL ... Perceptions and attitudes of geography teachers to biotechnology: A study focusing on genetically modified (GM) foods · EMAIL FREE FULL TEXT EMAIL FREE ...

  4. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae.

    NARCIS (Netherlands)

    Wijffels, R.H.; Kruse, O.; Hellingwerf, K.J.

    2013-01-01

    Both cyanobacteria and eukaryotic microalgae are promising organisms for sustainable production of bulk products such as food, feed, materials, chemicals and fuels. In this review we will summarize the potential and current biotechnological developments. Cyanobacteria are promising host organisms

  5. Understanding public perceptions of biotechnology through the "Integrative Worldview Framework".

    Science.gov (United States)

    De Witt, Annick; Osseweijer, Patricia; Pierce, Robin

    2015-07-03

    Biotechnological innovations prompt a range of societal responses that demand understanding. Research has shown such responses are shaped by individuals' cultural worldviews. We aim to demonstrate how the Integrative Worldview Framework (IWF) can be used for analyzing perceptions of biotechnology, by reviewing (1) research on public perceptions of biotechnology and (2) analyses of the stakeholder-debate on the bio-based economy, using the Integrative Worldview Framework (IWF) as analytical lens. This framework operationalizes the concept of worldview and distinguishes between traditional, modern, and postmodern worldviews, among others. Applied to these literatures, this framework illuminates how these worldviews underlie major societal responses, thereby providing a unifying understanding of the literature on perceptions of biotechnology. We conclude the IWF has relevance for informing research on perceptions of socio-technical changes, generating insight into the paradigmatic gaps in social science, and facilitating reflexive and inclusive policy-making and debates on these timely issues. © The Author(s) 2015.

  6. [Aerobic methylobacteria as promising objects of modern biotechnology].

    Science.gov (United States)

    Doronina, N V; Toronskava, L; Fedorov, D N; Trotsenko, Yu A

    2015-01-01

    The experimental data of the past decade concerning the metabolic peculiarities of aerobic meth ylobacteria and the prospects for their use in different fields of modern biotechnology, including genetic engineering techniques, have been summarized.

  7. African Journal of Biotechnology - Vol 12, No 39 (2013)

    African Journals Online (AJOL)

    African Journal of Biotechnology. ... Transgenic Bacillus thuringiensis (Bt) chickpea: India's most wanted genetically modified (GM) pulse crop ... from unpollinated ovary cultures of Ethiopian wheat (Triticum turgidum and Triticum aestivum) ...

  8. African Journal of Biotechnology - Vol 10, No 55 (2011)

    African Journals Online (AJOL)

    African Journal of Biotechnology. ... Potentials of molecular based breeding to enhance drought tolerance in wheat (Triticum aestivum L.) EMAIL FREE .... application for modified twodimensional gel electrophoresis of human serum proteins ...

  9. African Journal of Biotechnology - Vol 11, No 72 (2012)

    African Journals Online (AJOL)

    African Journal of Biotechnology. ... Microsatellite based investigation of genetic diversity in 24 synthetic wheat cultivars ... The influence of protective properties of packaging materials and application of modified atmosphere on packed dried ...

  10. African Journal of Biotechnology - Vol 9, No 21 (2010)

    African Journals Online (AJOL)

    African Journal of Biotechnology. ... Genotype x Environment interaction for quality traits in durum wheat cultivars adapted to different ... Effects of genetically modified herbicide-tolerant (GMHT) rice on biodiversity of weed in paddy fields ...

  11. Trends in industrial and environmental biotechnology research in ...

    African Journals Online (AJOL)

    SERVER

    2007-12-28

    Dec 28, 2007 ... Department of Molecular Biology and Biotechnology, University of Dar es Salaam P. O. Box 35179, Dar es .... digestion of bagasse, maize bran, coconut fibres, water ..... bacterium formicicum has shown nitrogen fixing abilities.

  12. BIOFAC-An investment in space infrastructure for biotechnology

    Science.gov (United States)

    Deuser, Mark S.; Vellinger, John C.

    2000-01-01

    During the last half century, biotechnology has contributed to the development of many important new and useful products that have improved our quality of life. To a large extent, these contributions are attributable to advances in cellular and molecular biology that can be traced to the discovery of DNA. What began as a science involved with manipulations of whole organisms has transcended into an ability to influence organisms at the cellular and molecular levels with greater speed, flexibility and precision than ever before. This has produced significantly improved pharmaceutical, textile, diagnostic, and environmental products, to name just a few. Early in this new century, biotechnology research is expected to literally explode with exciting new and promising opportunities. More importantly, biotechnology research in the low gravity environment of space is expected to play a significant part in this biotechnology revolution by expediting the discovery of important new medical, agricultural and environmental products. .

  13. Religious voices in biotechnology: the case of gene patenting.

    Science.gov (United States)

    Hanson, M J

    1999-01-01

    On 18 May 1995, nearly 200 religious leaders joined with leading biotechnology critic Jeremy Rifkin in a press conference named the "Joint Appeal against Human and Animal Patenting," a move that many within the biotechnology industry could only interpret as seeking to inhibit biotechnological advance. What moral and religious concerns motivated this challenge to patenting? How could the biotechnology industry understand and respectfully attend to these concerns? What values were at play in the debates that followed the joint appeal? What lessons for future dialogue can be learned from attempts at conversation between the opposing positions? This essay is a report from a Hastings Center research project that accepted the task of addressing these questions. Specifically, the project focused on the patenting of human genetic material, a subset of the issues raised by the joint appeal.

  14. Applications of radiations, radioisotopes and nuclear techniques in biotechnology

    International Nuclear Information System (INIS)

    Bhatia, C.R.

    1994-01-01

    Applications of radiations, radioisotopes and other nuclear techniques has contributed a great deal in our understanding of microbial plant and animal biochemistry and molecular biology. Electron microscopy has provided visual evidence for molecular events. Developments in cell tissue culture of both plants and animals and immunology have contributed to advances in what we now refer as biotechnology. This paper focuses on the applications in the high-tech end of biotechnology, limited to the use of recombinant-DNA techniques. Molecular identification of the genes, their cloning and horizontal transfer across the species of microbes, plants and animals and expression of the transferred genes is the major strength of modern biotechnology. The techniques described in this paper have played a significant role in the development of biotechnology. 6 refs

  15. African Journal of Biotechnology - Vol 14, No 18 (2015)

    African Journals Online (AJOL)

    African Journal of Biotechnology - Vol 14, No 18 (2015). Journal Home ... Isolation of microalgae species from arid environments and evaluation of their potentials for biodiesel production · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  16. Journal of Tropical Microbiology and Biotechnology: Editorial Policies

    African Journals Online (AJOL)

    ... Microbial Physiology, Biochemistry of micro-organisms, Microbial Genetics, Molecular Biology, Bacteriology, Virology, Mycology, and Microbial Systematics. Both full length and short papers reporting original research making a significant contribution to microbiology and Biotechnology will be considered for publication.

  17. A Proposal to Develop a Biotechnology Information Facility

    National Research Council Canada - National Science Library

    Spalding, John

    2002-01-01

    The objective of this grant was to develop facilities and information resources that support current research in biotechnology and to meet the goal of strengthening the biological science programs at HBCUs/Mls...

  18. Biotechnology in livestock production: Overview of possibilities for ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... Public concerns on food safety, environment and ethics are issues that cannot be ... Biotechnology is simply the application of in-genuine biological ... agro-based companies that finance their development. Nonetheless, it is ...

  19. Biotechnological uses of Azotobacter vinelandii : Current state, limits ...

    African Journals Online (AJOL)

    African Journal of Biotechnology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 9, No 33 (2010) >. Log in or Register to get access to full text downloads.

  20. Overview of Biotechnology Futures: Possible Applications to Land Force Development

    National Research Council Canada - National Science Library

    Egudo, Margaret

    2004-01-01

    This review of selected scientific and technological advances occurring in the field of biotechnology discusses their possible impact for Land Force capability development in the next decade or two...