Sample records for biotechnology activities recombinant

  1. 75 FR 31795 - Office of Biotechnology Activities; Recombinant DNA Research: Amended Notice of Meeting (United States)


    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology Activities; Recombinant DNA Research: Amended Notice of Meeting ACTION: Notice of cancellation of... information. Dated: May 26, 2010. Jacqueline Corrigan-Curay, Acting Director, Office of Biotechnology...

  2. 78 FR 27977 - Office of Biotechnology Activities; Recombinant DNA Research: Proposed Actions Under the NIH... (United States)


    ... Recombinant or Synthetic Nucleic Acid Molecules (NIH Guidelines) SUMMARY: The NIH Office of Biotechnology Activities (NIH OBA) proposes to revise the NIH Guidelines for Research Involving Recombinant or Synthetic... smallpox and reports of skin pustules developing in some research participants receiving intravenous...

  3. 76 FR 27653 - Office of Biotechnology Activities; Recombinant DNA Research: Action Under the NIH Guidelines for... (United States)


    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology... Biotechnology Activities is updating Appendix D of the NIH Guidelines to include additional lines of... obtained from the Office of Biotechnology Activities, National Institutes of Health, 6705 Rockledge Drive...

  4. 78 FR 12074 - Office of Biotechnology Activities; Recombinant DNA Research: Actions Under the NIH Guidelines... (United States)


    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology... recommendations of the RAC, the NIH Office of Biotechnology Activities (OBA) concluded that more specific guidance... address or by fax at 301-496-9839 or by mail to the Office of Biotechnology Activities, National...

  5. 75 FR 42114 - Office of Biotechnology Activities; Recombinant DNA Research: Proposed Action Under the NIH... (United States)


    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology... the breeding of a transgenic rodent and a non-transgenic rodent). The NIH Office of Biotechnology... Office of Biotechnology Activities, National Institutes of Health, 6705 Rockledge Drive, Suite 750, MSC...

  6. 75 FR 69687 - Office of Biotechnology Activities Recombinant DNA Research: Proposed Actions Under the NIH... (United States)


    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology... to the NIH Office of Biotechnology Activities (OBA). The data to be considered for certifying a new... same e-mail address or by fax at 301-496-9839 or sent by U.S. mail to the Office of Biotechnology...

  7. 75 FR 28811 - Office of Biotechnology Activities; Recombinant DNA Research: Proposed Actions Under the NIH... (United States)


    ... Yersinia pestis has been submitted to the NIH Office of Biotechnology Activities (OBA) by the Institutional... while working with an attenuated strain of Yersinia pestis highlights that attenuated strains may be.../oba/index.html . SUPPLEMENTARY INFORMATION: Yersinia pestis is the causative organism for plague and...

  8. 76 FR 3150 - Office of Biotechnology Activities; Recombinant DNA Research: Action Under the NIH Guidelines for... (United States)


    ... repeat (LTR), in order to address the small risk of recombination with endogenous retroviruses which... valuable resources (time and money) for their IBC, Institutional Animal Care and Use Committee, and...

  9. 75 FR 21008 - Office of Biotechnology Activities; Recombinant DNA Research: Proposed Actions Under the NIH... (United States)


    ...-competent adenovirus in stocks of replication defective adenovirus recombinants ([Delta]E1 + [Delta]E3... genomes contain less than two-thirds but more than one-half of the viral genome. VRP-based vaccines are currently under evaluation in clinical trials. The central feature of VRP-based vaccines is their ability to...

  10. 78 FR 66751 - Office of Science Policy, Office of Biotechnology Activities; Recombinant or Synthetic Nucleic... (United States)


    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Science Policy... Biosafety Committees (IBCs) for setting containment for research involving recombinant or synthetic nucleic... Etiologic Agents on the Basis of Hazard). The RG of the agent often correlates with the minimum containment...

  11. Biotechnology

    International Nuclear Information System (INIS)

    Lewanika, Mbikusita Mwananyanda


    The article sets out to explain in simple terms the main concepts of Biotechnology beginning with traditional biotechnology to modern biotechnology. It outlines fundamentals of Recombinant Deoxyribonucleic Acid (DNA), Genetically Modified Organisms (GMOs) and Genetic Engineering. The article offers a discussion of the benefits, disadvantages and the general public and policy concerns regarding genetically modified organisms

  12. Biotechnology

    Energy Technology Data Exchange (ETDEWEB)



    The guidelines of the Biotechnology Program are research and development aiming to develop and manufacture products of pharmaceutical interest. This Program has two main research areas, namely Pituitary Hormones and Biopharmaceuticals. The first one comprises a group with a long experience on Recombinant Human Pituitary Hormone synthesis, purification and characterization. The Biopharmaceutical area is dedicated to the research of isolation, structural analysis and biological activities in different biological system of macromolecules. The Animal Laboratory Division of IPEN is responsible for the breeding and production of small laboratory animal.

  13. Biotechnology

    Energy Technology Data Exchange (ETDEWEB)



    The guidelines of the Biotechnology Program are research and development aiming at developing and manufacturing products of pharmaceutical interest. This Program has two main research areas, namely Pituitary Hormones and Biopharmaceuticals. The first one comprises a group with a long experience on Recombinant Human Pituitary Hormone synthesis, purification and characterization. Up to now they have worked mostly with human growth hormone (hGH), human prolactin (hPRL), human thyrotropin (hTSH), human follicle stimulating hormone (hFSH) and human luteotropin (hLH), with a particular emphasis on glycoprotein carbohydrate structures. An important research line is devoted to Growth Hormone Gene Therapy, working mostly on animal models: immunocompetent and immunodeficient-dwarf mice. For several years this development has been based on ex vivo grafting of transduced keratinocytes, while more recently very promising results have been obtained with the injections and electroporation of naked plasmid DNA. Besides research, they have also activities in the Biotechnological Production and Downstream Processing of the same recombinant hormones, which are produced in both E. coli and mammalian cells and in the development of joint-ventures with the National Industry. The biological effects of radiation on cells are also studied, specially concerning the administration of {sup 131}I together with thyroid-stimulating hormone in thyroid cancer. The Biopharmaceutical area is dedicated to the research of isolation, structural analysis and biological activities in different biological systems of macromolecules. These macromolecules are peptides or proteins, either native or recombinant with medical or pharmaceutical interest. During this period new proteins related to serine protease activity, breast cancer development and angiogenesis were described. The effects of ionizing radiation on macromolecules have also been investigated to detoxify animal venoms in order to improve antigens

  14. Biotechnology

    International Nuclear Information System (INIS)


    The guidelines of the Biotechnology Program are research and development aiming at developing and manufacturing products of pharmaceutical interest. This Program has two main research areas, namely Pituitary Hormones and Biopharmaceuticals. The first one comprises a group with a long experience on Recombinant Human Pituitary Hormone synthesis, purification and characterization. Up to now they have worked mostly with human growth hormone (hGH), human prolactin (hPRL), human thyrotropin (hTSH), human follicle stimulating hormone (hFSH) and human luteotropin (hLH), with a particular emphasis on glycoprotein carbohydrate structures. An important research line is devoted to Growth Hormone Gene Therapy, working mostly on animal models: immunocompetent and immunodeficient-dwarf mice. For several years this development has been based on ex vivo grafting of transduced keratinocytes, while more recently very promising results have been obtained with the injections and electroporation of naked plasmid DNA. Besides research, they have also activities in the Biotechnological Production and Downstream Processing of the same recombinant hormones, which are produced in both E. coli and mammalian cells and in the development of joint-ventures with the National Industry. The biological effects of radiation on cells are also studied, specially concerning the administration of 131 I together with thyroid-stimulating hormone in thyroid cancer. The Biopharmaceutical area is dedicated to the research of isolation, structural analysis and biological activities in different biological systems of macromolecules. These macromolecules are peptides or proteins, either native or recombinant with medical or pharmaceutical interest. During this period new proteins related to serine protease activity, breast cancer development and angiogenesis were described. The effects of ionizing radiation on macromolecules have also been investigated to detoxify animal venoms in order to improve antigens for

  15. The NIH Office of Biotechnology Activities Site Visit Program: Observations About Institutional Oversight of Recombinant and Synthetic Nucleic Acid Molecule Research (United States)

    Bayha, Ryan; Harris, Kathryn L.; Shipp, Allan C.; Corrigan-Curay, Jacqueline; Wolinetz, Carrie D.


    Institutions that receive National Institutes of Health (NIH) funding for research involving recombinant or synthetic nucleic acid molecules are required, as a term and condition of their funding, to comply with the NIH Guidelines for Research Involving Recombinant or Synthetic Nucleic Acid Molecules (NIH Guidelines) (NIH, 2013). Under the NIH Guidelines, institutions must establish and register an Institutional Biosafety Committee (IBC) with the NIH. The IBC is then responsible for reviewing and approving research projects subject to the NIH Guidelines. The IBC review of projects involving recombinant or synthetic nucleic acid molecules is critical to ensuring that such research is conducted in a safe and responsible manner. In 2006, staff from NIH began conducting educational site visits to institutions that had an IBC registered with NIH. The purpose of these site visits is to assist IBCs with their institutional programs of oversight for recombinant or synthetic nucleic molecules. Based on our findings, the site visit program has been beneficial to institutional biosafety programs. The information gathered during the site visits has allowed NIH to tailor its educational materials to help institutions address their oversight challenges. Additionally, since NIH’s visits are primarily educational in nature, we have been able to foster a positive environment in which IBC members and staff feel comfortable reaching out to NIH for advice and assistance. PMID:26161045

  16. Better understanding of homologous recombination through a 12-week laboratory course for undergraduates majoring in biotechnology. (United States)

    Li, Ming; Shen, Xiaodong; Zhao, Yan; Hu, Xiaomei; Hu, Fuquan; Rao, Xiancai


    Homologous recombination, a central concept in biology, is defined as the exchange of DNA strands between two similar or identical nucleotide sequences. Unfortunately, undergraduate students majoring in biotechnology often experience difficulties in understanding the molecular basis of homologous recombination. In this study, we developed and implemented a 12-week laboratory course for biotechnology undergraduates in which gene targeting in Streptococcus suis was used to facilitate their understanding of the basic concept and process of homologous recombination. Students worked in teams of two to select a gene of interest to create a knockout mutant using methods that relied on homologous recombination. By integrating abstract knowledge and practice in the process of scientific research, students gained hands-on experience in molecular biology techniques while learning about the principle and process of homologous recombination. The learning outcomes and survey-based assessment demonstrated that students substantially enhanced their understanding of how homologous recombination could be used to study gene function. Overall, the course was very effective for helping biotechnology undergraduates learn the theory and application of homologous recombination, while also yielding positive effects in developing confidence and scientific skills for future work in research. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):329-335, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  17. Evaluation of Brazilian biotechnology patent activity from 1975 to 2010. (United States)

    Dias, F; Delfim, F; Drummond, I; Carmo, A O; Barroca, T M; Horta, C C; Kalapothakis, E


    The analysis of patent activity is one methodology used for technological monitoring. In this paper, the activity of biotechnology-related patents in Brazil were analyzed through 30 International Patent Classification (IPC) codes published by the Organization for Economic Cooperation and Development (OECD). We developed a program to analyse the dynamics of the major patent applicants, countries and IPC codes extracted from the Brazilian Patent Office (INPI) database. We also identified Brazilian patent applicants who tried to expand protection abroad via the Patent Cooperation Treaty (PCT). We had access to all patents published online at the INPI from 1975 to July 2010, including 9,791 biotechnology patent applications in Brazil, and 163 PCTs published online at World Intellectual Property Organization (WIPO) from 1997 to December 2010. To our knowledge, there are no other online reports of biotechnology patents previous to the years analyzed here. Most of the biotechnology patents filed in the INPI (10.9%) concerned measuring or testing processes involving nucleic acids. The second and third places belonged to patents involving agro-technologies (recombinant DNA technology for plant cells and new flowering plants, i.e. angiosperms, or processes for obtaining them, and reproduction of flowering plants by tissue culture techniques). The majority of patents (87.2%) were filed by nonresidents, with USA being responsible for 51.7% of all biotechnology patents deposited in Brazil. Analyzing the resident applicants per region, we found a hub in the southeast region of Brazil. Among the resident applicants for biotechnology patents filed in the INPI, 43.5% were from São Paulo, 18.3% were from Rio de Janeiro, and 9.7% were from Minas Gerais. Pfizer, Novartis, and Sanofi were the largest applicants in Brazil, with 339, 288, and 245 biotechnology patents filed, respectively. For residents, the largest applicant was the governmental institution FIOCRUZ (Oswaldo Cruz

  18. Biotechnology and genetic engineering in the new drug development. Part I. DNA technology and recombinant proteins. (United States)

    Stryjewska, Agnieszka; Kiepura, Katarzyna; Librowski, Tadeusz; Lochyński, Stanisław


    Pharmaceutical biotechnology has a long tradition and is rooted in the last century, first exemplified by penicillin and streptomycin as low molecular weight biosynthetic compounds. Today, pharmaceutical biotechnology still has its fundamentals in fermentation and bioprocessing, but the paradigmatic change affected by biotechnology and pharmaceutical sciences has led to an updated definition. The biotechnology revolution redrew the research, development, production and even marketing processes of drugs. Powerful new instruments and biotechnology related scientific disciplines (genomics, proteomics) make it possible to examine and exploit the behavior of proteins and molecules. Recombinant DNA (rDNA) technologies (genetic, protein, and metabolic engineering) allow the production of a wide range of peptides, proteins, and biochemicals from naturally nonproducing cells. This technology, now approximately 25 years old, is becoming one of the most important technologies developed in the 20(th) century. Pharmaceutical products and industrial enzymes were the first biotech products on the world market made by means of rDNA. Despite important advances regarding rDNA applications in mammalian cells, yeasts still represent attractive hosts for the production of heterologous proteins. In this review we describe these processes.

  19. Effective Active Ingredients Obtained through Biotechnology

    Directory of Open Access Journals (Sweden)

    Claudia Zappelli


    Full Text Available The history of cosmetics develops in parallel to the history of man, associated with fishing, hunting, and superstition in the beginning, and later with medicine and pharmacy. Over the ages, together with human progress, cosmetics have changed continuously and nowadays the cosmetic market is global and highly competitive, where terms such as quality, efficacy and safety are essential. Consumers’ demands are extremely sophisticated, and thus scientific research and product development have become vital to meet them. Moreover, consumers are aware about environmental and sustainability issues, and thus not harming the environment represents a key consideration when developing a new cosmetic ingredient. The latest tendencies of cosmetics are based on advanced research into how to interfere with skin cell aging: research includes the use of biotechnology-derived ingredients and the analysis of their effects on the biology of the cells, in terms of gene regulation, protein expression and enzymatic activity measures. In this review, we will provide some examples of cosmetic active ingredients developed through biotechnological systems, whose activity on the skin has been scientifically proved through in vitro and clinical studies.

  20. Recombinant snake venom prothrombin activators


    L?vgren, Ann


    Three prothrombin activators; ecarin, which was originally isolated from the venom of the saw-scaled viper Echis carinatus, trocarin from the rough-scaled snake Tropidechis carinatus, and oscutarin from the Taipan snake Oxyuranus scutellatus, were expressed in mammalian cells with the purpose to obtain recombinant prothrombin activators that could be used to convert prothrombin to thrombin. We have previously reported that recombinant ecarin can efficiently generate thrombin without the need ...

  1. Comparative genomics of DNA recombination and repair in cyanobacteria: biotechnological implications

    Directory of Open Access Journals (Sweden)

    Corinne Cassier-Chauvat


    Full Text Available Cyanobacteria are fascinating photosynthetic prokaryotes that are regarded as the ancestors of the plant chloroplast; the purveyors of oxygen and biomass for the food chain; and promising cell factories for an environmentally friendly production of chemicals. In colonizing most waters and soils of our planet, cyanobacteria are inevitably challenged by environmental stresses that generate DNA damages. Furthermore, many strains engineered for biotechnological purposes can use DNA recombination to stop synthesizing the biotechnological product. Hence, it is important to study DNA recombination and repair in cyanobacteria for both basic and applied research. This review reports what is known in a few widely studied model cyanobacteria and what can be inferred by mining the sequenced genomes of morphologically and physiologically diverse strains. We show that cyanobacteria possess many E. coli-like DNA recombination and repair genes, and possibly other genes not yet identified. E. coli-homolog genes are unevenly distributed in cyanobacteria, in agreement with their wide genome diversity. Many genes are extremely well conserved in cyanobacteria (mutMS, radA, recA, recFO, recG, recN, ruvABC, ssb and uvrABCD, even in small genomes, suggesting that they encode the core DNA repair process. In addition to these core genes, the marine Prochlorococcus and Synechococcus strains harbor recBCD (DNA recombination, umuCD (mutational DNA replication, as well as the key SOS genes lexA (regulation of the SOS system and sulA (postponing of cell division until completion of DNA reparation. Hence, these strains could possess an E. coli-type SOS system. In contrast, several cyanobacteria endowed with larger genomes lack typical SOS genes. For examples, the two studied Gloeobacter strains lack alkB, lexA and sulA; and Synechococcus PCC7942 has neither lexA nor recCD. Furthermore, the Synechocystis PCC6803 lexA product does not regulate DNA repair genes. Collectively

  2. Comparative Genomics of DNA Recombination and Repair in Cyanobacteria: Biotechnological Implications (United States)

    Cassier-Chauvat, Corinne; Veaudor, Théo; Chauvat, Franck


    Cyanobacteria are fascinating photosynthetic prokaryotes that are regarded as the ancestors of the plant chloroplast; the purveyors of oxygen and biomass for the food chain; and promising cell factories for an environmentally friendly production of chemicals. In colonizing most waters and soils of our planet, cyanobacteria are inevitably challenged by environmental stresses that generate DNA damages. Furthermore, many strains engineered for biotechnological purposes can use DNA recombination to stop synthesizing the biotechnological product. Hence, it is important to study DNA recombination and repair in cyanobacteria for both basic and applied research. This review reports what is known in a few widely studied model cyanobacteria and what can be inferred by mining the sequenced genomes of morphologically and physiologically diverse strains. We show that cyanobacteria possess many E. coli-like DNA recombination and repair genes, and possibly other genes not yet identified. E. coli-homolog genes are unevenly distributed in cyanobacteria, in agreement with their wide genome diversity. Many genes are extremely well conserved in cyanobacteria (mutMS, radA, recA, recFO, recG, recN, ruvABC, ssb, and uvrABCD), even in small genomes, suggesting that they encode the core DNA repair process. In addition to these core genes, the marine Prochlorococcus and Synechococcus strains harbor recBCD (DNA recombination), umuCD (mutational DNA replication), as well as the key SOS genes lexA (regulation of the SOS system) and sulA (postponing of cell division until completion of DNA reparation). Hence, these strains could possess an E. coli-type SOS system. In contrast, several cyanobacteria endowed with larger genomes lack typical SOS genes. For examples, the two studied Gloeobacter strains lack alkB, lexA, and sulA; and Synechococcus PCC7942 has neither lexA nor recCD. Furthermore, the Synechocystis PCC6803 lexA product does not regulate DNA repair genes. Collectively, these findings

  3. Mammalian Systems Biotechnology Reveals Global Cellular Adaptations in a Recombinant CHO Cell Line. (United States)

    Yusufi, Faraaz Noor Khan; Lakshmanan, Meiyappan; Ho, Ying Swan; Loo, Bernard Liat Wen; Ariyaratne, Pramila; Yang, Yuansheng; Ng, Say Kong; Tan, Tessa Rui Min; Yeo, Hock Chuan; Lim, Hsueh Lee; Ng, Sze Wai; Hiu, Ai Ping; Chow, Chung Ping; Wan, Corrine; Chen, Shuwen; Teo, Gavin; Song, Gao; Chin, Ju Xin; Ruan, Xiaoan; Sung, Ken Wing Kin; Hu, Wei-Shou; Yap, Miranda Gek Sim; Bardor, Muriel; Nagarajan, Niranjan; Lee, Dong-Yup


    Effective development of host cells for therapeutic protein production is hampered by the poor characterization of cellular transfection. Here, we employed a multi-omics-based systems biotechnology approach to elucidate the genotypic and phenotypic differences between a wild-type and recombinant antibody-producing Chinese hamster ovary (CHO) cell line. At the genomic level, we observed extensive rearrangements in specific targeted loci linked to transgene integration sites. Transcriptional re-wiring of DNA damage repair and cellular metabolism in the antibody producer, via changes in gene copy numbers, was also detected. Subsequent integration of transcriptomic data with a genome-scale metabolic model showed a substantial increase in energy metabolism in the antibody producer. Metabolomics, lipidomics, and glycomics analyses revealed an elevation in long-chain lipid species, potentially associated with protein transport and secretion requirements, and a surprising stability of N-glycosylation profiles between both cell lines. Overall, the proposed knowledge-based systems biotechnology framework can further accelerate mammalian cell-line engineering in a targeted manner. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. "Recombinant Protein of the Day": Using Daily Student Presentations to Add Real-World Aspects to a Biotechnology Course (United States)

    Shaffer, Justin F.


    To provide a realistic view of the biotechnology industry for students, a novel course focusing on recombinant proteins and their importance in medicine, pharmaceuticals, industry, scientific research, and agriculture was developed. ''Designer Proteins and Society,'' an upper-division elective, was taught in the Fall 2012 semester to 16 junior,…

  5. Plant molecular biology and biotechnology research in the post-recombinant DNA era. (United States)

    Tyagi, Akhilesh K; Khurana, Jitendra P


    After the beginning of the recombinant DNA era in the mid-1970s, researchers in India started to make use of the new technology to understand the structure of plant genes and regulation of their expression. The outcome started to appear in print in early the 1980s and genes for histones, tubulin, photosynthetic membrane proteins, phototransduction components, organelles and those regulated differentially by developmental and extrinsic signals were sequenced and characterized. Some genes of biotechnological importance like those encoding an interesting seed protein and the enzyme glyoxalase were also isolated. While work on the characterization of genome structure and organization was started quite early, it remained largely focused on the identification of DNA markers and genetic variability. In this context, the work on mustard, rice and wheat is worth mentioning. In the year 2000, India became a member of the international consortium to sequence entire rice genome. Several laboratories have also given attention to regulated expression of plastid and nuclear genes as well as to isolate target-specific promoters or design promoters with improved potential. Simultaneously, transgenic systems for crops like mustard, rice, wheat, cotton, legumes and several vegetables have been established. More recently, genes of agronomic importance like those for insect resistance, abiotic stress tolerance, nutritional improvement and male sterility, isolated in India or abroad, have been utilized for raising transgenics for crop improvement. Some of these transgenics have already shown their potential in containment facility or limited field trials conducted under the stipulated guidelines. Plant molecular biology and biotechnology are thus clearly poised to make an impact on research in basic biology and agriculture in the near future.

  6. 77 FR 16846 - National Science Advisory Board for Biosecurity Meeting; Office of Biotechnology Activities... (United States)


    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Science Advisory Board for Biosecurity Meeting; Office of Biotechnology Activities, Office of Science Policy, Office of.... Contact Person: Ronna Hill, NSABB Program Assistant, NIH Office of Biotechnology Activities, 6705...

  7. Road to the future of systems biotechnology: CRISPR-Cas-mediated metabolic engineering for recombinant protein production. (United States)

    Roointan, Amir; Morowvat, Mohammad Hossein

    The rising potential for CRISPR-Cas-mediated genome editing has revolutionized our strategies in basic and practical bioengineering research. It provides a predictable and precise method for genome modification in a robust and reproducible fashion. Emergence of systems biotechnology and synthetic biology approaches coupled with CRISPR-Cas technology could change the future of cell factories to possess some new features which have not been found naturally. We have discussed the possibility and versatile potentials of CRISPR-Cas technology for metabolic engineering of a recombinant host for heterologous protein production. We describe the mechanisms involved in this metabolic engineering approach and present the diverse features of its application in biotechnology and protein production.

  8. Pichia pastoris production of a prolyl 4-hydroxylase derived from Chondrosia reniformis sponge: A new biotechnological tool for the recombinant production of marine collagen. (United States)

    Pozzolini, Marina; Scarfì, Sonia; Mussino, Francesca; Salis, Annalisa; Damonte, Gianluca; Benatti, Umberto; Giovine, Marco


    Prolyl 4-hydroxylase (P4H) is a α2β2 tetramer catalyzing the post-translational hydroxylation of prolines in collagen. Its recombinant production is mainly pursued to realize biotechnological tools able to generate animal contaminant-free hydroxylated collagen. One promising candidate for biomedical applications is the collagen extracted from the marine sponge Chondrosia reniformis, because of its biocompatibility and because is devoid of the health risks associated with bovine and porcine collagens. Here we report on the production and selection, by enzymatic and biomolecular analyses, of a triple transformed Pichia pastoris strain expressing a stable P4H tetramer derived from C. reniformis sponge and a hydroxylated non fibrillar procollagen polypeptide from the same animal. The percentage of recombinant procollagen hydroxylated prolines inside the transformed yeast was of 36.3% analyzed by mass spectrometry indicating that the recombinant enzyme is active on its natural substrate inside the yeast cell host. Furthermore, the recombinant sponge P4H has the ability to hydroxylate its natural substrate in both X and Y positions in the Xaa-Yaa-Gly collagenous triplets. In conclusion this Pichia system seems ideal for high-level production of hydroxylated sponge- or marine-derived collagen polypeptides as well as of conotoxins or other marine proteins of high pharmacological interest needing this particular post-translational modification. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Biotechnology of Cold-Active Proteases

    Directory of Open Access Journals (Sweden)

    Tulasi Satyanarayana


    Full Text Available The bulk of Earth’s biosphere is cold (<5 °C and inhabited by psychrophiles. Biocatalysts from psychrophilic organisms (psychrozymes have attracted attention because of their application in the ongoing efforts to decrease energy consumption. Proteinases as a class represent the largest category of industrial enzymes. There has been an emphasis on employing cold-active proteases in detergents because this allows laundry operations at ambient temperatures. Proteases have been used in environmental bioremediation, food industry and molecular biology. In view of the present limited understanding and availability of cold-active proteases with diverse characteristics, it is essential to explore Earth’s surface more in search of an ideal cold-active protease. The understanding of molecular and mechanistic details of these proteases will open up new avenues to tailor proteases with the desired properties. A detailed account of the developments in the production and applications of cold-active proteases is presented in this review.

  10. Molecular requirements for radiation-activated recombination

    International Nuclear Information System (INIS)

    Stevens, Craig W.; Zeng Ming; Stamato, Thomas; Cerniglia, George


    Purpose/Objective: The major stumbling block to successful gene therapy today is poor gene transfer. We hypothesized that ionizing radiation might activate cellular recombination, and so improve stable gene transfer. We further hypothesized that known DNA-damage-repair proteins might also be important in radiation-activated recombination. Materials and Methods: The effect of irradiation on stable gene transfer efficiency was determined in human (A549 and 39F) and rodent (NIH/3T3) cell lines. Continuous low dose rate and multiple radiation fractions were also tested. Nuclear extracts were made and the effect of irradiation on inter-plasmid recombination/ligation determined. Multiple DNA damage-repair deficient cell lines were tested for radiation-activated recombination. Results: A significant radiation dose-dependent improvement in stable plasmid transfection (by as much as 1300 fold) is demonstrated in neoplastic and primary cells. An improvement in transient plasmid transfection is also seen, with as much as 85% of cells transiently expressing b-galactosidase (20-50 fold improvement). Stable transfection is only improved for linearized or nicked plasmids. Cells have improved gene transfer for at least 96 hours after irradiation. Both fractionated and continuous low dose rate irradiation are effective at improving stable gene transfer in mammalian cells, thus making relatively high radiation dose delivery clinically feasible. Inter-plasmid recombination is radiation dose dependent in nuclear extract assays, and the type of overhang (3', 5' or blunt end) significantly affects recombination efficiency and the type of product. The most common end-joining activity involves filling-in of the overhang followed by blunt end ligation. Adenovirus is a linear, double stranded DNA virus. We demonstrate that adenoviral infection efficiency is increased by irradiation. The duration of transgene expression is lengthened because the virus integrates with high efficiency (∼10

  11. 75 FR 10293 - Office of Biotechnology Activities; Office of Science Policy; Office of the Director; Notice of a... (United States)


    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology... meeting, please contact Ms. Laurie Lewallen, Advisory Committee Coordinator, Office of Biotechnology...: March 1, 2010. Amy P. Patterson, Director, Office of Biotechnology Activities, National Institutes of...

  12. Affinity purification of recombinant human plasminogen activator ...

    African Journals Online (AJOL)

    Purpose: To develop processes for effective isolation and purification of recombinant human plasminogen activator (rhPA) from transgenic rabbit milk. Methods: Immunoaffinity chromatography was selected and improved by a special polyol-responsive monoclonal antibody (PR-mAb). Alteplase was used as immunogen ...

  13. Recombinant human activated protein C (Xigris)

    NARCIS (Netherlands)

    Levi, M. [=Marcel M.; de Jonge, E.; van der Poll, T.


    An impaired function of the protein C pathway plays a central role in the pathogenesis of sepsis. Administration of human recombinant activated protein C (Xigris) may restore the dysfunctional anticoagulant mechanism and prevent amplification and propagation of thrombin generation and formation of

  14. Recombinant entomopathogenic agents: a review of biotechnological approaches to pest insect control. (United States)

    Karabörklü, Salih; Azizoglu, Ugur; Azizoglu, Zehra Busra


    Although the use of chemical pesticides has decreased in recent years, it is still a common method of pest control. However, chemical use leads to challenging problems. The harm caused by these chemicals and the length of time that they will remain in the environment is of great concern to the future and safety of humans. Therefore, developing new pest control agents that are safer and environmentally compatible, as well as assuring their widespread use is important. Entomopathogenic agents are microorganisms that play an important role in the biological control of pest insects and are eco-friendly alternatives to chemical control. They consist of viruses (non-cellular organisms), bacteria (prokaryotic organisms), fungi and protists (eukaryotic organisms), and nematodes (multicellular organisms). Genetic modification (recombinant technology) provides potential new methods for developing entomopathogens to manage pests. In this review, we focus on the important roles of recombinant entomopathogens in terms of pest insect control, placing them into perspective with other views to discuss, examine and evaluate the use of entomopathogenic agents in biological control.

  15. Production of biologically active recombinant human factor H in Physcomitrella. (United States)

    Büttner-Mainik, Annette; Parsons, Juliana; Jérôme, Hanna; Hartmann, Andrea; Lamer, Stephanie; Schaaf, Andreas; Schlosser, Andreas; Zipfel, Peter F; Reski, Ralf; Decker, Eva L


    The human complement regulatory serum protein factor H (FH) is a promising future biopharmaceutical. Defects in the gene encoding FH are associated with human diseases like severe kidney and retinal disorders in the form of atypical haemolytic uremic syndrome (aHUS), membranoproliferative glomerulonephritis II (MPGN II) or age-related macular degeneration (AMD). There is a current need to apply intact full-length FH for the therapy of patients with congenital or acquired defects of this protein. Application of purified or recombinant FH (rFH) to these patients is an important and promising approach for the treatment of these diseases. However, neither protein purified from plasma of healthy individuals nor recombinant protein is currently available on the market. Here, we report the first stable expression of the full-length human FH cDNA and the subsequent production of this glycoprotein in a plant system. The moss Physcomitrella patens perfectly suits the requirements for the production of complex biopharmaceuticals as this eukaryotic system not only offers an outstanding genetical accessibility, but moreover, proteins can be produced safely in scalable photobioreactors without the need for animal-derived medium compounds. Transgenic moss lines were created, which express the human FH cDNA and target the recombinant protein to the culture supernatant via a moss-derived secretion signal. Correct processing of the signal peptide and integrity of the moss-produced rFH were verified via peptide mapping by mass spectrometry. Ultimately, we show that the rFH displays complement regulatory activity comparable to FH purified from plasma. © 2010 The Authors. Plant Biotechnology Journal © 2010 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  16. Function and biotechnology of extremophilic enzymes in low water activity (United States)


    Enzymes from extremophilic microorganisms usually catalyze chemical reactions in non-standard conditions. Such conditions promote aggregation, precipitation, and denaturation, reducing the activity of most non-extremophilic enzymes, frequently due to the absence of sufficient hydration. Some extremophilic enzymes maintain a tight hydration shell and remain active in solution even when liquid water is limiting, e.g. in the presence of high ionic concentrations, or at cold temperature when water is close to the freezing point. Extremophilic enzymes are able to compete for hydration via alterations especially to their surface through greater surface charges and increased molecular motion. These properties have enabled some extremophilic enzymes to function in the presence of non-aqueous organic solvents, with potential for design of useful catalysts. In this review, we summarize the current state of knowledge of extremophilic enzymes functioning in high salinity and cold temperatures, focusing on their strategy for function at low water activity. We discuss how the understanding of extremophilic enzyme function is leading to the design of a new generation of enzyme catalysts and their applications to biotechnology. PMID:22480329

  17. Integration of biotechnology in remediation and pollution prevention activities

    International Nuclear Information System (INIS)

    Strong-Gunderson, J.M.


    The North American Free Trade Agreement/North American Agreement on Environmental Cooperation provides a mechanism for an international collaboration between the US, Canada, and Mexico to jointly develop, modify, or refine technologies that remediate or protect the environment. These countries have a vested interest in this type of collaboration because contaminants do not respect the boundaries of a manufacturing site, region, city, state, or country. The Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) consists of a diverse group of individuals who address a variety of environmental issues. ESD is involved in basic and applied research on the fate, transport, and remediation of contaminants; environmental assessment; environmental engineering; and demonstrations of advanced remediation technologies. The remediation and protection of the environment includes water, air, and soils for organic, inorganic, and radioactive contaminants. In addition to remediating contaminated sites, research also focuses on life-cycle analyses of industrial processes and the production of green technologies. The author focuses this discussion on subsurface remediation and pollution prevention; however, the research activities encompass water, soil and air and many of the technologies are applicable to all environments. The discussion focuses on the integration of biotechnology with remediation activities and subsequently linking these biological processes to other remediation technologies

  18. Anti-proliferative activity of recombinant melittin expressed in ...

    African Journals Online (AJOL)

    Recombinant melittin was then successfully expressed in Escherichia coli. The activity of affinity-purified recombinant melittin was determined in human leukemic U937 cells. Results show that the recombinant melittin had the same anti-proliferative activity in human leukemic U937 cells in vitro as natural one. This shows the ...

  19. Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies. (United States)

    Yamaguchi, Hiroshi; Miyazaki, Masaya


    Biologically active proteins are useful for studying the biological functions of genes and for the development of therapeutic drugs and biomaterials in a biotechnology industry. Overexpression of recombinant proteins in bacteria, such as Escherichia coli, often results in the formation of inclusion bodies, which are protein aggregates with non-native conformations. As inclusion bodies contain relatively pure and intact proteins, protein refolding is an important process to obtain active recombinant proteins from inclusion bodies. However, conventional refolding methods, such as dialysis and dilution, are time consuming and, often, recovered yields of active proteins are low, and a trial-and-error process is required to achieve success. Recently, several approaches have been reported to refold these aggregated proteins into an active form. The strategies largely aim at reducing protein aggregation during the refolding procedure. This review focuses on protein refolding techniques using chemical additives and laminar flow in microfluidic chips for the efficient recovery of active proteins from inclusion bodies.

  20. 75 FR 2549 - Office of Biotechnology Activities; Office of Science Policy; Office of the Director; Notice of a... (United States)


    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology... Coordinator, Office of Biotechnology Activities, Office of Science Policy, Office of the Director, National..., Office of Biotechnology Activities, National Institutes of Health. [FR Doc. 2010-730 Filed 1-14-10; 8:45...

  1. 75 FR 15713 - Office of Biotechnology Activities; Office of Science Policy; Office of the Director; Notice of a... (United States)


    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology... Lewallen, Advisory Committee Coordinator, Office of Biotechnology Activities, Office of Science Policy..., Director, Office of Biotechnology Activities, National Institutes of Health. [FR Doc. 2010-6970 Filed 3-29...

  2. Sectoral innovation foresight. Biotechnology sector. Final Reeport. Task 2

    NARCIS (Netherlands)

    Valk, T. van der; Gijsbers, G.W.; Meis, M.


    Biotechnology has evolved from a single set of technologies in the mid 1970s (e.g. recombinant DNA technology) into the full grown economic activity of today. The set of technologies that constitute the field of biotechnology thus find their applications in different sectors, most notably in

  3. Surface-active biopolymers from marine bacteria for potential biotechnological applications

    Directory of Open Access Journals (Sweden)

    Karina Sałek


    Full Text Available Surface-active agents are amphiphilic chemicals that are used in almost every sector of modern industry, the bulk of which are produced by organo-chemical synthesis. Those produced from biological sources (biosurfactants and bioemulsifiers, however, have gained increasing interest in recent years due to their wide structural and functional diversity, lower toxicities and high biodegradability, compared to their chemically-synthesised counterparts. This review aims to present a general overview on surface-active agents, including their classification, where new types of these biomolecules may lay awaiting discovery, and some of the main bottlenecks for their industrial-scale production. In particular, the marine environment is highlighted as a largely untapped source for discovering new types of surface-active agents. Marine bacteria, especially those living associated with micro-algae (eukaryotic phytoplankton, are a highly promising source of polymeric surface-active agents with potential biotechnological applications. The high uronic acids content of these macromolecules has been linked to conferring them with amphiphilic qualities, and their high structural diversity and polyanionic nature endows them with the potential to exhibit a wide range of functional diversity. Production yields (e.g. by fermentation for most microbial surface-active agents have often been too low to meet the volume demands of industry, and this principally remains as the most important bottleneck for their further commercial development. However, new developments in recombinant and synthetic biology approaches can offer significant promise to alleviate this bottleneck. This review highlights a particular biotope in the marine environment that offers promise for discovering novel surface-active biomolecules, and gives a general overview on specific areas that researchers and the industry could focus work towards increasing the production yields of microbial surface-active

  4. Activity of recombinant factor VIIa under different conditions in vitro

    DEFF Research Database (Denmark)

    Bladbjerg, Else-Marie; Jespersen, Jørgen


    Recombinant activated factor VII (NovoSeven; Novo Nordisk A/S, Måløv, Denmark) is an effective drug for treatment of bleeding in patients with haemophilia A or B and inhibitors. Little is known about physiological conditions influencing the efficacy of recombinant activated factor VII. We...

  5. Recombinant-activated factor VII in the paediatric cardiac surgery ...

    African Journals Online (AJOL)

    Recombinant-activated factor VII in the paediatric cardiac surgery: Single unit experience. V Agarwal, KE Okonta, PS Lal. Abstract. Background: The control of excessive bleeding after paediatric cardiac surgery can be challenging. This may make the use of recombinant-activated factor VII (rFVIIa) in preventing this ...

  6. An Acidic Thermostable Recombinant Aspergillus nidulans Endoglucanase Is Active towards Distinct Agriculture Residues

    Directory of Open Access Journals (Sweden)

    Eveline Queiroz de Pinho Tavares


    Full Text Available Aspergillus nidulans is poorly exploited as a source of enzymes for lignocellulosic residues degradation for biotechnological purposes. This work describes the A. nidulans Endoglucanase A heterologous expression in Pichia pastoris, the purification and biochemical characterization of the recombinant enzyme. Active recombinant endoglucanase A (rEG A was efficiently secreted as a 35 kDa protein which was purified through a two-step chromatography procedure. The highest enzyme activity was detected at 50°C/pH 4. rEG A retained 100% of activity when incubated at 45 and 55°C for 72 h. Purified rEG A kinetic parameters towards CMC were determined as Km=27.5±4.33 mg/mL, Vmax=1.185±0.11 mmol/min, and 55.8 IU (international units/mg specific activity. Recombinant P. pastoris supernatant presented hydrolytic activity towards lignocellulosic residues such as banana stalk, sugarcane bagasse, soybean residues, and corn straw. These data indicate that rEG A is suitable for plant biomass conversion into products of commercial importance, such as second-generation fuel ethanol.

  7. Research activities on supercritical fluid science in food biotechnology. (United States)

    Khosravi-Darani, Kianoush


    This article serves as an overview, introducing the currently popular area of supercritical fluids and their uses in food biotechnology. Within each application, and wherever possible, the basic principles of the technique, as well as a description of the history, instrumentation, methodology, uses, problems encountered, and advantages over the traditional, non-supercritical methods are given. Most current commercial application of the supercritical extraction involve biologically-produced materials; the technique may be particularly relevant to the extraction of biological compounds in cases where there is a requirement for low-temperature processing, high mass-transfer rates, and negligible carrying over of the solvent into the final product. Special applications to food processing include the decaffeination of green coffee beans, the production of hops extracts, the recovery of aromas and flavors from herbs and spices, the extraction and fractionation of edible oils, and the removal of contaminants, among others. New advances, in which the extraction is combined with reaction or crystallization steps, may further increase the attractiveness of supercritical fluids in the bioprocess industries. To develop and establish a novel and effective alternative to heating treatment, the lethal action of high hydrostatic pressure CO(2) on microorganisms, with none or only a minimal heating process, has recently received a great deal of attention.

  8. 77 FR 66624 - Office of Biotechnology Activities, Office of Science Policy, Office of the Director; Notice of... (United States)


    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology Activities, Office of Science Policy, Office of the Director; Notice of Meeting Pursuant to section 10(a) of..., Maryland 20892. Contact Person: Ronna Hill, NSABB Program Assistant, NIH Office of Biotechnology Activities...

  9. 76 FR 77240 - Office of Biotechnology Activities, Office of Science Policy, Office of the Director; Notice of... (United States)


    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology Activities, Office of Science Policy, Office of the Director; Notice of Meeting Pursuant to section 10(d) of..., NSABB Program Assistant, NIH Office of Biotechnology Activities, 6705 Rockledge Drive, Suite 750...

  10. 75 FR 25282 - Office of the Director, Office of Biotechnology Activities; Notice of a Safety Symposium (United States)


    ..., Office of Biotechnology Activities; Notice of a Safety Symposium There will be a safety symposium...: Challenges in Clinical Trial Design with Novel Receptors'' on June 15, 2010 at the Rockville Hotel and... that can maximize both anti-tumor effect and safety. An agenda will be posted to OBA's Web site closer...

  11. 76 FR 5391 - Office of Biotechnology Activities, Office of Science Policy, Office of the Director (United States)


    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology Activities, Office of Science Policy, Office of the Director Amended Notice of Meeting Notice is hereby given of a change in the meeting of the National Science Advisory Board for Biosecurity (NSABB), February...

  12. Recombinant human nerve growth factor with a marked activity in vitro and in vivo (United States)

    Colangelo, Anna M.; Finotti, Nicoletta; Ceriani, Michela; Alberghina, Lilia; Martegani, Enzo; Aloe, Luigi; Lenzi, Laura; Levi-Montalcini, Rita


    Recombinant human nerve growth factor (rhNGF) is regarded as the most promising therapy for neurodegeneration of the central and peripheral nervous systems as well as for several other pathological conditions involving the immune system. However, rhNGF is not commercially available as a drug. In this work, we provide data about the production on a laboratory scale of large amounts of a rhNGF that was shown to possess in vivo biochemical, morphological, and pharmacological effects that are comparable with the murine NGF (mNGF), with no apparent side effects, such as allodynia. Our rhNGF was produced by using conventional recombinant DNA technologies combined with a biotechnological approach for high-density culture of mammalian cells, which yielded a production of ≈21.5 ± 2.9 mg/liter recombinant protein. The rhNGF-producing cells were thoroughly characterized, and the purified rhNGF was shown to possess a specific activity comparable with that of the 2.5S mNGF by means of biochemical, immunological, and morphological in vitro studies. This work describes the production on a laboratory scale of high levels of a rhNGF with in vitro and, more important, in vivo biological activity equivalent to the native murine protein. PMID:16339317

  13. A recombinant wheat serpin with inhibitory activity

    DEFF Research Database (Denmark)

    Rasmussen, Søren K; Dahl, Søren Weis; Nørgård, Anette


    , equipped with a histidine affinity tag at the N-terminus and expressed in Escherichia coli BL(21) DE3 pLysS. Recombinant WSZ1 from the soluble fraction was partially purified on Ni-NTA agarose and MonoQ columns and shown to form SDS-stable complexes with sc-chymotrypsin. Southern blots and amino acid...... sequencing indicated that only few serpins are encoded by wheat, but at least three distinct genes are expressed in the grain. Cleavage experiments on a chymotrypsin column suggested a Gln-Gln reactive site bond not previously observed in inhibitory serpins....

  14. FAO/IAEA Agriculture and Biotechnology Laboratories. Activities Report 2010

    International Nuclear Information System (INIS)


    Almost two thirds of the world's farm population is raised in developing countries where livestock production constitutes an important resource for the subsistence of more than 70% of the impoverished people living there. Animals represent an essential source of protein and contribute to the economic development of these countries and to overall food security. However, production losses caused by animal diseases, estimated to be around 20% worldwide, have huge negative impact on livestock productivity. The Animal Production and Health Laboratory (APHL), within the Animal Production and Health Section, conducts applied research activities to develop diagnostic tools and assists in the transfer of these tools to FAO and IAEA Member States in their efforts to improve livestock productivity, ensure food security and fight against hunger. The aims of the Food and Environmental Protection Laboratory (FEPL), as a component of the Food and Environmental Protection (FEP) Section, are to provide assistance and support to developing countries in their efforts to ensure the safety and quality of food and agricultural commodities, thereby safeguarding the health of consumers and facilitating international trade. The focus of the FEPL's work is on improving Member States' laboratory and regulatory practices and methodologies, The main areas of activity in pursuit of the FEPL objectives are applied R and D, technology transfer and support of the development of international standards and guidelines. The Insect Pest Control Laboratory (IPCL) is an integral part of the Insect Pest Control Section and contributes to its global objectives of increasing food security, reducing food losses and insecticide use, overcoming constraints to sustainable rural development, and facilitating international trade in agriculture commodities. The IPCL achieves these goals through the development and transfer of the sterile insect technique (SIT) package for key insect pests of crops, livestock and

  15. Escherichia coli Fails to Efficiently Maintain the Activity of an Important Flavin Monooxygenase in Recombinant Overexpression

    Directory of Open Access Journals (Sweden)

    Sofia Milker


    Full Text Available This paper describes the measurement and analysis of in vivo activity and stability of cyclohexanone monooxygenase from Acinetobacter sp. NCIMB 9871 (CHMO, a model Baeyer–Villiger monooxygenase, in the recombinant host Escherichia coli. This enzyme was often described as poorly stable in vitro, and has recently been found to deactivate rapidly in the absence of its essential cofactors and antioxidants. Its stability in vivo was scarcely studied, so far. Under conditions common for the overexpression of CHMO we investigated the ability of the host to support these properties using metabolomics. Our results showed that E. coli failed to provide the intracellular levels of cofactors required to functionally stabilize the enzyme, although the biocatalyst was produced in high concentration, and was invariably detected after protein synthesis had stopped. We thus infer that biotechnological applications of CHMO with this host relied on a residual activity of approximately 5-10%. Other microorganisms might offer a more efficient solution for recombinant production of CHMO and related enzymes.

  16. A systematic analysis of recombination activity and genotype-phenotype correlation in human recombination-activating gene 1 deficiency. (United States)

    Lee, Yu Nee; Frugoni, Francesco; Dobbs, Kerry; Walter, Jolan E; Giliani, Silvia; Gennery, Andrew R; Al-Herz, Waleed; Haddad, Elie; LeDeist, Francoise; Bleesing, Jack H; Henderson, Lauren A; Pai, Sung-Yun; Nelson, Robert P; El-Ghoneimy, Dalia H; El-Feky, Reem A; Reda, Shereen M; Hossny, Elham; Soler-Palacin, Pere; Fuleihan, Ramsay L; Patel, Niraj C; Massaad, Michel J; Geha, Raif S; Puck, Jennifer M; Palma, Paolo; Cancrini, Caterina; Chen, Karin; Vihinen, Mauno; Alt, Frederick W; Notarangelo, Luigi D


    The recombination-activating gene (RAG) 1/2 proteins play a critical role in the development of T and B cells by initiating the VDJ recombination process that leads to generation of a broad T-cell receptor (TCR) and B-cell receptor repertoire. Pathogenic mutations in the RAG1/2 genes result in various forms of primary immunodeficiency, ranging from T(-)B(-) severe combined immune deficiency to delayed-onset disease with granuloma formation, autoimmunity, or both. It is not clear what contributes to such heterogeneity of phenotypes. We sought to investigate the molecular basis for phenotypic diversity presented in patients with various RAG1 mutations. We have developed a flow cytometry-based assay that allows analysis of RAG recombination activity based on green fluorescent protein expression and have assessed the induction of the Ighc locus rearrangements in mouse Rag1(-/-) pro-B cells reconstituted with wild-type or mutant human RAG1 (hRAG1) using deep sequencing technology. Here we demonstrate correlation between defective recombination activity of hRAG1 mutant proteins and severity of the clinical and immunologic phenotype and provide insights on the molecular mechanisms accounting for such phenotypic diversity. Using a sensitive assay to measure the RAG1 activity level of 79 mutations in a physiologic setting, we demonstrate correlation between recombination activity of RAG1 mutants and the severity of clinical presentation and show that RAG1 mutants can induce specific abnormalities of the VDJ recombination process. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  17. Anti-proliferative activity of recombinant melittin expressed in ...

    African Journals Online (AJOL)



    Feb 9, 2012 ... 44 amino acid residues mediated by dipeptidylpeptidase. IV (Vlasak et al., 1983). It has been reported that the melittin exhibits antimicrobial activity and pro- ... Construction of recombinant expression vector. A pair of complementary oligonucleotides named Mel-1 (5′-GAT. CCG GAA TTG GAG CAG TTC ...

  18. Homing of radiolabelled recombinant interleukin-2 activated natural ...

    Indian Academy of Sciences (India)

    Homing of radiolabelled recombinant interleukin-2 activated natural killer cells and their efficacy in adoptive immunotherapy against murine fibrosarcoma. Anuradha Rai Ashim ... Department of Zoology, St Joseph's College, Darjeeling 734 104, India; Centre for Life Sciences, North Bengal University, Siliguri 734 430, India ...

  19. Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review

    Directory of Open Access Journals (Sweden)

    Tingting eZhu


    Full Text Available Calcium carbonate represents a large portion of carbon reservoir and is used commercially for a variety of applications. Microbial carbonate precipitation (MCP, a by-product of microbial activities, plays an important metal coprecipitation and cementation role in natural systems. This natural process occurring in various geological settings can be mimicked and used for a number of biotechnology such as metal remediation, carbon sequestration, enhanced oil recovery and construction restoration. In this study, different metabolic activities leading to calcium carbonate precipitation, their native environment, and potential applications and challenges are reviewed.

  20. Recombination in Escherichia coli V. Genetic analysis of recombinants from crosses with recipients deficient in ATP-dependent exonuclease activity

    NARCIS (Netherlands)

    Haan, P.G. de; Hoekstra, W.P.M.; Verhoef, C.

    A genetic analysis of recombinants from crosses with recombination-deficient recipients, lacking the ATP-dependent exonuclease activity, demonstrated differences in the inheritance pattern of donor markers compared with a Rec+ recipient. In particular the donor markers proximal to the transfer

  1. Biotechnology: interferon patent contested. (United States)

    Earl, C; Beardsley, T

    Biogen, a biotechnology company based in Cambridge, Mass., and Geneva, Switzerland, has been notified by the European Patent Office that it will receive a product patent for its alpha interferon synthesized by recombinant DNA technology. Genentech, a San Francisco company which claims priority for producing mature interferon, is planning a vigorous appeal of the decision.

  2. Immunoassays in monitoring biotechnological drugs. (United States)

    Gygax, D; Botta, L; Ehrat, M; Graf, P; Lefèvre, G; Oroszlan, P; Pfister, C


    For the evaluation and interpretation of pharmacokinetic data reliable quantitative determinations are a requirement that can only be met by well-characterized and fully validated analytical methods. To cope with these requirements a method is being established that is based on an integrated and automated fiber-optic biospecific interaction analysis system (FOBIA) for immunoassays. Performance characteristics of this system used in monitoring of recombinant hirudin (CGP 39 393) are presented. Recombinant hirudin is a highly potent and selective inhibitor of human thrombin. Owing to its size and charge, recombinant hirudin is mainly eliminated by glomerular filtration. But only a fraction of the hirudin dose seems to be reabsorbed at the proximal tubule by luminal endocytosis and hydrolyzed by lysosomal enzymes, leaving approximately 50% of the dose to be extracted in the urine. Thus, renal clearance of recombinant hirudin in the absence of renal insufficiency appears to depend primarily on the glomerular filtration rate. During a 3-month i.v. tolerability study in dogs, some of the dogs developed antibodies against recombinant hirudin. The hirudin-antibody complex accumulated in plasma and apparent hirudin plasma concentrations were therefore much higher than expected from single-dose kinetics. Hirudin captured by antibodies showed an extended half-life and the hirudin-antibody complex is still pharmacologically active, as demonstrated by the observed increase in thrombin time. In conclusion, only appropriate analytical methods allow adequate monitoring and pharmacokinetic characterization of biotechnology drugs in biological materials.

  3. Exploring the Effects of Active Learning on High School Students' Outcomes and Teachers' Perceptions of Biotechnology and Genetics Instruction (United States)

    Mueller, Ashley L.; Knobloch, Neil A.; Orvis, Kathryn S.


    Active learning can engage high school students to learn science, yet there is limited understanding if active learning can help students learn challenging science concepts such as genetics and biotechnology. This quasi-experimental study explored the effects of active learning compared to passive learning regarding high school students'…

  4. Three faces of recombination activating gene 1 (RAG1) mutations. (United States)

    Patiroglu, Turkan; Akar, Himmet Haluk; Van Der Burg, Mirjam


    Severe combined immune deficiency (SCID) is a group of genetic disorder associated with development of T- and/or B-lymphocytes. Recombination-activating genes (RAG1/2) play a critical role on VDJ recombination process that leads to the production of a broad T-cell receptor (TCR) and B-cell receptor (BCR) repertoire in the development of T and B cells. RAG1/2 genes mutations result in various forms of primary immunodeficiency, ranging from classic SCID to Omenn syndrome (OS) to atypical SCID with such as granuloma formation and autoimmunity. Herein, we reported 4 patients with RAG1 deficiency: classic SCID was seen in two patients who presented with recurrent pneumonia and chronic diarrhoea, and failure to thrive. OS was observed in one patient who presented with chronic diarrhoea, skin rash, recurrent lower respiratory infections, and atypical SCID was seen in one patient who presented with Pyoderma gangrenosum (PG) and had novel RAG1 mutation.

  5. Fostering biotechnology entrepreneurship in developing countries

    African Journals Online (AJOL)


    the growing science base, biotechnology companies can successfully be located and thrive in these countries. The rewards which can flow from the successful exploitation of research should encourage investment in biotechnological activities. Key words: Entrepreneur, biotechnology, investment. INTRODUCTION.

  6. 76 FR 62816 - Office of Biotechnology Activities; Recombinant DNA Research: Action Under the NIH Guidelines for... (United States)


    ... Committee (RAC) discussed the appropriate containment for two attenuated strains of Yersinia pestis (lcr.... *Francisella tularensis biovar tularensis strain ATCC 6223 (also known as strain B38). Yersinia pestis pgm (-) (lacking the 102 kb pigmentation locus). Yersinia pestis lcr (-) (lacking the LCR plasmid). The following...

  7. 76 FR 44339 - Office of Biotechnology Activities; Recombinant DNA Research: Action Under the NIH Guidelines for... (United States)


    ... for two attenuated strains of Yersinia pestis (lcr (-) and pgm (-) mutants) at its June 16, 2010... with these attenuated strains of Yersinia pestis are being implemented by amending Appendix B to... strain B38) Yersinia pestis pgm (-) (lacking the 102 kb pigmentation locus) Yersinia pestis lcr...


    Directory of Open Access Journals (Sweden)

    John I. Bruce


    Full Text Available Biotechnology as a science includes various aspects of the management and manipulation of biological systems. Recent advances in immunology, molecular biology, cell culture and other associated areas provide an opportunity for scientists to move biology out of the laboratory and into the realms of society. This has many implications which mankind on a whole may not be prepared to cope with at this time. This new capability has been referred to as "Biotechnology". Biotechnology has also been defined as "the integrated use of biochemistry, microbiology, and chemical engineering in order to achieve the capacities of microbes and culture cells". Genetic engineering which includes gene splicing and recombinant DNA-cloning is an example of a recent offshoot of biotechnology. Because of the advent of biotechnology, one can now think of the prospect of engineering tomorrows vaccines. In the past, vaccine development has been laborious and in many instances an unrewarding task. After years of effort only a handful of safe, effective vaccines have emerged. In the biotechnology arena, new methodologies and strategies for immunizing humans and domestic animals against infectious diseases are providing new hope for discovering successful vaccines. While most of the effort in the past has focused on viral vaccine development, attention is now being directed towards vaccines for protection against parasitic diseases. Currently, considerable effort is being made to develop vaccines for malaria, coccidiosis (in fowl, cholera, malaria, schistosomiasis and trypanosomiasis among others.

  9. An active recombinant cocoonase from the silkworm Bombyx mori: bleaching, degumming and sericin degrading activities. (United States)

    Unajak, Sasimanas; Aroonluke, Suradet; Promboon, Amornrat


    Cocoonase is a serine protease produced by silk moths and used for softening the cocoons so that they can escape. Degumming is one of the important steps in silk processing. This research aimed to produce an active recombinant Bombyx mori cocoonase (BmCoc) for the silk degumming process. A recombinant BmCoc was successfully expressed in a Pichia pastoris system. The purified enzyme showed specific activity of 227 U mg(-1) protein, 2.4-fold purification, 95% yield and a molecular weight of 26 kDa. The enzyme exhibited optimal temperature at 40 °C and optimal pH at 8, and showed thermal stability at 25-45 °C and pH stability at 5-9. The recombinant enzyme exhibited sericin degumming ability and color bleaching characteristics, and did not affect the fibroin fiber. The enzyme also degraded sericin substrate with a product size about 30-70 kDa. In this study, we successfully produced the active recombinant BmCoc in P. pastoris with promising functions for the Thai silk degumming process, which includes degumming, sericin degrading and color bleaching activities. Our data clearly indicated that the recombinant enzyme had proteolytic activity on sericin but not on fibroin proteins. The recombinant BmCoc has proven to be suitable for numerous applications in the silk industry. © 2014 Society of Chemical Industry.

  10. Recombination activating activity of XRCC1 analogous genes in X-ray sensitive and resistant CHO cell lines

    International Nuclear Information System (INIS)

    Golubnitchaya-Labudova, O.; Hoefer, M.; Portele, A.; Vacata, V.; Rink, H.; Lubec, G.


    The XRCC1 gene (X-ray repair cross complementing) complements the DNA repair deficiency of the radiation sensitive Chinese hamster ovary (CHO) mutant cell line EM9 but the mechanism of the correction is not elucidated yet. XRCC1 shows substantial homology to the RAG2 gene (recombination activating gene) and we therefore tried to answer the question, whether structural similarities (sequence of a putative recombination activating domain, aa 332-362 for XRCC1 and aa 286-316 in RAG2) would reflect similar functions of the homologous, putative recombination activating domain. PCR experiments revealed that no sequence homologous to the structural part of human XRCC1 was present in cDNA of CHO. Differential display demonstrated two putative recombination activating in the parental CHO line AA8 and one in the radiosensitive mutant EM9. Southern blot experiments showed the presence of several genes with partial homology to human XRCC1. Recombination studies consisted of expressing amplified target domains within chimeric proteins in recA - bacteria and subsequent detection of recombination events by sequencing the recombinant plasmids. Recombination experiments demonstrated recombination activating activity of all putative recombination activating domains amplified from AA8 and EM9 genomes as reflected by deletions within the inserts of the recombinant plasmids. The recombination activating activity of XRCC1 analogues could explain a mechanism responsible for the correction of the DNA repair defect in EM9. (author)

  11. The Biotechnological Applications of Recombinant Single-Domain Antibodies are Optimized by the C-Terminal Fusion to the EPEA Sequence (C Tag

    Directory of Open Access Journals (Sweden)

    Selma Djender


    Full Text Available We designed a vector for the bacterial expression of recombinant antibodies fused to a double tag composed of 6xHis and the EPEA amino acid sequence. EPEA sequence (C tag is tightly bound by a commercial antibody when expressed at the C-term end of a polypeptide. The antigen is released in the presence of 2 M MgCl2. Consequently, constructs fused to the 6xHis-C tags can be purified by two successive and orthogonal affinity steps. Single-domain antibodies were produced either in the periplasmic or in the cytoplasmic space of E. coli. Surprisingly, the first affinity purification step performed using the EPEA-binding resin already yielded homogeneous proteins. The presence of the C tag did not interfere with the binding activity of the antibodies, as assessed by FACS and SPR analyses, and the C tag was extremely effective for immunoprecipitating HER2 receptor. Finally, the Alexa488-coupled anti-C tag allowed for simplification of FACS and IF analyses. These results show that a tag of minimal dimensions can be effectively used to improve the applicability of recombinant antibodies as reagents. In our hands, C tag was superior to His-tag in affinity purification and pull-down experiments, and practical in any other standard immune technique.

  12. The present status and perspectives of Biotechnology in Cameroon ...

    African Journals Online (AJOL)

    ... for the rapid exploitation of biotechnology for the socioeconomic development of Cameroon, subject to the mobilization of the necessary venture capital. Keywords: Cameroon, Biotechnology, GMO, Biodiversity, Economic Development, Recombinant DNA JOURNAL OF THE CAMEROON ACADEMY OF SCIENCES Vol.

  13. Activity of the Human Rhinovirus 3C Protease Studied in Various Buffers, Additives and Detergents Solutions for Recombinant Protein Production.

    Directory of Open Access Journals (Sweden)

    Raheem Ullah

    Full Text Available Proteases are widely used to remove affinity and solubility tags from recombinant proteins to avoid potential interference of these tags with the structure and function of the fusion partner. In recent years, great interest has been seen in use of the human rhinovirus 3C protease owing to its stringent sequence specificity and enhanced activity. Like other proteases, activity of the human rhinovirus 3C protease can be affected in part by the buffer components and additives that are generally employed for purification and stabilization of proteins, hence, necessitate their removal by tedious and time-consuming procedures before proteolysis can occur. To address this issue, we examined the effect of elution buffers used for common affinity based purifications, salt ions, stability/solubility and reducing agents, and detergents on the activity of the human rhinovirus 3C protease using three different fusion proteins at 4°C, a temperature of choice for purification of many proteins. The results show that the human rhinovirus 3C protease performs better at 4°C than the frequently used tobacco etch virus protease and its activity was insensitive to most of the experimental conditions tested. Though number of fusion proteins tested is limited, we expect that these finding will facilitate the use of the human rhinovirus 3C protease in recombinant protein production for pharmaceutical and biotechnological applications.

  14. Permanent Genetic Access to Transiently Active Neurons via TRAP: Targeted Recombination in Active Populations


    Guenthner, Casey J.; Miyamichi, Kazunari; Yang, Helen H.; Heller, H. Craig; Luo, Liqun


    Targeting genetically encoded tools for neural circuit dissection to relevant cellular populations is a major challenge in neurobiology. We developed a new approach, Targeted Recombination in Active Populations (TRAP), to obtain genetic access to neurons that were activated by defined stimuli. This method utilizes mice in which the tamoxifen-dependent recombinase CreERT2 is expressed in an activity-dependent manner from the loci of the immediate early genes Arc and Fos. Active cells that expr...

  15. Studying of the standardization principles of pharmacological activity of recombinant erythropoietin preparations


    A. K. Yakovlev; L. A. Gayderova; N. A. Alpatova; T. N. Lobanova; E. L. Postnova; E. I. Yurchikova; T. A. Batuashvili; R. A. Volkova; V. N. Podkuiko; Yu. V. Olefir


    Analysis of the publications devoted to the structure, functions, mechanism of action of erythropoietin is given in the article. Erythropoietin preparations derived from recombinant DNA technology are a mixture of isoforms with different biological activity, which determine the biological properties pharmacological activity, pharmacokinetics, efficacy and safety of medicinal product. Erythropoietin preparations derived by using recombinant DNA technology are a mixture of isoforms with differe...

  16. Myelostimulatory activity of recombinant human interleukin-2 in mice

    Energy Technology Data Exchange (ETDEWEB)

    Talmadge, J.E.; Schneider, M.; Keller, J.; Ruscetti, F.; Longo, D.; Pennington, R.; Bowersox, O.; Tribble, H.


    In a series of studies designed to extend our understanding of interleukin-2 (IL-2) and to study the effect of biologic response modifiers on bone marrow, we observed that administering recombinant human (rH) IL-2 to normal mice resulted in an increase in the frequency of colony-forming units-culture (CFU-C) in bone marrow. In addition, rH IL-2 was able to accelerate host recovery from cyclophosphamide (CTX)- or radiation-induced bone marrow depression and peripheral blood leukopenia. Not only can rH IL-2 accelerate, in a dose-dependent manner, the return of bone marrow, peripheral blood cellularity, and CFU-C frequency to normal levels following cytoreduction by CTX or irradiation, but it also significantly increases CFU-C frequency to greater than normal levels. Furthermore, rH IL-2 can significantly prolong survival of animals receiving a lethal dose of irradiation or CTX. Thus, multiple mechanisms are responsible for the synergistic therapeutic activity associated with rH IL-2 and CTX. rH IL-2 does not act only as an immunomodulatory agent in the presence or absence of suppressor T cells, but also accelerates host recovery from cytoreductive agents, resulting in decreased leukopenia and perhaps resistances to secondary infection. Thus, rH IL-2 plus chemotherapy may increase therapeutic activity against neoplastic disease, not only by adding immune stimulation to the direct antitumor effect of the drug but also by allowing delivery of higher, more effective doses of chemotherapy.

  17. Proteolytic activity of recombinant DegP from Chromohalobacter salexigens BKL5

    Directory of Open Access Journals (Sweden)

    Dewi Fitriani


    Conclusions: Recombinant DegP from C. salexigens BKL5 showed proteolytic activity when β-casein was used as a substrate. In silico analysis indicated that recombinant DegP had characteristics similar to those of halophilic proteins depending on its amino acid composition.

  18. The interaction of recombinant tissue type plasminogen activator and recombinant plasminogen activator (r-PA/BM 06.022) with human endothelial cells

    NARCIS (Netherlands)

    Mulder, M.; Kohnert, U.; Fischer, S.; Hinsbergh, V.W.M. van; Verheijen, J.H.


    The Escherichia coli-expressed recombinant plasminogen activator (r-PA) comprising the kringle 2 and protease domains of human tissue-type plasminogen activator (t-PA) has a four-fold longer half-life time in the circulation than t-PA, possibly resulting in an increased opportunity for r-PA to

  19. Construction Biotechnology: a new area of biotechnological research and applications. (United States)

    Stabnikov, Viktor; Ivanov, Volodymyr; Chu, Jian


    A new scientific and engineering discipline, Construction Biotechnology, is developing exponentially during the last decade. The major directions of this discipline are selection of microorganisms and development of the microbially-mediated construction processes and biotechnologies for the production of construction biomaterials. The products of construction biotechnologies are low cost, sustainable, and environmentally friendly microbial biocements and biogrouts for the construction ground improvement. The microbial polysaccharides are used as admixtures for cement. Microbially produced biodegradable bioplastics can be used for the temporarily constructions. The bioagents that are used in construction biotechnologies are either pure or enrichment cultures of microorganisms or activated indigenous microorganisms of soil. The applications of microorganisms in the construction processes are bioaggregation, biocementation, bioclogging, and biodesaturation of soil. The biotechnologically produced construction materials and the microbially-mediated construction technologies have a lot of advantages in comparison with the conventional construction materials and processes. Proper practical implementations of construction biotechnologies could give significant economic and environmental benefits.

  20. Activation of XerCD-dif recombination by the FtsK DNA translocase. (United States)

    Grainge, Ian; Lesterlin, Christian; Sherratt, David J


    The FtsK translocase pumps dsDNA directionally at ∼5 kb/s and facilitates chromosome unlinking by activating XerCD site-specific recombination at dif, located in the replication terminus of the Escherichia coli chromosome. We show directly that the γ regulatory subdomain of FtsK activates XerD catalytic activity to generate Holliday junction intermediates that can then be resolved by XerC. Furthermore, we demonstrate that γ can activate XerCD-dif recombination in the absence of the translocase domain, when it is fused to XerCD, or added in isolation. In these cases the recombination products are topologically complex and would impair chromosome unlinking. We propose that FtsK translocation and activation of unlinking are normally coupled, with the translocation being essential for ensuring that the products of recombination are topologically unlinked, an essential feature of the role of FtsK in chromosome segregation.

  1. (111)Indium Labelling of Recombinant Activated Coagulation Factor VII

    DEFF Research Database (Denmark)

    Nalla, Amarnadh; Buch, Inge; Sigvardt, Maibritt


    The aim of this study is to investigate whether (111)Indium-labelled recombinant FVIIa (rFVIIa) could be a potential radiopharmaceutical for localization of bleeding sources. DTPA-conjugated rFVIIa was radiolabelled with (111)In chloride. In vitro binding efficiency of (111)In-DTPA-rFVIIa to F1A2...

  2. New insights into the evolutionary origins of the recombination-activating gene proteins and V(D)J recombination. (United States)

    Carmona, Lina Marcela; Schatz, David G


    The adaptive immune system of jawed vertebrates relies on V(D)J recombination as one of the main processes to generate the diverse array of receptors necessary for the recognition of a wide range of pathogens. The DNA cleavage reaction necessary for the assembly of the antigen receptor genes from an array of potential gene segments is mediated by the recombination-activating gene proteins RAG1 and RAG2. The RAG proteins have been proposed to originate from a transposable element (TE) as they share mechanistic and structural similarities with several families of transposases and are themselves capable of mediating transposition. A number of RAG-like proteins and TEs with sequence similarity to RAG1 and RAG2 have been identified, but only recently has their function begun to be characterized, revealing mechanistic links to the vertebrate RAGs. Of particular significance is the discovery of ProtoRAG, a transposon superfamily found in the genome of the basal chordate amphioxus. ProtoRAG has many of the sequence and mechanistic features predicted for the ancestral RAG transposon and is likely to be an evolutionary relative of RAG1 and RAG2. In addition, early observations suggesting that RAG1 is able to mediate V(D)J recombination in the absence of RAG2 have been confirmed, implying independent evolutionary origins for the two RAG genes. Here, recent progress in identifying and characterizing RAG-like proteins and the TEs that encode them is summarized and a refined model for the evolution of V(D)J recombination and the RAG proteins is presented. © 2016 Federation of European Biochemical Societies.

  3. Expression of recombinant staphylokinase, a fibrin-specific plasminogen activator of bacterial origin, in potato (Solanum tuberosum L.) plants. (United States)

    Gerszberg, Aneta; Wiktorek-Smagur, Aneta; Hnatuszko-Konka, Katarzyna; Łuchniak, Piotr; Kononowicz, Andrzej K


    One of the most dynamically developing sectors of green biotechnology is molecular farming using transgenic plants as natural bioreactors for the large scale production of recombinant proteins with biopharmaceutical and therapeutic values. Such properties are characteristic of certain proteins of bacterial origin, including staphylokinase. For many years, work has been carried out on the use of this protein in thrombolytic therapy. In this study, transgenic Solanum tuberosum plants expressing a CaMV::sak-mgpf-gusA gene fusion, were obtained. AGL1 A. tumefaciens strain was used in the process of transformation. The presence of the staphylokinase gene was confirmed by PCR in 22.5% of the investigated plants. The expression of the fusion transgene was detected using the β-glucuronidase activity assay in 32 putative transgenic plants. Furthermore, on the basis of the GUS histochemical reaction, the transgene expression pattern had a strong, constitutive character in seven of the transformants. The polyacrylamide gel electrophoresis of a protein extract from the SAK/PCR-positive plants, revealed the presence of a119 kDa protein that corresponds to that of the fusion protein SAK-mGFP-GUSA. Western blot analysis, using an antibody against staphylokinase, showed the presence of the staphylokinase domain in the 119 kDa protein in six analyzed transformants. However, the enzymatic test revealed amidolytic activity characteristic of staphylokinase in the protein extract of only one plant. This is the first report on a Solanum tuberosum plant producing a recombinant staphylokinase protein, a plasminogen activator of bacterial origin.

  4. Biotechnology and Innovation Systems

    International Development Research Centre (IDRC) Digital Library (Canada)

    His main research activities are connected to science and technology policies and national and local systems of innovation in less developed countries. ...... of the Brazilian productive structure in energy-related areas – bio-fuels, oil, and so on – biotechnology research has started to target energy-related activities. However ...

  5. Biotechnology bibliographies

    Energy Technology Data Exchange (ETDEWEB)

    Beaudette, L.A.; McCready, R.G.L.


    This bibliography consists of articles and scientific papers on biotechnology in areas in which BIOMINET is currently involved. The reports are categorized in four areas: 1) acid mine drainage (coals and metals) and bioadsorption of metals; 2) solution mining; 3) metabolism and physiology of Thiobacillus and other microorganisms; and 4) bacterial leaching of metals.

  6. Identification, recombinant production and partial biochemical characterization of an extracellular cold-active serine-metalloprotease from an Antarctic Pseudomonas isolate

    Directory of Open Access Journals (Sweden)

    Natalia Fullana


    Full Text Available Cold-adapted enzymes are generally derived from psychrophilic microorganisms and have features that make them very attractive for industrial and biotechnological purposes. In this work, we identified a 50 kDa extracellular protease (MP10 from the Antarctic isolate Pseudomonas sp. AU10. The enzyme was produced by recombinant DNA technology, purified using immobilized metal affinity chromatography and partially characterized. MP10 is an alkaline thermosensitive serine-metallo protease with optimal activity at pH 8.0 and 40 ℃, in the presence of 1.5 mM Ca2+. MP10 showed 100% residual activity and stability (up to 60 min when incubated with 7% of non-ionic surfactants (Triton X-100, Tween-80 and Tween-20 and 1.5% of the oxidizing agent hydrogen peroxide. The 3D MP10 structure was predicted and compared with the crystal structure of mesophilic homologous protease produced by Pseudomonas aeruginosa PA01 (reference strain and other proteases, showing similarity in surface area and volume of proteins, but a significantly higher surface pocket area and volume of MP10. The observed differences presumably may explain the enhanced activity of MP10 for substrate binding at low temperatures. These results give insight to the potential use of MP10 in developing new biotechnologically processes active at low to moderate temperatures, probably with focus in the detergent industry.

  7. Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations. (United States)

    Guenthner, Casey J; Miyamichi, Kazunari; Yang, Helen H; Heller, H Craig; Luo, Liqun


    Targeting genetically encoded tools for neural circuit dissection to relevant cellular populations is a major challenge in neurobiology. We developed an approach, targeted recombination in active populations (TRAP), to obtain genetic access to neurons that were activated by defined stimuli. This method utilizes mice in which the tamoxifen-dependent recombinase CreER(T2) is expressed in an activity-dependent manner from the loci of the immediate early genes Arc and Fos. Active cells that express CreER(T2) can only undergo recombination when tamoxifen is present, allowing genetic access to neurons that are active during a time window of less than 12 hr. We show that TRAP can provide selective access to neurons activated by specific somatosensory, visual, and auditory stimuli and by experience in a novel environment. When combined with tools for labeling, tracing, recording, and manipulating neurons, TRAP offers a powerful approach for understanding how the brain processes information and generates behavior. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Avian Biotechnology. (United States)

    Nakamura, Yoshiaki


    Primordial germ cells (PGCs) generate new individuals through differentiation, maturation and fertilization. This means that the manipulation of PGCs is directly linked to the manipulation of individuals, making PGCs attractive target cells in the animal biotechnology field. A unique biological property of avian PGCs is that they circulate temporarily in the vasculature during early development, and this allows us to access and manipulate avian germ lines. Following the development of a technique for transplantation, PGCs have become central to avian biotechnology, in contrast to the use of embryo manipulation and subsequent transfer to foster mothers, as in mammalian biotechnology. Today, avian PGC transplantation combined with recent advanced manipulation techniques, including cell purification, cryopreservation, depletion, and long-term culture in vitro, have enabled the establishment of genetically modified poultry lines and ex-situ conservation of poultry genetic resources. This chapter introduces the principles, history, and procedures of producing avian germline chimeras by transplantation of PGCs, and the current status of avian germline modification as well as germplasm cryopreservation. Other fundamental avian reproductive technologies are described, including artificial insemination and embryo culture, and perspectives of industrial applications in agriculture and pharmacy are considered, including poultry productivity improvement, egg modification, disease resistance impairment and poultry gene "pharming" as well as gene banking.

  9. Purification of recombinant tissue plasminogen activator (rtPA) protein from transplastomic tobacco plants. (United States)

    Abdoli Nasab, Maryam; Jalali Javaran, Mokhtar; Cusido, Rosa M; Palazon, Javier


    Plants are low cost platforms for the production of recombinant proteins, but their complexity renders the purification of plant recombinant proteins more difficult than proteins expressed in yeast or bacteria. Plastid transformation enables high-level expression of foreign genes and the accumulation of recombinant proteins in plastid organelles. Histidine (His) tags are widely used for affinity purification of recombinant proteins in a nickel column. The human tissue-type plasminogen activator (tPA) is one of the most important pharmaceutical recombinant proteins involved in the breakdown of blood clots in different parts of the body. The truncated form of the tissue plasminogen activator (K2S) has a longer plasma half-life, better diffusion into the clot, and higher fibrinolytic activity. In a construct designed to insert the K2S gene in the tobacco chloroplast, the sequence of six histidines and a factor Xa protease site was fused to the C-terminus of the K2S protein. The presence and amount of tPA recombinant protein in transplastomic tobacco plants was estimated by ELISA analysis using a specific antibody. The protein was purified from total soluble protein, insoluble protein aggregates and the protein was extracted from the isolated chloroplast using nickel resin and a chromatography column. After digestion of the purified protein with factor Xa, the presence of the purified tPA protein was confirmed by western blot analysis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Development of biotechnology in India. (United States)

    Ghose, T K; Bisaria, V S


    technology, industrial biotechnology, biochemical engineering and associated activities such as creation of biotechnology information system and national repositories. Current status of intellectual property rights has also been discussed. Contribution to the India's advances in biotechnology by the industry, excepting a limited few, has been far below expectations. The review concludes with some cautious notes.

  11. Drugs obtained by biotechnology processing

    Directory of Open Access Journals (Sweden)

    Hugo Almeida


    Full Text Available In recent years, the number of drugs of biotechnological origin available for many different diseases has increased exponentially, including different types of cancer, diabetes mellitus, infectious diseases (e.g. AIDS Virus / HIV as well as cardiovascular, neurological, respiratory, and autoimmune diseases, among others. The pharmaceutical industry has used different technologies to obtain new and promising active ingredients, as exemplified by the fermentation technique, recombinant DNA technique and the hybridoma technique. The expiry of the patents of the first drugs of biotechnological origin and the consequent emergence of biosimilar products, have posed various questions to health authorities worldwide regarding the definition, framework, and requirements for authorization to market such products.Nos últimos anos, tem aumentado exponencialmente o número de fármacos de origem biotecnológica ao dispor das mais diversas patologias, entre elas destacam-se, os diferentes tipos de cancêr, as doenças infecciosas (ex. vírus AIDS/HIV, as doenças autoimunes, as doenças cardiovasculares, a Diabetes Mellitus, as doenças neurológicas, as doenças respiratórias, entre outras. A indústria farmacêutica tem recorrido a diferentes tecnologias para a obtenção de novos e promissores princípios ativos, como são exemplo a fermentação, a técnica de DNA Recombinante, a técnica de hidridoma, entre outras. A queda das patentes dos primeiros fármacos de origem biotecnológica e o consequente aparecimento dos produtos biossimilares têm colocado diferentes questões às autoridades de saúde mundiais, sobre a definição, enquadramento e exigências para a autorização de entrada no mercado deste tipo de produtos.


    Directory of Open Access Journals (Sweden)

    Irina Ramona PECINGINĂ


    Full Text Available Biotechnology is the integral application of biological and engineering sciences for the technological use of living organisms, biologically active acellular structures and molecular analogues for the production of goods and services.The role of biotechnology is very important in the food industry; this is a biotechnology because agro-food raw materials are biological products and therefore their conservation until consumption, fresh or industrialization involves the control of the enzymatic activity of the vegetal and animal tissues or of the microflora contamination.

  13. Biotechnology: reality or dream

    Directory of Open Access Journals (Sweden)

    Konstantinov Kosana


    Full Text Available The development of molecular biology and molecular genetics, especially of the recombinant DNA technology enabled improvement of experimental methods that provide manipulation within a cell-free system, such as cell and tissue cultures. Such methods resulted in the development of different new technologies with specific properties in relation to the conventional definitions. According to PERSLEY and lantin (2000 the following components are essential for the contemporary biotechnology: (i genomics - a molecular characterization of all genes and gene products of an organism (ii bioinformatics - the assembly of data from genomic analysis into accessible forms; (iii transformation - the introduction of genes controlling a trait of interest into a genome of a desired organism (micro organisms, plants, animal systems. By the application of cotemporary biotechnology new methods in the field of diagnostic are developed such as rapid and more accurate identification of the presence and absence of genes in the genome of the organism of interest (identification of pathogens prenatal diagnostics, molecular markers assisted breeding for plants, etc. The traits of an organism are determined by its genetic material, i.e. by a molecule of deoxyribonucleic acid (DNA. watson and crick (1953 were the first scientists to describe the structure of DNA as a double-stranded helix. Higher organisms contain a set of linear DNA molecules - chromosomes and a full set of chromosomes of an organism is a genome. Each genome is divided into a series of functional units, i.e. genes. The traits of an organism depend on genes, but their expression depends not only on genes but also on many other factors, including whether a gene, controlling the trait, expresses, specific cells in which it expresses and specially the mode by which the gene and its product interact with the environment. A special aspect within the application of biotechnology occurs as an interaction of a

  14. Yeasts: From genetics to biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Russo, S.; Poli, G. [Univ. of Milan (Italy); Siman-Tov, R.B. [Univ. of Jerusalem, Rehovot (Israel)


    Yeasts have been known and used in food and alcoholic fermentations ever since the Neolithic Age. In more recent times, on the basis of their peculiar features and history, yeasts have become very important experimental models in both microbiological and genetic research, as well as the main characters in many fermentative production processes. In the last 40 years, advances in molecular biology and genetic engineering have made possible not only the genetic selection of organisms, but also the genetic modification of some of them, especially the simplest of them, such as bacteria and yeasts. These discoveries have led to the availability of new yeast strains fit to fulfill requests of industrial production and fermentation. Moreover, genetically modified and transformed yeasts have been constructed that are able to produce large amounts of biologically active proteins and enzymes. Thus, recombinant yeasts make it easier to produce drugs, biologically active products, diagnostics, and vaccines, by inexpensive and relatively simple techniques. Yeasts are going to become more and more important in the {open_quotes}biotechnological revolution{close_quotes} by virtue of both their features and their very long and safe use in human nutrition and industry. 175 refs., 4 figs., 6 tabs.

  15. Biotechnology: Challenge for the food industry

    Directory of Open Access Journals (Sweden)

    Popov Stevan


    Full Text Available According to the broadest definition, biotechnology is the use of living matter (plants, animals and microorganisms in industry, environment protection, medicine and agriculture. Biotechnology takes a key position in the field of food processing during thousands of years. Last about fifty years brought dynamical development of knowledges in the natural sciences especially in domain of genetics and manipulation of genes. Biotechnology for which active role in the on-coming times could be foreseen, not only with respect of R&D, but also in general technological development represents scope of priority in the USA and in European Union (EU as well. It is accepted that the results achieved in biotechnology oversize scientific domain and find their entrance into economics, legislation, quality of life and even of politics. Corresponding with the definition of biotechnology as "the integration of natural sciences and engineering in the application of microorganisms, cells, their components and molecular analogues in production (General assembly of the European federation for Biotechnology, 1989 European Commission (1999 adopted the biotechnological taxonomy, i.e. fields and sub-fields of biotechnology. R&D activities in this domain are oriented to eight fields and branched through them. Fields of biotechnology (EC, 1999 are: 1 Plant biotechnology (agricultural cultivars, trees, bushes etc; 2 Animal biotechnology; 3 Biotechnology in environment protection; 4 Industrial biotechnology (food, feed, paper, textile, pharmaceutical and chemical productions; 5 Industrial biotechnology (production of cells and research of cells - producers of food and of other commodities; 6 Development of humane and veterinarian diagnostics (therapeutical systems 7 Development of the basic biotechnology, and 8 Nontechnical domains of biotechnology. In concordance with some judgments, in the World exist about 4000 biotechnological companies. World market of biotechnological

  16. Bioremediation Approaches in a Laboratory Activity for the Industrial Biotechnology and Applied Microbiology (IBAM Course

    Directory of Open Access Journals (Sweden)

    L. Raiger Iustman


    Full Text Available Industrial Biotechnology and Applied Microbiology is an optional 128h-course for Chemistry and Biology students at the Faculty of Sciences, University of Buenos Aires, Argentina. This course is usually attended by 25 students, working in teams of two. The curriculum, with 8 lab exercises, includes an oil bioremediation practice covering an insight of bioremediation processes: the influence of pollutants on autochthonous microbiota, biodegrader isolation and biosurfactant production for bioavailability understanding. The experimental steps are: (A evaluation of microbial tolerance to pollutants by constructing pristine soil microcosms contaminated with diesel or xylene and (B isolation of degraders and biosurfactant production analysis. To check microbial tolerance, microcosms are incubated during one week at 25-28ºC. Samples are collected at 0, 4 and every 48 h for CFU/g soil testing. An initial decrease of total CFU/g related to toxicity is noticed. At the end of the experiment, a recovery of the CFU number is observed, evidencing enrichment in biodegraders. Some colonies from the CFU counting plates are streaked in M9-agar with diesel as sole carbon source. After a week, isolates are inoculated on M9-Broth supplemented with diesel to induce biosurfactant production. Surface tension and Emulsification Index are measured in culture supernatants to visualize tensioactive effect of bacterial products. Besides the improvement in the good microbiological practices, the students show enthusiasm in different aspects, depending on their own interests. While biology students explore and learn new concepts on solubility, emulsions and bioavailability, chemistry students show curiosity in bacterial behavior and manipulation of microorganisms for environmental benefits.

  17. Covalent-display of an active chimeric-recombinant tissue plasminogen activator on polyhydroxybutyrate granules surface. (United States)

    Hafizi, Akram; Malboobi, Mohamad Ali; Jalali-Javaran, Mokhtar; Maliga, Pal; Alizadeh, Houshang


    To develop a deliberately engineered expression and purification system for an active chimeric-recombinant tissue plasminogen activator (crtPA) using co-expression with polyhydroxybutyrate (PHB) operon genes. Fusion of crtPA with PhaC-synthase simplified the purification steps through crtPA sedimentation with PHB particles. Moreover, the covalently immobilized crtPA was biologically active as shown in a chromogenic assay. Upon WELQut-protease activity, the released single-chain crtPA converted to the two-chain form which produced a pattern of bands with approx. MW of 32 and 11 kDa in addition to the full length crtPA. Fusion of crtPA with PhaC-synthase not only simplifies purification from the bacterial host lysate, but also co-expression of PHB operon genes creates an oxidative environment, thereby reducing the inclusion body formation possibility. The isolated crtPA-PHB granules exhibited crtPA serine protease activity. Thus, fusion with the PhaC protein could be used as a scaffold for covalent displaying of functional disulfide-rich proteins.

  18. Editorial: Biotechnology Journal brings more than biotechnology. (United States)

    Jungbauer, Alois; Lee, Sang Yup


    Biotechnology Journal always brings the state-of-the-art biotechnologies to our readers. Different from other topical issues, this issue of Biotechnology Journal is complied with a series of exiting reviews and research articles from spontaneous submissions, again, addressing society's actual problems and needs. The progress is a real testimony how biotechnology contributes to achievements in healthcare, better utilization of resources, and a bio-based economy. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Editorial: Biotechnology Journal's diverse coverage of biotechnology. (United States)

    Wink, Michael


    This issue of Biotechnology Journal is a regular issue edited by Prof. Michael Wink. The issue covers all the major focus areas of the journal, including medical biotechnology, synthetic biology, and novel biotechnological methods. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Patterns of recombination activity on mouse chromosome 11 revealed by high resolution mapping.

    Directory of Open Access Journals (Sweden)

    Timothy Billings


    Full Text Available The success of high resolution genetic mapping of disease predisposition and quantitative trait loci in humans and experimental animals depends on the positions of key crossover events around the gene of interest. In mammals, the majority of recombination occurs at highly delimited 1-2 kb long sites known as recombination hotspots, whose locations and activities are distributed unevenly along the chromosomes and are tightly regulated in a sex specific manner. The factors determining the location of hotspots started to emerge with the finding of PRDM9 as a major hotspot regulator in mammals, however, additional factors modulating hotspot activity and sex specificity are yet to be defined. To address this limitation, we have collected and mapped the locations of 4829 crossover events occurring on mouse chromosome 11 in 5858 meioses of male and female reciprocal F1 hybrids of C57BL/6J and CAST/EiJ mice. This chromosome was chosen for its medium size and high gene density and provided a comparison with our previous analysis of recombination on the longest mouse chromosome 1. Crossovers were mapped to an average resolution of 127 kb, and thirteen hotspots were mapped to <8 kb. Most crossovers occurred in a small number of the most active hotspots. Females had higher recombination rate than males as a consequence of differences in crossover interference and regional variation of sex specific rates along the chromosome. Comparison with chromosome 1 showed that recombination events tend to be positioned in similar fashion along the centromere-telomere axis but independently of the local gene density. It appears that mammalian recombination is regulated on at least three levels, chromosome-wide, regional, and at individual hotspots, and these regulation levels are influenced by sex and genetic background but not by gene content.

  1. Recombinant activated protein C attenuates coagulopathy and inflammation when administered early in murine pneumococcal pneumonia

    NARCIS (Netherlands)

    Schouten, Marcel; van 't Veer, Cornelis; Roelofs, Joris J. T. H.; Gerlitz, Bruce; Grinnell, Brian W.; Levi, Marcel; van der Poll, Tom


    Recombinant human activated protein C (APC), which has both anticoagulant and anti-inflammatory properties, improves survival of patients with severe sepsis. This beneficial effect is especially apparent in patients with pneumococcal pneumonia. Earlier treatment with APC in sepsis has been

  2. Central venous catheter associated thrombosis of major veins: thrombolytic treatment with recombinant tissue plasminogen activator

    NARCIS (Netherlands)

    Rodenhuis, S.; van't Hek, L. G.; Vlasveld, L. T.; Kröger, R.; Dubbelman, R.; van Tol, R. G.


    Major thromboses can occur in the venous system in association with central venous catheters. This usually necessitates removal of the catheter. The effectiveness of low dose recombinant tissue type plasminogen activator (rt-PA) in combination with heparin was assessed in patients with central

  3. Recombinant human activated protein C: current insights into its mechanism of action

    NARCIS (Netherlands)

    Levi, Marcel; van der Poll, Tom


    Impairment of the protein C pathway plays a central role in the pathogenesis of sepsis. Administration of recombinant human activated protein C (rhAPC) may correct the dysregulated anticoagulant mechanism and prevent propagation of thrombin generation and formation of microvascular thrombosis.

  4. Recombination-activating gene 1 and 2 (RAG1 and RAG2) in ...

    Indian Academy of Sciences (India)


    Oct 20, 2014 ... Hansen JD 1997 Inspection of the 3' UTR genomic region for. RAG1 and RAG2 in rainbow trout (Oncorhynchus mykiss) reveals potential regulatory motifs. Dev. Immunol. 5 129–131. Hansen JD and Kaattari SL 1996 The recombination activating gene 2 (RAG2) of the rainbow trout (Oncorhynchus mykiss).

  5. [Highly active fractions of the medicinal leech recombinant destabilase-lysozyme]. (United States)

    Fadeeva, Iu I; Antipova, N V; Baskova, I P; Zavalova, L L


    From the highly purified but lowly active recombinant protein Destabilas-Lysozyme (Dest-Lys) by use cation-exchange column TSK CM 3-SW chromatography, it was separated non-active fraction IV, contained 90% of protein. Fractions I, II and III, represented proteins with lysozyme and isopeptidase activities. Their lysozyme activity correlates with the activity of natural Des-Lys. The ratio of the activities in fractions I - III is such, that maximal lysozyme activity is concentrated in fraction III, isopeptidase - in fraction I. It is discussed the possibility of Dest-Lys different functions regulation is depended on the formation of protein complex forms.

  6. Anti-angiogenesis and anti-tumor activity of recombinant anginex

    International Nuclear Information System (INIS)

    Brandwijk, Ricardo J.M.G.E.; Dings, Ruud P.M.; Linden, Edith van der; Mayo, Kevin H.; Thijssen, Victor L.J.L.; Griffioen, Arjan W.


    Anginex, a synthetic 33-mer angiostatic peptide, specifically inhibits vascular endothelial cell proliferation and migration along with induction of apoptosis in endothelial cells. Here we report on the in vivo characterization of recombinant anginex and use of the artificial anginex gene for gene therapy approaches. Tumor growth of human MA148 ovarian carcinoma in athymic mice was inhibited by 80% when treated with recombinant anginex. Histological analysis of the tumors showed an approximate 2.5-fold reduction of microvessel density, suggesting that angiogenesis inhibition is the cause of the anti-tumor effect. Furthermore, there was a significant correlation between the gene expression patterns of 16 angiogenesis-related factors after treatment with both recombinant and synthetic anginex. To validate the applicability of the anginex gene for gene therapy, stable transfectants of murine B16F10 melanoma cells expressing recombinant anginex were made. Supernatants of these cells inhibited endothelial cell proliferation in vitro. Furthermore, after subcutaneous injection of these cells in C57BL/6 mice, an extensive delay in tumor growth was observed. These data show that the artificial anginex gene can be used to produce a recombinant protein with similar activity as its synthetic counterpart and that the gene can be applied in gene therapy approaches for cancer treatment

  7. Submillimeter recombination lines in dust-obscured starbursts and active galactic nuclei

    International Nuclear Information System (INIS)

    Scoville, N.; Murchikova, L.


    We examine the use of submillimeter (submm) recombination lines of H, He, and He + to probe the extreme ultraviolet (EUV) luminosity of starbursts (SBs) and active galactic nuclei (AGNs). We find that the submm recombination lines of H, He, and He + are in fact extremely reliable and quantitative probes of the EUV continuum at 13.6 eV to above 54.6 eV. At submm wavelengths, the recombination lines originate from low energy levels (n = 20-50). The maser amplification, which poses significant problems for quantitative interpretation of the higher n, radio frequency recombination lines, is insignificant. Lastly, at submm wavelengths, the dust extinction is minimal. The submm line luminosities are therefore directly proportional to the emission measures (EM ION = n e × n ion × volume) of their ionized regions. We also find that the expected line fluxes are detectable with ALMA and can be imaged at ∼0.''1 resolution in low redshift ultraluminous infrared galaxies. Imaging of the H I lines will provide accurate spatial and kinematic mapping of the star formation distribution in low-z IR-luminous galaxies, and the relative fluxes of the H I and He II recombination lines will strongly constrain the relative contributions of SBs and AGNs to the luminosity. The H I lines should also provide an avenue to constraining the submm dust extinction curve.

  8. The rise (and decline?) of biotechnology. (United States)

    Kinch, Michael S


    Since the 1970s, biotechnology has been a key innovator in drug development. An analysis of FDA-approved therapeutics demonstrates pharmaceutical companies outpace biotechs in terms of new approvals but biotechnology companies are now responsible for earlier-stage activities (patents, INDs or clinical development). The number of biotechnology organizations that contributed to an FDA approval began declining in the 2000s and is at a level not seen since the 1980s. Whereas early biotechnology companies had a decade from first approval until acquisition, the average acquisition of a biotechnology company now occurs months before their first FDA approval. The number of hybrid organizations that arise when pharmaceutical companies acquire biotechnology is likewise declining, raising questions about the sustainability of biotechnology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. How-to-Do-It: Biotechnology in Three Days. (United States)

    Gardner, Alan M.


    Outlines a three-day unit for presenting biotechnology. States that the approach surveys the processes of enzyme restriction, ligation, transformations of recombinant plasmids, and gel electrophoresis. Diagrams accompany the article. (RT)

  10. Homing of radiolabelled recombinant interleukin-2 activated natural ...

    Indian Academy of Sciences (India)


    A defined ascitic fibrosarcoma cell line obtained from the. Chittaranjan National Cancer Research Institute, Kolkata, was maintained in our laboratory by serial .... solid tumours by adoptive immunotherapy. Before NK cell adoptive immunotherapy was given, IL-2 therapy was carried out mainly to activate endogenous NK.


    Directory of Open Access Journals (Sweden)

    S. I. Artiukhova


    Full Text Available Summary. The article presents data on the development of technology and qualitative research, bio-products «Healing-1». One of the promising directions in food biotechnology is the development of new integrated starter-based consortia of microorganisms, which have higher activity compared with cultures prepared using pure cultures. So it was interesting studies on the development of new biotechnology and bio-based microbial consortium of lactic acid bacteria. Based on the analysis of biotechnological properties of native cultures created a new consortium of microorganisms containing lactic acid streptococci and bacilli, allowing the maximum extent possible to implement the physiological, biochemical and technological potential of microorganisms. Scientifically substantiated and experimentally developed a new biotechnology production of bioproducts «Healing-1», obtained on the basis of microbial consortium with broad spectrum antimicrobial activity. Experimentally investigated quality parameters of organic food «Healing-1» using a new microbial consortium as freshly prepared and during storage. Found that antagonistic activity of microflora bio «Healing-1» with respect to pathogenic and conditionally pathogenic bacteria, as well as its resistance to substances in the gastrointestinal tract of man is more pronounced compared to bioproducts obtained using a separate starter, members of the microbial consortium. It should be noted a more pronounced synthesis of exopolysaccharides in bioproduct «Healing-1», which leads to increased viscosity of the system and improves the consistency of bio. New bioproducts have good organoleptic characteristics and contain a high number of viable cells of lactic acid bacteria. High stability and survival of lactic acid bacteria during storage. In the study of attacked proteins bioproducts digestive proteinases «in vitro» found that the fermentation of milk microbial consortium increases the digestibility

  12. Insecticidal activity of a recombinant knottin peptide from Loxosceles intermedia venom and recognition of these peptides as a conserved family in the genus. (United States)

    Matsubara, F H; Meissner, G O; Herzig, V; Justa, H C; Dias, B C L; Trevisan-Silva, D; Gremski, L H; Gremski, W; Senff-Ribeiro, A; Chaim, O M; King, G F; Veiga, S S


    Loxosceles intermedia venom comprises a complex mixture of proteins, glycoproteins and low molecular mass peptides that act synergistically to immobilize envenomed prey. Analysis of a venom-gland transcriptome from L. intermedia revealed that knottins, also known as inhibitor cystine knot peptides, are the most abundant class of toxins expressed in this species. Knottin peptides contain a particular arrangement of intramolecular disulphide bonds, and these peptides typically act upon ion channels or receptors in the insect nervous system, triggering paralysis or other lethal effects. Herein, we focused on a knottin peptide with 53 amino acid residues from L. intermedia venom. The recombinant peptide, named U 2 -sicaritoxin-Li1b (Li1b), was obtained by expression in the periplasm of Escherichia coli. The recombinant peptide induced irreversible flaccid paralysis in sheep blowflies. We screened for knottin-encoding sequences in total RNA extracts from two other Loxosceles species, Loxosceles gaucho and Loxosceles laeta, which revealed that knottin peptides constitute a conserved family of toxins in the Loxosceles genus. The insecticidal activity of U 2 -SCTX-Li1b, together with the large number of knottin peptides encoded in Loxosceles venom glands, suggests that studies of these venoms might facilitate future biotechnological applications of these toxins. © 2016 The Royal Entomological Society.

  13. Topical application of recombinant activated factor VII during cesarean delivery for placenta previa. (United States)

    Schjoldager, Birgit T B G; Mikkelsen, Emmeli; Lykke, Malene R; Præst, Jørgen; Hvas, Anne-Mette; Heslet, Lars; Secher, Niels J; Salvig, Jannie D; Uldbjerg, Niels


    During cesarean delivery in patients with placenta previa, hemorrhaging after removal of the placenta is often challenging. In this condition, the extraordinarily high concentration of tissue factor at the placenta site may constitute a principle of treatment as it activates coagulation very effectively. The presumption, however, is that tissue factor is bound to activated factor VII. We hypothesized that topical application of recombinant activated factor VII at the placenta site reduces bleeding without affecting intravascular coagulation. We included 5 cases with planned cesarean delivery for placenta previa. After removal of the placenta, the surgeon applied a swab soaked in recombinant activated factor VII containing saline (1 mg in 246 mL) to the placenta site for 2 minutes; this treatment was repeated once if the bleeding did not decrease sufficiently. We documented the treatment on video recordings and measured blood loss. Furthermore, we determined hemoglobin concentration, platelet count, international normalized ratio, activated partial thrombin time, fibrinogen (functional), factor VII:clot, and thrombin generation in peripheral blood prior to and 15 minutes after removal of the placenta. We also tested these blood coagulation variables in 5 women with cesarean delivery planned for other reasons. Mann-Whitney test was used for unpaired data. In all 5 cases, the uterotomy was closed under practically dry conditions and the median blood loss was 490 (range 300-800) mL. There were no adverse effects of recombinant activated factor VII and we did not measure factor VII to enter the circulation. Neither did we observe changes in thrombin generation, fibrinogen, activated partial thrombin time, international normalized ratio, and platelet count in the peripheral circulation (all P values >.20). This study indicates that in patients with placenta previa, topical recombinant activated factor VII may diminish bleeding from the placenta site without initiation

  14. [Expression and activity determination of recombinant capsid protein VP2 gene of enterovirus type 71]. (United States)

    Huang, Xueyong; Liu, Guohua; Hu, Xiaoning; Du, Yanhua; Li, Xingle; Xu, Yuling; Chen, Haomin; Xu, Bianli


    To clone and express the recombinant capsid protein VP2 of enterovirus type 71 (EV71) and to identify the immune activity of expressed protein in order to build a basis for the investigation work of vaccine and diagnostic antigen. VP2 gene of EV71 was amplified by PCR, and then was cut by restriction enzyme and inserted into expression vector pMAL-c2X. The positive recombinants were transferred into E.coli TB1, the genetically engineered bacteria including pMAL-c2X-VP2 plasmids were induced by isopropyl thiogalactoside ( IPTG) , and the expression products were analyzed by SDS-PAGE and western blotting method. EV71 IgM antibody detection method by ELISA was set up, and the sensitivity and specificity of this method was assessed; 60 neutralizing antibody positive serum samples from hand foot and mouth disease (HFMD) patients were determined, of which 52 samples were positive and 8 samples were negative; a total of 88 acute phase serum samples of HFMD patients diagnosed in clinical were also detected. VP2 gene of 762 bp was obtained by PCR, the gene segment inserted into the recombinant vector was identified using restriction enzyme digestion. The recombinant vector could express a specific about 71 500 fusion protein in E.coli by SDS-PAGE. The purified recombinant protein of EV71-VP2 can react with the serum of HFMD patients to produce a specific band by western blotting. The sensitivity and specificity of ELISA was 87% and 83%, respectively. Of the 88 acute phase serum samples from children with HFMD, 48 samples (55%) were positive by the ELISA assay. VP2 gene of EV71 has been cloned and a prokaryotic high expression system for VP2 gene was successfully constructed in the present study. The recombination EV71-VP2 has well antigenicity, which could be useful for developing diagnose reagent or vaccine of EV71.

  15. Selection of Psychrotolerant Microorganisms Producing Cold-Active Pectinases for Biotechnological Processes at Low Temperature

    Directory of Open Access Journals (Sweden)

    María S. Cabeza


    Full Text Available In winemaking, low temperatures are favourable for the production and retention of flavour and colour components, requiring the use of cold-active enzymes. For this reason, 'psychrotolerant' microorganisms have been isolated and selected based on their ability to produce pectinolytic enzymes with satisfactory activity at low temperatures. Different mature grape varieties with designation of origin were sampled from the region of San Rafael (Mendoza, Argentina, and pectinolytic bacterial, fungal and yeast strains were isolated. The pectinolytic activity was measured by cup-plate assay, quantification of released reducing sugars and viscosity reduction of pectin solution. Two bacteria (Bacillus sp. SC-G and SC-H and two yeast strains were selected for their good pectinase activity at low temperatures. Among them, the strain with the highest activity, Bacillus sp. SC-H, was selected. According to their 16S rRNA profiles, Bacillus sp. SC-G and SC-H can be classified as members of Bacillus subtilis. Among the assayed techniques, the rotary evaporation was found to be the most appropriate to obtain enzymatic extracts with highest activity. The optimal conditions for the enzymatic activity were 30 °C and pH=5.0 for the concentrated extract, and 45 °C and pH=6.0 for the filtered supernatant. The concentrated extract presented good activity at 3 °C, confirming that it was a cold-active enzyme. Natural extraction and enzymatic preparation were used to extract pigments and polyphenols from Malbec grapes. Better results were obtained for the enzymatic extract with regard to index, shade, CIELab coordinates, CIELab colour differences and polyphenols (measured using Folin-Ciocalteu.

  16. Recombination activity of grain boundaries in high-performance multicrystalline Si during solar cell processing (United States)

    Adamczyk, Krzysztof; Søndenâ, Rune; Stokkan, Gaute; Looney, Erin; Jensen, Mallory; Lai, Barry; Rinio, Markus; Di Sabatino, Marisa


    In this work, we applied internal quantum efficiency mapping to study the recombination activity of grain boundaries in High Performance Multicrystalline Silicon under different processing conditions. Wafers were divided into groups and underwent different thermal processing, consisting of phosphorus diffusion gettering and surface passivation with hydrogen rich layers. After these thermal treatments, wafers were processed into heterojunction with intrinsic thin layer solar cells. Light Beam Induced Current and Electron Backscatter Diffraction were applied to analyse the influence of thermal treatment during standard solar cell processing on different types of grain boundaries. The results show that after cell processing, most random-angle grain boundaries in the material are well passivated, but small-angle grain boundaries are not well passivated. Special cases of coincidence site lattice grain boundaries with high recombination activity are also found. Based on micro-X-ray fluorescence measurements, a change in the contamination level is suggested as the reason behind their increased activity.

  17. Screening for glycosidase activities of lactic acid bacteria as a biotechnological tool in oenology. (United States)

    Pérez-Martín, Fátima; Seseña, Susana; Izquierdo, Pedro Miguel; Martín, Raúl; Palop, María Llanos


    The aim of this study was to evaluate the ability from a number of lactic acid bacteria isolated from different sources to produce glycosidase enzymes. Representative isolates (225) from clusters obtained after genotyping, using randomly amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) analysis, of 1,464 isolates, were screened for β-D-glucosidase activity. Thirty-five of them were selected for subsequent analysis. These strains were able to hydrolyze α-D-glucopyranoside, β-D-xylopyranoside and α-L-arabinofuranoside although β-D-glucosidase activity was the predominant activity for 22 of the selected strains. Only some of them did so with α-L-rhamnopyranoside. All of these were from wine samples and were identified as belonging to the Oenococcus oeni species using Amplification and Restriction Analysis of 16S-rRNA gene (16S-ARDRA). When the influence of pH, temperature and ethanol or sugars content on β-D-glucosidase activity was assayed, a strain-dependent response was observed. The β-D-glucosidase activity occurred in both whole and sonicated cells but not in the supernatants from cultures or obtained after cell sonication. Strains 10, 17, 21, and 23 retained the most β-D-glucosidase activity when they were assayed at the conditions of temperature, pH, ethanol and sugar content used in winemaking. These results suggest that these strains could be used as a source of glycosidase enzymes for use in winemaking.

  18. Recombinant cold-adapted attenuated influenza A vaccines for use in children: reactogenicity and antigenic activity of cold-adapted recombinants and analysis of isolates from the vaccinees.


    Alexandrova, G I; Polezhaev, F I; Budilovsky, G N; Garmashova, L M; Topuria, N A; Egorov, A Y; Romejko-Gurko, Y R; Koval, T A; Lisovskaya, K V; Klimov, A I


    Reactogenicity and antigenic activity of recombinants obtained by crossing cold-adapted donor of attenuation A/Leningrad/134/47/57 with wild-type influenza virus strains A/Leningrad/322/79(H1N1) and A/Bangkok/1/79(H3N2) were studied. The recombinants were areactogenic when administered as an intranasal spray to children aged 3 to 15, including those who lacked or had only low titers of pre-existing anti-hemagglutinin and anti-neuraminidase antibody in their blood. After two administrations of...

  19. Agriculture and bio-technology

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Hikoyuki


    The Japanese agriculture is going to be influenced by bio-technology. New style of production will be introduced through the entrance of other type of enterprises causing considerable change in agricultural fields. Bio-technology is a technology which utmost utilizes the functions of the living organism. Its practical target is to manifestate a new function by deliberately endowing it to an organism. Major technique is gene manipulation, tissue culture and utilization of microorganism and cells as well as the utilization of the biomass resources and a production means in the vegetable plant using nutricious solution. This report especially describes the following matters. Recombinant DNA (Super mouse, etc). Cell fusion (Monoclonal antigen, etc). Nucleus transplantation. Chromosome manipulation (Creation of tripoloid, etc). tissue culture (Growing of virus-free seedling, etc). Production of useful substances. Biomass (Forestry, Ocean, Livestock). (2 figs, 3 tabs, 12 refs)

  20. The role of p53 in radiation activated recombination in human teratocarcinoma cells

    International Nuclear Information System (INIS)

    Ming Zeng; Hahn, Laura; Cerniglia, George; Lee, Jerry; EI-Deiry, Wafik; Stevens, Craig W.


    Purpose/Objective: We have previously demonstrated that ionizing radiation can activate a DNA recombination pathway in mammalian cells. In this project, we investigated the role of p53 in radiation activated recombination in ovarian tumor cell lines, and also the effect of p53 status on radiation sensitivity in this cell system. Materials and Methods: PA-1 teratocarcinoma cells, which express wild type p53, were transfected with an HPV16 E6 expression vector (PA-1/E6) which promotes p53 degradation, or transfected with a similar vector coding only for the neomycin phosphotransferase gene (PA-1/Neo). Approximately 3 weeks after this transfection, surviving cells were pooled and expanded. Nuclear extracts were made from each cell line three hours after cells were irradiated with doses ranging from 0 Gy to 10 Gy. Briefly, cells were lysed in sucrose buffer, and the nuclei and cytoplasm separated by centrifugation. Nuclei were lysed in low salt buffer followed by high salt buffer and centrifugation (as described by Johnson et al., Biotechniques 19:193-5, 1995). The ability of these nuclear extracts to rejoin or recombine EcoRI linearized pSV2neo was then determined. The effect of irradiation and P53 on stable transfection determined by assessing transfection of a Hygromycin marker vector (pSV2HPH). Radiation sensitivity was also determined. Results: Nuclear extracts from unirradiated cells had demonstrated end joining activity. PA-1/Neo had little end joining activity as measured by dimerization of linearized pSV2neo. Recutting of these dimers with EcoRI almost completely removed the dimer. PA-1/E6 demonstrated significantly more dimer formation (∼10 fold more) than PA-1/Neo. These dimers could only be reduced to ∼50% of PA-1/E6 control by redigestion with EcoRI. Nuclear extracts generated 3 hours after irradiation also had end joining activity. After 10Gy, PA-1/Neo demonstrated markedly elevated end joining activity to the level seen in unirradiated PA-1/E6. This

  1. Characterization and engineering of carbohydrate-active enzymes for biotechnological applications


    Hassan, Noor


    Extremozymes are enzymes produced by microorganisms that live in extreme habitats. Due to their higher stability, extremozymes is attracting interest as biocatalysts in various industrial processes. In this context, carbohydrate-active extremozymes can be used in various processes relevant to the paper, food and feed industry. In this thesis, the crystal structure, biochemical characterization and the capacity to synthesize prebiotic galacto-oligosaccharides (GOS) were investigated for a β-gl...

  2. Surface-active biopolymers from marine bacteria for potential biotechnological applications


    Karina Sałek; Tony Gutierrez


    Surface-active agents are amphiphilic chemicals that are used in almost every sector of modern industry, the bulk of which are produced by organo-chemical synthesis. Those produced from biological sources (biosurfactants and bioemulsifiers), however, have gained increasing interest in recent years due to their wide structural and functional diversity, lower toxicities and high biodegradability, compared to their chemically-synthesised counterparts. This review aims to present a general overvi...

  3. Acute ischemic stroke after cardiac catheterization: the protamine low-dose recombinant tissue plasminogen activator pathway. (United States)

    Guevara, Carlos; Quijada, Alonso; Rosas, Carolina; Bulatova, Katya; Lara, Hugo; Nieto, Elena; Morales, Marcelo


    : Intravenous thrombolysis is the preferred treatment for acute ischemic stroke; however, it remains unestablished in the area of cardiac catheterization. We report three patients with acute ischemic stroke after cardiac catheterization. After reversing the anticoagulant effect of unfractionated heparin with protamine, all of the patients were successfully off-label thrombolyzed with reduced doses of intravenous recombinant tissue plasminogen activator (0.6 mg/kg). This dose was preferred to reduce the risk of symptomatic cerebral or systemic bleeding. The sequential pathway of protamine recombinant tissue plasminogen activator at reduced doses may be safer for reducing intracranial or systemic bleeding events, whereas remaining efficacious for the treatment of acute ischemic stroke after cardiac catheterization.

  4. Biotechnology: Challenge for the food industry


    Popov Stevan


    According to the broadest definition, biotechnology is the use of living matter (plants, animals and microorganisms) in industry, environment protection, medicine and agriculture. Biotechnology takes a key position in the field of food processing during thousands of years. Last about fifty years brought dynamical development of knowledges in the natural sciences especially in domain of genetics and manipulation of genes. Biotechnology for which active role in the on-coming times could be fore...

  5. Expression and purification of biologically active recombinant human paraoxonase 1 from a Drosophila S2 stable cell line. (United States)

    Yun, Hyeongseok; Yu, Jiyeon; Kim, Sumi; Lee, Nari; Lee, Jinhee; Lee, Sungrae; Kim, Nam Doo; Yu, Chiho; Rho, Jaerang


    Many pesticides and chemical warfare nerve agents are highly toxic organophosphorus compounds (OPs), which inhibit acetylcholinesterase activity. Human paraoxonase 1 (PON1) has demonstrated significant potential for use as a catalytic bioscavenger capable of hydrolyzing a broad range of OPs. However, there are several limitations to the use of human PON1 as a catalytic bioscavenger, including the relatively difficult purification of PON1 from human plasma and its dependence on the presence of hydrophobic binding partners to maintain stability. Therefore, research efforts to efficiently produce recombinant human PON1 are necessary. In this study, we developed a Drosophila S2 stable cell line expressing recombinant human PON1. The recombinant human PON1 was fused with the human immunoglobulin Fc domain (PON1-hFc) to improve protein stability and purification efficiency. We purified the recombinant human PON1-hFc from the S2 stable cell line and characterized its enzymatic properties for OP hydrolysis. We purified the recombinant human PON1-hFc from the S2 stable cell line and characterized its enzymatic properties for OP hydrolysis compared with those of the recombinant human PON1 derived from E. coli. We observed that the recombinant human PON1-hFc is functionally more stable for OP hydrolyzing activities compared to the recombinant human PON1. The catalytic efficiency of the recombinant PON1-hFc towards diisopropyl fluorophosphate (DFP, 0.26 × 10 6  M -1  min -1 ) and paraoxon hydrolysis (0.015 × 10 6  M -1  min -1 ) was 1.63- and 1.24-fold higher, respectively, than the recombinant human PON1. Thus, we report that the recombinant PON1-hFc exerts hydrolytic activity against paraoxon and DFP. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Construction of an oral recombinant DNA vaccine from H pylori neutrophil activating protein and its immunogenicity. (United States)

    Sun, Bo; Li, Zhao-Shen; Tu, Zhen-Xing; Xu, Guo-Ming; Du, Yi-Qi


    To construct a live attenuated Salmonella typhimurium (S. typhimurium) strain harboring the H pylori neutrophil activating protein (HP-NAP) gene as an oral recombinant DNA vaccine, and to evaluate its immunogenicity. By genetic engineering methods, the genomic DNA of H pylori was extracted as a template. The total length of the HP-NAP gene was amplified by polymerase chain reaction (PCR) and cloned into pBT vector for sequencing and BLAST analysis, then subcloned into a eukaryotic expression vector pIRES followed by PCR identification and restriction enzyme digestion. The identified recombinant plasmid pIRES-NAP was transfected into COS-7 cells for target fusion protein expression, and its antigenicity was detected by Western blotting. Then the recombinant plasmid was transformed into a live attenuated S. typhimurium strain SL7207 as an oral vaccine strain, and its immunogenicity was evaluated with animal experiments. A 435 bp product was cloned using high homology with HP-NAP gene in GenBank (more than 98%). With identification by PCR and restriction enzyme digestion, a recombinant eukaryotic expression plasmid pIRES-NAP containing the HP-NAP gene of H pylori was successfully constructed. The expressed target protein had a specific reaction with H pylorii whole cell antibody and showed a single strip result detected by Western blotting. Oral immunization of mice with recombinant DNA vaccine strain SL7207 (pIRES-NAP) also induced a specific immune response. The successful construction of HP-NAP oral DNA vaccine with good immunogenicity may help to further investigate its immunoprotection effects and develop vaccine against H pylori infection.

  7. Immunoadjuvant activities of a recombinant chicken IL-12 in chickens vaccinated with Newcastle disease virus recombinant HN protein. (United States)

    Su, Bor Sheu; Yin, Hsien Sheng; Chiu, Hua Hsien; Hung, Li Hsiang; Huang, Ji Ping; Shien, Jui Hung; Lee, Long Huw


    Recombinant fowlpox virus (rFPV/HN) expressing Newcastle disease virus (NDV) HN gene and rFPV/HN/chIL-12 co-expressing chicken IL-12 (chIL-12) and HN (rHN/chIL-12) genes have been characterized. rHN/chIL-12 or rchIL-12, expressed by our previous construct rFPV/chIL-12, co-administered with rHN was assessed for adjuvant activities of chIL-12. Chickens were vaccinated with various amounts of rHN/chIL-12 mixed with mineral oil (MO), intramuscularly. Levels of hemagglutination-inhibition (HI) antibody production depended on the concentration of the injected rHN or rHN/chIL-12. The lower HI antibody titers were obtained in chicken groups rHN/chIL-12/7-rHN/chIL-12/9, receiving 60ng rHN/8ng chIL-12 with MO, 30ng rHN/4ng chIL-12 with MO or 15ng rHN/2ng chIL-12 with MO, respectively, compared to those in chicken groups rHN/7-rHN/9, receiving rHN with MO alone. However, chickens in group rHN/chIL-12/7 or rHN/chIL-12/8 and rHN with MO alone showed the same effective protection. Chicken group rHN/chIL-12/9 was even more protective than that in group rHN/9. When rchIL-12 was co-injected with 15ng rHN plus MO, chickens produced low levels of HI antibody titers; while higher levels of IFN-γ production and an effective protection rate (83%) were obtained. On the other hand, low levels of IFN-γ production and low protection response (50%) were obtained in chickens injected with rHN with MO alone. Taken together, when the concentration of rHN decreased to certain levels, rchIL-12 reduced HI antibody production. The increase in the induction of IFN-γ production might suggest the enhancement of the cell-mediated immunity which conferred the protection from the NDV challenge. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Networks for learning and knowledge creation in biotechnology

    National Research Council Canada - National Science Library

    Oliver, Amalya Lumerman


    ... structure of the industry parallels one of its most important innovations - recombinant DNA (rDNA). She shows how the concept of recombination may be used to explain a number of organizational features, including new biotechnology firms, the formation of universitybased spin-offs, scientific entrepreneurship, and trust and cont...

  9. Biotechnology organizations in action

    DEFF Research Database (Denmark)

    Norus, Jesper

    This volume analyzes the dynamics and interactive processes among the players (individuals, institutions, and organizations/firms) that have constituted and legitimized the development of the biotechnology industries. The unit of analysis is small entrepreneurial firms developing biotechnological...

  10. Catalytic activity of metallic nanoisland coatings. The influence of size effects on the recombination properties

    International Nuclear Information System (INIS)

    Tomilina, O A; Berzhansky, V N; Shaposhnikov, A N; Tomilin, S V


    The results of investigations of the quantum-size effects influence on selective properties of heterogeneous nanocatalysts are presents. As etalon exothermic reaction was used the reaction of atomic hydrogen recombination. The nanostructured Pd and Pt films on Teflon substrate were used as a samples of heterogeneous nanocatalysts. It was shown that for nanoparticles with various sizes the catalytic activity has the periodic dependence. It has been found that for certain sizes of nanoparticles their catalytic activity is less than that of Teflon substrate. (paper)

  11. Cre-dependent DNA recombination activates a STING-dependent innate immune response (United States)

    Pépin, Geneviève; Ferrand, Jonathan; Höning, Klara; Jayasekara, W. Samantha N.; Cain, Jason E.; Behlke, Mark A.; Gough, Daniel J.; G. Williams, Bryan R.; Hornung, Veit


    Abstract Gene-recombinase technologies, such as Cre/loxP-mediated DNA recombination, are important tools in the study of gene function, but have potential side effects due to damaging activity on DNA. Here we show that DNA recombination by Cre instigates a robust antiviral response in mammalian cells, independent of legitimate loxP recombination. This is due to the recruitment of the cytosolic DNA sensor STING, concurrent with Cre-dependent DNA damage and the accumulation of cytoplasmic DNA. Importantly, we establish a direct interplay between this antiviral response and cell–cell interactions, indicating that low cell densities in vitro could be useful to help mitigate these effects of Cre. Taking into account the wide range of interferon stimulated genes that may be induced by the STING pathway, these results have broad implications in fields such as immunology, cancer biology, metabolism and stem cell research. Further, this study sets a precedent in the field of gene-engineering, possibly applicable to other enzymatic-based genome editing technologies. PMID:27166376

  12. Biotechnology Education and the Internet. ERIC Digest. (United States)

    Lee, Thomas

    The world of modern biotechnology is based on recent developments in molecular biology, especially those in genetic engineering. Since this is a relatively new and rapidly advancing field of study, there are few traditional sources of information and activities. This digest highlights biotechnology resources including those that can be found on…

  13. Top3 processes recombination intermediates and modulates checkpoint activity after DNA damage

    DEFF Research Database (Denmark)

    Mankouri, Hocine W; Hickson, Ian D


    Mutation of TOP3 in Saccharomyces cerevisiae causes poor growth, hyperrecombination, and a failure to fully activate DNA damage checkpoints in S phase. Here, we report that overexpression of a dominant-negative allele of TOP3, TOP3(Y356F), which lacks the catalytic (decatenation) activity of Top3......, the catalytic activity of Top3 is not required for DNA damage checkpoint activation, but it is required for normal S-phase progression after DNA damage. We also present evidence that the checkpoint-mediated cell cycle delay and persistence of X-shaped DNA molecules resulting from overexpression of TOP3(Y356F......) are downstream of Rad51 function. We propose that Top3 functions in S phase to both process homologous recombination intermediates and modulate checkpoint activity....


    Directory of Open Access Journals (Sweden)

    Z. Jurković


    Full Text Available Research studies in the area of biotechnologies in fruit growing started at the Agricultural Institute Osijek in 2006 with the establishment of the first experimental in vitro laboratory for micropropagation. The laboratory started an active research related to the Project "Biotechnological methods in fruit tree identification, selection and propagation" Project is part of program "Preservation and revitalization of grape and fruit autochthonous cultivars". The goal of this research is to determine genetic differences between autochthonous and introduced cultivars of cherry as well as cultivars and types of sour cherry, to find and optimize a method for fast recovery of clonal material. A great number of cherry cultivars and types within the population of cv. Oblacinska sour cherry exists in Croatia. A survey with the purpose of selecting autochthonous cultivars for further selection has been done in previous research. Differences have been found in a number of important agronomic traits within the populations of cv. Oblačinska sour cherry. Autochthonous cherry cultivars are suspected to be synonyms of known old cultivars which were introduced randomly and have been naturalized under a local name. Identification and description of cultivars and types of fruits is based on special visible properties which were measurable or notable. In this approach difficulties arise from the effect of non-genetic factors on expression of certain traits. Genetic-physiological problem of S allele autoincompatibility exists within cherry cultivars. Therefore it is necessary to put different cultivars in the plantation to pollinate each other. Apart form the fast and certain sort identification independent of environmental factors, biotechnological methods based on PCR enable faster virus detection compared with classical serologic methods and indexing and cover a wider range of plant pathogens including those undetectable by other methods. Thermotherapy and

  15. FY 1997 report on the research study on the effect of the active use of bio-technology on energy and social systems; 1997 nendo chosa hokokusho (bio-technology no katsuyo ni yoru energy shakai system ni oyobosu koka no chosa kenkyu)

    Energy Technology Data Exchange (ETDEWEB)



    For construction of a sustainable society by active use of bio-technology, a research study was made on the current state of active use of bio-technology for every industrial or social field, and the basic recognition and orientation for practice and diffusion of bio-technology. The previous typical examples of the effect of bio-technology on energy and social systems were evaluated from not only an affirmative viewpoint but also a compensatory viewpoint. Based on these examples, promising features of bio-technology and measures for active use of such features were showed for the future energy and social systems from a technological viewpoint. As a scenario for sustainable development of a society, some approaches and values about collection of rare resources, agriculture based on mass circulation, and recurrence to high-protein traditional foods such as fermented food were showed for balanced development of environment, population, and resources including energy and food. 8 refs., 14 figs., 8 tabs.

  16. Antibody biotechnology

    African Journals Online (AJOL)



    Jul 6, 2009 ... and automated, the hybrid cells can be stored for many years in liquid nitrogen and antibodies production is homogeneous. The hybridoma method .... they may be modified to vehicle active molecules such as radio-isotopes, toxins, cytokines, enzyme etc. In these cases, the therapeutic effect is due to ...

  17. Active site electrostatics protect genome integrity by blocking abortive hydrolysis during DNA recombination (United States)

    Ma, Chien-Hui; Rowley, Paul A; Macieszak, Anna; Guga, Piotr; Jayaram, Makkuni


    Water, acting as a rogue nucleophile, can disrupt transesterification steps of important phosphoryl transfer reactions in DNA and RNA. We have unveiled this risk, and identified safeguards instituted against it, during strand cleavage and joining by the tyrosine site-specific recombinase Flp. Strand joining is threatened by a latent Flp endonuclease activity (type I) towards the 3′-phosphotyrosyl intermediate resulting from strand cleavage. This risk is not alleviated by phosphate electrostatics; neutralizing the negative charge on the scissile phosphate through methylphosphonate (MeP) substitution does not stimulate type I endonuclease. Rather, protection derives from the architecture of the recombination synapse and conformational dynamics within it. Strand cleavage is protected against water by active site electrostatics. Replacement of the catalytic Arg-308 of Flp by alanine, along with MeP substitution, elicits a second Flp endonuclease activity (type II) that directly targets the scissile phosphodiester bond in DNA. MeP substitution, combined with appropriate active site mutations, will be useful in revealing anti-hydrolytic mechanisms engendered by systems that mediate DNA relaxation, DNA transposition, site-specific recombination, telomere resolution, RNA splicing and retrohoming of mobile introns. PMID:19440204

  18. Activity of recombinant and natural defensins from Vigna unguiculata seeds against Leishmania amazonensis. (United States)

    Souza, Géssika Silva; do Nascimento, Viviane Veiga; de Carvalho, Laís Pessanha; de Melo, Edésio José Tenório; Fernandes, Keysson Vieira; Machado, Olga Lima Tavares; Retamal, Claudio Andres; Gomes, Valdirene Moreira; Carvalho, André de Oliveira


    Antimicrobial peptides (AMPs), which are differentiated from other antibiotic peptides, such as gramicidins and polymyxins, because they are synthesized by large enzymatic complex and bear modified amino acids including d-amino acids, are short polymers of l-amino acids synthesized by ribosomes upon which all living organisms rely to defend themselves from invaders or competitor microorganisms. AMPs have received a great deal of attention from the scientific community as potential new drugs for neglected diseases such as Leishmaniasis. In plants, they include several families of compounds, including the plant defensins. The aim of the present study was to improve the expression of recombinant defensin from Vigna unguiculata seeds (Vu-Defr) and to test its activity against Leishmania amazonensis promatigotes. Recombinant expression was performed in LB and TB media and under different conditions. The purification of Vu-Defr was achieved by immobilized metal ion affinity and reversed-phase chromatography. The purified Vu-Defr was analyzed by circular dichroism (CD), and its biological activity was tested against L. amazonenis promastigotes. To demonstrate that the recombinant production of Vu-Defr did not interfere with its fold and biological activity, the results of all experiments were compared with the results from the natural defensin (Vu-Def). The CD spectra of both peptides presented good superimposition indicating that both peptides present very similar secondary structure and that the Vu-Defr was correctly folded. L. amazonensis treated with Vu-Defr led to the elimination of 54.3% and 46.9% of the parasites at 24 and 48h of incubation time, respectively. Vu-Def eliminated 50% and 54.8% of the parasites at 24 and 48 h, respectively. Both were used at a concentration of 100 μg/mL. These results suggested the potential for plant defensins to be used as new antiparasitic substances. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Conformational transitions during FtsK translocase activation of individual XerCD-dif recombination complexes. (United States)

    Zawadzki, Pawel; May, Peter F J; Baker, Rachel A; Pinkney, Justin N M; Kapanidis, Achillefs N; Sherratt, David J; Arciszewska, Lidia K


    Three single-molecule techniques have been used simultaneously and in tandem to track the formation in vitro of single XerCD-dif recombination complexes. We observed the arrival of the FtsK translocase at individual preformed synaptic complexes and demonstrated the conformational change that occurs during their activation. We then followed the reaction intermediate transitions as Holliday junctions formed through catalysis by XerD, isomerized, and were converted by XerC to reaction products, which then dissociated. These observations, along with the calculated intermediate lifetimes, inform the reaction mechanism, which plays a key role in chromosome unlinking in most bacteria with circular chromosomes.

  20. Refolded Recombinant Human Paraoxonase 1 Variant Exhibits Prophylactic Activity Against Organophosphate Poisoning. (United States)

    Bajaj, Priyanka; Tripathy, Rajan K; Aggarwal, Geetika; Datusalia, Ashok K; Sharma, Shyam S; Pande, Abhay H


    Organophosphate (OP) compounds are neurotoxic chemicals, and current treatments available for OP-poisoning are considered as unsatisfactory and inadequate. There is an urgent need for the development of more effective treatment(s) for OP-poisoning. Human paraoxonase 1 (h-PON1) is known to hydrolyze a variety of OP-compounds and is a leading candidate for the development of prophylactic and therapeutic agent against OP-poisoning in humans. Non-availability of effective system(s) for the production of recombinant h-PON1 (rh-PON1) makes it hard to produce improved variant(s) of this enzyme and analyze their in vivo efficacy in animal models. Production of recombinant h-PON1 (rh-PON1) using an Escherichia coli expression system is a key to develop variant(s) of h-PON1. Recently, we have developed a procedure to produce active rh-PON1 enzymes by using E. coli expression system. In this study, we have characterized the OP-hydrolyzing properties of refolded rh-PON1(wt) and rh-PON1(H115W;R192K) variant. Our results show that refolded rh-PON1(H115W;R192K) variant exhibit enhanced OP-hydrolyzing activity in in vitro and ex vivo assays and exhibited prophylactic activity in mouse model of OP-poisoning, suggesting that refolded rh-PON1 can be developed as a therapeutic candidate.

  1. A Butter Aroma Recombinate Activates Human Class-I Odorant Receptors. (United States)

    Geithe, Christiane; Andersen, Gaby; Malki, Agne; Krautwurst, Dietmar


    With ∼400 olfactory G protein-coupled receptors (GPCR), humans sensitively perceive ∼230 key aroma compounds as best natural agonists of ∼10000 food volatiles. An understanding of odorant coding, thus, critically depends on the knowledge about interactions of key food aroma chemicals and their mixtures with their cognate receptors. Genetically designed test cell systems enable the screening, deorphaning, and characterization of single odorant receptors (OR). This study shows for the food aroma-specific and quantitative butter aroma recombinate, and its single components, specific in vitro class-I OR activity patterns, as well as the activation of selected OR in a concentration-dependent manner. Recently, chemosensory receptors, especially class-I OR, were demonstrated to be expressed on blood leukocytes, which may encounter foodborne aroma compounds postprandially. This study shows that butter aroma recombinate induced chemotaxis of isolated human neutrophils in a defined gradient, and in a concentration-dependent and pertussis toxin-sensitive manner, suggesting at least a GPCR-mediated activation of blood leukocytes by key food odorants.

  2. Albinism-causing mutations in recombinant human tyrosinase alter intrinsic enzymatic activity.

    Directory of Open Access Journals (Sweden)

    Monika B Dolinska

    Full Text Available Tyrosinase (TYR catalyzes the rate-limiting, first step in melanin production and its gene (TYR is mutated in many cases of oculocutaneous albinism (OCA1, an autosomal recessive cause of childhood blindness. Patients with reduced TYR activity are classified as OCA1B; some OCA1B mutations are temperature-sensitive. Therapeutic research for OCA1 has been hampered, in part, by the absence of purified, active, recombinant wild-type and mutant human enzymes.The intra-melanosomal domain of human tyrosinase (residues 19-469 and two OCA1B related temperature-sensitive mutants, R422Q and R422W were expressed in insect cells and produced in T. ni larvae. The short trans-membrane fragment was deleted to avoid potential protein insolubility, while preserving all other functional features of the enzymes. Purified tyrosinase was obtained with a yield of >1 mg per 10 g of larval biomass. The protein was a monomeric glycoenzyme with maximum enzyme activity at 37°C and neutral pH. The two purified mutants when compared to the wild-type protein were less active and temperature sensitive. These differences are associated with conformational perturbations in secondary structure.The intramelanosomal domains of recombinant wild-type and mutant human tyrosinases are soluble monomeric glycoproteins with activities which mirror their in vivo function. This advance allows for the structure - function analyses of different mutant TYR proteins and correlation with their corresponding human phenotypes; it also provides an important tool to discover drugs that may improve tyrosinase activity and treat OCA1.

  3. Albinism-Causing Mutations in Recombinant Human Tyrosinase Alter Intrinsic Enzymatic Activity (United States)

    Dolinska, Monika B.; Kovaleva, Elena; Backlund, Peter; Wingfield, Paul T.; Brooks, Brian P.; Sergeev, Yuri V.


    Background Tyrosinase (TYR) catalyzes the rate-limiting, first step in melanin production and its gene (TYR) is mutated in many cases of oculocutaneous albinism (OCA1), an autosomal recessive cause of childhood blindness. Patients with reduced TYR activity are classified as OCA1B; some OCA1B mutations are temperature-sensitive. Therapeutic research for OCA1 has been hampered, in part, by the absence of purified, active, recombinant wild-type and mutant human enzymes. Methodology/Principal Findings The intra-melanosomal domain of human tyrosinase (residues 19–469) and two OCA1B related temperature-sensitive mutants, R422Q and R422W were expressed in insect cells and produced in T. ni larvae. The short trans-membrane fragment was deleted to avoid potential protein insolubility, while preserving all other functional features of the enzymes. Purified tyrosinase was obtained with a yield of >1 mg per 10 g of larval biomass. The protein was a monomeric glycoenzyme with maximum enzyme activity at 37°C and neutral pH. The two purified mutants when compared to the wild-type protein were less active and temperature sensitive. These differences are associated with conformational perturbations in secondary structure. Conclusions/Significance The intramelanosomal domains of recombinant wild-type and mutant human tyrosinases are soluble monomeric glycoproteins with activities which mirror their in vivo function. This advance allows for the structure – function analyses of different mutant TYR proteins and correlation with their corresponding human phenotypes; it also provides an important tool to discover drugs that may improve tyrosinase activity and treat OCA1. PMID:24392141

  4. Albinism-causing mutations in recombinant human tyrosinase alter intrinsic enzymatic activity. (United States)

    Dolinska, Monika B; Kovaleva, Elena; Backlund, Peter; Wingfield, Paul T; Brooks, Brian P; Sergeev, Yuri V


    Tyrosinase (TYR) catalyzes the rate-limiting, first step in melanin production and its gene (TYR) is mutated in many cases of oculocutaneous albinism (OCA1), an autosomal recessive cause of childhood blindness. Patients with reduced TYR activity are classified as OCA1B; some OCA1B mutations are temperature-sensitive. Therapeutic research for OCA1 has been hampered, in part, by the absence of purified, active, recombinant wild-type and mutant human enzymes. The intra-melanosomal domain of human tyrosinase (residues 19-469) and two OCA1B related temperature-sensitive mutants, R422Q and R422W were expressed in insect cells and produced in T. ni larvae. The short trans-membrane fragment was deleted to avoid potential protein insolubility, while preserving all other functional features of the enzymes. Purified tyrosinase was obtained with a yield of >1 mg per 10 g of larval biomass. The protein was a monomeric glycoenzyme with maximum enzyme activity at 37°C and neutral pH. The two purified mutants when compared to the wild-type protein were less active and temperature sensitive. These differences are associated with conformational perturbations in secondary structure. The intramelanosomal domains of recombinant wild-type and mutant human tyrosinases are soluble monomeric glycoproteins with activities which mirror their in vivo function. This advance allows for the structure - function analyses of different mutant TYR proteins and correlation with their corresponding human phenotypes; it also provides an important tool to discover drugs that may improve tyrosinase activity and treat OCA1.

  5. Recombinant protein production technology (United States)

    Recombinant protein production is an important technology for antibody production, biochemical activity study, and structural determination during the post-genomic era. Limiting factors in recombinant protein production include low-level protein expression, protein precipitation, and loss of protein...

  6. Biologic activities of recombinant human-beta-defensin-4 toward cultured human cancer cells. (United States)

    Gerashchenko, O L; Zhuravel, E V; Skachkova, O V; Khranovska, N N; Filonenko, V V; Pogrebnoy, P V; Soldatkina, M A


    The aim of the study was in vitro analysis of biological activity of recombinant human beta-defensin-4 (rec-hBD-4). hBD-4 cDNA was cloned into pGEX-2T vector, and recombinant plasmid was transformed into E. coli BL21(DE3) cells. To purify soluble fusion GST-hBD-4 protein, affinity chromatography was applied. Rec-hBD-4 was cleaved from the fusion protein with thrombin, and purified by reverse phase chromatography on Sep-Pack C18. Effects of rec-hBD-4 on proliferation, viability, cell cycle distribution, substrate-independent growth, and mobility of cultured human cancer cells of A431, A549, and TPC-1 lines were analyzed by direct cell counting technique, MTT assay, flow cytofluorometry, colony forming assay in semi-soft medium, and wound healing assay. Rec-hBD-4 was expressed in bacterial cells as GST-hBD-4 fusion protein, and purified by routine 3-step procedure (affine chromatography on glutathione-agarose, cleavage of fusion protein by thrombin, and reverse phase chromatography). Analysis of in vitro activity of rec-hBD-4 toward three human cancer cell lines has demonstrated that the defensin is capable to affect cell behaviour in concentration-dependent manner. In 1-100 nM concentrations rec-hBD-4 significantly stimulates cancer cell proliferation and viability, and promotes cell cycle progression through G2/M checkpoint, greatly enhances colony-forming activity and mobility of the cells. Treatment of the cells with 500 nM of rec-hBD-4 resulted in opposite effects: significant suppression of cell proliferation and viability, blockage of cell cycle in G1/S checkpoint, significant inhibition of cell migration and colony forming activity. Recombinant human beta-defensin-4 is biologically active peptide capable to cause oppositely directed effects toward biologic features of cancer cells in vitro dependent on its concentration.

  7. Activation of Xer-recombination at dif: structural basis of the FtsKγ-XerD interaction. (United States)

    Keller, Andrew N; Xin, Yue; Boer, Stephanie; Reinhardt, Jonathan; Baker, Rachel; Arciszewska, Lidia K; Lewis, Peter J; Sherratt, David J; Löwe, Jan; Grainge, Ian


    Bacterial chromosomes are most often circular DNA molecules. This can produce a topological problem; a genetic crossover from homologous recombination results in dimerization of the chromosome. A chromosome dimer is lethal unless resolved. A site-specific recombination system catalyses this dimer-resolution reaction at the chromosomal site dif. In Escherichia coli, two tyrosine-family recombinases, XerC and XerD, bind to dif and carry out two pairs of sequential strand exchange reactions. However, what makes the reaction unique among site-specific recombination reactions is that the first step, XerD-mediated strand exchange, relies on interaction with the very C-terminus of the FtsK DNA translocase. FtsK is a powerful molecular motor that functions in cell division, co-ordinating division with clearing chromosomal DNA from the site of septation and also acts to position the dif sites for recombination. This is a model system for unlinking, separating and segregating large DNA molecules. Here we describe the molecular detail of the interaction between XerD and FtsK that leads to activation of recombination as deduced from a co-crystal structure, biochemical and in vivo experiments. FtsKγ interacts with the C-terminal domain of XerD, above a cleft where XerC is thought to bind. We present a model for activation of recombination based on structural data.

  8. Evaluation of Aryoseven Safety (Recombinant Activated Factor VII) in Patients with Bleeding Disorders (An Observational Post-Marketing Surveillance Study). (United States)

    Toogeh, Gholamreza; Abolghasemi, Hassan; Eshghi, Peyman; Managhchi, Mohammadreza; Shaverdi-Niasari, Mohammadreza; Karimi, Katayoon; Roostaei, Samin; Emran, Neda; Abdollahi, Alireza


    Recombinant activated factor VII induces hemostasis in patients with coagulopathy disorders. AryoSeven™ as a safe Iranian Recombinant activated factor VII has been available on our market. This study was performed to establish the safety of AryoSeven on patients with coagulopathy disorder. This single-center, descriptive, cross sectional study was carried out in Thrombus and Homeostasis Research Center ValiAsr Hospital during 2013-2014. Fifty one patients with bleeding disorders who received at least one dose of Aryoseven were enrolled. Patients' demographic data and adverse effect of drug and reaction related to Aryoseven or previous usage of Recombinant activated FVII were recorded in questionnaires. Finally data were analyzed to compare side effects of Aryoseven and other Recombinant activated FVII brands. Aryoseven was prescribed for 51 Patients. Of all participants with mean age 57.18+21.38 yr, 31 cases were male and 26 subjects had past history of recombinant activated FVII usage. Glanzman was the most frequent disorder followed by congenital FVII deficiency, hemophilia with inhibitors, factor 5 deficiency, acquired hemophilia, hemophilia A with inhibitor, and hemophilia A or B with inhibitor. The majority of bleeding episodes had occurred in joints. Three patients (5.9%) complained about adverse effects of Aryoseven vs. 11.5 % about adverse effects of other brands. However this difference was not significant, statistically. Based on monitor patients closely for any adverse events, we concluded that Aryoseven administration under careful weighing of benefit versus potential harm may comparable with other counterpart drugs.

  9. 2001 Industry Studies: Biotechnology

    National Research Council Canada - National Science Library


    .... The applications of biotechnology, such as medicine, agribusiness, forensics, informatics and the defense sector, offer many benefits, but also bring some risk, requiring public policy decisions...

  10. Correlation between the glycan variations and defibrinogenating activities of acutobin and its recombinant glycoforms.

    Directory of Open Access Journals (Sweden)

    Ying-Ming Wang

    Full Text Available Acutobin isolated from Deinagkistrodon acutus venom has been used to prevent or treat stroke in patients. This defibrinogenating serine protease is a 39 kDa glycoprotein containing terminal disialyl-capped N-glycans. After sialidase treatment, the enzyme showed similar catalytic activities toward chromogenic substrate, and cleaved the Aα chain of fibrinogen as efficiently as the native acutobin did. However, the level of fibrinogen degradation products in mice after i.p.-injection of desialylated-acutobin was significantly lower than the level after acutobin injection, suggesting that the disialyl moieties may improve or prolong the half-life of acutobin. Two recombinant enzymes with identical protein structures and similar amidolytic activities to those of native acutobin were expressed from HEK293T and SW1353 cells and designated as HKATB and SWATB, respectively. Mass spectrometric profiling showed that their glycans differed from those of acutobin. In contrast to acutobin, HKATB cleaved not only the Aα chain but also the Bβ and γ chains of human fibrinogens, while SWATB showed a reduced α-fibrinogenase activity. Non-denaturing deglycosylation of these proteases by peptide N-glycosidase F significantly reduced their fibrinogenolytic activities and thermal stabilities. The in vivo defibrinogenating effect of HKATB was inferior to that of acutobin in mice. Taken together, our results suggest that the conjugated glycans of acutobin are involved in its interaction with fibrinogen, and that the selection of cells optimally expressing efficient glycoforms and further glycosylation engineering are desirable before a recombinant product can replace the native enzyme for clinical use.

  11. Perlecan domain 1 recombinant proteoglycan augments BMP-2 activity and osteogenesis

    Directory of Open Access Journals (Sweden)

    DeCarlo Arthur A


    Full Text Available Abstract Background Many growth factors, such as bone morphogenetic protein (BMP-2, have been shown to interact with polymers of sulfated disacharrides known as heparan sulfate (HS glycosaminoglycans (GAGs, which are found on matrix and cell-surface proteoglycans throughout the body. HS GAGs, and some more highly sulfated forms of chondroitin sulfate (CS, regulate cell function by serving as co-factors, or co-receptors, in GF interactions with their receptors, and HS or CS GAGs have been shown to be necessary for inducing signaling and GF activity, even in the osteogenic lineage. Unlike recombinant proteins, however, HS and CS GAGs are quite heterogenous due, in large part, to post-translational addition, then removal, of sulfate groups to various positions along the GAG polymer. We have, therefore, investigated whether it would be feasible to deliver a DNA pro-drug to generate a soluble HS/CS proteoglycan in situ that would augment the activity of growth-factors, including BMP-2, in vivo. Results Utilizing a purified recombinant human perlecan domain 1 (rhPln.D1 expressed from HEK 293 cells with HS and CS GAGs, tight binding and dose-enhancement of rhBMP-2 activity was demonstrated in vitro. In vitro, the expressed rhPln.D1 was characterized by modification with sulfated HS and CS GAGs. Dose-enhancement of rhBMP-2 by a pln.D1 expression plasmid delivered together as a lyophilized single-phase on a particulate tricalcium phosphate scaffold for 6 or more weeks generated up to 9 fold more bone volume de novo on the maxillary ridge in a rat model than in control sites without the pln.D1 plasmid. Using a significantly lower BMP-2 dose, this combination provided more than 5 times as much maxillary ridge augmentation and greater density than rhBMP-2 delivered on a collagen sponge (InFuse™. Conclusions A recombinant HS/CS PG interacted strongly and functionally with BMP-2 in binding and cell-based assays, and, in vivo, the pln.247 expression plasmid

  12. Rapid Assessment of Antibacterial Activity against Mycobacterium ulcerans by Using Recombinant Luminescent Strains▿ (United States)

    Zhang, Tianyu; Bishai, William R.; Grosset, Jacques H.; Nuermberger, Eric L.


    Mycobacterium ulcerans causes Buruli ulcer, an emerging infectious disease for which antimicrobial therapy has only recently proven to be beneficial. The discovery and development of new drugs against M. ulcerans are severely impeded by its very slow growth. Recombinant bioluminescent strains have proven useful in drug development for other mycobacterial infections, but the ability of such strains to discriminate bacteriostatic from bactericidal activity has not been well demonstrated. We engineered recombinant M. ulcerans strains to express luxAB from Vibrio harveyi. In drug susceptibility tests employing a wide range of antimicrobial agents and concentrations, the relative light unit (RLU) count measured in real time was a reliable surrogate marker for CFU counts available 3 months later, indicating utility for the rapid determination of drug susceptibility and discrimination of bacteriostatic and bactericidal effects. A second important finding of this study is that the addition of subinhibitory concentrations of the ATP-binding cassette transporter inhibitor reserpine increases the susceptibility of M. ulcerans to tetracycline and erythromycin, indicating that drug efflux may explain at least part of the intrinsic resistance of M. ulcerans to these agents. PMID:20421401

  13. Novel purification method and antibiotic activity of recombinant Momordica charantia MAP30. (United States)

    Chang, Ching-Dong; Lin, Ping-Yuan; Chen, Yo-Chia; Huang, Han-Hsiang; Shih, Wen-Ling


    Ribosome-inactivating proteins (RIPs) are a group of enzymes originally isolated from plants that possess the ability to damage ribosomes in an irreversible manner, leading to inhibition of protein synthesis in eukaryotic cells. In this study, we aimed to purify recombinant RIPs, investigate their function in the treatment of bacterial infection, and determine their toxicity in mice. We employed a pMAL protein fusion and purification system using E. coli transformed with a plasmid containing MBP-tagged MAP30 cDNA. MBP-tagged MAP30 was purified using a modified novel protocol to effectively produce highly active MAP30 of high purity. In an acute toxicity study in mice, no mortality occurred at doses lower than 1.25 mg/kg. MAP30 at both 0.42 and 0.14 mg/kg induced anti-MAP30 IgG, which reached a maximum titer at week 3. In conclusion, recombinant MAP30 prepared using our purification method possesses bioactivity, and has a synergistic bacteria-killing effect that can significantly reduce the required dosages of chloramphenicol and erythromycin. Therefore, when MAP30 is used in combination with chloramphenicol or erythromycin, it may of benefit in terms of reducing the side effects of the antibiotics, as lower concentrations of antibiotics are required.

  14. Biotechnology essay competition: biotechnology and sustainable food practices. (United States)

    Peng, Judy; Schoeb, Helena; Lee, Gina


    Biotechnology Journal announces our second biotechnology essay competition with the theme "biotechnology and sustainable food practices", open to all undergraduate students. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Current state and perspectives of producing biodiesel‐like compounds by biotechnology (United States)

    Uthoff, Stefan; Bröker, Daniel; Steinbüchel, Alexander


    Summary The global demand for crude oil is expected to continue to rise in future while simultaneously oil production is currently reaching its peak. Subsequently, rising oil prices and their negative impacts on economy, together with an increased environmental awareness of our society, directed the focus also on the biotechnological production of fuels. Although a wide variety of such fuels has been suggested, only the production of ethanol and biodiesel has reached a certain economic feasibility and volume, yet. This review focuses on the current state and perspectives of biotechnological production of biodiesel‐like compounds. At present by far most of the produced biodiesel is obtained by chemical transesterification reactions, which cannot meet the demands of a totally ‘green’ fuel production. Therefore, also several biotechnological biodiesel production processes are currently being developed. Biotechnological production can be achieved by purified enzymes in the soluble state, which requires cost‐intensive protein preparation. Alternatively, enzymes could be immobilized on an appropriate matrix, enabling a reuse of the enzyme, although the formation of by‐products may provide difficulties to maintain the enzyme activity. Processes in presence of organic solvents like t‐butanol have been developed, which enhance by‐product solubility and therefore prevent loss of enzyme activity. As another approach the application of whole‐cell catalysis for the production of fatty acid ethyl esters, which is also referred to as ‘microdiesel’, by recombinant microorganisms has recently been suggested. PMID:21255288

  16. Current state and perspectives of producing biodiesel-like compounds by biotechnology. (United States)

    Uthoff, Stefan; Bröker, Daniel; Steinbüchel, Alexander


    The global demand for crude oil is expected to continue to rise in future while simultaneously oil production is currently reaching its peak. Subsequently, rising oil prices and their negative impacts on economy, together with an increased environmental awareness of our society, directed the focus also on the biotechnological production of fuels. Although a wide variety of such fuels has been suggested, only the production of ethanol and biodiesel has reached a certain economic feasibility and volume, yet. This review focuses on the current state and perspectives of biotechnological production of biodiesel-like compounds. At present by far most of the produced biodiesel is obtained by chemical transesterification reactions, which cannot meet the demands of a totally 'green' fuel production. Therefore, also several biotechnological biodiesel production processes are currently being developed. Biotechnological production can be achieved by purified enzymes in the soluble state, which requires cost-intensive protein preparation. Alternatively, enzymes could be immobilized on an appropriate matrix, enabling a reuse of the enzyme, although the formation of by-products may provide difficulties to maintain the enzyme activity. Processes in presence of organic solvents like t-butanol have been developed, which enhance by-product solubility and therefore prevent loss of enzyme activity. As another approach the application of whole-cell catalysis for the production of fatty acid ethyl esters, which is also referred to as 'microdiesel', by recombinant microorganisms has recently been suggested. © 2009 The Authors. Journal compilation © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.

  17. The Role of Biotechnology for Conservation and Biologically Active Substances Production of Rhodiola rosea: Endangered Medicinal Species

    Directory of Open Access Journals (Sweden)

    Krasimira Tasheva


    Full Text Available At present, more than 50 000 plant species are used in phytotherapy and medicine. About 2/3 of them are harvested from nature leading to local extinction of many species or degradation of their habitats. Biotechnological methods offer possibilities not only for faster cloning and conservation of the genotype of the plants but for modification of their gene information, regulation, and expression for production of valuable substances in higher amounts or with better properties. Rhodiola rosea is an endangered medicinal species with limited distribution. It has outstanding importance for pharmaceutical industry for prevention and cure of cancer, heart and nervous system diseases, and so forth. Despite the great interest in golden root and the wide investigations in the area of phytochemistry, plant biotechnology remained less endeavoured and exploited. The paper presents research on initiation of in vitro cultures in Rhodiola rosea and some other Rhodiola species. Achievements in induction of organogenic and callus cultures, regeneration, and micropropagation varied but were a good basis for alternative in vitro synthesis of the desired metabolites and for the development of efficient systems for micropropagation for conservation of the species.

  18. Biotechnology Education: A Multiple Instructional Strategies Approach. (United States)

    Dunham, Trey; Wells, John; White, Karissa


    Provides a rationale for inclusion of biotechnology in technology education. Describes an instructional strategy that uses behaviorist, cognitive, and constructivist learning theories in two activities involving photobioreactors and bovine somatotropin (growth hormone). (Contains 39 references.) (SK)

  19. Medical Biotechnology: Problems and Prospects in Bangladesh

    Directory of Open Access Journals (Sweden)

    Shaikh Mizan


    Full Text Available Biotechnology is the knowledge and techniques of developing and using biological systems for deriving special products and services. The age-old technology took a new turn with the advent of recombinant DNA techniques, and boosted by the development of other molecular biological techniques, cell culture techniques and bioinformatics. Medical biotechnology is the major thrust area of biotechnology. It has brought revolutions in medicine – quick methods for diagnosing diseases, generation of new drugs and vaccines, completely novel approach of treatment are only a few to mention. The industrial and financial bulk of the industry mushroomed very rapidly in the last three decades, led by the USA and western advanced nations. Asian countries like China, India, South Korea, Taiwan and Singapore joined late, but advancing forward in a big way. In all the Asian countries governments supported the initiatives of the expert and entrepreneur community, and invested heavily in its development. Bangladesh has got great potential in developing biotechnology and reaping its fruits. However, lack of commitment and patriotism, and too much corruption and irresponsibility in political and bureaucratic establishment are the major hindrance to the development of biotechnology in Bangladesh.

  20. Activation and Stabilization of Olive Recombinant 13-Hydroperoxide Lyase Using Selected Additives. (United States)

    Jacopini, Sabrina; Vincenti, Sophie; Mariani, Magali; Brunini-Bronzini de Caraffa, Virginie; Gambotti, Claude; Desjobert, Jean-Marie; Muselli, Alain; Costa, Jean; Tomi, Félix; Berti, Liliane; Maury, Jacques


    The stabilization of olive recombinant hydroperoxide lyases (rHPLs) was investigated using selected chemical additives. Two rHPLs were studied: HPL full-length and HPL with its chloroplast transit peptide deleted (matured HPL). Both olive rHPLs are relatively stable at 4 °C, and enzyme activity can be preserved (about 100% of the rHPL activities are maintained) during 5 weeks of storage at -20 or at -80 °C in the presence of glycerol (10%, v/v). Among the additives used in this study, glycine (2.5% w/v), NaCl (0.5 M), and Na 2 SO 4 (0.25 M) provided the highest activation of HPL full-length activity, while the best matured HPL activity was obtained with Na 2 SO 4 (0.25 M) and NaCl (1 M). Although the inactivation rate constants (k) showed that these additives inactivate both rHPLs, their use is still relevant as they strongly increase HPL activity. Results of C6-aldehyde production assays also showed that glycine, NaCl, and Na 2 SO 4 are appropriate additives and that NaCl appears to be the best additive, at least for hexanal production.

  1. Inhibition of activated protein C by recombinant alpha 1-antitrypsin variants with substitution of arginine or leucine for methionine358

    NARCIS (Netherlands)

    Heeb, M.J.; Bischoff, Rainer; Courtney, M.; Griffin, J.H.


    alpha 1-Antitrypsin (alpha 1-AT) was recently identified as a major physiologic plasma inhibitor of activated protein C. The reaction with activated protein C of recombinant alpha 1-AT containing amino acid substitutions at the reactive center was studied. The substitution of Arg358 for Met, as

  2. Nigerian Journal of Biotechnology

    African Journals Online (AJOL)

    Nigerian Journal of Biotechnology is a publisher of multidisciplinary peer-reviews original research works and critical reviews on interdisciplinary studies in Biotechnology, Agriculture, Food and Environment interface; and is published twice a year. It serves scientists in the field of Agriculture, Food science and Technology; ...

  3. Biotechnology in China

    National Research Council Canada - National Science Library

    Hamer, Dean H; Kung, Shain-dow


    ... and Shain-dow Kung Center for Agricultural Biotechnology Maryland Biotechnology Institute Department of Botany University of Maryland College Park, Maryland Committee on Scholarly Communication with the People's Republic of China National Academy of Sciences National Academy Press Washington, DC 1989 i Copyrightthe cannot be not from bo...

  4. Tankyrases Promote Homologous Recombination and Check Point Activation in Response to DSBs.

    Directory of Open Access Journals (Sweden)

    Zita Nagy


    Full Text Available DNA lesions are sensed by a network of proteins that trigger the DNA damage response (DDR, a signaling cascade that acts to delay cell cycle progression and initiate DNA repair. The Mediator of DNA damage Checkpoint protein 1 (MDC1 is essential for spreading of the DDR signaling on chromatin surrounding Double Strand Breaks (DSBs by acting as a scaffold for PI3K kinases and for ubiquitin ligases. MDC1 also plays a role both in Non-Homologous End Joining (NHEJ and Homologous Recombination (HR repair pathways. Here we identify two novel binding partners of MDC1, the poly (ADP-ribose Polymerases (PARPs TNKS1 and 2. We find that TNKSs are recruited to DNA lesions by MDC1 and regulate DNA end resection and BRCA1A complex stabilization at lesions leading to efficient DSB repair by HR and proper checkpoint activation.

  5. Efficacy and safety of recombinant activated factor VII for acute intracerebral hemorrhage

    DEFF Research Database (Denmark)

    Mayer, Stephan A; Brun, Nikolai C; Begtrup, Kamilla


    BACKGROUND: Intracerebral hemorrhage is the least treatable form of stroke. We performed this phase 3 trial to confirm a previous study in which recombinant activated factor VII (rFVIIa) reduced growth of the hematoma and improved survival and functional outcomes. METHODS: We randomly assigned 841...... patients with intracerebral hemorrhage to receive placebo (268 patients), 20 microg of rFVIIa per kilogram of body weight (276 patients), or 80 microg of rFVIIa per kilogram (297 patients) within 4 hours after the onset of stroke. The primary end point was poor outcome, defined as severe disability...... or death according to the modified Rankin scale 90 days after the stroke. RESULTS: Treatment with 80 microg of rFVIIa per kilogram resulted in a significant reduction in growth in volume of the hemorrhage. The mean estimated increase in volume of the intracerebral hemorrhage at 24 hours was 26...

  6. Annealing effects on recombinative activity of nickel at direct silicon bonded interface

    International Nuclear Information System (INIS)

    Kojima, Takuto; Ohshita, Yoshio; Yamaguchi, Masafumi


    By performing capacitance transient analyses, the recombination activity at a (110)/(100) direct silicon bonded (DSB) interface contaminated with nickel diffused at different temperatures, as a model of grain boundaries in multicrystalline silicon, was studied. The trap level depth from the valence band, trap density of states, and hole capture cross section peaked at an annealing temperature of 300 °C. At temperatures ⩾400 °C, the hole capture cross section increased with temperature, but the density of states remained unchanged. Further, synchrotron-based X-ray analyses, microprobe X-ray fluorescence (μ-XRF), and X-ray absorption near edge structure (XANES) analyses were performed. The analysis results indicated that the chemical phase after the sample was annealed at 200 °C was a mixture of NiO and NiSi 2

  7. Processing, activity, and inhibition of recombinant cyprosin, an aspartic proteinase from cardoon (Cynara cardunculus). (United States)

    White, P C; Cordeiro, M C; Arnold, D; Brodelius, P E; Kay, J


    The cDNA encoding the precursor of an aspartic proteinase from the flowers of the cardoon, Cynara cardunculus, was expressed in Pichia pastoris, and the recombinant, mature cyprosin that accumulated in the culture medium was purified and characterized. The resultant mixture of microheterogeneous forms was shown to consist of glycosylated heavy chains (34 or 32 kDa) plus associated light chains with molecular weights in the region of 14,000-18,000, resulting from excision of most, but not all, of the 104 residues contributed by the unique region known as the plant specific insert. SDS-polyacrylamide gel electrophoresis under non-reducing conditions indicated that disulfide bonding held the heavy and light chains together in the heterodimeric enzyme forms. In contrast, when a construct was expressed in which the nucleotides encoding the 104 residues of the plant specific insert were deleted, the inactive, unprocessed precursor form (procyprosin) accumulated, indicating that the plant-specific insert has a role in ensuring that the nascent polypeptide is folded properly and rendered capable of being activated to generate mature, active proteinase. Kinetic parameters were derived for the hydrolysis of a synthetic peptide substrate by wild-type, recombinant cyprosin at a variety of pH and temperature values and the subsite requirements of the enzyme were mapped using a systematic series of synthetic inhibitors. The significance is discussed of the susceptibility of cyprosin to inhibitors of human immunodeficiency virus proteinase and particularly of renin, some of which were found to have subnanomolar potencies against the plant enzyme.

  8. Dendritic cell activation and maturation induced by recombinant calreticulin fragment 39-272. (United States)

    Li, Yue; Zeng, Xiaoli; He, Lijuan; Yuan, Hui


    Dendritic cells (DC) are the most potent antigen-presenting cells for initiating immune responses. DC maturation can be induced by exposing of immature DC to pathogen products or pro-inflammatory factor, which dramatically enhances the ability of DC to activate Ag-specific T cells. In this study, a recombinant calreticulin fragment 39-272 (rCRT/39-272) covering the lectin-like N domain and partial P domain of murine CRT has been expressed and purified in Escherichia coli. Functional analysis studies revealed that rCRT/39-272 has potent immunostimulatory activities in both activating human monocytes and B cells to secrete cytokines. rCRT/39-272 can drive the activation of bone marrow derived DC in TLR4/CD14 dependent way, as indicated by secretion of cytokines IL-12/IL-23 (p40) and IL-1β. Exposure of DC to rCRT/39-272 induces P-Akt, suggesting that rCRT/39-272 induces maturation of DC through PI3K/Akt signaling pathway. The results suggest that soluble rCRT/39-272 is a potent stimulatory agent to DC maturation in TLR4/CD14 and PI3K/Akt dependent pathway. It may play important roles in initiating cellular immunity in vivo and the T cell response in vitro. Thus it could be used for study of DC-based tumor vaccines.

  9. The BCL11A transcription factor directly activates RAG gene expression and V(D)J recombination. (United States)

    Lee, Baeck-seung; Dekker, Joseph D; Lee, Bum-kyu; Iyer, Vishwanath R; Sleckman, Barry P; Shaffer, Arthur L; Ippolito, Gregory C; Tucker, Philip W


    Recombination-activating gene 1 protein (RAG1) and RAG2 are critical enzymes for initiating variable-diversity-joining (VDJ) segment recombination, an essential process for antigen receptor expression and lymphocyte development. The transcription factor BCL11A is required for B cell development, but its molecular function(s) in B cell fate specification and commitment is unknown. We show here that the major B cell isoform, BCL11A-XL, binds the RAG1 promoter and Erag enhancer to activate RAG1 and RAG2 transcription in pre-B cells. We employed BCL11A overexpression with recombination substrates in a cultured pre-B cell line as well as Cre recombinase-mediated Bcl11a(lox/lox) deletion in explanted murine pre-B cells to demonstrate direct consequences of BCL11A/RAG modulation on V(D)J recombination. We conclude that BCL11A is a critical component of a transcriptional network that regulates B cell fate by controlling V(D)J recombination.

  10. Optimization of the expression, purification and polymerase activity reaction conditions of recombinant human PrimPol.

    Directory of Open Access Journals (Sweden)

    Elizaveta O Boldinova

    Full Text Available Human PrimPol is a DNA primase/polymerase involved in DNA damage tolerance and prevents nuclear genome instability. PrimPol is also localized to the mitochondria, but its precise function in mitochondrial DNA maintenance has remained elusive. PrimPol works both as a translesion (TLS polymerase and as the primase that restarts DNA replication after a lesion. However, the observed biochemical activities of PrimPol vary considerably between studies as a result of different reaction conditions used. To reveal the effects of reaction composition on PrimPol DNA polymerase activity, we tested the polymerase activity in the presence of various buffer agents, salt concentrations, pH values and metal cofactors. Additionally, the enzyme stability was analyzed under various conditions. We demonstrate that the reaction buffer with pH 6-6.5, low salt concentrations and 3 mM Mg2+ or 0.3-3 mM Mn2+ cofactor ions supports the highest DNA polymerase activity of human PrimPol in vitro. The DNA polymerase activity of PrimPol was found to be stable after multiple freeze-thaw cycles and prolonged protein incubation on ice. However, rapid heat-inactivation of the enzyme was observed at 37ºC. We also for the first time describe the purification of human PrimPol from a human cell line and compare the benefits of this approach to the expression in Escherichia coli and in Saccharomyces cerevisiae cells. Our results show that active PrimPol can be purified from E. coli and human suspension cell line in high quantities and that the activity of the purified enzyme is similar in both expression systems. Conversely, the yield of full-length protein expressed in S. cerevisiae was considerably lower and this system is therefore not recommended for expression of full-length recombinant human PrimPol.

  11. Modern Biotechnology in China (United States)

    Wang, Qing-Zhao; Zhao, Xue-Ming

    In recent years, with the booming economy, the Chinese government has increased its financial input to biotechnology research, which has led to remarkable achievements by China in modern biotechnology. As one of the key parts of modern biotechnology, industrial biotechnology will be crucial for China's sustainable development in this century. This review presents an overview of Chinese industrial biotechnology in last 10 years. Modern biotechnology had been classified into metabolic engineering and systems biology framework. Metabolic engineering is a field of broad fundamental and practical concept so we integrated the related technology achievements into the real practices of many metabolic engineering cases, such as biobased products production, environmental control and others. Now metabolic engineering is developing towards the systems level. Chinese researchers have also embraced this concept and have contributed invaluable things in genomics, transcriptomics, proteomics and related bioinformatics. A series of advanced laboratories or centers were established which will represent Chinese modern biotechnology development in the near future. At the end of this review, metabolic network research advances have also been mentioned.


    Directory of Open Access Journals (Sweden)

    Lenka Tišáková


    Full Text Available Bacteriophage endolysins are peptidoglycan hydrolases, produced in the lytic system of bacteriophage in order to lyse host peptidoglycan from within and release virions into the environment. Phages infecting Gram-positive bacteria express endolysin genes with the characteristic modular structure, consisting of at least two functional domains: N-terminal enzymatically active domain (EAD and C-terminal cell wall binding domain (CBD. CBDs specifically recognize ligands and bind to the bacterial cell wall, whereas EAD catalyze lysis of the peptidoglycan bonds. The reveal of endolysin modular structure leads to new opportunities for domain swapping, construction of chimeras and production of specifically engineered recombinant endolysins and their functional domains with the diverse biotechnological applications from without, such as in detection, elimination and biocontrol of pathogens, or as anti-bacterials in experimental therapy.

  13. Human recombinant anti-thyroperoxidase autoantibodies: in vitro cytotoxic activity on papillary thyroid cancer expressing TPO. (United States)

    Rebuffat, S A; Morin, M; Nguyen, B; Castex, F; Robert, B; Péraldi-Roux, S


    Thyroid cancers are difficult to treat due to their limited responsiveness to chemo- and radiotherapy. There is thus a great interest in and a need for alternative therapeutic approaches. We studied the cytotoxic activity of anti-thyroperoxidase autoantibodies (anti-TPO aAbs, expressed in baculovirus/insect cell (B4) and CHO cells (B4') or purified from patients' sera) against a papillary thyroid cancer (NPA) cell line. Anti-TPO aAbs from patients' sera led to a partial destruction of NPA cell line by complement-dependent cytotoxicity (CDC) and antibody-dependent cell-mediated cytotoxicity (ADCC) and exhibited an anti-proliferative activity. Comparison of the cytotoxic activity of anti-TPO aAbs shows that B4' induced an anti-proliferative effect and a better ADCC than B4, but a lower one than anti-TPO aAbs from patients' sera. Antibody-dependent cell-mediated cytotoxicity was increased when human peripheral blood mononuclear cells were used as effector cells, suggesting that FcgammaRs, CD64, CD32 and CD16 are involved. Indeed, anti-TPO aAbs from patients' sera, but not B4 and B4', exhibited CDC activity. These data indicate that anti-TPO aAbs display moderate ADCC and anti-proliferative activities on NPA cells; IgG glycosylation appears to be important for cytotoxic activity and ADCC efficiency depends on FcgammaR-bearing cells. Finally, recombinant human anti-TPO aAbs cannot yet be considered as an optimal tool for the development of a novel therapeutic approach for thyroid cancer.

  14. Activation of human T cells by a tumor vaccine infected with recombinant Newcastle disease virus producing IL-2

    NARCIS (Netherlands)

    Janke, M.; Peeters, B.; Zhao, H.; Leeuw, O.; Moormann, R.J.M.; Arnold, A.; Ziouta, Y.; Fournier, P.; Schirrmacher, V.


    A new recombinant (rec) Newcastle disease virus (NDV) with incorporated human interleukin 2 (IL-2) as foreign therapeutic gene [rec(IL-2)] will be described. The foreign gene in rec(IL-2) did not affect the main features of NDV replication nor its tumor selectivity. Biologically active IL-2 was

  15. A future perspective on the role of industrial biotechnology for chemicals production

    DEFF Research Database (Denmark)

    Woodley, John; Breuer, Michael; Mink, Daniel


    The development of recombinant DNA technology, the need for renewable raw materials and a green, sustainable profile for future chemical processes have been major drivers in the implementation of industrial biotechnology. The use of industrial biotechnology for the production of chemicals is well...

  16. Influence of natural and recombinant interferons on development of antiviral condition and activity of natural killers

    International Nuclear Information System (INIS)

    Kuznetsov, V.P.; Avdeev, G.I.; Vyadro, M.M.; Leikin, Yu.D.; Frolova, I.S.


    For the purpose of a preliminary estimate of the therapeutic potential of domestic recombinant alpha 2 -component of human leukocytic interferon (rl) in vitro tests, the authors studied its ability to induce development of antiviral condition in diploid culture of human embryo fibroblasts and to activate the cytolytic effect of natural killers in relation to tumor cells, of the K-562 leukemia line and cells of lung adenocarcinoma. The authors used a medicinal form of rL which was derived by expression of a reconstructed gene in Escherichia coli cells. Part of the tests were conducted with an analogous preparation synthesized using another producer, Pseudomonas sp). The biological effect of both preparations was the same. For comparison, a natural preparation was used in all tests: human leukocytic interferon for injection, II(le). The authors studied activity of natural killers in a fraction of mononuclears isolated from blood of essentially healthy donors and from cancer patients. Cells were incubated for 2 h with various concentrations of interferons, then combined in a ratio of 25-50:1 with target cells labeled with 51 Cr. Cytotoxic reaction was conducted for 4 (4-CTR) or 18 h (18-CTR) at 37 0 C. Natural killers could thus be divided into two subpopulations: killer (4-CTR) and cytotoxic (18-CTR) cells. In preliminary tests, both preparations possessed the ability to active natural killers. The effective concentration for rL was within the limits of 1000-2000 IU/ml, and 50-200 Iu/ml for Le. The data on activation of natural killers in 16 oncological patients (primarily with lung cancer), the authors established that both rL and Le induced activation of natural killers in the overwhelming majority of cases in relation to K-562 target cells and adenocarcinomas of the lung

  17. Recombinant motor domain constructs of Chara corallina myosin display fast motility and high ATPase activity. (United States)

    Ito, Kohji; Kashiyama, Taku; Shimada, Kiyo; Yamaguchi, Akira; Awata, Jun ya; Hachikubo, You; Manstein, Dietmar J; Yamamoto, Keiichi


    The mechanism and structural features that are responsible for the fast motility of Chara corallina myosin (CCM) have not been elucidated, so far. The low yields of native CCM that can be purified to homogeneity were the major reason for this. Here, we describe the expression of recombinant CCM motor domains, which support the fast movement of actin filaments in an in vitro motility assay. A CCM motor domain without light chain binding site moved actin filaments at a velocity of 8.8 microm/s at 30 degrees C and a CCM motor domain with an artificial lever arm consisting of two alpha-actinin repeats moved actin filaments at 16.2 microm/s. Both constructs displayed high actin-activated ATPase activities ( approximately 500 Pi/s/head), which is indicative of a very fast hydrolysis step. Our results provide an excellent system to dissect the specific structural and functional features that distinguish the myosin responsible for fast cytoplasmic streaming.

  18. Expression, Purification and Bioactivities Analysis of Recombinant Active Peptide from Shark Liver

    Directory of Open Access Journals (Sweden)

    Boping Ye


    Full Text Available The Active Peptide from Shark Liver (APSL was expressed in E. coli BL21 cells. The cDNA encoding APSL protein was obtained from shark regenerated hepatic tissue by RT-PCR, then it was cloned in the pET-28a expression vector. The expressed fusion protein was purified by Ni-IDA affinity chromatography. SDS-PAGE and HPLC analysis showed the purity of the purified fusion protein was more than 98%. The recombinant APSL (rAPSL was tested for its biological activity both in vitro, by its ability to improve the proliferation of SMMC7721 cells, and in vivo, by its significant protective effects against acute hepatic injury induced by CCl4 and AAP (acetaminophen in mice. In addition, the rAPSL could decrease the blood glucose concentration of mice with diabetes mellitus induced by alloxan. Paraffin sections of mouse pancreas tissues showed that rAPSL (3 mg/kg could effectively protect mouse islets from lesions induced by alloxan, which indicated its potential application in theoretical research and industry.

  19. Cre Activated and Inactivated Recombinant Adeno-Associated Viral Vectors for Neuronal Anatomical Tracing or Activity Manipulation. (United States)

    Saunders, Arpiar; Sabatini, Bernardo L


    Recombinant adeno-associated viruses (rAAVs) transcriptionally activated by Cre recombinase (Cre-On) are powerful tools for determining the anatomy and function of genetically defined neuronal types in transgenic Cre driver mice. Here we describe how rAAVs transcriptionally inactivated by Cre (Cre-Off) can be used in conjunction with Cre-On rAAVs or genomic Cre-reporter alleles to study brain circuits. Intracranial injection of Cre-On/Cre-Off rAAVs into spatially intermingled Cre(+) and Cre(-) neurons allows these populations to be differentially labeled or manipulated within individual animals. This comparison helps define the unique properties of Cre(+) neurons, highlighting the specialized role they play in their constituent brain circuits. This protocol touches on the conceptual and experimental background of Cre-Off rAAV systems, including caveats and methods of validation. Copyright © 2015 John Wiley & Sons, Inc.

  20. Traditional Chinese Biotechnology (United States)

    Xu, Yan; Wang, Dong; Fan, Wen Lai; Mu, Xiao Qing; Chen, Jian

    The earliest industrial biotechnology originated in ancient China and developed into a vibrant industry in traditional Chinese liquor, rice wine, soy sauce, and vinegar. It is now a significant component of the Chinese economy valued annually at about 150 billion RMB. Although the production methods had existed and remained basically unchanged for centuries, modern developments in biotechnology and related fields in the last decades have greatly impacted on these industries and led to numerous technological innovations. In this chapter, the main biochemical processes and related technological innovations in traditional Chinese biotechnology are illustrated with recent advances in functional microbiology, microbial ecology, solid-state fermentation, enzymology, chemistry of impact flavor compounds, and improvements made to relevant traditional industrial facilities. Recent biotechnological advances in making Chinese liquor, rice wine, soy sauce, and vinegar are reviewed.

  1. Molecular cloning, recombinant gene expression, and antifungal activity of cystatin from taro (Colocasia esculenta cv. Kaosiung no. 1). (United States)

    Yang, A H; Yeh, K W


    A cDNA clone, designated CeCPI, encoding a novel phytocystatin was isolated from taro corms (Colocasia esculenta) using both degenerated primers/RT-PCR amplification and 5'-/3'-RACE extension. The full-length cDNA gene is 1,008 bp in size, encodes 206 amino acid residues, with a deduced molecular weight of 29 kDa. It contains a conserved reactive site motif Gln-Val-Val-Ser-Gly of cysteine protease inhibitors, and another consensus ARFAV sequence for phytocystatin. Sequence analysis revealed that CeCPI is phylogenetically closely related to Eudicots rather than to Monocots, despite taro belonging to Monocot. Recombinant GST-CeCPI fusion protein was overexpressed in Escherichia coli and its inhibitory activity against papain was identified on gelatin/SDS-PAGE. These results confirmed that recombinant CeCPI protein exhibited strong cysteine protease inhibitory activity. Investigation of its antifungal activity clearly revealed a toxic effect on the mycelium growth of phytopathogenic fungi, such as Sclerotium rolfsii Sacc. etc., at a concentration of 80 microg recombinant CeCPI/ ml. Moreover, mycelium growth was completely inhibited and the sclerotia lysed at a concentration of 150-200 microg/ml. Further studies have demonstrated that recombinant CeCPI is capable of acting against the endogenous cysteine proteinase in the fungal mycelium.

  2. High-level expression of a recombinant active microbial transglutaminase in Escherichia coli. (United States)

    Salis, Barbara; Spinetti, Gaia; Scaramuzza, Silvia; Bossi, Michele; Saccani Jotti, Gloria; Tonon, Giancarlo; Crobu, Davide; Schrepfer, Rodolfo


    Bacterial transglutaminases are increasingly required as industrial reagents for in vitro modification of proteins in different fields such as in food processing as well as for enzymatic site-specific covalent conjugation of therapeutic proteins to polyethylene glycol to get derivatives with improved clinical performances. In this work we studied the production in Escherichia coli of a recombinant transglutaminase from Streptomyces mobaraensis (microbial transglutaminase or MTGase) as enzymatically active chimeric forms using different expression systems under the control of both lac promoter or thermoinducible phage lambda promoter. Thermoinducible and constitutive expression vectors were constructed expressing Met-MTGase with chimeric LacZ1-8PNP1-20 or LacZ1-8 fusion protein under different promoters. After transformed in competent Escherichia coli K12 strains were fermented in batch and fed-bach mode in different mediums in order to select the best conditions of expression. The two most performing fusion protein systems namely short thermoinducible LacZ1-8Met-MTGase from NP668/1 and long constitutive LacZ1-8PNP1-20Met-MTGase from NP650/1 has been chosen to compare both efficiency of expression and biochemical qualities of the product. Proteins were extracted, purified to homogeneity and verified as a single peak obtained in RP-HPLC. The LacZ1-8PNP1-20Met-MTGase fusion protein purified from NP650/1 exhibited an activity of 15 U/mg compared to 24 U/mg for the shorter fusion protein purified from NP668/1 cell strain. Combining the experimental data on expression levels and specific activities of purified MTGase fusion proteins, the chimeric LacZ1-8Met-MTGase, which displays an enzymatic activity comparable to the wild-type enzyme, was selected as a candidate for producing microbial transglutaminase for industrial applications.

  3. Fungal biodiversity to biotechnology. (United States)

    Chambergo, Felipe S; Valencia, Estela Y


    Fungal habitats include soil, water, and extreme environments. With around 100,000 fungus species already described, it is estimated that 5.1 million fungus species exist on our planet, making fungi one of the largest and most diverse kingdoms of eukaryotes. Fungi show remarkable metabolic features due to a sophisticated genomic network and are important for the production of biotechnological compounds that greatly impact our society in many ways. In this review, we present the current state of knowledge on fungal biodiversity, with special emphasis on filamentous fungi and the most recent discoveries in the field of identification and production of biotechnological compounds. More than 250 fungus species have been studied to produce these biotechnological compounds. This review focuses on three of the branches generally accepted in biotechnological applications, which have been identified by a color code: red, green, and white for pharmaceutical, agricultural, and industrial biotechnology, respectively. We also discuss future prospects for the use of filamentous fungi in biotechnology application.

  4. Novel recombinant adeno-associated viruses for Cre activated and inactivated transgene expression in neurons

    Directory of Open Access Journals (Sweden)

    Arpiar eSaunders


    Full Text Available Understanding the organization of the nervous system requires methods for dissecting the contributions of each component cell type to circuit function. One widely used approach combines genetic targeting of Cre recombinase to specific cell populations with infection of recombinant adeno-associated viruses (rAAVs whose transgene expression is activated by Cre (Cre-On. Distinguishing how the Cre-expressing neurons differ functionally from neighboring Cre-negative neurons requires rAAVs that are inactivated by Cre (Cre-Off and can be used in tandem with Cre-On viruses. Here we introduce two rAAV vectors that are inactivated by Cre and carry different fluorophore and optogenetic constructs. We demonstrate single and dual rAAV systems to achieve Cre-On and Cre-Off expression in spatially-intermingled cell populations of the striatum. Using these systems, we uncovered cryptic genomic interactions that occur between multiple Cre-sensitive rAAVs or between Cre-sensitive rAAVs and somatic Cre-conditional alleles and devised methods to avoid these interactions. Our data highlight both important experimental caveats associated with Cre-dependent rAAV use as well as opportunities for the development of improved rAAVs for gene delivery.

  5. Factors predicting intracerebral hemorrhage of patients treated with intravenous recombinant tissue plasminogen activator

    International Nuclear Information System (INIS)

    Kawamura, Yoichiro; Torihashi, Kouichi; Sadamasa, Nobutake; Narumi, Osamu; Chin, Masaki; Yamagata, Sen; Yoshida, Kazumichi


    The use of recombinant tissue plasminogen activator (rt-PA) was approved in Japan in October 2005, and has had a marked effect on the treatment of patients presenting with acute ischemic stroke. Since the administration of rt-PA might cause intracerebral hemorrhage (ICH) and a poor prognosis, it is necessary to identify predictors of ICH after treatment with rt-PA. In this article, we examined 58 consecutive patients with acute ischemic stroke treated with intravenous rt-PA within 3 hours of symptom onset for 45 months, March 2006 to November 2009. In principle, we evaluated patients before and one day after rt-PA with MRI. We made a retrospective comparison of 21 patients with hemorrhagic change on CT and MRI T2* within 36 hours and 37 patients without hemorrhagic change. The rate of ICH with or without symptoms was increased with a higher National Institutes of Health Stroke Scale (NIHSS) and infarction range, defined by diffusion weighted imaging (DWI) Alberta Stroke Programme Early CT Score (ASPECTS). Major artery occlusion and reperfusion, including partial recanalization in MR angiography (MRA), were taken as factors in the hemorrhage group. In conclusion, DWI ASPECTS and NIHSS were useful predictors of ICH after rt-PA administration. (author)

  6. Novel recombinant adeno-associated viruses for Cre activated and inactivated transgene expression in neurons (United States)

    Saunders, Arpiar; Johnson, Caroline A.; Sabatini, Bernardo L.


    Understanding the organization of the nervous system requires methods for dissecting the contributions of each component cell type to circuit function. One widely used approach combines genetic targeting of Cre recombinase to specific cell populations with infection of recombinant adeno-associated viruses (rAAVs) whose transgene expression is activated by Cre (“Cre-On”). Distinguishing how the Cre-expressing neurons differ functionally from neighboring Cre-negative neurons requires rAAVs that are inactivated by Cre (“Cre-Off”) and can be used in tandem with Cre-On viruses. Here we introduce two rAAV vectors that are inactivated by Cre and carry different fluorophore and optogenetic constructs. We demonstrate single and dual rAAV systems to achieve Cre-On and Cre-Off expression in spatially-intermingled cell populations of the striatum. Using these systems, we uncovered cryptic genomic interactions that occur between multiple Cre-sensitive rAAVs or between Cre-sensitive rAAVs and somatic Cre-conditional alleles and devised methods to avoid these interactions. Our data highlight both important experimental caveats associated with Cre-dependent rAAV use as well as opportunities for the development of improved rAAVs for gene delivery. PMID:22866029

  7. Activities of Fluoroquinolones against Streptococcus pneumoniae Type II Topoisomerases Purified as Recombinant Proteins (United States)

    Morrissey, Ian; George, John


    Streptococcus pneumoniae topoisomerase IV and DNA gyrase have been purified from a fluoroquinolone-susceptible Streptococcus pneumoniae strain, from first-step mutants showing low-level resistance to ciprofloxacin, sparfloxacin, levofloxacin, and ofloxacin, and from two clinical isolates showing intermediate- and high-level fluoroquinolone resistance by a gene cloning method that produces recombinant proteins from Escherichia coli. The concentrations of ciprofloxacin, sparfloxacin, levofloxacin, or ofloxacin required to inhibit wild-type topoisomerase IV were 8 to 16 times lower than those required to inhibit wild-type DNA gyrase. Furthermore, low-level resistance to these fluoroquinolones was entirely due to the reduced inhibitory activity of fluoroquinolones against topoisomerase IV. For all the laboratory strains, the 50% inhibitory concentration for topoisomerase IV directly correlated with the MIC. We therefore propose that with S. pneumoniae, ciprofloxacin, sparfloxacin, levofloxacin, and ofloxacin target topoisomerase IV in preference to DNA gyrase. Sitafloxacin, on the other hand, was found to be equipotent against either enzyme. This characteristic is unique for a fluoroquinolone. A reduction in the sensitivities of both topoisomerase IV and DNA gyrase are required, however, to achieve intermediate- or high-level fluoroquinolone resistance in S. pneumoniae. PMID:10543732

  8. [Biotechnological aspects in "loco" larvae]. (United States)

    Inestrosa, N C; Labarca, R; Perelman, A; Campos, E O; Araneda, R; González, M; Brandan, E; Sánchez, J P; González-Plaza, R


    The biology of planktotrophic larvae of Concholepas concholepas is the main bottleneck towards developing biotechnologies to rear this muricid. Data concerning planktonic larvae development, diets and environmental signals triggering larval settlement and recruitment is scarce. We have begun the study of the molecular and cell biology of embryos, larvae and recruits having as a final goal, the development of appropriate biotechnologies to rear this gastropod. First, an inverse ratio between BuChE and AChE enzyme activities was established. This ratio may be a precise developmental marker for this species. Second, for the first time a phosphoinositide related regulatory pathway is reported in a muricid, opening a new approach to the biotechnological management of larvae. Third, the relation between sulfate in sea water and larval motility was studied. Concentrations below 125 microM sulfate decreases larval motility. The sulfate is incorporated in proteoglycans which participate in different developmental phenomena. Lastly, a genomic Concholepas concholepas DNA sequence, similar to that of a human growth hormone probe was detected. This is very interesting since growth factors are key molecules during development, growth and are involved in food conversion rates in fish and also, in a variety of marine invertebrates.

  9. Applications of radiations, radioisotopes and nuclear techniques in biotechnology

    International Nuclear Information System (INIS)

    Bhatia, C.R.


    Applications of radiations, radioisotopes and other nuclear techniques has contributed a great deal in our understanding of microbial plant and animal biochemistry and molecular biology. Electron microscopy has provided visual evidence for molecular events. Developments in cell tissue culture of both plants and animals and immunology have contributed to advances in what we now refer as biotechnology. This paper focuses on the applications in the high-tech end of biotechnology, limited to the use of recombinant-DNA techniques. Molecular identification of the genes, their cloning and horizontal transfer across the species of microbes, plants and animals and expression of the transferred genes is the major strength of modern biotechnology. The techniques described in this paper have played a significant role in the development of biotechnology. 6 refs

  10. Commercialization of animal biotechnology. (United States)

    Faber, D C; Molina, J A; Ohlrichs, C L; Vander Zwaag, D F; Ferré, L B


    Commercialization of animal biotechnology is a wide-ranging topic for discussion. In this paper, we will attempt to review embryo transfer (ET) and related technologies that relate to food-producing mammals. A brief review of the history of advances in biotechnology will provide a glimpse to present and future applications. Commercialization of animal biotechnology is presently taking two pathways. The first application involves the use of animals for biomedical purposes. Very few companies have developed all of the core competencies and intellectual properties to complete the bridge from lab bench to product. The second pathway of application is for the production of animals used for food. Artificial insemination (AI), embryo transfer, in vitro fertilization (IVF), cloning, transgenics, and genomics all are components of the toolbox for present and future applications. Individually, these are powerful tools capable of providing significant improvements in productivity. Combinations of these technologies coupled with information systems and data analysis, will provide even more significant change in the next decade. Any strategies for the commercial application of animal biotechnology must include a careful review of regulatory and social concerns. Careful review of industry infrastructure is also important. Our colleagues in plant biotechnology have helped highlight some of these pitfalls and provide us with a retrospective review. In summary, today we have core competencies that provide a wealth of opportunities for the members of this society, commercial companies, producers, and the general population. Successful commercialization will benefit all of the above stakeholders. Copyright 2002 Elsevier Science Inc.

  11. Expression and characterization of recombinant single-chain salmon class I MHC fused with beta2-microglobulin with biological activity

    DEFF Research Database (Denmark)

    Zhao, Heng; Stet, René J M; Skjødt, Karsten


    Heterodimeric class I major histocompatibility complex (MHC) molecules consist of a putative 45-kDa heavy chain and a 12-kDa beta2-microglobulin (beta2m) light chain. The knowledge about MHC genes in Atlantic salmon accumulated during the last decade has allowed us to generate soluble and stable ...... MHC class I molecules with biological activity. We report here the use of a bacterial expression system to produce the recombinant single-chain MHC molecules based on a specific allele Sasa-UBA*0301. This particular allele was selected because previous work has shown its association...... antibodies were successfully produced against both the MHC class I heavy chain and beta(2)m, and showed binding to the recombinant molecule. The recombinant complex Sasabeta2mUBA*0301 was expressed and isolated; the production was scaled up by adjusting to its optimal conditions. Subsequently......, the recombinant proteins were purified by affinity chromatography using mAb against beta2m and alpha3. Eluates were analyzed by Western blot and refolded by the removal of denaturant. The correct folding was confirmed by measuring its binding capacity against mAb produced to recognize the native form of MHC...

  12. Potency of full-length MGF to induce maximal activation of the IGF-I R Is similar to recombinant human IGF-I at high equimolar concentrations

    NARCIS (Netherlands)

    J.A.M.J.L. Janssen (Joseph); L.J. Hofland (Leo); C.J. Strasburger; E.S.R.D. Van Dungen (Elisabeth S.R. Den); M. Thevis (Mario)


    textabstractAims To compare full-length mechano growth factor (full-length MGF) with human recombinant insulin-like growth factor-I (IGF-I) and human recombinant insulin (HI) in their ability to activate the human IGF-I receptor (IGF-IR), the human insulin receptor (IR-A) and the human insulin

  13. Intravenous recombinant tissue plasminogen activator for acute ischemic stroke: a feasibility and safety study

    Directory of Open Access Journals (Sweden)

    Sadeghi-Hokmabadi E


    Full Text Available Elyar Sadeghi-Hokmabadi, Mehdi Farhoudi, Aliakbar Taheraghdam, Mazyar Hashemilar, Daryous Savadi-Osguei, Reza Rikhtegar, Kaveh Mehrvar, Ehsan Sharifipour, Parisa Youhanaee, Reshad Mirnour Neurosciences Research Center, Neurology Department, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan, Iran Background: In developing countries, intravenous thrombolysis (IVT is available at a limited number of centers. This study aimed to assess the feasibility and safety of IVT at Tabriz Imam Reza Hospital. Methods: In a prospective study, over a 55-month period, any patient at the hospital for whom stroke code had been activated was enrolled in the study. Data on demographic characteristics, stroke risk factors, admission blood pressure, blood tests, findings of brain computed tomography (CT scans, time of symtom onset, time of arrival to the emergency department, time of stroke code activation, time of CT scan examination, and the time of recombinant tissue plasminogen activator administration were recorded. National Institutes of Health Stroke Scale assessments were performed before IVT bolus, at 36 hours, at either 7 days or discharge (which ever one was earlier, and at 3-month follow-up. Brain CT scans were done for all patients before and 24 hours after the treatment. Results: Stroke code was activated for 407 patients and IVT was done in 168 patients. The rate of functional independence (modified Rankin Scale [mRS] 0–1 at 3 months was 39.2% (62/158. The mortality rate at day 7 was 6% (10/168. Hemorrhagic transformation was noted in 16 patients (9.5%. Symptomatic intracranial hemorrhage occurred in 5 (3%, all of which were fatal. One case of severe urinary bleeding and one other fatal case of severe angioedema were observed. Conclusion: During the first 4–5 years of administration of IVT in the hospital, it was found to be feasible and safe, but to increase the efficacy, poststroke care should be more organized and a stroke center

  14. Impact on postoperative bleeding and cost of recombinant activated factor VII in patients undergoing heart transplantation

    Directory of Open Access Journals (Sweden)

    Allison L Hollis


    Full Text Available Background: Cardiac transplantation can be complicated by refractory hemorrhage particularly in cases where explantation of a ventricular assist device is necessary. Recombinant activated factor VII (rFVIIa has been used to treat refractory bleeding in cardiac surgery patients, but little information is available on its efficacy or cost in heart transplant patients. Methods: Patients who had orthotopic heart transplantation between January 2009 and December 2014 at a single center were reviewed. Postoperative bleeding and the total costs of hemostatic therapies were compared between patients who received rFVIIa and those who did not. Propensity scores were created and used to control for the likelihood of receiving rFVIIa in order to reduce bias in our risk estimates. Results: Seventy-six patients underwent heart transplantation during the study period. Twenty-one patients (27.6% received rFVIIa for refractory intraoperative bleeding. There was no difference in postoperative red blood cell transfusion, chest tube output, or surgical re-exploration between patients who received rFVIIa and those who did not, even after adjusting with the propensity score (P = 0.94, P = 0.60, and P = 0.10, respectively. The total cost for hemostatic therapies was significantly higher in the rFVIIa group (median $10,819 vs. $1,985; P < 0.0001. Subgroup analysis of patients who underwent redo-sternotomy with left ventricular assist device explantation did not show any benefit for rFVIIa either. Conclusions: In this relatively small cohort, rFVIIa use was not associated with decreased postoperative bleeding in patients undergoing heart transplantation; however, it led to significantly higher cost.

  15. Preparation of thermosensitive magnetic liposome encapsulated recombinant tissue plasminogen activator for targeted thrombolysis

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hao-Lung [Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan, ROC (China); Chen, Jyh-Ping, E-mail: [Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan, ROC (China); Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Kwei-San, Taoyuan 33305, Taiwan, ROC (China); Graduate Institute of Health Industry and Technology, Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kwei-San, Taoyuan 33302, Taiwan, ROC (China); Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan, ROC (China)


    Recombinant tissue plasminogen activator (rtPA) was encapsulated in thermosensitive magnetic liposome (TML) prepared from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, distearolyphosphatidyl ethanolamine-N-poly(ethylene glycol) 2000, cholesterol and Fe{sub 3}O{sub 4} magnetic nanoparticles by solvent evaporation/sonication and freeze-thaw cycles method. Response surface methodology was proved to be a powerful tool to predict the drug encapsulation efficiency and temperature-sensitive drug release. Validation experiments verified the accuracy of the model that provides a simple and effective method for fabricating TML with controllable encapsulation efficiency and predictable temperature-sensitive drug release behavior. The prepared samples were characterized for physico-chemical properties by dynamic light scattering, transmission electron microscopy, X-ray diffraction and differential scanning calorimetry. Temperature-sensitive release of rtPA could be confirmed from in vitro thrombolysis experiments. A thrombolytic drug delivery system using TML could be proposed for magnetic targeted delivery of rtPA to the site of thrombus followed by temperature-triggered controlled drug release in an alternating magnetic field. - Highlights: • rtPA and Fe{sub 3}O{sub 4} MNP were encapsulated in thermosensitive magnetic liposome (TML). • RSM could predict the drug encapsulation efficiency and temperature-sensitive drug release from TML. • Temperature-sensitive release of rtPA was confirmed from in vitro thrombolysis experiments. • TML-rtPA will be useful as a magnetic targeted nanodrug to improve clinical thrombolytic therapy.

  16. NURR1 involvement in recombinant tissue-type plasminogen activator treatment complications after ischemic stroke. (United States)

    Merino-Zamorano, Cristina; Hernández-Guillamon, Mar; Jullienne, Amandine; Le Béhot, Audrey; Bardou, Isabelle; Parés, Mireia; Fernández-Cadenas, Israel; Giralt, Dolors; Carrera, Caty; Ribó, Marc; Vivien, Denis; Ali, Carine; Rosell, Anna; Montaner, Joan


    Despite the effectiveness of recombinant tissue-type plasminogen activator (r-tPA) during the acute phase of ischemic stroke, the therapy remains limited by a narrow time window and the occurrence of occasional vascular side effects, particularly symptomatic hemorrhages. Our aim was to investigate the mechanisms underlying the endothelial damage resulting from r-tPA treatment in ischemic-like conditions. Microarray analyses were performed on cerebral endothelial cells submitted to r-tPA treatment during oxygen and glucose deprivation to identify novel biomarker candidates. Validation was then performed in vivo in a mouse model of thromboembolic stroke and culminated in an analysis in a clinical cohort of patients with ischemic stroke treated with thrombolysis. The transcription factor NURR1 (NR4A2) was identified as a downstream target induced by r-tPA during oxygen and glucose deprivation. Silencing NURR1 expression reversed the endothelial-toxicity induced by the combined stimuli, a protective effect attributable to reduced levels of proinflammatory mediators, such as nuclear factor-kappa-beta 2 (NF-κ-B2), interleukin 1 alpha (IL1α), intercellular adhesion molecule 1 (ICAM1), SMAD family member 3 (SMAD3), colony stimulating factor 2 (granulocyte-macrophage; CSF2). The detrimental effect of delayed thrombolysis, in conditions in which NURR1 gene expression was enhanced, was confirmed in the preclinical stroke model. Finally, we determined that patients with stroke who had a symptomatic hemorrhagic transformation after r-tPA treatment exhibited higher baseline serum NURR1 levels than did patients with an asymptomatic or absence of cerebral bleedings. Our results suggest that NURR1 upregulation by r-tPA during ischemic stroke is associated with endothelial dysfunction and inflammation and the enhancement of hemorrhagic complications associated to thrombolysis. © 2014 American Heart Association, Inc.

  17. Biotechnological production of vanillin. (United States)

    Priefert, H; Rabenhorst, J; Steinbüchel, A


    Vanillin is one of the most important aromatic flavor compounds used in foods, beverages, perfumes, and pharmaceuticals and is produced on a scale of more than 10 thousand tons per year by the industry through chemical synthesis. Alternative biotechnology-based approaches for the production are based on bioconversion of lignin, phenolic stilbenes, isoeugenol, eugenol, ferulic acid, or aromatic amino acids, and on de novo biosynthesis, applying fungi, bacteria, plant cells, or genetically engineered microorganisms. Here, the different biosynthesis routes involved in biotechnological vanillin production are discussed.

  18. Agave biotechnology: an overview. (United States)

    Nava-Cruz, Naivy Y; Medina-Morales, Miguel A; Martinez, José L; Rodriguez, R; Aguilar, Cristóbal N


    Agaves are plants of importance both in Mexican culture and economy and in other Latin-American countries. Mexico is reported to be the place of Agave origin, where today, scientists are looking for different industrial applications without compromising its sustainability and preserving the environment. To make it possible, a deep knowledge of all aspects involved in production process, agro-ecological management and plant biochemistry and physiology is required. Agave biotechnology research has been focusing on bio-fuels, beverages, foods, fibers, saponins among others. In this review, we present the advances and challenges of Agave biotechnology.

  19. Colloids in Biotechnology

    CERN Document Server

    Fanun, Monzer


    Colloids have come a long way from when Thomas Graham coined the term colloid to describe 'pseudo solutions'. This book enables scientists to close the gap between extensive research and translation into commercial options in biomedicine and biotechnology. It covers biosurfactants and surface properties, phase behavior, and orientational change of surfactant mixtures with peptides at the interface. It also covers adsorption of polymers and biopolymers on the surface and interface, discusses colloidal nanoparticles and their use in biotechnology, and delves into bioadhesion and microencapsulati

  20. Cold adaptation, ca2+ dependency and autolytic stability are related features in a highly active cold-adapted trypsin resistant to autoproteolysis engineered for biotechnological applications.

    Directory of Open Access Journals (Sweden)

    Alvaro Olivera-Nappa

    Full Text Available Pig trypsin is routinely used as a biotechnological tool, due to its high specificity and ability to be stored as an inactive stable zymogen. However, it is not an optimum enzyme for conditions found in wound debriding for medical uses and trypsinization processes for protein analysis and animal cell culturing, where low Ca(2+ dependency, high activity in mild conditions and easy inactivation are crucial. We isolated and thermodynamically characterized a highly active cold-adapted trypsin for medical and laboratory use that is four times more active than pig trypsin at 10(° C and at least 50% more active than pig trypsin up to 50(° C. Contrary to pig trypsin, this enzyme has a broad optimum pH between 7 and 10 and is very insensitive to Ca(2+ concentration. The enzyme is only distantly related to previously described cryophilic trypsins. We built and studied molecular structure models of this trypsin and performed molecular dynamic calculations. Key residues and structures associated with calcium dependency and cryophilicity were identified. Experiments indicated that the protein is unstable and susceptible to autoproteolysis. Correlating experimental results and structural predictions, we designed mutations to improve the resistance to autoproteolysis and conserve activity for longer periods after activation. One single mutation provided around 25 times more proteolytic stability. Due to its cryophilic nature, this trypsin is easily inactivated by mild denaturation conditions, which is ideal for controlled proteolysis processes without requiring inhibitors or dilution. We clearly show that cold adaptation, Ca(2+ dependency and autolytic stability in trypsins are related phenomena that are linked to shared structural features and evolve in a concerted fashion. Hence, both structurally and evolutionarily they cannot be interpreted and studied separately as previously done.

  1. Delayed activation of Xer recombination at dif by FtsK during septum assembly in Escherichia coli. (United States)

    Kennedy, Sean P; Chevalier, Fabien; Barre, François-Xavier


    The co-ordination and synchronization of DNA replication, chromosome partitioning and cell division in bacteria are critical to survival. In Escherichia coli, the septal protein FtsK links cell division and chromosome segregation through its integral membrane N-terminal and cytoplasmic C-terminal domains. FtsK is responsible for promoting decatenation and dimer resolution in the later stages of chromosome segregation by activating recombination at dif by the site-specific Xer recombinases. Here, we formally demonstrate, using novel assay based on real-time quantitative polymerase chain reaction, that dif recombination depends not only on proteins upstream of FtsK in the septum assembly pathway, but also on the activity of downstream proteins. Work in synchronized cell cultures further showed that even though FtsK is recruited early to the septum, dif recombination only occurs shortly before cell division and this activity requires a closing septum. We propose a model whereby septum localization and concentration of FtsK co-ordinate its various roles in chromosome segregation and cell division.

  2. Recombinant human activated protein C inhibits local and systemic activation of coagulation without influencing inflammation during Pseudomonas aeruginosa pneumonia in rats

    NARCIS (Netherlands)

    Choi, Goda; Hofstra, Jorrit-Jan H.; Roelofs, Joris J. T. H.; Florquin, Sandrine; Bresser, Paul; Levi, Marcel; van der Poll, Tom; Schultz, Marcus J.


    OBJECTIVE: Alveolar fibrin deposition is a hallmark of pneumonia. It has been proposed that recombinant human activated protein C exerts lung-protective effects via anticoagulant and anti-inflammatory pathways. We investigated the role of the protein C system in pneumonia caused by Pseudomonas

  3. Recombinant human activated protein C inhibits local and systemic activation of coagulation without influencing inflammation during Pseudomonas aeruginosa pneumonia in rats

    NARCIS (Netherlands)

    Choi, Goda; Hofstra, Jorrit-Jan H; Roelofs, Joris J T H; Florquin, Sandrine; Bresser, Paul; Levi, Marcel; van der Poll, Tom; Schultz, Marcus J

    OBJECTIVE: Alveolar fibrin deposition is a hallmark of pneumonia. It has been proposed that recombinant human activated protein C exerts lung-protective effects via anticoagulant and anti-inflammatory pathways. We investigated the role of the protein C system in pneumonia caused by Pseudomonas

  4. Disclosing Biology Teachers' Beliefs about Biotechnology and Biotechnology Education (United States)

    Fonseca, Maria Joao; Costa, Patricio; Lencastre, Leonor; Tavares, Fernando


    Teachers have been shown to frequently avoid addressing biotechnology topics. Aiming to understand the extent to which teachers' scarce engagement in biotechnology teaching is influenced by their beliefs and/or by extrinsic constraints, such as practical limitations, this study evaluates biology teachers' beliefs about biotechnology and…

  5. Concepts in Biotechnology An Affordable Overview of Biotechnology ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 9. Concepts in Biotechnology An Affordable Overview of Biotechnology Through Self Study ... Author Affiliations. Narayan S Punekar1. Molecular Enzymology Group, Biotechnology Centre, Indian Institute of Technology, Mumbai 400 076, India.

  6. Pharma Success in Product Development—Does Biotechnology Change the Paradigm in Product Development and Attrition. (United States)

    Evens, Ronald P


    The biotechnology segment of the overall biopharma industry has existed for only about 40–45 years, as a driver of new product development. This driving force was initiated with the FDA approval of recombinant human insulin in 1982, originating from the Genentech company. The pharma industry in the early years of 1970s and 1980s engaged with biotechnology companies only to a small extent with their in-licensing of a few recombinant molecules, led by Roche, Eli Lilly, and Johnson and Johnson. However, subsequently and dramatically over the last 25 years, biotechnology has become a primary driver of product and technology innovation and has become a cornerstone in new product development by all biopharma companies. This review demonstrates these evolutionary changes regarding approved products, product pipelines, novelty of the products, FDA approval rates, product sales, financial R&D investments in biotechnology, partnerships, mergers and acquisitions, and patent issues. We now have about 300 biotechnology products approved in USA covering 16 medical disciplines and about 250 indications, with the engagement of 25 pharma companies, along with their biotechnology company innovators and partners. The biotechnology pipeline involves over 1000 molecules in clinical trials, including over 300 molecules associated with the top 10 pharma companies. Product approval rates by the FDA for biotechnology products are over double the rate for drugs. Yes, the R&D paradigm has changed with biotechnology now as one of the major focuses for new product development with novel molecules by the whole biopharma industry.

  7. National Center for Biotechnology Information (United States)

    ... to NCBI Sign Out NCBI National Center for Biotechnology Information Search database All Databases Assembly Biocollections BioProject ... Search Welcome to NCBI The National Center for Biotechnology Information advances science and health by providing access ...

  8. Evaluation of recombinant activated protein C for severe sepsis at a tertiary academic medical center

    Directory of Open Access Journals (Sweden)

    Anger KE


    Full Text Available Kevin E Anger,1 Jeremy R DeGrado,1 Bonnie C Greenwood,1 Steven A Cohen,2 Paul M Szumita1 1Department of Pharmacy, Brigham and Women’s Hospital, Boston, MA, USA; 2Department of Family Medicine and Population Health, Division of Epidemiology, Virginia Commonwealth University, Richmond, VA, USA Purpose: Early clinical trials of recombinant human activated protein C (rhAPC for severe sepsis excluded patients at high risk of bleeding. Recent literature suggests bleeding rates are higher in clinical practice and may be associated with worsened outcomes. Our objective was to evaluate baseline demographics; incidence, and risk factors for major bleeding; and mortality of patients receiving rhAPC for severe sepsis at our institution. Methods: A retrospective study was performed for all patients receiving rhAPC for treatment of severe sepsis at a tertiary academic medical center from January 2002 to June 2009. Demographic information, clinical variables, intensive care unit, and hospital outcomes were recorded. Results: Of the 156 patients that received rhAPC, 54 (34.6% did not meet institutional criteria for safe use at baseline due to bleeding precaution or contraindication. Twenty-three (14.7% patients experienced a major bleeding event. Multivariate analysis demonstrated baseline International Normalized Ratio ≥2.5 (odds ratio [OR] 3.68, 95% confidence interval [CI]: 1.28–10.56; P = 0.03 and platelet count ≤100 × 103/mm3 (OR 2.86, 95% CI: 1.07–7.67; P = 0.01 as significant predictors of a major bleed. Overall hospital mortality was 57.7%. Multivariate analysis demonstrated the presence of ≥3 organ dysfunctions (OR 2.46, 95% CI: 1.19–5.09; P < 0.05 and medical intensive care unit admission (OR 1.99, 95% CI: 1.00–3.98; P = 0.05 were independent variables associated with hospital mortality. Conclusion: Patients receiving rhAPC at our institution had higher APACHE II scores, mortality, and major bleeding events than published

  9. 76 FR 3918 - Office of Biotechnology Activities, Office of Science Policy, Office of the Director; Notice of... (United States)


    ... Engagement; Journal Review Policies; and Outreach and Education activities, including as well as possible Board review/approval of Working Group reports; (2) planning for future NSABB meetings and activities; and (3) other business of the Board. Place: National Institutes of Health, Building 31, Center Drive...

  10. High-level expression of biologically active recombinant bovine follicle stimulating hormone in a baculovirus system

    NARCIS (Netherlands)

    Wiel, van de D.F.M.; Rijn, van P.A.; Meloen, R.H.; Moormann, R.J.M.


    Superovulation treatment of cows can benefit from the application of very pure recombinant bovine FSH (rbFSH), which is produced in nonmammalian cells. rbFSH is completely free of LH, and therefore can possibly reduce the variability in the results of superovulation. Furthermore, it does not contain

  11. Biotechnological advances in Lilium

    NARCIS (Netherlands)

    Bakhshaie, Mehdi; Khosravi, Solmaz; Azadi, Pejman; Bagheri, Hedayat; Tuyl, van Jaap M.


    Modern powerful techniques in plant biotechnology have been developed in lilies (Lilium spp., Liliaceae) to propagate, improve and make new phenotypes. Reliable in vitro culture methods are available to multiply lilies rapidly and shorten breeding programs. Lilium is also an ideal model plant to

  12. TSCA Biotechnology Notifications Status (United States)

    This Notifications Table lists only those submissions received under the Biotechnology Regulation, beginning in 1998. From the Table, you can link to a brief summary of select submission and, in many cases, to a fact sheet on the decision reached by OPPT.

  13. Biotechnology of trees: Chestnut (United States)

    C.D. Nelson; W.A. Powell; S.A. Merkle; J.E. Carlson; F.V. Hebard; N Islam-Faridi; M.E. Staton; L. Georgi


    Biotechnology has been practiced on chestnuts (Castanea spp.) for many decades, including vegetative propagation, controlled crossing followed by testing and selection, genetic and cytogenetic mapping, genetic modifi cation, and gene and genome sequencing. Vegetative propagation methods have ranged from grafting and rooting to somatic embryogenesis, often in...

  14. State responses to biotechnology. (United States)

    Harris, Rebecca C


    This article reviews biotechnology legislation in the 50 states for 11 policy areas spanning 1990-2010, an era of immense growth in biotechnology, genetic knowledge, and significant policy development. Policies regarding health insurance, life insurance, long-term care insurance, DNA data bank collection, biotech research protection, biotech promotion and support, employment discrimination, genetic counselor licensing, human cloning, and genetic privacy each represent major policy responses arising from biotechnology and coinciding with key areas of state regulation (insurance, criminal justice, economic development, labor law, health and safety, privacy, and property rights). This analysis seeks to answer three questions regarding biotechnology legislation at the state level: who is acting (policy adoption), when is policy adopted (policy timing), and what is policy doing (policy content). Theoretical concerns examine state ideology (conservative or liberal), policy type (economic or moral), and the role of external events (federal law, news events, etc.) on state policy adoption. Findings suggest ideological patterns in adoption, timing, and content of biotech policy. Findings also suggest economic policies tend to be more uniform in content than moral policies, and findings also document a clear link between federal policy development, external events, and state policy response.

  15. Biotechnology in weed control (United States)

    Biotechnology can be used to enhance the management of weeds in several ways. Crops have been made resistant to herbicides by inserting transgenes that impart herbicide resistance into the plant genome. Glyphosate and glufosinate-resistant crops are commercialized in North America and crops made res...

  16. African Journal of Biotechnology

    African Journals Online (AJOL)

    The African Journal of Biotechnology (AJB), a new broad-based journal, was founded on two key tenets: To publish the most exciting research in all areas of applied biochemistry, industrial microbiology, molecular biology, genomics and proteomics, food and agricultural technologies, and metabolic engineering. Secondly ...

  17. Biotechnological Innovations in Aquaculture

    Directory of Open Access Journals (Sweden)

    Mangesh M. Bhosale


    Full Text Available Aquaculture is gaining commendable importance to meet the required protein source for ever increasing human population. The aquaculture industry is currently facing problems on developing economically viable production systems by reducing the impact on environment. Sustainable and enhanced fish production from aquaculture may be better achieved through application of recent biotechnological innovations. Utilisation of transgenic technology has led to production of fishes with faster growth rate with disease resistance. The full advantage of this technology could not be achieved due to concern of acceptance for Genetically Modified Organisms (GMOs. The biotechnological intervention in developing plant based feed ingredient in place of fish meal which contain high phosphorus is of prime area of attention for fish feed industry. The replacement of fish meal will also reduce fish feed cost to a greater extent. Year round fish seed production of carps through various biotechnological interventions is also need of the hour. This paper discusses technical, environmental and managerial considerations regarding the use of these biotechnological tools in aquaculture along with the advantages of research application and its commercialization.

  18. Biotechnologies and Human Dignity (United States)

    Sweet, William; Masciulli, Joseph


    In this article, the authors review some contemporary cases where biotechnologies have been employed, where they have had global implications, and where there has been considerable debate. The authors argue that the concept of dignity, which lies at the center of such documents as the 2005 Universal Declaration on Bioethics and Human Rights, the…

  19. Comparison of real time RT-PCR and flow cytometry methods for evaluation of biological activity of recombinant human erythropoietin

    Directory of Open Access Journals (Sweden)

    Sepehrizadeh Z


    Full Text Available Background: Evaluation of bioactivity of recombinant erythropoietin is essential for pharmaceutical industry, quality control authorities and researchers. The purpose of this study was to compare real time RT-PCR and flow cytometry for the assay of biological activity of recombinant erythropoietin. Methods: Three concentrations of recombinant erythropoietin BRP (80, 40 and 20 IU/ml were injected subcutaneously to mice. After 4 days the blood was collected and used for reticulocyte counts by flow cytometry and also for the RNA extraction. Real time RT-PCR amplification was carried out for β-globin. Results and conclusion: There was a significant correlation between the total RNA amounts (R2= 0.9995, relative quantity of β-globin mRNA (R2= 0.984 and reticulocyte counts (R2= 0.9742 with rhEpo concentrations. Total RNA and quantitative RT-PCR showed significant dose dependent results as well the reticulocyte counts by flow cytometry for the biological activity assay of rhEpo and so these methods could be considered as alternatives for flow cytometry.


    Directory of Open Access Journals (Sweden)

    João Paulo Silva Pinheiro


    Full Text Available The National Secondary Education Examination (Exame Nacional do Ensino Médio- ENEM aims that schools adopt an interdisciplinary and contextualized education, being a requirement for entry into higher education institutions. In biology there is an area named Biotechnology, that relates to several technological activities important to society, but with ethical, social, political questions, among others. In this context, the present study aims to examine how biotechnology is addressed by teachers of the 3rd year of high school, focusing on ENEM. In order to accomplish this, analyzes were made of ENEM’s questions from 2009 to 2015, they were applied interviews with teachers from four public schools in the city of Fortaleza / CE. In the analysis of the ENEM exams, it was found that in all editions Biotechnology was addressed directly or indirectly, as transgenic, recombinant DNA, biofuels and stem cells. It was found that biotechnology is being taught in public schools in the city of Fortaleza / CE, but with little depth, since most of interviewed showed some discomfort in teaching the subject, lack of professional renovation, preventing a more secure opinion on certain matters disclosed; such insecurity ends up reflecting the presentation of content in the classroom.

  1. Recombinant Human Plasminogen Activator Inhibitor-1 Accelerates Odontoblastic Differentiation of Human Stem Cells from Apical Papilla. (United States)

    Jin, Bin; Choung, Pill-Hoon


    Dental caries, the most prevalent oral disease in dental patients, involves the phases of demineralization and destruction of tooth hard tissues like enamel, dentin, and cementum. Dentin is a major component of the root and is also the innermost layer that protects the tooth nerve, exposure of which results in pain. In this study, we used human stem cells from apical papilla (hSCAP), which are early progenitor cells, to examine the effects of recombinant human plasminogen activator inhibitor-1 (rhPAI-1) on odontogenic differentiation in vitro and in vivo. We demonstrated that rhPAI-1 promoted the proliferation and odontogenic differentiation of hSCAP and increased the expression levels of odontoblast-associated markers. We also observed that rhPAI-1 upregulated the expression of Smad4, nuclear factor I-C (NFI-C), Runx2, and osterix (OSX) during odontogenic differentiation. Notably, transplantation of rhPAI-1-treated hSCAP effectively induced odontoblastic differentiation and dentinal formation. And the differentiated odontoblast-like cells showed numerous odontoblast processes inserted in dentin tubules and arranged collagen fibers. Furthermore, odontoblast-associated markers were more highly expressed in the rhPAI-1-induced differentiated odontoblast-like cells compared with the control group. These markers were also more highly expressed in the newly formed dentin-like tissue of the rhPAI-1-treated group compared with the control group. Consistent with our in vitro results, the expression levels of Smad4, NFI-C, and OSX were also increased in the rhPAI-1-treated group compared with the control group. Taken together, these results suggest that rhPAI-1 promotes odontoblast differentiation and dentin formation of hSCAP, and Smad4/NFI-C/OSX may play critical roles in the rhPAI-1-induced odontogenic differentiation. Thus, dental stem cells from apical papilla combined with rhPAI-1 could lead to dentin regeneration in clinical implications.

  2. Using the Mystery of the Cyclopic Lamb to Teach Biotechnology (United States)

    Jensen, Jamie L.


    I present a learning cycle that explores different biotechnologies using the process of in situ hybridization as a platform. Students are presented with a cyclopic lamb and must use biotechnology to discover the mechanism behind the deformity. Through this activity, students learn about signal transduction and discover the processes of polymerase…

  3. National patent applications in biotechnology, subclass C12N, in Brazil from 1998 to 2000

    Directory of Open Access Journals (Sweden)

    Celso Luiz Salgueiro Lage


    Full Text Available Only 11% of the activities of research and development in Brazil are carried out in private institutions. In the biotechnological field, an area of knowledge significantly closer to the basic sciences, there is a higher participation of public sectors, as might be expected. Among the public institutions, the universities were responsible for the highest number of applications in the evaluated time period, 56%. The national participation in the number of biotechnological patent applications in Brazil was 2.6% from 1998 to 2000. Among the countries with the highest number of biotechnological patent applications in Brazil, there is an obvious domination of the United States of America, representing 51.5% of all countries in 1999 and 42.3% of the 1057 C12N patent applications. Applications in the C12N 15 classification with 31.5% were the most frequent in comparison with the other C12N applications. This fact shows the fast increase of the number of applications in genetic engineering and fields of recombinant DNA technology. This result is a possible consequence of the genome race that is occurring at world level.

  4. Crystallization and preliminary crystallographic analysis of latent, active and recombinantly expressed aurone synthase, a polyphenol oxidase, from Coreopsis grandiflora

    Energy Technology Data Exchange (ETDEWEB)

    Molitor, Christian; Mauracher, Stephan Gerhard; Rompel, Annette, E-mail: [Universität Wien, Althanstrasse 14, 1090 Wien (Austria)


    Latent and active aurone synthase purified from petals of C. grandiflora (cgAUS1) were crystallized. The crystal quality of recombinantly expressed latent cgAUS1 was significantly improved by co-crystallization with the polyoxotungstate Na{sub 6}[TeW{sub 6}O{sub 24}] within the liquid–liquid phase-separation zone. Aurone synthase (AUS), a member of a novel group of plant polyphenol oxidases (PPOs), catalyzes the oxidative conversion of chalcones to aurones. Two active cgAUS1 (41.6 kDa) forms that differed in the level of phosphorylation or sulfation as well as the latent precursor form (58.9 kDa) were purified from the petals of Coreopsis grandiflora. The differing active cgAUS1 forms and the latent cgAUS1 as well as recombinantly expressed latent cgAUS1 were crystallized, resulting in six different crystal forms. The active forms crystallized in space groups P2{sub 1}2{sub 1}2{sub 1} and P12{sub 1}1 and diffracted to ∼1.65 Å resolution. Co-crystallization of active cgAUS1 with 1,4-resorcinol led to crystals belonging to space group P3{sub 1}21. The crystals of latent cgAUS1 belonged to space group P12{sub 1}1 and diffracted to 2.50 Å resolution. Co-crystallization of recombinantly expressed pro-AUS with the hexatungstotellurate(VI) salt Na{sub 6}[TeW{sub 6}O{sub 24}] within the liquid–liquid phase separation zone significantly improved the quality of the crystals compared with crystals obtained without hexatungstotellurate(VI)

  5. 75 FR 58410 - Office of Biotechnology Activities, Office of Science Policy, Office of the Director; Notice of... (United States)


    ... on Codes of Conduct; Culture of Responsibility; International Engagement; Journal Review Policies... recommendations regarding biosecurity concerns raised by this field; (4) planning for future NSABB meetings and activities; and (5) other business of the Board. Place: National Institutes of Health, Building 31, Center...

  6. 76 FR 28793 - Office of Biotechnology Activities, Office of Science Policy, Office of the Director; Notice of... (United States)


    ... on Codes of Conduct; International Engagement; and Journal Review Policies; (4) planning for future NSABB meetings and activities; and (5) other business of the Board. Place: National Institutes of Health..., address, telephone number and when applicable, the business or professional affiliation of the interested...


    Directory of Open Access Journals (Sweden)

    Bayraktar V.N.


    Full Text Available Samples from different industrial grape cultivars were collected during the vintage season from the vineyard of the winery (the «Shabo» winery Company, located in the Odesa region, Ukraine. The following industrial cultivars of grapes were selected for the research: Chardonnay, Cabernet Sauvignon, Merlot, Sauvignon, Riesling Rhenish, Aligote, Rkatsiteli, Bastardo, Traminer, Telti Kuruk, Grinosh. The grape cultivars were cultivated on the sandy soils in the district located between the Black Sea and the Dnestrovsky estuary. Grape must derived from different grape cultivars was placed into sterile glass flasks to half of the 450ml flask volume. Each flask was carefully closed with a rubber stopper with an injection needle in it. During the fermentation process, it was necessary to remove carbon dioxide, which was present as a result of active anaerobic fermentation processes in the grape must. At the end of grape must fermentation, pure yeast cultures were isolated using traditional microbiological methods by consistent inoculation of a sample into a Petri dish with a few modifications of nutrient selective agar for yeast isolation and cultivation. Primary yeast isolation was carried out using Inhibitory Mold Agar medium (Becton Dickinson Company, USA. The yeast culture morphological properties were analyzed after the primary yeast culture isolation. Yeasts were identified by polymerase chain reaction (PCR using universal yeast primers. After yeast culture identification, the next step in yeast cultivation was carried out on Wort Agar medium (Becton Dickinson Company, USA. Each isolated, and identified yeast culture was deposited in the Genebank of Japan, MAFF culture Collection, Tsukuba, Ibaraki, Japan and (NCYC - Yeast Culture Collection (National Collection of Yeast Cultures, Institute of Food Research, Norwich, United Kingdom. Each yeast culture was tested for technological characteristics such as growth resistance to high temperature (+42

  8. Activities of Fluoroquinolones against Streptococcus pneumoniae Type II Topoisomerases Purified as Recombinant Proteins


    Morrissey, Ian; George, John


    Streptococcus pneumoniae topoisomerase IV and DNA gyrase have been purified from a fluoroquinolone-susceptible Streptococcus pneumoniae strain, from first-step mutants showing low-level resistance to ciprofloxacin, sparfloxacin, levofloxacin, and ofloxacin, and from two clinical isolates showing intermediate- and high-level fluoroquinolone resistance by a gene cloning method that produces recombinant proteins from Escherichia coli. The concentrations of ciprofloxacin, sparfloxacin, levofloxac...

  9. The reversal effect of prothrombin complex concentrate (PCC), activated PCC and recombinant activated factor VII against anticoagulation of Xa inhibitor. (United States)

    Schultz, Nina Haagenrud; Tran, Hoa Thi Tuyet; Bjørnsen, Stine; Henriksson, Carola Elisabeth; Sandset, Per Morten; Holme, Pål Andre


    An increasing number of patients are treated with direct-acting oral anticoagulants (DOACs), but the optimal way to reverse the anticoagulant effect is not known. Specific antidotes are not available and prothrombin complex concentrate (PCC), activated PCC (aPCC) and recombinant factor VIIa (rFVIIa) are variously used as reversal agents in case of a major bleeding. We aimed to determine the most effective haemostatic agent and dose to reverse the effect of rivaroxaban in blood samples from patients taking rivaroxaban for therapeutic reasons. Blood samples from rivaroxaban-treated patients ( n =  50) were spiked with PCC, aPCC and rFVIIa at concentrations imitating 80%, 100% and 125% of suggested therapeutic doses. The reversal effect was assessed by thromboelastometry in whole blood and a thrombin generation assay (TGA) in platelet-poor plasma. Samples from healthy subjects ( n =  40) were included as controls. In thromboelastometry measurements, aPCC and rFVIIa had a superior effect to PCC in reversing the rivaroxaban-induced lenghtening of clotting time (CT). aPCC was the only haemostatic agent that shortened the CT down to below the control level. Compared to healthy controls, patients on rivaroxaban also had a prolonged lag time and decreased peak concentration, velocity index and endogenous thrombin potential (ETP) in platelet-poor plasma. aPCC reversed these parameters more effectively than rFVIIa and PCC. There were no differences in efficacy between 80%, 100% and 125% doses of aPCC. aPCC seems to reverse the anticoagulant effect of rivaroxaban more effectively than rFVIIa and PCC by evaluation with thromboelastometry and TGA in vitro.


    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, S.; Nobukawa, M.; Uchida, H.; Tanaka, T.; Tsuru, T. G.; Koyama, K. [Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Murakami, H. [Department of Information Science, Faculty of Liberal Arts, Tohoku Gakuin University 2-1-1 Tenjinzawa, Izumi-ku, Sendai, Miyagi 981-3193 (Japan); Uchiyama, H., E-mail: [Science Education, Faculty of Education, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529 (Japan)


    We report Suzaku results for soft X-ray emission to the south of the Galactic center (GC). The emission (hereafter {sup G}C South{sup )} has an angular size of {approx}42' Multiplication-Sign 16' centered at (l, b) {approx} (0. Degree-Sign 0, - 1. Degree-Sign 4) and is located in the largely extended Galactic ridge X-ray emission (GRXE). The X-ray spectrum of GC South exhibits emission lines from highly ionized atoms. Although the X-ray spectrum of the GRXE can be well fitted with a plasma in collisional ionization equilibrium (CIE), that of GC South cannot be fitted with a plasma in CIE, leaving hump-like residuals at {approx}2.5 and 3.5 keV, which are attributable to the radiative recombination continua of the K-shells of Si and S, respectively. In fact, GC South spectrum is well fitted with a recombination-dominant plasma model; the electron temperature is 0.46 keV while atoms are highly ionized (kT = 1.6 keV) in the initial epoch, and the plasma is now in a recombining phase at a relaxation scale (plasma density Multiplication-Sign elapsed time) of 5.3 Multiplication-Sign 10{sup 11} s cm{sup -3}. The absorption column density of GC South is consistent with that toward the GC region. Thus, GC South is likely to be located in the GC region ({approx}8 kpc distance). The size of the plasma, the mean density, and the thermal energy are estimated to be {approx}97 pc Multiplication-Sign 37 pc, 0.16 cm{sup -3}, and 1.6 Multiplication-Sign 10{sup 51} erg, respectively. We discuss possible origins of the recombination-dominant plasma as a relic of past activity in the GC region.

  11. Anti-Candidal Activity and Functional Mapping of Recombinant and Synthetic Neosartorya fischeri Antifungal Protein 2 (NFAP2

    Directory of Open Access Journals (Sweden)

    Liliána Tóth


    Full Text Available The increasing number of life-threatening Candida infections caused by antifungal drug-resistant strains urges the development of new therapeutic strategies. The small, cysteine-rich, and cationic Neosartorya fischeri antifungal protein 2 (NFAP2 effectively inhibits the growth of Candida spp. Limiting factors of its future application, are the low-yield production by the native producer, unavailable information about potential clinical application, and the unsolved relationship between the structure and function. In the present study we adopted a Penicillium chrysogenum-based expression system for bulk production of recombinant NFAP2. Furthermore, solid-phase peptide synthesis and native chemical ligation were applied to produce synthetic NFAP2. The average yield of recombinant and synthetic NFAP2 was 40- and 16-times higher than in the native producer, respectively. Both proteins were correctly processed, folded, and proved to be heat-stable. They showed the same minimal inhibitory concentrations as the native NFAP2 against clinically relevant Candida spp. Minimal inhibitory concentrations were higher in RPMI 1640 mimicking the human inner fluid than in a low ionic strength medium. The recombinant NFAP2 interacted synergistically with fluconazole, the first-line Candida therapeutic agent and significantly decreased its effective in vitro concentrations in RPMI 1640. Functional mapping with synthetic peptide fragments of NFAP2 revealed that not the evolutionary conserved antimicrobial γ-core motif, but the mid-N-terminal part of the protein influences the antifungal activity that does not depend on the primary structure of this region. Preliminary nucleic magnetic resonance measurements signed that the produced recombinant NFAP2 is suitable for further structural investigations.

  12. Improved insecticidal activity of a recombinant baculovirus expressing spider venom cyto-insectotoxin. (United States)

    Ali, M P; Kato, Tatsuya; Park, Enoch Y


    Baculoviruses have a long history of safe use as specific, environmentally friendly insecticides that provide alternatives to chemical pesticides for controlling insect pests. However, their use has been limited by several factors, particularly their slow pathogenicity. In this study, we constructed a recombinant Bombyx mori nucleopolyhedrovirus (BmNPV) and an Autographa californica multiple nucleopolyhedrovirus (AcMNPV) that expressed an insect-specific cyto-insectotoxin (Cit1a) from the venom of the central Asian spider Lachesana tarabaevi. Cit1a is a comparatively long linear cytolytic molecule that contains a predicted α-helix structure composed of two short membrane-acting antimicrobial peptides (MAMPs) that are joined together in a "head-to-tail" shape. Cit1a fused to polyhedrin gene (polh) (polh-cit1a) was expressed in the nuclei as polyhedra in silkworm larvae, Bm5 and Sf9 cells. An early death of Bm5 and Sf9 cells by recombinant BmNPV/Polh-Cit1a and AcMNPV/Polh-Cit1a was observed compared with control viruses that lacked the toxin gene. The infected cells showed a loss of cytoplasm, membrane integrity, and structural changes, suggesting that recombinant baculovirus-infected cells were killed by the necrosis caused by Cit1a. In addition, the BmNPV/Polh-Cit1a showed a significant reduction in the median lethal time (LT50) against silkworm larvae compared with those of control BmNPV that lacked the cit1a gene.

  13. Environmental Biotechnology in China (United States)

    Liu, Shuang Jiang; Liu, Lei; Chaudhry, Muhammad Tausif; Wang, Lei; Chen, Ying Guang; Zhou, Qi; Liu, He; Chen, Jian

    Environmental biotechnology has emerged as an important measure to tackle the environmental pollution as China experiences great economic success. Over the past decade, much emphasis has been paid to the following fields in environmental biotechnology: microbial degradation of toxic and organic chemicals, bio-treatment of wastewater, waste recycling. The Chinese researchers have done a lot of work to understand the natural degradation processes for organic and toxic compounds and finally to clean these compounds from polluted environments. For the treatment of wastewater, many new processes were proposed and optimized to meet the more strict effluent standards in China. Finally, more and more attention has been paid to the reuse of discharged wastes. In this chapter we review the development in the above fields.

  14. Biotechnology for renewable chemicals

    DEFF Research Database (Denmark)

    Borodina, Irina; Kildegaard, Kanchana Rueksomtawin; Jensen, Niels Bjerg


    The majority of the industrial organic chemicals are derived from fossil sources. With the oil and gas resources becoming limiting, biotechnology offers a sustainable alternative for production ofchemicals from renewable feedstocks. Yeast is an attractive cell factory forsustainable production...... for the production of non-native 3-hydroxypropionic acid (3HP).3HP can be chemically dehydrated into acrylic acid and thus can serve as a biosustainable building block for acrylate-based products (diapers, acrylic paints, acrylic polymers, etc.)...

  15. Biotechnology in maize breeding

    Directory of Open Access Journals (Sweden)

    Mladenović-Drinić Snežana


    Full Text Available Maize is one of the most important economic crops and the best studied and most tractable genetic system among monocots. The development of biotechnology has led to a great increase in our knowledge of maize genetics and understanding of the structure and behaviour of maize genomes. Conventional breeding practices can now be complemented by a number of new and powerful techniques. Some of these often referred to as molecular methods, enable scientists to see the layout of the entire genome of any organism and to select plants with preferred characteristics by "reading" at the molecular level, saving precious time and resources. DNA markers have provided valuable tools in various analyses ranging from phylogenetic analysis to the positional cloning of genes. Application of molecular markers for genetic studies of maize include: assessment of genetic variability and characterization of germ plasm, identification and fingerprinting of genotypes, estimation of genetic distance, detection of monogamic and quantitative trait loci, marker assisted selection, identification of sequence of useful candidate genes, etc. The development of high-density molecular maps which has been facilitated by PCR-based markers, have made the mapping and tagging of almost any trait possible and serve as bases for marker assisted selection. Sequencing of maize genomes would help to elucidate gene function, gene regulation and their expression. Modern biotechnology also includes an array of tools for introducing or deieting a particular gene or genes to produce plants with novel traits. Development of informatics and biotechnology are resulted in bioinformatic as well as in expansion of microarrey technique. Modern biotechnologies could complement and improve the efficiency of traditional selection and breeding techniques to enhance agricultural productivity.

  16. DNA distribution and respiratory activity of Spodoptera frugiperda populations infected with wild-type and recombinant Autographa californica nuclear polyhedrosis virus. (United States)

    Schopf, B; Howaldt, M W; Bailey, J E


    Spodoptera frugiperda cells were infected with a wild-type Autographa californica nuclear polyhedrosis virus and with a recombinant Autographa californica nuclear polyhedrosis virus. The recombinant virus was derived from the wild-type virus and produced beta-galactosidase instead of polyhedrin. The changes in cell size, cell growth, viability, DNA distribution, and respiratory activity were followed through the time course of the infection. The DNA content as measured by flow cytometry of infected cells increased to approximately 1.8 times the value of uninfected cells and the distributions of single-cell DNA content of the infected cells were strongly deformed. Early in the infection the respiratory activity passed through a maximum. The mitochondrial activity based on Rhodamine 123 labelling of cells infected with the recombinant virus, as determined by flow cytometry, also passed through a maximum at 24 h post infection while the mitochondrial activity of cells infected with the wild-type virus continued to increase. Evolution of single-cell mitochondrial activity was different in uninfected populations and in populations infected with wild-type and with recombinant virus. In all experiments performed, the recombinant virus influenced cell behavior and the measured parameters earlier than the wild-type virus. The influence of the multiplicity of infection was stronger for the wild-type virus than for the recombinant virus.

  17. Linking Biotechnology and Agricultural Biodiversity Resources in ...

    African Journals Online (AJOL)


    Modern economic activities are heavily dependent on using diversity of biological resources. Africa has a wealth of ... security and provide the genetic material needed for industry, agriculture and biotechnology. In agriculture .... benefit assessment in different fields is of fundamental importance in moulding any policy. Even.

  18. Linking Biotechnology and Agricultural Biodiversity Resources in ...

    African Journals Online (AJOL)

    Modern economic activities are heavily dependent on using diversity of biological resources. Africa has a wealth of biodiversity resources which, with the appropriate application of biotechnological tools for conservation and use, can serve as sources of wealth creation. Proper harnessing of the linkages between ...

  19. Assessing the Impacts of Agricultural Biotechnologies: Canadian ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The workshop on which this volume is based represents one of the first formal activities of the "Canada–Latin America Initiative on Biotechnology, the Environment and Sustainable Development" (CamBioTec). The decision by IDRC to host this workshop reflects a recognition of the need for careful, rigorous analysis of the ...

  20. Investigation of the effect of recombinant Neutrophil activating protein (Hp-NapA of helicobacter pylori on proliferation and viability by peritoneal macrophage from BALB/c mice

    Directory of Open Access Journals (Sweden)

    Soleimani N


    Full Text Available Abstract Background: The neutrophil-activating protein (HP-NAP of Helicobacter pylori is a protective antigen and a major virulence factor of this bacteria. Stimulating the immune system for helicobacter infection treatment could have an important role. The aim of study is to assess the effect of recombinant Neutrophil activating protein (Hp-NapA of helicobacter pylori on proliferation and viability of peritoneal macrophages from BALB/c mice. Materials and Methods: In this experimental study, recombinant Hp-NapA of helicobacter pylori was produced in vitro. Mice peritoneal macrophages were purified and cultured. Different concentrations of recombinant Hp-NapA was used for macrophages stimulation. MTT assay was performed to assess the viability and proliferation of macrophages. Results: The results elucidated that the increasing effect of stimulation with recombinant Hp-NapA was significant at the dose of 30 µg/ml(p=0.01. The rate of viabitity was significantly higher than control group at the doses of 30 and 60 µg/ml and in the concurrency series of recombinant protein with lipopolysaccharid, there was a statistically significarit increase in proliferation at just these doses. Conclusion: According to our findings, recombinant Hp-NapA has a positive effect on proliferation, viability and function of peritoneal macrophages. Therefore, it is proposed that recombinant Hp-NapA can be studied as an immunomodulator for immunotherapy.

  1. Heterologous expression of a truncated form of human recombinant vascular endothelial growth factor-A and its biological activity in wound healing. (United States)

    Khaki, Mohsen; Salmanian, Ali Hatef; Mosayebi, Ghasem; Baazm, Maryam; Babaei, Saeed; Molaee, Neda; Abtahi, Hamid


    Vascular endothelial growth factor (VEGF) is one of the most effective proteins in angiogenesis, mesenchymal stem cells (MSCs) differentiation and wound healing. These abilities are therapeutic potential of VEGF in diabetic retinopathy, nephropathy and other tissue damage circumstances. In this study, recombinant VEGF was produced in Escherichia coli ( E. coli ) system and then biological activity of this protein was evaluated in animal wound healing. E. coli BL21 (DE3) competent cells were transformed with pET32a-VEGF clone and induced by isopropyl-β-D-thio-galactoside (IPTG). The recombinant protein was purified by affinity chromatography. Recombinant VEGF-A-based ointment (VEGF/Vaseline 0.8 mg/100 w/w) was used for external wound (25×15mm thickness) healing in animal model. In vivo activity of ointment was evaluated by clinical evidences and cytological microscopic assessment. The recombinant protein with molecular weight of 45 kilodaltons (kDa) and concentration of 0.8 mg/ml was produced. Immunoblotting data showed that the antigenic region of VEGF can be expressed in E. coli and the recombinant protein has similar epitopes with close antigenic properties to the natural form. Macroscopic findings and microscopic data showed that the recombinant VEGF-A ointment was effective on excisional wound healing. Recombinant VEGF-A produced by pET32a in E. coli , possesses acceptable structure and has wound healing capability.

  2. Heterologous expression of a truncated form of human recombinant vascular endothelial growth factor-A and its biological activity in wound healing

    Directory of Open Access Journals (Sweden)

    Mohsen Khaki


    Full Text Available Objective(s: Vascular endothelial growth factor (VEGF is one of the most effective proteins in angiogenesis, mesenchymal stem cells (MSCs differentiation and wound healing. These abilities are therapeutic potential of VEGF in diabetic retinopathy, nephropathy and other tissue damage circumstances. In this study, recombinant VEGF was produced in Escherichia coli (E. coli system and then biological activity of this protein was evaluated in animal wound healing. Materials and Methods: E. coli BL21 (DE3 competent cells were transformed with pET32a-VEGF clone and induced by isopropyl-β-D-thio-galactoside (IPTG. The recombinant protein was purified byaffinity chromatography. Recombinant VEGF-A-based ointment (VEGF/Vaseline 0.8 mg/100 w/w was used for external wound (25×15mm thickness healing in animal model. In vivo activity of ointment was evaluated by clinical evidences and cytological microscopic assessment. Results: The recombinant protein with molecular weight of 45 kilodaltons (kDa and concentration of 0.8 mg/ml was produced.Immunoblotting data showed that the antigenic region of VEGF can be expressed in E. coli and the recombinant protein has similar epitopes with close antigenic properties to the natural form. Macroscopic findings and microscopic data showed that the recombinant VEGF-A ointment was effective on excisional wound healing. Conclusion: Recombinant VEGF-A produced by pET32a in E. coli, possesses acceptable structure and has wound healing capability.

  3. Practicing environmental biotechnology

    Directory of Open Access Journals (Sweden)

    Bruce E.Rittmann


    Full Text Available Environmental biotechnology involves ″managing microbial communities to provide services to society″.Its success comes from partnering with prokaryotic microorganisms,whose wideranging metabolic capabilities can be harnessed to destroy pollutants and to generate renewable materials.Partnering with microorganisms requires that we understand them well,and important advances in molecular microbial ecology,analytical chemistry,and mathematical modeling are making it possible to look inside the black box of microbial communities.Also crucial is translating the understanding to biotechnological processes that ″work for the microorganisms so that they work for us″.Successful translation demands novel reactor designs,application of advanced materials,and partnering with practitioners and users.The Swette Center for Environmental Biotechnology,founded in at Arizona State University in 2005,brings together the science and engineering tools in an interdisciplinary environment.The Center emphasizes teamwork and collaborations with research and practice partners around the world.Three new technologies illustrate how the Center applies these principles to ″work for the microorganisms″:the H2-based membrane biofilm reactor (MBfR for reducing many oxidized contaminants in water,the microbial electrochemical cells (MXCs for converting organic wastes into renewable products,and Intimately Coupled PhotoBioCatalysis (ICPBC to detoxify very difficult to biodegrade organic pollutants.

  4. Biotechnology's foreign policy. (United States)

    Feldbaum, Carl


    From its inception, biotechnology has been a uniquely international enterprise. An American and an Englishman working together elucidated the structure of DNA almost 50 years ago; more recently, the Human Genome Project linked researchers around the world, from the Baylor College of Medicine in Houston to the Beijing Human Genome Center. Today our industry's researchers hail from African villages and Manhattan high rises; from Munich and Melbourne; from London, Ontario, and London, England; from Scotland and Nova Scotia--New Scotland; from Calcutta and Calgary. But in the beginning, the infrastructure that supported these efforts--intellectual property, venture capital, streamlined technology transfer--was less widely dispersed and the world's brightest biotech researchers clustered in only half a dozen scientific Meccas. Previous technological revolutions have spread around the world. Following in their footsteps, biotechnology's global diaspora seems inevitable, especially since governments are promoting it. But as our science and business emigrate from early strongholds in the United States, Canada and Europe across oceans and borders and into new cultures, international tensions over biotechnology continue to grow. In just the last few years, controversies have rolled over R&D spending priorities, genetic patents, bioprospecting, transgenic agriculture and drug pricing. My premise today is that our industry needs to formulate its first foreign policy, one which is cognizant of the miserable judgments and mistakes of other industries--and avoids them.

  5. Biotechnology in soybean breeding

    Directory of Open Access Journals (Sweden)

    Sudarić Aleksandra


    Full Text Available Biotechnology can be defined broadly as a set of tools that allows scientists to genetically characterize or improve living organisms. Several emerging technologies, such as molecular characterization and genetic transformation, are already being used extensively for the purpose of plant improvement. Other emerging sciences, including genomics and proteomics, are also starting to impact plant improvement. Tools provided by biotechnology will not replace classical breeding methods, but rather will help provide new discoveries and contribute to improved nutritional value and yield enhancement through greater resistance to disease, herbicides and abiotic factors. In soybeans, biotechnology has and will continue to play a valuable role in public and private soybean breeding programs. Based on the availability and combination of conventional and molecular technologies, a substantial increase in the rate of genetic gain for economically important soybean traits can be predicted in the next decade. In this paper, a short review of technologies for molecular markers analysis in soybean is given as well as achievements in the area of genetic transformation in soybean.

  6. Expression and Purification of Active Recombinant Cathepsin C (Dipeptidyl Aminopeptidase I of Kuruma Prawn Marsupenaeus japonicus in Insect Cells

    Directory of Open Access Journals (Sweden)

    Gao-Feng Qiu


    Full Text Available Cathepsin C (CTSC is a lysosomal cysteine protease belonging to the papain superfamily. Our previous study showed that CTSC precursor (zymogen is localized exclusively in cortical rods (CRs of mature oocyte in the kuruma prawn Marsupenaeus japonicus, suggesting that CTSC might have roles on regulating release and/or formation of a jelly layer. In this study, enzymically active CTSC of the kuruma prawn was prepared by recombinant expression in the High Five insect cell line. The recombinant enzyme with a polyhistidine tag at its C-terminus was considered to be initially secreted into the culture medium as an inactive form of zymogen, because Western blot with anti-CTSC antibody detected a 51 kDa protein corresponding to CTSC precursor. After purification by affinity chromatography on nickel-iminodiacetic acid resin, the enzyme displayed three forms of 51, 31, and 30 kDa polypeptides. All of the forms can be recognized by antiserum raised against C-terminal polyhistidine tag, indicating that the 31 and 30 kDa forms were generated from 51 kDa polypeptide by removal of a portion of the N-terminus of propeptide. Following activation at pH 5.5 and 37∘C for 40 hours under native conditions, the recombinant CTSC (rCTSC exhibited increased activity against the synthetic substrate Gly-Phe-β-naphthylamide and optimal pH at around 5. The purified rCTSC will be useful for further characterization of its exact physiological role on CRs release and/or formation of a jelly layer in kuruma prawn.

  7. Recombinant tissue plasminogen activator for acute ischaemic stroke: an updated systematic review and meta-analysis (United States)

    Wardlaw, Joanna M; Murray, Veronica; Berge, Eivind; del Zoppo, Gregory; Sandercock, Peter; Lindley, Richard L; Cohen, Geoff


    Summary Background Recombinant tissue plasminogen activator (rt-PA, alteplase) improved functional outcome in patients treated soon after acute ischaemic stroke in randomised trials, but licensing is restrictive and use varies widely. The IST-3 trial adds substantial new data. We therefore assessed all the evidence from randomised trials for rt-PA in acute ischaemic stroke in an updated systematic review and meta-analysis. Methods We searched for randomised trials of intravenous rt-PA versus control given within 6 h of onset of acute ischaemic stroke up to March 30, 2012. We estimated summary odds ratios (ORs) and 95% CI in the primary analysis for prespecified outcomes within 7 days and at the final follow-up of all patients treated up to 6 h after stroke. Findings In up to 12 trials (7012 patients), rt-PA given within 6 h of stroke significantly increased the odds of being alive and independent (modified Rankin Scale, mRS 0–2) at final follow-up (1611/3483 [46·3%] vs 1434/3404 [42·1%], OR 1·17, 95% CI 1·06–1·29; p=0·001), absolute increase of 42 (19–66) per 1000 people treated, and favourable outcome (mRS 0–1) absolute increase of 55 (95% CI 33–77) per 1000. The benefit of rt-PA was greatest in patients treated within 3 h (mRS 0–2, 365/896 [40·7%] vs 280/883 [31·7%], 1·53, 1·26–1·86, p<0·0001), absolute benefit of 90 (46–135) per 1000 people treated, and mRS 0–1 (283/896 [31·6%] vs 202/883 [22·9%], 1·61, 1·30–1·90; p<0·0001), absolute benefit 87 (46–128) per 1000 treated. Numbers of deaths within 7 days were increased (250/2807 [8·9%] vs 174/2728 [6·4%], 1·44, 1·18–1·76; p=0·0003), but by final follow-up the excess was no longer significant (679/3548 [19·1%] vs 640/3464 [18·5%], 1·06, 0·94–1·20; p=0·33). Symptomatic intracranial haemorrhage (272/3548 [7·7%] vs 63/3463 [1·8%], 3·72, 2·98–4·64; p<0·0001) accounted for most of the early excess deaths. Patients older than 80 years achieved similar

  8. Biotechnology worldwide and the 'European Biotechnology Thematic Network' Association (EBTNA). (United States)

    Bruschi, F; Dundar, M; Gahan, P B; Gartland, K; Szente, M; Viola-Magni, M P; Akbarova, Y


    The European Biotechnology Congress 2011 held under the auspices of the European Biotechnology Thematic Network Association (EBTNA) in conjunction with the Turkish Medical Genetics Association brings together a broad spectrum of biotechnologists from around the world. The subsequent abstracts indicate the manner in which biotechnology has permeated all aspects of research from the basic sciences through to small and medium enterprises and major industries. The brief statements before the presentation of the abstracts aim to introduce not only Biotechnology in general and its importance around the world, but also the European Biotechnology Thematic Network Association and its aims especially within the framework of education and ethics in biotechnology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. "Othering" agricultural biotechnology: Slovenian media representation of agricultural biotechnology. (United States)

    Zajc, Jožica; Erjavec, Karmen


    While studies on media representations of agricultural biotechnology mostly analyse media texts, this work is intended to fill a research gap with an analysis of journalistic interpretations of media representations. The purpose of this project was to determine how news media represent agricultural biotechnology and how journalists interpret their own representations. A content and critical discourse analysis of news texts published in the Slovenian media over two years and in-depth interviews with their authors were conducted. News texts results suggest that most of the news posts were "othering" biotechnology and biotechnologists: biotechnology as a science and individual scientists are represented as "they," who are socially irresponsible, ignorant, arrogant, and "our" enemies who produce unnatural processes and work for biotechnology companies, whose greed is destroying people, animals, and the environment. Most journalists consider these representations to be objective because they have published the biotechnologists' opinions, despite their own negative attitudes towards biotechnology.

  10. Sharing Malaysian experience with the development of biotechnology-derived food crops. (United States)

    Abu Bakar, Umi K; Pillai, Vilasini; Hashim, Marzukhi; Daud, Hassan Mat


    Biotechnology-derived food crops are currently being developed in Malaysia mainly for disease resistance and improved post harvest quality. The modern biotechnology approach is adopted because of its potential to overcome constraints faced by conventional breeding techniques. Research on the development of biotechnology-derived papaya, pineapple, chili, passion fruit, and citrus is currently under way. Biotechnology-derived papaya developed for resistance to papaya ringspot virus (PRSV) and improved postharvest qualities is at the field evaluation stage. Pineapple developed for resistance to fruit black heart disorder is also being evaluated for proof-of-concept. Other biotechnology-derived food crops are at early stages of gene cloning and transformation. Activities and products involving biotechnology-derived crops will be fully regulated in the near future under the Malaysian Biosafety Law. At present they are governed only by guidelines formulated by the Genetic Modification Advisory Committee (GMAC), Malaysia. Commercialization of biotechnology-derived crops involves steps that require GMAC approval for all field evaluations and food-safety assessments before the products are placed on the market. Public acceptance of the biotechnology product is another important factor for successful commercialization. Understanding of biotechnology is generally low among Malaysians, which may lead to low acceptance of biotechnology-derived products. Initiatives are being taken by local organizations to improve public awareness and acceptance of biotechnology. Future research on plant biotechnology will focus on the development of nutritionally enhanced biotechnology-derived food crops that can provide more benefits to consumers.

  11. The glycoprotein Ib-IX-V complex contributes to tissue factor-independent thrombin generation by recombinant factor VIIa on the activated platelet surface

    NARCIS (Netherlands)

    Weeterings, Cees; de Groot, Philip G.; Adelmeijer, Jelle; Lisman, Ton


    Several lines of evidence suggest that recombinant factor VIIa (rFVIIa) is able to activate factor X on an activated platelet, in a tissue factor-independent manner. We hypothesized that, besides the anionic surface, a receptor on the activated platelet surface is involved in this process. Here, we

  12. Deacetylase activity of histone deacetylase 3 is required for productive VDJ recombination and B-cell development (United States)

    Stengel, Kristy R.; Barnett, Kelly R.; Wang, Jing; Liu, Qi; Hodges, Emily; Hiebert, Scott W.; Bhaskara, Srividya


    Histone deacetylase 3 (HDAC3) is the catalytic component of NCoR/SMRT corepressor complexes that mediate the actions of transcription factors implicated in the regulation of B-cell development and function. We crossed Hdac3 conditional knockout mice with Mb1-Cre knockin animals to delete Hdac3 in early progenitor B cells. The spleens of Hdac3F/−Mb1-Cre+/− mice were virtually devoid of mature B cells, and B220+CD43+ B-cell progenitors accumulated within the bone marrow. Quantitative deep sequencing of the Ig heavy chain locus from B220+CD43+ populations identified a defect in VHDJH recombination with a severe reduction in productive rearrangements, which directly corresponded to the loss of pre-B cells from Hdac3Δ/− bone marrow. For Hdac3Δ/− B cells that did show productive VDJ rearrangement, there was significant skewing toward the incorporation of proximal VH gene segments and a corresponding reduction in distal VH gene segment use. Although transcriptional effects within these loci were modest, Hdac3Δ/− progenitor cells displayed global changes in chromatin structure that likely hindered effective distal V-DJ recombination. Reintroduction of wild-type Hdac3 restored normal B-cell development, whereas an Hdac3 point mutant lacking deacetylase activity failed to complement this defect. Thus, the deacetylase activity of Hdac3 is required for the generation of mature B cells. PMID:28739911


    Directory of Open Access Journals (Sweden)

    I. V. Dukhovlinov


    Full Text Available Rotavirus infection is among leading causes of severe diarrhea which often leads to severe dehydration, especially, in children under 5 years old. In Russia, the incidence of rotavirus infection is constantly increased, due to higher rates of actual rotavirus infection cases and improved diagnostics of the disease. Immunity to rotavirus is unstable, thus causing repeated infections intra vitam. Anti-infectious resistance in reconvalescents is explained by induction of specific IgM, IgG, and, notably, IgA antibodies. Due to absence of market drugs with direct action against rotavirus, a rational vaccination is considered the most effective way to control the disease. Currently available vaccines for prevention of rotavirus infection are based on live attenuated rotavirus strains, human and/or animal origin, which replicate in human gut. Their implementation may result into different complications. Meanwhile, usage of vaccines based on recombinant proteins is aimed to avoid risks associated with introduction of a complete virus into humans. In this paper, we studied protective activity of candidate vaccines against rotavirus.In this work we studied protective activity of a candidate vaccine against rotavirus infection based on recombinant FliCVP6VP8 protein which includes VP6 and VP8, as well as components of Salmonella typhimurium flagellin (FliC as an adjuvant. Different components are joined by flexible bridges. Efficiency of the candidate vaccine was studied in animal model using Balb/c mice. We have shown high level of protection which occurs when the candidate vaccine is administered twice intramuscularly. Complete protection of animals against mouse rotavirus EDC after intramuscular immunization with a candidate vaccine was associated with arising rotavirus-specific IgA and IgG antibodies in serum and intestine of immunized animals. The efficacy of candidate vaccine based on recombinant protein FliCVP6VP8 against rotavirus infection was

  14. Biotechnology System Facility: Risk Mitigation on Mir (United States)

    Gonda, Steve R., III; Galloway, Steve R.


    NASA is working with its international partners to develop space vehicles and facilities that will give researchers the opportunity to conduct scientific investigations in space. As part of this activity, NASA's Biotechnology Cell Science Program (BCSP) at the Johnson Space Center (JSC) is developing a world-class biotechnology laboratory facility for the International Space Station (ISS). This report describes the BCSP, including the role of the BTS. We identify the purpose and objectives of the BTS and a detailed description of BTS facility design and operational concept, BTS facility and experiment-specific hardware, and scientific investigations conducted in the facility. We identify the objectives, methods, and results of risk mitigation investigations of the effects of microgravity and cosmic radiation on the BTS data acquisition and control system. These results may apply to many other space experiments that use commercial, terrestrial-based data acquisition technology. Another focal point is a description of the end-to-end process of integrating and operating biotechnology experiments on a variety of space vehicles. The identification of lessons learned that can be applied to future biotechnology experiments is an overall theme of the report. We include a brief summary of the science results, but this is not the focus of the report. The report provides some discussion on the successful 130-day tissue engineering experiment performed in BTS on Mir and describes a seminal gene array investigation that identified a set of unique genes that are activated in space.

  15. Functional Divergence among Silkworm Antimicrobial Peptide Paralogs by the Activities of Recombinant Proteins and the Induced Expression Profiles (United States)

    Ye, Mingqiang; Deng, Xiaojuan; Yi, Huiyu; Huang, Yadong; Tan, Xiang; Han, Dong; Wang, Bo; Xiang, Zhonghuai; Cao, Yang; Xia, Qingyou


    Antimicrobial peptides are small-molecule proteins that are usually encoded by multiple-gene families. They play crucial roles in the innate immune response, but reports on the functional divergence of antimicrobial peptide gene families are rare. In this study, 14 paralogs of antimicrobial peptides belonging to cecropin, moricin and gloverin families were recombinantly expressed in pET expression systems. By antimicrobial activity tests, peptides representing paralogs in the same family of cecropin and moricin families, displayed remarkable differences against 10 tested bacteria. The evolutionary rates were relatively fast in the two families, which presented obvious functional divergence among paralogs of each family. Four peptides of gloverin family had similar antimicrobial spectrum and activity against tested bacteria. The gloverin family showed similar antimicrobial function and slow evolutionary rates. By induced transcriptional activity, genes encoding active antimicrobial peptides were upregulated at obviously different levels when silkworm pupae were infected by three types of microbes. Association analysis of antimicrobial activities and induced transcriptional activities indicated that the antimicrobial activities might be positively correlated with induced transcriptional activities in the cecropin and moricin families. These results suggest that representative BmcecB6, BmcecD and Bmmor as the major effector genes have broad antimicrobial spectrum, strong antimicrobial activity and high microbe-induced expression among each family and maybe play crucial roles in eliminating microbial infection. PMID:21479226

  16. Assessment of the adjuvant activity of mesoporous silica nanoparticles in recombinant Mycoplasma hyopneumoniae antigen vaccines

    Directory of Open Access Journals (Sweden)

    Veridiana Gomes Virginio


    Full Text Available The adjuvant potential of two mesoporous silica nanoparticles (MSNs, SBa-15 and SBa-16, was assessed in combination with a recombinant HSP70 surface polypeptide domain from Mycoplasma hyopneumoniae, the etiological agent of porcine enzootic pneumonia (PEP. The recombinant antigen (HSP70212-600, previously shown as immunogenic in formulation with classic adjuvants, was used to immunize BALB/c mice in combination with SBa-15 or SBa-16 MSNs, and the effects obtained with these formulations were compared to those obtained with alum, the adjuvant traditionally used in anti-PEP bacterins. The HSP70212-600 + SBa-15 vaccine elicited a strong humoral immune response, with high serum total IgG levels, comparable to those obtained using HSP70212-600 + alum. The HSP70212-600 + SBa-16 vaccine elicited a moderate humoral immune response, with lower levels of total IgG. The cellular immune response was assessed by the detection of IFN-γ, IL-4 and IL-10 in splenocyte culture supernatants. The HSP70212-600 + SBa-15 vaccine increased IFN-γ, IL-4 and IL-10 levels, while no stimulation was detected with the HSP70212-600 + SBa-16 vaccine. The HSP70212-600 + SBa-15 vaccine induced a mixed Th1/Th2-type response, with an additional IL-10 mediated anti-inflammatory effect, both of relevance for an anti-PEP vaccine. Alum adjuvant controls stimulated an unspecific cellular immune response, with similar levels of cytokines detected in mice immunized either with HSP70212-600 + alum or with the adjuvant alone. The better humoral and cellular immune responses elicited in mice indicated that SBa-15 has adjuvant potential, and can be considered as an alternative to the use of alum in veterinary vaccines. The use of SBa-15 with HSP70212-600 is also promising as a potential anti-PEP subunit vaccine formulation.

  17. Concepts in Biotechnology An Affordable Overview of Biotechnology ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 9. Concepts in Biotechnology An Affordable Overview of Biotechnology Through Self Study and Open Learning Graduates. Narayan S Punekar. Book Review Volume 2 Issue 9 September 1997 pp 77-78 ...

  18. Genetic Recombination (United States)

    Whitehouse, H. L. K.


    Discusses the mechanisms of genetic recombination with particular emphasis on the study of the fungus Sordaria brevicollis. The study of recombination is facilitated by the use of mutants of this fungus in which the color of the ascospores is affected. (JR)

  19. Nanocrystalline NdFeB magnet prepared by mechanically activated disproportionation and desorption-recombination in-situ sintering

    International Nuclear Information System (INIS)

    Xiaoya, Liu; Yuping, Li; Lianxi, Hu


    The process of mechanically activated disproportionation and desorption-recombination in-situ sintering was proposed to synthesize highly densified nanocrystalline NdFeB magnet, and its validity was demonstrated by experimental investigation with the use of a Nd 16 Fe 76 B 8 (atomic ratio) alloy. Firstly, the as-cast alloy was disproportionated by mechanical milling in hydrogen, with the starting micron-sized Nd 2 Fe 14 B phase decomposed into an intimate mixture of nano-structured NdH 2.7 , Fe 2 B and α-Fe phases. The as-disproportionated alloy powders were compacted by cold pressing and then subjected to desorption-recombination in-situ sintering. The microstructure of both the as-disproportionated and the subsequently sintered samples was characterized by X-ray diffraction and electron transmission microscopy, respectively. The magnetic properties of the sintered samples were measured by using vibrating sample magnetometer. The results showed that, by vacuum sintering, not only was the powder compact consolidated, but also the as-disproportionated microstucture transformed into nanocrystalline Nd 2 Fe 14 B phase via the well-known desorption-recombination reaction, thus giving rise to nanocrystalline NdFeB magnet. In the present study, the optimal sintering parameters were found to be 780 °C×30 min. In this case, the coercivity, the remanence, and maximum energy product of the magnet sample achieved 0.8 T, 635.3 kA/m, and 106.3 kJ/m 3 , respectively. - Highlights: ► Nano-structured disproportionated NdFeB alloy powders by mechanical milling in hydrogen. ► Highly densified green magnet compact by cold pressing of as-disproportionated NdFeB alloy powders. ► Nanocrystalline NdFeB magnets by desorption-recombination in-situ sintering under vacuum. ► Magnetic properties significantly improved by relative density enhancement and nanocrystallization of Nd 2 Fe 14 B phase. ► The effects of sintering parameters on magnetic properties and the underlying

  20. Nanocrystalline NdFeB magnet prepared by mechanically activated disproportionation and desorption-recombination in-situ sintering

    Energy Technology Data Exchange (ETDEWEB)

    Xiaoya, Liu; Yuping, Li [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Lianxi, Hu, E-mail: [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)


    The process of mechanically activated disproportionation and desorption-recombination in-situ sintering was proposed to synthesize highly densified nanocrystalline NdFeB magnet, and its validity was demonstrated by experimental investigation with the use of a Nd{sub 16}Fe{sub 76}B{sub 8} (atomic ratio) alloy. Firstly, the as-cast alloy was disproportionated by mechanical milling in hydrogen, with the starting micron-sized Nd{sub 2}Fe{sub 14}B phase decomposed into an intimate mixture of nano-structured NdH{sub 2.7}, Fe{sub 2}B and {alpha}-Fe phases. The as-disproportionated alloy powders were compacted by cold pressing and then subjected to desorption-recombination in-situ sintering. The microstructure of both the as-disproportionated and the subsequently sintered samples was characterized by X-ray diffraction and electron transmission microscopy, respectively. The magnetic properties of the sintered samples were measured by using vibrating sample magnetometer. The results showed that, by vacuum sintering, not only was the powder compact consolidated, but also the as-disproportionated microstucture transformed into nanocrystalline Nd{sub 2}Fe{sub 14}B phase via the well-known desorption-recombination reaction, thus giving rise to nanocrystalline NdFeB magnet. In the present study, the optimal sintering parameters were found to be 780 Degree-Sign C Multiplication-Sign 30 min. In this case, the coercivity, the remanence, and maximum energy product of the magnet sample achieved 0.8 T, 635.3 kA/m, and 106.3 kJ/m{sup 3}, respectively. - Highlights: Black-Right-Pointing-Pointer Nano-structured disproportionated NdFeB alloy powders by mechanical milling in hydrogen. Black-Right-Pointing-Pointer Highly densified green magnet compact by cold pressing of as-disproportionated NdFeB alloy powders. Black-Right-Pointing-Pointer Nanocrystalline NdFeB magnets by desorption-recombination in-situ sintering under vacuum. Black-Right-Pointing-Pointer Magnetic properties significantly

  1. Biotechnology Towards Energy Crops. (United States)

    Margaritopoulou, Theoni; Roka, Loukia; Alexopoulou, Efi; Christou, Myrsini; Rigas, Stamatis; Haralampidis, Kosmas; Milioni, Dimitra


    New crops are gradually establishing along with cultivation systems to reduce reliance on depleting fossil fuel reserves and sustain better adaptation to climate change. These biological assets could be efficiently exploited as bioenergy feedstocks. Bioenergy crops are versatile renewable sources with the potential to alternatively contribute on a daily basis towards the coverage of modern society's energy demands. Biotechnology may facilitate the breeding of elite energy crop genotypes, better suited for bio-processing and subsequent use that will improve efficiency, further reduce costs, and enhance the environmental benefits of biofuels. Innovative molecular techniques may improve a broad range of important features including biomass yield, product quality and resistance to biotic factors like pests or microbial diseases or environmental cues such as drought, salinity, freezing injury or heat shock. The current review intends to assess the capacity of biotechnological applications to develop a beneficial bioenergy pipeline extending from feedstock development to sustainable biofuel production and provide examples of the current state of the art on future energy crops.

  2. Forest biotechnology and environment

    Energy Technology Data Exchange (ETDEWEB)

    Kopriva, S.; Rennenberg, H. [Freiburg Univ. (Germany). Inst. fuer Forstbotanik und Baumphysiologie


    Forest biotechnology is a relatively young area of applied plant molecular biology that presently concentrates on (i) manipulation of lignin content and composition, (ii) pathogen-, pesticide-, and stress resistance, and (iii) improvement of growth. Transgenic trees have a great potential also in other areas of applied and environmental research, e.g. in the production of phytochemicals and in phytoremediation of polluted soils. To implement the use of biotechnology for these and other purposes improvement of the acceptance in public of genetic engineering general, and the application of transgenic technologies to trees species in particular, is essential. (orig.) [German] Bei der forstlichen Biotechnologie handelt es sich um ein vergleichsweise junges Gebiet der angewandten pflanzlichen Molekularbiologie, das sich derzeit auf folgende Fragestellungen konzentriert: (a) Manipulation des Ligningehalts und der Lignin-Zusammensetzung; (b) Verbesserung der Resistenz gegenueber Pathogenen, Pestiziden und verschiedenen Formen von Stress; (c) Verbesserung des Wachstums. Transgene Baeume haben darueber hinaus ein grosses Potential fuer andere Gebiete der angewandten Forschung und der Umweltforschung, so z.B. fuer die Produktion pflanzlicher Naturstoffe und die Phytosanierung belasteter Boeden. Um die Verwendung biotechnologischer Verfahren fuer diese und andere Zwecke zu implementieren, ist es dringend erforderlich, die Akzeptanz von 'genetic engineering' im allgemeinen und den Einsatz von Technologien zur Herstellung transgener Baeume im besonderen in der Oeffentlichkeit zu verbessern. (orig.)

  3. The biotechnology and bioeconomy landscape in Malaysia. (United States)

    Arujanan, Mahaletchumy; Singaram, Muthu


    Since 1990s Malaysia aspired to make biotechnology and bioeconomy as her engines of economic growth to utlise the abundance of natural resources and biodiversity. The public sector plays an integral role in developing the sector and various incentives are in place for the private sector to be actively involved and to forge collaboration with the public sector. The country launched its National Biotechnology Policy in 2005 and later launched its National Bioeconomy Programme in 2010 to become the first country in South East Asia and second in Asia after China to have such an initiative. Malaysia is also very proactive in its biosafety law and regulations and has most of the related legal instrument in place. A lot of success has been recorded since the inception of the National Biotechnology Policy in terms of job creation, contribution to GDP through biobusinesses and investment from foreign companies, but the sector is not spared from challenges too. Due to the nature of the discipline that is multidisciplinary and that requires huge amount of investment, expertise and political will, there are a lot of barriers before the country emerges as a bioeconomy player. This paper discusses the public policies, initiatives and funding mechanisms in place in Malaysia that drive its research, development and commercialisation in the area of biotechnology and bioeconomy. The authors also discuss the challenges faced in Malaysia in implementing the policies. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Biotechnology, genetic conservation and sustainable use of ...

    African Journals Online (AJOL)

    ... agriculture, silviculture, horticulture, environment and other important issues. This paper reviews some biotechnological tools that could be harnessed in promoting conservation and sustainable use of bioresources. Key words: Bioresources, genetic conservation, biotechnology. African Journal of Biotechnology Vol. 2 (12) ...

  5. Department of Biotechnology | Women in Science | Initiatives ...

    Indian Academy of Sciences (India)

    Department of Biotechnology. Department of Biotechnology Awards; National Woman Bioscientist Awards; Biotech Product & Process Development & Commercialization Awards; Awardees of National Bioscience Awards for Career Development. Department of Biotechnology Awardees. Year: 2012 Innovative Young ...

  6. Environmental biotechnology: concepts and applications

    National Research Council Canada - National Science Library

    Winter, Josef; Jördening, Hans-Joachim


    ... for the - development of new and environmentally improved production technologies with less purified substrates and generation of fewer by-products - bioproducts as non-toxic matters, mostly recyclable. Some impressive studies on industrial applications of biotechnology are published in two OECD reports, which summarized, that biotechnology has the potential o...

  7. A Case for Teaching Biotechnology (United States)

    Lazaros, Edward; Embree, Caleb


    Biotechnology is an innovative field that is consistently growing in popularity. It is important that students are taught about this technology at an early age, so they are motivated to join the field, or at least motivated to become informed citizens and consumers (Gonzalez, et al, 2013). An increase in biotechnology knowledge can result in an…

  8. Teachers' Concerns about Biotechnology Education (United States)

    Borgerding, Lisa A.; Sadler, Troy D.; Koroly, Mary Jo


    The impacts of biotechnology are found in nearly all sectors of society from health care and food products to environmental issues and energy sources. Despite the significance of biotechnology within the sciences, it has not become a prominent trend in science education. In this study, we seek to more fully identify biology teachers' concerns…

  9. Preface: Biocatalysis and Agricultural Biotechnology (United States)

    This book was assembled with the intent of bringing together current advances and in-depth reviews of biocatalysis and agricultural biotechnology with emphasis on bio-based products and agricultural biotechnology. Recent energy and food crises point out the importance of bio-based products from ren...

  10. Biotechnology Outlines for Classroom Use. (United States)

    Paolella, Mary Jane


    Presents a course outline for the study of biotechnology at the high school or college level. The outline includes definitions, a history, and the vocabulary of biotechnology. Presents a science experiment to analyze the effects of restriction enzymes on DNA. (MDH)

  11. Cultured Mast Cells from Patients with Asthma and Controls Respond with Similar Sensitivity to Recombinant Der P2-Induced, IgE-Mediated Activation

    DEFF Research Database (Denmark)

    Krohn, I K; Sverrild, A; Lund, G


    for mite allergen Der p2. The sensitivity of IgE-mediated activation of mast cells was investigated as FcεRI-mediated upregulation of CD63. Ten subjects were atopic, defined as a positive skin prick test (>3 mm) to at least one of ten common allergens. After activation with recombinant Der p2, the maximum...

  12. Activation of coagulation by administration of recombinant factor VIIa elicits interleukin 6 (IL-6) and IL-8 release in healthy human subjects

    NARCIS (Netherlands)

    de Jonge, Evert; Friederich, Philip W.; Vlasuk, George P.; Rote, William E.; Vroom, Margaretha B.; Levi, Marcel; van der Poll, Tom


    The activation of coagulation has been shown to contribute to proinflammatory responses in animal and in vitro experiments. Here we report that the activation of coagulation in healthy human subjects by the administration of recombinant factor VIIa also elicits a small but significant increase in

  13. Application of synchrotron-radiation-based x-ray microprobe techniques for the analysis of recombination activity of metals precipitated at Si/SiGe misfit dislocations

    CERN Document Server

    Vyvenko, O F; Istratov, A A; Weber, E R; Kittler, M; Seifert, W


    In this study we report application of synchrotron-radiation-based x-ray microprobe techniques (the x-ray-beam-induced current (XBIC) and x-ray fluorescence (mu-XRF) methods) to the analysis of the recombination activity and space distribution of copper and iron in the vicinity of dislocations in silicon/silicon-germanium structures. A combination of these two techniques enables one to study the chemical nature of the defects and impurities and their recombination activity in situ and to map metal clusters with a micron-scale resolution. XRF analysis revealed that copper formed clearly distinguishable precipitates along the misfit dislocations. A proportional dependence between the XBIC contrast and the number of copper atoms in the precipitates was established. In hydrogen-passivated iron-contaminated samples we observed clusters of iron precipitates which had no recombination activity detectable by the XBIC technique as well as iron clusters which were not completely passivated.

  14. Recombinant Nox4 cytosolic domain produced by a cell or cell-free base systems exhibits constitutive diaphorase activity

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Minh Vu Chuong, E-mail: [GREPI AGIM FRE 3405 CNRS-UJF, Universite Joseph Fourier, Grenoble (France); Zhang, Leilei [GREPI AGIM FRE 3405 CNRS-UJF, Universite Joseph Fourier, Grenoble (France); Lhomme, Stanislas; Mouz, Nicolas [PX' Therapeutics, MINATEC/Batiment de Haute Technologie, Grenoble (France); Lenormand, Jean-Luc [HumProTher Laboratory, TheReX/TIMC-IMAG UMR 5525 CNRS UJF, Universite Joseph Fourier, UFR de Medecine, Domaine de la Merci, 38706 La Tronche (France); Lardy, Bernard; Morel, Francoise [GREPI AGIM FRE 3405 CNRS-UJF, Universite Joseph Fourier, Grenoble (France)


    Highlights: Black-Right-Pointing-Pointer A comparison of two bacterial cell and cell-free protein expression systems is presented. Black-Right-Pointing-Pointer Soluble and active truncated Nox4 proteins are produced. Black-Right-Pointing-Pointer Nox4 has a constitutive diaphorase activity which is independent of cytosolic factors. Black-Right-Pointing-Pointer Isoform Nox4B is unable to initiate the first electronic transfer step. Black-Right-Pointing-Pointer Findings contribute to the understanding of the mechanism of Nox4 oxidase activity. -- Abstract: The membrane protein NADPH (nicotinamide adenine dinucleotide phosphate) oxidase Nox4 constitutively generates reactive oxygen species differing from other NADPH oxidases activity, particularly in Nox2 which needs a stimulus to be active. Although the precise mechanism of production of reactive oxygen species by Nox2 is well characterized, the electronic transfer throughout Nox4 remains unclear. Our study aims to investigate the initial electronic transfer step (diaphorase activity) of the cytosolic tail of Nox4. For this purpose, we developed two different approaches to produce soluble and active truncated Nox4 proteins. We synthesized soluble recombinant proteins either by in vitro translation or by bacteria induction. While proteins obtained by bacteria induction demonstrate an activity of 4.4 {+-} 1.7 nmol/min/nmol when measured against iodonitro tetrazolium chloride and 20.5 {+-} 2.8 nmol/min/nmol with cytochrome c, the soluble proteins produced by cell-free expression system exhibit a diaphorase activity with a turn-over of 26 {+-} 2.6 nmol/min/nmol when measured against iodonitro tetrazolium chloride and 48 {+-} 20.2 nmol/min/nmol with cytochrome c. Furthermore, the activity of the soluble proteins is constitutive and does not need any stimulus. We also show that the cytosolic tail of the isoform Nox4B lacking the first NADPH binding site is unable to demonstrate any diaphorase activity pointing out the

  15. Recombinant jacalin-like plant lectins are produced at high levels in Nicotiana benthamiana and retain agglutination activity and sugar specificity. (United States)

    Fernandez-del-Carmen, Asun; Juárez, Paloma; Presa, Silvia; Granell, Antonio; Orzáez, Diego


    The plant kingdom is an underexplored source of valuable proteins which, like plant lectins, display unique interacting specificities. Furthermore, plant protein diversity remains under-exploited due to the low availability and heterogeneity of native sources. All these hurdles could be overcome with recombinant production. A narrow phylogenetic gap between the native source and the recombinant platform is likely to facilitate proper protein processing and stability; therefore, the plant cell chassis should be specially suited for the recombinant production of many plant native proteins. This is illustrated herein with the recombinant production of two representatives of the plant jacalin-related lectin (JRLs) protein family in Nicotiana benthamiana using state-of-the-art magnICON technology. Mannose-specific Banlec JRL was produced at very high levels in leaves, reaching 1.0mg of purified protein per gram of fresh weight and showing strong agglutination activity. Galactose-specific jacalin JRL, with its complicated processing requirements, was also successfully produced in N. benthamiana at levels of 0.25 mg of purified protein per gram of fresh weight. Recombinant Jacalin (rJacalin) proved efficient in the purification of human IgA1, and was able to discriminate between plant-made and native IgA1 due to their differential glycosylation status. Together, these results show that the plant cell factory should be considered a primary option in the recombinant production of valuable plant proteins. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Polysome profiling of mAb producing CHO cell lines links translational control of cell proliferation and recombinant mRNA loading onto ribosomes with global and recombinant protein synthesis. (United States)

    Godfrey, Charlotte L; Mead, Emma J; Daramola, Olalekan; Dunn, Sarah; Hatton, Diane; Field, Ray; Pettman, Gary; Smales, C Mark


    mRNA translation is a key process determining growth, proliferation and duration of a Chinese hamster ovary (CHO) cell culture and influences recombinant protein synthesis rate. During bioprocessing, CHO cells can experience stresses leading to reprogramming of translation and decreased global protein synthesis. Here we apply polysome profiling to determine reprogramming and translational capabilities in host and recombinant monoclonal antibody-producing (mAb) CHO cell lines during batch culture. Recombinant cell lines with the fastest cell specific growth rates were those with the highest global translational efficiency. However, total ribosomal capacity, determined from polysome profiles, did not relate to the fastest growing or highest producing mAb cell line, suggesting it is the ability to utilise available machinery that determines protein synthetic capacity. Cell lines with higher cell specific productivities tended to have elevated recombinant heavy chain transcript copy numbers, localised to the translationally active heavy polysomes. The highest titre cell line was that which sustained recombinant protein synthesis and maintained high recombinant transcript copy numbers in polysomes. Investigation of specific endogenous transcripts revealed a number that maintained or reprogrammed into heavy polysomes, identifying targets for potential cell engineering or those with 5' untranslated regions that might be utilised to enhance recombinant transcript translation. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Progress and biotechnological prospects in fish transgenesis. (United States)

    Tonelli, Fernanda M P; Lacerda, Samyra M S N; Tonelli, Flávia C P; Costa, Guilherme M J; de França, Luiz Renato; Resende, Rodrigo R


    The history of transgenesis is marked by milestones such as the development of cellular transdifferentiation, recombinant DNA, genetic modification of target cells, and finally, the generation of simpler genetically modified organisms (e.g. bacteria and mice). The first transgenic fish was developed in 1984, and since then, continuing technological advancements to improve gene transfer have led to more rapid, accurate, and efficient generation of transgenic animals. Among the established methods are microinjection, electroporation, lipofection, viral vectors, and gene targeting. Here, we review the history of animal transgenesis, with an emphasis on fish, in conjunction with major developments in genetic engineering over the past few decades. Importantly, spermatogonial stem cell modification and transplantation are two common techniques capable of revolutionizing the generation of transgenic fish. Furthermore, we discuss recent progress and future biotechnological prospects of fish transgenesis, which has strong applications for the aquaculture industry. Indeed, some transgenic fish are already available in the current market, validating continued efforts to improve economically important species with biotechnological advancements. Copyright © 2017. Published by Elsevier Inc.

  18. Egyptian Journal of Biotechnology: Journal Sponsorship

    African Journals Online (AJOL)

    Egyptian Journal of Biotechnology: Journal Sponsorship. Journal Home > About the Journal > Egyptian Journal of Biotechnology: Journal Sponsorship. Log in or Register to get access to full text downloads.

  19. Nigerian Journal of Biotechnology: Journal Sponsorship

    African Journals Online (AJOL)

    Nigerian Journal of Biotechnology: Journal Sponsorship. Journal Home > About the Journal > Nigerian Journal of Biotechnology: Journal Sponsorship. Log in or Register to get access to full text downloads.

  20. Immunoregulatory activities of human immunodeficiency virus (HIV) proteins: Effect of HIV recombinant and synthetic peptides on immunoglobulin synthesis and proliferative responses by normal lymphocytes

    International Nuclear Information System (INIS)

    Nair, M.P.N.; Pottathil, R.; Heimer, E.P.; Schwartz, S.A.


    Recombinant and synthetic peptides corresponding to envelope proteins of the human immunodeficiency virus (HIV) were examined for their effects on the activities of lymphocytes from normal donors in vitro. Although lymphocytes cultured with env-gag peptides produced significant amounts of IgG, addition of env-gag peptides to a pokeweed mitogen-induced B-cell activation system resulted in suppression of immunoglobulin synthesis by normal lymphocytes. Recombinant antigens, env-gag and env-80 dihydrofolate reductase (DHFR), produced a substantial proliferative response by peripheral blood mononuclear cells (PBMC) as determined by [ 3 H]thymidine incorporation. PBMC precultured with HIV synthetic peptide env 578-608 also manifested significant proliferative responses as compared to control cultures. CD3 + lymphocytes precultured with recombinant HIV antigens, env-gag and env-80 DHFR, and synthetic HIV peptide, env 487-511, showed moderate but significant proliferative responses. Both recombinant antigens and synthetic peptides also produced a dose-dependent stimulatory effect on proliferation by CD3 - lymphocytes. These studies demonstrate that recombinant and synthetic peptides of the HIV genome express immunoregulatory T- and B-cell epitopes. Identification of unique HIV epitopes with immunogenic and immunoregulatory activities is necessary for the development of an effective vaccine against HIV infection

  1. Activity in mice of recombinant BCG-EgG1Y162 vaccine for Echinococcus granulosus infection. (United States)

    Ma, Xiumin; Zhao, Hui; Zhang, Fengbo; Zhu, Yuejie; Peng, Shanshan; Ma, Haimei; Cao, Chunbao; Xin, Yan; Yimiti, Delixiati; Wen, Hao; Ding, Jianbing


    Cystic hydatid disease is a zoonotic parasitic disease caused by Echinococcus granulosus which is distributed worldwide. The disease is difficult to treat with surgery removal is the only cure treatment. In the high endemic areas, vaccination of humans is believed a way to protect communities from the disease. In this study we vaccinated BALB/c mice with rBCG-EgG1Y162, and then detected the level of IgG and IgE specifically against the recombinant protein by ELISA, rBCG-EgG1Y162 induced strong and specific cellular and humoral immune responses. In vitro study showed that rBCG-EgG1Y162 vaccine not only promote splenocytes proliferation but also active T cell. In addition, the rBCG-EgG1Y162 induced a protection in the mice against secondary infection of Echinococcus granulosus.

  2. The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains

    DEFF Research Database (Denmark)

    Jeppsson, M.; Johansson, B.; Jensen, Peter Ruhdal


    Disruption of the ZWF1 gene encoding glucose-6-phosphate dehydrogenase (G6PDH) has been shown to reduce the xylitol yield and the xylose consumption in the xylose-utilizing recombinant Saccharomyces cerevisiae strain TMB3255. In the present investigation we have studied the influence of different...... consumption, respectively, compared with the ZWF1-disrupted strain. Both strains exhibited decreased xylitol yields (0.13 and 0.19 g/g xylose) and enhanced ethanol yields (0.36 and 0.34 g/g xylose) compared with the control strain TMB3001 (0.29 g xylitol/g xylose, 0.31 g ethanol/g xylose). Cytoplasmic...... transhydrogenase (TH) from Azotobacter vinelandii has previously been shown to transfer NADPH and NAD(+) into NADP(+) and NADH, and TH-overproduction resulted in lower xylitol yield and enhanced glycerol yield during xylose utilization. Strains with low G6PDH-activity grew slower in a lignocellulose hydrolysate...

  3. Biotechnological advances in Lilium. (United States)

    Bakhshaie, Mehdi; Khosravi, Solmaz; Azadi, Pejman; Bagheri, Hedayat; van Tuyl, Jaap M


    Modern powerful techniques in plant biotechnology have been developed in lilies (Lilium spp., Liliaceae) to propagate, improve and make new phenotypes. Reliable in vitro culture methods are available to multiply lilies rapidly and shorten breeding programs. Lilium is also an ideal model plant to study in vitro pollination and embryo rescue methods. Although lilies are recalcitrant to genetic manipulation, superior genotypes are developed with improved flower colour and form, disease resistance and year round forcing ability. Different DNA molecular markers have been developed for rapid indirect selection, genetic diversity evaluation, mutation detection and construction of Lilium linkage map. Some disease resistance-QTLs are already mapped on the Lilium linkage map. This review presents latest information on in vitro propagation, genetic engineering and molecular advances made in lily.


    NARCIS (Netherlands)

    van Goor, Harry; de Graaf, JS; Kooi, K; Sluiter, WJ; Bom, VJJ; van der Meer, J; Bleichrodt, RP


    BACKGROUND: During generalized peritonitis, intraabdominal fibrin deposition is stimulated whereas fibrinolytic activity is reduced, which predisposes intra-abdominal abscess formation. We investigated the effects of increasing the intra-abdominal fibrinolytic activity on abscess formation by

  5. Scalable Production of Recombinant Membrane Active Peptides and Its Potential as a Complementary Adjunct to Conventional Chemotherapeutics.

    Directory of Open Access Journals (Sweden)

    Hussin A Rothan

    Full Text Available The production of short anticancer peptides in recombinant form is an alternative method for costly chemical manufacturing. However, the limitations of host toxicity, bioactivity and column purification have impaired production in mass quantities. In this study, short cationic peptides were produced in aggregated inclusion bodies by double fusion with a central protein that has anti-cancer activity. The anticancer peptides Tachiplicin I (TACH and Latarcin 1 (LATA were fused with the N- and C-terminus of the MAP30 protein, respectively. We successfully produced the recombinant TACH-MAP30-LATA protein and MAP30 alone in E. coli that represented 59% and 68% of the inclusion bodies. The purified form of the inclusion bodies was prepared by eliminating host cell proteins through multiple washing steps and semi-solubilization in alkaline buffer. The purified active protein was recovered by inclusive solubilization at pH 12.5 in the presence of 2 M urea and refolded in alkaline buffer containing oxides and reduced glutathione. The peptide-fusion protein showed lower CC50 values against cancer cells (HepG2, 0.35±0.1 μM and MCF-7, 0.58±0.1 μM compared with normal cells (WRL68, 1.83±0.2 μM and ARPE19, 2.5±0.1 μM with outstanding activity compared with its individual components. The presence of the short peptides facilitated the entry of the peptide fusion protein into cancer cells (1.8 to 2.2-fold compared with MAP30 alone through direct interaction with the cell membrane. The cancer chemotherapy agent doxorubicin showed higher efficiency and selectivity against cancer cells in combination with the peptide- fusion protein. This study provides new data on the mass production of short anticancer peptides as inclusion bodies in E. coli by fusion with a central protein that has similar activity. The product was biologically active against cancer cells compared with normal cells and enhanced the activity and selective delivery of an anticancer

  6. A bibliometric assessment of ASEAN collaboration in plant biotechnology

    KAUST Repository

    Payumo, Jane


    This study draws on publication and citation data related to plant biotechnology from a 10-year (2004–2013) period to assess the research performance, impact, and collaboration of member states of the Association of Southeast Asian Nations (ASEAN). Plant biotechnology is one of the main areas of cooperation between ASEAN member states and among the research areas promoted to achieve regional food security and sustainable development. In general, findings indicate increased scientific output, influence, and overall collaboration of ASEAN countries in plant biotechnology over time. Research performance and collaboration (domestic, regional, and international) of the region in plant biotechnology are linked to the status of the economic development of each member country. Thailand produced the most publications of the ASEAN member states while Singapore had the highest influence as indicated by its citation activity in plant biotechnology among the ASEAN countries. Domestic and international collaborations on plant biotechnology are numerous. Regional collaboration or partnership among ASEAN countries was, however, was found to be very limited, which is a concern for the region’s goal of economic integration and science and technology cooperation. More studies using bibliometric data analysis need to be conducted to understand plant biotechnology cooperation and knowledge flows between ASEAN countries. © 2015 Akadémiai Kiadó, Budapest, Hungary

  7. Presence of estrogenic activity from emission of fossil fuel combustion as detected by a recombinant yeast bioassay (United States)

    Wang, Jingxian; Wu, Wenzhong; Henkelmann, Bernhard; You, Li; Kettrup, Antonius; Schramm, Karl-Werner

    Estrogenic activities of emission samples generated by fossil fuel combustion were investigated with human estrogen receptor (ER) recombinant yeast bioassay. The results showed that there were weak but clear estrogenic activities in combustion emissions of fossil fuels including coal, petroleum, and diesel. The estrogenic relative potency (RP) of fossil fuel combustion was the highest in petroleum-fired car, followed by coal-fired stove, diesel-fired agrimotor, coal-fired electric power station. On the other hand, the estrogenic relative inductive efficiency (RIE) was the highest in coal-fired stove and coal-fired electric power station, followed by petroleum-fired car and diesel-fired agrimotor. The estrogenic activities in the sub-fractions from chromatographic separation of emitted materials were also determined. The results indicated that different chemical fractions in these complex systems have different estrogenic potencies. The GC/MS analysis of the emission showed that there were many aromatic carbonyls, big molecular alcohol, PAHs and derivatives, and substituted phenolic compounds and derivatives which have been reported as environmental estrogens. The existence of estrogenic substances in fossil fuel combustion demands further investigation of their potential adverse effects on human and on the ecosystem. The magnitude of pollution due to global usage of fossil fuels makes it imperative to understand the issue of fossil fuel-derived endocrine activities and the associated health risks, particularly the aggregated risks stemmed from exposure to toxicants of multiple sources.

  8. Antiviral cationic peptides as a strategy for innovation in global health therapeutics for dengue virus: high yield production of the biologically active recombinant plectasin peptide. (United States)

    Rothan, Hussin A; Mohamed, Zulqarnain; Suhaeb, Abdulrazzaq M; Rahman, Noorsaadah Abd; Yusof, Rohana


    Dengue virus infects millions of people worldwide, and there is no vaccine or anti-dengue therapeutic available. Antimicrobial peptides have been shown to possess effective antiviral activity against various viruses. One of the main limitations of developing these peptides as potent antiviral drugs is the high cost of production. In this study, high yield production of biologically active plectasin peptide was inexpensively achieved by producing tandem plectasin peptides as inclusion bodies in E. coli. Antiviral activity of the recombinant peptide towards dengue serotype-2 NS2B-NS3 protease (DENV2 NS2B-NS3pro) was assessed as a target to inhibit dengue virus replication in Vero cells. Single units of recombinant plectasin were collected after applying consecutive steps of refolding, cleaving by Factor Xa, and nickel column purification to obtain recombinant proteins of high purity. The maximal nontoxic dose (MNTD) of the recombinant peptide against Vero cells was 20 μM (100 μg/mL). The reaction velocity of DENV2 NS2B-NS3pro decreased significantly after increasing concentrations of recombinant plectasin were applied to the reaction mixture. Plectasin peptide noncompetitively inhibited DENV2 NS2B-NS3pro at Ki value of 5.03 ± 0.98 μM. The percentage of viral inhibition was more than 80% at the MNTD value of plectasin. In this study, biologically active recombinant plectasin which was able to inhibit dengue protease and viral replication in Vero cells was successfully produced in E. coli in a time- and cost- effective method. These findings are potentially important in the development of potent therapeutics against dengue infection.

  9. Business Development Capability: Insights from the Biotechnology Industry


    Lorenzi, Valeria; Sørensen, Hans Eibe


    Business development tasks and processes serves to improve firms’ innovation efforts. Such business development activities are found and refined in the biotechnology industry, but have received remarkable little attention in the academic literature. The aim of this paper is to explore the organization of business development on the basis of existing empirical literature and three case studies from the biotechnology industry. We adopt the dynamic capabilities perspective to create a theoretica...

  10. Bioceres: AG Biotechnology from Argentina

    Directory of Open Access Journals (Sweden)

    Roberto Feeney


    Full Text Available In this case we present a business decision-making situation in which the CEO of an Argentine Ag Biotech company, Bioceres, has to decide the best way to commercialize a new drought-tolerant transgenic technology. The company was founded by twenty three farmers, who shared a common dream that Argentina could become a benchmark in the development of Ag biotechnology. The case has strategic and financial implications, as well as decision-making situation involving a joint venture with an American biotechnology company. It also introduces to discussion the business models of Ag biotechnology companies in developing countries.

  11. Activation of Recombinantly Expressed l-Amino Acid Oxidase from Rhizoctonia solani by Sodium Dodecyl Sulfate

    Directory of Open Access Journals (Sweden)

    Katharina Hahn


    Full Text Available l-Amino acid oxidases (l-AAO catalyze the oxidative deamination of l-amino acids to the corresponding α-keto acids. The non-covalently bound cofactor FAD is reoxidized by oxygen under formation of hydrogen peroxide. We expressed an active l-AAO from the fungus Rhizoctonia solani as a fusion protein in E. coli. Treatment with small amounts of the detergent sodium dodecyl sulfate (SDS stimulated the activity of the enzyme strongly. Here, we investigated whether other detergents and amphiphilic molecules activate 9His-rsLAAO1. We found that 9His-rsLAAO1 was also activated by sodium tetradecyl sulfate. Other detergents and fatty acids were not effective. Moreover, effects of SDS on the oligomerization state and the protein structure were analyzed. Native and SDS-activated 9His-rsLAAO1 behaved as dimers by size-exclusion chromatography. SDS treatment induced an increase in hydrodynamic radius as observed by size-exclusion chromatography and dynamic light scattering. The activated enzyme showed accelerated thermal inactivation and an exposure of additional protease sites. Changes in tryptophan fluorescence point to a more hydrophilic environment. Moreover, FAD fluorescence increased and a lower concentration of sulfites was sufficient to form adducts with FAD. Taken together, these data point towards a more open conformation of SDS-activated l-amino acid oxidase facilitating access to the active site.

  12. The impact of respiration and oxidative stress response on recombinant α-amylase production by Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Martinez Ruiz, José Luis; Meza, Eugenio; Petranovic, Dina


    Studying protein production is important for fundamental research on cell biology and applied research for biotechnology. Yeast Saccharomyces cerevisiae is an attractive workhorse for production of recombinant proteins as it does not secrete many endogenous proteins and it is therefore easy...... to purify a secreted product. However, recombinant production at high rates represents a significant metabolic burden for the yeast cells, which results in oxidative stress and ultimately affects the protein production capacity. Here we describe a method to reduce the overall oxidative stress...... by overexpressing the endogenous HAP1 gene in a S. cerevisiae strain overproducing recombinant α-amylase. We demonstrate how Hap1p can activate a set of oxidative stress response genes and meanwhile contribute to increase the metabolic rate of the yeast strains, therefore mitigating the negative effect of the ROS...

  13. Yeast homologous recombination-based promoter engineering for the activation of silent natural product biosynthetic gene clusters. (United States)

    Montiel, Daniel; Kang, Hahk-Soo; Chang, Fang-Yuan; Charlop-Powers, Zachary; Brady, Sean F


    Large-scale sequencing of prokaryotic (meta)genomic DNA suggests that most bacterial natural product gene clusters are not expressed under common laboratory culture conditions. Silent gene clusters represent a promising resource for natural product discovery and the development of a new generation of therapeutics. Unfortunately, the characterization of molecules encoded by these clusters is hampered owing to our inability to express these gene clusters in the laboratory. To address this bottleneck, we have developed a promoter-engineering platform to transcriptionally activate silent gene clusters in a model heterologous host. Our approach uses yeast homologous recombination, an auxotrophy complementation-based yeast selection system and sequence orthogonal promoter cassettes to exchange all native promoters in silent gene clusters with constitutively active promoters. As part of this platform, we constructed and validated a set of bidirectional promoter cassettes consisting of orthogonal promoter sequences, Streptomyces ribosome binding sites, and yeast selectable marker genes. Using these tools we demonstrate the ability to simultaneously insert multiple promoter cassettes into a gene cluster, thereby expediting the reengineering process. We apply this method to model active and silent gene clusters (rebeccamycin and tetarimycin) and to the silent, cryptic pseudogene-containing, environmental DNA-derived Lzr gene cluster. Complete promoter refactoring and targeted gene exchange in this "dead" cluster led to the discovery of potent indolotryptoline antiproliferative agents, lazarimides A and B. This potentially scalable and cost-effective promoter reengineering platform should streamline the discovery of natural products from silent natural product biosynthetic gene clusters.

  14. [Antiviral activity of recombinant interferon-alpha-2b in combination with certain antioxidant]. (United States)

    Vasil'ev, A N; Deriabin, P G; Galegov, G A


    In vitro activity of interferon-alpha-2b in combination with various antioxidants against the influenza virus and Herpes simplex was studied. The standard strains and a clinical strain of Herpes simplex isolated from a patient with resistance to acyclovir were used. The in vitro studie showed that antioxidants, such as alpho-tocoferol acetate (vitamin E), Unithiol and ascorbic acid had a significant antiinfluenzae and antiherpetic action on the influenza virus A/H5N1 and Herpes simplex variants. They protected up to 100% of the cell monolayer from the virus cytopathic effect. The taurin solutions had no antiviral activity irrespective of the infection dose. Combinations of interferon-alpha-2b with alpha-tocopherol acetate (vitamin E), Unithiol or ascorbic acid showed a significant synergistic effect: the antiviral activity of interferon increased several times. The antiinfluenza activity of interferon-a-2b in the presence of various concentrations of taurin did not change.

  15. Endogenous and recombinant type I interferons and disease activity in multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, Finn; Krakauer, Martin; Limborg, Signe


    Although treatment of multiple sclerosis (MS) with the type I interferon (IFN) IFN-ß lowers disease activity, the role of endogenous type I IFN in MS remains controversial. We studied CD4+ T cells and CD4+ T cell subsets, monocytes and dendritic cells by flow cytometry and analysed the relationship...... with endogenous type I IFN-like activity, the effect of IFN-ß therapy, and clinical and magnetic resonance imaging (MRI) disease activity in MS patients. Endogenous type I IFN activity was associated with decreased expression of the integrin subunit CD49d (VLA-4) on CD4+CD26(high) T cells (Th1 helper cells......), and this effect was associated with less MRI disease activity. IFN-ß therapy reduced CD49d expression on CD4+CD26(high) T cells, and the percentage of CD4+CD26(high) T cells that were CD49d(high) correlated with clinical and MRI disease activity in patients treated with IFN-ß. Treatment with IFN-ß also increased...


    Directory of Open Access Journals (Sweden)

    N. A. Matvieieva


    Full Text Available The review focused on the data concerning current state in the field of Compositae “hairy” roots and transgenic plants construction using A.tumefaciens- and A. rhizogenes-mediated transformation to obtain biologically active compounds, including recombinant proteins. The article presents data on the results of genetic transformation of Cichorium intybus, Lactuca sativa, Artemisia annua, Artemisia vulgaris, Calendula officinalis, Withania somnifera and other Compositae plants as well as studies on the artemisinin, flavonoids, polyphenols, fructans and other compounds accumulation in transgenic plants and roots. The data show that the use of biotechnological approaches for construction of "hairy" roots and transgenic plants with new features are of great interest. The possibility of increase in the accumulation of naturally synthesized bioactive compounds and recombinant proteins production via A. tumefaciens and A. rhizogenes-mediated transformation have been shown. In vitro cultivation of transgenic plants characterized by high level of bioactive compounds accumulation and synthesis of recombinant proteins makes it possible to obtain guaranteed pure raw material. Using of biotechnological approaches preserved natural populations of plants is particularly important for rare and endangered plant species.

  17. Public attitude towards modern biotechnology | Amin | African ...

    African Journals Online (AJOL)

    This article reviews the literature related to the main idea of the study, rooting from the definition of biotechnology, global status of commercialized biotechnology products, and global and local public attitudes towards modern biotechnology and past models for attitude towards modern biotechnology. The first section of the ...

  18. Proceedings of the International Symposium on Biotechnology

    International Nuclear Information System (INIS)


    This is a book of abstracts of oral communications and posters that were presented during the International Symposium on Biotechnology that was held in Sfax, Tunisia from May 4th to 8th, 2008. The following themes were covered : - Biotechnology for animal and human health and biopharmaceuticals; - Microbial and environmental biotechnology; - Agricultural, Food and marine biotechnology

  19. Recombinant tissue-type plasminogen activator and immediate angioplasty in acute myocardial infarction. : One-year follow up. The European Cooperative Study Group

    NARCIS (Netherlands)

    A.E.R. Arnold (Alfred); M.L. Simoons (Maarten); D.P. de Bono (David); J.G.P. Tijssen (Jan); P.W.J.C. Serruys (Patrick); M. Verstraete (Marc); J. Lubsen (Jacob); F.J.J. van de Werf (Frans)


    textabstractBACKGROUND. The European Cooperative Study Group conducted two randomized trials in patients with suspected myocardial infarction to assess the effect of 100 mg single-chain recombinant tissue-type plasminogen activator (rt-PA, alteplase) on enzymatic infarct size, left ventricular

  20. Reasons for the lack of benefit of immediate angioplasty during recombinant tissue plasminogen activator therapy for acute myocardial infarction: a regional wall motion analysis

    NARCIS (Netherlands)

    P.W.J.C. Serruys (Patrick); W.R. Rutsch (Wolfgang); M.L. Simoons (Maarten); D.P. de Bono (David); J.G.P. Tijssen (Jan); J. Lubsen (Jacob); M. Verstraete (Marc); A.E.R. Arnold (Alfred)


    textabstractRegional ventricular wall motion analysis utilizing three different methods was performed on predischarge left ventriculograms from 291 of 367 patients enrolled in a randomized trial of single chain recombinant tissue-type plasminogen activator (rt-PA), aspirin and heparin with and

  1. The biological activity of a recombinantly expressed (His)(6)-tagged peanut allergen (rAra h 1) is unaffected by endotoxin removal

    DEFF Research Database (Denmark)

    Jensen, Louise Bjerremann; Torp, Anna Maria; Andersen, Sven Bode


    The application of recombinant (His)(6)-tagged proteins in cell culture assays is associated with problems due to lipopolysaccharide (LPS) contamination. LPS stimulates cells of the immune system, thereby masking antigen-specific activation of T cells. Due to the affinity of LPS for histidine it ...

  2. Reasons for the lack of benefit of immediate angioplasty during recombinant tissue plasminogen activator therapy for acute myocardial infarction: a regional wall motion analysis. European Cooperative Study Group

    NARCIS (Netherlands)

    Arnold, A. E.; Serruys, P. W.; Rutsch, W.; Simoons, M. L.; de Bono, D. P.; Tijssen, J. G.; Lubsen, J.; Verstraete, M.


    Regional ventricular wall motion analysis utilizing three different methods was performed on predischarge left ventriculograms from 291 of 367 patients enrolled in a randomized trial of single chain recombinant tissue-type plasminogen activator (rt-PA), aspirin and heparin with and without immediate

  3. Increased volume of distribution for recombinant activated factor VII and longer plasma-derived factor VII half-life may explain their long lasting prophylactic effect

    NARCIS (Netherlands)

    Mathijssen, N.C.J.; Masereeuw, R.; Holme, P.A.; Kraaij, M.G.J. van; Laros, B.A.P.; Peyvandi, F.; Heerde, W.L. van


    INTRODUCTION: Prophylaxis with plasma-derived or recombinant activated factor VII is beneficial in severe factor VII deficiency. To understand why prophylactic treatment with both products is efficacious, we conducted a pharmacokinetic study. MATERIALS AND METHODS: Ten factor VII deficient patients

  4. Independent Biotechnology: The Innovation-Regulation Dilemma

    Energy Technology Data Exchange (ETDEWEB)

    Althouse, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Prosnitz, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Velsko, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    The Center for Global Security Research at Lawrence Livermore National Laboratory convened a workshop on August 19, 2016 to consider “Independent Biotechnology: The Innovation-­Regulation Dilemma”. The topic was motivated by the observation that non-­government funded biotechnology research and development activities have grown and diversified tremendously over the past decade. This sector encompasses a broad range of actors and activities: individuals with private laboratories, community “hackerspaces,” biotechnology incubators, and individual startups. Motivations and aspirations are diverse and include such things as personal curiosity, community education, the invention of new products or services, and even the realization of certain economic, political, or social goals. One driving force is the “democratization” of ever more powerful biological technologies, allowing individual citizens and groups access to capabilities that have traditionally only been available to researchers in universities, research institutes, national laboratories, and large commercial concerns. Another is the rise of alternative financing mechanisms such as “crowdsourcing,” which ostensibly provide greater freedom to innovate, and greater public visibility, but entail looser management oversight and transparency.

  5. Environmental biotechnology for sustainability. (United States)

    Verstraete, W


    In the post-industrial society, waste management is integrated in the concepts of responsibility, reliability and continuity. Therefore industry and public office are obliged to implement the concepts of structured environmental management systems more and more strictly. The endpoints are dependent on the type of wastes and on the priorities set by society. They will with time evolve towards more restriction of all kinds of emissions. This will require increasing inputs of labour, information technology and energy into waste treatment and overall waste management. Particularly for aqueous and gaseous wastes that are not contained, continuously improving treatment with maximum re-use and minimum dissipation in the ecosphere will be the trend of the future. Moreover, the public in general and the individual citizen in particular will request to have (bio)assays to monitor regularly and autonomously the quality of his environment. Such advanced waste management requires considerable energy input. It thus may come in conflict with current concerns about CO2-emissions and the Kyoto agreements. Innovative approaches to combine waste management and the International Climate Change Partnership (ICCP) directives, for instance by implementing biological carbon sequestration, are therefore warranted. Biotechnology has a major role to play particularly in terms of advanced treatment down to ng/l-levels and in terms of validating the quality of the environment by means of powerful and intelligent bio-monitoring devices.

  6. A convenient method for preparation of biologically active recombinant CHH of the kuruma prawn, Marsupenaeus japonicus, using the bacterial expression system. (United States)

    Nagai, Chiaki; Asazuma, Hideaki; Nagata, Shinji; Ohira, Tsuyoshi; Nagasawa, Hiromichi


    Crustacean hyperglycemic hormone (CHH) not only plays an important role in the modulation of hemolymph glucose level but also functions in other biological events including molting, reproduction and stress response. Of the six CHHs characterized in Marsupenaeus japonicus, an expression system for recombinant Pej-SGP-VII (rPej-SGP-VII-amide) has not yet been established. Here, we established a procedure using a Nus-tag for solubilization, thereby soluble and biologically active rPej-SGP-VII-amide could successfully be obtained by a simpler procedure than previous ones used for producing other recombinant Pej-SGPs (Pej-SGP-I, III and IV). It was found that rPej-SGP-VII-amide thus obtained had the correct arrangement of intramolecular disulfide bonds and helix-rich secondary structure. The established expression system for rPej-SGP-VII-amide may be applicable for the preparation of other recombinant CHHs.

  7. Biotechnological exploitation of Tetrapisispora phaffii killer toxin: heterologous production in Komagataella phaffii (Pichia pastoris). (United States)

    Chessa, Rossella; Landolfo, Sara; Ciani, Maurizio; Budroni, Marilena; Zara, Severino; Ustun, Murat; Cakar, Zeynep Petek; Mannazzu, Ilaria


    The use of natural antimicrobials from plants, animals and microorganisms to inhibit the growth of pathogenic and spoilage microorganisms is becoming more frequent. This parallels the increased consumer interest towards consumption of minimally processed food and 'greener' food and beverage additives. Among the natural antimicrobials of microbial origin, the killer toxin produced by the yeast Tetrapisispora phaffii, known as Kpkt, appears to be a promising natural antimicrobial agent. Kpkt is a glycoprotein with β-1,3-glucanase and killer activity, which induces ultrastructural modifications to the cell wall of yeast of the genera Kloeckera/Hanseniaspora and Zygosaccharomyces. Moreover, Kpkt maintains its killer activity in grape must for at least 14 days under winemaking conditions, thus suggesting its use against spoilage yeast in wine making and the sweet beverage industry. Here, the aim was to explore the possibility of high production of Kpkt for biotechnological exploitation. Molecular tools for heterologous production of Kpkt in Komagataella phaffii GS115 were developed, and two recombinant clones that produce up to 23 mg/L recombinant Kpkt (rKpkt) were obtained. Similar to native Kpkt, rKpkt has β-glucanase and killer activities. Moreover, it shows a wider spectrum of action with respect to native Kpkt. This includes effects on Dekkera bruxellensis, a spoilage yeast of interest not only in wine making, but also for the biofuel industry, thus widening the potential applications of this rKpkt.

  8. Characterization of the double stranded RNA dependent RNase activity associated with recombinant reverse transcriptases.


    Ben-Artzi, H; Zeelon, E; Le-Grice, S F; Gorecki, M; Panet, A


    An in situ gel assay was applied to the study of double stranded RNA dependent RNase activity associated with reverse transcriptase (RT) of HIV-1 and murine leukemia virus. Polyacrylamide gels containing [32P] RNA/RNA substrate were used for electrophoresis of proteins under denaturing conditions. The proteins were renatured and in situ enzymatic degradation of 32P-RNA/RNA was followed. E. coli RNaseIII, but not E. coli RNaseH, was active in this in situ gel assay, indicating specificity of t...

  9. Role of the recombinant non-integrin platelet collagen receptor P65 on platelet activation induced by convulxin. (United States)

    Francischetti, I M; Chiang, T M; Guimarães, J A; Bon, C


    Convulxin (Cvx) isolated from Crotalus durissus terrificus venom selectively binds with a high affinity to platelets and induces platelet aggregation by a mechanism that resembles that induced by collagen. Taking advantage that P65 has been recently cloned and expressed as a recombinant soluble protein (rec-P65), we examined the role of this non-integrin collagen receptor in platelet activation induced by Cvx. Rec-P65 blocked platelet adhesion to collagen-coated surfaces and inhibited platelet aggregation and ATP secretion induced by type I collagen. On the other hand, rec-P65 did not inhibit platelet aggregation and ATP secretion induced by Cvx, and it did not affect platelet adhesion to Cvx. In addition, ligand-blotting indicated that the Cvx binding to the collagen receptor GPVI was preserved in the presence of rec-P65. These observations indicate that P65 does not play a significant role in platelet activation by Cvx; in contrast, platelet response to collagen involves multiple receptors. Copyright 2000 Academic Press.

  10. Neuronal targeting, internalization, and biological activity of a recombinant atoxic derivative of botulinum neurotoxin A (United States)

    Botulinum neurotoxins (BoNT) have the unique capacity to cross epithelial barriers, target neuromuscular junctions, and translocate active metalloprotease component to the cytosol of motor neurons. We have taken advantage of the molecular carriers responsible for this trafficking to create a family ...

  11. Recombinant host cells and nucleic acid constructs encoding polypeptides having cellulolytic enhancing activity (United States)

    Schnorr, Kirk; Kramer, Randall


    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  12. TPM analyses reveal that FtsK contributes both to the assembly and the activation of the XerCD-dif recombination synapse. (United States)

    Diagne, Cheikh Tidiane; Salhi, Maya; Crozat, Estelle; Salomé, Laurence; Cornet, Francois; Rousseau, Philippe; Tardin, Catherine


    Circular chromosomes can form dimers during replication and failure to resolve those into monomers prevents chromosome segregation, which leads to cell death. Dimer resolution is catalysed by a highly conserved site-specific recombination system, called XerCD-dif in Escherichia coli. Recombination is activated by the DNA translocase FtsK, which is associated with the division septum, and is thought to contribute to the assembly of the XerCD-dif synapse. In our study, direct observation of the assembly of the XerCD-dif synapse, which had previously eluded other methods, was made possible by the use of Tethered Particle Motion, a single molecule approach. We show that XerC, XerD and two dif sites suffice for the assembly of XerCD-dif synapses in absence of FtsK, but lead to inactive XerCD-dif synapses. We also show that the presence of the γ domain of FtsK increases the rate of synapse formation and convert them into active synapses where recombination occurs. Our results represent the first direct observation of the formation of the XerCD-dif recombination synapse and its activation by FtsK.

  13. Expression and biological activity of two recombinant polypeptides related to subunit 1 of the interferon-a receptor

    Directory of Open Access Journals (Sweden)

    S. Yoon


    Full Text Available Abnormal production of interferon alpha (IFN-a has been found in certain autoimmune diseases and can be also observed after prolonged therapy with IFN-a. IFN-a can contribute to the pathogenesis of allograft rejection in bone marrow transplants. Therefore, the development of IFN-a inhibitors as a soluble receptor protein may be valuable for the therapeutic control of these diseases. We have expressed two polypeptides encoding amino acids 93-260 (P1 and 261-410 (P2 of the extracellular domain of subunit 1 of the interferon-a receptor (IFNAR 1-EC in E. coli. The activities of the recombinant polypeptides and of their respective antibodies were evaluated using antiproliferative and antiviral assays. Expression of P1 and P2 polypeptides was achieved by transformation of cloned plasmid pRSET A into E. coli BL21(DE3pLysS and by IPTG induction. P1 and P2 were purified by serial sonication steps and by gel filtration chromatography with 8 M urea and refolded by dialysis. Under reducing SDS-PAGE conditions, the molecular weight of P1 and P2 was 22 and 17 kDa, respectively. Polyclonal anti-P1 and anti-P2 antibodies were produced in mice. P1 and P2 and their respective polyclonal antibodies were able to block the antiproliferative activity of 6.25 nM IFN-aB on Daudi cells, but did not block IFN-aB activity at higher concentrations (>6.25 nM. On the other hand, the polypeptides and their respective antibodies did not inhibit the antiviral activity of IFN-aB on Hep 2/c cells challenged with encephalomyocarditis virus.

  14. Peptidoglycan degrading activity of the broad-range Salmonella bacteriophage S-394 recombinant endolysin. (United States)

    Legotsky, Sergey A; Vlasova, Ksenia Yu; Priyma, Anastasia D; Shneider, Mikhail M; Pugachev, Vladimir G; Totmenina, Olga D; Kabanov, Alexander V; Miroshnikov, Konstantin A; Klyachko, Natalia L


    The use of bacteriophage endolysins as specific antibacterial agents is a prospective strategy to treat bacterial infections caused by antibiotic-resistant pathogens. In case of Gram-negative species this strategy has limited applications since outer membrane shields the enzyme target and prevents bacteria lysis. We aimed to obtain and characterize the endolysin of the newly discovered anti-Salmonella bacteriophage S-394 (Lys394) and to choose an appropriate permeabilizing agent to disrupt Escherichia coli cells suspended in buffer solution and grown on agar surface. Lys394 synthesized in E. coli C41(DE3) was obtained as an electrophoretically homogenous protein. The protein of 18 kDa molecular weight shows high muralytic activity against various genera of chloroform treated Gram-negatives. Maximum of enzyme activity was observed at pH 8.5 and low ionic strength. In silico analysis of amino acid sequence identified Lys394 as an endopeptidase. Various outer membrane permeabilizers were analyzed in combination with Lys394 to degrade laboratory strain of E. coli CR63. Permeabilizing activity was evaluated using a periplasmic β-lactamase leakage test with untreated E. coli cells as a substrate. The highest rate of planktonic E. coli lysis was reached for Lys394 applied together with 25 μg/ml of poly-l-arginine with molecular weight distribution from 5 to 15 kDa or 20 μg/ml PGLa peptide. Lawn E. coli colony forming ability was decreased by 4 orders of magnitude after 30 min treatment with 25 μg of Lys394, 1 mM EDTA and 50 μg/ml of PGLa peptide at a room temperature. Copyright © 2014 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  15. Activation of the cellular unfolded protein response by recombinant adeno-associated virus vectors.

    Directory of Open Access Journals (Sweden)

    Balaji Balakrishnan

    Full Text Available The unfolded protein response (UPR is a stress-induced cyto-protective mechanism elicited towards an influx of large amount of proteins in the endoplasmic reticulum (ER. In the present study, we evaluated if AAV manipulates the UPR pathways during its infection. We first examined the role of the three major UPR axes, namely, endoribonuclease inositol-requiring enzyme-1 (IRE1α, activating transcription factor 6 (ATF6 and PKR-like ER kinase (PERK in AAV infected cells. Total RNA from mock or AAV infected HeLa cells were used to determine the levels of 8 different ER-stress responsive transcripts from these pathways. We observed a significant up-regulation of IRE1α (up to 11 fold and PERK (up to 8 fold genes 12-48 hours after infection with self-complementary (scAAV2 but less prominent with single-stranded (ssAAV2 vectors. Further studies demonstrated that scAAV1 and scAAV6 also induce cellular UPR in vitro, with AAV1 vectors activating the PERK pathway (3 fold while AAV6 vectors induced a significant increase on all the three major UPR pathways [6-16 fold]. These data suggest that the type and strength of UPR activation is dependent on the viral capsid. We then examined if transient inhibition of UPR pathways by RNA interference has an effect on AAV transduction. siRNA mediated silencing of PERK and IRE1α had a modest effect on AAV2 and AAV6 mediated gene expression (∼1.5-2 fold in vitro. Furthermore, hepatic gene transfer of scAAV2 vectors in vivo, strongly elevated IRE1α and PERK pathways (2 and 3.5 fold, respectively. However, when animals were pre-treated with a pharmacological UPR inhibitor (metformin during scAAV2 gene transfer, the UPR signalling and its subsequent inflammatory response was attenuated concomitant to a modest 2.8 fold increase in transgene expression. Collectively, these data suggest that AAV vectors activate the cellular UPR pathways and their selective inhibition may be beneficial during AAV mediated gene transfer.

  16. Cyanobacteria as Chassis for Industrial Biotechnology: Progress and Prospects (United States)

    Al-Haj, Lamya; Lui, Yuen Tin; Abed, Raeid M.M.; Gomaa, Mohamed A.; Purton, Saul


    Cyanobacteria hold significant potential as industrial biotechnology (IB) platforms for the production of a wide variety of bio-products ranging from biofuels such as hydrogen, alcohols and isoprenoids, to high-value bioactive and recombinant proteins. Underpinning this technology, are the recent advances in cyanobacterial “omics” research, the development of improved genetic engineering tools for key species, and the emerging field of cyanobacterial synthetic biology. These approaches enabled the development of elaborate metabolic engineering programs aimed at creating designer strains tailored for different IB applications. In this review, we provide an overview of the current status of the fields of cyanobacterial omics and genetic engineering with specific focus on the current molecular tools and technologies that have been developed in the past five years. The paper concludes by giving insights on future commercial applications of cyanobacteria and highlights the challenges that need to be addressed in order to make cyanobacterial industrial biotechnology more feasible in the near future. PMID:27916886

  17. Analysis of the Peroxidase Activity of Rice (Oryza Sativa) Recombinant Hemoglobin 1: Implications for the In Vivo Function of Hexacoordinate Non-Symbiotic Hemoglobins in Plants (United States)

    In plants, it has been proposed that hexacoordinate (class 1) non-symbiotic Hbs (nsHb-1) function in vivo as peroxidases. However, little is known about the peroxidase activity of nsHb-1. We evaluated the peroxidase activity of rice recombinant Hb1 (a nsHb-1) by using the guaiacol/H2O2 system at pH ...

  18. A SEP tag enhances the expression, solubility and yield of recombinant TEV protease without altering its activity. (United States)

    Nautiyal, Kalpana; Kuroda, Yutaka


    Tobacco Etch Virus (TEV) protease is used in the purification of recombinant proteins, but its usage is often hampered by solubility issues. Here, we report a short, 12-residue solubility enhancing peptide (SEP) tag attached at the C-terminus of TEV (TEV-C9R). We assessed the effects of the C9R tag on the biophysical and biochemical characteristics of TEV. The yield of HPLC purified TEV-C9R expressed in E. coli grown in 200 mL LB or TB media was between 10 and 13 mg, which was up to 6.5 times higher than the yield of the untagged TEV (untagged-TEV). TEV-C9R was active over a pH range of 5-8, which was wider than that of the commonly used thrombin, and it remained active upon incubation at 60 °C much longer than the untagged-TEV, which aggregated at this temperature. Static and dynamic light scattering demonstrated the higher solubility of purified TEV-C9R. Furthermore, the thermal unfolding of TEV-C9R, as assessed by circular dichroism at pH 4.7, was almost perfectly reversible, in contrast to that of untagged-TEV, which aggregated at high temperature. These results demonstrate the improved biophysical and biochemical characteristics of TEV-C9R originating from higher solubility and provide another example of how SEP tags can enhance enzyme solubility without altering its activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Mutations in Recombination Activating Gene 1 and 2 in patients with severe combined immunodeficiency disorders in Egypt. (United States)

    Meshaal, Safa; El Hawary, Rabab; Elsharkawy, Marwa; Mousa, Reem K; Farid, Reem J; Abd Elaziz, Dalia; Alkady, Radwa; Galal, Nermeen; Massaad, Michel J; Boutros, Jeannette; Elmarsafy, Aisha


    The Recombination Activating Genes (RAG) 1/2 are important for the development and function of T and B cells. Loss of RAG1/2 function results in severe combined immunodeficiency (SCID), which could lead to early death. We studied the prevalence of RAG1/2 mutations in ten SCID patients in Egypt. We identified two novel homozygous nonsense mutations in RAG1, a novel homozygous deletion, and a previously reported homozygous missense mutation from four patients, as well as two homozygous mutations in RAG2 from the same patient. Prenatal diagnosis performed in the mother of a patient with RAG1 deficiency determined that the fetus was heterozygous for the same mutation. This represents the first report on RAG1/2 mutations in SCID patients in Egypt. The early diagnosis dramatically affects the outcome of the disease by allowing bone marrow transplantation at an early age, and providing prenatal diagnosis and genetic counseling for families with a history of SCID. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Prolonged activity of a recombinant factor VIII-Fc fusion protein in hemophilia A mice and dogs (United States)

    Dumont, Jennifer A.; Liu, Tongyao; Low, Susan C.; Zhang, Xin; Kamphaus, George; Sakorafas, Paul; Fraley, Cara; Drager, Douglas; Reidy, Thomas; McCue, Justin; Franck, Helen W. G.; Merricks, Elizabeth P.; Nichols, Timothy C.; Bitonti, Alan J.; Pierce, Glenn F.


    Despite proven benefits, prophylactic treatment for hemophilia A is hampered by the short half-life of factor VIII. A recombinant factor VIII-Fc fusion protein (rFVIIIFc) was constructed to determine the potential for reduced frequency of dosing. rFVIIIFc has an ∼ 2-fold longer half-life than rFVIII in hemophilia A (HemA) mice and dogs. The extension of rFVIIIFc half-life requires interaction of Fc with the neonatal Fc receptor (FcRn). In FcRn knockout mice, the extension of rFVIIIFc half-life is abrogated, and is restored in human FcRn transgenic mice. The Fc fusion has no impact on FVIII-specific activity. rFVIIIFc has comparable acute efficacy as rFVIII in treating tail clip injury in HemA mice, and fully corrects whole blood clotting time (WBCT) in HemA dogs immediately after dosing. Furthermore, consistent with prolonged half-life, rFVIIIFc shows 2-fold longer prophylactic efficacy in protecting HemA mice from tail vein transection bleeding induced 24-48 hours after dosing. In HemA dogs, rFVIIIFc also sustains partial correction of WBCT 1.5- to 2-fold longer than rFVIII. rFVIIIFc was well tolerated in both species. Thus, the rescue of FVIII by Fc fusion to provide prolonged protection presents a novel pathway for FVIII catabolism, and warrants further investigation. PMID:22246033

  1. Massive Pulmonary Embolism: Treatment with Thrombus Fragmentation and Local Fibrinolysis with Recombinant Human-Tissue Plasminogen Activator

    International Nuclear Information System (INIS)

    Stock, Klaus Wilhelm; Jacob, Augustinus Ludwig; Schnabel, Karl Jakob; Bongartz, Georg; Steinbrich, Wolfgang


    Purpose: To report the results of thrombus fragmentation in combination with local fibrinolysis using recombinant human-tissue plasminogen activator (rtPA) in patients with massive pulmonary embolism. Methods: Five patients with massive pulmonary embolism were treated with thrombus fragmentation followed by intrapulmonary injection of rtPA. Clot fragmentation was performed with a guidewire, angiographic catheter, and balloon catheter. Three patients had undergone recent surgery; one of them received a reduced dosage of rtPA. Results: All patients survived and showed clinical improvement with a resultant significant (p < 0.05) decrease in the pulmonary blood pressure (mean systolic pulmonary blood pressure before treatment, 49 mmHg; 4 hr after treatment, 28 mmHg). Angiographic follow-up in three patients revealed a decrease in thrombus material and an increase in pulmonary perfusion. Two patients developed retroperitoneal hematomas requiring transfusion. Conclusion: Clot fragmentation and local fibrinolysis with rtPA was an effective therapy for massive pulmonary embolism. Bleeding at the puncture site was a frequent complication

  2. Solubilization and folding of a fully active recombinant Gaussia luciferase with native disulfide bonds by using a SEP-Tag. (United States)

    Rathnayaka, Tharangani; Tawa, Minako; Nakamura, Takashi; Sohya, Shihori; Kuwajima, Kunihiro; Yohda, Masafumi; Kuroda, Yutaka


    Gaussia luciferase (GLuc) is the smallest known bioluminescent protein and is attracting much attention as a potential reporter protein. However, its 10 disulfide bond forming cysteines have hampered the efficient production of recombinant GLuc and thus limited its use in bio-imaging application. Here, we demonstrate that the addition of a short solubility enhancement peptide tag (SEP-Tag) to the C-terminus of GLuc (GLuc-C9D) significantly increased the fraction of soluble protein at a standard expression temperature. The expression time was much shorter, and the final yield of GLuc-C9D was significantly higher than with our previous pCold expression system. Reversed phase HPLC indicated that the GLuc-C9D variant folded with a single disulfide bond pattern after proper oxidization. Further, the thermal denaturation of GLuc-C9D was completely reversible, and its secondary structure content remained unchanged until 40°C as assessed by CD spectroscopy. The (1)H-NMR spectrum of GLuc indicated sharp well dispersed peaks typical for natively folded proteins. GLuc-C9D bioluminescence activity was strong and fully retained even after incubation at high temperatures. These results suggest that solubilization using SEP-Tags can be useful for producing large quantities of proteins containing multiple disulfide bonds. Copyright © 2011. Published by Elsevier B.V.

  3. Expression of active secreted forms of human amyloid beta-protein precursor by recombinant baculovirus-infected insect cells.


    Bhasin, R; Van Nostrand, W E; Saitoh, T; Donets, M A; Barnes, E A; Quitschke, W W; Goldgaber, D


    Three alternatively spliced forms of the amyloid precursor protein (APP), APP-695, APP-751, and APP-770, were expressed in the baculovirus expression vector system. The recombinant proteins were secreted into the culture medium by infected insect cells, and APP molecules were detected in insect cells and medium 2 days after infection with the recombinant APP-baculoviruses. A partial sequence of the NH2 terminus of the secreted protein revealed identity with the native secreted protein and sho...

  4. Colorimetric activity measurement of a recombinant putrescine N-methyltransferase from Datura stramonium. (United States)

    Biastoff, Stefan; Teuber, Michael; Zhou, Zhaohui Sunny; Dräger, Birgit


    Putrescine N-methyltransferase (PMT, EC catalyses the S-adenosyl- L-methionine (SAM or AdoMet)-dependent methylation of putrescine to N-methylputrescine within the biosynthetic pathways of calystegines, nicotine, and tropane alkaloids in medicinal plants and produces S-adenosyl- L-homocysteine (SAH or AdoHcy). Determination of PMT activity was time-consuming and hardly reproducible in the past because it required tedious separation steps after chemical derivatisation or radioactive labelling of N-methylputrescine. A convenient and accurate enzyme-coupled colorimetric assay is based on the conversion of SAH to homocysteine by 5'-methylthioadenosine/ S-adenosylhomocysteine nucleosidase (MTAN/SAHN, EC and S-ribosylhomocysteine lyase (LuxS, EC Homocysteine is quantified by 5,5'-dithiobis-2-nitrobenzoic acid. Putrescine was shown not to interfere with MTAN or LuxS. The colorimetric assay was validated by HPLC analysis. K(m) values determined by the assay, 108 microM for putrescine and 42 microM for SAM, are lower than the previously reported values, due to alleviation of PMT inhibition by SAH. DTNB:5,5'-dithiobis-2-nitrobenzoic acid LuxS: S-ribosylhomocysteine lyase MTAN:5'-methylthioadenosine nucleosidase PMT:putrescine N-methyltransferase SAH: S-adenosyl- L-homocysteine SAM: S-adenosyl- L-methionine TNB:2-nitro-5-thiobenzoic acid.

  5. Recombinant human lactoferrin as a biomaterial for bone tissue engineering: mechanism of antiapoptotic and osteogenic activity. (United States)

    Amini, Ashley A; Nair, Lakshmi S


    Lactoferrin is a bioactive globular protein with unique properties towards musculo-skeletal cells and anabolic to bone in vivo. Even though the potent anti-apoptotic and osteogenic activity of lactoferrin has been reported, the mechanism of action has not been fully elucidated. The study demonstrates that the anti-apoptotic effect of rhLF towards MC3T3 pre-osteoblast cells is mediated by Wnt5a/PKA pathway and the stabilization of β-catenin by rhLF is dependent on PKA/LRP6 signaling pathway. The study also investigates the feasibility of developing rhLF as a biomaterial for cell delivery. The injectable rhLF cell delivery vehicles are prepared by enzymatic crosslinking of tyramine-modified rhLF in the presence of hydrogen peroxide and horseradish peroxidase. The modified rhLF shows bioactivity similar to unmodified rhLF. The rhLF gels support encapsulated MC3T3 cell viability, proliferation, and differentiation, as well as phosphorylation of signaling proteins. In conclusion, the study demonstrates the involvement of Wnt5a, LRP6, and PKA signaling in rhLF-mediated bioactivity towards MC3T3 cells and the feasibility of developing an injectable cell delivery vehicle from rhLF. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The importance of the relationship between company and incubator for biotechnology development


    Alves, Ana Paula Ferreira; Volkmer, Gabriele; Silva, Tania Nunes da


    The biotechnology activities development demands an intense academic and scientific basis, a productive sector capable of transforming academic research in scientific products and services, and the creation of an institutional environment to promote the sector’s development. Moreover, many biotechnology companies establish formal partnerships with Universities (by technological incubator) to expand innovative capacity coming into the market. The importance of biotechnology for developing coun...

  7. Strategic management of biotechnology agents. (United States)

    Huber, S L


    The use of biologic response modifiers to demonstrate a value-driven approach to strategic management by pharmacists is described. To participate in decisions on the use of technology in their institutions, pharmacists must practice strategic management. This process includes environmental scanning, analysis of clinical and pharmacoeconomic data, and development of clinical management approaches. It is ideal for analyzing biologic response modifiers such as filgrastim and sargramostim. Emphasis must be placed on maximizing the fit among the products, the institution, and the health care environment. Pharmacists will find plentiful opportunities for clinical management with biotechnology agents. Practitioners who specialize in determining the total cost of care by using pharmacoeconomic methods are needed, as are practitioners trained to monitor the complicated biotechnology agents. Also, the institution needs to forecast accurately the impact of emerging biotechnology agents. If pharmacists can develop and control clinical, pharmacoeconomic, and reimbursement information databases for biotechnology agents, the pharmacy profession will be in a strong position to meet the challenges of biotechnology and realize the inherent opportunities.

  8. The next generation of sepsis clinical trial designs: what is next after the demise of recombinant human activated protein C?*. (United States)

    Opal, Steven M; Dellinger, R Phillip; Vincent, Jean-Louis; Masur, Henry; Angus, Derek C


    The developmental pipeline for novel therapeutics to treat sepsis has diminished to a trickle compared to previous years of sepsis research. While enormous strides have been made in understanding the basic molecular mechanisms that underlie the pathophysiology of sepsis, a long list of novel agents have now been tested in clinical trials without a single immunomodulating therapy showing consistent benefit. The only antisepsis agent to successfully complete a phase III clinical trial was human recumbent activated protein C. This drug was taken off the market after a follow-up placebo-controlled trial (human recombinant activated Protein C Worldwide Evaluation of Severe Sepsis and septic Shock [PROWESS SHOCK]) failed to replicate the favorable results of the initial registration trial performed ten years earlier. We must critically reevaluate our basic approach to the preclinical and clinical evaluation of new sepsis therapies. We selected the major clinical studies that investigated interventional trials with novel therapies to treat sepsis over the last 30 years. Phase II and phase III trials investigating new treatments for sepsis and editorials and critiques of these studies. Selected manuscripts and clinical study reports were analyzed from sepsis trials. Specific shortcomings and potential pit falls in preclinical evaluation and clinical study design and analysis were reviewed and synthesized. After review and discussion, a series of 12 recommendations were generated with suggestions to guide future studies with new treatments for sepsis. We need to improve our ability to define appropriate molecular targets for preclinical development and develop better methods to determine the clinical value of novel sepsis agents. Clinical trials must have realistic sample sizes and meaningful endpoints. Biomarker-driven studies should be considered to categorize specific "at risk" populations most likely to benefit from a new treatment. Innovations in clinical trial design

  9. Biotechnological exploitation of microalgae. (United States)

    Gangl, Doris; Zedler, Julie A Z; Rajakumar, Priscilla D; Martinez, Erick M Ramos; Riseley, Anthony; Włodarczyk, Artur; Purton, Saul; Sakuragi, Yumiko; Howe, Christopher J; Jensen, Poul Erik; Robinson, Colin


    Microalgae are a diverse group of single-cell photosynthetic organisms that include cyanobacteria and a wide range of eukaryotic algae. A number of microalgae contain high-value compounds such as oils, colorants, and polysaccharides, which are used by the food additive, oil, and cosmetic industries, among others. They offer the potential for rapid growth under photoautotrophic conditions, and they can grow in a wide range of habitats. More recently, the development of genetic tools means that a number of species can be transformed and hence used as cell factories for the production of high-value chemicals or recombinant proteins. In this article, we review exploitation use of microalgae with a special emphasis on genetic engineering approaches to develop cell factories, and the use of synthetic ecology approaches to maximize productivity. We discuss the success stories in these areas, the hurdles that need to be overcome, and the potential for expanding the industry in general. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email:

  10. The recombinant fusion protein of cholera toxin B and neutrophil-activating protein expressed on Bacillus subtilis spore surface suppresses allergic inflammation in mice. (United States)

    Dong, Hui; Huang, Yanmei; Yao, Shuwen; Liang, Bingshao; Long, Yan; Xie, Yongqiang; Mai, Jialiang; Gong, Sitang; Zhou, Zhenwen


    The neutrophil-activating protein of Helicobacter pylori (HP-NAP) has been identified as a modulator with anti-Th2 inflammation activity, and cholera toxin B (CTB) is a mucosal adjuvant that can also induce antigen tolerance. In this study, we constructed a CTB-NAP fusion protein on the surface of Bacillus subtilis spore and evaluate the efficiency of oral administration of the recombinant CTB-NAP spores in preventing asthma in mice. Oral administration of recombinant CTB or CTB-NAP spores significantly decreased serum ovalbumin (OVA)-specific IgE (p recombinant spores. Oral administration of recombinant CTB or CTB-NAP spores induced IL-10 and IFN-γ expression and reduced IL-4 levels in bronchoalveolar lavage fluid (BALF). Moreover, CTB and CTB-NAP spores reduced the eosinophils in BALF and inflammatory cell infiltration in the lungs. Furthermore, CD4 + CD25 + Foxp3 + Tregs in splenocytes were significantly increased in mice treated with recombinant CTB or CTB-NAP spores. The number of CD4 + CD25 + Foxp3 + Tregs caused by CTB-NAP was higher than that by CTB alone. Our study indicated that B. subtilis spores with surface expression of subunit CTB or CTB-NAP could inhibit OVA-induced allergic inflammation in mice. The attenuated inflammation was attributed to the induction of CD4 + CD25 + Foxp3 + Tregs and IgA. Moreover, the fusion protein CTB-NAP demonstrated a better efficiency than CTB alone in inhibiting the inflammation.

  11. The impact of industrial biotechnology. (United States)

    Soetaert, Wim; Vandamme, Erick


    In this review, the impact of industrial (or "white") biotechnology can have on our society and economy is discussed. An overview is given of industrial biotechnology and its applications in a number of product categories ranging from food ingredients, vitamins, bio-colorants, solvents, plastics and biofuels. The use of fossil resources is compared with renewable resources as the preferred feedstock for industrial biotechnology. A brief discussion is also given of the expected changes in society and technology, ranging from the shift in the supply of resources, the growing need for efficiency and sustainability of the production systems, changing consumer perception and behaviour and changing agricultural systems and practices. Many of these changes are expected to speed up the transition from a fossil-based to a bio-based economy and society.

  12. [HPV DNA vaccines expressing recombinant CRT/HPV6bE7 fusion protein inhibit tumor growth and angiogenic activity]. (United States)

    Xu, Yan; Cheng, Hao; Zhao, Ke-Jia; Zhu, Ke-Jian; Zhang, Xing


    This paper was to study the angiogenic inhibitory effect and the potential antitumor effect of the constructed recombinant DNA vaccine CRT/HPV6bE7 in vivo. The C57BL/6 mice were vaccinated respectively with recombinant CRT/HPV6bE7 DNA plamids. The inhibitory effects on angiogenesis of generated vaccines in vivo were evaluated by a bFGF-induced angiogenesis assay using the Matrigel kit. To investigate the potential antitumor effect, the mean tumor weights, sizes and tumor appearing times were measured in C57BL/6 mice treated with HPV6bE7-expressing B16 cells. The results indicated that the recombinants CRT180/HPV6bE7 and CRT180 showed strong anti-angiogenic effects in bFGF-induced angiogenesis in vivo. Moreover, CRT180/HPV6bE7 and CRT180 DNA vaccines could significantly inhibit the tumor growth in tumor challenge experiment, and CRT180/HPV6bE7 was superior to other vaccines in delaying tumor formation time, limiting tumor size and weight in tumor protection experiment. In conclusion, recombinant CRT180/HPV6bE7 DNA could elicit a most efficient anti-angiogenic effect and inhibit tumor growth in mice inoculated with DNA vaccines. The antiangiogenic activity of CRT were suggested residing in a domain between CRT 120-180 aa.

  13. Is biotechnology the new alchemy? (United States)

    Kirkham, Georgiana


    In this article I examine similarities between the science and ethics of biotechnology on the one hand, and those of alchemy on the other, and show that the understanding of nature and naturalness upon which many contemporary ethical responses to biotechnology are predicated is, in fact, significantly similar to the understanding of nature that was the foundation of the practice of alchemy. In doing so I demonstrate that the ethical issues and social responses that are currently arising from advances in the field of biotechnology are interestingly similar to those that arose in reaction to the practice and prevalence of alchemy from its inception in Europe in the mid-twelfth century until at least the early modern period. I argue that a proper conception of the ethical issues and a sensible interpretation of the power and the promise of the science of biotechnology are most likely if we understand such attitudes to nature, and to the ethical issues surrounding technological and scientific developments, in terms of an historical and cultural continuum. That is, we should regard biotechnology as merely the latest in a string of technological and scientific developments rather than, as is often alleged, as something entirely new, requiring its own special ethical response. Finally, I suggest that examining the parallels between the ethical issues generated by alchemy and by biotechnology show us that such issues are best situated and discussed within a framework of virtue ethics, as it allows us to think seriously about the relationship between art and nature and the proper role of humans in relation to their technology.

  14. Sitaxsentan (ICOS-Texas Biotechnology). (United States)

    Wu-Wong, J R


    ICOS-Texas Biotechnology is developing the endothelin A (ETA) receptor antagonist, sitaxsentan, for the potential treatment of pulmonary hypertension, congestive heart failure (CHF), chronic obstructive pulmonary disease and subarachnoid hemorrhage [205713], [302200]. The compound is in phase IIa trials as an iv formulation for CHF and has completed phase I safety trials as an oral formulation [272071]. Phase II/III trials for pulmonary hypertension are planned for the first quarter of 2001 [3945711]. In June 2000, ICOS and Texas Biotechnology established a joint venture to develop and commercialize endothelin antagonists [370007]. US-05591761 was issued to Texas in January 1997, covering TBC-11251 and several related isomers [2309301.

  15. Patenting Biotechnological Inventions in Europe

    Directory of Open Access Journals (Sweden)

    Peter Raspor


    Full Text Available The patent system has been able to provide the protection for the achievements of different technologies and in that way it has supported further development and growth of the industry where those achievements were implemented. Modern technologies like information technology and biotechnology with genetic engineering that appeared in the 70s have overgrown the frames of the existing patent system because of their exponential development during the last thirty years. Industry that invests a huge amount of money in these technologies, especially in the field of biotechnology, where the results are very uncertain, has started to claim changes in the patent system.

  16. Production of Active Nonglycosylated Recombinant B-Chain of Type-2 Ribosome-Inactivating Protein from Viscum articulatum and Its Biological Effects on Peripheral Blood Mononuclear Cells

    Directory of Open Access Journals (Sweden)

    Tzu-Li Lu


    Full Text Available Type-2 ribosome-inactivating proteins, composed of a toxic A-chain and lectin-like B-chain, display various biological functions, including cytotoxicity and immunomodulation. We here cloned the lectin-like B-chain encoding fragment of a newly identified type-2 RIP gene, articulatin gene, from Viscum articulatum, into a bacterial expression vector to obtain nonglycosylated recombinant protein expressed in inclusion bodies. After purification and protein refolding, soluble refolded recombinant articulatin B-chain (rATB showed lectin activity specific toward galactoside moiety and was stably maintained while stored in low ionic strength solution. Despite lacking glycosylation, rATB actively bound leukocytes with preferential binding to monocytes and in vitro stimulated PBMCs to release cytokines without obvious cytotoxicity. These results implicated such a B-chain fragment as a potential immunomodulator.

  17. Hyperacute thrombolysis with recombinant tissue plasminogen activator of acute ischemic stroke: Feasibility and effectivity from an Indian perspective

    Directory of Open Access Journals (Sweden)

    Sharma S


    Full Text Available Given the constraints of resources, thrombolysis for acute ischemic stroke (AIS is under evaluation in developing countries like India, especially in areas such as western Utter Pradesh, where it is overly crowded and there is poor affordability. Aim: This study was done to evaluate recombinant tissue plasminogen activator r-tpa in acute ischemic stroke in hyper acute phase, in selected patients of western Utter Pradesh, in terms of feasibility and effectivity. Design: Open, non randomized study. Materials and Methods: Thirty two patients were classified using Trial of ORG 10172 in Acute Stroke treatment (TOAST criteria (large artery atherosclerotic = 8; cardio embolic = 6; small vessel occlusion = 14; other determined etiology = 2; undetermined etiology = 2. The mean time to reach the hospital was 2 h (1.15-3.0, the mean door to CT scan 20 min (10-40 and door to r-tpa injection was 30 min (24-68. The National Institute of Health Stroke Scale (NIHSS scores ranged from 11-22 (mean 15.5 +2.7. The dose of r-tpa administered was 0.9 mg/kg. Results: Twenty one patients (65.6% showed significant improvement on the NIHSS score, at 48 h (4 points. (Mean change = 10; range = 4-17. At one month, 25 (78% recorded improvement on the Barthel index (mean change = 45%. One developed frontal lobe hemorrhage and another developed recurrent stroke; one died of aspiration; and four showed no improvement. Modified Rankin score (m RS was administered at the end of three months to 28 patients (90%; however, the rest could not be directly observed. The average modified Rankin Score was 1.2 (0-2. Conclusions: Hyperacute thrombolysis was found feasible and effective in selected patients with AIS from western Utter Pradesh and who had poor affordability.

  18. Recombinant expression, purification and antimicrobial activity of a novel antimicrobial peptide PaDef in Pichia pastoris. (United States)

    Meng, De-Mei; Zhao, Jing-Fang; Ling, Xiao; Dai, Hong-Xia; Guo, Ya-Jun; Gao, Xiao-Fang; Dong, Bin; Zhang, Zi-Qi; Meng, Xin; Fan, Zhen-Chuan


    The antimicrobial peptide PaDef was isolated from Mexican avocado fruit and was reported to inhibit the growth of Escherichia coli and Staphylococcus aureus in 2013. In this study, an N-terminal 6 × His tagged recombinant PaDef (rPaDef) with a molecular weight of 7.5 KDa, for the first time, was expressed as a secreted peptide in Pichia pastoris. The optimal culture condition for rPaDef expression was determined to be incubation with 1.5% methanol for 72 h at 28 °C under pH 6.0. Under this condition, the amount of the rPaDef accumulation reached as high as 79.6 μg per 1 ml of culture medium. Once the rPaDef peptide was purified to reach a 95.7% purity using one-step nickel affinity chromatography, its strong and concentration-dependent antimicrobial activity was detected to be against a broad-spectrum of bacteria of both Gram-negative and Gram-positive. The growth of these bacterial pathogens was almost completely inhibited when the rPaDef peptide was at a concentration of as low as 90 μg/ml. In summary, our data showed that rPaDef derived from Mexican avocado fruit can be expressed and secreted efficiently when P. pastoris was used as a cell factory. This is the first report on heterologous expression of PaDef in P. pastoris and the approach described holds great promise for antibacterial drug development. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Recombinant tissue plasminogen activator plus heparin compared with heparin alone for patients with acute submassive pulmonary embolism: one-year outcome


    Mi, Yu-Hong; Liang, Ying; Lu, Yan-Hui; Li, Ya-Min; Liu, Wen-Xu; Qian, Wang


    Objective To evaluate the long-term effects of thrombolysis on patients with submassive pulmonary embolism (PE). Methods Data of 136 patients with acute submassive PE and low risk of bleeding were prospectively collected from January 2005 to October 2011 in a single medical center. Patients received recombinant tissue plasminogen activator (r-tPA) plus low molecular weight heparin (LMWH, TT group, n = 79) or LMWH alone (AT group, n = 57), depending on treating physician's recommendation and p...

  20. Biotechnology developments in Uganda and associated challenges ...

    African Journals Online (AJOL)

    ... biotechnology programmes and strengthening interactions among the actors both locally and internationally; integrating biotechnology into institutional programmes and regulatory instruments; putting in place technology management policies and developing capacities for their implementation; encouraging private sector ...

  1. Applied thermodynamics: A new frontier for biotechnology

    DEFF Research Database (Denmark)

    Mollerup, Jørgen


    The scientific career of one of the most outstanding scientists in molecular thermodynamics, Professor John M. Prausnitz at Berkeley, reflects the change in the agenda of molecular thermodynamics, from hydrocarbon chemistry to biotechnology. To make thermodynamics a frontier for biotechnology...

  2. Modernizing the Regulatory System for Biotechnology Products (United States)

    This Web page describes the continuing effort to modernize the federal regulatory system for biotechnology products as well as clarify various roles of EPA, FDA and USDA in evaluating new biotechnology products.

  3. Cloning, purification and characterization of recombinant silkworm ...

    African Journals Online (AJOL)

    The recombinant His-tagged BmAK protein was expressed in soluble form in Escherichia coli Rosetta and purified by metal chelating affinity chromatography. The amino acid sequence of recombinant protein was confirmed by mass spectroscopic analysis and the enzyme activity assay that indicated the recombinant ...


    Directory of Open Access Journals (Sweden)

    L. P. Buchatsky


    Full Text Available The latest progress in biotechnology on fish aquaculture and different modern methods of investigations for increasing of fish productivity in aquaculture are analyzed. Except for the applied aspect, the use of modern biotechnological methods of investigations opens new possibilities for fundamental researches of sex-determining mechanisms, polyploidy, distant hybridization, and developmental biology of bony fishes. Review contains examples of utilizing modern biotechnology methods to obtain transgenic fishes with accelerated growth and for designing surrogate fishes. Methods for receiving unisexual shoals of salmon and sturgeon female fishes with the view of obtaining a large quantity of caviar, as well as receiving sterile (triploid fishes are analyzed. Great attention is given to androgenesis, particularly to disperm one, in connection with the problem of conserving rare and vanishing fish species using only sperm genetic material. Examples how distant hybrids may be obtained with the use of disperm androgenesis and alkylated DNA are given. Methods of obtaining fish primordium germ cells, recent developments in cultivation of fish stem cells and their use in biotechnology, as well as ones of transplantation of oogonium and spermatogonium to obtain surrogate fishes. The examples of successful experiments on spermatogonial xenotransplantation and characteristic of antifreezing fish proteins and also the prospect of their practical usage are given.

  5. The Development of Plant Biotechnology. (United States)

    Torrey, John G.


    Examines major lines of thought leading to what is meant by plant biotechnology, namely, the application of existing techniques of plant organ, tissue, and cell culture, plant molecular biology, and genetic engineering to the improvement of plants and of plant productivity for the benefit of man. (JN)

  6. The Future of Plant Biotechnology (United States)

    Plant biotechnology has been wildly successful and has literally transformed plant agriculture. There are still undulating concerns about safety and sustainability that critics demand to be addressed. In that light, there are some biotechnoloogies that are being developed that might not only improve...

  7. Acinetobacter: environmental and biotechnological applications ...

    African Journals Online (AJOL)

    Among microbial communities involved in different ecosystems such as soil, freshwater, wastewater and solid wastes, several strains belonging to the genus of Acinetobacter have been attracting growing interest from medical, environmental and a biotechnological point of view. Bacteria of this genus are known to be ...

  8. Biotechnological applications of bacterial cellulases

    Czech Academy of Sciences Publication Activity Database

    Menéndez, E.; García-Fraile, Paula; Rivas, R.


    Roč. 2, č. 3 (2015), s. 163-182 ISSN 2306-5354 R&D Projects: GA MŠk(CZ) EE2.3.30.0003 Institutional support: RVO:61388971 Keywords : Biotechnological applications * Bacterial cellulases * Cellulose degradation Subject RIV: EE - Microbiology, Virology

  9. Biological Constraints in Algal Biotechnology

    Czech Academy of Sciences Publication Activity Database

    Torzillo, G.; Pushparaj, B.; Masojídek, Jiří; Vonshak, A.


    Roč. 8, - (2003), s. 338-348 ISSN 0006-3592 R&D Projects: GA MŠk LN00A141 Institutional research plan: CEZ:MSM 123100001 Keywords : outdoor cultures * photobioreactors * oxygen stress Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.173, year: 2003

  10. Re-Framing Biotechnology Regulation. (United States)

    Peck, Alison

    Biotechnology is about to spill the banks of federal regulation. New genetic engineering techniques like CRISPR-Cas9 promise revolutionary breakthroughs in medicine, agriculture, and public health—but those techniques would not be regulated under the terms of the Coordinated Framework for Regulation of Biotechnology. This revolutionary moment in biotechnology offers an opportunity to correct the flaws in the framework, which was hastily patched together at the advent of the technology. The framework has never captured all relevant technologies, has never satisfied the public that risk is being effectively managed, and has never been accessible to small companies and publicly-funded labs that increasingly are positioned to make radical, life-saving innovations. This Article offers a proposal for new legislation that would reshape biotechnology regulation to better meet these goals. Key reforms include tying regulation to risk rather than technology category; consolidating agency review; capturing distinct regulatory expertise through inter-agency consultations; creating a clearinghouse to help guide applicants and disseminate information; setting up more comprehensive monitoring of environmental effects; and providing federal leadership to fill key data gaps and address socio-economic impacts.

  11. Ethical perception of modern biotechnology

    African Journals Online (AJOL)



    Sep 30, 2011 ... ensure food security and to boost the country's economy. (Latifah et al., 2007). Successful development and commercialisation of modern biotechnology products in. *Corresponding author. E-mail:, Tel: + 603-. 89216907. Fax: +603-89252976. Abbreviations: GMOs, Genetically modified ...

  12. Seminar on Nano-biotechnology

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 12. Seminar on Nano-biotechnology. Information and Announcements Volume 13 Issue 12 December 2008 pp 1191-1191. Fulltext. Click here to view fulltext PDF. Permanent link: ...

  13. Biotechnological sulphide removal with oxygen

    NARCIS (Netherlands)

    Buisman, C.


    This thesis deals with the development of a new process for biotechnological sulphide removal from wastewater, in which it is attempted to convert sulphide into elemental sulphur by colourless sulphur bacteria. The toxicity, corrosive properties, unpleasant odor and high oxygen demand of sulphide

  14. Microbial biotechnology as a tool to restore degraded drylands. (United States)

    Maestre, Fernando T; Solé, Ricard; Singh, Brajesh K


    We briefly review how microbial biotechnology can contribute to improve activities aiming to restore degraded drylands and to combat their desertification, which are an integral part of the Sustainable Development Goal 15 of the 2030 Agenda. Microbial biotechnology offers notable promise to improve restoration actions based on the use of biocrust-forming engineered cyanobacteria, which play key roles in maintaining ecosystem structure and functioning in drylands worldwide. Advances in our understanding of microbiome associated to biocrusts and of the signalling involved in the communication among their constituents can also potentially enhance the outcome of restoration activities in drylands. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  15. Safety and efficacy of recombinant human interleukin 10 in chronic active Crohn's disease. Crohn's Disease IL-10 Cooperative Study Group

    NARCIS (Netherlands)

    Schreiber, S.; Fedorak, R. N.; Nielsen, O. H.; Wild, G.; Williams, C. N.; Nikolaus, S.; Jacyna, M.; Lashner, B. A.; Gangl, A.; Rutgeerts, P.; Isaacs, K.; van Deventer, S. J.; Koningsberger, J. C.; Cohard, M.; LeBeaut, A.; Hanauer, S. B.


    Interleukin (IL)-10 is a cytokine with potent anti-inflammatory properties. We investigated the safety and efficacy of different doses of human recombinant (rhu)IL-10 in patients with Crohn's disease (CD). A prospective, multicenter, double-blind, placebo-controlled study was conducted in 329

  16. Recombinant interferon-beta blocks proliferation but enhances interleukin-10 secretion by activated human T-cells

    NARCIS (Netherlands)

    Rep, M. H.; Hintzen, R. Q.; Polman, C. H.; van Lier, R. A.


    Results from recent clinical trials have indicated that recombinant interferon-beta (rIFN-beta) is a promising drug for the treatment of Multiple Sclerosis (MS), a disease of supposed autoimmune etiology. To gain insight into the immunoregulatory properties of this cytokine, we analyzed effects of

  17. Biotechnology of marine fungi

    Digital Repository Service at National Institute of Oceanography (India)

    Damare, S.; Singh, P.; Raghukumar, S.

    . Heavy metals have been reported from the sea sediments (Karageorgis et al. 2005), resulting from river run off and anthropogenic activities. Conventional physico-chemical treatment technologies 12    (Dermont et al. 2008) become less effective.... The partially purified biosurfactant showed a broad spectrum of antimicrobial activity. It was also suggested that the biosurfactant could be used for the microbially enhanced oil recovery process. Sun et al. (2009) have reported 3 different polysaccharides...

  18. Identification and Characterization of the V(DJ Recombination Activating Gene 1 in Long-Term Memory of Context Fear Conditioning

    Directory of Open Access Journals (Sweden)

    Edgardo Castro-Pérez


    Full Text Available An increasing body of evidence suggests that mechanisms related to the introduction and repair of DNA double strand breaks (DSBs may be associated with long-term memory (LTM processes. Previous studies from our group suggested that factors known to function in DNA recombination/repair machineries, such as DNA ligases, polymerases, and DNA endonucleases, play a role in LTM. Here we report data using C57BL/6 mice showing that the V(DJ recombination-activating gene 1 (RAG1, which encodes a factor that introduces DSBs in immunoglobulin and T-cell receptor genes, is induced in the amygdala, but not in the hippocampus, after context fear conditioning. Amygdalar induction of RAG1 mRNA, measured by real-time PCR, was not observed in context-only or shock-only controls, suggesting that the context fear conditioning response is related to associative learning processes. Furthermore, double immunofluorescence studies demonstrated the neuronal localization of RAG1 protein in amygdalar sections prepared after perfusion and fixation. In functional studies, intra-amygdalar injections of RAG1 gapmer antisense oligonucleotides, given 1 h prior to conditioning, resulted in amygdalar knockdown of RAG1 mRNA and a significant impairment in LTM, tested 24 h after training. Overall, these findings suggest that the V(DJ recombination-activating gene 1, RAG1, may play a role in LTM consolidation.

  19. Recombinant scorpine produced using SUMO fusion partner in Escherichia coli has the activities against clinically isolated bacteria and inhibits the Plasmodium falciparum parasitemia in vitro.

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    Full Text Available Scorpine, a small cationic peptide from the venom of Pandinus imperator, which has been shown to have anti-bacterial and anti-plasmodial activities, has potential important applications in the pharmaceutical industries. However, the isolation of scorpine from natural sources is inefficient and time-consuming. Here, we first report the expression and purification of recombinant scorpine in Escherichia coli, using small ubiquitin-related modifier (SUMO fusion partner. The fusion protein was expressed in soluble form in E. coli, and expression was verified by SDS-PAGE and western blotting analysis. The fusion protein was purified to 90% purity by nickel-nitrilotriacetic acid (Ni2+-NTA resin chromatography. After the SUMO-scorpine fusion protein was cleaved by the SUMO protease, the cleaved sample was reapplied to a Ni2+-NTA column. Tricine/SDS-PAGE gel results indicated that Scorpine had been purified successfully to more than 95% purity. The recombinantly expressed Scorpine showed anti-bacterial activity against two standard bacteria including Staphylococcus aureus ATCC 29213 and Acinetobacter baumannii ATCC 19606, and clinically isolated bacteria including S. aureus S, S. aureus R, A. baumannii S, and A. baumannii R. It also produced 100% reduction in Plasmodium falciparum parasitemia in vitro. Thus, the expression strategy presented in this study allowed convenient high yield and easy purification of recombinant Scorpine for pharmaceutical applications in the future.

  20. Identification of a recombinant inulin fructotransferase (difructose dianhydride III forming) from Arthrobacter sp. 161MFSha2.1 with high specific activity and remarkable thermostability. (United States)

    Wang, Xiao; Yu, Shuhuai; Zhang, Tao; Jiang, Bo; Mu, Wanmeng


    Difructose dianhydride III (DFA III) is a functional carbohydrate produced from inulin by inulin fructotransferase (IFTase, EC In this work, an IFTase gene from Arthrobacter sp. 161MFSha2.1 was cloned and expressed in Escherachia coli. The recombinant enzyme was purified by metal affinity chromatography. It showed significant inulin hydrolysis activity, and the produced main product from inulin was determined as DFA III by nuclear magnetic resonance analysis. The molecular mass of the purified protein was calculated to be 43 and 125 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration, respectively, suggesting the native enzyme might be a homotrimer. The recombinant enzyme showed maximal activity as 2391 units/mg at pH 6.5 and 55 °C. It displayed the highest thermostability among previously reported IFTases (DFA III forming) and was stable up to 80 °C for 4 h of incubation. The smallest substrate was determined as nystose. The conversion ratio of inulin to DFA III reached 81% when 100 g/L inulin was catalyzed by 80 nM recombinant enzyme for 20 min at pH 6.5 and 55 °C. All of these data indicated that the IFTase (DFA III forming) from Arthrobacter sp. 161MFSha2.1 had great potential for industrial DFA III production.

  1. Identification and Characterization of the V(D)J Recombination Activating Gene 1 in Long-Term Memory of Context Fear Conditioning. (United States)

    Castro-Pérez, Edgardo; Soto-Soto, Emilio; Pérez-Carambot, Marizabeth; Dionisio-Santos, Dawling; Saied-Santiago, Kristian; Ortiz-Zuazaga, Humberto G; Peña de Ortiz, Sandra


    An increasing body of evidence suggests that mechanisms related to the introduction and repair of DNA double strand breaks (DSBs) may be associated with long-term memory (LTM) processes. Previous studies from our group suggested that factors known to function in DNA recombination/repair machineries, such as DNA ligases, polymerases, and DNA endonucleases, play a role in LTM. Here we report data using C57BL/6 mice showing that the V(D)J recombination-activating gene 1 (RAG1), which encodes a factor that introduces DSBs in immunoglobulin and T-cell receptor genes, is induced in the amygdala, but not in the hippocampus, after context fear conditioning. Amygdalar induction of RAG1 mRNA, measured by real-time PCR, was not observed in context-only or shock-only controls, suggesting that the context fear conditioning response is related to associative learning processes. Furthermore, double immunofluorescence studies demonstrated the neuronal localization of RAG1 protein in amygdalar sections prepared after perfusion and fixation. In functional studies, intra-amygdalar injections of RAG1 gapmer antisense oligonucleotides, given 1 h prior to conditioning, resulted in amygdalar knockdown of RAG1 mRNA and a significant impairment in LTM, tested 24 h after training. Overall, these findings suggest that the V(D)J recombination-activating gene 1, RAG1, may play a role in LTM consolidation.

  2. Prediction of human pharmacokinetics of activated recombinant factor VII and B-domain truncated factor VIII from animal population pharmacokinetic models of haemophilia

    DEFF Research Database (Denmark)

    Larsen, Malte Selch; Juul, Rasmus Vestergaard; Groth, Andreas Velsing


    for nonlinear kinetics and gender-specific difference in clearance for rFVIII. The predictive performance of the animal population PK models of rFVIIa and rFVIII revealed significant species-variation. The developed PK models of rFVIIa and rFVIII in monkeys and dogs along with allometric interspecies scaling......Various experimental animal models are used in haemophilia research, however, little is known about how well the different species predict pharmacokinetic (PK) profiles in haemophilia patients. The aim of the current study was to describe the plasma concentration-time profile of recombinant...... activated factor VII (rFVIIa) and recombinant factor VIII (rFVIII) in several experimental animal models using population PK modelling, and apply a simulation-based approach to evaluate how well the developed animal population PK models predict human PK. PK models were developed for rFVIIa and r...

  3. The costly benefits of opposing agricultural biotechnology. (United States)

    Apel, Andrew


    Rigorous application of a simple definition of what constitutes opposition to agricultural biotechnology readily encompasses a wide array of key players in national and international systems of food production, distribution and governance. Even though the sum of political and financial benefits of opposing agricultural biotechnology appears vastly to outweigh the benefits which accrue to providers of agricultural biotechnology, technology providers actually benefit from this opposition. If these barriers to biotechnology were removed, subsistence farmers still would not represent a lucrative market for improved seed. The sum of all interests involved ensures that subsistence farmers are systematically denied access to agricultural biotechnology. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Molecular Cloning, Recombinant Expression and Antifungal Activity of BnCPI, a Cystatin in Ramie (Boehmeria nivea L.

    Directory of Open Access Journals (Sweden)

    Yongting Yu


    Full Text Available Phytocystatins play multiple roles in plant growth, development and resistance to pests and other environmental stresses. A ramie (Boehmeria nivea L. phytocystatin gene, designated as BnCPI, was isolated from a ramie cDNA library and its full-length cDNA was obtained by rapid amplification of cDNA ends (RACE. The full-length cDNA sequence (691 bp consisted of a 303 bp open reading frame (ORF encoding a protein of 100 amino acids with deduced molecular mass of 11.06 kDa and a theoretical isoelectric point (pI of 6.0. The alignment of genome DNA (accession no. MF153097 and cDNA sequences of BnCPI showed that an intron (~104 bp exists in the coding region. The BnCPI protein contains most of the highly conserved blocks including Gly5-Gly6 at the N-terminal, the reactive site motif QxVxG (Q49V50V51S52G53, the L79-W80 block and the [LVI]-[AGT]-[RKE]-[FY]-[AS]-[VI]-x-[EDQV]-[HYFQ]-N (L22G23R24 F25A26V27 D28D29H30 N31 block that is common among plant cystatins. BLAST analysis indicated that BnCPI is similar to cystatins from Glycine max (77%, Glycine soja (76%, Hevea brasiliensis (75% and Ricinus communis (75%. The BnCPI was subcloned into expression vector pSmart-I and then overexpressed in Escherichia coli BL21 (DE3 as a His-tagged recombinant protein. The purified reBnCPI has a molecular mass of 11.4 kDa determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE. Purified reBnCPI can efficiently inhibit the protease activity of papain and ficin toward BANA (Nα-benzoyl-L-arginine-2-naphthyamide, as well as the mycelium growth of some important plant pathogenic fungi. The data further contribute to our understanding of the molecular functions of BnCPI.

  5. Biotechnological production of vanillin using immobilized enzymes. (United States)

    Furuya, Toshiki; Kuroiwa, Mari; Kino, Kuniki


    Vanillin is an important and popular plant flavor, but the amount of this compound available from plant sources is very limited. Biotechnological methods have high potential for vanillin production as an alternative to extraction from plant sources. Here, we report a new approach using immobilized enzymes for the production of vanillin. The recently discovered oxygenase Cso2 has coenzyme-independent catalytic activity for the conversion of isoeugenol and 4-vinylguaiacol to vanillin. Immobilization of Cso2 on Sepabeads EC-EA anion-exchange carrier conferred enhanced operational stability enabling repetitive use. This immobilized Cso2 catalyst allowed 6.8mg yield of vanillin from isoeugenol through ten reaction cycles at a 1mL scale. The coenzyme-independent decarboxylase Fdc, which has catalytic activity for the conversion of ferulic acid to 4-vinylguaiacol, was also immobilized on Sepabeads EC-EA. We demonstrated that the immobilized Fdc and Cso2 enabled the cascade synthesis of vanillin from ferulic acid via 4-vinylguaiacol with repetitive use of the catalysts. This study is the first example of biotechnological production of vanillin using immobilized enzymes, a process that provides new possibilities for vanillin production. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Egyptian Journal of Biotechnology

    African Journals Online (AJOL)

    Biological activity and toxicitiy of imported and synthetic metal working fluids on Scendesmus obliquus algae · EMAIL FULL TEXT EMAIL FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. A El Shimy, N Tantwy, A El Tabei, A M Omar, 82-93. ...

  7. Recombinant production of enzymatically active male contraceptive drug target hTSSK2 - Localization of the TSKS domain phosphorylated by TSSK2. (United States)

    Shetty, Jagathpala; Sinville, Rondedrick; Shumilin, Igor A; Minor, Wladek; Zhang, Jianhai; Hawkinson, Jon E; Georg, Gunda I; Flickinger, Charles J; Herr, John C


    The testis-specific serine/threonine kinase 2 (TSSK2) has been proposed as a candidate male contraceptive target. Development of a selective inhibitor for this kinase first necessitates the production of highly purified, soluble human TSSK2 and its substrate, TSKS, with high yields and retention of biological activity for crystallography and compound screening. Strategies to produce full-length, soluble, biologically active hTSSK2 in baculovirus expression systems were tested and refined. Soluble preparations of TSSK2 were purified by immobilized-metal affinity chromatography (IMAC) followed by gel filtration chromatography. The biological activities of rec.hTSSK2 were verified by in vitro kinase and mobility shift assays using bacterially produced hTSKS (isoform 2), casein, glycogen synthase peptide (GS peptide) and various TSKS peptides as target substrates. Purified recombinant hTSSK2 showed robust kinase activity in the in vitro kinase assay by phosphorylating hTSKS isoform 2 and casein. The ATP Km values were similar for highly and partially purified fractions of hTSSK2 (2.2 and 2.7 μM, respectively). The broad spectrum kinase inhibitor staurosporine was a potent inhibitor of rec.hTSSK2 (IC50 = 20 nM). In vitro phosphorylation experiments carried out with TSKS (isoform 1) fragments revealed particularly strong phosphorylation of a recombinant N-terminal region representing aa 1-150 of TSKS, indicating that the N-terminus of human TSKS is phosphorylated by human TSSK2. Production of full-length enzymatically active recombinant TSSK2 kinase represents the achievement of a key benchmark for future discovery of TSSK inhibitors as male contraceptive agents. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Role of teh Rad52 Amino-terminal DNA Binding Activity in DNA Strand Capture in Homologous Recombination

    DEFF Research Database (Denmark)

    Shi, Idina; Hallwyl, Swee Chuang Lim; Seong, Changhyun


    Saccharomyces cerevisiae Rad52 protein promotes homologous recombination by nucleating the Rad51 recombinase onto replication protein A-coated single-stranded DNA strands and also by directly annealing such strands. We show that the purified rad52-R70A mutant protein, with a compromised amino......-terminal DNA binding domain, is capable of Rad51 delivery to DNA but is deficient in DNA annealing. Results from chromatin immunoprecipitation experiments find that rad52-R70A associates with DNA double-strand breaks and promotes recruitment of Rad51 as efficiently as wild-type Rad52. Analysis of gene...... conversion intermediates reveals that rad52-R70A cells can mediate DNA strand invasion but are unable to complete the recombination event. These results provide evidence that DNA binding by the evolutionarily conserved amino terminus of Rad52 is needed for the capture of the second DNA end during homologous...

  9. Analysis of DNA relaxation and cleavage activities of recombinant Mycobacterium tuberculosis DNA topoisomerase I from a new expression and purification protocol

    Directory of Open Access Journals (Sweden)

    Annamalai Thirunavukkarasu


    Full Text Available Abstract Background Mycobacterium tuberculosis DNA topoisomerase I is an attractive target for discovery of novel TB drugs that act by enhancing the accumulation of the topoisomerase-DNA cleavage product. It shares a common transesterification domain with other type IA DNA topoisomerases. There is, however, no homology between the C-terminal DNA binding domains of Escherichia coli and M. tuberculosis DNA topoisomerase I proteins. Results A new protocol for expression and purification of recombinant M. tuberculosis DNA topoisomerase I (MtTOP has been developed to produce enzyme of much higher specific activity than previously characterized recombinant enzyme. MtTOP was found to be less efficient than E. coli DNA topoisomerase I (EcTOP in removal of remaining negative supercoils from partially relaxed DNA. DNA cleavage by MtTOP was characterized for the first time. Comparison of DNA cleavage site selectivity with EcTOP showed differences in cleavage site preferences, but the preferred sites of both enzymes have a C nucleotide in the -4 position. Conclusion Recombinant M. tuberculosis DNA topoisomerase I can be expressed as a soluble protein and purified in high yield from E. coli host with a new protocol. Analysis of DNA cleavage with M. tuberculosis DNA substrate showed that the preferred DNA cleavage sites have a C nucleotide in the -4 position.

  10. Recombinant AAV-mediated in vivo long-term expression and antitumour activity of an anti-ganglioside GM3(Neu5Gc) antibody. (United States)

    Piperno, G M; López-Requena, A; Predonzani, A; Dorvignit, D; Labrada, M; Zentilin, L; Burrone, O R; Cesco-Gaspere, M


    The ganglioside GM3(Neu5Gc) has gained increasing attention as therapeutic target because of its selective expression in various human tumours, such as melanoma, breast and lung cancer. 14F7 is a mouse IgG1 with specific reactivity to GM3(Neu5Gc)-positive tumours. The therapeutic activity of 14F7 has also been demonstrated in vivo, through its repetitive passive administration in tumour-bearing animals. In this work we used an alternative strategy to deliver recombinant 14F7 in vivo and analysed the therapeutic efficacy of this approach. We engineered a recombinant adeno-associated vector to direct the expression of secretable recombinant 14F7 in BALB/c animals. A single administration of the rAAV induced efficient production and secretion of the antibody in the bloodstream, with an expression level reaching plateau at ∼3 weeks after injection and persisting for almost a year. Strikingly, upon challenge with GM3(Neu5Gc)-positive X63-AG8.653 myeloma cells, tumour development was significantly delayed in animals treated with rAAV-14F7 with respect to animals treated with a control rAAV codifying for an irrelevant antibody. Finally, no significant differences in survival proportion were detected in animals injected with rAAV-14F7 or treated by standard administration of repetitive doses of purified monoclonal antibody 14F7.

  11. Molecular cloning, over expression, and activity studies of a peptidic HIV-1 protease inhibitor: designed synthetic gene to functional recombinant peptide. (United States)

    Vathipadiekal, Vinod; Umasankar, Perunthottathu K; Patole, Milind S; Rao, Mala


    The aspartic protease inhibitor (ATBI) purified from a Bacillus sp. is a potent inhibitor of several proteases including recombinant HIV-1 protease, pepsin, and fungal aspartic protease. In this study, we report the cloning, and over expression of a synthetic gene coding for ATBI in Escherichia coli and establish a purification protocol. The ATBI molecule consists of eleven amino acids and is peptidic in nature. We used the peptide sequence data of ATBI to synthesize complementary oligonucleotides, which were annealed and subsequently cloned in-frame with the gene for glutathione-S-transferase (GST). The expression of the resulting fusion protein was induced in E. coli BL21-A1 cells using arabinose. The recombinant peptide was purified using a reduced glutathione column, and cleaved with Factor Xa to remove the GST tag. The resultant product was further purified to homogeneity using RP-HPLC. Mass spectroscopy analysis revealed that the purified peptide had a molecular weight of 1186Da which matches the theoretical molecular weight of the amino acids present in the synthetic gene. The recombinant peptide was found to be active in vitro against HIV-1 protease, pepsin, and fungal aspartic protease. The protocol described in this study may be used to clone pharmaceutically important peptide molecules.

  12. Chronological development avenues in biotechnology across the world

    Directory of Open Access Journals (Sweden)

    Prashant Y Mali


    Full Text Available Biotechnology is expected to be a great technological revolution followed by information technology. It is an application of scientific and engineering principles to the processing of material by biological agents to provide better goods and services to mankind. Commercially its techniques are applied long back in 6 th century in the art of brewing, wine making and baking. It has progressed there after crossing different land marks. Modern biotechnology has developed significantly in the late 19 th century with groundbreaking discoveries applicable in medicine, food, agriculture, chemistry, environmental protection and many more industries. It is widely used in the development of high-yielding, disease-resistant, better quality varieties by applying tissue culture and recombinant DNA techniques. It has wide application in animal breeding using techniques such as artificial insemination, in vitro fertilization and embryo transfer. Specific enzymes used in laundry, fuel and leather industries for better quality, economically feasible and environmental friendly production. Biotechnology in healthcare system uses body′s own tools and weapons to fight against diseases, manufacturing of targeted therapeutic proteins, gene therapy and so on. Novel approaches such as proteomics and structural biology are contributing to understanding the chemistry of life and diseases. Malfunctioning gene replaced with correctly functioning gene by using gene therapy. Tissue engineering has opened up the use of in vitro developed tissue or organ in repairing wounded tissue and system biology which is a computer-based approach to understand cell functions. Although every new discovery related to biology and its implications is significant and has taken the technology ahead. This includes applications, commercialization, controversies, media exposure and so on. Hence, we have enlisted some of the chronological development avenues in biotechnology across the world.

  13. Expression levels of chaperones influence biotransformation activity of recombinant Escherichia coli expressing Micrococcus luteus alcohol dehydrogenase and Pseudomonas putida Baeyer-Villiger monooxygenase. (United States)

    Baek, A-Hyong; Jeon, Eun-Yeong; Lee, Sun-Mee; Park, Jin-Byung


    We demonstrated for the first time that the archaeal chaperones (i.e., γ-prefoldin and thermosome) can stabilize enzyme activity in vivo. Ricinoleic acid biotransformation activity of recombinant Escherichia coli expressing Micrococcus luteus alcohol dehydrogenase and the Pseudomonas putida KT2440 Baeyer-Villiger monooxygenase improved significantly with co-expression of γ-prefoldin or recombinant themosome originating from the deep-sea hyperthermophile archaea Methanocaldococcus jannaschii. Furthermore, the degree of enhanced activity was dependent on the expression levels of the chaperones. For example, whole-cell biotransformation activity was highest at 12 µmol/g dry cells/min when γ-prefoldin expression level was approximately 46% of the theoretical maximum. This value was approximately two-fold greater than that in E. coli, where the γ-prefoldin expression level was zero or set to the theoretical maximum. Therefore, it was assumed that the expression levels of chaperones must be optimized to achieve maximum biotransformation activity in whole-cell biocatalysts. © 2014 Wiley Periodicals, Inc.

  14. New challenges in microalgae biotechnology. (United States)

    Valverde, Federico; Romero-Campero, Francisco J; León, Rosa; Guerrero, Miguel G; Serrano, Aurelio


    Photosynthetic protists, also called microalgae, have been systematically studied for more than a century. However, only recently broad biotechnological applications have fostered a novel wave of research on their potentialities as sustainable resources of renewable energy as well as valuable industrial and agro-food products. At the recent VII European Congress of Protistology held in Seville, three outstanding examples of different research strategies on microalgae with biotechnological implications were presented, which suggested that integrative approaches will produce very significant advances in this field in the next future. In any case, intense research and the application of systems biology and genetic engineering techniques are absolutely essential to reach the full potential of microalgae as cell-factories of bio-based products and, therefore, could contribute significantly to solve the problems of biosustainability and energy shortage. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Recombinant protein expression of Moringa oleifera lectin in methylotrophic yeast as active coagulant for sustainable high turbid water treatment. (United States)

    Abd Wahid, Muhamad Azhar; Megat Mohd Noor, Megat Johari; Goto, Masafumi; Sugiura, Norio; Othman, Nor'azizi; Zakaria, Zuriati; Ahmad Mohammed, Thamer; Jusoh, Ahmad; Hara, Hirofumi


    The natural coagulant Moringa oleifera lectin (MoL) as cationic protein is a promising candidate in coagulation process of water treatment plant. Introducing the gene encoding MoL into a host, Pichia pastoris, to secrete soluble recombinant protein is assessed in this study. Initial screening using PCR confirmed the insertion of MoL gene, and SDS-PAGE analysis detected the MoL protein at 8 kDa. Cultured optimization showed the highest MoL protein at 520 mg/L was observed at 28 °C for 144 h of culturing by induction in 1% methanol. Approximately, 0.40 mg/mL of recombinant MoL protein showed 95 ± 2% turbidity removal of 1% kaolin suspension. In 0.1% kaolin suspension, the concentration of MoL at 10 μg/mL exhibits the highest turbidity reduction at 68 ± 1%. Thus, recombinant MoL protein from P. pastoris is an effective coagulant for water treatment.

  16. The role of biotechnology on the treatment of wastes | Buyukgungor ...

    African Journals Online (AJOL)

    Biotechnological processes are used for wastewater treatment, gas treatment and disposal of solid wastes in environmental engineering. Also, these processes can be utilized for the production of biogas and hydrogen as new energy resources. For preventing environmental pollution in environmental engineering, activated ...

  17. Underground metabolism: network-level perspective and biotechnological potential

    DEFF Research Database (Denmark)

    Notebaart, Richard A; Kintses, Bálint; Feist, Adam


    A key challenge in molecular systems biology is understanding how new pathways arise during evolution and how to exploit them for biotechnological applications. New pathways in metabolic networks often evolve by recruiting weak promiscuous activities of pre-existing enzymes. Here we describe recent...

  18. Intranasal immunization with recombinant HA and mast cell activator C48/80 elicits protective immunity against 2009 pandemic H1N1 influenza in mice.

    Directory of Open Access Journals (Sweden)

    Shu Meng

    Full Text Available BACKGROUND: Pandemic influenza represents a major threat to global health. Vaccination is the most economic and effective strategy to control influenza pandemic. Conventional vaccine approach, despite being effective, has a number of major deficiencies including limited range of protection, total dependence on embryonated eggs for production, and time consuming for vaccine production. There is an urgent need to develop novel vaccine strategies to overcome these deficiencies. METHODOLOGY/PRINCIPAL FINDINGS: The major objective of this work was to develop a novel vaccine strategy combining recombinant haemagglutinin (HA protein and a master cell (MC activator C48/80 for intranasal immunization. We demonstrated in BALB/c mice that MC activator C48/80 had strong adjuvant activity when co-administered with recombinant HA protein intranasally. Vaccination with C48/80 significantly increased the serum IgG and mucosal surface IgA antibody responses against HA protein. Such increases correlated with stronger and durable neutralizing antibody activities, offering protection to vaccinated animals from disease progression after challenge with lethal dose of A/California/04/2009 live virus. Furthermore, protected animals demonstrated significant reduction in lung virus titers, minimal structural alteration in lung tissues as well as higher and balanced production of Th1 and Th2 cytokines in the stimulated splenocytes when compared to those without C48/80. CONCLUSIONS/SIGNIFICANCE: The present study demonstrates that the novel vaccine approach of combining recombinant HA and mucosal adjuvant C48/80 is safe and effective in eliciting protective immunity in mice. Future studies on the mechanism of action of C48/80 and potential combination with other vaccine strategies such as prime and boost approach may help to induce even more potent and broad immune responses against viruses from various clades.

  19. Interface of nuclear and biotechnologies

    International Nuclear Information System (INIS)

    Castro Diaz-Balart, F.


    Addressing nuclear and biotechnologies in the International Year of Physics should begin by highlighting the important role that this science has played in the development of both branches of science and technologies. The first as a direct consequence of the Theory of Relativity, the further was considerably influenced by Schroedinger's remarks that there must be a code of some kind that allowed molecules in cells to carry information, making a connection between genes and proteins. Both, like any highly technical endeavor, have also in common that the use of technologies demands a vast accumulation of knowledge, i.e. volumes of scientific research, engineering analysis, strict regulatory controls and a huge amount of information combined with a complex assortment of people with the required educational background, expertise and skills to master it. This presentation briefly explores the ways in which nuclear technology has been used in the last decades of the 20th century in the field of biomedicine applications, which includes the use of radiation to obtain accurate images as well as in diagnosis and therapy. The paper looks at the present prospects of some nuclear methods and instrumentation in the so-called Red biotechnology and its genetically engineered therapeutic agents and diagnostic tests as well as some related perspectives in the field of bioinformatics. As an example of biotechnology being successfully applied to health problems in developing countries the presentation gives an outlook of relevant Cuban achievements in this field. (author)

  20. Biosurfactants: Promising Molecules for Petroleum Biotechnology Advances

    Directory of Open Access Journals (Sweden)



    Full Text Available The growing global demand for sustainable technologies that improves the efficiency of petrochemical processes in the oil industry has driven advances in petroleum biotechnology in recent years. Petroleum industry uses substantial amounts of petrochemical-based synthetic surfactants in its activities as mobilizing agents to increase the availability or recovery of hydrocarbons as well as many other applications related to extraction, treatment, cleaning and transportation. However, biosurfactants have several potential applications for use across the oil processing chain and in the formulations of petrochemical products such as emulsifying/demulsifying agents, anticorrosive, biocides for sulphate-reducing bacteria, fuel formulation, extraction of bitumen from tar sands and many other innovative applications. Due to their versatility and proven efficiency, biosurfactants are often presented as valuable versatile tools that can transform and modernise petroleum biotechnology in an attempt to provide a true picture of state of the art and directions or use in the oil industry. We believe that biosurfactants are going to have a significant role in many future applications in the oil industries and in this review therefore, we highlight recent important relevant applications, patents disclosures and potential future applications for biosurfactants in petroleum and related industries.

  1. Biosurfactants: Promising Molecules for Petroleum Biotechnology Advances. (United States)

    De Almeida, Darne G; Soares Da Silva, Rita de Cássia F; Luna, Juliana M; Rufino, Raquel D; Santos, Valdemir A; Banat, Ibrahim M; Sarubbo, Leonie A


    The growing global demand for sustainable technologies that improves the efficiency of petrochemical processes in the oil industry has driven advances in petroleum biotechnology in recent years. Petroleum industry uses substantial amounts of petrochemical-based synthetic surfactants in its activities as mobilizing agents to increase the availability or recovery of hydrocarbons as well as many other applications related to extraction, treatment, cleaning, and transportation. However, biosurfactants have several potential applications for use across the oil processing chain and in the formulations of petrochemical products such as emulsifying/demulsifying agents, anticorrosive, biocides for sulfate-reducing bacteria, fuel formulation, extraction of bitumen from tar sands, and many other innovative applications. Due to their versatility and proven efficiency, biosurfactants are often presented as valuable versatile tools that can transform and modernize petroleum biotechnology in an attempt to provide a true picture of state of the art and directions or use in the oil industry. We believe that biosurfactants are going to have a significant role in many future applications in the oil industries and in this review therefore, we highlight recent important relevant applications, patents disclosures and potential future applications for biosurfactants in petroleum and related industries.

  2. Safety and efficacy of recombinant activated factor VII: a randomized placebo-controlled trial in the setting of bleeding after cardiac surgery

    DEFF Research Database (Denmark)

    Gill, Ravi; Herbertson, Mike; Vuylsteke, Alain


    BACKGROUND: Blood loss is a common complication of cardiac surgery. Evidence suggests that recombinant activated factor VII (rFVIIa) can decrease intractable bleeding in patients after cardiac surgery. Our objective was to investigate the safety and possible benefits of rFVIIa in patients who bleed....../kg, 14%; P=0.25; 80 microg/kg, 12%; P=0.43). After randomization, significantly fewer patients in the rFVIIa group underwent a reoperation as a result of bleeding (P=0.03) or required allogeneic transfusions (P=0.01). CONCLUSIONS: On the basis of this preliminary evidence, rFVIIa may be beneficial...

  3. Biofuels and Biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Mielenz, Jonathan R [ORNL


    research and resulting development activities using the latest biological research tools and techniques. Among the most recently evolving research tools is what is collectively known as "omics" techniques such as genomics, transcriptomics, proteomics, metabolomics, and fluxomics, plus an ever growing omics word generation . These and other similar methodologies are central to understanding the interactive functioning of gene expression, resulting protein/enzyme production, which impacts the cellular metabolism, and carbon and metabolite flow. These system biology "omics" tools are beginning to be applied to understand and improve the biological processes involved in conversion of renewable plant and animal material to biofuels which will be discussed in this chapter.

  4. Biotechnological Potential of Cold Adapted Pseudoalteromonas spp. Isolated from ‘Deep Sea’ Sponges

    Directory of Open Access Journals (Sweden)

    Erik Borchert


    Full Text Available The marine genus Pseudoalteromonas is known for its versatile biotechnological potential with respect to the production of antimicrobials and enzymes of industrial interest. We have sequenced the genomes of three Pseudoalteromonas sp. strains isolated from different deep sea sponges on the Illumina MiSeq platform. The isolates have been screened for various industrially important enzymes and comparative genomics has been applied to investigate potential relationships between the isolates and their host organisms, while comparing them to free-living Pseudoalteromonas spp. from shallow and deep sea environments. The genomes of the sponge associated Pseudoalteromonas strains contained much lower levels of potential eukaryotic-like proteins which are known to be enriched in symbiotic sponge associated microorganisms, than might be expected for true sponge symbionts. While all the Pseudoalteromonas shared a large distinct subset of genes, nonetheless the number of unique and accessory genes is quite large and defines the pan-genome as open. Enzymatic screens indicate that a vast array of enzyme activities is expressed by the isolates, including β-galactosidase, β-glucosidase, and protease activities. A β-glucosidase gene from one of the Pseudoalteromonas isolates, strain EB27 was heterologously expressed in Escherichia coli and, following biochemical characterization, the recombinant enzyme was found to be cold-adapted, thermolabile, halotolerant, and alkaline active.

  5. Biotechnological Potential of Cold Adapted Pseudoalteromonas spp. Isolated from 'Deep Sea' Sponges. (United States)

    Borchert, Erik; Knobloch, Stephen; Dwyer, Emilie; Flynn, Sinéad; Jackson, Stephen A; Jóhannsson, Ragnar; Marteinsson, Viggó T; O'Gara, Fergal; Dobson, Alan D W


    The marine genus Pseudoalteromonas is known for its versatile biotechnological potential with respect to the production of antimicrobials and enzymes of industrial interest. We have sequenced the genomes of three Pseudoalteromonas sp. strains isolated from different deep sea sponges on the Illumina MiSeq platform. The isolates have been screened for various industrially important enzymes and comparative genomics has been applied to investigate potential relationships between the isolates and their host organisms, while comparing them to free-living Pseudoalteromonas spp. from shallow and deep sea environments. The genomes of the sponge associated Pseudoalteromonas strains contained much lower levels of potential eukaryotic-like proteins which are known to be enriched in symbiotic sponge associated microorganisms, than might be expected for true sponge symbionts. While all the Pseudoalteromonas shared a large distinct subset of genes, nonetheless the number of unique and accessory genes is quite large and defines the pan-genome as open. Enzymatic screens indicate that a vast array of enzyme activities is expressed by the isolates, including β-galactosidase, β-glucosidase, and protease activities. A β-glucosidase gene from one of the Pseudoalteromonas isolates, strain EB27 was heterologously expressed in Escherichia coli and, following biochemical characterization, the recombinant enzyme was found to be cold-adapted, thermolabile, halotolerant, and alkaline active.

  6. Two new phospholipase D isoforms of Loxosceles laeta: cloning, heterologous expression, functional characterization, and potential biotechnological application. (United States)

    Catalán, A; Cortes, W; Sagua, H; González, J; Araya, J E


    Toxin phospholipases-D present in the venom of Loxosceles spiders is the principal responsible for local and systemic effects observed in the loxoscelism. In this study, we describe the cloning, expression, functional evaluation, and potential biotechnological application of cDNAs, which code for two new phospholipase D isoforms, LIPLD1 and LIPLD2, of the spider Loxosceles laeta. The recombinant protein rLIPLD1 had hydrolytic activity on sphingomyelin and in vitro hemolytic activity on human red blood cells, whereas rLIPLD2 was inactive. The purified recombinant proteins and the venom are recognized by polyclonal anti-rLIPLD1 and rLIPLD2 sera produced in animals and conferred immunoprotection against the venom. These new isoforms reinforce the importance of the multigene family of phospholipases-D present in Loxosceles spiders. A highly immunogenic inactive isoform such as rLIPLD2 raises important expectation for its use as a potential immunogenic inducer of the immunoprotective response to the toxic action of the venom of Loxosceles laeta. Copyright © 2011 Wiley Periodicals, Inc.

  7. Biotechnology information service of the GDR

    International Nuclear Information System (INIS)

    Poetzsch, E.


    The paper gives a survey of the biotechnology information in the GDR and describes the establishment of the Biotechnology Information Service of the GDR (BioInfo GDR). BioInfo GDR is a referral database and is to provide information on information sources available in the GDR, and on institutions working in the various fields of biotechnology in the GDR. In addition, some general problems of the building and use of databases are discussed. (author). 8 refs

  8. Cancer Biotechnology | Center for Cancer Research (United States)

    Biotechnology advances continue to underscore the need to educate NCI fellows in new methodologies. The Cancer Biotechnology course will be held on the NCI-Frederick campus on January 29, 2016 (Bldg. 549, Main Auditorium) and the course will be repeated on the Bethesda campus on February 9, 2016 (Natcher Balcony C). The latest advances in DNA, protein and image analysis will be presented. Clinical and postdoctoral fellows who want to learn about new biotechnology advances are encouraged to attend this course.

  9. Editorial: Latest methods and advances in biotechnology. (United States)

    Lee, Sang Yup; Jungbauer, Alois


    The latest "Biotech Methods and Advances" special issue of Biotechnology Journal continues the BTJ tradition of featuring the latest breakthroughs in biotechnology. The special issue is edited by our Editors-in-Chief, Prof. Sang Yup Lee and Prof. Alois Jungbauer and covers a wide array of topics in biotechnology, including the perennial favorite workhorses of the biotech industry, Chinese hamster ovary (CHO) cell and Escherichia coli. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Space Biotechnology and Commercial Applications University of Florida (United States)

    Phillips, Winfred; Evanich, Peggy L.


    The Space Biotechnology and Commercial Applications grant was funded by NASA's Kennedy Space Center in FY 2002 to provide dedicated biotechnology and agricultural research focused on the regeneration of space flight environments with direct parallels in Earth-based applications for solving problems in the environment, advances in agricultural science, and other human support issues amenable to targeted biotechnology solutions. This grant had three project areas, each with multiple tasks. They are: 1) Space Agriculture and Biotechnology Research and Education, 2) Integrated Smart Nanosensors for Space Biotechnology Applications, and 3) Commercial Applications. The Space Agriculture and Biotechnology Research and Education (SABRE) Center emphasized the fundamental biology of organisms involved in space flight applications, including those involved in advanced life support environments because of their critical role in the long-term exploration of space. The SABRE Center supports research at the University of Florida and at the Space Life Sciences Laboratory (SLSL) at the Kennedy Space Center. The Integrated Smart Nanosensors for Space Biotechnology Applications component focused on developing and applying sensor technologies to space environments and agricultural systems. The research activities in nanosensors were coordinated with the SABRE portions of this grant and with the research sponsored by the NASA Environmental Systems Commercial Space Technology Center located in the Department of Environmental Engineering Sciences. Initial sensor efforts have focused on air and water quality monitoring essential to humans for living and working permanently in space, an important goal identified in NASA's strategic plan. The closed environment of a spacecraft or planetary base accentuates cause and effect relationships and environmental impacts. The limited available air and water resources emphasize the need for reuse, recycling, and system monitoring. It is essential to

  11. New recombinant bacterium comprises a heterologous gene encoding glycerol dehydrogenase and/or an up-regulated native gene encoding glycerol dehydrogenase, useful for producing ethanol

    DEFF Research Database (Denmark)


    TECHNOLOGY FOCUS - BIOTECHNOLOGY - Preparation (claimed): Producing recombinant bacterium having enhanced ethanol production characteristics when cultivated in growth medium comprising glycerol comprises: (a) transforming a parental bacterium by (i) the insertion of a heterologous gene encoding...

  12. [Occupational risk and prevention in the biotechnology industry: a review]. (United States)

    Ferrari, M; Colombi, A; Imbriani, M


    The biotechnology industry has expanded greatly in the last 20-30 years and has led to a number of applications in different sectors of work, i.e., medical and pharmaceutical, agricultural, chemical, energetic and others. Nowadays hundreds of thousands of workers worldwide are employed in biotechnology plants. Health and safety issues related to such working activities are considered as relevant to workers as well as to the general public. In particular, when compared to traditional biotechnology, modern methods of processing microrganisms have given rise to public concern that they might generate hazards to human beings and to the environment. After summarizing the most important products and fields of application, the paper sets out to detail potential adverse effects for the health of biotechnology workers; in addition, an analysis of the literature highlights the various concepts of primary and secondary prevention. Along with occupational risk factors common to other working activities (i.e. the well-known physical and chemical hazards), the peculiarity of handling microrganisms and/or different biologic systems may induce infections, immunological alterations or non-infective and non-immunologic toxic reactions in the workers involved The need is emphasized for an accurate risk assessment, careful control by means of the current monitoring strategies and implementation of the confinement measures, taking into account the criteria set by Italian legislation for occupational biological risk. Lastly, attention is focussed on examinations for the medical surveillance of workers at risk.

  13. Dendritic Cell Activity Driven by Recombinant Mycobacterium bovis BCG Producing Human IL-18, in Healthy BCG Vaccinated Adults

    Directory of Open Access Journals (Sweden)

    Piotr Szpakowski


    Full Text Available Tuberculosis remains an enormous global burden, despite wide vaccination coverage with the Bacillus Calmette-Guérin (BCG, the only vaccine available against this disease, indicating that BCG-driven immunity is insufficient to protect the human population against tuberculosis. In this study we constructed recombinant BCG producing human IL-18 (rBCGhIL-18 and investigated whether human IL-18 produced by rBCGhIL-18 modulates DC functions and enhances Th1 responses to mycobacterial antigens in humans. We found that the costimulatory CD86 and CD80 molecules were significantly upregulated on rBCGhIL-18-infected DCs, whereas the stimulation of DCs with nonrecombinant BCG was less effective. In contrast, both BCG strains decreased the DC-SIGN expression on human DCs. The rBCGhIL-18 increased IL-23, IL-10, and IP-10 production by DCs to a greater extent than nonrecombinant BCG. In a coculture system of CD4+ T cells and loaded DCs, rBCGhIL-18 favoured strong IFN-γ but also IL-10 production by naive T cells but not by memory T cells. This was much less the case for nonrecombinant BCG. Thus the expression of IL-18 by recombinant BCG increases IL-23, IP-10, and IL-10 expression by human DCs and enhances their ability to induce IFN-γ and IL-10 expression by naive T cells, without affecting the maturation phenotype of the DCs.

  14. Assessment of heterologous butyrate and butanol pathway activity by measurement of intracellular pathway intermediates in recombinant Escherichia coli. (United States)

    Fischer, Curt R; Tseng, Hsien-Chung; Tai, Mitchell; Prather, Kristala L J; Stephanopoulos, Gregory


    In clostridia, n-butanol production from carbohydrates at yields of up to 76% of the theoretical maximum and at titers of up to 13 g/L has been reported. However, in Escherichia coli, several groups have reported butyric acid or butanol production from recombinant expression of clostridial genes, at much lower titers and yields. To pinpoint deficient steps in the recombinant pathway, we developed an analytical procedure for the determination of intracellular pools of key pathway intermediates and applied the technique to the analysis of three sets of E. coli strains expressing various combinations of butyrate biosynthesis genes. Low expression levels of the hbd-encoded S-3-hydroxybutyryl-CoA dehydrogenase were insufficient to convert acetyl-CoA to 3-hydroxybutyryl-CoA, indicating that hbd was a rate-limiting step in the production of butyryl-CoA. Increasing hbd expression alleviated this bottleneck, but in resulting strains, our pool size measurements and thermodynamic analysis showed that the reaction step catalyzed by the bcd-encoded butyryl-CoA dehydrogenase was rate-limiting. E. coli strains expressing both hbd and ptb-buk produced crotonic acid as a byproduct, but this byproduct was not observed with expression of related genes from non-clostridial organisms. Our thermodynamic interpretation of pool size measurements is applicable to the analysis of other metabolic pathways.

  15. Screening and characterization of thermo-active enzymes of biotechnological interest produced by thermophilic Bacillus isolated from hot springs in Tunisia. (United States)

    Thebti, Wajdi; Riahi, Yosra; Gharsalli, Rawand; Belhadj, Omrane


    As part of the contribution to the global efforts in research of thermostable enzymes being of industrial interest, we focus on the isolation of thermophilic bacteria from Tunisian hot springs. Among the collection of 161 strains of thermophilic Bacillus isolated from different samples of thermal water in Tunisia, 20% are capable of growing at 100°C and the rest grow at 70°C or above. Preliminary activity tests on media supplemented with enzyme-substrates confirmed that 35 strains produced amylases, 37 - proteases, 43 - cellulases, 31 - xylanases and 37 - mannanases. The study of the effect of temperature on enzyme activity led to determination of the optimal temperatures of activities that vary between 60 and 100°C. Several enzymes were active at high temperatures (80, 90 and 100°C) and kept their activity even at 110°C. Several isolated strains producing enzymes with high optimal temperatures of activity were described for the first time in this study. Both strains B62 and B120 are producers of amylase, protease, cellulase, xylanase, and mannanase. The sequencing of 16S DNA identified isolated strains as Geobacillus kaustophillus, Aeribacillus pallidus, Geobacillus galactosidasus and Geobacillus toebii.

  16. Spring 2008 Industry Study: Biotechnology Industry

    National Research Council Canada - National Science Library

    Anttonen, John; Darnauer, Trish; Douglas, Tim; Ferrari, John; Zimdahl, Jennifer; Hall, Ian M; King, William; Klotzsche, Carl; Miller, Doug; Packard, Doug; Renegar, Mike; Rimback, Ed; Rogers, Gordon; Schnedar, Chris; Sekulovski, Zoran


    Defined broadly as the manipulation of genetic material in living organisms or the derivatives thereof, biotechnology represents a veritable gold mine of possibilities for improving the human condition...

  17. The Recombinant Bacteriophage Endolysin HY-133 Exhibits In Vitro Activity against Different African Clonal Lineages of the Staphylococcus aureus Complex, Including Staphylococcus schweitzeri. (United States)

    Idelevich, Evgeny A; Schaumburg, Frieder; Knaack, Dennis; Scherzinger, Anna S; Mutter, Wolfgang; Peters, Georg; Peschel, Andreas; Becker, Karsten


    HY-133 is a recombinant bacteriophage endolysin with bactericidal activity againstStaphylococcus aureus Here, HY-133 showedin vitroactivity against major African methicillin-susceptible and methicillin-resistantS. aureuslineages and ceftaroline/ceftobiprole- and borderline oxacillin-resistant isolates. HY-133 was also active againstStaphylococcus schweitzeri, a recently described species of theS. aureuscomplex. The activity of HY-133 on the tested isolates (MIC50, 0.25 μg/ml; MIC90, 0.5 μg/ml; range, 0.125 to 0.5 μg/ml) was independent of the species and strain background or antibiotic resistance. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Biotechnological uses of archaeal extremozymes. (United States)

    Eichler, J


    Archaea have developed a variety of molecular strategies to survive the often harsh environments in which they exist. Although the rules that allow archaeal enzymes to fulfill their catalytic functions under extremes of salinity, temperature or pressure are not completely understood, the stability of these extremophilic enzymes, or extremozymes, in the face of adverse conditions has led to their use in a variety of biotechnological applications in which such tolerances are advantageous. In the following, examples of commercially important archaeal extremozymes are presented, potentially useful archaeal extremozyme sources are identified and solutions to obstacles currently hindering wider use of archaeal extremozymes are discussed.

  19. Biotechnology, Industry Study, Spring 2009 (United States)

    2009-01-01 12 In 2007, the US share of world production was 42.6% for corn, 32.0% for soybeans , 9.3% for wheat, and 1.5...for rice. Of global exports, the US accounted for 64.5% for corn, 39.4% for soybeans , 32.1% for wheat, and 9.7% for rice. Jim Monke, CRS Report...papers.cfm?abstract_id=1321054 28 Monsanto Company, "Conversations About Plant Biotechnology," April 25, 2009, gmo /asp

  20. Infusing Authentic Inquiry into Biotechnology (United States)

    Hanegan, Nikki L.; Bigler, Amber


    Societal benefit depends on the general public's understandings of biotechnology (Betsch in World J Microbiol Biotechnol 12:439-443, 1996; Dawson and Cowan in Int J Sci Educ 25(1):57-69, 2003; Schiller in Business Review: Federal Reserve Bank of Philadelphia (Fourth Quarter), 2002; Smith and Emmeluth in Am Biol Teach 64(2):93-99, 2002). A National Science Foundation funded survey of high school biology teachers reported that hands-on biotechnology education exists in advanced high school biology in the United States, but is non-existent in mainstream biology coursework (Micklos et al. in Biotechnology labs in American high schools, 1998). The majority of pre-service teacher content preparation courses do not teach students appropriate content knowledge through the process of inquiry. A broad continuum exists when discussing inquiry-oriented student investigations (Hanegan et al. in School Sci Math J 109(2):110-134, 2009). Depending on the amount of structure in teacher lessons, inquiries can often be categorized as guided or open. The lesson can be further categorized as simple or authentic (Chinn and Malhotra in Sci Educ 86(2):175-218, 2002). Although authentic inquiries provide the best opportunities for cognitive development and scientific reasoning, guided and simple inquiries are more often employed in the classroom (Crawford in J Res Sci Teach 37(9):916-937, 2000; NRC in Inquiry and the national science education standards: a guide for teaching and learning, 2000). For the purposes of this study we defined inquiry as "authentic" if original research problems were resolved (Hanegan et al. in School Sci Math J 109(2):110-134, 2009; Chinn and Malhotra in Sci Educ 86(2):175-218, 2002; Roth in Authentic school science: knowing and learning in open-inquiry science laboratories, 1995). The research question to guide this study through naturalistic inquiry research methods was: How will participants express whether or not an authentic inquiry experience enhanced

  1. Advances in animal cell recombinant protein production: GS-NS0 expression system. (United States)

    Barnes, L M; Bentley, C M; Dickson, A J


    The production of recombinant proteins using mammalian cell expression systems is of growing importance within biotechnology, largely due to the ability of specific mammalian cells to carry out post-translational modifications of the correct fidelity. The Glutamine Synthetase-NS0 system is now one such industrially important expression system.Glutamine synthetase catalyses the formation ofglutamine from glutamate and ammonia. NS0 cellscontain extremely low levels of endogenous glutaminesynthetase activity, therefore exogenous glutaminesynthetase can be used efficiently as a selectablemarker to identify successful transfectants in theabsence of glutamine in the media. In addition, theinclusion of methionine sulphoximine, an inhibitor ofglutamine synthetase activity, enables furtherselection of those clones producing relatively highlevels of transfected glutamine synthetase and henceany heterologous gene which is coupled to it. Theglutamine synthetase system technology has been usedfor research and development purposes during thisdecade and its importance is clearly demonstrated nowthat two therapeutic products produced using thissystem have reached the market place.

  2. Enhancement of 2,3-butanediol production from Jerusalem artichoke tuber extract by a recombinant Bacillus sp. strain BRC1 with increased inulinase activity. (United States)

    Park, Jang Min; Oh, Baek-Rock; Kang, In Yeong; Heo, Sun-Yeon; Seo, Jeong-Woo; Park, Seung-Moon; Hong, Won-Kyung; Kim, Chul Ho


    A Bacillus sp. strain named BRC1 is capable of producing 2,3-butanediol (2,3-BD) using hydrolysates of the Jerusalem artichoke tuber (JAT), a rich source of the fructose polymer inulin. To enhance 2,3-BD production, we undertook an extensive analysis of the Bacillus sp. BRC1 genome, identifying a putative gene (sacC) encoding a fructan hydrolysis enzyme and characterizing the activity of the resulting recombinant protein expressed in and purified from Escherichia coli. Introduction of the sacC gene into Bacillus sp. BRC1 using an expression vector increased enzymatic activity more than twofold. Consistent with this increased enzyme expression, 2,3-BD production from JAT was also increased from 3.98 to 8.10 g L -1 . Fed-batch fermentation of the recombinant strain produced a maximal level of 2,3-BD production of 28.6 g L -1 , showing a high theoretical yield of 92.3%.

  3. Rational selection of alternative, environmentally compatible surfactants for biotechnological production of pharmaceuticals--a step toward green biotechnology. (United States)

    Straub, Jürg Oliver; Shearer, Russel; Studer, Martin


    The biotechnological production of pharmaceutical active substances needs ancillary substances. Surfactants are used at the end of the cell culture as a protection against potential viral or bacterial contamination and to lyse the producing cells for isolation and purification of the products. To find a replacement for a surfactant that had raised environmental concern, environmentally relevant data for potential alternatives were searched for in the literature. Significant data gaps were filled with additional tests: biodegradability, algal growth inhibition, acute daphnid immobilization and chronic daphnid reproduction toxicity, acute fish toxicity, and activated sludge respiration inhibition. The results were used to model removal in the wastewater treatment plants (WWTPs) serving 3 biotechnological production sites in the Roche Group. Predicted environmental concentrations (PECs) were calculated using realistic amounts of surfactants and site-specific wastewater fluxes, modeled removals for the WWTPs and dilution factors by the respective receiving waters. Predicted no-effect concentrations (PNECs) were derived for WWTPs and for both fresh and marine receiving waters as the treated wastewater of 1 production site is discharged into a coastal water. This resulted in a spreadsheet showing PECs, PNECs, and PEC ÷ PNEC risk characterization ratios for the WWTPs and receiving waters for all investigated surfactants and all 3 sites. This spreadsheet now serves as a selection support for the biotechnological developers. This risk-based prioritization of surfactants is a step toward green biotechnological production. © 2014 SETAC.

  4. How could haloalkaliphilic microorganisms contribute to biotechnology? (United States)

    Zhao, Baisuo; Yan, Yanchun; Chen, Shulin


    Haloalkaliphiles are microorganisms requiring Na(+) concentrations of at least 0.5 mol·L(-1) and an alkaline pH of 9 for optimal growth. Their unique features enable them to make significant contributions to a wide array of biotechnological applications. Organic compatible solutes produced by haloalkaliphiles, such as ectoine and glycine betaine, are correlated with osmoadaptation and may serve as stabilizers of intracellular proteins, salt antagonists, osmoprotectants, and dermatological moisturizers. Haloalkaliphiles are an important source of secondary metabolites like rhodopsin, polyhydroxyalkanoates, and exopolysaccharides that play essential roles in biogeocycling organic compounds. These microorganisms also can secrete unique exoenzymes, including proteases, amylases, and cellulases, that are highly active and stable in extreme haloalkaline conditions and can be used for the production of laundry detergent. Furthermore, the unique metabolic pathways of haloalkaliphiles can be applied in the biodegradation and (or) biotransformation of a broad range of toxic industrial pollutants and heavy metals, in wastewater treatment, and in the biofuel industry.

  5. Biotechnological interventions in Withania somnifera (L.) Dunal. (United States)

    Singh, Pritika; Guleri, Rupam; Singh, Varinder; Kaur, Gurpreet; Kataria, Hardeep; Singh, Baldev; Kaur, Gurcharan; Kaul, Sunil C; Wadhwa, Renu; Pati, Pratap Kumar


    Withania somnifera is one of the most valued plants and is extensively used in Indian, Unani, and African systems of traditional medicine. It possess a wide array of therapeutic properties including anti-arthritic, anti-aging, anti-cancer, anti-inflammatory, immunoregulatory, chemoprotective, cardioprotective, and recovery from neurodegenerative disorders. With the growing realization of benefits and associated challenges in the improvement of W. somnifera, studies on exploration of genetic and chemotypic variations, identification and characterization of important genes, and understanding the secondary metabolites production and their modulation has gained significant momentum. In recent years, several in vitro and in vivo preclinical studies have facilitated the validation of therapeutic potential of the phytochemicals derived from W. somnifera and have provided necessary impetus for gaining deeper insight into the mechanistic aspects involved in the mode of action of these important pharmaceutically active constituents. The present review highlights some of the current developments and future prospects of biotechnological intervention in this important medicinal plant.

  6. From cell biology to biotechnology in space. (United States)

    Cogoli, A


    In this article I discuss the main results of our research in space biology from the simple early investigations with human lymphocytes in the early eighties until the projects in tissue engineering of the next decade on the international space station ISS. The discovery that T lymphocyte activation is nearly totally depressed in vitro in 0 g conditions showed that mammalian single cells are sensitive to the gravitational environment. Such finding had important implications in basic research, medicine and biotechnology. Low gravity can be used as a tool to investigate complicated and still obscure biological process from a new perspective not available to earth-bound laboratories. Low gravity may also favor certain bioprocesses involving the growth of tissues and thus lead to commercial and medical applications. However, shortage of crew time and of other resources, lack of sophisticated instrumentation, safety constraints pose serious limits to biological endeavors in space laboratories.

  7. Students' Knowledge of, and Attitudes towards Biotechnology Revisited, 1995-2014: Changes in Agriculture Biotechnology but Not in Medical Biotechnology (United States)

    Chen, Shao-Yen; Chu, Yih-Ru; Lin, Chen-Yung; Chiang, Tzen-Yuh


    Modern biotechnology is one of the most important scientific and technological revolutions in the 21st century, with an increasing and measurable impact on society. Development of biotechnology curriculum has become important to high school bioscience classrooms. This study has monitored high school students in Taiwan on their knowledge of and…

  8. Bringing functions together with fusion enzymes--from nature's inventions to biotechnological applications. (United States)

    Elleuche, Skander


    It is a mammoth task to develop a modular protein toolbox enabling the production of posttranslational organized multifunctional enzymes that catalyze reactions in complex pathways. However, nature has always guided scientists to mimic evolutionary inventions in the laboratory and, nowadays, versatile methods have been established to experimentally connect enzymatic activities with multiple advantages. Among the oldest known natural examples is the linkage of two or more juxtaposed proteins catalyzing consecutive, non-consecutive, or opposing reactions by a native peptide bond. There are multiple reasons for the artificial construction of such fusion enzymes including improved catalytic activities, enabled substrate channelling by proximity of biocatalysts, higher stabilities, and cheaper production processes. To produce fused proteins, it is either possible to genetically fuse coding open reading frames or to connect proteins in a posttranslational process. Molecular biology techniques that have been established for the production of end-to-end or insertional fusions include overlap extension polymerase chain reaction, cloning, and recombination approaches. Depending on their flexibility and applicability, these methods offer various advantages to produce fusion genes in high throughput, different orientations, and including linker sequences to maximize the flexibility and performance of fusion partners. In this review, practical techniques to fuse genes are highlighted, enzymatic parameters to choose adequate enzymes for fusion approaches are summarized, and examples with biotechnological relevance are presented including a focus on plant biomass-degrading glycosyl hydrolases.

  9. Recombinant Collagenlike Proteins (United States)

    Fertala, Andzej


    A group of collagenlike recombinant proteins containing high densities of biologically active sites has been invented. The method used to express these proteins is similar to a method of expressing recombinant procollagens and collagens described in U. S. Patent 5,593,859, "Synthesis of human procollagens and collagens in recombinant DNA systems." Customized collagenous proteins are needed for biomedical applications. In particular, fibrillar collagens are attractive for production of matrices needed for tissue engineering and drug delivery. Prior to this invention, there was no way of producing customized collagenous proteins for these and other applications. Heretofore, collagenous proteins have been produced by use of such biological systems as yeasts, bacteria, and transgenic animals and plants. These products are normal collagens that can also be extracted from such sources as tendons, bones, and hides. These products cannot be made to consist only of biologically active, specific amino acid sequences that may be needed for specific applications. Prior to this invention, it had been established that fibrillar collagens consist of domains that are responsible for such processes as interaction with cells, binding of growth factors, and interaction with a number of structural proteins present in the extracellular matrix. A normal collagen consists of a sequence of domains that can be represented by a corresponding sequence of labels, e.g., D1D2D3D4. A collagenlike protein of the present invention contains regions of collagen II that contain multiples of a single domain (e.g., D1D1D1D1 or D4D4D4D4) chosen for its specific biological activity. By virtue of the multiplicity of the chosen domain, the density of sites having that specific biological activity is greater than it is in a normal collagen. A collagenlike protein according to this invention can thus be made to have properties that are necessary for tissue engineering.

  10. Active and passive immune responses to transmissible gastroenteritis virus (TGEV) in swine inoculated with recombinant baculovirus-expressed TGEV spike glycoprotein vaccines. (United States)

    Shoup, D I; Jackwood, D J; Saif, L J


    Baculovirus-expressed transmissible gastroenteritis virus (TGEV) spike (S) glycoprotein vaccines were inoculated parenterally in swine to determine whether such vaccines could induce serum and whey virus-neutralizing (VN) antibodies and protective lactogenic immunity for TGEV-challenge-exposed pigs. ANIMALS AND PROCEDURES: 3 recombinant baculoviruses that expressed full or partial length TGEV Miller strain S glycoproteins were inoculated SC in 17 conventionally raised 11-day-old TGEV-seronegative pigs to determine whether the recombinant S glycoproteins would elicit serum VN antibodies. Eleven TGEV-seronegative pregnant sows were inoculated SC or intramammarily with subunit vaccines (R2-2 or R3-5) or control proteins. Pigs born to 9 of the 11 sows were challenge exposed at 4 to 5 days of age with the virulent Miller strain, and passive immunity was assessed. Serum and whey antibody responses to TGEV were analyzed by VN and ELISA testing. Recombinant S glycoproteins (R2-2 or R3-5) containing the 4 major antigenic sites induced similar VN antibody titers to TGEV in serum and colostrum, but low (some sows) or no VN antibody titer was detected in milk. Subcutaneous inoculation of sows with R2-2 or R3-5 elicited IgG, but not IgA antibodies to TGEV in colostrum. Morbidity was 100%, and mortality ranged from 20 to 80% in TGEV challenge-exposed pigs nursing sows inoculated SC or intramammarily with TGEV S glycoprotein vaccines. Parenterally administered TGEV S glycoprotein vaccines elicit VN antibodies to TGEV in serum and colostrum that do not fully provide active or passive immunity in swine.

  11. Biosafety Assessment of Microbial Strains Used in Biotechnology According to Their Taxonomy

    Directory of Open Access Journals (Sweden)

    Natalia I. Sheina


    Full Text Available A great variety of biotechnological products are now widely used in different ways in agriculture, medicine, food manufacturing and other areas of our life. Industrialized societies now more than ever depend on the use of genetically engineered products, with many of them synthesized using recombinant strains of microorganisms. There is an opinion that microbial strains used in biotechnology are potentially harmful for human health and the environment. Similar to many other countries, we have enacted environmental legislation in an effort to balance the risks and benefits of using biotechnological strains. Although environmental monitoring rules focus mainly on safety assessments of chemicals, the biosafety assessment of microbial strains used in biotechnology is a very important issue as well. This article summarizes 15 years of research on the biotechnological strains of microbes widely used as producers of various biological substances for industrial purposes, and their environmental and biotechnological applications. In our survey, we tried to evaluate possible adverse effects (general toxicity and damage to the immune system, potential sensitizing effects, and damage to normal microbiota caused by these microbes. It was shown that microscopical fungi of genera Aspergillus, Penicillium and Candida, and some gram-negative bacteria can affect the immune system and disrupt the normal balance of microbial flora of the intestinal tract in rats. The actinomycetes are less dangerous in that they cause fewer side effects. The investigation data obtained can be used to develop safety and hygienic standards for industrial microbes that will help decrease or minimize the occupational risk of infection or damage to the immune system when working with biotechnological strains of microbes.

  12. African Journal of Biotechnology Vol

    African Journals Online (AJOL)



    Dec 6, 2010 ... M proteins took place in vivo and the residues 168 – 225 of the M protein and the residues 150 - 210 of the N protein were determined to be involved in their interaction. These results may .... Plasmids and construction of recombinant vectors. The full-length N and M gene of the IBV (SAIBk, AY282542) was.

  13. Food biotechnology: benefits and concerns. (United States)

    Falk, Michael C; Chassy, Bruce M; Harlander, Susan K; Hoban, Thomas J; McGloughlin, Martina N; Akhlaghi, Amin R


    Recent advances in agricultural biotechnology have highlighted the need for experimental evidence and sound scientific judgment to assess the benefits and risks to society. Nutrition scientists and other animal biologists need a balanced understanding of the issues to participate in this assessment. To date most modifications to crop plants have benefited producers. Crops have been engineered to decrease pesticide and herbicide usage, protect against stressors, enhance yields and extend shelf life. Beyond the environmental benefits of decreased pesticide and herbicide application, consumers stand to benefit by development of food crops with increased nutritional value, medicinal properties, enhanced taste and esthetic appeal. There remains concern that these benefits come with a cost to the environment or increased risk to the consumer. Most U.S. consumers are not aware of the extent that genetically modified foods have entered the marketplace. Consumer awareness of biotechnology seems to have increased over the last decade, yet most consumers remain confused over the science. Concern over the impact on the safety of the food supply remains low in the United States, but is substantially elevated in Europe. Before a genetically engineered crop is introduced into commerce it must pass regulatory scrutiny by as many as four different federal regulatory bodies to ensure a safe food supply and minimize the risk to the environment. Key areas for more research are evaluation of the nutritional benefits of new crops, further investigation of the environmental impact, and development of better techniques to identify and track genetically engineered products.

  14. Biotechnology for Solar System Exploration (United States)

    Steele, A.; Maule, J.; Toporski, J.; Parro-Garcia, V.; Briones, C.; Schweitzer, M.; McKay, D.

    With the advent of a new era of astrobiology missions in the exploration of the solar system and the search for evidence of life elsewhere, we present a new approach to this goal, the integration of biotechnology. We have reviewed the current list of biotechnology techniques, which are applicable to miniaturization, automatization and integration into a combined flight platform. Amongst the techniques reviewed are- The uses of antibodies- Fluorescent detection strategies- Protein and DNA chip technology- Surface plasmon resonance and its relation to other techniques- Micro electronic machining (MEMS where applicable to biologicalsystems)- nanotechnology (e.g. molecular motors)- Lab-on-a-chip technology (including PCR)- Mass spectrometry (i.e. MALDI-TOF)- Fluid handling and extraction technologies- Chemical Force Microscopy (CFM)- Raman Spectroscopy We have begun to integrate this knowledge into a single flight instrument approach for the sole purpose of combining several mutually confirming tests for life, organic and/or microbial contamination, as well as prebiotic and abiotic organic chemicals. We will present several innovative designs for new instrumentation including pro- engineering design drawings of a protein chip reader for space flight and fluid handling strategies. We will also review the use of suitable extraction methodologies for use on different solar system bodies.

  15. A successful strategy for the recovering of active P21, an insoluble recombinant protein of Trypanosoma cruzi (United States)

    Santos, Marlus Alves Dos; Teixeira, Francesco Brugnera; Moreira, Heline Hellen Teixeira; Rodrigues, Adele Aud; Machado, Fabrício Castro; Clemente, Tatiana Mordente; Brigido, Paula Cristina; Silva, Rebecca Tavares E.; Purcino, Cecílio; Gomes, Rafael Gonçalves Barbosa; Bahia, Diana; Mortara, Renato Arruda; Munte, Claudia Elisabeth; Horjales, Eduardo; da Silva, Claudio Vieira


    Structural studies of proteins normally require large quantities of pure material that can only be obtained through heterologous expression systems and recombinant technique. In these procedures, large amounts of expressed protein are often found in the insoluble fraction, making protein purification from the soluble fraction inefficient, laborious, and costly. Usually, protein refolding is avoided due to a lack of experimental assays that can validate correct folding and that can compare the conformational population to that of the soluble fraction. Herein, we propose a validation method using simple and rapid 1D 1H nuclear magnetic resonance (NMR) spectra that can efficiently compare protein samples, including individual information of the environment of each proton in the structure.

  16. Critical appraisal of the role of recombinant activated factor VII in the treatment of hemophilia patients with inhibitors

    Directory of Open Access Journals (Sweden)

    Ampaiwan Chuansumrit


    Full Text Available Ampaiwan Chuansumrit1, Pantep Angchaisuksiri2, Nongnuch Sirachainan11Departments of Pediatrics and 2Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University,  Bangkok, ThailandAbstract: Hemophilia patients with inhibitors faced the constraint of inadequate treatment for several years before the era of recombinant factor VIIa (rFVII. Initially, rFVIIa was used in the compassionate-use programs. After a worldwide license was issued, more than 1.5 million doses were administered. Bleeding of joints and muscles was controlled effectively by means of an early home treatment program, with either a standard dose of 90 μg/kg every 2 to 3 hours for a few doses or a single dose of 270 μg/kg. For more serious bleeding episodes or minor surgery, an initial dose of 90 μg/kg was given every 2 hours for 24 to 48 hours followed by increased intervals of 3 to 6 hours according to the severity of bleeding and efficacy of bleeding control. In cases of major surgery such as orthopedic procedures, the same regimen can be applied except for a higher initial dose of 120 to 180 μg/kg. However, increasing the dose should be considered if there are unexpected bleeding complications since the half-life and clearance of rFVIIa differ between individuals. In addition, prophylaxis is administered to a small number of patients. Finally, the reported thromboembolic events found in hemophilia patients with inhibitors receiving rFVIIa are extremely low, much less than 1%.Keywords: bleeding disorder, hemophilia, inhibitor, NovoSeven, recombinant factor VIIa

  17. Investigations on the activation of recombinant microbial pro-transglutaminase: in contrast to proteinase K, dispase removes the histidine-tag. (United States)

    Sommer, Christian; Hertel, Thomas C; Schmelzer, Christian E H; Pietzsch, Markus


    In order to produce recombinant microbial transglutaminase (rMTG) which is free of the activating protease, dispase was used to activate the pro-rMTG followed by immobilized metal affinity chromatography (IMAC). As shown by MALDI-MS, the dispase does not only cleave the pro-sequence, but unfortunately also cleaves within the C-terminal histidine-tag. Hence, the active rMTG cannot properly bind to the IMAC material. As an alternative, proteinase K was investigated. This protease was successfully applied for the activation of purified pro-rMTG either as free or immobilized enzyme and the free enzyme was also applicable directly in the crude cell extract of E. coli. Thus, it enables a simple two-step activation/purification procedure resulting in protease-free and almost pure transglutaminase preparations. The protocol has been successfully applied to both, wild-type transglutaminase of Streptomyces mobaraensis as well as to the highly active variant S2P. Proteinase K activates the pro-rMTG without unwanted degradation of the histidine-tag. It turned out to be very important to inhibit proteinase K activity, e.g., by PMSF, prior to protein separation by SDS-PAGE.

  18. The evolution of biotechnology and its impact on health care. (United States)

    Evens, Ronald; Kaitin, Kenneth


    For more than three decades the field of biotechnology has had an extraordinary impact on science, health care, law, the regulatory environment, and business. During this time more than 260 novel biotechnology products were approved for over 230 indications. Global sales of these products exceeded $175 billion in 2013 and have helped sustain a vibrant life sciences sector that includes more than 4,600 biotech companies worldwide. In this article we examine the evolution of biotechnology during the past three decades and the profound impact that it has had on health care through four interrelated and interdependent tracks: innovations in science, government activity, business development, and patient care. The future impact of biotechnology is promising, as long as the public and private sectors continue to foster policies and provide funds that lead to scientific breakthroughs; governments continue to offer incentives for private-sector biotech innovation; industry develops business models for cost-effective research and development; and all stakeholders establish policies to ensure that the therapeutic advances that mitigate or cure medical conditions that currently have inadequate or no available therapies are accessible to the public at a reasonable cost. Project HOPE—The People-to-People Health Foundation, Inc.

  19. Molecular Biology for the Environment: an EC-US hands-on Course in Environmental Biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Victor de Lorenzo; Juan Luis Ramos; Jerome Kukor; Gerben J. Zylstra


    One of the central goals of this activity is to bring together young scientists (at the late Ph.D. or early postdoctoral stages of their careers) in a forum that should result in future collaborations. The course is designed to give scientists hands-on experience in modern, up-to-date biotechnological methods at the interface between molecular biology and environmental biotechnology for the analysis of microorganisms and their activities with regard to the remediation of pollutants in the environment.

  20. Biotechnology and Nuclear Agricultural Research Institute (BNARI) - Annual Report January-December 2015

    International Nuclear Information System (INIS)


    The Biotechnology and Nuclear Agriculture Research Institute (BNARI) of the Ghana Atomic Energy Commission (GAEC) exists carry out research and development activities on safe applications of biotechnology and nuclear science and transfer these technologies to end-users for increased agricultural production, health, industrial and economic development for poverty alleviation in Ghana. The 2015 Annual Report covers the organisational structure; various research activities and abstracts of publications. Also listed are training courses and seminars organised during the reporting year.

  1. Understanding Recombination. (United States)

    Zimmerman, Ira


    Describes a science activity on the importance of meiosis for variability. Uses a coin flip to demonstrate the random arrangement of genetic materials and explains how this results in zygotes with a new DNA combination. (YDS)

  2. Recombination Suppression in PbS Quantum Dot Heterojunction Solar Cells by Energy-Level Alignment in the Quantum Dot Active Layers. (United States)

    Ding, Chao; Zhang, Yaohong; Liu, Feng; Nakazawa, Naoki; Huang, Qingxun; Hayase, Shuzi; Ogomi, Yuhei; Toyoda, Taro; Wang, Ruixiang; Shen, Qing


    Using spatial energy-level gradient engineering with quantum dots (QDs) of different sizes to increase the generated carrier collection at the junction of a QD heterojunction solar cell (QDHSC) is a hopeful route for improving the energy-conversion efficiency. However, the results of current related research have shown that a variable band-gap structure in a QDHSC will create an appreciable increase, not in the illumination current density, but rather in the fill factor. In addition, there are a lack of studies on the mechanism of the effect of these graded structures on the photovoltaic performance of QDHSCs. This study presents the development of air atmosphere solution-processed TiO 2 /PbS QDs/Au QDHSCs by engineering the energy-level alignment (ELA) of the active layer via the use of a sorted order of differently sized QD layers (four QD sizes). In comparison to the ungraded device (without the ELA), the optimized graded architecture (containing the ELA) solar cells exhibited a great increase (21.4%) in short-circuit current density (J sc ). As a result, a J sc value greater than 30 mA/cm 2 has been realized in planar, thinner absorption layer (∼300 nm) PbS QDHSCs, and the open-circuit voltage (V oc ) and power-conversion efficiency (PCE) were also improved. Through characterization by the light intensity dependences of the J sc and V oc and transient photovoltage decay, we find that (i) the ELA structure, serving as an electron-blocking layer, reduces the interfacial recombination at the PbS/anode interface, and (ii) the ELA structure can drive more carriers toward the desirable collection electrode, and the additional carriers can fill the trap states, reducing the trap-assisted recombination in the PbS QDHSCs. This work has clearly elucidated the mechanism of the recombination suppression in the graded QDHSCs and demonstrated the effects of ELA structure on the improvement of J sc . The charge recombination mechanisms characterized in this work would be


    Directory of Open Access Journals (Sweden)

    Shapovalova OV


    sequence construction. The efficiency of BLV gp51 and p24 encoding regions fusion-sequence integration was confirmed by the screening with the specially designed oligonucleotides. The recombinant antigen expression was induced by addition of IPTG. To isolate the antigen bacterial mass was destroyed by defrostation and ultrasonic disintegration in the experimentally selected modes. The activity and specificity of the antigen was determined by AGID with the use of the bovine fetal serum, positive and negative reference diagnostic serum by unified method in comparison with the standardized cultural BLV antigen in AGID. The antigen specificity was increased by adsorption with commercial anticolibacillosis serum. The antigen activity was confirmed by AGID. Conclusions. Nowadays the most promising BLV antigens expressing genetic constructions with E. coli and baculovirus. E. coli recombinant strains are the most available and effective using expressing system, which allows to get an active and specific antigenic product if an optimal vector constructions and commercially available systems of metal affinity chromatography purification and control with appropriate Mab are used. As an cultural and recombinant antigens alternative the mimicking critical BLV antigenic epitopes synthetic peptides were tested. In recent times many scientific works formed the basis for the bovine leukemia diagnostic test systems’ creation, which are now widely available on the biotechnological products market. Although the majority of manufacturers prefer the recombinant antigens of the pathogen, pilot studies on more improved and cheaper ways to obtain different diagnostic antigens preparations shall not lose relevance.


    Directory of Open Access Journals (Sweden)

    Alexei A. Yeliseev


    Full Text Available Cannabinoid receptor CB2 is a seven transmembrane-domain integral membrane protein that belongs to a large superfamily of G protein-coupled receptors (GPCR. CB2 is a part of the endocannabinoid system that plays vital role in regulation of immune response, inflammation, pain sensitivity, obesity and other physiological responses. Information about the structure and mechanisms of functioning of this receptor in cell membranes is essential for the rational development of specific pharmaceuticals. Here we review the methodology for recombinant expression, purification, stabilization and biochemical characterization of CB2 suitable for preparation of multi-milligram quantities of functionally active receptor. The biotechnological protocols include expression of the recombinant CB2 in E. coli cells as a fusion with the maltose binding protein, stabilization with a high affinity ligand and a derivative of cholesterol in detergent micelles, efficient purification by tandem affinity chromatography, and reconstitution of the receptor into lipid bilayers. The purified recombinant CB2 receptor is amenable to functional and structural studies including nuclear magnetic resonance spectroscopy and a wide range of biochemical and biophysical techniques.

  5. Industrial PE-2 strain of Saccharomyces cerevisiae: from alcoholic fermentation to the production of recombinant proteins. (United States)

    Soares-Costa, Andrea; Nakayama, Darlan Gonçalves; Andrade, Letícia de Freitas; Catelli, Lucas Ferioli; Bassi, Ana Paula Guarnieri; Ceccato-Antonini, Sandra Regina; Henrique-Silva, Flavio


    Saccharomyces cerevisiae is the most important microorganism used in the ethanol fermentation process. The PE-2 strain of this yeast is widely used to produce alcohol in Brazil due to its high fermentation capacity. The aim of the present study was to develop an expression system for recombinant proteins using the industrial PE-2 strain of S. cerevisiae during the alcoholic fermentation process. The protein chosen as a model for this system was CaneCPI-1, a cysteine peptidase inhibitor. A plasmid containing the CaneCPI-1 gene was constructed and yeast cells were transformed with the pYADE4_CaneCPI-1 construct. To evaluate the effect on fermentation ability, the transformed strain was used in the fermentation process with cell recycling. During the nine-hour fermentative cycles the transformed strain did not have its viability and fermentation ability affected. In the last cycle, when the fermentation lasted longer, the protein was expressed probably at the expense of ethanol once the sugars were exhausted. The recombinant protein was expressed in yeast cells, purified and submitted to assays of activity that demonstrated its functionality. Thus, the industrial PE-2 strain of S. cerevisiae can be used as a viable system for protein expression and to produce alcohol simultaneously. The findings of the present study demonstrate the possibility of producing recombinant proteins with biotechnological applications during the ethanol fermentation process. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Spatial Diversity of Biotechnology Centres in Germany

    Directory of Open Access Journals (Sweden)

    Dorocki Sławomir


    Full Text Available Biotechnology is considered one of the key advanced technology sectors of the future. Its development is conditional on basic research in technologically advanced research institutes and appropriately qualified human resources. The optimum environment stimulating the development of biotechnology is that of production centres having joint industrial and R&D operations.

  7. Undergraduate Biotechnology Students' Views of Science Communication (United States)

    Edmondston, Joanne Elisabeth; Dawson, Vaille; Schibeci, Renato


    Despite rapid growth of the biotechnology industry worldwide, a number of public concerns about the application of biotechnology and its regulation remain. In response to these concerns, greater emphasis has been placed on promoting biotechnologists' public engagement. As tertiary science degree programmes form the foundation of the biotechnology…

  8. South-South Collaboration in Health Biotechnology

    International Development Research Centre (IDRC) Digital Library (Canada)

    To map entrepreneurial collaboration we conducted a brief survey on collaborations of health biotechnology/pharmaceutical firms in developing nations. The survey was sent to firms in five developing countries that have been identified as having relatively strong health biotechnology sectors, Brazil, China, Cuba, India and ...

  9. Biotechnology - The role of perceptions of consumers

    Directory of Open Access Journals (Sweden)

    P. Van Heerden


    Full Text Available The development of Biotechnology is aimed at creating improved products. Without the acceptance of biotechnology enhancements by consumers, the development of new products will be hampered. Consumers in different countries perceive genetic engineering differently. In this article the views of foreign and local consumers are investigated.

  10. Biotechnology issues in four Malaysian mainstream newspapers ...

    African Journals Online (AJOL)

    Biotechnology has been identified as the new engine of growth for the transformation of Malaysia into a developed nation by 2020. The objective of this paper is to analyze the impact of National Policy on biotechnology on media reporting in four Malaysian newspapers. Towards this end, a content analysis of four Malaysian ...

  11. Assessment of technology generating institutions in biotechnology ...

    African Journals Online (AJOL)

    Assessment of technology generating institutions in biotechnology innovation system of South-Eastern Nigeria. ... Results of the study revealed that some of the institutions have been involved in biotechnology research for the past two decades but have only significantly invested on bio-processing (58.8%) and cell and ...

  12. Some limitations of the biotechnological revolution | Onyia ...

    African Journals Online (AJOL)

    The objective of this paper is to challenge and possibly change the notion that biotechnology alone is the magic wand that brings solution to all of agriculture's pitfalls, by clarifying misconceptions concerning these underlying assumptions. The article reviews some of the highlights of modern plant biotechnology and ...

  13. Journal of Tropical Microbiology and Biotechnology

    African Journals Online (AJOL)

    The Journal of Tropical Microbiology and Biotechnology (JTMB) formerly Journal of Tropical Microbiology gives preeminence to the central role of modern biotechnology and microorganisms as tools and targets in current research, which is largely multidisciplinary. JTMB covers a broad range of topics, such as disease ...

  14. Assessment of technology generating institutions in biotechnology ...

    African Journals Online (AJOL)



    May 18, 2009 ... farmers on the potentials of biotechnology for food security is expedient. Key words: Biotechnology, innovation system, ... security, increases in agricultural productivity is required. Furthermore, Bunders et al. (1996) had earlier ..... This may be as a result of “publish or perish” syndrome in the universities.

  15. Biotechnology and species development in aquaculture | Ayoola ...

    African Journals Online (AJOL)

    The use of biotechnology in various aspects of human endeavour have obviously created a great impact but not without some risks. Not withstanding, there is still the need for its adoption as more of the already adopted biotechnologies are being improved upon with lesser demerits. Aquaculture is not also left out in the ...

  16. Biotechnology in plant nutrient management for agricultural ...

    African Journals Online (AJOL)

    The potential benefits of biotechnology are extraordinary and traverse sectors like agriculture, environment, health, industry, bio-informatics, and human resource development. In agriculture, biotechnology research has helped to improve the understanding of diseases, to improve the diagnosis and treatment of diseases, ...

  17. Agricultural biotechnology research and development in Ethiopia ...

    African Journals Online (AJOL)

    Ethiopia is an agrarian country that can have enormous benefit from the applications of biotechnology for increasing its agricultural productivity. The country is at initial stages of research and development in agricultural biotechnology with scattered efforts underway in various public institutions. Research efforts and ...

  18. Comparative genomics of biotechnologically important yeasts

    NARCIS (Netherlands)

    Riley, Robert; Haridas, Sajeet; Wolfe, Kenneth H; Lopes, Mariana R; Hittinger, Chris Todd; Göker, Markus; Salamov, Asaf A; Wisecaver, Jennifer H; Long, Tanya M; Calvey, Christopher H; Aerts, Andrea L; Barry, Kerrie W; Choi, Cindy; Clum, Alicia; Coughlan, Aisling Y; Deshpande, Shweta; Douglass, Alexander P; Hanson, Sara J; Klenk, Hans-Peter; LaButti, Kurt M; Lapidus, Alla; Lindquist, Erika A; Lipzen, Anna M; Meier-Kolthoff, Jan P; Ohm, Robin A; Otillar, Robert P; Pangilinan, Jasmyn L; Peng, Yi; Rokas, Antonis; Rosa, Carlos A; Scheuner, Carmen; Sibirny, Andriy A; Slot, Jason C; Stielow, J Benjamin; Sun, Hui; Kurtzman, Cletus P; Blackwell, Meredith; Grigoriev, Igor V; Jeffries, Thomas W


    Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the

  19. Biotechnology in Aquaculture: Prospects and Challenges | Edun ...

    African Journals Online (AJOL)

    Increased public demands for fish and dwindling natural marine habitats have encouraged scientists to study ways that biotechnology can increase the production of fish and shellfish. Biotechnology allows scientists to identify and combine traits in fish and shellfish to increase productivity and improve quality. This article ...

  20. Kinetic Parameters and Cytotoxic Activity of Recombinant Methionine γ-Lyase from Clostridium tetani, Clostridium sporogenes, Porphyromonas gingivalis and Citrobacter freundii. (United States)

    Morozova, E A; Kulikova, V V; Yashin, D V; Anufrieva, N V; Anisimova, N Y; Revtovich, S V; Kotlov, M I; Belyi, Y F; Pokrovsky, V S; Demidkina, T V


    The steady-state kinetic parameters of pyridoxal 5'-phosphate-dependent recombinant methionine γ -lyase from three pathogenic bacteria, Clostridium tetani, Clostridium sporogenes, and Porphyromonas gingivalis, were determined in β- and γ-elimination reactions. The enzyme from C. sporogenes is characterized by the highest catalytic efficiency in the γ-elimination reaction of L-methionine. It was demonstrated that the enzyme from these three sources exists as a tetramer. The N-terminal poly-histidine fragment of three recombinant enzymes influences their catalytic activity and facilitates the aggregation of monomers to yield dimeric forms under denaturing conditions. The cytotoxicity of methionine γ-lyase from C. sporogenes and C. tetani in comparison with Citrobacter freundii was evaluated using K562, PC-3, LnCap, MCF7, SKOV-3, and L5178y tumor cell lines. K562 (IC50=0.4-1.3 U/ml), PC-3 (IC50=0.1-0.4 U/ml), and MCF7 (IC50=0.04-3.2 U/ml) turned out to be the most sensitive cell lines.

  1. Active immunization with recombinant GnRH fusion protein in boars reduces both testicular development and mRNA expression levels of GnRH receptor in pituitary. (United States)

    Fang, Fugui; Li, Haidong; Liu, Ya; Zhang, Yunhai; Tao, Yong; Li, Yunsheng; Cao, Hongguo; Wang, Suolu; Wang, Lin; Zhang, Xiaorong


    Immunization using recombinant maltose binding protein-gonadotropin releasing hormone (MBP-GnRH6) altered both testicular development and transcription of the pituitary GnRH receptor (GnRHR) gene in boars. Scrotal measurement and blood samples were taken at 4-week interval after immunization at 9 weeks of age. The concentrations of testosterone and anti-GnRH antibodies in serum were determined by radioimmunoassay and enzyme-linked immunosorbent assay, respectively. The results showed that active immunization with MBP-GnRH6 increased the serum concentration of anti-GnRH antibodies (Pimmunized animals as compared with MBP immunized boars. MBP-GnRH6 immunized pigs exhibited mounting behavior 4 weeks later than MBP immunized boars. No mature spermatozoa were observed from MBP-GnRH6 immunized animals. By real-time quantitative PCR analysis, the amount of GnRHR mRNA in the pituitary tissue was found to be significantly lower in MBP-GnRH6 immunized animals than in controls (P<0.05). These data demonstrate that recombinant MBP-GnRH6 was effective in immunological castration in boars. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  2. The current biotechnology outlook in Malaysia

    Directory of Open Access Journals (Sweden)

    Khairiah Salwa MOKHTAR


    Full Text Available Blessed with extremely rich biodiversity, Malaysia is all geared up to explore new high technology to utilize the advantage it possesses whilst to protect its environment. Biotechnology has been identified as an appropriate driver that can deliver economic gains through research and development, improvement of food security, creation of entrepreneurial opportunities for industrial growth, health and environmental sustainability. This paper attempts to address the evolution of biotechnology institutions and the stumbling blocks in developing the Malaysian biotechnology industry. This paper identifies three main impediments in the current Malaysian biotechnology, namely lack of skilled human capital; weak industrial base; and lack of commercialization effort. Besides, a set of strategies are discussed with aim to further improve and strengthen the Malaysian biotechnology industry. In general, the arguments are presented by mapping out the symbiotic relationship between data from elite interviews, archival data and observations.

  3. Termites as targets and models for biotechnology. (United States)

    Scharf, Michael E


    Termites have many unique evolutionary adaptations associated with their eusocial lifestyles. Recent omics research has created a wealth of new information in numerous areas of termite biology (e.g., caste polyphenism, lignocellulose digestion, and microbial symbiosis) with wide-ranging applications in diverse biotechnological niches. Termite biotechnology falls into two categories: (a) termite-targeted biotechnology for pest management purposes, and (b) termite-modeled biotechnology for use in various industrial applications. The first category includes several candidate termiticidal modes of action such as RNA interference, digestive inhibition, pathogen enhancement, antimicrobials, endocrine disruption, and primer pheromone mimicry. In the second category, termite digestomes are deep resources for host and symbiont lignocellulases and other enzymes with applications in a variety of biomass, industrial, and processing applications. Moving forward, one of the most important approaches for accelerating advances in both termite-targeted and termite-modeled biotechnology will be to consider host and symbiont together as a single functional unit.

  4. Development of agriculture biotechnology in Pakistan. (United States)

    Zafar, Yusuf


    Agriculture plays an important role in the national economy of Pakistan, where most of the rapidly increasing population resides in rural areas and depends on agriculture for subsistence. Biotechnology has considerable potential for promoting the efficiency of crop improvement, food production, and poverty reduction. Use of modern biotechnology started in Pakistan since 1985. Currently, there are 29 biotech centers/institutes in the country. However, few centers have appropriate physical facilities and trained manpower to develop genetically modified (GM) crops. Most of the activities have been on rice and cotton, which are among the top 5 crops of Pakistan. Biotic (virus/bacterial/insect) and abiotic (salt) resistant and quality (male sterility) genes have already been incorporated in some crop plants. Despite acquiring capacity to produce transgenic plants, no GM crops, either produced locally or imported, have been released in the country. Pakistan is signatory to the World Trade Organization, Convention on Biological Diversity, and Cartagena protocols. Several legislations under the Agreement on Trade-Related Aspects of Intellectual Property Rights have been promulgated in the country. National Biosafety Guidelines have been promulgated in April 2005. The Plant Breeders Rights Act, Amendment in Seed Act-1976, and Geographical Indication for Goods are still passing through discussion, evaluation, and analysis phases. Meanwhile, an illegal GM crop (cotton) has already sneaked into farmer's field. Concerted and coordinated efforts are needed among various ministries for implementation of regulation and capacity building for import/export and local handling of GM crops. Pakistan could easily benefit from the experience of Asian countries, especially China and India, where conditions are similar and the agriculture sector is almost like that of Pakistan. Thus, the exchange of information and experiences is important among these nations.

  5. The role of biotechnology to ensure rice food security

    International Nuclear Information System (INIS)

    Teng, P.S.


    Rice as a food is key to the survival of more than 60% of the world population, most of whom live in Asia. Food security in Asia is therefore strongly dependent on an adequate, available supply of affordable rice. Experts estimate that global rice supply would need to increase at an average of 1.7% per annum for the next 20 years, and average rice yields must roughly double in the next 20 years in both the irrigated and favourable rainfed lowland environments, if a global shortage is to be avoided. At the same time that the need to increase total production, and unit area productivity is being felt, society is also demanding that agricultural practices be environment friendly and be part of a sustainable agricultural system. Rice breeders have seen increased difficulties to source and utilize new genetic resources for genetic improvement of yield potential from within the rice genome. As with other cereals, rice yield potential has not been dramatically increased in the last decade when compared to the quantum increase of the early Green Revolution years. Furthermore, pest-induced losses currently account for up to 30% of the loss in yield potential. Biotechnology, especially recombinant DNA technology, offers tools to transfer genes from outside the rice genome to address the critical issues of raising the yield potential, increasing tolerance or resistance to insects, diseases and a biotic stresses, to increase the efficiency of pest management, and also to improve the nutritive value of the rice grain. Genetically modified crops have a demonstrated record of environmental and food safety, and all such crops undergo a process of safety assessment and regulatory approval before they are put into the marketplace. Serious social issues, however, arise in matching the capacity of biotechnology to change crops, and in what changes society is willing to accept; and at this early stage of biotechnology applications, science-based approaches are important so that emotion

  6. Assembly, translocation, and activation of XerCD-dif recombination by FtsK translocase analyzed in real-time by FRET and two-color tethered fluorophore motion. (United States)

    May, Peter F J; Zawadzki, Pawel; Sherratt, David J; Kapanidis, Achillefs N; Arciszewska, Lidia K


    The FtsK dsDNA translocase functions in bacterial chromosome unlinking by activating XerCD-dif recombination in the replication terminus region. To analyze FtsK assembly and translocation, and the subsequent activation of XerCD-dif recombination, we extended the tethered fluorophore motion technique, using two spectrally distinct fluorophores to monitor two effective lengths along the same tethered DNA molecule. We observed that FtsK assembled stepwise on DNA into a single hexamer, and began translocation rapidly (∼ 0.25 s). Without extruding DNA loops, single FtsK hexamers approached XerCD-dif and resided there for ∼ 0.5 s irrespective of whether XerCD-dif was synapsed or unsynapsed. FtsK then dissociated, rather than reversing. Infrequently, FtsK activated XerCD-dif recombination when it encountered a preformed synaptic complex, and dissociated before the completion of recombination, consistent with each FtsK-XerCD-dif encounter activating only one round of recombination.

  7. An Overview on Indian Patents on Biotechnology. (United States)

    Mallick, Anusaya; Chandra Santra, Subhas; Samal, Alok Chandra


    The application of biotechnology is a potential tool for mitigating the present and future fooding and clothing demands in developing countries like India. The commercialization of biotechnological products might benefiting the poor`s in developing countries are unlikely to be developed. Biotechnology has the potential to provide a wide range of products and the existing production skills in the industrial, pharmaceuticals and the agricultural sector. Ownership of the intellectual property rights is the key factors in determining the success of any technological invention, which was introduced in the market. It provides the means for technological progress to continue of the industry of the country. The new plans, animal varieties, new methods of treatments, new crops producing food articles as such are the inventions of biotechnology. Biotechnology is the result of the application of human intelligence and knowledge to the biological processes. Most of the tools of biotechnology have been developed, by companies, governments, research in- stitutes and universities in developed nations. These human intellectual efforts deserve protection. India is a developing country with advance biotechnology based segments of pharmaceutical and agricultural industries. The Trade Related Intellectual Property Rights (TRIPS) is not likely to have a significant impact on incentives for innovation creation in the biotechnology sectors. In the recent years, the world has seen the biotechnology sector as one of greatest investment area through the Patent Law and will giving huge profit in future. The Research and Development in the field of biotechnology should be encouraged for explor- ing new tools and improve the biological systems for interest of the common people. Priority should be given to generation, evaluation, protection and effective commercial utilization of tangible products of intellectual property in agriculture and pharmaceuticals. To support the future growth and

  8. Progress towards the 'Golden Age' of biotechnology. (United States)

    Gartland, K M A; Bruschi, F; Dundar, M; Gahan, P B; Viola Magni, M p; Akbarova, Y


    Biotechnology uses substances, materials or extracts derived from living cells, employing 22 million Europeans in a € 1.5 Tn endeavour, being the premier global economic growth opportunity this century. Significant advances have been made in red biotechnology using pharmaceutically and medically relevant applications, green biotechnology developing agricultural and environmental tools and white biotechnology serving industrial scale uses, frequently as process feedstocks. Red biotechnology has delivered dramatic improvements in controlling human disease, from antibiotics to overcome bacterial infections to anti-HIV/AIDS pharmaceuticals such as azidothymidine (AZT), anti-malarial compounds and novel vaccines saving millions of lives. Green biotechnology has dramatically increased food production through Agrobacterium and biolistic genetic modifications for the development of 'Golden Rice', pathogen resistant crops expressing crystal toxin genes, drought resistance and cold tolerance to extend growth range. The burgeoning area of white biotechnology has delivered bio-plastics, low temperature enzyme detergents and a host of feedstock materials for industrial processes such as modified starches, without which our everyday lives would be much more complex. Biotechnological applications can bridge these categories, by modifying energy crops properties, or analysing circulating nucleic acid elements, bringing benefits for all, through increased food production, supporting climate change adaptation and the low carbon economy, or novel diagnostics impacting on personalized medicine and genetic disease. Cross-cutting technologies such as PCR, novel sequencing tools, bioinformatics, transcriptomics and epigenetics are in the vanguard of biotechnological progress leading to an ever-increasing breadth of applications. Biotechnology will deliver solutions to unimagined problems, providing food security, health and well-being to mankind for centuries to come. Copyright © 2013

  9. Biotechnology and sustainability: the role of transatlantic cooperation in research and innovation. (United States)

    Aguilar, Alfredo; Bochereau, Laurent; Matthiessen-Guyader, Line


    Life sciences and biotechnology are increasingly providing sustainable solutions in a wide range of areas from medicine to industry, agriculture and the environment. The United States and Europe are the two largest regions in which the revolution in life sciences and biotechnology has been taking place. Established in 1990, the EC-US Task Force on Biotechnology Research has provided a fruitful forum for the exchange of information, for the discussion of ideas and for the joint sponsoring of research activities between the US and the European Union.

  10. Oil body biogenesis and biotechnology in legume seeds. (United States)

    Song, Youhong; Wang, Xin-Ding; Rose, Ray J


    The seeds of many legume species including soybean, Pongamia pinnata and the model legume Medicago truncatula store considerable oil, apart from protein, in their cotyledons. However, as a group, legume storage strategies are quite variable and provide opportunities for better understanding of carbon partitioning into different storage products. Legumes with their ability to fix nitrogen can also increase the sustainability of agricultural systems. This review integrates the cell biology, biochemistry and molecular biology of oil body biogenesis before considering biotechnology strategies to enhance oil body biosynthesis. Cellular aspects of packaging triacylglycerol (TAG) into oil bodies are emphasized. Enhancing seed oil content has successfully focused on the up-regulation of the TAG biosynthesis pathways using overexpression of enzymes such as diacylglycerol acyltransferase1 and transcription factors such as WRINKLE1 and LEAFY COTYLEDON1. While these strategies are central, decreasing carbon flow into other storage products and maximizing the packaging of oil bodies into the cytoplasm are other strategies that need further examination. Overall there is much potential for integrating carbon partitioning, up-regulation of fatty acid and TAG synthesis and oil body packaging, for enhancing oil levels. In addition to the potential for integrated strategies to improving oil yields, the capacity to modify fatty acid composition and use of oil bodies as platforms for the production of recombinant proteins in seed of transgenic legumes provide other opportunities for legume biotechnology.

  11. A recombinant Anticarsia gemmatalis MNPV harboring chiA and v-cath genes from Choristoneura fumiferana defective NPV induce host liquefaction and increased insecticidal activity. (United States)

    Lima, Anabele Azevedo; Aragão, Clara Wandenkolck Silva; de Castro, Maria Elita Batista; Oliveira, Juliana Velasco de Castro; Sosa Gómez, Daniel Ricardo; Ribeiro, Bergmann Morais


    One of the interesting features of Anticarsia gemmatalis multiple nucleopolyhedrovirus isolate 2D (AgMNPV-2D) genome is the absence of chitinase (chiA) and cathepsin (v-cath) genes. This characteristic may be responsible for the lack of liquefaction and melanization in A. gemmatalis larvae killed by AgMNPV-2D infection. This study aimed to test the hypothesis that CHIA and V-CATH proteins from Choristonera fumiferana DEF multiple nucleopolyhedrovirus (CfDEFNPV) are able to liquefy and melanize the cuticle of A. gemmatalis larvae infected by a recombinant AgMNPV containing chiA and v-cath genes inserted in its genome. A fragment from the CfDefNPV genome containing chiA and v-cath genes was inserted into the genome of AgMNPV-2D. The recombinant virus (vAgp2100Cf.chiA/v-cath) was purified and used to infect insect cells and larvae. Transcripts of v-cath and chiA genes were detected along the infection of insect cells by qRT-PCR, from early to late phases of infection. The analysis of A. gemmatalis larvae killed by vAgp2100Cf.chiA/v-cath infection confirmed the hypothesis proposed. The vAgp2100Cf.chiA/v-cath showed higher insecticidal activity against third instar A. gemmatalis larvae when compared to AgMNPV-2D. The mean time to death was also lower for the vAgp2100Cf.chiA/v-cath when compared to AgMNPV-2D at 10 days post infection. Occlusion body production was higher in A. gemmatalis larvae infected with vAgp2100Cf.chiA/v-cath when compared to AgMNPV-2D. Enzyme assays showed higher chitinase and cysteine protease activities in insect cells and insects infected with vAgp2100Cf.chiA/v-cath when compared to AgMNPV-2D. The introduction of chiA and v-cath genes into the genome of AgMNPV improves its insecticidal activity against A. gemmatalis larvae and this recombinant virus could be used as an alternative to the wild type virus to control this important insect pest.

  12. Presence and removal of a contaminating NADH oxidation activity in recombinant maltose-binding protein fusion proteins expressed in Escherichia coli. (United States)

    Guo, Fengguang; Zhu, Guan


    We observed the presence of contaminating NADH oxidation activity in maltose binding protein (MBP) fusion proteins expressed in Escherichia coli and purified using conventional amylose resin-based affinity chromatography. This contaminating NADH oxidation activity was detectable with at least four different enzymes from Cryptosporidium parvum expressed as MBP-fusion proteins (i.e., an enoyl-reductase domain from a type I fatty acid synthase, a fatty acyl-CoA binding protein, the acyl-ligase domain from a polyketide synthase, and a putative thioesterase), regardless of their NADH dependence. However, contaminating NADH oxidation activity was not present when fusion proteins were engineered to contain a His-tag and were purified using a Ni-NTA resin-based protocol. Alternatively, for proteins containing only an MBP-tag, the contaminating activity could be eliminated through the addition of 0.1% Triton X-100 and 2% glycerol to the column buffer during homogenization of bacteria and first column wash, followed by an additional wash and elution with regular column and elution buffers. Removal of the artifactual activity is very valuable in the study of enzymes using NADH as a cofactor, particularly when the native activity is low or the recombinant proteins are inactive.

  13. New technologies in agricultural biotechnology

    Directory of Open Access Journals (Sweden)

    Andras Szekacs


    Full Text Available Technologies that emerged during the last decade as new tools occasionally represent fundamentally new means of genome modification, which, in addition to the scientific novelty, faces legislators with new challenge by giving a new meaning to both the biochemical/molecular biological and legal meaning to genetically modified organisms (GMOs. Emerging plant genetic technologies are categorized as zinc finger nuclease (ZFN technology; oligonucleotide directed mutagenesis; cisgenesis and intragenesis; RNA-dependent DNA methylation by RNA interference; grafting on GM rootstock; reverse breeding; agro-infiltration; and synthetic genomics. Although all these methods apply biotechnology processes to create new plant varieties, it debated whether all result in GMOs according to the current legal definition. Official risk assessment of these technologies is a task of outstanding weight of the authority.

  14. Flashing light in microalgae biotechnology. (United States)

    Abu-Ghosh, Said; Fixler, Dror; Dubinsky, Zvy; Iluz, David


    Flashing light can enhance photosynthesis and improve the quality and quantity of microalgal biomass, as it can increase the products of interest by magnitudes. Therefore, the integration of flashing light effect into microalgal cultivation systems should be considered. However, microalgae require a balanced mix of the light/dark cycle for higher growth rates, and respond to light intensity differently according to the pigments acquired or lost during the growth. This review highlights recently published results on flashing light effect on microalgae and its applications in biotechnology, as well as the recently developed bioreactors designed to fulfill this effect. It also discusses how this knowledge can be applied in selecting the optimal light frequencies and intensities with specific technical properties for increasing biomass production and/or the yield of the chemicals of interest by microalgae belonging to different genera. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Biotechnology and bioeconomy in China. (United States)

    Li, Qing; Zhao, Qinghua; Hu, Yihong; Wang, Hongguang


    From the review of the achievements and advantages in the development of biotechnology (BT) and bioindustry in China, it is clear that the bioeconomy would provide a tremendous opportunity for China to develop sustainably or even surpass a few developed countries. A long-term vision has been made to guide the research and development and industrialization of BT in China. This review detailed the strategies, targets, priorities, and key technologies in each stage. Furthermore, the reviewers expatiated on the establishment of the favorable policies, the foundation of the professional groups, the establishment of the advanced laboratories or centers, the investment mechanisms, the development and evaluation of biosafety, the encouragement and support for the international collaborations and exchanges, and the establishment of the general organizational structure.

  16. DNA polymerases and biotechnological applications. (United States)

    Aschenbrenner, Joos; Marx, Andreas


    A multitude of biotechnological techniques used in basic research as well as in clinical diagnostics on an everyday basis depend on DNA polymerases and their intrinsic capability to replicate DNA strands with astoundingly high fidelity. Applications with fundamental importance to modern molecular biology, including the polymerase chain reaction and DNA sequencing, would not be feasible without the advances made in characterizing these enzymes over the course of the last 60 years. Nonetheless, the still growing application scope of DNA polymerases necessitates the identification of novel enzymes with tailor-made properties. In the recent past, DNA polymerases optimized for diverse PCR and sequencing applications as well as enzymes that accept a variety of unnatural substrates for the synthesis and reverse transcription of modified nucleic acids have been developed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Biotechnology and bioforensics new trends

    CERN Document Server

    Kumar, Amit


    This Brief covers broad areas of Applied Biology specifically into the domains of Biotechnology/Biomedicine and Forensic Science. Chapters included here would also explain the role of bioinformatics in protein and gene characterization, modeling of the protein structure, survey related to the chromosomal effect on Human Disorders like Diabetes and Cardiac Problems. This Brief is full of Innovative Literature like Use of Microbes in Electricity Production, Brain connection to Type 2 Diabetes etc. Interesting issues in Forensic biology and the aspects of Bioforensics like STR profiling of exhumed bones makes this brief truly useful and informative for Researchers. It also includes the advancements and new ideologies in understanding crop improvements & crop quality. This Brief witnesses Innovative Research related to the Bio and Agri software development too which are capable of accelerating Insilico biological data analysis.

  18. Recombinant Treponema pallidum protein Tp0965 activates endothelial cells and increases the permeability of endothelial cell monolayer.

    Directory of Open Access Journals (Sweden)

    Rui-Li Zhang

    Full Text Available The recombinant Treponema pallidum protein Tp0965 (rTp0965, one of the many proteins derived from the genome of T. pallidum subsp. pallidum, shows strong immunogenicity and immunoreactivity. In this study, we investigated the effects of rTp0965 on the endothelial barrier. Treatment of human umbilical vein endothelial cells (HUVECs with rTp0965 resulted in increased levels of ICAM-1, E-selectin, and MCP-1 mRNA and protein expression. These increases contributed to the adhesion and chemataxis of monocytes (THP-1 cells to HUVECs preincubated with rTp0965. In addition, rTp0965 induced reorganization of F-actin and decreased expression of claudin-1 in HUVECs. Interestingly, inhibition of the RhoA/ROCK signal pathway protected against rTp0965-induced higher endothelial permeability as well as transendothelial migration of monocytes. These data indicate that Tp0965 protein may play an important role in the immunopathogenesis of syphilis.

  19. Verification of key odorants in rose oil by gas chromatography-olfactometry/aroma extract dilution analysis, odour activity value and aroma recombination. (United States)

    Xiao, Zuobing; Li, Jing; Niu, Yunwei; Liu, Qiang; Liu, Junhua


    Rose oil is much too expensive but very popular. It's well known that the flower oil's aroma profile hasn't been intensively investigated. In order to verify the aroma profile of rose oil, the synthetic blend of odorants was prepared and then compared with the original rose oil using electronic nose analysis (ENA) combined with quantitative descriptive analysis (QDA). The odorants from rose oils were screened out by Gas Chromatography-Olfactometry/aroma extract dilution analysis (GC-O/AEDA) combined with odour activity value (OAV). Both ENA and QDA indicated the recombination model derived from OAV and GC-O/AEDA closely resembled the original rose oil. The experiment results show that rose oxide, linalool, α-pinene, β-pinene, nonanal, heptanal citronellal, phenyl ethyl alcohol, benzyl alcohol, eugenol, methyl eugenol, β-citronellol, hexyl acetate, β-ionone, nerol, etc. are very important constituent to rose oil aroma profile.

  20. Production of barley endoprotease B2 in Pichia pastoris and its proteolytic activity against native and recombinant hordeins

    DEFF Research Database (Denmark)

    Rosenkilde, Anne Lind; Dionisio, Giuseppe; Holm, Preben Bach


    -terminal truncated version (HvEPB2ΔC) and a proteolytic resistant His6 tag. Maximum yield was obtained after 4 days of induction. Recombinant HvEPB2ΔC (r-HvEPB2ΔC) was purified using a single step of Ni2+-affinity chromatography. Purified protein was evaluated by SDS–PAGE, Western blotting and activity assays...... was 60 °C, thermal stability T50 value was 44 °C and the pH optimum was 4.5. r-HvEPB2ΔC was incubated with native purified barley seed storage proteins for up to 48 h. After 12 h, r-HvEPB2ΔC efficiently reduced the C and D hordeins almost completely, as evaluated by SDS–PAGE. The intensities of the B...

  1. High-yield production of biologically active recombinant protein in shake flask culture by combination of enzyme-based glucose delivery and increased oxygen transfer

    Directory of Open Access Journals (Sweden)

    Ukkonen Kaisa


    Full Text Available Abstract This report describes the combined use of an enzyme-based glucose release system (EnBase® and high-aeration shake flask (Ultra Yield Flask™. The benefit of this combination is demonstrated by over 100-fold improvement in the active yield of recombinant alcohol dehydrogenase expressed in E. coli. Compared to Terrific Broth and ZYM-5052 autoinduction medium, the EnBase system improved yield mainly through increased productivity per cell. Four-fold increase in oxygen transfer by the Ultra Yield Flask contributed to higher cell density with EnBase but not with the other tested media, and consequently the product yield per ml of EnBase culture was further improved.

  2. Dynamic Externalities, Universities and Social Capital Formation in the EU Biotechnology Industry




    The paper investigates the role of dynamic externalities, university-industry linkages and role of social networking in the biotechnology industry in the European Union (EU). Universities act as platforms for local knowledge spillovers and university-industry cluster development in the biotechnology field. The R&D activities at universities contribute to successful business innovations. However, the relationship between the universities and the local innovation capabilities is much more compl...

  3. Frontiers in biomedical engineering and biotechnology. (United States)

    Liu, Feng; Goodarzi, Ali; Wang, Haifeng; Stasiak, Joanna; Sun, Jianbo; Zhou, Yu


    The 2nd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2013), held in Wuhan on 11–13 October 2013, is an annual conference that aims at providing an opportunity for international and national researchers and practitioners to present the most recent advances and future challenges in the fields of Biomedical Information, Biomedical Engineering and Biotechnology. The papers published by this issue are selected from this conference, which witnesses the frontier in the field of Biomedical Engineering and Biotechnology, which particularly has helped improving the level of clinical diagnosis in medical work.

  4. Label-free fluorescent detection of thrombin activity based on a recombinant enhanced green fluorescence protein and nickel ions immobilized nitrilotriacetic acid-coated magnetic nanoparticles. (United States)

    Wang, Ming; Lei, Chunyang; Nie, Zhou; Guo, Manli; Huang, Yan; Yao, Shouzhuo


    Herein, a novel label-free fluorescent assay has been developed to detect the activity of thrombin and its inhibitor, based on a recombinant enhanced green fluorescence protein (EGFP) and Ni(2+) ions immobilized nitrilotriacetic acid-coated magnetic nanoparticles (Ni(2+)-NTA MNPs). The EGFP, containing a thrombin cleavage site and a hexahistidine sequence (His-tag) at its N-terminal, was adsorbed onto Ni(2+)-NTA MNPs through Ni(2+)-hexahistidine interaction, and dragged out of the solution by magnetic separation. Thrombin can selectively digest EGFP accompanied by His-tag peptide sequence leaving, and the resulting EGFP cannot be captured by Ni(2+)-NTA MNPs and kept in supernatant. Hence the fluorescence change of supernatant can clearly represent the activity of thrombin. Under optimized conditions, such assay showed a relatively low detection limit (3.0×10(-4) U mL(-1)), and was also used to detect the thrombin inhibitor, Hirudin, and further applied to detect thrombin activity in serum. Combined with the satisfactory reusability of Ni(2+)-NTA MNPs, our method presents a promising candidate for simple, sensitive, and cost-saving protease activity detecting and inhibitor screening. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Inhibition of progesterone receptor activity in recombinant yeast by soot from fossil fuel combustion emissions and air particulate materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingxian; Xie, Ping [Donghu Experimental Station of the Lake Ecosystems, The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072 (China); Kettrup, Antonius; Schramm, Karl-Werner [GSF-National Research Centre of Environment and Health, Institute of Ecological Chemistry, Ingolstaedter Landstr. 1, D-85764 Neuherberg (Germany)


    Numerous environmental pollutants have been detected for estrogenic activity by interacting with the estrogen receptor, but little information is available about their interactions with the progesterone receptor. In this study, emission samples generated by fossil fuel combustion (FFC) and air particulate material (APM) collected from an urban location near a traffic line in a big city of China were evaluated to interact with the human progesterone receptor (hPR) signaling pathway by examining their ability to interact with the activity of hPR expressed in yeast. The results showed that the soot of a petroleum-fired vehicle possessed the most potent anti-progesteronic activity, that of coal-fired stove and diesel fired agrimotor emissions took the second place, and soot samples of coal-fired heating work and electric power station had lesser progesterone inhibition activity. The anti-progesteronic activity of APM was between that of soot from petroleum-fired vehicle and soot from coal-fired establishments and diesel fired agrimotor. Since there was no other large pollution source near the APM sampling sites, the endocrine disrupters were most likely from vehicle emissions, tire attrition and house heating sources. The correlation analysis showed that a strong relationship existed between estrogenic activity and anti-progesteronic activity in emissions of fossil fuel combustion. The discoveries that some environmental pollutants with estrogenic activity can also inhibit hPR activity indicate that further studies are required to investigate potential mechanisms for the reported estrogenic activities of these pollutants.

  6. The recombinational anatomy of a mouse chromosome.

    Directory of Open Access Journals (Sweden)

    Kenneth Paigen


    Full Text Available Among mammals, genetic recombination occurs at highly delimited sites known as recombination hotspots. They are typically 1-2 kb long and vary as much as a 1,000-fold or more in recombination activity. Although much is known about the molecular details of the recombination process itself, the factors determining the location and relative activity of hotspots are poorly understood. To further our understanding, we have collected and mapped the locations of 5,472 crossover events along mouse Chromosome 1 arising in 6,028 meioses of male and female reciprocal F1 hybrids of C57BL/6J and CAST/EiJ mice. Crossovers were mapped to a minimum resolution of 225 kb, and those in the telomere-proximal 24.7 Mb were further mapped to resolve individual hotspots. Recombination rates were evolutionarily conserved on a regional scale, but not at the local level. There was a clear negative-exponential relationship between the relative activity and abundance of hotspot activity classes, such that a small number of the most active hotspots account for the majority of recombination. Females had 1.2x higher overall recombination than males did, although the sex ratio showed considerable regional variation. Locally, entirely sex-specific hotspots were rare. The initiation of recombination at the most active hotspot was regulated independently on the two parental chromatids, and analysis of reciprocal crosses indicated that parental imprinting has subtle effects on recombination rates. It appears that the regulation of mammalian recombination is a complex, dynamic process involving multiple factors reflecting species, sex, individual variation within species, and the properties of individual hotspots.

  7. Improving recombinant protein purification yield (United States)

    Production of adequate amounts of recombinant proteins is essential for antibody production, biochemical activity study, and structural determination during the post-genomic era. It’s technologically challenging and a limiting factor for tung oil research because analytical reagents such as high qua...

  8. Requirement of 8-mercaptoguanosine as a costimulus for IL-4-dependent μ to γ1 class switch recombination in CD38-activated B cells

    International Nuclear Information System (INIS)

    Tsukamoto, Yumiko; Uehara, Shoji; Mizoguchi, Chieko; Sato, Atsushi; Horikawa, Keisuke; Takatsu, Kiyoshi


    Mature B-2 cells expressing surface IgM and IgD proliferate upon stimulation by CD38, CD40 or lipopolysaccharide (LPS) and differentiate into IgG1-producing plasma cells in the presence of cytokines. The process of class switch recombination (CSR) from IgM to other isotypes is highly regulated by cytokines and activation-induced cytidine deaminase (AID). Blimp-1 and XBP-1 play an essential role in the terminal differentiation of switched B-2 cells to Ig-producing plasma cells. IL-5 induces AID and Blimp-1 expression in CD38- and CD40-activated B-2 cells, leading to μ to γ1 CSR at DNA level and IgG1 production. IL-4, a well-known IgG1-inducing factor, does not induce μ to γ1 CSR in CD38-activated B-2 cells or Blimp-1, while IL-4 induces μ to γ1 CSR, XBP-1 expression, and IgG1 production expression in CD40-activated B-2 cells. Interestingly, the addition of 8-mercaptoguanosine (8-SGuo) with IL-4 to the culture of CD38-activated B cells can induce μ to γ1 CSR, Blimp-1 expression, and IgG1 production. Intriguingly, 8-SGuo by itself induces AID expression in CD38-activated B cells. However, it does not induce μ to γ1 CSR. These results imply that the mode of B-cell activation for extracellular stimulation affects the outcome of cytokine stimulation with respect to the efficiency and direction of CSR, and the requirements of the transcriptional regulator and the generation of antibody-secreting cells. Furthermore, our data suggest the requirement of additional molecules in addition to AID for CSR

  9. [The past 30 years of Chinese Journal of Biotechnology]. (United States)

    Jiang, Ning


    This review addresses the association of "Chinese Journal of Biotechnology" and the development of biotechnology in China in the past 30 years. Topics include relevant awards and industrialization, development of the biotechnology discipline, and well know scientists in biotechnology, as well as perspectives on the journal.

  10. Biotechnology, nanotechnology, and pharmacogenomics and pharmaceutical compounding, Part 1. (United States)

    Allen, Loyd V


    The world of pharmaceuticals is changing rapidly as biotechnology continues to grow and nanotechnology appears on the horizon. Biotechnology is gaining in importance in extemporaneous pharmaceutical compounding, and nanotechnology and pharmacogenomics could drastically change the practice of pharmacy. This article discusses biotechnology and the factors to consider when compounding biotechnology drugs.

  11. Application of biotechnology to improve livestock products

    Directory of Open Access Journals (Sweden)

    Swati Gupta

    Full Text Available Biotechnological achievements of recent years have emerged as powerful tool to improve quality attributes of livestock products including milk and meat products. Biotechnological approaches can be employed for improving productivity, economy, physicochemical and nutritional attributes of a wide range of livestock products. The target areas of biotechnological research in the field of livestock products can be envisaged as production of high yielding food animal, improvement in quality of their products, enhanced production of natural food grade preservatives, efficient byproduct utilization and so forth. Many of the biotechnological techniques can be explored in the area of quality assurance programmes, which would be of great help to produce livestock products of assured quality and public health safety. [Vet World 2012; 5(10.000: 634-638

  12. Mechatronics design principles for biotechnology product development. (United States)

    Mandenius, Carl-Fredrik; Björkman, Mats


    Traditionally, biotechnology design has focused on the manufacture of chemicals and biologics. Still, a majority of biotechnology products that appear on the market today is the result of mechanical-electric (mechatronic) construction. For these, the biological components play decisive roles in the design solution; the biological entities are either integral parts of the design, or are transformed by the mechatronic system. This article explains how the development and production engineering design principles used for typical mechanical products can be adapted to the demands of biotechnology products, and how electronics, mechanics and biology can be integrated more successfully. We discuss three emerging areas of biotechnology in which mechatronic design principles can apply: stem cell manufacture, artificial organs, and bioreactors. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Assessment of technology generating institutions in biotechnology ...

    African Journals Online (AJOL)



    May 18, 2009 ... Key words: Biotechnology, innovation system, research institutions, universities and agricultural development programme. INTRODUCTION ... technology is the application of indigenous and / or scientific knowledge to the .... professionals, public attitude to genetic engineering organisms and products, and ...

  14. The Emerging Role of Biotechnological Drugs in the Treatment of Gout

    Directory of Open Access Journals (Sweden)

    L. Cavagna


    Full Text Available One of the most important therapeutic advances obtained in the field of rheumatology is the availability of the so-called bio(technological drugs, which have deeply changed treatment perspectives in diseases such as rheumatoid arthritis and ankylosing spondylitis. According to the steadily increasing attention on gout, due to well-established prognostic and epidemiology implications, in the last 5 years, the same change of perspective has been observed also for this disease. In fact, several bio(technological agents have been investigated both for the management of the articular gout symptoms, targeting mainly interleukin-1β, as well as urate-lowering therapies such as recombinant uricases. Among the IL-1β inhibitors, the majority of studies involve drugs such as anakinra, canakinumab, and rilonacept, but other compounds are under development. Moreover, other potential targets have been suggested, as, for example, the TNF alpha and IL-6, even if data obtained are less robust than those of IL-1β inhibitors. Regarding urate-lowering therapies, the recombinant uricases pegloticase and rasburicase clearly showed their effectiveness in gout patients. Also in this case, new compounds are under development. The aim of this review is to focus on the various aspects of different bio(technological drugs in gouty patients.

  15. Production of d-psicose from d-fructose by whole recombinant cells with high-level expression of d-psicose 3-epimerase from Agrobacterium tumefaciens. (United States)

    Park, Chang-Su; Park, Chul-Soon; Shin, Kyung-Chul; Oh, Deok-Kun


    The specific activity of recombinant Escherichia coli cells expressing the double-site variant (I33L-S213C) d-psicose 3-epimerase (DPEase) from Agrobacterium tumefaciens was highest at 24 h of cultivation time in Terrific Broth (TB) medium among the media tested. The contents of crude protein and DPEase in recombinant cells at 24 h were 37.0 and 8.6% (w/w), respectively, indicating that the enzyme was highly expressed. The reaction conditions for the production of d-psicose from d-fructose by whole recombinant cells with the highest specific activity were optimal at 60°C, pH 8.5, 4 g/l cells, and 700 g/l d-fructose. Under these conditions, whole recombinant cells produced 230 g/l d-psicose after 40 min, with a conversion yield of 33% (w/w), a volumetric productivity of 345 g/l/h, and a specific productivity of 86.2 g/g/h. These are the highest conversion yield and volumetric and specific productivities of d-psicose from d-fructose by cells reported thus far. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. New biotechnologies in Serbian forestry

    Directory of Open Access Journals (Sweden)

    Galović Vladislava


    Full Text Available This paper presents an overview of the results achieved in the laboratory for molecular studies of the Institute of Lowland Forestry and Environment, University of Novi Sad, in the field of biotechnology, mainly in molecular genetics, genomics and functional genomics. Researches are designed to serve as a breeding tool. The aim was to clarify the processes of classical genetics by applying modern methods and enable a qualitative and rapid progress in understanding the processes that occur at the level of genes in the genome of forest plant species and thus help the processes of conservation of valuable taxa at the time of global climate change. The results are presented within various research fields and by type of forest trees that were given priority by importance in forest ecosystems. Studies have in most cases been of applicative character with the aim of solving the major problems in forestry, but also of fundamental nature when they were necessary to elucidate the response of forest species to the induced stress, which is an inevitable component of the time characterized by tolerance and adaptation as keywords. [Projekat Ministarstva nauke Republike SRbije, br. III 43002: Biosenzing tehnologije i globalni sistem za kontinuirano istraživanje i integrisano upravljanje ekosistemima i br. III 43007: Istraživanje klimatskih promena i njihovog uticaja na životnu sredinu - praćenje uticaja, adaptacija i ublažavanje i IPA - OXIT

  17. Biotechnological improvement of ornamental plants

    Directory of Open Access Journals (Sweden)

    Flavia Soledad Darqui


    Full Text Available The discovery of commercial transgenic varieties of orange petunias sold in Europe and the United States although they had never reached the approved status, and the consequent recommendation to destroy them, was the trigger to discuss about biotechnological improvement of ornamental plants. Inside the restricted world of 26 vegetal transgenic species, according to the ISAAA’s reports (, there are three ornamental species: carnation, rose and the Beijing University developed petunia; all of them with the same trait, a change in their colour. On the other hand, in 2014, the whole-genome sequence of carnation appeared which was the first and until now the only one among ornamental species. In this context, we review the publications from the last five years in petunia, rose, chrysanthemum and carnation. In these papers there are detailed descriptions of modification of the cascade of genes and transcription factors involved in stress situations, in different developmental stages and their regulation through different plant hormones. This knowledge will allow breeding for better and new varieties with changes in their abiotic or biotic stress tolerance, altered growth or yield and modified product quality as colour or fragrance.

  18. Biotechnological applications of bacterial cellulases

    Directory of Open Access Journals (Sweden)

    Esther Menendez


    Full Text Available Cellulases have numerous applications in several industries, including biofuel production, food and feed industry, brewing, pulp and paper, textile, laundry, and agriculture.Cellulose-degrading bacteria are widely spread in nature, being isolated from quite different environments. Cellulose degradation is the result of a synergic process between an endoglucanase, an exoglucanase and a,β-glucosidase. Bacterial endoglucanases degrade ß-1,4-glucan linkages of cellulose amorphous zones, meanwhile exoglucanases cleave the remaining oligosaccharide chains, originating cellobiose, which is hydrolyzed by ß-glucanases. Bacterial cellulases (EC are comprised in fourteen Glycosil Hydrolase families. Several advantages, such as higher growth rates and genetic versatility, emphasize the suitability and advantages of bacterial cellulases over other sources for this group of enzymes. This review summarizes the main known cellulolytic bacteria and the best strategies to optimize their cellulase production, focusing on endoglucanases, as well as it reviews the main biotechnological applications of bacterial cellulases in several industries, medicine and agriculture.

  19. Selection and characterization of a promoter for expression of single-copy recombinant genes in Gram-positive bacteria

    Directory of Open Access Journals (Sweden)

    Manganelli Riccardo


    Full Text Available Abstract Background In the past ten years there has been a growing interest in engineering Gram-positive bacteria for biotechnological applications, including vaccine delivery and production of recombinant proteins. Usually, bacteria are manipulated using plasmid expression vectors. The major limitation of this approach is due to the fact that recombinant plasmids are often lost from the bacterial culture upon removal of antibiotic selection. We have developed a genetic system based on suicide vectors on conjugative transposons allowing stable integration of recombinant DNA into the chromosome of transformable and non-transformable Gram-positive bacteria. Results The aim of this work was to select a strong chromosomal promoter from Streptococcus gordonii to improve this genetic system making it suitable for expression of single-copy recombinant genes. To achieve this task, a promoterless gene encoding a chloramphenicol acetyltransferase (cat, was randomly integrated into the S. gordonii chromosome and transformants were selected for chloramphenicol resistance. Three out of eighteen chloramphenicol resistant transformants selected exhibited 100% stability of the phenotype and only one of them, GP215, carried the cat gene integrated as a single copy. A DNA fragment of 600 base pairs exhibiting promoter activity was isolated from GP215 and sequenced. The 5' end of its corresponding mRNA was determined by primer extention analysis and the putative -10 and a -35 regions were identified. To study the possibility of using this promoter (PP for single copy heterologous gene expression, we created transcriptional fusions of PP with genes encoding surface recombinant proteins in a vector capable of integrating into the conjugative transposon Tn916. Surface recombinant proteins whose expression was controlled by the PP promoter were detected in Tn916-containing strains of S. gordonii and Bacillus subtilis after single copy chromosomal integration of the

  20. Enterprise Factors Contributing to The Success of Malaysian Biotechnology SMEs: A Grounded Theory Approach

    Directory of Open Access Journals (Sweden)

    Saridan Abu Bakar


    Full Text Available While numerous empirical studies have been conducted in Western countries on biotechnology enterprises, little empirical research has been done in Malaysia especially in respect to the factors that contribute to the success of biotechnology small and medium enterprises (SMEs. In view of this, a study was undertaken recently in Malaysia to address this gap in the existing body of biotechnology knowledge. Using a grounded theory approach, this qualitative study managed to develop a conceptual framework that sheds useful information on the enterprise factors that significantly impact the success of Malaysian biotechnology SMEs. Specifically, this study found that organizational structure, innovation activities, linkages with academic research institutions, linkages with other private enterprises, personal linkages with academic researchers, access to financial capital, the procuring of government assistances, vertical integration, enterprise image, GMP compliance and halal certification, strongly influence enterprise success.



    Garda S. A.; S. G. Danilenko; G. S. Litvinov


    Probiotics based on normal microflora of the birds using perspective strains become increasingly popular for treatment and prophylaxis of dysbacteriosis in poultry. The purpose of the work is the biotechnological data analysis of the composition and functions of the microflora of different birds’ biotopes. One of biotechnological methods for the study of bacterial flora in the birds is a method of in vivo bacteriological control — analysis of group samples of fresh droppings. To study bir...

  2. Outer Limits of Biotechnologies: A Jewish Perspective

    Directory of Open Access Journals (Sweden)

    John D. Loike


    Full Text Available A great deal of biomedical research focuses on new biotechnologies such as gene editing, stem cell biology, and reproductive medicine, which have created a scientific revolution. While the potential medical benefits of this research may be far-reaching, ethical issues related to non-medical applications of these technologies are demanding. We analyze, from a Jewish legal perspective, some of the ethical conundrums that society faces in pushing the outer limits in researching these new biotechnologies.

  3. Proteomics: a biotechnology tool for crop improvement


    Eldakak, Moustafa; Milad, Sanaa I. M.; Nawar, Ali I.; Rohila, Jai S.


    A sharp decline in the availability of arable land and sufficient supply of irrigation water along with a continuous steep increase in food demands have exerted a pressure on farmers to produce more with fewer resources. A viable solution to release this pressure is to speed up the plant breeding process by employing biotechnology in breeding programs. The majority of biotechnological applications rely on information generated from various -omic technologies. The latest outstanding improve...

  4. Induced mutation and somatic recombination as tools for genetic analysis and breeding of imperfect fungi

    NARCIS (Netherlands)

    Bos, C.J.


    Many fungi which are important in Agriculture as plant pathogens or in Biotechnology as producers of organic acids, antibiotics or enzymes, are imperfect fungi. These fungi do not have a sexual stage, which implies that they lack a meiotic recombination mechanism.

    However, many

  5. Medical Biotechnology Trends and Achievements in Iran (United States)

    Mahboudi, Fereidoun; Hamedifar, Haleh; Aghajani, Hamideh


    A healthcare system has been the most important priority for all governments worldwide. Biotechnology products have affected the promotion of health care over the last thirty years. During the last several decades, Iran has achieved significant success in extending healthcare to the rural areas and in reducing the rates of infant mortality and increasing population growth. Biomedical technology as a converging technology is considered a helpful tool to fulfill the Iranian healthcare missions. The number of biotechnology products has reached 148 in 2012. The total sales have increased to 98 billion USD without considering vaccines and plasma derived proteins in 2012. Iran is one of the leading countries in the Middle East and North Africa in the area of Medical biotechnology. The number of biotechnology medicines launched in Iran is 13 products until 2012. More than 15 products are in pipelines now. Manufacturers are expecting to receive the market release for more than 8 products by the end of 2012. Considering this information, Iran will lead the biotechnology products especially in area of biosimilars in Asia after India in next three years. The present review will discuss leading policy, decision makers’ role, human resource developing system and industry development in medical biotechnology. PMID:23407888

  6. The role of biotechnology in art preservation. (United States)

    Ramírez, José Luis; Santana, María A; Galindo-Castro, Iván; Gonzalez, Alvaro


    Biotechnology has played a key role in medicine, agriculture and industry for over 30 years and has advanced our understanding of the biological sciences. Furthermore, the tools of biotechnology have a great and largely untapped potential for the preservation and restoration of our cultural heritage. It is possible that these tools are not often applied in this context because of the inherent separation of the worlds of art and science; however, it is encouraging to see that during the past six years important biotechnological applications to artwork preservation have emerged and advances in biotechnology predict further innovation. In this article we describe and reflect upon a unique example of a group of scientists and art restoration technicians working together to study and treat of a piece of colonial art, and review some of the new applications in biotechnology for the preservation of mankind's cultural heritage. We predict an expansion in this field and the further development of biotechnological techniques, which will open up new opportunities to both biologists and artwork preservers.

  7. Increased serum levels of fibrinogen degradation products due to treatment with recombinant tissue-type plasminogen activator for acute myocardial infarction are related to bleeding complications, but not to coronary patency

    NARCIS (Netherlands)

    R.W. Brower (Ronald); D. Collen; G.A. van Es (Gerrit Anne); J. Lubsen (Jacob); P.W.J.C. Serruys (Patrick); M.L. Simoons (Maarten); M. Verstraete (Marc); A.E.R. Arnold (Alfred)


    textabstractThe association of increasing serum levels of fibrinogen degradation products after recombinant tissue-type plasminogen activator (rt-PA) therapy with bleeding and early coronary patency was assessed in 242 patients with acute myocardial infarction. After administration of 5,000 IU

  8. Kinetic characterization of recombinant Bacillus coagulans FDP-activated l-lactate dehydrogenase expressed in Escherichia coli and its substrate specificity. (United States)

    Jiang, Ting; Xu, Yanbing; Sun, Xiucheng; Zheng, Zhaojuan; Ouyang, Jia


    Bacillus coagulans is a homofermentative, acid-tolerant and thermophilic sporogenic lactic acid bacterium, which is capable of producing high yields of optically pure lactic acid. The l-(+)-lactate dehydrogenase (l-LDH) from B. coagulans is considered as an ideal biocatalyst for industrial production. In this study, the gene ldhL encoding a thermostable l-LDH was amplified from B. coagulans NL01 genomic DNA and successfully expressed in Escherichia coli BL21 (DE3). The recombinant enzyme was partially purified and its enzymatic properties were characterized. Sequence analysis demonstrated that the l-LDH was a fructose 1,6-diphosphate-activated NAD-dependent lactate dehydrogenase (l-nLDH). Its molecular weight was approximately 34-36kDa. The Km and Vmax values of the purified l-nLDH for pyruvate were 1.91±0.28mM and 2613.57±6.43μmol(minmg)(-1), respectively. The biochemical properties of l-nLDH showed that the specific activity were up to 2323.29U/mg with optimum temperature of 55°C and pH of 6.5 in the pyruvate reduction and 351.01U/mg with temperature of 55°C and pH of 11.5 in the lactate oxidation. The enzyme also showed some activity in the absence of FDP, with a pH optimum of 4.0. Compared to other lactic acid bacterial l-nLDHs, the enzyme was found to be relatively stable at 50°C. Ca(2+), Ba(2+), Mg(2+) and Mn(2+) ions had activated effects on the enzyme activity, and the enzyme was greatly inhibited by Ni(2+) ion. Besides these, l-nLDH showed the higher specificity towards pyruvate esters, such as methyl pyruvate and ethyl pyruvate. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. The recombinant pea defensin Drr230a is active against impacting soybean and cotton pathogenic fungi from the genera Fusarium, Colletotrichum and Phakopsora. (United States)

    Lacerda, Ariane Ferreira; Del Sarto, Rafael Perseghini; Silva, Marilia Santos; de Vasconcelos, Erico Augusto Rosas; Coelho, Roberta Ramos; Dos Santos, Vanessa Olinto; Godoy, Claudia Vieira; Seixas, Claudine Dinali Santos; da Silva, Maria Cristina Mattar; Grossi-de-Sa, Maria Fatima


    Plant defensins are antifungal peptides produced by the innate immune system plants developed to circumvent fungal infection. The defensin Drr230a, originally isolated from pea, has been previously shown to be active against various entomopathogenic and phytopathogenic fungi. In the present study, the activity of a yeast-expressed recombinant Drr230a protein (rDrr230a) was tested against impacting soybean and cotton fungi. First, the gene was subcloned into the yeast expression vector pPICZαA and expressed in Pichia pastoris. Resulting rDrr230a exhibited in vitro activity against fungal growth and spore germination of Fusarium tucumaniae, which causes soybean sudden death syndrome, and against Colletotrichum gossypii var. cephalosporioides, which causes cotton ramulosis. The rDrr230a IC 50 corresponding to inhibition of fungal growth of F. tucumaniae and C. gossypii var. cephalosporioides was 7.67 and 0.84 µM, respectively, demonstrating moderate activity against F. tucumaniae and high potency against C. gossypii var. cephalosporioides. Additionally, rDrr230a at 25 ng/µl (3.83 µM) resulted in 100 % inhibition of spore germination of both fungi, demonstrating that rDrr230a affects fungal development since spore germination. Moreover, rDrr230a at 3 µg/µl (460.12 µM) inhibited 100 % of in vitro spore germination of the obligatory biotrophic fungus Phakopsora pachyrhizi, which causes Asian soybean rust. Interestingly, rDrr230a substantially decreased the severity of Asian rust, as demonstrated by in planta assay. To our knowledge, this is the first report of a plant defensin active against an obligatory biotrophic phytopathogenic fungus. Results revealed the potential of rDrr230a as a candidate to be used in plant genetic engineering to control relevant cotton and soybean fungal diseases.

  10. Implications of evolutionary engineering for growth and recombinant protein production in methanol-based growth media in the yeast Pichia pastoris. (United States)

    Moser, Josef W; Prielhofer, Roland; Gerner, Samuel M; Graf, Alexandra B; Wilson, Iain B H; Mattanovich, Diethard; Dragosits, Martin


    Pichia pastoris is a widely used eukaryotic expression host for recombinant protein production. Adaptive laboratory evolution (ALE) has been applied in a wide range of studies in order to improve strains for biotechnological purposes. In this context, the impact of long-term carbon source adaptation in P. pastoris has not been addressed so far. Thus, we performed a pilot experiment in order to analyze the applicability and potential benefits of ALE towards improved growth and recombinant protein production in P. pastoris. Adaptation towards growth on methanol was performed in replicate cultures in rich and minimal growth medium for 250 generations. Increased growth rates on these growth media were observed at the population and single clone level. Evolved populations showed various degrees of growth advantages and trade-offs in non-evolutionary growth conditions. Genome resequencing revealed a wide variety of potential genetic targets associated with improved growth performance on methanol-based growth media. Alcohol oxidase represented a mutational hotspot since four out of seven evolved P. pastoris clones harbored mutations in this gene, resulting in decreased Aox activity, despite increased growth rates. Selected clones displayed strain-dependent variations for AOX-promoter based recombinant protein expression yield. One particularly interesting clone showed increased product titers ranging from a 2.5-fold increase in shake flask batch culture to a 1.8-fold increase during fed batch cultivation. Our data indicate a complex correlation of carbon source, growth context and recombinant protein production. While similar experiments have already shown their potential in other biotechnological areas where microbes were evolutionary engineered for improved stress resistance and growth, the current dataset encourages the analysis of the potential of ALE for improved protein production in P. pastoris on a broader scale.

  11. Molecular chaperone assisted expression systems: obtaining pure soluble and active recombinant proteins for structural and therapeutic purposes

    CSIR Research Space (South Africa)

    Makhoba, XH


    Full Text Available . coli host. However, some proteins have not been produced as pure, soluble or active proteins. For this reason this has led to some researchers to suggest the use of engineered host systems that do not produce endogenous molecular chaperones such as Hsp...

  12. Activity of the Human Rhinovirus 3C Protease Studied in Various Buffers, Additives and Detergents Solutions for Recombinant Protein Production

    DEFF Research Database (Denmark)

    Ullah, Raheem; Shah, Majid Ali; Tufail, Soban


    and time-consuming procedures before proteolysis can occur. To address this issue, we examined the effect of elution buffers used for common affinity based purifications, salt ions, stability/solubility and reducing agents, and detergents on the activity of the human rhinovirus 3C protease using three...

  13. Genetic analysis of japonica x indica recombinant inbred lines and ...

    African Journals Online (AJOL)

    Genetic analysis of japonica x indica recombinant inbred lines and characterization of major fragrance gene by microsatellite markers. ... At some SSR loci, new/recombinant alleles were observed, which indicate the active recombination between genomes of two rice varieties and can be used for linkage mapping once ...

  14. Regulation of homologous recombination at telomeres in budding yeast

    DEFF Research Database (Denmark)

    Eckert-Boulet, Nadine; Lisby, Michael


    Homologous recombination is suppressed at normal length telomere sequences. In contrast, telomere recombination is allowed when telomeres erode in the absence of telomerase activity or as a consequence of nucleolytic degradation or incomplete replication. Here, we review the mechanisms...... that contribute to regulating mitotic homologous recombination at telomeres and the role of these mechanisms in signalling short telomeres in the budding yeast Saccharomyces cerevisiae....

  15. The Characterization of Escherichia coli CpdB as a Recombinant Protein Reveals that, besides Having the Expected 3´-Nucleotidase and 2´,3´-Cyclic Mononucleotide Phosphodiesterase Activities, It Is Also Active as Cyclic Dinucleotide Phosphodiesterase.

    Directory of Open Access Journals (Sweden)

    Iralis López-Villamizar

    Full Text Available Endogenous cyclic diadenylate phosphodiesterase activity was accidentally detected in lysates of Escherichia coli BL21. Since this kind of activity is uncommon in Gram-negative bacteria, its identification was undertaken. After partial purification and analysis by denaturing gel electrophoresis, renatured activity correlated with a protein identified by fingerprinting as CpdB (cpdB gene product, which is annotated as 3´-nucleotidase / 2´,3´-cyclic-mononucleotide phosphodiesterase, and it is synthesized as a precursor protein with a signal sequence removable upon export to the periplasm. It has never been studied as a recombinant protein. The coding sequence of mature CpdB was cloned and expressed as a GST fusion protein. The study of the purified recombinant protein, separated from GST, confirmed CpdB annotation. The assay of catalytic efficiencies (kcat/Km for a large substrate set revealed novel CpdB features, including very high efficiencies for 3´-AMP and 2´,3´-cyclic mononucleotides, and previously unknown activities on cyclic and linear dinucleotides. The catalytic efficiencies of the latter activities, though low in relative terms when compared to the major ones, are far from negligible. Actually, they are perfectly comparable to those of the 'average' enzyme and the known, bona fide cyclic dinucleotide phosphodiesterases. On the other hand, CpdB differs from these enzymes in its extracytoplasmic location and in the absence of EAL, HD and DHH domains. Instead, it contains the domains of the 5´-nucleotidase family pertaining to the metallophosphoesterase superfamily, although CpdB lacks 5´-nucleotidase activity. The possibility that the extracytoplasmic activity of CpdB on cyclic dinucleotides could have physiological meaning is discussed.

  16. Future societal issues in industrial biotechnology. (United States)

    Schuurbiers, Daan; Osseweijer, Patricia; Kinderlerer, Julian


    Three international stakeholder meetings were organized by The Netherlands-based "Kluyver Center for Genomics of Industrial Fermentation" with the objective to identify the future societal issues in the field of industrial biotechnology and to develop a coordinated strategy for public dialogue. The meetings resulted in five unanimous recommendations: (i) that science, industry and the European Commission in conjunction with other stakeholders create a comprehensive roadmap towards a bio-based economy; (ii) that the European Commission initiate a series of round-table meetings to further articulate the views, interests and responsibilities of the relevant stakeholders and to define policy; (iii) that the development of new innovative communication activities is stimulated to increase public engagement and to discuss the ways that we do or do not want technologies to shape our common future; (iv) that further social studies are undertaken on public attitudes and behaviors to the bio-based economy and that novel methods are developed to assess public views of future technological developments; and (v) that the concept of sustainability is further operationalized and taken as a core value driving research and development and policy making.

  17. A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. (United States)

    Rosenberg, Julian N; Oyler, George A; Wilkinson, Loy; Betenbaugh, Michael J


    Microalgae have the potential to revolutionize biotechnology in a number of areas including nutrition, aquaculture, pharmaceuticals, and biofuels. Although algae have been commercially cultivated for over 50 years, metabolic engineering now seems necessary in order to achieve their full processing capabilities. Recently, the development of a number of transgenic algal strains boasting recombinant protein expression, engineered photosynthesis, and enhanced metabolism encourage the prospects of designer microalgae. Given the vast contributions that these solar-powered, carbon dioxide-sequestering organisms can provide to current global markets and the environment, an intensified focus on microalgal biotechnology is warranted. Ongoing advances in cultivation techniques coupled with genetic manipulation of crucial metabolic networks will further promote microalgae as an attractive platform for the production of numerous high-value compounds.

  18. Students' knowledge of, and attitudes towards biotechnology revisited, 1995-2014: Changes in agriculture biotechnology but not in medical biotechnology. (United States)

    Chen, Shao-Yen; Chu, Yih-Ru; Lin, Chen-Yung; Chiang, Tzen-Yuh


    Modern biotechnology is one of the most important scientific and technological revolutions in the 21st century, with an increasing and measurable impact on society. Development of biotechnology curriculum has become important to high school bioscience classrooms. This study has monitored high school students in Taiwan on their knowledge of and attitudes towards biotechnology for nearly two decades. Not surprisingly, knowledge of biotechnology of current students has increased significantly (p affect students' attitudes toward genetically engineered (GE) plants but not GE animals. Our current study also found that the students' attitude towards GE animals was influenced more by their limited knowledge than by their moral belief. On the basis of findings from this study, we suggest that more materials of emerging animal biotechnology should be included in high school curriculum and recommend that high school teachers and university faculty establish a collaborative framework in the near future. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):475-491, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  19. ADPase activity of recombinantly expressed thermotolerant ATPases may be caused by copurification of adenylate kinase of Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Baoyu; Sysoeva, Tatyana A.; Chowdhury, Saikat; Guo, Liang; Nixon, B.Tracy; (IIT); (Penn)


    Except for apyrases, ATPases generally target only the {gamma}-phosphate of a nucleotide. Some non-apyrase ATPases from thermophilic microorganisms are reported to hydrolyze ADP as well as ATP, which has been described as a novel property of the ATPases from extreme thermophiles. Here, we describe an apparent ADP hydrolysis by highly purified preparations of the AAA+ ATPase NtrC1 from an extremely thermophilic bacterium, Aquifex aeolicus. This activity is actually a combination of the activities of the ATPase and contaminating adenylate kinase (AK) from Escherichia coli, which is present at 1/10 000 of the level of the ATPase. AK catalyzes conversion of two molecules of ADP into AMP and ATP, the latter being a substrate for the ATPase. We raise concern that the observed thermotolerance of E. coli AK and its copurification with thermostable proteins by commonly used methods may confound studies of enzymes that specifically catalyze hydrolysis of nucleoside diphosphates or triphosphates. For example, contamination with E. coli AK may be responsible for reported ADPase activities of the ATPase chaperonins from Pyrococcus furiosus, Pyrococcus horikoshii, Methanococcus jannaschii and Thermoplasma acidophilum; the ATP/ADP-dependent DNA ligases from Aeropyrum pernix K1 and Staphylothermus marinus; or the reported ATP-dependent activities of ADP-dependent phosphofructokinase of P. furiosus. Purification methods developed to separate NtrC1 ATPase from AK also revealed two distinct forms of the ATPase. One is tightly bound to ADP or GDP and able to bind to Q but not S ion exchange matrixes. The other is nucleotide-free and binds to both Q and S ion exchange matrixes.

  20. In vitro activity of recombinant lysostaphin in combination with linezolid, vancomycin and oxacillin against methicillin-resistant Staphylococcus aureus


    Narasimhaswamy, Nagalakshmi; Bairy, Indira; Shenoy, Gautham; Bairy, Laxminarayana


    Background and Objectives: The antimicrobial combination with synergistic mechanism is recommended to provide broad-spectrum coverage, and prevent the emergence of resistant mutants. In the present study, the synergistic activity of lysostaphin with linezolid, oxacillin and vancomycin, against methicillin-resistant Staphylococcus aureus (MRSA) clinical isolates was determined. Materials and Methods: Seventy-three MRSA isolates collected from clinical specimens were tested, for in vitro synerg...