WorldWideScience

Sample records for biotechnology biomed central

  1. Biomes.

    Science.gov (United States)

    Web Feet K-8, 2001

    2001-01-01

    This annotated subject guide to Web sites and additional resources focuses on biomes. Specifies age levels for resources that include Web sites, CD-ROMs and software, videos, books, audios, and magazines; includes professional resources; and presents a relevant class activity. (LRW)

  2. Biotechnology

    International Nuclear Information System (INIS)

    Lewanika, Mbikusita Mwananyanda

    2005-01-01

    The article sets out to explain in simple terms the main concepts of Biotechnology beginning with traditional biotechnology to modern biotechnology. It outlines fundamentals of Recombinant Deoxyribonucleic Acid (DNA), Genetically Modified Organisms (GMOs) and Genetic Engineering. The article offers a discussion of the benefits, disadvantages and the general public and policy concerns regarding genetically modified organisms

  3. Biotechnology

    International Nuclear Information System (INIS)

    2008-01-01

    The guidelines of the Biotechnology Program are research and development aiming to develop and manufacture products of pharmaceutical interest. This program has two main research areas, namely Pituitary Hormones and Biopharmaceuticals. The first one comprises a group with a long experience on Recombinant Human Pituitary Hormone synthesis, purification and characterization. The Biopharmaceutical area is dedicated to the research of isolation, structural analysis and biological activities in different biological system of macromolecules

  4. Biotechnology

    International Nuclear Information System (INIS)

    2011-01-01

    The guidelines of the Biotechnology Program are research and development aiming to develop and manufacture products of pharmaceutical interest. This Program has two main research areas, namely Pituitary Hormones and Biopharmaceuticals. The first one comprises a group with a long experience on Recombinant Human Pituitary Hormone synthesis, purification and characterization. The Biopharmaceutical area is dedicated to the research of isolation, structural analysis and biological activities in different biological system of macromolecules. The Animal Laboratory Division of IPEN is responsible for the breeding and production of small laboratory animal.

  5. Biotechnology

    International Nuclear Information System (INIS)

    2014-01-01

    The guidelines of the Biotechnology Program are research and development aiming at developing and manufacturing products of pharmaceutical interest. This Program has two main research areas, namely Pituitary Hormones and Biopharmaceuticals. The first one comprises a group with a long experience on Recombinant Human Pituitary Hormone synthesis, purification and characterization. Up to now they have worked mostly with human growth hormone (hGH), human prolactin (hPRL), human thyrotropin (hTSH), human follicle stimulating hormone (hFSH) and human luteotropin (hLH), with a particular emphasis on glycoprotein carbohydrate structures. An important research line is devoted to Growth Hormone Gene Therapy, working mostly on animal models: immunocompetent and immunodeficient-dwarf mice. For several years this development has been based on ex vivo grafting of transduced keratinocytes, while more recently very promising results have been obtained with the injections and electroporation of naked plasmid DNA. Besides research, they have also activities in the Biotechnological Production and Downstream Processing of the same recombinant hormones, which are produced in both E. coli and mammalian cells and in the development of joint-ventures with the National Industry. The biological effects of radiation on cells are also studied, specially concerning the administration of 131 I together with thyroid-stimulating hormone in thyroid cancer. The Biopharmaceutical area is dedicated to the research of isolation, structural analysis and biological activities in different biological systems of macromolecules. These macromolecules are peptides or proteins, either native or recombinant with medical or pharmaceutical interest. During this period new proteins related to serine protease activity, breast cancer development and angiogenesis were described. The effects of ionizing radiation on macromolecules have also been investigated to detoxify animal venoms in order to improve antigens for

  6. Biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The guidelines of the Biotechnology Program are research and development aiming at developing and manufacturing products of pharmaceutical interest. This Program has two main research areas, namely Pituitary Hormones and Biopharmaceuticals. The first one comprises a group with a long experience on Recombinant Human Pituitary Hormone synthesis, purification and characterization. Up to now they have worked mostly with human growth hormone (hGH), human prolactin (hPRL), human thyrotropin (hTSH), human follicle stimulating hormone (hFSH) and human luteotropin (hLH), with a particular emphasis on glycoprotein carbohydrate structures. An important research line is devoted to Growth Hormone Gene Therapy, working mostly on animal models: immunocompetent and immunodeficient-dwarf mice. For several years this development has been based on ex vivo grafting of transduced keratinocytes, while more recently very promising results have been obtained with the injections and electroporation of naked plasmid DNA. Besides research, they have also activities in the Biotechnological Production and Downstream Processing of the same recombinant hormones, which are produced in both E. coli and mammalian cells and in the development of joint-ventures with the National Industry. The biological effects of radiation on cells are also studied, specially concerning the administration of {sup 131}I together with thyroid-stimulating hormone in thyroid cancer. The Biopharmaceutical area is dedicated to the research of isolation, structural analysis and biological activities in different biological systems of macromolecules. These macromolecules are peptides or proteins, either native or recombinant with medical or pharmaceutical interest. During this period new proteins related to serine protease activity, breast cancer development and angiogenesis were described. The effects of ionizing radiation on macromolecules have also been investigated to detoxify animal venoms in order to improve antigens

  7. Biotechnologies

    Directory of Open Access Journals (Sweden)

    Rival Alain

    2001-07-01

    Full Text Available Today, a range of biotechnological approaches, from somatic embryogenesis to biomolecular research, play an increasingly important role in breeding strategies for oil palm (Elaeis guineensis Jacq.. Clonal micropropagation. Methods of cloning by in vitro culture led to the development of a micropropagation technique for oil palm based on somatic embryogenesis which was tested at the pilot stage on elite genotypes, thus enabling the production of high oil yielding clones. This phase allowed the identification of limiting factors associated with scaling-up, with respect in particular to the scale of mass production required to meet the needs of planters and to the problem of ensuring genetic fidelity in the regenerated plant material. These two concerns led researchers to look further into the underlying physiological and/or molecular mechanisms involved in somatic embryogenesis and the somaclonal variation events induced by the in vitro cloning procedure. Structural and functional genomics. Marker-assisted breeding in oil palm is a long-term multi-stage project including: molecular analysis of genetic diversity in both E. guineensis and E. oleifera germplasms; large scale development of PCR-based microsatellite markers; and parallel development of three genome mapping and QTL detection projects studying key agronomic characters. Post-genomics. In order to tackle the problem of the mantled flowering abnormality, which is induced during the micropropagation process, studies of gene expression have been carried out in tissue cultures as a means of establishing an early clonal conformity testing procedure. It is important to assess what kind of methodology is the most appropriate for clonal conformity testing by comparing RNA, protein and DNA (PCR based approaches. Parallel studies on genomic DNA methylation changes induced by tissue culture suggest that the latter may play an important role in the determination of the mantled abnormality.

  8. Toward Understanding Dynamics in Shifting Biomes: An Individual Based Modeling Approach to Characterizing Drought and Mortality in Central Western Canada

    Science.gov (United States)

    Armstrong, A. H.; Foster, A.; Rogers, B. M.; Hogg, T.; Michaelian, M.; Shuman, J. K.; Shugart, H. H., Jr.; Goetz, S. J.

    2017-12-01

    The Arctic-Boreal zone is known be warming at an accelerated rate relative to other biomes. Persistent warming has already affected the high northern latitudes, altering vegetation productivity, carbon sequestration, and many other ecosystem processes and services. The central-western Canadian boreal forests and aspen parkland are experiencing a decade long drought, and rainfall has been identified as a key factor controlling the location of the boundary between forest and prairie in this region. Shifting biome with related greening and browning trends are readily measureable with remote sensing, but the dynamics that create and result from them are not well understood. In this study, we use the University of Virginia Forest Model Enhanced (UVAFME), an individual-based forest model, to simulate the changes that are occurring across the southern boreal and parkland forests of west-central Canada. We present a parameterization of UVAFME for western central Canadian forests, validated with CIPHA data (Climate Change Impacts on the Productivity and Health of Aspen), and improved mortality. In order to gain a fine-scale understanding of how climate change and specifically drought will continue to affect the forests of this region, we simulated forest conditions following CMIP5 climate scenarios. UVAFME predictions were compared with statistical models and satellite observations of productivity across the landscape. Changes in forest cover, forest type, aboveground biomass, and mortality and recruitment dynamics are presented, highlighting the high vulnerability of this region to vegetation transitions associated with future droughts.

  9. Aquatic ecosystem responses to Holocene climate change and biome development in boreal, central Asia

    Science.gov (United States)

    Mackay, Anson W.; Bezrukova, Elena V.; Leng, Melanie J.; Meaney, Miriam; Nunes, Ana; Piotrowska, Natalia; Self, Angela; Shchetnikov, Alexander; Shilland, Ewan; Tarasov, Pavel; Wang, Luo; White, Dustin

    2012-05-01

    Boreal ecosystems are highly vulnerable to climate change, and severe ecological impacts in the near future are virtually certain to occur. We undertook a multiproxy study on an alpine lake (ESM-1) at the modern tree-line in boreal, southern Siberia. Steppe and tundra biomes were extensive in eastern Sayan landscapes during the early Holocene. Boreal forest quickly expanded by 9.1 ka BP, and dominated the landscape until c 0.7 ka BP, when the greatest period of compositional turnover occurred. At this time, alpine meadow landscape expanded and Picea obovata colonised new habitats along river valleys and lake shorelines, because of prevailing cool, moist conditions. During the early Holocene, chironomid assemblages were dominated by cold stenotherms. Diatoms for much of the Holocene were dominated by alkaliphilous, fragilarioid taxa, up until 0.2 ka BP, when epiphytic species expanded, indicative of increased habitat availability. C/N mass ratios ranged between 9.5 and 13.5 (11.1-15.8 C/N atomic ratios), indicative of algal communities dominating organic matter contributions to bottom sediments with small, persistent contributions from vascular plants. However, δ13C values increased steadily from -34.9‰ during the early Holocene (9.3 ka BP) to -24.8‰ by 0.6 ka BP. This large shift in magnitude may be due to a number of factors, including increasing within-lake productivity, increasing disequilibrium between the isotopic balance of the lake with the atmosphere as the lake became isotopically ‘mature’, and declining soil respiration linked to small, but distinct retreat in forest biomes. The influence of climatic variables on landscape vegetation was assessed using redundancy analysis (RDA), a linear, direct ordination technique. Changes in July insolation at 60 °N significantly explained over one-fifth of the variation in species composition, while changes in estimates of northern hemisphere temperature and ice-rafted debris events in the North Atlantic

  10. Biotechnology 2007

    International Nuclear Information System (INIS)

    2007-12-01

    This book deals with Bio-vision 2016 on the meaning and important contents Next, it reveals vision of biotechnology, current condition of biotechnology in the main countries such as the U.S, Japan, Eu and China, promoting nation biotechnology with promotion policy, support policy for biotechnology such as agriculture and forestry and information and communication, competitiveness of biotechnology, research development by fields and related industries and regulation and system on biotechnology.

  11. Avian Biotechnology.

    Science.gov (United States)

    Nakamura, Yoshiaki

    2017-01-01

    Primordial germ cells (PGCs) generate new individuals through differentiation, maturation and fertilization. This means that the manipulation of PGCs is directly linked to the manipulation of individuals, making PGCs attractive target cells in the animal biotechnology field. A unique biological property of avian PGCs is that they circulate temporarily in the vasculature during early development, and this allows us to access and manipulate avian germ lines. Following the development of a technique for transplantation, PGCs have become central to avian biotechnology, in contrast to the use of embryo manipulation and subsequent transfer to foster mothers, as in mammalian biotechnology. Today, avian PGC transplantation combined with recent advanced manipulation techniques, including cell purification, cryopreservation, depletion, and long-term culture in vitro, have enabled the establishment of genetically modified poultry lines and ex-situ conservation of poultry genetic resources. This chapter introduces the principles, history, and procedures of producing avian germline chimeras by transplantation of PGCs, and the current status of avian germline modification as well as germplasm cryopreservation. Other fundamental avian reproductive technologies are described, including artificial insemination and embryo culture, and perspectives of industrial applications in agriculture and pharmacy are considered, including poultry productivity improvement, egg modification, disease resistance impairment and poultry gene "pharming" as well as gene banking.

  12. Biofuel processes to be developed by French biotechnology company, Biomethodes

    OpenAIRE

    Trulove, Susan

    2008-01-01

    Bioméhodes, a French biotechnology company in Evry, has signed an exclusive and worldwide option-to-license agreement with Virginia Tech Intellectual Properties Inc. (VTIP) for multiple technologies for converting biomass to bioethanol and biohydrogen.

  13. User's Guide to Biome Information from the United States International Biological Program (IBP). First Edition.

    Science.gov (United States)

    Hinckley, A. Dexter; Haug, Peter T.

    This publication is a guide to the biome research conducted under the International Biological Program. The guide lists biome researchers by interest and by biome as well as a central list. A site list, map, information sources section reporting abstracts, bibliographies, journals, books, evaluations, and data books are also included. Three…

  14. Biotechnological research in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Rehm, H J

    1982-01-01

    The current research possibilities in the expanding field of biotechnology in Europe are very briefly described. Remarks on research and development are limited to six topics: fermented food products; biomass production; product formation; bioreactors; waste-water treatment, environmental processes and methane formation; central research institutions. It is summarised that increased efforts at co-operation on all levels are vital for an improved development in the field of biotechnology throughout Europe.

  15. Biotechnology 2009

    International Nuclear Information System (INIS)

    2009-12-01

    This book first reveals prospect on biotechnology with low-carbon green growth Next, it consists of four chapters, which deal with vision of biotechnology, trend of biotechnology in main countries like the U.S, Eu, Japan and China, current condition for biotechnology with support and promoting policy such as health and medical treatment and maritime and fisheries, major product on investment, human power, paper and pattern, research development such as genomic, system biology, bio new medicine, agriculture, stock breeding and food, biological resources and legal system related biotechnology.

  16. Ten years of biotechnology development at the Central Research Roentgenological Institute of the Ministry of Health of the Russian Federation

    International Nuclear Information System (INIS)

    Rozenberg, O.A.; Klimovich, V.B.; Volchkov, V.A.; Evtushenko, V.I.

    1993-01-01

    Sums up the progress in and prospects for research at the medical biotechnology department of the Institute. The department includes four laboratories: for genetic engineering, hydridoma technology, biotechnogoly of preparations for radiodiagnosis and therapy and for preclinical trials of biotechnologic products. Fundamental researh carried out at the department are described friefly, namely, studies and modification of molecular genetic mechanisms of cellular death, modification of pro- and eukaryote cell radiosensitivity, as well as the results and trends of applied research, such as derivation of an original murine myeloma strain, a partner for the creation of stable monoclonal antibody-producing hybridomata

  17. Consequences of biome depletion

    International Nuclear Information System (INIS)

    Salvucci, Emiliano

    2013-01-01

    The human microbiome is an integral part of the superorganism together with their host and they have co-evolved since the early days of the existence of the human species. The modification of the microbiome as a result changes in food and social habits of human beings throughout their life history has led to the emergence of many diseases. In contrast with the Darwinian view of nature of selfishness and competence, new holistic approaches are rising. Under these views, the reconstitution of the microbiome comes out as a fundamental therapy for emerging diseases related to biome depletion.

  18. Bio-technologies; Biotechnologies

    Energy Technology Data Exchange (ETDEWEB)

    Grawitz, X. [Systems Bio Industries, 92 - Boulogne Billancourt (France)

    1997-12-31

    This paper is a series of transparencies which describes the measures taken by Systems Bio-Industries company to adapt its central heating plants, turbines, engines and dryers to the new French 2910 by-law about thermal efficiency and environmental impact of heating plants. The project of development of a cogeneration system in the Angouleme site is briefly described. (J.S.)

  19. Disturbance maintains alternative biome states.

    Science.gov (United States)

    Dantas, Vinícius de L; Hirota, Marina; Oliveira, Rafael S; Pausas, Juli G

    2016-01-01

    Understanding the mechanisms controlling the distribution of biomes remains a challenge. Although tropical biome distribution has traditionally been explained by climate and soil, contrasting vegetation types often occur as mosaics with sharp boundaries under very similar environmental conditions. While evidence suggests that these biomes are alternative states, empirical broad-scale support to this hypothesis is still lacking. Using community-level field data and a novel resource-niche overlap approach, we show that, for a wide range of environmental conditions, fire feedbacks maintain savannas and forests as alternative biome states in both the Neotropics and the Afrotropics. In addition, wooded grasslands and savannas occurred as alternative grassy states in the Afrotropics, depending on the relative importance of fire and herbivory feedbacks. These results are consistent with landscape scale evidence and suggest that disturbance is a general factor driving and maintaining alternative biome states and vegetation mosaics in the tropics. © 2015 John Wiley & Sons Ltd/CNRS.

  20. Evolution of the indoor biome.

    Science.gov (United States)

    Martin, Laura J; Adams, Rachel I; Bateman, Ashley; Bik, Holly M; Hawks, John; Hird, Sarah M; Hughes, David; Kembel, Steven W; Kinney, Kerry; Kolokotronis, Sergios-Orestis; Levy, Gabriel; McClain, Craig; Meadow, James F; Medina, Raul F; Mhuireach, Gwynne; Moreau, Corrie S; Munshi-South, Jason; Nichols, Lauren M; Palmer, Clare; Popova, Laura; Schal, Coby; Täubel, Martin; Trautwein, Michelle; Ugalde, Juan A; Dunn, Robert R

    2015-04-01

    Few biologists have studied the evolutionary processes at work in indoor environments. Yet indoor environments comprise approximately 0.5% of ice-free land area--an area as large as the subtropical coniferous forest biome. Here we review the emerging subfield of 'indoor biome' studies. After defining the indoor biome and tracing its deep history, we discuss some of its evolutionary dimensions. We restrict our examples to the species found in human houses--a subset of the environments constituting the indoor biome--and offer preliminary hypotheses to advance the study of indoor evolution. Studies of the indoor biome are situated at the intersection of evolutionary ecology, anthropology, architecture, and human ecology and are well suited for citizen science projects, public outreach, and large-scale international collaborations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Biomes computed from simulated climatologies

    Energy Technology Data Exchange (ETDEWEB)

    Claussen, M.; Esch, M. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1994-01-01

    The biome model of Prentice et al. is used to predict global patterns of potential natural plant formations, or biomes, from climatologies simulated by ECHAM, a model used for climate simulations at the Max-Planck-Institut fuer Meteorologie. This study undertaken in order to show the advantage of this biome model in diagnosing the performance of a climate model and assessing effects of past and future climate changes predicted by a climate model. Good overall agreement is found between global patterns of biomes computed from observed and simulated data of present climate. But there are also major discrepancies indicated by a difference in biomes in Australia, in the Kalahari Desert, and in the Middle West of North America. These discrepancies can be traced back to in simulated rainfall as well as summer or winter temperatures. Global patterns of biomes computed from an ice age simulation reveal that North America, Europe, and Siberia should have been covered largely by tundra and taiga, whereas only small differences are for the tropical rain forests. A potential northeast shift of biomes is expected from a simulation with enhanced CO{sub 2} concentration according to the IPCC Scenario A. Little change is seen in the tropical rain forest and the Sahara. Since the biome model used is not capable of predicting chances in vegetation patterns due to a rapid climate change, the latter simulation to be taken as a prediction of chances in conditions favourable for the existence of certain biomes, not as a reduction of a future distribution of biomes. 15 refs., 8 figs., 2 tabs.

  2. Biomes computed from simulated climatologies

    Energy Technology Data Exchange (ETDEWEB)

    Claussen, W.; Esch, M.

    1992-09-01

    The biome model of Prentice et al. is used to predict global patterns of potential natural plant formations, or biomes, from climatologies simulated by ECHAM, a model used for climate simulations at the Max-Planck-Institut fuer Meteorologie. This study is undertaken in order to show the advantage of this biome model in comprehensively diagnosing the performance of a climate model and assessing effects of past and future climate changes predicted by a climate model. Good overall agreement is found between global patterns of biomes computed from observed and simulated data of present climate. But there are also major discrepancies indicated by a difference in biomes in Australia, in the Kalahari Desert, and in the Middle West of North America. These discrepancies can be traced back to failures in simulated rain fall as well as summer or winter temperatures. Global patterns of biomes computed from an ice age simulation reveal that North America, Europe, and Siberia should have been covered largely by tundra and taiga, whereas only small differences are seen for the tropical rain forests. A potential North-East shift of biomes is expected from a simulation with enhanced CO{sub 2} concentration according to the IPCC Scenario A. Little change is seen in the tropical rain forest and the Sahara. Since the biome model used is not capable of predicting changes in vegetation patterns due to a rapid climate change, the latter simulation has to be taken as a prediction of changes in conditions favorable for the existence of certain biomes, not as a prediction of a future distribution of biomes. (orig.).

  3. Biome engineering-2020.

    Science.gov (United States)

    Brüssow, Harald

    2016-09-01

    The gut microbiome research is going from a descriptive into an intervention phase. To optimize beneficial microbe-host interaction, we need to understand how to steer the system by modulating the nutrient input with which the system is literally fed (e.g. diets, fibres, prebiotics, human milk oligosaccharides), and we must learn how to modulate the composition of the gut microbiota by adding beneficial microbes (e.g. probiotics, faecal transplants) and by eliminating disturbing microbial members using, for example, bacteriophages in this highly complex ecosystem. The current status of the field is reviewed together with an outlook what might be expected until 2020, highlighting obstacles to progress and possible solutions to these problems. © 2016 The Author. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  4. Biotechnology bibliographies

    Energy Technology Data Exchange (ETDEWEB)

    Beaudette, L.A.; McCready, R.G.L.

    1986-01-01

    This bibliography consists of articles and scientific papers on biotechnology in areas in which BIOMINET is currently involved. The reports are categorized in four areas: 1) acid mine drainage (coals and metals) and bioadsorption of metals; 2) solution mining; 3) metabolism and physiology of Thiobacillus and other microorganisms; and 4) bacterial leaching of metals.

  5. Description of the Karoo Biome project

    CSIR Research Space (South Africa)

    Cowling, RM

    1986-01-01

    Full Text Available The ecological characteristics and ecological problems of the karoo biome are briefly described. A conceptual basis and guidelines for the development of the Karoo Biome Project are outlined by addressing project goals, project structure...

  6. Description of the Grassland Biome Project

    CSIR Research Space (South Africa)

    Mentis, MT

    1982-10-01

    Full Text Available The objectives, organization and research programme of the Grassland Biome Project are described against a background of the biome's ecological characteristics and environmental problems. Four principal research topics wil 1 be focused upon: (i...

  7. Journal of Tropical Microbiology and Biotechnology

    African Journals Online (AJOL)

    The Journal of Tropical Microbiology and Biotechnology (JTMB) formerly Journal of Tropical Microbiology gives preeminence to the central role of modern biotechnology and microorganisms as tools and targets in current research, which is largely multidisciplinary. JTMB covers a broad range of topics, such as disease ...

  8. Editorial: Biotechnology Journal brings more than biotechnology.

    Science.gov (United States)

    Jungbauer, Alois; Lee, Sang Yup

    2015-09-01

    Biotechnology Journal always brings the state-of-the-art biotechnologies to our readers. Different from other topical issues, this issue of Biotechnology Journal is complied with a series of exiting reviews and research articles from spontaneous submissions, again, addressing society's actual problems and needs. The progress is a real testimony how biotechnology contributes to achievements in healthcare, better utilization of resources, and a bio-based economy. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Biosphere 2's Marsh Biome

    Science.gov (United States)

    Molnar, Jennifer; Goodridge, Kelven

    1997-01-01

    The Marsh Biome, which was modeled after the mangroves and marshes of southwest Florida, has an area of 441.2 sq m separated into three hydrologically independent sections: the Freshwater, Oligohaline and Salt Marshes. The divisions are made based on their salinity (approximately 0, 4, and 34 ppt. respectively), but they also contain different biological communities. The Freshwater and Oligohaline Marshes are mostly filled with various grasses and several trees, while the Salt Marsh houses regions of red, black, and white mangroves (Rhizophora mangle, Avicennia germinans, and Languncularia racemosa respectively). Overall, there are an estimated 80 species of plants within the biome. Water in the Salt Marsh follows a meandering stream from the algal turf scrubbers (apparatuses that clean the water of its nutrients and heavy metals while increasing dissolved oxygen levels) which have an outlet in the Salt Marsh section near sites 4 and 5 to the Fringing Red Mangrove section. The sections of the Salt Marsh are separated by walls of concrete with openings to allow the stream to flow through. Throughout this study, conducted through the months of June and July, many conditions within the biome remained fairly constant. The temperature was within a degree or two of 25 C, mostly depending on whether the sample site was in direct sunlight or shaded. The pH throughout the Salt Marsh was 8.0 +/- 0.2, and the lower salinity waters only dropped below this soon after rains. The water rdepth and dissolved oxygen varied, however, between sites.

  10. Biotechnology organizations in action

    DEFF Research Database (Denmark)

    Norus, Jesper

    This volume analyzes the dynamics and interactive processes among the players (individuals, institutions, and organizations/firms) that have constituted and legitimized the development of the biotechnology industries. The unit of analysis is small entrepreneurial firms developing biotechnological...

  11. Phylogenetic biome conservatism on a global scale.

    Science.gov (United States)

    Crisp, Michael D; Arroyo, Mary T K; Cook, Lyn G; Gandolfo, Maria A; Jordan, Gregory J; McGlone, Matt S; Weston, Peter H; Westoby, Mark; Wilf, Peter; Linder, H Peter

    2009-04-09

    How and why organisms are distributed as they are has long intrigued evolutionary biologists. The tendency for species to retain their ancestral ecology has been demonstrated in distributions on local and regional scales, but the extent of ecological conservatism over tens of millions of years and across continents has not been assessed. Here we show that biome stasis at speciation has outweighed biome shifts by a ratio of more than 25:1, by inferring ancestral biomes for an ecologically diverse sample of more than 11,000 plant species from around the Southern Hemisphere. Stasis was also prevalent in transocean colonizations. Availability of a suitable biome could have substantially influenced which lineages establish on more than one landmass, in addition to the influence of the rarity of the dispersal events themselves. Conversely, the taxonomic composition of biomes has probably been strongly influenced by the rarity of species' transitions between biomes. This study has implications for the future because if clades have inherently limited capacity to shift biomes, then their evolutionary potential could be strongly compromised by biome contraction as climate changes.

  12. Shift of biome patterns due to simulated climate variability and climate change

    International Nuclear Information System (INIS)

    Claussen, M.

    1993-01-01

    The variability of simulated equilibrium-response patterns of biomes caused by simulated climate variability and climate shift is analysed. This investigation is based on various realisations of simulated present-day climate and climate shift. It has been found that the difference between biomes computed from three 10-year climatologies and from the corresponding 30-year climatology, simulated by the Hamburg climate model at T21 resolution, amounts to approximately 6% of the total land area, Antarctica excluded. This difference is mainly due to differences in annual moisture availability and winter temperatures. When intercomparing biomes from the 10-year climatologies a 10% difference is seen, but there is no unique difference pattern. In contrast to the interdecadal variability, the shift of conditions favorable for biomes due to a shift in climate in the next 100 years, caused by an increase in sea-surface temperatures and atmospheric CO 2 , reveals a unique trend pattern. It turns out that the strongest and most significant signal is the north-east shift of conditions for boreal biomes. This signal is caused by an increase of annual temperature sums as well as mean temperatures of the coldest and warmest months. Trends in annual moisture availability are of secondary importance globally. Regionally, a decrease in water availability affects biomes in Central and East Europe and an increase of water availability leads to a potential increase in tropical rain forest. In total, all differences amount to roughly 30% of the total land surface, Antarctica excluded. (orig./KW)

  13. Description of the Fynbos Biome Project

    CSIR Research Space (South Africa)

    Kruger, FJ

    1978-06-01

    Full Text Available The objectives, organization and research programme of the Fynbos Biome Project being undertaken in the south-west and southern Cape are described. The project is a cooperative multi-disciplinary study of the ecological characteristics, structure...

  14. Thresholds for boreal biome transitions.

    Science.gov (United States)

    Scheffer, Marten; Hirota, Marina; Holmgren, Milena; Van Nes, Egbert H; Chapin, F Stuart

    2012-12-26

    Although the boreal region is warming twice as fast as the global average, the way in which the vast boreal forests and tundras may respond is poorly understood. Using satellite data, we reveal marked alternative modes in the frequency distributions of boreal tree cover. At the northern end and at the dry continental southern extremes, treeless tundra and steppe, respectively, are the only possible states. However, over a broad intermediate temperature range, these treeless states coexist with boreal forest (∼75% tree cover) and with two more open woodland states (∼20% and ∼45% tree cover). Intermediate tree covers (e.g., ∼10%, ∼30%, and ∼60% tree cover) between these distinct states are relatively rare, suggesting that they may represent unstable states where the system dwells only transiently. Mechanisms for such instabilities remain to be unraveled, but our results have important implications for the anticipated response of these ecosystems to climatic change. The data reveal that boreal forest shows no gradual decline in tree cover toward its limits. Instead, our analysis suggests that it becomes less resilient in the sense that it may more easily shift into a sparse woodland or treeless state. Similarly, the relative scarcity of the intermediate ∼10% tree cover suggests that tundra may shift relatively abruptly to a more abundant tree cover. If our inferences are correct, climate change may invoke massive nonlinear shifts in boreal biomes.

  15. The extent of forest in dryland biomes

    Science.gov (United States)

    Jean-Francois Bastin; Nora Berrahmouni; Alan Grainger; Danae Maniatis; Danilo Mollicone; Rebecca Moore; Chiara Patriarca; Nicolas Picard; Ben Sparrow; Elena Maria Abraham; Kamel Aloui; Ayhan Atesoglu; Fabio Attore; Caglar Bassullu; Adia Bey; Monica Garzuglia; Luis G. GarcÌa-Montero; Nikee Groot; Greg Guerin; Lars Laestadius; Andrew J. Lowe; Bako Mamane; Giulio Marchi; Paul Patterson; Marcelo Rezende; Stefano Ricci; Ignacio Salcedo; Alfonso Sanchez-Paus Diaz; Fred Stolle; Venera Surappaeva; Rene Castro

    2017-01-01

    Dryland biomes cover two-fifths of Earth’s land surface, but their forest area is poorly known. Here, we report an estimate of global forest extent in dryland biomes, based on analyzing more than 210,000 0.5-hectare sample plots through a photo-interpretation approach using large databases of satellite imagery at (i) very high spatial resolution and (ii) very high...

  16. Biotechnology essay competition: biotechnology and sustainable food practices.

    Science.gov (United States)

    Peng, Judy; Schoeb, Helena; Lee, Gina

    2013-06-01

    Biotechnology Journal announces our second biotechnology essay competition with the theme "biotechnology and sustainable food practices", open to all undergraduate students. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Biotechnology : A Dutch perspective

    NARCIS (Netherlands)

    Van Apeldoorn, J.H.F.

    1981-01-01

    Biotechnology: a Dutch Perspective assesses the future potential of biotechnology in the Netherlands. It has been published in English because it is felt that the Dutch case could be of relevance to other industrialised nations. Although the report is aimed primarily at policy planners and decision

  18. Biotechnology Industry, 2006

    Science.gov (United States)

    2006-01-01

    for commercial or other purposes. Because it is a process resting on the understanding of genetics, proteomics , and life science, biotechnology has...Luhnow & Samor, 2006). Novel biotechnologies could bring down the costs of making ethanol. Iogen Corporation has genetically modified a fungus to

  19. Healthcare biotechnology in India

    OpenAIRE

    Srivastava, L. M.

    2005-01-01

    Biotechnology in India has made great progress in the development of infrastructure, manpower, research and development and manufacturing of biological reagents, biodiagnostics, biotherapeutics, therapeutic and, prophylactic vaccines and biodevices. Many of these indigenous biological reagents, biodiagnostics, therapeutic and prophylactic vaccines and biodevices have been commercialized. Commercially when biotechnology revenue has reached $25 billions in the U.S. alone in 2000 excluding the r...

  20. Biotechnology and Agriculture.

    Science.gov (United States)

    Kenney, Martin

    Even at this early date in the application of biotechnology to agriculture, it is clear that agriculture may provide the largest market for new or less expensive biotechnologically manufactured products. The chemical and pharmaceutical industries that hold important positions in agricultural inputs are consolidating their positions by purchasing…

  1. Biotechnology in China

    National Research Council Canada - National Science Library

    Hamer, Dean H; Kung, Shain-dow

    1989-01-01

    ... and Shain-dow Kung Center for Agricultural Biotechnology Maryland Biotechnology Institute Department of Botany University of Maryland College Park, Maryland Committee on Scholarly Communication with the People's Republic of China National Academy of Sciences National Academy Press Washington, DC 1989 i Copyrightthe cannot be not from bo...

  2. Himalayan uplift shaped biomes in Miocene temperate Asia: evidence from leguminous Caragana

    Science.gov (United States)

    Ming-Li Zhang; Xiao-Guo Xiang; Juan-Juan Xue; Stewart C. Sanderson; Peter W. Fritsch

    2016-01-01

    Caragana, with distinctive variation in leaf and rachis characters, exhibits three centers of geographic distribution, i.e., Central Asia, the Qinghai-Tibetan Plateau (QTP), and East Asia, corresponding to distinct biomes. Because Caragana species are often ecologically dominant components of the vegetation in these regions, it is regarded as a key taxon for...

  3. Healthcare biotechnology in India.

    Science.gov (United States)

    Srivastava, L M

    2005-01-01

    Biotechnology in India has made great progress in the development of infrastructure, manpower, research and development and manufacturing of biological reagents, biodiagnostics, biotherapeutics, therapeutic and, prophylactic vaccines and biodevices. Many of these indigenous biological reagents, biodiagnostics, therapeutic and prophylactic vaccines and biodevices have been commercialized. Commercially when biotechnology revenue has reached $25 billions in the U.S. alone in 2000 excluding the revenues of biotech companies that were acquired by pharmaceutical companies, India has yet to register a measurable success. The conservative nature and craze of the Indian Industry for marketing imported biotechnology products, lack of Government support, almost non-existing national healthcare system and lack of trained managers for marketing biological and new products seem to be the important factors responsible for poor economic development of biotechnology in India. With the liberalization of Indian economy, more and more imported biotechnology products will enter into the Indian market. The conditions of internal development of biotechnology are not likely to improve in the near future and it is destined to grow only very slowly. Even today biotechnology in India may be called to be in its infancy.

  4. Knowledge and Attitudes towards Biotechnology of Elementary Education Preservice Teachers: The First Spanish Experience

    Science.gov (United States)

    Casanoves, Marina; González, Ángel; Salvadó, Zoel; Haro, Juan; Novo, Maite

    2015-01-01

    Due to the important impact that biotechnology has on current Western societies, well-informed critical citizens are needed. People prepared to make conscious decisions about aspects of biotechnology that relate to their own lives. Teachers play a central role in all education systems. Thus, the biotechnological literacy of preservice teachers is…

  5. Biotechnology for energy

    International Nuclear Information System (INIS)

    Malik, K.A.; Naqvi, S.H.M.

    1991-01-01

    The present volume comprises paper presented and discussed in the symposium. The main purpose of this symposium was to collect researchers in the area of bioconversion of biomass into biofuels, petroleum biotechnology and biohydrometallurgy. This book has been divided into four main sections which includes molecular biology of biomass conversion, microbial conversion of biomass, petroleum biotechnology and biohydrometallurgy. It is becoming clear that biotechnology play a role in production and conservation of energy and can contribute to the overall energy situation. (A.B.)

  6. Traditional Chinese Biotechnology

    Science.gov (United States)

    Xu, Yan; Wang, Dong; Fan, Wen Lai; Mu, Xiao Qing; Chen, Jian

    The earliest industrial biotechnology originated in ancient China and developed into a vibrant industry in traditional Chinese liquor, rice wine, soy sauce, and vinegar. It is now a significant component of the Chinese economy valued annually at about 150 billion RMB. Although the production methods had existed and remained basically unchanged for centuries, modern developments in biotechnology and related fields in the last decades have greatly impacted on these industries and led to numerous technological innovations. In this chapter, the main biochemical processes and related technological innovations in traditional Chinese biotechnology are illustrated with recent advances in functional microbiology, microbial ecology, solid-state fermentation, enzymology, chemistry of impact flavor compounds, and improvements made to relevant traditional industrial facilities. Recent biotechnological advances in making Chinese liquor, rice wine, soy sauce, and vinegar are reviewed.

  7. Biotechnology of marine fungi

    Digital Repository Service at National Institute of Oceanography (India)

    Damare, S.R.; Singh, P.; Raghukumar, S.

    Filamentous fungi are the most widely used eukaryotes in industrial and pharmaceutical applications. Their biotechnological uses include the production of enzymes, vitamins, polysaccharides, pigments, lipids and others. Marine fungi are a still...

  8. Biotechnology for renewable chemicals

    DEFF Research Database (Denmark)

    Borodina, Irina; Kildegaard, Kanchana Rueksomtawin; Jensen, Niels Bjerg

    2014-01-01

    The majority of the industrial organic chemicals are derived from fossil sources. With the oil and gas resources becoming limiting, biotechnology offers a sustainable alternative for production ofchemicals from renewable feedstocks. Yeast is an attractive cell factory forsustainable production...

  9. Nigerian Journal of Biotechnology

    African Journals Online (AJOL)

    Nigerian Journal of Biotechnology is a publisher of multidisciplinary ... Assessment of microalgae-influenced biodeterioration of concrete structures · EMAIL FREE ... A study on 3-mercaptopyruvate sulphurtransferase (3-MST) produced under ...

  10. Calorimeters for biotechnology

    International Nuclear Information System (INIS)

    Russell, Donald J.; Hansen, Lee D.

    2006-01-01

    The isothermal and temperature scanning calorimeters manufactured by Calorimetry Sciences Corporation are briefly described. Applications of calorimetry to determine thermodynamics and kinetics of reactions of interest in biotechnology are described with illustrative examples

  11. BIOTECHNOLOGY : AN OVERVIEW

    Directory of Open Access Journals (Sweden)

    John I. Bruce

    2012-09-01

    Full Text Available Biotechnology as a science includes various aspects of the management and manipulation of biological systems. Recent advances in immunology, molecular biology, cell culture and other associated areas provide an opportunity for scientists to move biology out of the laboratory and into the realms of society. This has many implications which mankind on a whole may not be prepared to cope with at this time. This new capability has been referred to as "Biotechnology". Biotechnology has also been defined as "the integrated use of biochemistry, microbiology, and chemical engineering in order to achieve the capacities of microbes and culture cells". Genetic engineering which includes gene splicing and recombinant DNA-cloning is an example of a recent offshoot of biotechnology. Because of the advent of biotechnology, one can now think of the prospect of engineering tomorrows vaccines. In the past, vaccine development has been laborious and in many instances an unrewarding task. After years of effort only a handful of safe, effective vaccines have emerged. In the biotechnology arena, new methodologies and strategies for immunizing humans and domestic animals against infectious diseases are providing new hope for discovering successful vaccines. While most of the effort in the past has focused on viral vaccine development, attention is now being directed towards vaccines for protection against parasitic diseases. Currently, considerable effort is being made to develop vaccines for malaria, coccidiosis (in fowl, cholera, malaria, schistosomiasis and trypanosomiasis among others.

  12. Fungal biodiversity to biotechnology.

    Science.gov (United States)

    Chambergo, Felipe S; Valencia, Estela Y

    2016-03-01

    Fungal habitats include soil, water, and extreme environments. With around 100,000 fungus species already described, it is estimated that 5.1 million fungus species exist on our planet, making fungi one of the largest and most diverse kingdoms of eukaryotes. Fungi show remarkable metabolic features due to a sophisticated genomic network and are important for the production of biotechnological compounds that greatly impact our society in many ways. In this review, we present the current state of knowledge on fungal biodiversity, with special emphasis on filamentous fungi and the most recent discoveries in the field of identification and production of biotechnological compounds. More than 250 fungus species have been studied to produce these biotechnological compounds. This review focuses on three of the branches generally accepted in biotechnological applications, which have been identified by a color code: red, green, and white for pharmaceutical, agricultural, and industrial biotechnology, respectively. We also discuss future prospects for the use of filamentous fungi in biotechnology application.

  13. Changes in forest productivity across Alaska consistent with biome shift

    Science.gov (United States)

    Peter S.A. Beck; Glenn P. Juday; Claire Alix; Valerie A. Barber; Stephen E. Winslow; Emily E. Sousa; Patricia Heiser; James D. Herriges; Scott J. Goetz

    2011-01-01

    Global vegetation models predict that boreal forests are particularly sensitive to a biome shift during the 21st century. This shift would manifest itself first at the biome's margins, with evergreen forest expanding into current tundra while being replaced by grasslands or temperate forest at the biome's southern edge. We evaluated changes in forest...

  14. [Biotechnology's macroeconomic impact].

    Science.gov (United States)

    Dones Tacero, Milagros; Pérez García, Julián; San Román, Antonio Pulido

    2008-12-01

    This paper tries to yield an economic valuation of biotechnological activities in terms of aggregated production and employment. This valuation goes beyond direct estimation and includes the indirect effects derived from sectorial linkages between biotechnological activities and the rest of economic system. To deal with the proposed target several sources of data have been used, including official data from National Statistical Office (INE) such us national accounts, input-output tables, and innovation surveys, as well as, firms' level balance sheets and income statements and also specific information about research projects compiled by Genoma Spain Foundation. Methodological approach is based on the estimation of a new input-output table which includes the biotechnological activities as a specific branch. This table offers both the direct impact of these activities and the main parameters to obtain the induced effects over the rest of the economic system. According to the most updated available figures, biotechnological activities would have directly generated almost 1,600 millions of euros in 2005, and they would be employed more than 9,000 workers. But if we take into account the full linkages with the rest of the system, the macroeconomic impact of Biotechnological activities would reach around 5,000 millions euros in production terms (0.6% of total GDP) and would be responsible, directly or indirectly, of more than 44,000 employments.

  15. On coupling global biome models with climate models

    International Nuclear Information System (INIS)

    Claussen, M.

    1994-01-01

    The BIOME model of Prentice et al. (1992), which predicts global vegetation patterns in equilibrium with climate, is coupled with the ECHAM climate model of the Max-Planck-Institut fuer Meteorologie, Hamburg. It is found that incorporation of the BIOME model into ECHAM, regardless at which frequency, does not enhance the simulated climate variability, expressed in terms of differences between global vegetation patterns. Strongest changes are seen only between the initial biome distribution and the biome distribution computed after the first simulation period, provided that the climate-biome model is started from a biome distribution that resembles the present-day distribution. After the first simulation period, there is no significant shrinking, expanding, or shifting of biomes. Likewise, no trend is seen in global averages of land-surface parameters and climate variables. (orig.)

  16. Biotechnology and human rights.

    Science.gov (United States)

    Feuillet-Le Mintier, B

    2001-12-01

    Biotechnology permits our world to progress. It's a tool to better apprehend the human being, but as well to let him go ahead. Applied to the living, biotechnologies present the same finality. But since their matter concerns effectively the living, they are the sources of specific dangers and particularly of that one to use the improvements obtained on the human to modify the human species. The right of the persons has to find its place to avoid that the fundamental rights of the human personality shall undergo harm. This mission assigned to the right of the persons is as so much invaluable that the economical stakes are particularly important in the domain of the biotechnologies.

  17. Biotechnological production of vanillin.

    Science.gov (United States)

    Priefert, H; Rabenhorst, J; Steinbüchel, A

    2001-08-01

    Vanillin is one of the most important aromatic flavor compounds used in foods, beverages, perfumes, and pharmaceuticals and is produced on a scale of more than 10 thousand tons per year by the industry through chemical synthesis. Alternative biotechnology-based approaches for the production are based on bioconversion of lignin, phenolic stilbenes, isoeugenol, eugenol, ferulic acid, or aromatic amino acids, and on de novo biosynthesis, applying fungi, bacteria, plant cells, or genetically engineered microorganisms. Here, the different biosynthesis routes involved in biotechnological vanillin production are discussed.

  18. Biotechnology in diagnostics

    International Nuclear Information System (INIS)

    Koprowski, H.; Ferrone, S.; Albertini, A.

    1985-01-01

    In recent years much progress has been made in the area of biotechnology. The cellular and molecular cloning methodology to develop monoclonal antibodies and DNA probes have been extensively utilized in basic and clinical research. These investigations have provided the necessary information to apply these reagents to diagnostic problems. The RIA 85 meeting focused on the application of monoclonal antibodies and DNA probes in laboratory medicine. The papers presented at this meeting clearly indicate that biotechnology has already had a significant impact on clinical medicine. (Auth.)

  19. Colloids in Biotechnology

    CERN Document Server

    Fanun, Monzer

    2010-01-01

    Colloids have come a long way from when Thomas Graham coined the term colloid to describe 'pseudo solutions'. This book enables scientists to close the gap between extensive research and translation into commercial options in biomedicine and biotechnology. It covers biosurfactants and surface properties, phase behavior, and orientational change of surfactant mixtures with peptides at the interface. It also covers adsorption of polymers and biopolymers on the surface and interface, discusses colloidal nanoparticles and their use in biotechnology, and delves into bioadhesion and microencapsulati

  20. Agave biotechnology: an overview.

    Science.gov (United States)

    Nava-Cruz, Naivy Y; Medina-Morales, Miguel A; Martinez, José L; Rodriguez, R; Aguilar, Cristóbal N

    2015-01-01

    Agaves are plants of importance both in Mexican culture and economy and in other Latin-American countries. Mexico is reported to be the place of Agave origin, where today, scientists are looking for different industrial applications without compromising its sustainability and preserving the environment. To make it possible, a deep knowledge of all aspects involved in production process, agro-ecological management and plant biochemistry and physiology is required. Agave biotechnology research has been focusing on bio-fuels, beverages, foods, fibers, saponins among others. In this review, we present the advances and challenges of Agave biotechnology.

  1. Disclosing Biology Teachers' Beliefs about Biotechnology and Biotechnology Education

    Science.gov (United States)

    Fonseca, Maria Joao; Costa, Patricio; Lencastre, Leonor; Tavares, Fernando

    2012-01-01

    Teachers have been shown to frequently avoid addressing biotechnology topics. Aiming to understand the extent to which teachers' scarce engagement in biotechnology teaching is influenced by their beliefs and/or by extrinsic constraints, such as practical limitations, this study evaluates biology teachers' beliefs about biotechnology and…

  2. Concepts in Biotechnology An Affordable Overview of Biotechnology ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 9. Concepts in Biotechnology An Affordable Overview of Biotechnology Through Self Study ... Author Affiliations. Narayan S Punekar1. Molecular Enzymology Group, Biotechnology Centre, Indian Institute of Technology, Mumbai 400 076, India.

  3. Biogeography of photoautotrophs in the high polar biome

    Directory of Open Access Journals (Sweden)

    Stephen Brian Pointing

    2015-09-01

    Full Text Available The global latitudinal gradient in biodiversity weakens in the high polar biome and so an alternative explanation for distribution of Arctic and Antarctic photoautotrophs is required. Here we identify how temporal, microclimate and evolutionary drivers of biogeography are important, rather than the macroclimate features that drive plant diversity patterns elsewhere. High polar ecosystems are biologically unique, with a more central role for bryophytes, lichens and microbial photoautotrophs over that of vascular plants. Constraints on vascular plants arise mainly due to stature and ontogenetic barriers. Conversely non-vascular plant and microbial photoautotroph distribution is correlated with favourable microclimates and the capacity for poikilohydric dormancy. Contemporary distribution also depends on evolutionary history, with adaptive and dispersal traits as well as legacy influencing biogeography. We highlight the relevance of these findings to predicting future impacts on polar plant diversity and to the current status of plants in Arctic and Antarctic conservation policy frameworks.

  4. Biome Is Where the Art Is

    Science.gov (United States)

    Gooden, Kelly

    2005-01-01

    The author is surprised every year when fifth-grade students react to the study of biomes as if they've never given any thought to the differences across parts of the world. Sure, they've all heard of the tropical rain forest and the desert, but it seems as though they think the rest of the world is just some undefined area with climate, animals,…

  5. The Brazilian Pampa: A Fragile Biome

    Directory of Open Access Journals (Sweden)

    Valdir Marcos Stefenon

    2009-12-01

    Full Text Available Biodiversity is one of the most fundamental properties of Nature. It underpins the stability of ecosystems, provides vast bioresources for economic use, and has important cultural significance for many people. The Pampa biome, located in the southernmost state of Brazil, Rio Grande do Sul, illustrates the direct and indirect interdependence of humans and biodiversity. The Brazilian Pampa lies within the South Temperate Zone where grasslands scattered with shrubs and trees are the dominant vegetation. The soil, originating from sedimentary rocks, often has an extremely sandy texture that makes them fragile—highly prone to water and wind erosion. Human activities have converted or degraded many areas of this biome. In this review we discuss our state-of-the-art knowledge of the diversity and the major biological features of this regions and the cultural factors that have shaped it. Our aim is to contribute toward a better understanding of the current status of this special biome and to describe how the interaction between human activities and environment affects the region, highlighting the fragility of the Brazilian Pampa.

  6. ENVIRONMENTAL RISK MANAGEMENT OF BIOTECHNOLOGY

    Science.gov (United States)

    The last two decades have shown remarkable advances in the field of biotechnology. We have processes using biotechnology to produce materials from commodity chemicals to pharmaceuticals. The application to agriculture has shown the introduction of transgenic crops with pesticidal...

  7. National Center for Biotechnology Information

    Science.gov (United States)

    ... to NCBI Sign Out NCBI National Center for Biotechnology Information Search database All Databases Assembly Biocollections BioProject ... Search Welcome to NCBI The National Center for Biotechnology Information advances science and health by providing access ...

  8. Biotechnologies and Human Dignity

    Science.gov (United States)

    Sweet, William; Masciulli, Joseph

    2011-01-01

    In this article, the authors review some contemporary cases where biotechnologies have been employed, where they have had global implications, and where there has been considerable debate. The authors argue that the concept of dignity, which lies at the center of such documents as the 2005 Universal Declaration on Bioethics and Human Rights, the…

  9. Biotechnological Innovations in Aquaculture

    Directory of Open Access Journals (Sweden)

    Mangesh M. Bhosale

    2016-04-01

    Full Text Available Aquaculture is gaining commendable importance to meet the required protein source for ever increasing human population. The aquaculture industry is currently facing problems on developing economically viable production systems by reducing the impact on environment. Sustainable and enhanced fish production from aquaculture may be better achieved through application of recent biotechnological innovations. Utilisation of transgenic technology has led to production of fishes with faster growth rate with disease resistance. The full advantage of this technology could not be achieved due to concern of acceptance for Genetically Modified Organisms (GMOs. The biotechnological intervention in developing plant based feed ingredient in place of fish meal which contain high phosphorus is of prime area of attention for fish feed industry. The replacement of fish meal will also reduce fish feed cost to a greater extent. Year round fish seed production of carps through various biotechnological interventions is also need of the hour. This paper discusses technical, environmental and managerial considerations regarding the use of these biotechnological tools in aquaculture along with the advantages of research application and its commercialization.

  10. Biotechnology: challenges and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Sasson, A.

    1985-04-01

    Rapidly occurring technological breakthroughs in the wake of numerous discoveries in different fields, such as biochemistry, genetic engineering as well as cellular and molecular biology as described in this paper have a variety of industrial applications, and forcasts covering these and various other fields have been made. The emerging bio-industry, covering diverse industries, such as chemical, food, pharmaceutical, etc., as well as the domains of health, environmental protection and abatement of pollution present challenging prospects. Several biotechnology processes relating to bioenergy, fermentation, waste transformation, vaccines, etc. are of particular interest to the developing countries. The 'functioning systems' resulting from the breakthrouth in genetic engineering, entailing extraordinary refinement of analytical techniques and technological progress, pose the challenging task of harnessing them to the advantage of mankind. Providing effective legal protection, conducive to the development of biotechnologies-their innovative process and technological change-is a matter of serious concern, involving practical and economical considerations. Several other issues and questions, such as risk prevention and management of potential dangers and hazards in genetic recombination operation by way of safety regulations and necessary guidelines, questions relating to the clinical trials of the interferons-the wonder drug-as well as questions of professional ethics are raised by biotechnologies. Industry-funded research in biotechnology, where scientific and commercial imperatives are interlocked, has for instance, its repercussions on the traditional thrust of university system, specially the sanctity of autonomy for basic research.

  11. Biotechnology--Biotechnical Systems.

    Science.gov (United States)

    Ruggles, Stanford

    1990-01-01

    The perspective of biotechnology and its development in the K-12 technology education curriculum are described. The content curriculum development and implications for activities are discussed. The difference between a curriculum focused on the activities of industry compared to one that addresses technology as it pervades all human endeavors is…

  12. Biotechnology of trees: Chestnut

    Science.gov (United States)

    C.D. Nelson; W.A. Powell; S.A. Merkle; J.E. Carlson; F.V. Hebard; N Islam-Faridi; M.E. Staton; L. Georgi

    2014-01-01

    Biotechnology has been practiced on chestnuts (Castanea spp.) for many decades, including vegetative propagation, controlled crossing followed by testing and selection, genetic and cytogenetic mapping, genetic modifi cation, and gene and genome sequencing. Vegetative propagation methods have ranged from grafting and rooting to somatic embryogenesis, often in...

  13. Biotechnology in weed control

    Science.gov (United States)

    Biotechnology can be used to enhance the management of weeds in several ways. Crops have been made resistant to herbicides by inserting transgenes that impart herbicide resistance into the plant genome. Glyphosate and glufosinate-resistant crops are commercialized in North America and crops made res...

  14. State responses to biotechnology.

    Science.gov (United States)

    Harris, Rebecca C

    2015-01-01

    This article reviews biotechnology legislation in the 50 states for 11 policy areas spanning 1990-2010, an era of immense growth in biotechnology, genetic knowledge, and significant policy development. Policies regarding health insurance, life insurance, long-term care insurance, DNA data bank collection, biotech research protection, biotech promotion and support, employment discrimination, genetic counselor licensing, human cloning, and genetic privacy each represent major policy responses arising from biotechnology and coinciding with key areas of state regulation (insurance, criminal justice, economic development, labor law, health and safety, privacy, and property rights). This analysis seeks to answer three questions regarding biotechnology legislation at the state level: who is acting (policy adoption), when is policy adopted (policy timing), and what is policy doing (policy content). Theoretical concerns examine state ideology (conservative or liberal), policy type (economic or moral), and the role of external events (federal law, news events, etc.) on state policy adoption. Findings suggest ideological patterns in adoption, timing, and content of biotech policy. Findings also suggest economic policies tend to be more uniform in content than moral policies, and findings also document a clear link between federal policy development, external events, and state policy response.

  15. TSCA Biotechnology Notifications Status

    Science.gov (United States)

    This Notifications Table lists only those submissions received under the Biotechnology Regulation, beginning in 1998. From the Table, you can link to a brief summary of select submission and, in many cases, to a fact sheet on the decision reached by OPPT.

  16. Development of food crops by modern biotechnology techniques in Central America Desarrollo de cultivos y alimentos por técnicas de biotecnología moderna en Centroamérica

    Directory of Open Access Journals (Sweden)

    Giovanni Garro Monge

    2012-12-01

    Full Text Available In the last decade, the adoption of Genetically Modified Crops (GMC has increased in stages worldwide. The worldwide total area planted with biotech crops reached 148 million hectares by 2010, also increasing the number of farmers around the world who decided to produce crops with this technology. At the regional level there are different responses of government agencies by generating rules and regu- lations according to the reality of these countries. In Central America, countries with greater partici- pation in the development and cultivation of food biotechnology techniques are Guatemala (papa- ya, Honduras (beans and maize and Costa Rica (cotton, soybean and pineapple, placing the latter two in the 29 countries with more GMO planting crops worldwide in 2010. Some of the countries of the region have implemented governance structures for the regulation through technical committees on Biosafety. The most important characteristics in terms of trade continue to be those that confer herbicide tolerance or pest resistance. But notice the incur- sion of new products that contain changes in their content, which are emerging as an alternative with great perspectives in the region. These experiences of culture and Biosafety regula- tion at the regional level could be a successful and progressive development of agricultural and food biotechnology in the near future.En la última década, la adopción de Cultivos Genéticamente Modificados (CGM se ha incre- mentado de forma escalonada a nivel mundial. El área sembrada con cultivos biotecnológicos llegó a un total de 148 millones de hectáreas en 2010, aumentando también el número de agricultores que decidieron producir este tipo de cultivos. A nivel regional, se producen respuestas diversas de los órganos gubernamentales mediante reglamen- tos y normativas acordes con la realidad local. En Centroamérica, los países con mayor participación en el desarrollo y cultivo de alimentos utilizando t

  17. Anthropogenic Biomes of the World, Version 2: 1700

    Data.gov (United States)

    National Aeronautics and Space Administration — The Anthropogenic Biomes of the World, Version 2: 1700 data set describes anthropogenic transformations within the terrestrial biosphere caused by sustained direct...

  18. Anthropogenic Biomes of the World, Version 2: 1900

    Data.gov (United States)

    National Aeronautics and Space Administration — The Anthropogenic Biomes of the World, Version 2: 1900 data set describes anthropogenic transformations within the terrestrial biosphere caused by sustained direct...

  19. Anthropogenic Biomes of the World, Version 2: 1800

    Data.gov (United States)

    National Aeronautics and Space Administration — The Anthropogenic Biomes of the World, Version 2: 1800 data set describes anthropogenic transformations within the terrestrial biosphere caused by sustained direct...

  20. Anthropogenic Biomes of the World, Version 2: 2000

    Data.gov (United States)

    National Aeronautics and Space Administration — The Anthropogenic Biomes of the World, Version 2: 2000 data set describes anthropogenic transformations within the terrestrial biosphere caused by sustained direct...

  1. Comparative patterns of plant invasions in the Mediterranean biome.

    Science.gov (United States)

    Arianoutsou, Margarita; Delipetrou, Pinelopi; Vilà, Montserrat; Dimitrakopoulos, Panayiotis G; Celesti-Grapow, Laura; Wardell-Johnson, Grant; Henderson, Lesley; Fuentes, Nicol; Ugarte-Mendes, Eduardo; Rundel, Philip W

    2013-01-01

    The objective of this work was to compare and contrast the patterns of alien plant invasions in the world's five mediterranean-climate regions (MCRs). We expected landscape age and disturbance history to have bearing on levels of invasion. We assembled a database on naturalized alien plant taxa occurring in natural and semi-natural terrestrial habitats of all five regions (specifically Spain, Italy, Greece and Cyprus from the Mediterranean Basin, California, central Chile, the Cape Region of South Africa and Southwestern - SW Australia). We used multivariate (hierarchical clustering and NMDS ordination) trait and habitat analysis to compare characteristics of regions, taxa and habitats across the mediterranean biome. Our database included 1627 naturalized species with an overall low taxonomic similarity among the five MCRs. Herbaceous perennials were the most frequent taxa, with SW Australia exhibiting both the highest numbers of naturalized species and the highest taxonomic similarity (homogenization) among habitats, and the Mediterranean Basin the lowest. Low stress and highly disturbed habitats had the highest frequency of invasion and homogenization in all regions, and high natural stress habitats the lowest, while taxonomic similarity was higher among different habitats in each region than among regions. Our analysis is the first to describe patterns of species characteristics and habitat vulnerability for a single biome. We have shown that a broad niche (i.e. more than one habitat) is typical of naturalized plant species, regardless of their geographical area of origin, leading to potential for high homogenization within each region. Habitats of the Mediterranean Basin are apparently the most resistant to plant invasion, possibly because their landscapes are generally of relatively recent origin, but with a more gradual exposure to human intervention over a longer period.

  2. La filatelia biomédica

    OpenAIRE

    Emilio J.A. Roldán; Claudio Zuckerberg

    2011-01-01

    La temática biomédica es un capítulo extendido de la filatelia o coleccionismo de sellos postales. Inaugura la temática la imagen de la diosa Hygeia, en un sello de la isla Nevis de 1861. Los primeros médicos retratados en una estampilla son tres constitucionalistas americanos, en un ejemplar de 1869, pero recién en 1937 aparecen médicos holandeses en reconocimiento específico de sus aportes a la salud. En la Argentina la primera estampilla que oficialmente se ocupa del tema es de 1944, en ay...

  3. Oil and biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Yoshiaki

    1988-06-01

    The secondary oil recovery due to microorganisms and the production of useful substances from oil distillates using microorganisms are described as examples to solidify the relationship between oil and biotechnology. The secondary crude-oil recovery has been carried out due to the microorganism drive process, which includes the on-the-ground and underground processes. Although the microorganism drive process has been investigated for many years, the selection of the microorganisms is not completely established. Many uncertainties still remain regarding the technical and economic aspects. The single cell protein (SCP) is an example of industrial success in the production of useful substances from the oil. Rumania has produced SCP from normal paraffin and the U. K. from the methanol and the products are used as the protein source for animals. Remarkable progress in the functional efficiency of microorganisms is expected due to the biotechnology for both applications. (4 tabs)

  4. Environmental Biotechnology in China

    Science.gov (United States)

    Liu, Shuang Jiang; Liu, Lei; Chaudhry, Muhammad Tausif; Wang, Lei; Chen, Ying Guang; Zhou, Qi; Liu, He; Chen, Jian

    Environmental biotechnology has emerged as an important measure to tackle the environmental pollution as China experiences great economic success. Over the past decade, much emphasis has been paid to the following fields in environmental biotechnology: microbial degradation of toxic and organic chemicals, bio-treatment of wastewater, waste recycling. The Chinese researchers have done a lot of work to understand the natural degradation processes for organic and toxic compounds and finally to clean these compounds from polluted environments. For the treatment of wastewater, many new processes were proposed and optimized to meet the more strict effluent standards in China. Finally, more and more attention has been paid to the reuse of discharged wastes. In this chapter we review the development in the above fields.

  5. Opportunities in biotechnology.

    Science.gov (United States)

    Gartland, Kevan M A; Gartland, Jill S

    2018-06-08

    Strategies for biotechnology must take account of opportunities for research, innovation and business growth. At a regional level, public-private collaborations provide potential for such growth and the creation of centres of excellence. By considering recent progress in areas such as genomics, healthcare diagnostics, synthetic biology, gene editing and bio-digital technologies, opportunities for smart, strategic and specialised investment are discussed. These opportunities often involve convergent or disruptive technologies, combining for example elements of pharma-science, molecular biology, bioinformatics and novel device development to enhance biotechnology and the life sciences. Analytical applications use novel devices in mobile health, predictive diagnostics and stratified medicine. Synthetic biology provides opportunities for new product development and increased efficiency for existing processes. Successful centres of excellence should promote public-private business partnerships, clustering and global collaborations based on excellence, smart strategies and innovation if they are to remain sustainable in the longer term. Copyright © 2018. Published by Elsevier B.V.

  6. Electron shuttles in biotechnology.

    Science.gov (United States)

    Watanabe, Kazuya; Manefield, Mike; Lee, Matthew; Kouzuma, Atsushi

    2009-12-01

    Electron-shuttling compounds (electron shuttles [ESs], or redox mediators) are essential components in intracellular electron transfer, while microbes also utilize self-produced and naturally present ESs for extracellular electron transfer. These compounds assist in microbial energy metabolism by facilitating electron transfer between microbes, from electron-donating substances to microbes, and/or from microbes to electron-accepting substances. Artificially supplemented ESs can create new routes of electron flow in the microbial energy metabolism, thereby opening up new possibilities for the application of microbes to biotechnology processes. Typical examples of such processes include halogenated-organics bioremediation, azo-dye decolorization, and microbial fuel cells. Herein we suggest that ESs can be applied widely to create new microbial biotechnology processes.

  7. Biotechnology in maize breeding

    Directory of Open Access Journals (Sweden)

    Mladenović-Drinić Snežana

    2004-01-01

    Full Text Available Maize is one of the most important economic crops and the best studied and most tractable genetic system among monocots. The development of biotechnology has led to a great increase in our knowledge of maize genetics and understanding of the structure and behaviour of maize genomes. Conventional breeding practices can now be complemented by a number of new and powerful techniques. Some of these often referred to as molecular methods, enable scientists to see the layout of the entire genome of any organism and to select plants with preferred characteristics by "reading" at the molecular level, saving precious time and resources. DNA markers have provided valuable tools in various analyses ranging from phylogenetic analysis to the positional cloning of genes. Application of molecular markers for genetic studies of maize include: assessment of genetic variability and characterization of germ plasm, identification and fingerprinting of genotypes, estimation of genetic distance, detection of monogamic and quantitative trait loci, marker assisted selection, identification of sequence of useful candidate genes, etc. The development of high-density molecular maps which has been facilitated by PCR-based markers, have made the mapping and tagging of almost any trait possible and serve as bases for marker assisted selection. Sequencing of maize genomes would help to elucidate gene function, gene regulation and their expression. Modern biotechnology also includes an array of tools for introducing or deieting a particular gene or genes to produce plants with novel traits. Development of informatics and biotechnology are resulted in bioinformatic as well as in expansion of microarrey technique. Modern biotechnologies could complement and improve the efficiency of traditional selection and breeding techniques to enhance agricultural productivity.

  8. BIOTECHNOLOGY BIOPRODUCTS "HEALING-1"

    Directory of Open Access Journals (Sweden)

    S. I. Artiukhova

    2014-01-01

    Full Text Available Summary. The article presents data on the development of technology and qualitative research, bio-products «Healing-1». One of the promising directions in food biotechnology is the development of new integrated starter-based consortia of microorganisms, which have higher activity compared with cultures prepared using pure cultures. So it was interesting studies on the development of new biotechnology and bio-based microbial consortium of lactic acid bacteria. Based on the analysis of biotechnological properties of native cultures created a new consortium of microorganisms containing lactic acid streptococci and bacilli, allowing the maximum extent possible to implement the physiological, biochemical and technological potential of microorganisms. Scientifically substantiated and experimentally developed a new biotechnology production of bioproducts «Healing-1», obtained on the basis of microbial consortium with broad spectrum antimicrobial activity. Experimentally investigated quality parameters of organic food «Healing-1» using a new microbial consortium as freshly prepared and during storage. Found that antagonistic activity of microflora bio «Healing-1» with respect to pathogenic and conditionally pathogenic bacteria, as well as its resistance to substances in the gastrointestinal tract of man is more pronounced compared to bioproducts obtained using a separate starter, members of the microbial consortium. It should be noted a more pronounced synthesis of exopolysaccharides in bioproduct «Healing-1», which leads to increased viscosity of the system and improves the consistency of bio. New bioproducts have good organoleptic characteristics and contain a high number of viable cells of lactic acid bacteria. High stability and survival of lactic acid bacteria during storage. In the study of attacked proteins bioproducts digestive proteinases «in vitro» found that the fermentation of milk microbial consortium increases the digestibility

  9. Practicing environmental biotechnology

    OpenAIRE

    Bruce E.Rittmann

    2014-01-01

    Environmental biotechnology involves ″managing microbial communities to provide services to society″.Its success comes from partnering with prokaryotic microorganisms,whose wideranging metabolic capabilities can be harnessed to destroy pollutants and to generate renewable materials.Partnering with microorganisms requires that we understand them well,and important advances in molecular microbial ecology,analytical chemistry,and mathematical modeling are making it possible to look inside the b...

  10. Biotechnology's foreign policy.

    Science.gov (United States)

    Feldbaum, Carl

    2002-01-01

    From its inception, biotechnology has been a uniquely international enterprise. An American and an Englishman working together elucidated the structure of DNA almost 50 years ago; more recently, the Human Genome Project linked researchers around the world, from the Baylor College of Medicine in Houston to the Beijing Human Genome Center. Today our industry's researchers hail from African villages and Manhattan high rises; from Munich and Melbourne; from London, Ontario, and London, England; from Scotland and Nova Scotia--New Scotland; from Calcutta and Calgary. But in the beginning, the infrastructure that supported these efforts--intellectual property, venture capital, streamlined technology transfer--was less widely dispersed and the world's brightest biotech researchers clustered in only half a dozen scientific Meccas. Previous technological revolutions have spread around the world. Following in their footsteps, biotechnology's global diaspora seems inevitable, especially since governments are promoting it. But as our science and business emigrate from early strongholds in the United States, Canada and Europe across oceans and borders and into new cultures, international tensions over biotechnology continue to grow. In just the last few years, controversies have rolled over R&D spending priorities, genetic patents, bioprospecting, transgenic agriculture and drug pricing. My premise today is that our industry needs to formulate its first foreign policy, one which is cognizant of the miserable judgments and mistakes of other industries--and avoids them.

  11. Practicing environmental biotechnology

    Directory of Open Access Journals (Sweden)

    Bruce E.Rittmann

    2014-02-01

    Full Text Available Environmental biotechnology involves ″managing microbial communities to provide services to society″.Its success comes from partnering with prokaryotic microorganisms,whose wideranging metabolic capabilities can be harnessed to destroy pollutants and to generate renewable materials.Partnering with microorganisms requires that we understand them well,and important advances in molecular microbial ecology,analytical chemistry,and mathematical modeling are making it possible to look inside the black box of microbial communities.Also crucial is translating the understanding to biotechnological processes that ″work for the microorganisms so that they work for us″.Successful translation demands novel reactor designs,application of advanced materials,and partnering with practitioners and users.The Swette Center for Environmental Biotechnology,founded in at Arizona State University in 2005,brings together the science and engineering tools in an interdisciplinary environment.The Center emphasizes teamwork and collaborations with research and practice partners around the world.Three new technologies illustrate how the Center applies these principles to ″work for the microorganisms″:the H2-based membrane biofilm reactor (MBfR for reducing many oxidized contaminants in water,the microbial electrochemical cells (MXCs for converting organic wastes into renewable products,and Intimately Coupled PhotoBioCatalysis (ICPBC to detoxify very difficult to biodegrade organic pollutants.

  12. Environmental history of the dry forest biome of Guerrero, Mexico, and human impact during the last c. 2700 years

    NARCIS (Netherlands)

    Berrio, J.C.; Hooghiemstra, H.; van Geel, B.; Ludlow-Wiegers, B.

    2006-01-01

    Two lake sediment cores from Madre del Sur mountain range, Guerrero State, west-central Mexico were studied to examine the past dynamics of the dry forest biome. Pollen, spores of coprophilous fungi, cyanobacteria and lithological changes are presented. The 390-cm Tixtla core (17°30′N, 99°24′W, 1400

  13. Construction Biotechnology: a new area of biotechnological research and applications.

    Science.gov (United States)

    Stabnikov, Viktor; Ivanov, Volodymyr; Chu, Jian

    2015-09-01

    A new scientific and engineering discipline, Construction Biotechnology, is developing exponentially during the last decade. The major directions of this discipline are selection of microorganisms and development of the microbially-mediated construction processes and biotechnologies for the production of construction biomaterials. The products of construction biotechnologies are low cost, sustainable, and environmentally friendly microbial biocements and biogrouts for the construction ground improvement. The microbial polysaccharides are used as admixtures for cement. Microbially produced biodegradable bioplastics can be used for the temporarily constructions. The bioagents that are used in construction biotechnologies are either pure or enrichment cultures of microorganisms or activated indigenous microorganisms of soil. The applications of microorganisms in the construction processes are bioaggregation, biocementation, bioclogging, and biodesaturation of soil. The biotechnologically produced construction materials and the microbially-mediated construction technologies have a lot of advantages in comparison with the conventional construction materials and processes. Proper practical implementations of construction biotechnologies could give significant economic and environmental benefits.

  14. "Othering" agricultural biotechnology: Slovenian media representation of agricultural biotechnology.

    Science.gov (United States)

    Zajc, Jožica; Erjavec, Karmen

    2014-08-01

    While studies on media representations of agricultural biotechnology mostly analyse media texts, this work is intended to fill a research gap with an analysis of journalistic interpretations of media representations. The purpose of this project was to determine how news media represent agricultural biotechnology and how journalists interpret their own representations. A content and critical discourse analysis of news texts published in the Slovenian media over two years and in-depth interviews with their authors were conducted. News texts results suggest that most of the news posts were "othering" biotechnology and biotechnologists: biotechnology as a science and individual scientists are represented as "they," who are socially irresponsible, ignorant, arrogant, and "our" enemies who produce unnatural processes and work for biotechnology companies, whose greed is destroying people, animals, and the environment. Most journalists consider these representations to be objective because they have published the biotechnologists' opinions, despite their own negative attitudes towards biotechnology.

  15. Biotechnology worldwide and the 'European Biotechnology Thematic Network' Association (EBTNA).

    Science.gov (United States)

    Bruschi, F; Dundar, M; Gahan, P B; Gartland, K; Szente, M; Viola-Magni, M P; Akbarova, Y

    2011-09-01

    The European Biotechnology Congress 2011 held under the auspices of the European Biotechnology Thematic Network Association (EBTNA) in conjunction with the Turkish Medical Genetics Association brings together a broad spectrum of biotechnologists from around the world. The subsequent abstracts indicate the manner in which biotechnology has permeated all aspects of research from the basic sciences through to small and medium enterprises and major industries. The brief statements before the presentation of the abstracts aim to introduce not only Biotechnology in general and its importance around the world, but also the European Biotechnology Thematic Network Association and its aims especially within the framework of education and ethics in biotechnology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Biotechnology: reality or dream

    Directory of Open Access Journals (Sweden)

    Konstantinov Kosana

    2002-01-01

    Full Text Available The development of molecular biology and molecular genetics, especially of the recombinant DNA technology enabled improvement of experimental methods that provide manipulation within a cell-free system, such as cell and tissue cultures. Such methods resulted in the development of different new technologies with specific properties in relation to the conventional definitions. According to PERSLEY and lantin (2000 the following components are essential for the contemporary biotechnology: (i genomics - a molecular characterization of all genes and gene products of an organism (ii bioinformatics - the assembly of data from genomic analysis into accessible forms; (iii transformation - the introduction of genes controlling a trait of interest into a genome of a desired organism (micro organisms, plants, animal systems. By the application of cotemporary biotechnology new methods in the field of diagnostic are developed such as rapid and more accurate identification of the presence and absence of genes in the genome of the organism of interest (identification of pathogens prenatal diagnostics, molecular markers assisted breeding for plants, etc. The traits of an organism are determined by its genetic material, i.e. by a molecule of deoxyribonucleic acid (DNA. watson and crick (1953 were the first scientists to describe the structure of DNA as a double-stranded helix. Higher organisms contain a set of linear DNA molecules - chromosomes and a full set of chromosomes of an organism is a genome. Each genome is divided into a series of functional units, i.e. genes. The traits of an organism depend on genes, but their expression depends not only on genes but also on many other factors, including whether a gene, controlling the trait, expresses, specific cells in which it expresses and specially the mode by which the gene and its product interact with the environment. A special aspect within the application of biotechnology occurs as an interaction of a

  17. La filatelia biomédica

    Directory of Open Access Journals (Sweden)

    Emilio J.A. Roldán

    2011-02-01

    Full Text Available La temática biomédica es un capítulo extendido de la filatelia o coleccionismo de sellos postales. Inaugura la temática la imagen de la diosa Hygeia, en un sello de la isla Nevis de 1861. Los primeros médicos retratados en una estampilla son tres constitucionalistas americanos, en un ejemplar de 1869, pero recién en 1937 aparecen médicos holandeses en reconocimiento específico de sus aportes a la salud. En la Argentina la primera estampilla que oficialmente se ocupa del tema es de 1944, en ayuda de las víctimas del terremoto de San Juan. Florentino Ameghino es el primer científico incluido en 1954, y en 1967 se edita un sello conmemorativo de la Dra. Cecilia Grierson. La filatelia argentina luego reconoce varios de nuestros científicos y médicos, congresos, universidades, campañas sanitarias, temas de odontología, farmacia, enfermería y otros, generando un amplio material filatélico en reconocimiento del valor social que la ciencia biomédica argentina ha logrado en el contexto propio e internacional. Posiblemente sea un científico, el Dr. Bernardo Houssay, uno de los argentinos más veces editado en distintos sellos postales de la filatelia mundial.

  18. Knowledge and Attitudes Towards Biotechnology of Elementary Education Preservice Teachers: The first Spanish experience

    Science.gov (United States)

    Casanoves, Marina; González, Ángel; Salvadó, Zoel; Haro, Juan; Novo, Maite

    2015-11-01

    Due to the important impact that biotechnology has on current Western societies, well-informed critical citizens are needed. People prepared to make conscious decisions about aspects of biotechnology that relate to their own lives. Teachers play a central role in all education systems. Thus, the biotechnological literacy of preservice teachers is an important consideration as they will become an influential collective as future teachers of the next generation of children. The attitudes toward science (and biotechnology) that teachers have affect their behavior and influence the way they implement their daily practice of science teaching in school. This study analyzes the attitudes and knowledge of Spanish preservice teachers toward biotechnology. We designed a new survey instrument that was completed by 407 university students who were taking official degree programs in preschool and primary education. Our results point out that although they are aware of biotechnology applications, topics concerning the structure of DNA, management of genetic information inside the cell, genetically modified organism technology and the use of microorganisms as biotechnological tools were not correctly answered. According to our attitude analysis, Spanish preservice teachers could be defined as opponents of genetically modified product acquisition, supporters of biotechnology for medical purposes and highly interested in increasing their knowledge about biotechnology and other scientific advances. Our results show a positive correlation between better knowledge and more positive attitudes toward biotechnology. A Spanish preservice teacher with positive attitudes toward biotechnology tends to be a student with a strong biology background who scored good marks in our knowledge test.

  19. Changes in forest productivity across Alaska consistent with biome shift.

    Science.gov (United States)

    Beck, Pieter S A; Juday, Glenn P; Alix, Claire; Barber, Valerie A; Winslow, Stephen E; Sousa, Emily E; Heiser, Patricia; Herriges, James D; Goetz, Scott J

    2011-04-01

    Global vegetation models predict that boreal forests are particularly sensitive to a biome shift during the 21st century. This shift would manifest itself first at the biome's margins, with evergreen forest expanding into current tundra while being replaced by grasslands or temperate forest at the biome's southern edge. We evaluated changes in forest productivity since 1982 across boreal Alaska by linking satellite estimates of primary productivity and a large tree-ring data set. Trends in both records show consistent growth increases at the boreal-tundra ecotones that contrast with drought-induced productivity declines throughout interior Alaska. These patterns support the hypothesized effects of an initiating biome shift. Ultimately, tree dispersal rates, habitat availability and the rate of future climate change, and how it changes disturbance regimes, are expected to determine where the boreal biome will undergo a gradual geographic range shift, and where a more rapid decline. © 2011 Blackwell Publishing Ltd/CNRS.

  20. Magnetic separations in biotechnology.

    Science.gov (United States)

    Borlido, L; Azevedo, A M; Roque, A C A; Aires-Barros, M R

    2013-12-01

    Magnetic separations are probably one of the most versatile separation processes in biotechnology as they are able to purify cells, viruses, proteins and nucleic acids directly from crude samples. The fast and gentle process in combination with its easy scale-up and automation provide unique advantages over other separation techniques. In the midst of this process are the magnetic adsorbents tailored for the envisioned target and whose complex synthesis spans over multiple fields of science. In this context, this article reviews both the synthesis and tailoring of magnetic adsorbents for bioseparations as well as their ultimate application. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Climate-biomes, pedo-biomes and pyro-biomes: which world view explains the tropical forest - savanna boundary in South America?

    Science.gov (United States)

    Langan, Liam; Higgins, Steven; Scheiter, Simon

    2015-04-01

    Elucidating the drivers of broad vegetation formations improves our understanding of earth system functioning. The biome, defined primarily by the dominance of a particular growth strategy, is commonly employed to group vegetation into similar units. Predicting tropical forest and savanna biome boundaries in South America has proven difficult. Process based DGVMs (Dynamic global vegetation models) are our best tool to simulate vegetation patterns, make predictions for future changes and test theory, however, many DGVMs fail to accurately simulate the spatial distribution or indeed presence of the South American savanna biome which can result in large differences in modelled ecosystem structural properties. Evidence suggests fire plays a significant role in mediating these forest and savanna biome boundaries, however, fire alone does not appear to be sufficient to predict these boundaries in South America using DGVMs hinting at the presence of one or more missing environmental factors. We hypothesise that soil depth, which affects plant available water by determining maximum storage potential and influences temporal availability, may be one of these missing environmental factors. To test our hypothesis we use a novel vegetation model, the aDGVM2. This model has been specifically designed to allow plant trait strategies, constrained by trade-offs between traits, evolve based on the abiotic and biotic conditions where the resulting community trait suites are emergent properties of model dynamics. Furthermore it considers root biomass in multiple soil layers and therefore allows the consideration of alternative rooting strategies, which in turn allows us to explore in more detail the role of soil hydraulic factors in controlling biome boundary distributions. We find that changes in soil depth, interacting with fire, affect the relative dominance of tree and grass strategies and thus the presence and spatial distribution of forest and savanna biomes in South America

  2. Development of biotechnology in India.

    Science.gov (United States)

    Ghose, T K; Bisaria, V S

    2000-01-01

    India has embarked upon a very ambitious program in biotechnology with a view to harnessing its available human and unlimited biodiversity resources. It has mainly been a government sponsored effort with very little private industry participation in investment. The Department of Biotechnology (DBT) established under the Ministry of Science and Technology in 1986 was the major instrument of action to bring together most talents, material resources, and budgetary provisions. It began sponsoring research in molecular biology, agricultural and medical sciences, plant and animal tissue culture, biofertilizers and biopesticides, environment, human genetics, microbial technology, and bioprocess engineering, etc. The establishment of a number of world class bioscience research institutes and provision of large research grants to some existing universities helped in developing specialized centres of biotechnology. Besides DBT, the Department of Science & Technology (DST), also under the Ministry of S&T, sponsors research at universities working in the basic areas of life sciences. Ministry of Education's most pioneering effort was instrumental in the creation of Biochemical Engineering Research Centre at IIT Delhi with substantial assistance from the Swiss Federal Institute of Technology, Zurich, Switzerland to make available state-of-the-art infrastructure for education, training, and research in biochemical engineering and biotechnology in 1974. This initiative catalysed biotechnology training and research at many institutions a few years later. With a brief introduction, the major thrust areas of biotechnology development in India have been reviewed in this India Paper which include education and training, agricultural biotechnology, biofertilizers and biopesticides, tissue culture for tree and woody species, medicinal and aromatic plants, biodiversity conservation and environment, vaccine development, animal, aquaculture, seri and food biotechnology, microbial

  3. Biotechnology Towards Energy Crops.

    Science.gov (United States)

    Margaritopoulou, Theoni; Roka, Loukia; Alexopoulou, Efi; Christou, Myrsini; Rigas, Stamatis; Haralampidis, Kosmas; Milioni, Dimitra

    2016-03-01

    New crops are gradually establishing along with cultivation systems to reduce reliance on depleting fossil fuel reserves and sustain better adaptation to climate change. These biological assets could be efficiently exploited as bioenergy feedstocks. Bioenergy crops are versatile renewable sources with the potential to alternatively contribute on a daily basis towards the coverage of modern society's energy demands. Biotechnology may facilitate the breeding of elite energy crop genotypes, better suited for bio-processing and subsequent use that will improve efficiency, further reduce costs, and enhance the environmental benefits of biofuels. Innovative molecular techniques may improve a broad range of important features including biomass yield, product quality and resistance to biotic factors like pests or microbial diseases or environmental cues such as drought, salinity, freezing injury or heat shock. The current review intends to assess the capacity of biotechnological applications to develop a beneficial bioenergy pipeline extending from feedstock development to sustainable biofuel production and provide examples of the current state of the art on future energy crops.

  4. Ethical perception of modern biotechnology

    African Journals Online (AJOL)

    Jane

    2011-09-30

    Sep 30, 2011 ... 1Social Impact of Biotechnology Development in Malaysia Research ... purpose of this paper is to examine the ethical perception of modern ... and social benefits of modern biotechnology, consumer .... Company or organisation directly involved in the production of ...... Food safety battle: organic vs. biotech.

  5. Teachers' Concerns about Biotechnology Education

    Science.gov (United States)

    Borgerding, Lisa A.; Sadler, Troy D.; Koroly, Mary Jo

    2013-01-01

    The impacts of biotechnology are found in nearly all sectors of society from health care and food products to environmental issues and energy sources. Despite the significance of biotechnology within the sciences, it has not become a prominent trend in science education. In this study, we seek to more fully identify biology teachers' concerns…

  6. A Case for Teaching Biotechnology

    Science.gov (United States)

    Lazaros, Edward; Embree, Caleb

    2016-01-01

    Biotechnology is an innovative field that is consistently growing in popularity. It is important that students are taught about this technology at an early age, so they are motivated to join the field, or at least motivated to become informed citizens and consumers (Gonzalez, et al, 2013). An increase in biotechnology knowledge can result in an…

  7. Environmental biotechnology: concepts and applications

    National Research Council Canada - National Science Library

    Winter, Josef; Jördening, Hans-Joachim

    2005-01-01

    ... for the - development of new and environmentally improved production technologies with less purified substrates and generation of fewer by-products - bioproducts as non-toxic matters, mostly recyclable. Some impressive studies on industrial applications of biotechnology are published in two OECD reports, which summarized, that biotechnology has the potential o...

  8. Central key project `Biotechnology`. Supplementary report. 2nd project phase (3/95 through 12/95); Zentrales Schwerpunktprojekt Bioverfahrenstechnik. Ergaenzungsbericht 2. Foerderphase (3/95 bis 12/95)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The report describes the activities of the three sections of the key project `Biotechnology`: Biological systems, e.g. environmental biotechnology, enzyme reactions; protein engineering, fermentation problems of secondary metabolites, tetrachloroethylene degradation, stereoselective synthesis; process engineering, i.e. supercritical solvents, enzyme-catalysed reactions, bipolar membrane technology, membrane separation processes, anaerobic processes; information engineering, i.e. morphology recording, process control. Separate abstracts are available in this database for two articles of this report. (SR) [Deutsch] Dargestellt werden die Taetigkeiten der verschiedenen Arbeitsbereiche des Schwerpunktprojektes Biotechnologie. Es handelt sich hierbei um die drei Projektbereiche: Biologische Systeme unter anderem mit den Themen Umweltbiotechnologie, Enzymreaktionen, Protein-Engineering, Fermentationsprobleme bei sekundaeren Metaboliten, Tetrachlorethylen-Abbau, Stereoselektive Synthese; des weiteren der Projektbereich Verfahrenstechnik unter anderem mit den Themen Ueberkritische Loesungsmittel, Enzymkatalysierte Reaktionen, Bipolare Membrantechnik, Membrantrennverfahren, Anaerobprozesse; als letztes der Projektbereich Informationstechnik mit den Themen Morphologieerfassung, Prozessfuehrung. (SR)

  9. Central key project `Biotechnology`. Supplementary report. 2nd project phase (3/95 through 12/95); Zentrales Schwerpunktprojekt Bioverfahrenstechnik. Ergaenzungsbericht 2. Foerderphase (3/95 bis 12/95)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The report describes the activities of the three sections of the key project `Biotechnology`: Biological systems, e.g. environmental biotechnology, enzyme reactions; protein engineering, fermentation problems of secondary metabolites, tetrachloroethylene degradation, stereoselective synthesis; process engineering, i.e. supercritical solvents, enzyme-catalysed reactions, bipolar membrane technology, membrane separation processes, anaerobic processes; information engineering, i.e. morphology recording, process control. Separate abstracts are available in this database for two articles of this report. (SR) [Deutsch] Dargestellt werden die Taetigkeiten der verschiedenen Arbeitsbereiche des Schwerpunktprojektes Biotechnologie. Es handelt sich hierbei um die drei Projektbereiche: Biologische Systeme unter anderem mit den Themen Umweltbiotechnologie, Enzymreaktionen, Protein-Engineering, Fermentationsprobleme bei sekundaeren Metaboliten, Tetrachlorethylen-Abbau, Stereoselektive Synthese; des weiteren der Projektbereich Verfahrenstechnik unter anderem mit den Themen Ueberkritische Loesungsmittel, Enzymkatalysierte Reaktionen, Bipolare Membrantechnik, Membrantrennverfahren, Anaerobprozesse; als letztes der Projektbereich Informationstechnik mit den Themen Morphologieerfassung, Prozessfuehrung. (SR)

  10. Microalgal symbiosis in biotechnology.

    Science.gov (United States)

    Santos, Carla A; Reis, Alberto

    2014-07-01

    This review provides an analysis of recent published work on interactions between microorganisms, especially the ones involving mainly nutrient exchanges and at least with one microalga species. Examples of microbial partners are given, with a remark to the potential application of cultures of an autotroph and a heterotroph, which grow simultaneously, taking advantage of the complementary metabolisms. These are particularly interesting, either due to economic or sustainable aspects, and some applications have already reached the commercial stage of development. The added advantages of these symbiotic cultures are biomass, lipid, and other products productivity enhancement a better utilization of resources and the reduction or even elimination of process residues (including carbon dioxide and other greenhouse gases) to conduct an increasingly greener biotechnology. Among the several symbiotic partners referred, the microalgae and yeast cultures are the most used. The interaction between these two microorganisms shows how to enhance the lipid production for biodiesel purposes compared with separated (stand-alone) cultures.

  11. Biotechnological applications of transglutaminases.

    Science.gov (United States)

    Rachel, Natalie M; Pelletier, Joelle N

    2013-10-22

    In nature, transglutaminases catalyze the formation of amide bonds between proteins to form insoluble protein aggregates. This specific function has long been exploited in the food and textile industries as a protein cross-linking agent to alter the texture of meat, wool, and leather. In recent years, biotechnological applications of transglutaminases have come to light in areas ranging from material sciences to medicine. There has also been a substantial effort to further investigate the fundamentals of transglutaminases, as many of their characteristics that remain poorly understood. Those studies also work towards the goal of developing transglutaminases as more efficient catalysts. Progress in this area includes structural information and novel chemical and biological assays. Here, we review recent achievements in this area in order to illustrate the versatility of transglutaminases.

  12. Montane plant environments in the Fynbos Biome

    Directory of Open Access Journals (Sweden)

    B. M. Campbell

    1983-12-01

    Full Text Available Environmental data collected at 507 plots on 22 transects, and soil analytical data from 81 of these plots, have been used to describe the plant environments of the mountains in the Fynbos Biome. Two major regional gradients are recognized: a west-east gradient and a coast-interior gradient. Of particular consequence for fynbos-environment studies is the increase in the proportion of fine soil particles from west to east. At least some aspects of soil fertility also increase towards the east. The edaphic changes are paralleled by climatic changes: chiefly a decrease in the severity of summer drought towards the east. On the coast-interior gradient a major non-climatic variable in the gradient is rock cover. High rock cover is a feature of the interior ranges. Soils with organic horizons or with E horizons are a feature on the coastal mountains, but are generally lacking on the interior mountains. The other environmental gradients recognized occur on individual transects and all include edaphic variables. The rockiness-soil depth gradient, on which an increase in rockiness is associated with a decrease in soil depth and usually a decrease in clay content, tends to occur in three situations. Firstly, it is associated with local topographic variation; the shallow, rocky soils being a feature of the steeper slopes. Secondly, it is associated with the aspect gradient; the hot, dry northern aspects having shallow, rocky, less developed soils. Thirdly, it tends to be associated with the altitude-rainfall gradient: shallower soils being found at higher altitudes. It is also at higher altitudes that higher rainfall is found. Variation in oxidizable carbon is chiefly accounted for by the altitude-rainfall gradient. Whereas at a biome-wide level, aspects of soil fertility are related to soil texture, it appears that on individual transects fertility is linked to amounts of plant remains in the soil and to rainfall. Apart from these gradients, which are

  13. Biotechnology in Turkey: an overview.

    Science.gov (United States)

    Ozdamar, Tunçer H

    2009-07-01

    The term biotechnology first appeared in the programs of the Scientific and Technological Research Council of Turkey (TUBITAK) in 1982. The State Planning Organization (SPO) in 1988 defined biotechnology and the scientific fields. Moreover, it put forward an institutional framework and suggested priority areas for research and development. Turkey has been researching and investing in biotechnology for almost four decades. This review covers the development of science and technology policy with its history, consensus and consequences, bio-industries in Turkey, and research activities in biotechnology at Turkish Universities. Details are provided by the research groups in response to a common request for information on their activities and major publications in the field. The information provided has been grouped under thematic topics within the broad theme of biotechnology, and summarized within these topics. Although many aspects of biotechnological research are being pursued in Turkey, it appears that the most common research activities of the field are in fermentation processes, environmental biotechnology, and biomedical engineering.

  14. The Economics of Root Distributions of Terrestrial Biomes in Response to Elevated CO2

    Science.gov (United States)

    Lu, M.; Hedin, L. O. O.

    2017-12-01

    Belowground root distributions of terrestrial biomes are central to understanding soil biogeochemical processes and land carbon sink. Yet models are thus far not able to predict root distributions across plant functional groups and major biomes, limiting our ability to predict the response of land systems to elevated CO2 concentration. Of particular concern is the apparent lack of stimulation of the aboveground carbon sink despite 30% increase of atmospheric CO2 over the past half-century, and despite the clear acceleration of the land carbon sink over the same period. This apparent discrepancy in land ecosystem response has led to the proposition that changes in belowground root dynamics might be responsible for the overlooked land sink. We here present a new modeling approach for predicting the response of root biomass and soil carbon storage to increased CO2. Our approach considers the first-principle mechanisms and tradeoffs by which plants and plant roots invest carbon to gain belowground resources, in collaboration with distinct root symbioses. We allow plants to locally compete for nutrients, with the ability to allocate biomass at different depths in the soil profile. We parameterized our model using an unprecedented global dataset of root traits, and validated our biome-level predictions with a recently updated global root biomass database. Our results support the idea that plants "dig deeper" when exposed to increased CO2, and we offer an economic-based mechanism for predicting the plant root response across soil conditions, plant functional groups and major biomes. Our model also recreates the observed responses across a range of free-air CO2 enrichment experiments, including a distinct response between plants associated with ectomycorrhizal and arbuscular mycorrhizal fungi. Most broadly, our findings suggest that roots may be increasingly important in the land carbon sink, and call for a greater effort to quantify belowground responses to elevated

  15. Using an Exploratory Internet Activity & Trivia Game to Teach Students about Biomes

    Science.gov (United States)

    Richardson, Matthew L.

    2009-01-01

    Students in life science classes need an introduction to biomes, including an introduction to the concept, key biotic and abiotic features of biomes, and geographic locations of biomes. In this activity, students in seventh- and eighth-grade science classes used a directed exploratory Internet activity to learn about biomes. The author tested…

  16. Spatial Distribution of Aboveground Carbon Stock of the Arboreal Vegetation in Brazilian Biomes of Savanna, Atlantic Forest and Semi-Arid Woodland.

    Science.gov (United States)

    Scolforo, Henrique Ferraco; Scolforo, Jose Roberto Soares; Mello, Carlos Rogerio; Mello, Jose Marcio; Ferraz Filho, Antonio Carlos

    2015-01-01

    The objective of this study was to map the spatial distribution of aboveground carbon stock (using Regression-kriging) of arboreal plants in the Atlantic Forest, Semi-arid woodland, and Savanna Biomes in Minas Gerais State, southeastern Brazil. The database used in this study was obtained from 163 forest fragments, totaling 4,146 plots of 1,000 m2 distributed in these Biomes. A geographical model for carbon stock estimation was parameterized as a function of Biome, latitude and altitude. This model was applied over the samples and the residuals generated were mapped based on geostatistical procedures, selecting the exponential semivariogram theoretical model for conducting ordinary Kriging. The aboveground carbon stock was found to have a greater concentration in the north of the State, where the largest contingent of native vegetation is located, mainly the Savanna Biome, with Wooded Savanna and Shrub Savanna phytophysiognomes. The largest weighted averages of carbon stock per hectare were found in the south-center region (48.6 Mg/ha) and in the southern part of the eastern region (48.4 Mg/ha) of Minas Gerais State, due to the greatest predominance of Atlantic Forest Biome forest fragments. The smallest weighted averages per hectare were found in the central (21.2 Mg/ha), northern (20.4 Mg/ha), and northwestern (20.7 Mg/ha) regions of Minas Gerais State, where Savanna Biome fragments are predominant, in the phytophysiognomes Wooded Savanna and Shrub Savanna.

  17. Structural characterization of vegetation in the fynbos biome

    CSIR Research Space (South Africa)

    Campbell, BM

    1981-08-01

    Full Text Available A proposed system for the standardization of descriptive terminology for structural characterization of vegetation in the Fynbos Biome is presented in tabular form. Specific applications of the system are described and illustrations of some...

  18. Forest resilience to drought varies across biomes.

    Science.gov (United States)

    Gazol, Antonio; Camarero, Jesus Julio; Vicente-Serrano, Sergio M; Sánchez-Salguero, Raúl; Gutiérrez, Emilia; de Luis, Martin; Sangüesa-Barreda, Gabriel; Novak, Klemen; Rozas, Vicente; Tíscar, Pedro A; Linares, Juan C; Martín-Hernández, Natalia; Martínez Del Castillo, Edurne; Ribas, Montse; García-González, Ignacio; Silla, Fernando; Camisón, Alvaro; Génova, Mar; Olano, José M; Longares, Luis A; Hevia, Andrea; Tomás-Burguera, Miquel; Galván, J Diego

    2018-05-01

    Forecasted increase drought frequency and severity may drive worldwide declines in forest productivity. Species-level responses to a drier world are likely to be influenced by their functional traits. Here, we analyse forest resilience to drought using an extensive network of tree-ring width data and satellite imagery. We compiled proxies of forest growth and productivity (TRWi, absolutely dated ring-width indices; NDVI, Normalized Difference Vegetation Index) for 11 tree species and 502 forests in Spain corresponding to Mediterranean, temperate, and continental biomes. Four different components of forest resilience to drought were calculated based on TRWi and NDVI data before, during, and after four major droughts (1986, 1994-1995, 1999, and 2005), and pointed out that TRWi data were more sensitive metrics of forest resilience to drought than NDVI data. Resilience was related to both drought severity and forest composition. Evergreen gymnosperms dominating semi-arid Mediterranean forests showed the lowest resistance to drought, but higher recovery than deciduous angiosperms dominating humid temperate forests. Moreover, semi-arid gymnosperm forests presented a negative temporal trend in the resistance to drought, but this pattern was absent in continental and temperate forests. Although gymnosperms in dry Mediterranean forests showed a faster recovery after drought, their recovery potential could be constrained if droughts become more frequent. Conversely, angiosperms and gymnosperms inhabiting temperate and continental sites might have problems to recover after more intense droughts since they resist drought but are less able to recover afterwards. © 2018 John Wiley & Sons Ltd.

  19. Bioceres: AG Biotechnology from Argentina

    Directory of Open Access Journals (Sweden)

    Roberto Feeney

    2016-04-01

    Full Text Available In this case we present a business decision-making situation in which the CEO of an Argentine Ag Biotech company, Bioceres, has to decide the best way to commercialize a new drought-tolerant transgenic technology. The company was founded by twenty three farmers, who shared a common dream that Argentina could become a benchmark in the development of Ag biotechnology. The case has strategic and financial implications, as well as decision-making situation involving a joint venture with an American biotechnology company. It also introduces to discussion the business models of Ag biotechnology companies in developing countries.

  20. Pollen-based biome reconstructions for Latin America at 0, 6000 and 18 000 radiocarbon years

    Science.gov (United States)

    Marchant, R.; Harrison, S.P.; Hooghiemstra, H.; Markgraf, Vera; Van Boxel, J. H.; Ager, T.; Almeida, L.; Anderson, R.; Baied, C.; Behling, H.; Berrio, J.C.; Burbridge, R.; Bjorck, S.; Byrne, R.; Bush, M.B.; Cleef, A.M.; Duivenvoorden, J.F.; Flenley, J.R.; De Oliveira, P.; Van Geel, B.; Graf, K.J.; Gosling, W.D.; Harbele, S.; Van Der Hammen, T.; Hansen, B.C.S.; Horn, S.P.; Islebe, G.A.; Kuhry, P.; Ledru, M.-P.; Mayle, F.E.; Leyden, B.W.; Lozano-Garcia, S.; Melief, A.B.M.; Moreno, P.; Moar, N.T.; Prieto, A.; Van Reenen, G. B.; Salgado-Labouriau, M. L.; Schasignbitz, F.; Schreve-Brinkman, E. J.; Wille, M.

    2009-01-01

    The biomisation method is used to reconstruct Latin American vegetation at 6000±500 and 18 000±1000 radiocarbon years before present (14C yr BP) from pollen data. Tests using modern pollen data from 381 samples derived from 287 locations broadly reproduce potential natural vegetation. The strong temperature gradient associated with the Andes is recorded by a transition from high altitude cool grass/shrubland and cool mixed forest to mid-altitude cool temperate rain forest, to tropical dry, seasonal and rain forest at low altitudes. Reconstructed biomes from a number of sites do not match the potential vegetation due to local factors such as human impact, methodological artefacts and mechanisms of pollen representivity of the parent vegetation. At 6000±500 14C yr BP 255 samples are analysed from 127 sites. Differences between the modern and the 6000±500 14C yr BP reconstruction are comparatively small. Patterns of change relative to the modern reconstruction are mainly to biomes characteristic of drier climate in the north of the region with a slight more mesic shift in the south. Cool temperate rain forest remains dominant in western South America. In northwestern South America a number of sites record transitions from tropical seasonal forest to tropical dry forest and tropical rain forest to tropical seasonal forest. Sites in Central America also show a change in biome assignment to more mesic vegetation, indicative of greater plant available moisture, e.g. on the Yucat??n peninsula sites record warm evergreen forest, replacing tropical dry forest and warm mixed forest presently recorded. At 18 000±1000 14C yr BP 61 samples from 34 sites record vegetation that reflects a generally cool and dry environment. Cool grass/shrubland prevalent in southeast Brazil, Amazonian sites record tropical dry forest, warm temperate rain forest and tropical seasonal forest. Southernmost South America is dominated by cool grass/shrubland, a single site retains cool temperate

  1. Dynamic vegetation modeling of tropical biomes during Heinrich events

    Science.gov (United States)

    Handiani, Dian Noor; Paul, André; Dupont, Lydie M.

    2010-05-01

    Heinrich events are thought to be associated with a slowdown of the Atlantic Meridional Overturning Circulation (AMOC), which in turn would lead to a cooling of the North Atlantic Ocean and a warming of the South Atlantic Ocean (the "bipolar seesaw" hypothesis). The accompanying abrupt climate changes occurred not only in the ocean but also on the continents. Changes were strongest in the Northern Hemisphere but were registered in the tropics as well. Pollen data from Angola and Brazil showed that climate changes during Heinrich events affected vegetation patterns very differently in eastern South America and western Africa. To understand the differential response in the terrestrial tropics, we studied the vegetation changes during Heinrich events by using a dynamic global vegetation model (TRIFFID) as part of the University of Victoria (UVic) Earth System-Climate Model (ESCM). The model results show a bipolar seesaw pattern in temperature and precipitation during a near-collapse of the AMOC. The succession in plant-functional types (PFTs) showed changes from forest to shrubs to desert, including spreading desert in northwest Africa, retreating broadleaf trees in West Africa and northern South America, but advancing broadleaf trees in Brazil. The pattern is explained by a southward shift of the tropical rainbelt resulting in a strong decrease in precipitation over northwest and West Africa as well as in northern South America, but an increase in precipitation in eastern Brazil. To facilitate the comparison between modeled vegetation results with pollen data, we diagnosed the distribution of biomes from the PFT coverage and the simulated model climate. The biome distribution was computed for Heinrich event 1 and the Last Glacial Maximum as well as for pre-industrial conditions. We used a classification of biomes in terms of "mega-biomes", which were defined following a scheme originally proposed by BIOME 6000 (v 4.2). The biome distribution of the Sahel region

  2. On coupling global biome models with climate models

    OpenAIRE

    Claussen, M.

    1994-01-01

    The BIOME model of Prentice et al. (1992; J. Biogeogr. 19: 117-134), which predicts global vegetation patterns in equilibrium with climate, was coupled with the ECHAM climate model of the Max-Planck-Institut fiir Meteorologie, Hamburg, Germany. It was found that incorporation of the BIOME model into ECHAM, regardless at which frequency, does not enhance the simulated climate variability, expressed in terms of differences between global vegetation patterns. Strongest changes are seen only betw...

  3. Diverging responses of tropical Andean biomes under future climate conditions.

    Directory of Open Access Journals (Sweden)

    Carolina Tovar

    Full Text Available Observations and projections for mountain regions show a strong tendency towards upslope displacement of their biomes under future climate conditions. Because of their climatic and topographic heterogeneity, a more complex response is expected for biodiversity hotspots such as tropical mountain regions. This study analyzes potential changes in the distribution of biomes in the Tropical Andes and identifies target areas for conservation. Biome distribution models were developed using logistic regressions. These models were then coupled to an ensemble of 8 global climate models to project future distribution of the Andean biomes and their uncertainties. We analysed projected changes in extent and elevational range and identified regions most prone to change. Our results show a heterogeneous response to climate change. Although the wetter biomes exhibit an upslope displacement of both the upper and the lower boundaries as expected, most dry biomes tend to show downslope expansion. Despite important losses being projected for several biomes, projections suggest that between 74.8% and 83.1% of the current total Tropical Andes will remain stable, depending on the emission scenario and time horizon. Between 3.3% and 7.6% of the study area is projected to change, mostly towards an increase in vertical structure. For the remaining area (13.1%-17.4%, there is no agreement between model projections. These results challenge the common believe that climate change will lead to an upslope displacement of biome boundaries in mountain regions. Instead, our models project diverging responses, including downslope expansion and large areas projected to remain stable. Lastly, a significant part of the area expected to change is already affected by land use changes, which has important implications for management. This, and the inclusion of a comprehensive uncertainty analysis, will help to inform conservation strategies in the Tropical Andes, and to guide similar

  4. Generality of leaf trait relationships: A test across six biomes

    Energy Technology Data Exchange (ETDEWEB)

    Reich, P.B. [Univ. of Minnesota, Saint Paul, MN (United States). Dept. of Forest Resources; Ellsworth, D.S. [Brookhaven National Lab., Upton, NY (United States). Dept. of Applied Science; Walters, M.B. [Michigan State Univ., East Lansing, MI (United States). Dept. of Forestry; Vose, J.M. [Forest Service, Otto, NC (United States). Coweeta Hydrological Lab.; Gresham, C. [Clemson Univ., Georgetown, SC (United States). Baruch Forest Inst.; Volin, J.C. [Florida Atlantic Univ., Davie, FL (United States). Div. of Science; Bowman, W.D. [Inst. of Arctic and Alpine Research, Boulder, CO (United States). Mountain Research Station]|[Univ. of Colorado, Boulder, CO (United States). Dept. of Evolutionary, Population, and Organismic Biology

    1999-09-01

    Convergence in interspecific leaf trait relationships across diverse taxonomic groups and biomes would have important evolutionary and ecological implications. Such convergence has been hypothesized to result from trade-offs that limit the combination of plant traits for any species. Here the authors address this issue by testing for biome differences in the slope and intercept of interspecific relationships among leaf traits: longevity, net photosynthetic capacity (A{sub max}), leaf diffusive conductance (G{sub S}), specific leaf area (SLA), and nitrogen (N) status, for more than 100 species in six distinct biomes of the Americas. The six biomes were: alpine tundra-subalpine forest ecotone, cold temperate forest-prairie ecotone, montane cool temperate forest, desert shrubland, subtropical forest, and tropical rain forest. Despite large differences in climate and evolutionary history, in all biomes mass-based leaf N (N{sub mass}), SLA, G{sub S}, and A{sub max} were positively related to one another and decreased with increasing leaf life span. The relationships between pairs of leaf traits exhibited similar slopes among biomes, suggesting a predictable set of scaling relationships among key leaf morphological, chemical, and metabolic traits that are replicated globally among terrestrial ecosystems regardless of biome or vegetation type. However, the intercept (i.e., the overall elevation of regression lines) of relationships between pairs of leaf traits usually differed among biomes. With increasing aridity across sites, species had greater A{sub max} for a given level of G{sub S} and lower SLA for any given leaf life span. Using principal components analysis, most variation among species was explained by an axis related to mass-based leaf traits (A{sub max}, N, and SLA) while a second axis reflected climate, G{sub S}, and other area-based leaf traits.

  5. Proceedings of the International Symposium on Biotechnology

    International Nuclear Information System (INIS)

    2008-01-01

    This is a book of abstracts of oral communications and posters that were presented during the International Symposium on Biotechnology that was held in Sfax, Tunisia from May 4th to 8th, 2008. The following themes were covered : - Biotechnology for animal and human health and biopharmaceuticals; - Microbial and environmental biotechnology; - Agricultural, Food and marine biotechnology

  6. World Biotechnology Leaders to Gather for Conference

    Science.gov (United States)

    Biotechnology Leaders to Gather for Conference For more information contact: e:mail: Public Affairs biotechnology leaders gather in Fort Collins, CO May 2-6 for the 21st Symposium on Biotechnology for Fuels and special session on funding opportunities for U.S. biotechnology projects. More than 175 presentations are

  7. African Journal of Biotechnology: Submissions

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH ... The African Journal of Biotechnology (AJB) (ISSN 1684-5315) provides rapid publication of .... Authors may still request (in advance) that the editorial board waive some of the handling fee ...

  8. STRENGTHENING BIOTECHNOLOGY RESEARCH IN INDONESIA

    Directory of Open Access Journals (Sweden)

    S. Sastrapradja

    2012-09-01

    Full Text Available The wave of biotechnology promises has struck not only the developed countries but the developing countries as well. The scientific community in Indonesia is aware of the opportunities and is eager to take an active part in this particular endeavour. Meanwhile resources are required to welcoming the biotech­nology era. The need of trained manpower, appropriate infrastructure and equipment, operational and maintenance costs requires serious consideration if a unit or a laboratory is expected to be functional in biotechnology. There is a good opportunity of applying biotechnology in the field of agriculture and industry considering the availability of biological resources in Indonesia. This paper outlines what have been done so far, the difficulties encountered and the efforts made to strengthening biotechnology research in Indonesia.

  9. Modelling insights on the partition of evapotranspiration components across biomes

    Science.gov (United States)

    Fatichi, Simone; Pappas, Christoforos

    2017-04-01

    Recent studies using various methodologies have found a large variability (from 35 to 90%) in the ratio of transpiration to total evapotranspiration (denoted as T:ET) across biomes or even at the global scale. Concurrently, previous results suggest that T:ET is independent of mean precipitation and has a positive correlation with Leaf Area Index (LAI). We used the mechanistic ecohydrological model, T&C, with a refined process-based description of soil resistance and a detailed treatment of canopy biophysics and ecophysiology, to investigate T:ET across multiple biomes. Contrary to observation-based estimates, simulation results highlight a well-constrained range of mean T:ET across biomes that is also robust to perturbations of the most sensitive parameters. Simulated T:ET was confirmed to be independent of average precipitation, while it was found to be uncorrelated with LAI across biomes. Higher values of LAI increase evaporation from interception but suppress ground evaporation with the two effects largely cancelling each other in many sites. These results offer mechanistic, model-based, evidence to the ongoing research about the range of T:ET and the factors affecting its magnitude across biomes.

  10. Environmental biotechnology: Reducing risks from environmental chemicals through biotechnology

    International Nuclear Information System (INIS)

    Omenn, G.S.

    1988-01-01

    This book contains 34 papers on various aspects of hazardous waste management through biotechnology. The articles stress the three basic strategies of waste management; minimize the amount of waste generated; reduce the toxicity of the wastes; and find more satisfactory ways of disposing of wastes. Part I of this collection describes the use of microbial ecology, molecular biology, and other scientific disciplines to combat these problems. Part II describes the application of present technology to current problems. Part III describes the effect of policy and regulations on biotechnology. Individual papers are processed separately for the data base

  11. Conserving the Brazilian semiarid (Caatinga) biome under climate change

    DEFF Research Database (Denmark)

    Oliveira, Guilherme de; Bastos Araujo, Miguel; Rangel, Thiago Fernado

    2012-01-01

    to assess changes in climate suitability across individual species ranges, ensemble forecasting was used based on seven bioclimatic envelope models, three atmosphere–ocean general circulation models, and two greenhouse emission gas scenarios for 2020, 2050, and 2080. We found that most species will gain...... additional threats to the biome’s biodiversity. Here, we ask if the remnants of natural vegetation in Caatinga biome, where endemic terrestrial vertebrate species occur, are likely to retain more climatic suitability under climate change scenarios than other less pristine areas of the biome. In order......The Caatinga is a semiarid biome of the northeast of Brazil with only 1 % of its territory currently conserved. The biome’s biodiversity is highly threatened due to exposure to land conversion for agricultural and cattle ranch. Climate forecasts predict increases in aridity, which could pose...

  12. Management in biophotonics and biotechnologies

    Science.gov (United States)

    Meglinski, I. V.; Tuchin, V. V.

    2005-10-01

    Biophotonics, one of the most exciting and rapidly growing areas, offers vast potential for changing traditional approaches to meeting many critical needs in medicine, biology, pharmacy, food, health care and cosmetic industries. Follow the market trends we developed new MSc course Management in Biophotonics and Biotechnologies (MBB) that provide students of technical disciplines with the necessary training, education and problem-solving skills to produce professionals and managers who are better equipped to handle the challenges of modern science and business in biophotonics and biotechnology. A major advantage of the course is that it provides skills not currently available to graduates in other Master programs.

  13. Biotechnology opportunities on Space Station

    Science.gov (United States)

    Deming, Jess; Henderson, Keith; Phillips, Robert W.; Dickey, Bernistine; Grounds, Phyllis

    1987-01-01

    Biotechnology applications which could be implemented on the Space Station are examined. The advances possible in biotechnology due to the favorable microgravity environment are discussed. The objectives of the Space Station Life Sciences Program are: (1) the study of human diseases, (2) biopolymer processing, and (3) the development of cryoprocessing and cryopreservation methods. The use of the microgravity environment for crystal growth, cell culturing, and the separation of biological materials is considered. The proposed Space Station research could provide benefits to the fields of medicine, pharmaceuticals, genetics, agriculture, and industrial waste management.

  14. Patenting Biotechnological Inventions in Europe

    Directory of Open Access Journals (Sweden)

    Peter Raspor

    2002-01-01

    Full Text Available The patent system has been able to provide the protection for the achievements of different technologies and in that way it has supported further development and growth of the industry where those achievements were implemented. Modern technologies like information technology and biotechnology with genetic engineering that appeared in the 70s have overgrown the frames of the existing patent system because of their exponential development during the last thirty years. Industry that invests a huge amount of money in these technologies, especially in the field of biotechnology, where the results are very uncertain, has started to claim changes in the patent system.

  15. Remotely sensed phenology for mapping biomes and vegetation functional types

    CSIR Research Space (South Africa)

    Wessels, Konrad J

    2009-07-01

    Full Text Available clearly captured in Fig. 3. The majority of the pixels in the Savanna have a start of growing season in late October, midposition in February and end in June (Fig. 3). In contrast, the winter rainfall Succulent Karoo have a start of growing season... initially split the biomes based on vegetation production and then by the seasonality of growth IV - 1035 (Fig. 4). The three arid biomes (Desert, Succulent and Nama Figure 3. Frequency histograms of the mean START, midposition (MID) and END date...

  16. La prosodia como identificador biométrico

    OpenAIRE

    Farrús i Cabeceran, Mireia

    2011-01-01

    La biometría tiene como objetivo el reconocimiento de personas mediante uno o más identificadores biométricos como la voz, la cara o las huellas dactilares, entre otros. Gracias a la buena aceptación social y el poco intrusismo en los individuos, la voz ha sido, tradicionalmente, uno de los identificadores más utilizados en los sistemas biométricos. Estos sistemas de reconocimiento basados en la voz utilizan, habitualmente, características relacionadas con el espectro de la voz. No obstante, ...

  17. BIOTECHNOLOGY CAN IMPROVE FOOD SECURITY IN AFRICA ...

    African Journals Online (AJOL)

    BIOTECHNOLOGY CAN IMPROVE FOOD SECURITY IN AFRICA. ... and capacity to innovate and patent new materials as well as enforce biosafety requirements. In order for countries to access biotechnology products or technologies, it will ...

  18. Biotechnology Process Engineering Center at MIT - Overview

    Science.gov (United States)

    | Facsimile (617) 253-2400 | e-mail: bpec-www@mit.edu THERAPEUTIC GENE BIOTECHNOLOGY INDUSTRIAL CONSORTIUM Board (ICAB) in Therapeutic Gene Biotechnology. ICAB Member Representatives review our research progress

  19. Modernizing the Regulatory System for Biotechnology Products

    Science.gov (United States)

    This Web page describes the continuing effort to modernize the federal regulatory system for biotechnology products as well as clarify various roles of EPA, FDA and USDA in evaluating new biotechnology products.

  20. Applied thermodynamics: A new frontier for biotechnology

    DEFF Research Database (Denmark)

    Mollerup, Jørgen

    2006-01-01

    The scientific career of one of the most outstanding scientists in molecular thermodynamics, Professor John M. Prausnitz at Berkeley, reflects the change in the agenda of molecular thermodynamics, from hydrocarbon chemistry to biotechnology. To make thermodynamics a frontier for biotechnology...

  1. Linking Biotechnology and Agricultural Biodiversity Resources in ...

    African Journals Online (AJOL)

    komla

    on how to best manage the strategic interplay between biotechnology and diversity in ... Therefore, it is imperative that, in formulating a biotechnology ..... Acknowledgement, indicating the source of any financial support or personal assistance.

  2. Brief Note on the Development of Biotechnology

    OpenAIRE

    Karl Bayer

    2014-01-01

    Biotechnology, with the main applications in food and nutrition, dates back to the early times of mankind. In the recent decades the progress in natural sciences, mathematics and computer science has led to a new branch termed molecular biotechnology, which finally developed as an autonomous scientific discipline. The field of biotechnology, in the past generally empirically driven, now largely benefits from molecular biotechnology by improved systems, knowledge and understanding. Thereby, co...

  3. BIOTECHNOLOGY OF THE FISH AQUACULTURE

    Directory of Open Access Journals (Sweden)

    L. P. Buchatsky

    2013-12-01

    Full Text Available The latest progress in biotechnology on fish aquaculture and different modern methods of investigations for increasing of fish productivity in aquaculture are analyzed. Except for the applied aspect, the use of modern biotechnological methods of investigations opens new possibilities for fundamental researches of sex-determining mechanisms, polyploidy, distant hybridization, and developmental biology of bony fishes. Review contains examples of utilizing modern biotechnology methods to obtain transgenic fishes with accelerated growth and for designing surrogate fishes. Methods for receiving unisexual shoals of salmon and sturgeon female fishes with the view of obtaining a large quantity of caviar, as well as receiving sterile (triploid fishes are analyzed. Great attention is given to androgenesis, particularly to disperm one, in connection with the problem of conserving rare and vanishing fish species using only sperm genetic material. Examples how distant hybrids may be obtained with the use of disperm androgenesis and alkylated DNA are given. Methods of obtaining fish primordium germ cells, recent developments in cultivation of fish stem cells and their use in biotechnology, as well as ones of transplantation of oogonium and spermatogonium to obtain surrogate fishes. The examples of successful experiments on spermatogonial xenotransplantation and characteristic of antifreezing fish proteins and also the prospect of their practical usage are given.

  4. Re-Framing Biotechnology Regulation.

    Science.gov (United States)

    Peck, Alison

    Biotechnology is about to spill the banks of federal regulation. New genetic engineering techniques like CRISPR-Cas9 promise revolutionary breakthroughs in medicine, agriculture, and public health—but those techniques would not be regulated under the terms of the Coordinated Framework for Regulation of Biotechnology. This revolutionary moment in biotechnology offers an opportunity to correct the flaws in the framework, which was hastily patched together at the advent of the technology. The framework has never captured all relevant technologies, has never satisfied the public that risk is being effectively managed, and has never been accessible to small companies and publicly-funded labs that increasingly are positioned to make radical, life-saving innovations. This Article offers a proposal for new legislation that would reshape biotechnology regulation to better meet these goals. Key reforms include tying regulation to risk rather than technology category; consolidating agency review; capturing distinct regulatory expertise through inter-agency consultations; creating a clearinghouse to help guide applicants and disseminate information; setting up more comprehensive monitoring of environmental effects; and providing federal leadership to fill key data gaps and address socio-economic impacts.

  5. Acinetobacter: environmental and biotechnological applications ...

    African Journals Online (AJOL)

    Among microbial communities involved in different ecosystems such as soil, freshwater, wastewater and solid wastes, several strains belonging to the genus of Acinetobacter have been attracting growing interest from medical, environmental and a biotechnological point of view. Bacteria of this genus are known to be ...

  6. Biotechnological applications of bacterial cellulases

    Czech Academy of Sciences Publication Activity Database

    Menéndez, E.; García-Fraile, Paula; Rivas, R.

    2015-01-01

    Roč. 2, č. 3 (2015), s. 163-182 ISSN 2306-5354 R&D Projects: GA MŠk(CZ) EE2.3.30.0003 Institutional support: RVO:61388971 Keywords : Biotechnological applications * Bacterial cellulases * Cellulose degradation Subject RIV: EE - Microbiology, Virology

  7. Biotechnological sulphide removal with oxygen

    NARCIS (Netherlands)

    Buisman, C.

    1989-01-01

    This thesis deals with the development of a new process for biotechnological sulphide removal from wastewater, in which it is attempted to convert sulphide into elemental sulphur by colourless sulphur bacteria. The toxicity, corrosive properties, unpleasant odor and high oxygen demand of sulphide

  8. Bacteriophage ecology in environmental biotechnology processes.

    Science.gov (United States)

    Shapiro, Orr H; Kushmaro, Ariel

    2011-06-01

    Heterotrophic bacteria are an integral part of any environmental biotechnology process (EBP). Therefore, factors controlling bacterial abundance, activity, and community composition are central to the understanding of such processes. Among these factors, top-down control by bacteriophage predation has so far received very limited attention. With over 10(8) particles per ml, phage appear to be the most numerous biological entities in EBP. Phage populations in EBP appear to be highly dynamic and to correlate with the population dynamics of their hosts and genomic evidence suggests bacteria evolve to avoid phage predation. Clearly, there is much to learn regarding bacteriophage in EBP before we can truly understand the microbial ecology of these globally important systems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Biotechnology Process Engineering Center at MIT Home

    Science.gov (United States)

    has provided a focal point for biotechnology research and education at MIT. Prominent examples include the NIH Training Program in Biotechnology and the NIH Training Program in Genomics; both of these are -genomic biology. Another example is the new DuPont-MIT Alliance (DMA), focused on materials biotechnology

  10. Biotechnology: An Era of Hopes and Fears

    Science.gov (United States)

    2016-01-01

    Strategic Studies Quarterly ♦ Fall 2016 23 Biotechnology An Era of Hopes and Fears LTC Douglas R. Lewis, PhD, US Army Abstract Biotechnology ......ignored. The idea of advances in biotechnology increasing the biological weapons threat is not new. In 2003 an analysis of gene sequencing and

  11. Biotechnology: Challenge for the food industry

    Directory of Open Access Journals (Sweden)

    Popov Stevan

    2007-01-01

    Full Text Available According to the broadest definition, biotechnology is the use of living matter (plants, animals and microorganisms in industry, environment protection, medicine and agriculture. Biotechnology takes a key position in the field of food processing during thousands of years. Last about fifty years brought dynamical development of knowledges in the natural sciences especially in domain of genetics and manipulation of genes. Biotechnology for which active role in the on-coming times could be foreseen, not only with respect of R&D, but also in general technological development represents scope of priority in the USA and in European Union (EU as well. It is accepted that the results achieved in biotechnology oversize scientific domain and find their entrance into economics, legislation, quality of life and even of politics. Corresponding with the definition of biotechnology as "the integration of natural sciences and engineering in the application of microorganisms, cells, their components and molecular analogues in production (General assembly of the European federation for Biotechnology, 1989 European Commission (1999 adopted the biotechnological taxonomy, i.e. fields and sub-fields of biotechnology. R&D activities in this domain are oriented to eight fields and branched through them. Fields of biotechnology (EC, 1999 are: 1 Plant biotechnology (agricultural cultivars, trees, bushes etc; 2 Animal biotechnology; 3 Biotechnology in environment protection; 4 Industrial biotechnology (food, feed, paper, textile, pharmaceutical and chemical productions; 5 Industrial biotechnology (production of cells and research of cells - producers of food and of other commodities; 6 Development of humane and veterinarian diagnostics (therapeutical systems 7 Development of the basic biotechnology, and 8 Nontechnical domains of biotechnology. In concordance with some judgments, in the World exist about 4000 biotechnological companies. World market of biotechnological

  12. Karoo biome: a preliminary sythesis. Part 1 - physical environment

    CSIR Research Space (South Africa)

    Cowling, RM

    1986-01-01

    Full Text Available . It is a multi-authored publication covering a wide range of topics. This first volume summarizes what is currently known on the physical environment of the biome; namely geology, soils, climate, hydrology, geohydrology and soil erosion. Other aspects...

  13. Importance of soil-water to the Caatinga biome, Brazil

    NARCIS (Netherlands)

    Alves Rodrigues Pinheiro, Everton; Metselaar, Klaas; Jong van Lier, de Quirijn; Araújo, de José Carlos

    2016-01-01

    Northeastern Brazil is hydrologically characterized by recurrent droughts leading to a highly vulnerable natural water resource system. The region contains the Caatinga biome, covering an area of approximately 800000km2. To increase insight in water balance components for this sparsely

  14. South African Red Data Book: Plants - fynbos and Karoo biomes

    CSIR Research Space (South Africa)

    Hall, AV

    1985-01-01

    Full Text Available In this report a list is given of 1 808 rare, threatened and recently extinct plants in the fynbos and karoo biomes in the Cape Province of South Africa. The area covers the south-western and southern Cape, Namaqualand and the Karoo. Following...

  15. Climate control of terrestrial carbon exchange across biomes and continents

    Science.gov (United States)

    Chuixiang Yi; Daniel Ricciuto; Runze Li; John Wolbeck; Xiyan Xu; Mats Nilsson; John Frank; William J. Massman

    2010-01-01

    Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO2 exchange with the atmosphere across biomes...

  16. Climate control of terrestrial carbon exchange across biomes and continents

    Czech Academy of Sciences Publication Activity Database

    Yi, C.; Ricciuto, D.; Marek, Michal V.

    2010-01-01

    Roč. 5, č. 3 (2010), s. 034007 ISSN 1748-9326 Institutional research plan: CEZ:AV0Z60870520 Keywords : NEE * climate control * terrestrial carbon sequestration * temperature * dryness * eddy flux * biomes * photosynthesis * respiration * global carbon cycle Subject RIV: EH - Ecology, Behaviour Impact factor: 3.049, year: 2010

  17. Anthropogenic biomes: a key contribution to earth-system science

    Science.gov (United States)

    Lilian Alessa; F. Stuart Chapin

    2008-01-01

    Human activities now dominate most of the ice-free terrestrial surface. A recent article presents a classification and global map of human-influenced biomes of the world that provides a novel and potentially appropriate framework for projecting changes in earth-system dynamics.

  18. The effect of heterogeneous landscape dynamics on ecotone types at two convergent semi-arid biomes

    Science.gov (United States)

    Landscapes in biome transition zones consist of a mosaic of patches dominated or codominated by species from adjacent biomes. Shifts in the vegetation composition and dynamics of a biome transition zone depend upon the underlying patch dynamics of the ecotones between these dominant species. Landsca...

  19. Importance of ecotone type to landscape dynamics at biome transition zones

    Science.gov (United States)

    Landscapes in biome transition zones consist of a mosaic of patches dominated or codominated by species from adjacent biomes. Shifts in the vegetation composition and dynamics of a biome transition zone depend upon the underlying patch dynamics of the ecotones between these dominant species. Landsc...

  20. Biogeographical distribution analysis of hydrocarbon degrading and biosurfactant producing genes suggests that near-equatorial biomes have higher abundance of genes with potential for bioremediation.

    Science.gov (United States)

    Oliveira, Jorge S; Araújo, Wydemberg J; Figueiredo, Ricardo M; Silva-Portela, Rita C B; de Brito Guerra, Alaine; da Silva Araújo, Sinara Carla; Minnicelli, Carolina; Carlos, Aline Cardoso; de Vasconcelos, Ana Tereza Ribeiro; Freitas, Ana Teresa; Agnez-Lima, Lucymara F

    2017-07-27

    Bacterial and Archaeal communities have a complex, symbiotic role in crude oil bioremediation. Their biosurfactants and degradation enzymes have been in the spotlight, mainly due to the awareness of ecosystem pollution caused by crude oil accidents and their use. Initially, the scientific community studied the role of individual microbial species by characterizing and optimizing their biosurfactant and oil degradation genes, studying their individual distribution. However, with the advances in genomics, in particular with the use of New-Generation-Sequencing and Metagenomics, it is now possible to have a macro view of the complex pathways related to the symbiotic degradation of hydrocarbons and surfactant production. It is now possible, although more challenging, to obtain the DNA information of an entire microbial community before automatically characterizing it. By characterizing and understanding the interconnected role of microorganisms and the role of degradation and biosurfactant genes in an ecosystem, it becomes possible to develop new biotechnological approaches for bioremediation use. This paper analyzes 46 different metagenome samples, spanning 20 biomes from different geographies obtained from different research projects. A metagenomics bioinformatics pipeline, focused on the biodegradation and biosurfactant-production pathways, genes and organisms, was applied. Our main results show that: (1) surfactation and degradation are correlated events, and therefore should be studied together; (2) terrestrial biomes present more degradation genes, especially cyclic compounds, and less surfactation genes, when compared to water biomes; and (3) latitude has a significant influence on the diversity of genes involved in biodegradation and biosurfactant production. This suggests that microbiomes found near the equator are richer in genes that have a role in these processes and thus have a higher biotechnological potential. In this work we have focused on the

  1. Molecular Biology for the Environment: an EC-US hands-on Course in Environmental Biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Victor de Lorenzo; Juan Luis Ramos; Jerome Kukor; Gerben J. Zylstra

    2004-02-15

    One of the central goals of this activity is to bring together young scientists (at the late Ph.D. or early postdoctoral stages of their careers) in a forum that should result in future collaborations. The course is designed to give scientists hands-on experience in modern, up-to-date biotechnological methods at the interface between molecular biology and environmental biotechnology for the analysis of microorganisms and their activities with regard to the remediation of pollutants in the environment.

  2. Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota.

    Science.gov (United States)

    Byrne, M; Yeates, D K; Joseph, L; Kearney, M; Bowler, J; Williams, M A J; Cooper, S; Donnellan, S C; Keogh, J S; Leys, R; Melville, J; Murphy, D J; Porch, N; Wyrwoll, K-H

    2008-10-01

    The integration of phylogenetics, phylogeography and palaeoenvironmental studies is providing major insights into the historical forces that have shaped the Earth's biomes. Yet our present view is biased towards arctic and temperate/tropical forest regions, with very little focus on the extensive arid regions of the planet. The Australian arid zone is one of the largest desert landform systems in the world, with a unique, diverse and relatively well-studied biota. With foci on palaeoenvironmental and molecular data, we here review what is known about the assembly and maintenance of this biome in the context of its physical history, and in comparison with other mesic biomes. Aridification of Australia began in the Mid-Miocene, around 15 million years, but fully arid landforms in central Australia appeared much later, around 1-4 million years. Dated molecular phylogenies of diverse taxa show the deepest divergences of arid-adapted taxa from the Mid-Miocene, consistent with the onset of desiccation. There is evidence of arid-adapted taxa evolving from mesic-adapted ancestors, and also of speciation within the arid zone. There is no evidence for an increase in speciation rate during the Pleistocene, and most arid-zone species lineages date to the Pliocene or earlier. The last 0.8 million years have seen major fluctuations of the arid zone, with large areas covered by mobile sand dunes during glacial maxima. Some large, vagile taxa show patterns of recent expansion and migration throughout the arid zone, in parallel with the ice sheet-imposed range shifts in Northern Hemisphere taxa. Yet other taxa show high lineage diversity and strong phylogeographical structure, indicating persistence in multiple localised refugia over several glacial maxima. Similar to the Northern Hemisphere, Pleistocene range shifts have produced suture zones, creating the opportunity for diversification and speciation through hybridisation, polyploidy and parthenogenesis. This review highlights

  3. NEE and GPP dynamic evolution at two biomes in the upper Spanish plateau

    Science.gov (United States)

    Sánchez, María Luisa; Pardo, Nuria; Pérez, Isidro Alberto; García, Maria de los Angeles

    2014-05-01

    In order to assess the ability of dominant biomes to act as a CO2 sink, two eddy correlation stations close to each other in central Spain have been concurrently operational since March 2008 until the present. The land use of the first station, AC, is a rapeseed rotating crop consisting of annual rotation of non-irrigated rapeseed, barley, peas, rye, and sunflower, respectively. The land use of the second, CIBA, is a mixture of open shrubs/crops, with open shrubs being markedly dominant. The period of measurements covered variable general meteorological conditions. 2009 and 2012 were dominated by drought, whereas 2010 was the rainiest year. Annual rainfall during 2008 and 2009 was close to the historical averaged annual means. This paper presents the dynamic evolution of NEE-8d and GPP-8d observed at the AC station over five years and compares the results with those concurrently observed at the CIBA station. GGP 8-d estimates at both stations were determined using a Light Use Efficiency Model, LUE. Input data for the LUE model were the FPAR 8-d products supplied by MODIS, PAR in situ measurements, and a scalar f, varying between 0 and 1, to take account of the reduction in maximum PAR conversion efficiency, ɛ0, under limiting environmental conditions. f values were assumed to be dependent on air temperature and evaporative fraction, EF, which was considered a proxy of soil moisture. ɛ0, a key parameter, which depends on land use types, was derived through the results of a linear regression fit between the GPP 8-d eddy covariance composites observed and the LUE concurrent 8-d model estimates. Over the five-year study period, both biomes behaved as CO2 sinks. However, the ratio of the NEE-8d total accumulated at AC and CIBA, respectively, was close to a factor two, revealing the effectiveness of the studied crops as CO2 sinks. On an annual basis, accumulated NEE-8d exhibited major variability in both biomes. At CIBA, the results were largely dominated by the

  4. The costly benefits of opposing agricultural biotechnology.

    Science.gov (United States)

    Apel, Andrew

    2010-11-30

    Rigorous application of a simple definition of what constitutes opposition to agricultural biotechnology readily encompasses a wide array of key players in national and international systems of food production, distribution and governance. Even though the sum of political and financial benefits of opposing agricultural biotechnology appears vastly to outweigh the benefits which accrue to providers of agricultural biotechnology, technology providers actually benefit from this opposition. If these barriers to biotechnology were removed, subsistence farmers still would not represent a lucrative market for improved seed. The sum of all interests involved ensures that subsistence farmers are systematically denied access to agricultural biotechnology. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Current state of biotechnology in Turkey.

    Science.gov (United States)

    Dundar, Munis; Akbarova, Yagut

    2011-09-01

    Biotechnology is an interdisciplinary branch of science that encompasses a wide range of subjects like genetics, virology, microbiology, immunology, engineering to develop vaccines, and so on and plays a vital role in health systems, crop and seed management, yield improvement, agriculture, soil management, ecology, animal farming, cellular process, bio statistics, and so on. This article is about activities in medical and pharmaceutical biotechnology, environmental biotechnology, agricultural biotechnology and nanobiotechnology carried out in Turkey. Turkey has made some progress in biotechnology projects for research and development. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Biofuels and Biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Mielenz, Jonathan R [ORNL

    2009-01-01

    The world obtains 86% of its energy from fossil fuels, 40% from petroleum, a majority of which goes to the transportation sector (www.IEA.gov). Well-recognized alternatives are fuels derived from renewable sources known as biofuels. There are a number of biofuels useful for transportation fuels, which include ethanol, biobutanol, mixed alcohols, biodiesel, and hydrogen. These biofuels are produced from biologically derived feedstock, almost exclusively being plant materials, either food or feed sources or inedible plant material called biomass. This chapter will discuss technologies for production of liquid transportation biofuels from renewable feedstocks, but hydrogen will not be included, as the production technology and infrastructure are not near term. In addition, a specific emphasis will be placed upon the research opportunities and potential for application of system biology tools to dissect and understand the biological processes central to production of these biofuels from biomass and biological materials. There are a number of technologies for production of each of these biofuels that range from fully mature processes such as grain-derived ethanol, emerging technology of ethanol form cellulose derived ethanol and immature processes such thermochemical conversion technologies and production of hydrogen all produced from renewable biological feedstocks. Conversion of biomass by various thermochemical and combustion technologies to produce thermochemical biodiesel or steam and electricity provide growing sources of bioenergy. However, these technologies are outside of the scope of this chapter, as is the use of biological processing for upgrading and conversion of fossil fuels. Therefore, this chapter will focus on the current status of production of biofuels produced from biological-derived feedstocks using biological processes. Regardless of the status of development of the biological process for production of the biofuels, each process can benefit from

  7. The rise (and decline?) of biotechnology.

    Science.gov (United States)

    Kinch, Michael S

    2014-11-01

    Since the 1970s, biotechnology has been a key innovator in drug development. An analysis of FDA-approved therapeutics demonstrates pharmaceutical companies outpace biotechs in terms of new approvals but biotechnology companies are now responsible for earlier-stage activities (patents, INDs or clinical development). The number of biotechnology organizations that contributed to an FDA approval began declining in the 2000s and is at a level not seen since the 1980s. Whereas early biotechnology companies had a decade from first approval until acquisition, the average acquisition of a biotechnology company now occurs months before their first FDA approval. The number of hybrid organizations that arise when pharmaceutical companies acquire biotechnology is likewise declining, raising questions about the sustainability of biotechnology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Biotechnological Applications of Microbial (Per)chlorate Reduction.

    Science.gov (United States)

    Wang, Ouwei; Coates, John D

    2017-11-24

    While the microbial degradation of a chloroxyanion-based herbicide was first observed nearly ninety years ago, only recently have researchers elucidated the underlying mechanisms of perchlorate and chlorate [collectively, (per)chlorate] respiration. Although the obvious application of these metabolisms lies in the bioremediation and attenuation of (per)chlorate in contaminated environments, a diversity of alternative and innovative biotechnological applications has been proposed based on the unique metabolic abilities of dissimilatory (per)chlorate-reducing bacteria (DPRB). This is fueled in part by the unique ability of these organisms to generate molecular oxygen as a transient intermediate of the central pathway of (per)chlorate respiration. This ability, along with other novel aspects of the metabolism, have resulted in a wide and disparate range of potential biotechnological applications being proposed, including enzymatic perchlorate detection; gas gangrene therapy; enhanced xenobiotic bioremediation; oil reservoir bio-souring control; chemostat hygiene control; aeration enhancement in industrial bioreactors; and, biogenic oxygen production for planetary exploration. While previous reviews focus on the fundamental science of microbial (per)chlorate reduction (for example see Youngblut et al., 2016), here, we provide an overview of the emerging biotechnological applications of (per)chlorate respiration and the underlying organisms and enzymes to environmental and biotechnological industries.

  9. Biodiesel production by microalgal biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Huang, GuanHua [School of Chemical Engineering and Technology, China University of Mining and Technology (China); Chen, Feng [School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong (China); College of Light Industry and Food Sciences, South China University of Technology, Guangzhou (China); Wei, Dong; Zhang, XueWu; Chen, Gu [College of Light Industry and Food Sciences, South China University of Technology, Guangzhou (China)

    2010-01-15

    Biodiesel has received much attention in recent years. Although numerous reports are available on the production of biodiesel from vegetable oils of terraneous oil-plants, such as soybean, sunflower and palm oils, the production of biodiesel from microalgae is a newly emerging field. Microalgal biotechnology appears to possess high potential for biodiesel production because a significant increase in lipid content of microalgae is now possible through heterotrophic cultivation and genetic engineering approaches. This paper provides an overview of the technologies in the production of biodiesel from microalgae, including the various modes of cultivation for the production of oil-rich microalgal biomass, as well as the subsequent downstream processing for biodiesel production. The advances and prospects of using microalgal biotechnology for biodiesel production are discussed. (author)

  10. Biotechnological improvement of ornamental plants

    OpenAIRE

    Flavia Soledad Darqui; Laura Mabel Radonic; Horacio Esteban Hopp; Marisa Lopez Bilbao

    2017-01-01

    The discovery of commercial transgenic varieties of orange petunias sold in Europe and the United States although they had never reached the approved status, and the consequent recommendation to destroy them, was the trigger to discuss about biotechnological improvement of ornamental plants. Inside the restricted world of 26 vegetal transgenic species, according to the ISAAA’s reports (http://www.isaaa.org), there are three ornamental species: carnation, rose and the Beijing University develo...

  11. Interface of nuclear and biotechnologies

    International Nuclear Information System (INIS)

    Castro Diaz-Balart, F.

    2005-01-01

    Addressing nuclear and biotechnologies in the International Year of Physics should begin by highlighting the important role that this science has played in the development of both branches of science and technologies. The first as a direct consequence of the Theory of Relativity, the further was considerably influenced by Schroedinger's remarks that there must be a code of some kind that allowed molecules in cells to carry information, making a connection between genes and proteins. Both, like any highly technical endeavor, have also in common that the use of technologies demands a vast accumulation of knowledge, i.e. volumes of scientific research, engineering analysis, strict regulatory controls and a huge amount of information combined with a complex assortment of people with the required educational background, expertise and skills to master it. This presentation briefly explores the ways in which nuclear technology has been used in the last decades of the 20th century in the field of biomedicine applications, which includes the use of radiation to obtain accurate images as well as in diagnosis and therapy. The paper looks at the present prospects of some nuclear methods and instrumentation in the so-called Red biotechnology and its genetically engineered therapeutic agents and diagnostic tests as well as some related perspectives in the field of bioinformatics. As an example of biotechnology being successfully applied to health problems in developing countries the presentation gives an outlook of relevant Cuban achievements in this field. (author)

  12. [Biotechnological aspects in "loco" larvae].

    Science.gov (United States)

    Inestrosa, N C; Labarca, R; Perelman, A; Campos, E O; Araneda, R; González, M; Brandan, E; Sánchez, J P; González-Plaza, R

    1990-10-01

    The biology of planktotrophic larvae of Concholepas concholepas is the main bottleneck towards developing biotechnologies to rear this muricid. Data concerning planktonic larvae development, diets and environmental signals triggering larval settlement and recruitment is scarce. We have begun the study of the molecular and cell biology of embryos, larvae and recruits having as a final goal, the development of appropriate biotechnologies to rear this gastropod. First, an inverse ratio between BuChE and AChE enzyme activities was established. This ratio may be a precise developmental marker for this species. Second, for the first time a phosphoinositide related regulatory pathway is reported in a muricid, opening a new approach to the biotechnological management of larvae. Third, the relation between sulfate in sea water and larval motility was studied. Concentrations below 125 microM sulfate decreases larval motility. The sulfate is incorporated in proteoglycans which participate in different developmental phenomena. Lastly, a genomic Concholepas concholepas DNA sequence, similar to that of a human growth hormone probe was detected. This is very interesting since growth factors are key molecules during development, growth and are involved in food conversion rates in fish and also, in a variety of marine invertebrates.

  13. Terrestrial ecology. Comprehensive study of the grassland biome

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Terrestrial ecology and grassland biome studies are designed to characterize the biota of the Hanford Reservation, elucidate seasonal dynamics of plant productivity, decomposition and mineral behavior patterns of important plant communities, and, to study the response of these communities to important natural environmental stresses, such as weather, wildfire and man-induced alterations of communities (influenced by grazing cattle and severe mechanical disturbance of the soil, such as affected by plowing or burial of waste materials or construction activities). A detailed account of the important findings of a 5-yr study is currently being prepared by the terrestrial ecology section staff for publication as a contribution to the International Biological Program Grassland Biome project

  14. BIOME: A browser-aware search and order system

    Science.gov (United States)

    Grubb, Jon W.; Jennings, Sarah V.; Yow, Teresa G.; Daughterty, Patricia F.

    1996-01-01

    The Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC), which is associated with NASA's Earth Observing System Data and Information System (EOSDIS), provides access to a large number of tabular and imagery datasets used in ecological and environmental research. Because of its large and diverse data holdings, the challenge for the ORNL DAAC is to help users find data of interest from the hundreds of thousands of files available at the DAAC without overwhelming them. Therefore, the ORNL DAAC developed the Biogeochemical Information Ordering Management Environment (BIOME), a search and order system for the World Wide Web (WWW). The WWW provides a new vehicle that allows a wide range of users access to the data. This paper describes the specialized attributes incorporated into BIOME that allow researchers easy access to an otherwise bewildering array of data products.

  15. Pennsylvanian coniferopsid forests in sabkha facies reveal the nature of seasonal tropical biome

    Science.gov (United States)

    Falcon-Lang, H. J.; Jud, N.A.; John, Nelson W.; DiMichele, W.A.; Chaney, D.S.; Lucas, S.G.

    2011-01-01

    Pennsylvanian fossil forests are known from hundreds of sites across tropical Pangea, but nearly all comprise remains of humid Coal Forests. Here we report a unique occurrence of seasonally dry vegetation, preserved in growth position along >5 km of strike, in the Pennsylvanian (early Kasimovian, Missourian) of New Mexico (United States). Analyses of stump anatomy, diameter, and spatial density, coupled with observations of vascular traces and associated megaflora, show that this was a deciduous, mixed-age, coniferopsid woodland (~100 trees per hectare) with an open canopy. The coniferopsids colonized coastal sabkha facies and show tree rings, confirming growth under seasonally dry conditions. Such woodlands probably served as the source of coniferopsids that replaced Coal Forests farther east in central Pangea during drier climate phases. Thus, the newly discovered woodland helps unravel biome-scale vegetation dynamics and allows calibration of climate models. ?? 2011 Geological Society of America.

  16. Multiple nutrient stresses at intersecting Pacific Ocean biomes detected by protein biomarkers.

    Science.gov (United States)

    Saito, Mak A; McIlvin, Matthew R; Moran, Dawn M; Goepfert, Tyler J; DiTullio, Giacomo R; Post, Anton F; Lamborg, Carl H

    2014-09-05

    Marine primary productivity is strongly influenced by the scarcity of required nutrients, yet our understanding of these nutrient limitations is informed by experimental observations with sparse geographical coverage and methodological limitations. We developed a quantitative proteomic method to directly assess nutrient stress in high-light ecotypes of the abundant cyanobacterium Prochlorococcus across a meridional transect in the central Pacific Ocean. Multiple peptide biomarkers detected widespread and overlapping regions of nutritional stress for nitrogen and phosphorus in the North Pacific Subtropical Gyre and iron in the equatorial Pacific. Quantitative protein analyses demonstrated simultaneous stress for these nutrients at biome interfaces. This application of proteomic biomarkers to diagnose ocean metabolism demonstrated Prochlorococcus actively and simultaneously deploying multiple biochemical strategies for low-nutrient conditions in the oceans. Copyright © 2014, American Association for the Advancement of Science.

  17. Parameterisation of Biome BGC to assess forest ecosystems in Africa

    Science.gov (United States)

    Gautam, Sishir; Pietsch, Stephan A.

    2010-05-01

    African forest ecosystems are an important environmental and economic resource. Several studies show that tropical forests are critical to society as economic, environmental and societal resources. Tropical forests are carbon dense and thus play a key role in climate change mitigation. Unfortunately, the response of tropical forests to environmental change is largely unknown owing to insufficient spatially extensive observations. Developing regions like Africa where records of forest management for long periods are unavailable the process-based ecosystem simulation model - BIOME BGC could be a suitable tool to explain forest ecosystem dynamics. This ecosystem simulation model uses descriptive input parameters to establish the physiology, biochemistry, structure, and allocation patterns within vegetation functional types, or biomes. Undocumented parameters for larger-resolution simulations are currently the major limitations to regional modelling in African forest ecosystems. This study was conducted to document input parameters for BIOME-BGC for major natural tropical forests in the Congo basin. Based on available literature and field measurements updated values for turnover and mortality, allometry, carbon to nitrogen ratios, allocation of plant material to labile, cellulose, and lignin pools, tree morphology and other relevant factors were assigned. Daily climate input data for the model applications were generated using the statistical weather generator MarkSim. The forest was inventoried at various sites and soil samples of corresponding stands across Gabon were collected. Carbon and nitrogen in the collected soil samples were determined from soil analysis. The observed tree volume, soil carbon and soil nitrogen were then compared with the simulated model outputs to evaluate the model performance. Furthermore, the simulation using Congo Basin specific parameters and generalised BIOME BGC parameters for tropical evergreen broadleaved tree species were also

  18. Softball Games Bring NCI and Leidos Biomed Employees Together | Poster

    Science.gov (United States)

    NCI and Leidos Biomed employees took to the fields at Nallin Pond for the third annual slow-pitch softball games on August 26. The series attracted 54 employees who were divided into four teams, Red, Blue, Gray, and White, and they were cheered on by about 40 enthusiastic spectators. In the first set of games, the Gray team defeated the Blue team, 15–8, and the White team

  19. Pollen-based biome reconstructions for Latin America at 0, 6000 and 18 000 radiocarbon years ago

    Science.gov (United States)

    Marchant, R.; Cleef, A.; Harrison, S.P.; Hooghiemstra, H.; Markgraf, Vera; Van Boxel, J.; Ager, T.; Almeida, L.; Anderson, R.; Baied, C.; Behling, H.; Berrio, J.C.; Burbridge, R.; Bjorck, S.; Byrne, R.; Bush, M.; Duivenvoorden, J.; Flenley, J.; De Oliveira, P.; Van Gee, B.; Graf, K.; Gosling, W.D.; Harbele, S.; Van Der Hammen, T.; Hansen, B.; Horn, S.; Kuhry, P.; Ledru, M.-P.; Mayle, F.; Leyden, B.; Lozano-Garcia, S.; Melief, A.M.; Moreno, P.; Moar, N.T.; Prieto, A.; Van Reenen, G.; Salgado-Labouriau, M.; Schabitz, F.; Schreve-Brinkman, E. J.; Wille, M.

    2009-01-01

    The biomisation method is used to reconstruct Latin American vegetation at 6000??500 and 18 000??1000 radiocarbon years before present ( 14C yr BP) from pollen data. Tests using modern pollen data from 381 samples derived from 287 locations broadly reproduce potential natural vegetation. The strong temperature gradient associated with the Andes is recorded by a transition from high altitude cool grass/shrubland and cool mixed forest to mid-altitude cool temperate rain forest, to tropical dry, seasonal and rain forest at low altitudes. Reconstructed biomes from a number of sites do not match the potential vegetation due to local factors such as human impact, methodological artefacts and mechanisms of pollen representivity of the parent vegetation. At 6000??500 14C yr BP 255 samples are analysed from 127 sites. Differences between the modern and the 6000??500 14C yr BP reconstruction are comparatively small; change relative to the modern reconstruction are mainly to biomes characteristic of drier climate in the north of the region with a slight more mesic shift in the south. Cool temperate rain forest remains dominant in western South America. In northwestern South America a number of sites record transitions from tropical seasonal forest to tropical dry forest and tropical rain forest to tropical seasonal forest. Sites in Central America show a change in biome assignment, but to more mesic vegetation, indicative of greater plant available moisture, e.g. on the Yucat??n peninsula sites record warm evergreen forest, replacing tropical dry forest and warm mixed forest presently recorded. At 18 000??1000 14C yr BP 61 samples from 34 sites record vegetation reflecting a generally cool and dry environment. Cool grass/shrubland is prevalent in southeast Brazil whereas Amazonian sites record tropical dry forest, warm temperate rain forest and tropical seasonal forest. Southernmost South America is dominated by cool grass/shrubland, a single site retains cool temperate rain

  20. Constrained variability of modeled T:ET ratio across biomes

    Science.gov (United States)

    Fatichi, Simone; Pappas, Christoforos

    2017-07-01

    A large variability (35-90%) in the ratio of transpiration to total evapotranspiration (referred here as T:ET) across biomes or even at the global scale has been documented by a number of studies carried out with different methodologies. Previous empirical results also suggest that T:ET does not covary with mean precipitation and has a positive dependence on leaf area index (LAI). Here we use a mechanistic ecohydrological model, with a refined process-based description of evaporation from the soil surface, to investigate the variability of T:ET across biomes. Numerical results reveal a more constrained range and higher mean of T:ET (70 ± 9%, mean ± standard deviation) when compared to observation-based estimates. T:ET is confirmed to be independent from mean precipitation, while it is found to be correlated with LAI seasonally but uncorrelated across multiple sites. Larger LAI increases evaporation from interception but diminishes ground evaporation with the two effects largely compensating each other. These results offer mechanistic model-based evidence to the ongoing research about the patterns of T:ET and the factors influencing its magnitude across biomes.

  1. A dated phylogeny and collection records reveal repeated biome shifts in the African genus Coccinia (Cucurbitaceae).

    Science.gov (United States)

    Holstein, Norbert; Renner, Susanne S

    2011-01-26

    Conservatism in climatic tolerance may limit geographic range expansion and should enhance the effects of habitat fragmentation on population subdivision. Here we study the effects of historical climate change, and the associated habitat fragmentation, on diversification in the mostly sub-Saharan cucurbit genus Coccinia, which has 27 species in a broad range of biota from semi-arid habitats to mist forests. Species limits were inferred from morphology, and nuclear and plastid DNA sequence data, using multiple individuals for the widespread species. Climatic tolerances were assessed from the occurrences of 1189 geo-referenced collections and WorldClim variables. Nuclear and plastid gene trees included 35 or 65 accessions, representing up to 25 species. The data revealed four species groups, one in southern Africa, one in Central and West African rain forest, one widespread but absent from Central and West African rain forest, and one that occurs from East Africa to southern Africa. A few individuals are differently placed in the plastid and nuclear (LFY) trees or contain two ITS sequence types, indicating hybridization. A molecular clock suggests that the diversification of Coccinia began about 6.9 Ma ago, with most of the extant species diversity dating to the Pliocene. Ancestral biome reconstruction reveals six switches between semi-arid habitats, woodland, and forest, and members of several species pairs differ significantly in their tolerance of different precipitation regimes. The most surprising findings of this study are the frequent biome shifts (in a relatively small clade) over just 6 - 7 million years and the limited diversification during and since the Pleistocene. Pleistocene climate oscillations may have been too rapid or too shallow for full reproductive barriers to develop among fragmented populations of Coccinia, which would explain the apparently still ongoing hybridization between certain species. Steeper ecological gradients in East Africa and

  2. A dated phylogeny and collection records reveal repeated biome shifts in the African genus Coccinia (Cucurbitaceae

    Directory of Open Access Journals (Sweden)

    Renner Susanne S

    2011-01-01

    Full Text Available Abstract Background Conservatism in climatic tolerance may limit geographic range expansion and should enhance the effects of habitat fragmentation on population subdivision. Here we study the effects of historical climate change, and the associated habitat fragmentation, on diversification in the mostly sub-Saharan cucurbit genus Coccinia, which has 27 species in a broad range of biota from semi-arid habitats to mist forests. Species limits were inferred from morphology, and nuclear and plastid DNA sequence data, using multiple individuals for the widespread species. Climatic tolerances were assessed from the occurrences of 1189 geo-referenced collections and WorldClim variables. Results Nuclear and plastid gene trees included 35 or 65 accessions, representing up to 25 species. The data revealed four species groups, one in southern Africa, one in Central and West African rain forest, one widespread but absent from Central and West African rain forest, and one that occurs from East Africa to southern Africa. A few individuals are differently placed in the plastid and nuclear (LFY trees or contain two ITS sequence types, indicating hybridization. A molecular clock suggests that the diversification of Coccinia began about 6.9 Ma ago, with most of the extant species diversity dating to the Pliocene. Ancestral biome reconstruction reveals six switches between semi-arid habitats, woodland, and forest, and members of several species pairs differ significantly in their tolerance of different precipitation regimes. Conclusions The most surprising findings of this study are the frequent biome shifts (in a relatively small clade over just 6 - 7 million years and the limited diversification during and since the Pleistocene. Pleistocene climate oscillations may have been too rapid or too shallow for full reproductive barriers to develop among fragmented populations of Coccinia, which would explain the apparently still ongoing hybridization between certain

  3. Editorial: Latest methods and advances in biotechnology.

    Science.gov (United States)

    Lee, Sang Yup; Jungbauer, Alois

    2014-01-01

    The latest "Biotech Methods and Advances" special issue of Biotechnology Journal continues the BTJ tradition of featuring the latest breakthroughs in biotechnology. The special issue is edited by our Editors-in-Chief, Prof. Sang Yup Lee and Prof. Alois Jungbauer and covers a wide array of topics in biotechnology, including the perennial favorite workhorses of the biotech industry, Chinese hamster ovary (CHO) cell and Escherichia coli. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Biotechnology information service of the GDR

    International Nuclear Information System (INIS)

    Poetzsch, E.

    1990-05-01

    The paper gives a survey of the biotechnology information in the GDR and describes the establishment of the Biotechnology Information Service of the GDR (BioInfo GDR). BioInfo GDR is a referral database and is to provide information on information sources available in the GDR, and on institutions working in the various fields of biotechnology in the GDR. In addition, some general problems of the building and use of databases are discussed. (author). 8 refs

  5. Biotechnology: Challenge for the food industry

    OpenAIRE

    Popov Stevan

    2007-01-01

    According to the broadest definition, biotechnology is the use of living matter (plants, animals and microorganisms) in industry, environment protection, medicine and agriculture. Biotechnology takes a key position in the field of food processing during thousands of years. Last about fifty years brought dynamical development of knowledges in the natural sciences especially in domain of genetics and manipulation of genes. Biotechnology for which active role in the on-coming times could be fore...

  6. Application of biotechnology to fossil fuels explored

    Energy Technology Data Exchange (ETDEWEB)

    Haggin, J

    1989-02-13

    A review is presented of the December 1988 symposium on coal, oil and gas biotechnology held in New Orleans, organised by the Institute of Gas Technology. Papers discussed include: opportunities for R D in desulfurization, coal gasification and environmental cleanup; an assessment of the economic constraints that new energy biotechnology must overcome; biotechnology research at EPRI; microbial conversion of coal; bioconversion of low rank coal; and bioremediation of ground containing PAHs. 2 figs.

  7. Biotechnology information service of the GDR

    Energy Technology Data Exchange (ETDEWEB)

    Poetzsch, E [Academy of Sciences, Berlin (Germany). Scientific Information Center

    1990-05-01

    The paper gives a survey of the biotechnology information in the GDR and describes the establishment of the Biotechnology Information Service of the GDR (BioInfo GDR). BioInfo GDR is a referral database and is to provide information on information sources available in the GDR, and on institutions working in the various fields of biotechnology in the GDR. In addition, some general problems of the building and use of databases are discussed. (author). 8 refs.

  8. FIFE data analysis: Testing BIOME-BGC predictions for grasslands

    Science.gov (United States)

    Hunt, E. Raymond, Jr.

    1994-01-01

    The First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) was conducted in a 15 km by 15 km research area located 8 km south of Manhattan, Kansas. The site consists primarily of native tallgrass prairie mixed with gallery oak forests and croplands. The objectives of FIFE are to better understand the role of biology in controlling the interactions between the land and the atmosphere, and to determine the value of remotely sensed data for estimating climatological parameters. The goals of FIFE are twofold: the upscale integration of models, and algorithm development for satellite remote sensing. The specific objectives of the field campaigns carried out in 1987 and 1989 were the simultaneous acquisition of satellite, atmospheric, and surface data; and the understanding of the processes controlling surface energy and mass exchange. Collected data were used to study the dynamics of various ecosystem processes (photosynthesis, evaporation and transpiration, autotrophic and heterotrophic respiration, etc.). Modelling terrestrial ecosystems at scales larger than that of a homogeneous plot led to the development of simple, generalized models of biogeochemical cycles that can be accurately applied to different biomes through the use of remotely sensed data. A model was developed called BIOME-BGC (for BioGeochemical Cycles) from a coniferous forest ecosystem model, FOREST-BGC, where a biome is considered a combination of a life forms in a specified climate. A predominately C4-photosynthetic grassland is probably the most different from a coniferous forest possible, hence the FIFE site was an excellent study area for testing BIOME-BGC. The transition from an essentially one-dimensional calculation to three-dimensional, landscape scale simulations requires the introduction of such factors as meteorology, climatology, and geomorphology. By using remotely sensed geographic information data for important model inputs, process

  9. Brief Note on the Development of Biotechnology

    Directory of Open Access Journals (Sweden)

    Karl Bayer

    2014-01-01

    Full Text Available Biotechnology, with the main applications in food and nutrition, dates back to the early times of mankind. In the recent decades the progress in natural sciences, mathematics and computer science has led to a new branch termed molecular biotechnology, which finally developed as an autonomous scientific discipline. The field of biotechnology, in the past generally empirically driven, now largely benefits from molecular biotechnology by improved systems, knowledge and understanding. Thereby, compliance with the recently published initiatives of the regulatory authorities to accelerate the approval process for the manufacturing of biopharmaceuticals can be gained.

  10. Current status of biotechnology in Slovakia.

    Science.gov (United States)

    Stuchlík, Stanislav; Turna, Ján

    2013-07-01

    The United Nations Convention on Biological Diversity defines biotechnology as: 'Any technological application that uses biological systems, living organisms, or derivatives thereof, to make or modify products or processes for specific use.' In other words biotechnology is 'application of scientific and technical advances in life science to develop commercial products' or briefly 'the use of molecular biology for useful purposes'. This short overview is about different branches of biotechnology carried out in Slovakia and it shows that Slovakia has a good potential for further development of modern biotechnologies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Spring 2008 Industry Study: Biotechnology Industry

    National Research Council Canada - National Science Library

    Anttonen, John; Darnauer, Trish; Douglas, Tim; Ferrari, John; Zimdahl, Jennifer; Hall, Ian M; King, William; Klotzsche, Carl; Miller, Doug; Packard, Doug; Renegar, Mike; Rimback, Ed; Rogers, Gordon; Schnedar, Chris; Sekulovski, Zoran

    2008-01-01

    Defined broadly as the manipulation of genetic material in living organisms or the derivatives thereof, biotechnology represents a veritable gold mine of possibilities for improving the human condition...

  12. Infusing Authentic Inquiry into Biotechnology

    Science.gov (United States)

    Hanegan, Nikki L.; Bigler, Amber

    2009-10-01

    Societal benefit depends on the general public's understandings of biotechnology (Betsch in World J Microbiol Biotechnol 12:439-443, 1996; Dawson and Cowan in Int J Sci Educ 25(1):57-69, 2003; Schiller in Business Review: Federal Reserve Bank of Philadelphia (Fourth Quarter), 2002; Smith and Emmeluth in Am Biol Teach 64(2):93-99, 2002). A National Science Foundation funded survey of high school biology teachers reported that hands-on biotechnology education exists in advanced high school biology in the United States, but is non-existent in mainstream biology coursework (Micklos et al. in Biotechnology labs in American high schools, 1998). The majority of pre-service teacher content preparation courses do not teach students appropriate content knowledge through the process of inquiry. A broad continuum exists when discussing inquiry-oriented student investigations (Hanegan et al. in School Sci Math J 109(2):110-134, 2009). Depending on the amount of structure in teacher lessons, inquiries can often be categorized as guided or open. The lesson can be further categorized as simple or authentic (Chinn and Malhotra in Sci Educ 86(2):175-218, 2002). Although authentic inquiries provide the best opportunities for cognitive development and scientific reasoning, guided and simple inquiries are more often employed in the classroom (Crawford in J Res Sci Teach 37(9):916-937, 2000; NRC in Inquiry and the national science education standards: a guide for teaching and learning, 2000). For the purposes of this study we defined inquiry as "authentic" if original research problems were resolved (Hanegan et al. in School Sci Math J 109(2):110-134, 2009; Chinn and Malhotra in Sci Educ 86(2):175-218, 2002; Roth in Authentic school science: knowing and learning in open-inquiry science laboratories, 1995). The research question to guide this study through naturalistic inquiry research methods was: How will participants express whether or not an authentic inquiry experience enhanced

  13. Biotechnology

    Science.gov (United States)

    2005-01-01

    again at their meeting in Malaysia in May 2005.96 Although the WTO dispute has not been settled, the EU has recently taken steps to open up trade...outlined.” Obesity , Fitness & Wellness Week, 16 October 2004, 321. Cohen, Bonner R, “Proving A Negative: The Precautionary Principle at Odds with...Life sciences company to acquire Shanghai- based Bio Asia,” Obesity , Fitness & Wellness Week, 15 January 2005, 910, <http://proquest.umi.com/pqdweb

  14. Students' Knowledge of, and Attitudes towards Biotechnology Revisited, 1995-2014: Changes in Agriculture Biotechnology but Not in Medical Biotechnology

    Science.gov (United States)

    Chen, Shao-Yen; Chu, Yih-Ru; Lin, Chen-Yung; Chiang, Tzen-Yuh

    2016-01-01

    Modern biotechnology is one of the most important scientific and technological revolutions in the 21st century, with an increasing and measurable impact on society. Development of biotechnology curriculum has become important to high school bioscience classrooms. This study has monitored high school students in Taiwan on their knowledge of and…

  15. Food biotechnology: benefits and concerns.

    Science.gov (United States)

    Falk, Michael C; Chassy, Bruce M; Harlander, Susan K; Hoban, Thomas J; McGloughlin, Martina N; Akhlaghi, Amin R

    2002-06-01

    Recent advances in agricultural biotechnology have highlighted the need for experimental evidence and sound scientific judgment to assess the benefits and risks to society. Nutrition scientists and other animal biologists need a balanced understanding of the issues to participate in this assessment. To date most modifications to crop plants have benefited producers. Crops have been engineered to decrease pesticide and herbicide usage, protect against stressors, enhance yields and extend shelf life. Beyond the environmental benefits of decreased pesticide and herbicide application, consumers stand to benefit by development of food crops with increased nutritional value, medicinal properties, enhanced taste and esthetic appeal. There remains concern that these benefits come with a cost to the environment or increased risk to the consumer. Most U.S. consumers are not aware of the extent that genetically modified foods have entered the marketplace. Consumer awareness of biotechnology seems to have increased over the last decade, yet most consumers remain confused over the science. Concern over the impact on the safety of the food supply remains low in the United States, but is substantially elevated in Europe. Before a genetically engineered crop is introduced into commerce it must pass regulatory scrutiny by as many as four different federal regulatory bodies to ensure a safe food supply and minimize the risk to the environment. Key areas for more research are evaluation of the nutritional benefits of new crops, further investigation of the environmental impact, and development of better techniques to identify and track genetically engineered products.

  16. Students' knowledge of, and attitudes towards biotechnology revisited, 1995-2014: Changes in agriculture biotechnology but not in medical biotechnology.

    Science.gov (United States)

    Chen, Shao-Yen; Chu, Yih-Ru; Lin, Chen-Yung; Chiang, Tzen-Yuh

    2016-09-10

    Modern biotechnology is one of the most important scientific and technological revolutions in the 21st century, with an increasing and measurable impact on society. Development of biotechnology curriculum has become important to high school bioscience classrooms. This study has monitored high school students in Taiwan on their knowledge of and attitudes towards biotechnology for nearly two decades. Not surprisingly, knowledge of biotechnology of current students has increased significantly (p students have learned some definitions and examples of biotechnology. There was a positive correlation between biotechnology knowledge and attitudes toward biotechnology for current students who study Advanced Biology (AB). However, for current students who did not study AB, there was a negative correlation.The attitude results showed that students today expressed less favorable opinions toward agricultural biotechnology (p students today and 18 years ago in opinions towards medical biotechnology. In addition, current students showed a greater concern involving environmental risks than former students. Interestingly, the high school curriculum did affect students' attitudes toward genetically engineered (GE) plants but not GE animals. Our current study also found that the students' attitude towards GE animals was influenced more by their limited knowledge than by their moral belief. On the basis of findings from this study, we suggest that more materials of emerging animal biotechnology should be included in high school curriculum and recommend that high school teachers and university faculty establish a collaborative framework in the near future. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):475-491, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  17. Biotechnology and species development in aquaculture | Ayoola ...

    African Journals Online (AJOL)

    The use of biotechnology in various aspects of human endeavour have obviously created a great impact but not without some risks. Not withstanding, there is still the need for its adoption as more of the already adopted biotechnologies are being improved upon with lesser demerits. Aquaculture is not also left out in the ...

  18. Biotechnology Education and the Internet. ERIC Digest.

    Science.gov (United States)

    Lee, Thomas

    The world of modern biotechnology is based on recent developments in molecular biology, especially those in genetic engineering. Since this is a relatively new and rapidly advancing field of study, there are few traditional sources of information and activities. This digest highlights biotechnology resources including those that can be found on…

  19. Biotechnology issues in four Malaysian mainstream newspapers ...

    African Journals Online (AJOL)

    Biotechnology has been identified as the new engine of growth for the transformation of Malaysia into a developed nation by 2020. The objective of this paper is to analyze the impact of National Policy on biotechnology on media reporting in four Malaysian newspapers. Towards this end, a content analysis of four Malaysian ...

  20. Cancer Biotechnology | Center for Cancer Research

    Science.gov (United States)

    Biotechnology advances continue to underscore the need to educate NCI fellows in new methodologies. The Cancer Biotechnology course will be held on the NCI-Frederick campus on January 29, 2016 (Bldg. 549, Main Auditorium) and the course will be repeated on the Bethesda campus on February 9, 2016 (Natcher Balcony C). The latest advances in DNA, protein and image analysis will

  1. Undergraduate Biotechnology Students' Views of Science Communication

    Science.gov (United States)

    Edmondston, Joanne Elisabeth; Dawson, Vaille; Schibeci, Renato

    2010-01-01

    Despite rapid growth of the biotechnology industry worldwide, a number of public concerns about the application of biotechnology and its regulation remain. In response to these concerns, greater emphasis has been placed on promoting biotechnologists' public engagement. As tertiary science degree programmes form the foundation of the biotechnology…

  2. Biotechnology issues in four Malaysian mainstream newspapers

    African Journals Online (AJOL)

    Jane

    2011-09-30

    Sep 30, 2011 ... Biotechnology has been identified as the new engine of growth for the transformation of Malaysia into a developed nation by 2020. The objective of this paper is to analyze the impact of National Policy on biotechnology on media reporting in four Malaysian newspapers. Towards this end, a content analysis.

  3. Biotechnology and species development in aquaculture

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... The use of biotechnology in various aspects of human endeavour have obviously created a great ... the already adopted biotechnologies are being improved upon with lesser demerits. ... potential to improve the quality and quantity of fish reared .... become easier with the development of artificial breeding.

  4. Agricultural biotechnology research and development in Ethiopia ...

    African Journals Online (AJOL)

    Ethiopia is an agrarian country that can have enormous benefit from the applications of biotechnology for increasing its agricultural productivity. The country is at initial stages of research and development in agricultural biotechnology with scattered efforts underway in various public institutions. Research efforts and ...

  5. Supporting Biotechnology Regulatory Policy Processes in Southeast ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Supporting Biotechnology Regulatory Policy Processes in Southeast Asia. Biotechnology innovations or bio-innovations can provide solutions to problems associated with food security, poverty and environmental degradation. Innovations such as genetically engineered (GE) crops can increase food production and ...

  6. Use of BIOME-BGC to simulate water and carbon fluxes within Mediterranean macchia

    OpenAIRE

    Chiesi M; Chirici G; Corona P; Duce P; Salvati R; Spano D; Vaccari FP; Maselli F

    2012-01-01

    The biogeochemical model BIOME-BGC is capable to estimate the main ecophysiological processes characterising all terrestrial ecosystems. To this aim it needs to be properly adapted to reproduce the behaviour of each biome type through a calibration phase. The aim of this paper is to adapt BIOME-BGC to reproduce the evapotranspiration (ET) and photosynthesis (GPP) of Mediterranean macchia spread all over Italy. Ten different sites were selected in the Centre-South of Italy and their gross prim...

  7. Termites as targets and models for biotechnology.

    Science.gov (United States)

    Scharf, Michael E

    2015-01-07

    Termites have many unique evolutionary adaptations associated with their eusocial lifestyles. Recent omics research has created a wealth of new information in numerous areas of termite biology (e.g., caste polyphenism, lignocellulose digestion, and microbial symbiosis) with wide-ranging applications in diverse biotechnological niches. Termite biotechnology falls into two categories: (a) termite-targeted biotechnology for pest management purposes, and (b) termite-modeled biotechnology for use in various industrial applications. The first category includes several candidate termiticidal modes of action such as RNA interference, digestive inhibition, pathogen enhancement, antimicrobials, endocrine disruption, and primer pheromone mimicry. In the second category, termite digestomes are deep resources for host and symbiont lignocellulases and other enzymes with applications in a variety of biomass, industrial, and processing applications. Moving forward, one of the most important approaches for accelerating advances in both termite-targeted and termite-modeled biotechnology will be to consider host and symbiont together as a single functional unit.

  8. The current biotechnology outlook in Malaysia

    Directory of Open Access Journals (Sweden)

    Khairiah Salwa MOKHTAR

    2010-06-01

    Full Text Available Blessed with extremely rich biodiversity, Malaysia is all geared up to explore new high technology to utilize the advantage it possesses whilst to protect its environment. Biotechnology has been identified as an appropriate driver that can deliver economic gains through research and development, improvement of food security, creation of entrepreneurial opportunities for industrial growth, health and environmental sustainability. This paper attempts to address the evolution of biotechnology institutions and the stumbling blocks in developing the Malaysian biotechnology industry. This paper identifies three main impediments in the current Malaysian biotechnology, namely lack of skilled human capital; weak industrial base; and lack of commercialization effort. Besides, a set of strategies are discussed with aim to further improve and strengthen the Malaysian biotechnology industry. In general, the arguments are presented by mapping out the symbiotic relationship between data from elite interviews, archival data and observations.

  9. Evaluating fire danger in Brazilian biomes: present and future patterns

    Science.gov (United States)

    Silva, Patrícia; Bastos, Ana; DaCamara, Carlos; Libonati, Renata

    2017-04-01

    Climate change is expected to have a significant impact on fire occurrence and activity, particularly in Brazil, a region known to be fire-prone [1]. The Brazilian savanna, commonly referred to as cerrado, is a fire-adapted biome covering more than 20% of the country's total area. It presents the highest numbers of fire events, making it particularly susceptible to changes in climate. It is thus essential to understand the present fire regimes in Brazilian biomes, in order to better evaluate future patterns. The CPTEC/INPE, the Brazilian Center for Weather Forecasting and Climate Research at the Brazilian National Institute of Space Research developed a fire danger index based on the occurrence of hundreds of thousands of fire events in the main Brazilian biomes [2]: the Meteorological Fire Danger Index (MFDI). This index indicates the predisposition of vegetation to be burned on a given day, for given climate conditions preceding that day. It relies on daily values of air temperature, relative humidity, accumulated precipitation and vegetation cover. In this study we aim to access the capability of the MFDI to accurately replicate present fire conditions for different biomes, with a special focus on cerrado. To this end, we assess the link between the MFDI as calculated by three different reanalysis (ERA-Interim, NCEP/DOE Reanalysis 2 and MERRA-2) and the observed burned area. We further calculate the validated MFDI using a regional climate model, the RCA4 as forced by EC-Earth from CORDEX, to understand the ability of the model to characterize present fire danger. Finally, the need to calibrate the model to better characterize future fire danger was also evaluated. This work was developed within the framework of the Brazilian Fire-Land-Atmosphere System (BrFLAS) Project financed by the Portuguese and Brazilian science foundations, FCT and FAPESP (project references FAPESP/1389/2014 and 2014/20042-2). [1] KRAWCHUK, M.A.; MORITZ, M.A.; PARISIEN, M.A.; VAN DORN, J

  10. From applied microbiology to biotechnology: science, medicine and industrial renewal.

    Science.gov (United States)

    Bud, Robert

    2010-09-20

    In the late 1970s politicians and civil servants were acutely aware of the chronic decline of the manufacturing sector as a source of employment in Britain. At a time of fear of mass unemployment, sources of new work were urgently sought. Biotechnology had been promoted by visionaries since the early twentieth century. With oil prices soaring, its potential to produce substitutes for petroleum derivatives seemed newly attractive. At the beginning of 1976, John Bu'Lock at Manchester brought the attention of the new President of the Royal Society, Lord Todd, to the developments in enzyme and fermentation technologies. Both the Society and government began to take biotechnology seriously. In 1979 the Society organized a groundbreaking meeting, 'New horizons in industrial microbiology'. In parallel, John Ashworth, the chief scientist of the government think-tank the Central Policy Review Staff, prompted by American developments in genetic engineering, its commercial exploitation and regional development, led thinking among government officials. The Spinks enquiry into biotechnology was consequently formed in 1979 as a collaborative enterprise of the Advisory Council for Applied Research and Development, the Advisory Board for the Research Councils and the Royal Society. The recommendations for far-reaching collaboration between research councils, government and industry were not fully implemented. However, even the limited implementation led to new models of science that would be significant in the emergence of a reconstruction of science.

  11. An Overview on Indian Patents on Biotechnology.

    Science.gov (United States)

    Mallick, Anusaya; Chandra Santra, Subhas; Samal, Alok Chandra

    2015-01-01

    The application of biotechnology is a potential tool for mitigating the present and future fooding and clothing demands in developing countries like India. The commercialization of biotechnological products might benefiting the poor`s in developing countries are unlikely to be developed. Biotechnology has the potential to provide a wide range of products and the existing production skills in the industrial, pharmaceuticals and the agricultural sector. Ownership of the intellectual property rights is the key factors in determining the success of any technological invention, which was introduced in the market. It provides the means for technological progress to continue of the industry of the country. The new plans, animal varieties, new methods of treatments, new crops producing food articles as such are the inventions of biotechnology. Biotechnology is the result of the application of human intelligence and knowledge to the biological processes. Most of the tools of biotechnology have been developed, by companies, governments, research in- stitutes and universities in developed nations. These human intellectual efforts deserve protection. India is a developing country with advance biotechnology based segments of pharmaceutical and agricultural industries. The Trade Related Intellectual Property Rights (TRIPS) is not likely to have a significant impact on incentives for innovation creation in the biotechnology sectors. In the recent years, the world has seen the biotechnology sector as one of greatest investment area through the Patent Law and will giving huge profit in future. The Research and Development in the field of biotechnology should be encouraged for explor- ing new tools and improve the biological systems for interest of the common people. Priority should be given to generation, evaluation, protection and effective commercial utilization of tangible products of intellectual property in agriculture and pharmaceuticals. To support the future growth and

  12. Progress towards the 'Golden Age' of biotechnology.

    Science.gov (United States)

    Gartland, K M A; Bruschi, F; Dundar, M; Gahan, P B; Viola Magni, M p; Akbarova, Y

    2013-07-01

    Biotechnology uses substances, materials or extracts derived from living cells, employing 22 million Europeans in a € 1.5 Tn endeavour, being the premier global economic growth opportunity this century. Significant advances have been made in red biotechnology using pharmaceutically and medically relevant applications, green biotechnology developing agricultural and environmental tools and white biotechnology serving industrial scale uses, frequently as process feedstocks. Red biotechnology has delivered dramatic improvements in controlling human disease, from antibiotics to overcome bacterial infections to anti-HIV/AIDS pharmaceuticals such as azidothymidine (AZT), anti-malarial compounds and novel vaccines saving millions of lives. Green biotechnology has dramatically increased food production through Agrobacterium and biolistic genetic modifications for the development of 'Golden Rice', pathogen resistant crops expressing crystal toxin genes, drought resistance and cold tolerance to extend growth range. The burgeoning area of white biotechnology has delivered bio-plastics, low temperature enzyme detergents and a host of feedstock materials for industrial processes such as modified starches, without which our everyday lives would be much more complex. Biotechnological applications can bridge these categories, by modifying energy crops properties, or analysing circulating nucleic acid elements, bringing benefits for all, through increased food production, supporting climate change adaptation and the low carbon economy, or novel diagnostics impacting on personalized medicine and genetic disease. Cross-cutting technologies such as PCR, novel sequencing tools, bioinformatics, transcriptomics and epigenetics are in the vanguard of biotechnological progress leading to an ever-increasing breadth of applications. Biotechnology will deliver solutions to unimagined problems, providing food security, health and well-being to mankind for centuries to come. Copyright © 2013

  13. Flashing light in microalgae biotechnology.

    Science.gov (United States)

    Abu-Ghosh, Said; Fixler, Dror; Dubinsky, Zvy; Iluz, David

    2016-03-01

    Flashing light can enhance photosynthesis and improve the quality and quantity of microalgal biomass, as it can increase the products of interest by magnitudes. Therefore, the integration of flashing light effect into microalgal cultivation systems should be considered. However, microalgae require a balanced mix of the light/dark cycle for higher growth rates, and respond to light intensity differently according to the pigments acquired or lost during the growth. This review highlights recently published results on flashing light effect on microalgae and its applications in biotechnology, as well as the recently developed bioreactors designed to fulfill this effect. It also discusses how this knowledge can be applied in selecting the optimal light frequencies and intensities with specific technical properties for increasing biomass production and/or the yield of the chemicals of interest by microalgae belonging to different genera. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Optical trapping for analytical biotechnology.

    Science.gov (United States)

    Ashok, Praveen C; Dholakia, Kishan

    2012-02-01

    We describe the exciting advances of using optical trapping in the field of analytical biotechnology. This technique has opened up opportunities to manipulate biological particles at the single cell or even at subcellular levels which has allowed an insight into the physical and chemical mechanisms of many biological processes. The ability of this technique to manipulate microparticles and measure pico-Newton forces has found several applications such as understanding the dynamics of biological macromolecules, cell-cell interactions and the micro-rheology of both cells and fluids. Furthermore we may probe and analyse the biological world when combining trapping with analytical techniques such as Raman spectroscopy and imaging. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. New technologies in agricultural biotechnology

    Directory of Open Access Journals (Sweden)

    Andras Szekacs

    2016-12-01

    Full Text Available Technologies that emerged during the last decade as new tools occasionally represent fundamentally new means of genome modification, which, in addition to the scientific novelty, faces legislators with new challenge by giving a new meaning to both the biochemical/molecular biological and legal meaning to genetically modified organisms (GMOs. Emerging plant genetic technologies are categorized as zinc finger nuclease (ZFN technology; oligonucleotide directed mutagenesis; cisgenesis and intragenesis; RNA-dependent DNA methylation by RNA interference; grafting on GM rootstock; reverse breeding; agro-infiltration; and synthetic genomics. Although all these methods apply biotechnology processes to create new plant varieties, it debated whether all result in GMOs according to the current legal definition. Official risk assessment of these technologies is a task of outstanding weight of the authority.

  16. Biotechnology and bioforensics new trends

    CERN Document Server

    Kumar, Amit

    2015-01-01

    This Brief covers broad areas of Applied Biology specifically into the domains of Biotechnology/Biomedicine and Forensic Science. Chapters included here would also explain the role of bioinformatics in protein and gene characterization, modeling of the protein structure, survey related to the chromosomal effect on Human Disorders like Diabetes and Cardiac Problems. This Brief is full of Innovative Literature like Use of Microbes in Electricity Production, Brain connection to Type 2 Diabetes etc. Interesting issues in Forensic biology and the aspects of Bioforensics like STR profiling of exhumed bones makes this brief truly useful and informative for Researchers. It also includes the advancements and new ideologies in understanding crop improvements & crop quality. This Brief witnesses Innovative Research related to the Bio and Agri software development too which are capable of accelerating Insilico biological data analysis.

  17. Drugs obtained by biotechnology processing

    Directory of Open Access Journals (Sweden)

    Hugo Almeida

    2011-06-01

    Full Text Available In recent years, the number of drugs of biotechnological origin available for many different diseases has increased exponentially, including different types of cancer, diabetes mellitus, infectious diseases (e.g. AIDS Virus / HIV as well as cardiovascular, neurological, respiratory, and autoimmune diseases, among others. The pharmaceutical industry has used different technologies to obtain new and promising active ingredients, as exemplified by the fermentation technique, recombinant DNA technique and the hybridoma technique. The expiry of the patents of the first drugs of biotechnological origin and the consequent emergence of biosimilar products, have posed various questions to health authorities worldwide regarding the definition, framework, and requirements for authorization to market such products.Nos últimos anos, tem aumentado exponencialmente o número de fármacos de origem biotecnológica ao dispor das mais diversas patologias, entre elas destacam-se, os diferentes tipos de cancêr, as doenças infecciosas (ex. vírus AIDS/HIV, as doenças autoimunes, as doenças cardiovasculares, a Diabetes Mellitus, as doenças neurológicas, as doenças respiratórias, entre outras. A indústria farmacêutica tem recorrido a diferentes tecnologias para a obtenção de novos e promissores princípios ativos, como são exemplo a fermentação, a técnica de DNA Recombinante, a técnica de hidridoma, entre outras. A queda das patentes dos primeiros fármacos de origem biotecnológica e o consequente aparecimento dos produtos biossimilares têm colocado diferentes questões às autoridades de saúde mundiais, sobre a definição, enquadramento e exigências para a autorização de entrada no mercado deste tipo de produtos.

  18. Ticks parasitizing bats (Mammalia: Chiroptera) in the Caatinga Biome, Brazil.

    Science.gov (United States)

    Luz, Hermes Ribeiro; Muñoz-Leal, Sebastián; Almeida, Juliana Cardoso de; Faccini, João Luiz Horacio; Labruna, Marcelo Bahia

    2016-01-01

    In this paper, the authors report ticks parasitizing bats from the Serra das Almas Natural Reserve (RPPN) located in the municipality of Crateús, state of Ceará, in the semiarid Caatinga biome of northeastern Brazil. The study was carried out during nine nights in the dry season (July 2012) and 10 nights in the rainy season (February 2013). Only bats of the Phyllostomidae and Mormoopidae families were parasitized by ticks. The species Artibeus planirostris and Carolia perspicillata were the most parasitized. A total of 409 larvae were collected and classified into three genera: Antricola (n = 1), Nothoaspis (n = 1) and Ornithodoros (n = 407). Four species were morphologically identified as Nothoaspis amazoniensis, Ornithodoros cavernicolous, Ornithodoros fonsecai, Ornithodoros hasei, and Ornithodoros marinkellei. Ornithodoros hasei was the most common tick associated with bats in the current study. The present study expand the distributional ranges of at least three soft ticks into the Caatinga biome, and highlight an unexpected richness of argasid ticks inhabiting this arid ecosystem.

  19. Ticks parasitizing bats (Mammalia: Chiroptera in the Caatinga Biome, Brazil

    Directory of Open Access Journals (Sweden)

    Hermes Ribeiro Luz

    Full Text Available Abstract In this paper, the authors report ticks parasitizing bats from the Serra das Almas Natural Reserve (RPPN located in the municipality of Crateús, state of Ceará, in the semiarid Caatinga biome of northeastern Brazil. The study was carried out during nine nights in the dry season (July 2012 and 10 nights in the rainy season (February 2013. Only bats of the Phyllostomidae and Mormoopidae families were parasitized by ticks. The species Artibeus planirostris and Carolia perspicillata were the most parasitized. A total of 409 larvae were collected and classified into three genera: Antricola (n = 1, Nothoaspis (n = 1 and Ornithodoros (n = 407. Four species were morphologically identified as Nothoaspis amazoniensis, Ornithodoros cavernicolous, Ornithodoros fonsecai, Ornithodoros hasei, and Ornithodoros marinkellei. Ornithodoros hasei was the most common tick associated with bats in the current study. The present study expand the distributional ranges of at least three soft ticks into the Caatinga biome, and highlight an unexpected richness of argasid ticks inhabiting this arid ecosystem.

  20. Turkish university students' knowledge of biotechnology and attitudes toward biotechnological applications.

    Science.gov (United States)

    Öztürk-Akar, Ebru

    2017-03-04

    This study questions the presumed relation between formal schooling and scientific literacy about biotechnologies. Comparing science and nonscience majors' knowledge of and attitudes toward biotechnological applications, conclusions are drawn if their formal learnings improve pupils' understandings of and attitudes toward biotechnology applications. Sample of the study consists of 403 undergraduate and graduate students, 198 nonscience, and 205 science majors. The Biotechnology Knowledge Questionnaire and the Biotechnology Attitude Questionnaire were administered. Descriptive statistics (mean and percentages), t test, and correlations were used to examine the participants' knowledge of biotechnology and attitudes toward biotechnological applications and differences as regards their majors. Although the science majors had higher knowledge and attitude scores than the nonscience majors, it is not possible to say that they have sufficient knowledge of biotechnologies. Besides, the participants' attitudes toward biotechnological applications were not considerably related to their knowledge of biotechnology. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(2):115-125, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  1. biojs-io-biom, a BioJS component for handling data in Biological Observation Matrix (BIOM format [version 2; referees: 1 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    Markus J. Ankenbrand

    2017-01-01

    Full Text Available The Biological Observation Matrix (BIOM format is widely used to store data from high-throughput studies. It aims at increasing interoperability of bioinformatic tools that process this data. However, due to multiple versions and implementation details, working with this format can be tricky. Currently, libraries in Python, R and Perl are available, whilst such for JavaScript are lacking. Here, we present a BioJS component for parsing BIOM data in all format versions. It supports import, modification, and export via a unified interface. This module aims to facilitate the development of web applications that use BIOM data. Finally, we demonstrate its usefulness by two applications that already use this component. Availability: https://github.com/molbiodiv/biojs-io-biom, https://dx.doi.org/10.5281/zenodo.218277

  2. Frontiers in biomedical engineering and biotechnology.

    Science.gov (United States)

    Liu, Feng; Goodarzi, Ali; Wang, Haifeng; Stasiak, Joanna; Sun, Jianbo; Zhou, Yu

    2014-01-01

    The 2nd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2013), held in Wuhan on 11–13 October 2013, is an annual conference that aims at providing an opportunity for international and national researchers and practitioners to present the most recent advances and future challenges in the fields of Biomedical Information, Biomedical Engineering and Biotechnology. The papers published by this issue are selected from this conference, which witnesses the frontier in the field of Biomedical Engineering and Biotechnology, which particularly has helped improving the level of clinical diagnosis in medical work.

  3. Pollen-based biome reconstruction for southern Europe and Africa 18,000 yr BP

    NARCIS (Netherlands)

    Elenga, H; Peyron, O; Bonnefille, R; Jolly, D; Cheddadi, R; Guiot, J; Andrieu, [No Value; Bottema, S; Buchet, G; de Beaulieu, JL; Hamilton, AC; Maley, J; Marchant, R; Perez-Obiol, R; Reille, M; Riollet, G; Scott, L; Straka, H; Taylor, D; Van Campo, E; Vincens, A; Laarif, F; Jonson, H

    Pollen data from 18,000 C-14 yr sp were compiled in order to reconstruct biome distributions at the last glacial maximum in southern Europe and Africa. Biome reconstructions were made using the objective biomization method applied to pollen counts using a complete list of dryland taxa wherever

  4. Factors affecting ammonium uptake in streams - an inter-biome perspective

    Science.gov (United States)

    Jackson R Webster; Partick J. Mulholland; Jennifer L. Tanks; H. Maurice Valett; Walter K. Dodds; Bruce J. Peterson; William B. Bowden; Clifford N. Dahm; Stuart Findlay; Stanley V. Gregory; Nancy B. Grimm; Stephen K. Hamilton; Sherri L. Johnson; Eugenia Marti; William H. McDowell; Judy L. Meyer; Donna D. Morrall; Steven A. Thomas; Wilfred M. Wollhem

    2003-01-01

    1. The Lotic Intersite Nitrogen experiment (LINX) was a coordinated study of the relationships between North American biomes and factors governing ammonium uptake in streams. Our objective was to relate inter-biome variability of ammonium uptake to physical, chemical and biological processes. 2. Data were collected from 11 streams ranging from arctic to tropical and...

  5. Increasing atmospheric CO2 overrides the historical legacy of multiple stable biome states in Africa.

    Science.gov (United States)

    Moncrieff, Glenn R; Scheiter, Simon; Bond, William J; Higgins, Steven I

    2014-02-01

    The dominant vegetation over much of the global land surface is not predetermined by contemporary climate, but also influenced by past environmental conditions. This confounds attempts to predict current and future biome distributions, because even a perfect model would project multiple possible biomes without knowledge of the historical vegetation state. Here we compare the distribution of tree- and grass-dominated biomes across Africa simulated using a dynamic global vegetation model (DGVM). We explicitly evaluate where and under what conditions multiple stable biome states are possible for current and projected future climates. Our simulation results show that multiple stable biomes states are possible for vast areas of tropical and subtropical Africa under current conditions. Widespread loss of the potential for multiple stable biomes states is projected in the 21st Century, driven by increasing atmospheric CO2 . Many sites where currently both tree-dominated and grass-dominated biomes are possible become deterministically tree-dominated. Regions with multiple stable biome states are widespread and require consideration when attempting to predict future vegetation changes. Testing for behaviour characteristic of systems with multiple stable equilibria, such as hysteresis and dependence on historical conditions, and the resulting uncertainty in simulated vegetation, will lead to improved projections of global change impacts. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  6. Climate change in Inner Mongolia from 1955 to 2005-trends at regional, biome and local scales

    Energy Technology Data Exchange (ETDEWEB)

    Lu, N; Wilske, B; John, R; Chen, J [Department of Environmental Sciences, University of Toledo, Toledo, OH 43606 (United States); Ni, J, E-mail: nan.lu@utoledo.ed, E-mail: burkhard.wilske@utoledo.ed, E-mail: jni@ibcas.ac.c, E-mail: ranjeet.john@utoledo.ed, E-mail: jiquan.chen@utoledo.ed [Alfred Wegener Institute for Polar and Marine Research, Telegrafenberg A43, D-14473 Potsdam (Germany)

    2009-10-15

    This study investigated the climate change in Inner Mongolia based on 51 meteorological stations from 1955 to 2005. The climate data was analyzed at the regional, biome (i.e. forest, grassland and desert) and station scales, with the biome scale as our primary focus. The climate records showed trends of warmer and drier conditions in the region. The annual daily mean, maximum and minimum temperature increased whereas the diurnal temperature range (DTR) decreased. The decreasing trend of annual precipitation was not significant. However, the vapor pressure deficit (VPD) increased significantly. On the decadal scale, the warming and drying trends were more significant in the last 30 years than the preceding 20 years. The climate change varied among biomes, with more pronounced changes in the grassland and the desert biomes than in the forest biome. DTR and VPD showed the clearest inter-biome gradient from the lowest rate of change in the forest biome to the highest rate of change in the desert biome. The rates of change also showed large variations among the individual stations. Our findings correspond with the IPCC predictions that the future climate will vary significantly by location and through time, suggesting that adaptation strategies also need to be spatially viable.

  7. S2Biom database with logistical components of the biomass value chain

    NARCIS (Netherlands)

    Annevelink, E.; Groot, de H.L.E.; Shah, N.; Giarola, S.; Pantaleo, M.; Anttila, P.; Vis, Martijn; Raa, te Rik; Berg, van den Douwe; Gabrielle, B.

    2015-01-01

    The S2Biom project (www.s2biom.eu) - Delivery of sustainable supply of non-food biomass to support
    a resource-efficient Bioeconomy in Europe - supports sustainable delivery chains of non-food biomass feedstock.
    This poses a logistical challenge because the quality and handling

  8. Climate change in Inner Mongolia from 1955 to 2005-trends at regional, biome and local scales

    International Nuclear Information System (INIS)

    Lu, N; Wilske, B; John, R; Chen, J; Ni, J

    2009-01-01

    This study investigated the climate change in Inner Mongolia based on 51 meteorological stations from 1955 to 2005. The climate data was analyzed at the regional, biome (i.e. forest, grassland and desert) and station scales, with the biome scale as our primary focus. The climate records showed trends of warmer and drier conditions in the region. The annual daily mean, maximum and minimum temperature increased whereas the diurnal temperature range (DTR) decreased. The decreasing trend of annual precipitation was not significant. However, the vapor pressure deficit (VPD) increased significantly. On the decadal scale, the warming and drying trends were more significant in the last 30 years than the preceding 20 years. The climate change varied among biomes, with more pronounced changes in the grassland and the desert biomes than in the forest biome. DTR and VPD showed the clearest inter-biome gradient from the lowest rate of change in the forest biome to the highest rate of change in the desert biome. The rates of change also showed large variations among the individual stations. Our findings correspond with the IPCC predictions that the future climate will vary significantly by location and through time, suggesting that adaptation strategies also need to be spatially viable.

  9. Mid- to Late-Holocene pollen-based biome reconstructions for Colombia

    NARCIS (Netherlands)

    Marchant, R.; Behling, H.; Berrío, J.C.; Cleef, A.M.; Duivenvoorden, J.; Hooghiemstra, H.; Kuhry, P.; Melief, B.; Geel, van B.; Hammen, van der T.; Reenen, van T.; Wille, M.

    2001-01-01

    The assignment of Colombian pollen data to biomes allows the data to be synthesised at 10 `time windows' from the present-day to 6000 radiocarbon years before present (BP). The modern reconstructed biomes are compared to a map of modern potential vegetation to check the applicability of the method

  10. [The past 30 years of Chinese Journal of Biotechnology].

    Science.gov (United States)

    Jiang, Ning

    2015-06-01

    This review addresses the association of "Chinese Journal of Biotechnology" and the development of biotechnology in China in the past 30 years. Topics include relevant awards and industrialization, development of the biotechnology discipline, and well know scientists in biotechnology, as well as perspectives on the journal.

  11. Biotechnology, nanotechnology, and pharmacogenomics and pharmaceutical compounding, Part 1.

    Science.gov (United States)

    Allen, Loyd V

    2015-01-01

    The world of pharmaceuticals is changing rapidly as biotechnology continues to grow and nanotechnology appears on the horizon. Biotechnology is gaining in importance in extemporaneous pharmaceutical compounding, and nanotechnology and pharmacogenomics could drastically change the practice of pharmacy. This article discusses biotechnology and the factors to consider when compounding biotechnology drugs.

  12. Identification of biomes affected by marginal expansion of agricultural land use induced by increased crop consumption

    DEFF Research Database (Denmark)

    Kløverpris, Jesper Hedal

    2009-01-01

    to characterise these areas. The present study ascribes so-called biomes (natural potential vegetation) to the areas affected by agricultural expansion in order to provide a basis for assessing the environmental impacts from land use in the life cycle impact assessment (LCIA). The methodology builds...... on agricultural statistics and maps of global agricultural areas and the global distribution of biomes. The application of the method is illustrated with four examples. The results indicate that agricultural expansion on land suited for crop cultivation (cultivable land) typically affects forest biomes...... or potential grassland/steppe, whereas expansion on land suited for grazing but not for crop cultivation (grazable land) typically occurs on potential shrubland or a few other biomes depending on the region. Some uncertainty applies to the results but it is concluded that it is feasible to identify biomes...

  13. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes.

    Science.gov (United States)

    García-Palacios, Pablo; Maestre, Fernando T; Kattge, Jens; Wall, Diana H

    2013-08-01

    Climate and litter quality have been identified as major drivers of litter decomposition at large spatial scales. However, the role played by soil fauna remains largely unknown, despite its importance for litter fragmentation and microbial activity. We synthesised litterbag studies to quantify the effect sizes of soil fauna on litter decomposition rates at the global and biome scales, and to assess how climate, litter quality and soil fauna interact to determine such rates. Soil fauna consistently enhanced litter decomposition at both global and biome scales (average increment ~ 37%). [corrected]. However, climate and litter quality differently modulated the effects of soil fauna on decomposition rates between biomes, from climate-driven biomes to those where climate effects were mediated by changes in litter quality. Our results advocate for the inclusion of biome-specific soil fauna effects on litter decomposition as a mean to reduce the unexplained variation in large-scale decomposition models. © 2013 John Wiley & Sons Ltd/CNRS.

  14. The Impact of Biotechnology upon Pharmacy Education.

    Science.gov (United States)

    Speedie, Marilyn K.

    1990-01-01

    Biotechnology is defined, and its impact on pharmacy practice, the professional curriculum (clinical pharmacy, pharmacy administration, pharmacology, medicinal chemistry, pharmaceutics, basic sciences, and continuing education), research in pharmacy schools, and graduate education are discussed. Resulting faculty, library, and research resource…

  15. Science Academies' Refresher Course on Modern Biotechnology ...

    Indian Academy of Sciences (India)

    IAS Admin

    , PCR and RT-PCR. A variety of teaching methods like lectures by eminent ... knowledge to boost their confidence in handling modern instruments used in the discipline of life sciences and modern biotechnology. Skills gained during this ...

  16. Biotechnology in plant nutrient management for agricultural ...

    African Journals Online (AJOL)

    Biotechnology in plant nutrient management for agricultural production in the tropics: ... and yields, marker assisted selection breeding, to develop new uses for agricultural products, to facilitate early maturation and to improve food and feed ...

  17. The dynamic and ubiquitous nature of biotechnology

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-18

    Aug 18, 2008 ... In agriculture, gene cloning, an aspect of biotechnology has provided new ... which genetic engineering techniques are used to inactivate one or more ..... medicine, research regulatory agencies, ethics and legal experts in the ...

  18. Mechatronics design principles for biotechnology product development.

    Science.gov (United States)

    Mandenius, Carl-Fredrik; Björkman, Mats

    2010-05-01

    Traditionally, biotechnology design has focused on the manufacture of chemicals and biologics. Still, a majority of biotechnology products that appear on the market today is the result of mechanical-electric (mechatronic) construction. For these, the biological components play decisive roles in the design solution; the biological entities are either integral parts of the design, or are transformed by the mechatronic system. This article explains how the development and production engineering design principles used for typical mechanical products can be adapted to the demands of biotechnology products, and how electronics, mechanics and biology can be integrated more successfully. We discuss three emerging areas of biotechnology in which mechatronic design principles can apply: stem cell manufacture, artificial organs, and bioreactors. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. Assessment of technology generating institutions in biotechnology ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-18

    May 18, 2009 ... biotechnology innovation system of South-Eastern. Nigeria. E. N. Ajani ... technology is the application of indigenous and / or scientific knowledge to ... developing societies, with the exception of China and. Argentina, (James ...

  20. Biotechnological applications of extremophiles, extremozymes and extremolytes

    KAUST Repository

    Raddadi, Noura; Cherif, Ameur; Daffonchio, Daniele; Neifar, Mohamed; Fava, Fabio

    2015-01-01

    produce extremozymes and extremolytes that have the potential to be valuable resources for the development of a bio-based economy through their application to white, red, and grey biotechnologies. Here, we provide an overview of extremophile ecology

  1. Agricultural biotechnology research and development in Ethiopia

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-29

    Dec 29, 2009 ... Review. Agricultural biotechnology research and development in Ethiopia ... seed micropropagation, virus-cleaning ongoing, good progress. Garlic meristem ... large quantities of disease-free planting materials in short time.

  2. Biotechnology Education: A Multiple Instructional Strategies Approach.

    Science.gov (United States)

    Dunham, Trey; Wells, John; White, Karissa

    2002-01-01

    Provides a rationale for inclusion of biotechnology in technology education. Describes an instructional strategy that uses behaviorist, cognitive, and constructivist learning theories in two activities involving photobioreactors and bovine somatotropin (growth hormone). (Contains 39 references.) (SK)

  3. Department of Biotechnology | Women in Science | Initiatives ...

    Indian Academy of Sciences (India)

    ... Proceedings – Mathematical Sciences · Resonance – Journal of Science ... Year: 2012 Innovative Young Biotechnologist Award ... Indian Institute of Science Education and Research, Mohali ... International Centre for Genetic Engineering and Biotechnology, New Delhi ... Institute of Microbial Technology, Chandigarh

  4. Awareness and knowledge on modern biotechnology

    African Journals Online (AJOL)

    Jane

    2011-09-30

    Sep 30, 2011 ... food; MABIC, Malaysian Biotechnology Information Centre. on public ... in Malaysia and provide linkage to several international website on modern ... scholars and university students) possess at least tertiary level of education ...

  5. Fostering biotechnology entrepreneurship in developing countries

    African Journals Online (AJOL)

    Fred

    countries cheaper and potentially easier to administer. Efficient sewage treatment ... developing countries, start-up funding for biotechnology companies is still very ... Business incubators are unique in stimulating spin-offs from universities and ...

  6. Application of biotechnology to improve livestock products

    Directory of Open Access Journals (Sweden)

    Swati Gupta

    Full Text Available Biotechnological achievements of recent years have emerged as powerful tool to improve quality attributes of livestock products including milk and meat products. Biotechnological approaches can be employed for improving productivity, economy, physicochemical and nutritional attributes of a wide range of livestock products. The target areas of biotechnological research in the field of livestock products can be envisaged as production of high yielding food animal, improvement in quality of their products, enhanced production of natural food grade preservatives, efficient byproduct utilization and so forth. Many of the biotechnological techniques can be explored in the area of quality assurance programmes, which would be of great help to produce livestock products of assured quality and public health safety. [Vet World 2012; 5(10.000: 634-638

  7. Gas, oil, and environmental biotechnology IV

    Energy Technology Data Exchange (ETDEWEB)

    Akin, C; Markuszewski, R; Smith, J [eds.; Institute of Gas Technology, Chicago, IL (United States)

    1992-01-01

    Contains 32 papers presented at the 4th international IGT symposium on gas, oil and environmental biotechnology. Topics covered were: hydrocarbon bioremediation; groundwater, soil and explosives bioremediation; gas and oil reservoir souring; and biodesulfurization. 2 papers have been abstracted separately.

  8. BIOTECHNOLOGIES OF MEAT PRODUCTS MANUFACTURE. CURRENT STATE

    OpenAIRE

    Bal-Prilipko L. V.; Leonova B. I.

    2014-01-01

    The analysis of literature and patents related to the possibilities of biotechnology for optimizing the domestic meat processing plants was the aim of the article. The analysis of the results of the use of biotechnological methods in the meat processing industry is given. The prospects for their implementation are evaluated. The main development strategy of technological meat processing to develop the methods of obtaining high quality and safe meat products is highlighted. Targeted use of spe...

  9. Proteomics: a biotechnology tool for crop improvement

    OpenAIRE

    Eldakak, Moustafa; Milad, Sanaa I. M.; Nawar, Ali I.; Rohila, Jai S.

    2013-01-01

    A sharp decline in the availability of arable land and sufficient supply of irrigation water along with a continuous steep increase in food demands have exerted a pressure on farmers to produce more with fewer resources. A viable solution to release this pressure is to speed up the plant breeding process by employing biotechnology in breeding programs. The majority of biotechnological applications rely on information generated from various -omic technologies. The latest outstanding improve...

  10. Biotechnology for the extractive metals industries

    Science.gov (United States)

    Brierley, James A.

    1990-01-01

    Biotechnology is an alternative process for the extraction of metals, the beneficiation of ores, and the recovery of metals from aqueous systems. Currently, microbial-based processes are used for leaching copper and uranium, enhancing the recovery of gold from refractory ores, and treating industrial wastewater to recover metal values. Future developments, emanating from fundamental and applied research and advances through genetic engineering, are expected to increase the use and efficiency of these biotechnological processes.

  11. BIOTECHNOLOGICAL ASPECTS ANALYSIS OF AGRICULTURAL POULTRY MICROFLORA

    OpenAIRE

    Garda S. A.; S. G. Danilenko; G. S. Litvinov

    2014-01-01

    Probiotics based on normal microflora of the birds using perspective strains become increasingly popular for treatment and prophylaxis of dysbacteriosis in poultry. The purpose of the work is the biotechnological data analysis of the composition and functions of the microflora of different birds’ biotopes. One of biotechnological methods for the study of bacterial flora in the birds is a method of in vivo bacteriological control — analysis of group samples of fresh droppings. To study bir...

  12. Comprehensive biotechnology education and rural economic development

    OpenAIRE

    Holmes, L.; Brooks, J.

    2006-01-01

    North Carolina is home to the third largest biotechnology industry in the United States. With over 200 companies involved in manufacturing, research, testing or services and growing at a rate of 12 % per year, this North Carolina industry is aggressively expanding its biotechnology efforts in all domains: pharmaceuticals, agriculture, environment, foods and energy. The North Carolina Department of Commerce along with other state and regional entities are developing strategies to attract new c...

  13. Outer Limits of Biotechnologies: A Jewish Perspective

    Directory of Open Access Journals (Sweden)

    John D. Loike

    2018-01-01

    Full Text Available A great deal of biomedical research focuses on new biotechnologies such as gene editing, stem cell biology, and reproductive medicine, which have created a scientific revolution. While the potential medical benefits of this research may be far-reaching, ethical issues related to non-medical applications of these technologies are demanding. We analyze, from a Jewish legal perspective, some of the ethical conundrums that society faces in pushing the outer limits in researching these new biotechnologies.

  14. Ethics in biotechnology and biosecurity

    Directory of Open Access Journals (Sweden)

    S Jameel

    2011-01-01

    Full Text Available Great advances in technology produce unique challenges. Every technology also has a dual use, which needs to be understood and managed to extract maximum benefits for mankind and the development of civilization. The achievements of physicists in the mid-20th century resulted in the nuclear technology, which gave us the destructive power of the atomic bomb as also a source of energy. Towards the later part of the 20th century, information technology empowered us with fast, easy and cheap access to information, but also led to intrusions into our privacy. Today, biotechnology is yielding life- saving and life-enhancing advances at a fast pace. But, the same tools can also give rise to fiercely destructive forces. How do we construct a security regime for biology? What have we learnt from the management of earlier technological advances? How much information should be in the public domain? Should biology, or more broadly science, be regulated? Who should regulate it? These and many other ethical questions need to be addressed.

  15. Biology and biotechnology of Trichoderma.

    Science.gov (United States)

    Schuster, André; Schmoll, Monika

    2010-07-01

    Fungi of the genus Trichoderma are soilborne, green-spored ascomycetes that can be found all over the world. They have been studied with respect to various characteristics and applications and are known as successful colonizers of their habitats, efficiently fighting their competitors. Once established, they launch their potent degradative machinery for decomposition of the often heterogeneous substrate at hand. Therefore, distribution and phylogeny, defense mechanisms, beneficial as well as deleterious interaction with hosts, enzyme production and secretion, sexual development, and response to environmental conditions such as nutrients and light have been studied in great detail with many species of this genus, thus rendering Trichoderma one of the best studied fungi with the genome of three species currently available. Efficient biocontrol strains of the genus are being developed as promising biological fungicides, and their weaponry for this function also includes secondary metabolites with potential applications as novel antibiotics. The cellulases produced by Trichoderma reesei, the biotechnological workhorse of the genus, are important industrial products, especially with respect to production of second generation biofuels from cellulosic waste. Genetic engineering not only led to significant improvements in industrial processes but also to intriguing insights into the biology of these fungi and is now complemented by the availability of a sexual cycle in T. reesei/Hypocrea jecorina, which significantly facilitates both industrial and basic research. This review aims to give a broad overview on the qualities and versatility of the best studied Trichoderma species and to highlight intriguing findings as well as promising applications.

  16. New biotechnologies in Serbian forestry

    Directory of Open Access Journals (Sweden)

    Galović Vladislava

    2014-01-01

    Full Text Available This paper presents an overview of the results achieved in the laboratory for molecular studies of the Institute of Lowland Forestry and Environment, University of Novi Sad, in the field of biotechnology, mainly in molecular genetics, genomics and functional genomics. Researches are designed to serve as a breeding tool. The aim was to clarify the processes of classical genetics by applying modern methods and enable a qualitative and rapid progress in understanding the processes that occur at the level of genes in the genome of forest plant species and thus help the processes of conservation of valuable taxa at the time of global climate change. The results are presented within various research fields and by type of forest trees that were given priority by importance in forest ecosystems. Studies have in most cases been of applicative character with the aim of solving the major problems in forestry, but also of fundamental nature when they were necessary to elucidate the response of forest species to the induced stress, which is an inevitable component of the time characterized by tolerance and adaptation as keywords. [Projekat Ministarstva nauke Republike SRbije, br. III 43002: Biosenzing tehnologije i globalni sistem za kontinuirano istraživanje i integrisano upravljanje ekosistemima i br. III 43007: Istraživanje klimatskih promena i njihovog uticaja na životnu sredinu - praćenje uticaja, adaptacija i ublažavanje i IPA - OXIT

  17. Biotechnological improvement of ornamental plants

    Directory of Open Access Journals (Sweden)

    Flavia Soledad Darqui

    2017-10-01

    Full Text Available The discovery of commercial transgenic varieties of orange petunias sold in Europe and the United States although they had never reached the approved status, and the consequent recommendation to destroy them, was the trigger to discuss about biotechnological improvement of ornamental plants. Inside the restricted world of 26 vegetal transgenic species, according to the ISAAA’s reports (http://www.isaaa.org, there are three ornamental species: carnation, rose and the Beijing University developed petunia; all of them with the same trait, a change in their colour. On the other hand, in 2014, the whole-genome sequence of carnation appeared which was the first and until now the only one among ornamental species. In this context, we review the publications from the last five years in petunia, rose, chrysanthemum and carnation. In these papers there are detailed descriptions of modification of the cascade of genes and transcription factors involved in stress situations, in different developmental stages and their regulation through different plant hormones. This knowledge will allow breeding for better and new varieties with changes in their abiotic or biotic stress tolerance, altered growth or yield and modified product quality as colour or fragrance.

  18. Ethics in biotechnology and biosecurity.

    Science.gov (United States)

    Jameel, S

    2011-01-01

    Great advances in technology produce unique challenges. Every technology also has a dual use, which needs to be understood and managed to extract maximum benefits for mankind and the development of civilization. The achievements of physicists in the mid-20th century resulted in the nuclear technology, which gave us the destructive power of the atomic bomb as also a source of energy. Towards the later part of the 20th century, information technology empowered us with fast, easy and cheap access to information, but also led to intrusions into our privacy. Today, biotechnology is yielding life- saving and life-enhancing advances at a fast pace. But, the same tools can also give rise to fiercely destructive forces. How do we construct a security regime for biology? What have we learnt from the management of earlier technological advances? How much information should be in the public domain? Should biology, or more broadly science, be regulated? Who should regulate it? These and many other ethical questions need to be addressed.

  19. Climate sensitivity of shrub growth across the tundra biome

    DEFF Research Database (Denmark)

    Myers-Smith, Isla H.; Elmendorf, Sarah C.; Beck, Pieter S.A.

    2015-01-01

    Rapid climate warming in the tundra biome has been linked to increasing shrub dominance1–4. Shrub expansion can modify climate by altering surface albedo, energy and water balance, and permafrost2,5–8, yet the drivers of shrub growth remain poorly understood. Dendroecological data consisting...... of multi-decadal time series of annual shrub growth provide an underused resource to explore climate–growth relationships. Here, we analyse circumpolar data from 37 Arctic and alpine sites in 9 countries, including 25 species, and 42,000 annual growth records from 1,821 individuals. Our analyses...... demonstrate that the sensitivity of shrub growth to climate was: (1) heterogeneous, with European sites showing greater summer temperature sensitivity than North American sites, and (2) higher at sites with greater soil moisture and for taller shrubs (for example, alders and willows) growing at their northern...

  20. Medical Biotechnology Trends and Achievements in Iran

    Science.gov (United States)

    Mahboudi, Fereidoun; Hamedifar, Haleh; Aghajani, Hamideh

    2012-01-01

    A healthcare system has been the most important priority for all governments worldwide. Biotechnology products have affected the promotion of health care over the last thirty years. During the last several decades, Iran has achieved significant success in extending healthcare to the rural areas and in reducing the rates of infant mortality and increasing population growth. Biomedical technology as a converging technology is considered a helpful tool to fulfill the Iranian healthcare missions. The number of biotechnology products has reached 148 in 2012. The total sales have increased to 98 billion USD without considering vaccines and plasma derived proteins in 2012. Iran is one of the leading countries in the Middle East and North Africa in the area of Medical biotechnology. The number of biotechnology medicines launched in Iran is 13 products until 2012. More than 15 products are in pipelines now. Manufacturers are expecting to receive the market release for more than 8 products by the end of 2012. Considering this information, Iran will lead the biotechnology products especially in area of biosimilars in Asia after India in next three years. The present review will discuss leading policy, decision makers’ role, human resource developing system and industry development in medical biotechnology. PMID:23407888

  1. Improved simulation of poorly drained forests using Biome-BGC.

    Science.gov (United States)

    Bond-Lamberty, Ben; Gower, Stith T; Ahl, Douglas E

    2007-05-01

    Forested wetlands and peatlands are important in boreal and terrestrial biogeochemical cycling, but most general-purpose forest process models are designed and parameterized for upland systems. We describe changes made to Biome-BGC, an ecophysiological process model, that improve its ability to simulate poorly drained forests. Model changes allowed for: (1) lateral water inflow from a surrounding watershed, and variable surface and subsurface drainage; (2) adverse effects of anoxic soil on decomposition and nutrient mineralization; (3) closure of leaf stomata in flooded soils; and (4) growth of nonvascular plants (i.e., bryophytes). Bryophytes were treated as ectohydric broadleaf evergreen plants with zero stomatal conductance, whose cuticular conductance to CO(2) was dependent on plant water content. Individual model changes were parameterized with published data, and ecosystem-level model performance was assessed by comparing simulated output to field data from the northern BOREAS site in Manitoba, Canada. The simulation of the poorly drained forest model exhibited reduced decomposition and vascular plant growth (-90%) compared with that of the well-drained forest model; the integrated bryophyte photosynthetic response accorded well with published data. Simulated net primary production, biomass and soil carbon accumulation broadly agreed with field measurements, although simulated net primary production was higher than observed data in well-drained stands. Simulated net primary production in the poorly drained forest was most sensitive to oxygen restriction on soil processes, and secondarily to stomatal closure in flooded conditions. The modified Biome-BGC remains unable to simulate true wetlands that are subject to prolonged flooding, because it does not track organic soil formation, water table changes, soil redox potential or anaerobic processes.

  2. Two New Species and New Occurrences of Syneches Walker for Brazilian Biome of Caatinga (Diptera: Hybotidae: Hybotinae).

    Science.gov (United States)

    Soares, M M M; Ale-Rocha, R

    2018-03-13

    Syneches from Brazilian biome of Caatinga were studied, two new species are described, Syneches atratus sp. nov. and Syneches limeirai sp. nov., and three species, Syneches annulipes Bezzi, 1909, Syneches moraballi Smith, 1963, and Syneches rafaeli Ale-Rocha & Vieira, 2008, are recorded for the biome. An identification key for the species of Syneches from Caatinga biome is provided.

  3. Stem cells in pharmaceutical biotechnology.

    Science.gov (United States)

    Zuba-Surma, Ewa K; Józkowicz, Alicja; Dulak, Józef

    2011-11-01

    Multiple populations of stem cells have been indicated to potentially participate in regeneration of injured organs. Especially, embryonic stem cells (ESC) and recently inducible pluripotent stem cells (iPS) receive a marked attention from scientists and clinicians for regenerative medicine because of their high proliferative and differentiation capacities. Despite that ESC and iPS cells are expected to give rise into multiple regenerative applications when their side effects are overcame during appropriate preparation procedures, in fact their most recent application of human ESC may, however, reside in their use as a tool in drug development and disease modeling. This review focuses on the applications of stem cells in pharmaceutical biotechnology. We discuss possible relevance of pluripotent cell stem populations in developing physiological models for any human tissue cell type useful for pharmacological, metabolic and toxicity evaluation necessary in the earliest steps of drug development. The present models applied for preclinical drug testing consist of primary cells or immortalized cell lines that show limitations in terms of accessibility or relevance to their in vivo counterparts. The availability of renewable human cells with functional similarities to their in vivo counterparts is the first landmark for a new generation of cell-based assays. We discuss the approaches for using stem cells as valuable physiological targets of drug activity which may increase the strength of target validation and efficacy potentially resulting in introducing new safer remedies into clinical trials and the marketplace. Moreover, we discuss the possible applications of stem cells for elucidating mechanisms of disease pathogenesis. The knowledge about the mechanisms governing the development and progression of multitude disorders which would come from the cellular models established based on stem cells, may give rise to new therapeutical strategies for such diseases. All

  4. The Effect of Biotechnology Education on Australian High School Students' Understandings and Attitudes about Biotechnology Processes

    Science.gov (United States)

    Dawson, Vaille; Soames, Christina

    2006-01-01

    Our education system aims to equip young people with the knowledge, problem-solving skills and values to cope with an increasingly technological society. The aim of this study was to determine the effect of biotechnology education on adolescents' understanding and attitudes about processes associated with biotechnology. Data were drawn from…

  5. Life sciences today and tomorrow: emerging biotechnologies.

    Science.gov (United States)

    Williamson, E Diane

    2017-08-01

    The purpose of this review is to survey current, emerging and predicted future biotechnologies which are impacting, or are likely to impact in the future on the life sciences, with a projection for the coming 20 years. This review is intended to discuss current and future technical strategies, and to explore areas of potential growth during the foreseeable future. Information technology approaches have been employed to gather and collate data. Twelve broad categories of biotechnology have been identified which are currently impacting the life sciences and will continue to do so. In some cases, technology areas are being pushed forward by the requirement to deal with contemporary questions such as the need to address the emergence of anti-microbial resistance. In other cases, the biotechnology application is made feasible by advances in allied fields in biophysics (e.g. biosensing) and biochemistry (e.g. bio-imaging). In all cases, the biotechnologies are underpinned by the rapidly advancing fields of information systems, electronic communications and the World Wide Web together with developments in computing power and the capacity to handle extensive biological data. A rationale and narrative is given for the identification of each technology as a growth area. These technologies have been categorized by major applications, and are discussed further. This review highlights: Biotechnology has far-reaching applications which impinge on every aspect of human existence. The applications of biotechnology are currently wide ranging and will become even more diverse in the future. Access to supercomputing facilities and the ability to manipulate large, complex biological datasets, will significantly enhance knowledge and biotechnological development.

  6. Translational science by public biotechnology companies in the IPO "class of 2000": the impact of technological maturity.

    Science.gov (United States)

    McNamee, Laura; Ledley, Fred

    2013-01-01

    The biotechnology industry plays a central role in the translation of nascent biomedical science into both products that offer material health benefits and creating capital growth. This study examines the relationship between the maturity of technologies in a characteristic life cycle and value creation by biotechnology companies. We examined the core technology, product development pipelines, and capitalization for a cohort of biotechnology companies that completed an IPO in 2000. Each of these companies was well financed and had core technologies on the leading edge of biological science. We found that companies with the least mature technologies had significantly higher valuations at IPO, but failed to develop products based on these technologies over the ensuing decade, and created less capital growth than companies with more mature technologies at IPO. The observation that this cohort of recently public biotechnology companies was not effective in creating value from nascent science suggests the need for new, evidence-based business strategies for translational science.

  7. The effect of biotechnology education on Australian high school students' understandings and attitudes about biotechnology processes

    Science.gov (United States)

    Dawson, Vaille; Soames, Christina

    2006-11-01

    Our education system aims to equip young people with the knowledge, problem-solving skills and values to cope with an increasingly technological society. The aim of this study was to determine the effect of biotechnology education on adolescents’ understanding and attitudes about processes associated with biotechnology. Data were drawn from teacher and student interviews and surveys in the context of innovative Year 10 biotechnology courses conducted in three Western Australian high schools. The results indicate that after completing a biotechnology course students’ understanding increased but their attitudes remained constant with the exception of their views about human uses of gene technology. The findings of this study have ramifications for the design and implementation of biotechnology education courses in high schools.

  8. Eastern deciduous forest biome progress report, September 1, 1975--August 31, 1976

    International Nuclear Information System (INIS)

    Burgess, R.L.; Tarr, N.E.

    1978-09-01

    The report concentrates on the six projects as well as results from synthesis activities at the Lake George, Lake Wingra, and Oak Ridge sites. The centralized analysis and modeling component and the Eastern Decidious Forest Biome Information Center progress during the past year are also addressed. The project on belowground dynamics of ecosystems is investigating the allocation of phytosynthetic products into fixed or labile storage pools. Root sampling, radioactive tracer techniques, and biochemical analyses are leading to an understanding of complete tree physioogy requisite for interpreting forest growth in different environments. The Role of Consumers project has begun to document the regulatory role of heterotrophs in an array of ecosystem niches. Decomposition of woody substrates, studies of the contribution of canopy and litter arthropods to material processing, and the flow and remineralization of phosphorus in lake systems are leading to a comprehensive understanding of the role of consumer organisms in ecosystem function. The Microdynamics of Detritus project continues its investigations of carbon and nitrogen dynamics in freshwater lakes. Examination of potential pathways of detritus processing is illustrating the parts that physical and biological processes play in the breakdown of organic materials

  9. Medical Biotechnology: Problems and Prospects in Bangladesh

    Directory of Open Access Journals (Sweden)

    Shaikh Mizan

    2013-01-01

    Full Text Available Biotechnology is the knowledge and techniques of developing and using biological systems for deriving special products and services. The age-old technology took a new turn with the advent of recombinant DNA techniques, and boosted by the development of other molecular biological techniques, cell culture techniques and bioinformatics. Medical biotechnology is the major thrust area of biotechnology. It has brought revolutions in medicine – quick methods for diagnosing diseases, generation of new drugs and vaccines, completely novel approach of treatment are only a few to mention. The industrial and financial bulk of the industry mushroomed very rapidly in the last three decades, led by the USA and western advanced nations. Asian countries like China, India, South Korea, Taiwan and Singapore joined late, but advancing forward in a big way. In all the Asian countries governments supported the initiatives of the expert and entrepreneur community, and invested heavily in its development. Bangladesh has got great potential in developing biotechnology and reaping its fruits. However, lack of commitment and patriotism, and too much corruption and irresponsibility in political and bureaucratic establishment are the major hindrance to the development of biotechnology in Bangladesh.

  10. Biotechnology in Georgia for Various Applications

    International Nuclear Information System (INIS)

    Mosulishvili, L.; Tsibakhashvili, N.; Kirkesali, E.; Tsertsvadze, L.; Frontasyeva, M.; Pavlov, S.

    2008-01-01

    The results of collaborative work carried out in the field of biotechnology at the Frank Laboratory of Neutron Physics (FLNP) of the Joint Institute for Nuclear Research (JINR) (Dubna, Russia) jointly with scientists from Georgia are presented. Using instrumental neutron activation analysis (NAA), significant results were ontained in the following directions - medical biotechnology, environmental biotechnology and industrial biotechnology. In the biomedical experiments a blue-green alga Spirulina platensis biomass has been used as a matrix for the development of pharmaceutical substances containing such vitally important trace elements as selenium, chromium and iodine. The feasibility of target-oriented introduction of these elements into Spirulina platensis biocomplexes retaining its protain composition and natural beneficial properties has been proved. The adsorption of such toxic metal as mercury by Spirulina platensis biomass in dynamics of growth has been studied also. NAA has been successfully applied to investigate the biotechnology of toxic Cr(VI) transformation into less toxic Cr(III) complexes by Cr(VI)-reducer bacteria isolated from polluted basalts in Georgia. This method was used to track accumulation of chromium in the bacterial cells. To monitor and identify Cr(III) complexes in these bacteria, electron spin resonance (ESR) spectrometry was employed. For the first time, the elemental composition of Cr(VI)-reducer bacteria has been studied using epithermal NAA. The natural organic mass of vegetal origin - peat - was applied as a source of microorganisms to study the bacterial leaching of some metals from lean ores, rocks and industrial wastes. (author)

  11. Proteomics: A Biotechnology Tool for Crop Improvement

    Directory of Open Access Journals (Sweden)

    Moustafa eEldakak

    2013-02-01

    Full Text Available A sharp decline in the availability of arable land and sufficient supply of irrigation water along with a continuous steep increase in food demands have exerted a pressure on farmers to produce more with fewer resources. A viable solution to release this pressure is to speed up the plant breeding process by employing biotechnology in breeding programs. The majority of biotechnological applications rely on information generated from various -omic technologies. The latest outstanding improvements in proteomic platforms and many other but related advances in plant biotechnology techniques offer various new ways to encourage the usage of these technologies by plant scientists for crop improvement programs. A combinatorial approach of accelerated gene discovery through genomics, proteomics, and other associated -omic branches of biotechnology, as an applied approach, is proving to be an effective way to speed up the crop improvement programs worldwide. In the near future, swift improvements in -omic databases are becoming critical and demand immediate attention for the effective utilization of these techniques to produce next-generation crops for the progressive farmers. Here, we have reviewed the recent advances in proteomics, as tools of biotechnology, which are offering great promise and leading the path towards crop improvement for sustainable agriculture.

  12. La filatelia biomédica Biomedicine philately

    Directory of Open Access Journals (Sweden)

    Emilio J.A. Roldán

    2011-02-01

    Full Text Available La temática biomédica es un capítulo extendido de la filatelia o coleccionismo de sellos postales. Inaugura la temática la imagen de la diosa Hygeia, en un sello de la isla Nevis de 1861. Los primeros médicos retratados en una estampilla son tres constitucionalistas americanos, en un ejemplar de 1869, pero recién en 1937 aparecen médicos holandeses en reconocimiento específico de sus aportes a la salud. En la Argentina la primera estampilla que oficialmente se ocupa del tema es de 1944, en ayuda de las víctimas del terremoto de San Juan. Florentino Ameghino es el primer científico incluido en 1954, y en 1967 se edita un sello conmemorativo de la Dra. Cecilia Grierson. La filatelia argentina luego reconoce varios de nuestros científicos y médicos, congresos, universidades, campañas sanitarias, temas de odontología, farmacia, enfermería y otros, generando un amplio material filatélico en reconocimiento del valor social que la ciencia biomédica argentina ha logrado en el contexto propio e internacional. Posiblemente sea un científico, el Dr. Bernardo Houssay, uno de los argentinos más veces editado en distintos sellos postales de la filatelia mundial.Biomedicine is a vast field in philately or stamp collecting. It opens the topic the image of the goddess Hygeia, issued in a stamp from Nevis Island dated 1861. The first physicians to appear printed in stamps, in 1869, were three American constitutionalists, but only in 1937 there appear Dutch physicians as an acknowledgement of their contribution to public health. In Argentina the first stamp officially related to the topic was issued in 1944, to raise funds for the victims of the San Juan earthquake. Florentino Ameghino was the first scientist included in 1954, and in 1967 a stamp was issued in honour of Dr. Cecilia Grierson. Afterwards, Argentinean philately has recognized several of our scientists and physicians, congresses, universities, health campaigns, dentistry topics

  13. Risk evaluation in biotechnology of environment

    International Nuclear Information System (INIS)

    Mazaheri Asadi, M.

    2003-01-01

    It is the Era of technology and many countries are adjusting their economy with it. The research on biotechnology is done with a logarithmic rate at different technologies such as pharmacy, agriculture, environment, food, oil, and etc. The relevant research would result in the production of new materials which are released into the environment. In many developed countries biotechnology is regarded as a firm base for economic development and without doubt plays a determined role in humane wealth and well-being, but this technology should be sustainable and controllable. The producer and consumer of biotechnology must think deeply about this matter and take into account the health and sustain ability of earth and the environment. Evaluation of ecological impacts of micro- organisms and manipulated genetically organism should be considered in all countries of the world and such an activities should be regulated and controlled as it was don in Canada under the supervision of Dept

  14. Organisation of biotechnological information into knowledge.

    Science.gov (United States)

    Boh, B

    1996-09-01

    The success of biotechnological research, development and marketing depends to a large extent on the international transfer of information and on the ability to organise biotechnology information into knowledge. To increase the efficiency of information-based approaches, an information strategy has been developed and consists of the following stages: definition of the problem, its structure and sub-problems; acquisition of data by targeted processing of computer-supported bibliographic, numeric, textual and graphic databases; analysis of data and building of specialized in-house information systems; information processing for structuring data into systems, recognition of trends and patterns of knowledge, particularly by information synthesis using the concept of information density; design of research hypotheses; testing hypotheses in the laboratory and/or pilot plant; repeated evaluation and optimization of hypotheses by information methods and testing them by further laboratory work. The information approaches are illustrated by examples from the university-industry joint projects in biotechnology, biochemistry and agriculture.

  15. Plant biotechnology for food security and bioeconomy.

    Science.gov (United States)

    Clarke, Jihong Liu; Zhang, Peng

    2013-09-01

    This year is a special year for plant biotechnology. It was 30 years ago, on January 18 1983, one of the most important dates in the history of plant biotechnology, that three independent groups described Agrobacterium tumefaciens-mediated genetic transformation at the Miami Winter Symposium, leading to the production of normal, fertile transgenic plants (Bevan et al. in Nature 304:184-187, 1983; Fraley et al. in Proc Natl Acad Sci USA 80:4803-4807, 1983; Herrera-Estrella et al. in EMBO J 2:987-995, 1983; Vasil in Plant Cell Rep 27:1432-1440, 2008). Since then, plant biotechnology has rapidly advanced into a useful and valuable tool and has made a significant impact on crop production, development of a biotech industry and the bio-based economy worldwide.

  16. Biotechnological Aspects of Microbial Extracellular Electron Transfer

    Science.gov (United States)

    Kato, Souichiro

    2015-01-01

    Extracellular electron transfer (EET) is a type of microbial respiration that enables electron transfer between microbial cells and extracellular solid materials, including naturally-occurring metal compounds and artificial electrodes. Microorganisms harboring EET abilities have received considerable attention for their various biotechnological applications, in addition to their contribution to global energy and material cycles. In this review, current knowledge on microbial EET and its application to diverse biotechnologies, including the bioremediation of toxic metals, recovery of useful metals, biocorrosion, and microbial electrochemical systems (microbial fuel cells and microbial electrosynthesis), were introduced. Two potential biotechnologies based on microbial EET, namely the electrochemical control of microbial metabolism and electrochemical stimulation of microbial symbiotic reactions (electric syntrophy), were also discussed. PMID:26004795

  17. Biotechnology: Health care, agriculture, industry, environment

    Energy Technology Data Exchange (ETDEWEB)

    Sikyta, B; Pavlasova, E; Stejskalova, E

    1986-01-01

    New developments in different branches of biotechnology are discussed. The production of peptide hormones, new interferons and other lymphokines by the microbial and cell cultures, and new enzyme inhibitors of microbial origin are the most important for health care and pharmacy. The main direction in research in the agriculture represents the development of the new, very effective methods of nitrogen fixation and the production of animal growth hormones by gene manipulated microorganisms. One of the most important field of application of biotechnology is the chemical industry, c.f. microbial production of polymers and biotransformation of compounds previously produced by chemical methods (acrylamide, adipic acid, naphthalene conversion, etc.). Several novel methods of degradation of the cellulosic materials are mentioned and exploitation of biotechnology in environmental protection is also discussed.

  18. Perspectives on biotechnological applications of archaea

    Science.gov (United States)

    Schiraldi, Chiara; Giuliano, Mariateresa; De Rosa, Mario

    2002-01-01

    Many archaea colonize extreme environments. They include hyperthermophiles, sulfur-metabolizing thermophiles, extreme halophiles and methanogens. Because extremophilic microorganisms have unusual properties, they are a potentially valuable resource in the development of novel biotechnological processes. Despite extensive research, however, there are few existing industrial applications of either archaeal biomass or archaeal enzymes. This review summarizes current knowledge about the biotechnological uses of archaea and archaeal enzymes with special attention to potential applications that are the subject of current experimental evaluation. Topics covered include cultivation methods, recent achievements in genomics, which are of key importance for the development of new biotechnological tools, and the application of wild-type biomasses, engineered microorganisms, enzymes and specific metabolites in particular bioprocesses of industrial interest. PMID:15803645

  19. Simulating economics and environmental impacts of beef and soybean systems in Brazil's Pamas and Amozon Biomes

    Science.gov (United States)

    Recent reductions in the deforestation of the Amazon biome have highlighted the need for the sustainable intensification of beef and commodity crop production in Brazil to increase agricultural productivity without accelerating adverse environmental impacts related to greenhouse gas emissions, eutro...

  20. Biome-BGC: Modeling Effects of Disturbance and Climate (Thornton et al. 2002)

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This archived model product contains the directions, executables, and procedures for running Biome-BGC, Version 4.1.1, to recreate the results of the...

  1. BIOME: A scientific data archive search-and-order system using browser-aware, dynamic pages

    Science.gov (United States)

    Jennings, S. V.; Yow, T. G.; Ng, V. W.

    1997-01-01

    The Oak Ridge National Laboratory's (ORNL) Distributed Active Archive Center (DAAC) is a data archive and distribution center for the National Air and Space Administration's (NASA) Earth Observing System Data and Information System (EOSDIS). Both the Earth Observing System (EOS) and EOSDIS are components of NASA's contribution to the US Global Change Research Program through its Mission to Planet Earth Program. The ORNL DAAC provides access to data used in ecological and environmental research such as global change, global warming, and terrestrial ecology. Because of its large and diverse data holdings, the challenge for the ORNL DAAC is to help users find data of interest from the hundreds of thousands of files available at the DAAC without overwhelming them. Therefore, the ORNL DAAC has developed the Biogeochemical Information Ordering Management Environment (BIOME), a customized search and order system for the World Wide Web (WWW). BIOME is a public system located at http://www-eosdis. ornl.gov/BIOME/biome.html.

  2. Biome-BGC: Modeling Carbon Dynamics in Ponderosa Pine Stands (Law et al. 2003)

    Data.gov (United States)

    National Aeronautics and Space Administration — This archived model product contains the directions, executables, and procedures for running Biome-BGC, Version 4.1.2, to recreate the results of the following...

  3. Biome-BGC: Terrestrial Ecosystem Process Model, Version 4.1.1

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Biome-BGC is a computer program that estimates fluxes and storage of energy, water, carbon, and nitrogen for the vegetation and soil components of...

  4. Biome-BGC: Terrestrial Ecosystem Process Model, Version 4.1.1

    Data.gov (United States)

    National Aeronautics and Space Administration — Biome-BGC is a computer program that estimates fluxes and storage of energy, water, carbon, and nitrogen for the vegetation and soil components of terrestrial...

  5. BIOME: An Ecosystem Remote Sensor Based on Imaging Interferometry

    Science.gov (United States)

    Peterson, David L.; Hammer, Philip; Smith, William H.; Lawless, James G. (Technical Monitor)

    1994-01-01

    Until recent times, optical remote sensing of ecosystem properties from space has been limited to broad band multispectral scanners such as Landsat and AVHRR. While these sensor data can be used to derive important information about ecosystem parameters, they are very limited for measuring key biogeochemical cycling parameters such as the chemical content of plant canopies. Such parameters, for example the lignin and nitrogen contents, are potentially amenable to measurements by very high spectral resolution instruments using a spectroscopic approach. Airborne sensors based on grating imaging spectrometers gave the first promise of such potential but the recent decision not to deploy the space version has left the community without many alternatives. In the past few years, advancements in high performance deep well digital sensor arrays coupled with a patented design for a two-beam interferometer has produced an entirely new design for acquiring imaging spectroscopic data at the signal to noise levels necessary for quantitatively estimating chemical composition (1000:1 at 2 microns). This design has been assembled as a laboratory instrument and the principles demonstrated for acquiring remote scenes. An airborne instrument is in production and spaceborne sensors being proposed. The instrument is extremely promising because of its low cost, lower power requirements, very low weight, simplicity (no moving parts), and high performance. For these reasons, we have called it the first instrument optimized for ecosystem studies as part of a Biological Imaging and Observation Mission to Earth (BIOME).

  6. Climate control of terrestrial carbon exchange across biomes and continents

    Energy Technology Data Exchange (ETDEWEB)

    Yi Chuixiang; Wolbeck, John; Xu Xiyan [School of Earth and Environmental Sciences, Queens College, City University of New York, NY 11367 (United States); Ricciuto, Daniel [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Li Runze [Department of Statistics, Pennsylvania State University, University Park, PA 16802 (United States); Nilsson, Mats [Department of Forest Ecology, Swedish University of Agricultural Sciences, SE-901 83 Umeaa (Sweden); Aires, Luis [CESAM and Department of Environmental Engineering, School of Technology and Management, Polytechnic Institute of Leiria (Portugal); Albertson, John D [Department of Civil and Environmental Engineering, Duke University, Durham, NC 22708-0287 (United States); Ammann, Christof [Federal Research Station Agroscope Reckenholz-Taenikon, Reckenholzstrasse 191, 8046 Zuerich (Switzerland); Arain, M Altaf [School of Geography and Earth Sciences, McMaster University, Hamilton, ON, L8S 4K1 (Canada); De Araujo, Alessandro C [Instituto Nacional de Pesquisas da Amazonia, Programa LBA, Campus-II, Manaus-Amazonas 69060 (Brazil); Aubinet, Marc [University of Liege, Gembloux Agro-Bio Tech, Unit of Biosystem Physics, 2 Passage des Deportes, 5030 Gembloux (Belgium); Aurela, Mika [Finnish Meteorological Institute, Climate Change Research, FI-00101 Helsinki (Finland); Barcza, Zoltan [Department of Meteorology, Eoetvoes Lorand University, H-1117 Budapest, Pazmany setany 1/A (Hungary); Barr, Alan [Climate Research Division, Environment Canada, Saskatoon, SK, S7N 3H5 (Canada); Berbigier, Paul [INRA, UR1263 EPHYSE, Villenave d' Ornon F-33883 (France); Beringer, Jason [School of Geography and Environmental Science, Monash University, Clayton, Victoria 3800 (Australia); Bernhofer, Christian [Institute of Hydrology and Meteorology, Dresden University of Technology, Pienner Strasse 23, D-01737, Tharandt (Germany)

    2010-07-15

    Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO{sub 2} exchange with the atmosphere across biomes and continents are lacking. Here we present data describing the relationships between net ecosystem exchange of carbon (NEE) and climate factors as measured using the eddy covariance method at 125 unique sites in various ecosystems over six continents with a total of 559 site-years. We find that NEE observed at eddy covariance sites is (1) a strong function of mean annual temperature at mid- and high-latitudes, (2) a strong function of dryness at mid- and low-latitudes, and (3) a function of both temperature and dryness around the mid-latitudinal belt (45 deg. N). The sensitivity of NEE to mean annual temperature breaks down at {approx} 16 deg. C (a threshold value of mean annual temperature), above which no further increase of CO{sub 2} uptake with temperature was observed and dryness influence overrules temperature influence.

  7. Climate control of terrestrial carbon exchange across biomes and continents

    International Nuclear Information System (INIS)

    Yi Chuixiang; Wolbeck, John; Xu Xiyan; Ricciuto, Daniel; Li Runze; Nilsson, Mats; Aires, Luis; Albertson, John D; Ammann, Christof; Arain, M Altaf; De Araujo, Alessandro C; Aubinet, Marc; Aurela, Mika; Barcza, Zoltan; Barr, Alan; Berbigier, Paul; Beringer, Jason; Bernhofer, Christian

    2010-01-01

    Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO 2 exchange with the atmosphere across biomes and continents are lacking. Here we present data describing the relationships between net ecosystem exchange of carbon (NEE) and climate factors as measured using the eddy covariance method at 125 unique sites in various ecosystems over six continents with a total of 559 site-years. We find that NEE observed at eddy covariance sites is (1) a strong function of mean annual temperature at mid- and high-latitudes, (2) a strong function of dryness at mid- and low-latitudes, and (3) a function of both temperature and dryness around the mid-latitudinal belt (45 deg. N). The sensitivity of NEE to mean annual temperature breaks down at ∼ 16 deg. C (a threshold value of mean annual temperature), above which no further increase of CO 2 uptake with temperature was observed and dryness influence overrules temperature influence.

  8. Agricultural biotechnology and smallholder farmers in developing countries.

    Science.gov (United States)

    Anthony, Vivienne M; Ferroni, Marco

    2012-04-01

    Agricultural biotechnology holds much potential to contribute towards crop productivity gains and crop improvement for smallholder farmers in developing countries. Over 14 million smallholder farmers are already benefiting from biotech crops such as cotton and maize in China, India and other Asian, African and Central/South American countries. Molecular breeding can accelerate crop improvement timescales and enable greater use of diversity of gene sources. Little impact has been realized to date with fruits and vegetables because of development timescales for molecular breeding and development and regulatory costs and political considerations facing biotech crops in many countries. Constraints to the development and adoption of technology-based solutions to reduce yield gaps need to be overcome. Full integration with broader commercial considerations such as farmer access to seed distribution systems that facilitate dissemination of improved varieties and functioning markets for produce are critical for the benefits of agricultural biotechnology to be fully realized by smallholders. Public-private partnerships offer opportunities to catalyze new approaches and investment while accelerating integrated research and development and commercial supply chain-based solutions. Copyright © 2011. Published by Elsevier Ltd.

  9. Biotechnological processes in the Canadian mining industry

    International Nuclear Information System (INIS)

    McCready, R.G.L.

    1991-01-01

    Since the initiation of the Federal Government's National Strategy on Biotechnology in 1983, CANMET has coordinated the development of numerous biotechnological processes both for economical metal recovery and for the protection of the environment. This presentation will give a brief overview of the development of in-place, underground bacterial leaching of uranium, the development of in-situ bacterial leaching of copper and zinc, bio recovery of metallic selenium from smelter effluents, the degradation of an organic pollutant from a metal smelter and biological treatment of acidic mine drainage. (author)

  10. Biotechnological applications of extremophiles, extremozymes and extremolytes

    KAUST Repository

    Raddadi, Noura

    2015-08-14

    In the last decade, attention to extreme environments has increased because of interests to isolate previously unknown extremophilic microorganisms in pure culture and to profile their metabolites. Microorganisms that live in extreme environments produce extremozymes and extremolytes that have the potential to be valuable resources for the development of a bio-based economy through their application to white, red, and grey biotechnologies. Here, we provide an overview of extremophile ecology, and we review the most recent applications of microbial extremophiles and the extremozymes and extremolytes they produce to biotechnology.

  11. Microbial biotechnology addressing the plastic waste disaster.

    Science.gov (United States)

    Narancic, Tanja; O'Connor, Kevin E

    2017-09-01

    Oceans are a major source of biodiversity, they provide livelihood, and regulate the global ecosystem by absorbing heat and CO 2 . However, they are highly polluted with plastic waste. We are discussing here microbial biotechnology advances with the view to improve the start and the end of life of biodegradable polymers, which could contribute to the sustainable use of marine and coastal ecosystems (UN Sustainability development goal 14). © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  12. The present status and perspectives of Biotechnology in Cameroon ...

    African Journals Online (AJOL)

    ... for the rapid exploitation of biotechnology for the socioeconomic development of Cameroon, subject to the mobilization of the necessary venture capital. Keywords: Cameroon, Biotechnology, GMO, Biodiversity, Economic Development, Recombinant DNA JOURNAL OF THE CAMEROON ACADEMY OF SCIENCES Vol.

  13. A bibliometric assessment of ASEAN collaboration in plant biotechnology

    KAUST Repository

    Payumo, Jane; Sutton, Taurean C.

    2015-01-01

    , influence, and overall collaboration of ASEAN countries in plant biotechnology over time. Research performance and collaboration (domestic, regional, and international) of the region in plant biotechnology are linked to the status of the economic development

  14. Nuclear technology and biotechnology for enhancing agricultural production in Malaysia

    International Nuclear Information System (INIS)

    Mohamad Osman

    2005-04-01

    The presentation discussed the following subjects: sustainable development, agriculture in Malaysia, role of biotechnology, role of nuclear technology, improving crops through induced mutations with Malaysian experience in rice and roselle, fusion of nuclear and biotechnology challenges and opportunities

  15. White House Announcement on the Regulation of Biotechnology

    Science.gov (United States)

    The White House posted a blog unveiling documents as part of the Administration’s continuing effort to modernize the federal regulatory system for biotechnology products as well as clarify various roles of the EPA, FDA in evaluating new biotechnologies.

  16. Biotechnology for site restoration: scope of the problem

    Energy Technology Data Exchange (ETDEWEB)

    Bitchaeva, O

    1996-09-18

    The potential of modern biotechnology for solving problems related with the nuclear industry, especially site restoration, are investigated. The advantages of biotechnology, the current applications in Russia, main points of international collaboration, and political considerations are discussed.

  17. National Strategy for Modernizing the Regulatory System for Biotechnology Products

    Science.gov (United States)

    This National Strategy for Modernizing the Regulatory System for Biotechnology Products sets forth a vision for ensuring that the federal regulatory system is prepared to efficiently assess the risks, if any, of the future products of biotechnology.

  18. Perceptions and attitudes of geography teachers to biotechnology: A ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-03

    Dec 3, 2008 ... perceptions of geography teachers towards biotechnology and GM foods but also provided an ... Key words: Biotechnology, GM foods, perceptions, attitudes, geography education, Turkey. ..... Brazilian high school students.

  19. What Ideas Do Students Associate with "Biotechnology" and "Genetic Engineering"?

    Science.gov (United States)

    Hill, Ruaraidh; Stanisstreet, Martin; Boyes, Edward

    2000-01-01

    Explores the ideas that students aged 16-19 associate with the terms 'biotechnology' and 'genetic engineering'. Indicates that some students see biotechnology as risky whereas genetic engineering was described as ethically wrong. (Author/ASK)

  20. Biotechnology Commercialization Strategies: Risk and Return in interfirm cooperation.

    NARCIS (Netherlands)

    Fernald, K.D.S.; Pennings, e; Claassen, E.

    2014-01-01

    The management and exploitation of biotechnological product innovation have proven to be more difficult than initially expected because the number of currently marketed biotechnological products is far from sufficient to counter deficits in pharmaceutical innovation. This study provides insight into

  1. Biotechnology Commercialization Strategies: Risk and Return in Interfirm Cooperation

    NARCIS (Netherlands)

    Fernald, K.D.S.; Pennings, H.P.G.; Claassen, E.

    2015-01-01

    The management and exploitation of biotechnological product innovation have proven to be more difficult than initially expected because the number of currently marketed biotechnological products is far from sufficient to counter deficits in pharmaceutical innovation. This study provides insight into

  2. MHSS 2020 Focused Study on Biotechnology & Nanotechnology, 29 July 1997

    National Research Council Canada - National Science Library

    1998-01-01

    .... This focused study on biotechnology and nanotechnology has two primary goals: (1) examine the future strategic impact of biotechnology and nanotechnology as it relates to the military health system, and (2...

  3. Biotechnology Computing: Information Science for the Era of Molecular Medicine.

    Science.gov (United States)

    Masys, Daniel R.

    1989-01-01

    The evolution from classical genetics to biotechnology, an area of research involving key macromolecules in living cells, is chronicled and the current state of biotechnology is described, noting related advances in computing and clinical medicine. (MSE)

  4. Measuring the Contribution of Modern Biotechnology to the Canadian Economy

    OpenAIRE

    Ricardo de Avillez

    2011-01-01

    The role of modern biotechnology in agriculture, medicine, and industry has increased dramatically since the 1970s. Despite its growing importance, few efforts have been made so far to estimate the economic contribution of modern biotechnology to the Canadian economy. This report provides an overview of biotechnology activities in Canada, and, using an income-based approach, estimates that biotechnology activities accounted for approximately $15 billion in 2005, equivalent to 1.19 per cent of...

  5. The phylogeny and biogeography of Hakea (Proteaceae) reveals the role of biome shifts in a continental plant radiation.

    Science.gov (United States)

    Cardillo, Marcel; Weston, Peter H; Reynolds, Zoe K M; Olde, Peter M; Mast, Austin R; Lemmon, Emily M; Lemmon, Alan R; Bromham, Lindell

    2017-08-01

    The frequency of evolutionary biome shifts during diversification has important implications for our ability to explain geographic patterns of plant diversity. Recent studies present several examples of biome shifts, but whether frequencies of biome shifts closely reflect geographic proximity or environmental similarity of biomes remains poorly known. We explore this question by using phylogenomic methods to estimate the phylogeny of Hakea, a diverse Australian genus occupying a wide range of biomes. Model-based estimation of ancestral regions indicates that Hakea began diversifying in the Mediterranean biome of southern Australia in the Middle Eocene-Early Oligocene, and dispersed repeatedly into other biomes across the continent. We infer around 47 shifts between biomes. Frequencies of shifts between pairs of biomes are usually similar to those expected from their geographic connectedness or climatic similarity, but in some cases are substantially higher or lower than expected, perhaps reflecting how readily key physiological traits can be modified to adapt lineages to new environments. The history of frequent biome-shifting is reflected in the structure of present-day assemblages, which tend to be more phylogenetically diverse than null-model expectations. The case of Hakea demonstrates that the radiation of large plant clades across wide geographic areas need not be constrained by dispersal limitation or conserved adaptations to particular environments. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  6. Dendritic platforms for biomimicry and biotechnological applications.

    Science.gov (United States)

    Nagpal, Kalpana; Mohan, Anand; Thakur, Sourav; Kumar, Pradeep

    2018-02-15

    Dendrimers, commonly referred to as polymeric trees, offer endless opportunities for biotechnological and biomedical applications. By controlling the type, length, and molecular weight of the core, branches and end groups, respectively, the chemical functionality and topology of dendrimeric archetypes can be customized which further can be applied to achieve required solubility, biodegradability, diagnosis and other applications. Given the physicochemical variability of the dendrimers and their hybrids, this review attempts to discuss a full spectrum of recent advances and strides made by these "perfectly designed structures". An extensive biotech/biomimicry application profiling of dendrimers is provided with focus on complex archetypical designs such as protein biomimicry (angiogenic inhibitors, regenerative hydroxyapatite and collagen) and biotechnology applications. In terms of biotechnological advances, dendrimers have provided distinctive advantages in the fields of biocatalysis, microbicides, artificial lights, mitochondrial function modulation, vaccines, tissue regeneration and repair, antigen carriers and even biosensors. In addition, this review provides overview of the extensive chemo-functionalization opportunities available with dendrimers which makes them a perfect candidate for forming drug conjugates, protein hybrids, bio mimics, lipidic derivatives, metal deposits and nanoconjugates thereby making them the most multifunctional platforms for diverse biotechnological applications.

  7. Biotechnological production of limonene in microorganisms

    NARCIS (Netherlands)

    Jongedijk, Esmer; Cankar, Katarina; Buchhaupt, Markus; Schrader, Jens; Bouwmeester, Harro; Beekwilder, Jules

    2016-01-01

    This mini review describes novel, biotechnology-based, ways of producing the monoterpene limonene. Limonene is applied in relatively highly priced products, such as fragrances, and also has applications with lower value but large production volume, such as biomaterials. Limonene is currently

  8. Innovation Dynamics and Agricultural Biotechnology in Kenya

    NARCIS (Netherlands)

    H.S. Odame (Hannington)

    2014-01-01

    markdownabstract__Abstract__ Modern agricultural biotechnology is being flaunted in global policy de-bates as a powerful technology for improving agricultural productivity and food security in Africa. These debates often conveniently lump to-gether the controversial GMOs and the less contentious

  9. Magnetic nano- and microparticles in biotechnology

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Šafaříková, Miroslava

    2009-01-01

    Roč. 63, - (2009), s. 497-505 ISSN 0366-6352 R&D Projects: GA MPO 2A-1TP1/094; GA MŠk(CZ) OC 157 Institutional research plan: CEZ:AV0Z60870520 Keywords : magnetic particles * smart material Subject RIV: EI - Biotechnology ; Bionics Impact factor: 0.791, year: 2009

  10. Realizing the promises of marine biotechnology

    NARCIS (Netherlands)

    Luiten, EEM; Akkerman, [No Value; Koulman, A; Kamermans, P; Reith, H; Barbosa, MJ; Sipkema, D; Wijffels, RH

    High-quality research in the field of marine biotechnology is one of the key-factors for successful innovation in exploiting the vast diversity of marine life. However, fascinating scientific research with promising results and claims on promising potential applications (e.g. for pharmaceuticals,

  11. Realizing the promises of marine biotechnology

    NARCIS (Netherlands)

    Luiten, E.E.M.; Akkerman, I.; Koulman, A.; Kamermans, P.; Reith, H.; Barbosa, M.J.; Sipkema, D.; Wijffels, R.H.

    2003-01-01

    High-quality research in the field of marine biotechnology is one of the key-factors for successful innovation in exploiting the vast diversity of marine life. However, fascinating scientific research with promising results and claims on promising potential applications (e.g. for pharmaceuticals,

  12. Biotechnologizing Jatropha for local sustainable development

    NARCIS (Netherlands)

    Puente, D.

    2010-01-01

    This article explores whether and how the biotechnologization process that the fuel-plant Jatropha curcas is undergoing might strengthen local sustainable development. It focuses on the ongoing efforts of the multi-stakeholder network Gota Verde to harness Jatropha within local small-scale

  13. PUTTING PLANT BIOTECHNOLOGY TO WORK FOR FOOD ...

    African Journals Online (AJOL)

    Plant biotechnology is safely bringing valuable new benefits to farmers around the world, including those in developing countries where the needs for food, nutrition and overall development may be greatest. >From the current base of experience, it is reasonable to expect even greater benefits in the future, provided that ...

  14. Developing legal regulatory frameworks for modern biotechnology ...

    African Journals Online (AJOL)

    This paper looks at attempts that have been made to develop legal regulatory frameworks for modern biotechnology. The discussion is limited to the regulation of Genetically Modified Organisms (GMO) technology by the two leading producers and exporters of GMOs in Africa: South Africa and Kenya. The international and ...

  15. Lignocellulose biotechnology: issues of bioconversion and enzyme ...

    African Journals Online (AJOL)

    Lignocellulose biotechnology: issues of bioconversion and enzyme production. ... and secondly to highlight some of the modern approaches which potentially could be used to tackle one of the major impediments, namely high enzyme cost, to speed-up the extensive commercialisation of the lignocellulose bioprocessing.

  16. Personality and Impersonality in Biotechnology Discourse

    DEFF Research Database (Denmark)

    Lassen, Inger

    2006-01-01

    With the emergence of biotechnology, the field account has been replaced by something that we may refer to as a laboratory account - a kind of narrative that constitutes the Materials and Methods section of the IMRD model (introduction, methods, results and discussion). Research focusing on field...

  17. Biotechnology Education in India: An Overview

    Science.gov (United States)

    Joshi, Kirti; Mehra, Kavita; Govil, Suman; Singh, Nitu

    2013-01-01

    Among the developing countries, India is one of those that recognises the importance of biotechnology. The trajectory of different policies being formulated over time is proof that the government is progressing towards achieving self-sufficiency. However, to cater to the ever-growing biotech industry, skilled manpower is required. This article…

  18. Industrial use of Biotechnology in Agriculture

    International Nuclear Information System (INIS)

    But, S.J.

    2006-01-01

    In the past the biological research was restricted within the boundary of laboratories and the subsequent results were often employed merely to strengthen the research knowledge and information. In life sciences, the traditional methods took years in proving the biological facts. At the leg of last century, the practical application of biotechnology provided a powerful tool to mankind that has led to a revolutionary change in modern agriculture. In the present era, the economy of agro-based countries all over the world is dependent on the adaptation of the pattern of crop-production and their improvement through modern biotechnological means. Biotechnology is in fact the name of a combination of techniques involved to make the full use of living organisms, either in total or in part, for the benefit of plants, animals or human beings. Progressive and dynamic investors, associated with researches/scientists, should be encouraged to step forward for the mobilization of emerging trend of biotechnological industry in agriculture. Researcher/Scientists of biological programmes in Pakistan should be encouraged at Government level to come forward in contributing their tremendous role to boost Agr- industry in the country. (author)

  19. Biotechnology and Consumer Decision-Making.

    Science.gov (United States)

    Sax, Joanna K

    Society is facing major challenges in climate change, health care and overall quality of life. Scientific advances to address these areas continue to grow, with overwhelming evidence that the application of highly tested forms of biotechnology is safe and effective. Despite scientific consensus in these areas, consumers appear reluctant to support their use. Research that helps to understand consumer decision-making and the public’s resistance to biotechnologies such as vaccines, fluoridated water programs and genetically engineered food, will provide great social value. This article is forward-thinking in that it suggests that important research in behavioral decision-making, specifically affect and ambiguity, can be used to help consumers make informed choices about major applications of biotechnology. This article highlights some of the most controversial examples: vaccinations, genetically engineered food, rbST treated dairy cows, fluoridated water, and embryonic stem cell research. In many of these areas, consumers perceive the risks as high, but the experts calculate the risks as low. Four major thematic approaches are proposed to create a roadmap for policymakers to consider for policy design and implementation in controversial areas of biotechnology. This article articulates future directions for studies that implement decision-making research to allow consumers to appropriately assign risk to their options and make informed decisions.

  20. Novel gene expression tools for rice biotechnology

    Science.gov (United States)

    Biotechnology is an effective and important method of improving both quality and agronomic traits in rice. We are developing novel molecular tools for genetic engineering, with a focus on developing novel transgene expression control elements (i.e. promoters) for rice. A suite of monocot grass promo...

  1. Modern trends in biochemistry and biotechnology

    International Nuclear Information System (INIS)

    1996-01-01

    On the conference 'Modern trends in biochemistry and biotechnology' several lectures concerned influence of ionizing radiation on the animal cells. Changes in the cell division caused by radiation induced DNA damage were discussed. Application of single cell gel electrophoresis assay (comet assay) in assessment of DNA damages was the subject of dedicated session

  2. [The new Colombian criminal code and biotechnology].

    Science.gov (United States)

    González de Cancino, Emilssen

    2002-01-01

    The author describes the process by which new offenses concerning biotechnology have been included in Colombia's Penal Code and discusses some of the more controversial aspects involved. She examines the various stages of the passage of the Bill through Parliament and the modifications undergone. She also provides well-argued criticism of the text, with appropriate reference to Constitutional provisions regarding the rights concerned.

  3. The biotechnology and bioeconomy landscape in Malaysia.

    Science.gov (United States)

    Arujanan, Mahaletchumy; Singaram, Muthu

    2018-01-25

    Since 1990s Malaysia aspired to make biotechnology and bioeconomy as her engines of economic growth to utlise the abundance of natural resources and biodiversity. The public sector plays an integral role in developing the sector and various incentives are in place for the private sector to be actively involved and to forge collaboration with the public sector. The country launched its National Biotechnology Policy in 2005 and later launched its National Bioeconomy Programme in 2010 to become the first country in South East Asia and second in Asia after China to have such an initiative. Malaysia is also very proactive in its biosafety law and regulations and has most of the related legal instrument in place. A lot of success has been recorded since the inception of the National Biotechnology Policy in terms of job creation, contribution to GDP through biobusinesses and investment from foreign companies, but the sector is not spared from challenges too. Due to the nature of the discipline that is multidisciplinary and that requires huge amount of investment, expertise and political will, there are a lot of barriers before the country emerges as a bioeconomy player. This paper discusses the public policies, initiatives and funding mechanisms in place in Malaysia that drive its research, development and commercialisation in the area of biotechnology and bioeconomy. The authors also discuss the challenges faced in Malaysia in implementing the policies. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The Current Developments of Agricultural Biotechnologies Market

    Directory of Open Access Journals (Sweden)

    Anna M. Shkolyarenko

    2016-01-01

    Full Text Available Population growth in the context of limited land resources makes the global scientific society research new ways to increase the agricultural yields. Over the past 20 years, biotechnology and GM crops have become widely spread and now are cultivated in 28 countries. The total area of crops has tripled, and it suggests the further vertical and horizontal integration in short term. In 2015, the US Department of Agriculture authorized the commercial use of GM farm animals. The development of agricultural biotechnology market is constrained by opponents of GM crops in more than 160 countries, which include Russia and the European Union, where the production of GM crops is banned due to economic, ethical, ideological and biological reasons. Currently, the EU is seeking to reduce the imports of GM crops and products; Russia's GM imports and exports are prohibited, and the deadline of designing a consolidated position on agricultural biotechnology has been moved to 2017. The author seeks to analyze the volume of production and international trade of agricultural products based on biotechnologies and to describe the main trends in the global market, which could be integrated into the food value chain in Russia. In the context of the worsening economic indicators, the article proposes the possibility of extending the use of GM crops in Russia non-food sector.

  5. Regulation of Biotechnology in Cameroon W

    African Journals Online (AJOL)

    ... security and public health are high on government's policy agenda. ... tion by the Cameroon Development Corporation. (CDC) of a ... can model law on Safety in Biotechnology (and the Convention ..... its biosafety regulation on liability and redress in due course. ... in Kuala Lumpur, Malaysia in February this year. (2004).

  6. Biotechnology for energy production. Biotechnologie zur Energieerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, J.; Hall, D.O.; Chartier, P.

    1985-01-01

    Starting from the mechanisms of photosynthesis in plants and the environmental parameters influencing growth generally the book deals with the various possibilities for improving productivity in growing biomass. In particular, the modern methods of biotechnology are considered. The investigation submitted was carried through with a view to future energy farms in Europe.

  7. Wheaten ferments spontaneous fermantation in biotechnological methods

    OpenAIRE

    KAKHRAMON SANOQULOVICH RAKHMONOV; ISABAEV ISMAIL BABADJANOVICH

    2016-01-01

    In article are shown results of research of biotechnological properties of wheaten leavens of spontaneous fermentation (in the example of pea-anisetree leaven) and their analysis. Also is established influence of the given type of leavens on the basic biopolymers of the flour, on the property of the pastry and quality of bread from wheaten flour.

  8. Biotechnology, genetic conservation and sustainable use of ...

    African Journals Online (AJOL)

    Admin

    technologies. The use of biotechnological tools and “bioprospecting” will open new vistas in medicine, agriculture, silviculture, horticulture, environment and other important issues. This paper reviews ... E-mail: rankangani@yahoo.com. human needs ..... (iii) Particle mediated gene transfer, using gene gun. REFERENCES.

  9. Assessment of technology generating institutions in biotechnology ...

    African Journals Online (AJOL)

    The study was carried out in Southeastern agro-ecological zones of Nigeria. Questionnaire was used to collect data from a sample of forty-three heads of departments from research institutes and universities involved in biotechnology research. Results of the study revealed that some of the institutions have been involved in ...

  10. Mathematical Modelling of Continuous Biotechnological Processes

    Science.gov (United States)

    Pencheva, T.; Hristozov, I.; Shannon, A. G.

    2003-01-01

    Biotechnological processes (BTP) are characterized by a complicated structure of organization and interdependent characteristics. Partial differential equations or systems of partial differential equations are used for their behavioural description as objects with distributed parameters. Modelling of substrate without regard to dispersion…

  11. Nigerian Journal of Biotechnology: Editorial Policies

    African Journals Online (AJOL)

    Nigerian Journal of Biotechnology publishes original research papers, shot ... State Univ., Mubi, Nigeria. yada525@adsu.edu.ng, Molecular biology and bioremediation ... Dr. Kelechi C. Njoku, Dept. of Cell Biology & Genetics, University of Lagos, Lagos, kecynjoku@gmail.com, Environmental Biology ... HOW TO USE AJOL.

  12. Venture capitalists as gatekeepers for biotechnological innovation

    NARCIS (Netherlands)

    Fernald, Kenneth; Hoeben, Ruud; Claassen, H.J.H.M.

    2015-01-01

    Venture capitalists (VCs) aim at trade sales as a preferred exit-strategy for biotechnology companies they invest in. Therefore, VCs pay close attention to the wishes of larger (bio)pharmaceutical acquirers. In this paper we explore VCs' behavior and strategies by analyzing the technology fields and

  13. South-South Collaboration in Health Biotechnology

    International Development Research Centre (IDRC) Digital Library (Canada)

    5.3 The geography of China's health biotechnology collaboration ..... and Argentina, Brazil, Chile, Mexico, Paraguay, Peru and Uruguay, for example, established ...... “Nations team up to share R&D skills in HIV/AIDS battle”, SciDev. ...... This reduces both dependence on international imports, and leads to the availability of ...

  14. National strategy of safety of biotechnology

    International Nuclear Information System (INIS)

    1999-10-01

    This document was drafted in the frame of the sustainable development, the social fairness, the citizen participation; in Bolivia the management of the biotechnology and the security of the same one are identified for the first time to the actors involved in constituting in a document for the sustainable management of the conservation and sustainable use of the biodiversity in Bolivia [es

  15. Mesoscale modeling: solving complex flows in biology and biotechnology.

    Science.gov (United States)

    Mills, Zachary Grant; Mao, Wenbin; Alexeev, Alexander

    2013-07-01

    Fluids are involved in practically all physiological activities of living organisms. However, biological and biorelated flows are hard to analyze due to the inherent combination of interdependent effects and processes that occur on a multitude of spatial and temporal scales. Recent advances in mesoscale simulations enable researchers to tackle problems that are central for the understanding of such flows. Furthermore, computational modeling effectively facilitates the development of novel therapeutic approaches. Among other methods, dissipative particle dynamics and the lattice Boltzmann method have become increasingly popular during recent years due to their ability to solve a large variety of problems. In this review, we discuss recent applications of these mesoscale methods to several fluid-related problems in medicine, bioengineering, and biotechnology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. High School Students' Knowledge and Attitudes regarding Biotechnology Applications

    Science.gov (United States)

    Ozel, Murat; Erdogan, Mehmet; Usak, Muhammet; Prokop, Pavol

    2009-01-01

    The purpose of this study was to investigate high school students' knowledge and attitudes regarding biotechnology and its various applications. In addition, whether students' knowledge and attitudes differed according to age and gender were also explored. The Biotechnology Knowledge Questionnaire (BKQ) with 16 items and the Biotechnology Attitude…

  17. Acceptance of biotechnology and social-cultural implications in Ghana

    African Journals Online (AJOL)

    take pride in what they eat. A proposal is made to set biotechnology research agenda in the context of social choices; social scientific coalition of biotechnology with endogenous development pathways' as opposed to 'exogenous biotechnology research'. Also there is the need for adequate capacity building of the existing ...

  18. Environmental Biotechnology Research and Development Program 1989-1992

    NARCIS (Netherlands)

    Brinkman J; Rulkens WH; Visscher K

    1989-01-01

    This report is an English translation of the Dutch Research and Development Program on environmental biotechnology 1989-1992. In this program an overview is given of the recent developments in environmental biotechnology. Based on this overview, the possibilities of biotechnology for management

  19. USING LUDIC ACTIVITIES TO EXPLAIN THE BIOME CONCEPT

    Directory of Open Access Journals (Sweden)

    Aline Riccioni de Melos

    2015-12-01

    Full Text Available This paper contributes to research on the role of ludic activities in teaching and learning physical geography content during the last four years of primary school. We question the discourse that identifies students’ lack of interest as the obstacle to teaching physical geography. This study contributes by questioning this obstacle. We note that few studies exist on this topic, according to the CAPES (Coordination for higher Education Staff Development dissertation database, in 2011 only five were completed. The theoretical basis for the study considers work by Graciolli (2009, Silva et al. (2010, Rupel (2011 and Freitas and Salvi (2011, authors who defend the use of ludic activities in teaching methodology. In 2010, the “Biome Game” for 6th year students was developed based on this theoretical framework as part of the required course “Supervised Practice”. The goal of the activity was to think about how the concept of biome was created, and the methodology used valued recreational approaches. The empirical results of this experiment, which involved developing and implementing the game during the Supervised Practice course, demonstrate the importance of ludic pedagogical strategies for teaching physical geography in Brazilian primary education. O presente artigo traz contribuições de pesquisa sobre a função da ludicidade no ensino-aprendizagem de conteúdos da geografia física, no segundo segmento do ensino fundamental. Tal questão problematiza o discurso sobre o desinteresse dos alunos, como significativo obstáculo para a didática da geografia física. A pertinência do presente estudo está em reconhecer esta questão, tendo em vista que existem poucos estudos na área, totalizando em 2011, segundo o banco de dissertações da CAPES, somente cinco trabalhos concluídos. Nossa investigação dialoga com Graciolli (2009, Silva et al. (2010, Rupel (2011 e Freitas e Salvi (2011, autores dedicados à defesa da utilização de

  20. Biogeochemical cycling in terrestrial ecosystems of the Caatinga Biome.

    Science.gov (United States)

    Menezes, R S C; Sampaio, E V S B; Giongo, V; Pérez-Marin, A M

    2012-08-01

    The biogeochemical cycles of C, N, P and water, the impacts of land use in the stocks and flows of these elements and how they can affect the structure and functioning of Caatinga were reviewed. About half of this biome is still covered by native secondary vegetation. Soils are deficient in nutrients, especially N and P. Average concentrations of total soil P and C in the top layer (0-20 cm) are 196 mg kg(-1) and 9.3 g kg(-1), corresponding to C stocks around 23 Mg ha(-1). Aboveground biomass of native vegetation varies from 30 to 50 Mg ha(-1), and average root biomass from 3 to 12 Mg ha(-1). Average annual productivities and biomass accumulation in different land use systems vary from 1 to 7 Mg ha(-1) year(-1). Biological atmospheric N2 fixation is estimated to vary from 3 to 11 kg N ha(-1) year-1 and 21 to 26 kg N ha(-1) year(-1) in mature and secondary Caatinga, respectively. The main processes responsible for nutrient and water losses are fire, soil erosion, runoff and harvest of crops and animal products. Projected climate changes in the future point to higher temperatures and rainfall decreases. In face of the high intrinsic variability, actions to increase sustainability should improve resilience and stability of the ecosystems. Land use systems based on perennial species, as opposed to annual species, may be more stable and resilient, thus more adequate to face future potential increases in climate variability. Long-term studies to investigate the potential of the native biodiversity or adapted exotic species to design sustainable land use systems should be encouraged.

  1. Diversity of Microbial Carbohydrate-Active enZYmes (CAZYmes) Associated with Freshwater and Soil Samples from Caatinga Biome.

    Science.gov (United States)

    Andrade, Ana Camila; Fróes, Adriana; Lopes, Fabyano Álvares Cardoso; Thompson, Fabiano L; Krüger, Ricardo Henrique; Dinsdale, Elizabeth; Bruce, Thiago

    2017-07-01

    Semi-arid and arid areas occupy about 33% of terrestrial ecosystems. However, little information is available about microbial diversity in the semi-arid Caatinga, which represents a unique biome that extends to about 11% of the Brazilian territory and is home to extraordinary diversity and high endemism level of species. In this study, we characterized the diversity of microbial genes associated with biomass conversion (carbohydrate-active enzymes, or so-called CAZYmes) in soil and freshwater of the Caatinga. Our results showed distinct CAZYme profiles in the soil and freshwater samples. Glycoside hydrolases and glycosyltransferases were the most abundant CAZYme families, with glycoside hydrolases more dominant in soil (∼44%) and glycosyltransferases more abundant in freshwater (∼50%). The abundances of individual glycoside hydrolase, glycosyltransferase, and carbohydrate-binding module subfamilies varied widely between soil and water samples. A predominance of glycoside hydrolases was observed in soil, and a higher contribution of enzymes involved in carbohydrate biosynthesis was observed in freshwater. The main taxa associated with the CAZYme sequences were Planctomycetia (relative abundance in soil, 29%) and Alphaproteobacteria (relative abundance in freshwater, 27%). Approximately 5-7% of CAZYme sequences showed low similarity with sequences deposited in non-redundant databases, suggesting putative homologues. Our findings represent a first attempt to describe specific microbial CAZYme profiles for environmental samples. Characterizing these enzyme groups associated with the conversion of carbohydrates in nature will improve our understanding of the significant roles of enzymes in the carbon cycle. We identified a CAZYme signature that can be used to discriminate between soil and freshwater samples, and this signature may be related to the microbial species adapted to the habitat. The data show the potential ecological roles of the CAZYme repertoire and

  2. Ethical limitations in patenting biotechnological inventions.

    Science.gov (United States)

    Lugagnani, V

    1999-01-01

    In order to connect ethical considerations with practical limits to patentability, the moral judgement should possibly move from the exploitation of the invention to the nature and/or objectives of Research and Development (R&D) projects which have produced it: in other words, it appears quite reasonable and logical that Society is not rewarding unethical R&D activities by granting intellectual property rights. As far as biotechnology R&D is concerned, ethical guidance can be derived from the 1996 Council of EuropeOs OConvention for the protection of human rights and dignity of the human being with regard to the application of biology and medicineO, whose Chapter V - Scientific research - provides guidelines on: i. protection of persons undergoing research (e.g. informed consent); ii. protection of persons not able to consent to research; iii. research on embryos in vitro. As far as the specific point of patenting biotechnology inventions is concerned, the four exclusions prescribed by Directive 98/44/EC (i.e. human cloning, human germ-line gene therapy, use of human embryos for commercial purposes, unjustified animal suffering for medical purposes) are all we have in Europe in terms of ethical guidance to patentability. In Italy, in particular, we certainly need far more comprehensive legislation, expressing SocietyOs demand to provide ethical control of modern biotechnology. However it is quite difficult to claim that ethical concerns are being raised by currently awarded biotechnology patents related to living organisms and material thereof; they largely deal with the results of genomic R&D, purposely and usefully oriented toward improving health-care and agri-food processes, products and services. ONo patents on lifeOO can be an appealing slogan of militants against modern biotechnology, but it is far too much of an over-simplified abstraction to become the Eleventh Commandment our Society.

  3. [Health risks in the biotechnological industry].

    Science.gov (United States)

    Colombi, A; Maroni, M; Foà, V

    1989-01-01

    Biotechnology has been defined as the application of biological organisms, systems or processes to manufacturing and service industries. In considering health aspects of biotechnological development it must be underlined that the use of microorganisms in traditional industries, such as the production of food, bread, beer and dairy products, has not added significantly to the more usual industrial hazards. The risk factors encountered in the biotechnology industry can be defined as general, i.e., common to other industrial activities, and specific, i.e., depending on the presence of microorganisms and/or their metabolic products. The specific health risks vary according to the type of process, but can be grouped into three main categories: immunological diseases, toxic effects; pathological effects of microorganisms. Allergic immunological diseases such as bronchial asthma, contact dermatitis, oculo-rhinitis and extrinsic allergic alveolitis are by far the most frequent and well known diseases occurring among workers employed on biotechnological production. Toxic effects were observed among workers employed on the production of antibiotics and hormones or single cell proteins, where absorption of endotoxins has been described. Infectious diseases may arise from uncontrolled dissemination of pathogenic microorganisms through aerosols, dusts, aqueous and semisolid sludge effluents from biotechnological plants. The greatest risks occur in the production of antiviral vaccines, in research laboratories and in waste-water treatment plants. Risk of pathogenic effects has also been speculated from exposure to engineered microorganisms in laboratory and environmental or agricultural applications. Safety precautions consisting of protective measures, and effective barriers of containment (both physical and biological) have to be advised according to the hazardous characteristics of the organisms.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Does a General Temperature-Dependent Q10 Model of Soil Respiration Exist at Biome and Global Scale?

    Institute of Scientific and Technical Information of China (English)

    Hua CHEN; Han-Qin TIAN

    2005-01-01

    Soil respiration (SR) is commonly modeled by a Q10 (an indicator of temperature sensitivity)function in ecosystem models. Q10is usually treated as a constant of 2 in these models, although Q10 value of SR often decreases with increasing temperatures. It remains unclear whether a general temperaturedependent Q10 model of SR exists at biome and global scale. In this paper, we have compiled the long-term Q10 data of 38 SR studies ranging from the Boreal, Temperate, to Tropical/Subtropical biome on four continents.Our analysis indicated that the general temperature-dependent biome Q10 models of SR existed, especially in the Boreal and Temperate biomes. A single-exponential model was better than a simple linear model in fitting the average Q10 values at the biome scale. Average soil temperature is a better predictor of Q10 value than average air temperature in these models, especially in the Boreal biome. Soil temperature alone could explain about 50% of the Q10 variations in both the Boreal and Temperate biome single-exponential Q10 model. Q10 value of SR decreased with increasing soil temperature but at quite different rates among the three biome Q10 models. The k values (Q10 decay rate constants) were 0.09, 0.07, and 0.02/℃ in the Boreal, Temperate, and Tropical/Subtropical biome, respectively, suggesting that Q10 value is the most sensitive to soil temperature change in the Boreal biome, the second in the Temperate biome, and the least sensitive in the Tropical/Subtropical biome. This also indirectly confirms that acclimation of SR in many soil warming experiments probably occurs. The k value in the "global" single-exponential Q10 model which combined both the Boreal and Temperate biome data set was 0.08/℃. However, the global general temperature-dependent Q10model developed using the data sets of the three biomes is not adequate for predicting Q10 values of SR globally.The existence of the general temperature-dependent Q10 models of SR in the Boreal and

  5. Editorial: from plant biotechnology to bio-based products.

    Science.gov (United States)

    Stöger, Eva

    2013-10-01

    From plant biotechnology to bio-based products - this Special Issue of Biotechnology Journal is dedicated to plant biotechnology and is edited by Prof. Eva Stöger (University of Natural Resources and Life Sciences, Vienna, Austria). The Special Issue covers a wide range of topics in plant biotechnology, including metabolic engineering of biosynthesis pathways in plants; taking advantage of the scalability of the plant system for the production of innovative materials; as well as the regulatory challenges and society acceptance of plant biotechnology. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. 2008 Co2 Assimilation in Plants: Genome to Biome Gordon Research Conference - August 17-22

    Energy Technology Data Exchange (ETDEWEB)

    James V. Maroney

    2009-08-12

    Formerly entitled 'CO2 Fixation and Metabolism in Green Plants', this long-standing Gordon Research Conference has been held on a triennial basis since 1976. In 1990 the participants decided to alternate between sites in the U.S. and outside the U.S. The 2005 conference was held in Europe at the Centre Paul Langevin in Aussois, France, so the 2008 conference returns to a U.S. site - the University of New England in Biddeford, Maine. The 2008 conference covers basic plant research related to photosynthesis and the subsequent regulation and engineering of carbon assimilation. Approaches that range from post-genomic technologies and systems biology, through to fundamental biochemistry, physiology and molecular biology are integrated within ecological and agronomic contexts. As such, the meeting provides the rare opportunity of a single venue for discussing all aspects of the 'carbon-side' of photosynthesis - from genome to biome. The 2008 conference will include an emphasis on the central role of carbon assimilation by plants for developing new sources of bioenergy and for achieving a carbon-neutral planet. A special characteristic of this conference is its 'intimacy' with approximately 110 conferees, ranging from beginning graduate students and postdoctoral associates to leading senior plant scientists, engaged in open and forward-thinking discussions in an informal, friendly setting. With extended time devoted to discussion, and the encouragement to challenge dogma, it is unlike other meetings in the U.S. or abroad. Another novel feature of the conference is a session devoted to the latest 'hot off the press' findings by both established and early career scientists, picked from the abstracts. Together with an expanded poster discussion in the evening sessions, this session provides an opportunity for early career scientists to present interesting new data and to 'test drive' hypotheses in a collegial atmosphere.

  7. Inferring biome-scale net primary productivity from tree-ring isotopes

    Science.gov (United States)

    Pederson, N.; Levesque, M.; Williams, A. P.; Hobi, M. L.; Smith, W. K.; Andreu-Hayles, L.

    2017-12-01

    Satellite estimates of vegetation growth (net primary productivity; NPP), tree-ring records, and forest inventories indicate that ongoing climate change and rising atmospheric CO2 concentration are altering productivity and carbon storage of forests worldwide. The impact of global change on the trends of NPP, however, remain unknown because of the lack of long-term high-resolution NPP data. For the first time, we tested if annually resolved carbon (δ13C) and oxygen (δ18O) stable isotopes from the cellulose of tree rings from trees in temperate regions could be used as a tool for inferring NPP across spatiotemporal scales. We compared satellite NPP estimates from the moderate-resolution imaging spectroradiometer sensor (MODIS, product MOD17A) and a newly developed global NPP dataset derived from the Global Inventory Modeling and Mapping Studies (GIMMS) dataset to annually resolved tree-ring width and δ13C and δ18O records from four sites along a hydroclimatic gradient in Eastern and Central United States. We found strong correlations across large geographical regions between satellite-derived NPP and tree-ring isotopes that ranged from -0.40 to -0.91. Notably, tree-ring derived δ18O had the strongest relation to climate. The results were consistent among the studied tree species (Quercus rubra and Liriodendron tulipifera) and along the hydroclimatic conditions of our network. Our study indicates that tree-ring isotopes can potentially be used to reconstruct NPP in time and space. As such, our findings represent an important breakthrough for estimating long-term changes in vegetation productivity at the biome scale.

  8. Abiotic and biotic determinants of leaf carbon exchange capacity from tropical to high boreal biomes

    Science.gov (United States)

    Smith, N. G.; Dukes, J. S.

    2016-12-01

    Photosynthesis and respiration on land represent the two largest fluxes of carbon dioxide between the atmosphere and the Earth's surface. As such, the Earth System Models that are used to project climate change are high sensitive to these processes. Studies have found that much of this uncertainty is due to the formulation and parameterization of plant photosynthetic and respiratory capacity. Here, we quantified the abiotic and biotic factors that determine photosynthetic and respiratory capacity at large spatial scales. Specifically, we measured the maximum rate of Rubisco carboxylation (Vcmax), the maximum rate of Ribulose-1,5-bisphosphate regeneration (Jmax), and leaf dark respiration (Rd) in >600 individuals of 98 plant species from the tropical to high boreal biomes of Northern and Central America. We also measured a bevy of covariates including plant functional type, leaf nitrogen content, short- and long-term climate, leaf water potential, plant size, and leaf mass per area. We found that plant functional type and leaf nitrogen content were the primary determinants of Vcmax, Jmax, and Rd. Mean annual temperature and mean annual precipitation were not significant predictors of these rates. However, short-term climatic variables, specifically soil moisture and air temperature over the previous 25 days, were significant predictors and indicated that heat and soil moisture deficits combine to reduce photosynthetic capacity and increase respiratory capacity. Finally, these data were used as a model benchmarking tool for the Community Land Model version 4.5 (CLM 4.5). The benchmarking analyses determined errors in the leaf nitrogen allocation scheme of CLM 4.5. Under high leaf nitrogen levels within a plant type the model overestimated Vcmax and Jmax. This result suggested that plants were altering their nitrogen allocation patterns when leaf nitrogen levels were high, an effect that was not being captured by the model. These data, taken with models in mind

  9. Carbon emission as a function of energy generation in hydroelectric reservoirs in Brazilian dry tropical biome

    International Nuclear Information System (INIS)

    Ometto, Jean P.; Cimbleris, André C.P.; Santos, Marco A. dos; Rosa, Luiz P.; Abe, Donato; Tundisi, José G.; Stech, José L.; Barros, Nathan; Roland, Fábio

    2013-01-01

    Most energy generation globally is fueled by coal and oil, raising concerns about greenhouse gas emissions. Hydroelectric reservoirs are anthropogenic aquatic systems that occur across a wide geographical extent, and, in addition to their importance for energy production, they have the potential to release two important greenhouse gases (GHGs), carbon dioxide and methane. We report results from an extensive study of eight hydroelectric reservoirs located in central and southeastern tropical Brazil. In the Brazilian dry tropical biome reservoirs, emissions (in tons of CO 2 Eq. per MW h) varied from 0.01 to 0.55, and decreased with reservoir age. Total emissions were higher in the reservoir lake when compared to the river downstream the dam; however, emissions per unit area, in the first kilometer of the river after the dam, were higher than that in the reservoir. The results showed, despite higher carbon emissions per energy production in the youngest reservoirs, lower emission from hydroelectric reservoirs from the studied region in relation to thermo electrical supply, fueled by coal or fossil fuel. The ratio emission of GHG per MWh produced is an important parameter in evaluating the service provided by hydroelectric reservoir and for energy planning policies. - Highlights: ► Hydroelectric reservoirs construction is growing worldwide. ► The effect of hydropower reservoir in the carbon cycle is dependent on environment characteristics. ► Carbon emissions per energy production are higher in the youngest tropical savannah reservoirs. ► Methane emissions decrease with reservoir age in tropical savannah reservoirs. ► In general, the effect of hydropower in the carbon cycle is lower than other energy sources

  10. Social wasps (Polistinae from Pampa Biome: South Brazil, Northeastern Argentina and Uruguay

    Directory of Open Access Journals (Sweden)

    Alexandre Somavilla

    2017-08-01

    Full Text Available Abstract. This study aimed to determine social wasps’ species from Pampa Biome. Were examined samples of social wasps from south-central of Rio Grande do Sul state (Brazil, parts of Buenos Aires, Entre Rios, Corrientes, Cordoba, Santa Fé and La Pampa provinces (Argentina and in Uruguay maintained in the Coleção Entomológica de Santa Cruz do Sul (Santa Cruz do Sul-Brazil, American Museum of Natural History (USA, Natural History Museum (London-United Kingdom and Muséum National d’Histoire Naturelle (Paris-France. Thirty species were recorded: Agelaia (01, Brachygastra (01, Mischocyttarus (04, Polistes (15, Polybia (08 and Protonectarina (01. Vespas sociais do Bioma Pampa: sul do Brasil, nordeste da Argentina e Uruguai. Resumo. Este estudo objetivou determinar as espécies de vespas sociais provenientes do Bioma Pampa. Foram examinadas vespas sociais provenientes de coletas da região centro-sul do Rio Grande do Sul (Brasil, parte das províncias de Buenos Aires, Entre Rios, Corrientes, Cordoba, Santa Fé e La Pampa (Argentina e Uruguai depositadas na Coleção Entomológica de Santa Cruz do Sul (Santa Cruz do Sul-Brasil, American Museum of Natural History (Nova Iorque-USA, Natural History Museum (Londres-Reino Unido e Muséum National d’Histoire Naturelle (Paris-França. Trinta espécies foram registradas: Agelaia (01, Brachygastra (01, Mischocyttarus (04, Polistes (15, Polybia (08 e Protonectarina (01.

  11. Expanding the global network of protected areas to save the imperiled mediterranean biome.

    Science.gov (United States)

    Underwood, Emma C; Klausmeyer, Kirk R; Cox, Robin L; Busby, Sylvia M; Morrison, Scott A; Shaw, M Rebecca

    2009-02-01

    : Global goals established by the Convention on Biological Diversity stipulate that 10% of the world's ecological regions must be effectively conserved by 2010. To meet that goal for the mediterranean biome, at least 5% more land must be formally protected over the next few years. Although global assessments identify the mediterranean biome as a priority, without biologically meaningful analysis units, finer-resolution data, and corresponding prioritization analysis, future conservation investments could lead to more area being protected without increasing the representation of unique mediterranean ecosystems. We used standardized analysis units and six potential natural vegetation types stratified by 3 elevation zones in a global gap analysis that systematically explored conservation priorities across the mediterranean biome. The highest levels of protection were in Australia, South Africa, and California-Baja California (from 9-11%), and the lowest levels of protection were in Chile and the mediterranean Basin (biome only one of the six vegetation types--mediterranean shrubland--exceeded 10% protection. The remaining vegetation types--grassland, scrub, succulent dominated, woodland, and forest--each had biome, we identified biodiversity assemblages with 30% conversion and suggest that these assemblages be elevated to high-priority status in future conservation efforts.

  12. Evolutionary biology and anthropology suggest biome reconstitution as a necessary approach toward dealing with immune disorders.

    Science.gov (United States)

    Parker, William; Ollerton, Jeff

    2013-01-01

    Industrialized society currently faces a wide range of non-infectious, immune-related pandemics. These pandemics include a variety of autoimmune, inflammatory and allergic diseases that are often associated with common environmental triggers and with genetic predisposition, but that do not occur in developing societies. In this review, we briefly present the idea that these pandemics are due to a limited number of evolutionary mismatches, the most damaging being 'biome depletion'. This particular mismatch involves the loss of species from the ecosystem of the human body, the human biome, many of which have traditionally been classified as parasites, although some may actually be commensal or even mutualistic. This view, evolved from the 'hygiene hypothesis', encompasses a broad ecological and evolutionary perspective that considers host-symbiont relations as plastic, changing through ecological space and evolutionary time. Fortunately, this perspective provides a blueprint, termed 'biome reconstitution', for disease treatment and especially for disease prevention. Biome reconstitution includes the controlled and population-wide reintroduction (i.e. domestication) of selected species that have been all but eradicated from the human biome in industrialized society and holds great promise for the elimination of pandemics of allergic, inflammatory and autoimmune diseases.

  13. An intercomparison of biogenic emissions estimates from BEIS2 and BIOME: Reconciling the differences

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, J.G. [Alpine Geophysics, Pittsburgh, PA (United States); Emigh, R.A. [Alpine Geophysics, Boulder, CO (United States); Pierce, T.E. [Atmospheric Characterization and Modeling Division/NOAA, Research Triangle Park, NC (United States)

    1996-12-31

    Biogenic emissions play a critical role in urban and regional air quality. For instance, biogenic emissions contribute upwards of 76% of the daily hydrocarbon emissions in the Atlanta, Georgia airshed. The Biogenic Emissions Inventory System-Version 2.0 (BEIS2) and the Biogenic Model for Emissions (BIOME) are two models that compute biogenic emissions estimates. BEIS2 is a FORTRAN-based system, and BIOME is an ARC/INFO{reg_sign} - and SAS{reg_sign}-based system. Although the technical formulations of the models are similar, the models produce different biogenic emissions estimates for what appear to be essentially the same inputs. The goals of our study are the following: (1) Determine why BIOME and BEIS2 produce different emissions estimates; (2) Attempt to understand the impacts that the differences have on the emissions estimates; (3) Reconcile the differences where possible; and (4) Present a framework for the use of BEIS2 and BIOME. In this study, we used the Coastal Oxidant Assessment for Southeast Texas (COAST) biogenics data which were supplied to us courtesy of the Texas Natural Resource Conservation Commission (TNRCC), and we extracted the BEIS2 data for the same domain. We compared the emissions estimates of the two models using their respective data sets BIOME Using TNRCC data and BEIS2 using BEIS2 data.

  14. Protein engineering approaches to chemical biotechnology.

    Science.gov (United States)

    Chen, Zhen; Zeng, An-Ping

    2016-12-01

    Protein engineering for the improvement of properties of biocatalysts and for the generation of novel metabolic pathways plays more and more important roles in chemical biotechnology aiming at the production of chemicals from biomass. Although widely used in single-enzyme catalysis process, protein engineering is only being increasingly explored in recent years to achieve more complex in vitro and in vivo biocatalytic processes. This review focuses on major contributions of protein engineering to chemical biotechnology in the field of multi-enzymatic cascade catalysis and metabolic engineering. Especially, we discuss and highlight recent strategies for combining pathway design and protein engineering for the production of novel products. Copyright © 2016. Published by Elsevier Ltd.

  15. Foundations for a Colombian Biotechnology policy

    Directory of Open Access Journals (Sweden)

    Óscar Castellanos

    2001-07-01

    Full Text Available Globalisation has created challenges for industry related to the constant need for improving national and international productivity and competitivity. Biological knowledge today has growing industrial application as it proposes innovative production methods. This type of biotechnology is becoming more relevant in Colombia's economic and social development all the time. The Colombian Ministry of Development, Colciencias and the National University of Colombia have therefore been jointly developing an integral set of guidelines. These are framed within Colombia's biotechnology policy to create concrete goals, objectives, strategies and direct action from the State, academic institutions and the business world. They encompass six fundamental approaches: markets and management; normativity and legislation; research and development (R&D; economic resources; human resources; and integration training. They al so explicitly raise the question of who shall be responsible for follow-up and the way that the policy's execution and achievements will be evaluated.

  16. Biotechnology for Chemical Production: Challenges and Opportunities.

    Science.gov (United States)

    Burk, Mark J; Van Dien, Stephen

    2016-03-01

    Biotechnology offers a new sustainable approach to manufacturing chemicals, enabling the replacement of petroleum-based raw materials with renewable biobased feedstocks, thereby reducing greenhouse gas (GHG) emissions, toxic byproducts, and the safety risks associated with traditional petrochemical processing. Development of such bioprocesses is enabled by recent advances in genomics, molecular biology, and systems biology, and will continue to accelerate as access to these tools becomes faster and cheaper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Canadian biotechnological developments in fossil fuels

    International Nuclear Information System (INIS)

    McCready, R.G.L.

    1991-01-01

    CANMET recently initiated a Biotechnology program in cooperation with various oil companies and university personnel to develop biological processes and to determine various biological mechanisms associated with coal, oil and gas recovery. This presentation will give a brief overview of the ongoing projects including the microbial decomposition of refinery sludges and wastes, microbial internal and external corrosion of pipeline, the use of microbial exopolymers in secondary oil recovery and in the prevention of loss of drilling lubricants. (author)

  18. Bacterial Siderophores and their Biotechnological applications

    Digital Repository Service at National Institute of Oceanography (India)

    Mohandass, C.

    Siderophores and their Biotechnological applications C. Mohandass Biological Oceanography Division National Institute of Oceanography Dona-paula, Goa.403 004.India. Introduction Siderophore is the Greek phrase for ?iron bearer? and is applied to molecules... the efficiency of the biological carbon pump. Phytoplankton must have developed a sophisticated mechanism to uptake iron. However, little is known about the uptake mechanism. Given the importance of the biological pump in controlling atmospheric CO2, elucidating...

  19. MIPs as Tools in Environmental Biotechnology.

    Science.gov (United States)

    Mattiasson, Bo

    2015-01-01

    Molecular imprints are potentially fantastic constructions. They are selective, robust, and nonbiodegradable if produced from stable polymers. A range of different applications has been presented, everything from separation of enantiomers, via adsorbents for sample preparation before analysis to applications in wastewater treatment. This chapter deals with molecularly imprinted polymers (MIPs) as tools in environmental biotechnology, a field that has the potential to become very important in the future.

  20. Biotechnology and where it is going

    Energy Technology Data Exchange (ETDEWEB)

    Malik, V.S.

    From some of the selected highlights in this paper, it is apparent that biotechnology is becoming increasingly popular in meeting the world's expanding needs. There are endless tasks which can be accomplished by the judicious application of recombinant DNA technology for engineering of microorganisms. Use of microbes will accelerate in the next decade and fermentation processes may be used to produce many products that are presently derived from petrochemicals or chemical synthesis. (Refs. 17).

  1. Biotechnological production of limonene in microorganisms

    OpenAIRE

    Jongedijk, Esmer; Cankar, Katarina; Buchhaupt, Markus; Schrader, Jens; Bouwmeester, Harro; Beekwilder, Jules

    2016-01-01

    This mini review describes novel, biotechnology-based, ways of producing the monoterpene limonene. Limonene is applied in relatively highly priced products, such as fragrances, and also has applications with lower value but large production volume, such as biomaterials. Limonene is currently produced as a side product from the citrus juice industry, but the availability and quality are fluctuating and may be insufficient for novel bulk applications. Therefore, complementary microbial producti...

  2. Microbial biotechnology addressing the plastic waste disaster

    OpenAIRE

    Narancic, Tanja; O'Connor, Kevin E.

    2017-01-01

    Oceans are a major source of biodiversity, they provide livelihood, and regulate the global ecosystem by absorbing heat and CO 2. However, they are highly polluted with plastic waste. We are discussing here microbial biotechnology advances with the view to improve the start and the end of life of biodegradable polymers, which could contribute to the sustainable use of marine and coastal ecosystems (UN Sustainability development goal 14).

  3. UNIVERSITY BASIC RESEARCH AND APPLIED AGRICULTURAL BIOTECHNOLOGY

    OpenAIRE

    Xia, Yin

    2004-01-01

    I examine the effects of R&D inputs on the subset of life-science outputs which demonstrably has influenced later technology, as evidenced by literature citations in agricultural biotechnology patents. Universities are found to be a principal seedbed for cutting-edge technology development. A university's life-science research budget strongly affects its technology-relevant life-science output as well as graduate education.

  4. SOME TRENDS IN MATHEMATICAL MODELING FOR BIOTECHNOLOGY

    Directory of Open Access Journals (Sweden)

    O. M. Klyuchko

    2018-02-01

    Full Text Available The purpose of present research is to demonstrate some trends of development of modeling methods for biotechnology according to contemporary achievements in science and technique. At the beginning the general approaches are outlined, some types of classifications of modeling methods are observed. The role of mathematic methods modeling for biotechnology in present époque of information computer technologies intensive development is studied and appropriate scheme of interrelation of all these spheres is proposed. Further case studies are suggested: some mathematic models in three different spaces (1D, 2D, 3D models are described for processes in living objects of different levels of hierarchic organization. In course of this the main attention was paid to some processes modeling in neurons as well as in their aggregates of different forms, including glioma cell masses (1D, 2D, 3D brain processes models. Starting from the models that have only theoretical importance for today, we describe at the end a model which application may be important for the practice. The work was done after the analysis of approximately 250 current publications in fields of biotechnology, including the authors’ original works.

  5. Cacao biotechnology: current status and future prospects.

    Science.gov (United States)

    Wickramasuriya, Anushka M; Dunwell, Jim M

    2018-01-01

    Theobroma cacao-The Food of the Gods, provides the raw material for the multibillion dollar chocolate industry and is also the main source of income for about 6 million smallholders around the world. Additionally, cocoa beans have a number of other nonfood uses in the pharmaceutical and cosmetic industries. Specifically, the potential health benefits of cocoa have received increasing attention as it is rich in polyphenols, particularly flavonoids. At present, the demand for cocoa and cocoa-based products in Asia is growing particularly rapidly and chocolate manufacturers are increasing investment in this region. However, in many Asian countries, cocoa production is hampered due to many reasons including technological, political and socio-economic issues. This review provides an overview of the present status of global cocoa production and recent advances in biotechnological applications for cacao improvement, with special emphasis on genetics/genomics, in vitro embryogenesis and genetic transformation. In addition, in order to obtain an insight into the latest innovations in the commercial sector, a survey was conducted on granted patents relating to T. cacao biotechnology. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Biotechnology of temperate fruit trees and grapevines.

    Science.gov (United States)

    Laimer, Margit; Mendonça, Duarte; Maghuly, Fatemeh; Marzban, Gorji; Leopold, Stephan; Khan, Mahmood; Balla, Ildiko; Katinger, Hermann

    2005-01-01

    Challenges concerning fruit trees and grapevines as long lived woody perennial crops require adapted biotechnological approaches, if solutions are to be found within a reasonable time frame. These challenges are represented by the need for correct identification of genetic resources, with the foreseen use either in conservation or in breeding programmes. Molecular markers provide most accurate information and will be the major solution for questions about plant breeders rights. Providing healthy planting material and rapid detection of newly introduced pathogens by reliable methods involving serological and molecular biological tools will be a future challenge of increases importance, given the fact that plant material travels freely in the entire European Union. But also new breeding goals and transgenic solutions are part of the biotechnological benefits, e.g. resistance against biotic and abiotic stress factors, modified growth habits, modified nutritional properties and altered processing and storage qualities. The successful characterization of transgenic grapevines and stone fruit trees carrying genes of viral origin in different vectors constructed under ecological consideration, will be presented. Beyond technical feasibility, efficiency of resistance, environmental safety and Intellectual Property Rights, also public acceptance needs consideration and has been addressed in a specific project. The molecular determination of internal quality parameters of food can also be addressed by the use of biotechnological tools. Patient independent detection tools for apple allergens have been developed and should allow to compare fruits from different production systems, sites, and genotypes for their content of health threatening compounds.

  7. Improved molecular tools for sugar cane biotechnology.

    Science.gov (United States)

    Kinkema, Mark; Geijskes, Jason; Delucca, Paulo; Palupe, Anthony; Shand, Kylie; Coleman, Heather D; Brinin, Anthony; Williams, Brett; Sainz, Manuel; Dale, James L

    2014-03-01

    Sugar cane is a major source of food and fuel worldwide. Biotechnology has the potential to improve economically-important traits in sugar cane as well as diversify sugar cane beyond traditional applications such as sucrose production. High levels of transgene expression are key to the success of improving crops through biotechnology. Here we describe new molecular tools that both expand and improve gene expression capabilities in sugar cane. We have identified promoters that can be used to drive high levels of gene expression in the leaf and stem of transgenic sugar cane. One of these promoters, derived from the Cestrum yellow leaf curling virus, drives levels of constitutive transgene expression that are significantly higher than those achieved by the historical benchmark maize polyubiquitin-1 (Zm-Ubi1) promoter. A second promoter, the maize phosphonenolpyruvate carboxylate promoter, was found to be a strong, leaf-preferred promoter that enables levels of expression comparable to Zm-Ubi1 in this organ. Transgene expression was increased approximately 50-fold by gene modification, which included optimising the codon usage of the coding sequence to better suit sugar cane. We also describe a novel dual transcriptional enhancer that increased gene expression from different promoters, boosting expression from Zm-Ubi1 over eightfold. These molecular tools will be extremely valuable for the improvement of sugar cane through biotechnology.

  8. Biotechnology for uranium extraction and environmental control

    International Nuclear Information System (INIS)

    Natarajan, K.A.

    2012-01-01

    India is looking forward to augmenting mining and extraction of uranium mineral for its nuclear energy needs. Being a radio-active mineral, mining and processing of uranium ore deposits need be carried out in an environmentally acceptable fashion. In this respect, a biotechnological approach holds great promise since it is environment-friendly, cost-effective and energy-efficient. There are several types of microorganisms which inhabit uranium ore bodies and biogenesis plays an important role in the mineralisation and transport of uranium-bearing minerals under the earth's crust. Uranium occurrences in India are only meagre and it becomes essential to tap effectively all the available resources. Uraninite and pitchblende occurring along with sulfide mineralisation such as pyrite are ideal candidates for bioleaching. Acidithiobacillus ferrooxidans present ubiquitously in the ore deposits can be isolated, cultured and utilised to bring about efficient acidic dissolution of uranium. Many such commercial attempts to extract uranium from even lean ores using acidophilic autotrophic bacteria have been made in different parts of the world. Anaerobes such a Geobacter and Sulfate Reducing Bacteria (SRB) can be effectively used in uranium mining for environmental control. Radioactive uranium mined wastes and tailing dumps can be cleaned and protected using microorganisms. In this lecture use of biotechnology in uranium extraction and bioremediation is illustrated with practical examples. Applicability of environment-friendly biotechnology for mining and extraction of uranium from Indian deposits is outlined. Commercial potentials for bioremediation in uranium-containing wastes are emphasised. (author)

  9. Independent Biotechnology: The Innovation-Regulation Dilemma

    Energy Technology Data Exchange (ETDEWEB)

    Althouse, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Prosnitz, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Velsko, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-03

    The Center for Global Security Research at Lawrence Livermore National Laboratory convened a workshop on August 19, 2016 to consider “Independent Biotechnology: The Innovation-­Regulation Dilemma”. The topic was motivated by the observation that non-­government funded biotechnology research and development activities have grown and diversified tremendously over the past decade. This sector encompasses a broad range of actors and activities: individuals with private laboratories, community “hackerspaces,” biotechnology incubators, and individual startups. Motivations and aspirations are diverse and include such things as personal curiosity, community education, the invention of new products or services, and even the realization of certain economic, political, or social goals. One driving force is the “democratization” of ever more powerful biological technologies, allowing individual citizens and groups access to capabilities that have traditionally only been available to researchers in universities, research institutes, national laboratories, and large commercial concerns. Another is the rise of alternative financing mechanisms such as “crowdsourcing,” which ostensibly provide greater freedom to innovate, and greater public visibility, but entail looser management oversight and transparency.

  10. International Marine Biotechnology Culture Collection (IMBCC)

    Energy Technology Data Exchange (ETDEWEB)

    Zaborsky, O.R.; Baker, K. [Univ. of Hawaii at Manoa, Honolulu, HI (United States)

    1996-10-01

    The objective of this project is to establish a premier culture collection of tropical marine microorganisms able to generate hydrogen from water or organic substances. Both eukaryotic and prokaryotic microorganisms will serve as the biological reservoir or {open_quotes}library{close_quotes} for other DOE Hydrogen Program contractors, the biohydrogen research community and industry. This project consists of several tasks: (a) transfer of the Mitsui-Miami strains to Hawaii`s International Marine Biotechnology Culture Collection (IMBCC) housed at the Hawaii Natural Energy Institute (HNEI); (b) maintain and distribute Mitsui-Miami strains; (c) characterize key strains by traditional and advanced biotechnological techniques; (d) expand Hawaii`s IMBCC; and (e) establish and operate an information resource (database). The project was initiated only late in the summer of 1995 but progress has been made on all tasks. Of the 161 cyanobacterial strains imported, 147 survived storage and importation and 145 are viable. with most exhibiting growth. Of the 406 strains of other photosynthetic bacteria imported, 392 survived storage and importation and 353 are viable, with many exhibiting growth. This project is linked to cooperative efforts being supported by the Japanese Ministry of International Trade and Industry (MITI) through its Marine Biotechnology Institute (MBI) and Research Institute of Innovative Technology for the Earth (RITE).

  11. Biodiversity, biotechnologies and the philosophy of biology.

    Science.gov (United States)

    Galleni, Lodovico

    2004-01-01

    The thesis of this paper is that in front of the development of biotechnology and of the capacity of techniques of altering the living, there is still a very old philosophy of biology. A rapid historical view is given where the rise and diffusion of the reductionistic paradigm is presented and the connections between this paradigm and biotechnologies are traced. Curiously biotechnologies are still based on the philosophy of F. Bacon. Then the necessity of a new paradigm in biology based on the recent discoveries of complexity is underlined. It is reminded that the main discovery of science of the XX century is that we are living in a small planet of limited resources and frail equilibriums. This discovery asks for a different view of the scientific progress, more linked to the conservation of the Biosphere than to its alteration. Stability is the task for the future interactions of human-kind with nature. For this reason the relationships between stability and diversity are summarised. Finally, as the species is the main step of Biodiversity, a brief discussion of the problems posed by the altering of species barriers is presented.

  12. Concluding remarks: overall impacts on biodiversity and future perspectives for conservation in the Pantanal biome.

    Science.gov (United States)

    Alho, C J R

    2011-04-01

    The Pantanal biome is characterised by seasonal flooding which determines specific ecosystem processes, with the occurrence of adapted plants and animals to the annual shrinking and expansion of habitats due to the seasonal hydrological regime. Biodiversity abundance varies during the dry and wet seasons. The Pantanal's biodiversity is a fundamental component of ecosystem services for human society, including nutrient cycling, fish production, ecotourism, carbon storage, flood control, among others, which are relevant to regional and global environmental consequences. The biome has been impacted by the conversion of natural vegetation into agricultural fields and pasture for cattle raising, with alteration and loss of natural habitats and biodiversity. Major negative impacts occur in uplands, with drastic deforestation of savanna vegetation, where main rivers feeding the Pantanal have their springs. This article discusses future needs and priorities for ecological research, in order to better understand the biome's natural system, to achieve conservation and sustainable use.

  13. Concluding remarks: overall impacts on biodiversity and future perspectives for conservation in the Pantanal biome

    Directory of Open Access Journals (Sweden)

    CJR. Alho

    Full Text Available The Pantanal biome is characterised by seasonal flooding which determines specific ecosystem processes, with the occurrence of adapted plants and animals to the annual shrinking and expansion of habitats due to the seasonal hydrological regime. Biodiversity abundance varies during the dry and wet seasons. The Pantanal's biodiversity is a fundamental component of ecosystem services for human society, including nutrient cycling, fish production, ecotourism, carbon storage, flood control, among others, which are relevant to regional and global environmental consequences. The biome has been impacted by the conversion of natural vegetation into agricultural fields and pasture for cattle raising, with alteration and loss of natural habitats and biodiversity. Major negative impacts occur in uplands, with drastic deforestation of savanna vegetation, where main rivers feeding the Pantanal have their springs. This article discusses future needs and priorities for ecological research, in order to better understand the biome's natural system, to achieve conservation and sustainable use.

  14. Approaches to education of pharmaceutical biotechnology in faculties of pharmacy.

    Science.gov (United States)

    Calis, S; Oner, F; Kas, S; Hincal, A A

    2001-06-01

    Pharmaceutical biotechnology is developing rapidly both in academic institutions and in the biopharmaceutical industry. For this reason, FIP Special Interest Group of Pharmaceutical Biotechnology decided to develop a questionnaire concerning pharmaceutical biotechnology education. After preliminary studies were completed, questionnaires were sent to the leading scientists in academia and research directors or senior managers of various Pharmaceutical Biotechnology Companies in order to gather their views about how to create a satisfactory program. The objectives of this study were as follows: -To review all of the graduate and undergraduate courses which are presently available worldwide on pharmaceutical biotechnology in Faculties of Pharmacy. -To review all of the text books, references and scientific sources available worldwide in the area of pharmaceutical biotechnology. When replying to the questionnaires, the respondents were asked to consider the present status of pharmaceutical biotechnology education in academia and future learning needs in collaboration with the biotechnology industry. The data from various pharmacy faculties and biotechnology industry representatives from Asia, Europe and America were evaluated and the outcome of the survey showed that educational efforts in training qualified staff in the rapidly growing field of pharmaceutical biotechnology is promising. Part of the results of this questionnaire study have already been presented at the 57th International Congress of FIP Vancouver, Canada in 1997.

  15. ISS Biotechnology Facility - Overview of Analytical Tools for Cellular Biotechnology Investigations

    Science.gov (United States)

    Jeevarajan, A. S.; Towe, B. C.; Anderson, M. M.; Gonda, S. R.; Pellis, N. R.

    2001-01-01

    The ISS Biotechnology Facility (BTF) platform provides scientists with a unique opportunity to carry out diverse experiments in a microgravity environment for an extended period of time. Although considerable progress has been made in preserving cells on the ISS for long periods of time for later return to Earth, future biotechnology experiments would desirably monitor, process, and analyze cells in a timely way on-orbit. One aspect of our work has been directed towards developing biochemical sensors for pH, glucose, oxygen, and carbon dioxide for perfused bioreactor system developed at Johnson Space Center. Another aspect is the examination and identification of new and advanced commercial biotechnologies that may have applications to on-orbit experiments.

  16. Role of biotechnology in future agriculture. Korekarano nogyo to biotechnology eno kitai

    Energy Technology Data Exchange (ETDEWEB)

    Komano, T. (Kyoto Univ., Kyoto (Japan). Faculty of Agriculture)

    1992-09-01

    In comparison with ancient times when everything is handled empirically, biological matter suitable for purposes can be produced and utilized faster and more reliably these days when life science has made a great advance. The advancement is related to new breeding technology and production means, and those means offer the point of contact between biotechnology and agriculture. The application fields of biotechnology are microbiology, cell technology, enzyme technology (bioreactor), and gene engineering. High yield, high content of high value ingredients as foods, adaptability to environment, resistance to disease and insect damage, etc. may be the subjects expected for future agricultural organisms. There may be many areas where biotechnology is related to those organisms, but a discussion is made in this report centering around the problem in breeding. Outlines are given on the applied cases of cell technological method, gene engineering method, and recombinant DNA technology, as well as on gene engineering for plants and animals. 10 refs., 7 figs.

  17. BOREAS RSS-8 BIOME-BGC Model Simulations at Tower Flux Sites in 1994

    Science.gov (United States)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Kimball, John

    2000-01-01

    BIOME-BGC is a general ecosystem process model designed to simulate biogeochemical and hydrologic processes across multiple scales (Running and Hunt, 1993). In this investigation, BIOME-BGC was used to estimate daily water and carbon budgets for the BOREAS tower flux sites for 1994. Carbon variables estimated by the model include gross primary production (i.e., net photosynthesis), maintenance and heterotrophic respiration, net primary production, and net ecosystem carbon exchange. Hydrologic variables estimated by the model include snowcover, evaporation, transpiration, evapotranspiration, soil moisture, and outflow. The information provided by the investigation includes input initialization and model output files for various sites in tabular ASCII format.

  18. Where do the treeless tundra areas of northern highlands fit in the global biome system: toward an ecologically natural subdivision of the tundra biome.

    Science.gov (United States)

    Virtanen, Risto; Oksanen, Lauri; Oksanen, Tarja; Cohen, Juval; Forbes, Bruce C; Johansen, Bernt; Käyhkö, Jukka; Olofsson, Johan; Pulliainen, Jouni; Tømmervik, Hans

    2016-01-01

    According to some treatises, arctic and alpine sub-biomes are ecologically similar, whereas others find them highly dissimilar. Most peculiarly, large areas of northern tundra highlands fall outside of the two recent subdivisions of the tundra biome. We seek an ecologically natural resolution to this long-standing and far-reaching problem. We studied broad-scale patterns in climate and vegetation along the gradient from Siberian tundra via northernmost Fennoscandia to the alpine habitats of European middle-latitude mountains, as well as explored those patterns within Fennoscandian tundra based on climate-vegetation patterns obtained from a fine-scale vegetation map. Our analyses reveal that ecologically meaningful January-February snow and thermal conditions differ between different types of tundra. High precipitation and mild winter temperatures prevail on middle-latitude mountains, low precipitation and usually cold winters prevail on high-latitude tundra, and Scandinavian mountains show intermediate conditions. Similarly, heath-like plant communities differ clearly between middle latitude mountains (alpine) and high-latitude tundra vegetation, including its altitudinal extension on Scandinavian mountains. Conversely, high abundance of snowbeds and large differences in the composition of dwarf shrub heaths distinguish the Scandinavian mountain tundra from its counterparts in Russia and the north Fennoscandian inland. The European tundra areas fall into three ecologically rather homogeneous categories: the arctic tundra, the oroarctic tundra of northern heights and mountains, and the genuinely alpine tundra of middle-latitude mountains. Attempts to divide the tundra into two sub-biomes have resulted in major discrepancies and confusions, as the oroarctic areas are included in the arctic tundra in some biogeographic maps and in the alpine tundra in others. Our analyses based on climate and vegetation criteria thus seem to resolve the long-standing biome

  19. Carbon storage in permafrost and soils of the mammoth tundra-steppe biome: role in the global carbon budget

    Science.gov (United States)

    N.S. Zimov; S.A. Zimov; A.E. Zimova; G.M. Zimova; V.I. Chuprynin; F.S. Chapin

    2009-01-01

    During the Last Glacial Maximum (LGM), atmospheric CO2 concentration was 80-100 ppmv lower than in preindustrial times. At that time steppe-tundra was the most extensive biome on Earth. Some authors assume that C storage in that biome was very small, similar to today's deserts, and that the terrestrial carbon (C) reservoir increased at the...

  20. The Biological Observation Matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome.

    Science.gov (United States)

    McDonald, Daniel; Clemente, Jose C; Kuczynski, Justin; Rideout, Jai Ram; Stombaugh, Jesse; Wendel, Doug; Wilke, Andreas; Huse, Susan; Hufnagle, John; Meyer, Folker; Knight, Rob; Caporaso, J Gregory

    2012-07-12

    We present the Biological Observation Matrix (BIOM, pronounced "biome") format: a JSON-based file format for representing arbitrary observation by sample contingency tables with associated sample and observation metadata. As the number of categories of comparative omics data types (collectively, the "ome-ome") grows rapidly, a general format to represent and archive this data will facilitate the interoperability of existing bioinformatics tools and future meta-analyses. The BIOM file format is supported by an independent open-source software project (the biom-format project), which initially contains Python objects that support the use and manipulation of BIOM data in Python programs, and is intended to be an open development effort where developers can submit implementations of these objects in other programming languages. The BIOM file format and the biom-format project are steps toward reducing the "bioinformatics bottleneck" that is currently being experienced in diverse areas of biological sciences, and will help us move toward the next phase of comparative omics where basic science is translated into clinical and environmental applications. The BIOM file format is currently recognized as an Earth Microbiome Project Standard, and as a Candidate Standard by the Genomic Standards Consortium.

  1. Large-scale impact of climate change vs. land-use change on future biome shifts in Latin America

    NARCIS (Netherlands)

    Boit, Alice; Sakschewski, Boris; Boysen, Lena; Cano-Crespo, Ana; Clement, Jan; Garcia-alaniz, Nashieli; Kok, Kasper; Kolb, Melanie; Langerwisch, Fanny; Rammig, Anja; Sachse, René; Eupen, van Michiel; Bloh, von Werner; Clara Zemp, Delphine; Thonicke, Kirsten

    2016-01-01

    Climate change and land-use change are two major drivers of biome shifts causing habitat and biodiversity loss. What is missing is a continental-scale future projection of the estimated relative impacts of both drivers on biome shifts over the course of this century. Here, we provide such a

  2. Biotechnological innovation impacts, social and ethical aspects and public acceptability; Sicurezza, implicazioni etico-sociali e percezione pubblica delle biotecnologie

    Energy Technology Data Exchange (ETDEWEB)

    Capuano, V [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Innovazione

    1997-11-01

    Biotechnology is a highly distinctive area of scientific activity and its applications can strongly influence human life. Biotechnological innovations impact on sanitary, environmental, social, ethical and economic aspects and it is particularly important a greater public understanding of biotechnology issues in the view of increasing its acceptability. Knowledge and acceptance do not go always in the same direction, as the last is influenced by various complex factors, but without a knowledgeable public there can be no effective democratic agreement. So it appears important that scientific community and industry can promote and diffuse more knowledge among citizens and consumers, taking into account also of social and ethical issues raised by public and public interest groups. In this report bio safety of biotechnology applications and social and ethical issues are analyzed. They receive much attention in the discussion in the biotechnology arena (scientists, industry, institutions and the public). In particular health and environmental risks, gene therapy, transgenic animals, patent issues and genetic resources access, consumers rights are considered. Since the media are central to the dissemination of information and views about science, is has been evidenced their role, in addition to a short analysis of public perception and communication strategies.

  3. Biothechnology conferences held in Cuba. Cuba no biotechnology gakkai ni sankashite

    Energy Technology Data Exchange (ETDEWEB)

    Murata, M. (Ajinomoto Co. Inc., Tokyo, (Japan))

    1990-04-25

    Three biotechnology conferences including Cuba International Interferon Conference were held at Havana in April 1989, and the author participated in them. The number of participants was about 3,000. Most of them were from the Middle and the Central America, but there were also those from Europe, the USSR and the USA. The three conferences were composed of 16 symposiums and they covered a wide range of field such as medical science, agriculture and industry. High leveled reports were read in the conferences: on the application of interferons to medical treatments, curing effects of infections caused by herpes virus and B type hepatitis virus, anti-tumor effects, and anti-virus effects against AIDS virus; on the production of protein and vaccini by gene engineering, large quantity production of interleukin and epithelium cell multiplication genes. Especially impressing were the efforts the whole nation of Cuba makes to promote biotechnology and its modern facilities. 3 figs.

  4. Advancement of Marketing Developing Biotechnology-Based Business

    OpenAIRE

    Vilmantas, Vaidas; Melnikas, Borisas

    2014-01-01

    The article, in a complex way, analyzes the needs of marketing improvement in developing biotechnology-based business and highlights its role in the context of modern society and globalization challenges. The article distinguishes between the existing problems of biotechnology business, the present perspectives and specific characteristics of developing the marketing of biotechnological business. The paper represents the possibility of the substantial modernization of marketing tools with reg...

  5. The role of plant biotechnology methods in sustainable agriculture

    OpenAIRE

    Koleva Gudeva, Liljana; Trajkova, Fidanka

    2016-01-01

    Plant biotechnology is set of different scientific approaches and methods that are utilized to improve and modify plants for human and environmental benefit. Plant biotechnology can be used to meet the increasing need for food by improving yields, improving the nutritional quality of crops and recuing the impact on the environment. Plant biotechnology can assist to creation of varieties resistant to frost, droughts and floods, pests and disease, and other abiotic and biotic stresses. Similarl...

  6. UNCOVERING FACTORS INFLUENCING PUBLIC PERCEPTIONS OF FOOD BIOTECHNOLOGY

    OpenAIRE

    Hossain, Ferdaus; Onyango, Benjamin M.; Adelaja, Adesoji O.; Schilling, Brian J.; Hallman, William K.

    2002-01-01

    Significant divergence exists in public opinions about biotechnology. Although there is broad support for plant biotechnology for health benefits, opinions differ on the issue of animal genetics for pure economic benefits. While some are opposed to it, many are undecided about genetically modified foods. Considerable skepticism exists about scientists, corporations and government which have negative influence on public acceptance of food biotechnology. Consumers' personal attributes have sign...

  7. Environmental Biotechnology Research and Development Program 1989-1992

    OpenAIRE

    Brinkman J; Rulkens WH; Visscher K

    1989-01-01

    This report is an English translation of the Dutch Research and Development Program on environmental biotechnology 1989-1992. In this program an overview is given of the recent developments in environmental biotechnology. Based on this overview, the possibilities of biotechnology for management of the environment are evaluated. In this program two kinds of research are distinguished. Applied research directly focusses on specific environmental problems. Fundamental research aims at developing...

  8. Biotechnology 2000: a new German R&D programme

    OpenAIRE

    Ekkehard Warmuth

    1991-01-01

    Biotechnology 2000 is a German programme to continue the development of biotechnology started in 1982. It includes two new scientific fields for industrial innovation — genome research and neurobiology. Together with industry and the science community, the biotechnology programme will create a basis for future generations of biologically derived products and processes, including the development of safety precautions for the contained use of genetically modified organisms (GMOs) and of univers...

  9. PLANT BIOTECHNOLOGY IN THE 21ST CENTURY: THE CHALLENGES AHEAD

    OpenAIRE

    Altman, Arie

    1999-01-01

    In a world where population growth is outstripping food supply agricultural -and especially plant-biotechnology, needs to be swiftly implemented in all walks of life. Achievements today in plant biotechnology have already surpassed all previous expectations, and the future is even more promising. The full realisation of the agricultural biotechnology revolution depends on both continued successful and innovative research and development activities and on a favourable regulatory climate and pu...

  10. International Trade in Biotechnology Products and Strategic Mandatory Labelling

    OpenAIRE

    Jinji, Naoto

    2003-01-01

    This paper examines strategic motives to impose mandatory labelling of biotechnology products when consumers perceive these products as being of lower quality. When a foreign dominant firm produces a biotechnology product, it is shown that without mandatory labelling fringe firms, which produce a conventional product, provide voluntary labelling as long as voluntary labelling is fully credible. Information on which product is biotechnologically engineered is hence completely disclosed without...

  11. Biotechnology as a competitive edge for the Finnish forest cluster

    OpenAIRE

    Hakala, Terhi

    2007-01-01

    In this study we have collected information by interviewing all identified parties within the Finnish forest sector who might have a potential biotechnology connection : university research groups, research institutions, small and medium-sized biotechnology-companies and up to the largest forest companies. The ultimate goal was to assess how resources have been allocated and biotechnologies utilized within the value chain of the entire forest sector. This study aimed at providing answers to t...

  12. Biotechnology as a Competitive Edge for the Finnish Forest Cluster

    OpenAIRE

    Hakala, Terhi; Haltia, Olli; Hermans, Raine; Kulvik, Martti; Nikinmaa, Hanna; Porcar-Castell, Albert; Pursula, Tiina

    2007-01-01

    In this study we have collected information by interviewing all identified parties within the Finnish forest sector who might have a potential biotechnology connection : university research groups, research institutions, small and medium-sized biotechnology-companies and up to the largest forest companies. The ultimate goal was to assess how resources have been allocated and biotechnologies utilized within the value chain of the entire forest sector. This study aimed at providing answers to t...

  13. Industrial College of the Armed Forces Industry Studies 2003: Biotechnology

    National Research Council Canada - National Science Library

    Aichouche, Abdelaziz

    2003-01-01

    Biotechnology is a discipline that integrates biology, chemistry, physiology, information technology, engineering, and nanotechnology with the potential to revolutionize every aspect of modern life...

  14. Industrial College of the Armed Forces Industry Studies 2002: Biotechnology

    National Research Council Canada - National Science Library

    2002-01-01

    The biotechnology industry is critically important to the development of products that will improve health care, agriculture, industrial processes, environmental remediation, and biological defense...

  15. [Trends of microalgal biotechnology: a view from bibliometrics].

    Science.gov (United States)

    Yang, Xiaoqiu; Wu, Yinsong; Yan, Jinding; Song, Haigang; Fan, Jianhua; Li, Yuanguang

    2015-10-01

    Microalgae is a single-cell organism with the characteristics of high light energy utilization rate, fast growth rate, high-value bioactive components and high energy material content. Therefore, microalgae has broad application prospects in food, feed, bioenergy, carbon sequestration, wastewater treatment and other fields. In this article, the microalgae biotechnology development in recent years were fully consulted, through analysis from the literature and patent. The progress of microalgal biotechnology at home and abroad is compared and discussed. Furthermore, the project layout, important achievements and development bottlenecks of microalgae biotechnology in our country were also summarized. At last, future development directions of microalgae biotechnology were discussed.

  16. The biotechnology innovation machine: a source of intelligent biopharmaceuticals for the pharma industry--mapping biotechnology's success.

    Science.gov (United States)

    Evens, R P; Kaitin, K I

    2014-05-01

    The marriage of biotechnology and the pharmaceutical industry (pharma) is predicated on an evolution in technology and product innovation. It has come as a result of advances in both the science and the business practices of the biotechnology sector in the past 30 years. Biotechnology products can be thought of as "intelligent pharmaceuticals," in that they often provide novel mechanisms of action, new approaches to disease control, higher clinical success rates, improved patient care, extended patent protection, and a significant likelihood of reimbursement. Although the first biotechnology product, insulin, was approved just 32 years ago in 1982, today there are more than 200 biotechnology products commercially available. Research has expanded to include more than 900 biotechnology products in clinical trials. Pharma is substantially engaged in both the clinical development of these products and their commercialization.

  17. Biotechnologies and biomimetics for civil engineering

    CERN Document Server

    Labrincha, J; Diamanti, M; Yu, C-P; Lee, H

    2015-01-01

    Putting forward an innovative approach to solving current technological problems faced by human society, this book encompasses a holistic way of perceiving the potential of natural systems. Nature has developed several materials and processes which both maintain an optimal performance and are also totally biodegradable, properties which can be used in civil engineering. Delivering the latest research findings to building industry professionals and other practitioners, as well as containing information useful to the public, ‘Biotechnologies and Biomimetics for Civil Engineering’ serves as an important tool to tackle the challenges of a more sustainable construction industry and the future of buildings.

  18. Chrysanthemum biotechnology: discoveries from the recent literature

    Directory of Open Access Journals (Sweden)

    Teixeira da Silva Jaime A.

    2014-12-01

    Full Text Available The in vitro propagation of chrysanthemum (Chrysanthemum × grandiflorum (Ramat. Kitam., one of the world’s most important ornamentals, is a very well-studied topic and shows numerous strides each year. This mini-review condenses the knowledge that has been published on chrysanthemum biotechnology, especially in vitro culture in the wider plant science literature. In 2013 and 2014, important strides were made in molecular breeding, particularly anti-viral strategies, including through transgenics, and our understanding of flower genetics and flowering regulation.

  19. COPASI and its applications in biotechnology.

    Science.gov (United States)

    Bergmann, Frank T; Hoops, Stefan; Klahn, Brian; Kummer, Ursula; Mendes, Pedro; Pahle, Jürgen; Sahle, Sven

    2017-11-10

    COPASI is software used for the creation, modification, simulation and computational analysis of kinetic models in various fields. It is open-source, available for all major platforms and provides a user-friendly graphical user interface, but is also controllable via the command line and scripting languages. These are likely reasons for its wide acceptance. We begin this review with a short introduction describing the general approaches and techniques used in computational modeling in the biosciences. Next we introduce the COPASI package, and its capabilities, before looking at typical applications of COPASI in biotechnology. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Biotechnology network promotes knowledge of transgenics

    International Nuclear Information System (INIS)

    Blanco Picado, Patricia; Valdez Melara, Marta

    2015-01-01

    Red de Ingenieria Genetica Aplicada al Mejoramiento de Cultivos Tropicales (Rigatrop) integrated by a group of scientists from the Universidad de Costa Rica (UCR), Universidad Nacional (UNA) and of the Instituto Tecnologico de Costa Rica (TEC) have organized two forums on the topic of transgenics. The first forum has shown successful experiences of development of transgenic crops in Latin America, as for example: the transgenic bean, project realized in Brazil and transgenic eggplant in Bangladesh. The second forum has been about transgenics and environment effected at the UCR, on the occasion of World Environment Day. Rigatrop members are working currently in two projects applying biotechnological tools to coffee [es

  1. Financial Risk in the Biotechnology Industry

    OpenAIRE

    Joseph H. Golec; John A. Vernon

    2007-01-01

    The biotechnology industry has been an engine of innovation for the U.S. healthcare system and, more generally, the U.S. economy. It is by far the most research intensive industry in the U.S. In our analyses in the current paper, for example, we find that, over the past 25 years, average R&D intensity (R&D spending to total firm assets) for this industry was 38 percent. Consider that over this same period average R&D intensity for all industries was only about 3 percent. In the current paper ...

  2. Biotechnological Processes in Microbial Amylase Production.

    Science.gov (United States)

    Gopinath, Subash C B; Anbu, Periasamy; Arshad, M K Md; Lakshmipriya, Thangavel; Voon, Chun Hong; Hashim, Uda; Chinni, Suresh V

    2017-01-01

    Amylase is an important and indispensable enzyme that plays a pivotal role in the field of biotechnology. It is produced mainly from microbial sources and is used in many industries. Industrial sectors with top-down and bottom-up approaches are currently focusing on improving microbial amylase production levels by implementing bioengineering technologies. The further support of energy consumption studies, such as those on thermodynamics, pinch technology, and environment-friendly technologies, has hastened the large-scale production of the enzyme. Herein, the importance of microbial (bacteria and fungi) amylase is discussed along with its production methods from the laboratory to industrial scales.

  3. New challenges and opportunities for industrial biotechnology.

    Science.gov (United States)

    Chen, Guo-Qiang

    2012-08-20

    Industrial biotechnology has not developed as fast as expected due to some challenges including the emergences of alternative energy sources, especially shale gas, natural gas hydrate (or gas hydrate) and sand oil et al. The weaknesses of microbial or enzymatic processes compared with the chemical processing also make industrial biotech products less competitive with the chemical ones. However, many opportunities are still there if industrial biotech processes can be as similar as the chemical ones. Taking advantages of the molecular biology and synthetic biology methods as well as changing process patterns, we can develop bioprocesses as competitive as chemical ones, these including the minimized cells, open and continuous fermentation processes et al.

  4. Financial Times Global Pharmaceutical & Biotechnology Conference 2009.

    Science.gov (United States)

    Scattereggia, Jennifer

    2010-01-01

    The Financial Times Global Pharmaceutical & Biotechnology conference, held in London, included topics covering the current and future challenges confronting the pharma and biotech industry, and presented possible solutions to those challenges. This conference report highlights selected presentations on the industry challenges for big pharma companies, diversification as a solution to industry problems, overcoming challenges with collaborations and M&As, and the role of emerging markets in the pharma industry. Other subjects discussed included the expected impact of personalized medicine on the industry, the entry of big pharma into the generics market and the problems that are confronting the small pharma and biotech industry.

  5. Biotechnological Processes in Microbial Amylase Production

    Directory of Open Access Journals (Sweden)

    Subash C. B. Gopinath

    2017-01-01

    Full Text Available Amylase is an important and indispensable enzyme that plays a pivotal role in the field of biotechnology. It is produced mainly from microbial sources and is used in many industries. Industrial sectors with top-down and bottom-up approaches are currently focusing on improving microbial amylase production levels by implementing bioengineering technologies. The further support of energy consumption studies, such as those on thermodynamics, pinch technology, and environment-friendly technologies, has hastened the large-scale production of the enzyme. Herein, the importance of microbial (bacteria and fungi amylase is discussed along with its production methods from the laboratory to industrial scales.

  6. Production of vanillin: a biotechnological opportunity

    International Nuclear Information System (INIS)

    Daugsch, Andreas; Pastores, Glaucia . E-daugsch@fea.unicamp.br

    2005-01-01

    Natural aroma compounds are of major interest to the food and fragrance industry. Vanillin (3-methoxy-4-hydroxybenzaldehyde) was isolated from the vanilla beans in 1816 and its world consumption has reached today about 12000 tons per year. But only approximately 50 tons per year are extracted from vanilla pods (Vanilla planifolia). The remainder is provided by synthetic vanillin. This review is about alternative processes to produce natural vanillin de novo or by biotransformation using biotechnological methods involving enzymes, microorganisms and plant cells. (author)

  7. Biotechnology Education as Social and Cultural Production/Reproduction of the Biotechnology Community

    Science.gov (United States)

    Andrée, Maria

    2014-01-01

    This paper is a commentary to a paper by Anne Solli, Frank Bach and Björn Åkerman on how students at a technical university learn to argue as biotechnologists. Solli and her colleagues report from an ethnographic study performed during the first semester of a 5-year program in biotechnology at a technical university in Sweden. Their study…

  8. Biotechnology education as social and cultural production/reproduction of the biotechnology community

    Science.gov (United States)

    Andrée, Maria

    2014-03-01

    This paper is a commentary to a paper by Anne Solli, Frank Bach and Björn Åkerman on how students at a technical university learn to argue as biotechnologists. Solli and her colleagues report from an ethnographic study performed during the first semester of a 5-year program in biotechnology at a technical university in Sweden. Their study demonstrates how students begin to acquire `the right way' of approaching the controversial issue of producing and consuming genetically modified organisms. In my response I discuss the ethnographic account of this particular educational practice in terms of social and cultural production/reproduction of a biotechnology community and how the participants (students and teaching professors) deal with the dialectic of individual and collective transformation. In the perspective of the biotechnology community, the work done by the teaching professor becomes a way of ensuring the future of the biotechnology community in terms of what values and objectives are held highly in the community of practice.

  9. Water balance in paired watersheds with eucalyptus and degraded grassland in Pampa biome

    Science.gov (United States)

    Rangelands of the Pampa biome, which cover regions of Argentina, Uruguay and Brazil (176,496 km2 – 2.07% of Brazilian territory and 63% of Rio Grande do Sul State territory, southern region of Brazil) in South America (total area of 750,000 km2), are being substituted by crops and commercial eucalyp...

  10. Selection of native trees for intercropping with coffee in the Atlantic Rainforest biome

    NARCIS (Netherlands)

    Souza, de H.N.; Cardoso, I.M.; Fernandes, J.M.; Garcia, F.C.P.; Bonfim, V.R.; Santos, A.C.; Carvalho, A.F.; Mendonca, E.S.

    2010-01-01

    A challenge in establishing agroforestry systems is ensuring that farmers are interested in the tree species, and are aware of how to adequately manage these species. This challenge was tackled in the Atlantic Rainforest biome (Brazil), where a participatory trial with agroforestry coffee systems

  11. A new species of Andocaeculus (Acari, Caeculidae) from the Pampa biome, southern Brazil

    OpenAIRE

    Ana Paula Ott; Ricardo Ott

    2014-01-01

    A new caeculid species Andocaeculus caioi sp. nov. is described from Pampa biome in south Brazil. The species of this family are usually large and strong sclerotized mites with robust and spinulose legs I and II. Until now records of species for South America were known only from Chile and Argentina.

  12. Hantavirus pulmonary syndrome and rodent reservoirs in the savanna-like biome of Brazil's southeastern region.

    Science.gov (United States)

    Limongi, J E; Oliveira, R C; Guterres, A; Costa Neto, S F; Fernandes, J; Vicente, L H B; Coelho, M G; Ramos, V N; Ferreira, M S; Bonvicino, C R; D'Andrea, P S; Lemos, E R S

    2016-04-01

    This paper describes the diversity of rodent fauna in an area endemic for hantavirus cardiopulmonary syndrome (HCPS) in Brazil, the population dynamics and the relationship of rodents with hantavirus in the Cerrado (savanna-like) biome. Additionally, an analysis is made of the partial S segment sequences of the hantaviruses obtained from serologically confirmed human HCPS cases and from rodent specimens. Rodents were collected during four campaigns. Human serum samples were collected from suspected cases of HCPS at hospitals in the state of Minas Gerais. The samples antibody-reactive by ELISA were processed by RT-PCR. The PCR product was amplified and sequenced. Hantavirus was detected only in Necromys lasiurus, the wild rodent species most prevalent in the Cerrado biome (min-max: 50-83·7%). All the six human serum samples were hantavirus seropositive and five showed amplified PCR products. The analysis of the nucleotide sequences showed the circulation of a single genotype, the Araraquara hantavirus. The environmental changes that have occurred in the Cerrado biome in recent decades have favoured N. lasiurus in interspecific competition of habitats, thus increasing the risk of contact between humans and rodent species infected with hantavirus. Our data corroborate the definition of N. lasiurus as the main hantavirus reservoir in the Cerrado biome.

  13. Extreme precipitation patterns and reductions of terrestrial ecosystem production across biomes

    Science.gov (United States)

    Yongguang Zhang; M. Susan Moran; Mark A. Nearing; Guillermo E. Ponce Campos; Alfredo R. Huete; Anthony R. Buda; David D. Bosch; Stacey A. Gunter; Stanley G. Kitchen; W. Henry McNab; Jack A. Morgan; Mitchel P. McClaran; Diane S. Montoya; Debra P.C. Peters; Patrick J. Starks

    2013-01-01

    Precipitation regimes are predicted to shift to more extreme patterns that are characterized by more heavy rainfall events and longer dry intervals, yet their ecological impacts on vegetation production remain uncertain across biomes in natural climatic conditions. This in situ study investigated the effects of these climatic conditions on aboveground net primary...

  14. The Biome Project: Developing a Legitimate Parallel Curriculum for Physical Education and Life Sciences

    Science.gov (United States)

    Hastie, Peter Andrew

    2013-01-01

    The purpose of this article is to describe the outcomes of a parallel curriculum project between life sciences and physical education. Throughout a 6-week period, students in grades two through five became members of teams that represented different animal species and biomes, and concurrently participated in a season of gymnastics skills and…

  15. Guide to the literature on research in the grassland biome of South Africa

    CSIR Research Space (South Africa)

    Tainton, MN

    1984-12-01

    Full Text Available the development of an understanding of how these communities can best be managed to ensure their sustained producti¬vity, or indeed to increase their productivity. This publication serves to highlight the main work which has been undertaken in this biome...

  16. Remotely sensed vegetation phenology for describing and predicting the biomes of South Africa

    CSIR Research Space (South Africa)

    Wessels, Konrad J

    2011-02-01

    Full Text Available the distribution of the recently redefined biomes be predicted based on remotely sensed, phenology and productivity metrics? Ten-day, 1 km, NDVI AVHRR were analysed for the period 1985 to 2000. Phenological metrics such as start, end and length of the growing...

  17. Modeling Carbon and Water Budgets in the Lushi Basin with Biome-BGC

    Institute of Scientific and Technical Information of China (English)

    Dong Wenjuan; Qi Ye; Li Huimin; Zhou Dajie; Shi Duanhua; Sun Liying

    2005-01-01

    In this article, annual evapotranspiration (ET) and net primary productivity (NPP) of four types of vegetation were estimated for the Lushi basin,a subbasin of the Yellow River in China. These four vegetation types include: deciduous broadleaf forest,evergreen needle leaf forest, dwarf shrub and grass.Biome-BGC--a biogeochemical process model was used to calculate annual ET and NPP for each vegetation type in the study area from 1954 to 2000.Daily microclimate data of 47 years monitored by Lushi meteorological station was extrapolated to cover the basin using MT-CLIM, a mountain microclimate simulator. The output files of MTCLIM were used to feed Biome-BGC. We used average ecophysiological values of each type of vegetation supplied by Numerical Terradynamic Simulation Group (NTSG) in the University of Montana as input ecophysiological constants file.The estimates of daily NPP in early July and annual ET on these four biome groups were compared respectively with field measurements and other studies.Daily gross primary production (GPP) of evergreen needle leaf forest measurements were very dose to the output of Biome-BGC, but measurements of broadleaf forest and dwarf shrub were much smaller than the simulation result. Simulated annual ET and NPP had a significant correlation with precipitation,indicating precipitation is the major environmental factor affecting ET and NPP in the study area.Precipitation also is the key climatic factor for the interannual ET and NPP variations.

  18. Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes.

    NARCIS (Netherlands)

    Cornelissen, J.H.C.; van Bodegom, P.M.; Aerts, R.; Gallaghan, T.V.; van Logtestijn, R.S.P; Alatalo, J.; Chapin, F.S. III; Gerdol, R.; Gudmundsson, J.; Gwynn-Jones, D.; Hartley, A.E.; Hik, D.S.; Hofgaard, A.; Jonsdottir, I.S.; Karlsson, S.; Klein, J.A.; Laundre, J.; Magnusson, B.; Michelsel, A.; Molau, U.; Onipchenko, V.G.; Quested, H.M.; Sandvik, S.M.; Schmidt, I.K.; Shaver, G.R.; Solhleim, B.; Soudzilovskaia, N.A.; Stenstrom, A.; Tolvanen, A.; Totland, O.; Wada, N.; Welker, J.M.; Zhao, X.; Team, M.O.L.

    2007-01-01

    Whether climate change will turn cold biomes from large long-term carbon sinks into sources is hotly debated because of the great potential for ecosystem-mediated feedbacks to global climate. Critical are the direction, magnitude and generality of climate responses of plant litter decomposition.

  19. The freezer defrosting: global warming and litter decomposition rates in cold biomes. Essay review.

    NARCIS (Netherlands)

    Aerts, R.

    2006-01-01

    1 Decomposition of plant litter, a key component of the global carbon budget, is hierarchically controlled by the triad: climate > litter quality > soil organisms. Given the sensitivity of decomposition to temperature, especially in cold biomes, it has been hypothesized that global warming will lead

  20. A reconstruction of Colombian biomes derived from modern pollen data along an altitude gradient

    NARCIS (Netherlands)

    Marchant, R.; Berrío, J.C.; Cleef, A.M.; Duivenvoorden, J.; Helmens, K.; Hooghiemstra, H.; Kuhry, P.; Melief, B.; Schreve-Brinkman, E.; Geel, van B.; Reenen, van G.; Hammen, van der T.

    2001-01-01

    Biomes are reconstructed in Colombia from modern (core-top) pollen data derived from 22 sites along an altitudinal gradient (2000–4100 m) that encompasses the tree line. The `biomization' methodology is described in a stepwise manner that details the reconstruction of vegetation along an altitudinal

  1. A reconstruction of Colombian biomes derived from modern pollen data along an altitude gradient.

    NARCIS (Netherlands)

    Marchant, R.A.; Behling, H.; Berrio Mogollon, J.C.; Cleef, A.M.; Duivenvoorden, J.F.; van Geel, B.; van der Hammen, T.; Hooghiemstra, H.; Kuhry, P.; Melief, B.M.; van Reenen, G.B.A.; Wille, M.

    2001-01-01

    Biomes are reconstructed in Colombia from modern (core-top) pollen data derived from twenty-two sites along an altitudinal gradient (2000 to 4100 m) that encompasses the tree line. The 'biomization' methodology is described in a stepwise manner that details the reconstruction of vegetation along an

  2. Pollen-based biome reconstructions for Colombia at 3000, 6000, 15 000 and 18 000 14C yr ago : Late Quaternary tropical vegetation dynamics

    NARCIS (Netherlands)

    Marchant, R.; Behling, H.; Berrío, J.C.; Cleef, A.M.; Duivenvoorden, J.; Hooghiemstra, H.; Kuhry, P.; Melief, B.; Schreve-Brinkman, E.; Geel, van B.; Hammen, van der T.; Reenen, van G.

    2002-01-01

    Colombian biomes are reconstructed at 45 sites from the modern period extending to the Last Glacial Maximum (LGM). The basis for our reconstruction is pollen data assigned to plant functional types and biomes at six 3000-yr intervals. A reconstruction of modern biomes is used to check the treatment

  3. Estimating 40 years of nitrogen deposition in global biomes using the SCIAMACHY NO2 column

    Science.gov (United States)

    Lu, Xuehe; Zhang, Xiuying; Liu, Jinxun; Jin, Jiaxin

    2016-01-01

    Owing to human activity, global nitrogen (N) cycles have been altered. In the past 100 years, global N deposition has increased. Currently, the monitoring and estimating of N deposition and the evaluation of its effects on global carbon budgets are the focus of many researchers. NO2 columns retrieved by space-borne sensors provide us with a new way of exploring global N cycles and these have the ability to estimate N deposition. However, the time range limitation of NO2 columns makes the estimation of long timescale N deposition difficult. In this study we used ground-based NOx emission data to expand the density of NO2columns, and 40 years of N deposition (1970–2009) was inverted using the multivariate linear model with expanded NO2 columns. The dynamic of N deposition was examined in both global and biome scales. The results show that the average N deposition was 0.34 g N m–2 year–1 in the 2000s, which was an increase of 38.4% compared with the 1970s’. The total N deposition in different biomes is unbalanced. N deposition is only 38.0% of the global total in forest biomes; this is made up of 25.9%, 11.3, and 0.7% in tropical, temperate, and boreal forests, respectively. As N-limited biomes, there was little increase of N deposition in boreal forests. However, N deposition has increased by a total of 59.6% in tropical forests and croplands, which are N-rich biomes. Such characteristics may influence the effects on global carbon budgets.

  4. Forest carbon emissions from cropland expansion in the Brazilian Cerrado biome

    Science.gov (United States)

    Noojipady, Praveen; Morton, C. Douglas; Macedo, N. Marcia; Victoria, C. Daniel; Huang, Chengquan; Gibbs, K. Holly; Edson Bolfe, L.

    2017-02-01

    Land use, land use change, and forestry accounted for two-thirds of Brazil’s greenhouse gas emissions profile in 2005. Amazon deforestation has declined by more than 80% over the past decade, yet Brazil’s forests extend beyond the Amazon biome. Rapid expansion of cropland in the neighboring Cerrado biome has the potential to undermine climate mitigation efforts if emissions from dry forest and woodland conversion negate some of the benefits of avoided Amazon deforestation. Here, we used satellite data on cropland expansion, forest cover, and vegetation carbon stocks to estimate annual gross forest carbon emissions from cropland expansion in the Cerrado biome. Nearly half of the Cerrado met Brazil’s definition of forest cover in 2000 (≥0.5 ha with ≥10% canopy cover). In areas of established crop production, conversion of both forest and non-forest Cerrado formations for cropland declined during 2003-2013. However, forest carbon emissions from cropland expansion increased over the past decade in Matopiba, a new frontier of agricultural production that includes portions of Maranhão, Tocantins, Piauí, and Bahia states. Gross carbon emissions from cropland expansion in the Cerrado averaged 16.28 Tg C yr-1 between 2003 and 2013, with forest-to-cropland conversion accounting for 29% of emissions. The fraction of forest carbon emissions from Matopiba was much higher; between 2010-2013, large-scale cropland conversion in Matopiba contributed 45% of total Cerrado forest carbon emissions. Carbon emissions from Cerrado-to-cropland transitions offset 5%-7% of the avoided emissions from reduced Amazon deforestation rates during 2011-2013. Comprehensive national estimates of forest carbon fluxes, including all biomes, are critical to detect cross-biome leakage within countries and achieve climate mitigation targets to reduce emissions from land use, land use change, and forestry.

  5. Temporal Changes in Coupled Vegetation Phenology and Productivity are Biome-Specific in the Northern Hemisphere

    Directory of Open Access Journals (Sweden)

    Lanhui Wang

    2017-12-01

    Full Text Available Global warming has greatly stimulated vegetation growth through both extending the growing season and promoting photosynthesis in the Northern Hemisphere (NH. Analyzing the combined dynamics of such trends can potentially improve our current understanding on changes in vegetation functioning and the complex relationship between anthropogenic and climatic drivers. This study aims to analyze the relationships (long-term trends and correlations of length of vegetation growing season (LOS and vegetation productivity assessed by the growing season NDVI integral (GSI in the NH (>30°N to study any dependency of major biomes that are characterized by different imprint from anthropogenic influence. Spatial patterns of converging/diverging trends in LOS and GSI and temporal changes in the coupling between LOS and GSI are analyzed for major biomes at hemispheric and continental scales from the third generation Global Inventory Monitoring and Modeling Studies (GIMMS Normalized Difference Vegetation Index (NDVI dataset for a 32-year period (1982–2013. A quarter area of the NH is covered by converging trends (consistent significant trends in LOS and GSI, whereas diverging trends (opposing significant trends in LOS and GSI cover about 6% of the region. Diverging trends are observed mainly in high latitudes and arid/semi-arid areas of non-forest biomes (shrublands, savannas, and grasslands, whereas forest biomes and croplands are primarily characterized by converging trends. The study shows spatially-distinct and biome-specific patterns between the continental land masses of Eurasia (EA and North America (NA. Finally, areas of high positive correlation between LOS and GSI showed to increase during the period of analysis, with areas of significant positive trends in correlation being more widespread in NA as compared to EA. The temporal changes in the coupled vegetation phenology and productivity suggest complex relationships and interactions that are induced

  6. Aura-biomes are present in the water layer above coral reef benthic macro-organisms.

    Science.gov (United States)

    Walsh, Kevin; Haggerty, J Matthew; Doane, Michael P; Hansen, John J; Morris, Megan M; Moreira, Ana Paula B; de Oliveira, Louisi; Leomil, Luciana; Garcia, Gizele D; Thompson, Fabiano; Dinsdale, Elizabeth A

    2017-01-01

    As coral reef habitats decline worldwide, some reefs are transitioning from coral- to algal-dominated benthos with the exact cause for this shift remaining elusive. Increases in the abundance of microbes in the water column has been correlated with an increase in coral disease and reduction in coral cover. Here we investigated how multiple reef organisms influence microbial communities in the surrounding water column. Our study consisted of a field assessment of microbial communities above replicate patches dominated by a single macro-organism. Metagenomes were constructed from 20 L of water above distinct macro-organisms, including (1) the coral Mussismilia braziliensis , (2) fleshy macroalgae ( Stypopodium , Dictota and Canistrocarpus ), (3) turf algae, and (4) the zoanthid Palythoa caribaeorum and were compared to the water microbes collected 3 m above the reef. Microbial genera and functional potential were annotated using MG-RAST and showed that the dominant benthic macro-organisms influence the taxa and functions of microbes in the water column surrounding them, developing a specific "aura-biome". The coral aura-biome reflected the open water column, and was associated with Synechococcus and functions suggesting oligotrophic growth, while the fleshy macroalgae aura-biome was associated with Ruegeria , Pseudomonas, and microbial functions suggesting low oxygen conditions. The turf algae aura-biome was associated with Vibrio, Flavobacterium, and functions suggesting pathogenic activity, while zoanthids were associated with Alteromonas and functions suggesting a stressful environment. Because each benthic organism has a distinct aura-biome, a change in benthic cover will change the microbial community of the water, which may lead to either the stimulation or suppression of the recruitment of benthic organisms.

  7. Forgotten forests - issues and prospects in biome mapping using Seasonally Dry Tropical Forests as a case study

    Science.gov (United States)

    2011-01-01

    Background South America is one of the most species diverse continents in the world. Within South America diversity is not distributed evenly at both local and continental scales and this has led to the recognition of various areas with unique species assemblages. Several schemes currently exist which divide the continental-level diversity into large species assemblages referred to as biomes. Here we review five currently available biome maps for South America, including the WWF Ecoregions, the Americas basemap, the Land Cover Map of South America, Morrone's Biogeographic regions of Latin America, and the Ecological Systems Map. The comparison is performed through a case study on the Seasonally Dry Tropical Forest (SDTF) biome using herbarium data of habitat specialist species. Results Current biome maps of South America perform poorly in depicting SDTF distribution. The poor performance of the maps can be attributed to two main factors: (1) poor spatial resolution, and (2) poor biome delimitation. Poor spatial resolution strongly limits the use of some of the maps in GIS applications, especially for areas with heterogeneous landscape such as the Andes. Whilst the Land Cover Map did not suffer from poor spatial resolution, it showed poor delimitation of biomes. The results highlight that delimiting structurally heterogeneous vegetation is difficult based on remote sensed data alone. A new refined working map of South American SDTF biome is proposed, derived using the Biome Distribution Modelling (BDM) approach where georeferenced herbarium data is used in conjunction with bioclimatic data. Conclusions Georeferenced specimen data play potentially an important role in biome mapping. Our study shows that herbarium data could be used as a way of ground-truthing biome maps in silico. The results also illustrate that herbarium data can be used to model vegetation maps through predictive modelling. The BDM approach is a promising new method in biome mapping, and could be

  8. Forgotten forests--issues and prospects in biome mapping using Seasonally Dry Tropical Forests as a case study.

    Science.gov (United States)

    Särkinen, Tiina; Iganci, João R V; Linares-Palomino, Reynaldo; Simon, Marcelo F; Prado, Darién E

    2011-11-24

    South America is one of the most species diverse continents in the world. Within South America diversity is not distributed evenly at both local and continental scales and this has led to the recognition of various areas with unique species assemblages. Several schemes currently exist which divide the continental-level diversity into large species assemblages referred to as biomes. Here we review five currently available biome maps for South America, including the WWF Ecoregions, the Americas basemap, the Land Cover Map of South America, Morrone's Biogeographic regions of Latin America, and the Ecological Systems Map. The comparison is performed through a case study on the Seasonally Dry Tropical Forest (SDTF) biome using herbarium data of habitat specialist species. Current biome maps of South America perform poorly in depicting SDTF distribution. The poor performance of the maps can be attributed to two main factors: (1) poor spatial resolution, and (2) poor biome delimitation. Poor spatial resolution strongly limits the use of some of the maps in GIS applications, especially for areas with heterogeneous landscape such as the Andes. Whilst the Land Cover Map did not suffer from poor spatial resolution, it showed poor delimitation of biomes. The results highlight that delimiting structurally heterogeneous vegetation is difficult based on remote sensed data alone. A new refined working map of South American SDTF biome is proposed, derived using the Biome Distribution Modelling (BDM) approach where georeferenced herbarium data is used in conjunction with bioclimatic data. Georeferenced specimen data play potentially an important role in biome mapping. Our study shows that herbarium data could be used as a way of ground-truthing biome maps in silico. The results also illustrate that herbarium data can be used to model vegetation maps through predictive modelling. The BDM approach is a promising new method in biome mapping, and could be particularly useful for mapping

  9. Forgotten forests - issues and prospects in biome mapping using Seasonally Dry Tropical Forests as a case study

    Directory of Open Access Journals (Sweden)

    Särkinen Tiina

    2011-11-01

    Full Text Available Abstract Background South America is one of the most species diverse continents in the world. Within South America diversity is not distributed evenly at both local and continental scales and this has led to the recognition of various areas with unique species assemblages. Several schemes currently exist which divide the continental-level diversity into large species assemblages referred to as biomes. Here we review five currently available biome maps for South America, including the WWF Ecoregions, the Americas basemap, the Land Cover Map of South America, Morrone's Biogeographic regions of Latin America, and the Ecological Systems Map. The comparison is performed through a case study on the Seasonally Dry Tropical Forest (SDTF biome using herbarium data of habitat specialist species. Results Current biome maps of South America perform poorly in depicting SDTF distribution. The poor performance of the maps can be attributed to two main factors: (1 poor spatial resolution, and (2 poor biome delimitation. Poor spatial resolution strongly limits the use of some of the maps in GIS applications, especially for areas with heterogeneous landscape such as the Andes. Whilst the Land Cover Map did not suffer from poor spatial resolution, it showed poor delimitation of biomes. The results highlight that delimiting structurally heterogeneous vegetation is difficult based on remote sensed data alone. A new refined working map of South American SDTF biome is proposed, derived using the Biome Distribution Modelling (BDM approach where georeferenced herbarium data is used in conjunction with bioclimatic data. Conclusions Georeferenced specimen data play potentially an important role in biome mapping. Our study shows that herbarium data could be used as a way of ground-truthing biome maps in silico. The results also illustrate that herbarium data can be used to model vegetation maps through predictive modelling. The BDM approach is a promising new method in

  10. Invasion of a Legume Ecosystem Engineer in a Cold Biome Alters Plant Biodiversity

    Directory of Open Access Journals (Sweden)

    Vanessa M. S. Vetter

    2018-06-01

    Full Text Available Plant ecosystem engineers are widely used to combat land degradation. However, the ability of those plants to modulate limiting abiotic and biotic resources of other species can cause damage to ecosystems in which they become invasive. Here, we use Lupinus nootkatensis as example to estimate and project the hazardous potential of nitrogen fixing herbaceous plants in a sub-polar oceanic climate. L. nootkatensis was introduced to Iceland in the 1940s to address erosion problems and foster reforestation, but subsequently became a high-latitude invader. In a local field survey, we quantified the impact of L. nootkatensis invasion at three different cover levels (0, 10–50, and 51–100% upon native plant diversity, richness, and community composition of heath-, wood-, and grasslands using a pairwise comparison design and comparisons of means. Afterward, we scaled impacts up to the ecosystem and landscape level by relating occurrences of L. nootkatensis to environmental and human-mediated variables across Iceland using a species distribution model. Plant diversity was significantly deteriorated under high lupine cover levels of the heath- and woodland, but not in the grassland. Plant species richness of the most diverse habitat, the heathland, linearly decreased with lupine cover level. The abundance of small rosettes, cushion plants, orchids, and small woody long-lived plants of the heath declined with invader presence, while the abundance of late successional species and widespread nitrophilous ruderals in wood- and grasslands increased. Distribution modeling revealed 13.3% of Iceland’s land surface area to be suitable lupine habitat. Until 2061–2080, this area will more than double and expand significantly into the Central Highlands due to human mediation and increasingly favorable climatic conditions. Species-rich habitats showed a loss of plant species diversity and richness as well as a change in community composition even in low lupine

  11. Mannan biotechnology: from biofuels to health.

    Science.gov (United States)

    Yamabhai, Montarop; Sak-Ubol, Suttipong; Srila, Witsanu; Haltrich, Dietmar

    2016-01-01

    Mannans of different structure and composition are renewable bioresources that can be widely found as components of lignocellulosic biomass in softwood and agricultural wastes, as non-starch reserve polysaccharides in endosperms and vacuoles of a wide variety of plants, as well as a major component of yeast cell walls. Enzymatic hydrolysis of mannans using mannanases is essential in the pre-treatment step during the production of second-generation biofuels and for the production of potentially health-promoting manno-oligosaccharides (MOS). In addition, mannan-degrading enzymes can be employed in various biotechnological applications, such as cleansing and food industries. In this review, fundamental knowledge of mannan structures, sources and functions will be summarized. An update on various aspects of mannan-degrading enzymes as well as the current status of their production, and a critical analysis of the potential application of MOS in food and feed industries will be given. Finally, emerging areas of research on mannan biotechnology will be highlighted.

  12. Biotechnological production of vanillin using immobilized enzymes.

    Science.gov (United States)

    Furuya, Toshiki; Kuroiwa, Mari; Kino, Kuniki

    2017-02-10

    Vanillin is an important and popular plant flavor, but the amount of this compound available from plant sources is very limited. Biotechnological methods have high potential for vanillin production as an alternative to extraction from plant sources. Here, we report a new approach using immobilized enzymes for the production of vanillin. The recently discovered oxygenase Cso2 has coenzyme-independent catalytic activity for the conversion of isoeugenol and 4-vinylguaiacol to vanillin. Immobilization of Cso2 on Sepabeads EC-EA anion-exchange carrier conferred enhanced operational stability enabling repetitive use. This immobilized Cso2 catalyst allowed 6.8mg yield of vanillin from isoeugenol through ten reaction cycles at a 1mL scale. The coenzyme-independent decarboxylase Fdc, which has catalytic activity for the conversion of ferulic acid to 4-vinylguaiacol, was also immobilized on Sepabeads EC-EA. We demonstrated that the immobilized Fdc and Cso2 enabled the cascade synthesis of vanillin from ferulic acid via 4-vinylguaiacol with repetitive use of the catalysts. This study is the first example of biotechnological production of vanillin using immobilized enzymes, a process that provides new possibilities for vanillin production. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Biosurfactants: Promising Molecules for Petroleum Biotechnology Advances

    Directory of Open Access Journals (Sweden)

    DARNE GERMANO DE ALMEIDA

    2016-10-01

    Full Text Available The growing global demand for sustainable technologies that improves the efficiency of petrochemical processes in the oil industry has driven advances in petroleum biotechnology in recent years. Petroleum industry uses substantial amounts of petrochemical-based synthetic surfactants in its activities as mobilizing agents to increase the availability or recovery of hydrocarbons as well as many other applications related to extraction, treatment, cleaning and transportation. However, biosurfactants have several potential applications for use across the oil processing chain and in the formulations of petrochemical products such as emulsifying/demulsifying agents, anticorrosive, biocides for sulphate-reducing bacteria, fuel formulation, extraction of bitumen from tar sands and many other innovative applications. Due to their versatility and proven efficiency, biosurfactants are often presented as valuable versatile tools that can transform and modernise petroleum biotechnology in an attempt to provide a true picture of state of the art and directions or use in the oil industry. We believe that biosurfactants are going to have a significant role in many future applications in the oil industries and in this review therefore, we highlight recent important relevant applications, patents disclosures and potential future applications for biosurfactants in petroleum and related industries.

  14. Biosurfactants: Promising Molecules for Petroleum Biotechnology Advances.

    Science.gov (United States)

    De Almeida, Darne G; Soares Da Silva, Rita de Cássia F; Luna, Juliana M; Rufino, Raquel D; Santos, Valdemir A; Banat, Ibrahim M; Sarubbo, Leonie A

    2016-01-01

    The growing global demand for sustainable technologies that improves the efficiency of petrochemical processes in the oil industry has driven advances in petroleum biotechnology in recent years. Petroleum industry uses substantial amounts of petrochemical-based synthetic surfactants in its activities as mobilizing agents to increase the availability or recovery of hydrocarbons as well as many other applications related to extraction, treatment, cleaning, and transportation. However, biosurfactants have several potential applications for use across the oil processing chain and in the formulations of petrochemical products such as emulsifying/demulsifying agents, anticorrosive, biocides for sulfate-reducing bacteria, fuel formulation, extraction of bitumen from tar sands, and many other innovative applications. Due to their versatility and proven efficiency, biosurfactants are often presented as valuable versatile tools that can transform and modernize petroleum biotechnology in an attempt to provide a true picture of state of the art and directions or use in the oil industry. We believe that biosurfactants are going to have a significant role in many future applications in the oil industries and in this review therefore, we highlight recent important relevant applications, patents disclosures and potential future applications for biosurfactants in petroleum and related industries.

  15. BIOTECHNOLOGIES OF MEAT PRODUCTS MANUFACTURE. CURRENT STATE

    Directory of Open Access Journals (Sweden)

    Bal-Prilipko L. V.

    2014-10-01

    Full Text Available The analysis of literature and patents related to the possibilities of biotechnology for optimizing the domestic meat processing plants was the aim of the article. The analysis of the results of the use of biotechnological methods in the meat processing industry is given. The prospects for their implementation are evaluated. The main development strategy of technological meat processing to develop the methods of obtaining high quality and safe meat products is highlighted. Targeted use of special strains of microorganisms in production of functional meat products offers some opportunities. Thus, such action is associated with formation of the following specific dietary components: organic acids, bactericins, enzymes, vitamins and others. They promote to improve the sanitary microbiological, organoleptic, functional and technological parameters of meat products. Using of denitrifying microbial strains could reduce the residual content of sodium nitrite in the finished product, minimizing the possible carcinogenic and mutagenic impact of this compound on a human body, producing functional safe products while maintaining its high organoleptic characteristics.

  16. Halophiles, coming stars for industrial biotechnology.

    Science.gov (United States)

    Yin, Jin; Chen, Jin-Chun; Wu, Qiong; Chen, Guo-Qiang

    2015-11-15

    Industrial biotechnology aims to produce chemicals, materials and biofuels to ease the challenges of shortage on petroleum. However, due to the disadvantages of bioprocesses including energy consuming sterilization, high fresh water consumption, discontinuous fermentation to avoid microbial contamination, highly expensive stainless steel fermentation facilities and competing substrates for human consumption, industrial biotechnology is less competitive compared with chemical processes. Recently, halophiles have shown promises to overcome these shortcomings. Due to their unique halophilic properties, some halophiles are able to grow in high pH and high NaCl containing medium under higher temperature, allowing fermentation processes to run contamination free under unsterile conditions and continuous way. At the same time, genetic manipulation methods have been developed for halophiles. So far, halophiles have been used to produce bioplastics polyhydroxyalkanoates (PHA), ectoines, enzymes, and bio-surfactants. Increasing effects have been made to develop halophiles into a low cost platform for bioprocessing with advantages of low energy, less fresh water consumption, low fixed capital investment, and continuous production. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Governing nanobiotechnology: lessons from agricultural biotechnology regulation

    International Nuclear Information System (INIS)

    Johnson, Robbin S.

    2011-01-01

    This article uses lessons from biotechnology to help inform the design of oversight for nanobiotechnology. Those lessons suggest the following: first, oversight needs to be broadly defined, encompassing not just regulatory findings around safety and efficacy, but also public understanding and acceptance of the technology and its products. Second, the intensity of scrutiny and review should reflect not just risks but also perceptions of risk. Finally, a global marketplace argues for uniform standards or commercially practical solutions to differences in standards. One way of designing oversight to achieve these purposes is to think about it in three phases—precaution, prudence, and promotion. Precaution comes early in the technology or product’s development and reflects real and perceived uncertainties. Prudence governs when risks and hazards have been identified, containment approaches established, and benefits broadly defined. Transparency and public participation rise to the fore. The promotional phase moves toward shaping public understanding and acceptance and involves marketing issues rather than safety ones. This flexible, three-phase approach to oversight would have avoided some of the early regulatory problems with agricultural biotechnology. It also would have led to a more risk-adjusted pathway to regulatory approval. Furthermore, it would avoid some of the arbitrary, disruptive marketing issues that have arisen.

  18. Nuclear energy in the age of biotechnology

    International Nuclear Information System (INIS)

    Deocaris, C.C.

    2002-01-01

    The unprecedented rate of discovery in molecular biology and biotechnology, in particular, the human genome sciences, has already far surpassed advancements in aerospace and nuclear science. Its influence will not only permanently mold perspectives in health, medicine and the life sciences, but will also create an impact in the field of nuclear energy development. In the next 50 years, nuclear power run by fission-reactions will be relaunched. It is bound to present more diverse applications, e.g., in propelling ships, in the production of heat for industry and for space heating, and perhaps in the desalination of water. The general public will be more at ease with nuclear power knowing that there is no other form of energy capable of delivering so much power at reasonable cost with negligible impact on climate and environment in what is perceived to be the coming of a nuclear rennaissance (Blix, 2001). This paper surveys opportunities for future nuclear energy applications in biotechnology, including DNA-damage sensors, bioelectronics and computers, genetic testing of nuclear workers and upgrading of biofuels. The relevance of these myriads of biosystems applications may not 'ust complement requirements of a nuclear power program in improving overall efficiency and safety but may also provide more diverse uses of nuclear power that may find use for developing nations. (Author)

  19. Scientific underpinnings of biotechnology regulatory frameworks.

    Science.gov (United States)

    Gleim, Savannah; Smyth, Stuart J

    2018-05-25

    Part of what is presently missing at domestic regulatory levels (and that is important at the international level as well) is a detailed understanding of what the rules of, and for, regulation should be, who the actors, stakeholders and major decision makers are and finally, how to get agreement about the rules. Greater insights into the system of rules that underpin regulatory frameworks for agri-food and biotechnology products in genetically modified (GM) crop- adopting nations will provide value by clarifying the evidence used to commercialize these technologies. This article examines the public documents available from Canada, the United States, the European Union and the Organisation for Economic Cooperation and Development regarding the development of regulatory risk assessment frameworks for products of biotechnology to determine what science grounds these frameworks. The documentation used to provide the initial structure to the existing regulatory frameworks identifies the linkages, connections and relationships that exist between science, risk assessment and regulatory policy. The relationship between risk and regulation has never been more critical to the commercialization of innovative agricultural products. Documenting the role of science-based risk assessment in regulations and how this has changed over the 20 years of experience in regulating GM crops will identify changes in the risk/regulation relationship. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  20. BIOTECHNOLOGICAL ASPECTS ANALYSIS OF AGRICULTURAL POULTRY MICROFLORA

    Directory of Open Access Journals (Sweden)

    Garda S. A.

    2014-07-01

    Full Text Available Probiotics based on normal microflora of the birds using perspective strains become increasingly popular for treatment and prophylaxis of dysbacteriosis in poultry. The purpose of the work is the biotechnological data analysis of the composition and functions of the microflora of different birds’ biotopes. One of biotechnological methods for the study of bacterial flora in the birds is a method of in vivo bacteriological control — analysis of group samples of fresh droppings. To study bird bacterial microflora the method based on vital bacteriological control (group sample study of fresh brood is the most effective. Only 60–70% of microorganisms are identified during the analysis of bowels bird microflora. It is shown that the normal microflora of the birds has a protective function because it is colonized on epithelial intestinal area and competes for power sources, has a wider set of enzymes, and also produces a wide range of exometabolites that determine their antagonistic action on pathogenic and conditionally pathogenic transient microorganisms. To improve modern technologies concerning cultivation of various breeds of birds with high genetic potential it needs full understanding of endogenous microflora role in a bird body. We found that as a source of probiotic strains it is better to use gastrointestinal tract laying hens and/or to make a selection of group tests of their fresh litter. Thus the best probiotic properties are characterized by microorganisms genera Bifidobacterium and Lactobacillus. The results could be used for selection of promising strains to create a acomplex probiotic.

  1. Uses of biotechnology in waste treatment

    International Nuclear Information System (INIS)

    Holmes, R.G.G.; Benson, J.

    1996-01-01

    BNFL have invested in a Biotechnology programme to address waste treatment problems. The use of biotechnology to destroy organic pollutants is well known and has been successfully employed both in-situ and ex-situ. The BNFL approach has been to concentrate on the interaction of microbial systems with inorganic materials. This study has resulted in two major programmes of work that show every indication of being suitable for large scale application. The first programme of work investigated using, to decontaminate concrete surfaces, the phenomena of concrete degradation by sulphur oxidizing bacteria. Laboratory tests proved encouraging and have resulted in a Co-operative Research and Development Agreement (CRADA), between BNFL and Lockheed Martin Idaho Technologies Company for the INEL site. The CRADA will lead to a demonstration of the technology. The second major area of investigation is the development of an integrated bioremediation process for the removal and recovery of toxic heavy metals from contaminated land. The two stage process, which can be employed in an in-situ or ex-situ mode, involves the use of indigenous micro-organisms to generate sulphuric acid and environmental consortia to generate hydrogen sulphide. This project has reached the point of field trials. Results from both programmes will be presented and their applications at nuclear sites detailed

  2. Biosurfactants: Promising Molecules for Petroleum Biotechnology Advances

    Science.gov (United States)

    De Almeida, Darne G.; Soares Da Silva, Rita de Cássia F.; Luna, Juliana M.; Rufino, Raquel D.; Santos, Valdemir A.; Banat, Ibrahim M.; Sarubbo, Leonie A.

    2016-01-01

    The growing global demand for sustainable technologies that improves the efficiency of petrochemical processes in the oil industry has driven advances in petroleum biotechnology in recent years. Petroleum industry uses substantial amounts of petrochemical-based synthetic surfactants in its activities as mobilizing agents to increase the availability or recovery of hydrocarbons as well as many other applications related to extraction, treatment, cleaning, and transportation. However, biosurfactants have several potential applications for use across the oil processing chain and in the formulations of petrochemical products such as emulsifying/demulsifying agents, anticorrosive, biocides for sulfate-reducing bacteria, fuel formulation, extraction of bitumen from tar sands, and many other innovative applications. Due to their versatility and proven efficiency, biosurfactants are often presented as valuable versatile tools that can transform and modernize petroleum biotechnology in an attempt to provide a true picture of state of the art and directions or use in the oil industry. We believe that biosurfactants are going to have a significant role in many future applications in the oil industries and in this review therefore, we highlight recent important relevant applications, patents disclosures and potential future applications for biosurfactants in petroleum and related industries. PMID:27843439

  3. Potential applications of insect symbionts in biotechnology.

    Science.gov (United States)

    Berasategui, Aileen; Shukla, Shantanu; Salem, Hassan; Kaltenpoth, Martin

    2016-02-01

    Symbiotic interactions between insects and microorganisms are widespread in nature and are often the source of ecological innovations. In addition to supplementing their host with essential nutrients, microbial symbionts can produce enzymes that help degrade their food source as well as small molecules that defend against pathogens, parasites, and predators. As such, the study of insect ecology and symbiosis represents an important source of chemical compounds and enzymes with potential biotechnological value. In addition, the knowledge on insect symbiosis can provide novel avenues for the control of agricultural pest insects and vectors of human diseases, through targeted manipulation of the symbionts or the host-symbiont associations. Here, we discuss different insect-microbe interactions that can be exploited for insect pest and human disease control, as well as in human medicine and industrial processes. Our aim is to raise awareness that insect symbionts can be interesting sources of biotechnological applications and that knowledge on insect ecology can guide targeted efforts to discover microorganisms of applied value.

  4. The application of biotechnology in animal nutrition

    Directory of Open Access Journals (Sweden)

    Šefer Dragan

    2015-01-01

    Full Text Available Animal food has to incorporate multiple objectives, ie. it should provide good animal health, good production and reproductive performance, reduce pollution of the environment as well as have the impact on food of animal origin, by supplying it, in addition to basic nutrients, with certain useful substances that can act preventively on the occurrence of various diseases in humans in modern living conditions. This complex task implies the application of scientific knowledge concerning biotechnology in the field of animal feed production, and also includes the use of specific nutrients that are the result of the latest developments in specific disciplines such as molecular biology and genetic engineering. As a result of researches in these areas there were created some varieties of cereals and legumes with improved nutritional properties. On the other hand, obtaining a safe food of animal origin product imposes the use of substances of natural origin (such as probiotics, prebiotics, phytobiotics, enzymes, chelating forms .., which provide better digestibility and more complete utilization of certain nutrients from the feedstuff. In this way, the quantity of undigested substances are significantly reduced as well as soil and the atmosphere pollution. The use of specific additives in animal nutrition resulting from biotechnological research is most frequent when a problem concerning certain level of production or animal health has to be overcome. This implies a group of non-nutritional ingredients which are aimed to regulate the digestive tract microflora, pH, weight gain, as well as to modify metabolic processes etc.

  5. Microbial lipases: Production, properties and biotechnological applications

    Directory of Open Access Journals (Sweden)

    Josana Maria Messias

    2011-09-01

    Full Text Available Lipases belong to the group of hydrolases that catalyze the hydrolysis of triacylglycerol lipids to free fatty acids and glycerol. They have significant potential biotechnological applications in catalyzing organic synthesis reactions in non-aqueous solvents using simplified procedures resulting in conversions of high yields. Lipase production has conventionally been performed by submerged fermentation; however, solid-state fermentation processes have been prominent when residues are used as substrates because they serve as low-cost nutrient sources. Microbial lipases can be used as additives in foods to modify and enhance organoleptic properties, as well as in detergents to hydrolyse fats in the treatment of oily effluents, and also have value for pharmaceutical, cosmetic, agrochemical, and oil chemical industries. More recently, they are used in transesterification reactions to convert plant seed oils into biodiesel. The objective of this work was to review the published literature on the production, properties and applications of microbial lipases, and its biotechnological role in producing biodiesel.

  6. 75 FR 1749 - Syngenta Biotechnology, Inc.; Availability of Petition and Environmental Assessment for...

    Science.gov (United States)

    2010-01-13

    ...] Syngenta Biotechnology, Inc.; Availability of Petition and Environmental Assessment for Determination of... Health Inspection Service has received a petition from Syngenta Biotechnology, Inc., seeking a....gov ). FOR FURTHER INFORMATION CONTACT: Dr. Subray Hegde, Biotechnology Regulatory Services, APHIS...

  7. 78 FR 27977 - Office of Biotechnology Activities; Recombinant DNA Research: Proposed Actions Under the NIH...

    Science.gov (United States)

    2013-05-13

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology... Recombinant or Synthetic Nucleic Acid Molecules (NIH Guidelines) SUMMARY: The NIH Office of Biotechnology... of Biotechnology Activities, National Institutes of Health, 6705 Rockledge Drive, Suite 750, Bethesda...

  8. El Programa Intensivo Erasmus “Towards a Scientific Career: an Introductory Course for Research in Biomedicine and Biotechnology - BIOMED-TECH”

    Directory of Open Access Journals (Sweden)

    Inmaculada Llamas Company

    2013-11-01

    Full Text Available Dentro del Programa Erasmus Intensivo, y con el objetivo de dirigir alumnos hacia una carrera profesional en el ámbito de la investigación en Biomedicina y Biotecnología aprovechando la fortaleza que aporta el Campus de Excelencia Internacional de la Universidad de Granada (CEI-BioTic como Institución Coordinadora y las universidades de Nottingham (Reino Unido y Bayreuth (Alemania se ha organizado un Workshop destinado a 15 alumnos de másteres relacionados de una manera no excluyente con las áreas de Biomedicina y Biotecnología de forma que participan 5 alumnos de cada una de las Universidades. Como empresas agregadas al proyecto han participado Abbott Laboratories SA, Bio-Iliberis R&D y Neuron Bio así como la Fundación MEDINA. También participarán profesores invitados de prestigio de Universidades y centros de investigación externos al consorcio. El Workshop se ha orientado hacia la tutorización de los alumnos, talleres/prácticas en el campo de la Biomedicina y Biotecnología, visitas programadas a empresas del área, charlas y mesas redondas. Como resultado de estas actividades, que se encuentran en su segunda edición, se ha conseguido en gran medida que los alumnos orienten su actividad profesional hacia la investigación en Biomedicina y/o Biotecnología, conozcan aspectos prácticos de la carrera científica académica y en la industria, conozcan los perfiles científicos profesionales y establezcan una red inicial de contactos en instituciones públicas así como en la industria. Otros resultados alcanzados para el profesorado ha sido el facilitar la cooperación entre universidades y con la industria y establecer procedimientos docentes para la motivación del alumnado hacia la investigación como salida profesional. Actividad financiada por el Organismo Autónomo de Programas Educativos Europeos (OAPEE  2012-1-ES1-ERA10-0083, El Vicerrectorado de Relaciones Internacionales y el Campus de Excelencia CEI-BIOTIC de la Universidad de Granada.

  9. El Programa Intensivo Erasmus “Towards a Scientific Career: an Introductory Course for Research in Biomedicine and Biotechnology - BIOMED-TECH”

    OpenAIRE

    Llamas Company, Inmaculada; Departamento de Bioquímica y Biología molecular, Universidad de Alcalá de Henares, Madrid; Girón González, María Dolores; Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad de Granada, Granada; Hernández-Mateo, Fernando; Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Granada, Granada; Salto González, Rafael; Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad de Granada, Granada

    2013-01-01

    Dentro del Programa Erasmus Intensivo, y con el objetivo de dirigir alumnos hacia una carrera profesional en el ámbito de la investigación en Biomedicina y Biotecnología aprovechando la fortaleza que aporta el Campus de Excelencia Internacional de la Universidad de Granada (CEI-BioTic) como Institución Coordinadora y las universidades de Nottingham (Reino Unido) y Bayreuth (Alemania) se ha organizado un Workshop destinado a 15 alumnos de másteres relacionados de una manera no excluyente con l...

  10. The Biological Observation Matrix (BIOM format or: how I learned to stop worrying and love the ome-ome

    Directory of Open Access Journals (Sweden)

    McDonald Daniel

    2012-07-01

    Full Text Available Abstract Background We present the Biological Observation Matrix (BIOM, pronounced “biome” format: a JSON-based file format for representing arbitrary observation by sample contingency tables with associated sample and observation metadata. As the number of categories of comparative omics data types (collectively, the “ome-ome” grows rapidly, a general format to represent and archive this data will facilitate the interoperability of existing bioinformatics tools and future meta-analyses. Findings The BIOM file format is supported by an independent open-source software project (the biom-format project, which initially contains Python objects that support the use and manipulation of BIOM data in Python programs, and is intended to be an open development effort where developers can submit implementations of these objects in other programming languages. Conclusions The BIOM file format and the biom-format project are steps toward reducing the “bioinformatics bottleneck” that is currently being experienced in diverse areas of biological sciences, and will help us move toward the next phase of comparative omics where basic science is translated into clinical and environmental applications. The BIOM file format is currently recognized as an Earth Microbiome Project Standard, and as a Candidate Standard by the Genomic Standards Consortium.

  11. The plant biotechnology flight: Is Africa on board? | Obembe | African ...

    African Journals Online (AJOL)

    The development of plant biotechnologies has been very rapid in recent times, especially in the developed countries. The technologies have created a new branch of biotechnology known as molecular farming, where plants are engineered to produce pharmaceutical and technical proteins in large quantities. An evaluation ...

  12. A systems engineering perspective on process integration in industrial biotechnology

    NARCIS (Netherlands)

    Kiss, Anton A.; Grievink, Johan; Rito-Palomares, Marco

    2015-01-01

    Biotechnology has many applications in health care, agriculture, industry and the environment. By using renewable raw materials, biotechnology contributes to lowering greenhouse gas emissions and moving away from a petro-based towards a circular sustainable economy. However, major developments are

  13. Application of biotechnology for the domestication of Dacryodes edulis

    African Journals Online (AJOL)

    Biotechnology applications give a scope for rapid improvement and also facilitate the breeding program. Advantages of biotechnology application using molecular markers in breeding programs includes: study of genetic diversity, DNA fingerprinting of individuals, easy identification of specific traits or genes of interest, rapid ...

  14. Sectoral innovation foresight. Biotechnology sector. Final Reeport. Task 2

    NARCIS (Netherlands)

    Valk, T. van der; Gijsbers, G.W.; Meis, M.

    2010-01-01

    Biotechnology has evolved from a single set of technologies in the mid 1970s (e.g. recombinant DNA technology) into the full grown economic activity of today. The set of technologies that constitute the field of biotechnology thus find their applications in different sectors, most notably in

  15. Using the Mystery of the Cyclopic Lamb to Teach Biotechnology

    Science.gov (United States)

    Jensen, Jamie L.

    2010-01-01

    I present a learning cycle that explores different biotechnologies using the process of in situ hybridization as a platform. Students are presented with a cyclopic lamb and must use biotechnology to discover the mechanism behind the deformity. Through this activity, students learn about signal transduction and discover the processes of polymerase…

  16. Current and Future Leaders' Perceptions of Agricultural Biotechnology

    Science.gov (United States)

    Wingenbach, Gary J.; Miller, Rene P.

    2009-01-01

    Were elected state FFA officers' attitudes toward agricultural biotechnology significantly different from elected Texas legislators' attitudes about the same topic? The purpose of this study was to determine if differences existed in agricultural biotechnology perceptions or information source preferences when compared by leadership status:…

  17. Multidimensional Analysis of High-School Students' Perceptions about Biotechnology

    Science.gov (United States)

    Fonseca, Maria Joao; Costa, Patricio; Lencastre, Leonor; Tavares, Fernando

    2012-01-01

    Concerns about public understanding of biotechnology have motivated educational initiatives to improve students' competency to make scientifically sustained decisions regarding controversial issues. Understanding students' perceptions about biotechnology is essential to determine the effectiveness of these programmes. To assess how students'…

  18. Application of biotechnology in genetics and breeding of tall fescue

    International Nuclear Information System (INIS)

    Huang Xin; Ye Hongxia; Shu Xiaoli; Wu Dianxing

    2008-01-01

    Tall fescue (Festuca arundinacea Schred.) is an important lawn and pasture grass in agriculture, animal husbandy and lawn industry. The historical and present situations of tall fescue breeding were briefly introduced, and advances in the researches of molecular biology and germplasm enhancement by biotechnology in tall fescue were reviewed in the paper, which would provide the references for tall fescue breeding by biotechnology. (authors)

  19. Students' Biotechnology Literacy: The Pillars of STEM Education in Malaysia

    Science.gov (United States)

    Bahri, Nurnadiah Mohamed; Suryawati, Evi; Osman, Kamisah

    2014-01-01

    Biotechnology has been widely applied in various products throughout the 21st century. Malaysia selected the biotechnology sector as one of the key strategic technologies that would enable Malaysia to transform into a fully developed nation by the year 2020. However, to date, there has been very little research on the level of biotechnology…

  20. Feeding the world with induced mutations and biotechnology

    International Nuclear Information System (INIS)

    Mohan Jain, S.

    2002-01-01

    The paper discussed the following subjects: biotechnology - somaclonal variation, somatic embryogenesis, somatic cell hybridization; induced mutations - in banana, ornamental plants; in vitro mutagenesis; T-DNA insertional mutagenesis. Suggestions for improving biotechnology in the developing countries also presented in the paper

  1. Too New for Textbooks: The Biotechnology Discoveries & Applications Guidebook

    Science.gov (United States)

    Loftin, Madelene; Lamb, Neil E.

    2013-01-01

    The "Biotechnology Discoveries and Applications" guidebook aims to provide teachers with an overview of the recent advances in genetics and biotechnology, allowing them to share these findings with their students. The annual guidebook introduces a wealth of modern genomic discoveries and provides teachers with tools to integrate exciting…

  2. Agricultural Communications Students' Awareness and Perceptions of Biotechnology Issues.

    Science.gov (United States)

    Wingenbach, Gary J.; Rutherford, Tracy A.; Dunsford, Deborah W.

    2003-01-01

    Agricultural communications students (n=330) from 11 universities were most aware of biotechnology effects on food, less aware of effects on health and the environment. They were somewhat accepting of genetic modifications for plants, not humans. Sources of biotechnology knowledge were science classes, labs, and university professors' beliefs.…

  3.   Biotechnology in Danish forestry - Christmas trees and Biofuels

    DEFF Research Database (Denmark)

    Find, Jens

    for development of additional biotechnological breeding technologies as e.g. genetic transformation, and because SE allows for storage of elite germ plasm over extended periods in liquid nitrogen. The combination of SE and other biotechnological breeding tools permit for relative fast and market oriented breeding...

  4. Of Apples and Animals: An Introduction to Biotechnology.

    Science.gov (United States)

    Mourad, Teresa M.; And Others

    This guide is designed to foster an understanding of the basic concepts underlying biotechnology through simple activities that are fun and creative for students in grades 3-5. It contains four units that will lead young students to an appreciation of how biotechnology is possible and some of its applications. The process of learning is intended…

  5. Western Australian High School Students' Attitudes towards Biotechnology Processes

    Science.gov (United States)

    Dawson, Vaille; Schibeci, Renato

    2003-01-01

    This study reports on the attitudes towards biotechnology of 905, 15-16 year-old students from 11 Western Australian schools. Students were asked to read 15 statements about biotechnology processes and to draw a line to separate what they considered "acceptable" statements from those they considered "unacceptable". Overall, the…

  6. Sectoral Innovation Watch Biotechnology Sector. Final sector report

    NARCIS (Netherlands)

    Enzing, C.

    2011-01-01

    Biotechnology has evolved from a single set of technologies in the mid 1970s into a full grown technological field that is the driving force in innovation processes in many industrial sectors (pharmaceutical, medical, agriculture, food, chemical, environment, instruments). Nowadays, biotechnology is

  7. Biotechnology Patenting in the BRICS Countries: Strategies and Dynamics.

    Science.gov (United States)

    Streltsova, Ekaterina; Linton, Jonathan D

    2018-01-05

    The BRICS countries (Brazil, Russia, India, China, South Africa) account for 25% of global biotechnology patents. To understand the current and future landscape of the domain, it is important to better understand the capacity of these contributors. Here, we consider the thematic priorities, strategies, and key players of the BRICS countries in biotechnology patenting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Future changes in South American biomass distributions, biome distributions and plant trait spectra is dependent on applied atmospheric forcings.

    Science.gov (United States)

    Langan, Liam; Scheiter, Simon; Higgins, Steven

    2017-04-01

    It remains poorly understood why the position of the forest-savanna biome boundary, in a domain defined by precipitation and temperature, differs in South America, Africa and Australia. Process based Dynamic Global Vegetation Models (DGVMs) are a valuable tool to investigate the determinants of vegetation distributions, however, many DGVMs fail to predict the spatial distribution or indeed presence of the South American savanna biome. Evidence suggests fire plays a significant role in mediating forest-savanna biome boundaries, however, fire alone appear to be insufficient to predict these boundaries in South America. We hypothesize that interactions between precipitation, constraints on tree rooting depth and fire, affect the probability of savanna occurrence and the position of the savanna-forest boundary. We tested our hypotheses at tropical forest and savanna sites in Brazil and Venezuela using a novel DGVM, aDGVM2, which allows plant trait spectra, constrained by trade-offs between traits, to evolve in response to abiotic and biotic conditions. Plant hydraulics is represented by the cohesion-tension theory, this allowed us to explore how soil and plant hydraulics control biome distributions and plant traits. The resulting community trait distributions are emergent properties of model dynamics. We showed that across much of South America the biome state is not determined by climate alone. Interactions between tree rooting depth, fire and precipitation affected the probability of observing a given biome state and the emergent traits of plant communities. Simulations where plant rooting depth varied in space provided the best match to satellite derived biomass estimates and generated biome distributions that reproduced contemporary biome maps well. Future projections showed that biomass distributions, biome distributions and plant trait spectra will change, however, the magnitude of these changes are highly dependent on the applied atmospheric forcings.

  9. Introduction to Pharmaceutical Biotechnology, Volume 1; Basic techniques and concepts

    Science.gov (United States)

    Bhatia, Saurabh; Goli, Divakar

    2018-05-01

    Animal biotechnology is a broad field including polarities of fundamental and applied research, as well as DNA science, covering key topics of DNA studies and its recent applications. In Introduction to Pharmaceutical Biotechnology, DNA isolation procedures followed by molecular markers and screening methods of the genomic library are explained. Interesting areas like isolation, sequencing and synthesis of genes, with the broader coverage on synthesis of genes, are also described. The book begins with an introduction to biotechnology and its main branches, explaining both the basic science and the applications of biotechnology-derived pharmaceuticals, with special emphasis on their clinical use. It then moves on to historical development and scope of biotechnology with an overall review of early applications that scientists employed long before the field was defined.

  10. MPACT OF GENETIC BIOTECHNOLOGIES ON BIOSECURITY AND FOOD SAFETY

    Directory of Open Access Journals (Sweden)

    NICA-BADEA DELIA

    2014-05-01

    Full Text Available Biosecurity is a relatively new area global, being promoted by the significant results, particularly in the last 20 years, fundamental and applied research. Biotechnology is a collection of techniques that can be used in the agro-food, medical and industrial. The paper examines the potential impact of transgenic biotechnology, vulnerabilities, implications, benefits and risks, quality of life and health. Introduction into the environment, cross-border trade and use of GMOs resulting from modern biotechnology can untoward effects on the conservation and sustainable use of biological diversity, food security and safety. It is openly acknowledged that modern biotechnology has great potential to promote human welfare, in particular, to overcome the critical needs in food, agriculture and human health. Establish appropriate safety measures when using genetically modified organisms (biosecurity policy, regulatory regime, scientific and technical measures is a highly sensitive process, aiming both to maximize the benefits of modern biotechnology and to minimize potential risk

  11. Fossil energy biotechnology: A research needs assessment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    The Office of Program Analysis of the US Department of Energy commissioned this study to evaluate and prioritize research needs in fossil energy biotechnology. The objectives were to identify research initiatives in biotechnology that offer timely and strategic options for the more efficient and effective uses of the Nation`s fossil resource base, particularly the early identification of new and novel applications of biotechnology for the use or conversion of domestic fossil fuels. Fossil energy biotechnology consists of a number of diverse and distinct technologies, all related by the common denominator -- biocatalysis. The expert panel organized 14 technical subjects into three interrelated biotechnology programs: (1) upgrading the fuel value of fossil fuels; (2) bioconversion of fossil feedstocks and refined products to added value chemicals; and, (3) the development of environmental management strategies to minimize and mitigate the release of toxic and hazardous petrochemical wastes.

  12. Remote Sensing of the Urban Heat Island Effect Across Biomes in the Continental USA

    Science.gov (United States)

    Imhoff, Marc L.; Zhang, Ping; Wolfe, Robert E.; Bounoua, Lahouari

    2010-01-01

    Impervious surface area (ISA) from the Landsat TM-based NLCD 2001 dataset and land surface temperature (LST) from MODIS averaged over three annual cycles (2003-2005) are used in a spatial analysis to assess the urban heat island (UHI) skin temperature amplitude and its relationship to development intensity, size, and ecological setting for 38 of the most populous cities in the continental United States. Development intensity zones based on %ISA are defined for each urban area emanating outward from the urban core to the nonurban rural areas nearby and used to stratify sampling for land surface temperatures and NDVI. Sampling is further constrained by biome and elevation to insure objective intercomparisons between zones and between cities in different biomes permitting the definition of hierarchically ordered zones that are consistent across urban areas in different ecological setting and across scales. We find that ecological context significantly influences the amplitude of summer daytime UHI (urban-rural temperature difference) the largest (8 C average) observed for cities built in biomes dominated by temperate broadleaf and mixed forest. For all cities combined, ISA is the primary driver for increase in temperature explaining 70% of the total variance in LST. On a yearly average, urban areas are substantially warmer than the non-urban fringe by 2.9 C, except for urban areas in biomes with arid and semiarid climates. The average amplitude of the UHI is remarkably asymmetric with a 4.3 C temperature difference in summer and only 1.3 C in winter. In desert environments, the LST's response to ISA presents an uncharacteristic "U-shaped" horizontal gradient decreasing from the urban core to the outskirts of the city and then increasing again in the suburban to the rural zones. UHI's calculated for these cities point to a possible heat sink effect. These observational results show that the urban heat island amplitude both increases with city size and is seasonally

  13. Complex Biochemistry and Biotechnological Production of Betalains

    Directory of Open Access Journals (Sweden)

    Marijana Krsnik-Rasol

    2011-01-01

    Full Text Available The demand for natural food colourants is increasing because of public awareness of their health benefits. Betalains are nitrogen-containing plant pigments whose colours range from red-violet betacyanins to yellow betaxanthins. They are used for colouring dairy products, meat and frozen desserts. Betalains have attracted additional interest because of their antioxidative, anti-inflammatory and anticarcinogenic properties. The main source of commercially produced betalains is red beet root, but alternative sources are found in plants from the Amaranthaceae and Cactaceae families. Another alternative source is plant cell culture in bioreactors, although optimization of pigment production seems necessary. In this paper we synthesize the results of recent studies on betalain biosynthesis, chemical properties, sources, biotechnology and applications.

  14. Nonclinical statistics for pharmaceutical and biotechnology industries

    CERN Document Server

    2016-01-01

    This book serves as a reference text for regulatory, industry and academic statisticians and also a handy manual for entry level Statisticians. Additionally it aims to stimulate academic interest in the field of Nonclinical Statistics and promote this as an important discipline in its own right. This text brings together for the first time in a single volume a comprehensive survey of methods important to the nonclinical science areas within the pharmaceutical and biotechnology industries. Specifically the Discovery and Translational sciences, the Safety/Toxiology sciences, and the Chemistry, Manufacturing and Controls sciences. Drug discovery and development is a long and costly process. Most decisions in the drug development process are made with incomplete information. The data is rife with uncertainties and hence risky by nature. This is therefore the purview of Statistics. As such, this book aims to introduce readers to important statistical thinking and its application in these nonclinical areas. The cha...

  15. Essentials of Conservation Biotechnology: A mini review

    Science.gov (United States)

    Merlyn Keziah, S.; Subathra Devi, C.

    2017-11-01

    Equilibrium of biodiversity is essential for the maintenance of the ecosystem as they are interdependent on each other. The decline in biodiversity is a global problem and an inevitable threat to the mankind. Major threats include unsustainable exploitation, habitat destruction, fragmentation, transformation, genetic pollution, invasive exotic species and degradation. This review covers the management strategies of biotechnology which include sin situ, ex situ conservation, computerized taxonomic analysis through construction of phylogenetic trees, calculating genetic distance, prioritizing the group for conservation, digital preservation of biodiversities within the coding and decoding keys, molecular approaches to asses biodiversity like polymerase chain reaction, real time, randomly amplified polymorphic DNA, restriction fragment length polymorphism, amplified fragment length polymorphism, single sequence repeats, DNA finger printing, single nucleotide polymorphism, cryopreservation and vitrification.

  16. Identification of Conceptual Understanding in Biotechnology Learning

    Science.gov (United States)

    Suryanti, E.; Fitriani, A.; Redjeki, S.; Riandi, R.

    2018-04-01

    Research on the identification of conceptual understanding in the learning of Biotechnology, especially on the concept of Genetic Engineering has been done. The lesson is carried out by means of discussion and presentation mediated-powerpoint media that contains learning materials with relevant images and videos. This research is a qualitative research with one-shot case study or one-group posttest-only design. Analysis of 44 students' answers show that only 22% of students understand the concept, 18% of students lack understanding of concepts, 57% of students have misconceptions, and 3% of students are error. It can be concluded that most students has misconceptions in learning the concept of Genetic Engineering.

  17. New challenges and opportunities for industrial biotechnology

    Science.gov (United States)

    2012-01-01

    Industrial biotechnology has not developed as fast as expected due to some challenges including the emergences of alternative energy sources, especially shale gas, natural gas hydrate (or gas hydrate) and sand oil et al. The weaknesses of microbial or enzymatic processes compared with the chemical processing also make industrial biotech products less competitive with the chemical ones. However, many opportunities are still there if industrial biotech processes can be as similar as the chemical ones. Taking advantages of the molecular biology and synthetic biology methods as well as changing process patterns, we can develop bioprocesses as competitive as chemical ones, these including the minimized cells, open and continuous fermentation processes et al. PMID:22905695

  18. New challenges and opportunities for industrial biotechnology

    Directory of Open Access Journals (Sweden)

    Chen Guo-Qiang

    2012-08-01

    Full Text Available Abstract Industrial biotechnology has not developed as fast as expected due to some challenges including the emergences of alternative energy sources, especially shale gas, natural gas hydrate (or gas hydrate and sand oil et al. The weaknesses of microbial or enzymatic processes compared with the chemical processing also make industrial biotech products less competitive with the chemical ones. However, many opportunities are still there if industrial biotech processes can be as similar as the chemical ones. Taking advantages of the molecular biology and synthetic biology methods as well as changing process patterns, we can develop bioprocesses as competitive as chemical ones, these including the minimized cells, open and continuous fermentation processes et al.

  19. Biotechnology and the Mine of Tomorrow.

    Science.gov (United States)

    Dunbar, W Scott

    2017-01-01

    Biotechnology could provide many innovative alternatives for changing the way metals are obtained. Microbes have been used to dissolve metallic minerals and release metal ions into solution, from which pure metal can be obtained by electrolysis. Plants that accumulate metals in their roots and leaves have been used to concentrate metals, and mineral-binding peptides might be used to separate minerals. However, for billions of years microbes have been interacting with metals. Microbial communities in and near mineral sources are therefore a rich source of genetic information which could be used to create synthetic or modified microbiomes that concentrate metals. This would be a complete paradigm-change with enormous scope for transforming the way metals are obtained. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Membrane engineering in biotechnology: quo vamus?

    Science.gov (United States)

    Rios, Gilbert M; Belleville, Marie-Pierre; Paolucci-Jeanjean, Delphine

    2007-06-01

    Membranes are essential to a range of applications, including the production of potable water, energy generation, tissue repair, pharmaceutical production, food packaging, and the separations needed for the manufacture of chemicals, electronics and a range of other products. Therefore, they are considered to be "dominant technologies" by governments and industry in several prominent countries--for example, USA, Japan and China. When combined with catalysts, membranes are at the basis of life, and membrane-based biomimetism is a key tool to obtain better quality products and environmentally friendly developments for our societies. Biology has a main part in this global landscape because it simultaneously provides the "model" (with natural biological membranes) and represents a considerable field of applications for new artificial membranes (biotreatments, bioconversions and artificial organs). In this article, our objective is to open up this enthralling area and to give our views about the future of membranes in biotechnology.

  1. Application of biofilm bioreactors in white biotechnology.

    Science.gov (United States)

    Muffler, K; Lakatos, M; Schlegel, C; Strieth, D; Kuhne, S; Ulber, R

    2014-01-01

    The production of valuable compounds in industrial biotechnology is commonly done by cultivation of suspended cells or use of (immobilized) enzymes rather than using microorganisms in an immobilized state. Within the field of wastewater as well as odor treatment the application of immobilized cells is a proven technique. The cells are entrapped in a matrix of extracellular polymeric compounds produced by themselves. The surface-associated agglomerate of encapsulated cells is termed biofilm. In comparison to common immobilization techniques, toxic effects of compounds used for cell entrapment may be neglected. Although the economic impact of biofilm processes used for the production of valuable compounds is negligible, many prospective approaches were examined in the laboratory and on a pilot scale. This review gives an overview of biofilm reactors applied to the production of valuable compounds. Moreover, the characteristics of the utilized materials are discussed with respect to support of surface-attached microbial growth.

  2. Biotechnological production of limonene in microorganisms.

    Science.gov (United States)

    Jongedijk, Esmer; Cankar, Katarina; Buchhaupt, Markus; Schrader, Jens; Bouwmeester, Harro; Beekwilder, Jules

    2016-04-01

    This mini review describes novel, biotechnology-based, ways of producing the monoterpene limonene. Limonene is applied in relatively highly priced products, such as fragrances, and also has applications with lower value but large production volume, such as biomaterials. Limonene is currently produced as a side product from the citrus juice industry, but the availability and quality are fluctuating and may be insufficient for novel bulk applications. Therefore, complementary microbial production of limonene would be interesting. Since limonene can be derivatized to high-value compounds, microbial platforms also have a great potential beyond just producing limonene. In this review, we discuss the ins and outs of microbial limonene production in comparison with plant-based and chemical production. Achievements and specific challenges for microbial production of limonene are discussed, especially in the light of bulk applications such as biomaterials.

  3. Biotechnological interventions in Withania somnifera (L.) Dunal.

    Science.gov (United States)

    Singh, Pritika; Guleri, Rupam; Singh, Varinder; Kaur, Gurpreet; Kataria, Hardeep; Singh, Baldev; Kaur, Gurcharan; Kaul, Sunil C; Wadhwa, Renu; Pati, Pratap Kumar

    2015-01-01

    Withania somnifera is one of the most valued plants and is extensively used in Indian, Unani, and African systems of traditional medicine. It possess a wide array of therapeutic properties including anti-arthritic, anti-aging, anti-cancer, anti-inflammatory, immunoregulatory, chemoprotective, cardioprotective, and recovery from neurodegenerative disorders. With the growing realization of benefits and associated challenges in the improvement of W. somnifera, studies on exploration of genetic and chemotypic variations, identification and characterization of important genes, and understanding the secondary metabolites production and their modulation has gained significant momentum. In recent years, several in vitro and in vivo preclinical studies have facilitated the validation of therapeutic potential of the phytochemicals derived from W. somnifera and have provided necessary impetus for gaining deeper insight into the mechanistic aspects involved in the mode of action of these important pharmaceutically active constituents. The present review highlights some of the current developments and future prospects of biotechnological intervention in this important medicinal plant.

  4. Interfacing microbiology and biotechnology. Conference abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Maupin, Julia A.

    2001-05-19

    The Interfacing Microbiology and Biotechnology Conference was attended by over 100 faculty, post-docs, students, and research scientists from the US, Europe, and Latin America. The conference successfully stimulated communication and the dissemination of knowledge among scientists involved in basic and applied research. The focus of the conference was on microbial physiology and genetics and included sessions on C1 metabolism, archaeal metabolism, proteases and chaperones, gene arrays, and metabolic engineering. The meeting provided the setting for in-depth discussions between scientists who are internationally recognized for their research in these fields. The following objectives were met: (1) The promotion of interaction and future collaborative projects among scientists involved in basic and applied research which incorporates microbial physiology, genetics, and biochemistry; (2) the facilitation of communication of new research findings through seminars, posters, and abstracts; (3 ) the stimulation of enthusiasm and education among participants including graduate and undergraduate students.

  5. Anaerobes in Industrial- and Environmental Biotechnology.

    Science.gov (United States)

    Hatti-Kaul, Rajni; Mattiasson, Bo

    Anaerobic microorganisms present in diverse ecological niches employ alternative strategies for energy conservation in the absence of oxygen which enables them to play a key role in maintaining the global cycles of carbon, nitrogen, and sulfur, and the breakdown of persistent compounds. Thereby they become useful tools in industrial and environmental biotechnology. Although anaerobes have been relatively neglected in comparison to their aerobic counterparts, with increasing knowledge about their diversity and metabolic potential and the development of genetic tools and process technologies to utilize them, we now see a rapid expansion of their applications in the society. This chapter summarizes some of the developments in the use of anaerobes as tools for biomass valorization, in production of energy carriers and chemicals, wastewater treatment, and the strong potential in soil remediation. The ability of several autotrophic anaerobes to reduce carbon dioxide is attracting growing attention as a means for developing a platform for conversion of waste gases to chemicals, materials, and biofuels.

  6. A sign-theoretic approach to biotechnology

    DEFF Research Database (Denmark)

    Bruni, Luis Emilio

    ” semiotic networks across hierarchical levels and for relating the different emergent codes in living systems. I consider this an important part of the work because there I define some of the main concepts that will help me to analyse different codes and semiotic processes in living systems in order...... to exemplify what is the relevance of a sign-theoretic approach to biotechnology. In particular, I introduce the notion of digital-analogical consensus as a semiotic pattern for the creation of complex logical products that constitute specific signs. The chapter ends with some examples of conspicuous semiotic...... to exemplify how a semiotic approach can be of help when organising the knowledge that can lead us to understanding the relevance, the role and the position of signal transduction networks in relation to the larger semiotic networks in which they function, i.e.: in the hierarchical formal processes of mapping...

  7. Biotechnology in petroleum recovery. The microbial EOR

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ramkrishna [Department of Biotechnology, Indian Institute of Technology (IIT), Kharagpur, West Bengal 721302 (India)

    2008-12-15

    Biotechnology has played a significant role in enhancing crude oil recovery from the depleted oil reservoirs to solve stagnant petroleum production, after a three-stage recovery process employing mechanical, physical and chemical methods. Biotechnologically enhanced oil recovery processes, known as microbial enhanced oil recovery (MEOR), involve stimulating indigenous reservoir microbes or injecting specially selected consortia of natural bacteria into the reservoir to produce specific metabolic events that lead to improved oil recovery. This also involves flooding with oil recovery agents produced ex situ by industrial or pilot scale fermentation. This paper essentially reviews the operating mechanisms and the progress made in enhanced oil recovery through the use of microbes and their metabolic products. Improvement in oil recovery by injecting solvents and gases or by energizing the reservoir microflora to produce them in situ for carbonate rock dissolution and reservoir re-pressurization has been enunciated. The role of biosurfactants in oil mobilization through emulsification and that of biopolymers for selective plugging of oil-depleted zones and for biofilm formation have been delineated. The spoil sport played by sulfate-reducing bacteria (SRB) in MEOR has also been briefly reviewed. The importance of mathematical models used in predicting the applicability of an MEOR strategy and the microbial growth and transport has been qualitatively discussed. The results of some laboratory studies and worldwide field trials applying ex situ and in situ MEOR technologies were compiled and interpreted. However, the potential of the MEOR technologies has not been fully realized due to poor yield of the useful microbial metabolic products, growth inhibition by accumulated toxic metabolites and longer time of incubation. A complete evaluation and assessment of MEOR from an engineering standpoint based on economics, applicability and performance is required to further

  8. Development of agriculture biotechnology in Pakistan.

    Science.gov (United States)

    Zafar, Yusuf

    2007-01-01

    Agriculture plays an important role in the national economy of Pakistan, where most of the rapidly increasing population resides in rural areas and depends on agriculture for subsistence. Biotechnology has considerable potential for promoting the efficiency of crop improvement, food production, and poverty reduction. Use of modern biotechnology started in Pakistan since 1985. Currently, there are 29 biotech centers/institutes in the country. However, few centers have appropriate physical facilities and trained manpower to develop genetically modified (GM) crops. Most of the activities have been on rice and cotton, which are among the top 5 crops of Pakistan. Biotic (virus/bacterial/insect) and abiotic (salt) resistant and quality (male sterility) genes have already been incorporated in some crop plants. Despite acquiring capacity to produce transgenic plants, no GM crops, either produced locally or imported, have been released in the country. Pakistan is signatory to the World Trade Organization, Convention on Biological Diversity, and Cartagena protocols. Several legislations under the Agreement on Trade-Related Aspects of Intellectual Property Rights have been promulgated in the country. National Biosafety Guidelines have been promulgated in April 2005. The Plant Breeders Rights Act, Amendment in Seed Act-1976, and Geographical Indication for Goods are still passing through discussion, evaluation, and analysis phases. Meanwhile, an illegal GM crop (cotton) has already sneaked into farmer's field. Concerted and coordinated efforts are needed among various ministries for implementation of regulation and capacity building for import/export and local handling of GM crops. Pakistan could easily benefit from the experience of Asian countries, especially China and India, where conditions are similar and the agriculture sector is almost like that of Pakistan. Thus, the exchange of information and experiences is important among these nations.

  9. Sustainable Use of Biotechnology for Bioenergy Feedstocks

    Science.gov (United States)

    Moon, Hong S.; Abercrombie, Jason M.; Kausch, Albert P.; Stewart, C. Neal

    2010-10-01

    Done correctly, cellulosic bioenergy should be both environmentally and economically beneficial. Carbon sequestration and decreased fossil fuel use are both worthy goals in developing next-generation biofuels. We believe that biotechnology will be needed to significantly improve yield and digestibility of dedicated perennial herbaceous biomass feedstocks, such as switchgrass and Miscanthus, which are native to the US and China, respectively. This Forum discusses the sustainability of herbaceous feedstocks relative to the regulation of biotechnology with regards to likely genetically engineered traits. The Forum focuses on two prominent countries wishing to develop their bioeconomies: the US and China. These two countries also share a political desire and regulatory frameworks to enable the commercialization and wide release of transgenic feedstocks with appropriate and safe new genetics. In recent years, regulators in both countries perform regular inspections of transgenic field releases and seriously consider compliance issues, even though the US framework is considered to be more mature and stringent. Transgene flow continues to be a pertinent environmental and regulatory issue with regards to transgenic plants. This concern is largely driven by consumer issues and ecological uncertainties. Regulators are concerned about large-scale releases of transgenic crops that have sexually compatible crops or wild relatives that can stably harbor transgenes via hybridization and introgression. Therefore, prior to the commercialization or extensive field testing of transgenic bioenergy feedstocks, we recommend that mechanisms that ensure biocontainment of transgenes be instituted, especially for perennial grasses. A cautionary case study will be presented in which a plant’s biology and ecology conspired against regulatory constraints in a non-biomass crop perennial grass (creeping bentgrass, Agrostis stolonifera), in which biocontainment was not attained. Appropriate

  10. Microbial Diversity in Cerrado Biome (Neotropical Savanna Soils.

    Directory of Open Access Journals (Sweden)

    Alinne Pereira de Castro

    Full Text Available The Cerrado, the largest savanna region in South America, is located in central Brazil. Cerrado physiognomies, which range from savanna grasslands to forest formations, combined with the highly weathered, acidic clay Cerrado soils form a unique ecoregion. In this study, high-throughput sequencing of ribosomal RNA genes was combined with shotgun metagenomic analysis to explore the taxonomic composition and potential functions of soil microbial communities in four different vegetation physiognomies during both dry and rainy seasons. Our results showed that changes in bacterial, archaeal, and fungal community structures in cerrado denso, cerrado sensu stricto, campo sujo, and gallery forest soils strongly correlated with seasonal patterns of soil water uptake. The relative abundance of AD3, WPS-2, Planctomycetes, Thermoprotei, and Glomeromycota typically decreased in the rainy season, whereas the relative abundance of Proteobacteria and Ascomycota increased. In addition, analysis of shotgun metagenomic data revealed a significant increase in the relative abundance of genes associated with iron acquisition and metabolism, dormancy, and sporulation during the dry season, and an increase in the relative abundance of genes related to respiration and DNA and protein metabolism during the rainy season. These gene functional categories are associated with adaptation to water stress. Our results further the understanding of how tropical savanna soil microbial communities may be influenced by vegetation covering and temporal variations in soil moisture.

  11. Estimation of Carbon Flux of Forest Ecosystem over Qilian Mountains by BIOME-BGC Model

    Science.gov (United States)

    Yan, Min; Tian, Xin; Li, Zengyuan; Chen, Erxue; Li, Chunmei

    2014-11-01

    The gross primary production (GPP) and net ecosystem exchange (NEE) are important indicators for carbon fluxes. This study aims at evaluating the forest GPP and NEE over the Qilian Mountains using meteorological, remotely sensed and other ancillary data at large scale. To realize this, the widely used ecological-process-based model, Biome-BGC, and remote-sensing-based model, MODIS GPP algorithm, were selected for the simulation of the forest carbon fluxes. The combination of these two models was based on calibrating the Biome-BGC by the optimized MODIS GPP algorithm. The simulated GPP and NEE values were evaluated against the eddy covariance observed GPPs and NEEs, and the well agreements have been reached, with R2=0.76, 0.67 respectively.

  12. Candidatus Rickettsia andeanae, a spotted fever group agent infecting Amblyomma parvum ticks in two Brazilian biomes

    Directory of Open Access Journals (Sweden)

    Fernanda Aparecida Nieri-Bastos

    2014-04-01

    Full Text Available Adult ticks of the species Amblyomma parvum were collected from the vegetation in the Pantanal biome (state of Mato Grosso do Sul and from horses in the Cerrado biome (state of Piauí in Brazil. The ticks were individually tested for rickettsial infection via polymerase chain reaction (PCR targeting three rickettsial genes, gltA, ompA and ompB. Overall, 63.5% (40/63 and 66.7% (2/3 of A. parvum ticks from Pantanal and Cerrado, respectively, contained rickettsial DNA, which were all confirmed by DNA sequencing to be 100% identical to the corresponding fragments of the gltA, ompA and ompB genes of Candidatus Rickettsia andeanae. This report is the first to describe Ca. R. andeanae in Brazil.

  13. A bibliometric assessment of ASEAN collaboration in plant biotechnology

    KAUST Repository

    Payumo, Jane

    2015-04-03

    This study draws on publication and citation data related to plant biotechnology from a 10-year (2004–2013) period to assess the research performance, impact, and collaboration of member states of the Association of Southeast Asian Nations (ASEAN). Plant biotechnology is one of the main areas of cooperation between ASEAN member states and among the research areas promoted to achieve regional food security and sustainable development. In general, findings indicate increased scientific output, influence, and overall collaboration of ASEAN countries in plant biotechnology over time. Research performance and collaboration (domestic, regional, and international) of the region in plant biotechnology are linked to the status of the economic development of each member country. Thailand produced the most publications of the ASEAN member states while Singapore had the highest influence as indicated by its citation activity in plant biotechnology among the ASEAN countries. Domestic and international collaborations on plant biotechnology are numerous. Regional collaboration or partnership among ASEAN countries was, however, was found to be very limited, which is a concern for the region’s goal of economic integration and science and technology cooperation. More studies using bibliometric data analysis need to be conducted to understand plant biotechnology cooperation and knowledge flows between ASEAN countries. © 2015 Akadémiai Kiadó, Budapest, Hungary

  14. A hierarchical analysis of terrestrial ecosystem model Biome-BGC: Equilibrium analysis and model calibration

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Peter E [ORNL; Wang, Weile [ORNL; Law, Beverly E. [Oregon State University; Nemani, Ramakrishna R [NASA Ames Research Center

    2009-01-01

    The increasing complexity of ecosystem models represents a major difficulty in tuning model parameters and analyzing simulated results. To address this problem, this study develops a hierarchical scheme that simplifies the Biome-BGC model into three functionally cascaded tiers and analyzes them sequentially. The first-tier model focuses on leaf-level ecophysiological processes; it simulates evapotranspiration and photosynthesis with prescribed leaf area index (LAI). The restriction on LAI is then lifted in the following two model tiers, which analyze how carbon and nitrogen is cycled at the whole-plant level (the second tier) and in all litter/soil pools (the third tier) to dynamically support the prescribed canopy. In particular, this study analyzes the steady state of these two model tiers by a set of equilibrium equations that are derived from Biome-BGC algorithms and are based on the principle of mass balance. Instead of spinning-up the model for thousands of climate years, these equations are able to estimate carbon/nitrogen stocks and fluxes of the target (steady-state) ecosystem directly from the results obtained by the first-tier model. The model hierarchy is examined with model experiments at four AmeriFlux sites. The results indicate that the proposed scheme can effectively calibrate Biome-BGC to simulate observed fluxes of evapotranspiration and photosynthesis; and the carbon/nitrogen stocks estimated by the equilibrium analysis approach are highly consistent with the results of model simulations. Therefore, the scheme developed in this study may serve as a practical guide to calibrate/analyze Biome-BGC; it also provides an efficient way to solve the problem of model spin-up, especially for applications over large regions. The same methodology may help analyze other similar ecosystem models as well.

  15. Ecological consequences of the expansion of N2-fixing plants in cold biomes

    Science.gov (United States)

    Hiltbrunner, Erika; Aerts, Rien; Bühlmann, Tobias; Huss-Danell, Kerstin; Magnusson, Borgthor; Myrold, David D.; Reed, Sasha C.; Sigurdsson, Bjarni D.; Körner, Christian

    2014-01-01

    Research in warm-climate biomes has shown that invasion by symbiotic dinitrogen (N2)-fixing plants can transform ecosystems in ways analogous to the transformations observed as a consequence of anthropogenic, atmospheric nitrogen (N) deposition: declines in biodiversity, soil acidification, and alterations to carbon and nutrient cycling, including increased N losses through nitrate leaching and emissions of the powerful greenhouse gas nitrous oxide (N2O). Here, we used literature review and case study approaches to assess the evidence for similar transformations in cold-climate ecosystems of the boreal, subarctic and upper montane-temperate life zones. Our assessment focuses on the plant genera Lupinus and Alnus, which have become invasive largely as a consequence of deliberate introductions and/or reduced land management. These cold biomes are commonly located in remote areas with low anthropogenic N inputs, and the environmental impacts of N2-fixer invasion appear to be as severe as those from anthropogenic N deposition in highly N polluted areas. Hence, inputs of N from N2 fixation can affect ecosystems as dramatically or even more strongly than N inputs from atmospheric deposition, and biomes in cold climates represent no exception with regard to the risk of being invaded by N2-fixing species. In particular, the cold biomes studied here show both a strong potential to be transformed by N2-fixing plants and a rapid subsequent saturation in the ecosystem’s capacity to retain N. Therefore, analogous to increases in N deposition, N2-fixing plant invasions must be deemed significant threats to biodiversity and to environmental quality.

  16. Reply: “Use of BIOME-BGC to simulate Mediterranean forest carbon stocks”

    OpenAIRE

    Maselli F; Salvati R; Barbati A; Chirici G; Chiesi M

    2011-01-01

    The current note responds to the critical contribution of Dr. Eastaugh on Chiesi et al. (Chiesi et al. 2011). That paper did not aim at applying BIOME-BGC to simulate stand growth, which requires a thorough modification of the model functions. In contrast, only a parameter setting was changed in order to adjust the predicted carbon storages during the simulation of quasi-equilibrium conditions. The adjustment was calibrated on volume statistics derived from the Tuscany forest inventory and is...

  17. Record of the Buff-fronted Owl (Aegolius harrisii in the Pampa Biome, southern Brazil

    Directory of Open Access Journals (Sweden)

    Marluci Müller Rebelato

    2011-02-01

    Full Text Available We present the second record of the Buff-fronted Owl (Aegolius harrisii in the Pampa Biome, South Brazil. On 17 January 2010 an adult male was found dead at the roadside along the BR-290, São Gabriel municipality, center-east of Rio Grande do Sul state. The specimen probably collided with a car when using the area for foraging. The record reported here agrees with the suggestion that A. harrisii can use disturbed and open areas.

  18. Software quality assurance and software safety in the Biomed Control System

    International Nuclear Information System (INIS)

    Singh, R.P.; Chu, W.T.; Ludewigt, B.A.; Marks, K.M.; Nyman, M.A.; Renner, T.R.; Stradtner, R.

    1989-01-01

    The Biomed Control System is a hardware/software system used for the delivery, measurement and monitoring of heavy-ion beams in the patient treatment and biology experiment rooms in the Bevalac at the Lawrence Berkeley Laboratory (LBL). This paper describes some aspects of this system including historical background philosophy, configuration management, hardware features that facilitate software testing, software testing procedures, the release of new software quality assurance, safety and operator monitoring. 3 refs

  19. Aura-biomes are present in the water layer above coral reef benthic macro-organisms

    Directory of Open Access Journals (Sweden)

    Kevin Walsh

    2017-08-01

    Full Text Available As coral reef habitats decline worldwide, some reefs are transitioning from coral- to algal-dominated benthos with the exact cause for this shift remaining elusive. Increases in the abundance of microbes in the water column has been correlated with an increase in coral disease and reduction in coral cover. Here we investigated how multiple reef organisms influence microbial communities in the surrounding water column. Our study consisted of a field assessment of microbial communities above replicate patches dominated by a single macro-organism. Metagenomes were constructed from 20 L of water above distinct macro-organisms, including (1 the coral Mussismilia braziliensis, (2 fleshy macroalgae (Stypopodium, Dictota and Canistrocarpus, (3 turf algae, and (4 the zoanthid Palythoa caribaeorum and were compared to the water microbes collected 3 m above the reef. Microbial genera and functional potential were annotated using MG-RAST and showed that the dominant benthic macro-organisms influence the taxa and functions of microbes in the water column surrounding them, developing a specific “aura-biome”. The coral aura-biome reflected the open water column, and was associated with Synechococcus and functions suggesting oligotrophic growth, while the fleshy macroalgae aura-biome was associated with Ruegeria, Pseudomonas, and microbial functions suggesting low oxygen conditions. The turf algae aura-biome was associated with Vibrio, Flavobacterium, and functions suggesting pathogenic activity, while zoanthids were associated with Alteromonas and functions suggesting a stressful environment. Because each benthic organism has a distinct aura-biome, a change in benthic cover will change the microbial community of the water, which may lead to either the stimulation or suppression of the recruitment of benthic organisms.

  20. Genetic diversity of bats coronaviruses in the Atlantic Forest hotspot biome, Brazil.

    Science.gov (United States)

    Góes, Luiz Gustavo Bentim; Campos, Angélica Cristine de Almeida; Carvalho, Cristiano de; Ambar, Guilherme; Queiroz, Luzia Helena; Cruz-Neto, Ariovaldo Pereira; Munir, Muhammad; Durigon, Edison Luiz

    2016-10-01

    Bats are notorious reservoirs of genetically-diverse and high-profile pathogens, and are playing crucial roles in the emergence and re-emergence of viruses, both in human and in animals. In this report, we identified and characterized previously unknown and diverse genetic clusters of bat coronaviruses in the Atlantic Forest Biome, Brazil. These results highlight the virus richness of bats and their possible roles in the public health. Copyright © 2016 Elsevier B.V. All rights reserved.