WorldWideScience

Sample records for biotechnological investigations ocean

  1. 5TH BIOTECHNOLOGICAL INVESTIGATIONS OCEAN MARGINS PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    DR. ARTURO MASSOL, PROGRAM CHAIR; DR. ROSA BUXEDA, PROGRAM CO-CHAIR

    2004-01-08

    BI-OMP supports DOE's mission in Climate Change Research. The program provides the fundamental understanding of the linkages between carbon and nitrogen cycles in ocean margins. Researchers are providing a mechanistic understanding of these cycles, using the tools of modern molecular biology. The models that will allow policy makers to determine safe levels of greenhouse gases for the Earth System.

  2. Biotechnology

    International Nuclear Information System (INIS)

    The article sets out to explain in simple terms the main concepts of Biotechnology beginning with traditional biotechnology to modern biotechnology. It outlines fundamentals of Recombinant Deoxyribonucleic Acid (DNA), Genetically Modified Organisms (GMOs) and Genetic Engineering. The article offers a discussion of the benefits, disadvantages and the general public and policy concerns regarding genetically modified organisms

  3. Investigating Ocean Pollution.

    Science.gov (United States)

    LeBeau, Sue

    1998-01-01

    Describes a fifth-grade class project to investigate two major forms of ocean pollution: plastics and oil. Students work in groups and read, discuss, speculate, offer opinions, and participate in activities such as keeping a plastics journal, testing the biodegradability of plastics, and simulating oil spills. Activities culminate in…

  4. Biotechnology.

    Science.gov (United States)

    Van Vranken, Nancy S., Ed.

    1987-01-01

    The field of biotechnology, and specifically recombinant DNA technology, is transforming the way that many feel about the nature and purposes of biology. This newsletter annual supplement contains several articles addressing the topic of biotechnology and the importance that the topic should be given in science classes. James D. Watson's article,…

  5. Biotechnology

    International Nuclear Information System (INIS)

    The guidelines of the Biotechnology Program are research and development aiming at developing and manufacturing products of pharmaceutical interest. This Program has two main research areas, namely Pituitary Hormones and Biopharmaceuticals. The first one comprises a group with a long experience on Recombinant Human Pituitary Hormone synthesis, purification and characterization. Up to now they have worked mostly with human growth hormone (hGH), human prolactin (hPRL), human thyrotropin (hTSH), human follicle stimulating hormone (hFSH) and human luteotropin (hLH), with a particular emphasis on glycoprotein carbohydrate structures. An important research line is devoted to Growth Hormone Gene Therapy, working mostly on animal models: immunocompetent and immunodeficient-dwarf mice. For several years this development has been based on ex vivo grafting of transduced keratinocytes, while more recently very promising results have been obtained with the injections and electroporation of naked plasmid DNA. Besides research, they have also activities in the Biotechnological Production and Downstream Processing of the same recombinant hormones, which are produced in both E. coli and mammalian cells and in the development of joint-ventures with the National Industry. The biological effects of radiation on cells are also studied, specially concerning the administration of 131I together with thyroid-stimulating hormone in thyroid cancer. The Biopharmaceutical area is dedicated to the research of isolation, structural analysis and biological activities in different biological systems of macromolecules. These macromolecules are peptides or proteins, either native or recombinant with medical or pharmaceutical interest. During this period new proteins related to serine protease activity, breast cancer development and angiogenesis were described. The effects of ionizing radiation on macromolecules have also been investigated to detoxify animal venoms in order to improve antigens for

  6. Biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The guidelines of the Biotechnology Program are research and development aiming at developing and manufacturing products of pharmaceutical interest. This Program has two main research areas, namely Pituitary Hormones and Biopharmaceuticals. The first one comprises a group with a long experience on Recombinant Human Pituitary Hormone synthesis, purification and characterization. Up to now they have worked mostly with human growth hormone (hGH), human prolactin (hPRL), human thyrotropin (hTSH), human follicle stimulating hormone (hFSH) and human luteotropin (hLH), with a particular emphasis on glycoprotein carbohydrate structures. An important research line is devoted to Growth Hormone Gene Therapy, working mostly on animal models: immunocompetent and immunodeficient-dwarf mice. For several years this development has been based on ex vivo grafting of transduced keratinocytes, while more recently very promising results have been obtained with the injections and electroporation of naked plasmid DNA. Besides research, they have also activities in the Biotechnological Production and Downstream Processing of the same recombinant hormones, which are produced in both E. coli and mammalian cells and in the development of joint-ventures with the National Industry. The biological effects of radiation on cells are also studied, specially concerning the administration of {sup 131}I together with thyroid-stimulating hormone in thyroid cancer. The Biopharmaceutical area is dedicated to the research of isolation, structural analysis and biological activities in different biological systems of macromolecules. These macromolecules are peptides or proteins, either native or recombinant with medical or pharmaceutical interest. During this period new proteins related to serine protease activity, breast cancer development and angiogenesis were described. The effects of ionizing radiation on macromolecules have also been investigated to detoxify animal venoms in order to improve antigens

  7. PacificReefs2011: Ocean Exploration and Biotechnology on the Reefs of Palau between 20110219 and 20110304

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This expedition represents the culmination of ongoing collaboration between National Institute for Undersea Science and Technology- Ocean Biotechnology Center and...

  8. Biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The guidelines of the Biotechnology Program are research and development aiming to develop and manufacture products of pharmaceutical interest. This program has two main research areas, namely Pituitary Hormones and Biopharmaceuticals. The first one comprises a group with a long experience on Recombinant Human Pituitary Hormone synthesis, purification and characterization. The Biopharmaceutical area is dedicated to the research of isolation, structural analysis and biological activities in different biological system of macromolecules.

  9. Biotechnology

    International Nuclear Information System (INIS)

    The guidelines of the Biotechnology Program are research and development aiming to develop and manufacture products of pharmaceutical interest. This program has two main research areas, namely Pituitary Hormones and Biopharmaceuticals. The first one comprises a group with a long experience on Recombinant Human Pituitary Hormone synthesis, purification and characterization. The Biopharmaceutical area is dedicated to the research of isolation, structural analysis and biological activities in different biological system of macromolecules

  10. Biotechnology

    International Nuclear Information System (INIS)

    The guidelines of the Biotechnology Program are research and development aiming to develop and manufacture products of pharmaceutical interest. This Program has two main research areas, namely Pituitary Hormones and Biopharmaceuticals. The first one comprises a group with a long experience on Recombinant Human Pituitary Hormone synthesis, purification and characterization. The Biopharmaceutical area is dedicated to the research of isolation, structural analysis and biological activities in different biological system of macromolecules. The Animal Laboratory Division of IPEN is responsible for the breeding and production of small laboratory animal.

  11. Biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The guidelines of the Biotechnology Program are research and development aiming to develop and manufacture products of pharmaceutical interest. This Program has two main research areas, namely Pituitary Hormones and Biopharmaceuticals. The first one comprises a group with a long experience on Recombinant Human Pituitary Hormone synthesis, purification and characterization. The Biopharmaceutical area is dedicated to the research of isolation, structural analysis and biological activities in different biological system of macromolecules. The Animal Laboratory Division of IPEN is responsible for the breeding and production of small laboratory animal.

  12. Biotechnologies

    Directory of Open Access Journals (Sweden)

    Rival Alain

    2001-07-01

    Full Text Available Today, a range of biotechnological approaches, from somatic embryogenesis to biomolecular research, play an increasingly important role in breeding strategies for oil palm (Elaeis guineensis Jacq.. Clonal micropropagation. Methods of cloning by in vitro culture led to the development of a micropropagation technique for oil palm based on somatic embryogenesis which was tested at the pilot stage on elite genotypes, thus enabling the production of high oil yielding clones. This phase allowed the identification of limiting factors associated with scaling-up, with respect in particular to the scale of mass production required to meet the needs of planters and to the problem of ensuring genetic fidelity in the regenerated plant material. These two concerns led researchers to look further into the underlying physiological and/or molecular mechanisms involved in somatic embryogenesis and the somaclonal variation events induced by the in vitro cloning procedure. Structural and functional genomics. Marker-assisted breeding in oil palm is a long-term multi-stage project including: molecular analysis of genetic diversity in both E. guineensis and E. oleifera germplasms; large scale development of PCR-based microsatellite markers; and parallel development of three genome mapping and QTL detection projects studying key agronomic characters. Post-genomics. In order to tackle the problem of the mantled flowering abnormality, which is induced during the micropropagation process, studies of gene expression have been carried out in tissue cultures as a means of establishing an early clonal conformity testing procedure. It is important to assess what kind of methodology is the most appropriate for clonal conformity testing by comparing RNA, protein and DNA (PCR based approaches. Parallel studies on genomic DNA methylation changes induced by tissue culture suggest that the latter may play an important role in the determination of the mantled abnormality.

  13. ISS Biotechnology Facility - Overview of Analytical Tools for Cellular Biotechnology Investigations

    Science.gov (United States)

    Jeevarajan, A. S.; Towe, B. C.; Anderson, M. M.; Gonda, S. R.; Pellis, N. R.

    2001-01-01

    The ISS Biotechnology Facility (BTF) platform provides scientists with a unique opportunity to carry out diverse experiments in a microgravity environment for an extended period of time. Although considerable progress has been made in preserving cells on the ISS for long periods of time for later return to Earth, future biotechnology experiments would desirably monitor, process, and analyze cells in a timely way on-orbit. One aspect of our work has been directed towards developing biochemical sensors for pH, glucose, oxygen, and carbon dioxide for perfused bioreactor system developed at Johnson Space Center. Another aspect is the examination and identification of new and advanced commercial biotechnologies that may have applications to on-orbit experiments.

  14. Ocean Tracks: Investigating Marine Migrations in a Changing Ocean

    Science.gov (United States)

    Krumhansl, R.; Kochevar, R. E.; Aluwihare, L.; Bardar, E. W.; Hirsch, L.; Hoyle, C.; Krumhansl, K.; Louie, J.; Madura, J.; Mueller-Northcott, J.; Peach, C. L.; Trujillo, A.; Winney, B.; Zetterlind, V.; Busey, A.

    2015-12-01

    The availability of scientific data sets online opens up exciting new opportunities to raise students' understanding of the worlds' oceans and the potential impacts of climate change. The Oceans of Data Institute at EDC; Stanford University; and the Scripps Institution of Oceanography have been collaborating, with the support of three National Science Foundation grants over the past 5 years, to bring marine science data sets into high school and undergraduate classrooms. These efforts have culminated in the development of a web-based student interface to data from the Tagging of Pacific Predators (TOPP) program, NOAA's Global Drifter Program, and NASA Earth-orbiting satellites through a student-friendly Web interface, customized data analysis tools, multimedia supports, and course modules. Ocean Tracks (http://oceantracks.org), which incorporates design principles based on a broad range of research findings in fields such as cognitive science, visual design, mathematics education and learning science, focuses on optimizing students' opportunities to focus their cognitive resources on viewing and comparing data to test hypotheses, while minimizing the time spent on downloading, filtering and creating displays. Ocean Tracks allows students to display the tracks of elephant seals, white sharks, Bluefin tuna, albatross, and drifting buoys along with sea surface temperature, chlorophyll-A, bathymetry, ocean currents, and human impacts overlays. A graphing tool allows students to dynamically display parameters associated with the track such as speed, deepest daily dive and track tortuosity (curviness). These interface features allow students to engage in investigations that mirror those currently being conducted by scientists to understand the broad-scale effects of changes in climate and other human activities on ocean ecosystems. In addition to supporting the teaching of the Ocean and Climate Literacy principles, high school curriculum modules facilitate the teaching

  15. California Cooperative Oceanic Fisheries Investigations (CalCOFI)Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This database contains icthyoplankton data collected as part of the California Cooperative Oceanic Fisheries Investigations (CalCOFI) program and other cruises...

  16. A stakeholder approach to investigating public perception and attitudes towards agricultural biotechnology in Ghana

    OpenAIRE

    Yawson, Robert M.; Quaye, Wilhemina; Williams, Irene E.; Yawson, Ivy

    2008-01-01

    A stakeholder survey was conducted in Ghana to assess the level of public perceptions and acceptance of agricultural biotechnologies. A total of 100 respondents drawn from academia, Non-governmental organizations, business community, government and other stakeholders were interviewed on their views on self-protection attitudes, health and economic benefits, skepticism and optimism about agricultural biotechnologies as well as the level of confidence in existing government regulatory systems t...

  17. Biotechnology 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-12-15

    This book deals with Bio-vision 2016 on the meaning and important contents Next, it reveals vision of biotechnology, current condition of biotechnology in the main countries such as the U.S, Japan, Eu and China, promoting nation biotechnology with promotion policy, support policy for biotechnology such as agriculture and forestry and information and communication, competitiveness of biotechnology, research development by fields and related industries and regulation and system on biotechnology.

  18. Investigating Undergraduate Science Students' Conceptions and Misconceptions of Ocean Acidification

    Science.gov (United States)

    Danielson, Kathryn I.; Tanner, Kimberly D.

    2015-01-01

    Scientific research exploring ocean acidification has grown significantly in past decades. However, little science education research has investigated the extent to which undergraduate science students understand this topic. Of all undergraduate students, one might predict science students to be best able to understand ocean acidification. What…

  19. Biotechnology: Beauty or Beast?

    OpenAIRE

    Ui Ghallachoir, Kate

    1993-01-01

    In recent years scientific advances have transformed that group of technologies referred to as biotechnology into a set of increasingly powerful tools for many industries. Biotechnology is identified by many as an important factor determining the future sucess of industries as diverse as healthcare and agriculture. In Ireland biotechnology use and development is a recognised area of strategic priority. The research presented here investigates factors suggested as affecting the rate and diffus...

  20. Seaweed Aquaculture and Marine Biotechnology

    OpenAIRE

    Gonçalves Pereira, Rui

    2016-01-01

    Macroscopic marine algae, typically known as macroalgae or seaweeds, form an important living resource of the oceans, as primary producers. People have collected seaweeds for food, both for humans and animals for millennia. They also have been a source of nutrient rich fertilizers, as well as a source of gelling agents known as phycocolloids. More recently macroalgae are playing significant roles in medicine and biotechnology. Although Biotechnology and in particular marine biotechnology may ...

  1. Biotechnology 2009

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-12-15

    This book first reveals prospect on biotechnology with low-carbon green growth Next, it consists of four chapters, which deal with vision of biotechnology, trend of biotechnology in main countries like the U.S, Eu, Japan and China, current condition for biotechnology with support and promoting policy such as health and medical treatment and maritime and fisheries, major product on investment, human power, paper and pattern, research development such as genomic, system biology, bio new medicine, agriculture, stock breeding and food, biological resources and legal system related biotechnology.

  2. The Challenge in Teaching Biotechnology

    Science.gov (United States)

    Steele, F.; Aubusson, P.

    2004-01-01

    Agriculture, industry and medicine are being altered by new biotechnologies. Biotechnology education is important because today's students and citizens will make decisions about the development and application of these new molecular biologies. This article reports an investigation of the teaching of biotechnology in an Australian state, New South…

  3. Editorial: Biotechnology Journal's diverse coverage of biotechnology.

    Science.gov (United States)

    Wink, Michael

    2014-03-01

    This issue of Biotechnology Journal is a regular issue edited by Prof. Michael Wink. The issue covers all the major focus areas of the journal, including medical biotechnology, synthetic biology, and novel biotechnological methods.

  4. Seismic Investigations of Europa and Other Ocean Worlds

    Science.gov (United States)

    Vance, Steve; Tsai, Victor; Kedar, Sharon; Bills, Bruce; Castillo-Rogez, Julie; Jackson, Jennifer

    2016-04-01

    Seismic investigations offer the most comprehensive view into the deep interiors of planetary bodies. Developing missions (InSight, Europa Lander, Lunar Geophysical Network) identify seismology as a critical measurement to constrain interior structure and thermal state. In oceanic icy worlds, pinpointing the radial depths of compositional interfaces using seismology in a broad frequency range can address uncertainty in interior structures inferred from gravity and magnetometry studies, such as those planned for NASA's Europa and ESA's JUICE missions. Seismology also offers information about fluid motions within or beneath ice, which complement magnetic studies; and can record the dynamics of ice layers, which would reveal mechanisms and spatiotemporal occurrence of crack formation and propagation. Investigating these with future missions will require detailed modeling of seismic sources and signatures in order to develop the most suitable instrumentation. We evaluate seismic sources and their propagation in Europa, with extension to other oceanic icy worlds, building on prior studies (Kovach and Chyba 2001, Lee et al. 2003, Cammarano et al. 2006, Panning et al. 2006, Leighton et al. 2008). We also consider additional sources: gravitationally forced librations, which will create volume-filling turbulent flow (le Bars et al. 2015), a possible seismic source similar to that seen from turbulent flow in terrestrial rivers (Tsai et al., 2012; Gimbert et al., 2014; Chao et al., 2015); downflow of dense brines from chaos regions on Europa into its underlying ocean (Sotin et al. 2002), possibly resembling riverine flows and flows through glacial channels (Tsai and Rice 2012); ocean acoustic signals that couple with the overlying ice to produce seismic waves, by analogy with Earth's ocean-generated seismic hum (Kedar 2011, Ardhuin 2015). Ardhuin, F., Gualtieri, L., and Stutzmann, E. (2015). GRL., 42. Cammarano, F., Lekic, V., Manga, M., Panning, M., and Romanowicz, B. (2006

  5. Crop Biotechnology

    Science.gov (United States)

    The influence of crop biotechnology on outcomes of agricultural practices and economics is readily evidenced by the escalating acreage of genetically engineered crops, all occurring in a relatively short time span. Until the mid 1990s, virtually no acreage was planted with commercial genetically mo...

  6. Russian marine expeditionary investigations of the world ocean - NOAA Atlas NESDIS 56 (NODC Accession 0000954)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession is an Adobe(tm) Acrobat(tm) file (.pdf) of the publication 'Russian marine expeditionary investigations of the world ocean - NOAA Atlas NESDIS 56'....

  7. Ship Track for Investigating the Charleston Bump 2003 - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ship track of the R/V Seward Johnson during the "Investigating the Charleston Bump 2003" expedition sponsored by the National Oceanic and Atmospheric Administration...

  8. Plant biotechnology

    OpenAIRE

    Molina Fernández, Antonio

    2010-01-01

    The first decade of the 21st century has seen an intense debate of the potential contribution of Plant Biotechnology to meeting present and future world demands of food and biomass. The discussion started in 1997 when the first genetically modified (GM) crops were approved by the EPA for commercial production. The debate has been later stimulated by the increasing awareness of the potential effects of global climate change on agricultural production, as the current crops may be poorly adapted...

  9. Microbial biotechnology.

    Science.gov (United States)

    Demain, A L

    2000-01-01

    For thousands of years, microorganisms have been used to supply products such as bread, beer and wine. A second phase of traditional microbial biotechnology began during World War I and resulted in the development of the acetone-butanol and glycerol fermentations, followed by processes yielding, for example, citric acid, vitamins and antibiotics. In the early 1970s, traditional industrial microbiology was merged with molecular biology to yield more than 40 biopharmaceutical products, such as erythropoietin, human growth hormone and interferons. Today, microbiology is a major participant in global industry, especially in the pharmaceutical, food and chemical industries. PMID:10631778

  10. Editorial: Biotechnology Journal brings more than biotechnology.

    Science.gov (United States)

    Jungbauer, Alois; Lee, Sang Yup

    2015-09-01

    Biotechnology Journal always brings the state-of-the-art biotechnologies to our readers. Different from other topical issues, this issue of Biotechnology Journal is complied with a series of exiting reviews and research articles from spontaneous submissions, again, addressing society's actual problems and needs. The progress is a real testimony how biotechnology contributes to achievements in healthcare, better utilization of resources, and a bio-based economy.

  11. Submersible Data (Dive Waypoints) for Investigating the Charleston Bump 2003 - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data and information collected by the submersible Johnson Sea-Link II at waypoints along its track during fourteen dives of the 2003 "Investigating the Charleston...

  12. Library holdings for Pacific Reefs 2011: Ocean Exploration and Biotechnology on the Reefs of Palau between February 19, 2011 and March 4, 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Library Catalog may include: Data Management Plans, Cruise Plans, Cruise Summary Reports, Scientific "Quick Look Reports", Video Annotation Logs, Image Collections,...

  13. Laboratory Investigation of Entrainment and Mixing in Oceanic Overflows

    CERN Document Server

    Philippe, Odier; Ecke, Robert E

    2013-01-01

    We present experimental measurements of a wall-bounded gravity current, motivated by characterizing natural gravity currents such as oceanic overflows. We use particle image velocimetry and planar laser-induced fluorescence to simultaneously measure the velocity and density fields as they evolve downstream of the initial injection from a turbulent channel flow onto a plane inclined at 10$^\\circ$ with respect to horizontal. The turbulence level of the input flow is controlled by injecting velocity fluctuations upstream of the output nozzle. The initial Reynolds number based on Taylor microscale of the flow, R$_\\lambda$, is varied between 40 and 120, and the effects of the initial turbulence level are assessed. The bulk Richardson number $Ri$ for the flow is about 0.3 whereas the gradient Richardson number $Ri_g$ varies between 0.04 and 0.25, indicating that shear dominates the stabilizing effect of stratification. Kelvin-Helmholtz instability results in vigorous vertical transport of mass and momentum. We pres...

  14. Technical Note: Artificial coral reef mesocosms for ocean acidification investigations

    Directory of Open Access Journals (Sweden)

    J. Leblud

    2014-11-01

    Full Text Available The design and evaluation of replicated artificial mesocosms are presented in the context of a thirteen month experiment on the effects of ocean acidification on tropical coral reefs. They are defined here as (semi-closed (i.e. with or without water change from the reef mesocosms in the laboratory with a more realistic physico-chemical environment than microcosms. Important physico-chemical parameters (i.e. pH, pO2, pCO2, total alkalinity, temperature, salinity, total alkaline earth metals and nutrients availability were successfully monitored and controlled. Daily variations of irradiance and pH were applied to approach field conditions. Results highlighted that it was possible to maintain realistic physico-chemical parameters, including daily changes, into artificial mesocosms. On the other hand, the two identical artificial mesocosms evolved differently in terms of global community oxygen budgets although the initial biological communities and physico-chemical parameters were comparable. Artificial reef mesocosms seem to leave enough degrees of freedom to the enclosed community of living organisms to organize and change along possibly diverging pathways.

  15. Biotechnology for site restoration: scope of the problem

    Energy Technology Data Exchange (ETDEWEB)

    Bitchaeva, O.

    1996-09-18

    The potential of modern biotechnology for solving problems related with the nuclear industry, especially site restoration, are investigated. The advantages of biotechnology, the current applications in Russia, main points of international collaboration, and political considerations are discussed.

  16. Biotechnology organizations in action

    DEFF Research Database (Denmark)

    Norus, Jesper

    This volume analyzes the dynamics and interactive processes among the players (individuals, institutions, and organizations/firms) that have constituted and legitimized the development of the biotechnology industries. The unit of analysis is small entrepreneurial firms developing biotechnological...

  17. Biotechnology in the Middle School Curriculum

    Science.gov (United States)

    Campbell, De Ann

    2007-01-01

    Biotechnology is a fairly new concept for middle school students as well as teachers. If the latest craze of TV shows focused on crime scene investigation events were not so popular, the term and concept might be even obscure to the public. There is an increased presence of biotechnology in our daily surroundings that makes it practical and…

  18. Progress in investigations on thermo-hydraulic characteristics of ship nuclear reactors under ocean conditions

    International Nuclear Information System (INIS)

    The thermo-hydraulic characteristics of ship nuclear reactors are very important to the safety and reliability of ship voyage under the ocean conditions. Therefore, many countries have carried out plentiful investigations. This paper is based on some Asia open literature of investigations on thermo-hydraulic characteristics of ship nuclear reactors under the ocean conditions, reviews and sums up those main progresses such as the method, contents and typical results in this field, analyzes their insufficiency, and puts forward advices on the future investigation based on the known research findings. (authors)

  19. Geodynamic investigation of a Cretaceous superplume in the Pacific ocean

    Science.gov (United States)

    Xue, Jing; King, Scott D.

    2016-08-01

    The similarity in both age and geochemistry of the Ontong-Java, Hikurangi, and Manihiki plateaus suggests that they formed as a single superplateau from a unique mantle source. We investigate the necessity of a thermal superplume to form the Great Ontong-Java plateau at about 120 Ma using 3D spherical models of convection with imposed plate reconstruction models. The numerical simulations show that the giant plateau which formed as a result of melting due to the interaction of a plume head and the lithosphere would have been divided into smaller plateaus by spreading ridges, and end up at the present locations of Ontong-Java, Manihiki, and Hikurangi plateaus as well as a fragment in the western Caribbean. By comparing temperature and melt fraction between models with and without an initial thermal superplume, we propose that a Cretaceous superplume in Pacific at 120 Ma is required to form large igneous plateaus.

  20. PLANT BIOTECHNOLOGY

    Science.gov (United States)

    Since the initial EPA funding under this grant, awarded in September 2006, CPBR made six subawards to investigators at member universities and to collaborators at minority institutions. A list of all the projects funded in the 2006 and 2008 ERTT competitions was provided ...

  1. High School Students' Knowledge and Attitudes regarding Biotechnology Applications

    Science.gov (United States)

    Ozel, Murat; Erdogan, Mehmet; Usak, Muhammet; Prokop, Pavol

    2009-01-01

    The purpose of this study was to investigate high school students' knowledge and attitudes regarding biotechnology and its various applications. In addition, whether students' knowledge and attitudes differed according to age and gender were also explored. The Biotechnology Knowledge Questionnaire (BKQ) with 16 items and the Biotechnology Attitude…

  2. Laboratory Experiment Investigating the Impact of Ocean Acidification on Calcareous Organisms

    Science.gov (United States)

    Perera, Alokya P.; Bopegedera, A. M. R. P.

    2014-01-01

    The increase in ocean acidity since preindustrial times may have deleterious consequences for marine organisms, particularly those with calcareous structures. We present a laboratory experiment to investigate this impact with general, introductory, environmental, and nonmajors chemistry students. For simplicity and homogeneity, calcite was…

  3. BIOTECHNOLOGY OF THE FISH AQUACULTURE

    Directory of Open Access Journals (Sweden)

    L. P. Buchatsky

    2013-12-01

    Full Text Available The latest progress in biotechnology on fish aquaculture and different modern methods of investigations for increasing of fish productivity in aquaculture are analyzed. Except for the applied aspect, the use of modern biotechnological methods of investigations opens new possibilities for fundamental researches of sex-determining mechanisms, polyploidy, distant hybridization, and developmental biology of bony fishes. Review contains examples of utilizing modern biotechnology methods to obtain transgenic fishes with accelerated growth and for designing surrogate fishes. Methods for receiving unisexual shoals of salmon and sturgeon female fishes with the view of obtaining a large quantity of caviar, as well as receiving sterile (triploid fishes are analyzed. Great attention is given to androgenesis, particularly to disperm one, in connection with the problem of conserving rare and vanishing fish species using only sperm genetic material. Examples how distant hybrids may be obtained with the use of disperm androgenesis and alkylated DNA are given. Methods of obtaining fish primordium germ cells, recent developments in cultivation of fish stem cells and their use in biotechnology, as well as ones of transplantation of oogonium and spermatogonium to obtain surrogate fishes. The examples of successful experiments on spermatogonial xenotransplantation and characteristic of antifreezing fish proteins and also the prospect of their practical usage are given.

  4. Biotechnology Science Experiments on Mir

    Science.gov (United States)

    Kroes, Roger L.

    1999-01-01

    This paper describes the microgravity biotechnology experiments carried out on the Shuttle/Mir program. Four experiments investigated the growth of protein crystals, and three investigated cellular growth. Many hundreds of protein samples were processed using four different techniques. The objective of these experiments was to determine optimum conditions for the growth of very high quality single crystals to be used for structure determination. The Biotechnology System (BTS) was used to process the three cell growth investigations. The samples processed by these experiments were: bovine chondrocytes, human renal epithelial cells, and human breast cancer cells and endothelial cells. The objective was to determine the unique properties of cell aggregates produced in the microgravity environment.

  5. Biotechnology Laboratory Methods.

    Science.gov (United States)

    Davis, Robert H.; Kompala, Dhinakar S.

    1989-01-01

    Describes a course entitled "Biotechnology Laboratory" which introduces a variety of laboratory methods associated with biotechnology. Describes the history, content, and seven experiments of the course. The seven experiments are selected from microbiology and molecular biology, kinetics and fermentation, and downstream processing-bioseparations.…

  6. Agriculture biotechnology report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This report provides the basis for an overall agriculture biotechnology strategy for Saskatchewan, encompassing all aspects of the biotechnology sector and supporting institutions. It presents results of a survey of over 70 industry and public sector leaders in agriculture biotechnology in order to assist Saskatchewan Agriculture & Food in defining its role and involvement in the agriculture biotechnology industry. Issues examined include: Goals for the agriculture biotechnology industry; research and development; technology transfer and commercialisation; infrastructure and services; human resources; legislation and policy; funding; future core areas of research and development; and the role of government in developing the industry. The report concludes with lists of recommendations. The supplement lists the survey questions and responses.

  7. Traditional Chinese Biotechnology

    Science.gov (United States)

    Xu, Yan; Wang, Dong; Fan, Wen Lai; Mu, Xiao Qing; Chen, Jian

    The earliest industrial biotechnology originated in ancient China and developed into a vibrant industry in traditional Chinese liquor, rice wine, soy sauce, and vinegar. It is now a significant component of the Chinese economy valued annually at about 150 billion RMB. Although the production methods had existed and remained basically unchanged for centuries, modern developments in biotechnology and related fields in the last decades have greatly impacted on these industries and led to numerous technological innovations. In this chapter, the main biochemical processes and related technological innovations in traditional Chinese biotechnology are illustrated with recent advances in functional microbiology, microbial ecology, solid-state fermentation, enzymology, chemistry of impact flavor compounds, and improvements made to relevant traditional industrial facilities. Recent biotechnological advances in making Chinese liquor, rice wine, soy sauce, and vinegar are reviewed.

  8. Biotechnology for renewable chemicals

    DEFF Research Database (Denmark)

    Borodina, Irina; Kildegaard, Kanchana Rueksomtawin; Jensen, Niels Bjerg;

    2014-01-01

    The majority of the industrial organic chemicals are derived from fossil sources. With the oil and gas resources becoming limiting, biotechnology offers a sustainable alternative for production ofchemicals from renewable feedstocks. Yeast is an attractive cell factory forsustainable production...

  9. BIOTECHNOLOGY : AN OVERVIEW

    Directory of Open Access Journals (Sweden)

    John I. Bruce

    2012-09-01

    Full Text Available Biotechnology as a science includes various aspects of the management and manipulation of biological systems. Recent advances in immunology, molecular biology, cell culture and other associated areas provide an opportunity for scientists to move biology out of the laboratory and into the realms of society. This has many implications which mankind on a whole may not be prepared to cope with at this time. This new capability has been referred to as "Biotechnology". Biotechnology has also been defined as "the integrated use of biochemistry, microbiology, and chemical engineering in order to achieve the capacities of microbes and culture cells". Genetic engineering which includes gene splicing and recombinant DNA-cloning is an example of a recent offshoot of biotechnology. Because of the advent of biotechnology, one can now think of the prospect of engineering tomorrows vaccines. In the past, vaccine development has been laborious and in many instances an unrewarding task. After years of effort only a handful of safe, effective vaccines have emerged. In the biotechnology arena, new methodologies and strategies for immunizing humans and domestic animals against infectious diseases are providing new hope for discovering successful vaccines. While most of the effort in the past has focused on viral vaccine development, attention is now being directed towards vaccines for protection against parasitic diseases. Currently, considerable effort is being made to develop vaccines for malaria, coccidiosis (in fowl, cholera, malaria, schistosomiasis and trypanosomiasis among others.

  10. Biotechnology worldwide and the 'European Biotechnology Thematic Network' Association (EBTNA).

    Science.gov (United States)

    Bruschi, F; Dundar, M; Gahan, P B; Gartland, K; Szente, M; Viola-Magni, M P; Akbarova, Y

    2011-09-01

    The European Biotechnology Congress 2011 held under the auspices of the European Biotechnology Thematic Network Association (EBTNA) in conjunction with the Turkish Medical Genetics Association brings together a broad spectrum of biotechnologists from around the world. The subsequent abstracts indicate the manner in which biotechnology has permeated all aspects of research from the basic sciences through to small and medium enterprises and major industries. The brief statements before the presentation of the abstracts aim to introduce not only Biotechnology in general and its importance around the world, but also the European Biotechnology Thematic Network Association and its aims especially within the framework of education and ethics in biotechnology.

  11. Coastal and open ocean aerosol characteristics: investigating the representativeness of coastal aerosol sampling over the North-East Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    M. Rinaldi

    2008-11-01

    Full Text Available In order to achieve a better understanding of the modifications of the physical and chemical properties of marine aerosol particles during transport from offshore to the coast, size distribution and chemical composition were measured concurrently in clean air masses over the open North Atlantic Ocean and at an Irish coastal site. Open ocean sampling was performed on board the oceanographic vessel Celtic Explorer sailing 100–300 km off the Irish west coast, while coastal measurements were performed at the Mace Head GAW station. The experiment took place between 11 June and 6 July 2006, during the period of phytoplankton bloom.

    The number size distribution and size-resolved chemical composition of coastal and open ocean samples were very similar, indicating homogeneous physical and chemical aerosol properties over a wide region in the marine boundary layer. The results also show that submicron chemical and physical aerosol properties measured at the coastal Mace Head Atmospheric Research Station were not unduly influenced by coastal artefacts and are thus representative of open water properties. Greater differences between the coastal site and the open ocean were observed for the aerosol supermicron sea spray components; this could be due to a variety of reasons, ranging from higher local wind speeds at the coastal site over the comparison period, to differences in sampling heights and increased local surf-zone production.

    Evidence of ageing processes was observed: at the costal site the ratio between non-sea-salt sulphate and methanesulphonic acid was higher, and the aerosol water soluble organic compounds were more oxidized than in the open ocean.

  12. Energy Efficient Investigation of OceanicEnvironment using Large-scale UWSN andUANETs

    Directory of Open Access Journals (Sweden)

    Swarnalatha Srinivas

    2013-01-01

    Full Text Available Investigating coastal oceanic environment is of great interest in pollution monitoring, tactical surveillance applications, exploration of natural undersea resources and predicting wave tides. Deployment of underwater sensor networks for real time investigation is the major challenge. Acoustic communication intends to be an open solution for continuous wireless sensor network in underwater scenarios. In this paper large-scale underwater Sensor Networks (UWSN and Underwater Ad-hoc Networks (UANETs using Solar-Powered Autonomous Underwater Vehicles (SAUV to explore the oceanic environment is proposed. A kong wobbler carrying base station with acoustic communication devices is considered, which locates the pre-deployed underwater sensor modules through acoustic communication. The sensor modules are installed with various sensors and video capturing devices to study the underwater resources as well as for surveillance needs for predicting the environmental conditions. The simulation results are encouraging as this approach is extremely helpful in surveillance as the intruders are tracked and real-time video streaming is done.

  13. Biotechnological production of vanillin.

    Science.gov (United States)

    Priefert, H; Rabenhorst, J; Steinbüchel, A

    2001-08-01

    Vanillin is one of the most important aromatic flavor compounds used in foods, beverages, perfumes, and pharmaceuticals and is produced on a scale of more than 10 thousand tons per year by the industry through chemical synthesis. Alternative biotechnology-based approaches for the production are based on bioconversion of lignin, phenolic stilbenes, isoeugenol, eugenol, ferulic acid, or aromatic amino acids, and on de novo biosynthesis, applying fungi, bacteria, plant cells, or genetically engineered microorganisms. Here, the different biosynthesis routes involved in biotechnological vanillin production are discussed. PMID:11548997

  14. Advances in reproductive biotechnologies.

    Science.gov (United States)

    Choudhary, K K; Kavya, K M; Jerome, A; Sharma, R K

    2016-04-01

    In recent times, reproductive biotechnologies have emerged and started to replace the conventional techniques. It is noteworthy that for sustained livestock productivity, it is imperative to start using these techniques for facing the increasing challenges for productivity, reproduction and health with impending environment conditions. These recent biotechniques, both in male and female, have revolutionized and opened avenues for studying and manipulating the reproductive process both in vitro and in vivo in various livestock species for improving tis efficiency. This review attempts to highlight pros and cons, on the recent developments in reproductive biotechnologies, both in male and female in livestock species.

  15. Agave biotechnology: an overview.

    Science.gov (United States)

    Nava-Cruz, Naivy Y; Medina-Morales, Miguel A; Martinez, José L; Rodriguez, R; Aguilar, Cristóbal N

    2015-01-01

    Agaves are plants of importance both in Mexican culture and economy and in other Latin-American countries. Mexico is reported to be the place of Agave origin, where today, scientists are looking for different industrial applications without compromising its sustainability and preserving the environment. To make it possible, a deep knowledge of all aspects involved in production process, agro-ecological management and plant biochemistry and physiology is required. Agave biotechnology research has been focusing on bio-fuels, beverages, foods, fibers, saponins among others. In this review, we present the advances and challenges of Agave biotechnology.

  16. Silicon nano-biotechnology

    CERN Document Server

    He, Yao

    2014-01-01

    This book reviews the latest advances in the development of silicon nano-biotechnology for biological and biomedical applications, which include biosensing, bioimaging, and cancer therapy. In this book, newly developed silicon nano-biotechnology and its biomedical applications are systematically introduced. For instance, fluorescent silicon nanoparticles, serving as novel high-performance biological nanoprobes, are superbly suited to real-time and long-term bioimaging. Silicon nanowire-based sensing platform is especially capable of sensitive, specific, and multiplexed detection of various bio

  17. Colloids in Biotechnology

    CERN Document Server

    Fanun, Monzer

    2010-01-01

    Colloids have come a long way from when Thomas Graham coined the term colloid to describe 'pseudo solutions'. This book enables scientists to close the gap between extensive research and translation into commercial options in biomedicine and biotechnology. It covers biosurfactants and surface properties, phase behavior, and orientational change of surfactant mixtures with peptides at the interface. It also covers adsorption of polymers and biopolymers on the surface and interface, discusses colloidal nanoparticles and their use in biotechnology, and delves into bioadhesion and microencapsulati

  18. Agave biotechnology: an overview.

    Science.gov (United States)

    Nava-Cruz, Naivy Y; Medina-Morales, Miguel A; Martinez, José L; Rodriguez, R; Aguilar, Cristóbal N

    2015-01-01

    Agaves are plants of importance both in Mexican culture and economy and in other Latin-American countries. Mexico is reported to be the place of Agave origin, where today, scientists are looking for different industrial applications without compromising its sustainability and preserving the environment. To make it possible, a deep knowledge of all aspects involved in production process, agro-ecological management and plant biochemistry and physiology is required. Agave biotechnology research has been focusing on bio-fuels, beverages, foods, fibers, saponins among others. In this review, we present the advances and challenges of Agave biotechnology. PMID:25058832

  19. Oceanographic investigation in the Southeastern Pacific Ocean by satellite radiometry and altimetry data

    Science.gov (United States)

    Lebedev, S. A.; Sirota, A. M.

    Ten-day sea level anomalies (SLA) charts, based on the TOPEX/Poseidon (T/P) altimetry data for 1992-2003, as well as corresponding charts of sea surface dynamic heights constructed by the superposition of SLA distributions over the climatic dynamic topography, were used to study main oceanic currents in the region 45°S-20°S, 110°W-70°W. Spatial and seasonal variability of the South Pacific Current has been investigated based on the maps of dynamic topography (DT) gradients. Also maps of the temperature gradients at the ocean surface were used to study the mesoscale variability related to the Subtropical Front (STF) in the Southeastern Pacific. The analysis allowed to distinguish the zones with different degree of variability in the current and front positions. The variability is minimal at 99°W, where the current is most intensive. Westward of 105°W, the RMS of the STF position may reach 3° of latitude. This is accompanied by a pronounced spectral peak with a period of 350 days in its temporal variability. Eastward of 105°W, there is no dominant peak in the frequency spectra describing the variability of the current and front. Comparison of the satellite derived front and current positions with in situ data acquired during R/V "Atlantida" expedition in November-December 2002 shows a good correspondence. Zones of high dynamic topography gradients and sea surface temperatures gradients coincide within the physical errors of the method. The analysis of pelagic fish distribution patterns in the Southeastern Pacific Ocean based on acoustic survey data and synoptic variability of the dynamic topography reveals that most dense fish concentrations relate to dynamic heterogeneities, which are located at the northern periphery of the Subtropical Front.

  20. Disclosing Biology Teachers' Beliefs about Biotechnology and Biotechnology Education

    Science.gov (United States)

    Fonseca, Maria Joao; Costa, Patricio; Lencastre, Leonor; Tavares, Fernando

    2012-01-01

    Teachers have been shown to frequently avoid addressing biotechnology topics. Aiming to understand the extent to which teachers' scarce engagement in biotechnology teaching is influenced by their beliefs and/or by extrinsic constraints, such as practical limitations, this study evaluates biology teachers' beliefs about biotechnology and…

  1. Non-Dive Activities for Investigating the Charleston Bump 2003 - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Information about non-dive activities were recorded into the Cruise Information Management System (CIMS) by the NOAA Office of Ocean Exploration's data manager...

  2. Opportunities for biotechnology and policy

    Science.gov (United States)

    Despite being introduced more than a decade ago, agricultural biotechnology still remains framed in controversy impacting both the global economy and international regulations. Controversies surrounding agricultural biotechnology produced crops and foods commonly focus on human and environmental sa...

  3. National Center for Biotechnology Information

    Science.gov (United States)

    ... to NCBI Sign Out NCBI National Center for Biotechnology Information Search database All Databases Assembly BioProject BioSample ... Search Welcome to NCBI The National Center for Biotechnology Information advances science and health by providing access ...

  4. Projector Center. What Is Biotechnology?

    Science.gov (United States)

    Belzer, Bill; Case, Christine L.

    1990-01-01

    Presented is a menu designed to illustrate some classical examples of fermentation. This may be used to discuss biotechnology from a technological perspective. Other examples of biotechnology used in the foods industry are described. (CW)

  5. Opportunities for Biotechnology and Policy

    Science.gov (United States)

    Despite being introduced more than a decade ago, agricultural biotechnology still remains framed in controversy impacting both the global economy and international regulations. Controversies surrounding agricultural biotechnology produced crops and foods commonly focus on human and environmental sa...

  6. Investigation of near-axial interference effects in long-range acoustic propagation in the ocean

    Science.gov (United States)

    Grigorieva, Natalie S.; Fridman, Gregory M.

    2002-05-01

    The observed time-of-arrival patterns from a number of long-range ocean acoustic propagation experiments show early geometrical-like arrivals followed by a crescendo of energy that propagates along the sound-channel axis and is not resolved into individual arrivals. The two-dimensional reference point source problem for the parabolic index of refraction squared is investigated to describe in a simple model case the interference of near-axial waves which resulted in forming the so-called axial wave and propose a formula for the axial wave in more general cases. Using the method proposed by Buldyrev [V. Buldyrev, Tr. Mat. Inst. Steklov 115, 78-102 (1971)], the integral representation for the exact solution is transformed in such a way to extract ray summands corresponding to rays radiated from the source at angles less than a certain angle, the axial wave, and a term corresponding to the sum of all the rays having launch angles greater than the indicated angle. Numerical results for the axial wave and the last term are obtained for parameters corresponding to long-range ocean acoustic propagation experiments. The generalization of the obtained formula for the axial wave to the case of an arbitrary range-independent sound speed is given and discussed. [Work supported by VSP Grant No. N00014-01-4003.

  7. Biotechnology Facility: An ISS Microgravity Research Facility

    Science.gov (United States)

    Gonda, Steve R.; Tsao, Yow-Min

    2000-01-01

    The International Space Station (ISS) will support several facilities dedicated to scientific research. One such facility, the Biotechnology Facility (BTF), is sponsored by the Microgravity Sciences and Applications Division (MSAD) and developed at NASA's Johnson Space Center. The BTF is scheduled for delivery to the ISS via Space Shuttle in April 2005. The purpose of the BTF is to provide: (1) the support structure and integration capabilities for the individual modules in which biotechnology experiments will be performed, (2) the capability for human-tended, repetitive, long-duration biotechnology experiments, and (3) opportunities to perform repetitive experiments in a short period by allowing continuous access to microgravity. The MSAD has identified cell culture and tissue engineering, protein crystal growth, and fundamentals of biotechnology as areas that contain promising opportunities for significant advancements through low-gravity experiments. The focus of this coordinated ground- and space-based research program is the use of the low-gravity environment of space to conduct fundamental investigations leading to major advances in the understanding of basic and applied biotechnology. Results from planned investigations can be used in applications ranging from rational drug design and testing, cancer diagnosis and treatments and tissue engineering leading to replacement tissues.

  8. Biotechnologies and Human Dignity

    Science.gov (United States)

    Sweet, William; Masciulli, Joseph

    2011-01-01

    In this article, the authors review some contemporary cases where biotechnologies have been employed, where they have had global implications, and where there has been considerable debate. The authors argue that the concept of dignity, which lies at the center of such documents as the 2005 Universal Declaration on Bioethics and Human Rights, the…

  9. Biotechnology in weed control

    Science.gov (United States)

    Biotechnology can be used to enhance the management of weeds in several ways. Crops have been made resistant to herbicides by inserting transgenes that impart herbicide resistance into the plant genome. Glyphosate and glufosinate-resistant crops are commercialized in North America and crops made res...

  10. Biotechnology and derived products

    Science.gov (United States)

    Microorganisms able to infect and kill insect pests, metabolites from plants and microorganisms, and transgenic crops are biotechnologically derived products that are being promoted for use to control insect pests in lieu of chemical insecticides. Products based on these technologies effectively co...

  11. [Biotechnology and animal health].

    Science.gov (United States)

    Desmettre, P

    1993-06-01

    The development of the first vaccines for use in animals, by Louis Pasteur at the end of the 19th Century, was an initial step in applying biotechnology to animal health. However, it is only much more recently that decisive progress has been made in finding applications for biotechnology, in both detecting and preventing infectious and parasitic diseases. This progress has shown the way to developing a range of procedures, the application of which will benefit the health of domestic and wild animals, enhance the well-being of companion animals, develop the performance of sporting animals and improve the productivity of farm animals, while also serving to protect human health. Such progress results from the increasingly rapid application of knowledge gained in the material and life sciences, all of which contribute to the multidisciplinary nature of biotechnology. Similarly, reagents and diagnostic techniques have been made more specific, sensitive, reproducible, rapid and robust by updating them through recent discoveries in immunology, biochemistry and molecular biology (monoclonal antibodies, nucleic probes, deoxyribonucleic acid amplification and many more). The development of new vaccines which combine efficacy, duration of protection, innocuity, stability, multivalence and ease of use (subunit vaccines, recombinant vaccines, synthetic vaccines and anti-idiotype vaccines) has resulted from recent progress in immunology, immunochemistry, molecular biology and biochemistry. Finally, the availability of new anti-infective, anti-parasitic agents and immunomodulatory therapeutic agents (capable of stimulating the specific and non-specific defence mechanisms of the body) demonstrates that biotechnology is continuing to find new applications in the field of animal health. New diagnostic techniques, vaccines and therapeutic substances are the most immediate applications of knowledge which may, in the future, extend to the development of transgenic animals of revised

  12. An Early Underwater Artificial Vision Model in Ocean Investigations via Independent Component Analysis

    Science.gov (United States)

    Nian, Rui; Liu, Fang; He, Bo

    2013-01-01

    Underwater vision is one of the dominant senses and has shown great prospects in ocean investigations. In this paper, a hierarchical Independent Component Analysis (ICA) framework has been established to explore and understand the functional roles of the higher order statistical structures towards the visual stimulus in the underwater artificial vision system. The model is inspired by characteristics such as the modality, the redundancy reduction, the sparseness and the independence in the early human vision system, which seems to respectively capture the Gabor-like basis functions, the shape contours or the complicated textures in the multiple layer implementations. The simulation results have shown good performance in the effectiveness and the consistence of the approach proposed for the underwater images collected by autonomous underwater vehicles (AUVs). PMID:23863855

  13. An Early Underwater Artificial Vision Model in Ocean Investigations via Independent Component Analysis

    Directory of Open Access Journals (Sweden)

    Bo He

    2013-07-01

    Full Text Available Underwater vision is one of the dominant senses and has shown great prospects in ocean investigations. In this paper, a hierarchical Independent Component Analysis (ICA framework has been established to explore and understand the functional roles of the higher order statistical structures towards the visual stimulus in the underwater artificial vision system. The model is inspired by characteristics such as the modality, the redundancy reduction, the sparseness and the independence in the early human vision system, which seems to respectively capture the Gabor-like basis functions, the shape contours or the complicated textures in the multiple layer implementations. The simulation results have shown good performance in the effectiveness and the consistence of the approach proposed for the underwater images collected by autonomous underwater vehicles (AUVs.

  14. California Cooperative Oceanic Fisheries Investigations: Reports. Volume 36, January 1 to December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Olfe, J. [ed.

    1995-10-01

    California Cooperative Oceanic Fisheries Investigations (CalCOFI) performs research in the area of sampling physical, chemical, and biological variables in the California Current. The information received is stored in databases and gives a better understanding of the physics and chemistry of the California Current. Their effect on the food chain make it possible to view current oceanographic and biological conditions in the context of the long term. Measurements taken during 1994 and early 1995 on CalCOFI cruises have indicated a return to normal conditions after anomalous conditions that dominated the two preceding years. The data have permitted an increasingly prompt assessment of the state of the California Current system off southern California. This report also contains papers presented at the CalCOFI conference in 1994 regarding the 1991--92 El Nino and its impact on fisheries. In addition, individual scientific contributions are included which provide an additional understanding of the processes involved in the California Current.

  15. Biotechnology System Facility: Risk Mitigation on Mir

    Science.gov (United States)

    Gonda, Steve R., III; Galloway, Steve R.

    2003-01-01

    NASA is working with its international partners to develop space vehicles and facilities that will give researchers the opportunity to conduct scientific investigations in space. As part of this activity, NASA's Biotechnology Cell Science Program (BCSP) at the Johnson Space Center (JSC) is developing a world-class biotechnology laboratory facility for the International Space Station (ISS). This report describes the BCSP, including the role of the BTS. We identify the purpose and objectives of the BTS and a detailed description of BTS facility design and operational concept, BTS facility and experiment-specific hardware, and scientific investigations conducted in the facility. We identify the objectives, methods, and results of risk mitigation investigations of the effects of microgravity and cosmic radiation on the BTS data acquisition and control system. These results may apply to many other space experiments that use commercial, terrestrial-based data acquisition technology. Another focal point is a description of the end-to-end process of integrating and operating biotechnology experiments on a variety of space vehicles. The identification of lessons learned that can be applied to future biotechnology experiments is an overall theme of the report. We include a brief summary of the science results, but this is not the focus of the report. The report provides some discussion on the successful 130-day tissue engineering experiment performed in BTS on Mir and describes a seminal gene array investigation that identified a set of unique genes that are activated in space.

  16. Elemental analysis in biotechnology.

    Science.gov (United States)

    Hann, Stephan; Dernovics, Mihaly; Koellensperger, Gunda

    2015-02-01

    This article focuses on analytical strategies integrating atomic spectroscopy in biotechnology. The rationale behind developing such methods is inherently linked to unique features of the key technique in elemental analysis, which is inductively coupled plasma mass spectrometry: (1) the high sensitivity and selectivity of state of the art instrumentation, (2) the possibility of accurate absolute quantification even in complex matrices, (3) the capability of combining elemental detectors with chromatographic separation methods and the versatility of the latter approach, (4) the complementarity of inorganic and organic mass spectrometry, (5) the multi-element capability and finally (6) the capability of isotopic analysis. The article highlights the most recent bio-analytical developments exploiting these methodological advantages and shows the potential in biotechnological applications.

  17. Practicing environmental biotechnology

    OpenAIRE

    Rittmann, Bruce E

    2014-01-01

    Environmental biotechnology involves ″managing microbial communities to provide services to society″.Its success comes from partnering with prokaryotic microorganisms,whose wide ranging metabolic capabilities can be harnessed to destroy pollutants and to generate renewable materials.Partnering with microorganisms requires that we understand them well,and important advances in molecular microbial ecology,analytical chemistry,and mathematical modeling are making it possible to look inside the b...

  18. Microfluidics in biotechnology

    OpenAIRE

    Ivanov Dimitri; Barry Richard

    2004-01-01

    Abstract Microfluidics enables biotechnological processes to proceed on a scale (microns) at which physical processes such as osmotic movement, electrophoretic-motility and surface interactions become enhanced. At the microscale sample volumes and assay times are reduced, and procedural costs are lowered. The versatility of microfluidic devices allows interfacing with current methods and technologies. Microfluidics has been applied to DNA analysis methods and shown to accelerate DNA microarra...

  19. Advances in Alstroemeria Biotechnology

    OpenAIRE

    Hoshino, Yoichiro

    2008-01-01

    The genus Alstroemeria belongs to the family Alstroemeriaceae and comprises many ornamental species. This genus, including more than 60 species, is indigenous to South America. Thus far, numerous cultivars, which are used as cut flowers and potted plants worldwide, have been produced by interspecific hybridization and mutation breeding. Recently, biotechnological approaches are being applied in order to improve Alstroemeria strains. Interspecific hybrid plants have been produced by ovule cult...

  20. Practicing environmental biotechnology

    Directory of Open Access Journals (Sweden)

    Bruce E.Rittmann

    2014-02-01

    Full Text Available Environmental biotechnology involves ″managing microbial communities to provide services to society″.Its success comes from partnering with prokaryotic microorganisms,whose wide ranging metabolic capabilities can be harnessed to destroy pollutants and to generate renewable materials.Partnering with microorganisms requires that we understand them well,and important advances in molecular microbial ecology,analytical chemistry,and mathematical modeling are making it possible to look inside the black box of microbial communities.Also crucial is translating the understanding to biotechnological processes that ″work for the microorganisms so that they work for us″.Successful translation demands novel reactor designs,application of advanced materials,and partnering with practitioners and users.The Swette Center for Environmental Biotechnology,founded in at Arizona State University in 2005,brings together the science and engineering tools in an inter disciplinary environment.The Center emphasizes teamwork and collaborations with research and practice partners around the world.Three new technologies illustrate how the Center applies these principles to ″work for the microorganisms″:the H2-based membrane biofilm reactor (MBfR for reducing many oxidized contaminants in water,the microbial electrochemical cells (MXCs for converting organic wastes into renewable products,and Intimately Coupled PhotoBioCatalysis (ICPBC to detoxify very difficult to biodegrade organic pollutants.

  1. Food biotechnology: benefits and concerns.

    Science.gov (United States)

    Falk, Michael C; Chassy, Bruce M; Harlander, Susan K; Hoban, Thomas J; McGloughlin, Martina N; Akhlaghi, Amin R

    2002-06-01

    Recent advances in agricultural biotechnology have highlighted the need for experimental evidence and sound scientific judgment to assess the benefits and risks to society. Nutrition scientists and other animal biologists need a balanced understanding of the issues to participate in this assessment. To date most modifications to crop plants have benefited producers. Crops have been engineered to decrease pesticide and herbicide usage, protect against stressors, enhance yields and extend shelf life. Beyond the environmental benefits of decreased pesticide and herbicide application, consumers stand to benefit by development of food crops with increased nutritional value, medicinal properties, enhanced taste and esthetic appeal. There remains concern that these benefits come with a cost to the environment or increased risk to the consumer. Most U.S. consumers are not aware of the extent that genetically modified foods have entered the marketplace. Consumer awareness of biotechnology seems to have increased over the last decade, yet most consumers remain confused over the science. Concern over the impact on the safety of the food supply remains low in the United States, but is substantially elevated in Europe. Before a genetically engineered crop is introduced into commerce it must pass regulatory scrutiny by as many as four different federal regulatory bodies to ensure a safe food supply and minimize the risk to the environment. Key areas for more research are evaluation of the nutritional benefits of new crops, further investigation of the environmental impact, and development of better techniques to identify and track genetically engineered products.

  2. Construction Biotechnology: a new area of biotechnological research and applications.

    Science.gov (United States)

    Stabnikov, Viktor; Ivanov, Volodymyr; Chu, Jian

    2015-09-01

    A new scientific and engineering discipline, Construction Biotechnology, is developing exponentially during the last decade. The major directions of this discipline are selection of microorganisms and development of the microbially-mediated construction processes and biotechnologies for the production of construction biomaterials. The products of construction biotechnologies are low cost, sustainable, and environmentally friendly microbial biocements and biogrouts for the construction ground improvement. The microbial polysaccharides are used as admixtures for cement. Microbially produced biodegradable bioplastics can be used for the temporarily constructions. The bioagents that are used in construction biotechnologies are either pure or enrichment cultures of microorganisms or activated indigenous microorganisms of soil. The applications of microorganisms in the construction processes are bioaggregation, biocementation, bioclogging, and biodesaturation of soil. The biotechnologically produced construction materials and the microbially-mediated construction technologies have a lot of advantages in comparison with the conventional construction materials and processes. Proper practical implementations of construction biotechnologies could give significant economic and environmental benefits. PMID:26070432

  3. "Othering" agricultural biotechnology: Slovenian media representation of agricultural biotechnology.

    Science.gov (United States)

    Zajc, Jožica; Erjavec, Karmen

    2014-08-01

    While studies on media representations of agricultural biotechnology mostly analyse media texts, this work is intended to fill a research gap with an analysis of journalistic interpretations of media representations. The purpose of this project was to determine how news media represent agricultural biotechnology and how journalists interpret their own representations. A content and critical discourse analysis of news texts published in the Slovenian media over two years and in-depth interviews with their authors were conducted. News texts results suggest that most of the news posts were "othering" biotechnology and biotechnologists: biotechnology as a science and individual scientists are represented as "they," who are socially irresponsible, ignorant, arrogant, and "our" enemies who produce unnatural processes and work for biotechnology companies, whose greed is destroying people, animals, and the environment. Most journalists consider these representations to be objective because they have published the biotechnologists' opinions, despite their own negative attitudes towards biotechnology.

  4. Biotechnology: reality or dream

    Directory of Open Access Journals (Sweden)

    Konstantinov Kosana

    2002-01-01

    Full Text Available The development of molecular biology and molecular genetics, especially of the recombinant DNA technology enabled improvement of experimental methods that provide manipulation within a cell-free system, such as cell and tissue cultures. Such methods resulted in the development of different new technologies with specific properties in relation to the conventional definitions. According to PERSLEY and lantin (2000 the following components are essential for the contemporary biotechnology: (i genomics - a molecular characterization of all genes and gene products of an organism (ii bioinformatics - the assembly of data from genomic analysis into accessible forms; (iii transformation - the introduction of genes controlling a trait of interest into a genome of a desired organism (micro organisms, plants, animal systems. By the application of cotemporary biotechnology new methods in the field of diagnostic are developed such as rapid and more accurate identification of the presence and absence of genes in the genome of the organism of interest (identification of pathogens prenatal diagnostics, molecular markers assisted breeding for plants, etc. The traits of an organism are determined by its genetic material, i.e. by a molecule of deoxyribonucleic acid (DNA. watson and crick (1953 were the first scientists to describe the structure of DNA as a double-stranded helix. Higher organisms contain a set of linear DNA molecules - chromosomes and a full set of chromosomes of an organism is a genome. Each genome is divided into a series of functional units, i.e. genes. The traits of an organism depend on genes, but their expression depends not only on genes but also on many other factors, including whether a gene, controlling the trait, expresses, specific cells in which it expresses and specially the mode by which the gene and its product interact with the environment. A special aspect within the application of biotechnology occurs as an interaction of a

  5. Investigating the impacts of deep ocean euxinia on continental shelf environments during the Great Ordovician Biodiversification Event: did changes in global oceanic redox have any effect?

    Science.gov (United States)

    Marenco, P. J.; Marenco, K. N.; Phillips, D. E.; Garcia, E.; Toure, N.; Fullem, A.

    2013-12-01

    The Great Ordovician Biodiversification Event was one of the most important radiations in the history of animal life. In particular, the GOBE was characterized by pronounced increases in diversity within the Paleozoic and Modern Evolutionary Faunas (e.g., Droser and Finnegan, 2003). Rather than being attributable to a singular cause, a number of tectonic, ecologic, and climate-related factors are thought to have contributed to this biodiversification event (e.g., Servais et al., 2009). For example, continental shelf area during the GOBE was more extensive than at any other time during the Phanerozoic, and the availability of these warm, shallow-water, well-oxygenated environments likely influenced the radiation (e.g., Servais et al., 2009). Despite this evidence for favorable conditions, recent geochemical studies suggest that the early Paleozoic, including the Ordovician, was a time of episodic deep ocean euxinia (e.g., Gill et al., 2011, Thompson and Kah, 2012). It remains unclear how the hypothesized deep ocean euxinia may have affected the GOBE. For example, it is possible that episodic incursions of euxinic deep water onto the continental shelves may have acted to slow down the GOBE or even dampen its magnitude. On the other hand, such incursions may have accelerated the radiation by adding additional selection pressures to communities that were already adapting to new predation and substrate conditions. Alternatively, the GOBE may have proceeded without any incursions of euxinic deep water onto the continental shelves. One way to address this issue is to investigate short-term, localized redox changes in shallow marine settings. Here we present results from our ongoing investigation of redox changes in shallow-water environments from the Lower and Middle Ordovician of Utah. Specifically, we use abundances of total organic carbon (TOC) and total sulfur (TS) as localized redox proxies. We use the isotopic composition of carbonate associated sulfate (δ34SCAS

  6. Effects of Mountain Uplift on East Asian Summer Climate Investigated by a Coupled Atmosphere Ocean GCM.

    Science.gov (United States)

    Kitoh, Akio

    2004-02-01

    To study the effects of progressive mountain uplift on East Asian summer climate, a series of coupled general circulation model (CGCM) experiments were performed. Eight different mountain heights were used: 0% (no mountain), 20%, 40%, 60%, 80%, 100% (control run), 120%, and 140%. The land sea distribution is the same for all experiments and mountain heights are varied uniformly over the entire globe.Systematic changes in precipitation pattern and circulation fields as well as sea surface temperature (SST) appeared with progressive mountain uplift. In summertime, precipitation area moves inland on the Asian continent with mountain uplift, while the Pacific subtropical anticyclone and associated trade winds become stronger. The mountain uplift resulted in an SST increase over the western tropical Pacific and the Maritime Continent and an SST decrease over the western Indian Ocean and the central subtropical Pacific. There is a drastic change in the East Asian circulations with the threshold value at the 60% mountain height. With the mountain height below 60%, the southwesterly monsoon flow from the Indian Ocean becomes strong by uplift and transports moisture toward East Asia, forming the baiu rainband. With higher mountain heights, intensified subtropical trade winds transport moisture from the Pacific into the Asian continent.In order to investigate how the SST change affected the results presented herein, additional experiments were performed with the same experimental design but with the atmospheric GCM (AGCM). A comparison between CGCM and AGCM experiments revealed that major features such as a shift in precipitation inland and an appearance of the baiu rainband by higher orography were reproduced similarly in both the AGCM and the CGCM. However, there was a qualitatively as well as quantitatively different feature. The anticyclonic circulation anomalies in the lower troposphere, which appeared by mountain uplift in the tropical western Pacific in the CGCM

  7. Investigating the potential of SST assimilation for ocean state estimation and climate prediction

    Science.gov (United States)

    Keenlyside, Noel; Counillon, Francois; Bethke, Ingo; Wang, Yiguo; Billeau, Sebastien; Shen, Mao-Lin; Bentsen, Mats

    2016-04-01

    The Norwegian Climate Prediction Model (NorCPM) assimilates the stochastic HadISST2 product with the ensemble Kalman Filter data assimilation method into the ocean part the Norwegian Earth System model. We document a pilot stochastic reanalysis for the period 1950-2010 and use it to perform seasonal-to-decadal (s2d) predictions. The accuracy, reliability and drift is investigated using both assimilated and independent observations. NorCPM is found slightly over-dispersive against assimilated observations but shows stable performance through the analysis period (˜0.4K). It demonstrates skill against independent measurements: SSH, heat and salt content, in particular in the ENSO, the North Pacific, the North Atlantic subpolar gyre (SPG) regions and the Nordic Seas. Furthermore, NorCPM provides a reliable monitoring of the SPG index and represents the variability of the temperature vertical structure there in good agreement with observations. The monitoring of the Atlantic meridional overturning circulation is also encouraging. The benefit of using flow dependent assimilation method and constructing the covariance in isopycnal coordinate are investigated in the SPG region. Isopycnal coordinate discretisation is found to better captures the vertical structure than standard depth-coordinate discretisation, which can deepen the influence of assimilation when assimilating surface observations. The vertical covariance shows a pronounced seasonal and decadal variability, which highlights the benefit of flow dependent data assimilation method. This study demonstrates the potential of NorCPM for providing a long reanalysis for the 19-20 century when SST observations are available. The results of s2d predictions carried out will be presented, and the potential to use this method to assess decadal predictability over the historical period will be discussed.

  8. BIOTECHNOLOGY IN FRUIT GROWING

    Directory of Open Access Journals (Sweden)

    Z. Jurković

    2008-09-01

    Full Text Available Research studies in the area of biotechnologies in fruit growing started at the Agricultural Institute Osijek in 2006 with the establishment of the first experimental in vitro laboratory for micropropagation. The laboratory started an active research related to the Project "Biotechnological methods in fruit tree identification, selection and propagation" Project is part of program "Preservation and revitalization of grape and fruit autochthonous cultivars". The goal of this research is to determine genetic differences between autochthonous and introduced cultivars of cherry as well as cultivars and types of sour cherry, to find and optimize a method for fast recovery of clonal material. A great number of cherry cultivars and types within the population of cv. Oblacinska sour cherry exists in Croatia. A survey with the purpose of selecting autochthonous cultivars for further selection has been done in previous research. Differences have been found in a number of important agronomic traits within the populations of cv. Oblačinska sour cherry. Autochthonous cherry cultivars are suspected to be synonyms of known old cultivars which were introduced randomly and have been naturalized under a local name. Identification and description of cultivars and types of fruits is based on special visible properties which were measurable or notable. In this approach difficulties arise from the effect of non-genetic factors on expression of certain traits. Genetic-physiological problem of S allele autoincompatibility exists within cherry cultivars. Therefore it is necessary to put different cultivars in the plantation to pollinate each other. Apart form the fast and certain sort identification independent of environmental factors, biotechnological methods based on PCR enable faster virus detection compared with classical serologic methods and indexing and cover a wider range of plant pathogens including those undetectable by other methods. Thermotherapy and

  9. A review of hydrodynamic investigations into arrays of ocean wave energy converters

    CERN Document Server

    De Chowdhury, S; Sanchez, A Madrigal; Fleming, A; Winship, B; Illesinghe, S; Toffoli, A; Babanin, A; Penesis, I; Manasseh, R

    2015-01-01

    Theoretical, numerical and experimental studies on arrays of ocean wave energy converter are reviewed. The importance of extracting wave power via an array as opposed to individual wave-power machines has long been established. There is ongoing interest in implementing key technologies at commercial scale owing to the recent acceleration in demand for renewable energy. To date, several reviews have been published on the science and technology of harnessing ocean-wave power. However, there have been few reviews of the extensive literature on ocean wave-power arrays. Research into the hydrodynamic modelling of ocean wave-power arrays is analysed. Where ever possible, comparisons are drawn with physical scaled experiments. Some critical knowledge gaps have been found. Specific emphasis has been paid on understanding how the modelling and scaled experiments are likely to be complementary to each other.

  10. Investigating bomb radiocarbon transport in the southern Pacific Ocean with otolith radiocarbon

    Science.gov (United States)

    Grammer, G. L.; Fallon, S. J.; Izzo, C.; Wood, R.; Gillanders, B. M.

    2015-08-01

    To explore the transport of carbon into water masses from the surface ocean to depths of ∼ 1000 m in the southwest Pacific Ocean, we generated time series of radiocarbon (Δ14C) from fish otoliths. Otoliths (carbonate earstones) from long-lived fish provide an indirect method to examine the "bomb pulse" of radiocarbon that originated in the 1950s and 1960s, allowing identification of changes to distributions of 14C that has entered and mixed within the ocean. We micro-sampled ocean perch (Helicolenus barathri) otoliths, collected at ∼ 400- 500 m in the Tasman Sea, to obtain measurements of Δ14C for those depths. We compared our ocean perch Δ14C series to published otolith-based marine surface water Δ14C values (Australasian snapper (Chrysophrys auratus) and nannygai (Centroberyx affinis)) and to published deep-water values (800-1000 m; orange roughy (Hoplostethus atlanticus)) from the southwest Pacific to establish a mid-water Δ14C series. The otolith bomb 14C results from these different depths were consistent with previous water mass results in the upper 1500 m of the southwest Pacific Ocean (e.g. World Ocean Circulation Experiment and Geochemical Ocean Sections Study). A comparison between the initial Δ14C bomb pulse rise at 400-500 m suggested a ventilation lag of 5 to 10 yr, whereas a comparison of the surface and depths of 800-1000 m detailed a 10 to 20 yr lag in the time history of radiocarbon invasion at this depth. Pre-bomb reservoir ages derived from otolith 14C located in Tasman Sea thermocline waters were ∼ 530 yr, while reservoir ages estimated for Tasman Antarctic intermediate water were ∼ 730 yr.

  11. Using the NASA Giovanni DICCE Portal to Investigate Land-Ocean Linkages with Satellite and Model Data

    Science.gov (United States)

    Acker, James G.; Zalles, Daniel; Krumhansl, Ruth

    2012-01-01

    Data-enhanced Investigations for Climate Change Education (DICCE), a NASA climate change education project, employs the NASA Giovanni data system to enable teachers to create climate-related classroom projects using selected satellite and assimilated model data. The easy-to-use DICCE Giovanni portal (DICCE-G) provides data parameters relevant to oceanic, terrestrial, and atmospheric processes. Participants will explore land-ocean linkages using the available data in the DICCE-G portal, in particular focusing on temperature, ocean biology, and precipitation variability related to El Ni?o and La Ni?a events. The demonstration includes the enhanced information for educators developed for the DICCE-G portal. The prototype DICCE Learning Environment (DICCE-LE) for classroom project development will also be demonstrated.

  12. Biotechnological applications of microalgae

    Directory of Open Access Journals (Sweden)

    Wan-Loy Chu

    2012-07-01

    Full Text Available Microalgae are important biologicalresources that have a wide range of biotechnologicalapplications. Due to their high nutritional value,microalgae such as Spirulina and Chlorella are beingmass cultured for health food. A variety of high-valueproducts including polyunsaturated fatty acids (PUFA,pigments such as carotenoids and phycobiliproteins, andbioactive compounds are useful as nutraceuticals andpharmaceuticals, as well as for industrial applications. Interms of environmental biotechnology, microalgae areuseful for bioremediation of agro-industrial wastewater,and as a biological tool for assessment and monitoring ofenvironmental toxicants such as heavy metals, pesticidesand pharmaceuticals. In recent years, microalgae haveattracted much interest due to their potential use asfeedstock for biodiesel production. In Malaysia, therehas been active research on microalgal biotechnologyfor the past 30 years, tapping into the potential of ourrich microalgal resources for high-value products andapplications in wastewater treatment and assessmentof environmental toxicants. A culture collection ofmicroalgae has been established, and this serves asan important resource for microalgal biotechnologyresearch. Microalgal biotechnology should continue tobe regarded as a priority area of research in this country.

  13. Biotechnology Towards Energy Crops.

    Science.gov (United States)

    Margaritopoulou, Theoni; Roka, Loukia; Alexopoulou, Efi; Christou, Myrsini; Rigas, Stamatis; Haralampidis, Kosmas; Milioni, Dimitra

    2016-03-01

    New crops are gradually establishing along with cultivation systems to reduce reliance on depleting fossil fuel reserves and sustain better adaptation to climate change. These biological assets could be efficiently exploited as bioenergy feedstocks. Bioenergy crops are versatile renewable sources with the potential to alternatively contribute on a daily basis towards the coverage of modern society's energy demands. Biotechnology may facilitate the breeding of elite energy crop genotypes, better suited for bio-processing and subsequent use that will improve efficiency, further reduce costs, and enhance the environmental benefits of biofuels. Innovative molecular techniques may improve a broad range of important features including biomass yield, product quality and resistance to biotic factors like pests or microbial diseases or environmental cues such as drought, salinity, freezing injury or heat shock. The current review intends to assess the capacity of biotechnological applications to develop a beneficial bioenergy pipeline extending from feedstock development to sustainable biofuel production and provide examples of the current state of the art on future energy crops. PMID:26798073

  14. An argo-based model for investigation of the Global Ocean (AMIGO)

    Science.gov (United States)

    Lebedev, K. V.

    2016-03-01

    We analyze the newly developed Argo-Based Model for Investigation of the Global Ocean (AMIGO), which consists of a block for variational interpolation of the profiles of drifting Argo floats to a regular grid and a block for model hydrodynamic adjustment of variationally interpolated fields. Such a method makes it possible to obtain a full set of oceanographic characteristics—temperature, salinity, density, and current velocity—using irregularly located Argo measurements. The resulting simulations are represented as monthly mean, seasonal, and annual means and climatological fields. The AMIGO oceanographic database developed at the Shirshov Institute of Oceanology from model simulations covers the 10-year period from 2005 to 2014. Analysis of transport variations in the propagation of North Atlantic Current jets to the Arctic based on the AMIGO data showed that during this period, anomalous winter transports were observed, which correlate with anomalous winter temperatures in regions of northwestern Europe, northern European Russia, and Iceland, which are subjected to the influence of these currents. Comparative analysis of variations in mass and heat transport by the currents and the North Atlantic Oscillation (NAO) index in the period of 2005-2014 shows a well pronounced correlation between them. The low winter values of the NAO index correspond to the low values of winter transports by the Faroe-Shetland branch of the North Atlantic current, and usually, to the high values of winter transports by the North Icelandic branch of the Irminger Current. High winter value of the NAO index results in a substantial increase in the winter transport by the Faroe-Shetland branch of the North Atlantic Current without notable influence on the transport of the North Icelandic branch of the Irminger Current.

  15. Laboratory investigations in support of carbon dioxide-limestone sequestration in the ocean

    Energy Technology Data Exchange (ETDEWEB)

    Golomb, Dan; Barry, Eugene; Ryan, David; Lawton, Carl; Swett, Peter; Hannon, John

    2004-03-01

    In the first half of the second contractual year the High Pressure Flow Reactor (HPFR) was fully designed. Most components have been ordered, and assembly of the flow reactor has been started. Also, the High Pressure Batch Reactor (HPBR) was redesigned for more efficient operation and observation of the emulsion of liquid or supercritical CO{sub 2} dispersed in water stabilized by pulverized limestone and other particles. In this period we firmly established that when about equal volumes of liquid CO{sub 2} and a slurry of pulverized limestone (CaCO{sub 3}) in de-ionized or artificial seawater (3.5% NaCl solution in de-ionized water) are thoroughly mixed, a macro-emulsion ensues consisting of liquid CO{sub 2} droplets coated with a sheath of CaCO{sub 3} particles dispersed in water. We call the coated CO{sub 2} droplets globules, and the macro-emulsion a globulsion. Depending on the degree of mixing (rotational speed of the magnetic stir bar) and the size of the CaCO{sub 3} particles, the globules float on top of the water column, are suspended in it, or sink to the bottom of the water column. With CO{sub 2} droplet diameter in the 100-200 {micro}m range, and CaCO{sub 3} particles in the 6-20 {micro}m range, most of the globules sink to the bottom. The formation of sinking globules is desirable for ocean sequestration of CO{sub 2}. The properties and stability of the globules will be further investigated in the HPFR in the second contractual year. It has also been demonstrated that flyash can be substituted for pulverized limestone to obtain a stable globulsion of CO{sub 2}-in-water.

  16. A Case for Teaching Biotechnology

    Science.gov (United States)

    Lazaros, Edward; Embree, Caleb

    2016-01-01

    Biotechnology is an innovative field that is consistently growing in popularity. It is important that students are taught about this technology at an early age, so they are motivated to join the field, or at least motivated to become informed citizens and consumers (Gonzalez, et al, 2013). An increase in biotechnology knowledge can result in an…

  17. Teachers' Concerns about Biotechnology Education

    Science.gov (United States)

    Borgerding, Lisa A.; Sadler, Troy D.; Koroly, Mary Jo

    2013-01-01

    The impacts of biotechnology are found in nearly all sectors of society from health care and food products to environmental issues and energy sources. Despite the significance of biotechnology within the sciences, it has not become a prominent trend in science education. In this study, we seek to more fully identify biology teachers' concerns…

  18. Preface: Biocatalysis and Agricultural Biotechnology

    Science.gov (United States)

    This book was assembled with the intent of bringing together current advances and in-depth reviews of biocatalysis and agricultural biotechnology with emphasis on bio-based products and agricultural biotechnology. Recent energy and food crises point out the importance of bio-based products from ren...

  19. On Teaching Biotechnology in Kentucky.

    Science.gov (United States)

    Brown, Dan C.; Kemp, Michael C.; Hall, Jennifer

    1998-01-01

    One study surveyed 187 Kentucky teachers (36% agriculture, 32% science, 32% technology education); they rated importance of content organizers, topics, transferable skills, and delivery methods for biotechnology. A second study received responses from 70 of 150 teachers; 45 thought science teachers or an integrated team should teach biotechnology;…

  20. LABORATORY INVESTIGATIONS IN SUPPORT OF CARBON DIOXIDE-LIMESTONE SEQUESTRATION IN THE OCEAN

    Energy Technology Data Exchange (ETDEWEB)

    Dan Golomb; Eugene Barry; David Ryan; Carl Lawton; Peter Swett; Huishan Duan; Matthew Woodcock

    2005-04-01

    This semi-annual progress reports includes further findings on CO{sub 2}-in-Water (C/W) emulsions stabilized by fine particles. In previous reports we described C/W emulsions using pulverized limestone (CaCO{sub 3}), flyash, and a pulverized magnesium silicate mineral, lizardite, Mg{sub 3}Si{sub 2}O{sub 5}(OH){sub 4}, which has a similar composition as the more abundant mineral, serpentine. All these materials formed stable emulsions consisting of droplets of liquid or supercritical CO{sub 2} coated with a sheath of particles dispersed in water. During this semi-annual period we experimented with pulverized beach sand (10-20 {micro}m particle diameter). Pulverized sand produced an emulsion similar to the previously used materials. The globules are heavier than water, thus they accumulate at the bottom of the water column. Energy Dispersive X-ray (EDX) analysis revealed that the sand particles consisted mainly of SiO{sub 2}. Sand is one of the most abundant materials on earth, so the economic and energy penalties of using it for ocean sequestration consist mainly of the cost of transporting the sand to the user, the capital and operating costs of the pulverizer, and the energy expenditure for mining, shipping and grinding the sand. Most likely, sand powder would be innocuous to marine organisms if released together with CO{sub 2} in the deep ocean. We examined the effects of methanol (MeOH) and monoethanolamine (MEA) on emulsion formation. These solvents are currently used for pre- and post-combustion capture of CO{sub 2}. A fraction of the solvents may be captured together with CO{sub 2}. A volume fraction of 5% of these solvents in a mix of CO{sub 2}/CaCO{sub 3}/H{sub 2}O had no apparent effect on emulsion formation. Previously we have shown that a 3.5% by weight of common salt (NaCl) in water, simulating seawater, also had no appreciable effect on emulsion formation. We investigated the formation of inverted emulsions, where water droplets coated with pulverized

  1. Biotechnological advances in Lilium.

    Science.gov (United States)

    Bakhshaie, Mehdi; Khosravi, Solmaz; Azadi, Pejman; Bagheri, Hedayat; van Tuyl, Jaap M

    2016-09-01

    Modern powerful techniques in plant biotechnology have been developed in lilies (Lilium spp., Liliaceae) to propagate, improve and make new phenotypes. Reliable in vitro culture methods are available to multiply lilies rapidly and shorten breeding programs. Lilium is also an ideal model plant to study in vitro pollination and embryo rescue methods. Although lilies are recalcitrant to genetic manipulation, superior genotypes are developed with improved flower colour and form, disease resistance and year round forcing ability. Different DNA molecular markers have been developed for rapid indirect selection, genetic diversity evaluation, mutation detection and construction of Lilium linkage map. Some disease resistance-QTLs are already mapped on the Lilium linkage map. This review presents latest information on in vitro propagation, genetic engineering and molecular advances made in lily. PMID:27318470

  2. Investigation of the ocean acoustic signatures from strong explosions at a long distance in the ocean sound channel by computer simulation

    International Nuclear Information System (INIS)

    The identification and location of ocean acoustic signatures are the principal objectives of a program to discourage clandestine testing of nuclear explosives. Difficulties arise primarily from variations in the water column. In turn, these variations affect acoustic propagation in the SOFAR channel. In this study, the path effects on the signals generated by strong explosions (1 and 10 kn) are investigated. The goal is to make a quantitative correlation between the initial source description and the final acoustical signatures received at a great distance under various conditions. The study is performed entirely by computer simulations applying two computer programs in succession. First, the explosions are simulated by a 2-D hydrodynamic computer program, CALE, which was originally developed to calculate astrophysical problems. The computed signals have reached more than 700 m deep approaching the SOFAR channel. At this point, the CALE output is linked to a hydro-acoustic computer program, the NPE code, by which wave propagation in the SOFAR channel is modeled. The NPE code was developed at the Naval Research Laboratory to study ocean acoustics. [Work supported by the U. S. Department of Energy under Contract No. W-7405-ENG-48.

  3. Fishing and Oceanologic Investigation of the Pacific Ocean Southeast Part by Satellite Radiometry and Altimetry Data

    Science.gov (United States)

    Lebedev, S.; Sirota, A.

    Analyse of structure and time-space variability of Subantarctic front and South Pacific ocean current in Pacific ocean southeast part (20--45S, 70--110W) are based on the sea surface dynamic heights calculated by the TOPEX/Poseidon satellite altimetry data and gradients of the sea surface temperature for time period 1992-2003. The sea surface dynamic heights constructed by the superposition of sea level anomaly distributions over the climatic dynamic topography and temperature gradients at the ocean surface on the basis of the satellite Multi-Channel Sea Surface Temperature (MCSST) data. Comparison calculations results of the Subantarctic front and the Southern Pacific current position on basin the satellite data with the data of the research ship ``Atlantida'' measurements (November - December 2002) has shown good data fit. The analysis of scads fishery distribution in a southeast part of Pacific Ocean (the drag-net and the acoustic data of fish accumulation) and synoptic variability of the sea surface dynamic heights has revealed, that the distribution of the most dense of the fish accumulation is connected to dynamic heterogeneities, which are on northern peripherals of the Subantarctic front.

  4. Investigation of hurricane Ivan using the coupled ocean-atmosphere-wave-sediment transport (COAWST) model

    Science.gov (United States)

    Zambon, Joseph B.; He, Ruoying; Warner, John C.

    2014-01-01

    The coupled ocean–atmosphere–wave–sediment transport (COAWST) model is used to hindcast Hurricane Ivan (2004), an extremely intense tropical cyclone (TC) translating through the Gulf of Mexico. Sensitivity experiments with increasing complexity in ocean–atmosphere–wave coupled exchange processes are performed to assess the impacts of coupling on the predictions of the atmosphere, ocean, and wave environments during the occurrence of a TC. Modest improvement in track but significant improvement in intensity are found when using the fully atmosphere–ocean-wave coupled configuration versus uncoupled (e.g., standalone atmosphere, ocean, or wave) model simulations. Surface wave fields generated in the fully coupled configuration also demonstrates good agreement with in situ buoy measurements. Coupled and uncoupled model-simulated sea surface temperature (SST) fields are compared with both in situ and remote observations. Detailed heat budget analysis reveals that the mixed layer temperature cooling in the deep ocean (on the shelf) is caused primarily by advection (equally by advection and diffusion).

  5. Seismic structure of oceanic crust at ODP borehole 504B: Investigating anisotropy and layer 2 characteristics

    Science.gov (United States)

    Gregory, E. P. M.; Hobbs, R. W.; Peirce, C.; Wilson, D. J.

    2015-12-01

    Fracture and fault networks in the upper oceanic crust influence the circulation of hydrothermal fluids and heat transfer between crust and ocean. These fractures form by extensional stresses, with a predominant orientation parallel to the ridge axis, creating porosity- and permeability-derived anisotropy that can be measured in terms of seismic velocity. These properties change as the crust ages and evolves through cooling, alteration and sedimentation. The rate at which these changes occur and their effects on oceanic crustal structure and hydrothermal flow patterns are currently not well constrained. The NERC-funded OSCAR project aims to understand the development of upper oceanic crust, the extent and influence of hydrothermal circulation on the crust, and the behavior of fluids flowing in fractured rock. We show P-wave velocity models centered on DSDP/ODP Hole 504B, located ~200 km south of the Costa Rica Rift, derived from data acquired during a recent integrated geophysics and oceanography survey of the Panama Basin. The data were recorded by 25 four-component OBSs deployed in a grid, that recorded ~10,000 full azimuthal coverage shots fired by a combined high- and low-frequency seismic source. Both reflection and refraction data are integrated to reveal the seismic velocity structure of the crust within the 25 km by 25 km grid. The down-hole geological structure of 6 Ma crust at 504B comprises 571.5 m of extrusive basalts overlying a 209 m transition zone of mixed pillows and dikes containing a clear alteration boundary, which grades to >1050 m of sheeted dikes. Our model results are compared with this lithological structure and other previously published results to better understand the nature of velocity changes within seismic layer 2. The data provide a 3D framework, which together with analysis of the S-wave arrivals and particle motion studies, constrain estimates of the seismic anisotropy and permeability structure of the upper oceanic crust as it

  6. Application of biotechnology to PCB disposal problems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Terhorst, E.G.; Attaway, L.D.; Peyton, T.O.

    1985-05-01

    Results are presented of a study addressing the feasibility of using biotechnology to help solve the electric utility industry's PCB disposal problems. The study investigates those charateristics of PCB waste which influence biodegradation, the reported pathways and rates of degradation, the biotechnologies which appear to hold promise as treatment approaches, and the types of research and development which should be pursued to lead to commercial applications. 160 refs.

  7. Bioceres: AG Biotechnology from Argentina

    Directory of Open Access Journals (Sweden)

    Roberto Feeney

    2016-04-01

    Full Text Available In this case we present a business decision-making situation in which the CEO of an Argentine Ag Biotech company, Bioceres, has to decide the best way to commercialize a new drought-tolerant transgenic technology. The company was founded by twenty three farmers, who shared a common dream that Argentina could become a benchmark in the development of Ag biotechnology. The case has strategic and financial implications, as well as decision-making situation involving a joint venture with an American biotechnology company. It also introduces to discussion the business models of Ag biotechnology companies in developing countries.

  8. Big is beautiful in biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, G.

    1984-01-01

    Venture capital has guaranteed the successful launch of biotechnology in the US since 1977. Established companies are then licensed to produce and distribute the latest inventions. By contrast in Japan established industrial companies are the leaders in biotechnology research, development and commercialization, building on existing technology and past experience and retraining staff. In the US electronics industry the acute shortage of electronic engineers combined with the high cost of capital and instability within venture capital companies to restrict the high level of innovation required looks likely to happen again in biotechnology.

  9. Investigation of weather anomalies in the low-latitude islands of the Indian Ocean in 1991

    OpenAIRE

    A. Réchou; S. Kirkwood

    2015-01-01

    Temperature, precipitation and sunshine duration measurements at meteorological stations across the southern Indian Ocean have been analysed to try to differentiate the possible influence of the Mount Pinatubo volcanic eruption in the Philippines in June 1991 and the normal weather forcings. During December 1991, precipitation on the tropical islands Glorieuses (11.6° S) and Mayotte (12.8° S) was 4 and 3 times greater, respectively, than the climatological mean (precipitatio...

  10. Proceedings of the International Symposium on Biotechnology

    International Nuclear Information System (INIS)

    This is a book of abstracts of oral communications and posters that were presented during the International Symposium on Biotechnology that was held in Sfax, Tunisia from May 4th to 8th, 2008. The following themes were covered : - Biotechnology for animal and human health and biopharmaceuticals; - Microbial and environmental biotechnology; - Agricultural, Food and marine biotechnology

  11. Investigating Earthquake Stress Drops on Mid-Ocean Ridge Transform Faults (Invited)

    Science.gov (United States)

    Boettcher, M. S.; Moyer, P. A.; McGuire, J. J.; Collins, J. A.

    2013-12-01

    A key question concerning the development of mid-ocean ridge transform faults (RTFs) is why have full fault ruptures not been observed in the historic record? Similarly, why do the rupture areas of the largest earthquakes on RTFs not scale directly with area above the 600°C isotherm? Recent studies have shown that Blanco, Discovery, Gofar, Heezen, Tharp, and Hollister RTFs all have multiple rupture patches on a single fault segment that repeatedly fail in characteristic largest (Mc) earthquakes. We develop a scaling relation for the stress drop of repeating Mc earthquakes assuming full-coupling on Mc rupture patches, such that slip (Dc) in Mc earthquakes is given by the product of the repeat time (tR) and plate tectonic slip (V), and assuming that slip scales with the square root of rupture area (Ac), Dc = ΔσAc1/2μ-1, where μ is the shear modulus. Using the definition of seismic moment, Mc = μAcDc, we directly solve for stress drop given observed repeat times: Δσ = μVtR3/2Mc-1/2. For stress drops in the range of 1-2 MPa, slip in repeating Mc earthquakes on each of the RTFs noted above is approximately equal to the accumulated plate tectonic motion. We analyze the source parameters of 3.0 barriers between the rupture patches. The OBS deployment captured the end of a seismic cycle, including a foreshock sequence that was both extensive (~20,000 earthquakes within the week prior to the mainshock) and localized (within a ~10 km region), as well as the Mw 6.0 mainshock and its aftershock sequence [McGuire et. al, 2012]. The foreshocks occurred in a rupture barrier on the western segment of Gofar and the aftershocks occurred in the rupture patch. Using waveforms recorded with a sample rate of 50 Hz on OBS accelerometers, we investigate the corner frequencies and stress drops of Mw ≥ 3.0 earthquakes. We calculate stress drop using an omega-squared source model, where the corner frequency is derived using an empirical Green's function (EGF) method. We obtain

  12. Laboratory Investigations in Support of Dioxide-Limestone Sequestration in the Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Dan Golomb; Eugene Barry; David Ryan; Stephen Pennell; Carl Lawton; Peter Swett; Devinder Arora; John Hannon; Michael Woods; Huishan Duan; Tom Lawlor

    2008-09-30

    Research under this Project has proven that liquid carbon dioxide can be emulsified in water by using very fine particles as emulsion stabilizers. Hydrophilic particles stabilize a CO{sub 2}-in-H{sub 2}O (C/W) emulsion; hydrophobic particles stabilize a H{sub 2}O-in-CO{sub 2} (W/C) emulsion. The C/W emulsion consists of tiny CO{sub 2} droplets coated with hydrophilic particles dispersed in water. The W/C emulsion consists of tiny H{sub 2}O droplets coated with hydrophobic particles dispersed in liquid carbon dioxide. The coated droplets are called globules. The emulsions could be used for deep ocean sequestration of CO{sub 2}. Liquid CO{sub 2} is sparsely soluble in water, and is less dense than seawater. If neat, liquid CO{sub 2} were injected in the deep ocean, it is likely that the dispersed CO{sub 2} droplets would buoy upward and flash into vapor before the droplets dissolve in seawater. The resulting vapor bubbles would re-emerge into the atmosphere. On the other hand, the emulsion is denser than seawater, hence the emulsion plume would sink toward greater depth from the injection point. For ocean sequestration a C/W emulsion appears to be most practical using limestone (CaCO{sub 3}) particles of a few to ten ?m diameter as stabilizing agents. A mix of one volume of liquid CO{sub 2} with two volumes of H{sub 2}O, plus 0.5 weight of pulverized limestone per weight of liquid CO{sub 2} forms a stable emulsion with density 1087 kg m{sup -3}. Ambient seawater at 500 m depth has a density of approximately 1026 kg m{sup -3}, so the emulsion plume would sink by gravity while entraining ambient seawater till density equilibrium is reached. Limestone is abundant world-wide, and is relatively cheap. Furthermore, upon disintegration of the emulsion the CaCO{sub 3} particles would partially buffer the carbonic acid that forms when CO{sub 2} dissolves in seawater, alleviating some of the concerns of discharging CO{sub 2} in the deep ocean. Laboratory experiments showed

  13. STRENGTHENING BIOTECHNOLOGY RESEARCH IN INDONESIA

    Directory of Open Access Journals (Sweden)

    S. Sastrapradja

    2012-09-01

    Full Text Available The wave of biotechnology promises has struck not only the developed countries but the developing countries as well. The scientific community in Indonesia is aware of the opportunities and is eager to take an active part in this particular endeavour. Meanwhile resources are required to welcoming the biotech­nology era. The need of trained manpower, appropriate infrastructure and equipment, operational and maintenance costs requires serious consideration if a unit or a laboratory is expected to be functional in biotechnology. There is a good opportunity of applying biotechnology in the field of agriculture and industry considering the availability of biological resources in Indonesia. This paper outlines what have been done so far, the difficulties encountered and the efforts made to strengthening biotechnology research in Indonesia.

  14. An Overview of NASA Biotechnology

    Science.gov (United States)

    Pusey, Marc L.

    1997-01-01

    Biotechnology research at NASA has comprised three separate areas; cell science and tissue culture, separations methods, and macromolecular crystal growth. This presentation will primarily focus on the macromolecular crystal growth.

  15. Biotechnology of riboflavin.

    Science.gov (United States)

    Schwechheimer, Susanne Katharina; Park, Enoch Y; Revuelta, José Luis; Becker, Judith; Wittmann, Christoph

    2016-03-01

    Riboflavin (vitamin B2) production has shifted from chemical synthesis to exclusive biotechnological synthesis in less than 15 years. The underlying extraordinary achievement in metabolic engineering and bioprocess engineering is reviewed in this article with regard to the two most important industrial producers Bacillus subtilis and Ashbya gossypii. The respective biosynthetic routes and modifications are discussed, and also the regulation of riboflavin synthesis. As the terminal biosynthesis of riboflavin starts from the two precursors, ribulose 5-phosphate and guanosine triphosphate (GTP), both strains have been optimized for an improved flux through the pentose phosphate pathway as well as the purine biosynthetic pathway. Specific targets for improvement of A. gossypii were the increase of the glycine pool and the increase of carbon flow through the glyoxylic shunt. In B. subtilis, research interest, amongst others, has focused on gluconeogenesis and overexpression of the rib operon. In addition, insight into large-scale production of vitamin B2 is given, as well as future prospects and possible developments. PMID:26758294

  16. New Directions in Biotechnology

    Science.gov (United States)

    2003-01-01

    The macromolecule crystallization program within NASA is undergoing considerable pressure, particularly budgetary pressure. While it has shown some successes, they have not lived up to the expectations of others, and technological advances may rapidly overtake the natural advantages offered by crystallization in microgravity. Concomitant with the microgravity effort has been a research program to study the macromolecule crystallization process. It was believed that a better understanding of the process would lead to growth of improved crystals for X-ray diffraction studies. The results of the various research efforts have been impressive in improving our understanding of macromolecule crystallization, but have not led to any improved structures. Macromolecule crystallization for structure determination is "one of", the job being unique for every protein and finished once a structure is obtained. However, the knowledge gained is not lost, but instead lays the foundation for developments in new areas of biotechnology and nanotechnology. In this it is highly analogous to studies into small molecule crystallization, the results of which have led to our present day microelectronics-based society. We are conducting preliminary experiments into areas such as designed macromolecule crystals, macromolecule-inorganic hybrid structures, and macromolecule-based nanotechnology. In addition, our protein crystallization studies are now being directed more towards industrial and new approaches to membrane protein crystallization.

  17. Investigating the distribution of dissolved copper, zinc, silver and cadmium in the Pacific Ocean

    Science.gov (United States)

    Janssen, D. J.; Cullen, J. T.

    2012-12-01

    A stated goal of the GEOTRACES program is to better understand the large-scale distribution of trace metals in the marine environment. A characteristic feature of the soft Lewis acid metals like copper (Cu), zinc (Zn), silver (Ag) and cadmium (Cd) is their correlation with the major algal nutrients. These correlations imply that the proximate control on the distribution of these metals is microbial uptake at the ocean surface, sinking associated with particulate organic matter and subsequent remineralization in the ocean interior. Combined with sedimentary records of past metal concentrations such correlations can provide much needed information on water mass circulation and nutrient cycling in the paleo-ocean. Today, as trace nutrients and/or toxins these metals help shape microbial community composition and influence productivity. Here we present depth profiles through the low dissolved oxygen waters of the north Pacific which show decoupling of trace metal-macronutrient relationships driven by depletion anomalies of trace metal concentrations in the broad, low oxygen layer. Similar anomalies have been previously reported in permanently anoxic layers (e.g. fjords) or in waters in contact with suboxic sediments and attributed to sulfidic removal of soft trace metals. The observed trace metal behavior and trace metal-macronutrient relationships in the oxygen minimum layer in the northeastern Pacific is consistent with the possibility of sulfidic scavenging of soft metals and the formation of insoluble metal sulfides in the water column. Implications of this influence on the basin scale distribution of soft metals like Cu, Zn, Ag, Cd through scavenging in the spreading low oxygen layer in the northeastern Pacific are discussed.

  18. California cooperative oceanic fisheries investigations. Reports volume 37, January 1--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Olfe, J. [ed.

    1996-10-01

    Scientists from the California Department of Fish and Game (CDFG), the Southwest Fisheries Science Center of the National Marine Fisheries Service (NMFS), and the Scripps Institution of Oceanography, University of California, San Diego (UCSD), have collaborated for 46 years in the longest-running large-scale study ever undertaken in the ocean. This study was begun in order to understand the causes of changes in population, over time, of commercially important fishes in California`s coastal waters. When the study began, the Pacific sardine was by far the most significant species of economic concern to the State of California. Because its population changes were thought to be caused by a diversity of atmospheric, oceanic, and biological variables, a wide array of measurements in the California Current region were begun and have been continued to this day. This long time series of data allows not only a better understanding of the flux of fish populations, but also lays the foundation for understanding interdecadal and secular change in the seas. This document contains papers from symposium of the 1995 CalCOFI Conference related to interdecadal changes in the ecology of the California current.

  19. Seismic investigations along the western sector of Alpha Ridge, Central Arctic Ocean

    Science.gov (United States)

    Jokat, Wilfried

    2003-01-01

    During the summer of 1998 a two-ship experiment with the Russian nuclear icebreaker Arktika and RV Polarstern probed the central part of Alpha Ridge in the High Arctic. In total 320 km of multichannel seismic data were acquired along three profiles supplemented by four sonobuoys. The sonobuoys provided velocity control for the sedimentary sequences and for the upper crust. The sediment velocities range from 1.6 to 2.7 km s-1 and the sediment thicknesses vary between 500 and 1200 m. The units lie conformably on the basement. Only minor faulting is visible in the area of Lyons Seamount. In general, the sediments can be divided into two units. Their age is quite hypothetical: the upper unit is most probably to be of Cenozoic and the lower of Cretaceous age. The interpretation of the seismic velocities suggests oceanic basement. The basement velocities range from 4.3 to 6.7 km s-1. In combination with a recovered basalt sample there is little doubt of the oceanic origin of Alpha Ridge, at least in its western sector.

  20. Yeast Genetics and Biotechnological Applications

    Science.gov (United States)

    Mishra, Saroj; Baranwal, Richa

    Yeast can be recognized as one of the very important groups of microorganisms on account of its extensive use in the fermentation industry and as a basic eukaryotic model cellular system. The yeast Saccharomyces cerevisiae has been extensively used to elucidate the genetics and regulation of several key functions in the cell such as cell mating, electron transport chain, protein trafficking, cell cycle events and others. Even before the genome sequence of the yeast was out, the structural organization and function of several of its genes was known. With the availability of the origin of replication from the 2 μm plasmid and the development of transformation system, it became the host of choice for expression of a number of important proteins. A large number of episomal and integrative shuttle vectors are available for expression of mammalian proteins. The latest developments in genomics and micro-array technology have allowed investigations of individual gene function by site-specific deletion method. The application of metabolic profiling has also assisted in understanding the cellular network operating in this yeast. This chapter is aimed at reviewing the use of this system as an experimental tool for conducting classical genetics. Various vector systems available, foreign genes expressed and the limitations as a host will be discussed. Finally, the use of various yeast enzymes in biotechnology sector will be reviewed.

  1. Investigating Compositional Links Between Arc Magmas And The Subducted Altered Oceanic Crust

    Science.gov (United States)

    Straub, S. M.

    2015-12-01

    Arc magmatism is causally related to the recycling of materials from the subducting plate. Numerous studies showed that the recycled material flux is dominated by recycled continental crust (oceanic sediment, eroded crust) and altered oceanic igneous crust (AOC). The crustal component is highly enriched, and thus its signal in arc magmas can readily be distinguished from mantle wedge contributions. In contrast, the impact of the AOC flux is much more difficult to detect, since the AOC isotopically resembles the mantle. Mass balance studies of arc input and output suggest that the recycled flux from the thick (6000 meter on average) AOC may buffer the flux of the recycled continental crust to the point of concealment in arc settings where the latter is volumetrically minor. In particular, highly fluid- mobile elements Sr and Pb in arc magmas are strongly influenced by the AOC, implying that the arc chemistry may allow for inferring the Sr and Pb isotopic composition of the subducted AOC. This hypothesis is being tested by a compilation of published data of high-quality trace element and isotope compositions from global arcs. In agreement with previous studies, our results confirm that the Sr-rich fluids released from the AOC control the arc Sr isotopes, whereby the slightly elevated 87Sr/86Sr (up to 0.705) of many arcs may principally reflect the similarly elevated Sr isotope ratios of the AOC rather than a recycled crustal component. In contrast, the arc Pb isotope ratios are influenced by both the AOC and the recycled crustal component which create the typical binary mixing arrays. These arrays should then point to the Pb isotope composition of the AOC and the recycled crust, respectively. However, as the proportions of these end members may strongly vary in arc magmas, the exact 206Pb/204Pb of the subducted AOC in a given setting is challenging. Remarkably, the Pb isotope systematics from well-constrained western Aleutian (minimal sediment subduction) and central

  2. Cosmetics - chemical technology or biotechnology?

    Science.gov (United States)

    Allen, G

    1984-04-01

    Synopsis Over the past 25 years the cosmetic industry has become increasingly technological. The origins of many of these advances were based upon chemical technology usually related to colloid science, although more recent developments have had clear biological improvements. A number of recent innovations are examined to consider how far developments in the future will stem from biotechnology rather than chemical technology. The working of surface active materials (e.g. CTAB) is discussed as an example of cosmetic effects being generated purely from chemical technology. The role of fluoride toothpaste in decreasing the incidence of dental caries is discussed as an effect based essentially on chemical technology in an area where future alternatives might come from biotechnology. Skin research is highlighted as the area where new understanding, e.g. of the role of epidermal growth factor (EGF), fibronectin and laminin, could lead to a whole new biotechnological approach to the appraisal of skin. As we venture into innovations based on biotechnology we may be introducing new dimensions in product safety which will need an even closer relationship with the medical fraternity. Consequently the introduction of products based on biotechnology may not be as rapid as is sometimes suggested.

  3. Investigation of weather anomalies in the low-latitude islands of the Indian Ocean in 1991

    Science.gov (United States)

    Réchou, A.; Kirkwood, S.

    2015-07-01

    Temperature, precipitation and sunshine duration measurements at meteorological stations across the southern Indian Ocean have been analysed to try to differentiate the possible influence of the Mount Pinatubo volcanic eruption in the Philippines in June 1991 and the normal weather forcings. During December 1991, precipitation on the tropical islands Glorieuses (11.6° S) and Mayotte (12.8° S) was 4 and 3 times greater, respectively, than the climatological mean (precipitation is greater by more than than twice the standard deviation (SD)). Mean sunshine duration (expressed in sun hours per day) was only 6 h on Mayotte, although the sunshine duration is usually more than 7.5 ± 0.75 h, and on the Glorieuses it was only 5 h, although it is usually 8.5 ± 1 h. Mean and SD of sunshine duration are based on December (1964-2001 for Mayotte, 1966-1999 for the Glorieuses). The Madden-Julian Oscillation (MJO) is shown to correlate best with precipitation in this area. Variability controlling the warm zone on these two islands can be increased by the Indian Ocean Dipole (IOD), El Niño, the quasi-biennial oscillation (QBO) and/or solar activity (sunspot number, SSN). However, temperature records of these two islands show weak dependence on such forcings (temperatures are close to the climatological mean for December). This suggests that such weather forcings have an indirect effect on the precipitation. December 1991 was associated with unusually low values of the MJO index, which favours high rainfall, as well as with El Niño, eastern QBO and high SSN, which favour high variability. It is therefore not clear whether the Mount Pinatubo volcanic eruption had an effect. Since the precipitation anomalies at the Glorieuses and Mayotte are more or less local (Global Precipitation Climatology Project (GPCP) data) and the effect of the Pinatubo volcanic cloud should be more widespread, it seems unlikely that Pinatubo was the cause. Islands at higher southern latitudes (south of

  4. The role of biotechnology in combating climate change: A question of politics

    DEFF Research Database (Denmark)

    Aerni, Philipp; Gagalac, Florabelle; Scholderer, Joachim

    2016-01-01

    Biotechnology is a platform technology that may significantly contribute to climate change mitigation and adaptation. Yet, biotechnology is hardly ever referred to as “clean technology”. This paper investigates why biotechnology tends to be ignored in this context. A global stakeholder survey on...... biotechnology and climate change was conducted with 55 representatives of 44 institutions. The results of a perception pattern analysis show that the majority of stakeholder representatives had a neutral or positive attitude towards the use of biotechnology and regarded its potential to address climate change...... problems as significant. The survey results further reveal a significant relationship between a representative’s institutional and disciplinary background and his or her attitude. The respective background appears to determine to a considerable extent whether biotechnology is framed as a risk or an...

  5. Biotechnology opportunities on Space Station

    Science.gov (United States)

    Deming, Jess; Henderson, Keith; Phillips, Robert W.; Dickey, Bernistine; Grounds, Phyllis

    1987-01-01

    Biotechnology applications which could be implemented on the Space Station are examined. The advances possible in biotechnology due to the favorable microgravity environment are discussed. The objectives of the Space Station Life Sciences Program are: (1) the study of human diseases, (2) biopolymer processing, and (3) the development of cryoprocessing and cryopreservation methods. The use of the microgravity environment for crystal growth, cell culturing, and the separation of biological materials is considered. The proposed Space Station research could provide benefits to the fields of medicine, pharmaceuticals, genetics, agriculture, and industrial waste management.

  6. Investigating annual diving behaviour by hooded seals (Cystophora cristata within the Northwest Atlantic Ocean.

    Directory of Open Access Journals (Sweden)

    Julie M Andersen

    Full Text Available With the exception of relatively brief periods when they reproduce and moult, hooded seals, Cystophora cristata, spend most of the year in the open ocean where they undergo feeding migrations to either recover or prepare for the next fasting period. Valuable insights into habitat use and diving behaviour during these periods have been obtained by attaching Satellite Relay Data Loggers (SRDLs to 51 Northwest (NW Atlantic hooded seals (33 females and 18 males during ice-bound fasting periods (2004-2008. Using General Additive Models (GAMs we describe habitat use in terms of First Passage Time (FPT and analyse how bathymetry, seasonality and FPT influence the hooded seals' diving behaviour described by maximum dive depth, dive duration and surface duration. Adult NW Atlantic hooded seals exhibit a change in diving activity in areas where they spend >20 h by increasing maximum dive depth, dive duration and surface duration, indicating a restricted search behaviour. We found that male and female hooded seals are spatially segregated and that diving behaviour varies between sexes in relation to habitat properties and seasonality. Migration periods are described by increased dive duration for both sexes with a peak in May, October and January. Males demonstrated an increase in dive depth and dive duration towards May (post-breeding/pre-moult and August-October (post-moult/pre-breeding but did not show any pronounced increase in surface duration. Females dived deepest and had the highest surface duration between December and January (post-moult/pre-breeding. Our results suggest that the smaller females may have a greater need to recover from dives than that of the larger males. Horizontal segregation could have evolved as a result of a resource partitioning strategy to avoid sexual competition or that the energy requirements of males and females are different due to different energy expenditure during fasting periods.

  7. Applied thermodynamics: A new frontier for biotechnology

    DEFF Research Database (Denmark)

    Mollerup, Jørgen

    2006-01-01

    The scientific career of one of the most outstanding scientists in molecular thermodynamics, Professor John M. Prausnitz at Berkeley, reflects the change in the agenda of molecular thermodynamics, from hydrocarbon chemistry to biotechnology. To make thermodynamics a frontier for biotechnology...

  8. Biotechnology Protein Expression and Purification Facility

    Science.gov (United States)

    2003-01-01

    The purpose of the Project Scientist Core Facility is to provide purified proteins, both recombinant and natural, to the Biotechnology Science Team Project Scientists and the NRA-Structural Biology Test Investigators. Having a core facility for this purpose obviates the need for each scientist to develop the necessary expertise and equipment for molecular biology, protein expression, and protein purification. Because of this, they are able to focus their energies as well as their funding on the crystallization and structure determination of their target proteins.

  9. Dive Activities from Cruise Information Management System (CIMS) for Investigating the Charleston Bump 2003 - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Information about dive activities were recorded into the Cruise Information Management System (CIMS) by the NOAA Office of Ocean Exploration's data manager during...

  10. Explorer of Enceladus and Titan (E2T): Investigating the habitability and evolution of ocean worlds in the Saturn system

    Science.gov (United States)

    Mitri, Giuseppe; Postberg, Frank; Soderblom, Jason M.; Tobie, Gabriel; Tortora, Paolo; Wurz, Peter; Barnes, Jason W.; Coustenis, Athena; Ferri, Francesca; Hayes, Alexander; Hayne, Paul O.; Hillier, Jon; Kempf, Sascha; Lebreton, Jean-Pierre; Lorenz, Ralph; Orosei, Roberto; Petropoulos, Anastassios; Yen, Chen-wan; Reh, Kim R.; Schmidt, Jürgen; Sims, Jon; Sotin, Christophe; Srama, Ralf

    2016-10-01

    The NASA-ESA-ASI Cassini-Huygens mission has revealed Titan and Enceladus to be two of the most enigmatic worlds in the Solar System. Titan, with its organically rich and dynamic atmosphere and geology, and Enceladus, with its active plume of water vapor and ice laced with organics, salts, and silica nano-particles, both harbouring subsurface oceans, are prime environments in which to investigate the conditions for the emergence of life and the habitability potential of ocean worlds as well as the origin and evolution of unique complex planetary systems. Explorer of Enceladus and Titan (E2T) is a space mission concept dedicated to investigating the evolution and habitability of these Saturnian satellites and is proposed as a medium-class mission led by ESA in collaboration with NASA in response to ESA's M5 Cosmic Vision Call. E2T has a focused state-of-the-art adapted payload that will provide in-situ sampling, high-resolution imaging and radio science measurements from multiple flybys of Enceladus and Titan using a solar-electric powered spacecraft in orbit around Saturn. With significant improvements in mass range and resolution, as compared with Cassini, the Ion and Neutral Gas Mass Spectrometer (INMS) and the Enceladus Icy Jet Analyzer (ENIJA) time of flight mass spectrometers will provide the data needed to decipher the subtle details of the aqueous environment of Enceladus from plume sampling and of the complex pre-biotic chemistry occurring in Titan's atmosphere. The Titan Imaging and Geology, Enceladus Reconnaissance (TIGER) mid-wave infrared camera will map thermal emission from Enceladus' tiger stripes at meter scales and investigate Titan's geology and compositional variability at decameter scales. The Radio Science Experiment (RSE) measurements will provide constraints on the ice shell structure and the properties of the internal oceans of Enceladus and Titan. We will present the concept and discuss the major improvements to our understanding of these

  11. Biotechnology Facility (BTF) for ISS

    Science.gov (United States)

    1998-01-01

    Engineering mockup shows the general arrangement of the plarned Biotechnology Facility inside an EXPRESS rack aboard the International Space Station. This layout includes a gas supply module (bottom left), control computer and laptop interface (bottom right), two rotating wall vessels (top right), and support systems.

  12. Infusing Authentic Inquiry into Biotechnology

    Science.gov (United States)

    Hanegan, Nikki L.; Bigler, Amber

    2009-01-01

    Societal benefit depends on the general public's understandings of biotechnology (Betsch in "World J Microbiol Biotechnol" 12:439-443, 1996; Dawson and Cowan in "Int J Sci Educ" 25(1):57-69, 2003; Schiller in "Business Review: Federal Reserve Bank of Philadelphia" (Fourth Quarter), 2002; Smith and Emmeluth in "Am Biol Teach" 64(2):93-99, 2002). A…

  13. Biotechnology in defence (Review Paper

    Directory of Open Access Journals (Sweden)

    T. Lazar Mathew

    2001-10-01

    Full Text Available Biotechnology, in its present perspective, encompasses activities, such as recombination of genes; cloning, or making genetically identical copies of a living thing; and splicing of genes from DNA of one organism into the genome of unrelated species, to create new, self-reproducing forms of life. The vast potential of biotechnology is being increasingly realised, and efforts are in progress to harness it for improving quality and quantity of bio-weapons, The bio-weapons, as such, are highly attractive because of their non-detection by routine security systems, ease of access, low production cost and easy transportation, A wide range of genetically manipulated organisms and their by-products are considered to have an added advantage, because these genetically manipulated biologics not only accentuate the existing properties of bio-weapons, but also could be made target-specific. Biotechnology, if used prudently, can play a significant role to counter such threats of biologics, viz., by producing (i bio-armoury comprising powerful antibiotics, antisera toxoids and vaccines to neutralise and eliminate a wide range of diseases, and (ii bio-sensors for rapid detection, identification and neutralisation of biological warfare agents. This article elucidates some facets of biological warfare, legal protective strategies emphasised through international consultation, cooperation and adherence to the Biological and Toxin Weapons Convention, and discusses how biotechnology could be effectively used to strengthen countries' defence and combat the threat of biological warfare.

  14. Biotechnology Gains Brighten Resource Outlook.

    Science.gov (United States)

    O'Sullivan, Dermot A.

    1979-01-01

    This report details recent advances in fermentation biotechnology as presented by speakers at the 27th International Union of Pure and Applied Chemistry (IUPAC) Congress. Discussion centered around the use of bacteria, yeasts, and fungi as future sources of essential materials as food, fuel, and medicine. (BT)

  15. The Future of Plant Biotechnology

    Science.gov (United States)

    Plant biotechnology has been wildly successful and has literally transformed plant agriculture. There are still undulating concerns about safety and sustainability that critics demand to be addressed. In that light, there are some biotechnoloogies that are being developed that might not only improve...

  16. Investigations during fiscal 1995 on capability of oceans to absorb and fix carbon dioxide; 1995 nendo kaiyo no nisanka tanso kyushu kotei noryoku no chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Investigations were given on capability of oceans to absorb and fix carbon dioxide as part of measures to prevent global warming. Carbon dioxide absorption and fixation in oceans relate to biological and chemical processes, whereas parameter dependence of each process was investigated. In relation to dissolution and dissociation of carbon dioxide into oceans, the parameter that governs exchange of carbon dioxide between atmosphere and ocean is partial pressure of carbon dioxide in surface sea water. This partial pressure is largely affected by water temperature, total carbonic acid and alkalinity. Particle-shaped organic carbon (detritus) is formed mainly by withering of photoplanktons. Formation of calcium carbonate due to activities of living organisms increases the carbon dioxide partial pressure. Fluxes of detritus are predominant among the whole precipitation flux in carbon circulation, which are more than two times the precipitation flux of photoplanktons. Particles are turned into inorganics by bacteria during the precipitation process. 29 refs., 21 figs., 6 tabs.

  17. Biotechnology: Challenge for the food industry

    Directory of Open Access Journals (Sweden)

    Popov Stevan

    2007-01-01

    Full Text Available According to the broadest definition, biotechnology is the use of living matter (plants, animals and microorganisms in industry, environment protection, medicine and agriculture. Biotechnology takes a key position in the field of food processing during thousands of years. Last about fifty years brought dynamical development of knowledges in the natural sciences especially in domain of genetics and manipulation of genes. Biotechnology for which active role in the on-coming times could be foreseen, not only with respect of R&D, but also in general technological development represents scope of priority in the USA and in European Union (EU as well. It is accepted that the results achieved in biotechnology oversize scientific domain and find their entrance into economics, legislation, quality of life and even of politics. Corresponding with the definition of biotechnology as "the integration of natural sciences and engineering in the application of microorganisms, cells, their components and molecular analogues in production (General assembly of the European federation for Biotechnology, 1989 European Commission (1999 adopted the biotechnological taxonomy, i.e. fields and sub-fields of biotechnology. R&D activities in this domain are oriented to eight fields and branched through them. Fields of biotechnology (EC, 1999 are: 1 Plant biotechnology (agricultural cultivars, trees, bushes etc; 2 Animal biotechnology; 3 Biotechnology in environment protection; 4 Industrial biotechnology (food, feed, paper, textile, pharmaceutical and chemical productions; 5 Industrial biotechnology (production of cells and research of cells - producers of food and of other commodities; 6 Development of humane and veterinarian diagnostics (therapeutical systems 7 Development of the basic biotechnology, and 8 Nontechnical domains of biotechnology. In concordance with some judgments, in the World exist about 4000 biotechnological companies. World market of biotechnological

  18. Laboratory Investigations in Support of Carbon Dioxide-Limestone Sequestration in the Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Dan Golomb; Eugene Barry; David Ryan; Carl Lawton; Stephen Pennell; Peter Swett; Huishan Duan; Michael Woods

    2005-11-01

    This semi-annual progress reports includes further findings on CO{sub 2}-in-Water (C/W) emulsions stabilized by fine particles. In previous semi-annual reports we described the formation of stable C/W emulsions using pulverized limestone (CaCO{sub 3}), flyash, beach sand, shale and lizardite, a rock rich in magnesium silicate. For the creation of these emulsions we used a High-Pressure Batch Reactor (HPBR) equipped with view windows for illumination and video camera recording. For deep ocean sequestration, a C/W emulsion using pulverized limestone may be the most suitable. (a) Limestone (mainly CaCO{sub 3}) is cheap and plentiful; (b) limestone is innocuous for marine organisms (in fact, it is the natural ingredient of shells and corals); (c) it buffers the carbonic acid that forms when CO{sub 2} dissolves in water. For large-scale sequestration of a CO{sub 2}/H{sub 2}O/CaCO{sub 3} emulsion a device is needed that mixes the ingredients, liquid carbon dioxide, seawater, and a slurry of pulverized limestone in seawater continuously, rather than incrementally as in a batch reactor. A practical mixing device is a Kenics-type static mixer. The static mixer has no moving parts, and the shear force for mixing is provided by the hydrostatic pressure of liquid CO{sub 2} and CaCO{sub 3} slurry in the delivery pipes from the shore to the disposal depth. This semi-annual progress report is dedicated to the description of the static mixer and the results that have been obtained using a bench-scale static mixer for the continuous formation of a CO{sub 2}/H{sub 2}O/CaCO{sub 3} emulsion. The static mixer has an ID of 0.63 cm, length 23.5 cm, number of baffles 27. Under pressure, a slurry of CaCO{sub 3} in artificial seawater (3.5% by weight NaCl) and liquid CO{sub 2} are co-injected into the mixer. From the mixer, the resulting emulsion flows into a Jerguson cell with two oblong windows on opposite sides, then it is vented. A fully ported ball valve inserted after the Jerguson

  19. Investigating tectonic and bathymetric features of the Indian Ocean using MAGSAT magnetic anomaly data

    Science.gov (United States)

    Sailor, R. V.; Lazarewicz, A. R. (Principal Investigator)

    1982-01-01

    An equivalent source anomaly map and a map of the relative magnetization for the investigation region were produced. Gravimetry, bathymetry, and MAGSAT anomaly maps were contoured in pseudocolor displays. Finally, an autoregressive spectrum estimation technique was verified with synthetic data and shown to be capable of resolving exponential power spectra using small samples of data. Interpretations were made regarding the relationship between MAGSAT data spectra and crustal anomaly spectra.

  20. running ocean

    Directory of Open Access Journals (Sweden)

    Lokenath Debnath

    1978-01-01

    Full Text Available A theory is presented of the generation and propagation of the two and the three dimensional tsunamis in a shallow running ocean due to the action of an arbitrary ocean floor or ocean surface disturbance. Integral solutions for both two and three dimensional problems are obtained by using the generalized Fourier and Laplace transforms. An asymptotic analysis is carried out for the investigation of the principal features of the free surface elevation. It is found that the propagation of the tsunamis depends on the relative magnitude of the given speed of the running ocean and the wave speed of the shallow ocean. When the speed of the running ocean is less than the speed of the shallow ocean wave, both the two and the three dimensional free surface elevation represent the generation and propagation of surface waves which decay asymptotically as t−12 for the two dimensional case and as t−1 for the three dimensional tsunamis. Several important features of the solution are discussed in some detail. As an application of the general theory, some physically realistic ocean floor disturbances are included in this paper.

  1. Current state of biotechnology in Turkey.

    Science.gov (United States)

    Dundar, Munis; Akbarova, Yagut

    2011-09-01

    Biotechnology is an interdisciplinary branch of science that encompasses a wide range of subjects like genetics, virology, microbiology, immunology, engineering to develop vaccines, and so on and plays a vital role in health systems, crop and seed management, yield improvement, agriculture, soil management, ecology, animal farming, cellular process, bio statistics, and so on. This article is about activities in medical and pharmaceutical biotechnology, environmental biotechnology, agricultural biotechnology and nanobiotechnology carried out in Turkey. Turkey has made some progress in biotechnology projects for research and development.

  2. A numerical investigation of the atmosphere-ocean thermal contrast over the coastal upwelling region of Cabo Frio, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Dourado, M. [Departamento de Meteorologia, Universidade Federal de Pelotas, Pelotas RS (Brazil)]. E-mail: marcelo_dourado@ufpel.edu.br; Pereira de Oliveira, A. [Departamento de Ciencias Atmosfericas, Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, (Brazil)

    2008-01-15

    An one-dimensional atmospheric second order closure model, coupled to an oceanic mixed layer model, is used to investigate the short term variation of the atmospheric and oceanic boundary layers in the coastal upwelling area of Cabo Frio, Brazil (23 degrees Celsius S, 42 degrees Celsius 08' W). The numerical simulations were carried out to evaluate the impact caused by the thermal contrast between atmosphere and ocean on the vertical extent and other properties of both atmospheric and oceanic boundary layers. The numerical simulations were designed taking as reference the observations carried out during the passage of a cold front that disrupted the upwelling regime in Cabo Frio in July of 1992. The simulations indicated that in 10 hours the mechanical mixing, sustained by a constant background flow of 10 m s-1, increases the atmospheric boundary layer in 214 m when the atmosphere is initially 2 K warmer than the ocean (positive thermal contrast observed during upwelling regime). For an atmosphere initially -2 K colder than the ocean (negative thermal contrast observed during passage of the cold front), the incipient thermal convection intensifies the mechanical mixing increasing the vertical extent of the atmospheric boundary layer in 360 m. The vertical evolution of the atmospheric boundary layer is consistent with the observations carried out in Cabo Frio during upwelling condition. When the upwelling is disrupted, the discrepancy between the simulated and observed atmospheric boundary layer heights in Cabo Frio during July of 1992 increases considerably. During the period of 10 hours, the simulated oceanic mixed layer deepens 2 m and 5.4 m for positive and negative thermal contrasts of 2 K and -2 K, respectively. In the latter case, the larger vertical extent of the oceanic mixed layer is due to the presence of thermal convection in the atmospheric boundary layer, which in turn is associated to the absence of upwelling caused by the passage of cold fronts

  3. The rise (and decline?) of biotechnology.

    Science.gov (United States)

    Kinch, Michael S

    2014-11-01

    Since the 1970s, biotechnology has been a key innovator in drug development. An analysis of FDA-approved therapeutics demonstrates pharmaceutical companies outpace biotechs in terms of new approvals but biotechnology companies are now responsible for earlier-stage activities (patents, INDs or clinical development). The number of biotechnology organizations that contributed to an FDA approval began declining in the 2000s and is at a level not seen since the 1980s. Whereas early biotechnology companies had a decade from first approval until acquisition, the average acquisition of a biotechnology company now occurs months before their first FDA approval. The number of hybrid organizations that arise when pharmaceutical companies acquire biotechnology is likewise declining, raising questions about the sustainability of biotechnology.

  4. An Experimental Investigation of Passive Variable-Pitch Vertical-Axis Ocean Current Turbine

    Directory of Open Access Journals (Sweden)

    Ridho Hantoro

    2011-04-01

    Full Text Available Vertical-axis hydrokinetic turbines with fixed pitch blades typically suffer from poor starting torque, low efficiency and shaking due to large fluctuations in both radial and tangential force with azimuth angle. Maximizing the turbine power output can be achieved only if the mechanism of generation of the hydrodynamic force on the blades is clearly identified and tools to design high-performance rotors are developed. This paper describes an initial experimental investigation to understand more of the performance on vertical-axis turbine related to the effect of fixed-pitch and passive variable-pitch application using airfoil NACA 0018. Comparative analysis according to aspects of rotation and tip speed ratios was discussed. Information regarding the changes of foil position in passive variable-pitch during rotation at a limited range of flow velocity variations test was obtained and analyzed.

  5. Active pCO2-Control of Seawater Culture Systems for Laboratory-Based Biogeochemical Experimentation Investigating Global Ocean Acidification

    Science.gov (United States)

    Hintz, C. J.; Chandler, G. T.; Shaw, T. J.; McCorkle, D. C.

    2007-12-01

    The large-scale effects of anthropogenic CO2 rise and global ocean acidification on calcifying and photosynthetic organisms are not well understood. This ongoing uncertainty fundamentally limits our ability to fully understand global carbon cycling. Field-based studies are limited to the current environmental chemistries observed throughout the world's oceans - a prohibitively resource-intensive platform for manipulative experimentation. Moreover, complex carbonate system equilibria decoupled from the atmosphere are difficult to poise and maintain in laboratory seawater-based experiments lasting longer than a few hours or days. This severely limits the scope of biogeochemical experimentation for simulating past or future ocean chemistries. To address these experimental shortcomings we developed a novel system for the stringent control of pCO2 in culture aeration and seawater. A custom CO2 scrubbing system was designed which removes > 99.8% of atmospheric CO2 at 3-4 L min-1 aeration rate. High precision mass flow controllers integrated with a modular programmable process controller precisely mix high-purity (99.95%) compressed CO2 with the preconditioned CO2-free air stream for aeration into the culture system. Long-term maintenance of experimental CO2 is within ± 2 μatm when operating between 150- 2000 μatm pCO2. The system, in its current configuration, has the ability to simultaneously manipulate and maintain 3 separate carbonate chemistries using aeration pCO2 and seawater alkalinity in independent 400-L seawater reservoirs. Future system expansion can easily maintain 5 or more separate chemistries. The goal of this research is to develop stringent control of seawater carbonate system chemistries for the deep- sea benthic foraminifera cultures housed at the University of South Carolina Arnold School of Public Health. Current experiments are investigating trace metal foraminiferal paleoproxy signatures that appear correlated with [CO32-] very near calcite

  6. Investigating behaviour and population dynamics of striped marlin (Kajikia audax from the southwest Pacific Ocean with satellite tags.

    Directory of Open Access Journals (Sweden)

    Tim Sippel

    Full Text Available Behaviour and distribution of striped marlin within the southwest Pacific Ocean were investigated using electronic tagging data collected from 2005-2008. A continuous-time correlated random-walk Kalman filter was used to integrate double-tagging data exhibiting variable error structures into movement trajectories composed of regular time-steps. This state-space trajectory integration approach improved longitude and latitude error distributions by 38.5 km and 22.2 km respectively. Using these trajectories as inputs, a behavioural classification model was developed to infer when, and where, 'transiting' and 'area-restricted' (ARB pseudo-behavioural states occurred. ARB tended to occur at shallower depths (108 ± 49 m than did transiting behaviours (127 ± 57 m. A 16 day post-release period of diminished ARB activity suggests that patterns of behaviour were affected by the capture and/or tagging events, implying that tagged animals may exhibit atypical behaviour upon release. The striped marlin in this study dove deeper and spent greater time at ≥ 200 m depth than those in the central and eastern Pacific Ocean. As marlin reached tropical latitudes (20-21 °S they consistently reversed directions, increased swimming speed and shifted to transiting behaviour. Reversals in the tropics also coincided with increases in swimming depth, including increased time ≥ 250 m. Our research provides enhanced understanding of the behavioural ecology of striped marlin. This has implications for the effectiveness of spatially explicit population models and we demonstrate the need to consider geographic variation when standardizing CPUE by depth, and provide data to inform natural and recreational fishing mortality parameters.

  7. Students' knowledge of, and attitudes towards biotechnology revisited, 1995-2014: Changes in agriculture biotechnology but not in medical biotechnology.

    Science.gov (United States)

    Chen, Shao-Yen; Chu, Yih-Ru; Lin, Chen-Yung; Chiang, Tzen-Yuh

    2016-09-10

    Modern biotechnology is one of the most important scientific and technological revolutions in the 21st century, with an increasing and measurable impact on society. Development of biotechnology curriculum has become important to high school bioscience classrooms. This study has monitored high school students in Taiwan on their knowledge of and attitudes towards biotechnology for nearly two decades. Not surprisingly, knowledge of biotechnology of current students has increased significantly (p biotechnology. There was a positive correlation between biotechnology knowledge and attitudes toward biotechnology for current students who study Advanced Biology (AB). However, for current students who did not study AB, there was a negative correlation.The attitude results showed that students today expressed less favorable opinions toward agricultural biotechnology (p medical biotechnology. In addition, current students showed a greater concern involving environmental risks than former students. Interestingly, the high school curriculum did affect students' attitudes toward genetically engineered (GE) plants but not GE animals. Our current study also found that the students' attitude towards GE animals was influenced more by their limited knowledge than by their moral belief. On the basis of findings from this study, we suggest that more materials of emerging animal biotechnology should be included in high school curriculum and recommend that high school teachers and university faculty establish a collaborative framework in the near future. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):475-491, 2016.

  8. Epistemic Beliefs and Conceptual Understanding in Biotechnology: A Case Study

    Science.gov (United States)

    Rebello, Carina M.; Siegel, Marcelle A.; Witzig, Stephen B.; Freyermuth, Sharyn K.; McClure, Bruce A.

    2012-01-01

    The purpose of this investigation was to explore students' epistemic beliefs and conceptual understanding of biotechnology. Epistemic beliefs can influence reasoning, how individuals evaluate information, and informed decision making abilities. These skills are important for an informed citizenry that will participate in debates regarding areas in…

  9. Biodiesel production by microalgal biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Huang, GuanHua [School of Chemical Engineering and Technology, China University of Mining and Technology (China); Chen, Feng [School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong (China); College of Light Industry and Food Sciences, South China University of Technology, Guangzhou (China); Wei, Dong; Zhang, XueWu; Chen, Gu [College of Light Industry and Food Sciences, South China University of Technology, Guangzhou (China)

    2010-01-15

    Biodiesel has received much attention in recent years. Although numerous reports are available on the production of biodiesel from vegetable oils of terraneous oil-plants, such as soybean, sunflower and palm oils, the production of biodiesel from microalgae is a newly emerging field. Microalgal biotechnology appears to possess high potential for biodiesel production because a significant increase in lipid content of microalgae is now possible through heterotrophic cultivation and genetic engineering approaches. This paper provides an overview of the technologies in the production of biodiesel from microalgae, including the various modes of cultivation for the production of oil-rich microalgal biomass, as well as the subsequent downstream processing for biodiesel production. The advances and prospects of using microalgal biotechnology for biodiesel production are discussed. (author)

  10. IMPORTANCE OF IPR IN BIOTECHNOLOGY

    OpenAIRE

    Rashmi Mishra*

    2016-01-01

    The objective of this review is to highlight and explore the inter-relationship and the functioning of the intellectual property right in the pharmaceutical and biotechnology industry. The rising tide of patent applications can be witnessed globally in this industry as the need for such protection and licensing has become imperative so as to safeguard the rights of the inventor and also to encourage and promote new talents, inventions and innovations which can be a boon for the economy. The f...

  11. Interface of nuclear and biotechnologies

    International Nuclear Information System (INIS)

    Addressing nuclear and biotechnologies in the International Year of Physics should begin by highlighting the important role that this science has played in the development of both branches of science and technologies. The first as a direct consequence of the Theory of Relativity, the further was considerably influenced by Schroedinger's remarks that there must be a code of some kind that allowed molecules in cells to carry information, making a connection between genes and proteins. Both, like any highly technical endeavor, have also in common that the use of technologies demands a vast accumulation of knowledge, i.e. volumes of scientific research, engineering analysis, strict regulatory controls and a huge amount of information combined with a complex assortment of people with the required educational background, expertise and skills to master it. This presentation briefly explores the ways in which nuclear technology has been used in the last decades of the 20th century in the field of biomedicine applications, which includes the use of radiation to obtain accurate images as well as in diagnosis and therapy. The paper looks at the present prospects of some nuclear methods and instrumentation in the so-called Red biotechnology and its genetically engineered therapeutic agents and diagnostic tests as well as some related perspectives in the field of bioinformatics. As an example of biotechnology being successfully applied to health problems in developing countries the presentation gives an outlook of relevant Cuban achievements in this field. (author)

  12. Insect Cell Culture and Biotechnology

    Institute of Scientific and Technical Information of China (English)

    Robert R.Granados; Guoxun Li; G.W.Blissard

    2007-01-01

    The continued development of new cell culture technology is essential for the future growth and application of insect cell and baculovirus biotechnology. The use of cell lines for academic research and for commercial applications is currently dominated by two cell lines; the Spodoptera frugiperda line, SF21 (and its clonal isolate, SF9), and the Trichoplusia ni line, BTI 5B1-4, commercially known as High Five cells. The long perceived prediction that the immense potential application of the baculovirus-insect cell system, as a tool in cell and molecular biology, agriculture, and animal health, has been achieved. The versatility and recent applications of this popular expression system has been demonstrated by both academia and industry and it is clear that this cell-based system has been widely accepted for biotechnological applications. Numerous small to midsize startup biotechnology companies in North America and the Europe are currently using the baculovirus-insect cell technology to produce custom recombinant proteins for research and commercial applications. The recent breakthroughs using the baculovirus-insect cell-based system for the development of several commercial products that will impact animal and human health will further enhance interest in this technology by pharma. Clearly, future progress in novel cell and engineering advances will lead to fundamental scientific discoveries and serve to enhance the utility and applications of this baculovirus-insect cell system.

  13. Ocean Acidification: Investigation and Presentation of the Effects of Elevated Carbon Dioxide Levels on Seawater Chemistry and Calcareous Organisms

    Science.gov (United States)

    Buth, Jeffrey M.

    2016-01-01

    Ocean acidification refers to the process by which seawater absorbs carbon dioxide from the atmosphere, producing aqueous carbonic acid. Acidic conditions increase the solubility of calcium carbonate, threatening corals and other calcareous organisms that depend on it for protective structures. The global nature of ocean acidification and the…

  14. The ocean sampling day consortium

    DEFF Research Database (Denmark)

    Kopf, Anna; Bicak, Mesude; Kottmann, Renzo;

    2015-01-01

    Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate...... the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our...

  15. Les Biotechnologies Marines dans le Grand Ouest

    OpenAIRE

    Boyen, Catherine; Jaouen, Pascal; Blanchard, Gilbert; Compere, Chantal; Dufour, Alain; Durand, Patrick; Guerard, Fabienne; Hallouin, Florence; Jebbar, Mohamed; Le Blay, Gwenaelle; Le Deit, Hervé; Le Seyec, Jocelyne; Monks, Brian; Portal-sellin, Rachel; Probert, Ian

    2015-01-01

    Marine (= blue) biotechnology, i.e. the utilization of marine bio-resources as a target or source of biotechnological applications, is a field with massive potential for innovation and economic growth. In a context of rapid climate change and increasing pressure on natural resources, renewed interest in marine biotechnology has been promoted by application of recent methodological and technological advances, notably in bioprocessing and in the various –omics domains, to the study of marine bi...

  16. Innovation Challenges in Malaysia SME Biotechnology

    OpenAIRE

    Lai, Tuck Keong

    2013-01-01

    The study was to find out the supporting elements that lead to innovation in Malaysia SME biotechnology firms. The context of this study was to understand the collaboration process that lead to better innovation for their product and service development. The results is to assist potential new start-up to navigate Malaysia biotechnology landscape as a lessons learned and what it takes to be successful in biotechnology investment. There are four settings that author was trying to uncover like c...

  17. Medical Biotechnology: Problems and Prospects in Bangladesh

    OpenAIRE

    Shaikh Mizan

    2013-01-01

    Biotechnology is the knowledge and techniques of developing and using biological systems for deriving special products and services. The age-old technology took a new turn with the advent of recombinant DNA techniques, and boosted by the development of other molecular biological techniques, cell culture techniques and bioinformatics. Medical biotechnology is the major thrust area of biotechnology. It has brought revolutions in medicine – quick methods for diagnosing diseases, generation of ne...

  18. Biotechnology in India : Current scene (Review Paper)

    OpenAIRE

    A. Nagaratnam

    2001-01-01

    Realising the immense potential of biotechnology in the fields of agricultural production and health care, especially in developing countries, India has been devoting special attention over the past two decades to biotechnology and its applications. Necessary infrastructure has been built-up, the human resources and technical expertise built-up, and fruitful interactions between academic institutions and industries supported. The Department of Biotechnology, Govt of India has been play...

  19. Investigating the Impact of Past and Future CO2 Emissions on the Distribution of Radiocarbon in the Ocean

    Science.gov (United States)

    Khatiwala, S.; Payne, S.; Graven, H. D.; Heimbach, P.

    2015-12-01

    The ocean is a significant sink for carbon dioxide from fossil fuel burning, absorbing roughly a third of human CO2 emitted over the industrial period. This has implications not only for climate but also for the chemical and isotopic composition of the ocean. Human activities have increased the ocean radiocarbon content through nuclear bomb tests in the 1950s-60s, which released a large amount of radiocarbon (14C) into the atmosphere, but fossil fuel emissions are decreasing the radiocarbon content through the release of 14C-depleted CO2. Here, we use the ECCO-v4 ocean state estimate to examine the changing nature of the air-sea flux of radiocarbon and its spatial distribution in the ocean in response to past and future CO2 emissions, the latter taken from the the Representative Concentration Pathway (RCP) database used in IPCC simulations. In line with previous studies we find that the large air-sea gradient of 14C induced by nuclear bomb testing led to rapid accumulation of radiocarbon in the surface ocean. Surface fluxes of 14C have considerably weakened over the past several decades and in some areas 14C is being returned to the atmosphere. As fossil fuel emissions continue to reduce the atmospheric 14C/C ratio (∆14C), in most RCP scenarios the total ocean 14C inventory starts decreasing by 2030. With strong emissions, the Δ14C of surface waters is driven to increasingly negative values and in RCP 8.5 by 2100 much of the surface ocean has apparent radiocarbon ages in excess of 2000 years, with subtropical gyres more depleted in 14C than the Southern Ocean. Surface waters become significantly more negative in Δ14C than underlying waters. As a result, turning conventional tracer oceanography on its head, recently ventilated waters are characterized by more negative Δ14C values. Similar patterns can be expected for CFCs in the ocean as atmospheric concentrations decrease over the next several decades. Our results have a number of implications, notably for

  20. Investigation the Behavior of Modis Ocean Color Products Under the 2008 Red Tide in the Eastern Persian Gulf

    Science.gov (United States)

    Ghanea, M.; Moradi, M.; Kabiri, K.

    2015-12-01

    Biophysical properties of water undergo serious variations under red tide (RT) outbreak. During RT conditions, algal blooms spread out in the estuarine, marine and fresh waters due to different triggering factors such as nutrient loading, marine currents, and monsoonal winds. The Persian Gulf (PG) was a talent region subjected to different RTs in recent decade. A massive RT started from the Strait of Hormuz in October 2008 and extended towards the northern parts of the PG covering more than 1200 km of coastlines. The bloom of microorganism C. Polykrikoides was the main specie that generated large fish mortalities, and hampered marine industries, and water desalination appliances. Ocean color satellite data have many advantages to monitor and alarm RT occurrences, such as wide and continuous extent, short time of imagery, high accessibility, and appropriate estimation of ocean color parameters. Since 1999, MODerate Resolution Imaging Spectroradiometer (MODIS) satellite sensor has estimated satellite derived chlorophyll-a (Chl-a), normalized fluorescence line height (nFLH), and diffuse attenuation coefficient at 490nm (kd490). It provides a capability to study the behavior of these parameters during RT and normal conditions. This study monitors variations in satellite derived Chl-a, nFLH, and kd490 under both RT and normal conditions of the PG between 2002 and 2008. Up to now, daily and monthly variations in these products were no synchronously investigated under RT conditions in the PG. In doing so, the MODIS L1B products were provided from NASA data archive. They were corrected for Rayleigh scattering and gaseous absorption, and atmospheric interference in turbid coastal waters, and then converted to level 2 data. In addition, Enhanced Red Green Blue (ERGB) image was used to illustrate better water variations. ERGB image was built with three normalized leaving water radiance between 443 to 560nm. All the above data processes were applied by SeaDAS 7 software

  1. INVESTIGATION THE BEHAVIOR OF MODIS OCEAN COLOR PRODUCTS UNDER THE 2008 RED TIDE IN THE EASTERN PERSIAN GULF

    Directory of Open Access Journals (Sweden)

    M. Ghanea

    2015-12-01

    Full Text Available Biophysical properties of water undergo serious variations under red tide (RT outbreak. During RT conditions, algal blooms spread out in the estuarine, marine and fresh waters due to different triggering factors such as nutrient loading, marine currents, and monsoonal winds. The Persian Gulf (PG was a talent region subjected to different RTs in recent decade. A massive RT started from the Strait of Hormuz in October 2008 and extended towards the northern parts of the PG covering more than 1200 km of coastlines. The bloom of microorganism C. Polykrikoides was the main specie that generated large fish mortalities, and hampered marine industries, and water desalination appliances. Ocean color satellite data have many advantages to monitor and alarm RT occurrences, such as wide and continuous extent, short time of imagery, high accessibility, and appropriate estimation of ocean color parameters. Since 1999, MODerate Resolution Imaging Spectroradiometer (MODIS satellite sensor has estimated satellite derived chlorophyll-a (Chl-a, normalized fluorescence line height (nFLH, and diffuse attenuation coefficient at 490nm (kd490. It provides a capability to study the behavior of these parameters during RT and normal conditions. This study monitors variations in satellite derived Chl-a, nFLH, and kd490 under both RT and normal conditions of the PG between 2002 and 2008. Up to now, daily and monthly variations in these products were no synchronously investigated under RT conditions in the PG. In doing so, the MODIS L1B products were provided from NASA data archive. They were corrected for Rayleigh scattering and gaseous absorption, and atmospheric interference in turbid coastal waters, and then converted to level 2 data. In addition, Enhanced Red Green Blue (ERGB image was used to illustrate better water variations. ERGB image was built with three normalized leaving water radiance between 443 to 560nm. All the above data processes were applied by SeaDAS 7

  2. Undergraduate Biotechnology Students' Views of Science Communication

    Science.gov (United States)

    Edmondston, Joanne Elisabeth; Dawson, Vaille; Schibeci, Renato

    2010-12-01

    Despite rapid growth of the biotechnology industry worldwide, a number of public concerns about the application of biotechnology and its regulation remain. In response to these concerns, greater emphasis has been placed on promoting biotechnologists' public engagement. As tertiary science degree programmes form the foundation of the biotechnology sector by providing a pipeline of university graduates entering into the profession, it has been proposed that formal science communication training be introduced at this early stage of career development. The aim of the present study was to examine the views of biotechnology students towards science communication and science communication training. Using an Australian biotechnology degree programme as a case study, 69 undergraduates from all three years of the programme were administered a questionnaire that asked them to rank the importance of 12 components of a biotechnology curriculum, including two science communication items. The results were compared to the responses of 274 students enrolled in other science programmes. Additional questions were provided to the second year biotechnology undergraduates and semi-structured interviews were undertaken with 13 of these students to further examine their views of this area. The results of this study suggest that the biotechnology students surveyed do not value communication with non-scientists nor science communication training. The implications of these findings for the reform of undergraduate biotechnology courses yet to integrate science communication training into their science curriculum are discussed.

  3. Biotechnology: employing organism as bioreactors

    Directory of Open Access Journals (Sweden)

    Maryam Baniasad

    2015-06-01

    Full Text Available Biological products, especially proteins, have numerous applications including prevention, diagnosis, and treating diseases. Advances in biotechnology in recent years have opened up many ways to manufacture these products in large scales. To engineer biopharmaceuticals, often pro and/or eukaryotic sustainable resources are used. Selection of the cellular factory depends on the type and application of protein needed. In this review, we explore current resources used to produce biologics, examine these resources critically for their biological output, and finally highlight impact of using sustainable resources in modern medicine.

  4. Certain problems of space biotechnology

    Science.gov (United States)

    Gilyarov, V. N.

    1980-01-01

    Experiments in the field of biotechnology conducted by the USA Apollo and Skylab space probes are described, as well as the joint Soviet-American Apollo-Soyuz Test Project (ASTP). Experiments in electrophoretic separation in space of biological compounds in a liquid medium are detailed. Space processing of vaccines and separation of human and animal cells are described. Methyl-cellulose, a coating for use in electrophoresis was developed. Erythropoietin, which stimulates the formation of red blood corpuscles in bone marrow, was obtained in pure form.

  5. A numerical investigation into the long-term behaviors of Fukushima-derived137Cs in the ocean

    Institute of Scientific and Technical Information of China (English)

    ZHAO Chang; WANG Gang; QIAO Fangli; WANG Guansuo; JUNG Kyung-Tae; XIA Changshui

    2015-01-01

    The Fukushima nuclear accident in 2011 released large amounts of radionuclides, including137Cs, into the Pacific Ocean. A quasi-global ocean radioactive transport model with horizontal grid spacing of 0.5°×0.5° and 21 vertical layers was thereafter established to study the long-term transport of the Fukushima-derived137Cs in the ocean. The simulation shows that the plume of137Cs would be rapidly transported eastward alongside the Kuroshio Current and its extensions. Contaminated waters with concentrations lower than 2 Bq/m3 would reach the west coast of North America 4 or 5 years after the accident. The137Cs tends to be carried, despite its very low concentration, into the Indian and South Pacific Oceans by 2016 via various branches of ocean currents. Meanwhile, the137Cs concentrations in the western part of the North Pacific Ocean decrease rapidly with time. Up to now the highly contaminated waters have remained in the upper 400 m, showing no evidence of significant penetration to deeper layers.

  6. Students' Knowledge of, and Attitudes towards Biotechnology Revisited, 1995-2014: Changes in Agriculture Biotechnology but Not in Medical Biotechnology

    Science.gov (United States)

    Chen, Shao-Yen; Chu, Yih-Ru; Lin, Chen-Yung; Chiang, Tzen-Yuh

    2016-01-01

    Modern biotechnology is one of the most important scientific and technological revolutions in the 21st century, with an increasing and measurable impact on society. Development of biotechnology curriculum has become important to high school bioscience classrooms. This study has monitored high school students in Taiwan on their knowledge of and…

  7. Marine-derived fungi: diversity of enzymes and biotechnological applications

    Science.gov (United States)

    Bonugli-Santos, Rafaella C.; dos Santos Vasconcelos, Maria R.; Passarini, Michel R. Z.; Vieira, Gabriela A. L.; Lopes, Viviane C. P.; Mainardi, Pedro H.; dos Santos, Juliana A.; de Azevedo Duarte, Lidia; Otero, Igor V. R.; da Silva Yoshida, Aline M.; Feitosa, Valker A.; Pessoa, Adalberto; Sette, Lara D.

    2015-01-01

    The ocean is considered to be a great reservoir of biodiversity. Microbial communities in marine environments are ecologically relevant as intermediaries of energy, and play an important role in nutrient regeneration cycles as decomposers of dead and decaying organic matter. In this sense, marine-derived fungi can be considered as a source of enzymes of industrial and/or environmental interest. Fungal strains isolated from different substrates, such as invertebrates, decaying wood, seawater, sediments, and mangrove detritus, have been reported to be producers of hydrolytic and/or oxidative enzymes, with alginate lyase, amylase, cellulase, chitinase, glucosidase, inulinase, keratinase, ligninase, lipase, nuclease, phytase, protease, and xylanase being among the enzymes produced by fungi of marine origin. These enzymes present temperature and pH optima ranging from 35 to 70∘C, and 3.0 to 11.0, respectively. High-level production in bioreactors is mainly performed using submerged-state fermentation. Certain marine-derived fungal strains present enzymes with alkaline and cold-activity characteristics, and salinity is considered an important condition in screening and production processes. The adaptability of marine-derived fungi to oceanic conditions can be considered an attractive point in the field of fungal marine biotechnology. In this review, we focus on the advances in discovering enzymes from marine-derived fungi and their biotechnological relevance. PMID:25914680

  8. Studying Biotechnological Methods Using Animations: The Teacher's Role

    Science.gov (United States)

    Yarden, Hagit; Yarden, Anat

    2011-12-01

    Animation has great potential for improving the way people learn. A number of studies in different scientific disciplines have shown that instruction involving computer animations can facilitate the understanding of processes at the molecular level. However, using animation alone does not ensure learning. Students sometimes miss essential features when they watch only animations, mainly due to the cognitive load involved. Moreover, students seem to attribute a great deal of authority to the computer and may develop misconceptions by taking animations of abstract concepts too literally. In this study, we attempted to explore teachers' perceptions concerning the use of animations in the classroom while studying biotechnological methods, as well as the teachers' contribution to the enactment of animations in class. Thirty high-school biotechnology teachers participated in a professional development workshop, aimed at investigating how teachers plan for and support learning with animation while studying biotechnological methods in class. From that sample, two teachers agreed to participate in two case studies aimed at characterizing teachers' contribution to the enactment of animations in class while studying biotechnological methods. Our findings reveal marked teacher contribution in the following three aspects: establishing the "hands-on" point of view, helping students deal with the cognitive load that accompanies the use of animation, and implementing constructivist aspects of knowledge construction while studying using animations.

  9. Biotechnology for Solar System Exploration

    Science.gov (United States)

    Steele, A.; Maule, J.; Toporski, J.; Parro-Garcia, V.; Briones, C.; Schweitzer, M.; McKay, D.

    With the advent of a new era of astrobiology missions in the exploration of the solar system and the search for evidence of life elsewhere, we present a new approach to this goal, the integration of biotechnology. We have reviewed the current list of biotechnology techniques, which are applicable to miniaturization, automatization and integration into a combined flight platform. Amongst the techniques reviewed are- The uses of antibodies- Fluorescent detection strategies- Protein and DNA chip technology- Surface plasmon resonance and its relation to other techniques- Micro electronic machining (MEMS where applicable to biologicalsystems)- nanotechnology (e.g. molecular motors)- Lab-on-a-chip technology (including PCR)- Mass spectrometry (i.e. MALDI-TOF)- Fluid handling and extraction technologies- Chemical Force Microscopy (CFM)- Raman Spectroscopy We have begun to integrate this knowledge into a single flight instrument approach for the sole purpose of combining several mutually confirming tests for life, organic and/or microbial contamination, as well as prebiotic and abiotic organic chemicals. We will present several innovative designs for new instrumentation including pro- engineering design drawings of a protein chip reader for space flight and fluid handling strategies. We will also review the use of suitable extraction methodologies for use on different solar system bodies.

  10. Principles of biotechnological treatment of industrial wastes

    Energy Technology Data Exchange (ETDEWEB)

    Roig, M.G.; Martin Rodriguez, M.J.M.; Cachaza, J.M. (Univ. de Salamanca, Salamanca (Spain). Dept. de Quimica Fisica); Mendoza Sanchez, L. (C/Sol Oriente, Salamanca (Spain). Estudios y Proyectos); Kennedy, J.F. (Univ. of Birmingham, Birmingham (United Kingdom). Research Lab. for the Chemistry of Bioactive Carbohydrates and Proteins)

    1993-07-01

    This review includes current information on biodegradation processes of pollutants, digestor biocenosis and bioadditives, sludge production, measurement of pollution, and advances regarding biotechnological treatment of a series of specific industrial effluents. It was foreseen in 1980 that biotechnology would foster the creation of new industries with low energy requirements. This is because the growth of microorganisms provides a renewable source of energy.

  11. Undergraduate Biotechnology Students' Views of Science Communication

    Science.gov (United States)

    Edmondston, Joanne Elisabeth; Dawson, Vaille; Schibeci, Renato

    2010-01-01

    Despite rapid growth of the biotechnology industry worldwide, a number of public concerns about the application of biotechnology and its regulation remain. In response to these concerns, greater emphasis has been placed on promoting biotechnologists' public engagement. As tertiary science degree programmes form the foundation of the biotechnology…

  12. Agricultural Biotechnology Research and Development in Hunan

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Recent agricultural biotechnology research and advances in the province are reviewed. Targets and practices for biotechnological development in depth are discussed, with stress on the talent's training, new techniques' establishment and its industrialization, starting from the existing level and problems in the field in the province.

  13. Assessment and diffusion of biotechnology drugs

    NARCIS (Netherlands)

    Zwart-van Rijkom, J.E.F.

    2002-01-01

    Biotechnology, viewed as a young and innovative field, is associated with great possibilities and high expectation on patient benefits. But there are also public controversies on ethical, social and economic issues. Beginning with recombinant human insulin in 1982, more than 50 biotechnology drugs h

  14. Interdisciplinarity in Biotechnology, Genomics and Nanotechnology

    NARCIS (Netherlands)

    Heimeriks, G.J.

    2013-01-01

    In this paper we study developments in biotechnology, genomics and nanotechnology in the period 1998–2008. The fields show changing interdisciplinary characteristics in relation to distinct co-evolutionary dynamics in research, science and society. Biotechnology emerged as a discipline in publicatio

  15. New trends in biotechnology. Biotechnology no atarashii choryu

    Energy Technology Data Exchange (ETDEWEB)

    Karube, I. (The University of Tokyo, Tokyo (Japan). Research Center for Advanced Science and Technology)

    1993-11-30

    This paper focuses on application of the recent biotechnology and introduces its new trends. What has triggered the boom in the application is when the technology has been applied to medicines in the 1970's. Beginning with insulin and interferon, various fibrinolytic agents including tPA and monoclonals have been put on markets one after another in 1991. Progress in humangenomic analysis has led to implementation of gene therapies and diagnoses using genes on gene diseases. Sweeteners used in a large quantity in the foodstuff field are fructoses made by isomerizing glucose produced by using enzymatic bioreactors. Needless to say about production of amino acid, organic acids, saccharides, antibiotics, steroids, and nucleic acid-based compounds by using enzymatic bioreactors, chemicals including acrylic amide from acrylonitrile, enzyme detergents, and bio-herbicides are available commercially. Progress in the technology is seen in all of the fields, including electronics industry and environmental preservation. 6 refs., 4 figs.

  16. Rational selection of alternative, environmentally compatible surfactants for biotechnological production of pharmaceuticals--a step toward green biotechnology.

    Science.gov (United States)

    Straub, Jürg Oliver; Shearer, Russel; Studer, Martin

    2014-09-01

    The biotechnological production of pharmaceutical active substances needs ancillary substances. Surfactants are used at the end of the cell culture as a protection against potential viral or bacterial contamination and to lyse the producing cells for isolation and purification of the products. To find a replacement for a surfactant that had raised environmental concern, environmentally relevant data for potential alternatives were searched for in the literature. Significant data gaps were filled with additional tests: biodegradability, algal growth inhibition, acute daphnid immobilization and chronic daphnid reproduction toxicity, acute fish toxicity, and activated sludge respiration inhibition. The results were used to model removal in the wastewater treatment plants (WWTPs) serving 3 biotechnological production sites in the Roche Group. Predicted environmental concentrations (PECs) were calculated using realistic amounts of surfactants and site-specific wastewater fluxes, modeled removals for the WWTPs and dilution factors by the respective receiving waters. Predicted no-effect concentrations (PNECs) were derived for WWTPs and for both fresh and marine receiving waters as the treated wastewater of 1 production site is discharged into a coastal water. This resulted in a spreadsheet showing PECs, PNECs, and PEC ÷ PNEC risk characterization ratios for the WWTPs and receiving waters for all investigated surfactants and all 3 sites. This spreadsheet now serves as a selection support for the biotechnological developers. This risk-based prioritization of surfactants is a step toward green biotechnological production.

  17. Western Australian school students' understanding of biotechnology

    Science.gov (United States)

    Dawson, Vaille; Schibeci, Renato

    2003-01-01

    Are science educators providing secondary school students with the background to understand the science behind recent controversies such as the recently introduced compulsory labelling of genetically modified foods? Research from the UK suggests that many secondary school students do not understand the processes or implications of modern biotechnology. The situation in Australia is unclear. In this study, 1116 15-year-old students from eleven Western Australian schools were surveyed to determine their understanding of, and attitude towards, recent advances in modern biotechnology. The results indicate that approximately one third of students have little or no understanding of biotechnology. Many students over-estimate the use of biotechnology in our society by confusing current uses with possible future applications. The results provide a rationale for the inclusion of biotechnology, a cutting edge science, in the school science curriculum

  18. The current biotechnology outlook in Malaysia

    Directory of Open Access Journals (Sweden)

    Khairiah Salwa MOKHTAR

    2010-06-01

    Full Text Available Blessed with extremely rich biodiversity, Malaysia is all geared up to explore new high technology to utilize the advantage it possesses whilst to protect its environment. Biotechnology has been identified as an appropriate driver that can deliver economic gains through research and development, improvement of food security, creation of entrepreneurial opportunities for industrial growth, health and environmental sustainability. This paper attempts to address the evolution of biotechnology institutions and the stumbling blocks in developing the Malaysian biotechnology industry. This paper identifies three main impediments in the current Malaysian biotechnology, namely lack of skilled human capital; weak industrial base; and lack of commercialization effort. Besides, a set of strategies are discussed with aim to further improve and strengthen the Malaysian biotechnology industry. In general, the arguments are presented by mapping out the symbiotic relationship between data from elite interviews, archival data and observations.

  19. Biotechnology in India : Current scene (Review Paper

    Directory of Open Access Journals (Sweden)

    A. Nagaratnam

    2001-10-01

    Full Text Available Realising the immense potential of biotechnology in the fields of agricultural production and health care, especially in developing countries, India has been devoting special attention over the past two decades to biotechnology and its applications. Necessary infrastructure has been built-up, the human resources and technical expertise built-up, and fruitful interactions between academic institutions and industries supported. The Department of Biotechnology, Govt of India has been playing a major role in this endeavour. Special efforts are being made to ensure practical applications of laboratory research. Salient achievements in the areas of agriculture (including tissue culture, transgenics, sericulture, animal, marine and microbial biotechnology, biofertilisers, bio-control agents, bio-prospecting, conservation of biodiversity and environment and health care (including genetic counselling, DNA fingerprinting, preservation and propagation of human cell lines, medicinal biotechnology with special reference to indigenous medicinal plants, and immunodiagnostics for human beings and animals are reviewed.

  20. Progress towards the 'Golden Age' of biotechnology.

    Science.gov (United States)

    Gartland, K M A; Bruschi, F; Dundar, M; Gahan, P B; Viola Magni, M p; Akbarova, Y

    2013-07-01

    Biotechnology uses substances, materials or extracts derived from living cells, employing 22 million Europeans in a € 1.5 Tn endeavour, being the premier global economic growth opportunity this century. Significant advances have been made in red biotechnology using pharmaceutically and medically relevant applications, green biotechnology developing agricultural and environmental tools and white biotechnology serving industrial scale uses, frequently as process feedstocks. Red biotechnology has delivered dramatic improvements in controlling human disease, from antibiotics to overcome bacterial infections to anti-HIV/AIDS pharmaceuticals such as azidothymidine (AZT), anti-malarial compounds and novel vaccines saving millions of lives. Green biotechnology has dramatically increased food production through Agrobacterium and biolistic genetic modifications for the development of 'Golden Rice', pathogen resistant crops expressing crystal toxin genes, drought resistance and cold tolerance to extend growth range. The burgeoning area of white biotechnology has delivered bio-plastics, low temperature enzyme detergents and a host of feedstock materials for industrial processes such as modified starches, without which our everyday lives would be much more complex. Biotechnological applications can bridge these categories, by modifying energy crops properties, or analysing circulating nucleic acid elements, bringing benefits for all, through increased food production, supporting climate change adaptation and the low carbon economy, or novel diagnostics impacting on personalized medicine and genetic disease. Cross-cutting technologies such as PCR, novel sequencing tools, bioinformatics, transcriptomics and epigenetics are in the vanguard of biotechnological progress leading to an ever-increasing breadth of applications. Biotechnology will deliver solutions to unimagined problems, providing food security, health and well-being to mankind for centuries to come. PMID:23797042

  1. Progress towards the 'Golden Age' of biotechnology.

    Science.gov (United States)

    Gartland, K M A; Bruschi, F; Dundar, M; Gahan, P B; Viola Magni, M p; Akbarova, Y

    2013-07-01

    Biotechnology uses substances, materials or extracts derived from living cells, employing 22 million Europeans in a € 1.5 Tn endeavour, being the premier global economic growth opportunity this century. Significant advances have been made in red biotechnology using pharmaceutically and medically relevant applications, green biotechnology developing agricultural and environmental tools and white biotechnology serving industrial scale uses, frequently as process feedstocks. Red biotechnology has delivered dramatic improvements in controlling human disease, from antibiotics to overcome bacterial infections to anti-HIV/AIDS pharmaceuticals such as azidothymidine (AZT), anti-malarial compounds and novel vaccines saving millions of lives. Green biotechnology has dramatically increased food production through Agrobacterium and biolistic genetic modifications for the development of 'Golden Rice', pathogen resistant crops expressing crystal toxin genes, drought resistance and cold tolerance to extend growth range. The burgeoning area of white biotechnology has delivered bio-plastics, low temperature enzyme detergents and a host of feedstock materials for industrial processes such as modified starches, without which our everyday lives would be much more complex. Biotechnological applications can bridge these categories, by modifying energy crops properties, or analysing circulating nucleic acid elements, bringing benefits for all, through increased food production, supporting climate change adaptation and the low carbon economy, or novel diagnostics impacting on personalized medicine and genetic disease. Cross-cutting technologies such as PCR, novel sequencing tools, bioinformatics, transcriptomics and epigenetics are in the vanguard of biotechnological progress leading to an ever-increasing breadth of applications. Biotechnology will deliver solutions to unimagined problems, providing food security, health and well-being to mankind for centuries to come.

  2. Assessment of carbon dioxide sink/source in the oceanic areas: the results of 1982-84 investigation. Final technical report

    International Nuclear Information System (INIS)

    The oceanic CO2 sink/source relationships over the tropical Atlantic Ocean, the eastern North and South Pacific Ocean, and the Ross Sea were investigated. The net CO2 flux across the air-sea interface over these areas was estimated. Measurements of the Kr-85 in atmospheric samples collected over the central Pacific along the 1550W meridian were initiated. Based on the measurements of the difference between the pCO2 values in the surface ocean water and the atmosphere and of the radon-222 distribution in the upper water column, we have found that the average net flux for the Atlantic equatorial belt, 100N-100S, is 1.3 moles CO2/m2.y out of the ocean, when our measurements were made in November 1982 through February 1983. The surface water pCO2 data obtained over the eastern North and South Pacific during the period, October 1983 through January 1984, show that the equatorial zone between 20N and 80S is an intense CO2 source area, whereas a 100 wide belt coinciding with the area between the Subtropical and Antarctic Convergence Zones is a strong CO2 sink area. The temperate gyre area located north of about 50N and that located between 80S and 350S are nearly in equilibrium with atmospheric CO2. The surface water pCO2 data obtained in the Southern Ocean during the past ten or more years suggest strongly the existence of an intense CO2 sink zone, the Circumpolar Low pCO2 Zone, which is about 100 wide in latitude and centered at about 500S surrounding the Antarctica Continent. The surface water of the Ross Sea is found to be a strong CO2 sink during the period January 23 through February 12, 1984. Because of contamination problems, no reliable data for atmospheric krypton-85 have been obtained. 23 refs., 22 figs., 3 tabs

  3. Biotechnology and bioforensics new trends

    CERN Document Server

    Kumar, Amit

    2015-01-01

    This Brief covers broad areas of Applied Biology specifically into the domains of Biotechnology/Biomedicine and Forensic Science. Chapters included here would also explain the role of bioinformatics in protein and gene characterization, modeling of the protein structure, survey related to the chromosomal effect on Human Disorders like Diabetes and Cardiac Problems. This Brief is full of Innovative Literature like Use of Microbes in Electricity Production, Brain connection to Type 2 Diabetes etc. Interesting issues in Forensic biology and the aspects of Bioforensics like STR profiling of exhumed bones makes this brief truly useful and informative for Researchers. It also includes the advancements and new ideologies in understanding crop improvements & crop quality. This Brief witnesses Innovative Research related to the Bio and Agri software development too which are capable of accelerating Insilico biological data analysis.

  4. Environmental biotechnology research: an overview.

    Science.gov (United States)

    Spain, J C

    1994-05-01

    Cleanup and treatment of hazardous wastes incur major operational costs for the U.S. Air Force. Bioremediation can provide a cost-effective alternative to traditional technologies for a wide range of natural organic compounds such as jet fuel. Bioventing and natural attenuation are emerging as treatments of choice in many instances. Synthetic organic chemicals are much more resistant to biodegradation. However, recent advances in biotechnology allow the development of strains able to use nitro- and chloro-substituted organic compounds as their sole source of carbon and energy. Current basic research is focused on expanding the range of synthetic chemicals amenable to biodegradation. At the same time, development of appropriate bioreactors and models for scale up are essential for practical application of the technology.

  5. Biotechnological production of citric acid

    Directory of Open Access Journals (Sweden)

    Belén Max

    2010-12-01

    Full Text Available This work provides a review about the biotechnological production of citric acid starting from the physicochemical properties and industrial applications, mainly in the food and pharmaceutical sectors. Several factors affecting citric acid fermentation are discussed, including carbon source, nitrogen and phosphate limitations, pH of culture medium, aeration, trace elements and morphology of the fungus. Special attention is paid to the fundamentals of biochemistry and accumulation of citric acid. Technologies employed at industrial scale such as surface or submerged cultures, mainly employing Aspergillus niger, and processes carried out with Yarrowia lipolytica, as well as the technology for recovering the product are also described. Finally, this review summarizes the use of orange peels and other by-products as feedstocks for the bioproduction of citric acid.

  6. Challenge of Biotechnology (Review Paper

    Directory of Open Access Journals (Sweden)

    Malcolm R. Dando

    2001-10-01

    Full Text Available The unravelling of the human genetic code whose first draft was announced in June 2000 has rightly blood been hailed as a momentous achievement, opening thc book of life, certain to be the dominant technology of the 21st century, which will inform all about medicine and biology. and lead us to a total understanding of life. Simultaneously, concerns have been expressed about thc implications of this work. In the past, major new technologies have been used intensively for hostile purposes. What is thc challenge that biotechnology poses in this regard'? This review paper looks at the enormous changes in civil society that thc genomics revolution could bring. Against this background, thc growing concerns about its potential misuses have been reviewed. Thc strengths and weaknesses or the Biological and Toxin Weapons Convention (BTWC are then touched upon. The BTWC presently lacks an adequate verification mechanism. Although biotechnology has been used by human beings since prehistoric times (eg. making of bread. cheese. wines its scientific understanding came only in the latter part of the 19th century. Thc decisive turning point in the field came in the 1970s with the advent of genetic engineering. In the military context classical agents like anthrax and toxin remain the threat today. Although thc current level or sophistication for many biological agents is low, there is enormous potential for making more sophisticated weapons. It might be possible to specifically target the genetic makeup of different ethnic groups. The limited varieties of staple crops and the limited strains of modern animals make agriculture particularly open to attack. Another serious possibility is the impact of genomics in neuroscience. With a better understanding of cellular receptor systems and bioregulators, it is not inconceivable that new means would be evolved for disturbing the functions of the nervous system. Thc genomics revolution can be used for peaceful purposes

  7. Non clinical research at CENTIS supporting biotechnological and pharmaceutical industry

    International Nuclear Information System (INIS)

    Drugs production is a highly demanding industry because the rigor of legislations and guidelines. Standards are applied to manufacturing facilities and also to research and development stage. Our national biotechnological industry is developing and producing important medications for diseases like cancer, some of them in the national and international market. Isotopes Centre is an institution supporting such development by means of a work platform to carry out researches in the field of pharmacokinetic and biodistribution in experimental models. Accumulated experience allows us to contribute to research and development of different kind of molecules as pharmaceuticals, specially the biotechnological ones. We are evolving in direction to new technologies and methodologies more suitable to current standards. Radiolabeling is still a convenient choice considering present and new imaging technologies to investigate distribution and kinetic in living subjects. With the techniques we have and the ones to incorporate in a near future, new and more demanding investigations will be affordable. (author)

  8. The oceanic mass balance of copper and zinc isotopes, investigated by analysis of their inputs, and outputs to ferromanganese oxide sediments

    Science.gov (United States)

    Little, S. H.; Vance, D.; Walker-Brown, C.; Landing, W. M.

    2014-01-01

    The oceanic biogeochemical cycles of the transition metals have been eliciting considerable attention for some time. Many of them have isotope systems that are fractionated by key biological and chemical processes so that significant information about such processes may be gleaned from them. However, for many of these nascent isotopic systems we currently know too little of their modern oceanic mass balance, making the application of such systems to the past speculative, at best. Here we investigate the biogeochemical cycling of copper (Cu) and zinc (Zn) isotopes in the ocean. We present estimates for the isotopic composition of Cu and Zn inputs to the oceans based on new data presented here and published data. The bulk isotopic composition of dissolved Cu and Zn in the oceans (δ65Cu ∼+0.9‰, δ66Zn ∼+0.5‰) is in both cases heavier than their respective inputs (at around δ65Cu = +0.6‰ and δ66Zn = +0.3‰, respectively), implying a marine process that fractionates them and a resulting isotopically light sedimentary output. For the better-known molybdenum isotope system this is achieved by sorption to Fe-Mn oxides, and this light isotopic composition is recorded in Fe-Mn crusts. Hence, we present isotopic data for Cu and Zn in three Fe-Mn crusts from the major ocean basins, which yield δ65Cu = 0.44 ± 0.23‰ (mean and 2SD) and δ66Zn = 1.04 ± 0.21‰. Thus for Cu isotopes output to particulate Fe-Mn oxides can explain the heavy isotopic composition of the oceans, while for Zn it cannot. The heavy Zn in Fe-Mn crusts (and in all other authigenic marine sediments measured so far) implies that a missing light sink is still to be located. These observations are some of the first to place constraints on the modern oceanic mass balance of Cu and Zn isotopes.

  9. Comparing Perceptions of Biotechnology in Fresh versus Processed Foods: A Cross-Cultural Study

    OpenAIRE

    Kim, Hyeyoung; House, Lisa

    2013-01-01

    This study focused on investigating how respondents’ perceptions of biotechnology used in food production differs depending on the level of product transformation (i.e. fresh versus processed food). Using cluster analysis, respondents were clustered into two groups, genetically engineered (GE) tolerant and GE sensitive, based on changes in their perceptions about fresh apples and apple juice produced with and without biotechnology. Comparisons of respondents from six countries were performed ...

  10. Frontiers in biomedical engineering and biotechnology.

    Science.gov (United States)

    Liu, Feng; Goodarzi, Ali; Wang, Haifeng; Stasiak, Joanna; Sun, Jianbo; Zhou, Yu

    2014-01-01

    The 2nd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2013), held in Wuhan on 11–13 October 2013, is an annual conference that aims at providing an opportunity for international and national researchers and practitioners to present the most recent advances and future challenges in the fields of Biomedical Information, Biomedical Engineering and Biotechnology. The papers published by this issue are selected from this conference, which witnesses the frontier in the field of Biomedical Engineering and Biotechnology, which particularly has helped improving the level of clinical diagnosis in medical work.

  11. Developments in biotechnological research in Austria.

    Science.gov (United States)

    Kubicek, C P

    1996-01-01

    Austria is a small European country with a small number of universities and biotechnological industries, but with great efforts in the implementation of environmental consciousness and corresponding legal standards. This review attempts to describe the biotechnological landscape of Austria, thereby focusing on the highlights in research by industry, universities, and research laboratories, as published during 1990 to early 1995. These will include microbial metabolite (organic acids, antibiotics) and biopolymer (polyhydroxibutyrate, S-layers) production; enzyme (cellulases, hemicellulases, ligninases) technology and biocatalysis; environmental biotechnology; plant breeding and plant protection; mammalian cell products; fermenter design; and bioprocess engineering. PMID:8856962

  12. Biotechnology in Food Production and Processing

    Science.gov (United States)

    Knorr, Dietrich; Sinskey, Anthony J.

    1985-09-01

    The food processing industry is the oldest and largest industry using biotechnological processes. Further development of food products and processes based on biotechnology depends upon the improvement of existing processes, such as fermentation, immobilized biocatalyst technology, and production of additives and processing aids, as well as the development of new opportunities for food biotechnology. Improvements are needed in the characterization, safety, and quality control of food materials, in processing methods, in waste conversion and utilization processes, and in currently used food microorganism and tissue culture systems. Also needed are fundamental studies of the structure-function relationship of food materials and of the cell physiology and biochemistry of raw materials.

  13. The Biotechnology Facility for International Space Station

    Science.gov (United States)

    Goodwin, Thomas; Lundquist, Charles; Tuxhorn, Jennifer; Hurlbert, Katy

    2004-01-01

    The primary mission of the Cellular Biotechnology Program is to advance microgravity as a tool in basic and applied cell biology. The microgravity environment can be used to study fundamental principles of cell biology and to achieve specific applications such as tissue engineering. The Biotechnology Facility (BTF) will provide a state-of-the-art facility to perform cellular biotechnology research onboard the International Space Station (ISS). The BTF will support continuous operation, which will allow performance of long-duration experiments and will significantly increase the on-orbit science throughput.

  14. Social Responsibility in Developing New Biotechnology : Interpretations of Responsibility in the Governance of Finnish Biotechnology

    OpenAIRE

    Snell, Karoliina

    2009-01-01

    The object of the dissertation is to analyse the concept of social responsibility in relation to research and development of new biotechnology. This is done by examining the relevant actors – researchers, administrators, decision-makers, experts, industry, and the public – involved in the Finnish governance of biotechnology through their roles and responsibilities. Existing practises of responsibility in biotechnology governance, as well as the discourses of responsibility – the actorsâ...

  15. Geochemical investigation of Gabbroic Xenoliths from Hualalai Volcano: Implications for lower oceanic crust accretion and Hualalai Volcano magma storage system

    Science.gov (United States)

    Gao, Ruohan; Lassiter, John C.; Barnes, Jaime D.; Clague, David A.; Bohrson, Wendy A.

    2016-05-01

    The patterns of axial hydrothermal circulation at mid-ocean ridges both affect and are influenced by the styles of magma plumbing. Therefore, the intensity and distribution of hydrothermal alteration in the lower oceanic crust (LOC) can provide constraints on LOC accretion models (e.g., "gabbro glacier" vs. "multiple sills"). Gabbroic xenoliths from Hualalai Volcano, Hawaii include rare fragments of in situ Pacific lower oceanic crust. Oxygen and strontium isotope compositions of 16 LOC-derived Hualalai gabbros are primarily within the range of fresh MORB, indicating minimal hydrothermal alteration of the in situ Pacific LOC, in contrast to pervasive alteration recorded in LOC xenoliths from the Canary Islands. This difference may reflect less hydrothermal alteration of LOC formed at fast ridges than at slow ridges. Mid-ocean ridge magmas from slow ridges also pond on average at greater and more variable depths and undergo less homogenization than those from fast ridges. These features are consistent with LOC accretion resembling the "multiple sills" model at slow ridges. In contrast, shallow magma ponding and limited hydrothermal alteration in LOC at fast ridges are consistent with the presence of a long-lived shallow magma lens, which limits the penetration of hydrothermal circulation into the LOC. Most Hualalai gabbros have geochemical and petrologic characteristics indicating derivation from Hualalai shield-stage and post-shield-stage cumulates. These xenoliths provide information on the evolution of Hawaiian magmas and magma storage systems. MELTS modeling and equilibration temperatures constrain the crystallization pressures of 7 Hualalai shield-stage-related gabbros to be ∼2.5-5 kbar, generally consistent with inferred local LOC depth. Therefore a deep magma reservoir existed within or at the base of the LOC during the shield stage of Hualalai Volcano. Melt-crust interaction between Hawaiian melts and in situ Pacific crust during magma storage partially

  16. Investigations of a novel fauna from hydrothermal vents along the Arctic Mid-Ocean Ridge (AMOR) (Invited)

    Science.gov (United States)

    Rapp, H.; Schander, C.; Halanych, K. M.; Levin, L. A.; Sweetman, A.; Tverberg, J.; Hoem, S.; Steen, I.; Thorseth, I. H.; Pedersen, R.

    2010-12-01

    The Arctic deep ocean hosts a variety of habitats ranging from fairly uniform sedimentary abyssal plains to highly variable hard bottoms on mid ocean ridges, including biodiversity hotspots like seamounts and hydrothermal vents. Deep-sea hydrothermal vents are usually associated with a highly specialized fauna, and since their discovery in 1977 more than 400 species of animals have been described. This fauna includes various animal groups of which the most conspicuous and well known are annelids, mollusks and crustaceans. The newly discovered deep sea hydrothermal vents on the Mohns-Knipovich ridge north of Iceland harbour unique biodiversity. The Jan Mayen field consists of two main areas with high-temperature white smoker venting and wide areas with low-temperature seepage, located at 5-700 m, while the deeper Loki Castle vent field at 2400 m depth consists of a large area with high temperature black smokers surrounded by a sedimentary area with more diffuse low-temperature venting and barite chimneys. The Jan Mayen sites show low abundance of specialized hydrothermal vent fauna. Single groups have a few specialized representatives but groups otherwise common in hydrothermal vent areas are absent. Slightly more than 200 macrofaunal species have been identified from this vent area, comprising mainly an assortment of bathyal species known from the surrounding area. Analysis of stable isotope data also indicates that the majority of the species present are feeding on phytodetritus and/or phytoplankton. However, the deeper Loki Castle vent field contains a much more diverse vent endemic fauna with high abundances of specialized polychaetes, gastropods and amphipods. These specializations also include symbioses with a range of chemosynthetic microorganisms. Our data show that the fauna composition is a result of high degree of local specialization with some similarities to the fauna of cold seeps along the Norwegian margin and wood-falls in the abyssal Norwegian Sea

  17. Application of biotechnology to improve livestock products

    Directory of Open Access Journals (Sweden)

    Swati Gupta

    Full Text Available Biotechnological achievements of recent years have emerged as powerful tool to improve quality attributes of livestock products including milk and meat products. Biotechnological approaches can be employed for improving productivity, economy, physicochemical and nutritional attributes of a wide range of livestock products. The target areas of biotechnological research in the field of livestock products can be envisaged as production of high yielding food animal, improvement in quality of their products, enhanced production of natural food grade preservatives, efficient byproduct utilization and so forth. Many of the biotechnological techniques can be explored in the area of quality assurance programmes, which would be of great help to produce livestock products of assured quality and public health safety. [Vet World 2012; 5(10.000: 634-638

  18. What is the future of animal biotechnology?

    OpenAIRE

    Alison L Van Eenennaam

    2006-01-01

    Animal biotechnology encompasses a broad range of techniques for the genetic improvement of domesticated animal species, although the term is increasingly associated with the more controversial technologies of cloning and genetic engineering. Despite the many potential applications of these two biotechnologies, no public or private entity has yet delivered a genetically engineered food-animal product to the global market, and the sale of milk or meat from cloned animals and their offspring is...

  19. The current biotechnology outlook in Malaysia

    OpenAIRE

    Khairiah Salwa MOKHTAR; Mahalingam, Ravi

    2010-01-01

    Blessed with extremely rich biodiversity, Malaysia is all geared up to explore new high technology to utilize the advantage it possesses whilst to protect its environment. Biotechnology has been identified as an appropriate driver that can deliver economic gains through research and development, improvement of food security, creation of entrepreneurial opportunities for industrial growth, health and environmental sustainability. This paper attempts to address the evolution of biotechnology in...

  20. Framing Biotechnology in Iranian TV Series

    OpenAIRE

    H. Khaniki; M. H. Panahi; M. A. Ghaneirad; Z. Zardar

    2014-01-01

    Media as public opinion formers have crucial role in supporting the growth and development of science and technology . They form media frames in various fields of science and Technology. This paper seeks to identify frames which Iranian television series depict biotechnology. The Biotechnology frames Identified through qualitative framing analysis. To achieve this goal, all TV series of Five main national channels for a five-year period (2008-2013) were considered and two TV series – “Balhaye...

  1. Plant Biotechnology: Promises and Challenges

    Directory of Open Access Journals (Sweden)

    P.V. Lakshmana Rao

    1996-01-01

    Full Text Available Development of procedures in cell biology to regenerate plants from single cells in any desired quantity provides the prerequisite for the practical use of plant tissue culture and genetic engineering in crop improvement. Such regenerating cell cultures are used for selection of mutants and for DNA transformation experiments. DNA transfer by means of engineered Ti and Ri plasmids has become an established technique for the rapidly growing list of dicotyledonous plants. Considerable success has also been achieved in making gene transfer techniques independent of cell culture methods. These techniques have given the opportunity to create, characterise and select plant cultivars which cannot be obtained by traditional breeding methods. The exploitation of plant cell cultures for production of pharmaceuticals, natural products of commercial importance and mass propagation of high-value crops by automation, have developed into an important industry with considerable potential for future. This paper discusses the recent advances and applications of plant biotechnology in agriculture and industry and the challenges the still exist.

  2. Ethics in biotechnology and biosecurity

    Directory of Open Access Journals (Sweden)

    S Jameel

    2011-01-01

    Full Text Available Great advances in technology produce unique challenges. Every technology also has a dual use, which needs to be understood and managed to extract maximum benefits for mankind and the development of civilization. The achievements of physicists in the mid-20th century resulted in the nuclear technology, which gave us the destructive power of the atomic bomb as also a source of energy. Towards the later part of the 20th century, information technology empowered us with fast, easy and cheap access to information, but also led to intrusions into our privacy. Today, biotechnology is yielding life- saving and life-enhancing advances at a fast pace. But, the same tools can also give rise to fiercely destructive forces. How do we construct a security regime for biology? What have we learnt from the management of earlier technological advances? How much information should be in the public domain? Should biology, or more broadly science, be regulated? Who should regulate it? These and many other ethical questions need to be addressed.

  3. Immunoassays in monitoring biotechnological drugs.

    Science.gov (United States)

    Gygax, D; Botta, L; Ehrat, M; Graf, P; Lefèvre, G; Oroszlan, P; Pfister, C

    1996-08-01

    For the evaluation and interpretation of pharmacokinetic data reliable quantitative determinations are a requirement that can only be met by well-characterized and fully validated analytical methods. To cope with these requirements a method is being established that is based on an integrated and automated fiber-optic biospecific interaction analysis system (FOBIA) for immunoassays. Performance characteristics of this system used in monitoring of recombinant hirudin (CGP 39 393) are presented. Recombinant hirudin is a highly potent and selective inhibitor of human thrombin. Owing to its size and charge, recombinant hirudin is mainly eliminated by glomerular filtration. But only a fraction of the hirudin dose seems to be reabsorbed at the proximal tubule by luminal endocytosis and hydrolyzed by lysosomal enzymes, leaving approximately 50% of the dose to be extracted in the urine. Thus, renal clearance of recombinant hirudin in the absence of renal insufficiency appears to depend primarily on the glomerular filtration rate. During a 3-month i.v. tolerability study in dogs, some of the dogs developed antibodies against recombinant hirudin. The hirudin-antibody complex accumulated in plasma and apparent hirudin plasma concentrations were therefore much higher than expected from single-dose kinetics. Hirudin captured by antibodies showed an extended half-life and the hirudin-antibody complex is still pharmacologically active, as demonstrated by the observed increase in thrombin time. In conclusion, only appropriate analytical methods allow adequate monitoring and pharmacokinetic characterization of biotechnology drugs in biological materials. PMID:8857560

  4. Biotechnological applications of bacterial cellulases

    Directory of Open Access Journals (Sweden)

    Esther Menendez

    2015-08-01

    Full Text Available Cellulases have numerous applications in several industries, including biofuel production, food and feed industry, brewing, pulp and paper, textile, laundry, and agriculture.Cellulose-degrading bacteria are widely spread in nature, being isolated from quite different environments. Cellulose degradation is the result of a synergic process between an endoglucanase, an exoglucanase and a,β-glucosidase. Bacterial endoglucanases degrade ß-1,4-glucan linkages of cellulose amorphous zones, meanwhile exoglucanases cleave the remaining oligosaccharide chains, originating cellobiose, which is hydrolyzed by ß-glucanases. Bacterial cellulases (EC 3.2.1.4 are comprised in fourteen Glycosil Hydrolase families. Several advantages, such as higher growth rates and genetic versatility, emphasize the suitability and advantages of bacterial cellulases over other sources for this group of enzymes. This review summarizes the main known cellulolytic bacteria and the best strategies to optimize their cellulase production, focusing on endoglucanases, as well as it reviews the main biotechnological applications of bacterial cellulases in several industries, medicine and agriculture.

  5. New biotechnologies in Serbian forestry

    Directory of Open Access Journals (Sweden)

    Galović Vladislava

    2014-01-01

    Full Text Available This paper presents an overview of the results achieved in the laboratory for molecular studies of the Institute of Lowland Forestry and Environment, University of Novi Sad, in the field of biotechnology, mainly in molecular genetics, genomics and functional genomics. Researches are designed to serve as a breeding tool. The aim was to clarify the processes of classical genetics by applying modern methods and enable a qualitative and rapid progress in understanding the processes that occur at the level of genes in the genome of forest plant species and thus help the processes of conservation of valuable taxa at the time of global climate change. The results are presented within various research fields and by type of forest trees that were given priority by importance in forest ecosystems. Studies have in most cases been of applicative character with the aim of solving the major problems in forestry, but also of fundamental nature when they were necessary to elucidate the response of forest species to the induced stress, which is an inevitable component of the time characterized by tolerance and adaptation as keywords. [Projekat Ministarstva nauke Republike SRbije, br. III 43002: Biosenzing tehnologije i globalni sistem za kontinuirano istraživanje i integrisano upravljanje ekosistemima i br. III 43007: Istraživanje klimatskih promena i njihovog uticaja na životnu sredinu - praćenje uticaja, adaptacija i ublažavanje i IPA - OXIT

  6. Medical biotechnology trends and achievements in iran.

    Science.gov (United States)

    Mahboudi, Fereidoun; Hamedifar, Haleh; Aghajani, Hamideh

    2012-10-01

    A healthcare system has been the most important priority for all governments worldwide. Biotechnology products have affected the promotion of health care over the last thirty years. During the last several decades, Iran has achieved significant success in extending healthcare to the rural areas and in reducing the rates of infant mortality and increasing population growth. Biomedical technology as a converging technology is considered a helpful tool to fulfill the Iranian healthcare missions. The number of biotechnology products has reached 148 in 2012. The total sales have increased to 98 billion USD without considering vaccines and plasma derived proteins in 2012. Iran is one of the leading countries in the Middle East and North Africa in the area of Medical biotechnology. The number of biotechnology medicines launched in Iran is 13 products until 2012. More than 15 products are in pipelines now. Manufacturers are expecting to receive the market release for more than 8 products by the end of 2012. Considering this information, Iran will lead the biotechnology products especially in area of biosimilars in Asia after India in next three years. The present review will discuss leading policy, decision makers' role, human resource developing system and industry development in medical biotechnology.

  7. Magnetic separations: From steel plants to biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Cafer T. Yavuz; Arjun Prakash; J.T. Mayo; Vicki L. Colvin [Rice University, Houston, TX (United States). Department of Chemistry

    2009-05-15

    Magnetic separations have for decades been essential processes in diverse industries ranging from steel production to coal desulfurization. In such settings magnetic fields are used in continuous flow processes as filters to remove magnetic impurities. High gradient magnetic separation (HGMS) has found even broader use in wastewater treatment and food processing. Batch scale magnetic separations are also relevant in industry, particularly biotechnology where fixed magnetic separators are used to purify complex mixtures for protein isolation, cell separation, drug delivery, and biocatalysis. In this review, we introduce the basic concepts behind magnetic separations and summarize a few examples of its large scale application. HGMS systems and batch systems for magnetic separations have been developed largely in parallel by different communities. However, in this work we compare and contrast each approach so that investigators can approach both key areas. Finally, we discuss how new advances in magnetic materials, particularly on the nanoscale, as well as magnetic filter design offer new opportunities for industries that have challenging separation problems.

  8. Biological basis of beam application in biotechnology

    International Nuclear Information System (INIS)

    Heavy particle beams have relatively high value of linear energy transfer (LET), and relative biological effectiveness (RBE). There is a sharp increase in ionization density (LET) in the so-called Bragg peak, close to the end of each track. The LET and RBE may, therefore, be high at the distal edge of the biological target volume. It is well-known that as the LET is increased beyond about 30 keV/um the RBE increases to a peak at 100 to 110 keV/um and then falls. At the same time the oxygen-enhancement ratio (OER) decreases steadily. The reason of these events has a greater chance per unit dose of depositing a certain minimum energy of about 300 eV, that is, 10 to 15 ionizations into each biological target volume of 5 to 10 nm diameter. These biological targets may be pictured as double strands of DNA and histones, 2 or 3 nm in diameter, with a surrounding water sheath of a few nm thick. The drop of RBE with increasing LET past the peak of RBE is due to either overkill or the recombinations of electrons and ions and of chemical radicals in the higher LET track. Large new accelerators have allowed the effects of heavy particle irradiation to be investigated. In biotechnology, radiation methods have found application as tools to explore some basic problems and this aspect of radiation research is likely to expand in the future. (author)

  9. Biotechnology core facilities: trends and update.

    Science.gov (United States)

    Ivanetich, K M; Niece, R L; Rohde, M; Fowler, E; Hayes, T K

    1993-09-01

    A survey of 128 biotechnology core facilities has provided data on the finances, services, space requirements, and personnel. An average facility had four full-time personnel and 7.5 major instrument systems, and occupied 969 sq. ft. Average total income was $244,000/year, but annual user fee income was only $125,000. Typically, facilities required substantial institutional support or grants. Cost recovery (user fee income divided by total income) averaged 49%. During the last 5 years user fee income, total income, and cost recovery have increased. In-house charges for protein sequencing and peptide synthesis increased approximately 30%, while oligonucleotide synthesis charges decreased by 74%. The costs (charges corrected for subsidy from non-user fee income) for most services did not significantly change, except that oligonucleotide synthesis costs decreased by 25% in 1992. DNA synthesis had the highest throughout per month (116 samples), followed by amino acid analysis (86 samples) and DNA sequencing (67 samples). Other services averaged from 5 to 60 samples. DNA synthesis and purification were the services used by the greatest number of principal investigators. A number of services including DNA sequencing, mass spectrometry, capillary electrophoresis, RNA synthesis, electroblotting, and carbohydrate analysis have been introduced in the last 3 years. Although these services are characterized by high levels of methods development and non-user runs, they are offered by twice the percentage of facilities as in 1989, and are increasingly contributing to facility income. PMID:8375609

  10. Case studies on the use of biotechnologies and on biosafety provisions in four African countries

    OpenAIRE

    Black, R; F. Fava; Mattei, N.; Robert, Vincent; Seal, S; Verdier, Valérie

    2011-01-01

    This review is based on a study commissioned by the European Commission on the evaluation of scientific, technical and institutional challenges, priorities and bottlenecks for biotechnologies and regional harmonisation of biosafety in Africa. Biotechnology was considered within four domains: agricultural biotechnologies ('Green'), industrial biotechnologies and biotechnologies for environmental remediation ('White'), biotechnologies in aquaculture ('Blue') and biotechnologies for healthcare (...

  11. Epistemic Beliefs and Conceptual Understanding in Biotechnology: A Case Study

    Science.gov (United States)

    Rebello, Carina M.; Siegel, Marcelle A.; Witzig, Stephen B.; Freyermuth, Sharyn K.; McClure, Bruce A.

    2012-04-01

    The purpose of this investigation was to explore students' epistemic beliefs and conceptual understanding of biotechnology. Epistemic beliefs can influence reasoning, how individuals evaluate information, and informed decision making abilities. These skills are important for an informed citizenry that will participate in debates regarding areas in science such as biotechnology. We report on an in-depth case study analysis of three undergraduate, non-science majors in a biotechnology course designed for non-biochemistry majors. We selected participants who performed above average and below average on the first in-class exam. Data from multiple sources—interviews, exams, and a concept instrument—were used to construct (a) individual profiles and (b) a cross-case analysis of our participants' conceptual development and epistemic beliefs from two different theoretical perspectives—Women's Ways of Knowing and the Reflective Judgment Model. Two independent trained researchers coded all case records independently for both theoretical perspectives, with resultant initial Cohen's kappa values above .715 (substantial agreement), and then reached consensus on the codes. Results indicate that a student with more sophisticated epistemology demonstrated greater conceptual understandings at the end of the course than a student with less sophisticated epistemology, even though the latter performed higher initially. Also a student with a less sophisticated epistemology and low initial conceptual performance does not demonstrate gains in their overall conceptual understanding. Results suggest the need for instructional interventions fostering epistemological development of learners in order to facilitate their conceptual growth.

  12. Dissolved Oxygen Sensor in Animal-Borne Instruments: An Innovation for Monitoring the Health of Oceans and Investigating the Functioning of Marine Ecosystems.

    Directory of Open Access Journals (Sweden)

    Frederic Bailleul

    Full Text Available The current decline in dissolved oxygen concentration within the oceans is a sensitive indicator of the effect of climate change on marine environment. However the impact of its declining on marine life and ecosystems' health is still quite unclear because of the difficulty in obtaining in situ data, especially in remote areas, like the Southern Ocean (SO. Southern elephant seals (Mirounga leonina proved to be a relevant alternative to the traditional oceanographic platforms to measure physical and biogeochemical structure of oceanic regions rarely observed. In this study, we use a new stage of development in biologging technology to draw a picture of dissolved oxygen concentration in the SO. We present the first results obtained from a dissolved oxygen sensor added to Argos CTD-SRDL tags and deployed on 5 female elephant seals at Kerguelen. From October 2010 and October 2011, 742 oxygen profiles associated with temperature and salinity measurements were recorded. Whether a part of the data must be considered cautiously, especially because of offsets and temporal drifts of the sensors, the range of values recorded was consistent with a concomitant survey conducted from a research vessel (Keops-2 project. Once again, elephant seals reinforced the relationship between marine ecology and oceanography, delivering essential information about the water masses properties and the biological status of the Southern Ocean. But more than the presentation of a new stage of development in animal-borne instrumentation, this pilot study opens a new field of investigation in marine ecology and could be enlarged in a near future to other key marine predators, especially large fish species like swordfish, tuna or sharks, for which dissolved oxygen is expected to play a crucial role in distribution and behaviour.

  13. Dissolved Oxygen Sensor in Animal-Borne Instruments: An Innovation for Monitoring the Health of Oceans and Investigating the Functioning of Marine Ecosystems.

    Science.gov (United States)

    Bailleul, Frederic; Vacquie-Garcia, Jade; Guinet, Christophe

    2015-01-01

    The current decline in dissolved oxygen concentration within the oceans is a sensitive indicator of the effect of climate change on marine environment. However the impact of its declining on marine life and ecosystems' health is still quite unclear because of the difficulty in obtaining in situ data, especially in remote areas, like the Southern Ocean (SO). Southern elephant seals (Mirounga leonina) proved to be a relevant alternative to the traditional oceanographic platforms to measure physical and biogeochemical structure of oceanic regions rarely observed. In this study, we use a new stage of development in biologging technology to draw a picture of dissolved oxygen concentration in the SO. We present the first results obtained from a dissolved oxygen sensor added to Argos CTD-SRDL tags and deployed on 5 female elephant seals at Kerguelen. From October 2010 and October 2011, 742 oxygen profiles associated with temperature and salinity measurements were recorded. Whether a part of the data must be considered cautiously, especially because of offsets and temporal drifts of the sensors, the range of values recorded was consistent with a concomitant survey conducted from a research vessel (Keops-2 project). Once again, elephant seals reinforced the relationship between marine ecology and oceanography, delivering essential information about the water masses properties and the biological status of the Southern Ocean. But more than the presentation of a new stage of development in animal-borne instrumentation, this pilot study opens a new field of investigation in marine ecology and could be enlarged in a near future to other key marine predators, especially large fish species like swordfish, tuna or sharks, for which dissolved oxygen is expected to play a crucial role in distribution and behaviour. PMID:26200780

  14. New Developments in Biotechnology: U.S. Investment in Biotechnology. [Special Report.

    Science.gov (United States)

    Congress of the U.S., Washington, DC. Office of Technology Assessment.

    Since the discovery of recombinant DNA in the early 1970s, biotechnology has become an essential tool for many industries. The potential of biotechnology to improve the Nation's health, food supply, and the quality of the environment leads logically to questions of whether current levels of investment in research and development, human resources,…

  15. New Developments in Biotechnology: U.S. Investment in Biotechnology. Summary.

    Science.gov (United States)

    Congress of the U.S., Washington, DC. Office of Technology Assessment.

    Since the discovery of recombinant DNA in the early 1970s, biotechnology has become an essential tool for many industries. The potential of biotechnology to improve the Nation's health, food supply, and the quality of the environment leads logically to questions of whether current levels of investment in research and development, human resources,…

  16. Biotechnology Education. Engaging the Learner: Embedding Information Literacy Skills into a Biotechnology Degree

    Science.gov (United States)

    Ward, Helena; Hockey, Julie

    2007-01-01

    One of the challenges of the Biotechnology industry is keeping up to date with the rapid pace of change and that much of the information, which students learn in their undergraduate studies, will be out of date in a few years. It is therefore crucial that Biotechnology students have the skills to access the relevant information for their studies…

  17. Isotopic investigation of contemporary and historic changes in penguin trophic niches and carrying capacity of the southern Indian ocean.

    Directory of Open Access Journals (Sweden)

    Audrey Jaeger

    Full Text Available A temperature-defined regime shift occurred in the 1970s in the southern Indian Ocean, with simultaneous severe decreases in many predator populations. We tested a possible biological link between the regime shift and predator declines by measuring historic and contemporary feather isotopic signatures of seven penguin species with contrasted foraging strategies and inhabiting a large latitudinal range. We first showed that contemporary penguin isotopic variations and chlorophyll a concentration were positively correlated, suggesting the usefulness of predator δ¹³C values to track temporal changes in the ecosystem carrying capacity and its associated coupling to consumers. Having controlled for the Suess effect and for increase CO₂ in seawater, δ¹³C values of Antarctic penguins and of king penguins did not change over time, while δ¹³C of other subantarctic and subtropical species were lower in the 1970s. The data therefore suggest a decrease in ecosystem carrying capacity of the southern Indian Ocean during the temperature regime-shift in subtropical and subantarctic waters but not in the vicinity of the Polar Front and in southward high-Antarctic waters. The resulting lower secondary productivity could be the main driving force explaining the decline of subtropical and subantarctic (but not Antarctic penguins that occurred in the 1970s. Feather δ¹⁵N values did not show a consistent temporal trend among species, suggesting no major change in penguins' diet. This study highlights the usefulness of developing long-term tissue sampling and data bases on isotopic signature of key marine organisms to track potential changes in their isotopic niches and in the carrying capacity of the environment.

  18. Proteomics: A Biotechnology Tool for Crop Improvement

    Directory of Open Access Journals (Sweden)

    Moustafa eEldakak

    2013-02-01

    Full Text Available A sharp decline in the availability of arable land and sufficient supply of irrigation water along with a continuous steep increase in food demands have exerted a pressure on farmers to produce more with fewer resources. A viable solution to release this pressure is to speed up the plant breeding process by employing biotechnology in breeding programs. The majority of biotechnological applications rely on information generated from various -omic technologies. The latest outstanding improvements in proteomic platforms and many other but related advances in plant biotechnology techniques offer various new ways to encourage the usage of these technologies by plant scientists for crop improvement programs. A combinatorial approach of accelerated gene discovery through genomics, proteomics, and other associated -omic branches of biotechnology, as an applied approach, is proving to be an effective way to speed up the crop improvement programs worldwide. In the near future, swift improvements in -omic databases are becoming critical and demand immediate attention for the effective utilization of these techniques to produce next-generation crops for the progressive farmers. Here, we have reviewed the recent advances in proteomics, as tools of biotechnology, which are offering great promise and leading the path towards crop improvement for sustainable agriculture.

  19. Proteomics: a biotechnology tool for crop improvement.

    Science.gov (United States)

    Eldakak, Moustafa; Milad, Sanaa I M; Nawar, Ali I; Rohila, Jai S

    2013-01-01

    A sharp decline in the availability of arable land and sufficient supply of irrigation water along with a continuous steep increase in food demands have exerted a pressure on farmers to produce more with fewer resources. A viable solution to release this pressure is to speed up the plant breeding process by employing biotechnology in breeding programs. The majority of biotechnological applications rely on information generated from various -omic technologies. The latest outstanding improvements in proteomic platforms and many other but related advances in plant biotechnology techniques offer various new ways to encourage the usage of these technologies by plant scientists for crop improvement programs. A combinatorial approach of accelerated gene discovery through genomics, proteomics, and other associated -omic branches of biotechnology, as an applied approach, is proving to be an effective way to speed up the crop improvement programs worldwide. In the near future, swift improvements in -omic databases are becoming critical and demand immediate attention for the effective utilization of these techniques to produce next-generation crops for the progressive farmers. Here, we have reviewed the recent advances in proteomics, as tools of biotechnology, which are offering great promise and leading the path toward crop improvement for sustainable agriculture. PMID:23450788

  20. Medical Biotechnology: Problems and Prospects in Bangladesh

    Directory of Open Access Journals (Sweden)

    Shaikh Mizan

    2013-01-01

    Full Text Available Biotechnology is the knowledge and techniques of developing and using biological systems for deriving special products and services. The age-old technology took a new turn with the advent of recombinant DNA techniques, and boosted by the development of other molecular biological techniques, cell culture techniques and bioinformatics. Medical biotechnology is the major thrust area of biotechnology. It has brought revolutions in medicine – quick methods for diagnosing diseases, generation of new drugs and vaccines, completely novel approach of treatment are only a few to mention. The industrial and financial bulk of the industry mushroomed very rapidly in the last three decades, led by the USA and western advanced nations. Asian countries like China, India, South Korea, Taiwan and Singapore joined late, but advancing forward in a big way. In all the Asian countries governments supported the initiatives of the expert and entrepreneur community, and invested heavily in its development. Bangladesh has got great potential in developing biotechnology and reaping its fruits. However, lack of commitment and patriotism, and too much corruption and irresponsibility in political and bureaucratic establishment are the major hindrance to the development of biotechnology in Bangladesh.

  1. Biotechnology Approaches to Life Detection

    Science.gov (United States)

    Steele, Andrew; McKay, David; Schweitzer, Mary

    2001-01-01

    The direct detection of organic biomarkers for living or fossil microbes on Mars by an in situ instrument is a worthy goal for future lander missions. Several new and innovative biotechnology approaches are being explored. Firstly we have proposed an instrument based on immunological reactions to specific antibodies to cause activation of fluorescent stains. Antibodies are raised or acquired to a variety of general and specific substances that might be in Mars soil. These antibodies are then combined with various fluorescent stains and applied to micron sized numbered spots on a small (2-3 cm) test plate where they become firmly attached after freeze drying. Using technology that has been developed for gene mining in DNA technology up to 10,000 tests per square inch can now be applied to a test plate. On Mars or the planet/moon of interest, a sample of soil from a trench or drill core is extracted with water and/or an organic solvent and ultrasonication and then applied to the test plate. Any substance, which has an antibody on the test plate, will react with its antibody and activate its fluorescent stain. At the moment a small UV light source will illuminate the test plate, which is observed with a small CCD camera, although other detection systems will be applied. The numbered spots that fluoresce indicate the presence of the tested-for substance, and the intensity indicates relative amounts. Furthermore with up to a thousand test plates available false positives and several variations of antibody can also be screened for. The entire instrument can be quite small and light, on the order of 10 cm in each dimension. A possible choice for light source may be small UV lasers at several wavelengths. Some of the wells or spots can contain simply standard fluorescent stains used to detect live cells, dead cells, DNA, etc. The stains in these spots may be directly activated, with no antibodies being necessary. The proposed system will look for three classes of

  2. Investigation of thallium fluxes from subaerial volcanism-Implications for the present and past mass balance of thallium in the oceans

    Science.gov (United States)

    Baker, R.G.A.; Rehkamper, M.; Hinkley, T.K.; Nielsen, S.G.; Toutain, J.P.

    2009-01-01

    A suite of 34 volcanic gas condensates and particulates from Kilauea (Hawaii), Mt. Etna and Vulcano (Italy), Mt. Merapi (Indonesia), White Island and Mt. Nguaruhoe (New Zealand) were analysed for both Tl isotope compositions and Tl/Pb ratios. When considered together with published Tl-Pb abundance data, the measurements provide globally representative best estimates of Tl/Pb = 0.46 ?? 0.25 and ??205Tl = -1.7 ?? 2.0 for the emissions of subaerial volcanism to the atmosphere and oceans (??205Tl is the deviation of the 205Tl/203Tl isotope ratio from NIST SRM 997 isotope standard in parts per 10,000). Compared to igneous rocks of the crust and mantle, volcanic gases were found to have (i) Tl/Pb ratios that are typically about an order of magnitude higher, and (ii) significantly more variable Tl isotope compositions but a mean ??205Tl value that is indistinguishable from estimates for the Earth's mantle and continental crust. The first observation can be explained by the more volatile nature of Tl compared to Pb during the production of volcanic gases, whilst the second reflects the contrasting and approximately balanced isotope fractionation effects that are generated by partial evaporation of Tl during magma degassing and partial Tl condensation as a result of the cooling and differentiation of volcanic gases. Mass balance calculations, based on results from this and other recent Tl isotope studies, were carried out to investigate whether temporal changes in the volcanic Tl fluxes could be responsible for the dramatic shift in the ??205Tl value of the oceans at ???55 Ma, which has been inferred from Tl isotope time series data for ferromanganese crusts. The calculations demonstrate that even large changes in the marine Tl input fluxes from volcanism and other sources are unable to significantly alter the Tl isotope composition of the oceans. Based on modelling, it is shown that the large inferred change in the ??205Tl value of seawater is best explained if the oceans

  3. Investigation and discussion of marine structures integrated with ocean energy devices%海工构筑物海洋能集成利用技术探讨

    Institute of Scientific and Technical Information of China (English)

    王树杰; 王举田; 刘锦昆; 袁鹏; 刘臻; 徐志刚; 季文峰

    2015-01-01

    将海工构筑物作为海洋能获能装置的安装载体可大幅降低海洋能发电的成本,同时,海工构筑物等海上设施客观上存在利用海洋能实现能量供应的需求,因此海洋能发电装置与海工构筑物相互结合具有良好的综合效益,将是未来海洋能利用的一个发展方向。针对波浪能和潮流能两种海洋能发电方式,分别对柔性叶片潮流能水轮机与进海路集成利用技术;垂直轴和水平轴潮流能水轮机以及振荡浮子式波能装置与导管架石油平台集成利用技术;OWC波能装置与沉箱防波堤集成利用技术进行了探讨,并提出海工构筑物海洋能集成利用技术中需要解决的几点问题。%Ocean energy devices installed on marine structures can greatly reduce the cost of ocean energy power generation. On the other hand, marine structures such as offshore installations need to gain power generated by ocean energy nearby. Therefore, marine structures equipped with ocean energy devices have comprehensive benefits, which will be developed in the future. According to the classification of ocean energy power generation utilizing wave and tidal current, some types of integrated utilization are investigated and discussed, such as flexible tidal current turbines integrated with perforated sea roads, vertical and horizontal tidal current turbines integrated with jacket platforms, oscillating buoys integrated with jacket platforms and OWC wave energy devices integrated with caisson breakwaters. At the same time, some questions and suggestions are put forward in order to make the utilization mature.

  4. Applications of Protein Hydrolysates in Biotechnology

    Science.gov (United States)

    Pasupuleti, Vijai K.; Holmes, Chris; Demain, Arnold L.

    By definition, protein hydrolysates are the products that are obtained after the hydrolysis of proteins and this can be achieved by enzymes, acid or alkali. This broad definition encompasses all the products of protein hydrolysis - peptides, amino acids and minerals present in the protein and acid/alkali used to adjust pH (Pasupuleti 2006). Protein hydrolysates contain variable side chains depending on the enzymes used. These side chains could be carboxyl, amino, imidazole, sulfhydryl, etc. and they may exert specific physiological roles in animal, microbial, insect and plant cells. This introductory chapter reviews the applications of protein hydrolysates in biotechnology. The word biotechnology is so broad and for the purpose of this book, we define it as a set of technologies such as cell culture technology, bioprocessing technology that includes fermentations, genetic engineering technology, microbiology, and so on. This chapter provides introduction and leads to other chapters on manufacturing and applications of protein hydrolysates in biotechnology.

  5. Organisation of biotechnological information into knowledge.

    Science.gov (United States)

    Boh, B

    1996-09-01

    The success of biotechnological research, development and marketing depends to a large extent on the international transfer of information and on the ability to organise biotechnology information into knowledge. To increase the efficiency of information-based approaches, an information strategy has been developed and consists of the following stages: definition of the problem, its structure and sub-problems; acquisition of data by targeted processing of computer-supported bibliographic, numeric, textual and graphic databases; analysis of data and building of specialized in-house information systems; information processing for structuring data into systems, recognition of trends and patterns of knowledge, particularly by information synthesis using the concept of information density; design of research hypotheses; testing hypotheses in the laboratory and/or pilot plant; repeated evaluation and optimization of hypotheses by information methods and testing them by further laboratory work. The information approaches are illustrated by examples from the university-industry joint projects in biotechnology, biochemistry and agriculture.

  6. Biotechnological Aspects of Microbial Extracellular Electron Transfer

    Science.gov (United States)

    Kato, Souichiro

    2015-01-01

    Extracellular electron transfer (EET) is a type of microbial respiration that enables electron transfer between microbial cells and extracellular solid materials, including naturally-occurring metal compounds and artificial electrodes. Microorganisms harboring EET abilities have received considerable attention for their various biotechnological applications, in addition to their contribution to global energy and material cycles. In this review, current knowledge on microbial EET and its application to diverse biotechnologies, including the bioremediation of toxic metals, recovery of useful metals, biocorrosion, and microbial electrochemical systems (microbial fuel cells and microbial electrosynthesis), were introduced. Two potential biotechnologies based on microbial EET, namely the electrochemical control of microbial metabolism and electrochemical stimulation of microbial symbiotic reactions (electric syntrophy), were also discussed. PMID:26004795

  7. Needed: models of biotechnology intellectual property.

    Science.gov (United States)

    Gold, E Richard; Castle, David; Cloutier, L Martin; Daar, Abdallah S; Smith, Pamela J

    2002-08-01

    Although never uncontroversial, intellectual property rights in biotechnological innovation are once more the focus of intense debate. The debate has yet to reach any result, largely because of several important errors in the way that various disciplines approach it. These errors include making assumptions without empirical basis and conflating various intellectual property regimes. What is needed is a transdisciplinary integrated method to correct these errors. Such a method can be implemented through the construction of alternative models of intellectual property protection designed to balance the various social, ethical and economic constraints that affect biotechnology.

  8. Biotechnological applications of extremophiles, extremozymes and extremolytes

    KAUST Repository

    Raddadi, Noura

    2015-08-14

    In the last decade, attention to extreme environments has increased because of interests to isolate previously unknown extremophilic microorganisms in pure culture and to profile their metabolites. Microorganisms that live in extreme environments produce extremozymes and extremolytes that have the potential to be valuable resources for the development of a bio-based economy through their application to white, red, and grey biotechnologies. Here, we provide an overview of extremophile ecology, and we review the most recent applications of microbial extremophiles and the extremozymes and extremolytes they produce to biotechnology.

  9. Wood production, wood technology, and biotechnological impacts.

    OpenAIRE

    2007-01-01

    In the year 2001, Prof. Dr. Ursula Kües was appointed at the Faculty of Forest Sciences and Forest Ecology of the Georg-August-University Göttingen to the chair Molecular Wood Biotechnology endowed by the Deutsche Bundesstiftung Umwelt (DBU). Her group studies higher fungi in basic and applied research. Research foci are on mushroom development and on fungal enzymes degrading wood and their applications in wood biotechnology. This book has been edited to thank the DBU for all support given to...

  10. Biotechnology and medicine of the future

    International Nuclear Information System (INIS)

    The practice of biology and medicine has been revolutionized during the past ten years by the advent of three biotechnologies-recombinant DNA techniques, the monoclonal antibody technology, and the development of microchemical instrumentation, machines that permit the rapid and effective synthesis and sequence analysis of proteins and genes. In this article, these powerful biotechnologies are discussed, with particular emphasis on microchemical instrumentation, a major focus of my efforts for the past 15 years. The author also discusses two fundamental problems in modern medicine that are being explored in the laboratory using these techniques-genetic engineering of the nervous system and the mapping and sequencing of the human genome

  11. Numerical investigations of the fluid flows at deep oceanic and arctic permafrost-associated gas hydrate deposits

    Science.gov (United States)

    Frederick, Jennifer Mary

    older than the host sediment. Old pore fluid age may reflect complex flow patterns, such a fluid focusing, which can cause significant lateral migration as well as regions where downward flow reverses direction and returns toward the seafloor. Longer pathlines can produce pore fluid ages much older than that expected with a one-dimensional compaction model. For steady-state models with geometry representative of Blake Ridge (USA), a well-studied hydrate province, pore fluid ages beneath regions of topography and within fractured zones can be up to 70 Ma old. Results suggest that the measurements of 129-I/127-I reflect a mixture of new and old pore fluid. However, old pore fluid need not originate at great depths. Methane within pore fluids can travel laterally several kilometers, implying an extensive source region around the deposit. Iodine age measurements support the existence of fluid focusing beneath regions of seafloor topography at Blake Ridge, and suggest that the methane source at Blake Ridge is likely shallow. The response of methane hydrate reservoirs to warming is poorly understood. The great depths may protect deep oceanic hydrates from climate change for the time being because transfer of heat by conduction is slow, but warming will eventually be felt albeit in the far future. On the other hand, unique permafrost-associated methane hydrate deposits exist at shallow depths within the sediments of the circum-Arctic continental shelves. Arctic hydrates are thought to be a relict of cold glacial periods, aggrading when sea levels are much lower and shelf sediments are exposed to freezing air temperatures. During interglacial periods, rising sea levels flood the shelf, bringing dramatic warming to the permafrost- and hydrate-bearing sediments. Permafrost-associated methane hydrate deposits have been responding to warming since the last glacial maximum ~18 kaBP as a consequence of these natural glacial cycles. This `experiment,' set into motion by nature itself

  12. Advances in optics for biotechnology, medicine and surgery

    OpenAIRE

    Fitzmaurice, Maryann; Pogue, Brian W.; Tearney, Guillermo J.; Tunnell, James W.; Yang, Changhuei

    2014-01-01

    The editors introduce the Biomedical Optics Express feature issue, “Advances in Optics for Biotechnology, Medicine and Surgery,” which includes 12 contributions from attendees of the 2011 conference Advances in Optics for Biotechnology, Medicine and Surgery XII.

  13. What Ideas Do Students Associate with "Biotechnology" and "Genetic Engineering"?

    Science.gov (United States)

    Hill, Ruaraidh; Stanisstreet, Martin; Boyes, Edward

    2000-01-01

    Explores the ideas that students aged 16-19 associate with the terms 'biotechnology' and 'genetic engineering'. Indicates that some students see biotechnology as risky whereas genetic engineering was described as ethically wrong. (Author/ASK)

  14. Initiatives on a sustainable development strategy for Finnish biotechnology

    OpenAIRE

    Hermans, Raine; Kulvik, Martti

    2005-01-01

    The need for the strategic initiatives for biotechnology strategy emerged in interviews with 90 Finnish biotechnology leaders in the ETLA Biotechnology Survey, conducted at the end of 2004. This paper discusses on the policy implications for the project on “The biotechnology industry as a part of the Finnish National Innovation System” financed by Tekes, the National Technology Agency of Finland. Tekes has strongly encouraged the formation of policy implications and strategic initiatives for ...

  15. Energy Crop and Biotechnology for Biofuel Production

    Institute of Scientific and Technical Information of China (English)

    Liangcai Peng; Neal Gutterson

    2011-01-01

    @@ Selection of energy crops is the first priority for large-scale biofuel production in China.As a major topic, it was extensively discussed in the Second International Symposium on Bioenergy and Biotechnology, held from October 16-19(th), 2010 in Huazhong Agricultural University(HZAU), Wuhan, China, with more than one hundred registered participants(Figure 1).

  16. Biotechnologizing Jatropha for local sustainable development

    NARCIS (Netherlands)

    Puente, D.

    2010-01-01

    This article explores whether and how the biotechnologization process that the fuel-plant Jatropha curcas is undergoing might strengthen local sustainable development. It focuses on the ongoing efforts of the multi-stakeholder network Gota Verde to harness Jatropha within local small-scale productio

  17. National strategy of safety of biotechnology

    International Nuclear Information System (INIS)

    This document was drafted in the frame of the sustainable development, the social fairness, the citizen participation; in Bolivia the management of the biotechnology and the security of the same one are identified for the first time to the actors involved in constituting in a document for the sustainable management of the conservation and sustainable use of the biodiversity in Bolivia

  18. Opportunities for energy conservation through biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Young, J.K.; Griffin, E.A.; Russell, J.A.

    1984-11-01

    The purpose of this study is to identify and quantify potential energy savings available through the development and application of biotechnologies. This information is required in support of ECUT research planning efforts as an aid in identifying promising areas needing further consideration and development. It is also intended as background information for a companion ECUT study being conducted by the National Academy of Science to evaluate the use of bioprocessing methods to conserve energy. Several studies have been conducted recently to assess the status and implications of the development of biotechnology. The Office of Technology Assessment (OTA) considered institutional, economic, and scientific problems and barriers. The National Science Foundation sponsored a study to examine regulatory needs for this new and expanding technology. Somewhat in contrast to these studies, this report covers principally the technical issues. It should be emphasized that the practicality of many developments in biotechnology is not evaluated solely on the basis of energy considerations. Bioprocesses must often compete with well-established coal, petroleum, and natural gas technologies. A complete evaluation of the technical, economical, and ecological impacts of the large-scale applications discussed in this report is not possible within the scope of this study. Instead, this report assesses the potential of biotechnology to save energy so that research into all aspects of implementation will be stimulated for those industries with significant energy savings potential. 92 references, 6 figures, 24 tables.

  19. Final report, International Symposium on Environmental Biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Wise, Donald L.

    2000-03-20

    This meeting included technical presentations of state-of-the-art research which were integrated with tutorials and workshops by practicing technologies in the broad field of environmental biotechnology. This meeting was designed to be, in every respect, truly global. Over 150 excellent abstracts from around the world were accepted. For example, presentations were heard from technical workers in Southeast Asia, Russia, China, Europe, North Africa, India, and the US. By having these selected presenters, as well as identified experienced tutors with focused workshops, all participants benefited from this interactive symposium. A number of social events further promoted informal exchange of ideas, discussions of technical problems, and exploration of new applications. This international symposium on environmental biotechnology was on the campus of Northeastern University but all Boston area universities were included and participated using designed conference Co-Chairs. This symposium, with an attendance of several hundred people, was considered a major success. Workers with experience in one area of environmental biotechnology learned from the wealth of established backgrounds of those in other areas of environmental biotechnology. To formally disseminate conference results, it was pre-arranged that all technical presentations were reviewed for formal publications.

  20. Sugarcane Improvement Through Breeding and Biotechnology

    Science.gov (United States)

    The advancements in sugarcane breeding and the improvement of sugarcane through biotechnology have been reviewed by a team of leading sugarcane specialists from around the world. Topics covered in the breeding section include the evolution and origin of sugarcane, early history of conventional sugar...

  1. Novel gene expression tools for rice biotechnology

    Science.gov (United States)

    Biotechnology is an effective and important method of improving both quality and agronomic traits in rice. We are developing novel molecular tools for genetic engineering, with a focus on developing novel transgene expression control elements (i.e. promoters) for rice. A suite of monocot grass promo...

  2. Biotechnology Education in India: An Overview

    Science.gov (United States)

    Joshi, Kirti; Mehra, Kavita; Govil, Suman; Singh, Nitu

    2013-01-01

    Among the developing countries, India is one of those that recognises the importance of biotechnology. The trajectory of different policies being formulated over time is proof that the government is progressing towards achieving self-sufficiency. However, to cater to the ever-growing biotech industry, skilled manpower is required. This article…

  3. [The new Colombian criminal code and biotechnology].

    Science.gov (United States)

    González de Cancino, Emilssen

    2002-01-01

    The author describes the process by which new offenses concerning biotechnology have been included in Colombia's Penal Code and discusses some of the more controversial aspects involved. She examines the various stages of the passage of the Bill through Parliament and the modifications undergone. She also provides well-argued criticism of the text, with appropriate reference to Constitutional provisions regarding the rights concerned.

  4. Design for values in agricultural biotechnology

    NARCIS (Netherlands)

    Belt, van den Henk

    2015-01-01

    Agricultural biotechnology dates from the last two decades of the twentieth century. It involves the creation of plants and animals with new useful traits by inserting one or more genes taken from other species. New legal possibilities for patenting transgenic organisms and isolated genes have be

  5. Public Germplasm Collections and Revolutions in Biotechnology

    Science.gov (United States)

    Public germplasm collections provided the biological material critical for launching the three most important revolutions in modern biotechnology: (i) An isolate of Penicillium chrysogenum, NRRL 1951, the basis for industrial production of penicillan, originated from the ARS Culture Collection in Pe...

  6. Personality and Impersonality in Biotechnology Discourse

    DEFF Research Database (Denmark)

    Lassen, Inger

    2006-01-01

    With the emergence of biotechnology, the field account has been replaced by something that we may refer to as a laboratory account - a kind of narrative that constitutes the Materials and Methods section of the IMRD model (introduction, methods, results and discussion). Research focusing on field...

  7. The Brave New World of Biotechnology

    Science.gov (United States)

    Reese, Susan

    2004-01-01

    Is it the science that will save the world from starvation, or will it mean the end of the world as it is known? While some people fear genetically altered "Frankenfoods" and DNA experiments with pathogenic microorganisms that could result in worldwide epidemics, others view biotechnology as using biological organisms to make products that benefit…

  8. Use of biotechnology in flax germplasm development

    International Nuclear Information System (INIS)

    Full text: Andro, CDC Normandy, CDC Triffid, and Linola 989 are examples of flax varieties that have been developed through the application of biotechnology. Somaclonal variation, cell selection, haploid breeding, mutagenesis, genetic engineering and molecular marker development are all being employed in flax germplasm development. Tissue culture techniques such as somaclonal variation (CDC Normandy) and cell selection (Andro) have been successful, but the greatest potential for the use of tissue culture methodology is the application of haploid breeding. While a number of groups worldwide have had limited success in producing doubled haploid plants from anther and/or microspore culture [Chen et al. 1998, Plant Breeding 117: 463; Friedt et al. 1995, Plant Breeding 114: 322; Nichterlein and Friedt 1993, Plant Cell Rep. 12: 426], the frequency of regeneration has limited its application in variety development. Several groups are currently using anther culture within their breeding programs, but the ultimate success of haploid breeding will undoubtedly depend on developing an efficient microspore-derived system for doubled haploid production. Perhaps the most successful technique to date, in terms of germplasm development, has been the use of mutagenesis. The Linola types [Dribnenki et al. 1996, Can. J. Plant Sci. 76:329; Dribnenki and Green 1995, Can. J. Plant Sci. 75: 201], have already been released, and other modified oil types are currently being developed [Saeidi and Rowland 1997, J. Hered. 88: 466; Ntiamoah et al. 1995, Crop Sci. 35: 148]. Additional traits being investigated in mutagenized populations include seed colour, reduced levels of anti nutritional factors in seed, increased nutraceutical content, and traits of agronomic interest. For example, screening of an EMS-treated population of McGregor flax at the Crop Development Centre identified three mutant lines which had greatly reduced levels of cyanogenic glucosides. Flax has proven to be amenable to

  9. Biotechnology and energy. Report of a workshop on research needs, July 2, 1984

    Energy Technology Data Exchange (ETDEWEB)

    1984-08-01

    A group of investigators from industry and academe, representing most of the fields that may be placed under the description biotechnology met to select, in order of priority, subject matter for workshops to be held over the next year to address research that appears to be required if biotechnology is to be used in the areas of (1) energy waste detoxification and (2) fuel and/or petrochemical synthesis. Particular focus was placed upon long-term research, which industry would not be expected to perform because of its generic nature and uncertain economic benefits.

  10. Lithuanian University Students' Knowledge of Biotechnology and Their Attitudes to the Taught Subject

    Science.gov (United States)

    Lamanauskas, Vincentas; Makarskaite-Petkeviciene, Rita

    2008-01-01

    The impact of genetic engineering on peoples' everyday life has become present reality. In order to establish the level of the available schoolchildren and university students' knowledge of biotechnology, various investigations have been conducted. However, the current situation in Lithuania remains unclear. A total of 287 students--pre-service…

  11. Investigating the spring bloom initiation and net community production in the Subantarctic Southern Ocean using high-resolution in situ glider data

    Science.gov (United States)

    thomalla, sandy; Racault, Marie-Fanny; Swart, Sebastiaan; Monteiro, Pedro

    2014-05-01

    Phytoplankton bloom phenology has important consequences for marine ecosystems, fisheries and carbon export to the ocean interior. As such, it is important to examine the drivers of phytoplankton bloom initiation and their sensitivity to inter-annual climate variability and change. In this study we use ~6 months of in-situ high-resolution glider data to investigate the spring bloom initiation in the subantarctic zone (SAZ) of the Southern Ocean by implementing three different methods; a rate of change method, a threshold method and a cumulative sum method. The bloom initiation dates are critically compared to one another and the drivers of discrepancies assessed to inform on the sensitivities of different methods to processes driving the seasonal evolution of phytoplankton biomass in the subantarctic. The bloom initiation dates combined with in situ glider data of chlorophyll, light, and mixed layer depth allow us to resolve both Sverdrup's Critical Depth and Behrenfeld's Disturbance Recovery models through the water column and thus determine the seasonal evolution of net community production and respiration rates and the potential for carbon export. The outputs of the two different models are compared to one another in the context of their sensitivities to water column processes thereby refining their ability to address specific system scale questions. The novelty of this study is that gliders provide an unprecedented dataset to assess the seasonal cycle of phytoplankton biomass throughout the water column at high resolution, thus enhancing our understanding of net community production and export processes at submeso-space and sub-seasonal time scales.

  12. Investigating the association of fish abundance and biomass with cold-water corals in the deep Northeast Atlantic Ocean using a generalised linear modelling approach

    Science.gov (United States)

    Biber, Matthias F.; Duineveld, Gerard C. A.; Lavaleye, Marc S. S.; Davies, Andrew J.; Bergman, Magda J. N.; van den Beld, Inge M. J.

    2014-01-01

    Cold-water corals (CWC) can form complex three-dimensional structures that can support a diverse macro- and megafaunal community. These reef structures provide important biogenic habitats that can act as refuge, feeding, spawning and nursery areas for fish. However, quantitative data assessing the linkage between CWC and fish are scarce. The North Atlantic Ocean is a key region in the worldwide distribution of Lophelia pertusa, which is thought to be the most widespread frame-work forming cold-water coral species in the world. This study examined the relationship between fish and CWC reefs in the northeast Atlantic Ocean by means of video and remotely sensed data from three different CWC communities (Rockall Bank, Hatton Bank and the Belgica Mound Province). Using a tethered camera system, 37 transects were recorded during a period of 8 years. Fish-coral association was investigated using a generalised linear modelling (GLM) approach. Overall, Lepidion eques was the most abundant fish species present (143 ind. ha-1). Other common species were Sigmops bathyphilus (17 ind. ha-1), Synaphobranchus kaupii (15 ind. ha-1), Helicolenus dactylopterus (16 ind. ha-1) and Mora moro (7 ind. ha-1). The highest fish biomass was measured for Lophius piscatorius (26.3 kg ha-1). Other species with a high biomass were Helicolenus dactylopterus (4.3 kg ha-1), Lepidion eques (13.2 kg ha-1) and Mora moro (7.8 kg ha-1). Overall, no significant difference in fish abundance and biomass was found at coral framework habitats compared to non-coral areas. The relationship between fish and coral framework varied among fish species and study site. Fish count and length modelling results showed that terrain variables explain a small proportion of the variation of our data. Depth, coral-framework and terrain rugosity were generally the most important explanatory variables, but this varied with species and study site.

  13. Biotechnology and DNA vaccines for aquatic animals

    Science.gov (United States)

    Kurath, G.

    2008-01-01

    Biotechnology has been used extensively in the development of vaccines for aquaculture. Modern molecular methods such as polymerase chain reaction (PCR), cloning and microarray analysis have facilitated antigen discovery, construction of novel candidate vaccines, and assessments of vaccine efficacy, mode of action, and host response. This review focuses on DNA vaccines for finfish to illustrate biotechnology applications in this field. Although DNA vaccines for fish rhabdoviruses continue to show the highest efficacy, DNA vaccines for several other viral and bacterial fish pathogens have now been proven to provide significant protection against pathogen challenge. Studies of the fish rhabdovirus DNA vaccines have elucidated factors that affect DNA vaccine efficacy as well as the nature of the fish innate and adaptive immune responses to DNA vaccines. As tools for managing aquatic animal disease emergencies, DNA vaccines have advantages in speed, flexibility, and safety, and one fish DNA vaccine has been licensed.

  14. Biotechnology/materials: The growing interface

    Science.gov (United States)

    Decker, Raymond F.

    1986-01-01

    The biotechnology/materials interaction dates back 3.5 billion years, yet today offers novel challenges for human creativity. The materials cycle practiced by microorganisms is compared to that recently practiced by humans. The processes of the biotechnology materials cycle are biogenesis, bioleaching, biofouling, biocorrosion, biodeterioration, and bioaccumulation. Each process is examined for mechanisms, scale of effect, and opportunity for creative human intervention or utilization. More than 50 of our metallic elements are bio-processed in nature. A like number of biogenic materials have been identified, with some at production rates of trillions of kg per annum (p.a.). Microorganisms can substitute for energy, capital, and labor. Over the eons, microorganisms have gained special attributes that now offer creative humans a new era of partnership in materials processing.

  15. Investigations on distributions and fluxes of sea-air CO2 of the expedition areas in the Arctic Ocean

    Institute of Scientific and Technical Information of China (English)

    WANG; Weiqiang; (王伟强); CHEN; Liqi; (陈立奇); YANG; Xulin; (杨绪林); HUANG; Xuanbao; (黄宣宝)

    2003-01-01

    The distributions and fluxes of sea-air carbon dioxide were investigated the first time based on the firsthand data collected during the First Chinese National Arctic Research Expedition. The results revealed that values of atmospheric CO2 partial pressure (Pa) measured in the summer during the expedition fell between 352 and 370 ((10-6CO2·Air-1, same unit below) with an average value of 358. Particularly, Pa appeared high in the northern sea areas of Poitlay. However, the values of CO2 partial pressure at the surface layer of seawater (Pw) ranged from 98 to 580 with the difference between the low and high being 472. The average value of Pw was 242, which is 116 lower than that of the corresponding Pa. In addition, the distribution of Pw was roughly low in the west and north, but high in the east and south. These phenomena were closely related to plankton, ice, water temperature and circulation of the region. The estimation in carbon fluxes showed that the patterns in distribution were similar through different calculating methods with an exception in eastern sea areas of the region where a weak source of atmospheric CO2 was indicated. Most sea areas of the region were sinks or strong sinks of atmospheric CO2. However, the magnitudes in the fluxes were different. The average values varied from 6.57 (Liss method) to 26.32 mg(CO2·m-2·h-1 (14C method) with a difference of about 4 times between the low and high, which is 2 to 10 times as high as the global average. Compared with the fluxes in the same region obtained using model of Takahashi, Feely et al., the values determined based on Wanninkhof coefficient calculation were 2.38 times as great as those obtained by them.

  16. UNIVERSITY BASIC RESEARCH AND APPLIED AGRICULTURAL BIOTECHNOLOGY

    OpenAIRE

    Xia, Yin

    2004-01-01

    I examine the effects of R&D inputs on the subset of life-science outputs which demonstrably has influenced later technology, as evidenced by literature citations in agricultural biotechnology patents. Universities are found to be a principal seedbed for cutting-edge technology development. A university's life-science research budget strongly affects its technology-relevant life-science output as well as graduate education.

  17. The Nose Knows: Biotechnological Production of Vanillin

    OpenAIRE

    Winter, Remko T.; van Beek, Hugo L.; Fraaije, Marco W.

    2012-01-01

    Vanillin, the compound responsible for the well-known vanilla aroma, is almost exclusively produced via a chemical process, with only a small fraction extracted from natural sources, namely, the bean of the orchid Vanilla planifolia. Research is being done towards a green chemistry process to obtain natural vanillin. A model biotechnological process is described that exposes students to the essentials of a greener, chemoenzymatic synthesis of vanillin in a multiday laboratory experiment. Bact...

  18. Novel oscillatory flow reactors for biotechnological applications

    OpenAIRE

    Reis, N.

    2006-01-01

    Tese de Doutoramento em Engenharia Química e Biológica This thesis explores the biotechnological applications of two novel scale-down oscillatory flow reactors (OFRs). A micro-bioreactor (working mostly in batch) and a continuous meso-reactor systems were developed based on a 4.4 mm internal diameter tube with smooth periodic constrictions (SPC), both operating under oscillatory flow mixing (OFM). The first part is dedicated to the flow characterisation in the novel SPC geom...

  19. Biotechnology for Chemical Production: Challenges and Opportunities.

    Science.gov (United States)

    Burk, Mark J; Van Dien, Stephen

    2016-03-01

    Biotechnology offers a new sustainable approach to manufacturing chemicals, enabling the replacement of petroleum-based raw materials with renewable biobased feedstocks, thereby reducing greenhouse gas (GHG) emissions, toxic byproducts, and the safety risks associated with traditional petrochemical processing. Development of such bioprocesses is enabled by recent advances in genomics, molecular biology, and systems biology, and will continue to accelerate as access to these tools becomes faster and cheaper.

  20. Biotechnology for Chemical Production: Challenges and Opportunities.

    Science.gov (United States)

    Burk, Mark J; Van Dien, Stephen

    2016-03-01

    Biotechnology offers a new sustainable approach to manufacturing chemicals, enabling the replacement of petroleum-based raw materials with renewable biobased feedstocks, thereby reducing greenhouse gas (GHG) emissions, toxic byproducts, and the safety risks associated with traditional petrochemical processing. Development of such bioprocesses is enabled by recent advances in genomics, molecular biology, and systems biology, and will continue to accelerate as access to these tools becomes faster and cheaper. PMID:26683567

  1. Reproductive biotechnologies in Swedish male alpacas

    OpenAIRE

    Abraham, Maria Celina

    2016-01-01

    Alpacas have become more popular during the last decades. The herds have been built up by importing live animals since reproductive biotechnologies, for example artificial insemination and semen preservation, are not well-developed in this species. A major problem is the viscosity of the seminal plasma which hinders processing or evaluation of the semen. Enzymes have been used to deal with the viscous seminal plasma but they may damage spermatozoa or render them incapable of fertilization. Th...

  2. New challenges and opportunities for industrial biotechnology

    OpenAIRE

    Chen Guo-Qiang

    2012-01-01

    Abstract Industrial biotechnology has not developed as fast as expected due to some challenges including the emergences of alternative energy sources, especially shale gas, natural gas hydrate (or gas hydrate) and sand oil et al. The weaknesses of microbial or enzymatic processes compared with the chemical processing also make industrial biotech products less competitive with the chemical ones. However, many opportunities are still there if industrial biotech processes can be as similar as th...

  3. Electrodes and Electrokinetic Systems for Biotechnological Applications

    OpenAIRE

    Nilsson, Sara

    2015-01-01

    Research in bioelectronics studies biological systems and materials in combination with electronic interfaces for the development of devices, e.g., for medical applications, drug and toxicity tests, and biotechnology in general. Neural implants and pacemakers are examples of products developed from this area of research. Conducting polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) bridge biology and electronics with a combination of biocompatibility, flexibility, and capability to the...

  4. Microencapsulation in food science and biotechnology.

    Science.gov (United States)

    Nazzaro, Filomena; Orlando, Pierangelo; Fratianni, Florinda; Coppola, Raffaele

    2012-04-01

    Microencapsulation can represent an excellent example of microtechnologies applied to food science and biotechnology. Microencapsulation can be successfully applied to entrap natural compounds, like essential oils or vegetal extracts containing polyphenols with well known antimicrobial properties to be used in food packaging. Microencapsulation preserves lactic acid bacteria, both starters and probiotics, in food and during the passage through the gastrointestinal tract, and may contribute to the development of new functional foods.

  5. Status of coal biotechnology in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    M. Afzal Ghauri; M.A. Anwar; N. Akhtar; R. Haider; A. Tawab [National Institute for Biotechnology and Genetic Engineering, Faisalabad (Pakistan)

    2009-07-01

    Pakistan is endued with 185 billion tons colossal reserves of coal, but only 7.89 % of the country total energy requirements are met by coal. Most of the Pakistani coal reserves are sub-bituminous or lignitic in nature and contain 3-12 % sulphur. Existence of sulphur compounds in coal limits its industrial application due to environmental as well as technical problems. However, coal biotechnology can emerge as panacea for upgrading the huge reserves of coal in Pakistan. In general, coal biotechnology refers to biodesulphurization, biosolubilization and biogasification of coal. NIBGE has long term interests in the field of coal bioprocessing for tapping prime resources of indigenous coal. In NIBGE, lab scale experiments for coal biodesulphurization led to 90% efficiency in sulphur removal. Heap leaching was also carried out at the level of 10 and 20 tons coal heaps with 60% sulphur removal efficiency. Furthermore, a prototype of 300 tons coal heap was set up with a local cement industry and 75% microbial desulphurization was achieved. The league of indigenously isolated chemolithotrophic bacteria was involved in coal desulphurization. On the other side, for making the best use of 175 billion tons of low rank coal reserves, coal biosolubilization and subsequent biogasification is being projected. Consequently, beneficiated coal through biotechnology is supposed to contribute in energy mix of Pakistan for providing electricity requirements of the country and saving huge oil import bills.

  6. Methods in industrial biotechnology for chemical engineers

    CERN Document Server

    Kandasamy, W B Vasantha

    2008-01-01

    In keeping with the definition that biotechnology is really no more than a name given to a set of techniques and processes, the authors apply some set of fuzzy techniques to chemical industry problems such as finding the proper proportion of raw mix to control pollution, to study flow rates, to find out the better quality of products. We use fuzzy control theory, fuzzy neural networks, fuzzy relational equations, genetic algorithms to these problems for solutions. When the solution to the problem can have certain concepts or attributes as indeterminate, the only model that can tackle such a situation is the neutrosophic model. The authors have also used these models in this book to study the use of biotechnology in chemical industries. This book has six chapters. First chapter gives a brief description of biotechnology. Second chapter deals will proper proportion of mix of raw materials in cement industries to minimize pollution using fuzzy control theory. Chapter three gives the method of determination of te...

  7. BIOTECHNOLOGY – SCIENCE AND SECTOR OF AGRICULTURE

    Directory of Open Access Journals (Sweden)

    Doroshenko N. P.

    2016-02-01

    Full Text Available This article presents information about the features of biotechnology as the driving force of scientific and technological progress. The national programs of the leading countries of the world, it is one of the priority sectors, reflecting the level of the socio-economic condition of the society. Biotechnology is now successfully solves such vital tasks as providing food, the establishment of effective medicaments, obtaining fuel based on renewable raw materials, maintaining ecological balance, conservation of biological resources of the Earth. The development of agriculture in modern conditions is impossible without agricultural biotechnology. It is directly related to viticulture. Choosing an object of an integrated system (embryos, apical meristem, axillary buds, it is possible to clone plants, i.e. produce plants identical to the original. If the same as the object to use isolated cells or protoplasts, in this case, there will most likely altered versions, creating diversity for the breeder. Genetic engineering – the science of younger, since the establishment of the first chimeric DNA molecule. The origin of genetic engineering is rooted in the development of molecular genetics, biochemistry. These technologies, undoubtedly progressive, but their biological safety is still insufficiently explored and is a danger to all life on Earth. The leading Western powers carried out strict control over the introduction of transgenic crop plants, as they are in agrocenosis new biological risks that may adversely affect the plants, animals and humans. In Russia, as in other countries, have already adopted the law “State regulation of genetic engineering”

  8. Biotechnology for uranium extraction and environmental control

    International Nuclear Information System (INIS)

    India is looking forward to augmenting mining and extraction of uranium mineral for its nuclear energy needs. Being a radio-active mineral, mining and processing of uranium ore deposits need be carried out in an environmentally acceptable fashion. In this respect, a biotechnological approach holds great promise since it is environment-friendly, cost-effective and energy-efficient. There are several types of microorganisms which inhabit uranium ore bodies and biogenesis plays an important role in the mineralisation and transport of uranium-bearing minerals under the earth's crust. Uranium occurrences in India are only meagre and it becomes essential to tap effectively all the available resources. Uraninite and pitchblende occurring along with sulfide mineralisation such as pyrite are ideal candidates for bioleaching. Acidithiobacillus ferrooxidans present ubiquitously in the ore deposits can be isolated, cultured and utilised to bring about efficient acidic dissolution of uranium. Many such commercial attempts to extract uranium from even lean ores using acidophilic autotrophic bacteria have been made in different parts of the world. Anaerobes such a Geobacter and Sulfate Reducing Bacteria (SRB) can be effectively used in uranium mining for environmental control. Radioactive uranium mined wastes and tailing dumps can be cleaned and protected using microorganisms. In this lecture use of biotechnology in uranium extraction and bioremediation is illustrated with practical examples. Applicability of environment-friendly biotechnology for mining and extraction of uranium from Indian deposits is outlined. Commercial potentials for bioremediation in uranium-containing wastes are emphasised. (author)

  9. New biotechnological procedures in swine reproduction

    Directory of Open Access Journals (Sweden)

    Petrujkić Tihomir

    2002-01-01

    Full Text Available New biotechnological procedures and the use of hormones in swine breeding are aimed at increasing the number of piglets in the litter. In small herds and groups, selected sows with 16 mammary complexes (tits can yield up to 32 piglets, or porkers, per year per sow. In order to achieve such reproduction results, special, individual stalls for sow deliveries are used, in addition to biotechnological methods, with a warm core and floor heating, phased diet and clean facilities. The ovulation value in swine is determined by their genetic and paragenetic effects, and it is often provoked and increased with injections and preparations for superovulation. However, the results vary, since any administration of hormone injecions can reduce the reproductive cycle, shorten the duration of estrus, or disrupt the work of ovaries and create cystic follicles. The use of follicle-stimulating hormones in quantities up to 1000 IU per animal for the induction and synchronization of estrus has become customary for sows and gilts, as well as the use of prostaglandins, the use of GnRH for increasing ovulation in swine and increasing the number of follicles >4 mm in diameter in the implementation of new biotechnologies in swine breeding, increases the number of ovulations and fertility in swine. In this way, reproduction is raised to the highest possible level, and artificial insemination of sows has 12 separate rules which enable better and more successful artificial insemination of sows.

  10. International Marine Biotechnology Culture Collection (IMBCC)

    Energy Technology Data Exchange (ETDEWEB)

    Zaborsky, O.R.; Baker, K. [Univ. of Hawaii at Manoa, Honolulu, HI (United States)

    1996-10-01

    The objective of this project is to establish a premier culture collection of tropical marine microorganisms able to generate hydrogen from water or organic substances. Both eukaryotic and prokaryotic microorganisms will serve as the biological reservoir or {open_quotes}library{close_quotes} for other DOE Hydrogen Program contractors, the biohydrogen research community and industry. This project consists of several tasks: (a) transfer of the Mitsui-Miami strains to Hawaii`s International Marine Biotechnology Culture Collection (IMBCC) housed at the Hawaii Natural Energy Institute (HNEI); (b) maintain and distribute Mitsui-Miami strains; (c) characterize key strains by traditional and advanced biotechnological techniques; (d) expand Hawaii`s IMBCC; and (e) establish and operate an information resource (database). The project was initiated only late in the summer of 1995 but progress has been made on all tasks. Of the 161 cyanobacterial strains imported, 147 survived storage and importation and 145 are viable. with most exhibiting growth. Of the 406 strains of other photosynthetic bacteria imported, 392 survived storage and importation and 353 are viable, with many exhibiting growth. This project is linked to cooperative efforts being supported by the Japanese Ministry of International Trade and Industry (MITI) through its Marine Biotechnology Institute (MBI) and Research Institute of Innovative Technology for the Earth (RITE).

  11. Investigation of polar mesocyclones in Arctic Ocean using COSMO-CLM and WRF numerical models and remote sensing data

    Science.gov (United States)

    Varentsov, Mikhail; Verezemskaya, Polina; Baranyuk, Anastasia; Zabolotskikh, Elizaveta; Repina, Irina

    2015-04-01

    relation to source reanalysis fields were investigated. References: 1. Böhm U. et al. CLM - the climate version of LM: Brief description and long-term applications [Journal] // COSMO Newsletter. - 2006. - Vol. 6. 2. IPCC Fifth Assessment Report: Climate Change 2013 (AR5) Rep.,Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 3. Zahn, M., and H. von Storch (2008), A long-term climatology of North Atlantic polar lows, Geophys. Res. Lett., 35, L22702

  12. Attitudes in China about Crops and Foods Developed by Biotechnology.

    Science.gov (United States)

    Han, Fei; Zhou, Dingyang; Liu, Xiaoxia; Cheng, Jie; Zhang, Qingwen; Shelton, Anthony M

    2015-01-01

    Transgenic Bt cotton has been planted in China since 1997 and, in 2009, biosafety certificates for the commercial production of Bt rice and phytase corn were issued by the Chinese government. The public attitude in China toward agricultural biotechnology and genetically modified (GM) crops and foods has received considerable attention worldwide. We investigated the attitudes of consumers, Bt cotton farmers and scientists in China regarding GM crops and foods and the factors influencing their attitudes. Data were collected using interview surveys of consumer households, farmer households and scientists. A discrete choice approach was used to elicit the purchase intentions of the respondents. Two separate probit models were developed to examine the effect of various factors on the choices of the respondents. Bt cotton farmers had a very positive attitude because Bt cotton provided them with significant economic benefits. Chinese consumers from developed regions had a higher acceptance and willingness to pay for GM foods than consumers in other regions. The positive attitude toward GM foods by the scientific community will help to promote biotechnology in China in the future. Our survey emphasized that educational efforts made by government officials, the media and scientists can facilitate the acceptance of GM technology in China. Further educational efforts will be critical for influencing consumer attitudes and decisions of government agencies in the future. More effective educational efforts by government agencies and public media concerning the scientific facts and safety of GM foods would enhance the acceptance of GM crops in China.

  13. Marine Extremophiles: A Source of Hydrolases for Biotechnological Applications

    Directory of Open Access Journals (Sweden)

    Gabriel Zamith Leal Dalmaso

    2015-04-01

    Full Text Available The marine environment covers almost three quarters of the planet and is where evolution took its first steps. Extremophile microorganisms are found in several extreme marine environments, such as hydrothermal vents, hot springs, salty lakes and deep-sea floors. The ability of these microorganisms to support extremes of temperature, salinity and pressure demonstrates their great potential for biotechnological processes. Hydrolases including amylases, cellulases, peptidases and lipases from hyperthermophiles, psychrophiles, halophiles and piezophiles have been investigated for these reasons. Extremozymes are adapted to work in harsh physical-chemical conditions and their use in various industrial applications such as the biofuel, pharmaceutical, fine chemicals and food industries has increased. The understanding of the specific factors that confer the ability to withstand extreme habitats on such enzymes has become a priority for their biotechnological use. The most studied marine extremophiles are prokaryotes and in this review, we present the most studied archaea and bacteria extremophiles and their hydrolases, and discuss their use for industrial applications.

  14. Attitudes in China about Crops and Foods Developed by Biotechnology.

    Directory of Open Access Journals (Sweden)

    Fei Han

    Full Text Available Transgenic Bt cotton has been planted in China since 1997 and, in 2009, biosafety certificates for the commercial production of Bt rice and phytase corn were issued by the Chinese government. The public attitude in China toward agricultural biotechnology and genetically modified (GM crops and foods has received considerable attention worldwide. We investigated the attitudes of consumers, Bt cotton farmers and scientists in China regarding GM crops and foods and the factors influencing their attitudes. Data were collected using interview surveys of consumer households, farmer households and scientists. A discrete choice approach was used to elicit the purchase intentions of the respondents. Two separate probit models were developed to examine the effect of various factors on the choices of the respondents. Bt cotton farmers had a very positive attitude because Bt cotton provided them with significant economic benefits. Chinese consumers from developed regions had a higher acceptance and willingness to pay for GM foods than consumers in other regions. The positive attitude toward GM foods by the scientific community will help to promote biotechnology in China in the future. Our survey emphasized that educational efforts made by government officials, the media and scientists can facilitate the acceptance of GM technology in China. Further educational efforts will be critical for influencing consumer attitudes and decisions of government agencies in the future. More effective educational efforts by government agencies and public media concerning the scientific facts and safety of GM foods would enhance the acceptance of GM crops in China.

  15. Attitudes in China about Crops and Foods Developed by Biotechnology.

    Science.gov (United States)

    Han, Fei; Zhou, Dingyang; Liu, Xiaoxia; Cheng, Jie; Zhang, Qingwen; Shelton, Anthony M

    2015-01-01

    Transgenic Bt cotton has been planted in China since 1997 and, in 2009, biosafety certificates for the commercial production of Bt rice and phytase corn were issued by the Chinese government. The public attitude in China toward agricultural biotechnology and genetically modified (GM) crops and foods has received considerable attention worldwide. We investigated the attitudes of consumers, Bt cotton farmers and scientists in China regarding GM crops and foods and the factors influencing their attitudes. Data were collected using interview surveys of consumer households, farmer households and scientists. A discrete choice approach was used to elicit the purchase intentions of the respondents. Two separate probit models were developed to examine the effect of various factors on the choices of the respondents. Bt cotton farmers had a very positive attitude because Bt cotton provided them with significant economic benefits. Chinese consumers from developed regions had a higher acceptance and willingness to pay for GM foods than consumers in other regions. The positive attitude toward GM foods by the scientific community will help to promote biotechnology in China in the future. Our survey emphasized that educational efforts made by government officials, the media and scientists can facilitate the acceptance of GM technology in China. Further educational efforts will be critical for influencing consumer attitudes and decisions of government agencies in the future. More effective educational efforts by government agencies and public media concerning the scientific facts and safety of GM foods would enhance the acceptance of GM crops in China. PMID:26418161

  16. Long-term investigations of summertime chlorophyll a, particulate organic carbon and continuously observations of vertical particle flux in Fram Strait and the central Arctic Ocean

    Science.gov (United States)

    Nöthig, Eva-Maria; Bauerfeind, Eduard; Bracher, Astrid; Cherkasheva, Alexandra; Fahl, Kirsten; Lalande, Catherine; Metfies, Katja; Peeken, Ilka; Salter, Ian; Boetius, Antje; Soltwedel, Thomas

    2016-04-01

    The Arctic Ocean is one of the key regions where the effect of climate change is most pronounced due to massive reduction of sea ice volume and extent. Most of the sea ice is transported out of the Arctic Ocean with the cold East Greenland Current (EGC) in the western Fram Strait, while warm Atlantic water enters the Arctic Ocean with the West Spitsbergen Current (WSC) in the eastern Fram Strait. In this scenario we conducted several cruises to Fram Strait and the central Arctic Ocean (CAO) between 1991 and 2015 to monitor phytoplankton biomass, particulate organic carbon standing stocks during summer at discrete depth using water bottle samples, and the sedimentation of organic matter by means of moored sediment traps throughout the year. With our study we aim at tracing effects of environmental changes in the pelagic system and impacts on the fate of organic matter produced in the upper water column in a region that is anticipated to react rapidly to climate change. We will present data sets of phytoplankton biomass (chlorophyll a) and particulate organic carbon (POC) from the upper 100 m of the water column as well as results from vertical particle flux measurements with yearly deployed sediment traps at the LTER (Long-Term Ecological Research) observatory HAUSGARTEN in eastern Fram Strait (79°/4°E) between 2000 and 2012 and from two locations in the CAO close to the Lomonosov Ridge (1995/96) and the Gakkel Ridge (2011/12). Analyses of the material collected by the sediment traps allowed us to track seasonal and inter-annual changes in the upper water column at HAUSGARTEN and in the CAO. Whereas chlorophyll a (integrated values 0 -100 m) showed only a slight increase in eastern Fram Strait, it stayed more or less constant in the CAO and western Fram Strait, with the exception of 2015 exhibiting less biomass during late summer in the CAO. Highest biomass was found in the eastern Fram Strait and lowest in the heavily ice-covered regions. POC distribution

  17. Ocean General Circulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jin-Ho; Ma, Po-Lun

    2012-09-30

    1. Definition of Subject The purpose of this text is to provide an introduction to aspects of oceanic general circulation models (OGCMs), an important component of Climate System or Earth System Model (ESM). The role of the ocean in ESMs is described in Chapter XX (EDITOR: PLEASE FIND THE COUPLED CLIMATE or EARTH SYSTEM MODELING CHAPTERS). The emerging need for understanding the Earth’s climate system and especially projecting its future evolution has encouraged scientists to explore the dynamical, physical, and biogeochemical processes in the ocean. Understanding the role of these processes in the climate system is an interesting and challenging scientific subject. For example, a research question how much extra heat or CO2 generated by anthropogenic activities can be stored in the deep ocean is not only scientifically interesting but also important in projecting future climate of the earth. Thus, OGCMs have been developed and applied to investigate the various oceanic processes and their role in the climate system.

  18. Incentives for development and application of environmentally friendly biotechnological products and processes; Anreize fuer die Entwicklung und Anwendung umweltfreundlicher biotechnischer Produkte und Verfahren

    Energy Technology Data Exchange (ETDEWEB)

    Rhein, Hans-Bernhard; Endler, Katharina [Umweltkanzlei Dr. Rhein, Sarstedt (Germany); Ulber, Roland; Muffler, Kai; Mueller, Felix [Technische Univ. Kaiserslautern (Germany)

    2011-01-15

    Studies assign a tremendous growth potential related to biotechnology. However, the predicted proportion of biotechnological manufactured products in the chemical industry for the year 2010 by 20 % will more likely remain by today's 5 %. The study deals with the question why biotechnological products are currently established at the market in the obvious slow way. Therefore, the current constraints and existing respectively new incentive instruments referring to the white (industrial) biotechnology are analyzed to focus on the promotion of the development and application of environmentally friendly biotechnology products and methods. In addition to a search concerning environmental relevance and further development of white biotechnology, the postulated constraints and incentives as well as new promotions are discussed with the help of expert interviews. On the basis of a preliminary study - after further discussion with experts - concrete proposals on improvements related to an ongoing establishment of biotechnology will be derived. Based on case studies (2nd generation biofuels, polyhydroxybutyrate as biopolymer and phytase as an animal feed additive), the practical effects and specific conditions to incentives, from the perspective of biotechnological processes and environmentally friendly products are investigated. Overall, about 40 activities were recommended, which could be assigned to areas of direct government incentives (tax policy/subsidies, subsidies, education and research policy, basic political conditions, government demand and information policy/consumer intelligence) as well as non-governmental incentives (knowledge transfer and cooperation, organisation-related policy, capital market financing). (orig.)

  19. The Carolina conference on marine biotechnology: Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Frankenberg, D.

    1985-01-01

    This report summarizes proceedings of a Carolina Conference on Marine Biotechnology held March 24-26, 1985, at the University of North Carolina at Chapel Hill. This report consists of the responders' summary of each topic discussed. The topics presented were General Prospects for Marine Biotechnology, Bioactive Substances from Marine Organisms, Fundamental Processes in Marine Organisms as Guides for Biotechnology Development, Genetic Manipulation of Potential Use to Mariculture, Organisms Interactions with Marine Surfaces: Marine Glues, and Biomolecular Engineering Materials Applications.

  20. The science communication environment: biotechnology researchers' discourse on communication

    OpenAIRE

    Merton, Eve

    2009-01-01

    Communication is problematic for biotechnology because biotechnology uses or changes life processes, which leads us to question ourselves and our definitions of life — it is controversial. Yet, communication is crucial for engagement and understanding among research scientists and the wider community. This thesis examined the communication beliefs, attitudes and practices of researchers at the National Institute for Cellular Biotechnology (NICB) in Ireland, using semi- structured, face-to...

  1. UNCOVERING FACTORS INFLUENCING PUBLIC PERCEPTIONS OF FOOD BIOTECHNOLOGY

    OpenAIRE

    Hossain, Ferdaus; Onyango, Benjamin M.; Adelaja, Adesoji O.; Schilling, Brian J.; Hallman, William K.

    2002-01-01

    Significant divergence exists in public opinions about biotechnology. Although there is broad support for plant biotechnology for health benefits, opinions differ on the issue of animal genetics for pure economic benefits. While some are opposed to it, many are undecided about genetically modified foods. Considerable skepticism exists about scientists, corporations and government which have negative influence on public acceptance of food biotechnology. Consumers' personal attributes have sign...

  2. PUBLIC PERCEPTIONS OF BIOTECHNOLOGY AND ACCEPTANCE OF GENETICALLY MODIFIED FOOD

    OpenAIRE

    Hossain, Ferdaus; Onyango, Benjamin M.; Schilling, Brian J.; Hallman, William K.

    2003-01-01

    Public debate on biotechnology is embroiled in controversy over the risks and benefits associated with this emerging technology. Using data from a national survey, this study analyzes public acceptance of biotechnology in food production. Empirical results suggest that while there is general optimism about biotechnology and support for its use in plants, public approval of its use in animals is perhaps more limited. Younger and more-educated individuals are generally more supportive of biotec...

  3. PUBLIC PERCEPTIONS OF BIOTECHNOLOGY AND ACCEPTANCE OF GENETICALLY MODIFIED FOOD

    OpenAIRE

    Hossain, Ferdaus; Onyango, Benjamin M.; Adelaja, Adesoji O.; Schilling, Brian J.; Hallman, William K.

    2002-01-01

    Public debate on biotechnology is embroiled in controversy over the risks and benefits associated with this emerging technology. Using data from a national survey, this study analyzes public acceptance of biotechnology in food production. Empirical results suggest that while there is general optimism about biotechnology, and support for its use in plants, public approval of its use in animals is perhaps more limited. Younger and more educated individuals are generally more supportive of biote...

  4. Advancement of Marketing Developing Biotechnology-Based Business

    OpenAIRE

    Vaidas Vilmantas; Borisas Melnikas

    2014-01-01

    The article, in a complex way, analyzes the needs of marketing improvement in developing biotechnology­based business and highlights its role in the context of modern society and globalization challenges. The article distinguishes between the existing problems of biotechnology business, the present perspectives and specific characteristics of developing the marketing of biotechnological business. The paper represents the possibility of the substantial modernization of marketing tools with reg...

  5. Was there a second adaptive radiation of giant tortoises in the Indian Ocean? Using mitochondrial DNA to investigate speciation and biogeography of Aldabrachelys (Reptilia, Testudinidae).

    Science.gov (United States)

    Austin, Jeremy J; Arnold, E Nicholas; Bour, Roger

    2003-06-01

    A radiation of five species of giant tortoises (Cylindraspis) existed in the southwest Indian Ocean, on the Mascarene islands, and another (of Aldabrachelys) has been postulated on small islands north of Madagascar, from where at least eight nominal species have been named and up to five have been recently recognized. Of 37 specimens of Madagascan and small-island Aldabrachelys investigated by us, 23 yielded significant portions of a 428-base-pair (bp) fragment of mitochondrial (cytochrome b and tRNA-Glu), including type material of seven nominal species (A. arnoldi, A. dussumieri, A. hololissa, A. daudinii, A. sumierei, A. ponderosa and A. gouffei). These and nearly all the remaining specimens, including 15 additional captive individuals sequenced previously, show little variation. Thirty-three exhibit no differences and the remainder diverge by only 1-4 bp (0.23-0.93%). This contrasts with more widely accepted tortoise species which show much greater inter- and intraspecific differences. The non-Madagascan material examined may therefore only represent a single species and all specimens may come from Aldabra where the common haplotype is known to occur. The present study provides no evidence against the Madagascan origin for Aldabra tortoises suggested by a previous molecular phylogenetic analysis, the direction of marine currents and phylogeography of other reptiles in the area. Ancient mitochondrial DNA from the extinct subfossil A. grandidieri of Madagascar differs at 25 sites (5.8%) from all other Aldabrachelys samples examined here. PMID:12755871

  6. [Trends of microalgal biotechnology: a view from bibliometrics].

    Science.gov (United States)

    Yang, Xiaoqiu; Wu, Yinsong; Yan, Jinding; Song, Haigang; Fan, Jianhua; Li, Yuanguang

    2015-10-01

    Microalgae is a single-cell organism with the characteristics of high light energy utilization rate, fast growth rate, high-value bioactive components and high energy material content. Therefore, microalgae has broad application prospects in food, feed, bioenergy, carbon sequestration, wastewater treatment and other fields. In this article, the microalgae biotechnology development in recent years were fully consulted, through analysis from the literature and patent. The progress of microalgal biotechnology at home and abroad is compared and discussed. Furthermore, the project layout, important achievements and development bottlenecks of microalgae biotechnology in our country were also summarized. At last, future development directions of microalgae biotechnology were discussed. PMID:26964332

  7. [Trends of microalgal biotechnology: a view from bibliometrics].

    Science.gov (United States)

    Yang, Xiaoqiu; Wu, Yinsong; Yan, Jinding; Song, Haigang; Fan, Jianhua; Li, Yuanguang

    2015-10-01

    Microalgae is a single-cell organism with the characteristics of high light energy utilization rate, fast growth rate, high-value bioactive components and high energy material content. Therefore, microalgae has broad application prospects in food, feed, bioenergy, carbon sequestration, wastewater treatment and other fields. In this article, the microalgae biotechnology development in recent years were fully consulted, through analysis from the literature and patent. The progress of microalgal biotechnology at home and abroad is compared and discussed. Furthermore, the project layout, important achievements and development bottlenecks of microalgae biotechnology in our country were also summarized. At last, future development directions of microalgae biotechnology were discussed.

  8. The biotechnology innovation machine: a source of intelligent biopharmaceuticals for the pharma industry--mapping biotechnology's success.

    Science.gov (United States)

    Evens, R P; Kaitin, K I

    2014-05-01

    The marriage of biotechnology and the pharmaceutical industry (pharma) is predicated on an evolution in technology and product innovation. It has come as a result of advances in both the science and the business practices of the biotechnology sector in the past 30 years. Biotechnology products can be thought of as "intelligent pharmaceuticals," in that they often provide novel mechanisms of action, new approaches to disease control, higher clinical success rates, improved patient care, extended patent protection, and a significant likelihood of reimbursement. Although the first biotechnology product, insulin, was approved just 32 years ago in 1982, today there are more than 200 biotechnology products commercially available. Research has expanded to include more than 900 biotechnology products in clinical trials. Pharma is substantially engaged in both the clinical development of these products and their commercialization.

  9. Biotechnological production of xylitol with Candida yeasts

    OpenAIRE

    Granström, Tom

    2002-01-01

    The aim of this study was to develop a biotechnological production process for xylitol. The xylitol production characteristics of Candida millerii, Candida guilliermondii and Candida tropicalis were compared. C. tropicalis was the best xylitol producer. A volumetric productivity of 5.7 g xylitol L-1 h-1 was achieved with 69 % yield from D-xylose on a mineral medium with a modified repeated fed batch production method. The xylitol production mechanism was confirmed by chemostat cultivation stu...

  10. Production of vanillin: a biotechnological opportunity

    International Nuclear Information System (INIS)

    Natural aroma compounds are of major interest to the food and fragrance industry. Vanillin (3-methoxy-4-hydroxybenzaldehyde) was isolated from the vanilla beans in 1816 and its world consumption has reached today about 12000 tons per year. But only approximately 50 tons per year are extracted from vanilla pods (Vanilla planifolia). The remainder is provided by synthetic vanillin. This review is about alternative processes to produce natural vanillin de novo or by biotransformation using biotechnological methods involving enzymes, microorganisms and plant cells. (author)

  11. Biotechnology network promotes knowledge of transgenics

    International Nuclear Information System (INIS)

    Red de Ingenieria Genetica Aplicada al Mejoramiento de Cultivos Tropicales (Rigatrop) integrated by a group of scientists from the Universidad de Costa Rica (UCR), Universidad Nacional (UNA) and of the Instituto Tecnologico de Costa Rica (TEC) have organized two forums on the topic of transgenics. The first forum has shown successful experiences of development of transgenic crops in Latin America, as for example: the transgenic bean, project realized in Brazil and transgenic eggplant in Bangladesh. The second forum has been about transgenics and environment effected at the UCR, on the occasion of World Environment Day. Rigatrop members are working currently in two projects applying biotechnological tools to coffee

  12. Chrysanthemum biotechnology: discoveries from the recent literature

    Directory of Open Access Journals (Sweden)

    Teixeira da Silva Jaime A.

    2014-12-01

    Full Text Available The in vitro propagation of chrysanthemum (Chrysanthemum × grandiflorum (Ramat. Kitam., one of the world’s most important ornamentals, is a very well-studied topic and shows numerous strides each year. This mini-review condenses the knowledge that has been published on chrysanthemum biotechnology, especially in vitro culture in the wider plant science literature. In 2013 and 2014, important strides were made in molecular breeding, particularly anti-viral strategies, including through transgenics, and our understanding of flower genetics and flowering regulation.

  13. Biotechnologies and biomimetics for civil engineering

    CERN Document Server

    Labrincha, J; Diamanti, M; Yu, C-P; Lee, H

    2015-01-01

    Putting forward an innovative approach to solving current technological problems faced by human society, this book encompasses a holistic way of perceiving the potential of natural systems. Nature has developed several materials and processes which both maintain an optimal performance and are also totally biodegradable, properties which can be used in civil engineering. Delivering the latest research findings to building industry professionals and other practitioners, as well as containing information useful to the public, ‘Biotechnologies and Biomimetics for Civil Engineering’ serves as an important tool to tackle the challenges of a more sustainable construction industry and the future of buildings.

  14. New developments in Biotechnology-an overview

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    人类运用生物技术已经几千年了.直到上个世纪,发酵方法生产啤酒、白酒、面包、酱油以及其它食品都是在农产品领域的主要应用.自从50年前DNA和RNA结构和作用被揭示以来,一场生物技术的革命便产生了,并导致了两项关键技术的发展:1)通过基因技术进行遣传因素的修改;2)新型快速多样分析工具;最新的发展都基于遗传学.这篇文章我将探讨以下问题:遗传因子修改的进展和公众认可的争论;基因学技术在农产品领域的应用;我的TNO研究所与中国伙伴联合的生物技术项目的例子;谷物科技方面的生物技术.%Mankind applies biotechnology already for thousands of years. Until the last century, fermentation processes for producing beer, wine, bread, soy sauces and other food products were the main application in the agri- food area. The elucidation of the structure and role of DNA and RNA in living organisms since the past 50 years has created a revolution in biotechnology, resulting in two key technological developments: 1) Genetic modification by gene technology 2) New rapid and multiple analytical tools; the latest developments being based on genomics. In this presentation I will discuss: - progress in genetic modification and the issue of public acceptance - application of genomic based technologies in the agri- food field - examples of joint biotechnology projects of my TNO institute with partners in China - biotechnology in cereal science and technology

  15. Biotechnology education as social and cultural production/reproduction of the biotechnology community

    Science.gov (United States)

    Andrée, Maria

    2014-03-01

    This paper is a commentary to a paper by Anne Solli, Frank Bach and Björn Åkerman on how students at a technical university learn to argue as biotechnologists. Solli and her colleagues report from an ethnographic study performed during the first semester of a 5-year program in biotechnology at a technical university in Sweden. Their study demonstrates how students begin to acquire `the right way' of approaching the controversial issue of producing and consuming genetically modified organisms. In my response I discuss the ethnographic account of this particular educational practice in terms of social and cultural production/reproduction of a biotechnology community and how the participants (students and teaching professors) deal with the dialectic of individual and collective transformation. In the perspective of the biotechnology community, the work done by the teaching professor becomes a way of ensuring the future of the biotechnology community in terms of what values and objectives are held highly in the community of practice.

  16. Biotechnology Education as Social and Cultural Production/Reproduction of the Biotechnology Community

    Science.gov (United States)

    Andrée, Maria

    2014-01-01

    This paper is a commentary to a paper by Anne Solli, Frank Bach and Björn Åkerman on how students at a technical university learn to argue as biotechnologists. Solli and her colleagues report from an ethnographic study performed during the first semester of a 5-year program in biotechnology at a technical university in Sweden. Their study…

  17. Current developments in marine microbiology: high-pressure biotechnology and the genetic engineering of piezophiles.

    Science.gov (United States)

    Zhang, Yu; Li, Xuegong; Bartlett, Douglas H; Xiao, Xiang

    2015-06-01

    A key aspect of marine environments is elevated pressure; for example, ∼70% of the ocean is at a pressure of at least 38MPa. Many types of Bacteria and Archaea reside under these high pressures, which drive oceanic biogeochemical cycles and catalyze reactions among rocks, sediments and fluids. Most marine prokaryotes are classified as piezotolerant or as (obligate)-piezophiles with few cultivated relatives. The biochemistry and physiology of these organisms are largely unknown. Recently, high-pressure cultivation technology has been combined with omics and DNA recombination methodologies to examine the physiology of piezophilic marine microorganisms. We are now beginning to understand the adaptive mechanisms of these organisms, along with their ecological functions and evolutionary processes. This knowledge is leading to the further development of high-pressure-based biotechnology.

  18. Biotechnological Methods for Precise Diagnosis of Methicillin Resistance in Staphylococci

    Directory of Open Access Journals (Sweden)

    Aija Zilevica

    2005-04-01

    Full Text Available Antimicrobial resistance is one of the most urgent problems in medicine nowadays. The purpose of the study was to investigate the microorganisms resistant to first-line antimicrobials, including gram-positive cocci, particularly the methicillin-resistant Staphylococcus aureus and coagulase-negative Staphylococci, the major agents of nosocomial infections. Owing to the multi-resistance of these agents, precise diagnosis of the methicillin resistance of Staphylococci is of greatest clinical importance. It is not enough to use only conventional microbiological diagnostic methods. Biotechnological methods should be also involved. In our studies, the following methicillin resistance identification methods were used: the disk diffusion method, detection of the mecA gene by PCR, E-test and Slidex MRSA test. For molecular typing, PFGL, RAPD tests and detection of the coa gene were used. All the MRS strains were multiresistant to antibacterials. No vancomycine resistance was registered.

  19. APPLICATIONS OF BIOTECHNOLOGY IN DEVELOPMENT OF BIOMATERIALS: NANOTECHNOLOGY AND BIOFILMS

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.; Berry, T.; Narayan, R.

    2010-11-29

    Biotechnology is the application of biological techniques to develop new tools and products for medicine and industry. Due to various properties including chemical stability, biocompatibility, and specific activity, e.g. antimicrobial properties, many new and novel materials are being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. Many of these materials are less than 100 nanometers in size. Nanotechnology is the engineering discipline encompassing designing, producing, testing, and using structures and devices less than 100 nanometers. One of the challenges associated with biomaterials is microbial contamination that can lead to infections. In recent work we have examined the functionalization of nanoporous biomaterials and antimicrobial activities of nanocrystalline diamond materials. In vitro testing has revealed little antimicrobial activity against Pseudomonas fluorescens bacteria and associated biofilm formation that enhances recalcitrance to antimicrobial agents including disinfectants and antibiotics. Laser scanning confocal microscopy studies further demonstrated properties and characteristics of the material with regard to biofilm formation.

  20. Biotechnological applications of brown spider (Loxosceles genus) venom toxins.

    Science.gov (United States)

    Senff-Ribeiro, Andrea; Henrique da Silva, Paulo; Chaim, Olga Meiri; Gremski, Luiza Helena; Paludo, Kátia Sabrina; Bertoni da Silveira, Rafael; Gremski, Waldemiro; Mangili, Oldemir Carlos; Veiga, Silvio Sanches

    2008-01-01

    Loxoscelism (the term used to define accidents by the bite of brown spiders) has been reported worldwide. Clinical manifestations following brown spider bites are frequently associated with skin degeneration, a massive inflammatory response at the injured region, intravascular hemolysis, platelet aggregation causing thrombocytopenia and renal disturbances. The mechanisms by which the venom exerts its noxious effects are currently under investigation. The whole venom is a complex mixture of toxins enriched with low molecular mass proteins in the range of 5-40 kDa. Toxins including alkaline phosphatase, hyaluronidase, metalloproteases (astacin-like proteases), low molecular mass (5.6-7.9 kDa) insecticidal peptides and phospholipases-D (dermonecrotic toxins) have been identified in the venom. The purpose of the present review is to describe biotechnological applications of whole venom or some toxins, with especial emphasis upon molecular biology findings obtained in the last years.

  1. Global unbalance in seaweed production, research effort and biotechnology markets.

    Science.gov (United States)

    Mazarrasa, Inés; Olsen, Ylva S; Mayol, Eva; Marbà, Núria; Duarte, Carlos M

    2014-01-01

    Exploitation of the world's oceans is rapidly growing as evidenced by a booming patent market of marine products including seaweed, a resource that is easily accessible without sophisticated bioprospecting technology and that has a high level of domestication globally. The investment in research effort on seaweed aquaculture has recently been identified to be the main force for the development of a biotechnology market of seaweed-derived products and is a more important driver than the capacity of seaweed production. Here, we examined seaweed patent registrations between 1980 and 2009 to assess the growth rate of seaweed biotechnology, its geographic distribution and the types of applications patented. We compare this growth with scientific investment in seaweed aquaculture and with the market of seaweed production. We found that both the seaweed patenting market and the rate of scientific publications are rapidly growing (11% and 16.8% per year respectively) since 1990. The patent market is highly geographically skewed (95% of all registrations belonging to ten countries and the top two holding 65% of the total) compared to the distribution of scientific output among countries (60% of all scientific publications belonging to ten countries and the top two countries holding a 21%), but more homogeneously distributed than the production market (with a 99.8% belonging to the top ten countries, and a 71% to the top two). Food industry was the dominant application for both the patent registrations (37.7%) and the scientific publications (21%) followed in both cases by agriculture and aquaculture applications. This result is consistent with the seaweed taxa most represented. Kelp, which was the target taxa for 47% of the patent registrations, is a traditional ingredient in Asian food and Gracilaria and Ulva, which were the focus of 15% and 13% of the scientific publications respectively, that are also used in more sophisticated applications such as cosmetics, chemical

  2. Ocean technology

    Digital Repository Service at National Institute of Oceanography (India)

    Peshwe, V.B.

    stream_size 2 stream_content_type text/plain stream_name Voices_Oceans_1996_113.pdf.txt stream_source_info Voices_Oceans_1996_113.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  3. Halophiles, coming stars for industrial biotechnology.

    Science.gov (United States)

    Yin, Jin; Chen, Jin-Chun; Wu, Qiong; Chen, Guo-Qiang

    2015-11-15

    Industrial biotechnology aims to produce chemicals, materials and biofuels to ease the challenges of shortage on petroleum. However, due to the disadvantages of bioprocesses including energy consuming sterilization, high fresh water consumption, discontinuous fermentation to avoid microbial contamination, highly expensive stainless steel fermentation facilities and competing substrates for human consumption, industrial biotechnology is less competitive compared with chemical processes. Recently, halophiles have shown promises to overcome these shortcomings. Due to their unique halophilic properties, some halophiles are able to grow in high pH and high NaCl containing medium under higher temperature, allowing fermentation processes to run contamination free under unsterile conditions and continuous way. At the same time, genetic manipulation methods have been developed for halophiles. So far, halophiles have been used to produce bioplastics polyhydroxyalkanoates (PHA), ectoines, enzymes, and bio-surfactants. Increasing effects have been made to develop halophiles into a low cost platform for bioprocessing with advantages of low energy, less fresh water consumption, low fixed capital investment, and continuous production. PMID:25447783

  4. Transforming exoelectrogens for biotechnology using synthetic biology.

    Science.gov (United States)

    TerAvest, Michaela A; Ajo-Franklin, Caroline M

    2016-04-01

    Extracellular electron transfer pathways allow certain bacteria to transfer energy between intracellular chemical energy stores and extracellular solids through redox reactions. Microorganisms containing these pathways, exoelectrogens, are a critical part of microbial electrochemical technologies that aim to impact applications in bioenergy, biosensing, and biocomputing. However, there are not yet any examples of economically viable microbial electrochemical technologies due to the limitations of naturally occurring exoelectrogens. Here we first briefly summarize recent discoveries in understanding extracellular electron transfer pathways, then review in-depth the creation of customized and novel exoelectrogens for biotechnological applications. We analyze engineering efforts to increase current production in native exoelectrogens, which reveals that modulating certain processes within extracellular electron transfer are more effective than others. We also review efforts to create new exoelectrogens and highlight common challenges in this work. Lastly, we summarize work utilizing engineered exoelectrogens for biotechnological applications and the key obstacles to their future development. Fueled by the development of genetic tools, these approaches will continue to expand and genetically modified organisms will continue to improve the outlook for microbial electrochemical technologies. PMID:26284614

  5. Plant biotechnological patents from the legal perspective

    Directory of Open Access Journals (Sweden)

    Farhah Abdullah

    2009-08-01

    Full Text Available The purpose of this article is to examine the extent to which plant biotechnological patent in terms of natural product which has human intervention, different from other product and the entitlement of such a patent whether it is the inventor or biological donor s patent? In addition, the article discusses how would one determine the value added” by the company s researchers as opposed to the value contributed by the original genetic material. Meanwhile, the poor farmers and indigenous people who are the pioneers in terms of the knowledge of the plant, they are left unprivileged and deprived of their contribution and benefits. Thus, this article would highlight the significance of the contribution made by the original donor especially, in a poor developing country whose natural heritage has been taken away without any consideration, acknowledgment and how to strike a balance between the rights of an inventor and biological donor? Keywords: Plant Biotechnology, Patents, Inventor, Biological Donor, Developing countries Received: 7 July 2009 / Received in revised form: 28 August 2009, Accepted: 28 August 2009, Published online: 22 September 2009

  6. Plant biotechnology : Future perspectives (Review Paper

    Directory of Open Access Journals (Sweden)

    P. Ananda Kumar

    2001-10-01

    Full Text Available Plant biotechnology has made significant strides in thc past 15 years encompassing within its fold the spectacular developments in plant molecular biology and genetic engineering. Some of the most vexing problems faced in agricultural ecosystems could be solved with the introduction of transgenic crops endowed with traits for insect pest resistance, herbicide tolerance and resistance to viral diseases. Attention is now being focussed on the development of transgenic plants having industrial, economic, pharmaceutical, nutritional and environmental importance. In the next millennium, crops will serve as factories for the synthesis of valuable metabolites and organic compounds. Agronomically important characters, such as drought tolerance, efficiency in photosynthesis, nutrient use and nitrogen fixation will be manipulated in the next century to enhance the genetic and physiological potential of the crops. Recent developments in the genome sequencing of Arabidopsis, rice and maize will have far reaching implications for future agriculture. Structural and functional genomics of plant species will virtually revolutionise the complexion of agricultural biotechnology as well as human health care. It is imperative that the developing world adopts these fast-changing technologies soon and harness their unprecedented potential for the benefit of the mankind. "

  7. Biotechnology Applications of Tethered Lipid Bilayer Membranes

    Directory of Open Access Journals (Sweden)

    Joshua A. Jackman

    2012-12-01

    Full Text Available The importance of cell membranes in biological systems has prompted the development of model membrane platforms that recapitulate fundamental aspects of membrane biology, especially the lipid bilayer environment. Tethered lipid bilayers represent one of the most promising classes of model membranes and are based on the immobilization of a planar lipid bilayer on a solid support that enables characterization by a wide range of surface-sensitive analytical techniques. Moreover, as the result of molecular engineering inspired by biology, tethered bilayers are increasingly able to mimic fundamental properties of natural cell membranes, including fluidity, electrical sealing and hosting transmembrane proteins. At the same time, new methods have been employed to improve the durability of tethered bilayers, with shelf-lives now reaching the order of weeks and months. Taken together, the capabilities of tethered lipid bilayers have opened the door to biotechnology applications in healthcare, environmental monitoring and energy storage. In this review, several examples of such applications are presented. Beyond the particulars of each example, the focus of this review is on the emerging design and characterization strategies that made these applications possible. By drawing connections between these strategies and promising research results, future opportunities for tethered lipid bilayers within the biotechnology field are discussed.

  8. BIOTECHNOLOGICAL ASPECTS ANALYSIS OF AGRICULTURAL POULTRY MICROFLORA

    Directory of Open Access Journals (Sweden)

    Garda S. A.

    2014-07-01

    Full Text Available Probiotics based on normal microflora of the birds using perspective strains become increasingly popular for treatment and prophylaxis of dysbacteriosis in poultry. The purpose of the work is the biotechnological data analysis of the composition and functions of the microflora of different birds’ biotopes. One of biotechnological methods for the study of bacterial flora in the birds is a method of in vivo bacteriological control — analysis of group samples of fresh droppings. To study bird bacterial microflora the method based on vital bacteriological control (group sample study of fresh brood is the most effective. Only 60–70% of microorganisms are identified during the analysis of bowels bird microflora. It is shown that the normal microflora of the birds has a protective function because it is colonized on epithelial intestinal area and competes for power sources, has a wider set of enzymes, and also produces a wide range of exometabolites that determine their antagonistic action on pathogenic and conditionally pathogenic transient microorganisms. To improve modern technologies concerning cultivation of various breeds of birds with high genetic potential it needs full understanding of endogenous microflora role in a bird body. We found that as a source of probiotic strains it is better to use gastrointestinal tract laying hens and/or to make a selection of group tests of their fresh litter. Thus the best probiotic properties are characterized by microorganisms genera Bifidobacterium and Lactobacillus. The results could be used for selection of promising strains to create a acomplex probiotic.

  9. Comparative genomics of biotechnologically important yeasts.

    Science.gov (United States)

    Riley, Robert; Haridas, Sajeet; Wolfe, Kenneth H; Lopes, Mariana R; Hittinger, Chris Todd; Göker, Markus; Salamov, Asaf A; Wisecaver, Jennifer H; Long, Tanya M; Calvey, Christopher H; Aerts, Andrea L; Barry, Kerrie W; Choi, Cindy; Clum, Alicia; Coughlan, Aisling Y; Deshpande, Shweta; Douglass, Alexander P; Hanson, Sara J; Klenk, Hans-Peter; LaButti, Kurt M; Lapidus, Alla; Lindquist, Erika A; Lipzen, Anna M; Meier-Kolthoff, Jan P; Ohm, Robin A; Otillar, Robert P; Pangilinan, Jasmyn L; Peng, Yi; Rokas, Antonis; Rosa, Carlos A; Scheuner, Carmen; Sibirny, Andriy A; Slot, Jason C; Stielow, J Benjamin; Sun, Hui; Kurtzman, Cletus P; Blackwell, Meredith; Grigoriev, Igor V; Jeffries, Thomas W

    2016-08-30

    Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the clade sister to the known CUG-Ser clade. Our well-resolved yeast phylogeny shows that some traits, such as methylotrophy, are restricted to single clades, whereas others, such as l-rhamnose utilization, have patchy phylogenetic distributions. Gene clusters, with variable organization and distribution, encode many pathways of interest. Genomics can predict some biochemical traits precisely, but the genomic basis of others, such as xylose utilization, remains unresolved. Our data also provide insight into early evolution of ascomycetes. We document the loss of H3K9me2/3 heterochromatin, the origin of ascomycete mating-type switching, and panascomycete synteny at the MAT locus. These data and analyses will facilitate the engineering of efficient biosynthetic and degradative pathways and gateways for genomic manipulation.

  10. Halophiles, coming stars for industrial biotechnology.

    Science.gov (United States)

    Yin, Jin; Chen, Jin-Chun; Wu, Qiong; Chen, Guo-Qiang

    2015-11-15

    Industrial biotechnology aims to produce chemicals, materials and biofuels to ease the challenges of shortage on petroleum. However, due to the disadvantages of bioprocesses including energy consuming sterilization, high fresh water consumption, discontinuous fermentation to avoid microbial contamination, highly expensive stainless steel fermentation facilities and competing substrates for human consumption, industrial biotechnology is less competitive compared with chemical processes. Recently, halophiles have shown promises to overcome these shortcomings. Due to their unique halophilic properties, some halophiles are able to grow in high pH and high NaCl containing medium under higher temperature, allowing fermentation processes to run contamination free under unsterile conditions and continuous way. At the same time, genetic manipulation methods have been developed for halophiles. So far, halophiles have been used to produce bioplastics polyhydroxyalkanoates (PHA), ectoines, enzymes, and bio-surfactants. Increasing effects have been made to develop halophiles into a low cost platform for bioprocessing with advantages of low energy, less fresh water consumption, low fixed capital investment, and continuous production.

  11. Mannan biotechnology: from biofuels to health.

    Science.gov (United States)

    Yamabhai, Montarop; Sak-Ubol, Suttipong; Srila, Witsanu; Haltrich, Dietmar

    2016-01-01

    Mannans of different structure and composition are renewable bioresources that can be widely found as components of lignocellulosic biomass in softwood and agricultural wastes, as non-starch reserve polysaccharides in endosperms and vacuoles of a wide variety of plants, as well as a major component of yeast cell walls. Enzymatic hydrolysis of mannans using mannanases is essential in the pre-treatment step during the production of second-generation biofuels and for the production of potentially health-promoting manno-oligosaccharides (MOS). In addition, mannan-degrading enzymes can be employed in various biotechnological applications, such as cleansing and food industries. In this review, fundamental knowledge of mannan structures, sources and functions will be summarized. An update on various aspects of mannan-degrading enzymes as well as the current status of their production, and a critical analysis of the potential application of MOS in food and feed industries will be given. Finally, emerging areas of research on mannan biotechnology will be highlighted.

  12. Comparative genomics of biotechnologically important yeasts.

    Science.gov (United States)

    Riley, Robert; Haridas, Sajeet; Wolfe, Kenneth H; Lopes, Mariana R; Hittinger, Chris Todd; Göker, Markus; Salamov, Asaf A; Wisecaver, Jennifer H; Long, Tanya M; Calvey, Christopher H; Aerts, Andrea L; Barry, Kerrie W; Choi, Cindy; Clum, Alicia; Coughlan, Aisling Y; Deshpande, Shweta; Douglass, Alexander P; Hanson, Sara J; Klenk, Hans-Peter; LaButti, Kurt M; Lapidus, Alla; Lindquist, Erika A; Lipzen, Anna M; Meier-Kolthoff, Jan P; Ohm, Robin A; Otillar, Robert P; Pangilinan, Jasmyn L; Peng, Yi; Rokas, Antonis; Rosa, Carlos A; Scheuner, Carmen; Sibirny, Andriy A; Slot, Jason C; Stielow, J Benjamin; Sun, Hui; Kurtzman, Cletus P; Blackwell, Meredith; Grigoriev, Igor V; Jeffries, Thomas W

    2016-08-30

    Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the clade sister to the known CUG-Ser clade. Our well-resolved yeast phylogeny shows that some traits, such as methylotrophy, are restricted to single clades, whereas others, such as l-rhamnose utilization, have patchy phylogenetic distributions. Gene clusters, with variable organization and distribution, encode many pathways of interest. Genomics can predict some biochemical traits precisely, but the genomic basis of others, such as xylose utilization, remains unresolved. Our data also provide insight into early evolution of ascomycetes. We document the loss of H3K9me2/3 heterochromatin, the origin of ascomycete mating-type switching, and panascomycete synteny at the MAT locus. These data and analyses will facilitate the engineering of efficient biosynthetic and degradative pathways and gateways for genomic manipulation. PMID:27535936

  13. Governing nanobiotechnology: lessons from agricultural biotechnology regulation

    International Nuclear Information System (INIS)

    This article uses lessons from biotechnology to help inform the design of oversight for nanobiotechnology. Those lessons suggest the following: first, oversight needs to be broadly defined, encompassing not just regulatory findings around safety and efficacy, but also public understanding and acceptance of the technology and its products. Second, the intensity of scrutiny and review should reflect not just risks but also perceptions of risk. Finally, a global marketplace argues for uniform standards or commercially practical solutions to differences in standards. One way of designing oversight to achieve these purposes is to think about it in three phases—precaution, prudence, and promotion. Precaution comes early in the technology or product’s development and reflects real and perceived uncertainties. Prudence governs when risks and hazards have been identified, containment approaches established, and benefits broadly defined. Transparency and public participation rise to the fore. The promotional phase moves toward shaping public understanding and acceptance and involves marketing issues rather than safety ones. This flexible, three-phase approach to oversight would have avoided some of the early regulatory problems with agricultural biotechnology. It also would have led to a more risk-adjusted pathway to regulatory approval. Furthermore, it would avoid some of the arbitrary, disruptive marketing issues that have arisen.

  14. Mannan biotechnology: from biofuels to health.

    Science.gov (United States)

    Yamabhai, Montarop; Sak-Ubol, Suttipong; Srila, Witsanu; Haltrich, Dietmar

    2016-01-01

    Mannans of different structure and composition are renewable bioresources that can be widely found as components of lignocellulosic biomass in softwood and agricultural wastes, as non-starch reserve polysaccharides in endosperms and vacuoles of a wide variety of plants, as well as a major component of yeast cell walls. Enzymatic hydrolysis of mannans using mannanases is essential in the pre-treatment step during the production of second-generation biofuels and for the production of potentially health-promoting manno-oligosaccharides (MOS). In addition, mannan-degrading enzymes can be employed in various biotechnological applications, such as cleansing and food industries. In this review, fundamental knowledge of mannan structures, sources and functions will be summarized. An update on various aspects of mannan-degrading enzymes as well as the current status of their production, and a critical analysis of the potential application of MOS in food and feed industries will be given. Finally, emerging areas of research on mannan biotechnology will be highlighted. PMID:25025271

  15. The application of biotechnology in animal nutrition

    Directory of Open Access Journals (Sweden)

    Šefer Dragan

    2015-01-01

    Full Text Available Animal food has to incorporate multiple objectives, ie. it should provide good animal health, good production and reproductive performance, reduce pollution of the environment as well as have the impact on food of animal origin, by supplying it, in addition to basic nutrients, with certain useful substances that can act preventively on the occurrence of various diseases in humans in modern living conditions. This complex task implies the application of scientific knowledge concerning biotechnology in the field of animal feed production, and also includes the use of specific nutrients that are the result of the latest developments in specific disciplines such as molecular biology and genetic engineering. As a result of researches in these areas there were created some varieties of cereals and legumes with improved nutritional properties. On the other hand, obtaining a safe food of animal origin product imposes the use of substances of natural origin (such as probiotics, prebiotics, phytobiotics, enzymes, chelating forms .., which provide better digestibility and more complete utilization of certain nutrients from the feedstuff. In this way, the quantity of undigested substances are significantly reduced as well as soil and the atmosphere pollution. The use of specific additives in animal nutrition resulting from biotechnological research is most frequent when a problem concerning certain level of production or animal health has to be overcome. This implies a group of non-nutritional ingredients which are aimed to regulate the digestive tract microflora, pH, weight gain, as well as to modify metabolic processes etc.

  16. Microbial lipases: Production, properties and biotechnological applications

    Directory of Open Access Journals (Sweden)

    Josana Maria Messias

    2011-09-01

    Full Text Available Lipases belong to the group of hydrolases that catalyze the hydrolysis of triacylglycerol lipids to free fatty acids and glycerol. They have significant potential biotechnological applications in catalyzing organic synthesis reactions in non-aqueous solvents using simplified procedures resulting in conversions of high yields. Lipase production has conventionally been performed by submerged fermentation; however, solid-state fermentation processes have been prominent when residues are used as substrates because they serve as low-cost nutrient sources. Microbial lipases can be used as additives in foods to modify and enhance organoleptic properties, as well as in detergents to hydrolyse fats in the treatment of oily effluents, and also have value for pharmaceutical, cosmetic, agrochemical, and oil chemical industries. More recently, they are used in transesterification reactions to convert plant seed oils into biodiesel. The objective of this work was to review the published literature on the production, properties and applications of microbial lipases, and its biotechnological role in producing biodiesel.

  17. Biotechnology in China II. Chemicals, energy and environment

    Energy Technology Data Exchange (ETDEWEB)

    Tsao, G.T. [Purdue Univ., West Lafayette, IN (United States). Lab. Renewable Resources Engineering; Ouyang, Pingkai [Nanjing Univ. of Technology (China). College of Life Science and Pharmaceutical Engineering; Chen, Jian (eds.) [Jiangnan Univ., Wuxi (China). School of Biotechnology

    2010-07-01

    The biochemical engineering and biotechnology is now becoming the most important industry all over the world. China, as a country that has more than 1.3 billion people, has become one of the fastest growing countries in the world during the last several decades. Both the Chinese government and companies pay more and more attention on the research and the application of biotechnology. In the 11th five-year plan (2006-2010), Chinese government unprecedented enhanced the support on the biotechnology in both policy and finance. Currently, the biotechnology gains the most R and D funding in China. With the great support and the increasingly frequent exchanges from abroad, the biotechnology in China becomes more and more important in the world. In recognition of the enormous advances in biotechnology in China, we are pleased to present the second volume of Advances in Biochemical Engineering/ Biotechnology: Biotechnology in China II, edited by P. K. Ouyang, J. Chen and G. T. Tsao, relatively soon after the introduction of the first volume of this multivolume comprehensive books. Since the previous volume was extremely well accepted by the scientific community, we have maintained the overall goal of creating a number of chapters, each devoted to a certain topic by several Chinese research groups working in the field, which provide scientists in academia and public institutions with a well-balanced and comprehensive overview of this growing field in China. We have fully revised the volume and expanded it from bioreaction, bioseparation and bioremediation to more extensive issues in order to cover all recent developments in China into account as much as possible. The new volume of Advances in Biochemical Engineering/Biotechnology: Biotechnology in China II is a comprehensive description of the state-of-the-art in China, and a guide to the understanding the work of Chinese biochemical engineering and biotechnology researchers. It is specifically directed to microbiologists

  18. 77 FR 13258 - Biotechnology Regulatory Services; Changes Regarding the Solicitation of Public Comment for...

    Science.gov (United States)

    2012-03-06

    ... Animal and Plant Health Inspection Service Biotechnology Regulatory Services; Changes Regarding the.... FOR FURTHER INFORMATION CONTACT: Dr. T. Clint Nesbitt, Chief of Staff, Biotechnology Regulatory...://www.aphis.usda.gov/biotechnology/pet_proc_imp.shtml . Current Comment Process for Petitions...

  19. 75 FR 41798 - Solicitation of Letters of Interest to Participate in Biotechnology Quality Management System...

    Science.gov (United States)

    2010-07-19

    ... Biotechnology Quality Management System Program AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION...) is soliciting letters of interest to participate in the APHIS Biotechnology Quality Management System Program. The Biotechnology Quality Management System Program is a voluntary ] compliance...

  20. An investigation of long-term changes in rainfall over the equatorial Indian Ocean trough region during northern summer using multisatellite data

    Science.gov (United States)

    Prakash, Satya; Mahesh, C.; Sathiyamoorthy, V.; Gairola, R. M.; Mitra, A. K.

    2016-04-01

    During the Indian monsoon season, organized convection in the form of inter-tropical convergence zone (ITCZ) originates from the equatorial trough (ET) region over the equatorial Indian Ocean, propagates northward towards the heated Indian landmass at intraseasonal timescales (30-60 days). In this paper, the long-term changes in rainfall over the ET region during the northern summer season has been investigated for a 34-year (1979-2012) period using gauge-adjusted multisatellite Global Precipitation Climatology Project (GPCP) rainfall data set. Rainfall over this region shows a pronounced seasonality and the eastern ET (EET) receives higher rainfall than the western ET (WET) during the northern summer season. Moreover, the northern summer rainfall over the WET and EET are not significantly correlated with each other. Linear trend analysis of domain-mean seasonal rainfall shows a statistically significant increasing trend of 0.4 mm day-1 decade-1 during the northern summer over the WET, whereas no significant trend is observed over the EET. The long-term changes in the associated variables linked through the moisture budget equation are also examined over both regions of ET for the study period. Even though evaporation over both WET and EET shows statistically significant increasing trend associated with an increase in sea surface temperature and near-surface wind, the vertically integrated moisture convergence shows no significant change over the WET whereas it shows a decrease over the EET during the study period. These might be the possible reasons behind a significant increase in rainfall over the WET with an insignificant change in rainfall over the EET.

  1. Medium and Long-term Opportunities and Risks of the Biotechnological Production of Bulk Chemicals from Renewable Resources. The Potential of White Biotechnology. The BREW Project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Patel, M.; Crank, M.; Dornburg, V.; Hermann, B.; Roes, L. [Department of Science, Technology and Society NWS, Utrecht University, Utrecht (Netherlands); Huesing, B. [Fraunhofer Institute for Systems and Innovation Research FhG-ISl, Karlsruhe (Germany); Overbeek, L. [Plant Research International PRI, Wageningen (Netherlands); Terragni, F.; Recchia, E. [CERISS, Centro per I' Educazione, la Ricerca, I' lnformazione su Scienza e Society, Milan (Italy)

    2006-09-15

    This study investigates the medium and long-term opportunities and risks of the biotechnological production of organic chemicals. The objective is to gain better understanding of the techno-economic and the societal viability of White Biotechnology in the coming decades. The key research questions are which products could be made with White Biotechnology, whether these products can contribute to savings of energy use and greenhouse gas (GHG) emissions, under which conditions the products become economically viable, which risks may originate from the use of genetically modified organisms (GMO) in fermentation and what the public perception is. The main purpose of Chapter 2 is to provide an overview of emerging key White Biotechnology products and to explain which chemicals could be produced on their basis. For a selection of these products, detailed environmental and economic assessments are conducted in Chapter 3 (in specific terms, i.e. per tonne of product). Chapter 3 discusses also the so-called Generic Approach which is the methodology we developed and applied to assess future processes and processes, for which very little information is available. In Chapter 4, three scenario projections are developed for Europe (EU-25), thereby assuming benign, moderate and disadvantageous conditions for bio-based chemicals. The purpose of this chapter is hence to understand to which extent restructuring of the chemical sector might occur under which conditions. In Chapter 5, the risks related to the use of White Biotechnology are addressed. The main purpose of this chapter is to give insight into the main risk components influencing the overall risk and of the knowledge gaps. Both conventional risks (e.g., human toxicity and accidents) and risks related to generic modification (e.g., horizontal gene transfer) are analyzed. Since the public perception may play an important role for the implementation of White Biotechnology on a large scale, these issues are discussed in

  2. Role of biotechnology in sustainable development of cotton

    Science.gov (United States)

    The prospect of biotechnology to provide cost-efficient sustainable cotton production under a safe environment for the 21st century is enormous. The role of plant biotechnology in the improvement of cotton is a rapidly evolving area and very broad. The specific objective of this paper is to provide...

  3. Preface: Biocatalysis and Biotechnology for Functional Foods and Industrial Products

    Science.gov (United States)

    This book was assembled with the intent of bringing together current advances and in-depth review of biocatalysis and biotechnology with emphasis on functional foods and industrial products. Biocatalysis and biotechnology defined in this book include enzyme catalysis, biotransformation, bioconversi...

  4. Too New for Textbooks: The Biotechnology Discoveries & Applications Guidebook

    Science.gov (United States)

    Loftin, Madelene; Lamb, Neil E.

    2013-01-01

    The "Biotechnology Discoveries and Applications" guidebook aims to provide teachers with an overview of the recent advances in genetics and biotechnology, allowing them to share these findings with their students. The annual guidebook introduces a wealth of modern genomic discoveries and provides teachers with tools to integrate exciting…

  5. Using the Mystery of the Cyclopic Lamb to Teach Biotechnology

    Science.gov (United States)

    Jensen, Jamie L.

    2010-01-01

    I present a learning cycle that explores different biotechnologies using the process of in situ hybridization as a platform. Students are presented with a cyclopic lamb and must use biotechnology to discover the mechanism behind the deformity. Through this activity, students learn about signal transduction and discover the processes of polymerase…

  6. Current and Future Leaders' Perceptions of Agricultural Biotechnology

    Science.gov (United States)

    Wingenbach, Gary J.; Miller, Rene P.

    2009-01-01

    Were elected state FFA officers' attitudes toward agricultural biotechnology significantly different from elected Texas legislators' attitudes about the same topic? The purpose of this study was to determine if differences existed in agricultural biotechnology perceptions or information source preferences when compared by leadership status:…

  7. State FFA Officers' Confidence and Trustworthiness of Biotechnology Information Sources

    Science.gov (United States)

    Wingenbach, Gary J.; Rutherford, Tracy A.

    2007-01-01

    Are state FFA officers' awareness levels of agricultural topics reported in mass media superior to those who do not serve in leadership roles? The purpose of this study was to determine elected state FFA officers' awareness of biotechnology, and their confidence and trust of biotechnology information sources. Descriptive survey methods were used…

  8. Multidimensional Analysis of High-School Students' Perceptions about Biotechnology

    Science.gov (United States)

    Fonseca, Maria Joao; Costa, Patricio; Lencastre, Leonor; Tavares, Fernando

    2012-01-01

    Concerns about public understanding of biotechnology have motivated educational initiatives to improve students' competency to make scientifically sustained decisions regarding controversial issues. Understanding students' perceptions about biotechnology is essential to determine the effectiveness of these programmes. To assess how students'…

  9. Anticipating the future: 'Biotechnology for the poor' as unrealized promise?

    NARCIS (Netherlands)

    Jansen, K.; Gupta, A.

    2009-01-01

    This article analyses visions of the future articulated by proponents of `biotechnology for the poor¿, those who claim that an embrace of transgenic technology in agriculture is critical to alleviating poverty in developing countries. Specifically, we analyse how such `biotechnology for the poor¿ pr

  10. Agricultural Communications Students' Awareness and Perceptions of Biotechnology Issues.

    Science.gov (United States)

    Wingenbach, Gary J.; Rutherford, Tracy A.; Dunsford, Deborah W.

    2003-01-01

    Agricultural communications students (n=330) from 11 universities were most aware of biotechnology effects on food, less aware of effects on health and the environment. They were somewhat accepting of genetic modifications for plants, not humans. Sources of biotechnology knowledge were science classes, labs, and university professors' beliefs.…

  11. Teaching Biotechnology to Medical Students: Is There an Easy Way?

    Science.gov (United States)

    Steggles, Allen W.

    1987-01-01

    Discusses the teaching of biotechnology to medical students, undergraduate students and high school seniors. Suggests changes in how the basic sciences are taught in medical schools. Reviews the effects of teaching biotechnology at Northeastern Ohio Universities College of Medicine (NEOUCOM). (CW)

  12. Sectoral innovation foresight. Biotechnology sector. Final Reeport. Task 2

    NARCIS (Netherlands)

    Valk, T. van der; Gijsbers, G.W.; Meis, M.

    2010-01-01

    Biotechnology has evolved from a single set of technologies in the mid 1970s (e.g. recombinant DNA technology) into the full grown economic activity of today. The set of technologies that constitute the field of biotechnology thus find their applications in different sectors, most notably in agricul

  13. Sectoral Innovation Watch Biotechnology Sector. Final sector report

    NARCIS (Netherlands)

    Enzing, C.

    2011-01-01

    Biotechnology has evolved from a single set of technologies in the mid 1970s into a full grown technological field that is the driving force in innovation processes in many industrial sectors (pharmaceutical, medical, agriculture, food, chemical, environment, instruments). Nowadays, biotechnology is

  14. Biotechnology policies and performance in central and eastern Europe

    NARCIS (Netherlands)

    Senker, J.; Enzing, C.; Reiss, T.

    2008-01-01

    This paper assesses how far ten Central and Eastern European (CEE) countries have 'caught up' in biotechnology on the basis of information about the policies and funding for biotechnology research and commercialisation from 2002-2005 and on the research and commercialisation performance of these cou

  15. Sensitivity of Pine Island and Thwaites Glaciers to ocean-induced melt investigated using a new physically-based melt parameterisation

    Science.gov (United States)

    Hilmar Gudmundsson, G.; Jenkins, Adrian

    2015-04-01

    Ongoing changes on both Pine Island and Thwaites Glaciers are generally considered to be driven by ocean-induced melt along the undersides of their respective ice shelves. In ice-flow studies to date, melt has usually been prescribed using simple parametrisations that, for example, relate the melt rate directly to the ice draft. Alternatively, ocean circulation models can be used to calculate the melt distribution in a coupled approach. Such coupled ice-ocean model runs are however very time consuming and therefore not suitable for performing large-scale parameter studies. Here we present an alternative methodology that falls in-between these two approaches. We use a new, physically-based parametrisation of melt that has been derived from plume theory to link melt with the geometry of the ice shelf base and the ocean temperature. The sensitivities of Pine Island and Thwaites Glaciers to ocean-induced melting are then estimated using the hybrid flow model Úa.

  16. Fossil energy biotechnology: A research needs assessment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    The Office of Program Analysis of the US Department of Energy commissioned this study to evaluate and prioritize research needs in fossil energy biotechnology. The objectives were to identify research initiatives in biotechnology that offer timely and strategic options for the more efficient and effective uses of the Nation`s fossil resource base, particularly the early identification of new and novel applications of biotechnology for the use or conversion of domestic fossil fuels. Fossil energy biotechnology consists of a number of diverse and distinct technologies, all related by the common denominator -- biocatalysis. The expert panel organized 14 technical subjects into three interrelated biotechnology programs: (1) upgrading the fuel value of fossil fuels; (2) bioconversion of fossil feedstocks and refined products to added value chemicals; and, (3) the development of environmental management strategies to minimize and mitigate the release of toxic and hazardous petrochemical wastes.

  17. MPACT OF GENETIC BIOTECHNOLOGIES ON BIOSECURITY AND FOOD SAFETY

    Directory of Open Access Journals (Sweden)

    NICA-BADEA DELIA

    2014-05-01

    Full Text Available Biosecurity is a relatively new area global, being promoted by the significant results, particularly in the last 20 years, fundamental and applied research. Biotechnology is a collection of techniques that can be used in the agro-food, medical and industrial. The paper examines the potential impact of transgenic biotechnology, vulnerabilities, implications, benefits and risks, quality of life and health. Introduction into the environment, cross-border trade and use of GMOs resulting from modern biotechnology can untoward effects on the conservation and sustainable use of biological diversity, food security and safety. It is openly acknowledged that modern biotechnology has great potential to promote human welfare, in particular, to overcome the critical needs in food, agriculture and human health. Establish appropriate safety measures when using genetically modified organisms (biosecurity policy, regulatory regime, scientific and technical measures is a highly sensitive process, aiming both to maximize the benefits of modern biotechnology and to minimize potential risk

  18. 77 FR 16846 - National Science Advisory Board for Biosecurity Meeting; Office of Biotechnology Activities...

    Science.gov (United States)

    2012-03-22

    ...; Office of Biotechnology Activities, Office of Science Policy, Office of the Director; Notice of Closed...: Ronna Hill, NSABB Program Assistant, NIH Office of Biotechnology Activities, 6705 Rockledge Drive,...

  19. Ocean Color

    Data.gov (United States)

    National Aeronautics and Space Administration — Satellite-derived Ocean Color Data sets from historical and currently operational NASA and International Satellite missions including the NASA Coastal Zone Color...

  20. Is Judgement of Biotechnological Ethical Aspects Related to High School Students' Knowledge?

    Science.gov (United States)

    Črne-Hladnik, Helena; Hladnik, Aleš; Javornik, Branka; Košmelj, Katarina; Peklaj, Cirila

    2012-05-01

    Quantitative and qualitative studies of various aspects of the perception of biotechnology were conducted among 469 Slovenian high school students of average age 17 years. Our research aimed to explore relationships among students' pre-knowledge of molecular and human genetics, and their attitudes to four specific biotechnological applications. These applications-Bt corn, genetically modified (GM) salmon, somatic and germ line gene therapy (GT)-were investigated from the viewpoints of usefulness, moral acceptance and risk perception. In addition, patterns and quality of moral reasoning related to the biotechnological applications from the aspect of moral acceptability were examined. Clear gender differences were found regarding the relationship between our students' pre-knowledge of genetics and their attitudes to biotechnological applications. While females with a better genetics background expressed a higher risk perception in the case of GM salmon, their similarly well-educated male colleagues emphasized the risk associated with the use of germ line GT. With all four biotechnological applications, patterns of both rationalistic-deontological and teleological-and intuitive moral reasoning were identified. Students with poorer genetics pre-knowledge applied an intuitive pattern of moral reasoning more frequently than their peers with better pre-knowledge. A pattern of emotive reasoning was detected only in the case of GM salmon. A relatively low quality of students' moral reasoning, as demonstrated by their brief and small number of supporting justifications (explanations), show that there is a strong need for practising skills of argumentation about socio-scientific issues in Slovenian high schools on a much larger scale. The implications for future research and classroom applications are discussed.

  1. Advanced genetic tools for plant biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Liu, WS; Yuan, JS; Stewart, CN

    2013-10-09

    Basic research has provided a much better understanding of the genetic networks and regulatory hierarchies in plants. To meet the challenges of agriculture, we must be able to rapidly translate this knowledge into generating improved plants. Therefore, in this Review, we discuss advanced tools that are currently available for use in plant biotechnology to produce new products in plants and to generate plants with new functions. These tools include synthetic promoters, 'tunable' transcription factors, genome-editing tools and site-specific recombinases. We also review some tools with the potential to enable crop improvement, such as methods for the assembly and synthesis of large DNA molecules, plant transformation with linked multigenes and plant artificial chromosomes. These genetic technologies should be integrated to realize their potential for applications to pressing agricultural and environmental problems.

  2. The Development of TALE Nucleases for Biotechnology.

    Science.gov (United States)

    Ousterout, David G; Gersbach, Charles A

    2016-01-01

    The development of a facile genome engineering technology based on transcription activator-like effector nucleases (TALENs) has led to significant advances in diverse areas of science and medicine. In this review, we provide a broad overview of the development of TALENs and the use of this technology in basic science, biotechnology, and biomedical applications. This includes the discovery of DNA recognition by TALEs, engineering new TALE proteins to diverse targets, general advances in nuclease-based editing strategies, and challenges that are specific to various applications of the TALEN technology. We review examples of applying TALENs for studying gene function and regulation, generating disease models, and developing gene therapies. The current status of genome editing and future directions for other uses of these technologies are also discussed. PMID:26443211

  3. Biotechnological solutions to the nitrogen problem.

    Science.gov (United States)

    Oldroyd, Giles E D; Dixon, Ray

    2014-04-01

    The availability of nitrogen is one of the major limiting factors to crop growth. In the developed world, farmers use unsustainable levels of inorganic fertilisers to promote crop production. In contrast, in the developing world inorganic fertilisers are often not available and small-holder farmers suffer the resultant poor yields. Finding alternatives to inorganic fertilisers is critical for sustainable and secure food production. Bacteria and Archaea have evolved the capability to fix atmospheric nitrogen to ammonia, a form readily usable in biological processes. This capability presents an opportunity to improve the nutrition of crop plants, through the introduction into cereal crops of either the nitrogen fixing bacteria or the nitrogenase enzyme responsible for nitrogen fixation. While both approaches are challenging, recent advances have laid the groundwork to initiate these biotechnological solutions to the nitrogen problem. PMID:24679253

  4. Interfacing microbiology and biotechnology. Conference abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Maupin, Julia A.

    2001-05-19

    The Interfacing Microbiology and Biotechnology Conference was attended by over 100 faculty, post-docs, students, and research scientists from the US, Europe, and Latin America. The conference successfully stimulated communication and the dissemination of knowledge among scientists involved in basic and applied research. The focus of the conference was on microbial physiology and genetics and included sessions on C1 metabolism, archaeal metabolism, proteases and chaperones, gene arrays, and metabolic engineering. The meeting provided the setting for in-depth discussions between scientists who are internationally recognized for their research in these fields. The following objectives were met: (1) The promotion of interaction and future collaborative projects among scientists involved in basic and applied research which incorporates microbial physiology, genetics, and biochemistry; (2) the facilitation of communication of new research findings through seminars, posters, and abstracts; (3 ) the stimulation of enthusiasm and education among participants including graduate and undergraduate students.

  5. Synthesis of aromatic cytokinins for plant biotechnology.

    Science.gov (United States)

    Plíhalová, Lucie; Vylíčilová, Hana; Doležal, Karel; Zahajská, Lenka; Zatloukal, Marek; Strnad, Miroslav

    2016-09-25

    Cytokinins represent an important group of plant growth regulators that can modulate several biotechnological processes owing to their ability to influence almost all stages of plant development and growth. In addition, the use of purine based cytokinins with aromatic substituent in C6 position of the purine moiety in tissue culture techniques is currently experiencing a surge in interest, made possible by the ongoing systematic synthesis and study of these compounds. This review article outlines progress in the synthesis of aromatic cytokinins, the in vitro and in vivo effects of these substances and insights gleaned from their synthesis. As the purine moiety in these compounds can be substituted at several positions, we examine each of the substitution possibilities in relation to the derivatives prepared so far. The discussion highlights the gradual simplification of their preparation in relation to their application in practice and summarizes the relevant organic chemistry literature and published patents. PMID:26703810

  6. Biotechnological production of gluconic acid: future implications.

    Science.gov (United States)

    Singh, Om V; Kumar, Raj

    2007-06-01

    Gluconic acid (GA) is a multifunctional carbonic acid regarded as a bulk chemical in the food, feed, beverage, textile, pharmaceutical, and construction industries. The favored production process is submerged fermentation by Aspergillus niger utilizing glucose as a major carbohydrate source, which accompanied product yield of 98%. However, use of GA and its derivatives is currently restricted because of high prices: about US$ 1.20-8.50/kg. Advancements in biotechnology such as screening of microorganisms, immobilization techniques, and modifications in fermentation process for continuous fermentation, including genetic engineering programmes, could lead to cost-effective production of GA. Among alternative carbohydrate sources, sugarcane molasses, grape must show highest GA yield of 95.8%, and banana must may assist reducing the overall cost of GA production. These methodologies would open new markets and increase applications of GA.

  7. New challenges and opportunities for industrial biotechnology

    Directory of Open Access Journals (Sweden)

    Chen Guo-Qiang

    2012-08-01

    Full Text Available Abstract Industrial biotechnology has not developed as fast as expected due to some challenges including the emergences of alternative energy sources, especially shale gas, natural gas hydrate (or gas hydrate and sand oil et al. The weaknesses of microbial or enzymatic processes compared with the chemical processing also make industrial biotech products less competitive with the chemical ones. However, many opportunities are still there if industrial biotech processes can be as similar as the chemical ones. Taking advantages of the molecular biology and synthetic biology methods as well as changing process patterns, we can develop bioprocesses as competitive as chemical ones, these including the minimized cells, open and continuous fermentation processes et al.

  8. BIOTECHNOLOGY OF UTILIZATION OF MUNICIPAL WASTEWATER SEDIMENTS

    Directory of Open Access Journals (Sweden)

    G. N. Nikovskaya

    2014-06-01

    Full Text Available Analysis of information on air-conditioning contaminated with heavy metals sludge municipal wastewater points to the actual ecological and chemical problem and its solution could be implemented within the framework of the biological process involving heterotrophic microorganisms. Information on the spread, toxicity, biochemistry, microbiology, colloidal and chemical properties of sludge sediments of municipal wastewater biological treatment is given in the review. These sediments contain vitamins, amino acids, organic matter, heavy metals (micro- and macroelements. Therefore the most rational approach to sludge wastes utilization is their use as an agricultural fertilizer after partial removal of heavy metals. Hence, the interaction of sludge components with heavy metals, modern methods of their removing from biocolloidal systems and biotechnologies of conversion of sludge wastes into fertilizer based on the enhancing of vital ability of sludge biocenoses are discussed.

  9. A sign-theoretic approach to biotechnology

    DEFF Research Database (Denmark)

    Bruni, Luis Emilio

    ’s semiotics. I also provide a brief overview of current knowledge about genome architecture, evolution and communication. I stress the importance of not neglecting the fact that there is no simple linear relation between genotype and phenotype. In section 2.5, I present a “toolbox” of concepts for ”mapping...... to exemplify what is the relevance of a sign-theoretic approach to biotechnology. In particular, I introduce the notion of digital-analogical consensus as a semiotic pattern for the creation of complex logical products that constitute specific signs. The chapter ends with some examples of conspicuous semiotic...... to exemplify how a semiotic approach can be of help when organising the knowledge that can lead us to understanding the relevance, the role and the position of signal transduction networks in relation to the larger semiotic networks in which they function, i.e.: in the hierarchical formal processes of mapping...

  10. Nonclinical statistics for pharmaceutical and biotechnology industries

    CERN Document Server

    2016-01-01

    This book serves as a reference text for regulatory, industry and academic statisticians and also a handy manual for entry level Statisticians. Additionally it aims to stimulate academic interest in the field of Nonclinical Statistics and promote this as an important discipline in its own right. This text brings together for the first time in a single volume a comprehensive survey of methods important to the nonclinical science areas within the pharmaceutical and biotechnology industries. Specifically the Discovery and Translational sciences, the Safety/Toxiology sciences, and the Chemistry, Manufacturing and Controls sciences. Drug discovery and development is a long and costly process. Most decisions in the drug development process are made with incomplete information. The data is rife with uncertainties and hence risky by nature. This is therefore the purview of Statistics. As such, this book aims to introduce readers to important statistical thinking and its application in these nonclinical areas. The cha...

  11. Engineered transcriptional systems for cyanobacterial biotechnology

    Directory of Open Access Journals (Sweden)

    Daniel eCamsund

    2014-10-01

    Full Text Available Cyanobacteria can function as solar-driven biofactories thanks to their ability to perform photosynthesis and the ease with which they are genetically modified. In this review, we discuss transcriptional parts and promoters available for engineering cyanobacteria. First, we go through special cyanobacterial characteristics that may impact engineering, including the unusual cyanobacterial RNA polymerase, sigma factors and promoter types, mRNA stability, circadian rhythm, and gene dosage effects. Then, we continue with discussing component characteristics that are desirable for synthetic biology approaches, including decoupling, modularity and orthogonality. We then summarize and discuss the latest promoters for use in cyanobacteria regarding characteristics such as regulation, strength and dynamic range and suggest potential uses. Finally, we provide an outlook and suggest future developments that would advance the field and accelerate the use of cyanobacteria for renewable biotechnology.

  12. Electroporation-based applications in biotechnology.

    Science.gov (United States)

    Kotnik, Tadej; Frey, Wolfgang; Sack, Martin; Haberl Meglič, Saša; Peterka, Matjaž; Miklavčič, Damijan

    2015-08-01

    Electroporation is already an established technique in several areas of medicine, but many of its biotechnological applications have only started to emerge; we review here some of the most promising. We outline electroporation as a phenomenon and then proceed to applications, first outlining the best established - the use of reversible electroporation for heritable genetic modification of microorganisms (electrotransformation), and then explore recent advances in applying electroporation for inactivation of microorganisms, extraction of biomolecules, and fast drying of biomass. Although these applications often aim to upscale to the industrial and/or clinical level, we also outline some important chip-scale applications of electroporation. We conclude our review with a discussion of the main challenges and future perspectives.

  13. The Development of TALE Nucleases for Biotechnology.

    Science.gov (United States)

    Ousterout, David G; Gersbach, Charles A

    2016-01-01

    The development of a facile genome engineering technology based on transcription activator-like effector nucleases (TALENs) has led to significant advances in diverse areas of science and medicine. In this review, we provide a broad overview of the development of TALENs and the use of this technology in basic science, biotechnology, and biomedical applications. This includes the discovery of DNA recognition by TALEs, engineering new TALE proteins to diverse targets, general advances in nuclease-based editing strategies, and challenges that are specific to various applications of the TALEN technology. We review examples of applying TALENs for studying gene function and regulation, generating disease models, and developing gene therapies. The current status of genome editing and future directions for other uses of these technologies are also discussed.

  14. Biomechatronic Design in Biotechnology A Methodology for Development of Biotechnological Products

    CERN Document Server

    Mandenius, Carl-Fredrik

    2011-01-01

    This cutting-edge guide on the fundamentals, theory, and applications of biomechatronic design principles Biomechatronic Design in Biotechnology presents a complete methodology of biomechatronics, an emerging variant of the mechatronics field that marries biology, electronics, and mechanics to create products where biological and biochemical, technical, human, management-and-goal, and information systems are combined and integrated in order to solve a mission that fulfills a human need. A biomechatronic product includes a biological, mechanical, and electronic part. Beginning with an overvie

  15. Biotechnology in petroleum recovery. The microbial EOR

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ramkrishna [Department of Biotechnology, Indian Institute of Technology (IIT), Kharagpur, West Bengal 721302 (India)

    2008-12-15

    Biotechnology has played a significant role in enhancing crude oil recovery from the depleted oil reservoirs to solve stagnant petroleum production, after a three-stage recovery process employing mechanical, physical and chemical methods. Biotechnologically enhanced oil recovery processes, known as microbial enhanced oil recovery (MEOR), involve stimulating indigenous reservoir microbes or injecting specially selected consortia of natural bacteria into the reservoir to produce specific metabolic events that lead to improved oil recovery. This also involves flooding with oil recovery agents produced ex situ by industrial or pilot scale fermentation. This paper essentially reviews the operating mechanisms and the progress made in enhanced oil recovery through the use of microbes and their metabolic products. Improvement in oil recovery by injecting solvents and gases or by energizing the reservoir microflora to produce them in situ for carbonate rock dissolution and reservoir re-pressurization has been enunciated. The role of biosurfactants in oil mobilization through emulsification and that of biopolymers for selective plugging of oil-depleted zones and for biofilm formation have been delineated. The spoil sport played by sulfate-reducing bacteria (SRB) in MEOR has also been briefly reviewed. The importance of mathematical models used in predicting the applicability of an MEOR strategy and the microbial growth and transport has been qualitatively discussed. The results of some laboratory studies and worldwide field trials applying ex situ and in situ MEOR technologies were compiled and interpreted. However, the potential of the MEOR technologies has not been fully realized due to poor yield of the useful microbial metabolic products, growth inhibition by accumulated toxic metabolites and longer time of incubation. A complete evaluation and assessment of MEOR from an engineering standpoint based on economics, applicability and performance is required to further

  16. Insect-derived enzymes: a treasure for industrial biotechnology and food biotechnology.

    Science.gov (United States)

    Mika, Nicole; Zorn, Holger; Rühl, Martin

    2013-01-01

    Insects are the most diverse group of organisms on earth, colonizing almost every ecological niche of the planet. To survive in various and sometimes extreme habitats, insects have established diverse biological and chemical systems. Core components of these systems are enzymes that enable the insects to feed on diverse nutrient sources. The enzymes are produced by either the insects themselves (homologous) or by symbiotic organisms located in the insects' bodies or in their nests (heterologous). The use of these insect-associated enzymes for applications in the fields of food biotechnology and industrial (white) biotechnology is gaining more and more interest. Prominent examples of insect-derived enzymes include peptidases, amylases, lipases, and β-D-glucosidases. Highly potent peptidases for the degradation of gluten, a storage protein that can cause intestinal disorders, may be received from grain pests. Several insects, such as bark and ambrosia beetles and termites, are able to feed on wood. In the field of white biotechnology, their cellulolytic enzyme systems of mainly endo-1,4-β-D-glucanases and β-D-glucosidases can be employed for saccharification of the most prominent polymer on earth-cellulose.

  17. Experimental Design and Bioinformatics Analysis for the Application of Metagenomics in Environmental Sciences and Biotechnology.

    Science.gov (United States)

    Ju, Feng; Zhang, Tong

    2015-11-01

    Recent advances in DNA sequencing technologies have prompted the widespread application of metagenomics for the investigation of novel bioresources (e.g., industrial enzymes and bioactive molecules) and unknown biohazards (e.g., pathogens and antibiotic resistance genes) in natural and engineered microbial systems across multiple disciplines. This review discusses the rigorous experimental design and sample preparation in the context of applying metagenomics in environmental sciences and biotechnology. Moreover, this review summarizes the principles, methodologies, and state-of-the-art bioinformatics procedures, tools and database resources for metagenomics applications and discusses two popular strategies (analysis of unassembled reads versus assembled contigs/draft genomes) for quantitative or qualitative insights of microbial community structure and functions. Overall, this review aims to facilitate more extensive application of metagenomics in the investigation of uncultured microorganisms, novel enzymes, microbe-environment interactions, and biohazards in biotechnological applications where microbial communities are engineered for bioenergy production, wastewater treatment, and bioremediation.

  18. The Incredible Shrinking Cup Lab: Connecting with Ocean and Great Lakes Scientists to Investigate the Effect of Depth and Water Pressure on Polystyrene

    Science.gov (United States)

    Rose, Chantelle M.; Adams, Jacqueline M.; Hinchey, Elizabeth K.; Nestlerode, Janet A.; Patterson, Mark R.

    2013-01-01

    Pressure increases rapidly with depth in a water body. Ocean and Great Lakes scientists often use this physical feature of water as the basis of a fun pastime performed aboard research vessels around the world: the shrinking of polystyrene cups. Depending on the depth to which the cups are deployed, the results can be quite striking! Capitalizing…

  19. Biotechnology in the 21st Century (Review Paper

    Directory of Open Access Journals (Sweden)

    M.R. Das

    2001-10-01

    Full Text Available The two technologies that will essentially determine the shape of things to come in the present century are biotechnology and information technology. A merger of biotechnology and information technology is happening right now, a significant example of which is the success of the human genome project. Biotechnology can be said to have started with the unravelling of the structure of DNA in 1953. The next decade saw exciting developments in our understanding of the fundamentals of functioning of biological system, including the role of DNA in protein synthesis. The discovery of reverse transcriptase and restriction enzymes in 1970s paved the way for further advances, including recombinant DNA and hybridoma technologies, often called 'genetic engineering'. The discovery of polymerase chain reaction in 1986 laid the foundation for large-scale applications of biotechnology in various fields. The practical applications of mapping of the entire human genome would be enormous in terms of better overall health care (diagnosis, therapy and management of disorders. In the field of flora and fauna, it generally happens that biotechnologically-rich countries have poor biodiversity and vice versa. But countries like India and China that have rich biodiversity have, by the use of biotechnology, the potential to become also biotechnologically rich.

  20. A bibliometric assessment of ASEAN collaboration in plant biotechnology

    KAUST Repository

    Payumo, Jane

    2015-04-03

    This study draws on publication and citation data related to plant biotechnology from a 10-year (2004–2013) period to assess the research performance, impact, and collaboration of member states of the Association of Southeast Asian Nations (ASEAN). Plant biotechnology is one of the main areas of cooperation between ASEAN member states and among the research areas promoted to achieve regional food security and sustainable development. In general, findings indicate increased scientific output, influence, and overall collaboration of ASEAN countries in plant biotechnology over time. Research performance and collaboration (domestic, regional, and international) of the region in plant biotechnology are linked to the status of the economic development of each member country. Thailand produced the most publications of the ASEAN member states while Singapore had the highest influence as indicated by its citation activity in plant biotechnology among the ASEAN countries. Domestic and international collaborations on plant biotechnology are numerous. Regional collaboration or partnership among ASEAN countries was, however, was found to be very limited, which is a concern for the region’s goal of economic integration and science and technology cooperation. More studies using bibliometric data analysis need to be conducted to understand plant biotechnology cooperation and knowledge flows between ASEAN countries. © 2015 Akadémiai Kiadó, Budapest, Hungary

  1. How can developing countries harness biotechnology to improve health?

    Directory of Open Access Journals (Sweden)

    Persad Deepa L

    2007-12-01

    Full Text Available Abstract Background The benefits of genomics and biotechnology are concentrated primarily in the industrialized world, while their potential to combat neglected diseases in the developing world has been largely untapped. Without building developing world biotechnology capacity to address local health needs, this disparity will only intensify. To assess the potential of genomics to address health needs in the developing world, the McLaughlin-Rotman Centre for Global Health, along with local partners, organized five courses on Genomics and Public Health Policy in the developing world. The overall objective of the courses was to collectively explore how to best harness genomics to improve health in each region. This article presents and analyzes the recommendations from all five courses. Discussion In this paper we analyze recommendations from 232 developing world experts from 58 countries who sought to answer how best to harness biotechnology to improve health in their regions. We divide their recommendations into four categories: science; finance; ethics, society and culture; and politics. Summary The Courses' recommendations can be summarized across the four categories listed above: Science - Collaborate through national, regional, and international networks - Survey and build capacity based on proven models through education, training, and needs assessments Finance - Develop regulatory and intellectual property frameworks for commercialization of biotechnology - Enhance funding and affordability of biotechnology - Improve the academic-industry interface and the role of small and medium enterprise Ethics, Society, Culture - Develop public engagement strategies to inform and educate the public about developments in genomics and biotechnology - Develop capacity to address ethical, social and cultural issues - Improve accessibility and equity Politics - Strengthen understanding, leadership and support at the political level for biotechnology

  2. The Role of Biotechnology in Sustainable Agriculture: Views and Perceptions among Key Actors in the Swedish Food Supply Chain

    Directory of Open Access Journals (Sweden)

    Karin Edvardsson Björnberg

    2015-06-01

    Full Text Available Researchers have put forward agricultural biotechnology as one possible tool for increasing food production and making agriculture more sustainable. In this paper, it is investigated how key actors in the Swedish food supply chain perceive the concept of agricultural sustainability and the role of biotechnology in creating more sustainable agricultural production systems. Based on policy documents and semi-structured interviews with representatives of five organizations active in producing, processing and retailing food in Sweden, an attempt is made to answer the following three questions: How do key actors in the Swedish food supply chain define and operationalize the concept of agricultural sustainability? Who/what influences these organizations’ sustainability policies and their respective positions on agricultural biotechnology? What are the organizations’ views and perceptions of biotechnology and its possible role in creating agricultural sustainability? Based on collected data, it is concluded that, although there is a shared view of the core constituents of agricultural sustainability among the organizations, there is less explicit consensus on how the concept should be put into practice or what role biotechnology can play in furthering agricultural sustainability.

  3. Chinese public understanding of the use of agricultural biotechnology--A case study from Zhejiang Province of China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This study explores the Chinese public's perceptions of, and attitudes to, agriculture and food applications of biotechnology; and investigates the effect of socio-demographic factors on attitudes. A questionnaire survey and interviews were used in an attempt to combine quantitative analysis with qualitative review. The main finding of this study is that the Chinese population has a superficial, optimistic attitude to agricultural biotechnology; and that, in accordance with public attitudes, a cautious policy,with obligatory labelling, should be adopted. The study reveals that education is the factor among socio-demographic variables with the strongest impact on public attitudes. Higher education leads to a more positive evaluation of GM (genetically modified)foods and applications of biotechnology with respect to usefulness, moral acceptability, and suitability for encouragement. In addition, public attitudinal differences depend significantly on area of residence. Compared with their more urban compatriots,members of the public in less developed areas of China have more optimistic attitudes, perceive more benefits, and are more risk tolerant in relation to GM foods and agricultural biotechnology. Finally we obtained a very high rate of"don't know" answers to our survey questions. This suggests that many people do not have settled attitudes, and correspondingly, that the overall public attitude to agricultural biotechnology and GM foods in China is at present somewhat unstable.

  4. Ocean plankton. Patterns and ecological drivers of ocean viral communities.

    Science.gov (United States)

    Brum, Jennifer R; Ignacio-Espinoza, J Cesar; Roux, Simon; Doulcier, Guilhem; Acinas, Silvia G; Alberti, Adriana; Chaffron, Samuel; Cruaud, Corinne; de Vargas, Colomban; Gasol, Josep M; Gorsky, Gabriel; Gregory, Ann C; Guidi, Lionel; Hingamp, Pascal; Iudicone, Daniele; Not, Fabrice; Ogata, Hiroyuki; Pesant, Stéphane; Poulos, Bonnie T; Schwenck, Sarah M; Speich, Sabrina; Dimier, Celine; Kandels-Lewis, Stefanie; Picheral, Marc; Searson, Sarah; Bork, Peer; Bowler, Chris; Sunagawa, Shinichi; Wincker, Patrick; Karsenti, Eric; Sullivan, Matthew B

    2015-05-22

    Viruses influence ecosystems by modulating microbial population size, diversity, metabolic outputs, and gene flow. Here, we use quantitative double-stranded DNA (dsDNA) viral-fraction metagenomes (viromes) and whole viral community morphological data sets from 43 Tara Oceans expedition samples to assess viral community patterns and structure in the upper ocean. Protein cluster cataloging defined pelagic upper-ocean viral community pan and core gene sets and suggested that this sequence space is well-sampled. Analyses of viral protein clusters, populations, and morphology revealed biogeographic patterns whereby viral communities were passively transported on oceanic currents and locally structured by environmental conditions that affect host community structure. Together, these investigations establish a global ocean dsDNA viromic data set with analyses supporting the seed-bank hypothesis to explain how oceanic viral communities maintain high local diversity. PMID:25999515

  5. Advances in biomedical engineering and biotechnology during 2013-2014.

    Science.gov (United States)

    Liu, Feng; Wang, Ying; Burkhart, Timothy A; González Penedo, Manuel Francisco; Ma, Shaodong

    2014-01-01

    The 3rd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2014), held in Beijing from the 25th to the 28th of September 2014, is an annual conference that intends to provide an opportunity for researchers and practitioners around the world to present the most recent advances and future challenges in the fields of biomedical engineering, biomaterials, bioinformatics and computational biology, biomedical imaging and signal processing, biomechanical engineering and biotechnology, amongst others. The papers published in this issue are selected from this conference, which witnesses the advances in biomedical engineering and biotechnology during 2013-2014.

  6. Arctic Ocean

    Science.gov (United States)

    Parkinson, Claire L.; Zukor, Dorothy J. (Technical Monitor)

    2000-01-01

    The Arctic Ocean is the smallest of the Earth's four major oceans, covering 14x10(exp 6) sq km located entirely within the Arctic Circle (66 deg 33 min N). It is a major player in the climate of the north polar region and has a variable sea ice cover that tends to increase its sensitivity to climate change. Its temperature, salinity, and ice cover have all undergone changes in the past several decades, although it is uncertain whether these predominantly reflect long-term trends, oscillations within the system, or natural variability. Major changes include a warming and expansion of the Atlantic layer, at depths of 200-900 m, a warming of the upper ocean in the Beaufort Sea, a considerable thinning (perhaps as high as 40%) of the sea ice cover, a lesser and uneven retreat of the ice cover (averaging approximately 3% per decade), and a mixed pattern of salinity increases and decreases.

  7. Oceans Past

    DEFF Research Database (Denmark)

    Based on research for the History of Marine Animal Populations project, Oceans Past examines the complex relationship our forebears had with the sea and the animals that inhabit it. It presents eleven studies ranging from fisheries and invasive species to offshore technology and the study of marine...... environmental history, bringing together the perspectives of historians and marine scientists to enhance understanding of ocean management of the past, present and future. In doing so, it also highlights the influence that changes in marine ecosystems have upon the politics, welfare and culture of human...

  8. Investigating single and multiple species fisheries management: stock status evaluation of hammerhead (Sphyrna spp.) sharks in the western North Atlantic Ocean and Gulf of Mexico.

    OpenAIRE

    Hayes, Christopher Glenn

    2007-01-01

    Three hammerhead sharks (Sphyrna spp.) are currently managed as part of the large coastal shark complex in the United States. Including multiple species in an assessment ignores the different stock dynamics of each individual species within the complex due to different life histories. This study completed individual assessments of scalloped (S. lewini), great (S. mokarran), and smooth (S. zygaena) hammerhead sharks in the U.S. Atlantic Ocean and Gulf of Mexico. Combined data for all three ...

  9. Biotechnological and in situ food production of polyols by lactic acid bacteria.

    Science.gov (United States)

    Ortiz, Maria Eugenia; Bleckwedel, Juliana; Raya, Raúl R; Mozzi, Fernanda

    2013-06-01

    Polyols such as mannitol, erythritol, sorbitol, and xylitol are naturally found in fruits and vegetables and are produced by certain bacteria, fungi, yeasts, and algae. These sugar alcohols are widely used in food and pharmaceutical industries and in medicine because of their interesting physicochemical properties. In the food industry, polyols are employed as natural sweeteners applicable in light and diabetic food products. In the last decade, biotechnological production of polyols by lactic acid bacteria (LAB) has been investigated as an alternative to their current industrial production. While heterofermentative LAB may naturally produce mannitol and erythritol under certain culture conditions, sorbitol and xylitol have been only synthesized through metabolic engineering processes. This review deals with the spontaneous formation of mannitol and erythritol in fermented foods and their biotechnological production by heterofermentative LAB and briefly presented the metabolic engineering processes applied for polyol formation. PMID:23604535

  10. Emerging Agricultural Biotechnologies for Sustainable Agriculture and Food Security.

    Science.gov (United States)

    Anderson, Jennifer A; Gipmans, Martijn; Hurst, Susan; Layton, Raymond; Nehra, Narender; Pickett, John; Shah, Dilip M; Souza, Thiago Lívio P O; Tripathi, Leena

    2016-01-20

    As global populations continue to increase, agricultural productivity will be challenged to keep pace without overtaxing important environmental resources. A dynamic and integrated approach will be required to solve global food insecurity and position agriculture on a trajectory toward sustainability. Genetically modified (GM) crops enhanced through modern biotechnology represent an important set of tools that can promote sustainable agriculture and improve food security. Several emerging biotechnology approaches were discussed in a recent symposium organized at the 13th IUPAC International Congress of Pesticide Chemistry meeting in San Francisco, CA, USA. This paper summarizes the innovative research and several of the new and emerging technologies within the field of agricultural biotechnology that were presented during the symposium. This discussion highlights how agricultural biotechnology fits within the context of sustainable agriculture and improved food security and can be used in support of further development and adoption of beneficial GM crops.

  11. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae.

    NARCIS (Netherlands)

    R.H. Wijffels; O. Kruse; K.J. Hellingwerf

    2013-01-01

    Both cyanobacteria and eukaryotic microalgae are promising organisms for sustainable production of bulk products such as food, feed, materials, chemicals and fuels. In this review we will summarize the potential and current biotechnological developments. Cyanobacteria are promising host organisms fo

  12. Lichens as natural sources of biotechnologically relevant bacteria.

    Science.gov (United States)

    Suzuki, Marcelino T; Parrot, Delphine; Berg, Gabriele; Grube, Martin; Tomasi, Sophie

    2016-01-01

    The search for microorganisms from novel sources and in particular microbial symbioses represents a promising approach in biotechnology. In this context, lichens have increasingly become a subject of research in microbial biotechnology, particularly after the recognition that a diverse community of bacteria other than cyanobacteria is an additional partner to the traditionally recognized algae-fungus mutualism. Here, we review recent studies using culture-dependent as well as culture-independent approaches showing that lichens can harbor diverse bacterial families known for the production of compounds of biotechnological interest and that several microorganisms isolated from lichens, in particular Actinobacteria and Cyanobacteria, can produce a number of bioactive compounds, many of them with biotechnological potential.

  13. Applications of radiations, radioisotopes and nuclear techniques in biotechnology

    International Nuclear Information System (INIS)

    Applications of radiations, radioisotopes and other nuclear techniques has contributed a great deal in our understanding of microbial plant and animal biochemistry and molecular biology. Electron microscopy has provided visual evidence for molecular events. Developments in cell tissue culture of both plants and animals and immunology have contributed to advances in what we now refer as biotechnology. This paper focuses on the applications in the high-tech end of biotechnology, limited to the use of recombinant-DNA techniques. Molecular identification of the genes, their cloning and horizontal transfer across the species of microbes, plants and animals and expression of the transferred genes is the major strength of modern biotechnology. The techniques described in this paper have played a significant role in the development of biotechnology. 6 refs

  14. Emerging Agricultural Biotechnologies for Sustainable Agriculture and Food Security.

    Science.gov (United States)

    Anderson, Jennifer A; Gipmans, Martijn; Hurst, Susan; Layton, Raymond; Nehra, Narender; Pickett, John; Shah, Dilip M; Souza, Thiago Lívio P O; Tripathi, Leena

    2016-01-20

    As global populations continue to increase, agricultural productivity will be challenged to keep pace without overtaxing important environmental resources. A dynamic and integrated approach will be required to solve global food insecurity and position agriculture on a trajectory toward sustainability. Genetically modified (GM) crops enhanced through modern biotechnology represent an important set of tools that can promote sustainable agriculture and improve food security. Several emerging biotechnology approaches were discussed in a recent symposium organized at the 13th IUPAC International Congress of Pesticide Chemistry meeting in San Francisco, CA, USA. This paper summarizes the innovative research and several of the new and emerging technologies within the field of agricultural biotechnology that were presented during the symposium. This discussion highlights how agricultural biotechnology fits within the context of sustainable agriculture and improved food security and can be used in support of further development and adoption of beneficial GM crops. PMID:26785813

  15. Advances in optics for biotechnology, medicine and surgery.

    Science.gov (United States)

    Fitzmaurice, Maryann; Pogue, Brian W; Tearney, Guillermo J; Tunnell, James W; Yang, Changhuei

    2014-02-01

    The guest editors introduce a Biomedical Optics Express feature issue that includes contributions from participants at the 2013 conference on Advances in Optics for Biotechnology, Medicine and Surgery XIII. PMID:24575348

  16. Patho-biotechnology: using bad bugs to do good things.

    Science.gov (United States)

    Sleator, Roy D; Hill, Colin

    2006-04-01

    Pathogenic bacteria have evolved sophisticated strategies to overcome host defences, to interact with the immune system and to interfere with essential host systems. We coin the term 'patho-biotechnology' to describe the exploitation of these valuable traits in biotechnology, medicine and food. This approach shows promise for the development of novel vaccine and drug delivery systems, as well as for the design of more technologically robust and effective probiotic cultures with improved biotechnological and clinical applications. The genetic tractability of Listeria monocytogenes, the availability of the complete genome sequence of this intracellular pathogen, its ability to cope with stress, and its ability to traverse the gastrointestinal tract and induce a strong cellular immune response make L. monocytogenes an ideal model organism for demonstrating the patho-biotechnology concept.

  17. The biotechnology innovation system of Brazil (part I)

    OpenAIRE

    Valeria Judice; Connie Vedovello

    2007-01-01

    Scientific and technological development of the past 30 years, and a breakthrough in the field of biotechnology resulted in appearance of new knowledge-based industries related to knowledge and technology, interdisciplinary life sciences. It covers a variety of sectors, products, processes and services, entering into such sectors as health, agriculture, food processing, environmental protection, new materials and energy sources. Biotechnology industry is far from an organizational maturity, a...

  18. Bargaining in Technology Markets: An empirical study of biotechnology alliances

    OpenAIRE

    Kinukawa, Shinya; Motohashi, Kazuyuki

    2010-01-01

    We empirically examine the distribution of bargaining power between buyers and sellers on the biotechnology markets by estimating the extracted surplus in alliance agreements, which depends on each party's bargaining power. The results show that buyers have extracted more surplus than sellers. However, these also reveal that the surplus extracted by buyers has been decreasing while that of the sellers has been increasing. We construe that the prices of biotechnologies have been lower than the...

  19. Canadian biotechnology policy: designing incentives for a new technology

    OpenAIRE

    Jorge Niosi; Tomas G Bas

    2004-01-01

    Since the early 1980s Canada has created a set of incentives in order to develop the new biotechnology based on genetic engineering. In the beginning, the emphasis was on agriculture and environmental biotechnology, but already by the late 1980s the focus had changed towards human health products and services. Even if the federal government was the original policymaker, several provinces added their own incentives in order to nurture a local industry. Although policies have been changing in s...

  20. Acceptance of biotechnology and social-cultural implications in Ghana

    OpenAIRE

    Quaye, Wilhemina; Yawson, Ivy; Yawson, Robert M.; Williams, Irene E.

    2009-01-01

    Despite major scientific progress in the application of biotechnology in agriculture, public attitudes towards biotechnology in general and genetically modified food (GM food) products in particular remain mixed in Africa. Examining responses on acceptance of GM food through a stakeholder survey in Ghana, it was established that half of the 100 people sample interviewed were not in favor of GM foods. To this group acceptance of GM foods would make farmers loose focus on the traditional ways o...

  1. Introduction of Shanghai Hua Xin High-Biotechnology Inc.

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Shanghai Hua Xin High-Biotechnology Inc.,jointly sponsored by Hong Kong Pharmaceutical(Group) Co., Ltd., Shanghai Life Science Researching Institute of China Academy of Science, was founded in 1992, it is situated in Shanghai Biotechnology Industrial Garden. Prof. Liu Xinyuan, the founder of the company has been laureated three Academicians, including Academician of Chinese Academy of Science, Foreign Academician of National Academy of Ukraine,Academician of The Third World Academy of Science in 2001.

  2. Role of biotechnology in textile industry: а review

    OpenAIRE

    Mojsov, Kiro

    2013-01-01

    Textile processing is a growing industry that traditionally has used a lot of water, energy and harsh chemicals. They are also not easily biodegradable. Biotechnology in textiles is one of the revolutionary ways to advance the textile field. Biotechnology offers the potential for new industrial processes that require less energy and are based on renewable raw materials, as well as the application of green technologies with low energy consumption and environmentally healthy practices. Due to t...

  3. Variability in forms of organisation in biotechnology firms

    OpenAIRE

    Luukkonen, Terttu

    2003-01-01

    This paper examines variability in forms of organisation, in terms of forward and backward networking versus vertical integration, in biotechnology SMEs. The study examines forms of organisation in a set of firms across different application segments. The forms of organisation vary by application segment in biotechnology, but differences are not clear-cut, and a firm can apply different forms to different application segments in its activities. Reasons for the variability are related to the s...

  4. IMPACT OF GENETIC BIOTECHNOLOGIES ON BIOSECURITY AND FOOD SAFETY

    OpenAIRE

    NICA-BADEA DELIA

    2014-01-01

    Biosecurity is a relatively new area global, being promoted by the significant results, particularly in the last 20 years, fundamental and applied research. Biotechnology is a collection of techniques that can be used in the agro-food, medical and industrial. The paper examines the potential impact of transgenic biotechnology, vulnerabilities, implications, benefits and risks, quality of life and health. Introduction into the environment, crossborder trade and use of GMOs resulting from moder...

  5. MPACT OF GENETIC BIOTECHNOLOGIES ON BIOSECURITY AND FOOD SAFETY

    OpenAIRE

    NICA-BADEA DELIA

    2014-01-01

    Biosecurity is a relatively new area global, being promoted by the significant results, particularly in the last 20 years, fundamental and applied research. Biotechnology is a collection of techniques that can be used in the agro-food, medical and industrial. The paper examines the potential impact of transgenic biotechnology, vulnerabilities, implications, benefits and risks, quality of life and health. Introduction into the environment, cross-border trade and use of GMOs resulti...

  6. Biotechnology and health Biotecnología y salud

    OpenAIRE

    Cardozo C.; Reguero M. T

    1998-01-01

    Biotechnology plays an important role in the Health Sciences. The production of immunoreagents and biological drugs, gene therapy, the food industry and the environmental protection have been using the molecular biology and genetic engineering knowledge to improve the quality of life. This review summarizes the contribution and impact of the Biotechnology to the advance of the Biomedical Sciences. The work is framed within the idea that the healthdisease process changes according to specific ...

  7. Plant protoplasts: status and biotechnological perspectives.

    Science.gov (United States)

    Davey, Michael R; Anthony, Paul; Power, J Brian; Lowe, Kenneth C

    2005-03-01

    Plant protoplasts ("naked" cells) provide a unique single cell system to underpin several aspects of modern biotechnology. Major advances in genomics, proteomics, and metabolomics have stimulated renewed interest in these osmotically fragile wall-less cells. Reliable procedures are available to isolate and culture protoplasts from a range of plants, including both monocotyledonous and dicotyledonous crops. Several parameters, particularly the source tissue, culture medium, and environmental factors, influence the ability of protoplasts and protoplast-derived cells to express their totipotency and to develop into fertile plants. Importantly, novel approaches to maximise the efficiency of protoplast-to-plant systems include techniques already well established for animal and microbial cells, such as electrostimulation and exposure of protoplasts to surfactants and respiratory gas carriers, especially perfluorochemicals and hemoglobin. However, despite at least four decades of concerted effort and technology transfer between laboratories worldwide, many species still remain recalcitrant in culture. Nevertheless, isolated protoplasts are unique to a range of experimental procedures. In the context of plant genetic manipulation, somatic hybridisation by protoplast fusion enables nuclear and cytoplasmic genomes to be combined, fully or partially, at the interspecific and intergeneric levels to circumvent naturally occurring sexual incompatibility barriers. Uptake of isolated DNA into protoplasts provides the basis for transient and stable nuclear transformation, and also organelle transformation to generate transplastomic plants. Isolated protoplasts are also exploited in numerous miscellaneous studies involving membrane function, cell structure, synthesis of pharmaceutical products, and toxicological assessments. This review focuses upon the most recent developments in protoplast-based technologies.

  8. Designer cell signal processing circuits for biotechnology.

    Science.gov (United States)

    Bradley, Robert W; Wang, Baojun

    2015-12-25

    Microorganisms are able to respond effectively to diverse signals from their environment and internal metabolism owing to their inherent sophisticated information processing capacity. A central aim of synthetic biology is to control and reprogramme the signal processing pathways within living cells so as to realise repurposed, beneficial applications ranging from disease diagnosis and environmental sensing to chemical bioproduction. To date most examples of synthetic biological signal processing have been built based on digital information flow, though analogue computing is being developed to cope with more complex operations and larger sets of variables. Great progress has been made in expanding the categories of characterised biological components that can be used for cellular signal manipulation, thereby allowing synthetic biologists to more rationally programme increasingly complex behaviours into living cells. Here we present a current overview of the components and strategies that exist for designer cell signal processing and decision making, discuss how these have been implemented in prototype systems for therapeutic, environmental, and industrial biotechnological applications, and examine emerging challenges in this promising field.

  9. Biotechnological production and application of fructooligosaccharides.

    Science.gov (United States)

    Flores-Maltos, Dulce A; Mussatto, Solange I; Contreras-Esquivel, Juan C; Rodríguez-Herrera, Raúl; Teixeira, José A; Aguilar, Cristóbal N

    2016-01-01

    Currently, prebiotics are all carbohydrates of relatively short chain length. One important group is the fructooligosaccharides (FOS), a special kind of prebiotic associated to the selective stimulation of the activity of certain groups of colonic bacteria. They have a positive and beneficial effect on intestinal microbiota, reducing the incidence of gastrointestinal infections and also possessing a recognized bifidogenic effect. Traditionally, these prebiotic compounds have been obtained through extraction processes from some plants, as well as through enzymatic hydrolysis of sucrose. However, different fermentative methods have also been proposed for the production of FOS, such as solid-state fermentations utilizing various agro-industrial by-products. By optimizing the culture parameters, FOS yields and productivity can be improved. The use of immobilized enzymes and cells has also been proposed as being an effective and economic method for large-scale production of FOS. This article is an overview of the results considering recent studies on FOS biosynthesis, physicochemical properties, sources, biotechnological production and applications.

  10. Biotechnology and the fight against onchocerciasis

    International Nuclear Information System (INIS)

    Biotechnology has recently broken into the rather closed field of human and animal disease vectors and vector control. With regard to blackflies which carry onchocerciasis, in particular, some possible directions which initial research is taking, and which future research might follow are: identification of vectors among the species making up the Simulium damnosum group; identification in the vectors of Onchocerca volvulus strains, of greater or lesser pathogenic nature according to the geographical area; identification of the source of the blood meal; and identification of resistance on an individual level. This research will all contribute towards the development of tools for use in the field, which will enable the epidemiology of onchocerciasis to be better understood, and the fight against this form of parasitosis to be better planned. After a long period using chemical insecticides, the discovery of the larvicidal properties of Bacillus thuringiensis serovar 14 (B.t. H-14), and of Bacillus sphaericus, opens up new horizons. However, the formulation of these biological insecticides is not entirely satisfactory, and research is therefore in progress to discover the toxins inside the commensal organisms of certain disease vectors. (author). 29 refs

  11. Isolation and Purification of Biotechnological Products

    Science.gov (United States)

    Hubbuch, Jürgen; Kula, Maria-Regina

    2007-05-01

    The production of modern pharma proteins is one of the most rapid growing fields in biotechnology. The overall development and production is a complex task ranging from strain development and cultivation to the purification and formulation of the drug. Downstream processing, however, still accounts for the major part of production costs. This is mainly due to the high demands on purity and thus safety of the final product and results in processes with a sequence of typically more than 10 unit operations. Consequently, even if each process step would operate at near optimal yield, a very significant amount of product would be lost. The majority of unit operations applied in downstream processing have a long history in the field of chemical and process engineering; nevertheless, mathematical descriptions of the respective processes and the economical large-scale production of modern pharmaceutical products are hampered by the complexity of the biological feedstock, especially the high molecular weight and limited stability of proteins. In order to develop new operational steps as well as a successful overall process, it is thus a necessary prerequisite to develop a deeper understanding of the thermodynamics and physics behind the applied processes as well as the implications for the product.

  12. Fungal genome sequencing: basic biology to biotechnology.

    Science.gov (United States)

    Sharma, Krishna Kant

    2016-08-01

    The genome sequences provide a first glimpse into the genomic basis of the biological diversity of filamentous fungi and yeast. The genome sequence of the budding yeast, Saccharomyces cerevisiae, with a small genome size, unicellular growth, and rich history of genetic and molecular analyses was a milestone of early genomics in the 1990s. The subsequent completion of fission yeast, Schizosaccharomyces pombe and genetic model, Neurospora crassa initiated a revolution in the genomics of the fungal kingdom. In due course of time, a substantial number of fungal genomes have been sequenced and publicly released, representing the widest sampling of genomes from any eukaryotic kingdom. An ambitious genome-sequencing program provides a wealth of data on metabolic diversity within the fungal kingdom, thereby enhancing research into medical science, agriculture science, ecology, bioremediation, bioenergy, and the biotechnology industry. Fungal genomics have higher potential to positively affect human health, environmental health, and the planet's stored energy. With a significant increase in sequenced fungal genomes, the known diversity of genes encoding organic acids, antibiotics, enzymes, and their pathways has increased exponentially. Currently, over a hundred fungal genome sequences are publicly available; however, no inclusive review has been published. This review is an initiative to address the significance of the fungal genome-sequencing program and provides the road map for basic and applied research. PMID:25721271

  13. Fungal genome sequencing: basic biology to biotechnology.

    Science.gov (United States)

    Sharma, Krishna Kant

    2016-08-01

    The genome sequences provide a first glimpse into the genomic basis of the biological diversity of filamentous fungi and yeast. The genome sequence of the budding yeast, Saccharomyces cerevisiae, with a small genome size, unicellular growth, and rich history of genetic and molecular analyses was a milestone of early genomics in the 1990s. The subsequent completion of fission yeast, Schizosaccharomyces pombe and genetic model, Neurospora crassa initiated a revolution in the genomics of the fungal kingdom. In due course of time, a substantial number of fungal genomes have been sequenced and publicly released, representing the widest sampling of genomes from any eukaryotic kingdom. An ambitious genome-sequencing program provides a wealth of data on metabolic diversity within the fungal kingdom, thereby enhancing research into medical science, agriculture science, ecology, bioremediation, bioenergy, and the biotechnology industry. Fungal genomics have higher potential to positively affect human health, environmental health, and the planet's stored energy. With a significant increase in sequenced fungal genomes, the known diversity of genes encoding organic acids, antibiotics, enzymes, and their pathways has increased exponentially. Currently, over a hundred fungal genome sequences are publicly available; however, no inclusive review has been published. This review is an initiative to address the significance of the fungal genome-sequencing program and provides the road map for basic and applied research.

  14. Biotechnological production and application of fructooligosaccharides.

    Science.gov (United States)

    Flores-Maltos, Dulce A; Mussatto, Solange I; Contreras-Esquivel, Juan C; Rodríguez-Herrera, Raúl; Teixeira, José A; Aguilar, Cristóbal N

    2016-01-01

    Currently, prebiotics are all carbohydrates of relatively short chain length. One important group is the fructooligosaccharides (FOS), a special kind of prebiotic associated to the selective stimulation of the activity of certain groups of colonic bacteria. They have a positive and beneficial effect on intestinal microbiota, reducing the incidence of gastrointestinal infections and also possessing a recognized bifidogenic effect. Traditionally, these prebiotic compounds have been obtained through extraction processes from some plants, as well as through enzymatic hydrolysis of sucrose. However, different fermentative methods have also been proposed for the production of FOS, such as solid-state fermentations utilizing various agro-industrial by-products. By optimizing the culture parameters, FOS yields and productivity can be improved. The use of immobilized enzymes and cells has also been proposed as being an effective and economic method for large-scale production of FOS. This article is an overview of the results considering recent studies on FOS biosynthesis, physicochemical properties, sources, biotechnological production and applications. PMID:25519697

  15. Fossil energy biotechnology: A research needs assessment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Finnerty, W.R. [Consultec Scientific, Inc., Knoxville, TN (United States)

    1992-04-01

    The Office of Program Analysis of the US Department of Energy commissioned this study to evaluate and prioritize research needs in fossil energy biotechnology. The objectives were to identify research initiatives in biotechnology that offer timely and strategic options for the more efficient and effective uses of the Nation`s fossil resource base, particularly the early identification of new and novel applications of biotechnology for the use or conversion of domestic fossil fuels. Fossil energy biotechnology consists of a number of diverse and distinct technologies, all related by the common denominator -- biocatalysis. The expert panel organized 14 technical subjects into three interrelated biotechnology programs: (1) upgrading the fuel value of fossil fuels; (2) bioconversion of fossil feedstocks and refined products to added value chemicals; and, (3) the development of environmental management strategies to minimize and mitigate the release of toxic and hazardous petrochemical wastes. The integration of these programs as viable bioprocessing initiatives proposes an innovative and conceptual principle for the development of a ``new`` approach to fossil energy biotechnology. This unifying principle is NON-AQUEOUS BIOCATALYSIS. Biocatalysis coupled to conventional chemical catalysis in organic-based media offers bioprocessing options uniquely characterized by the selectivity of biocatalysts plus fast reaction rates and specificity of chemical catalysts.

  16. Coral-Associated Actinobacteria: Diversity, Abundance, and Biotechnological Potentials.

    Science.gov (United States)

    Mahmoud, Huda M; Kalendar, Aisha A

    2016-01-01

    Marine Actinobacteria, particularly coral-associated Actinobacteria, have attracted attention recently. In this study, the abundance and diversity of Actinobacteria associated with three types of coral thriving in a thermally stressed coral reef system north of the Arabian Gulf were investigated. Coscinaraea columna, Platygyra daedalea and Porites harrisoni have been found to harbor equivalent numbers of culturable Actinobacteria in their tissues but not in their mucus. However, different culturable actinobacterial communities have been found to be associated with different coral hosts. Differences in the abundance and diversity of Actinobacteria were detected between the mucus and tissue of the same coral host. In addition, temporal and spatial variations in the abundance and diversity of the cultivable actinobacterial communities were detected. In total, 19 different actinobacterial genera, namely Micrococcus, Brachybacterium, Brevibacterium, Streptomyces, Micromonospora, Renibacterium, Nocardia, Microbacterium, Dietzia, Cellulomonas, Ornithinimicrobium, Rhodococcus, Agrococcus, Kineococcus, Dermacoccus, Devriesea, Kocuria, Marmoricola, and Arthrobacter, were isolated from the coral tissue and mucus samples. Furthermore, 82 isolates related to Micromonospora, Brachybacterium, Nocardia, Micrococcus, Arthrobacter, Rhodococcus, and Streptomyces showed antimicrobial activities against representative Gram-positive and/or Gram-negative bacteria. Even though Brevibacterium and Kocuria were the most dominant actinobacterial isolates, they failed to show any antimicrobial activity, whereas less dominant genera, such as Streptomyces, did show antimicrobial activity. Focusing on the diversity of coral-associated Actinobacteria may help to understand how corals thrive under harsh environmental conditions and may lead to the discovery of novel antimicrobial metabolites with potential biotechnological applications. PMID:26973601

  17. Education resources of the National Center for Biotechnology Information.

    Science.gov (United States)

    Cooper, Peter S; Lipshultz, Dawn; Matten, Wayne T; McGinnis, Scott D; Pechous, Steven; Romiti, Monica L; Tao, Tao; Valjavec-Gratian, Majda; Sayers, Eric W

    2010-11-01

    The National Center for Biotechnology Information (NCBI) hosts 39 literature and molecular biology databases containing almost half a billion records. As the complexity of these data and associated resources and tools continues to expand, so does the need for educational resources to help investigators, clinicians, information specialists and the general public make use of the wealth of public data available at the NCBI. This review describes the educational resources available at NCBI via the NCBI Education page (www.ncbi.nlm.nih.gov/Education/). These resources include materials designed for new users, such as About NCBI and the NCBI Guide, as well as documentation, Frequently Asked Questions (FAQs) and writings on the NCBI Bookshelf such as the NCBI Help Manual and the NCBI Handbook. NCBI also provides teaching materials such as tutorials, problem sets and educational tools such as the Amino Acid Explorer, PSSM Viewer and Ebot. NCBI also offers training programs including the Discovery Workshops, webinars and tutorials at conferences. To help users keep up-to-date, NCBI produces the online NCBI News and offers RSS feeds and mailing lists, along with a presence on Facebook, Twitter and YouTube.

  18. Biosurfactant gene clusters in eukaryotes: regulation and biotechnological potential.

    Science.gov (United States)

    Roelants, Sophie L K W; De Maeseneire, Sofie L; Ciesielska, Katarzyna; Van Bogaert, Inge N A; Soetaert, Wim

    2014-04-01

    Biosurfactants (BSs) are a class of secondary metabolites representing a wide variety of structures that can be produced from renewable feedstock by a wide variety of micro-organisms. They have (potential) applications in the medical world, personal care sector, mining processes, food industry, cosmetics, crop protection, pharmaceuticals, bio-remediation, household detergents, paper and pulp industry, textiles, paint industries, etc. Especially glycolipid BSs like sophorolipids (SLs), rhamnolipids (RLs), mannosylerythritol lipids (MELs) and cellobioselipids (CBLs) have been described to provide significant opportunities to (partially) replace chemical surfactants. The major two factors currently limiting the penetration of BSs into the market are firstly the limited structural variety and secondly the rather high production price linked with the productivity. One of the keys to resolve the above mentioned bottlenecks can be found in the genetic engineering of natural producers. This could not only result in more efficient (economical) recombinant producers, but also in a diversification of the spectrum of available BSs as such resolving both limiting factors at once. Unraveling the genetics behind the biosynthesis of these interesting biological compounds is indispensable for the tinkering, fine tuning and rearrangement of these biological pathways with the aim of obtaining higher yields and a more extensive structural variety. Therefore, this review focuses on recent developments in the investigation of the biosynthesis, genetics and regulation of some important members of the family of the eukaryotic glycolipid BSs (MELs, CBLs and SLs). Moreover, recent biotechnological achievements and the industrial potential of engineered strains are discussed. PMID:24531239

  19. Selection and validation of enzymatic activities as functional markers in wood biotechnology and fungal ecology.

    Science.gov (United States)

    Mathieu, Yann; Gelhaye, Eric; Dumarçay, Stéphane; Gérardin, Philippe; Harvengt, Luc; Buée, Marc

    2013-02-15

    The dead wood and forest soils are sources of diversity and under-explored fungal strains with biotechnological potential, which require to be studied. Numerous enzymatic tests have been proposed to investigate the functional potential of the soil microbial communities or to test the functional abilities of fungal strains. Nevertheless, the diversity of these functional markers and their relevance in environmental studies or biotechnological screening does still have not been demonstrated. In this work, we assessed ten different extracellular enzymatic activities involved in the wood decaying process including β-etherase that specifically cleaves the β-aryl ether linkages in the lignin polymer. For this purpose, a collection of 26 fungal strains, distributed within three ecological groups (white, brown and soft rot fungi), has been used. Among the ten potential functional markers, the combinatorial use of only six of them allowed separation between the group of white and soft rot fungi from the brown rot fungi. Moreover, our results suggest that extracellular β-etherase is a rare and dispensable activity among the wood decay fungi. Finally, we propose that this set of markers could be useful for the analysis of fungal communities in functional and environmental studies, and for the selection of strains with biotechnological interests. PMID:23206919

  20. The Emerging Role of Biotechnological Drugs in the Treatment of Gout

    Directory of Open Access Journals (Sweden)

    L. Cavagna

    2014-01-01

    Full Text Available One of the most important therapeutic advances obtained in the field of rheumatology is the availability of the so-called bio(technological drugs, which have deeply changed treatment perspectives in diseases such as rheumatoid arthritis and ankylosing spondylitis. According to the steadily increasing attention on gout, due to well-established prognostic and epidemiology implications, in the last 5 years, the same change of perspective has been observed also for this disease. In fact, several bio(technological agents have been investigated both for the management of the articular gout symptoms, targeting mainly interleukin-1β, as well as urate-lowering therapies such as recombinant uricases. Among the IL-1β inhibitors, the majority of studies involve drugs such as anakinra, canakinumab, and rilonacept, but other compounds are under development. Moreover, other potential targets have been suggested, as, for example, the TNF alpha and IL-6, even if data obtained are less robust than those of IL-1β inhibitors. Regarding urate-lowering therapies, the recombinant uricases pegloticase and rasburicase clearly showed their effectiveness in gout patients. Also in this case, new compounds are under development. The aim of this review is to focus on the various aspects of different bio(technological drugs in gouty patients.

  1. The investigation on particulate organic carbon fluxes with disequilibria between thorium-234 and uranium-238 in the Prydz Bay, the Southern Ocean

    Institute of Scientific and Technical Information of China (English)

    HE Jianhua; MA Hao; CHEN Liqi; XIANG Baoqiang; ZENG Xianzhang; YIN Mingduan; ZENG Wenyi

    2008-01-01

    Dissolved and particulate thorium-234,particulate organic carbon in the upper 150 m of water columns from five stations in the Prydz Bay,the Southern Ocean were determined during the 22nd Chinese National Antarctic Research Expedition (from Novem-ber 2005 to March 2006).The disequilibria between thorium-234 and its parent uranium-238 in upper layer was used to derive the averaged residence time of thorium-234,which decreased along with the latitude to the south and a minimum value,1~8 d for par-ticulate thorium-234 and 29~48 d for dissolved thorium-234,appeared at the medium latitude station,and the expert fluxes of thorium-234 were calculated too and a maximunm value,0.35~0.63 Bp/(m3·d) for the particulate thorium-234 and 0.44~0.65 Bq/(m3·d) for the dissolved thorium-234,appeared at hte same station.The export fluxes of particulate organic carbon at different water columns were derived by two methods with irreversible scavenging model,and the averaged values were 104.7 mmol/(m2·d)(E method)and 120.6 mmol/(m2·d) (B method),respectively,indicationg that a relatively high new production would exist in summer in the Prydz Bay where it will play a potential significant role in sequestering the absorption CO2 to deeper ocean.

  2. AMELIORATION DES PLANTES Biotechnologies et arachide

    Directory of Open Access Journals (Sweden)

    Clavel Danièle

    2002-07-01

    Full Text Available Les recherches sur les biotechnologies de l’arachide sont principalement conduites aux États-Unis mais également à travers des programmes collaboratifs internationaux où interviennent l’Icrisat et le Cirad. Malgré une forte variation phénotypique, l’arachide cultivée montre peu de variabilité moléculaire. L’arachide étant une culture alimentaire et de rente très importante dans les régions sahéliennes, la sécheresse et la contamination des graines par l’aflatoxine en cours de culture constituent des contraintes majeures. La seule application connue en sélection assistée par marqueurs d’ADN fait intervenir des gènes provenant d’une espèce sauvage compatible en croisement avec l’espèce cultivée. Les principaux résultats publiés jusqu’à présent concernent la mise au point de techniques de régénération et de transfert de gènes. Le marquage moléculaire s’avérant inefficace, les recherches s’orientent aujourd’hui sur la génomique fonctionnelle du fait de la disponibilité des techniques de transformation génétique. L’objectif est de développer de nouveaux outils moléculaires capables d’assister les programmes de sélection pour la résistance à ces deux traits complexes.

  3. Approaches in biotechnological applications of natural polymers

    Directory of Open Access Journals (Sweden)

    José A. Teixeira

    2016-08-01

    Full Text Available Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them

  4. Southern Ocean biological impacts on global ocean oxygen

    Science.gov (United States)

    Keller, David P.; Kriest, Iris; Koeve, Wolfgang; Oschlies, Andreas

    2016-06-01

    Southern Ocean (SO) physical and biological processes are known to have a large impact on global biogeochemistry. However, the role that SO biology plays in determining ocean oxygen concentrations is not completely understood. These dynamics are investigated here by shutting off SO biology in two marine biogeochemical models. The results suggest that SO biological processes reduce the ocean's oxygen content, mainly in the deep ocean, by 14 to 19%. However, since these processes also trap nutrients that would otherwise be transported northward to fuel productivity and subsequent organic matter export, consumption, and the accompanying oxygen consumption in midlatitude to low-latitude waters, SO biology helps to maintain higher oxygen concentrations in these subsurface waters. Thereby, SO biology can influence the size of the tropical oxygen minimum zones. As a result of ocean circulation the link between SO biological processes and remote oxygen changes operates on decadal to centennial time scales.

  5. States of uncertainty: governing the empire of biotechnology.

    Science.gov (United States)

    Forbes, Ian

    2006-04-01

    The biotechnological revolution presents states and governments with a set of challenges that they have difficulty meeting. Part of the problem is associated with common perceptions of the speed, volume and the radical uncertainty of the new developments. Globalisation is also implicated, especially in relation to the development of the knowledge economy and the role of multinational actors. This in turn contributes to the apparent decline in the confidence of the public that national governments will be effective in addressing mounting concern about the dangers inherent in new techniques and products. Under these circumstances, 'normal' governance begins to look more like 'failure' governance. This article asks whether the effects of the biotechnological revolution on governance can adequately be explained by the critique of imperialism proposed by Michael Hardt and Antonio Negri, and whether the state is in danger of becoming implicated in sponsorship of modernist schemes to improve the human condition of the kind analysed by James E Scott. Biotechnology does appear to have imperial qualities, while there are strong reasons for states to see biotechnology as a feasible and desirable set of developments. For some critics of biotechnology, like Francis Fukuyama, this is a lethal combination, and the powers of the state should be used to stop biotechnological development. Others, by contrast and more pragmatically, propose a check on what the state will support by the application of precautionary principles. The article concludes that the association between the biotechnology empire and the state, combined with the inescapable duty of the state to be the risk manager of last resort, alerts us to the complexities of uncertainty at the same time as it renders a merely restrictive precautionary approach impracticable.

  6. Biotechnological and safety characterization of Enterococcus lactis, a recently described species of dairy origin.

    Science.gov (United States)

    Morandi, Stefano; Silvetti, Tiziana; Brasca, Milena

    2013-01-01

    The biotechnological and safety properties of a recently described enterococcal species, Enterococcus lactis, were investigated. With regard to the technological properties, in milk all the strains tested had weak acidifying and proteolytic activities, generally medium reduction activity over 24 h (-102 mV hyl, esp, ace, efaA, hdc and tdc) was investigated by PCR and no virulence determinants were detected. This study highlights that the recently described E. lactis may be a potential source of novel strains with interesting features that could be used for fermented dairy foods. PMID:22961639

  7. Investigation of trophic level and niche partitioning of 7 cetacean species by stable isotopes, and cadmium and arsenic tissue concentrations in the western Pacific Ocean.

    Science.gov (United States)

    Liu, J-Y; Chou, L-S; Chen, M-H

    2015-04-15

    A total of 24 stranded or bycatch cetaceans, including Balaenoptera omurai, Lagenodelphis hosei, Kogia sima, Stenella attenuata, Grampus griseus, Neophocaena phocaenoides, and Sousa chinensis, were collected from 2001 to 2011 in Taiwan. Using the muscular δ(13)C and δ(15)N data, three ecological groups were identified as the oceanic baleen whale, the neritic, and the coastal toothed whale groups, coinciding with their taxonomy, feeding habits and geographical distribution. A horizontal inshore to offshore distribution was found for the sympatric neritic toothed dolphins, G. griseus, K. sima, S. attenuata, and L. hosei in the outermost offshore waters, accompanying their growth. For the first time we identify Taiwan's Chinese white dolphin, S. chinensis, as an exclusive fish eater. Cd and As bioaccumulated in the G. griseus, L. hosei and S. attenuata increase as they grow. Prey-derived As- and Cd-induced health threats were found in L. hosei, and G. griseus. PMID:25684592

  8. Investigations of (Delta)14C, (delta)13C, and (delta)15N in vertebrae of white shark (Carcharodon carcharias) from the eastern North Pacific Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, L A; Andrews, A H; Cailliet, G M; Brown, T A; Coale, K H

    2006-06-08

    The white shark (Carcharodon carcharias) has a complex life history that is characterized by large scale movements and a highly variable diet. Estimates of age and growth for the white shark from the eastern North Pacific Ocean indicate they have a slow growth rate and a relatively high longevity. Age, growth, and longevity estimates useful for stock assessment and fishery models, however, require some form of validation. By counting vertebral growth band pairs, ages can be estimated, but because not all sharks deposit annual growth bands and many are not easily discernable, it is necessary to validate growth band periodicity with an independent method. Radiocarbon ({sup 14}C) age validation uses the discrete {sup 14}C signal produced from thermonuclear testing in the 1950s and 1960s that is retained in skeletal structures as a time-specific marker. Growth band pairs in vertebrae, estimated as annual and spanning the 1930s to 1990s, were analyzed for {Delta}{sup 14}C and stable carbon and nitrogen isotopes ({delta}{sup 13}C and {delta}{sup 15}N). The aim of this study was to evaluate the utility of {sup 14}C age validation for a wide-ranging species with a complex life history and to use stable isotope measurements in vertebrae as a means of resolving complexity introduced into the {sup 14}C chronology by ontogenetic shifts in diet and habitat. Stable isotopes provided useful trophic position information; however, validation of age estimates was confounded by what may have been some combination of the dietary source of carbon to the vertebrae, large-scale movement patterns, and steep {sup 14}C gradients with depth in the eastern North Pacific Ocean.

  9. Monitoring Ocean Carbon and Ocean Acidification

    OpenAIRE

    Tanhua, Toste; Orr, James C.; Lorenzoni, Laura; Hansson, Lina

    2015-01-01

    As atmospheric CO2 continues to increase, more and more CO2 enters the ocean, which reduces pH (pH is a measure of acidity, the lower the pH, the more acidic the liquid) in a process referred to as ocean acidification. Declines in surface ocean pH due to ocean acidification are already detectable and accelerating.

  10. Proteomics meets blue biotechnology: a wealth of novelties and opportunities.

    Science.gov (United States)

    Hartmann, Erica M; Durighello, Emie; Pible, Olivier; Nogales, Balbina; Beltrametti, Fabrizio; Bosch, Rafael; Christie-Oleza, Joseph A; Armengaud, Jean

    2014-10-01

    Blue biotechnology, in which aquatic environments provide the inspiration for various products such as food additives, aquaculture, biosensors, green chemistry, bioenergy, and pharmaceuticals, holds enormous promise. Large-scale efforts to sequence aquatic genomes and metagenomes, as well as campaigns to isolate new organisms and culture-based screenings, are helping to push the boundaries of known organisms. Mass spectrometry-based proteomics can complement 16S gene sequencing in the effort to discover new organisms of potential relevance to blue biotechnology by facilitating the rapid screening of microbial isolates and by providing in depth profiles of the proteomes and metaproteomes of marine organisms, both model cultivable isolates and, more recently, exotic non-cultivable species and communities. Proteomics has already contributed to blue biotechnology by identifying aquatic proteins with potential applications to food fermentation, the textile industry, and biomedical drug development. In this review, we discuss historical developments in blue biotechnology, the current limitations to the known marine biosphere, and the ways in which mass spectrometry can expand that knowledge. We further speculate about directions that research in blue biotechnology will take given current and near-future technological advancements in mass spectrometry.

  11. Advanced health biotechnologies in Thailand: redefining policy directions

    Directory of Open Access Journals (Sweden)

    Velasco Román Pérez

    2013-01-01

    Full Text Available Abstract Background Thailand faces a significant burden in terms of treating and managing degenerative and chronic diseases. Moreover, incidences of rare diseases are rising. Many of these—such as diabetes, cancer, and inherited inborn metabolic diseases—have no definite treatments or cure. Meanwhile, advanced health biotechnology has been found, in principle, to be an effective solution for these health problems. Methods Qualitative approaches were employed to analyse the current situation and examine existing public policies related to advanced health biotechnologies in Thailand. The results of this analysis were then used to formulate policy recommendations. Results Our research revealed that the system in Thailand in relation to advanced health biotechnologies is fragmented, with multiple unaddressed gaps, underfunding of research and development (R&D, and a lack of incentives for the private sector. In addition, there are no clear definitions of advanced health biotechnologies, and coverage pathways are absent. Meanwhile, false advertising and misinformation are prevalent, with no responsible bodies to actively and effectively provide appropriate information and education (I&E. The establishment of a specialised institution to fill the gaps in this area is warranted. Conclusion The development and implementation of a comprehensive national strategic plan related to advanced health biotechnologies, greater investment in R&D and I&E for all stakeholders, collaboration among agencies, harmonisation of reimbursement across public health schemes, and provision of targeted I&E are specifically recommended.

  12. Development of marine biotechnology as a resource for novel proteases and their role in modern biotechnology.

    Science.gov (United States)

    Homaei, Ahmad; Lavajoo, Fatemeh; Sariri, Reyhaneh

    2016-07-01

    Marine environment consists of the largest sources diversified genetic pool of material with an enormous potential for a wide variety of enzymes including proteases. A protease hydrolyzes the peptide bond and most of proteases possess many industrial applications. Marine proteases differ considerably from those found in internal or external organs of invertebrates and vertebrates. In common with all enzymes, external factors such as temperature, pH and type of media are important for the activity, catalytic efficiency, stability and proper functioning of proteases. In this review valuable characteristics of proteases in marine organisms and their applications are gathered from a wide literature survey. Considering their biochemical significance and their increasing importance in biotechnology, a thorough understanding of marine proteases functioning could be of prime importance.

  13. Laboratory Investigations in Support of Carbon Dioxide-in-Water Emulsions Stabilized by Fine Particles for Ocean and Geologic Sequestration of Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Dan Golomb; Eugene Barry; David Ryan

    2006-07-08

    This semi-annual progress report includes our latest research on deep ocean sequestration of CO{sub 2}-in-Water (C/W) emulsions stabilized by pulverized limestone (CaCO{sub 3}). We describe a practical system that could be employed for the release of a dense C/W emulsion. The heart of the system is a Kenics-type static mixer. The testing and evaluation of a static mixer in the NETL High-Pressure Water Tunnel Facility was described in the previous semi-annual report. The release system could be deployed from a floating platform over the open ocean, or at the end of an off-shore pipe laying on the continental slope. Because the emulsion is much denser than ambient seawater, modeling shows that upon release the plume will sink much deeper from the injection point, increasing the sequestration time for CO{sub 2}. When released in the open ocean, a plume containing the output of a 500 MW{sub el} coal-fired power plant will typically sink hundreds of meters below the injection point. When released from a pipe on the continental shelf, the plume will sink about twice as much because of the limited entrainment of ambient seawater when the plume flows along the sloping seabed. Furthermore, the plume is slightly alkaline, not acidic. The disadvantage is that the creation of the emulsion requires significant amounts of pulverized limestone, on the order of 0.5-0.75 weight ratio of limestone to CO{sub 2}. While pulverized limestone with particle size appropriate for creating C/W emulsions can be purchased for $38 per ton, it is shown in this report that it may be more economic to purchase raw limestone from quarries and pulverize it in situ using grinding mills. In this case the major cost elements are the capital and operating costs of the grinding mills, resulting in a total cost of about $11 per ton of pulverized limestone, including the cost of raw material and shipping. Because we need approximately 0.75 ton of pulverized limestone per ton of liquid CO2 to create a stable

  14. Bacteriophages and their implications on future biotechnology: a review

    Directory of Open Access Journals (Sweden)

    Haq Irshad

    2012-01-01

    Full Text Available Abstract Recently it has been recognized that bacteriophages, the natural predators of bacteria can be used efficiently in modern biotechnology. They have been proposed as alternatives to antibiotics for many antibiotic resistant bacterial strains. Phages can be used as biocontrol agents in agriculture and petroleum industry. Moreover phages are used as vehicles for vaccines both DNA and protein, for the detection of pathogenic bacterial strain, as display system for many proteins and antibodies. Bacteriophages are diverse group of viruses which are easily manipulated and therefore they have potential uses in biotechnology, research, and therapeutics. The aim of this review article is to enable the wide range of researchers, scientists, and biotechnologist who are putting phages into practice, to accelerate the progress and development in the field of biotechnology.

  15. Success Factors of Biotechnology Industry Based on Triangular Fuzzy Number

    Institute of Scientific and Technical Information of China (English)

    Lei; LEI

    2013-01-01

    Based on the theory of competitive advantage and value chain, this paper establishes the indicator system, and develop the strategic framework using the fuzzy Delphi method. Then the triangular fuzzy number model is established using Fuzzy Analytic Hierarchy Process, and the key factors influencing biotechnology industry are extracted. The results show that in terms of weight, the key factors influencing the success of biotechnology industry are sequenced as follows: "open innovation capacity", "quality and cost control ability", "advanced customer-oriented product manufacturing capacity", "technology R & D personnel’s capacity", "brand image building capacity", "logistics and sales capacity", "grasping the market demand trends". The manufacturers and government decision-making body can use this as the basis, to promote the development of the biotechnology industry.

  16. Gas, oil, coal, and environmental biotechnology research. Technology spotlight report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The missions of Biotechnology Research at Institute of Gas Technology (IGT) are to apply biological processes to the production and utilization of fossil energy and related products and to determine ways of accelerating the natural processes by which biological entities can help reduce contaminants in gas, oil, coal, and water. Biotechnology research at IGT resulted in the development of several processes and the accumulation ofextensive experience and expertise. The following are some of the ongoing and recently completed biotechnology research programs at IGT: Molecular biological enhancement of coal biodesulfurization; Removal of organic sulfur from coal; Microbial desulfurization and denitrification of oil shales; Biological removal of heavy metals from wastewater; Methane production from community wastes; Methane enrichment from anaerobic digestion of biomass.

  17. Biotechnological and molecular approaches for vanillin production: a review.

    Science.gov (United States)

    Kaur, Baljinder; Chakraborty, Debkumar

    2013-02-01

    Vanillin is one of the most widely used flavoring agents in the world. As the annual world market demand of vanillin could not be met by natural extraction, chemical synthesis, or tissue culture technology, thus biotechnological approaches may be replacement routes to make production of bio-vanillin economically viable. This review's main focus is to highlight significant aspects of biotechnology with emphasis on the production of vanillin from eugenol, isoeugenol, lignin, ferulic acid, sugars, phenolic stilbenes, vanillic acid, aromatic amino acids, and waste residues by applying fungi, bacteria, and plant cells. Production of biovanillin using GRAS lactic acid bacteria and metabolically engineered microorganisms, genetic organization of vanillin biosynthesis operons/gene cassettes and finally the stability of biovanillin generated through various biotechnological procedures are also critically reviewed in the later sections of the review.

  18. Biotechnology in Argentina: New products, new multilateral challenges

    Directory of Open Access Journals (Sweden)

    Luciano M. Donadio Linares

    2016-06-01

    Full Text Available Since 20 years ago, a public-private alliance has transformed Argentina into a remarkable global actor in developing biotechnological products for food and renewable energies. This strategic alliance resulted in the boosting of scientific knowledge, the extension of the production boundary, the expansion of international trade and the creation of the conditions for an integral development. Furthermore, given the characteristics of biotechnology as a new phenomenon, wto has become the field within where a number of disputes take place, disputes which not only controvert trade issues, but also the State’s limits to design and apply public policies on the matter at issue. As a consequence, the present article seeks to, on the one hand, describe how Argentina built its public policy on Biotechnology and, on the other hand, analyze the challenges that Argentina faces within the multilateral trade system

  19. Biotechnology and Nuclear Agriculture Research Institute (BNARI) at a glance

    International Nuclear Information System (INIS)

    Biotechnology and Nuclear Agriculture Research Institute (BNARI) was established in 1993 as one of the research, development and technology transfer institutes of the Ghana Atomic Energy Commission (GAEC). This was to help the GAEC to expand its research and development in the area of biotechnology and nuclear agriculture, which have been found to have a major impact on the agricultural development in countries involved in peaceful application of nuclear energy. The main objective of the Institute is to explore and exploit the application of isotopes, ionizing radiation and biotechnologies for increased agricultural and economic development of Ghana and to help the Country attain self-sufficiency in food and agriculture in order to alleviate malnutrition, hunger and poverty. This brochure describes the organizational structure; research facilities and programmes; services of the various departments of the Institute as well as achievements

  20. An investigation of the physiology and potential role of components of the deep ocean bacterial community (of the NE Atlantic) by enrichments carried out under minimal environmental change

    Science.gov (United States)

    Egan, Simon T.; McCarthy, David M.; Patching, John W.; Fleming, Gerard T. A.

    2012-03-01

    Samples of deep-ocean water (3170 m) taken from the Rockall Trough (North-East Atlantic) were incubated for one-month at atmospheric and in-situ pressure (31 MPa), at 4 °C and in the absence and presence of added nutrients. Prokaryotic abundance (direct cell counts) increased by at least 28-fold in enrichments without added nutrients. However, the magnitude of increase in abundance was less for incubations carried out at in-situ pressure (131-181-fold) than those incubations at surface pressure (163-1714-fold increase in abundance). Changes in the prokaryotic community profile as a result of one-month incubation were measured by means of Denaturing Gel Electrophoresis (DGGE) of extracted 16S rDNA. The profiles of post-incubation samples incubated at in-situ pressure were separated from all other profiles as were those of unpressurised samples with added nutrients. The behaviour (fitness) of individual community members (Operational Taxonomic Units: OTUs) was determined on the basis of change in relative DGGE band intensities between pre- and post-incubation samples. Of twenty-one OTUs examined, six were fitter when incubated in the presence of added nutrients and at in-situ pressure and one of these was advantaged when grown in the absence of added nutrients and at in-situ pressure. These represented autochthonous and active members of the deep-ocean prokaryotic community. In contrast, seven OTUs were disadvantaged when grown under in-situ pressure and were indicative surface-derived allochtonous microorganisms. A further two OTUs came to dominance in incubations with added nutrients (pressurised and unpressurised) and similar to the previous category were probably surface-derived microorganisms. A single OTU showed characteristics of piezophilic and oliogrophic behaviour and four OTUs were disadvantaged under all incubation conditions examined. The twenty-one DGGE bands were sequenced and the bacterial communities were dominated by Gamma proteobactria and to a

  1. Sharing Malaysian experience with the development of biotechnology-derived food crops.

    Science.gov (United States)

    Abu Bakar, Umi K; Pillai, Vilasini; Hashim, Marzukhi; Daud, Hassan Mat

    2005-12-01

    Biotechnology-derived food crops are currently being developed in Malaysia mainly for disease resistance and improved post harvest quality. The modern biotechnology approach is adopted because of its potential to overcome constraints faced by conventional breeding techniques. Research on the development of biotechnology-derived papaya, pineapple, chili, passion fruit, and citrus is currently under way. Biotechnology-derived papaya developed for resistance to papaya ringspot virus (PRSV) and improved postharvest qualities is at the field evaluation stage. Pineapple developed for resistance to fruit black heart disorder is also being evaluated for proof-of-concept. Other biotechnology-derived food crops are at early stages of gene cloning and transformation. Activities and products involving biotechnology-derived crops will be fully regulated in the near future under the Malaysian Biosafety Law. At present they are governed only by guidelines formulated by the Genetic Modification Advisory Committee (GMAC), Malaysia. Commercialization of biotechnology-derived crops involves steps that require GMAC approval for all field evaluations and food-safety assessments before the products are placed on the market. Public acceptance of the biotechnology product is another important factor for successful commercialization. Understanding of biotechnology is generally low among Malaysians, which may lead to low acceptance of biotechnology-derived products. Initiatives are being taken by local organizations to improve public awareness and acceptance of biotechnology. Future research on plant biotechnology will focus on the development of nutritionally enhanced biotechnology-derived food crops that can provide more benefits to consumers.

  2. Sharing Malaysian experience with the development of biotechnology-derived food crops.

    Science.gov (United States)

    Abu Bakar, Umi K; Pillai, Vilasini; Hashim, Marzukhi; Daud, Hassan Mat

    2005-12-01

    Biotechnology-derived food crops are currently being developed in Malaysia mainly for disease resistance and improved post harvest quality. The modern biotechnology approach is adopted because of its potential to overcome constraints faced by conventional breeding techniques. Research on the development of biotechnology-derived papaya, pineapple, chili, passion fruit, and citrus is currently under way. Biotechnology-derived papaya developed for resistance to papaya ringspot virus (PRSV) and improved postharvest qualities is at the field evaluation stage. Pineapple developed for resistance to fruit black heart disorder is also being evaluated for proof-of-concept. Other biotechnology-derived food crops are at early stages of gene cloning and transformation. Activities and products involving biotechnology-derived crops will be fully regulated in the near future under the Malaysian Biosafety Law. At present they are governed only by guidelines formulated by the Genetic Modification Advisory Committee (GMAC), Malaysia. Commercialization of biotechnology-derived crops involves steps that require GMAC approval for all field evaluations and food-safety assessments before the products are placed on the market. Public acceptance of the biotechnology product is another important factor for successful commercialization. Understanding of biotechnology is generally low among Malaysians, which may lead to low acceptance of biotechnology-derived products. Initiatives are being taken by local organizations to improve public awareness and acceptance of biotechnology. Future research on plant biotechnology will focus on the development of nutritionally enhanced biotechnology-derived food crops that can provide more benefits to consumers. PMID:16465992

  3. 75 FR 15713 - Office of Biotechnology Activities; Office of Science Policy; Office of the Director; Notice of a...

    Science.gov (United States)

    2010-03-30

    ... HUMAN SERVICES National Institutes of Health Office of Biotechnology Activities; Office of Science..., Advisory Committee Coordinator, Office of Biotechnology Activities, Office of Science Policy, Office of the... of Biotechnology Activities, National Institutes of Health. BILLING CODE 4140-01-P...

  4. 75 FR 10293 - Office of Biotechnology Activities; Office of Science Policy; Office of the Director; Notice of a...

    Science.gov (United States)

    2010-03-05

    ... HUMAN SERVICES National Institutes of Health Office of Biotechnology Activities; Office of Science.... Laurie Lewallen, Advisory Committee Coordinator, Office of Biotechnology Activities, Office of Science.... Patterson, Director, Office of Biotechnology Activities, National Institutes of Health. BILLING CODE...

  5. Investigation of trophic level and niche partitioning of 7 cetacean species by stable isotopes, and cadmium and arsenic tissue concentrations in the western Pacific Ocean

    International Nuclear Information System (INIS)

    Highlights: • Muscular δ13C and δ15N data of cetaceans were used to identify their ecological niche • Inshore–offshore distribution pattern was found for four sympatric neritic odontocetes. • Horizontal and vertical movements found in sympatric odontocetes as they grow. • Taiwan’s Chinese white dolphins is an exclusive fish eater. • Prey-derived As- and Cd-induced health threats were found for some dolphins. - Abstract: A total of 24 stranded or bycatch cetaceans, including Balaenoptera omurai, Lagenodelphis hosei, Kogia sima, Stenella attenuata, Grampus griseus, Neophocaena phocaenoides, and Sousa chinensis, were collected from 2001 to 2011 in Taiwan. Using the muscular δ13C and δ15N data, three ecological groups were identified as the oceanic baleen whale, the neritic, and the coastal toothed whale groups, coinciding with their taxonomy, feeding habits and geographical distribution. A horizontal inshore to offshore distribution was found for the sympatric neritic toothed dolphins, G. griseus, K. sima, S. attenuata, and L. hosei in the outermost offshore waters, accompanying their growth. For the first time we identify Taiwan’s Chinese white dolphin, S. chinensis, as an exclusive fish eater. Cd and As bioaccumulated in the G. griseus, L. hosei and S. attenuata increase as they grow. Prey-derived As- and Cd-induced health threats were found in L. hosei, and G. griseus

  6. Extremophilic adaptations and biotechnological applications in diverse environments

    Directory of Open Access Journals (Sweden)

    Brendan P. Burns

    2016-07-01

    Full Text Available Extremophiles are organisms that tolerate and thrive in the most extreme and challenging conditions to life. As a result of these extreme environmental insults extremophiles have developed a number of interesting adaptations to cellular membranes, proteins and extracellular metabolites. These uniquely adapted biological molecules and systems already have roles in a number of biotechnological fields. In this review we give a brief overview of a number of different extreme environments and the potential for biotechnological innovation from the microbes which inhabit them.

  7. Plant Biotechnology Institute (Canada): Annual report, 1991-1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The National Research Council operates more than a dozen national laboratories along with programs for scientific-technical information and industrial research assistance. In the biotechnology program, the Plant Biotechnology Institute has the mission of delivering new, exploitable biological and biochemical methods for the control and genetic alteration of plant development, especially at the cellular and molecular levels. This annual report covers the highlights of the year, the institute and its organizaiton, activities, management and administration, resource profiles, the Advisory Board, and research activities. Also presents a list of publications, awards and distinctions, patents and licenses, presentations, participation on committees, and personnel.

  8. Symposium on chemistry and biotechnology for national development. Proceedings

    International Nuclear Information System (INIS)

    This document is the full proceedings of the symposium on chemistry and biotechnology for national development held at SHESTCO in 1995. It contains the full texts of a forward, opening and special remarks, welcome and keynote addresses and abstracts and texts of 21 technical papers. The subjects covered included information technology,chemistry and biotechnology in agriculture, health care and industrial development. Additionally, the abstracts in respect of 19 other papers are included. We wish to thank the Coordinator of SHESTCO for making available this proceedings

  9. Introduction of Shanghai Hua Xin High-Biotechnology Inc.

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

      Shanghai Hua Xin High-Biotechnology Inc.,jointly sponsored by Hong Kong Pharmaceutical(Group) Co., Ltd., Shanghai Life Science Researching Institute of China Academy of Science, was founded in 1992, it is situated in Shanghai Biotechnology Industrial Garden. Prof. Liu Xinyuan, the founder of the company has been laureated three Academicians, including Academician of Chinese Academy of Science, Foreign Academician of National Academy of Ukraine,Academician of The Third World Academy of Science in 2001.……

  10. High performance hybrid magnetic structure for biotechnology applications

    Science.gov (United States)

    Humphries, David E.; Pollard, Martin J.; Elkin, Christopher J.

    2009-02-03

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are further improvements to aspects of the hybrid magnetic structure, including additional elements and for adapting the use of the hybrid magnetic structure for use in biotechnology and high throughput processes.

  11. Biopolicies and biotechnologies: reflections on surrogate maternity in India

    Directory of Open Access Journals (Sweden)

    Mónica Amador

    2010-07-01

    Full Text Available This article explores the impact of biotechnology, particularly on assisted reproductive technologies such as surrogate motherhood. The study is based on interviews and field work conducted in the city of Hyderabad in India within the frame of the seminar on “Research Methodology” given by Dr. Rohan D´Souza at the Centre for Studies in Science Policy at the Jawaharlal Nehru University in India. The theoretical framework of this analysis focuses on exploring concepts such as cyborg (Haraway,1991 and subaltern subject (Spivak, 1998 in the context of biotechnological production in India

  12. Ethical Principles in European regulation of biotechnology - possibilities and pitfalls

    DEFF Research Database (Denmark)

    Faber, Berit Andersen; Nielsen, Linda

    2002-01-01

    The purpose of this report is to discribe, analyse and assess the varying methods of operationalising ethical principles within European regulation of biotechnology, with the inclusion of proposals for different tools and models for use in future regulation. The aim of the report is first...... and foremost to serve as a practical resource for use in evolving regulation, political support, and democratic and debating activities in different domains in response to rapid advances in biotechnology, and the ethical concerns that follow in its wake....

  13. Possible application of brewer’s spent grain in biotechnology

    OpenAIRE

    Pejin Jelena D.; Radosavljević Miloš S.; Grujić Olgica S.; Mojović Ljiljana V.; Kocić-Tanackov Sunčica D.; Nikolić Svetlana B.; Đukić-Vuković Aleksandra J.

    2013-01-01

    Brewer’s spent grain is the major by-product in beer production. It is produced in large quantities (20 kg per 100 liters of produced beer) throughout the year at a low cost or no cost, and due to its high protein and carbohydrates content it can be used as a raw material in biotechnology. Biotechnological processes based on renewable agro-industrial by-products have ecological (zero CO2 emission, eco-friendly by-products) and economical (cheap raw materials and reduction of storage cos...

  14. Applied optics fundamentals and device applications nano, MOEMS, and biotechnology

    CERN Document Server

    Mentzer, Mark

    2011-01-01

    How does the field of optical engineering impact biotechnology? Perhaps for the first time, Applied Optics Fundamentals and Device Applications: Nano, MOEMS, and Biotechnology answers that question directly by integrating coverage of the many disciplines and applications involved in optical engineering, and then examining their applications in nanobiotechnology. Written by a senior U.S. Army research scientist and pioneer in the field of optical engineering, this book addresses the exponential growth in materials, applications, and cross-functional relevance of the many convergent disciplines

  15. (Workshop on Willow Breeding and Biotechnology Development Activities)

    Energy Technology Data Exchange (ETDEWEB)

    Layton, P.A.

    1988-10-12

    P.A. Layton attended a workshop on Willow Breeding and Biotechnology Development Activities,'' which was organized by the International Energy Agency/Bioenergy Agreement (IEA/BA) Task II. The traveler spent 1 d prior to the meeting to visit scientists and administrators of Shell Research Limited. Physiology and Biological Chemistry Division to discus their interest in biomass production research as well as their other research interests in tissue culture, biotechnology, and management of forests and agricultural crops that are pertinent to the Department of Energy's (DOE's) Biomass Production program.

  16. Space Biotechnology and Commercial Applications University of Florida

    Science.gov (United States)

    Phillips, Winfred; Evanich, Peggy L.

    2004-01-01

    The Space Biotechnology and Commercial Applications grant was funded by NASA's Kennedy Space Center in FY 2002 to provide dedicated biotechnology and agricultural research focused on the regeneration of space flight environments with direct parallels in Earth-based applications for solving problems in the environment, advances in agricultural science, and other human support issues amenable to targeted biotechnology solutions. This grant had three project areas, each with multiple tasks. They are: 1) Space Agriculture and Biotechnology Research and Education, 2) Integrated Smart Nanosensors for Space Biotechnology Applications, and 3) Commercial Applications. The Space Agriculture and Biotechnology Research and Education (SABRE) Center emphasized the fundamental biology of organisms involved in space flight applications, including those involved in advanced life support environments because of their critical role in the long-term exploration of space. The SABRE Center supports research at the University of Florida and at the Space Life Sciences Laboratory (SLSL) at the Kennedy Space Center. The Integrated Smart Nanosensors for Space Biotechnology Applications component focused on developing and applying sensor technologies to space environments and agricultural systems. The research activities in nanosensors were coordinated with the SABRE portions of this grant and with the research sponsored by the NASA Environmental Systems Commercial Space Technology Center located in the Department of Environmental Engineering Sciences. Initial sensor efforts have focused on air and water quality monitoring essential to humans for living and working permanently in space, an important goal identified in NASA's strategic plan. The closed environment of a spacecraft or planetary base accentuates cause and effect relationships and environmental impacts. The limited available air and water resources emphasize the need for reuse, recycling, and system monitoring. It is essential to

  17. Planet Ocean

    Science.gov (United States)

    Afonso, Isabel

    2014-05-01

    A more adequate name for Planet Earth could be Planet Ocean, seeing that ocean water covers more than seventy percent of the planet's surface and plays a fundamental role in the survival of almost all living species. Actually, oceans are aqueous solutions of extraordinary importance due to its direct implications in the current living conditions of our planet and its potential role on the continuity of life as well, as long as we know how to respect the limits of its immense but finite capacities. We may therefore state that natural aqueous solutions are excellent contexts for the approach and further understanding of many important chemical concepts, whether they be of chemical equilibrium, acid-base reactions, solubility and oxidation-reduction reactions. The topic of the 2014 edition of GIFT ('Our Changing Planet') will explore some of the recent complex changes of our environment, subjects that have been lately included in Chemistry teaching programs. This is particularly relevant on high school programs, with themes such as 'Earth Atmosphere: radiation, matter and structure', 'From Atmosphere to the Ocean: solutions on Earth and to Earth', 'Spring Waters and Public Water Supply: Water acidity and alkalinity'. These are the subjects that I want to develop on my school project with my pupils. Geographically, our school is located near the sea in a region where a stream flows into the sea. Besides that, our school water comes from a borehole which shows that the quality of the water we use is of significant importance. This project will establish and implement several procedures that, supported by physical and chemical analysis, will monitor the quality of water - not only the water used in our school, but also the surrounding waters (stream and beach water). The samples will be collected in the borehole of the school, in the stream near the school and in the beach of Carcavelos. Several physical-chemical characteristics related to the quality of the water will

  18. 78 FR 14103 - Request for Information (RFI) Regarding the Planned Biotechnology Development Module (BDM) as...

    Science.gov (United States)

    2013-03-04

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HOMELAND SECURITY Request for Information (RFI) Regarding the Planned Biotechnology Development Module (BDM) as Part... information regarding utilization alternatives for the planned Biotechnology Development Module (BDM)...

  19. National Center for Biotechnology Information Celebrates 25th Anniversary | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... page please turn JavaScript on. National Center for Biotechnology Information Celebrates 25th Anniversary Past Issues / Winter 2014 ... Photo courtesy of NLM The National Center for Biotechnology Information (NCBI), a component of NLM, celebrated its ...

  20. 75 FR 61413 - Notice of Availability of Biotechnology Quality Management System Audit Standard and Evaluation...

    Science.gov (United States)

    2010-10-05

    ... voluntary, audit- based compliance assistance program known as the Biotechnology Quality Management System... Animal and Plant Health Inspection Service Notice of Availability of Biotechnology Quality Management... management system (BQMS) to improve their management of domestic research and development of regulated...

  1. Zvláštnosti podnikání v biotechnologiích

    OpenAIRE

    MIKULÁŠOVÁ, Jana

    2008-01-01

    Use of biotechnology in agriculture has become beneficial for many farmers. However, growing of genetically modified crops has it's own specifics. Paper describes and evaluates specifics of use of biotechnologies in agriculture in the Czech Republic.

  2. Progress on research of materials science and biotechnology by ion beam application

    Energy Technology Data Exchange (ETDEWEB)

    Ishigaki, Isao [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Research of materials science and biotechnology by ion beam application in Takasaki Establishment was reviewed. Especially, the recent progresses of research on semiconductors in space, creation of new functional materials and topics in biotechnology were reported. (author)

  3. BACTERIA OF NOCАRDIA GENUS AS OBJECT OF BIOTECHNOLOGY

    Directory of Open Access Journals (Sweden)

    T. P. Pirog

    2013-06-01

    Full Text Available The literature and own experimental data, concerning biotechnological potential of bacteria of Nocаrdia genus are given. The use of these microorganisms as destructors of aliphatic (octane, pentadecanol, eicosane, octacosane, hexatriacontane, pristane, aromatic (phenol, octylbenzene, phenanthrene, anthracene, nitroaromatic (4-nitrophenol, heterocyclic (pyridine, ?-picoline hydrocarbons is described. The prospects of use of Nocаrdia in processes of substances bio-transformation (production of daidzein, ibuprofen, nicotinic acid and synthesis of some valuable metabolites, in particular antimicrobial and cytotoxic substances (ayamycin, transvalencin А, nocathiacin, brasilibactin A, nocaracins etc. as well as substances with surface-active and emulsifying properties are discussed. The own experimental data concerning optimization of cultivation conditions and intensification of surfactant synthesis on glycerol (byproduct of biodiesel production by oil oxidizing bacteria strain Nocardia vaccinii K-8, that was isolated from oil polluted samples of soil are presented. The ability of strain K-8 to assimilate some aromatic compounds (phenol, benzene, toluene, naphthalene, hexachlorbenzene, sulfanilic acid and N-phenylanthranilic acid, 0.3–0.5% was determined. It was shown that the highest oil destruction degree (94–98% in polluted water (2.6 g/L was achieved in the case of treatment with suspension of N. vaccinii K-8 cells (9.8 x 107 CFU/mL after 30 days, while surfactant preparation of post fermentative cultural liquid (100–300 mL/kg was more effective for remediation (destruction of 74–83% of oil of oil polluted soil (20 g/kg. It was determined that surfactants (0.085–0.85 mg/mL and other exocellular metabolites of strain К-8 possess antimicrobial activity against some phytopathogen bacteria of Pseudomonas and Xanthomonas strains. In this connection the quantity of living cells decreased by 80–100% after the treatment with the

  4. The development and validation of the biotechnology problem-solving skills assessment for community college biotechnology students

    Science.gov (United States)

    Lavoie, Bethann

    As the biotechnology industry grows rapidly, it requires increasing numbers of biotechnicians with problem-solving skills and technical knowledge, yet a college-level, work-related and completely validated assessment measuring biotechnology problem solving skills does not exist in test banks or the problem-based learning literature. The purpose of this study was to develop and validate two parallel forms of an instrument that measures the biotechnology problem-solving skills of students enrolled in community college biotechnology programs. The Biotechnology Problem-Solving Skills Assessment is a 17-item, written, short-answer test containing work-related biotechnology problems in five short problem analysis cases and one integrated performance memo. The assessment validation process answered research questions about the reliability of scores on the assessment, its usefulness and authenticity, and the extent to which scores on the assessment support inferences about students' biotechnology problem-solving skills on the job. The assessment evolved through three testing phases: preliminary, pilot, and field testing. In each round of testing the assessment was administered, and students and experts were interviewed. Additionally during the field test with 115 students and 11 experts, three raters scored 10 student assessments, and two expert biotechnicians rated 10 student assessments. The assessment scores were reliable (alpha = 0.81 for form A and 0.69 for form B). The assessment was viewed as authentic and useful for giving students feedback, as an instructional tool, and as a possible interviewing tool. Student scores on the assessment correlated positively with a proxy measure of on the job problem-solving performance, employer ratings of student assessment answers (rho = 0.746, p = 0.013). Experts validated the biotechnology and problem-solving content on the assessment. Intra- and inter-rater reliabilities were reasonable (intrarater, rho = 0.94, 0.91, and 0

  5. The refractive effects of laser propagation through the ocean and within the ocean

    OpenAIRE

    Xiradakis, Pavlos.

    2009-01-01

    Approved for public release, distribution unlimited This thesis investigates the effect of the ocean water attenuation on a laser beam fired upward inside the ocean. The laser beam spreading due to scattering is approximated. The method used is a computer Monte Carlo simulation. Angular spreading of light caused by refraction at the sea surface is also studied and compared with the ocean results. The method is to simulate geometrical light rays passing through a randomly realized ocean...

  6. Chemical, physical, and other data collected using bottle casts from the North Pacific Ocean as a part of the California Cooperative Fisheries Investigation (CALCOFI) project, from 06 January 1951 to 31 October 1960 (NODC Accession 7100165)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, and other data were collected using bottle casts in the North Pacific Ocean from January 6, 1951 to October 31, 1960. Data were submitted by...

  7. Temperature profile and other data collected using bottle and CTD casts from the A. AGASSIZ and other platforms from the Pacific Ocean during the California Cooperative Fisheries Investigation (CALCOFI) project, 25 July 1954 to 19 December 1966 (NODC Accession 6900651)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic Station Data, temperature, and other data were collected using CTD and bottle casts from A. AGASSIZ and other platforms in the Pacific ocean from July...

  8. Ocean Uses: Hawaii (PROUA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Pacific Regional Ocean Uses Atlas (PROUA) Project is an innovative partnership between NOAA and the Bureau of Ocean Energy Management (BOEM) designed to...

  9. Cell biology and biotechnology research for exploration of the Moon and Mars

    Science.gov (United States)

    Pellis, N.; North, R.

    Health risks generated by human long exposure to radiation, microgravity, and unknown factors in the planetary environment are the major unresolved issues for human space exploration. A complete characterization of human and other biological systems adaptation processes to long-duration space missions is necessary for the development of countermeasures. The utilization of cell and engineered tissue cultures in space research and exploration complements research in human, animal, and plant subjects. We can bring a small number of humans, animals, or plants to the ISS, Moon, and Mars. However, we can investigate millions of their cells during these missions. Furthermore, many experiments can not be performed on humans, e.g. radiation exposure, cardiac muscle. Cells from critical tissues and tissue constructs per se are excellent subjects for experiments that address underlying mechanisms important to countermeasures. The development of cell tissue engineered for replacement, implantation of biomaterial to induce tissue regeneration (e.g. absorbable collagen matrix for guiding tissue regeneration in periodontal surgery), and immunoisolation (e.g. biopolymer coating on transplanted tissues to ward off immunological rejection) are good examples of cell research and biotechnology applications. NASA Cell Biology and Biotechnology research include Bone/Muscle and Cardiovascular cell culture and tissue engineering; Environmental Health and Life Support Systems; Immune System; Radiation; Gravity Thresholds ; and Advanced Biotechnology Development to increase the understanding of animal and plant cell adaptive behavior when exposed to space, and to advance technologies that facilitates exploration. Cell systems can be used to investigate processes related to food, microbial proliferation, waste management, biofilms and biomaterials. The NASA Cell Science Program has the advantage of conducting research in microgravity based on significantly small resources, and the ability to

  10. Biotechnology developments in the livestock sector in developing countries.

    Science.gov (United States)

    Onteru, Suneel; Ampaire, Agatha; Rothschild, Max

    2010-01-01

    Global meat and milk consumption is exponentially increasing due to population growth, urbanization and changes in lifestyle in the developing world. This is an excellent opportunity for developing countries to improve the livestock sector by using technological advances. Biotechnology is one of the avenues for improved production in the "Livestock revolution". Biotechnology developments applied to livestock health, nutrition, breeding and reproduction are improving with a reasonable pace in developing countries. Simple bio-techniques such as artificial insemination have been well implemented in many parts of the developing world. However, advanced technologies including transgenic plant vaccines, marker assisted selection, solid state fermentation for the production of fibrolytic enzymes, transgenic fodders, embryo transfer and animal cloning are confined largely to research organizations. Some developing countries such as Taiwan, China and Brazil have considered the commercialization of biotechnology in the livestock sector. Organized livestock production systems, proper record management, capacity building, objective oriented research to improve farmer's income, collaborations with the developed world, knowledge of the sociology of an area and research on new methods to educate farmers and policy makers need to be improved for the creation and implementation of biotechnology advances in the livestock sector in the developing world.

  11. The Benefits of Using Authentic Inquiry within Biotechnology Education

    Science.gov (United States)

    Hanegan, Nikki; Bigler, Amber

    2010-01-01

    A broad continuum exists to describe the structure of inquiry lessons (Hanegan, Friden, & Nelson, 2009). Most teachers have heard inquiry described from a range of simple questioning to completely student-designed scientific studies (Chinn & Malhotra, 2002). Biotechnology education often uses a variety of inquiries from cookbook laboratory…

  12. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae

    NARCIS (Netherlands)

    Wijffels, R.H.; Kruse, O.; Hellingwerf, K.J.

    2013-01-01

    Both cyanobacteria and eukaryotic microalgae are promising organisms for sustainable production of bulk products such as food, feed, materials, chemicals and fuels. In this review we will summarize the potential and current biotechnological developments.Cyanobacteria are promising host organisms for

  13. Australian Undergraduate Biotechnology Student Attitudes towards the Teaching of Ethics

    Science.gov (United States)

    Lysaght, Tamra; Rosenberger, Philip J., III; Kerridge, Ian

    2006-01-01

    In recent years, ethics has become part of most tertiary biotechnology curricula. There is, however, considerable variation in the extent and manner of ethics education provided to students in different institutions. In addition, the perceived need that students and employers have regarding ethics education, and the aims and expected outcomes of…

  14. Establishing Chlamydomonas reinhardtii as an industrial biotechnology host.

    Science.gov (United States)

    Scaife, Mark A; Nguyen, Ginnie T D T; Rico, Juan; Lambert, Devinn; Helliwell, Katherine E; Smith, Alison G

    2015-05-01

    Microalgae constitute a diverse group of eukaryotic unicellular organisms that are of interest for pure and applied research. Owing to their natural synthesis of value-added natural products microalgae are emerging as a source of sustainable chemical compounds, proteins and metabolites, including but not limited to those that could replace compounds currently made from fossil fuels. For the model microalga, Chlamydomonas reinhardtii, this has prompted a period of rapid development so that this organism is poised for exploitation as an industrial biotechnology platform. The question now is how best to achieve this? Highly advanced industrial biotechnology systems using bacteria and yeasts were established in a classical metabolic engineering manner over several decades. However, the advent of advanced molecular tools and the rise of synthetic biology provide an opportunity to expedite the development of C. reinhardtii as an industrial biotechnology platform, avoiding the process of incremental improvement. In this review we describe the current status of genetic manipulation of C. reinhardtii for metabolic engineering. We then introduce several concepts that underpin synthetic biology, and show how generic parts are identified and used in a standard manner to achieve predictable outputs. Based on this we suggest that the development of C. reinhardtii as an industrial biotechnology platform can be achieved more efficiently through adoption of a synthetic biology approach.

  15. Using Digital Photography to Supplement Learning of Biotechnology

    Science.gov (United States)

    Norflus, Fran

    2012-01-01

    The author used digital photography to supplement learning of biotechnology by students with a variety of learning styles and educational backgrounds. Because one approach would not be sufficient to reach all the students, digital photography was used to explain the techniques and results to the class instead of having to teach each student…

  16. Biotechnology, Genetic Engineering and Society. Monograph Series: III.

    Science.gov (United States)

    Kieffer, George H.

    New techniques have expanded the field of biotechnology and awarded scientists an unprecedented degree of control over the genetic constitutions of living things. The knowledge of DNA science is the basis for this burgeoning industry which may be a major force in human existence. Just as it is possible to move genetic material from one organism to…

  17. A REVIEW ON REGULATORY ASPECTS OF BIOTECHNOLOGY DERIVED PRODUCT

    Directory of Open Access Journals (Sweden)

    Modh Nehal M

    2011-05-01

    Full Text Available Biotechnology-derived pharmaceuticals are a well established and growing part of the therapeutic armamentarium. Beginning with recombinant versions of products such as insulin that were previously manufactured by extraction from animal and human sources, licensed biotechnology drugs and those in development now span an ever-increasing range of product types and therapeutic categories. As a consequence of this diversity, both general and product class-specific scientific guidelines have been developed on a regional (e.g. EU/US or international (e.g. ICH – International Conference on Harmonization basis. The current portfolio of nonclinical guidelines, particularly ICH S6, emphasizes flexibility and adaptability to the specific circumstances of the individual biotechnology product and its intended indication, taking into account factors not generally applicable to small-molecule drugs, such as pharmacodynamic responsiveness of safety and efficacy models, species specificity, and antibody formation. Guidelines developed principally with small-molecule drugs in mind may, nevertheless, have some applicability to biotechnology drugs on issues such as safety pharmacology, as well as on regulatory, procedural and dossier submission requirements. Scientific guidelines, such as those providing nonclinical guidance, are just one, albeit important, component of an increasingly complex legal/scientific environment in drug development.

  18. Integrating Interdisciplinary Research-Based Experiences in Biotechnology Laboratories

    Science.gov (United States)

    Iyer, Rupa S.; Wales, Melinda E.

    2012-01-01

    The increasingly interdisciplinary nature of today's scientific research is leading to the transformation of undergraduate education. In addressing these needs, the University of Houston's College of Technology has developed a new interdisciplinary research-based biotechnology laboratory curriculum. Using the pesticide degrading bacterium,…

  19. An Integrated Strategy for Teaching Biochemistry to Biotechnology Specialty Students

    Science.gov (United States)

    Ouyang, Liming; Ou, Ling; Zhang, Yuanxing

    2007-01-01

    The faculty of biochemistry established an integrated teaching strategy for biotechnology specialty students, by intermeshing the case-study method, web-assistant teaching, and improved lecture format with a brief content and multimedia courseware. Teaching practice showed that the integrated teaching strategy could retain the best features of…

  20. Biotechnology: An Assessment of Agricultural Science Teachers' Knowledge and Attitudes

    Science.gov (United States)

    Mowen, Diana L.; Roberts, T. Grady; Wingenbach, Gary J.; Harlin, Julie F.

    2007-01-01

    The purpose of this study was to explore agricultural science teachers' knowledge levels and attitudes toward biotechnology topics. The average agricultural science teacher in this study was a 37-year-old male who had taught for 12 years. He had a bachelor's degree and had lived or worked on a farm or ranch. He had not attended…

  1. A Methods-Based Biotechnology Course for Undergraduates

    Science.gov (United States)

    Chakrabarti, Debopam

    2009-01-01

    This new course in biotechnology for upper division undergraduates provides a comprehensive overview of the process of drug discovery that is relevant to biopharmaceutical industry. The laboratory exercises train students in both cell-free and cell-based assays. Oral presentations by the students delve into recent progress in drug discovery.…

  2. Consumer perceptions of the application of biotechnology in food production

    DEFF Research Database (Denmark)

    Grunert, Klaus G.

    Background: There has been considerable enthusiasm among scientists and industry about the possibilities of biotechnology and especially genetically modified organisms (GMO) in food production. At the same time, there has been considerable scepticism by consumers, much public debate, and a cautio...... produced using a GMO starter culture and a beer brewed using GMO yeast were used as examples....

  3. Information Equity, Public Understanding of Science, and the Biotechnology Debate.

    Science.gov (United States)

    Priest, Susanna Hornig

    1995-01-01

    States that media effects are largely long-term and indirect, and that lay publics associate more risk with science and technology in their social context than with the underlying science itself. Uses biotechnology to explore media effects issues. Concludes that the scientific community's interests would be better served by news addressing…

  4. Advancement of Marketing Developing Biotechnology-Based Business

    Directory of Open Access Journals (Sweden)

    Vaidas Vilmantas

    2014-09-01

    Full Text Available The article, in a complex way, analyzes the needs of marketing improvement in developing biotechnology­based business and highlights its role in the context of modern society and globalization challenges. The article distinguishes between the existing problems of biotechnology business, the present perspectives and specific characteristics of developing the marketing of biotechnological business. The paper represents the possibility of the substantial modernization of marketing tools with regard to modelling user’s behaviour, improvement in marketing strategy for the company, the correction of the elements of the marketing complex, changes in the marketing conception inside the company, product and service differentiation and renewal, the encouragement of expansion into other markets, variations in or the expansion of the target market, alternatives to the positioning strategy for the company, an increase in competitive ability and an internal impact of marketing on the varying elements. The article has referred to the analysis of scientific literature and research on the opinions of consumers and experts in the field in the context of biotechnology­based businesses.

  5. BIOTECHNOLOGICAL APPLICATIONS OF PURPLE NON SULPHUR PHOTOTROPHIC BACTERIA: A MINIREVIEW

    Directory of Open Access Journals (Sweden)

    Ramchander Merugu

    2013-03-01

    Full Text Available Bacteria play in vital role in the production of variety of products, including certain plastics and enzymes used in detergents, textiles and pharmaceutical industries. Production of chemicals using bacteria and other microorganisms is not only economical sustainable but also ecofriendly. Modern biotechnology entails the use of cell fusion, bioinformatics, genetic engineering, structure based molecular design and hybridoma technology.

  6. Working Towards Disease Resistance in Peanuts Through Biotechnology

    Science.gov (United States)

    Resistant cultivars are the most desirable approach to disease control in agriculture. Early and late leaf spot are the most important foliar diseases of peanut worldwide. Significant progress for leaf spot resistance in peanut can be achieved through biotechnology. The National Peanut Research ...

  7. Analysis of Classroom Debating Strategies in the Field of Biotechnology.

    Science.gov (United States)

    Simonneaux, Laurence

    2002-01-01

    Presents a method for analyzing the didactic strategies put forward to develop students' argumentation skills in biotechnology. Considers five supporting examples and focuses successively on the social characteristics at play and the procedures. Attempts to produce analytical tools to support designers and users of teaching materials in making…

  8. Editorial: metabolic modeling in biotechnology and medical research.

    Science.gov (United States)

    Mattanovich, Diethard; Hatzimanikatis, Vassily

    2013-09-01

    Metabolic Modeling and Simulation: This special issue of Biotechnology Journal is edited by Diethard Mattanovich and Vassily Hatzimanikatis and covers the state-of-the-art in metabolic modeling, including the major themes of methods in metabolic modeling, modeling of human and microbial metabolism, and modeling of bioprocesses.

  9. IMPACT OF AGRICULTURAL BIOTECHNOLOGY ON ENVIRONMENT AND FOOD SECURITY

    OpenAIRE

    Marijan Jošt

    2003-01-01

    The application of modern biotechnology in agricultural production processes has generated new ethical, economic, social and environmental dilemmas confronting scientists all over the world. While current knowledge is insufficient for assessing the promised benefits and possible risks of genetically modified organisms (GMOs), the principle of “substantial equivalence” in comparing GM and conventional food is profoundly flawed and scientifically insupportable. The current generatio...

  10. CONSUMER CONCERNS ABOUT BIOTECHNOLOGY:I NTERNATIONAL PERSPECTIVE

    OpenAIRE

    Hallman, William K.

    2000-01-01

    A national survey conducted by the Food Policy Institute demonstrates the lack of knowledge and awareness most Americans have of genetically modified foods. The paper provides insight into public perceptions of food biotechnology's risks and benefits and a preliminary examination of consumers' stated preferences for genetically modified functional foods.

  11. Past, Present, and Future Industrial Biotechnology in China

    Science.gov (United States)

    Li, Zhenjiang; Ji, Xiaojun; Kan, Suli; Qiao, Hongqun; Jiang, Min; Lu, Dingqiang; Wang, Jun; Huang, He; Jia, Honghua; Ouyuang, Pingkai; Ying, Hanjie

    Fossil resources, i.e. concentrated carbon from biomass, have been irrecoverably exhausted through modern industrial civilization in the last two hundred years. Serious consequences including crises in resources, environment and energy, as well as the pressing need for direct and indirect exploitation of solar energy, pose challenges to the science and technology community of today. Bioenergy, bulk chemicals, and biomaterials could be produced from renewable biomass in a biorefinery via biocatalysis. These sustainable industries will match the global mass cycle, creating a new form of civilization with new industries and agriculture driven by solar energy. Industrial biotechnology is the dynamo of a bioeconomy, leading to a new protocol for production of energy, bulk chemicals, and materials. This new mode of innovation will place the industry at center stage supported by universities and research institutes. Creativity in industrial biotechnology will be promoted and China will successfully follow the road to green modernization. China's rapid economic development and its traditional capacity in fermentation will place it in an advantageous position in the industrial biotechnology revolution. The development and current status of industrial biotechnology in China are summarized herein.

  12. Biotechnology Symposium - In Memoriam, the Late Dr. Allan Zipf

    Science.gov (United States)

    A one-day biotechnology symposium was held at Alabama A&M University (AAMU), Normal, AL on June 4, 2004 in memory of the late Dr. Allan Zipf (Sept 1953-Jan 2004). Dr. Zipf was a Research Associate Professor at the Department of Plant and Soil Sciences, AAMU, who collaborated extensively with ARS/MS...

  13. Attitudes of Secondary School Students towards Modern Biotechnology

    NARCIS (Netherlands)

    T. Klop (Tanja)

    2008-01-01

    textabstractI interviewed a group of four sixteen-year old secondary school students about their attitudes towards modern biotechnology. When I asked them what they knew about this subject, one girl responded: “Well, I know it’s about genes, they are located in your DNA, and within your genes is all

  14. Herbicide-resistant crop biotechnology: potential and pitfalls

    Science.gov (United States)

    Herbicide-resistant crops are an important agricultural biotechnology that can enable farmers to effectively control weeds without harming their crops. Glyphosate-resistant (i.e. Roundup Ready) crops have been the most commercially successful varieties of herbicide-resistant crops and have been plan...

  15. Community Action Projects: Applying Biotechnology in the Real World

    Science.gov (United States)

    Nguyen, Phuong D.; Siegel, Marcelle A.

    2015-01-01

    Project-based learning and action research are powerful pedagogies in improving science education. We implemented a semester-long course using project-based action research to help students apply biotechnology knowledge learned in the classroom to the real world. Students had several choices to make in the project: working individually or as a…

  16. A Brave New World: Students Debate Ethics of Biotechnology.

    Science.gov (United States)

    Barksdale, Francia

    1996-01-01

    This article describes an interdisciplinary classroom project in which ninth graders simulate a "World Council on Genetic Technology." Students in small groups take on the persona and interests of individuals from specific countries in the group effort to develop a covenant for regulating the use of biotechnology. The benefits of having gifted…

  17. Biotech 101: an educational outreach program in genetics and biotechnology.

    Science.gov (United States)

    East, Kelly M; Hott, Adam M; Callanan, Nancy P; Lamb, Neil E

    2012-10-01

    Recent advances in research and biotechnology are making genetics and genomics increasingly relevant to the lives and health of the general public. For the public to make informed healthcare and public policy decisions relating to genetic information, there is a need for increased genetic literacy. Biotech 101 is a free, short-course for the local community introducing participants to topics in genetics, genomics, and biotechnology, created at the HudsonAlpha Institute for Biotechnology. This study evaluated the effectiveness of Biotech 101 in increasing the genetic literacy of program participants through pre-and-post surveys. Genetic literacy was measured through increases in self-perceived knowledge for each content area covered through the course and the self-reported impact the course had on various aspects of participants' lives. Three hundred ninety-two individuals attended Biotech 101 during the first three course offerings. Participants reported a significant increase in self-perceived knowledge for each content area (p Biotech 101 is an effective mechanism for impacting participants' lives and genetic literacy and serves as a model for other similar programs, adding to the currently limited evidence base regarding public educational strategies in genetics and biotechnology.

  18. Student Content Knowledge Increases after Participation in a Hands-on Biotechnology Intervention

    Science.gov (United States)

    Bigler, Amber M.; Hanegan, Nikki L.

    2011-01-01

    Implementing biotechnology education through hands-on teaching methods should be considered by secondary biology teachers. This study is an experimental research design to examine increased student content knowledge in biotechnology after a hands-on biotechnology intervention. The teachers from both school groups participated in, Project Crawfish,…

  19. 77 FR 11064 - Notice of the Advisory Committee on Biotechnology and 21st Century Agriculture Meeting

    Science.gov (United States)

    2012-02-24

    ... Agricultural Research Service Notice of the Advisory Committee on Biotechnology and 21st Century Agriculture... Committee on Biotechnology and 21st Century Agriculture (AC21). DATES: The meeting dates are March 5-6, 2012..., 2012. The AC21 consists of members representing the biotechnology industry, the organic food...

  20. 76 FR 48797 - Notice of the Advisory Committee on Biotechnology and 21st Century Agriculture Meeting

    Science.gov (United States)

    2011-08-09

    ... Agricultural Research Service Notice of the Advisory Committee on Biotechnology and 21st Century Agriculture... on Biotechnology and 21st Century Agriculture (AC21). DATES: August 30-31, 2011. ADDRESSES: Rooms... consists of members representing the biotechnology industry, the organic food industry, farming...

  1. 75 FR 25282 - Office of the Director, Office of Biotechnology Activities; Notice of a Safety Symposium

    Science.gov (United States)

    2010-05-07

    ... HUMAN SERVICES National Institutes of Health Office of the Director, Office of Biotechnology Activities.... Chezelle George, Administrative Assistant, Office of Biotechnology Activities, Office of the Director... a.m. to 5:30 p.m. Agenda: The Office of Biotechnology Activities (OBA) and NIH Recombinant...

  2. Technology Teachers' Beliefs about Biotechnology and Its Instruction in South Korea

    Science.gov (United States)

    Kwon, Hyuksoo; Chang, Mido

    2009-01-01

    The increased public awareness of the significance and necessity of biotechnology has encouraged educators to implement biotechnology instruction in various educational settings. One example is the great effort made by educational researchers and practitioners internationally to integrate biotechnology in technology education. Despite the gains in…

  3. 78 FR 7387 - Advisory Committee on Biotechnology and 21st Century Agriculture; Renewal

    Science.gov (United States)

    2013-02-01

    ...; ] DEPARTMENT OF AGRICULTURE Advisory Committee on Biotechnology and 21st Century Agriculture; Renewal AGENCY: Agricultural Research Service, USDA. ACTION: Advisory Committee on Biotechnology and 21st Century Agriculture... Committee on Biotechnology and 21st Century Agriculture (AC21). The Secretary of Agriculture has...

  4. 77 FR 46681 - Advisory Committee on Biotechnology and 21st Century Agriculture; Notice of Meeting

    Science.gov (United States)

    2012-08-06

    ...; ] DEPARTMENT OF AGRICULTURE Advisory Committee on Biotechnology and 21st Century Agriculture; Notice of Meeting... meeting of the Advisory Committee on Biotechnology and 21st Century Agriculture (AC21). DATES: The meeting... the biotechnology industry, the organic food industry, farming communities, the seed industry,...

  5. 77 FR 26725 - Advisory Committee on Biotechnology and 21st Century Agriculture Meeting

    Science.gov (United States)

    2012-05-07

    ...; ] DEPARTMENT OF AGRICULTURE Advisory Committee on Biotechnology and 21st Century Agriculture Meeting AGENCY... Biotechnology and 21st Century Agriculture (AC21). DATES: The meeting dates are May 29-30, 2012, 8:30 a.m. to 5... consists of members representing the biotechnology industry, the organic food industry, farming...

  6. 76 FR 27301 - Syngenta Biotechnology, Inc.; Availability of Petition, Plant Pest Risk Assessment, and...

    Science.gov (United States)

    2011-05-11

    ... Animal and Plant Health Inspection Service Syngenta Biotechnology, Inc.; Availability of Petition, Plant... petition from Syngenta Biotechnology, Inc., seeking a determination of nonregulated status for cotton..., Biotechnology Regulatory Services, APHIS, 4700 River Road Unit 147, Riverdale, MD 20737-1236; (301) 734-5720,...

  7. High School and University Students' Knowledge and Attitudes regarding Biotechnology: A Turkish Experience

    Science.gov (United States)

    Usak, Muhammet; Erdogan, Mehmet; Prokop, Pavol; Ozel, Murat

    2009-01-01

    Biotechnology has a considerable importance in Turkish biology curriculum. This study was designed to explore or indicate Turkish high school and university students' knowledge and attitudes toward biotechnology. A total number of 352 high school and 276 university students were invited to the study. The Biotechnology Knowledge Questionnaire (BKQ)…

  8. 75 FR 69687 - Office of Biotechnology Activities Recombinant DNA Research: Proposed Actions Under the NIH...

    Science.gov (United States)

    2010-11-15

    ... HUMAN SERVICES National Institutes of Health Office of Biotechnology Activities Recombinant DNA Research... Biotechnology Activities (OBA). The data to be considered for certifying a new host-vector system can be found... 301-496-9839 or sent by U.S. mail to the Office of Biotechnology Activities, National Institutes...

  9. Are Students Prepared to Communicate? A Case Study of an Australian Degree Course in Biotechnology

    Science.gov (United States)

    Edmondston, Joanne; Dawson, Vaille; Schibeci, Renato

    2010-01-01

    Public concerns about biotechnology have resulted in greater attention being paid to the mechanisms by which biotechnology is communicated with non-scientists, including the provision of science communication training. As undergraduate and postgraduate courses form the foundation of the biotechnology sector by providing a pipeline of university…

  10. The integrated web service and genome database for agricultural plants with biotechnology information

    OpenAIRE

    Kim, ChangKug; Park, DongSuk; Seol, YoungJoo; Hahn, JangHo

    2011-01-01

    The National Agricultural Biotechnology Information Center (NABIC) constructed an agricultural biology-based infrastructure and developed a Web based relational database for agricultural plants with biotechnology information. The NABIC has concentrated on functional genomics of major agricultural plants, building an integrated biotechnology database for agro-biotech information that focuses on genomics of major agricultural resources. This genome database provides annotated genome information...

  11. 中美生物技术合作%US-China biotechnology collaboration

    Institute of Scientific and Technical Information of China (English)

    Ralf Geiben Lynn

    2004-01-01

    I see a big growth potential for the US and Chinese biotechnology partnerships for the next years. US biotechnology sector is generating already more than $50 billion dollars. Chinese bio-technology will grow in the next 20 years to more than 11 billion yuan (US 1.33 billion) annually.

  12. Knowledge and Attitudes towards Biotechnology of Elementary Education Preservice Teachers: The First Spanish Experience

    Science.gov (United States)

    Casanoves, Marina; González, Ángel; Salvadó, Zoel; Haro, Juan; Novo, Maite

    2015-01-01

    Due to the important impact that biotechnology has on current Western societies, well-informed critical citizens are needed. People prepared to make conscious decisions about aspects of biotechnology that relate to their own lives. Teachers play a central role in all education systems. Thus, the biotechnological literacy of preservice teachers is…

  13. UK biotechnology companies lead the way for Europe

    Energy Technology Data Exchange (ETDEWEB)

    1984-05-01

    A number of new well-structured biotechnology companies have been launched in Britain over the last few years, e.g. Imperial Biotechnology, IQ(Bio) and Celltech, while Wellcome and Searle (U.K.) are established firms, keeping up with the new technology. Imperial Biotechnology, with its accent on development rather than research and making products not in anyone else's catalogue, has produced a whole range of enzymes, biopolymers, antibiotics, and human proteins under contract. Its long term objective is to develop its own bioproducts. IQ(Bio) is poised to enter the diagnostic big league with its enzyme-linked immunoassay (Aelia) technology and intends to pursue opportunities where there is a strict regulatory climate prohibiting the growth of radioimmunoassays, e.g. France and Japan. It plans to produce kits that a doctor can use simply and give results in less than 30 minutes. Celltech has a culture products division which supplies large quantities of monoclonal antibodies, it has a diagnostics and health care research section, a speciality chemicals area and an industrial microbiology sector. Wellcome Biotechnology has an interferon programme which includes a broad range of chemical trials in the anticancer and antiviral areas. The company could supply the entire world market for interferon using cell culture and produces a very large range of conventional vaccines. Searle uses biotechnology as just another means of producing new drugs as they have a large drug development machine in place. A considerable amount of process development work has focused on Searle's artificial sweetener, aspartame, and they are looking at all the technical approaches to aspartame production.

  14. Excitement of biotechnology in the new economy (Review Paper

    Directory of Open Access Journals (Sweden)

    Kiran Mazumdar-Shaw

    2001-10-01

    Full Text Available "Today the world economy is no longer driven by material wealth but instead powered by intellectual wealth. Knowledge in the economic context translates to technology, of which information technology and biotechnology are the prime drivers, India has made it in information technology. but not yet in biotechnology. The exciting synergy between information technology and biotechnology in the form of bioinformatics is paving the way for intellectual wealth creation in the areas of health care (including pharmaceuticals, food and agriculture. The race for discovering new lead molecules is frenzied in the pharmaceutical arena, being mined by high throughput screening techniques for new chemical entities. The Himalayan yew tree. for example, has provided a billion dollar cancer drug. taxol. Pharmacogenomics is providing ' a wealth of information pertaining to defective or missing genes-a new avenue for drug research. A new trend in bioinformatics is in silica testing, which involves computational simulation of in vivo and in vitro tests, providing better predictability of clinical trials. In gene therapy cloning and expressing healthy genes is simple, but finding a mechanism to deliver these genes into target cells is the difficult part. Promising methods include virus as well as non-virus-based delivery systems. How Indians can take advantage of the exciting opportunities in biotechnology? One can boast of a treasure chest of biodiversities-microbial, plant, animal and human, but it is largely unutilised. A large number of inbred communities in India are offering unique human genome pools for genomic studies. We have the main ingredient for global success in biotechnology-our scientific manpower. We need to harness this talent in an enabling business environment and a pragmatic, entrepreneurial mindset. "

  15. Global warming and changes in ocean circulation

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, P.B.; Caldeira, K.C.

    1998-02-01

    This final report provides an overview of the goals and accomplishments of this project. Modeling and observational work has raised the possibility that global warming may cause changes in the circulation of the ocean. If such changes would occur they could have important climatic consequences. The first technical goal of this project was to investigate some of these possible changes in ocean circulation in a quantitative way, using a state-of -the-art numerical model of the ocean. Another goal was to develop our ocean model, a detailed three-dimensional numerical model of the ocean circulation and ocean carbon cycles. A major non-technical goal was to establish LLNL as a center of excellence in modelling the ocean circulation and carbon cycle.

  16. Ocean optics

    Energy Technology Data Exchange (ETDEWEB)

    Spinard, R.W.; Carder, K.L.; Perry, M.J.

    1994-12-31

    This volume is the twenty fifth in the series of Oxford Monographs in Geology and Geophysics. The propagation off light in the hydra-atmosphere systems is governed by the integral-differential Radiative Transfer Equation (RTE). Closure and inversion are the most common techniques in optical oceanography to understand the most basic principles of natural variability. Three types of closure are dealt with: scale closure, experimental closure, and instrument closure. The subject is well introduced by Spinard et al. in the Preface while Howard Gordon in Chapter 1 provides an in-depth introduction to the RTE and its inherent problems. Inherent and apparent optical properties are dealt with in Chapter 2 by John Kirk and the realities of optical closure are presented in the following chapter by Ronald Zaneveld. The balance of the papers in this volume is quite varied. The early papers deal in a very mathematical manner with the basics of radiative transfer and the relationship between inherent and optical properties. Polarization of sea water is discussed in a chapter that contains a chronological listing of discoveries in polarization, starting at about 1000 AD with the discovery of dichroic properties of crystals by the Vikings and ending with the demonstration of polarotaxis in certain marine organisms by Waterman in 1972. Chapter 12 on Raman scattering in pure water and the pattern recognition techniques presented in Chapter 13 on the optical effects of large particles may be of relevance to fields outside ocean optics.

  17. Medium and long-term opportunities and risk of the biotechnological production of bulk chemicals from renewable resources - The potential of white biotechnology

    OpenAIRE

    M. Patel; Crank, M.; Dornberg, V.; Hermann, B.; Roes, L.; Hüsing, B.; Overbeek, van, L.S.; Terragni, F.; Recchia, E.

    2006-01-01

    This report studies processes which convert biomass-derived feedstocks (e.g. fermentable sugar) into organic bulk chemicals (e.g. lactic acid, acetic acid, butanol and ethanol) by means of white biotechnology (e.g. fermentation or enzymatic conversion), either with or without genetically modified organisms. Apart from white biotechnology, also conventional chemistry is involved in all processes. All white biotechnology products are compared to functionally equivalent petrochemical products. T...

  18. Infragravity waves across the oceans

    Science.gov (United States)

    Rawat, Arshad; Ardhuin, Fabrice; Aucan, Jerome

    2014-05-01

    The propagation of transoceanic Infragravity (IG) wave was investigated using a global spectral wave model together with deep-ocean pressure recorders. IG waves are generated mostly at the shorelines due to non-linear hydrodynamic effects that transfer energy from the main windsea and swell band, with periods of 1 to 25 s, to periods up to 500 s. IG waves are important for the study of near-shore processes and harbor agitation, and can also be a potential source of errors in satellite altimetry measurements. Setting up a global IG model was motivated by the investigation of these errors for the future planned SWOT mission. Despite the fact that the infragravity waves exhibit much smaller vertical amplitudes than the usual high frequency wind-driven waves, of the order of 1 cm in the deep oceans, their propagation throughout the oceans and signature in the wave spectrum can be clearly observed. Using a simplified empirical parameterization of the nearshore source of free IG waves as a function of the incoming wave parameters we extended to WAVEWATCH III model, used so far for windseas and swell, to the IG band, up to periods of 300 s. The spatial and temporal variability of the modeled IG energy was well correlated to the DART station records, making it useful to interpret the records of IG waves. Open ocean IG wave records appear dominated by trans-oceanic events with well defined sources concentrated on a few days, usually on West coasts, and affecting the entire ocean basin, with amplitude patterns very similar to those of tsunamis. Three particular IG bursts during 2008 are studied, 2 in the Pacific Ocean and 1 in the North Atlantic. It was observed that the liberated IG waves can travel long distances often crossing whole oceans with negligible dissipation. The IG signatures are clearly observed at sensors along their propagation paths.

  19. A thermodynamic investigation of barium and calcium sulfate stability in sediments at an oceanic ridge axis (Juan de Fuca, ODP legs 139 and 169)

    OpenAIRE

    Monnin, Christophe; Balleur, Sabine; Goffé, Bruno

    2003-01-01

    We have used a new thermodynamic model of barium and calcium sulfate solubilities in multicomponent electrolyte solutions (Monnin, 1999) to investigate the stabilities of barite and anhydrite in seawater or in marine sediment porewaters at high temperature and pressure. As a further test supplementing those previously carried out during model development, we have calculated the temperature at which standard seawater becomes saturated with respect to anhydrite. The model predicts that, upon he...

  20. Biotechnological industries in Russia and in the world: typology and development

    Directory of Open Access Journals (Sweden)

    Kudriavtceva Olga Vladimirovna

    2014-07-01

    Full Text Available This paper includes analysis of typologies of biotechnological industries which are used by Russian business and by scientists, who study biotechnological markets. In the next part we show the dynamic of the biotechnology industries classifications used in the international practice and the literature from 2003 to the present time. In conclusion, we propose the new typology of biotechnologies developing in Russia. It is built on the principle of input-output model. The aim of this typology is to reflect the relationship between different biotechnological industries.