WorldWideScience

Sample records for biosynthetic pathway genes

  1. Differential hexosamine biosynthetic pathway gene expression with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Megan Coomer

    2014-01-01

    Full Text Available The hexosamine biosynthetic pathway (HBP culminates in the attachment of O-linked β-N-acetylglucosamine (O-GlcNAc onto serine/threonine residues of target proteins. The HBP is regulated by several modulators, i.e. O-linked β-N-acetylglucosaminyl transferase (OGT and β-N-acetylglucosaminidase (OGA catalyze the addition and removal of O-GlcNAc moieties, respectively; while flux is controlled by the rate-limiting enzyme glutamine:fructose-6-phosphate amidotransferase (GFPT, transcribed by two genes, GFPT1 and GFPT2. Since increased HBP flux is glucose-responsive and linked to insulin resistance/type 2 diabetes onset, we hypothesized that diabetic individuals exhibit differential expression of HBP regulatory genes. Volunteers (n = 60; n = 20 Mixed Ancestry, n = 40 Caucasian were recruited from Stellenbosch and Paarl (Western Cape, South Africa and classified as control, pre- or diabetic according to fasting plasma glucose and HbA1c levels, respectively. RNA was purified from leukocytes isolated from collected blood samples and OGT, OGA, GFPT1 and GFPT2 expressions determined by quantitative real-time PCR. The data reveal lower OGA expression in diabetic individuals (P < 0.01, while pre- and diabetic subjects displayed attenuated OGT expression vs. controls (P < 0.01 and P < 0.001, respectively. Moreover, GFPT2 expression decreased in pre- and diabetic Caucasians vs. controls (P < 0.05 and P < 0.01, respectively. We also found ethnic differences, i.e. Mixed Ancestry individuals exhibited a 2.4-fold increase in GFPT2 expression vs. Caucasians, despite diagnosis (P < 0.01. Gene expression of HBP regulators differs between diabetic and non-diabetic individuals, together with distinct ethnic-specific gene profiles. Thus differential HBP gene regulation may offer diagnostic utility and provide candidate susceptibility genes for different ethnic groupings.

  2. Vanillin biosynthetic pathways in plants.

    Science.gov (United States)

    Kundu, Anish

    2017-06-01

    The present review compiles the up-to-date knowledge on vanillin biosynthesis in plant systems to focus principally on the enzymatic reactions of in planta vanillin biosynthetic pathway and to find out its impact and prospect in future research in this field. Vanillin, a very popular flavouring compound, is widely used throughout the world. The principal natural resource of vanillin is the cured vanilla pods. Due to the high demand of vanillin as a flavouring agent, it is necessary to explore its biosynthetic enzymes and genes, so that improvement in its commercial production can be achieved through metabolic engineering. In spite of significant advancement in elucidating vanillin biosynthetic pathway in the last two decades, no conclusive demonstration had been reported yet for plant system. Several biosynthetic enzymes have been worked upon but divergences in published reports, particularly in characterizing the crucial biochemical steps of vanillin biosynthesis, such as side-chain shortening, methylation, and glucoside formation and have created a space for discussion. Recently, published reviews on vanillin biosynthesis have focused mainly on the biotechnological approaches and bioconversion in microbial systems. This review, however, aims to compile in brief the overall vanillin biosynthetic route and present a comparative as well as comprehensive description of enzymes involved in the pathway in Vanilla planifolia and other plants. Special emphasis has been given on the key enzymatic biochemical reactions that have been investigated extensively. Finally, the present standpoint and future prospects have been highlighted.

  3. Expression of carotenoid biosynthetic pathway genes and changes in carotenoids during ripening in tomato (Lycopersicon esculentum).

    Science.gov (United States)

    Namitha, Kanakapura Krishnamurthy; Archana, Surya Narayana; Negi, Pradeep Singh

    2011-04-01

    To study the expression pattern of carotenoid biosynthetic pathway genes, changes in their expression at different stages of maturity in tomato fruit (cv. Arka Ahuti) were investigated. The genes regulating carotenoid production were quantified by a dot blot method using a DIG (dioxigenin) labelling and detection kit. The results revealed that there was an increase in the levels of upstream genes of the carotenoid biosynthetic pathway such as 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), 4-hydroxy-3-methyl-but-2-enyl diphosphate reductase (Lyt B), phytoene synthase (PSY), phytoene desaturase (PDS) and ζ-carotene desaturase (ZDS) by 2-4 fold at the breaker stage as compared to leaf. The lycopene and β-carotene content was analyzed by HPLC at different stages of maturity. The lycopene (15.33 ± 0.24 mg per 100 g) and β-carotene (10.37 ± 0.46 mg per 100 g) content were found to be highest at 5 days post-breaker and 10 days post-breaker stage, respectively. The lycopene accumulation pattern also coincided with the color values at different stages of maturity. These studies may provide insight into devising gene-based strategies for enhancing carotenoid accumulation in tomato fruits.

  4. The Cremeomycin Biosynthetic Gene Cluster Encodes a Pathway for Diazo Formation.

    Science.gov (United States)

    Waldman, Abraham J; Pechersky, Yakov; Wang, Peng; Wang, Jennifer X; Balskus, Emily P

    2015-10-12

    Diazo groups are found in a range of natural products that possess potent biological activities. Despite longstanding interest in these metabolites, diazo group biosynthesis is not well understood, in part because of difficulties in identifying specific genes linked to diazo formation. Here we describe the discovery of the gene cluster that produces the o-diazoquinone natural product cremeomycin and its heterologous expression in Streptomyces lividans. We used stable isotope feeding experiments and in vitro characterization of biosynthetic enzymes to decipher the order of events in this pathway and establish that diazo construction involves late-stage N-N bond formation. This work represents the first successful production of a diazo-containing metabolite in a heterologous host, experimentally linking a set of genes with diazo formation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Biosynthetic Pathways of Ergot Alkaloids

    Directory of Open Access Journals (Sweden)

    Nina Gerhards

    2014-12-01

    Full Text Available Ergot alkaloids are nitrogen-containing natural products belonging to indole alkaloids. The best known producers are fungi of the phylum Ascomycota, e.g., Claviceps, Epichloë, Penicillium and Aspergillus species. According to their structures, ergot alkaloids can be divided into three groups: clavines, lysergic acid amides and peptides (ergopeptines. All of them share the first biosynthetic steps, which lead to the formation of the tetracyclic ergoline ring system (except the simplest, tricyclic compound: chanoclavine. Different modifications on the ergoline ring by specific enzymes result in an abundance of bioactive natural products, which are used as pharmaceutical drugs or precursors thereof. From the 1950s through to recent years, most of the biosynthetic pathways have been elucidated. Gene clusters from several ergot alkaloid producers have been identified by genome mining and the functions of many of those genes have been demonstrated by knock-out experiments or biochemical investigations of the overproduced enzymes.

  6. The hedgehog pathway gene shifted functions together with the hmgcr-dependent isoprenoid biosynthetic pathway to orchestrate germ cell migration.

    Directory of Open Access Journals (Sweden)

    Girish Deshpande

    Full Text Available The Drosophila embryonic gonad is assembled from two distinct cell types, the Primordial Germ Cells (PGCs and the Somatic Gonadal Precursor cells (SGPs. The PGCs form at the posterior of blastoderm stage embryos and are subsequently carried inside the embryo during gastrulation. To reach the SGPs, the PGCs must traverse the midgut wall and then migrate through the mesoderm. A combination of local repulsive cues and attractive signals emanating from the SGPs guide migration. We have investigated the role of the hedgehog (hh pathway gene shifted (shf in directing PGC migration. shf encodes a secreted protein that facilitates the long distance transmission of Hh through the proteoglycan matrix after it is released from basolateral membranes of Hh expressing cells in the wing imaginal disc. shf is expressed in the gonadal mesoderm, and loss- and gain-of-function experiments demonstrate that it is required for PGC migration. Previous studies have established that the hmgcr-dependent isoprenoid biosynthetic pathway plays a pivotal role in generating the PGC attractant both by the SGPs and by other tissues when hmgcr is ectopically expressed. We show that production of this PGC attractant depends upon shf as well as a second hh pathway gene gγ1. Further linking the PGC attractant to Hh, we present evidence indicating that ectopic expression of hmgcr in the nervous system promotes the release/transmission of the Hh ligand from these cells into and through the underlying mesodermal cell layer, where Hh can contact migrating PGCs. Finally, potentiation of Hh by hmgcr appears to depend upon cholesterol modification.

  7. Genomic characterization of a new endophytic Streptomyces kebangsaanensis identifies biosynthetic pathway gene clusters for novel phenazine antibiotic production

    Directory of Open Access Journals (Sweden)

    Juwairiah Remali

    2017-11-01

    Full Text Available Background Streptomyces are well known for their capability to produce many bioactive secondary metabolites with medical and industrial importance. Here we report a novel bioactive phenazine compound, 6-((2-hydroxy-4-methoxyphenoxy carbonyl phenazine-1-carboxylic acid (HCPCA extracted from Streptomyces kebangsaanensis, an endophyte isolated from the ethnomedicinal Portulaca oleracea. Methods The HCPCA chemical structure was determined using nuclear magnetic resonance spectroscopy. We conducted whole genome sequencing for the identification of the gene cluster(s believed to be responsible for phenazine biosynthesis in order to map its corresponding pathway, in addition to bioinformatics analysis to assess the potential of S. kebangsaanensis in producing other useful secondary metabolites. Results The S. kebangsaanensis genome comprises an 8,328,719 bp linear chromosome with high GC content (71.35% consisting of 12 rRNA operons, 81 tRNA, and 7,558 protein coding genes. We identified 24 gene clusters involved in polyketide, nonribosomal peptide, terpene, bacteriocin, and siderophore biosynthesis, as well as a gene cluster predicted to be responsible for phenazine biosynthesis. Discussion The HCPCA phenazine structure was hypothesized to derive from the combination of two biosynthetic pathways, phenazine-1,6-dicarboxylic acid and 4-methoxybenzene-1,2-diol, originated from the shikimic acid pathway. The identification of a biosynthesis pathway gene cluster for phenazine antibiotics might facilitate future genetic engineering design of new synthetic phenazine antibiotics. Additionally, these findings confirm the potential of S. kebangsaanensis for producing various antibiotics and secondary metabolites.

  8. Modulation of flavonoid biosynthetic pathway genes and anthocyanins due to virus infection in grapevine (Vitis vinifera L. leaves

    Directory of Open Access Journals (Sweden)

    Gutha Linga R

    2010-08-01

    Full Text Available Abstract Background Symptoms of grapevine leafroll disease (GLRD in red-fruited wine grape (Vitis vinifera L. cultivars consist of green veins and red and reddish-purple discoloration of inter-veinal areas of leaves. The reddish-purple color of symptomatic leaves may be due to the accumulation of anthocyanins and could reflect an up-regulation of genes involved in their biosynthesis. Results We examined six putative constitutively expressed genes, Ubiquitin, Actin, GAPDH, EF1-a, SAND and NAD5, for their potential as references for normalization of gene expression in reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR. Using the geNorm program, a combination of two genes (Actin and NAD5 was identified as the stable set of reference genes for normalization of gene expression data obtained from grapevine leaves. By using gene-specific RT-qPCR in combination with a reliable normalization factor, we compared relative expression of the flavonoid biosynthetic pathway genes between leaves infected with Grapevine leafroll-associated virus 3 (GLRaV-3 and exhibiting GLRD symptoms and virus-free green leaves obtained from a red-fruited wine grape cultivar (cv. Merlot. The expression levels of these different genes ranged from two- to fifty-fold increase in virus-infected leaves. Among them, CHS3, F3'5'H, F3H1, LDOX, LAR1 and MybA1 showed greater than 10-fold increase suggesting that they were expressed at significantly higher levels in virus-infected symptomatic leaves. HPLC profiling of anthocyanins extracted from leaves indicated the presence of cyanidin-3-glucoside and malvidin-3-glucoside only in virus-infected symptomatic leaves. The results also showed 24% higher levels of flavonols in virus-infected symptomatic leaves than in virus-free green leaves, with quercetin followed by myricetin being the predominant compounds. Proanthocyanidins, estimated as total tannins by protein precipitation method, were 36% higher in virus

  9. Targeted Gene Disruption of the Cyclo (L-Phe, L-Pro Biosynthetic Pathway in Streptomyces sp. US24 Strain

    Directory of Open Access Journals (Sweden)

    Samiha Sioud

    2007-01-01

    Full Text Available We have previously isolated a new actinomycete strain from Tunisian soil called Streptomyces sp. US24, and have shown that it produces two bioactive molecules including a Cyclo (L-Phe, L-Pro diketopiperazine (DKP. To identify the structural genes responsible for the synthesis of this DKP derivative, a PCR amplification (696 bp was carried out using the Streptomyces sp. US24 genomic DNA as template and two degenerate oligonucleotides designed by analogy with genes encoding peptide synthetases (NRPS. The detection of DKP derivative biosynthetic pathway of the Streptomyces sp. US24 strain was then achieved by gene disruption via homologous recombination using a suicide vector derived from the conjugative plasmid pSET152 and containing the PCR product. Chromatography analysis, biological tests and spectroscopic studies of supernatant cultures of the wild-type Streptomyces sp. US24 strain and three mutants obtained by this gene targeting disruption approach showed that the amplified DNA fragment is required for Cyclo (L-Phe, L-Pro biosynthesis in Streptomyces sp. US24 strain. This DKP derivative seems to be produced either directly via a nonribosomal pathway or as a side product in the course of nonribosomal synthesis of a longer peptide.

  10. [Construction of Corynebacterium crenatum AS 1.542 δ argR and analysis of transcriptional levels of the related genes of arginine biosynthetic pathway].

    Science.gov (United States)

    Chen, Xuelan; Tang, Li; Jiao, Haitao; Xu, Feng; Xiong, Yonghua

    2013-01-04

    ArgR, coded by the argR gene from Corynebacterium crenatum AS 1.542, acts as a negative regulator in arginine biosynthetic pathway. However, the effect of argR on transcriptional levels of the related biosynthetic genes has not been reported. Here, we constructed a deletion mutant of argR gene: C. crenatum AS 1.542 Delta argR using marker-less knockout technology, and compared the changes of transcriptional levels of the arginine biosynthetic genes between the mutant strain and the wild-type strain. We used marker-less knockout technology to construct C. crenatum AS 1.542 Delta argR and analyzed the changes of the relate genes at the transcriptional level using real-time fluorescence quantitative PCR. C. crenatum AS 1.542 Delta argR was successfully obtained and the transcriptional level of arginine biosynthetic genes in this mutant increased significantly with an average of about 162.1 folds. The arginine biosynthetic genes in C. crenatum are clearly controlled by the negative regulator ArgR. However, the deletion of this regulator does not result in a clear change in arginine production in the bacteria.

  11. Heterologous Expression of the Oxytetracycline Biosynthetic Pathway in Myxococcus xanthus▿

    Science.gov (United States)

    Stevens, D. Cole; Henry, Michael R.; Murphy, Kimberly A.; Boddy, Christopher N.

    2010-01-01

    New natural products for drug discovery may be accessed by heterologous expression of bacterial biosynthetic pathways in metagenomic DNA libraries. However, a “universal” host is needed for this experiment. Herein, we show that Myxococcus xanthus is a potential “universal” host for heterologous expression of polyketide biosynthetic gene clusters. PMID:20208031

  12. Targeting the GPI biosynthetic pathway.

    Science.gov (United States)

    Yadav, Usha; Khan, Mohd Ashraf

    2018-02-27

    The GPI (Glycosylphosphatidylinositol) biosynthetic pathway is a multistep conserved pathway in eukaryotes that culminates in the generation of GPI glycolipid which in turn anchors many proteins (GPI-APs) to the cell surface. In spite of the overall conservation of the pathway, there still exist subtle differences in the GPI pathway of mammals and other eukaryotes which holds a great promise so far as the development of drugs/inhibitors against specific targets in the GPI pathway of pathogens is concerned. Many of the GPI structures and their anchored proteins in pathogenic protozoans and fungi act as pathogenicity factors. Notable examples include GPI-anchored variant surface glycoprotein (VSG) in Trypanosoma brucei, GPI-anchored merozoite surface protein 1 (MSP1) and MSP2 in Plasmodium falciparum, protein-free GPI related molecules like lipophosphoglycans (LPGs) and glycoinositolphospholipids (GIPLs) in Leishmania spp., GPI-anchored Gal/GalNAc lectin and proteophosphoglycans in Entamoeba histolytica or the GPI-anchored mannoproteins in pathogenic fungi like Candida albicans. Research in this active area has already yielded encouraging results in Trypanosoma brucei by the development of parasite-specific inhibitors of GlcNCONH 2 -β-PI, GlcNCONH 2 -(2-O-octyl)-PI and salicylic hydroxamic acid (SHAM) targeting trypanosomal GlcNAc-PI de-N-acetylase as well as the development of antifungal inhibitors like BIQ/E1210/gepinacin/G365/G884 and YW3548/M743/M720 targeting the GPI specific fungal inositol acyltransferase (Gwt1) and the phosphoethanolamine transferase-I (Mcd4), respectively. These confirm the fact that the GPI pathway continues to be the focus of researchers, given its implications for the betterment of human life.

  13. Targeting fumonisin biosynthetic genes

    Science.gov (United States)

    The fungus Fusarium is an agricultural problem because it can cause disease on most crop plants and can contaminate crops with mycotoxins. There is considerable variation in the presence/absence and genomic location of gene clusters responsible for synthesis of mycotoxins and other secondary metabol...

  14. Targeting trichothecene biosynthetic genes

    NARCIS (Netherlands)

    Wei, Songhong; Lee, van der Theo; Verstappen, Els; Gent, van Marga; Waalwijk, Cees

    2017-01-01

    Biosynthesis of trichothecenes requires the involvement of at least 15 genes, most of which have been targeted for PCR. Qualitative PCRs are used to assign chemotypes to individual isolates, e.g., the capacity to produce type A and/or type B trichothecenes. Many regions in the core cluster

  15. Molecular evolution of the lysine biosynthetic pathways.

    Science.gov (United States)

    Velasco, A M; Leguina, J I; Lazcano, A

    2002-10-01

    Among the different biosynthetic pathways found in extant organisms, lysine biosynthesis is peculiar because it has two different anabolic routes. One is the diaminopimelic acid pathway (DAP), and the other over the a-aminoadipic acid route (AAA). A variant of the AAA route that includes some enzymes involved in arginine and leucine biosyntheses has been recently reported in Thermus thermophilus (Nishida et al. 1999). Here we describe the results of a detailed genomic analysis of each of the sequences involved in the two lysine anabolic routes, as well as of genes from other routes related to them. No evidence was found of an evolutionary relationship between the DAP and AAA enzymes. Our results suggest that the DAP pathway is related to arginine metabolism, since the lysC, asd, dapC, dapE, and lysA genes from lysine biosynthesis are related to the argB, argC, argD, argE, and speAC genes, respectively, whose products catalyze different steps in arginine metabolism. This work supports previous reports on the relationship between AAA gene products and some enzymes involved in leucine biosynthesis and the tricarboxylic acid cycle (Irvin and Bhattacharjee 1998; Miyazaki et al. 2001). Here we discuss the significance of the recent finding that several genes involved in the arginine (Arg) and leucine (Leu) biosynthesis participate in a new alternative route of the AAA pathway (Miyazaki et al. 2001). Our results demonstrate a clear relationship between the DAP and Arg routes, and between the AAA and Leu pathways.

  16. Elucidation and in planta reconstitution of the parthenolide biosynthetic pathway

    DEFF Research Database (Denmark)

    Liu, Qing; Manzano, David; Tanić, Nikola

    2014-01-01

    Parthenolide, the main bioactive compound of the medicinal plant feverfew (Tanacetum parthenium), is a promising anti-cancer drug. However, the biosynthetic pathway of parthenolide has not been elucidated yet. Here we report on the isolation and characterization of all the genes from feverfew tha...

  17. Biosynthetic Pathway and Metabolic Engineering of Plant Dihydrochalcones.

    Science.gov (United States)

    Ibdah, Mwafaq; Martens, Stefan; Gang, David R

    2018-03-14

    Dihydrochalcones are plant natural products containing the phenylpropanoid backbone and derived from the plant-specific phenylpropanoid pathway. Dihydrochalcone compounds are important in plant growth and response to stresses and, thus, can have large impacts on agricultural activity. In recent years, these compounds have also received increased attention from the biomedical community for their potential as anticancer treatments and other benefits for human health. However, they are typically produced at relatively low levels in plants. Therefore, an attractive alternative is to express the plant biosynthetic pathway genes in microbial hosts and to engineer the metabolic pathway/host to improve the production of these metabolites. In the present review, we discuss in detail the functions of genes and enzymes involved in the biosynthetic pathway of the dihydrochalcones and the recent strategies and achievements used in the reconstruction of multi-enzyme pathways in microorganisms in efforts to be able to attain higher amounts of desired dihydrochalcones.

  18. Bioengineering natural product biosynthetic pathways for therapeutic applications.

    Science.gov (United States)

    Wu, Ming-Cheng; Law, Brian; Wilkinson, Barrie; Micklefield, Jason

    2012-12-01

    With the advent of next-generation DNA sequencing technologies, the number of microbial genome sequences has increased dramatically, revealing a vast array of new biosynthetic gene clusters. Genomics data provide a tremendous opportunity to discover new natural products, and also to guide the bioengineering of new and existing natural product scaffolds for therapeutic applications. Notably, it is apparent that the vast majority of biosynthetic gene clusters are either silent or produce very low quantities of the corresponding natural products. It is imperative therefore to devise methods for activating unproductive biosynthetic pathways to provide the quantities of natural products needed for further development. Moreover, on the basis of our expanding mechanistic and structural knowledge of biosynthetic assembly-line enzymes, new strategies for re-programming biosynthetic pathways have emerged, resulting in focused libraries of modified products with potentially improved biological properties. In this review we will focus on the latest bioengineering approaches that have been utilised to optimise yields and increase the structural diversity of natural product scaffolds for future clinical applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Minimum Information about a Biosynthetic Gene cluster : commentary

    NARCIS (Netherlands)

    Medema, Marnix H; Kottmann, Renzo; Yilmaz, Pelin; Cummings, Matthew; Biggins, John B; Blin, Kai; de Bruijn, Irene; Chooi, Yit Heng; Claesen, Jan; Coates, R Cameron; Cruz-Morales, Pablo; Duddela, Srikanth; Dusterhus, Stephanie; Edwards, Daniel J; Fewer, David P; Garg, Neha; Geiger, Christoph; Gomez-Escribano, Juan Pablo; Greule, Anja; Hadjithomas, Michalis; Haines, Anthony S; Helfrich, Eric J N; Hillwig, Matthew L; Ishida, Keishi; Jones, Adam C; Jones, Carla S; Jungmann, Katrin; Kegler, Carsten; Kim, Hyun Uk; Kotter, Peter; Krug, Daniel; Masschelein, Joleen; Melnik, Alexey V; Mantovani, Simone M; Monroe, Emily A; Moore, Marcus; Moss, Nathan; Nutzmann, Hans-Wilhelm; Pan, Guohui; Pati, Amrita; Petras, Daniel; Reen, F Jerry; Rosconi, Federico; Rui, Zhe; Tian, Zhenhua; Tobias, Nicholas J; Tsunematsu, Yuta; Wiemann, Philipp; Wyckoff, Elizabeth; Yan, Xiaohui; Yim, Grace; Yu, Fengan; Xie, Yunchang; Aigle, Bertrand; Apel, Alexander K; Balibar, Carl J; Balskus, Emily P; Barona-Gomez, Francisco; Bechthold, Andreas; Bode, Helge B; Borriss, Rainer; Brady, Sean F; Brakhage, Axel A; Caffrey, Patrick; Cheng, Yi-Qiang; Clardy, Jon; Cox, Russell J; De Mot, Rene; Donadio, Stefano; Donia, Mohamed S; van der Donk, Wilfred A; Dorrestein, Pieter C; Doyle, Sean; Driessen, Arnold J M; Ehling-Schulz, Monika; Entian, Karl-Dieter; Fischbach, Michael A; Gerwick, Lena; Gerwick, William H; Gross, Harald; Gust, Bertolt; Hertweck, Christian; Hofte, Monica; Jensen, Susan E; Ju, Jianhua; Katz, Leonard; Kaysser, Leonard; Klassen, Jonathan L; Keller, Nancy P; Kormanec, Jan; Kuipers, Oscar P; Kuzuyama, Tomohisa; Kyrpides, Nikos C; Kwon, Hyung-Jin; Lautru, Sylvie; Lavigne, Rob; Lee, Chia Y; Linquan, Bai; Liu, Xinyu; Liu, Wen; Luzhetskyy, Andriy; Mahmud, Taifo; Mast, Yvonne; Mendez, Carmen; Metsa-Ketela, Mikko; Micklefield, Jason; Mitchell, Douglas A; Moore, Bradley S; Moreira, Leonilde M; Muller, Rolf; Neilan, Brett A; Nett, Markus; Nielsen, Jens; O'Gara, Fergal; Oikawa, Hideaki; Osbourn, Anne; Osburne, Marcia S; Ostash, Bohdan; Payne, Shelley M; Pernodet, Jean-Luc; Petricek, Miroslav; Piel, Jorn; Ploux, Olivier; Raaijmakers, Jos M; Salas, Jose A; Schmitt, Esther K; Scott, Barry; Seipke, Ryan F; Shen, Ben; Sherman, David H; Sivonen, Kaarina; Smanski, Michael J; Sosio, Margherita; Stegmann, Evi; Sussmuth, Roderich D; Tahlan, Kapil; Thomas, Christopher M; Tang, Yi; Truman, Andrew W; Viaud, Muriel; Walton, Jonathan D; Walsh, Christopher T; Weber, Tilmann; van Wezel, Gilles P; Wilkinson, Barrie; Willey, Joanne M; Wohlleben, Wolfgang; Wright, Gerard D; Ziemert, Nadine; Zhang, Changsheng; Zotchev, Sergey B; Breitling, Rainer; Takano, Eriko; Glockner, Frank Oliver

    A wide variety of enzymatic pathways that produce specialized metabolites in bacteria, fungi and plants are known to be encoded in biosynthetic gene clusters. Information about these clusters, pathways and metabolites is currently dispersed throughout the literature, making it difficult to exploit.

  20. Gene transcript profiles of the TIA biosynthetic pathway in response to ethylene and copper reveal their interactive role in modulating TIA biosynthesis in Catharanthus roseus.

    Science.gov (United States)

    Pan, Ya-Jie; Liu, Jia; Guo, Xiao-Rui; Zu, Yuan-Gang; Tang, Zhong-Hua

    2015-05-01

    Research on transcriptional regulation of terpenoid indole alkaloid (TIA) biosynthesis of the medicinal plant, Catharanthus roseus, has largely been focused on gene function and not clustering analysis of multiple genes at the transcript level. Here, more than ten key genes encoding key enzyme of alkaloid synthesis in TIA biosynthetic pathways were chosen to investigate the integrative responses to exogenous elicitor ethylene and copper (Cu) at both transcriptional and metabolic levels. The ethylene-induced gene transcripts in leaves and roots, respectively, were subjected to principal component analysis (PCA) and the results showed the overall expression of TIA pathway genes indicated as the Q value followed a standard normal distribution after ethylene treatments. Peak gene expression was at 15-30 μM of ethephon, and the pre-mature leaf had a higher Q value than the immature or mature leaf and root. Treatment with elicitor Cu found that Cu up-regulated overall TIA gene expression more in roots than in leaves. The combined effects of Cu and ethephon on TIA gene expression were stronger than their separate effects. It has been documented that TIA gene expression is tightly regulated by the transcriptional factor (TF) ethylene responsive factor (ERF) and mitogen-activated protein kinase (MAPK) cascade. The loading plot combination with correlation analysis for the genes of C. roseus showed that expression of the MPK gene correlated with strictosidine synthase (STR) and strictosidine b-D-glucosidase(SGD). In addition, ERF expression correlated with expression of secologanin synthase (SLS) and tryptophan decarboxylase (TDC), specifically in roots, whereas MPK and myelocytomatosis oncogene (MYC) correlated with STR and SGD genes. In conclusion, the ERF regulates the upstream pathway genes in response to heavy metal Cu mainly in C. roseus roots, while the MPK mainly participates in regulating the STR gene in response to ethylene in pre-mature leaf. Interestingly, the

  1. Expression profile of genes coding for carotenoid biosynthetic ...

    Indian Academy of Sciences (India)

    Expression profile of genes coding for carotenoid biosynthetic pathway during ripening and their association with accumulation of lycopene in tomato fruits. Shuchi Smita, Ravi Rajwanshi, Sangram Keshari Lenka, Amit Katiyar, Viswanathan Chinnusamy and. Kailash Chander Bansal. J. Genet. 92, 363–368. Table 1.

  2. Identification and functional characterisation of genes encoding the omega-3 polyunsaturated fatty acid biosynthetic pathway from the coccolithophore Emiliania huxleyi.

    Science.gov (United States)

    Sayanova, Olga; Haslam, Richard P; Calerón, Monica Venegas; López, Noemi Ruiz; Worthy, Charlotte; Rooks, Paul; Allen, Michael J; Napier, Johnathan A

    2011-05-01

    The Prymnesiophyceae coccolithophore Emiliania huxleyi is one of the most abundant alga in our oceans and therefore plays a central role in marine foodwebs. E. huxleyi is notable for the synthesis and accumulation of the omega-3 long chain polyunsaturated fatty acid docosahexaenoic acid (DHA; 22:6Δ(4,7,10,13,16,19), n-3) which is accumulated in fish oils and known to have health-beneficial properties to humans, preventing cardiovascular disease and related pathologies. Here we describe the identification and functional characterisation of the five E. huxleyi genes which direct the synthesis of docosahexaenoic acid in this alga. Surprisingly, E. huxleyi does not use the conventional Δ6-pathway, instead using the alternative Δ8-desaturation route which has previously only been observed in a few unrelated microorganisms. Given that E. huxleyi accumulates significant levels of the Δ6-desaturated fatty acid stearidonic acid (18:4Δ(6,9,12,15), n-3), we infer that the biosynthesis of DHA is likely to be metabolically compartmentalised from the synthesis of stearidonic acid. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Overexpression of the riboflavin biosynthetic pathway in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Mattanovich Diethard

    2008-07-01

    Full Text Available Abstract Background High cell density cultures of Pichia pastoris grown on methanol tend to develop yellow colored supernatants, attributed to the release of free flavins. The potential of P. pastoris for flavin overproduction is therefore given, but not pronounced when the yeast is grown on glucose. The aim of this study is to characterize the relative regulatory impact of each riboflavin synthesis gene. Deeper insight into pathway control and the potential of deregulation is established by overexpression of the single genes as well as a combined deregulation of up to all six riboflavin synthesis genes. Results Overexpression of the first gene of the riboflavin biosynthetic pathway (RIB1 is already sufficient to obtain yellow colonies and the accumulation of riboflavin in the supernatant of shake flask cultures growing on glucose. Sequential deregulation of all the genes, by exchange of their native promoter with the strong and constitutive glyceraldehyde-3-phosphate dehydrogenase promoter (PGAP increases the riboflavin accumulation significantly. Conclusion The regulation of the pathway is distributed over more than one gene. High cell density cultivations of a P. pastoris strain overexpressing all six RIB genes allow the accumulation of 175 mg/L riboflavin in the supernatant. The basis for rational engineering of riboflavin production in P. pastoris has thus been established.

  4. In silico analysis and expression profiling of miRNAs targeting genes of steviol glycosides biosynthetic pathway and their relationship with steviol glycosides content in different tissues of Stevia rebaudiana.

    Science.gov (United States)

    Saifi, Monica; Nasrullah, Nazima; Ahmad, Malik Mobeen; Ali, Athar; Khan, Jawaid A; Abdin, M Z

    2015-09-01

    miRNAs are emerging as potential regulators of the gene expression. Their proven promising role in regulating biosynthetic pathways related gene networks may hold the key to understand the genetic regulation of these pathways which may assist in selection and manipulation to get high performing plant genotypes with better secondary metabolites yields and increased biomass. miRNAs associated with genes of steviol glycosides biosynthetic pathway, however, have not been identified so far. In this study miRNAs targeting genes of steviol glycosides biosynthetic pathway were identified for the first time whose precursors were potentially generated from ESTs and nucleotide sequences of Stevia rebaudiana. Thereafter, stem-loop coupled real time PCR based expressions of these miRNAs in different tissues of Stevia rebaudiana were investigated and their relationship pattern was analysed with the expression levels of their target mRNAs as well as steviol glycoside contents. All the miRNAs investigated showed differential expressions in all the three tissues studied, viz. leaves, flowers and stems. Out of the eleven miRNAs validated, the expression levels of nine miRNAs (miR319a, miR319b, miR319c, miR319d, miR319e, miR319f, miR319h, miRstv_7, miRstv_9) were found to be inversely related, while expression levels of the two, i.e. miR319g and miRstv_11 on the contrary, showed direct relation with the expression levels of their target mRNAs and steviol glycoside contents in the leaves, flowers and stems. This study provides a platform for better understanding of the steviol glycosides biosynthetic pathway and these miRNAs can further be employed to manipulate the biosynthesis of these metabolites to enhance their contents and yield in S. rebaudiana. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  5. Regulation of Flavonoid Biosynthetic Genes in Germinating Arabidopsis Seedlings.

    Science.gov (United States)

    Kubasek, WL; Shirley, BW; McKillop, A; Goodman, HM; Briggs, W; Ausubel, FM

    1992-01-01

    Many higher plants, including Arabidopsis, transiently display purple anthocyanin pigments just after seed germination. We observed that steady state levels of mRNAs encoded by four flavonoid biosynthetic genes, PAL1 (encoding phenylalanine ammonia-lyase 1), CHS (encoding chalcone synthase), CHI (encoding chalcone isomerase), and DFR (encoding dihydroflavonol reductase), were temporally regulated, peaking in 3-day-old seedlings grown in continuous white light. Except for the case of PAL1 mRNA, mRNA levels for these flavonoid genes were very low in seedlings grown in darkness. Light induction studies using seedlings grown in darkness showed that PAL1 mRNA began to accumulate before CHS and CHI mRNAs, which, in turn, began to accumulate before DFR mRNA. This order of induction is the same as the order of the biosynthetic steps in flavonoid biosynthesis. Our results suggest that the flavonoid biosynthetic pathway is coordinately regulated by a developmental timing mechanism during germination. Blue light and UVB light induction experiments using red light- and dark-grown seedlings showed that the flavonoid biosynthetic genes are induced most effectively by UVB light and that blue light induction is mediated by a specific blue light receptor. PMID:12297632

  6. Molecular cloning and characterization of three genes encoding dihydroflavonol-4-reductase from Ginkgo biloba in anthocyanin biosynthetic pathway.

    Directory of Open Access Journals (Sweden)

    Cheng Hua

    Full Text Available Dihydroflavonol-4-reductase (DFR, EC1.1.1.219 catalyzes a key step late in the biosynthesis of anthocyanins, condensed tannins (proanthocyanidins, and other flavonoids important to plant survival and human nutrition. Three DFR cDNA clones (designated GbDFRs were isolated from the gymnosperm Ginkgo biloba. The deduced GbDFR proteins showed high identities to other plant DFRs, which form three distinct DFR families. Southern blot analysis showed that the three GbDFRs each belong to a different DFR family. Phylogenetic tree analysis revealed that the GbDFRs share the same ancestor as other DFRs. The expression of the three recombinant GbDFRs in Escherichia coli showed that their actual protein sizes were in agreement with predictions from the cDNA sequences. The recombinant proteins were purified and their activity was analyzed; both GbDFR1 and GbDFR3 could catalyze dihydroquercetin conversion to leucocyanidin, while GbDFR2 catalyzed dihydrokaempferol conversion to leucopelargonidin. qRT-PCR showed that the GbDFRs were expressed in a tissue-specific manner, and transcript accumulation for the three genes was highest in young leaves and stamens. These transcription patterns were in good agreement with the pattern of anthocyanin accumulation in G.biloba. The expression profiles suggested that GbDFR1 and GbDFR2 are mainly involved in responses to plant hormones, environmental stress and damage. During the annual growth cycle, the GbDFRs were significantly correlated with anthocyanin accumulation in leaves. A fitted linear curve showed the best model for relating GbDFR2 and GbDFR3 with anthocyanin accumulation in leaves. GbDFR1 appears to be involved in environmental stress response, while GbDFR3 likely has primary functions in the synthesis of anthocyanins. These data revealed unexpected properties and differences in three DFR proteins from a single species.

  7. Heterologous expression of pikromycin biosynthetic gene cluster using Streptomyces artificial chromosome system.

    Science.gov (United States)

    Pyeon, Hye-Rim; Nah, Hee-Ju; Kang, Seung-Hoon; Choi, Si-Sun; Kim, Eung-Soo

    2017-05-31

    Heterologous expression of biosynthetic gene clusters of natural microbial products has become an essential strategy for titer improvement and pathway engineering of various potentially-valuable natural products. A Streptomyces artificial chromosomal conjugation vector, pSBAC, was previously successfully applied for precise cloning and tandem integration of a large polyketide tautomycetin (TMC) biosynthetic gene cluster (Nah et al. in Microb Cell Fact 14(1):1, 2015), implying that this strategy could be employed to develop a custom overexpression scheme of natural product pathway clusters present in actinomycetes. To validate the pSBAC system as a generally-applicable heterologous overexpression system for a large-sized polyketide biosynthetic gene cluster in Streptomyces, another model polyketide compound, the pikromycin biosynthetic gene cluster, was preciously cloned and heterologously expressed using the pSBAC system. A unique HindIII restriction site was precisely inserted at one of the border regions of the pikromycin biosynthetic gene cluster within the chromosome of Streptomyces venezuelae, followed by site-specific recombination of pSBAC into the flanking region of the pikromycin gene cluster. Unlike the previous cloning process, one HindIII site integration step was skipped through pSBAC modification. pPik001, a pSBAC containing the pikromycin biosynthetic gene cluster, was directly introduced into two heterologous hosts, Streptomyces lividans and Streptomyces coelicolor, resulting in the production of 10-deoxymethynolide, a major pikromycin derivative. When two entire pikromycin biosynthetic gene clusters were tandemly introduced into the S. lividans chromosome, overproduction of 10-deoxymethynolide and the presence of pikromycin, which was previously not detected, were both confirmed. Moreover, comparative qRT-PCR results confirmed that the transcription of pikromycin biosynthetic genes was significantly upregulated in S. lividans containing tandem

  8. The flavonoid biosynthetic pathway in plants: function and evolution

    International Nuclear Information System (INIS)

    Koes, R.E.; Quattrocchio, F.; Mol, J.N.M.

    1994-01-01

    Flavonoids are a class of low molecular weight phenolic compounds that is widely distributed in the plant kingdom. They exhibit a diverse spectrum of biological functions and play an important role in the interaction between plants and their environment. Flavonoids not only protect the plant from the harmful effects of UV irradiation but also play a crucial role in the sexual reproduction process. A special class of flavonoid polymers, the tannins, plays a structural role in the plant. Yet other classes of flavonoids, flavonols and anthocyanins, have been implicated in the attraction of pollinators. Certain flavonoids participate in the interaction between plants and other organisms such as symbiotic bacteria and parasites. This raises the intriguing question as to how these different compounds arose and evolved. Based on taxonomy and molecular analysis of gene expression patterns it is possible to deduce a putative sequence of acquisition of the different branches of the biosynthetic pathway and their regulators. (author)

  9. The flavonoid biosynthetic pathway in plants: function and evolution

    Energy Technology Data Exchange (ETDEWEB)

    Koes, R. E.; Quattrocchio, F.; Mol, J. N.M. [Department of Genetics, Institute for Molecular Biological Sciences, Vrije Universiteit, BioCentrum Amsterdam, De Boelelaan 1087, 1081HV, Amsterdam (Netherlands)

    1994-07-01

    Flavonoids are a class of low molecular weight phenolic compounds that is widely distributed in the plant kingdom. They exhibit a diverse spectrum of biological functions and play an important role in the interaction between plants and their environment. Flavonoids not only protect the plant from the harmful effects of UV irradiation but also play a crucial role in the sexual reproduction process. A special class of flavonoid polymers, the tannins, plays a structural role in the plant. Yet other classes of flavonoids, flavonols and anthocyanins, have been implicated in the attraction of pollinators. Certain flavonoids participate in the interaction between plants and other organisms such as symbiotic bacteria and parasites. This raises the intriguing question as to how these different compounds arose and evolved. Based on taxonomy and molecular analysis of gene expression patterns it is possible to deduce a putative sequence of acquisition of the different branches of the biosynthetic pathway and their regulators. (author)

  10. Elucidation of the biosynthetic pathway for the production of the pigment chrysogine by Penicillium chrysogenum

    NARCIS (Netherlands)

    Viggiano, Annarita; Salo, Oleksandr; Ali, Hazrat; Szymanski, Wiktor; Lankhorst, Peter P; Nygård, Yvonne; Bovenberg, Roel A L; Driessen, Arnold J M

    Chrysogine is a yellow pigment produced by Penicillium chrysogenum and other filamentous fungi. Although it was first isolated in 1973, the biosynthetic pathway has so far not been resolved. Here, we show that the deletion of the highly expressed non-ribosomal peptide synthetase (NRPS) gene

  11. Syngenomics Applied to the Tryptophan Biosynthetic Pathway

    National Research Council Canada - National Science Library

    Miller, Jeffrey

    2002-01-01

    .... We have identified genes from Lactococcus lactis and Pseudomonas aeruginosa that cause mutator phenotypes when overexpressed in E. coli and interestingly, one of these encodes a regulator for multiple drug resistance.

  12. Accumulation of Rutin and Betulinic Acid and Expression of Phenylpropanoid and Triterpenoid Biosynthetic Genes in Mulberry (Morus alba L.).

    Science.gov (United States)

    Zhao, Shicheng; Park, Chang Ha; Li, Xiaohua; Kim, Yeon Bok; Yang, Jingli; Sung, Gyoo Byung; Park, Nam Il; Kim, Soonok; Park, Sang Un

    2015-09-30

    Mulberry (Morus alba L.) is used in traditional Chinese medicine and is the sole food source of the silkworm. Here, 21 cDNAs encoding phenylpropanoid biosynthetic genes and 21 cDNAs encoding triterpene biosynthetic genes were isolated from mulberry. The expression levels of genes involved in these biosynthetic pathways and the accumulation of rutin, betulin, and betulinic acid, important secondary metabolites, were investigated in different plant organs. Most phenylpropanoid and triterpene biosynthetic genes were highly expressed in leaves and/or fruit, and most genes were downregulated during fruit ripening. The accumulation of rutin was more than fivefold higher in leaves than in other organs, and higher levels of betulin and betulinic acid were found in roots and leaves than in fruit. By comparing the contents of these compounds with gene expression levels, we speculate that MaUGT78D1 and MaLUS play important regulatory roles in the rutin and betulin biosynthetic pathways.

  13. [Advance in flavonoids biosynthetic pathway and synthetic biology].

    Science.gov (United States)

    Zou, Li-Qiu; Wang, Cai-Xia; Kuang, Xue-Jun; Li, Ying; Sun, Chao

    2016-11-01

    Flavonoids are the valuable components in medicinal plants, which possess a variety of pharmacological activities, including anti-tumor, antioxidant and anti-inflammatory activities. There is an unambiguous understanding about flavonoids biosynthetic pathway, that is,2S-flavanones including naringenin and pinocembrin are the skeleton of other flavonoids and they can transform to other flavonoids through branched metabolic pathway. Elucidation of the flavonoids biosynthetic pathway lays a solid foundation for their synthetic biology. A few flavonoids have been produced in Escherichia coli or yeast with synthetic biological technologies, such as naringenin, pinocembrin and fisetin. Synthetic biology will provide a new way to get valuable flavonoids and promote the research and development of flavonoid drugs and health products, making flavonoids play more important roles in human diet and health. Copyright© by the Chinese Pharmaceutical Association.

  14. Dual biosynthetic pathways to phytosterol via cycloartenol and lanosterol in Arabidopsis.

    Science.gov (United States)

    Ohyama, Kiyoshi; Suzuki, Masashi; Kikuchi, Jun; Saito, Kazuki; Muranaka, Toshiya

    2009-01-20

    The differences between the biosynthesis of sterols in higher plants and yeast/mammals are believed to originate at the cyclization step of oxidosqualene, which is cyclized to cycloartenol in higher plants and lanosterol in yeast/mammals. Recently, lanosterol synthase genes were identified from dicotyledonous plant species including Arabidopsis, suggesting that higher plants possess dual biosynthetic pathways to phytosterols via lanosterol, and through cycloartenol. To identify the biosynthetic pathway to phytosterol via lanosterol, and to reveal the contributions to phytosterol biosynthesis via each cycloartenol and lanosterol, we performed feeding experiments by using [6-(13)C(2)H(3)]mevalonate with Arabidopsis seedlings. Applying (13)C-{(1)H}{(2)H} nuclear magnetic resonance (NMR) techniques, the elucidation of deuterium on C-19 behavior of phytosterol provided evidence that small amounts of phytosterol were biosynthesized via lanosterol. The levels of phytosterol increased on overexpression of LAS1, and phytosterols derived from lanosterol were not observed in a LAS1-knockout plant. This is direct evidence to indicate that the biosynthetic pathway for phytosterol via lanosterol exists in plant cells. We designate the biosynthetic pathway to phytosterols via lanosterol "the lanosterol pathway." LAS1 expression is reported to be induced by the application of jasmonate and is thought to have evolved from an ancestral cycloartenol synthase to a triterpenoid synthase, such as beta-amyrin synthase and lupeol synthase. Considering this background, the lanosterol pathway may contribute to the biosynthesis of not only phytosterols, but also steroids as secondary metabolites.

  15. Evolution and Diversity of Biosynthetic Gene Clusters in Fusarium

    Directory of Open Access Journals (Sweden)

    Koen Hoogendoorn

    2018-06-01

    Full Text Available Plant pathogenic fungi in the Fusarium genus cause severe damage to crops, resulting in great financial losses and health hazards. Specialized metabolites synthesized by these fungi are known to play key roles in the infection process, and to provide survival advantages inside and outside the host. However, systematic studies of the evolution of specialized metabolite-coding potential across Fusarium have been scarce. Here, we apply a combination of bioinformatic approaches to identify biosynthetic gene clusters (BGCs across publicly available genomes from Fusarium, to group them into annotated families and to study gain/loss events of BGC families throughout the history of the genus. Comparison with MIBiG reference BGCs allowed assignment of 29 gene cluster families (GCFs to pathways responsible for the production of known compounds, while for 57 GCFs, the molecular products remain unknown. Comparative analysis of BGC repertoires using ancestral state reconstruction raised several new hypotheses on how BGCs contribute to Fusarium pathogenicity or host specificity, sometimes surprisingly so: for example, a gene cluster for the biosynthesis of hexadehydro-astechrome was identified in the genome of the biocontrol strain Fusarium oxysporum Fo47, while being absent in that of the tomato pathogen F. oxysporum f.sp. lycopersici. Several BGCs were also identified on supernumerary chromosomes; heterologous expression of genes for three terpene synthases encoded on the Fusarium poae supernumerary chromosome and subsequent GC/MS analysis showed that these genes are functional and encode enzymes that each are able to synthesize koraiol; this observed functional redundancy supports the hypothesis that localization of copies of BGCs on supernumerary chromosomes provides freedom for evolutionary innovations to occur, while the original function remains conserved. Altogether, this systematic overview of biosynthetic diversity in Fusarium paves the way for

  16. Reconstruction of cytosolic fumaric acid biosynthetic pathways in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Xu Guoqiang

    2012-02-01

    Full Text Available Abstract Background Fumaric acid is a commercially important component of foodstuffs, pharmaceuticals and industrial materials, yet the current methods of production are unsustainable and ecologically destructive. Results In this study, the fumarate biosynthetic pathway involving reductive reactions of the tricarboxylic acid cycle was exogenously introduced in S. cerevisiae by a series of simple genetic modifications. First, the Rhizopus oryzae genes for malate dehydrogenase (RoMDH and fumarase (RoFUM1 were heterologously expressed. Then, expression of the endogenous pyruvate carboxylase (PYC2 was up-regulated. The resultant yeast strain, FMME-001 ↑PYC2 + ↑RoMDH, was capable of producing significantly higher yields of fumarate in the glucose medium (3.18 ± 0.15 g liter-1 than the control strain FMME-001 empty vector. Conclusions The results presented here provide a novel strategy for fumarate biosynthesis, which represents an important advancement in producing high yields of fumarate in a sustainable and ecologically-friendly manner.

  17. A kinetic model for the penicillin biosynthetic pathway in

    DEFF Research Database (Denmark)

    Nielsen, Jens; Jørgensen, Henrik

    1996-01-01

    A kinetic model for the first two steps in the penicillin biosynthetic pathway, i.e. the ACV synthetase (ACVS) and the isopenicillin N synthetase (IPNS) is proposed. The model is based on Michaelis-Menten type kinetics with non-competitive inhibition of the ACVS by ACV, and competitive inhibition...... of the IPNS by glutathione. The model predicted flux through the pathway corresponds well with the measured rate of penicillin biosynthesis. From the kinetic model the elasticity coefficients and the flux control coefficients are calculated throughout a fed-batch cultivation, and it is found...

  18. Spook and Spookier code for stage-specific components of the ecdysone biosynthetic pathway in Diptera

    DEFF Research Database (Denmark)

    Ono, Hajime; Rewitz, Kim; Shinoda, Tetsu

    2006-01-01

    is eliminated in larvae carrying mutations in molting defective (mld), a gene encoding a nuclear zinc finger protein that is required for production of ecdysone during Drosophila larval development. Intriguingly, mld is not present in the Bombyx mori genome, and we have identified only one spook homolog in both...... Bombyx and Manduca that is expressed in both embryos and larva. These studies suggest an evolutionary split between Diptera and Lepidoptera in how the ecdysone biosynthetic pathway is regulated during development....

  19. Engineering of the aspartate family biosynthetic pathway in barley (Hordeum vulgare L.) by transformation with heterologous genes encoding feed-back-insensitive aspartate kinase and dihydrodipicolinate synthase

    DEFF Research Database (Denmark)

    Brinch-Pedersen, H.; Galili, G.; Sørensen, K.

    1996-01-01

    In prokaryotes and plants the synthesis of the essential amino acids lysine and threonine is predominantly regulated by feed-back inhibition of aspartate kinase (AK) and dihydrodipicolinate synthase (DHPS). In order to modify the flux through the aspartate family pathway in barley and enhance...... the accumulation of the corresponding amino acids, we have generated transgenic barley plants that constitutively express mutant Escherichia coli genes encoding lysine feed-back insensitive forms of AK and DHPS. As a result, leaves of primary transformants (T0) exhibited a 14-fold increase of free lysine and an 8......, no differences were observed in the composition of total amino acids. The introduced genes were inherited in the T1 generation where enzymic activities revealed a 2.3-fold increase of AK activity and a 4.0-9.5-fold increase for DHPS. T1 seeds of DHPS transformants showed the same changes in free amino acids...

  20. Linking metabolic QTLs with network and cis-eQTLs controlling biosynthetic pathways.

    Directory of Open Access Journals (Sweden)

    Adam M Wentzell

    2007-09-01

    Full Text Available Phenotypic variation between individuals of a species is often under quantitative genetic control. Genomic analysis of gene expression polymorphisms between individuals is rapidly gaining popularity as a way to query the underlying mechanistic causes of variation between individuals. However, there is little direct evidence of a linkage between global gene expression polymorphisms and phenotypic consequences. In this report, we have mapped quantitative trait loci (QTLs-controlling glucosinolate content in a population of 403 Arabidopsis Bay x Sha recombinant inbred lines, 211 of which were previously used to identify expression QTLs controlling the transcript levels of biosynthetic genes. In a comparative study, we have directly tested two plant biosynthetic pathways for association between polymorphisms controlling biosynthetic gene transcripts and the resulting metabolites within the Arabidopsis Bay x Sha recombinant inbred line population. In this analysis, all loci controlling expression variation also affected the accumulation of the resulting metabolites. In addition, epistasis was detected more frequently for metabolic traits compared to transcript traits, even when both traits showed similar distributions. An analysis of candidate genes for QTL-controlling networks of transcripts and metabolites suggested that the controlling factors are a mix of enzymes and regulatory factors. This analysis showed that regulatory connections can feedback from metabolism to transcripts. Surprisingly, the most likely major regulator of both transcript level for nearly the entire pathway and aliphatic glucosinolate accumulation is variation in the last enzyme in the biosynthetic pathway, AOP2. This suggests that natural variation in transcripts may significantly impact phenotypic variation, but that natural variation in metabolites or their enzymatic loci can feed back to affect the transcripts.

  1. Flg22-Triggered Immunity Negatively Regulates Key BR Biosynthetic Genes.

    Science.gov (United States)

    Jiménez-Góngora, Tamara; Kim, Seong-Ki; Lozano-Durán, Rosa; Zipfel, Cyril

    2015-01-01

    In plants, activation of growth and activation of immunity are opposing processes that define a trade-off. In the past few years, the growth-promoting hormones brassinosteroids (BR) have emerged as negative regulators of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), promoting growth at the expense of defense. The crosstalk between BR and PTI signaling was described as negative and unidirectional, since activation of PTI does not affect several analyzed steps in the BR signaling pathway. In this work, we describe that activation of PTI by the bacterial PAMP flg22 results in the reduced expression of BR biosynthetic genes. This effect does not require BR perception or signaling, and occurs within 15 min of flg22 treatment. Since the described PTI-induced repression of gene expression may result in a reduction in BR biosynthesis, the crosstalk between PTI and BR could actually be negative and bidirectional, a possibility that should be taken into account when considering the interaction between these two pathways.

  2. Enhancement of cordyceps polysaccharide production via biosynthetic pathway analysis in Hirsutella sinensis.

    Science.gov (United States)

    Lin, Shan; Liu, Zhi-Qiang; Baker, Peter James; Yi, Ming; Wu, Hui; Xu, Feng; Teng, Yi; Zheng, Yu-Guo

    2016-11-01

    The addition of various sulfates for enhanced cordyceps polysaccharide (CP) production in submerged cultivation of H. sinensis was investigated, and manganese sulfate was found the most effective. 2mM of manganese sulfate on 0day (d) was investigated as the optimal adding condition, and the CP production reached optimum with 5.33%, increasing by 93.3% compared with the control. Furthermore, the consumption of three main precursors of CP was studied over cultivation under two conditions. Intracellular mannose content decreased by 43.1% throughout 6days cultivation, which corresponded to CP accumulation rate sharply increased from 0 d to 6 d, and mannose was considered as the most preferred precursor for generating CP. Subsequently, mannose biosynthetic pathway was constructed and verified for the first time in H. sinensis, which constituted the important part of CP biosynthesis, and transcriptional levels of the biosynthetic genes were studied. Transcriptional level of gene cpsA was significantly up-regulated 5.35-fold and it was a key gene involved both in mannose and CP biosynthesis. This study demonstrated that manganese sulfate addition is an efficient and simple way to improve CP production. Transcriptional analysis based on biosynthetic pathway was helpful to find key genes and better understand CP biosynthesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Enhancement of Nucleoside Production in Hirsutella sinensis Based on Biosynthetic Pathway Analysis

    Science.gov (United States)

    Liu, Zhi-Qiang; Zhang, Bo; Lin, Shan; Baker, Peter James; Chen, Mao-Sheng; Xue, Ya-Ping; Wu, Hui; Xu, Feng; Yuan, Shui-Jin; Teng, Yi; Wu, Ling-Fang

    2017-01-01

    To enhance nucleoside production in Hirsutella sinensis, the biosynthetic pathways of purine and pyrimidine nucleosides were constructed and verified. The differential expression analysis showed that purine nucleoside phosphorylase, inosine monophosphate dehydrogenase, and guanosine monophosphate synthase genes involved in purine nucleotide biosynthesis were significantly upregulated 16.56-fold, 8-fold, and 5.43-fold, respectively. Moreover, dihydroorotate dehydrogenase, uridine nucleosidase, uridine/cytidine monophosphate kinase, and inosine triphosphate pyrophosphatase genes participating in pyrimidine nucleoside biosynthesis were upregulated 4.53-fold, 10.63-fold, 4.26-fold, and 5.98-fold, respectively. To enhance the nucleoside production, precursors for synthesis of nucleosides were added based on the analysis of biosynthetic pathways. Uridine and cytidine contents, respectively, reached 5.04 mg/g and 3.54 mg/g when adding 2 mg/mL of ribose, resulting in an increase of 28.6% and 296% compared with the control, respectively. Meanwhile, uridine and cytidine contents, respectively, reached 10.83 mg/g 2.12 mg/g when adding 0.3 mg/mL of uracil, leading to an increase of 176.3% and 137.1%, respectively. This report indicated that fermentation regulation was an effective way to enhance the nucleoside production in H. sinensis based on biosynthetic pathway analysis. PMID:29333435

  4. Genetic determination of the meso-diaminopimelate biosynthetic pathway of mycobacteria.

    Science.gov (United States)

    Cirillo, J D; Weisbrod, T R; Banerjee, A; Bloom, B R; Jacobs, W R

    1994-07-01

    The increasing incidence of multiple-drug-resistant mycobacterial infections indicates that the development of new methods for treatment of mycobacterial diseases should be a high priority. meso-Diaminopimelic acid (DAP), a key component of a highly immunogenic subunit of the mycobacterial peptidoglycan layer, has been implicated as a potential virulence factor. The mycobacterial DAP biosynthetic pathway could serve as a target for design of new antimycobacterial agents as well as the construction of in vivo selection systems. We have isolated the asd, dapA, dapB, dapD, and dapE genes involved in the DAP biosynthetic pathway of Mycobacterium bovis BCG. These genes were isolated by complementation of Escherichia coli mutations with an expression library of BCG DNA. Our analysis of these genes suggests that BCG may use more than one pathway for biosynthesis of DAP. The nucleotide sequence of the BCG dapB gene was determined. The activity of the product of this gene in Escherichia coli provided evidence that the gene may encode a novel bifunctional dihydrodipicolinate reductase and DAP dehydrogenase.

  5. Construction of a controllable β-carotene biosynthetic pathway by decentralized assembly strategy in Saccharomyces cerevisiae.

    Science.gov (United States)

    Xie, Wenping; Liu, Min; Lv, Xiaomei; Lu, Wenqiang; Gu, Jiali; Yu, Hongwei

    2014-01-01

    Saccharomyces cerevisiae is an important platform organism for the synthesis of a great number of natural products. However, the assembly of controllable and genetically stable heterogeneous biosynthetic pathways in S. cerevisiae still remains a significant challenge. Here, we present a strategy for reconstructing controllable multi-gene pathways by employing the GAL regulatory system. A set of marker recyclable integrative plasmids (pMRI) was designed for decentralized assembly of pathways. As proof-of-principle, a controllable β-carotene biosynthesis pathway (∼16 kb) was reconstructed and optimized by repeatedly using GAL10-GAL1 bidirectional promoters with high efficiency (80-100%). By controling the switch time of the pathway, production of 11 mg/g DCW of total carotenoids (72.57 mg/L) and 7.41 mg/g DCW of β-carotene was achieved in shake-flask culture. In addition, the engineered yeast strain exhibited high genetic stability after 20 generations of subculture. The results demonstrated a controllable and genetically stable biosynthetic pathway capable of increasing the yield of target products. Furthermore, the strategy presented in this study could be extended to construct other pathways in S. cerevisisae. © 2013 Wiley Periodicals, Inc.

  6. Functional conservation of coenzyme Q biosynthetic genes among yeasts, plants, and humans.

    Directory of Open Access Journals (Sweden)

    Kazuhiro Hayashi

    Full Text Available Coenzyme Q (CoQ is an essential factor for aerobic growth and oxidative phosphorylation in the electron transport system. The biosynthetic pathway for CoQ has been proposed mainly from biochemical and genetic analyses of Escherichia coli and Saccharomyces cerevisiae; however, the biosynthetic pathway in higher eukaryotes has been explored in only a limited number of studies. We previously reported the roles of several genes involved in CoQ synthesis in the fission yeast Schizosaccharomyces pombe. Here, we expand these findings by identifying ten genes (dps1, dlp1, ppt1, and coq3-9 that are required for CoQ synthesis. CoQ10-deficient S. pombe coq deletion strains were generated and characterized. All mutant fission yeast strains were sensitive to oxidative stress, produced a large amount of sulfide, required an antioxidant to grow on minimal medium, and did not survive at the stationary phase. To compare the biosynthetic pathway of CoQ in fission yeast with that in higher eukaryotes, the ability of CoQ biosynthetic genes from humans and plants (Arabidopsis thaliana to functionally complement the S. pombe coq deletion strains was determined. With the exception of COQ9, expression of all other human and plant COQ genes recovered CoQ10 production by the fission yeast coq deletion strains, although the addition of a mitochondrial targeting sequence was required for human COQ3 and COQ7, as well as A. thaliana COQ6. In summary, this study describes the functional conservation of CoQ biosynthetic genes between yeasts, humans, and plants.

  7. Metabolic engineering of biosynthetic pathway for production of renewable biofuels.

    Science.gov (United States)

    Singh, Vijai; Mani, Indra; Chaudhary, Dharmendra Kumar; Dhar, Pawan Kumar

    2014-02-01

    Metabolic engineering is an important area of research that involves editing genetic networks to overproduce a certain substance by the cells. Using a combination of genetic, metabolic, and modeling methods, useful substances have been synthesized in the past at industrial scale and in a cost-effective manner. Currently, metabolic engineering is being used to produce sufficient, economical, and eco-friendly biofuels. In the recent past, a number of efforts have been made towards engineering biosynthetic pathways for large scale and efficient production of biofuels from biomass. Given the adoption of metabolic engineering approaches by the biofuel industry, this paper reviews various approaches towards the production and enhancement of renewable biofuels such as ethanol, butanol, isopropanol, hydrogen, and biodiesel. We have also identified specific areas where more work needs to be done in the future.

  8. De novo transcriptome sequencing and digital gene expression analysis predict biosynthetic pathway of rhynchophylline and isorhynchophylline from Uncaria rhynchophylla, a non-model plant with potent anti-alzheimer's properties.

    Science.gov (United States)

    Guo, Qianqian; Ma, Xiaojun; Wei, Shugen; Qiu, Deyou; Wilson, Iain W; Wu, Peng; Tang, Qi; Liu, Lijun; Dong, Shoukun; Zu, Wei

    2014-08-12

    The major medicinal alkaloids isolated from Uncaria rhynchophylla (gouteng in chinese) capsules are rhynchophylline (RIN) and isorhynchophylline (IRN). Extracts containing these terpene indole alkaloids (TIAs) can inhibit the formation and destabilize preformed fibrils of amyloid β protein (a pathological marker of Alzheimer's disease), and have been shown to improve the cognitive function of mice with Alzheimer-like symptoms. The biosynthetic pathways of RIN and IRN are largely unknown. In this study, RNA-sequencing of pooled Uncaria capsules RNA samples taken at three developmental stages that accumulate different amount of RIN and IRN was performed. More than 50 million high-quality reads from a cDNA library were generated and de novo assembled. Sequences for all of the known enzymes involved in TIAs synthesis were identified. Additionally, 193 cytochrome P450 (CYP450), 280 methyltransferase and 144 isomerase genes were identified, that are potential candidates for enzymes involved in RIN and IRN synthesis. Digital gene expression profile (DGE) analysis was performed on the three capsule developmental stages, and based on genes possessing expression profiles consistent with RIN and IRN levels; four CYP450s, three methyltransferases and three isomerases were identified as the candidates most likely to be involved in the later steps of RIN and IRN biosynthesis. A combination of de novo transcriptome assembly and DGE analysis was shown to be a powerful method for identifying genes encoding enzymes potentially involved in the biosynthesis of important secondary metabolites in a non-model plant. The transcriptome data from this study provides an important resource for understanding the formation of major bioactive constituents in the capsule extract from Uncaria, and provides information that may aid in metabolic engineering to increase yields of these important alkaloids.

  9. Characterization of the biosynthetic gene cluster for cryptic phthoxazolin A in Streptomyces avermitilis.

    Directory of Open Access Journals (Sweden)

    Dian Anggraini Suroto

    Full Text Available Phthoxazolin A, an oxazole-containing polyketide, has a broad spectrum of anti-oomycete activity and herbicidal activity. We recently identified phthoxazolin A as a cryptic metabolite of Streptomyces avermitilis that produces the important anthelmintic agent avermectin. Even though genome data of S. avermitilis is publicly available, no plausible biosynthetic gene cluster for phthoxazolin A is apparent in the sequence data. Here, we identified and characterized the phthoxazolin A (ptx biosynthetic gene cluster through genome sequencing, comparative genomic analysis, and gene disruption. Sequence analysis uncovered that the putative ptx biosynthetic genes are laid on an extra genomic region that is not found in the public database, and 8 open reading frames in the extra genomic region could be assigned roles in the biosynthesis of the oxazole ring, triene polyketide and carbamoyl moieties. Disruption of the ptxA gene encoding a discrete acyltransferase resulted in a complete loss of phthoxazolin A production, confirming that the trans-AT type I PKS system is responsible for the phthoxazolin A biosynthesis. Based on the predicted functional domains in the ptx assembly line, we propose the biosynthetic pathway of phthoxazolin A.

  10. Trichodiene Production in a Trichoderma harzianum erg1-Silenced Strain Provides Evidence of the Importance of the Sterol Biosynthetic Pathway in Inducing Plant Defense-Related Gene Expression.

    Science.gov (United States)

    Malmierca, M G; McCormick, S P; Cardoza, R E; Monte, E; Alexander, N J; Gutiérrez, S

    2015-11-01

    Trichoderma species are often used as biocontrol agents against plant-pathogenic fungi. A complex molecular interaction occurs among the biocontrol agent, the antagonistic fungus, and the plant. Terpenes and sterols produced by the biocontrol fungus have been found to affect gene expression in both the antagonistic fungus and the plant. The terpene trichodiene (TD) elicits the expression of genes related to tomato defense and to Botrytis virulence. We show here that TD itself is able to induce the expression of Botrytis genes involved in the synthesis of botrydial (BOT) and also induces terpene gene expression in Trichoderma spp. The terpene ergosterol, in addition to its role as a structural component of the fungal cell membranes, acts as an elicitor of defense response in plants. In the present work, using a transformant of T. harzianum, which is silenced in the erg1 gene and accumulates high levels of squalene, we show that this ergosterol precursor also acts as an important elicitor molecule of tomato defense-related genes and induces Botrytis genes involved in BOT biosynthesis, in both cases, in a concentration-dependent manner. Our data emphasize the importance of a balance of squalene and ergosterol in fungal interactions as well as in the biocontrol activity of Trichoderma spp.

  11. Secondary metabolism in Fusarium fujikuroi: strategies to unravel the function of biosynthetic pathways.

    Science.gov (United States)

    Janevska, Slavica; Tudzynski, Bettina

    2018-01-01

    The fungus Fusarium fujikuroi causes bakanae disease of rice due to its ability to produce the plant hormones, the gibberellins. The fungus is also known for producing harmful mycotoxins (e.g., fusaric acid and fusarins) and pigments (e.g., bikaverin and fusarubins). However, for a long time, most of these well-known products could not be linked to biosynthetic gene clusters. Recent genome sequencing has revealed altogether 47 putative gene clusters. Most of them were orphan clusters for which the encoded natural product(s) were unknown. In this review, we describe the current status of our research on identification and functional characterizations of novel secondary metabolite gene clusters. We present several examples where linking known metabolites to the respective biosynthetic genes has been achieved and describe recent strategies and methods to access new natural products, e.g., by genetic manipulation of pathway-specific or global transcritption factors. In addition, we demonstrate that deletion and over-expression of histone-modifying genes is a powerful tool to activate silent gene clusters and to discover their products.

  12. Trichodiene production in a Trichoderma harzianum erg1-silenced strain provides evidence of the importance of the sterol biosynthetic pathway in inducing plant defense-related gene expression

    Science.gov (United States)

    Trichoderma species are often used as biocontrol agents against plant-pathogenic fungi. A complex molecular interaction occurs among the biocontrol agent, the antagonistic fungus, and the plant. Terpenes and sterols produced by the biocontrol fungus have been found to affect gene expression in both ...

  13. A genomics based discovery of secondary metabolite biosynthetic gene clusters in Aspergillus ustus.

    Directory of Open Access Journals (Sweden)

    Borui Pi

    Full Text Available Secondary metabolites (SMs produced by Aspergillus have been extensively studied for their crucial roles in human health, medicine and industrial production. However, the resulting information is almost exclusively derived from a few model organisms, including A. nidulans and A. fumigatus, but little is known about rare pathogens. In this study, we performed a genomics based discovery of SM biosynthetic gene clusters in Aspergillus ustus, a rare human pathogen. A total of 52 gene clusters were identified in the draft genome of A. ustus 3.3904, such as the sterigmatocystin biosynthesis pathway that was commonly found in Aspergillus species. In addition, several SM biosynthetic gene clusters were firstly identified in Aspergillus that were possibly acquired by horizontal gene transfer, including the vrt cluster that is responsible for viridicatumtoxin production. Comparative genomics revealed that A. ustus shared the largest number of SM biosynthetic gene clusters with A. nidulans, but much fewer with other Aspergilli like A. niger and A. oryzae. These findings would help to understand the diversity and evolution of SM biosynthesis pathways in genus Aspergillus, and we hope they will also promote the development of fungal identification methodology in clinic.

  14. A Genomics Based Discovery of Secondary Metabolite Biosynthetic Gene Clusters in Aspergillus ustus

    Science.gov (United States)

    Pi, Borui; Yu, Dongliang; Dai, Fangwei; Song, Xiaoming; Zhu, Congyi; Li, Hongye; Yu, Yunsong

    2015-01-01

    Secondary metabolites (SMs) produced by Aspergillus have been extensively studied for their crucial roles in human health, medicine and industrial production. However, the resulting information is almost exclusively derived from a few model organisms, including A. nidulans and A. fumigatus, but little is known about rare pathogens. In this study, we performed a genomics based discovery of SM biosynthetic gene clusters in Aspergillus ustus, a rare human pathogen. A total of 52 gene clusters were identified in the draft genome of A. ustus 3.3904, such as the sterigmatocystin biosynthesis pathway that was commonly found in Aspergillus species. In addition, several SM biosynthetic gene clusters were firstly identified in Aspergillus that were possibly acquired by horizontal gene transfer, including the vrt cluster that is responsible for viridicatumtoxin production. Comparative genomics revealed that A. ustus shared the largest number of SM biosynthetic gene clusters with A. nidulans, but much fewer with other Aspergilli like A. niger and A. oryzae. These findings would help to understand the diversity and evolution of SM biosynthesis pathways in genus Aspergillus, and we hope they will also promote the development of fungal identification methodology in clinic. PMID:25706180

  15. Multiplex PCR analysis of fumonisin biosynthetic genes in fumonisin-nonproducing Aspergillus niger and A. awamori strains

    Science.gov (United States)

    In order to determine the genetic basis for loss of fumonisin B¬2 (FB2) biosynthesis in FB2 non-producing A. niger strains, we developed multiplex PCR primer sets to amplify fragments of eight fumonisin biosynthetic pathway (fum) genes. Fragments of all eight fum genes were amplified in FB2-produci...

  16. Recent development of antiSMASH and other computational approaches to mine secondary metabolite biosynthetic gene clusters

    DEFF Research Database (Denmark)

    Blin, Kai; Kim, Hyun Uk; Medema, Marnix H.

    2017-01-01

    Many drugs are derived from small molecules produced by microorganisms and plants, so-called natural products. Natural products have diverse chemical structures, but the biosynthetic pathways producing those compounds are often organized as biosynthetic gene clusters (BGCs) and follow a highly...... conserved biosynthetic logic. This allows for the identification of core biosynthetic enzymes using genome mining strategies that are based on the sequence similarity of the involved enzymes/genes. However, mining for a variety of BGCs quickly approaches a complexity level where manual analyses...... are no longer possible and require the use of automated genome mining pipelines, such as the antiSMASH software. In this review, we discuss the principles underlying the predictions of antiSMASH and other tools and provide practical advice for their application. Furthermore, we discuss important caveats...

  17. Characterization of cyanobacterial hydrocarbon composition and distribution of biosynthetic pathways.

    Directory of Open Access Journals (Sweden)

    R Cameron Coates

    Full Text Available Cyanobacteria possess the unique capacity to naturally produce hydrocarbons from fatty acids. Hydrocarbon compositions of thirty-two strains of cyanobacteria were characterized to reveal novel structural features and insights into hydrocarbon biosynthesis in cyanobacteria. This investigation revealed new double bond (2- and 3-heptadecene and methyl group positions (3-, 4- and 5-methylheptadecane for a variety of strains. Additionally, results from this study and literature reports indicate that hydrocarbon production is a universal phenomenon in cyanobacteria. All cyanobacteria possess the capacity to produce hydrocarbons from fatty acids yet not all accomplish this through the same metabolic pathway. One pathway comprises a two-step conversion of fatty acids first to fatty aldehydes and then alkanes that involves a fatty acyl ACP reductase (FAAR and aldehyde deformylating oxygenase (ADO. The second involves a polyketide synthase (PKS pathway that first elongates the acyl chain followed by decarboxylation to produce a terminal alkene (olefin synthase, OLS. Sixty-one strains possessing the FAAR/ADO pathway and twelve strains possessing the OLS pathway were newly identified through bioinformatic analyses. Strains possessing the OLS pathway formed a cohesive phylogenetic clade with the exception of three Moorea strains and Leptolyngbya sp. PCC 6406 which may have acquired the OLS pathway via horizontal gene transfer. Hydrocarbon pathways were identified in one-hundred-forty-two strains of cyanobacteria over a broad phylogenetic range and there were no instances where both the FAAR/ADO and the OLS pathways were found together in the same genome, suggesting an unknown selective pressure maintains one or the other pathway, but not both.

  18. Metabolic engineering to simultaneously activate anthocyanin and proanthocyanidin biosynthetic pathways in Nicotiana spp.

    Directory of Open Access Journals (Sweden)

    Sandra Fresquet-Corrales

    Full Text Available Proanthocyanidins (PAs, or condensed tannins, are powerful antioxidants that remove harmful free oxygen radicals from cells. To engineer the anthocyanin and proanthocyanidin biosynthetic pathways to de novo produce PAs in two Nicotiana species, we incorporated four transgenes to the plant chassis. We opted to perform a simultaneous transformation of the genes linked in a multigenic construct rather than classical breeding or retransformation approaches. We generated a GoldenBraid 2.0 multigenic construct containing two Antirrhinum majus transcription factors (AmRosea1 and AmDelila to upregulate the anthocyanin pathway in combination with two Medicago truncatula genes (MtLAR and MtANR to produce the enzymes that will derivate the biosynthetic pathway to PAs production. Transient and stable transformation of Nicotiana benthamiana and Nicotiana tabacum with the multigenic construct were respectively performed. Transient expression experiments in N. benthamiana showed the activation of the anthocyanin pathway producing a purple color in the agroinfiltrated leaves and also the effective production of 208.5 nmol (- catechin/g FW and 228.5 nmol (- epicatechin/g FW measured by the p-dimethylaminocinnamaldehyde (DMACA method. The integration capacity of the four transgenes, their respective expression levels and their heritability in the second generation were analyzed in stably transformed N. tabacum plants. DMACA and phoroglucinolysis/HPLC-MS analyses corroborated the activation of both pathways and the effective production of PAs in T0 and T1 transgenic tobacco plants up to a maximum of 3.48 mg/g DW. The possible biotechnological applications of the GB2.0 multigenic approach in forage legumes to produce "bloat-safe" plants and to improve the efficiency of conversion of plant protein into animal protein (ruminal protein bypass are discussed.

  19. Transcriptional repressor role of PocR on the 1,3-propanediol biosynthetic pathway by Lactobacillus panis PM1.

    Science.gov (United States)

    Kang, Tae Sun; Korber, Darren R; Tanaka, Takuji

    2014-06-01

    The regulatory role of a transcriptional regulator (PocR) in the 1,3-propanediol biosynthetic pathway of Lactobacillus panis PM1 contributes to the optimization of 1,3-propanediol production by this strain, which potentially will lead to 1,3-propanediol manufacturing efficiencies. Lactobacillus panis PM1 can utilize a 1,3-propanediol (1,3-PDO) biosynthetic pathway, consisting of diol dehydratase (PduCDE) and 1,3-PDO dehydrogenase, as a NADH recycling system, to survive under various environmental conditions. In this study, we identified a key transcriptional repressor (PocR) which was annotated as a transcriptional factor of AraC family as part of the 1,3-PDO biosynthetic pathway of L. panis PM1. The over-expression of the PocR gene resulted in the significant repression (81 %) of pduC (PduCDE large subunit) transcription, and subsequently, the decreased activity of PduCDE by 22 %. As a result of the regulation of PduCDE, production of both 3-hydroxypropionaldehyde and 1,3-PDO in the PocR over-expressing strain were significantly decreased by 40 % relative to the control strain. These results clearly demonstrate the transcriptional repressor role of PocR in the 1,3-PDO biosynthetic pathway.

  20. Reconstruction of the biosynthetic pathway for the core fungal polyketide scaffold rubrofusarin in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Rugbjerg, Peter; Naesby, Michael; Mortensen, Uffe Hasbro

    2013-01-01

    production in easily fermentable and genetically engineerable organisms, such as Saccharomyces cerevisiae and Escherichia coli are desirable. Rubrofusarin is an orange polyketide pigment that is a common intermediate in many different fungal biosynthetic pathways. RESULTS: In this study, we established...

  1. A nitrous acid biosynthetic pathway for diazo group formation in bacteria.

    Science.gov (United States)

    Sugai, Yoshinori; Katsuyama, Yohei; Ohnishi, Yasuo

    2016-02-01

    Although some diazo compounds have bioactivities of medicinal interest, little is known about diazo group formation in nature. Here we describe an unprecedented nitrous acid biosynthetic pathway responsible for the formation of a diazo group in the biosynthesis of the ortho-diazoquinone secondary metabolite cremeomycin in Streptomyces cremeus. This finding provides important insights into the biosynthetic pathways not only for diazo compounds but also for other naturally occurring compounds containing nitrogen-nitrogen bonds.

  2. Characterization of the gene encoding serine acetyltransferase, a regulated enzyme of cysteine biosynthesis from the protist parasites Entamoeba histolytica and Entamoeba dispar. Regulation and possible function of the cysteine biosynthetic pathway in Entamoeba.

    Science.gov (United States)

    Nozaki, T; Asai, T; Sanchez, L B; Kobayashi, S; Nakazawa, M; Takeuchi, T

    1999-11-05

    The enteric protist parasites Entamoeba histolytica and Entamoeba dispar possess a cysteine biosynthetic pathway, unlike their mammalian host, and are capable of de novo production of L-cysteine. We cloned and characterized cDNAs that encode the regulated enzyme serine acetyltransferase (SAT) in this pathway from these amoebae by genetic complementation of a cysteine-auxotrophic Escherichia coli strain with the amoebic cDNA libraries. The deduced amino acid sequences of the amoebic SATs exhibited, within the most conserved region, 36-52% identities with the bacterial and plant SATs. The amoebic SATs contain a unique insertion of eight amino acids, also found in the corresponding region of a plasmid-encoded SAT from Synechococcus sp., which showed the highest overall identities to the amoebic SATs. Phylogenetic reconstruction also revealed a close kinship of the amoebic SATs with cyanobacterial SATs. Biochemical characterization of the recombinant E. histolytica SAT revealed several enzymatic features that distinguished the amoebic enzyme from the bacterial and plant enzymes: 1) inhibition by L-cysteine in a competitive manner with L-serine; 2) inhibition by L-cystine; and 3) no association with cysteine synthase. Genetically engineered amoeba strains that overproduced cysteine synthase and SAT were created. The cysteine synthase-overproducing amoebae had a higher level of cysteine synthase activity and total thiol content and revealed increased resistance to hydrogen peroxide. These results indicate that the cysteine biosynthetic pathway plays an important role in antioxidative defense of these enteric parasites.

  3. The Arabidopsis histone chaperone FACT is required for stress-induced expression of anthocyanin biosynthetic genes.

    Science.gov (United States)

    Pfab, Alexander; Breindl, Matthias; Grasser, Klaus D

    2018-03-01

    The histone chaperone FACT is involved in the expression of genes encoding anthocyanin biosynthetic enzymes also upon induction by moderate high-light and therefore contributes to the stress-induced plant pigmentation. The histone chaperone FACT consists of the SSRP1 and SPT16 proteins and associates with transcribing RNAPII (RNAPII) along the transcribed region of genes. FACT can promote transcriptional elongation by destabilising nucleosomes in the path of RNA polymerase II, thereby facilitating efficient transcription of chromatin templates. Transcript profiling of Arabidopsis plants depleted in SSRP1 or SPT16 demonstrates that only a small subset of genes is differentially expressed relative to wild type. The majority of these genes is either up- or down-regulated in both the ssrp1 and spt16 plants. Among the down-regulated genes, those encoding enzymes of the biosynthetic pathway of the plant secondary metabolites termed anthocyanins (but not regulators of the pathway) are overrepresented. Upon exposure to moderate high-light stress several of these genes are up-regulated to a lesser extent in ssrp1/spt16 compared to wild type plants, and accordingly the mutant plants accumulate lower amounts of anthocyanin pigments. Moreover, the expression of SSRP1 and SPT16 is induced under these conditions. Therefore, our findings indicate that FACT is a novel factor required for the accumulation of anthocyanins in response to light-induction.

  4. Evolutionary origins and functions of the carotenoid biosynthetic pathway in marine diatoms.

    Directory of Open Access Journals (Sweden)

    Sacha Coesel

    Full Text Available Carotenoids are produced by all photosynthetic organisms, where they play essential roles in light harvesting and photoprotection. The carotenoid biosynthetic pathway of diatoms is largely unstudied, but is of particular interest because these organisms have a very different evolutionary history with respect to the Plantae and are thought to be derived from an ancient secondary endosymbiosis between heterotrophic and autotrophic eukaryotes. Furthermore, diatoms have an additional xanthophyll-based cycle for dissipating excess light energy with respect to green algae and higher plants. To explore the origins and functions of the carotenoid pathway in diatoms we searched for genes encoding pathway components in the recently completed genome sequences of two marine diatoms. Consistent with the supplemental xanthophyll cycle in diatoms, we found more copies of the genes encoding violaxanthin de-epoxidase (VDE and zeaxanthin epoxidase (ZEP enzymes compared with other photosynthetic eukaryotes. However, the similarity of these enzymes with those of higher plants indicates that they had very probably diversified before the secondary endosymbiosis had occurred, implying that VDE and ZEP represent early eukaryotic innovations in the Plantae. Consequently, the diatom chromist lineage likely obtained all paralogues of ZEP and VDE genes during the process of secondary endosymbiosis by gene transfer from the nucleus of the algal endosymbiont to the host nucleus. Furthermore, the presence of a ZEP gene in Tetrahymena thermophila provides the first evidence for a secondary plastid gene encoded in a heterotrophic ciliate, providing support for the chromalveolate hypothesis. Protein domain structures and expression analyses in the pennate diatom Phaeodactylum tricornutum indicate diverse roles for the different ZEP and VDE isoforms and demonstrate that they are differentially regulated by light. These studies therefore reveal the ancient origins of several

  5. Evolutionary origins and functions of the carotenoid biosynthetic pathway in marine diatoms.

    Science.gov (United States)

    Coesel, Sacha; Oborník, Miroslav; Varela, Joao; Falciatore, Angela; Bowler, Chris

    2008-08-06

    Carotenoids are produced by all photosynthetic organisms, where they play essential roles in light harvesting and photoprotection. The carotenoid biosynthetic pathway of diatoms is largely unstudied, but is of particular interest because these organisms have a very different evolutionary history with respect to the Plantae and are thought to be derived from an ancient secondary endosymbiosis between heterotrophic and autotrophic eukaryotes. Furthermore, diatoms have an additional xanthophyll-based cycle for dissipating excess light energy with respect to green algae and higher plants. To explore the origins and functions of the carotenoid pathway in diatoms we searched for genes encoding pathway components in the recently completed genome sequences of two marine diatoms. Consistent with the supplemental xanthophyll cycle in diatoms, we found more copies of the genes encoding violaxanthin de-epoxidase (VDE) and zeaxanthin epoxidase (ZEP) enzymes compared with other photosynthetic eukaryotes. However, the similarity of these enzymes with those of higher plants indicates that they had very probably diversified before the secondary endosymbiosis had occurred, implying that VDE and ZEP represent early eukaryotic innovations in the Plantae. Consequently, the diatom chromist lineage likely obtained all paralogues of ZEP and VDE genes during the process of secondary endosymbiosis by gene transfer from the nucleus of the algal endosymbiont to the host nucleus. Furthermore, the presence of a ZEP gene in Tetrahymena thermophila provides the first evidence for a secondary plastid gene encoded in a heterotrophic ciliate, providing support for the chromalveolate hypothesis. Protein domain structures and expression analyses in the pennate diatom Phaeodactylum tricornutum indicate diverse roles for the different ZEP and VDE isoforms and demonstrate that they are differentially regulated by light. These studies therefore reveal the ancient origins of several components of the

  6. In silico tools for the analysis of antibiotic biosynthetic pathways

    DEFF Research Database (Denmark)

    Weber, Tilmann

    2014-01-01

    Natural products of bacteria and fungi are the most important source for antimicrobial drug leads. For decades, such compounds were exclusively found by chemical/bioactivity-guided screening approaches. The rapid progress in sequencing technologies only recently allowed the development of novel...... screening methods based on the genome sequences of potential producing organisms. The basic principle of such genome mining approaches is to identify genes, which are involved in the biosynthesis of such molecules, and to predict the products of the identified pathways. Thus, bioinformatics methods...... and tools are crucial for genome mining. In this review, a comprehensive overview is given on programs and databases for the identification and analysis of antibiotic biosynthesis gene clusters in genomic data....

  7. Genome sequence of Thermofilum pendens reveals an exceptional loss of biosynthetic pathways without genome reduction

    Energy Technology Data Exchange (ETDEWEB)

    Kyrpides, Nikos; Anderson, Iain; Rodriguez, Jason; Susanti, Dwi; Porat, Iris; Reich, Claudia; Ulrich, Luke E.; Elkins, James G.; Mavromatis, Kostas; Lykidis, Athanasios; Kim, Edwin; Thompson, Linda S.; Nolan, Matt; Land, Miriam; Copeland, Alex; Lapidus, Alla; Lucas, Susan; Detter, Chris; Zhulin, Igor B.; Olsen, Gary J.; Whitman, William; Mukhopadhyay, Biswarup; Bristow, James; Kyrpides, Nikos

    2008-01-01

    We report the complete genome of Thermofilum pendens, a deep-branching, hyperthermophilic member of the order Thermoproteales within the archaeal kingdom Crenarchaeota. T. pendens is a sulfur-dependent, anaerobic heterotroph isolated from a solfatara in Iceland. It is an extracellular commensal, requiring an extract of Thermoproteus tenax for growth, and the genome sequence reveals that biosynthetic pathways for purines, most amino acids, and most cofactors are absent. In fact T. pendens has fewer biosynthetic enzymes than obligate intracellular parasites, although it does not display other features common among obligate parasites and thus does not appear to be in the process of becoming a parasite. It appears that T. pendens has adapted to life in an environment rich in nutrients. T. pendens was known to utilize peptides as an energy source, but the genome reveals substantial ability to grow on carbohydrates. T. pendens is the first crenarchaeote and only the second archaeon found to have a transporter of the phosphotransferase system. In addition to fermentation, T. pendens may gain energy from sulfur reduction with hydrogen and formate as electron donors. It may also be capable of sulfur-independent growth on formate with formate hydrogenlyase. Additional novel features are the presence of a monomethylamine:corrinoid methyltransferase, the first time this enzyme has been found outside of Methanosarcinales, and a presenilin-related protein. Predicted highly expressed proteins do not include housekeeping genes, and instead include ABC transporters for carbohydrates and peptides, and CRISPR-associated proteins.

  8. Functional Characterization of a Novel R2R3-MYB Transcription Factor Modulating the Flavonoid Biosynthetic Pathway from Epimedium sagittatum

    Directory of Open Access Journals (Sweden)

    Wenjun Huang

    2017-07-01

    Full Text Available Epimedium species have been widely used both as traditional Chinese medicinal plants and ornamental perennials. Both flavonols, acting as the major bioactive components (BCs and anthocyanins, predominantly contributing to the color diversity of Epimedium flowers belong to different classes of flavonoids. It is well-acknowledged that flavonoid biosynthetic pathway is predominantly regulated by R2R3-MYB transcription factor (TF as well as bHLH TF and WD40 protein at the transcriptional level. MYB TFs specifically regulating anthocyanin or flavonol biosynthetic pathway have been already isolated and functionally characterized from Epimedium sagittatum, but a R2R3-MYB TF involved in regulating both these two pathways has not been functionally characterized to date in Epimedium plants. In this study, we report the functional characterization of EsMYB9, a R2R3-MYB TF previously isolated from E. sagittatum. The previous study indicated that EsMYB9 belongs to a small subfamily of R2R3-MYB TFs containing grape VvMYB5a and VvMYB5b TFs, which regulate flavonoid biosynthetic pathway. The present studies show that overexpression of EsMYB9 in tobacco leads to increased transcript levels of flavonoid pathway genes and increased contents of anthocyanins and flavonols. Yeast two-hybrid assay indicates that the C-terminal region of EsMYB9 contributes to the autoactivation activity, and EsMYB9 interacts with EsTT8 or AtTT8 bHLH regulator. Transient reporter assay shows that EsMYB9 slightly activates the expression of EsCHS (chalcone synthase promoter in transiently transformed leaves of Nicotiana benthamiana, but the addition of AtTT8 or EsTT8 bHLH regulator strongly enhances the transcriptional activation of EsMYB9 against five promoters of the flavonoid pathway genes except EsFLS (flavonol synthase. In addition, co-transformation of EsMYB9 and EsTT8 in transiently transfected tobacco leaves strongly induces the expressions of flavonoid biosynthetic genes. The

  9. Regulation of the Omega-3 Fatty Acid Biosynthetic Pathway in Atlantic Salmon Hepatocytes.

    Directory of Open Access Journals (Sweden)

    Marte Avranden Kjær

    Full Text Available Limited availability of the n-3 fatty acids EPA and DHA have led to an interest in better understanding of the n-3 biosynthetic pathway and its regulation. The biosynthesis of alpha-linolenic acid to EPA and DHA involves several complex reaction steps including desaturation-, elongation- and peroxisomal beta-oxidation enzymes. The aims of the present experiments were to gain more knowledge on how this biosynthesis is regulated over time by different doses and fatty acid combinations. Hepatocytes isolated from salmon were incubated with various levels and combinations of oleic acid, EPA and DHA. Oleic acid led to a higher expression of the Δ6 fatty acid desaturase (fad genes Δ6fad_a, Δ6fad_b, Δ6fad_c and the elongase genes elovl2 compared with cells cultured in medium enriched with DHA. Further, the study showed rhythmic variations in expression over time. Levels were reached where a further increase in specific fatty acids given to the cells not stimulated the conversion further. The gene expression of Δ6fad_a_and Δ6fad_b responded similar to fatty acid treatment, suggesting a co-regulation of these genes, whereas Δ5fad and Δ6fad_c showed a different regulation pattern. EPA and DHA induced different gene expression patterns, especially of Δ6fad_a. Addition of radiolabelled alpha-linolenic acid to the hepatocytes confirmed a higher degree of elongation and desaturation in cells treated with oleic acid compared to cells treated with DHA. This study suggests a complex regulation of the conversion process of n-3 fatty acids. Several factors, such as that the various gene copies are differently regulated, the gene expression show rhythmic variations and gene expression only affected to a certain level, determines when you get the maximum conversion of the beneficial n-3 fatty acids.

  10. Neurosteroid biosynthetic pathway changes in substantia nigra and caudate nucleus in Parkinson's disease

    NARCIS (Netherlands)

    Luchetti, Sabina; Bossers, Koen; Frajese, Giovanni Vanni; Swaab, Dick F.

    2010-01-01

    There is emerging evidence from animal studies for a neuroprotective role of sex steroids in neurodegenerative diseases, but studies in human brain are lacking. We have carried out an extensive study of the neurosteroid biosynthetic pathways in substantia nigra (SN), caudate nucleus (CN) and putamen

  11. Metabolic engineering of the omega-3 long chain polyunsaturated fatty acid biosynthetic pathway into transgenic plants.

    Science.gov (United States)

    Ruiz-López, Noemi; Sayanova, Olga; Napier, Johnathan A; Haslam, Richard P

    2012-04-01

    Omega-3 (ω-3) very long chain polyunsaturated fatty acids (VLC-PUFAs) such as eicosapentaenoic acid (EPA; 20:5 Δ5,8,11,14,17) and docosahexaenoic acid (DHA; 22:6 Δ4,7,10,13,16,19) have been shown to have significant roles in human health. Currently the primary dietary source of these fatty acids are marine fish; however, the increasing demand for fish and fish oil (in particular the expansion of the aquaculture industry) is placing enormous pressure on diminishing marine stocks. Such overfishing and concerns related to pollution in the marine environment have directed research towards the development of a viable alternative sustainable source of VLC-PUFAs. As a result, the last decade has seen many genes encoding the primary VLC-PUFA biosynthetic activities identified and characterized. This has allowed the reconstitution of the VLC-PUFA biosynthetic pathway in oilseed crops, producing transgenic plants engineered to accumulate ω-3 VLC-PUFAs at levels approaching those found in native marine organisms. Moreover, as a result of these engineering activities, knowledge of the fundamental processes surrounding acyl exchange and lipid remodelling has progressed. The application of new technologies, for example lipidomics and next-generation sequencing, is providing a better understanding of seed oil biosynthesis and opportunities for increasing the production of unusual fatty acids. Certainly, it is now possible to modify the composition of plant oils successfully, and, in this review, the most recent developments in this field and the challenges of producing VLC-PUFAs in the seed oil of higher plants will be described.

  12. Global analysis of biosynthetic gene clusters reveals vast potential of secondary metabolite production in Penicillium species

    DEFF Research Database (Denmark)

    Nielsen, Jens Christian; Grijseels, Sietske; Prigent, Sylvain

    2017-01-01

    Filamentous fungi produce a wide range of bioactive compounds with important pharmaceutical applications, such as antibiotic penicillins and cholesterol-lowering statins. However, less attention has been paid to fungal secondary metabolites compared to those from bacteria. In this study, we...... sequenced the genomes of 9 Penicillium species and, together with 15 published genomes, we investigated the secondary metabolism of Penicillium and identified an immense, unexploited potential for producing secondary metabolites by this genus. A total of 1,317 putative biosynthetic gene clusters (BGCs) were......-referenced the predicted pathways with published data on the production of secondary metabolites and experimentally validated the production of antibiotic yanuthones in Penicillia and identified a previously undescribed compound from the yanuthone pathway. This study is the first genus-wide analysis of the genomic...

  13. Effect of overall feedback inhibition in unbranched biosynthetic pathways.

    Science.gov (United States)

    Alves, R; Savageau, M A

    2000-11-01

    We have determined the effects of control by overall feedback inhibition on the systemic behavior of unbranched metabolic pathways with an arbitrary pattern of other feedback inhibitions by using a recently developed numerical generalization of Mathematically Controlled Comparisons, a method for comparing the function of alternative molecular designs. This method allows the rigorous determination of the changes in systemic properties that can be exclusively attributed to overall feedback inhibition. Analytical results show that the unbranched pathway can achieve the same steady-state flux, concentrations, and logarithmic gains with respect to changes in substrate, with or without overall feedback inhibition. The analytical approach also shows that control by overall feedback inhibition amplifies the regulation of flux by the demand for end product while attenuating the sensitivity of the concentrations to the same demand. This approach does not provide a clear answer regarding the effect of overall feedback inhibition on the robustness, stability, and transient time of the pathway. However, the generalized numerical method we have used does clarify the answers to these questions. On average, an unbranched pathway with control by overall feedback inhibition is less sensitive to perturbations in the values of the parameters that define the system. The difference in robustness can range from a few percent to fifty percent or more, depending on the length of the pathway and on the metabolite one considers. On average, overall feedback inhibition decreases the stability margins by a minimal amount (typically less than 5%). Finally, and again on average, stable systems with overall feedback inhibition respond faster to fluctuations in the metabolite concentrations. Taken together, these results show that control by overall feedback inhibition confers several functional advantages upon unbranched pathways. These advantages provide a rationale for the prevalence of this

  14. Perturbations in the Photosynthetic Pigment Status Result in Photooxidation-Induced Crosstalk between Carotenoid and Porphyrin Biosynthetic Pathways

    Directory of Open Access Journals (Sweden)

    Joon-Heum Park

    2017-11-01

    Full Text Available Possible crosstalk between the carotenoid and porphyrin biosynthetic pathways under photooxidative conditions was investigated by using their biosynthetic inhibitors, norflurazon (NF and oxyfluorfen (OF. High levels of protoporphyrin IX (Proto IX accumulated in rice plants treated with OF, whereas Proto IX decreased in plants treated with NF. Both NF and OF treatments resulted in greater decreases in MgProto IX, MgProto IX methyl ester, and protochlorophyllide. Activities and transcript levels of most porphyrin biosynthetic enzymes, particularly in the Mg-porphyrin branch, were greatly down-regulated in NF and OF plants. In contrast, the transcript levels of GSA, PPO1, and CHLD as well as FC2 and HO2 were up-regulated in NF-treated plants, while only moderate increases in FC2 and HO2 were observed in the early stage of OF treatment. Phytoene, antheraxanthin, and zeaxanthin showed high accumulation in NF-treated plants, whereas other carotenoid intermediates greatly decreased. Transcript levels of carotenoid biosynthetic genes, PSY1 and PDS, decreased in response to NF and OF, whereas plants in the later stage of NF treatment exhibited up-regulation of BCH and VDE as well as recovery of PDS. However, perturbed porphyrin biosynthesis by OF did not noticeably influence levels of carotenoid metabolites, regardless of the strong down-regulation of carotenoid biosynthetic genes. Both NF and OF plants appeared to provide enhanced protection against photooxidative damage, not only by scavenging of Mg-porphyrins, but also by up-regulating FC2, HO2, and Fe-chelatase, particularly with increased levels of zeaxanthin via up-regulation of BCH and VDE in NF plants. On the other hand, the up-regulation of GSA, PPO1, and CHLD under inhibition of carotenogenic flux may be derived from the necessity to recover impaired chloroplast biogenesis during photooxidative stress. Our study demonstrates that perturbations in carotenoid and porphyrin biosynthesis coordinate

  15. Perturbations in the Photosynthetic Pigment Status Result in Photooxidation-Induced Crosstalk between Carotenoid and Porphyrin Biosynthetic Pathways.

    Science.gov (United States)

    Park, Joon-Heum; Tran, Lien H; Jung, Sunyo

    2017-01-01

    Possible crosstalk between the carotenoid and porphyrin biosynthetic pathways under photooxidative conditions was investigated by using their biosynthetic inhibitors, norflurazon (NF) and oxyfluorfen (OF). High levels of protoporphyrin IX (Proto IX) accumulated in rice plants treated with OF, whereas Proto IX decreased in plants treated with NF. Both NF and OF treatments resulted in greater decreases in MgProto IX, MgProto IX methyl ester, and protochlorophyllide. Activities and transcript levels of most porphyrin biosynthetic enzymes, particularly in the Mg-porphyrin branch, were greatly down-regulated in NF and OF plants. In contrast, the transcript levels of GSA, PPO1 , and CHLD as well as FC2 and HO2 were up-regulated in NF-treated plants, while only moderate increases in FC2 and HO2 were observed in the early stage of OF treatment. Phytoene, antheraxanthin, and zeaxanthin showed high accumulation in NF-treated plants, whereas other carotenoid intermediates greatly decreased. Transcript levels of carotenoid biosynthetic genes, PSY1 and PDS , decreased in response to NF and OF, whereas plants in the later stage of NF treatment exhibited up-regulation of BCH and VDE as well as recovery of PDS . However, perturbed porphyrin biosynthesis by OF did not noticeably influence levels of carotenoid metabolites, regardless of the strong down-regulation of carotenoid biosynthetic genes. Both NF and OF plants appeared to provide enhanced protection against photooxidative damage, not only by scavenging of Mg - porphyrins, but also by up-regulating FC2, HO2 , and Fe-chelatase, particularly with increased levels of zeaxanthin via up-regulation of BCH and VDE in NF plants. On the other hand, the up-regulation of GSA, PPO1 , and CHLD under inhibition of carotenogenic flux may be derived from the necessity to recover impaired chloroplast biogenesis during photooxidative stress. Our study demonstrates that perturbations in carotenoid and porphyrin biosynthesis coordinate the

  16. A simple biosynthetic pathway for large product generation from small substrate amounts

    Science.gov (United States)

    Djordjevic, Marko; Djordjevic, Magdalena

    2012-10-01

    A recently emerging discipline of synthetic biology has the aim of constructing new biosynthetic pathways with useful biological functions. A major application of these pathways is generating a large amount of the desired product. However, toxicity due to the possible presence of toxic precursors is one of the main problems for such production. We consider here the problem of generating a large amount of product from a potentially toxic substrate. To address this, we propose a simple biosynthetic pathway, which can be induced in order to produce a large number of the product molecules, by keeping the substrate amount at low levels. Surprisingly, we show that the large product generation crucially depends on fast non-specific degradation of the substrate molecules. We derive an optimal induction strategy, which allows as much as three orders of magnitude increase in the product amount through biologically realistic parameter values. We point to a recently discovered bacterial immune system (CRISPR/Cas in E. coli) as a putative example of the pathway analysed here. We also argue that the scheme proposed here can be used not only as a stand-alone pathway, but also as a strategy to produce a large amount of the desired molecules with small perturbations of endogenous biosynthetic pathways.

  17. A simple biosynthetic pathway for large product generation from small substrate amounts

    Energy Technology Data Exchange (ETDEWEB)

    Djordjevic, Marko [Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade (Serbia); Djordjevic, Magdalena [Institute of Physics Belgrade, University of Belgrade (Serbia)

    2012-10-01

    A recently emerging discipline of synthetic biology has the aim of constructing new biosynthetic pathways with useful biological functions. A major application of these pathways is generating a large amount of the desired product. However, toxicity due to the possible presence of toxic precursors is one of the main problems for such production. We consider here the problem of generating a large amount of product from a potentially toxic substrate. To address this, we propose a simple biosynthetic pathway, which can be induced in order to produce a large number of the product molecules, by keeping the substrate amount at low levels. Surprisingly, we show that the large product generation crucially depends on fast non-specific degradation of the substrate molecules. We derive an optimal induction strategy, which allows as much as three orders of magnitude increase in the product amount through biologically realistic parameter values. We point to a recently discovered bacterial immune system (CRISPR/Cas in E. coli) as a putative example of the pathway analysed here. We also argue that the scheme proposed here can be used not only as a stand-alone pathway, but also as a strategy to produce a large amount of the desired molecules with small perturbations of endogenous biosynthetic pathways. (paper)

  18. A simple biosynthetic pathway for large product generation from small substrate amounts

    International Nuclear Information System (INIS)

    Djordjevic, Marko; Djordjevic, Magdalena

    2012-01-01

    A recently emerging discipline of synthetic biology has the aim of constructing new biosynthetic pathways with useful biological functions. A major application of these pathways is generating a large amount of the desired product. However, toxicity due to the possible presence of toxic precursors is one of the main problems for such production. We consider here the problem of generating a large amount of product from a potentially toxic substrate. To address this, we propose a simple biosynthetic pathway, which can be induced in order to produce a large number of the product molecules, by keeping the substrate amount at low levels. Surprisingly, we show that the large product generation crucially depends on fast non-specific degradation of the substrate molecules. We derive an optimal induction strategy, which allows as much as three orders of magnitude increase in the product amount through biologically realistic parameter values. We point to a recently discovered bacterial immune system (CRISPR/Cas in E. coli) as a putative example of the pathway analysed here. We also argue that the scheme proposed here can be used not only as a stand-alone pathway, but also as a strategy to produce a large amount of the desired molecules with small perturbations of endogenous biosynthetic pathways. (paper)

  19. Higher transcription levels in ascorbic acid biosynthetic and recycling genes were associated with higher ascorbic acid accumulation in blueberry.

    Science.gov (United States)

    Liu, Fenghong; Wang, Lei; Gu, Liang; Zhao, Wei; Su, Hongyan; Cheng, Xianhao

    2015-12-01

    In our preliminary study, the ripe fruits of two highbush blueberry (Vaccinium corymbosum L.) cultivars, cv 'Berkeley' and cv 'Bluecrop', were found to contain different levels of ascorbic acid. However, factors responsible for these differences are still unknown. In the present study, ascorbic acid content in fruits was compared with expression profiles of ascorbic acid biosynthetic and recycling genes between 'Bluecrop' and 'Berkeley' cultivars. The results indicated that the l-galactose pathway was the predominant route of ascorbic acid biosynthesis in blueberry fruits. Moreover, higher expression levels of the ascorbic acid biosynthetic genes GME, GGP, and GLDH, as well as the recycling genes MDHAR and DHAR, were associated with higher ascorbic acid content in 'Bluecrop' compared with 'Berkeley', which indicated that a higher efficiency ascorbic acid biosynthesis and regeneration was likely to be responsible for the higher ascorbic acid accumulation in 'Bluecrop'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters

    DEFF Research Database (Denmark)

    Weber, Tilmann; Blin, Kai; Duddela, Srikanth

    2015-01-01

    Microbial secondary metabolism constitutes a rich source of antibiotics, chemotherapeutics, insecticides and other high-value chemicals. Genome mining of gene clusters that encode the biosynthetic pathways for these metabolites has become a key methodology for novel compound discovery. In 2011, we...... introduced antiSMASH, a web server and stand-alone tool for the automatic genomic identification and analysis of biosynthetic gene clusters, available at http://antismash.secondarymetabolites.org. Here, we present version 3.0 of antiSMASH, which has undergone major improvements. A full integration...... of the recently published ClusterFinder algorithm now allows using this probabilistic algorithm to detect putative gene clusters of unknown types. Also, a new dereplication variant of the ClusterBlast module now identifies similarities of identified clusters to any of 1172 clusters with known end products...

  1. Distribution of δ-aminolevulinic acid biosynthetic pathways among phototrophic and related bacteria

    International Nuclear Information System (INIS)

    Avissar, Y.J.; Beale, S.I.; Ormerod, J.G.

    1989-01-01

    Two biosynthetic pathways are known for the universal tetrapyrrole precursor, δ-aminolevulinic acid (ALA): condensation of glycine and succinyl-CoA to form ALA with the loss of C-1 of glycine as CO 2 , and conversion of the intact carbon skeleton of glutamate to ALA in a process requiring tRNA Glu , ATP, Mg 2+ , NADPH, and pyridoxal phosphate. The distribution of the two ALA biosynthetic pathways among various bacterial genera was determined, using cell-free extracts obtained from representative organisms. Evidence for the operation of the glutamate pathway was obtained by the measurement of RNase-sensitive label incorporation from glutamate into ALA using 3,4-[ 3 H]glutamate and 1-[ 14 C]glutamate as substrate. The glycine pathway was indicated by RNase-insensitive incorporation of level from 2-[ 14 C]glycine into ALA. The distribution of the two pathways among the bacteria tested was in general agreement with their previously phylogenetic relationships and clearly indicates that the glutamate pathway is the more ancient process, whereas the glycine pathway probably evolved much later. The glutamate pathway is the more widely utilized one among bacteria, while the glycine pathway is apparently limited to the α subgroup of purple bacteria (including Rhodobacter, Rhodospirillum, and Rhizobium). E. coli was found ALA via the glutamate pathway. The ALA-requiring hemA mutant of E. coli was determined to lack the dehydrogenase activity that utilizes glutamyl-tRNA as a substrate

  2. Heterologous stable expression of terpenoid biosynthetic genes using the moss Physcomitrella patens

    DEFF Research Database (Denmark)

    Bach, Søren Spanner; King, Brian Christopher; Zhan, Xin

    2014-01-01

    Heterologous and stable expression of genes encoding terpenoid biosynthetic enzymes in planta is an important tool for functional characterization and is an attractive alternative to expression in microbial hosts for biotechnological production. Despite improvements to the procedure, such as stre...

  3. Assembly of a novel biosynthetic pathway for production of the plant flavonoid fisetin in Escherichia coli.

    Science.gov (United States)

    Stahlhut, Steen G; Siedler, Solvej; Malla, Sailesh; Harrison, Scott J; Maury, Jérôme; Neves, Ana Rute; Forster, Jochen

    2015-09-01

    Plant secondary metabolites are an underutilized pool of bioactive molecules for applications in the food, pharma and nutritional industries. One such molecule is fisetin, which is present in many fruits and vegetables and has several potential health benefits, including anti-cancer, anti-viral and anti-aging activity. Moreover, fisetin has recently been shown to prevent Alzheimer's disease in mice and to prevent complications associated with diabetes type I. Thus far the biosynthetic pathway of fisetin in plants remains elusive. Here, we present the heterologous assembly of a novel fisetin pathway in Escherichia coli. We propose a novel biosynthetic pathway from the amino acid, tyrosine, utilizing nine heterologous enzymes. The pathway proceeds via the synthesis of two flavanones never produced in microorganisms before--garbanzol and resokaempferol. We show for the first time a functional biosynthetic pathway and establish E. coli as a microbial platform strain for the production of fisetin and related flavonols. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  4. Estimating P-coverage of biosynthetic pathways in DNA libraries and screening by genetic selection: biotin biosynthesis in the marine microorganism Chromohalobacter.

    Science.gov (United States)

    Kim, Eun Jin; Angell, Scott; Janes, Jeff; Watanabe, Coran M H

    2008-06-01

    Traditional approaches to natural product discovery involve cell-based screening of natural product extracts followed by compound isolation and characterization. Their importance notwithstanding, continued mining leads to depletion of natural resources and the reisolation of previously identified metabolites. Metagenomic strategies aimed at localizing the biosynthetic cluster genes and expressing them in surrogate hosts offers one possible alternative. A fundamental question that naturally arises when pursuing such a strategy is, how large must the genomic library be to effectively represent the genome of an organism(s) and the biosynthetic gene clusters they harbor? Such an issue is certainly augmented in the absence of expensive robotics to expedite colony picking and/or screening of clones. We have developed an algorism, named BPC (biosynthetic pathway coverage), supported by molecular simulations to deduce the number of BAC clones required to achieve proper coverage of the genome and their respective biosynthetic pathways. The strategy has been applied to the construction of a large-insert BAC library from a marine microorganism, Hon6 (isolated from Honokohau, Maui) thought to represent a new species. The genomic library is constructed with a BAC yeast shuttle vector pClasper lacZ paving the way for the culturing of libraries in both prokaryotic and eukaryotic hosts. Flow cytometric methods are utilized to estimate the genome size of the organism and BPC implemented to assess P-coverage or percent coverage. A genetic selection strategy is illustrated, applications of which could expedite screening efforts in the identification and localization of biosynthetic pathways from marine microbial consortia, offering a powerful complement to genome sequencing and degenerate probe strategies. Implementing this approach, we report on the biotin biosynthetic pathway from the marine microorganism Hon6.

  5. Perturbations of carotenoid and tetrapyrrole biosynthetic pathways result in differential alterations in chloroplast function and plastid signaling

    International Nuclear Information System (INIS)

    Park, Joon-Heum; Jung, Sunyo

    2017-01-01

    In this study, we used the biosynthetic inhibitors of carotenoid and tetrapyrrole biosynthetic pathways, norflurazon (NF) and oxyfluorfen (OF), as tools to gain insight into mechanisms of photooxidation in rice plants. NF resulted in bleaching symptom on leaves of the treated plants, whereas OF treatment developed a fast symptom of an apparent necrotic phenotype. Both plants exhibited decreases in photosynthetic efficiency, as indicated by F v /F m . NF caused severe disruption in thylakoid membranes, whereas OF-treated plants exhibited disruption of chloroplast envelope and plasma membrane. Levels of Lhca and Lhcb proteins in photosystem I (PSI) and PSII were reduced by photooxidative stress in NF- and OF-treated plants, with a greater decrease in NF plants. The down-regulation of nuclear-encoded photosynthesis genes Lhcb and rbcS was also found in both NF- and OF-treated plants, whereas plastid-encoded photosynthetic genes including RbcL, PsaC, and PsbD accumulated normally in NF plants but decreased drastically in OF plants. This proposes that the plastids in NF plants retain their potential to develop thylakoid membranes and that photobleaching is mainly controlled by nuclear genes. Distinct photooxidation patterns between NF- and OF-treated plants developed differential signaling, which might enable the plant to coordinate the expression of photosynthetic genes from the nuclear and plastidic genomes. - Highlights: • Two modes of photooxidation by carotenoid and tetrapyrrole biosynthetic inhibitors. • We examine differential alterations in chloroplast function and plastid signaling. • NF and OF cause differential alterations in chloroplast ultrastructure and function. • Photooxidation coordinates photosynthetic gene expression from nucleus and plastid.

  6. Spliced X-box binding protein 1 couples the unfolded protein response to hexosamine biosynthetic pathway.

    Science.gov (United States)

    Wang, Zhao V; Deng, Yingfeng; Gao, Ningguo; Pedrozo, Zully; Li, Dan L; Morales, Cyndi R; Criollo, Alfredo; Luo, Xiang; Tan, Wei; Jiang, Nan; Lehrman, Mark A; Rothermel, Beverly A; Lee, Ann-Hwee; Lavandero, Sergio; Mammen, Pradeep P A; Ferdous, Anwarul; Gillette, Thomas G; Scherer, Philipp E; Hill, Joseph A

    2014-03-13

    The hexosamine biosynthetic pathway (HBP) generates uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) for glycan synthesis and O-linked GlcNAc (O-GlcNAc) protein modifications. Despite the established role of the HBP in metabolism and multiple diseases, regulation of the HBP remains largely undefined. Here, we show that spliced X-box binding protein 1 (Xbp1s), the most conserved signal transducer of the unfolded protein response (UPR), is a direct transcriptional activator of the HBP. We demonstrate that the UPR triggers HBP activation via Xbp1s-dependent transcription of genes coding for key, rate-limiting enzymes. We further establish that this previously unrecognized UPR-HBP axis is triggered in a variety of stress conditions. Finally, we demonstrate a physiologic role for the UPR-HBP axis by showing that acute stimulation of Xbp1s in heart by ischemia/reperfusion confers robust cardioprotection in part through induction of the HBP. Collectively, these studies reveal that Xbp1s couples the UPR to the HBP to protect cells under stress. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Perturbations of carotenoid and tetrapyrrole biosynthetic pathways result in differential alterations in chloroplast function and plastid signaling.

    Science.gov (United States)

    Park, Joon-Heum; Jung, Sunyo

    2017-01-22

    In this study, we used the biosynthetic inhibitors of carotenoid and tetrapyrrole biosynthetic pathways, norflurazon (NF) and oxyfluorfen (OF), as tools to gain insight into mechanisms of photooxidation in rice plants. NF resulted in bleaching symptom on leaves of the treated plants, whereas OF treatment developed a fast symptom of an apparent necrotic phenotype. Both plants exhibited decreases in photosynthetic efficiency, as indicated by F v /F m . NF caused severe disruption in thylakoid membranes, whereas OF-treated plants exhibited disruption of chloroplast envelope and plasma membrane. Levels of Lhca and Lhcb proteins in photosystem I (PSI) and PSII were reduced by photooxidative stress in NF- and OF-treated plants, with a greater decrease in NF plants. The down-regulation of nuclear-encoded photosynthesis genes Lhcb and rbcS was also found in both NF- and OF-treated plants, whereas plastid-encoded photosynthetic genes including RbcL, PsaC, and PsbD accumulated normally in NF plants but decreased drastically in OF plants. This proposes that the plastids in NF plants retain their potential to develop thylakoid membranes and that photobleaching is mainly controlled by nuclear genes. Distinct photooxidation patterns between NF- and OF-treated plants developed differential signaling, which might enable the plant to coordinate the expression of photosynthetic genes from the nuclear and plastidic genomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Enzyme organization in the proline biosynthetic pathway of Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Gamper, H; Moses, V

    1974-01-01

    The conversion of glutamic acid to proline by an Escherichia coli extract was studied. The activity was dependent upon the presence of ATP and NADPH and was largely unaffected by the presence of NH/sub 3/ or imidazole. The first two pathway enzymes appear to exist as a complex which stabilizes a labile intermediate postulated as ..gamma..-glutamyl phosphate. Attempted synthesis of this compound was unsuccessful due to its spontaneous cyclization to 2-pyrrolidone 5-carboxylate. Dissociation of the enzyme complex upon dilution of the extract is presumed responsible for an experimentally observed dilution effect. E. coli pro/sub A//sup -/ and pro/sub B//sup -/ auxotroph extracts failed to complement one another in the biosynthesis of proline. This is attributed to the lack of a dynamic equilibrium between the complex and its constituent enzymes. In vivo studies with E. coli showed no evidence for metabolic channeling in the final reaction of proline synthesis, the reduction of ..delta../sup 1/-pyrroline 5-carboxylate.

  9. Genetic determination of the meso-diaminopimelate biosynthetic pathway of mycobacteria.

    OpenAIRE

    Cirillo, J. D.; Weisbrod, T. R.; Banerjee, A.; Bloom, B. R.; Jacobs, W. R.

    1994-01-01

    The increasing incidence of multiple-drug-resistant mycobacterial infections indicates that the development of new methods for treatment of mycobacterial diseases should be a high priority. meso-Diaminopimelic acid (DAP), a key component of a highly immunogenic subunit of the mycobacterial peptidoglycan layer, has been implicated as a potential virulence factor. The mycobacterial DAP biosynthetic pathway could serve as a target for design of new antimycobacterial agents as well as the constru...

  10. Sequence diversity and differential expression of major phenylpropanoid-flavonoid biosynthetic genes among three mango varieties.

    Science.gov (United States)

    Hoang, Van L T; Innes, David J; Shaw, P Nicholas; Monteith, Gregory R; Gidley, Michael J; Dietzgen, Ralf G

    2015-07-30

    Mango fruits contain a broad spectrum of phenolic compounds which impart potential health benefits; their biosynthesis is catalysed by enzymes in the phenylpropanoid-flavonoid (PF) pathway. The aim of this study was to reveal the variability in genes involved in the PF pathway in three different mango varieties Mangifera indica L., a member of the family Anacardiaceae: Kensington Pride (KP), Irwin (IW) and Nam Doc Mai (NDM) and to determine associations with gene expression and mango flavonoid profiles. A close evolutionary relationship between mango genes and those from the woody species poplar of the Salicaceae family (Populus trichocarpa) and grape of the Vitaceae family (Vitis vinifera), was revealed through phylogenetic analysis of PF pathway genes. We discovered 145 SNPs in total within coding sequences with an average frequency of one SNP every 316 bp. Variety IW had the highest SNP frequency (one SNP every 258 bp) while KP and NDM had similar frequencies (one SNP every 369 bp and 360 bp, respectively). The position in the PF pathway appeared to influence the extent of genetic diversity of the encoded enzymes. The entry point enzymes phenylalanine lyase (PAL), cinnamate 4-mono-oxygenase (C4H) and chalcone synthase (CHS) had low levels of SNP diversity in their coding sequences, whereas anthocyanidin reductase (ANR) showed the highest SNP frequency followed by flavonoid 3'-hydroxylase (F3'H). Quantitative PCR revealed characteristic patterns of gene expression that differed between mango peel and flesh, and between varieties. The combination of mango expressed sequence tags and availability of well-established reference PF biosynthetic genes from other plant species allowed the identification of coding sequences of genes that may lead to the formation of important flavonoid compounds in mango fruits and facilitated characterisation of single nucleotide polymorphisms between varieties. We discovered an association between the extent of sequence variation and

  11. Transcriptome and metabolome analysis of Ferula gummosa Boiss. to reveal major biosynthetic pathways of galbanum compounds.

    Science.gov (United States)

    Sobhani Najafabadi, Ahmad; Naghavi, Mohammad Reza; Farahmand, Hamid; Abbasi, Alireza

    2017-11-01

    Ferula gummosa Boiss. is an industrial and pharmaceutical plant that has been highly recognized for its valuable oleo-gum-resin, namely galbanum. Despite the fabulous value of galbanum, very little information on the genetic and biochemical mechanisms of its production existed. In the present study, the oleo-gum-resin and four organs (root, flower, stem, and leaf) of F. gummosa were assessed in terms of metabolic compositions and the expression of genes involved in their biosynthetic pathways. Results showed that the most accumulation of resin and essential oils were occurred in the roots (13.99 mg/g) and flowers (6.01 mg/g), respectively. While the most dominant compound of the resin was β-amyrin from triterpenes, the most abundant compounds of the essential oils were α-pinene and β-pinene from monoterpenes and α-eudesmol and germacrene-D from sesquiterpenes. Transcriptome analysis was performed by RNA sequencing (RNA-seq) for the plant roots and flowers. Differential gene expression analysis showed that 1172 unigenes were differential between two organs that 934 (79.6%) of them were up-regulated in the flowers and 238 (20.4%) unigenes were up-regulated in the roots (FDR ≤0.001). The most important up-regulated unigenes in the roots were involved in the biosynthesis of the major components of galbanum, including myrcene, germacrene-D, α-terpineol, and β-amyrin. The results obtained by RNA-Seq were confirmed by qPCR. These analyses showed that different organs of F. gummosa are involved in the production of oleo-gum-resin, but the roots are more active than other organs in terms of the biosynthesis of triterpenes and some mono- and sesquiterpenes. This study provides rich molecular and biochemical resources for further studies on molecular genetics and functional genomics of oleo-gum-resin production in F. gummosa.

  12. Identification of an unusual type II thioesterase in the dithiolopyrrolone antibiotics biosynthetic pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Ying; Bai, Silei; Liu, Jingjing; Yang, Liyuan [National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Han, Li; Huang, Xueshi [Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819 (China); He, Jing, E-mail: hejingjj@mail.hzau.edu.cn [National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China)

    2016-04-22

    Dithiolopyrrolone group antibiotics characterized by an electronically unique dithiolopyrrolone heterobicyclic core are known for their antibacterial, antifungal, insecticidal and antitumor activities. Recently the biosynthetic gene clusters for two dithiolopyrrolone compounds, holomycin and thiomarinol, have been identified respectively in different bacterial species. Here, we report a novel dithiolopyrrolone biosynthetic gene cluster (aut) isolated from Streptomyces thioluteus DSM 40027 which produces two pyrrothine derivatives, aureothricin and thiolutin. By comparison with other characterized dithiolopyrrolone clusters, eight genes in the aut cluster were verified to be responsible for the assembly of dithiolopyrrolone core. The aut cluster was further confirmed by heterologous expression and in-frame gene deletion experiments. Intriguingly, we found that the heterogenetic thioesterase HlmK derived from the holomycin (hlm) gene cluster in Streptomyces clavuligerus significantly improved heterologous biosynthesis of dithiolopyrrolones in Streptomyces albus through coexpression with the aut cluster. In the previous studies, HlmK was considered invalid because it has a Ser to Gly point mutation within the canonical Ser-His-Asp catalytic triad of thioesterases. However, gene inactivation and complementation experiments in our study unequivocally demonstrated that HlmK is an active distinctive type II thioesterase that plays a beneficial role in dithiolopyrrolone biosynthesis. - Highlights: • Cloning of the aureothricin biosynthetic gene cluster from Streptomyces thioluteus DSM 40027. • Identification of the aureothricin gene cluster by heterologous expression and in-frame gene deletion. • The heterogenetic thioesterase HlmK significantly improved dithiolopyrrolones production of the aureothricin gene cluster. • Identification of HlmK as an unusual type II thioesterase.

  13. Identification of an unusual type II thioesterase in the dithiolopyrrolone antibiotics biosynthetic pathway

    International Nuclear Information System (INIS)

    Zhai, Ying; Bai, Silei; Liu, Jingjing; Yang, Liyuan; Han, Li; Huang, Xueshi; He, Jing

    2016-01-01

    Dithiolopyrrolone group antibiotics characterized by an electronically unique dithiolopyrrolone heterobicyclic core are known for their antibacterial, antifungal, insecticidal and antitumor activities. Recently the biosynthetic gene clusters for two dithiolopyrrolone compounds, holomycin and thiomarinol, have been identified respectively in different bacterial species. Here, we report a novel dithiolopyrrolone biosynthetic gene cluster (aut) isolated from Streptomyces thioluteus DSM 40027 which produces two pyrrothine derivatives, aureothricin and thiolutin. By comparison with other characterized dithiolopyrrolone clusters, eight genes in the aut cluster were verified to be responsible for the assembly of dithiolopyrrolone core. The aut cluster was further confirmed by heterologous expression and in-frame gene deletion experiments. Intriguingly, we found that the heterogenetic thioesterase HlmK derived from the holomycin (hlm) gene cluster in Streptomyces clavuligerus significantly improved heterologous biosynthesis of dithiolopyrrolones in Streptomyces albus through coexpression with the aut cluster. In the previous studies, HlmK was considered invalid because it has a Ser to Gly point mutation within the canonical Ser-His-Asp catalytic triad of thioesterases. However, gene inactivation and complementation experiments in our study unequivocally demonstrated that HlmK is an active distinctive type II thioesterase that plays a beneficial role in dithiolopyrrolone biosynthesis. - Highlights: • Cloning of the aureothricin biosynthetic gene cluster from Streptomyces thioluteus DSM 40027. • Identification of the aureothricin gene cluster by heterologous expression and in-frame gene deletion. • The heterogenetic thioesterase HlmK significantly improved dithiolopyrrolones production of the aureothricin gene cluster. • Identification of HlmK as an unusual type II thioesterase.

  14. antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters.

    Science.gov (United States)

    Weber, Tilmann; Blin, Kai; Duddela, Srikanth; Krug, Daniel; Kim, Hyun Uk; Bruccoleri, Robert; Lee, Sang Yup; Fischbach, Michael A; Müller, Rolf; Wohlleben, Wolfgang; Breitling, Rainer; Takano, Eriko; Medema, Marnix H

    2015-07-01

    Microbial secondary metabolism constitutes a rich source of antibiotics, chemotherapeutics, insecticides and other high-value chemicals. Genome mining of gene clusters that encode the biosynthetic pathways for these metabolites has become a key methodology for novel compound discovery. In 2011, we introduced antiSMASH, a web server and stand-alone tool for the automatic genomic identification and analysis of biosynthetic gene clusters, available at http://antismash.secondarymetabolites.org. Here, we present version 3.0 of antiSMASH, which has undergone major improvements. A full integration of the recently published ClusterFinder algorithm now allows using this probabilistic algorithm to detect putative gene clusters of unknown types. Also, a new dereplication variant of the ClusterBlast module now identifies similarities of identified clusters to any of 1172 clusters with known end products. At the enzyme level, active sites of key biosynthetic enzymes are now pinpointed through a curated pattern-matching procedure and Enzyme Commission numbers are assigned to functionally classify all enzyme-coding genes. Additionally, chemical structure prediction has been improved by incorporating polyketide reduction states. Finally, in order for users to be able to organize and analyze multiple antiSMASH outputs in a private setting, a new XML output module allows offline editing of antiSMASH annotations within the Geneious software. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Blockage of the pyrimidine biosynthetic pathway affects riboflavin production in Ashbya gossypii.

    Science.gov (United States)

    Silva, Rui; Aguiar, Tatiana Q; Domingues, Lucília

    2015-01-10

    The Ashbya gossypii riboflavin biosynthetic pathway and its connection with the purine pathway have been well studied. However, the outcome of genetic alterations in the pyrimidine pathway on riboflavin production by A. gossypii had not yet been assessed. Here, we report that the blockage of the de novo pyrimidine biosynthetic pathway in the recently generated A. gossypii Agura3 uridine/uracil auxotrophic strain led to improved riboflavin production on standard agar-solidified complex medium. When extra uridine/uracil was supplied, the production of riboflavin by this auxotroph was repressed. High concentrations of uracil hampered this (and the parent) strain growth, whereas excess uridine favored the A. gossypii Agura3 growth. Considering that the riboflavin and the pyrimidine pathways share the same precursors and that riboflavin overproduction may be triggered by nutritional stress, we suggest that overproduction of riboflavin by the A. gossypii Agura3 may occur as an outcome of a nutritional stress response and/or of an increased availability in precursors for riboflavin biosynthesis, due to their reduced consumption by the pyrimidine pathway. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. A R2R3-MYB transcription factor from Epimedium sagittatum regulates the flavonoid biosynthetic pathway.

    Directory of Open Access Journals (Sweden)

    Wenjun Huang

    Full Text Available Herba epimedii (Epimedium, a traditional Chinese medicine, has been widely used as a kidney tonic and antirheumatic medicine for thousands of years. The bioactive components in herba epimedii are mainly prenylated flavonol glycosides, end-products of the flavonoid pathway. Epimedium species are also used as garden plants due to the colorful flowers and leaves. Many R2R3-MYB transcription factors (TFs have been identified to regulate the flavonoid and anthocyanin biosynthetic pathways. However, little is known about the R2R3-MYB TFs involved in regulation of the flavonoid pathway in Epimedium. Here, we reported the isolation and functional characterization of the first R2R3-MYB TF (EsMYBA1 from Epimedium sagittatum (Sieb. Et Zucc. Maxim. Conserved domains and phylogenetic analysis showed that EsMYBA1 belonged to the subgroup 6 clade (anthocyanin-related MYB clade of R2R3-MYB family, which includes Arabidopsis AtPAP1, apple MdMYB10 and legume MtLAP1. EsMYBA1 was preferentially expressed in leaves, especially in red leaves that contain higher content of anthocyanin. Alternative splicing of EsMYBA1 resulted in three transcripts and two of them encoded a MYB-related protein. Yeast two-hybrid and transient luciferase expression assay showed that EsMYBA1 can interact with several bHLH regulators of the flavonoid pathway and activate the promoters of dihydroflavonol 4-reductase (DFR and anthocyanidin synthase (ANS. In both transgenic tobacco and Arabidopsis, overexpression of EsMYBA1 induced strong anthocyanin accumulation in reproductive and/or vegetative tissues via up-regulation of the main flavonoid-related genes. Furthermore, transient expression of EsMYBA1 in E. sagittatum leaves by Agrobacterium infiltration also induced anthocyanin accumulation in the wounded area. This first functional characterization of R2R3-MYB TFs in Epimedium species will promote further studies of the flavonoid biosynthesis and regulation in medicinal plants.

  17. A R2R3-MYB transcription factor from Epimedium sagittatum regulates the flavonoid biosynthetic pathway.

    Science.gov (United States)

    Huang, Wenjun; Sun, Wei; Lv, Haiyan; Luo, Ming; Zeng, Shaohua; Pattanaik, Sitakanta; Yuan, Ling; Wang, Ying

    2013-01-01

    Herba epimedii (Epimedium), a traditional Chinese medicine, has been widely used as a kidney tonic and antirheumatic medicine for thousands of years. The bioactive components in herba epimedii are mainly prenylated flavonol glycosides, end-products of the flavonoid pathway. Epimedium species are also used as garden plants due to the colorful flowers and leaves. Many R2R3-MYB transcription factors (TFs) have been identified to regulate the flavonoid and anthocyanin biosynthetic pathways. However, little is known about the R2R3-MYB TFs involved in regulation of the flavonoid pathway in Epimedium. Here, we reported the isolation and functional characterization of the first R2R3-MYB TF (EsMYBA1) from Epimedium sagittatum (Sieb. Et Zucc.) Maxim. Conserved domains and phylogenetic analysis showed that EsMYBA1 belonged to the subgroup 6 clade (anthocyanin-related MYB clade) of R2R3-MYB family, which includes Arabidopsis AtPAP1, apple MdMYB10 and legume MtLAP1. EsMYBA1 was preferentially expressed in leaves, especially in red leaves that contain higher content of anthocyanin. Alternative splicing of EsMYBA1 resulted in three transcripts and two of them encoded a MYB-related protein. Yeast two-hybrid and transient luciferase expression assay showed that EsMYBA1 can interact with several bHLH regulators of the flavonoid pathway and activate the promoters of dihydroflavonol 4-reductase (DFR) and anthocyanidin synthase (ANS). In both transgenic tobacco and Arabidopsis, overexpression of EsMYBA1 induced strong anthocyanin accumulation in reproductive and/or vegetative tissues via up-regulation of the main flavonoid-related genes. Furthermore, transient expression of EsMYBA1 in E. sagittatum leaves by Agrobacterium infiltration also induced anthocyanin accumulation in the wounded area. This first functional characterization of R2R3-MYB TFs in Epimedium species will promote further studies of the flavonoid biosynthesis and regulation in medicinal plants.

  18. Effect of terbinafine on the biosynthetic pathway of isoprenoid compounds in carrot suspension cultured cells.

    Science.gov (United States)

    Miras-Moreno, Begoña; Almagro, Lorena; Pedreño, María Angeles; Sabater-Jara, Ana Belén

    2018-04-21

    Terbinafine induced a significant increase of squalene production. Terbinafine increased the expression levels of squalene synthase. Cyclodextrins did not work as elicitors due to the gene expression levels obtained. Plant sterols are essential components of membrane lipids, which contributing to their fluidity and permeability. Besides their cholesterol-lowering properties, they also have anti-inflammatory, antidiabetic and anticancer activities. Squalene, which is phytosterol precursor, is widely used in medicine, foods and cosmetics due to its anti-tumor, antioxidant and anti-aging activities. Nowadays, vegetable oils constitute the main sources of phytosterols and squalene, but their isolation and purification involve complex extraction protocols and high costs. In this work, Daucus carota cell cultures were used to evaluate the effect of cyclodextrins and terbinafine on the production and accumulation of squalene and phytosterols as well as the expression levels of squalene synthase and cycloartenol synthase genes. D. carota cell cultures were able to produce high levels of extracellular being phytosterols in the presence of cyclodextrins (12 mg/L), these compounds able to increase both the secretion and accumulation of phytosterols in the culture medium. Moreover, terbinafine induced a significant increase in intracellular squalene production, as seen after 168 h of treatment (497.0 ± 23.5 µg g dry weight -1 ) while its extracellular production only increased in the presence of cyclodextrins.The analysis of sqs and cas gene expression revealed that cyclodextrins did not induce genes encoding enzymes involved in the phytosterol biosynthetic pathway since the expression levels of sqs and cas genes in cyclodextrin-treated cells were lower than in control cells. The results, therefore, suggest that cyclodextrins were only able to release phytosterols from the cells to the extracellular medium, thus contributing to their acumulation. To sum up, D. carota

  19. Unravelling Protein-Protein Interaction Networks Linked to Aliphatic and Indole Glucosinolate Biosynthetic Pathways in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Sebastian J. Nintemann

    2017-11-01

    Full Text Available Within the cell, biosynthetic pathways are embedded in protein-protein interaction networks. In Arabidopsis, the biosynthetic pathways of aliphatic and indole glucosinolate defense compounds are well-characterized. However, little is known about the spatial orchestration of these enzymes and their interplay with the cellular environment. To address these aspects, we applied two complementary, untargeted approaches—split-ubiquitin yeast 2-hybrid and co-immunoprecipitation screens—to identify proteins interacting with CYP83A1 and CYP83B1, two homologous enzymes specific for aliphatic and indole glucosinolate biosynthesis, respectively. Our analyses reveal distinct functional networks with substantial interconnection among the identified interactors for both pathway-specific markers, and add to our knowledge about how biochemical pathways are connected to cellular processes. Specifically, a group of protein interactors involved in cell death and the hypersensitive response provides a potential link between the glucosinolate defense compounds and defense against biotrophic pathogens, mediated by protein-protein interactions.

  20. Carotenoid Biosynthetic Pathways Are Regulated by a Network of Multiple Cascades of Alternative Sigma Factors in Azospirillum brasilense Sp7.

    Science.gov (United States)

    Rai, Ashutosh Kumar; Dubey, Ashutosh Prakash; Kumar, Santosh; Dutta, Debashis; Mishra, Mukti Nath; Singh, Bhupendra Narain; Tripathi, Anil Kumar

    2016-11-01

    Carotenoids constitute an important component of the defense system against photooxidative stress in bacteria. In Azospirillum brasilense Sp7, a nonphotosynthetic rhizobacterium, carotenoid synthesis is controlled by a pair of extracytoplasmic function sigma factors (RpoEs) and their cognate zinc-binding anti-sigma factors (ChrRs). Its genome harbors two copies of the gene encoding geranylgeranyl pyrophosphate synthase (CrtE), the first critical step in the carotenoid biosynthetic pathway in bacteria. Inactivation of each of two crtE paralogs found in A. brasilense caused reduction in carotenoid content, suggesting their involvement in carotenoid synthesis. However, the effect of crtE1 deletion was more pronounced than that of crtE2 deletion. Out of the five paralogs of rpoH in A. brasilense, overexpression of rpoH1 and rpoH2 enhanced carotenoid synthesis. Promoters of crtE2 and rpoH2 were found to be dependent on RpoH2 and RpoE1, respectively. Using a two-plasmid system in Escherichia coli, we have shown that the crtE2 gene of A. brasilense Sp7 is regulated by two cascades of sigma factors: one consisting of RpoE1and RpoH2 and the other consisting of RpoE2 and RpoH1. In addition, expression of crtE1 was upregulated indirectly by RpoE1 and RpoE2. This study shows, for the first time in any carotenoid-producing bacterium, that the regulation of carotenoid biosynthetic pathway involves a network of multiple cascades of alternative sigma factors. Carotenoids play a very important role in coping with photooxidative stress in prokaryotes and eukaryotes. Although extracytoplasmic function (ECF) sigma factors are known to directly regulate the expression of carotenoid biosynthetic genes in bacteria, regulation of carotenoid biosynthesis by one or multiple cascades of sigma factors had not been reported. This study provides the first evidence of the involvement of multiple cascades of sigma factors in the regulation of carotenoid synthesis in any bacterium by showing the

  1. The immediate nucleotide precursor, guanosine triphosphate, in the riboflavin biosynthetic pathway

    International Nuclear Information System (INIS)

    Mitsuda, Hisateru; Nakajima, Kenji; Nadamoto, Tomonori

    1977-01-01

    In the present paper, the nucleotide precursor of riboflavin was investigated by experiments with labeled purines using non-growing cells of Eremothecium ashbyii. The added purines, at 10 -4 M, were effectively incorporated into riboflavin at an early stage of riboflavin biosynthesis under the experimental conditions. In particular, both labeled xanthine and labeled guanine were specifically transported to guanosine nucleotides, GMP, GDP, GDP-Mannose and GTP, in the course of the riboflavin biosynthesis. A comparison of specific activities of labeled guanosine nucleotides and labeled riboflavin indicated that the nucleotide precursor of riboflavin is guanosine triphosphate. From the results obtained, a biosynthetic pathway of riboflavin is proposed. (auth.)

  2. Deciphering the sugar biosynthetic pathway and tailoring steps of nucleoside antibiotic A201A unveils a GDP-l-galactose mutase.

    Science.gov (United States)

    Zhu, Qinghua; Chen, Qi; Song, Yongxiang; Huang, Hongbo; Li, Jun; Ma, Junying; Li, Qinglian; Ju, Jianhua

    2017-05-09

    Galactose, a monosaccharide capable of assuming two possible configurational isomers (d-/l-), can exist as a six-membered ring, galactopyranose (Gal p ), or as a five-membered ring, galactofuranose (Gal f ). UDP-galactopyranose mutase (UGM) mediates the conversion of pyranose to furanose thereby providing a precursor for d-Gal f Moreover, UGM is critical to the virulence of numerous eukaryotic and prokaryotic human pathogens and thus represents an excellent antimicrobial drug target. However, the biosynthetic mechanism and relevant enzymes that drive l-Gal f production have not yet been characterized. Herein we report that efforts to decipher the sugar biosynthetic pathway and tailoring steps en route to nucleoside antibiotic A201A led to the discovery of a GDP-l-galactose mutase, MtdL. Systematic inactivation of 18 of the 33 biosynthetic genes in the A201A cluster and elucidation of 10 congeners, coupled with feeding and in vitro biochemical experiments, enabled us to: ( i ) decipher the unique enzyme, GDP-l-galactose mutase associated with production of two unique d-mannose-derived sugars, and ( ii ) assign two glycosyltransferases, four methyltransferases, and one desaturase that regiospecifically tailor the A201A scaffold and display relaxed substrate specificities. Taken together, these data provide important insight into the origin of l-Gal f -containing natural product biosynthetic pathways with likely ramifications in other organisms and possible antimicrobial drug targeting strategies.

  3. Homologous gene targeting of a carotenoids biosynthetic gene in Rhodosporidium toruloides by Agrobacterium-mediated transformation.

    Science.gov (United States)

    Sun, Wenyi; Yang, Xiaobing; Wang, Xueying; Lin, Xinping; Wang, Yanan; Zhang, Sufang; Luan, Yushi; Zhao, Zongbao K

    2017-07-01

    To target a carotenoid biosynthetic gene in the oleaginous yeast Rhodosporidium toruloides by using the Agrobacterium-mediated transformation (AMT) method. The RHTO_04602 locus of R. toruloides NP11, previously assigned to code the carotenoid biosynthetic gene CRTI, was amplified from genomic DNA and cloned into the binary plasmid pZPK-mcs, resulting in pZPK-CRT. A HYG-expression cassette was inserted into the CRTI sequence of pZPK-CRT by utilizing the restriction-free clone strategy. The resulted plasmid was used to transform R. toruloides cells according to the AMT method, leading to a few white transformants. Sequencing analysis of those transformants confirmed homologous recombination and insertional inactivation of CRTI. When the white variants were transformed with a CRTI-expression cassette, cells became red and produced carotenoids as did the wild-type strain NP11. Successful homologous targeting of the CrtI locus confirmed the function of RHTO_04602 in carotenoids biosynthesis in R. toruloides. It provided valuable information for metabolic engineering of this non-model yeast species.

  4. Accumulation of Kaempferitrin and Expression of Phenyl-Propanoid Biosynthetic Genes in Kenaf (Hibiscus cannabinus

    Directory of Open Access Journals (Sweden)

    Shicheng Zhao

    2014-10-01

    Full Text Available Kenaf (Hibiscus cannabinus is cultivated worldwide for its fiber; however, the medicinal properties of this plant are currently attracting increasing attention. In this study, we investigated the expression levels of genes involved in the biosynthesis of kaempferitrin, a compound with many biological functions, in different kenaf organs. We found that phenylalanine ammonia lyase (HcPAL was more highly expressed in stems than in other organs. Expression levels of cinnamate 4-hydroxylase (HcC4H and 4-coumarate-CoA ligase (Hc4CL were highest in mature leaves, followed by stems and young leaves, and lowest in roots and mature flowers. The expression of chalcone synthase (HcCHS, chalcone isomerase (HcCHI, and flavone 3-hydroxylase (HcF3H was highest in young flowers, whereas that of flavone synthase (HcFLS was highest in leaves. An analysis of kaempferitrin accumulation in the different organs of kenaf revealed that the accumulation of this compound was considerably higher (>10-fold in leaves than in other organs. On the basis of a comparison of kaempferitrin contents with the expression levels of different genes in different organs, we speculate that HcFLS plays an important regulatory role in the kaempferitrin biosynthetic pathway in kenaf.

  5. Accumulation of kaempferitrin and expression of phenyl-propanoid biosynthetic genes in kenaf (Hibiscus cannabinus).

    Science.gov (United States)

    Zhao, Shicheng; Li, Xiaohua; Cho, Dong Ha; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Park, Sang Un

    2014-10-23

    Kenaf (Hibiscus cannabinus) is cultivated worldwide for its fiber; however, the medicinal properties of this plant are currently attracting increasing attention. In this study, we investigated the expression levels of genes involved in the biosynthesis of kaempferitrin, a compound with many biological functions, in different kenaf organs. We found that phenylalanine ammonia lyase (HcPAL) was more highly expressed in stems than in other organs. Expression levels of cinnamate 4-hydroxylase (HcC4H) and 4-coumarate-CoA ligase (Hc4CL) were highest in mature leaves, followed by stems and young leaves, and lowest in roots and mature flowers. The expression of chalcone synthase (HcCHS), chalcone isomerase (HcCHI), and flavone 3-hydroxylase (HcF3H) was highest in young flowers, whereas that of flavone synthase (HcFLS) was highest in leaves. An analysis of kaempferitrin accumulation in the different organs of kenaf revealed that the accumulation of this compound was considerably higher (>10-fold) in leaves than in other organs. On the basis of a comparison of kaempferitrin contents with the expression levels of different genes in different organs, we speculate that HcFLS plays an important regulatory role in the kaempferitrin biosynthetic pathway in kenaf.

  6. Diurnal and circadian expression profiles of glycerolipid biosynthetic genes in Arabidopsis.

    Science.gov (United States)

    Nakamura, Yuki; Andrés, Fernando; Kanehara, Kazue; Liu, Yu-chi; Coupland, George; Dörmann, Peter

    2014-01-01

    Glycerolipid composition in plant membranes oscillates in response to diurnal change. However, its functional significance remained unclear. A recent discovery that Arabidopsis florigen FT binds diurnally oscillating phosphatidylcholine molecules to promote flowering suggests that diurnal oscillation of glycerolipid composition is an important input in flowering time control. Taking advantage of public microarray data, we globally analyzed the expression pattern of glycerolipid biosynthetic genes in Arabidopsis under long-day, short-day, and continuous light conditions. The results revealed that 12 genes associated with glycerolipid metabolism showed significant oscillatory profiles. Interestingly, expression of most of these genes followed circadian profiles, suggesting that glycerolipid biosynthesis is partially under clock regulation. The oscillating expression profile of one representative gene, PECT1, was analyzed in detail. Expression of PECT1 showed a circadian pattern highly correlated with that of the clock-regulated gene GIGANTEA. Thus, our study suggests that a considerable number of glycerolipid biosynthetic genes are under circadian control.

  7. Draft genome sequence of Streptomyces coelicoflavus ZG0656 reveals the putative biosynthetic gene cluster of acarviostatin family α-amylase inhibitors.

    Science.gov (United States)

    Guo, X; Geng, P; Bai, F; Bai, G; Sun, T; Li, X; Shi, L; Zhong, Q

    2012-08-01

    The aims of this study are to obtain the draft genome sequence of Streptomyces coelicoflavus ZG0656, which produces novel acarviostatin family α-amylase inhibitors, and then to reveal the putative acarviostatin-related gene cluster and the biosynthetic pathway. The draft genome sequence of S. coelicoflavus ZG0656 was generated using a shotgun approach employing a combination of 454 and Solexa sequencing technologies. Genome analysis revealed a putative gene cluster for acarviostatin biosynthesis, termed sct-cluster. The cluster contains 13 acarviostatin synthetic genes, six transporter genes, four starch degrading or transglycosylation enzyme genes and two regulator genes. On the basis of bioinformatic analysis, we proposed a putative biosynthetic pathway of acarviostatins. The intracellular steps produce a structural core, acarviostatin I00-7-P, and the extracellular assemblies lead to diverse acarviostatin end products. The draft genome sequence of S. coelicoflavus ZG0656 revealed the putative biosynthetic gene cluster of acarviostatins and a putative pathway of acarviostatin production. To our knowledge, S. coelicoflavus ZG0656 is the first strain in this species for which a genome sequence has been reported. The analysis of sct-cluster provided important insights into the biosynthesis of acarviostatins. This work will be a platform for producing novel variants and yield improvement. © 2012 The Authors. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.

  8. Mutational studies of putative biosynthetic genes for the cyanobacterial sunscreen scytonemin in Nostoc punctiforme ATCC 29133

    Directory of Open Access Journals (Sweden)

    Daniela eFerreira

    2016-05-01

    Full Text Available The heterocyclic indole-alkaloid scytonemin is a sunscreen found exclusively among cyanobacteria. An 18-gene cluster is responsible for scytonemin production in Nostoc punctiforme ATCC 29133. The upstream genes scyABCDEF in the cluster are proposed to be responsible for scytonemin biosynthesis from aromatic amino acid substrates. In vitro studies of ScyA, ScyB and ScyC proved that these enzymes indeed catalyze initial pathway reactions. Here we characterize the role of ScyD, ScyE and ScyF, which were logically predicted to be responsible for late biosynthetic steps, in the biological context of N. punctiforme. In-frame deletion mutants of each were constructed (∆scyD, ∆scyE and ∆scyF and their phenotypes studied. Expectedly, ∆scyE presents a scytoneminless phenotype, but no accumulation of the predicted intermediaries. Surprisingly, ∆scyD retains scytonemin production, implying that it is not required for biosynthesis. Indeed, scyD presents an interesting evolutionary paradox: it likely originated in a duplication event from scyE, and unlike other genes in the operon, it has not been subjected to purifying selection. This would suggest that it is a pseudogene, and yet scyD is highly conserved in the scytonemin operon of cyanobacteria. ∆scyF also retains scytonemin production, albeit exhibiting a reduction of the production yield compared with the wild-type. This indicates that ScyF is not essential but may play an adjuvant role for scytonemin synthesis. Altogether, our findings suggest that these downstream genes are not responsible, as expected, for the late steps of scytonemin synthesis and we must look for those functions elsewhere. These findings are particularly important for biotechnological production of this sunscreen through heterologous expression of its genes in more tractable organisms.

  9. Sequencing, physical organization and kinetic expression of the patulin biosynthetic gene cluster from Penicillium expansum

    International Nuclear Information System (INIS)

    Tannous, J.; El Khoury, R.; El Khoury, A.; Lteif, R.; Snini, S.; Lippi, Y.; Oswald, I.; Olivier, P.; Atoui, A.

    2014-01-01

    Patulin is a polyketide-derived mycotoxin produced by numerous filamentous fungi. Among them, Penicillium expansum is by far the most problematic species. This fungus is a destructive phytopathogen capable of growing on fruit, provoking the blue mold decay of apples and producing significant amounts of patulin. The biosynthetic pathway of this mycotoxin is chemically well-characterized, but its genetic bases remain largely unknown with only few characterized genes in less economic relevant species. The present study consisted of the identification and positional organization of the patulin gene cluster in P. expansum strain NRRL 35695. Several amplification reactions were performed with degenerative primers that were designed based on sequences from the orthologous genes available in other species. An improved genome Walking approach was used in order to sequence the remaining adjacent genes of the cluster. RACE-PCR was also carried out from mRNAs to determine the start and stop codons of the coding sequences. The patulin gene cluster in P. expansum consists of 15 genes in the following order: patH, patG, patF, patE, patD, patC, patB, patA, patM, patN, patO, patL, patI, patJ, and patK. These genes share 60–70% of identity with orthologous genes grouped differently, within a putative patulin cluster described in a non-producing strain of Aspergillus clavatus. The kinetics of patulin cluster genes expression was studied under patulin-permissive conditions (natural apple-based medium) and patulin-restrictive conditions (Eagle's minimal essential medium), and demonstrated a significant association between gene expression and patulin production. In conclusion, the sequence of the patulin cluster in P. expansum constitutes a key step for a better understanding of themechanisms leading to patulin production in this fungus. It will allow the role of each gene to be elucidated, and help to define strategies to reduce patulin production in apple-based products

  10. Characterization of the fumonisin B2 biosynthetic gene cluster in Aspergillus niger and A. awamori.

    Science.gov (United States)

    Aspergillus niger and A. awamori strains isolated from grapes cultivated in Mediterranean basin were examined for fumonisin B2 (FB2) production and presence/absence of sequences within the fumonisin biosynthetic gene (fum) cluster. Presence of 13 regions in the fum cluster was evaluated by PCR assay...

  11. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters

    NARCIS (Netherlands)

    Cimermancic, P.; Medema, Marnix; Claesen, J.; Kurika, K.; Wieland Brown, L.C.; Mavrommatis, K.; Pati, A.; Godfrey, P.A.; Koehrsen, M.; Clardy, J.; Birren, B. W.; Takano, Eriko; Sali, A.; Linington, R.G.; Fischbach, M.A.

    2014-01-01

    Although biosynthetic gene clusters (BGCs) have been discovered for hundreds of bacterial metabolites, our knowledge of their diversity remains limited. Here, we used a novel algorithm to systematically identify BGCs in the extensive extant microbial sequencing data. Network analysis of the

  12. New insights into the organization and regulation of trichothecene biosynthetic genes in Trichoderma

    Science.gov (United States)

    Collectively, species of the genus Trichoderma can produce numerous structurally diverse secondary metabolites (SM). This ability is conferred by the presence of SM biosynthetic gene clusters in their genomes. Species of Trichoderma in the Brevicompactum clade are able to produce trichothecenes, a f...

  13. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings.

    Science.gov (United States)

    Gonzalez, Antonio; Zhao, Mingzhe; Leavitt, John M; Lloyd, Alan M

    2008-03-01

    In all higher plants studied to date, the anthocyanin pigment pathway is regulated by a suite of transcription factors that include Myb, bHLH and WD-repeat proteins. However, in Arabidopsis thaliana, the Myb regulators remain to be conclusively identified, and little is known about anthocyanin pathway regulation by TTG1-dependent transcriptional complexes. Previous overexpression of the PAP1 Myb suggested that genes from the entire phenylpropanoid pathway are targets of regulation by Myb/bHLH/WD-repeat complexes in Arabidopsis, in contrast to other plants. Here we demonstrate that overexpression of Myb113 or Myb114 results in substantial increases in pigment production similar to those previously seen as a result of over-expression of PAP1, and pigment production in these overexpressors remains TTG1- and bHLH-dependent. Also, plants harboring an RNAi construct targeting PAP1 and three Myb candidates (PAP2, Myb113 and Myb114) showed downregulated Myb gene expression and obvious anthocyanin deficiencies. Correlated with these anthocyanin deficiencies is downregulation of the same late anthocyanin structural genes that are downregulated in ttg1 and bHLH anthocyanin mutants. Expression studies using GL3:GR and TTG1:GR fusions revealed direct regulation of the late biosynthetic genes only. Functional diversification between GL3 and EGL3 with regard to activation of gene targets was revealed by GL3:GR studies in single and double bHLH mutant seedlings. Expression profiles for Myb and bHLH regulators are also presented in the context of pigment production in young seedlings.

  14. A gene expression analysis of cell wall biosynthetic genes in Malus × domestica infected by ‘Candidatus Phytoplasma mali’

    Science.gov (United States)

    Guerriero, Gea; Giorno, Filomena; Ciccotti, Anna Maria; Schmidt, Silvia; Baric, Sanja

    2016-01-01

    Apple proliferation (AP) represents a serious threat to several fruit-growing areas and is responsible for great economic losses. Several studies have highlighted the key role played by the cell wall in response to pathogen attack. The existence of a cell wall integrity signaling pathway which senses perturbations in the cell wall architecture upon abiotic/biotic stresses and activates specific defence responses has been widely demonstrated in plants. More recently a role played by cell wall-related genes has also been reported in plants infected by phytoplasmas. With the aim of shedding light on the cell wall response to AP disease in the economically relevant fruit-tree Malus × domestica Borkh., we investigated the expression of the cellulose (CesA) and callose synthase (CalS) genes in different organs (i.e., leaves, roots and branch phloem) of healthy and infected symptomatic outdoor-grown trees, sampled over the course of two time points (i.e., spring and autumn 2011), as well as in in vitro micropropagated control and infected plantlets. A strong up-regulation in the expression of cell wall biosynthetic genes was recorded in roots from infected trees. Secondary cell wall CesAs showed up-regulation in the phloem tissue from branches of infected plants, while either a down-regulation of some genes or no major changes were observed in the leaves. Micropropagated plantlets also showed an increase in cell wall-related genes and constitute a useful system for a general assessment of gene expression analysis upon phytoplasma infection. Finally, we also report the presence of several ‘knot’-like structures along the roots of infected apple trees and discuss the occurrence of this interesting phenotype in relation to the gene expression results and the modalities of phytoplasma diffusion. PMID:23086810

  15. Biosynthetic pathway for γ-cyclic sarcinaxanthin in Micrococcus luteus: heterologous expression and evidence for diverse and multiple catalytic functions of C(50) carotenoid cyclases.

    Science.gov (United States)

    Netzer, Roman; Stafsnes, Marit H; Andreassen, Trygve; Goksøyr, Audun; Bruheim, Per; Brautaset, Trygve

    2010-11-01

    We report the cloning and characterization of the biosynthetic gene cluster (crtE, crtB, crtI, crtE2, crtYg, crtYh, and crtX) of the γ-cyclic C(50) carotenoid sarcinaxanthin in Micrococcus luteus NCTC2665. Expression of the complete and partial gene cluster in Escherichia coli hosts revealed that sarcinaxanthin biosynthesis from the precursor molecule farnesyl pyrophosphate (FPP) proceeds via C(40) lycopene, C(45) nonaflavuxanthin, C(50) flavuxanthin, and C(50) sarcinaxanthin. Glucosylation of sarcinaxanthin was accomplished by the crtX gene product. This is the first report describing the biosynthetic pathway of a γ-cyclic C(50) carotenoid. Expression of the corresponding genes from the marine M. luteus isolate Otnes7 in a lycopene-producing E. coli host resulted in the production of up to 2.5 mg/g cell dry weight sarcinaxanthin in shake flasks. In an attempt to experimentally understand the specific difference between the biosynthetic pathways of sarcinaxanthin and the structurally related ε-cyclic decaprenoxanthin, we constructed a hybrid gene cluster with the γ-cyclic C(50) carotenoid cyclase genes crtYg and crtYh from M. luteus replaced with the analogous ε-cyclic C(50) carotenoid cyclase genes crtYe and crtYf from the natural decaprenoxanthin producer Corynebacterium glutamicum. Surprisingly, expression of this hybrid gene cluster in an E. coli host resulted in accumulation of not only decaprenoxanthin, but also sarcinaxanthin and the asymmetric ε- and γ-cyclic C(50) carotenoid sarprenoxanthin, described for the first time in this work. Together, these data contributed to new insight into the diverse and multiple functions of bacterial C(50) carotenoid cyclases as key catalysts for the synthesis of structurally different carotenoids.

  16. Genome mining of the sordarin biosynthetic gene cluster from Sordaria araneosa Cain ATCC 36386: characterization of cycloaraneosene synthase and GDP-6-deoxyaltrose transferase.

    Science.gov (United States)

    Kudo, Fumitaka; Matsuura, Yasunori; Hayashi, Takaaki; Fukushima, Masayuki; Eguchi, Tadashi

    2016-07-01

    Sordarin is a glycoside antibiotic with a unique tetracyclic diterpene aglycone structure called sordaricin. To understand its intriguing biosynthetic pathway that may include a Diels-Alder-type [4+2]cycloaddition, genome mining of the gene cluster from the draft genome sequence of the producer strain, Sordaria araneosa Cain ATCC 36386, was carried out. A contiguous 67 kb gene cluster consisting of 20 open reading frames encoding a putative diterpene cyclase, a glycosyltransferase, a type I polyketide synthase, and six cytochrome P450 monooxygenases were identified. In vitro enzymatic analysis of the putative diterpene cyclase SdnA showed that it catalyzes the transformation of geranylgeranyl diphosphate to cycloaraneosene, a known biosynthetic intermediate of sordarin. Furthermore, a putative glycosyltransferase SdnJ was found to catalyze the glycosylation of sordaricin in the presence of GDP-6-deoxy-d-altrose to give 4'-O-demethylsordarin. These results suggest that the identified sdn gene cluster is responsible for the biosynthesis of sordarin. Based on the isolated potential biosynthetic intermediates and bioinformatics analysis, a plausible biosynthetic pathway for sordarin is proposed.

  17. Examination of triacylglycerol biosynthetic pathways via de novo transcriptomic and proteomic analyses in an unsequenced microalga.

    Directory of Open Access Journals (Sweden)

    Michael T Guarnieri

    Full Text Available Biofuels derived from algal lipids represent an opportunity to dramatically impact the global energy demand for transportation fuels. Systems biology analyses of oleaginous algae could greatly accelerate the commercialization of algal-derived biofuels by elucidating the key components involved in lipid productivity and leading to the initiation of hypothesis-driven strain-improvement strategies. However, higher-level systems biology analyses, such as transcriptomics and proteomics, are highly dependent upon available genomic sequence data, and the lack of these data has hindered the pursuit of such analyses for many oleaginous microalgae. In order to examine the triacylglycerol biosynthetic pathway in the unsequenced oleaginous microalga, Chlorella vulgaris, we have established a strategy with which to bypass the necessity for genomic sequence information by using the transcriptome as a guide. Our results indicate an upregulation of both fatty acid and triacylglycerol biosynthetic machinery under oil-accumulating conditions, and demonstrate the utility of a de novo assembled transcriptome as a search model for proteomic analysis of an unsequenced microalga.

  18. Modulation of guanosine nucleotides biosynthetic pathways enhanced GDP-L-fucose production in recombinant Escherichia coli.

    Science.gov (United States)

    Lee, Won-Heong; Shin, So-Yeon; Kim, Myoung-Dong; Han, Nam Soo; Seo, Jin-Ho

    2012-03-01

    Guanosine 5'-triphosphate (GTP) is the key substrate for biosynthesis of guanosine 5'-diphosphate (GDP)-L-fucose. In this study, improvement of GDP-L-fucose production was attempted by manipulating the biosynthetic pathway for guanosine nucleotides in recombinant Escherichia coli-producing GDP-L-fucose. The effects of overexpression of inosine 5'-monophosphate (IMP) dehydrogenase, guanosine 5'-monophosphate (GMP) synthetase (GuaB and GuaA), GMP reductase (GuaC) and guanosine-inosine kinase (Gsk) on GDP-L-fucose production were investigated in a series of fed-batch fermentations. Among the enzymes tested, overexpression of Gsk led to a significant improvement of GDP-L-fucose production. Maximum GDP-L-fucose concentration of 305.5 ± 5.3 mg l(-1) was obtained in the pH-stat fed-batch fermentation of recombinant E. coli-overexpressing Gsk, which corresponds to a 58% enhancement in the GDP-L-fucose production compared with the control strain overexpressing GDP-L-fucose biosynthetic enzymes. Such an enhancement of GDP-L-fucose production could be due to the increase in the intracellular level of GMP.

  19. Identification and analysis of the paulomycin biosynthetic gene cluster and titer improvement of the paulomycins in Streptomyces paulus NRRL 8115.

    Directory of Open Access Journals (Sweden)

    Jine Li

    Full Text Available The paulomycins are a group of glycosylated compounds featuring a unique paulic acid moiety. To locate their biosynthetic gene clusters, the genomes of two paulomycin producers, Streptomyces paulus NRRL 8115 and Streptomyces sp. YN86, were sequenced. The paulomycin biosynthetic gene clusters were defined by comparative analyses of the two genomes together with the genome of the third paulomycin producer Streptomyces albus J1074. Subsequently, the identity of the paulomycin biosynthetic gene cluster was confirmed by inactivation of two genes involved in biosynthesis of the paulomycose branched chain (pau11 and the ring A moiety (pau18 in Streptomyces paulus NRRL 8115. After determining the gene cluster boundaries, a convergent biosynthetic model was proposed for paulomycin based on the deduced functions of the pau genes. Finally, a paulomycin high-producing strain was constructed by expressing an activator-encoding gene (pau13 in S. paulus, setting the stage for future investigations.

  20. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae.

    Science.gov (United States)

    Lin-Wang, Kui; Bolitho, Karen; Grafton, Karryn; Kortstee, Anne; Karunairetnam, Sakuntala; McGhie, Tony K; Espley, Richard V; Hellens, Roger P; Allan, Andrew C

    2010-03-21

    The control of plant anthocyanin accumulation is via transcriptional regulation of the genes encoding the biosynthetic enzymes. A key activator appears to be an R2R3 MYB transcription factor. In apple fruit, skin anthocyanin levels are controlled by a gene called MYBA or MYB1, while the gene determining fruit flesh and foliage anthocyanin has been termed MYB10. In order to further understand tissue-specific anthocyanin regulation we have isolated orthologous MYB genes from all the commercially important rosaceous species. We use gene specific primers to show that the three MYB activators of apple anthocyanin (MYB10/MYB1/MYBA) are likely alleles of each other. MYB transcription factors, with high sequence identity to the apple gene were isolated from across the rosaceous family (e.g. apples, pears, plums, cherries, peaches, raspberries, rose, strawberry). Key identifying amino acid residues were found in both the DNA-binding and C-terminal domains of these MYBs. The expression of these MYB10 genes correlates with fruit and flower anthocyanin levels. Their function was tested in tobacco and strawberry. In tobacco, these MYBs were shown to induce the anthocyanin pathway when co-expressed with bHLHs, while over-expression of strawberry and apple genes in the crop of origin elevates anthocyanins. This family-wide study of rosaceous R2R3 MYBs provides insight into the evolution of this plant trait. It has implications for the development of new coloured fruit and flowers, as well as aiding the understanding of temporal-spatial colour change.

  1. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae

    Directory of Open Access Journals (Sweden)

    McGhie Tony K

    2010-03-01

    Full Text Available Abstract Background The control of plant anthocyanin accumulation is via transcriptional regulation of the genes encoding the biosynthetic enzymes. A key activator appears to be an R2R3 MYB transcription factor. In apple fruit, skin anthocyanin levels are controlled by a gene called MYBA or MYB1, while the gene determining fruit flesh and foliage anthocyanin has been termed MYB10. In order to further understand tissue-specific anthocyanin regulation we have isolated orthologous MYB genes from all the commercially important rosaceous species. Results We use gene specific primers to show that the three MYB activators of apple anthocyanin (MYB10/MYB1/MYBA are likely alleles of each other. MYB transcription factors, with high sequence identity to the apple gene were isolated from across the rosaceous family (e.g. apples, pears, plums, cherries, peaches, raspberries, rose, strawberry. Key identifying amino acid residues were found in both the DNA-binding and C-terminal domains of these MYBs. The expression of these MYB10 genes correlates with fruit and flower anthocyanin levels. Their function was tested in tobacco and strawberry. In tobacco, these MYBs were shown to induce the anthocyanin pathway when co-expressed with bHLHs, while over-expression of strawberry and apple genes in the crop of origin elevates anthocyanins. Conclusions This family-wide study of rosaceous R2R3 MYBs provides insight into the evolution of this plant trait. It has implications for the development of new coloured fruit and flowers, as well as aiding the understanding of temporal-spatial colour change.

  2. Expression profile of genes coding for carotenoid biosynthetic ...

    Indian Academy of Sciences (India)

    3Department of Biotechnology, School of Life Sciences, Assam University, Silchar 788 011, India. 4Reliance Industries ... mellitus, and helps to maintain prostate health (Stacewicz- ... mental stages to establish gene-to-metabolite links in high.

  3. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae (on linr)

    NARCIS (Netherlands)

    Wang, Kui-Lin; Bolitho, Karen; Grafton, Karryn; Kortstee, A.J.; Karunairetnam, Sakuntala; McGhie, T.K.; Espley, R.V.; Hellens, R.P.; Allan, A.C.

    2010-01-01

    Background - The control of plant anthocyanin accumulation is via transcriptional regulation of the genes encoding the biosynthetic enzymes. A key activator appears to be an R2R3 MYB transcription factor. In apple fruit, skin anthocyanin levels are controlled by a gene called MYBA or MYB1, while the

  4. Leveraging microbial biosynthetic pathways for the generation of 'drop-in' biofuels.

    Science.gov (United States)

    Zargar, Amin; Bailey, Constance B; Haushalter, Robert W; Eiben, Christopher B; Katz, Leonard; Keasling, Jay D

    2017-06-01

    Advances in retooling microorganisms have enabled bioproduction of 'drop-in' biofuels, fuels that are compatible with existing spark-ignition, compression-ignition, and gas-turbine engines. As the majority of petroleum consumption in the United States consists of gasoline (47%), diesel fuel and heating oil (21%), and jet fuel (8%), 'drop-in' biofuels that replace these petrochemical sources are particularly attractive. In this review, we discuss the application of aldehyde decarbonylases to produce gasoline substitutes from fatty acid products, a recently crystallized reductase that could hydrogenate jet fuel precursors from terpene synthases, and the exquisite control of polyketide synthases to produce biofuels with desired physical properties (e.g., lower freezing points). With our increased understanding of biosynthetic logic of metabolic pathways, we discuss the unique advantages of fatty acid, terpene, and polyketide synthases for the production of bio-based gasoline, diesel and jet fuel. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Sex pheromone biosynthetic pathways are conserved between moths and the butterfly Bicyclus anynana

    Science.gov (United States)

    Liénard, Marjorie A; Wang, Hong-Lei; Lassance, Jean-Marc; Löfstedt, Christer

    2014-01-01

    Although phylogenetically nested within the moths, butterflies have diverged extensively in a number of life history traits. Whereas moths rely greatly on chemical signals, visual advertisement is the hallmark of mate finding in butterflies. In the context of courtship, however, male chemical signals are widespread in both groups although they likely have multiple evolutionary origins. Here, we report that in males of the butterfly Bicyclus anynana, courtship scents are produced de novo via biosynthetic pathways shared with females of many moth species. We show that two of the pheromone components that play a major role in mate choice, namely the (Z)-9-tetradecenol and hexadecanal, are produced through the activity of a fatty acyl Δ11-desaturase and two specialized alcohol-forming fatty acyl reductases. Our study provides the first evidence of conservation and sharing of ancestral genetic modules for the production of FA-derived pheromones over a long evolutionary timeframe thereby reconciling mate communication in moths and butterflies. PMID:24862548

  6. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae (on linr)

    OpenAIRE

    Wang, Kui-Lin; Bolitho, Karen; Grafton, Karryn; Kortstee, A.J.; Karunairetnam, Sakuntala; McGhie, T.K.; Espley, R.V.; Hellens, R.P.; Allan, A.C.

    2010-01-01

    Background - The control of plant anthocyanin accumulation is via transcriptional regulation of the genes encoding the biosynthetic enzymes. A key activator appears to be an R2R3 MYB transcription factor. In apple fruit, skin anthocyanin levels are controlled by a gene called MYBA or MYB1, while the gene determining fruit flesh and foliage anthocyanin has been termed MYB10. In order to further understand tissue-specific anthocyanin regulation we have isolated orthologous MYB genes from all th...

  7. Ancient horizontal gene transfer from bacteria enhances biosynthetic capabilities of fungi.

    Directory of Open Access Journals (Sweden)

    Imke Schmitt

    Full Text Available Polyketides are natural products with a wide range of biological functions and pharmaceutical applications. Discovery and utilization of polyketides can be facilitated by understanding the evolutionary processes that gave rise to the biosynthetic machinery and the natural product potential of extant organisms. Gene duplication and subfunctionalization, as well as horizontal gene transfer are proposed mechanisms in the evolution of biosynthetic gene clusters. To explain the amount of homology in some polyketide synthases in unrelated organisms such as bacteria and fungi, interkingdom horizontal gene transfer has been evoked as the most likely evolutionary scenario. However, the origin of the genes and the direction of the transfer remained elusive.We used comparative phylogenetics to infer the ancestor of a group of polyketide synthase genes involved in antibiotic and mycotoxin production. We aligned keto synthase domain sequences of all available fungal 6-methylsalicylic acid (6-MSA-type PKSs and their closest bacterial relatives. To assess the role of symbiotic fungi in the evolution of this gene we generated 24 6-MSA synthase sequence tags from lichen-forming fungi. Our results support an ancient horizontal gene transfer event from an actinobacterial source into ascomycete fungi, followed by gene duplication.Given that actinobacteria are unrivaled producers of biologically active compounds, such as antibiotics, it appears particularly promising to study biosynthetic genes of actinobacterial origin in fungi. The large number of 6-MSA-type PKS sequences found in lichen-forming fungi leads us hypothesize that the evolution of typical lichen compounds, such as orsellinic acid derivatives, was facilitated by the gain of this bacterial polyketide synthase.

  8. An indigoidine biosynthetic gene cluster from Streptomyces chromofuscus ATCC 49982 contains an unusual IndB homologue.

    Science.gov (United States)

    Yu, Dayu; Xu, Fuchao; Valiente, Jonathan; Wang, Siyuan; Zhan, Jixun

    2013-01-01

    A putative indigoidine biosynthetic gene cluster was located in the genome of Streptomyces chromofuscus ATCC 49982. The silent 9.4-kb gene cluster consists of five open reading frames, named orf1, Sc-indC, Sc-indA, Sc-indB, and orf2, respectively. Sc-IndC was functionally characterized as an indigoidine synthase through heterologous expression of the enzyme in both Streptomyces coelicolor CH999 and Escherichia coli BAP1. The yield of indigoidine in E. coli BAP1 reached 2.78 g/l under the optimized conditions. The predicted protein product of Sc-indB is unusual and much larger than any other reported IndB-like protein. The N-terminal portion of this enzyme resembles IdgB and the C-terminal portion is a hypothetical protein. Sc-IndA and/or Sc-IndB were co-expressed with Sc-IndC in E. coli BAP1, which demonstrated the involvement of Sc-IndB, but not Sc-IndA, in the biosynthetic pathway of indigoidine. The yield of indigoidine was dramatically increased by 41.4 % (3.93 g/l) when Sc-IndB was co-expressed with Sc-IndC in E. coli BAP1. Indigoidine is more stable at low temperatures.

  9. Bioinformatic analysis of an unusual gene-enzyme relationship in the arginine biosynthetic pathway among marine gamma proteobacteria: implications concerning the formation of N-acetylated intermediates in prokaryotes

    Directory of Open Access Journals (Sweden)

    Labedan Bernard

    2006-01-01

    Full Text Available Abstract Background The N-acetylation of L-glutamate is regarded as a universal metabolic strategy to commit glutamate towards arginine biosynthesis. Until recently, this reaction was thought to be catalyzed by either of two enzymes: (i the classical N-acetylglutamate synthase (NAGS, gene argA first characterized in Escherichia coli and Pseudomonas aeruginosa several decades ago and also present in vertebrates, or (ii the bifunctional version of ornithine acetyltransferase (OAT, gene argJ present in Bacteria, Archaea and many Eukaryotes. This paper focuses on a new and surprising aspect of glutamate acetylation. We recently showed that in Moritella abyssi and M. profunda, two marine gamma proteobacteria, the gene for the last enzyme in arginine biosynthesis (argH is fused to a short sequence that corresponds to the C-terminal, N-acetyltransferase-encoding domain of NAGS and is able to complement an argA mutant of E. coli. Very recently, other authors identified in Mycobacterium tuberculosis an independent gene corresponding to this short C-terminal domain and coding for a new type of NAGS. We have investigated the two prokaryotic Domains for patterns of gene-enzyme relationships in the first committed step of arginine biosynthesis. Results The argH-A fusion, designated argH(A, and discovered in Moritella was found to be present in (and confined to marine gamma proteobacteria of the Alteromonas- and Vibrio-like group. Most of them have a classical NAGS with the exception of Idiomarina loihiensis and Pseudoalteromonas haloplanktis which nevertheless can grow in the absence of arginine and therefore appear to rely on the arg(A sequence for arginine biosynthesis. Screening prokaryotic genomes for virtual argH-X 'fusions' where X stands for a homologue of arg(A, we retrieved a large number of Bacteria and several Archaea, all of them devoid of a classical NAGS. In the case of Thermus thermophilus and Deinococcus radiodurans, the arg(A-like sequence

  10. Heterologous expression and transcript analysis of gibberellin biosynthetic genes of grasses reveals novel functionality in the GA3ox family.

    Science.gov (United States)

    Pearce, Stephen; Huttly, Alison K; Prosser, Ian M; Li, Yi-dan; Vaughan, Simon P; Gallova, Barbora; Patil, Archana; Coghill, Jane A; Dubcovsky, Jorge; Hedden, Peter; Phillips, Andrew L

    2015-06-05

    The gibberellin (GA) pathway plays a central role in the regulation of plant development, with the 2-oxoglutarate-dependent dioxygenases (2-ODDs: GA20ox, GA3ox, GA2ox) that catalyse the later steps in the biosynthetic pathway of particularly importance in regulating bioactive GA levels. Although GA has important impacts on crop yield and quality, our understanding of the regulation of GA biosynthesis during wheat and barley development remains limited. In this study we identified or assembled genes encoding the GA 2-ODDs of wheat, barley and Brachypodium distachyon and characterised the wheat genes by heterologous expression and transcript analysis. The wheat, barley and Brachypodium genomes each contain orthologous copies of the GA20ox, GA3ox and GA2ox genes identified in rice, with the exception of OsGA3ox1 and OsGA2ox5 which are absent in these species. Some additional paralogs of 2-ODD genes were identified: notably, a novel gene in the wheat B genome related to GA3ox2 was shown to encode a GA 1-oxidase, named as TaGA1ox-B1. This enzyme is likely to be responsible for the abundant 1β-hydroxylated GAs present in developing wheat grains. We also identified a related gene in barley, located in a syntenic position to TaGA1ox-B1, that encodes a GA 3,18-dihydroxylase which similarly accounts for the accumulation of unusual GAs in barley grains. Transcript analysis showed that some paralogs of the different classes of 2-ODD were expressed mainly in a single tissue or at specific developmental stages. In particular, TaGA20ox3, TaGA1ox1, TaGA3ox3 and TaGA2ox7 were predominantly expressed in developing grain. More detailed analysis of grain-specific gene expression showed that while the transcripts of biosynthetic genes were most abundant in the endosperm, genes encoding inactivation and signalling components were more highly expressed in the seed coat and pericarp. The comprehensive expression and functional characterisation of the multigene families encoding the 2-ODD

  11. The heme biosynthetic pathway of the obligate Wolbachia endosymbiont of Brugia malayi as a potential anti-filarial drug target.

    Directory of Open Access Journals (Sweden)

    Bo Wu

    2009-07-01

    Full Text Available Filarial parasites (e.g., Brugia malayi, Onchocerca volvulus, and Wuchereria bancrofti are causative agents of lymphatic filariasis and onchocerciasis, which are among the most disabling of neglected tropical diseases. There is an urgent need to develop macro-filaricidal drugs, as current anti-filarial chemotherapy (e.g., diethylcarbamazine [DEC], ivermectin and albendazole can interrupt transmission predominantly by killing microfilariae (mf larvae, but is less effective on adult worms, which can live for decades in the human host. All medically relevant human filarial parasites appear to contain an obligate endosymbiotic bacterium, Wolbachia. This alpha-proteobacterial mutualist has been recognized as a potential target for filarial nematode life cycle intervention, as antibiotic treatments of filarial worms harboring Wolbachia result in the loss of worm fertility and viability upon antibiotic treatments both in vitro and in vivo. Human trials have confirmed this approach, although the length of treatments, high doses required and medical counter-indications for young children and pregnant women warrant the identification of additional anti-Wolbachia drugs.Genome sequence analysis indicated that enzymes involved in heme biosynthesis might constitute a potential anti-Wolbachia target set. We tested different heme biosynthetic pathway inhibitors in ex vivo B. malayi viability assays and report a specific effect of N-methyl mesoporphyrin (NMMP, which targets ferrochelatase (FC, the last step. Our phylogenetic analysis indicates evolutionarily significant divergence between Wolbachia heme genes and their human homologues. We therefore undertook the cloning, overexpression and analysis of several enzymes of this pathway alongside their human homologues, and prepared proteins for drug targeting. In vitro enzyme assays revealed a approximately 600-fold difference in drug sensitivities to succinyl acetone (SA between Wolbachia and human 5

  12. Biosynthetic pathway of the phytohormone auxin in insects and screening of its inhibitors.

    Science.gov (United States)

    Suzuki, Hiroyoshi; Yokokura, Junpei; Ito, Tsukasa; Arai, Ryoma; Yokoyama, Chiaki; Toshima, Hiroaki; Nagata, Shinji; Asami, Tadao; Suzuki, Yoshihito

    2014-10-01

    Insect galls are abnormal plant tissues induced by galling insects. The galls are used for food and habitation, and the phytohormone auxin, produced by the insects, may be involved in their formation. We found that the silkworm, a non-galling insect, also produces an active form of auxin, indole-3-acetic acid (IAA), by de novo synthesis from tryptophan (Trp). A detailed metabolic analysis of IAA using IAA synthetic enzymes from silkworms indicated an IAA biosynthetic pathway composed of a three-step conversion: Trp → indole-3-acetaldoxime → indole-3-acetaldehyde (IAAld) → IAA, of which the first step is limiting IAA production. This pathway was shown to also operate in gall-inducing sawfly. Screening of a chemical library identified two compounds that showed strong inhibitory activities on the conversion step IAAld → IAA. The inhibitors can be efficiently used to demonstrate the importance of insect-synthesized auxin in gall formation in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Expression of Xanthophyll Biosynthetic Genes during Light-Dependent Chloroplast Differentiation1

    Science.gov (United States)

    Woitsch, Sonja; Römer, Susanne

    2003-01-01

    In higher plants, etioplast to chloroplast differentiation is characterized by dramatic ultrastructural changes of the plastid and a concomitant increase in chlorophylls and carotenoids. Whereas the formation and function of carotenes and their oxygenated derivatives, the xanthophylls, have been well studied, little is known about the regulation of the genes involved in xanthophyll biosynthesis. Here, we analyze the expression of three xanthophyll biosynthetic genes (i.e. β-carotene hydroxylase [bhy], zeaxanthin epoxidase [zep], and violaxanthin de-epoxidase [vde]) during de-etiolation of seedlings of tobacco (Nicotiana tabacum L. cv Samsun) under different light conditions. White-light illumination caused an increase in the amount of all corresponding mRNAs. The expression profiles of bhy and zep not only resembled each other but were also similar to the pattern of a gene encoding a major light-harvesting protein of photosystem II. This finding indicates a coordinated synthesis during formation of the antenna complex. In contrast, the expression pattern of vde was clearly different. Furthermore, the gene expression of bhy was shown to be modulated after illumination with different white-light intensities. The expression of all xanthophyll biosynthetic genes under examination was up-regulated upon exposure to red, blue, and white light. Gene expression of bhy and vde but not of zep was more pronounced under red-light illumination, pointing at an involvement of the phytochrome system. Expression analysis in the presence of the photosynthetic electron transport inhibitors 3-(3,4-dichlorophenyl)-1,1-dimethyl-urea and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone indicated a redox control of transcription of two of the xanthophyll biosynthetic genes (bhy and zep). PMID:12857831

  14. Genes encoding enzymes of the lignin biosynthesis pathway in Eucalyptus

    Directory of Open Access Journals (Sweden)

    Ricardo Harakava

    2005-01-01

    Full Text Available Eucalyptus ESTs libraries were screened for genes involved in lignin biosynthesis. This search was performed under the perspective of recent revisions on the monolignols biosynthetic pathway. Eucalyptus orthologues of all genes of the phenylpropanoid pathway leading to lignin biosynthesis reported in other plant species were identified. A library made with mRNAs extracted from wood was enriched for genes involved in lignin biosynthesis and allowed to infer the isoforms of each gene family that play a major role in wood lignin formation. Analysis of the wood library suggests that, besides the enzymes of the phenylpropanoids pathway, chitinases, laccases, and dirigent proteins are also important for lignification. Colocalization of several enzymes on the endoplasmic reticulum membrane, as predicted by amino acid sequence analysis, supports the existence of metabolic channeling in the phenylpropanoid pathway. This study establishes a framework for future investigations on gene expression level, protein expression and enzymatic assays, sequence polymorphisms, and genetic engineering.

  15. ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Lindemose, Søren; De Masi, Federico

    2013-01-01

    ATAF1, an Arabidopsis thaliana NAC transcription factor, plays important roles in plant adaptation to environmental stress and development. To search for ATAF1 target genes, we used protein binding microarrays and chromatin-immunoprecipitation (ChIP). This identified T[A,C,G]CGT[A,G] and TT[A,C,G...... abscisic acid (ABA) phytohormone biosynthetic gene NCED3. ChIP-qPCR and expression analysis showed that ATAF1 binding to the NCED3 promoter correlated with increased NCED3 expression and ABA hormone levels. These results indicate that ATAF1 regulates ABA biosynthesis....

  16. Evolutionary rate patterns of the Gibberellin pathway genes

    Directory of Open Access Journals (Sweden)

    Zhang Fu-min

    2009-08-01

    Full Text Available Abstract Background Analysis of molecular evolutionary patterns of different genes within metabolic pathways allows us to determine whether these genes are subject to equivalent evolutionary forces and how natural selection shapes the evolution of proteins in an interacting system. Although previous studies found that upstream genes in the pathway evolved more slowly than downstream genes, the correlation between evolutionary rate and position of the genes in metabolic pathways as well as its implications in molecular evolution are still less understood. Results We sequenced and characterized 7 core structural genes of the gibberellin biosynthetic pathway from 8 representative species of the rice tribe (Oryzeae to address alternative hypotheses regarding evolutionary rates and patterns of metabolic pathway genes. We have detected significant rate heterogeneity among 7 GA pathway genes for both synonymous and nonsynonymous sites. Such rate variation is mostly likely attributed to differences of selection intensity rather than differential mutation pressures on the genes. Unlike previous argument that downstream genes in metabolic pathways would evolve more slowly than upstream genes, the downstream genes in the GA pathway did not exhibited the elevated substitution rate and instead, the genes that encode either the enzyme at the branch point (GA20ox or enzymes catalyzing multiple steps (KO, KAO and GA3ox in the pathway had the lowest evolutionary rates due to strong purifying selection. Our branch and codon models failed to detect signature of positive selection for any lineage and codon of the GA pathway genes. Conclusion This study suggests that significant heterogeneity of evolutionary rate of the GA pathway genes is mainly ascribed to differential constraint relaxation rather than the positive selection and supports the pathway flux theory that predicts that natural selection primarily targets enzymes that have the greatest control on fluxes.

  17. EPA, DHA, and Lipoic Acid Differentially Modulate the n-3 Fatty Acid Biosynthetic Pathway in Atlantic Salmon Hepatocytes.

    Science.gov (United States)

    Bou, Marta; Østbye, Tone-Kari; Berge, Gerd M; Ruyter, Bente

    2017-03-01

    The aim of the present study was to investigate how EPA, DHA, and lipoic acid (LA) influence the different metabolic steps in the n-3 fatty acid (FA) biosynthetic pathway in hepatocytes from Atlantic salmon fed four dietary levels (0, 0.5, 1.0 and 2.0%) of EPA, DHA or a 1:1 mixture of these FA. The hepatocytes were incubated with [1- 14 C] 18:3n-3 in the presence or absence of LA (0.2 mM). Increased endogenous levels of EPA and/or DHA and LA exposure both led to similar responses in cells with reduced desaturation and elongation of [1- 14 C] 18:3n-3 to 18:4n-3, 20:4n-3, and EPA, in agreement with reduced expression of the Δ6 desaturase gene involved in the first step of conversion. DHA production, on the other hand, was maintained even in groups with high endogenous levels of DHA, possibly due to a more complex regulation of this last step in the n-3 metabolic pathway. Inhibition of the Δ6 desaturase pathway led to increased direct elongation to 20:3n-3 by both DHA and LA. Possibly the route by 20:3n-3 and then Δ8 desaturation to 20:4n-3, bypassing the first Δ6 desaturase step, can partly explain the maintained or even increased levels of DHA production. LA increased DHA production in the phospholipid fraction of hepatocytes isolated from fish fed 0 and 0.5% EPA and/or DHA, indicating that LA has the potential to further increase the production of this health-beneficial FA in fish fed diets with low levels of EPA and/or DHA.

  18. Molecular and Biochemical Analysis of Chalcone Synthase from Freesia hybrid in flavonoid biosynthetic pathway.

    Directory of Open Access Journals (Sweden)

    Wei Sun

    Full Text Available Chalcone synthase (CHS catalyzes the first committed step in the flavonoid biosynthetic pathway. In this study, the cDNA (FhCHS1 encoding CHS from Freesia hybrida was successfully isolated and analyzed. Multiple sequence alignments showed that both the conserved CHS active site residues and CHS signature sequence were found in the deduced amino acid sequence of FhCHS1. Meanwhile, crystallographic analysis revealed that protein structure of FhCHS1 is highly similar to that of alfalfa CHS2, and the biochemical analysis results indicated that it has an enzymatic role in naringenin biosynthesis. Moreover, quantitative real-time PCR was performed to detect the transcript levels of FhCHS1 in flowers and different tissues, and patterns of FhCHS1 expression in flowers showed significant correlation to the accumulation patterns of anthocyanin during flower development. To further characterize the functionality of FhCHS1, its ectopic expression in Arabidopsis thaliana tt4 mutants and Petunia hybrida was performed. The results showed that overexpression of FhCHS1 in tt4 mutants fully restored the pigmentation phenotype of the seed coats, cotyledons and hypocotyls, while transgenic petunia expressing FhCHS1 showed flower color alteration from white to pink. In summary, these results suggest that FhCHS1 plays an essential role in the biosynthesis of flavonoid in Freesia hybrida and may be used to modify the components of flavonoids in other plants.

  19. Differential expression of carotenoid biosynthetic pathway genes in ...

    Indian Academy of Sciences (India)

    2016-04-08

    Pandurangaiah S, Ravishankar KV, Shivashankar KS, Sadashiva AT, Pillakenchappa K and Narayanan SK ... development and validation of LCY-B and CYC-B in selected contrasting F2 plants (red ripe fruits) derived from the cross.

  20. Functional analysis of aromatic biosynthetic pathways in Pseudomonas putida KT2440

    Science.gov (United States)

    Molina‐Henares, M. Antonia; García‐Salamanca, Adela; Molina‐Henares, A. Jesús; De La Torre, Jesús; Herrera, M. Carmen; Ramos, Juan L.; Duque, Estrella

    2009-01-01

    Summary Pseudomonas putida KT2440 is a non‐pathogenic prototrophic bacterium with high potential for biotechnological applications. Despite all that is known about this strain, the biosynthesis of essential chemicals has not been fully analysed and auxotroph mutants are scarce. We carried out massive mini‐Tn5 random mutagenesis and screened for auxotrophs that require aromatic amino acids. The biosynthesis of aromatic amino acids was analysed in detail including physical and transcriptional organization of genes, complementation assays and feeding experiments to establish pathway intermediates. There is a single pathway from chorismate leading to the biosynthesis of tryptophan, whereas the biosynthesis of phenylalanine and tyrosine is achieved through multiple convergent pathways. Genes for tryptophan biosynthesis are grouped in unlinked regions with the trpBA and trpGDE genes organized as operons and the trpI, trpE and trpF genes organized as single transcriptional units. The pheA and tyrA gene‐encoding multifunctional enzymes for phenylalanine and tyrosine biosynthesis are linked in the chromosome and form an operon with the serC gene involved in serine biosynthesis. The last step in the biosynthesis of these two amino acids requires an amino transferase activity for which multiple tyrB‐like genes are present in the host chromosome. PMID:21261884

  1. Structural Diversification of Lyngbyatoxin A by Host-Dependent Heterologous Expression of the tleABC Biosynthetic Gene Cluster.

    Science.gov (United States)

    Zhang, Lihan; Hoshino, Shotaro; Awakawa, Takayoshi; Wakimoto, Toshiyuki; Abe, Ikuro

    2016-08-03

    Natural products have enormous structural diversity, yet little is known about how such diversity is achieved in nature. Here we report the structural diversification of a cyanotoxin-lyngbyatoxin A-and its biosynthetic intermediates by heterologous expression of the Streptomyces-derived tleABC biosynthetic gene cluster in three different Streptomyces hosts: S. lividans, S. albus, and S. avermitilis. Notably, the isolated lyngbyatoxin derivatives, including four new natural products, were biosynthesized by crosstalk between the heterologous tleABC gene cluster and the endogenous host enzymes. The simple strategy described here has expanded the structural diversity of lyngbyatoxin A and its biosynthetic intermediates, and provides opportunities for investigation of the currently underestimated hidden biosynthetic crosstalk. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Novel key metabolites reveal further branching of the roquefortine/meleagrin biosynthetic pathway.

    Science.gov (United States)

    Ries, Marco I; Ali, Hazrat; Lankhorst, Peter P; Hankemeier, Thomas; Bovenberg, Roel A L; Driessen, Arnold J M; Vreeken, Rob J

    2013-12-27

    Metabolic profiling and structural elucidation of novel secondary metabolites obtained from derived deletion strains of the filamentous fungus Penicillium chrysogenum were used to reassign various previously ascribed synthetase genes of the roquefortine/meleagrin pathway to their corresponding products. Next to the structural characterization of roquefortine F and neoxaline, which are for the first time reported for P. chrysogenum, we identified the novel metabolite roquefortine L, including its degradation products, harboring remarkable chemical structures. Their biosynthesis is discussed, questioning the exclusive role of glandicoline A as key intermediate in the pathway. The results reveal that further enzymes of this pathway are rather unspecific and catalyze more than one reaction, leading to excessive branching in the pathway with meleagrin and neoxaline as end products of two branches.

  3. Arctic mustard flower color polymorphism controlled by petal-specific downregulation at the threshold of the anthocyanin biosynthetic pathway.

    Directory of Open Access Journals (Sweden)

    Cynthia A Dick

    2011-04-01

    Full Text Available Intra- and interspecific variation in flower color is a hallmark of angiosperm diversity. The evolutionary forces underlying the variety of flower colors can be nearly as diverse as the colors themselves. In addition to pollinator preferences, non-pollinator agents of selection can have a major influence on the evolution of flower color polymorphisms, especially when the pigments in question are also expressed in vegetative tissues. In such cases, identifying the target(s of selection starts with determining the biochemical and molecular basis for the flower color variation and examining any pleiotropic effects manifested in vegetative tissues. Herein, we describe a widespread purple-white flower color polymorphism in the mustard Parrya nudicaulis spanning Alaska. The frequency of white-flowered individuals increases with increasing growing-season temperature, consistent with the role of anthocyanin pigments in stress tolerance. White petals fail to produce the stress responsive flavonoid intermediates in the anthocyanin biosynthetic pathway (ABP, suggesting an early pathway blockage. Petal cDNA sequences did not reveal blockages in any of the eight enzyme-coding genes in white-flowered individuals, nor any color differentiating SNPs. A qRT-PCR analysis of white petals identified a 24-fold reduction in chalcone synthase (CHS at the threshold of the ABP, but no change in CHS expression in leaves and sepals. This arctic species has avoided the deleterious effects associated with the loss of flavonoid intermediates in vegetative tissues by decoupling CHS expression in petals and leaves, yet the correlation of flower color and climate suggests that the loss of flavonoids in the petals alone may affect the tolerance of white-flowered individuals to colder environments.

  4. Treadmill exercise does not change gene expression of adrenal catecholamine biosynthetic enzymes in chronically stressed rats

    Directory of Open Access Journals (Sweden)

    LJUBICA GAVRILOVIC

    2013-09-01

    Full Text Available ABSTRACT Chronic isolation of adult animals represents a form of psychological stress that produces sympatho-adrenomedullar activation. Exercise training acts as an important modulator of sympatho-adrenomedullary system. This study aimed to investigate physical exercise-related changes in gene expression of catecholamine biosynthetic enzymes (tyrosine hydroxylase, dopamine-ß-hydroxylase and phenylethanolamine N-methyltransferase and cyclic adenosine monophosphate response element-binding (CREB in the adrenal medulla, concentrations of catecholamines and corticosterone (CORT in the plasma and the weight of adrenal glands of chronically psychosocially stressed adult rats exposed daily to 20 min treadmill running for 12 weeks. Also, we examined how additional acute immobilization stress changes the mentioned parameters. Treadmill running did not result in modulation of gene expression of catecholamine synthesizing enzymes and it decreased the level of CREB mRNA in the adrenal medulla of chronically psychosocially stressed adult rats. The potentially negative physiological adaptations after treadmill running were recorded as increased concentrations of catecholamines and decreased morning CORT concentration in the plasma, as well as the adrenal gland hypertrophy of chronically psychosocially stressed rats. The additional acute immobilization stress increases gene expression of catecholamine biosynthetic enzymes in the adrenal medulla, as well as catecholamines and CORT levels in the plasma. Treadmill exercise does not change the activity of sympatho-adrenomedullary system of chronically psychosocially stressed rats.

  5. Expression of phenazine biosynthetic genes during the arbuscular mycorrhizal symbiosis of Glomus intraradices

    Directory of Open Access Journals (Sweden)

    Dionicia Gloria León-Martínez

    2012-06-01

    Full Text Available To explore the molecular mechanisms that prevail during the establishment of the arbuscular mycorrhiza symbiosis involving the genus Glomus, we transcriptionally analysed spores of Glomus intraradices BE3 during early hyphal growth. Among 458 transcripts initially identified as being expressed at presymbiotic stages, 20% of sequences had homology to previously characterized eukaryotic genes, 30% were homologous to fungal coding sequences, and 9% showed homology to previously characterized bacterial genes. Among them, GintPbr1a encodes a homolog to Phenazine Biosynthesis Regulator (Pbr of Burkholderia cenocepacia, an pleiotropic regulatory protein that activates phenazine production through transcriptional activation of the protein D isochorismatase biosynthetic enzyme phzD (Ramos et al., 2010. Whereas GintPbr1a is expressed during the presymbiotic phase, the G. intraradices BE3 homolog of phzD (BGintphzD is transcriptionally active at the time of the establishment of the arbuscular mycorrhizal symbiosis. DNA from isolated bacterial cultures found in spores of G. intraradices BE3 confirmed that both BGintPbr1a and BGintphzD are present in the genome of its potential endosymbionts. Taken together, our results indicate that spores of G. intraradices BE3 express bacterial phenazine biosynthetic genes at the onset of the fungal-plant symbiotic interaction.

  6. Differential gene expression in liver and small intestine from lactating rats compared to age-matched virgin controls detects increased mRNA of cholesterol biosynthetic genes

    Directory of Open Access Journals (Sweden)

    Jungsuwadee Paiboon

    2011-02-01

    Full Text Available Abstract Background Lactation increases energy demands four- to five-fold, leading to a two- to three-fold increase in food consumption, requiring a proportional adjustment in the ability of the lactating dam to absorb nutrients and to synthesize critical biomolecules, such as cholesterol, to meet the dietary needs of both the offspring and the dam. The size and hydrophobicity of the bile acid pool increases during lactation, implying an increased absorption and disposition of lipids, sterols, nutrients, and xenobiotics. In order to investigate changes at the transcriptomics level, we utilized an exon array and calculated expression levels to investigate changes in gene expression in the liver, duodenum, jejunum, and ileum of lactating dams when compared against age-matched virgin controls. Results A two-way mixed models ANOVA was applied to detect differentially expressed genes. Significance calls were defined as a p Cyp7a1, which catalyzes the rate limiting step in the bile acid biosynthetic pathway, was also significantly increased in liver. In addition, decreased levels of mRNA associated with T-cell signaling were found in the jejunum and ileum. Several members of the Solute Carrier (SLC and Adenosine Triphosphate Binding Cassette (ABC superfamilies of membrane transporters were found to be differentially expressed; these genes may play a role in differences in nutrient and xenobiotic absorption and disposition. mRNA expression of SLC39a4_predicted, a zinc transporter, was increased in all tissues, suggesting that it is involved in increased zinc uptake during lactation. Microarray data are available through GEO under GSE19175. Conclusions We detected differential expression of mRNA from several pathways in lactating dams, including upregulation of the cholesterol biosynthetic pathway in liver and intestine, consistent with Srebp activation. Differential T-Cell signaling in the two most distal regions of the small intestine (ileum and

  7. A R2R3-MYB transcription factor regulates the flavonol biosynthetic pathway in a traditional Chinese medicinal plant, Epimedium sagittatum

    Directory of Open Access Journals (Sweden)

    Wenjun Huang

    2016-07-01

    Full Text Available Flavonols as plant secondary metabolites with vital roles in plant development and defense against UV light, have been demonstrated to be the main bioactive components in the genus Epimedium plants, several species of which are used as materials for Herba Epimedii, an important traditional Chinese medicine. The flavonol biosynthetic pathway genes had been already isolated from E. sagittatum, but a R2R3-MYB transcription factor regulating the flavonol synthesis has not been functionally characterized so far in Epimedium plants. In this study, we isolated and characterized the R2R3-MYB transcription factor EsMYBF1 involved in regulation of the flavonol biosynthetic pathway from E. sagittatum. Sequence analysis indicated that EsMYBF1 belongs to the subgroup 7 of R2R3-MYB family which contains the flavonol-specific MYB regulators identified to date. Transient reporter assay showed that EsMYBF1 strongly activated the promoters of EsF3H (flavanone 3-hydroxylase and EsFLS (flavonol synthase, but not the promoters of EsDFRs (dihydroflavonol 4-reductase and EsANS (anthocyanidin synthase in transiently transformed Nicotiana benthamiana leaves. Both yeast two-hybrid assay and transient reporter assay validated EsMYBF1 to be independent of EsTT8, or AtTT8 bHLH regulators of the flavonoid pathway as cofactors. Ectopic expression of EsMYBF1 in transgenic tobacco resulted in the increased flavonol content and the decreased anthocyanin content in flowers. Correspondingly, the structural genes involved in flavonol synthesis were upregulated in the EsMYBF1 overexpression lines, including NtCHS (chalcone synthase, NtCHI (chalcone isomerase, NtF3H and NtFLS, whereas the late biosynthetic genes of the anthocyanin pathway (NtDFR and NtANS were remarkably downregulated, compared to the controls. These results suggest that EsMYBF1 is a flavonol-specific R2R3-MYB regulator, and involved in regulation of the biosynthesis of the flavonol-derived bioactive components in E

  8. Expression of Terpenoid Biosynthetic Genes and Accumulation of Chemical Constituents in Valeriana fauriei

    Directory of Open Access Journals (Sweden)

    Yun Ji Park

    2016-05-01

    Full Text Available Valeriana fauriei (V. fauriei, which emits a characteristic and unpleasant odor, is important in traditional medicine. In this study, the expression of terpenoid biosynthetic genes was investigated in different organs that were also screened for volatile compounds including valerenic acid and its derivatives. Specific expression patterns from different parts of V. fauriei were observed using quantitative real-time PCR (qRT-PCR. The highest transcript levels of biosynthetic genes involved in mevalonic acid (MVA and methylerythritol phosphate (MEP production were found in the stem. Although the amounts of volatile compounds were varied by organ, most of the volatile terpenoids were accumulated in the root. Gas chromatography mass spectrometry (GC-MS analysis identified 128 volatile compounds, which represented 65.33% to 95.66% of total volatiles. Certain compounds were only found in specific organs. For example, isovalerenic acid and valerenic acid and its derivatives were restricted to the root. Organs with high transcript levels did not necessarily have high levels of the corresponding chemical constituents. According to these results, we hypothesize that translocation may occur between different organs in V. fauriei.

  9. De novo transcriptome assembly and the putative biosynthetic pathway of steroidal sapogenins of Dioscorea composita.

    Directory of Open Access Journals (Sweden)

    Xia Wang

    Full Text Available The plant Dioscorea composita has important applications in the medical and energy industries, and can be used for the extraction of steroidal sapogenins (important raw materials for the synthesis of steroidal drugs and bioethanol production. However, little is known at the genetic level about how sapogenins are biosynthesized in this plant. Using Illumina deep sequencing, 62,341 unigenes were obtained by assembling its transcriptome, and 27,720 unigenes were annotated. Of these, 8,022 unigenes were mapped to 243 specific pathways, and 531 unigenes were identified to be involved in 24 secondary metabolic pathways. 35 enzymes, which were encoded by 79 unigenes, were related to the biosynthesis of steroidal sapogenins in this transcriptome database, covering almost all the nodes in the steroidal pathway. The results of real-time PCR experiments on ten related transcripts (HMGR, MK, SQLE, FPPS, DXS, CAS, HMED, CYP51, DHCR7, and DHCR24 indicated that sapogenins were mainly biosynthesized by the mevalonate pathway. The expression of these ten transcripts in the tuber and leaves was found to be much higher than in the stem. Also, expression in the shoots was low. The nucleotide and protein sequences and conserved domains of four related genes (HMGR, CAS, SQS, and SMT1 were highly conserved between D. composita and D. zingiberensis; but expression of these four genes is greater in D. composita. However, there is no expression of these key enzymes in potato and no steroidal sapogenins are synthesized.

  10. Output ordering and prioritisation system (OOPS): ranking biosynthetic gene clusters to enhance bioactive metabolite discovery.

    Science.gov (United States)

    Peña, Alejandro; Del Carratore, Francesco; Cummings, Matthew; Takano, Eriko; Breitling, Rainer

    2017-12-18

    The rapid increase of publicly available microbial genome sequences has highlighted the presence of hundreds of thousands of biosynthetic gene clusters (BGCs) encoding valuable secondary metabolites. The experimental characterization of new BGCs is extremely laborious and struggles to keep pace with the in silico identification of potential BGCs. Therefore, the prioritisation of promising candidates among computationally predicted BGCs represents a pressing need. Here, we propose an output ordering and prioritisation system (OOPS) which helps sorting identified BGCs by a wide variety of custom-weighted biological and biochemical criteria in a flexible and user-friendly interface. OOPS facilitates a judicious prioritisation of BGCs using G+C content, coding sequence length, gene number, cluster self-similarity and codon bias parameters, as well as enabling the user to rank BGCs based upon BGC type, novelty, and taxonomic distribution. Effective prioritisation of BGCs will help to reduce experimental attrition rates and improve the breadth of bioactive metabolites characterized.

  11. Genome Engineering of the 2,3-Butanediol Biosynthetic Pathway for Tight Regulation in Cyanobacteria.

    Science.gov (United States)

    Nozzi, Nicole E; Atsumi, Shota

    2015-11-20

    Cyanobacteria have gained popularity among the metabolic engineering community as a tractable photosynthetic host for renewable chemical production. However, though a number of successfully engineered production systems have been reported, long-term genetic stability remains an issue for cyanobacterial systems. The genetic engineering toolbox for cyanobacteria is largely lacking inducible systems for expression control. The characterization of tight regulation systems for use in cyanobacteria may help to alleviate this problem. In this work we explore the function of the IPTG inducible promoter P(L)lacO1 in the model cyanobacterium Synechococcus elongatus PCC 7942 as well as the effect of gene order within an operon on pathway expression. According to our experiments, P(L)lacO1 functions well as an inducible promoter in S. elongatus. Additionally, we found that gene order within an operon can strongly influence control of expression of each gene.

  12. Molecular characterization and functional analysis of chalcone synthase from Syringa oblata Lindl. in the flavonoid biosynthetic pathway.

    Science.gov (United States)

    Wang, Yu; Dou, Ying; Wang, Rui; Guan, Xuelian; Hu, Zenghui; Zheng, Jian

    2017-11-30

    The flower color of Syringa oblata Lindl., which is often modulated by the flavonoid content, varies and is an important ornamental feature. Chalcone synthase (CHS) catalyzes the first key step in the flavonoid biosynthetic pathway. However, little is known about the role of S. oblata CHS (SoCHS) in flavonoid biosynthesis in this species. Here, we isolate and analyze the cDNA (SoCHS1) that encodes CHS in S. oblata. We also sought to analyzed the molecular characteristics and function of flavonoid metabolism by SoCHS1. We successfully isolated the CHS-encoding genomic DNA (gDNA) in S. oblata (SoCHS1), and the gene structural analysis indicated it had no intron. The opening reading frame (ORF) sequence of SoCHS1 was 1170bp long and encoded a 389-amino acid polypeptide. Multiple sequence alignment revealed that both the conserved CHS active site residues and CHS signature sequence were in the deduced amino acid sequence of SoCHS1. Crystallographic analysis revealed that the protein structure of SoCHS1 is highly similar to that of FnCHS1 in Freesia hybrida. The quantitative real-time polymerase chain reaction (PCR) performed to detect the SoCHS1 transcript expression levels in flowers, and other tissues revealed the expression was significantly correlated with anthocyanin accumulation during flower development. The ectopic expression results of Nicotiana tabacum showed that SoCHS1 overexpression in transgenic tobacco changed the flower color from pale pink to pink. In conclusion, these results suggest that SoCHS1 plays an essential role in flavonoid biosynthesis in S. oblata, and could be used to modify flavonoid components in other plant species. Copyright © 2017. Published by Elsevier B.V.

  13. Molecular interaction of the first 3 enzymes of the de novo pyrimidine biosynthetic pathway of Trypanosoma cruzi

    International Nuclear Information System (INIS)

    Nara, Takeshi; Hashimoto, Muneaki; Hirawake, Hiroko; Liao, Chien-Wei; Fukai, Yoshihisa; Suzuki, Shigeo; Tsubouchi, Akiko; Morales, Jorge; Takamiya, Shinzaburo; Fujimura, Tsutomu; Taka, Hikari; Mineki, Reiko; Fan, Chia-Kwung; Inaoka, Daniel Ken; Inoue, Masayuki; Tanaka, Akiko; Harada, Shigeharu; Kita, Kiyoshi

    2012-01-01

    Highlights: ► An Escherichia coli strain co-expressing CPSII, ATC, and DHO of Trypanosoma cruzi was constructed. ► Molecular interactions between CPSII, ATC, and DHO of T. cruzi were demonstrated. ► CPSII bound with both ATC and DHO. ► ATC bound with both CPSII and DHO. ► A functional tri-enzyme complex might precede the establishment of the fused enzyme. -- Abstract: The first 3 reaction steps of the de novo pyrimidine biosynthetic pathway are catalyzed by carbamoyl-phosphate synthetase II (CPSII), aspartate transcarbamoylase (ATC), and dihydroorotase (DHO), respectively. In eukaryotes, these enzymes are structurally classified into 2 types: (1) a CPSII-DHO-ATC fusion enzyme (CAD) found in animals, fungi, and amoebozoa, and (2) stand-alone enzymes found in plants and the protist groups. In the present study, we demonstrate direct intermolecular interactions between CPSII, ATC, and DHO of the parasitic protist Trypanosoma cruzi, which is the causative agent of Chagas disease. The 3 enzymes were expressed in a bacterial expression system and their interactions were examined. Immunoprecipitation using an antibody specific for each enzyme coupled with Western blotting-based detection using antibodies for the counterpart enzymes showed co-precipitation of all 3 enzymes. From an evolutionary viewpoint, the formation of a functional tri-enzyme complex may have preceded—and led to—gene fusion to produce the CAD protein. This is the first report to demonstrate the structural basis of these 3 enzymes as a model of CAD. Moreover, in conjunction with the essentiality of de novo pyrimidine biosynthesis in the parasite, our findings provide a rationale for new strategies for developing drugs for Chagas disease, which target the intermolecular interactions of these 3 enzymes.

  14. Phenylpropanoids accumulation in eggplant fruit: characterization of biosynthetic genes and regulation by a MYB transcription factor

    Directory of Open Access Journals (Sweden)

    Teresa eDocimo

    2016-01-01

    Full Text Available Phenylpropanoids are major secondary metabolites in eggplant (Solanum melongena fruits. Chlorogenic acid (CGA accounts for 70 to 90% of total phenolics in flesh tissues, while anthocyanins are mainly present in the fruit skin. As a contribution to the understanding of the peculiar accumulation of these health-promoting metabolites in eggplant, we report on metabolite abundance, regulation of CGA and anthocyanin biosynthesis, and characterization of candidate CGA biosynthetic genes in S. melongena.Higher contents of CGA, Delphinidin 3-rutinoside and rutin were found in eggplant fruits compared to other tissues, associated to an elevated transcript abundance of structural genes such as PAL, HQT, DFR and ANS, suggesting that active in situ biosynthesis contributes to anthocyanin and CGA accumulation in fruit tissues. Putative orthologs of the two CGA biosynthetic genes PAL and HQT, as well as a variant of a MYB1 transcription factor showing identity with group 6 MYBs, were isolated from an Occidental S. melongena traditional variety and demonstrated to differ from published sequences from Asiatic varieties.In silico analysis of the isolated SmPAL1, SmHQT1, SmANS, and SmMyb1 promoters revealed the presence of several Myb regulatory elements for the biosynthetic genes and unique elements for the TF, suggesting its involvement in other physiological roles beside phenylpropanoid biosynthesis regulation.Transient overexpression in Nicotiana benthamiana leaves of SmMyb1 and of a C-terminal SmMyb1 truncated form (SmMyb1Δ9 resulted in anthocyanin accumulation only of SmMyb1 agro-infiltrated leaves. A yeast two-hybrid assay confirmed the interaction of both SmMyb1 and SmMyb1Δ9 with an anthocyanin-related potato bHLH1 TF. Interestingly, a doubled amount of CGA was detected in both SmMyb1 and SmMyb1Δ9 agro-infiltrated leaves, thus suggesting that the N-terminal region of SmMyb1 is sufficient to activate its synthesis. These data suggest that a deletion of

  15. Production of Odd-Carbon Dicarboxylic Acids in Escherichia coli Using an Engineered Biotin-Fatty Acid Biosynthetic Pathway.

    Science.gov (United States)

    Haushalter, Robert W; Phelan, Ryan M; Hoh, Kristina M; Su, Cindy; Wang, George; Baidoo, Edward E K; Keasling, Jay D

    2017-04-05

    Dicarboxylic acids are commodity chemicals used in the production of plastics, polyesters, nylons, fragrances, and medications. Bio-based routes to dicarboxylic acids are gaining attention due to environmental concerns about petroleum-based production of these compounds. Some industrial applications require dicarboxylic acids with specific carbon chain lengths, including odd-carbon species. Biosynthetic pathways involving cytochrome P450-catalyzed oxidation of fatty acids in yeast and bacteria have been reported, but these systems produce almost exclusively even-carbon species. Here we report a novel pathway to odd-carbon dicarboxylic acids directly from glucose in Escherichia coli by employing an engineered pathway combining enzymes from biotin and fatty acid synthesis. Optimization of the pathway will lead to industrial strains for the production of valuable odd-carbon diacids.

  16. Giant virus Megavirus chilensis encodes the biosynthetic pathway for uncommon acetamido sugars.

    Science.gov (United States)

    Piacente, Francesco; De Castro, Cristina; Jeudy, Sandra; Molinaro, Antonio; Salis, Annalisa; Damonte, Gianluca; Bernardi, Cinzia; Abergel, Chantal; Tonetti, Michela G

    2014-08-29

    Giant viruses mimicking microbes, by the sizes of their particles and the heavily glycosylated fibrils surrounding their capsids, infect Acanthamoeba sp., which are ubiquitous unicellular eukaryotes. The glycans on fibrils are produced by virally encoded enzymes, organized in gene clusters. Like Mimivirus, Megavirus glycans are mainly composed of virally synthesized N-acetylglucosamine (GlcNAc). They also contain N-acetylrhamnosamine (RhaNAc), a rare sugar; the enzymes involved in its synthesis are encoded by a gene cluster specific to Megavirus close relatives. We combined activity assays on two enzymes of the pathway with mass spectrometry and NMR studies to characterize their specificities. Mg534 is a 4,6-dehydratase 5-epimerase; its three-dimensional structure suggests that it belongs to a third subfamily of inverting dehydratases. Mg535, next in the pathway, is a bifunctional 3-epimerase 4-reductase. The sequential activity of the two enzymes leads to the formation of UDP-l-RhaNAc. This study is another example of giant viruses performing their glycan synthesis using enzymes different from their cellular counterparts, raising again the question of the origin of these pathways. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Mutation of a Rice Gene Encoding a Phenylalanine Biosynthetic Enzyme Results in Accumulation of Phenylalanine and Tryptophan[W

    Science.gov (United States)

    Yamada, Tetsuya; Matsuda, Fumio; Kasai, Koji; Fukuoka, Shuichi; Kitamura, Keisuke; Tozawa, Yuzuru; Miyagawa, Hisashi; Wakasa, Kyo

    2008-01-01

    Two distinct biosynthetic pathways for Phe in plants have been proposed: conversion of prephenate to Phe via phenylpyruvate or arogenate. The reactions catalyzed by prephenate dehydratase (PDT) and arogenate dehydratase (ADT) contribute to these respective pathways. The Mtr1 mutant of rice (Oryza sativa) manifests accumulation of Phe, Trp, and several phenylpropanoids, suggesting a link between the synthesis of Phe and Trp. Here, we show that the Mtr1 mutant gene (mtr1-D) encodes a form of rice PDT with a point mutation in the putative allosteric regulatory region of the protein. Transformed callus lines expressing mtr1-D exhibited all the characteristics of Mtr1 callus tissue. Biochemical analysis revealed that rice PDT possesses both PDT and ADT activities, with a preference for arogenate as substrate, suggesting that it functions primarily as an ADT. The wild-type enzyme is feedback regulated by Phe, whereas the mutant enzyme showed a reduced feedback sensitivity, resulting in Phe accumulation. In addition, these observations indicate that rice PDT is critical for regulating the size of the Phe pool in plant cells. Feeding external Phe to wild-type callus tissue and seedlings resulted in Trp accumulation, demonstrating a connection between Phe accumulation and Trp pool size. PMID:18487352

  18. Decoding Biosynthetic Pathways in Plants by Pulse-Chase Strategies Using 13CO2 as a Universal Tracer

    Directory of Open Access Journals (Sweden)

    Adelbert Bacher

    2016-07-01

    Full Text Available 13CO2 pulse-chase experiments monitored by high-resolution NMR spectroscopy and mass spectrometry can provide 13C-isotopologue compositions in biosynthetic products. Experiments with a variety of plant species have documented that the isotopologue profiles generated with 13CO2 pulse-chase labeling are directly comparable to those that can be generated by the application of [U-13C6]glucose to aseptically growing plants. However, the application of the 13CO2 labeling technology is not subject to the experimental limitations that one has to take into account for experiments with [U-13C6]glucose and can be applied to plants growing under physiological conditions, even in the field. In practical terms, the results of biosynthetic studies with 13CO2 consist of the detection of pairs, triples and occasionally quadruples of 13C atoms that have been jointly contributed to the target metabolite, at an abundance that is well above the stochastic occurrence of such multiples. Notably, the connectivities of jointly transferred 13C multiples can have undergone modification by skeletal rearrangements that can be diagnosed from the isotopologue data. As shown by the examples presented in this review article, the approach turns out to be powerful in decoding the carbon topology of even complex biosynthetic pathways.

  19. Ultraviolet Radiation-Elicited Enhancement of Isoflavonoid Accumulation, Biosynthetic Gene Expression, and Antioxidant Activity in Astragalus membranaceus Hairy Root Cultures.

    Science.gov (United States)

    Jiao, Jiao; Gai, Qing-Yan; Wang, Wei; Luo, Meng; Gu, Cheng-Bo; Fu, Yu-Jie; Ma, Wei

    2015-09-23

    In this work, Astragalus membranaceus hairy root cultures (AMHRCs) were exposed to ultraviolet radiation (UV-A, UV-B, and UV-C) for promoting isoflavonoid accumulation. The optimum enhancement for isoflavonoid production was achieved in 34-day-old AMHRCs elicited by 86.4 kJ/m(2) of UV-B. The resulting isoflavonoid yield was 533.54 ± 13.61 μg/g dry weight (DW), which was 2.29-fold higher relative to control (232.93 ± 3.08 μg/g DW). UV-B up-regulated the transcriptional expressions of all investigated genes involved in isoflavonoid biosynthetic pathway. PAL and C4H were found to be two potential key genes that controlled isoflavonoid biosynthesis. Moreover, a significant increase was noted in antioxidant activity of extracts from UV-B-elicited AMHRCs (IC50 values = 0.85 and 1.08 mg/mL) in comparison with control (1.38 and 1.71 mg/mL). Overall, this study offered a feasible elicitation strategy to enhance isoflavonoid accumulation in AMHRCs and also provided a basis for metabolic engineering of isoflavonoid biosynthesis in the future.

  20. Environmental cues induce changes of steviol glycosides contents and transcription of corresponding biosynthetic genes in Stevia rebaudiana.

    Science.gov (United States)

    Yang, Yongheng; Huang, Suzhen; Han, Yulin; Yuan, Haiyan; Gu, Chunsun; Wang, Zhongwei

    2015-01-01

    Plant growth and secondary metabolism are commonly regulated by external cues such as light, temperature and water availability. In this study, the influences of low and high temperatures, dehydration, photoperiods, and different growing stages on the changes of steviol glycosides (SGs) contents and transcription levels of fifteen genes involved in SGs biosynthesis of Stevia rebaudiana Bertoni were examined using HPLC and RT-PCR. The observations showed that the transcript levels of all the fifteen genes were maximum under 25 °C treatment, and the transcription of SrDXS, SrDXR, SrMCT, SrCMK, SrMDS, SrHDS, SrHDR, SrIDI, SrGGDPS, SrCPPS1, SrUGT85C2 and SrUGT76G1 were restrained both in low temperature (15 °C) and high temperature (35 °C). Most genes in SGs biosynthesis pathway exhibited down-regulation in dehydration. To elucidate the effect of photoperiods, the plants were treated by different simulated photoperiods (8 L/16 D, 1 0L/14 D, 14 L/10 D and 16 L/8 D), but no significant transcription changes were observed. In the study of growing stages, there were evident changes of SGs contents, and the transcript levels of all the fifteen genes were minimal in fast growing period, and exhibited evident increase both in flower-bud appearing stage and flowering stage. The obtained results strongly suggest that the effect of environmental cues on steviol glycosides contents and transcription of corresponding biosynthetic genes in S. rebaudiana is significant. It is worth to study deeply. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. Variation in the fumonisin biosynthetic gene cluster in fumonisin-producing and nonproducing black aspergilli.

    Science.gov (United States)

    Susca, Antonia; Proctor, Robert H; Butchko, Robert A E; Haidukowski, Miriam; Stea, Gaetano; Logrieco, Antonio; Moretti, Antonio

    2014-12-01

    The ability to produce fumonisin mycotoxins varies among members of the black aspergilli. Previously, analyses of selected genes in the fumonisin biosynthetic gene (fum) cluster in black aspergilli from California grapes indicated that fumonisin-nonproducing isolates of Aspergillus welwitschiae lack six fum genes, but nonproducing isolates of Aspergillus niger do not. In the current study, analyses of black aspergilli from grapes from the Mediterranean Basin indicate that the genomic context of the fum cluster is the same in isolates of A. niger and A. welwitschiae regardless of fumonisin-production ability and that full-length clusters occur in producing isolates of both species and nonproducing isolates of A. niger. In contrast, the cluster has undergone an eight-gene deletion in fumonisin-nonproducing isolates of A. welwitschiae. Phylogenetic analyses suggest each species consists of a mixed population of fumonisin-producing and nonproducing individuals, and that existence of both production phenotypes may provide a selective advantage to these species. Differences in gene content of fum cluster homologues and phylogenetic relationships of fum genes suggest that the mutation(s) responsible for the nonproduction phenotype differs, and therefore arose independently, in the two species. Partial fum cluster homologues were also identified in genome sequences of four other black Aspergillus species. Gene content of these partial clusters and phylogenetic relationships of fum sequences indicate that non-random partial deletion of the cluster has occurred multiple times among the species. This in turn suggests that an intact cluster and fumonisin production were once more widespread among black aspergilli. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Structure, function and regulation of the enzymes in the starch biosynthetic pathway.

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, Jim

    2013-11-30

    structure of ADP- Glucose pyrophosphorylase from potato in its inhibited conformation, and bound to both ATP and ADP-glucose. In addition, we have determined the first structure of glycogen synthase in its "closed", catalytically active conformation bound to ADP-glucose. We also determined the structure of glycogen synthase bound to malto-oligosaccharides, showing for the first time that an enzyme in the starch biosynthetic pathway recognizes glucans not just in its active site but on binding sites on the surface of the enzyme ten’s of Angstroms from the active site. In addition our structure of a glycogen branching enzyme bound to malto-oligosaccharides identified seven distinct binding sites distributed about the surface of the enzyme. We will now determine the function of these sites to get a molecular-level picture of exactly how these enzymes interact with their polymeric substrates and confer specificity leading to the complex structure of the starch granule. We will extend our studies to other isoforms of the enzymes, to understand how their structures give rise to their distinct function. Our goal is to understand what accounts for the various functional differences between SS and SBE isoforms at a molecular level.

  3. Synthesis of C-Glucosylated Octaketide Anthraquinones in Nicotiana benthamiana by Using a Multispecies-Based Biosynthetic Pathway.

    Science.gov (United States)

    Andersen-Ranberg, Johan; Kongstad, Kenneth Thermann; Nafisi, Majse; Staerk, Dan; Okkels, Finn Thyge; Mortensen, Uffe Hasbro; Lindberg Møller, Birger; Frandsen, Rasmus John Normand; Kannangara, Rubini

    2017-10-05

    Carminic acid is a C-glucosylated octaketide anthraquinone and the main constituent of the natural dye carmine (E120), possessing unique coloring, stability, and solubility properties. Despite being used since ancient times, longstanding efforts to elucidate its route of biosynthesis have been unsuccessful. Herein, a novel combination of enzymes derived from a plant (Aloe arborescens, Aa), a bacterium (Streptomyces sp. R1128, St), and an insect (Dactylopius coccus, Dc) that allows for the biosynthesis of the C-glucosylated anthraquinone, dcII, a precursor for carminic acid, is reported. The pathway, which consists of AaOKS, StZhuI, StZhuJ, and DcUGT2, presents an alternative biosynthetic approach for the production of polyketides by using a type III polyketide synthase (PKS) and tailoring enzymes originating from a type II PKS system. The current study showcases the power of using transient expression in Nicotiana benthamiana for efficient and rapid identification of functional biosynthetic pathways, including both soluble and membrane-bound enzymes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Saponin determination, expression analysis and functional characterization of saponin biosynthetic genes in Chenopodium quinoa leaves.

    Science.gov (United States)

    Fiallos-Jurado, Jennifer; Pollier, Jacob; Moses, Tessa; Arendt, Philipp; Barriga-Medina, Noelia; Morillo, Eduardo; Arahana, Venancio; de Lourdes Torres, Maria; Goossens, Alain; Leon-Reyes, Antonio

    2016-09-01

    Quinoa (Chenopodium quinoa Willd.) is a highly nutritious pseudocereal with an outstanding protein, vitamin, mineral and nutraceutical content. The leaves, flowers and seed coat of quinoa contain triterpenoid saponins, which impart bitterness to the grain and make them unpalatable without postharvest removal of the saponins. In this study, we quantified saponin content in quinoa leaves from Ecuadorian sweet and bitter genotypes and assessed the expression of saponin biosynthetic genes in leaf samples elicited with methyl jasmonate. We found saponin accumulation in leaves after MeJA treatment in both ecotypes tested. As no reference genes were available to perform qPCR in quinoa, we mined publicly available RNA-Seq data for orthologs of 22 genes known to be stably expressed in Arabidopsis thaliana using geNorm, NormFinder and BestKeeper algorithms. The quinoa ortholog of At2g28390 (Monensin Sensitivity 1, MON1) was stably expressed and chosen as a suitable reference gene for qPCR analysis. Candidate saponin biosynthesis genes were screened in the quinoa RNA-Seq data and subsequent functional characterization in yeast led to the identification of CqbAS1, CqCYP716A78 and CqCYP716A79. These genes were found to be induced by MeJA, suggesting this phytohormone might also modulate saponin biosynthesis in quinoa leaves. Knowledge of the saponin biosynthesis and its regulation in quinoa may aid the further development of sweet cultivars that do not require postharvest processing. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. A Novel Antibiotic Mechanism of l-Cyclopropylalanine Blocking the Biosynthetic Pathway of Essential Amino Acid l-Leucine

    Directory of Open Access Journals (Sweden)

    Bingji Ma

    2017-12-01

    Full Text Available The unusual amino acid l-cyclopropylalanine was isolated from the mushroom Amanita virgineoides after detection in an anti-fungal screening test. l-Cyclopropylalanine was found to exhibit broad-spectrum inhibition against fungi and bacteria. The anti-fungal activity was found to be abolished in the presence of the amino acid l-leucine, but not any other amino acids, indicating that l-cyclopropylalanine may block the biosynthesis of the essential amino acid l-leucine, thereby inhibiting fungal and bacteria growth. Further biochemical studies found l-cyclopropylalanine indeed inhibits α-isopropylmalate synthase (α-IMPS, the enzyme that catalyzes the rate-limiting step in the biosynthetic pathway of l-leucine. Inhibition of essential l-leucine synthesis in fungal and bacteria organisms, a pathway absent in host organisms such as humans, may represent a novel antibiotic mechanism to counter the ever-increasing problem of drug resistance to existing antibiotics.

  6. Molecular characterization of tocopherol biosynthetic genes in sweetpotato that respond to stress and activate the tocopherol production in tobacco.

    Science.gov (United States)

    Ji, Chang Yoon; Kim, Yun-Hee; Kim, Ho Soo; Ke, Qingbo; Kim, Gun-Woo; Park, Sung-Chul; Lee, Haeng-Soon; Jeong, Jae Cheol; Kwak, Sang-Soo

    2016-09-01

    Tocopherol (vitamin E) is a chloroplast lipid that is presumed to be involved in the plant response to oxidative stress. In this study, we isolated and characterized five tocopherol biosynthetic genes from sweetpotato (Ipomoea batatas [L.] Lam) plants, including genes encoding 4-hydroxyphenylpyruvate dioxygenase (IbHPPD), homogentisate phytyltransferase (IbHPT), 2-methyl-6-phytylbenzoquinol methyltransferase (IbMPBQ MT), tocopherol cyclase (IbTC) and γ-tocopherol methyltransferase (IbTMT). Fluorescence microscope analysis indicated that four proteins localized into the chloroplast, whereas IbHPPD observed in the nuclear. Quantitative RT-PCR analysis revealed that the expression patterns of the five tocopherol biosynthetic genes varied in different plant tissues and under different stress conditions. All five genes were highly expressed in leaf tissues, whereas IbHPPD and IbHPT were highly expressed in the thick roots. The expression patterns of these five genes significantly differed in response to PEG, NaCl and H2O2-mediated oxidative stress. IbHPPD was strongly induced following PEG and H2O2 treatment and IbHPT was strongly induced following PEG treatment, whereas IbMPBQ MT and IbTC were highly expressed following NaCl treatment. Upon infection of the bacterial pathogen Pectobacterium chrysanthemi, the expression of IbHPPD increased sharply in sweetpotato leaves, whereas the expression of the other genes was reduced or unchanged. Additionally, transient expression of the five tocopherol biosynthetic genes in tobacco (Nicotiana bentamiana) leaves resulted in increased transcript levels of the transgenes expressions and tocopherol production. Therefore, our results suggested that the five tocopherol biosynthetic genes of sweetpotato play roles in the stress defense response as transcriptional regulators of the tocopherol production. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Glutamic acid promotes monacolin K production and monacolin K biosynthetic gene cluster expression in Monascus.

    Science.gov (United States)

    Zhang, Chan; Liang, Jian; Yang, Le; Chai, Shiyuan; Zhang, Chenxi; Sun, Baoguo; Wang, Chengtao

    2017-12-01

    This study investigated the effects of glutamic acid on production of monacolin K and expression of the monacolin K biosynthetic gene cluster. When Monascus M1 was grown in glutamic medium instead of in the original medium, monacolin K production increased from 48.4 to 215.4 mg l -1 , monacolin K production increased by 3.5 times. Glutamic acid enhanced monacolin K production by upregulating the expression of mokB-mokI; on day 8, the expression level of mokA tended to decrease by Reverse Transcription-polymerase Chain Reaction. Our findings demonstrated that mokA was not a key gene responsible for the quantity of monacolin K production in the presence of glutamic acid. Observation of Monascus mycelium morphology using Scanning Electron Microscope showed glutamic acid significantly increased the content of Monascus mycelium, altered the permeability of Monascus mycelium, enhanced secretion of monacolin K from the cell, and reduced the monacolin K content in Monascus mycelium, thereby enhancing monacolin K production.

  8. Description of a Riboflavin Biosynthetic Gene Variant Prevalent in the Phylum Proteobacteria

    Science.gov (United States)

    Brutinel, Evan D.; Dean, Antony M.

    2013-01-01

    Riboflavin (vitamin B2) is the precursor of flavin mononucleotide and flavin adenine dinucleotide, which are cofactors essential for a host of intracellular redox reactions. Microorganisms synthesize flavins de novo to fulfill nutritional requirements, but it is becoming increasingly clear that flavins play a wider role in cellular physiology than was previously appreciated. Flavins mediate diverse processes beyond the cytoplasmic membrane, including iron acquisition, extracellular respiration, and interspecies interactions. While investigating the regulation of flavin electron shuttle biosynthesis in the Gram-negative gammaproteobacterium Shewanella oneidensis, we discovered that a riboflavin biosynthetic gene (ribBA) annotated as encoding a bifunctional 3,4-dihydroxy-2-butanone 4-phosphate (DHBP) synthase/GTP cyclohydrolase II does not possess both functions. The novel gene, renamed ribBX here, encodes an amino-terminal DHBP synthase domain. The carboxy-terminal end of RibBX not only lacks GTP cyclohydrolase II activity but also has evolved a different function altogether in S. oneidensis, regulating the activity of the DHBP synthase domain. Phylogenetic analysis revealed that the misannotation of ribBX as ribBA is rampant throughout the phylum Proteobacteria (40% of 2,173 annotated ribBA genes) and that ribBX emerged early in the evolution of this group of microorganisms. We examined the functionality of representative ribBX genes from Beta-, Gamma-, and Epsilonproteobacteria and found that, consistent with sequence-based predictions, the encoded GTP cyclohydrolase II domains lack catalytic activity. The persistence of ribBX in the genomes of so many phylogenetically divergent bacterial species lends weight to the argument that ribBX has evolved a function which lends a selective advantage to the host. PMID:24097946

  9. In planta functions of cytochrome P450 monooxygenase genes in the phytocassane biosynthetic gene cluster on rice chromosome 2.

    Science.gov (United States)

    Ye, Zhongfeng; Yamazaki, Kohei; Minoda, Hiromi; Miyamoto, Koji; Miyazaki, Sho; Kawaide, Hiroshi; Yajima, Arata; Nojiri, Hideaki; Yamane, Hisakazu; Okada, Kazunori

    2018-06-01

    In response to environmental stressors such as blast fungal infections, rice produces phytoalexins, an antimicrobial diterpenoid compound. Together with momilactones, phytocassanes are among the major diterpenoid phytoalexins. The biosynthetic genes of diterpenoid phytoalexin are organized on the chromosome in functional gene clusters, comprising diterpene cyclase, dehydrogenase, and cytochrome P450 monooxygenase genes. Their functions have been studied extensively using in vitro enzyme assay systems. Specifically, P450 genes (CYP71Z6, Z7; CYP76M5, M6, M7, M8) on rice chromosome 2 have multifunctional activities associated with ent-copalyl diphosphate-related diterpene hydrocarbons, but the in planta contribution of these genes to diterpenoid phytoalexin production remains unknown. Here, we characterized cyp71z7 T-DNA mutant and CYP76M7/M8 RNAi lines to find that potential phytoalexin intermediates accumulated in these P450-suppressed rice plants. The results suggested that in planta, CYP71Z7 is responsible for C2-hydroxylation of phytocassanes and that CYP76M7/M8 is involved in C11α-hydroxylation of 3-hydroxy-cassadiene. Based on these results, we proposed potential routes of phytocassane biosynthesis in planta.

  10. Diversity of Culturable Thermophilic Actinobacteria in Hot Springs in Tengchong, China and Studies of their Biosynthetic Gene Profiles.

    Science.gov (United States)

    Liu, Lan; Salam, Nimaichand; Jiao, Jian-Yu; Jiang, Hong-Chen; Zhou, En-Min; Yin, Yi-Rui; Ming, Hong; Li, Wen-Jun

    2016-07-01

    The class Actinobacteria has been a goldmine for the discovery of antibiotics and has attracted interest from both academics and industries. However, an absence of novel approaches during the last few decades has limited the discovery of new microbial natural products useful for industries. Scientists are now focusing on the ecological aspects of diverse environments including unexplored or underexplored habitats and extreme environments in the search for new metabolites. This paper reports on the diversity of culturable actinobacteria associated with hot springs located in Tengchong County, Yunnan Province, southwestern China. A total of 58 thermophilic actinobacterial strains were isolated from the samples collected from ten hot springs distributed over three geothermal fields (e.g., Hehua, Rehai, and Ruidian). Phylogenetic positions and their biosynthetic profiles were analyzed by sequencing 16S rRNA gene and three biosynthetic gene clusters (KS domain of PKS-I, KSα domain of PKS-II and A domain of NRPS). On the basis of 16S rRNA gene phylogenetic analysis, the 58 strains were affiliated with 12 actinobacterial genera: Actinomadura Micromonospora, Microbispora, Micrococcus, Nocardiopsis, Nonomuraea, Promicromonospora, Pseudonocardia, Streptomyces, Thermoactinospora, Thermocatellispora, and Verrucosispora, of which the two novel genera Thermoactinospora and Thermocatellisopora were recently described from among these strains. Considering the biosynthetic potential of these actinobacterial strains, 22 were positive for PCR amplification of at least one of the three biosynthetic gene clusters (PKS-I, PKS-II, and NRPS). These actinobacteria were further subjected to antimicrobial assay against five opportunistic human pathogens (Acinetobacter baumannii, Escherichia coli, Micrococcus luteus, Staphylococcus aureus and Streptococcus faecalis). All of the 22 strains that were positive for PCR amplification of at least one of the biosynthetic gene domains exhibited

  11. Discovering potential Streptomyces hormone producers by using disruptants of essential biosynthetic genes as indicator strains.

    Science.gov (United States)

    Thao, Nguyen B; Kitani, Shigeru; Nitta, Hiroko; Tomioka, Toshiya; Nihira, Takuya

    2017-10-01

    Autoregulators are low-molecular-weight signaling compounds that control the production of many secondary metabolites in actinomycetes and have been referred to as 'Streptomyces hormones'. Here, potential producers of Streptomyces hormones were investigated in 40 Streptomyces and 11 endophytic actinomycetes. Production of γ-butyrolactone-type (IM-2, VB) and butenolide-type (avenolide) Streptomyces hormones was screened using Streptomyces lavendulae FRI-5 (ΔfarX), Streptomyces virginiae (ΔbarX) and Streptomyces avermitilis (Δaco), respectively. In these strains, essential biosynthetic genes for Streptomyces hormones were disrupted, enabling them to respond solely to the externally added hormones. The results showed that 20% of each of the investigated strains produced IM-2 and VB, confirming that γ-butyrolactone-type Streptomyces hormones are the most common in actinomycetes. Unlike the γ-butyrolactone type, butenolide-type Streptomyces hormones have been discovered in recent years, but their distribution has been unclear. Our finding that 24% of actinomycetes (12 of 51 strains) showed avenolide activity revealed for the first time that the butenolide-type Streptomyces hormone is also common in actinomycetes.

  12. Endophytic actinobacteria: Diversity, secondary metabolism and mechanisms to unsilence biosynthetic gene clusters.

    Science.gov (United States)

    Dinesh, Raghavan; Srinivasan, Veeraraghavan; T E, Sheeja; Anandaraj, Muthuswamy; Srambikkal, Hamza

    2017-09-01

    Endophytic actinobacteria, which reside in the inner tissues of host plants, are gaining serious attention due to their capacity to produce a plethora of secondary metabolites (e.g. antibiotics) possessing a wide variety of biological activity with diverse functions. This review encompasses the recent reports on endophytic actinobacterial species diversity, in planta habitats and mechanisms underlying their mode of entry into plants. Besides, their metabolic potential, novel bioactive compounds they produce and mechanisms to unravel their hidden metabolic repertoire by activation of cryptic or silent biosynthetic gene clusters (BGCs) for eliciting novel secondary metabolite production are discussed. The study also reviews the classical conservative techniques (chemical/biological/physical elicitation, co-culturing) as well as modern microbiology tools (e.g. next generation sequencing) that are being gainfully employed to uncover the vast hidden scaffolds for novel secondary metabolites produced by these endophytes, which would subsequently herald a revolution in drug engineering. The potential role of these endophytes in the agro-environment as promising biological candidates for inhibition of phytopathogens and the way forward to thoroughly exploit this unique microbial community by inducing expression of cryptic BGCs for encoding unseen products with novel therapeutic properties are also discussed.

  13. Identification of the chelocardin biosynthetic gene cluster from Amycolatopsis sulphurea: a platform for producing novel tetracycline antibiotics.

    Science.gov (United States)

    Lukežič, Tadeja; Lešnik, Urška; Podgoršek, Ajda; Horvat, Jaka; Polak, Tomaž; Šala, Martin; Jenko, Branko; Raspor, Peter; Herron, Paul R; Hunter, Iain S; Petković, Hrvoje

    2013-12-01

    Tetracyclines (TCs) are medically important antibiotics from the polyketide family of natural products. Chelocardin (CHD), produced by Amycolatopsis sulphurea, is a broad-spectrum tetracyclic antibiotic with potent bacteriolytic activity against a number of Gram-positive and Gram-negative multi-resistant pathogens. CHD has an unknown mode of action that is different from TCs. It has some structural features that define it as 'atypical' and, notably, is active against tetracycline-resistant pathogens. Identification and characterization of the chelocardin biosynthetic gene cluster from A. sulphurea revealed 18 putative open reading frames including a type II polyketide synthase. Compared to typical TCs, the chd cluster contains a number of features that relate to its classification as 'atypical': an additional gene for a putative two-component cyclase/aromatase that may be responsible for the different aromatization pattern, a gene for a putative aminotransferase for C-4 with the opposite stereochemistry to TCs and a gene for a putative C-9 methylase that is a unique feature of this biosynthetic cluster within the TCs. Collectively, these enzymes deliver a molecule with different aromatization of ring C that results in an unusual planar structure of the TC backbone. This is a likely contributor to its different mode of action. In addition CHD biosynthesis is primed with acetate, unlike the TCs, which are primed with malonamate, and offers a biosynthetic engineering platform that represents a unique opportunity for efficient generation of novel tetracyclic backbones using combinatorial biosynthesis.

  14. Deletion and Gene Expression Analyses Define the Paxilline Biosynthetic Gene Cluster in Penicillium paxilli

    Directory of Open Access Journals (Sweden)

    Emily J. Parker

    2013-08-01

    Full Text Available The indole-diterpene paxilline is an abundant secondary metabolite synthesized by Penicillium paxilli. In total, 21 genes have been identified at the PAX locus of which six have been previously confirmed to have a functional role in paxilline biosynthesis. A combination of bioinformatics, gene expression and targeted gene replacement analyses were used to define the boundaries of the PAX gene cluster. Targeted gene replacement identified seven genes, paxG, paxA, paxM, paxB, paxC, paxP and paxQ that were all required for paxilline production, with one additional gene, paxD, required for regular prenylation of the indole ring post paxilline synthesis. The two putative transcription factors, PP104 and PP105, were not co-regulated with the pax genes and based on targeted gene replacement, including the double knockout, did not have a role in paxilline production. The relationship of indole dimethylallyl transferases involved in prenylation of indole-diterpenes such as paxilline or lolitrem B, can be found as two disparate clades, not supported by prenylation type (e.g., regular or reverse. This paper provides insight into the P. paxilli indole-diterpene locus and reviews the recent advances identified in paxilline biosynthesis.

  15. Transcription factor VdCmr1 is required for pigment production, protection from UV irradiation, and regulates expression of melanin biosynthetic genes in Verticillium dahliae.

    Science.gov (United States)

    Wang, Yonglin; Hu, Xiaoping; Fang, Yulin; Anchieta, Amy; Goldman, Polly H; Hernandez, Gustavo; Klosterman, Steven J

    2018-04-01

    Verticillium dahliae is a soilborne fungus that causes vascular wilt diseases on numerous plant species worldwide. The production of darkly melanized microsclerotia is crucial in the disease cycle of V. dahliae, as these structures allow for long-term survival in soil. Previously, transcriptomic and genomic analysis identified a cluster of genes in V. dahliae that encodes some dihydroxynaphthalene (DHN) melanin biosynthetic pathway homologues found in related fungi. In this study, we explored the roles of cluster-specific transcription factor VdCmr1, as well as two other genes within the cluster encoding a polyketide synthase (VdPKS1) and a laccase (VdLac1), enzymes at initial and endpoint steps in DHN melanin production. The results revealed that VdCmr1 and VdPKS1 are required for melanin production, but neither is required for microsclerotia production. None of the three genes were required for pathogenesis on tobacco and lettuce. Exposure of ΔVdCmr1 and wild-type strains to UV irradiation, or to high temperature (40 °C), revealed an approx. 50 % reduction of survival in the ΔVdCmr1 strain, relative to the wild-type strain, in response to either condition. Expression profiles revealed that expression of some melanin biosynthetic genes are in part dependent on VdCmr1. Combined data indicate VdCmr1 is a key regulator of melanin biosynthesis, and that via regulation of melanogenesis, VdCmr1 affects survival of V. dahliae in response to abiotic threats. We conclude with a model showing regulation of VdCmr1 by a high osmolarity glycerol response (Hog)-type MAP kinase pathway.

  16. Expression of ethylene biosynthetic and receptor genes in rose floral tissues during ethylene-enhanced flower opening

    OpenAIRE

    Xue, Jingqi; Li, Yunhui; Tan, Hui; Yang, Feng; Ma, Nan; Gao, Junping

    2008-01-01

    Ethylene production, as well as the expression of ethylene biosynthetic (Rh-ACS1?4 and Rh-ACO1) and receptor (Rh-ETR1?5) genes, was determined in five different floral tissues (sepals, petals, stamens, gynoecia, and receptacles) of cut rose (Rosa hybrida cv. Samantha upon treatment with ethylene or the ethylene inhibitor 1-methylcyclopropene (1-MCP). Ethylene-enhanced ethylene production occurred only in gynoecia, petals, and receptacles, with gynoecia showing the greatest enhancement in the ...

  17. In silico exploration of Red Sea Bacillus genomes for natural product biosynthetic gene clusters

    KAUST Repository

    Othoum, Ghofran K

    2018-05-22

    BackgroundThe increasing spectrum of multidrug-resistant bacteria is a major global public health concern, necessitating discovery of novel antimicrobial agents. Here, members of the genus Bacillus are investigated as a potentially attractive source of novel antibiotics due to their broad spectrum of antimicrobial activities. We specifically focus on a computational analysis of the distinctive biosynthetic potential of Bacillus paralicheniformis strains isolated from the Red Sea, an ecosystem exposed to adverse, highly saline and hot conditions.ResultsWe report the complete circular and annotated genomes of two Red Sea strains, B. paralicheniformis Bac48 isolated from mangrove mud and B. paralicheniformis Bac84 isolated from microbial mat collected from Rabigh Harbor Lagoon in Saudi Arabia. Comparing the genomes of B. paralicheniformis Bac48 and B. paralicheniformis Bac84 with nine publicly available complete genomes of B. licheniformis and three genomes of B. paralicheniformis, revealed that all of the B. paralicheniformis strains in this study are more enriched in nonribosomal peptides (NRPs). We further report the first computationally identified trans-acyltransferase (trans-AT) nonribosomal peptide synthetase/polyketide synthase (PKS/ NRPS) cluster in strains of this species.ConclusionsB. paralicheniformis species have more genes associated with biosynthesis of antimicrobial bioactive compounds than other previously characterized species of B. licheniformis, which suggests that these species are better potential sources for novel antibiotics. Moreover, the genome of the Red Sea strain B. paralicheniformis Bac48 is more enriched in modular PKS genes compared to B. licheniformis strains and other B. paralicheniformis strains. This may be linked to adaptations that strains surviving in the Red Sea underwent to survive in the relatively hot and saline ecosystems.

  18. Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers

    Directory of Open Access Journals (Sweden)

    Luo Hongmei

    2011-12-01

    Full Text Available Abstract Background Panax notoginseng (Burk F.H. Chen is important medicinal plant of the Araliacease family. Triterpene saponins are the bioactive constituents in P. notoginseng. However, available genomic information regarding this plant is limited. Moreover, details of triterpene saponin biosynthesis in the Panax species are largely unknown. Results Using the 454 pyrosequencing technology, a one-quarter GS FLX titanium run resulted in 188,185 reads with an average length of 410 bases for P. notoginseng root. These reads were processed and assembled by 454 GS De Novo Assembler software into 30,852 unique sequences. A total of 70.2% of unique sequences were annotated by Basic Local Alignment Search Tool (BLAST similarity searches against public sequence databases. The Kyoto Encyclopedia of Genes and Genomes (KEGG assignment discovered 41 unique sequences representing 11 genes involved in triterpene saponin backbone biosynthesis in the 454-EST dataset. In particular, the transcript encoding dammarenediol synthase (DS, which is the first committed enzyme in the biosynthetic pathway of major triterpene saponins, is highly expressed in the root of four-year-old P. notoginseng. It is worth emphasizing that the candidate cytochrome P450 (Pn02132 and Pn00158 and UDP-glycosyltransferase (Pn00082 gene most likely to be involved in hydroxylation or glycosylation of aglycones for triterpene saponin biosynthesis were discovered from 174 cytochrome P450s and 242 glycosyltransferases by phylogenetic analysis, respectively. Putative transcription factors were detected in 906 unique sequences, including Myb, homeobox, WRKY, basic helix-loop-helix (bHLH, and other family proteins. Additionally, a total of 2,772 simple sequence repeat (SSR were identified from 2,361 unique sequences, of which, di-nucleotide motifs were the most abundant motif. Conclusion This study is the first to present a large-scale EST dataset for P. notoginseng root acquired by next

  19. Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers

    Science.gov (United States)

    2011-01-01

    Background Panax notoginseng (Burk) F.H. Chen is important medicinal plant of the Araliacease family. Triterpene saponins are the bioactive constituents in P. notoginseng. However, available genomic information regarding this plant is limited. Moreover, details of triterpene saponin biosynthesis in the Panax species are largely unknown. Results Using the 454 pyrosequencing technology, a one-quarter GS FLX titanium run resulted in 188,185 reads with an average length of 410 bases for P. notoginseng root. These reads were processed and assembled by 454 GS De Novo Assembler software into 30,852 unique sequences. A total of 70.2% of unique sequences were annotated by Basic Local Alignment Search Tool (BLAST) similarity searches against public sequence databases. The Kyoto Encyclopedia of Genes and Genomes (KEGG) assignment discovered 41 unique sequences representing 11 genes involved in triterpene saponin backbone biosynthesis in the 454-EST dataset. In particular, the transcript encoding dammarenediol synthase (DS), which is the first committed enzyme in the biosynthetic pathway of major triterpene saponins, is highly expressed in the root of four-year-old P. notoginseng. It is worth emphasizing that the candidate cytochrome P450 (Pn02132 and Pn00158) and UDP-glycosyltransferase (Pn00082) gene most likely to be involved in hydroxylation or glycosylation of aglycones for triterpene saponin biosynthesis were discovered from 174 cytochrome P450s and 242 glycosyltransferases by phylogenetic analysis, respectively. Putative transcription factors were detected in 906 unique sequences, including Myb, homeobox, WRKY, basic helix-loop-helix (bHLH), and other family proteins. Additionally, a total of 2,772 simple sequence repeat (SSR) were identified from 2,361 unique sequences, of which, di-nucleotide motifs were the most abundant motif. Conclusion This study is the first to present a large-scale EST dataset for P. notoginseng root acquired by next-generation sequencing (NGS

  20. Differential expression of anthocyanin biosynthetic genes in relation to anthocyanin accumulation in the pericarp of Litchi chinensis Sonn.

    Directory of Open Access Journals (Sweden)

    Yong-Zan Wei

    Full Text Available Litchi has diverse fruit color phenotypes, yet no research reflects the biochemical background of this diversity. In this study, we evaluated 12 litchi cultivars for chromatic parameters and pigments, and investigated the effects of abscisic acid, forchlorofenron (CPPU, bagging and debagging treatments on fruit coloration in cv. Feizixiao, an unevenly red cultivar. Six genes encoding chalcone synthase (CHS, chalcone isomerase (CHI, flavanone 3-hydroxylase (F3H, dihydroflavonol 4-reductase (DFR, anthocyanidin synthase (ANS and UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT were isolated from the pericarp of the fully red litchi cv. Nuomici, and their expression was analyzed in different cultivars and under the above mentioned treatments. Pericarp anthocyanin concentration varied from none to 734 mg m(-2 among the 12 litchi cultivars, which were divided into three coloration types, i.e. non-red ('Kuixingqingpitian', 'Xingqiumili', 'Yamulong'and 'Yongxing No. 2', unevenly red ('Feizixiao' and 'Sanyuehong' and fully red ('Meiguili', 'Baila', Baitangying' 'Guiwei', 'Nuomici' and 'Guinuo'. The fully red type cultivars had different levels of anthocyanin but with the same composition. The expression of the six genes, especially LcF3H, LcDFR, LcANS and LcUFGT, in the pericarp of non-red cultivars was much weaker as compared to those red cultivars. Their expression, LcDFR and LcUFGT in particular, was positively correlated with anthocyanin concentrations in the pericarp. These results suggest the late genes in the anthocyanin biosynthetic pathway were coordinately expressed during red coloration of litchi fruits. Low expression of these genes resulted in absence or extremely low anthocyanin accumulation in non-red cultivars. Zero-red pericarp from either immature or CPPU treated fruits appeared to be lacking in anthocyanins due to the absence of UFGT expression. Among these six genes, only the expression of UFGT was found significantly correlated

  1. SCS3 and YFT2 link transcription of phospholipid biosynthetic genes to ER stress and the UPR.

    Directory of Open Access Journals (Sweden)

    Robyn D Moir

    2012-08-01

    Full Text Available The ability to store nutrients in lipid droplets (LDs is an ancient function that provides the primary source of metabolic energy during periods of nutrient insufficiency and between meals. The Fat storage-Inducing Transmembrane (FIT proteins are conserved ER-resident proteins that facilitate fat storage by partitioning energy-rich triglycerides into LDs. FIT2, the ancient ortholog of the FIT gene family first identified in mammals has two homologs in Saccharomyces cerevisiae (SCS3 and YFT2 and other fungi of the Saccharomycotina lineage. Despite the coevolution of these genes for more than 170 million years and their divergence from higher eukaryotes, SCS3, YFT2, and the human FIT2 gene retain some common functions: expression of the yeast genes in a human embryonic kidney cell line promotes LD formation, and expression of human FIT2 in yeast rescues the inositol auxotrophy and chemical and genetic phenotypes of strains lacking SCS3. To better understand the function of SCS3 and YFT2, we investigated the chemical sensitivities of strains deleted for either or both genes and identified synthetic genetic interactions against the viable yeast gene-deletion collection. We show that SCS3 and YFT2 have shared and unique functions that connect major biosynthetic processes critical for cell growth. These include lipid metabolism, vesicular trafficking, transcription of phospholipid biosynthetic genes, and protein synthesis. The genetic data indicate that optimal strain fitness requires a balance between phospholipid synthesis and protein synthesis and that deletion of SCS3 and YFT2 impacts a regulatory mechanism that coordinates these processes. Part of this mechanism involves a role for SCS3 in communicating changes in the ER (e.g. due to low inositol to Opi1-regulated transcription of phospholipid biosynthetic genes. We conclude that SCS3 and YFT2 are required for normal ER membrane biosynthesis in response to perturbations in lipid metabolism and ER

  2. Production of 2-deoxyribose 5-phosphate from fructose to demonstrate a potential of artificial bio-synthetic pathway using thermophilic enzymes.

    Science.gov (United States)

    Honda, Kohsuke; Maya, Shohei; Omasa, Takeshi; Hirota, Ryuichi; Kuroda, Akio; Ohtake, Hisao

    2010-08-02

    Six thermophilic enzymes from Thermus thermophilus were used to construct an 'artificial bio-synthetic pathway' for the production of 2-deoxyribose 5-phosphate from fructose. By a simple operation using six recombinant Escherichia coli strains producing the thermophilic enzymes, respectively, fructose was converted to 2-deoxyribose 5-phosphate with a molar yield of 55%. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Signal Transduction Pathways that Regulate CAB Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Chory, Joanne

    2004-12-31

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  4. Signal Transduction Pathways that Regulate CAB Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Chory, Joanne

    2006-01-16

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  5. Cracking the regulatory code of biosynthetic gene clusters as a strategy for natural product discovery.

    Science.gov (United States)

    Rigali, Sébastien; Anderssen, Sinaeda; Naômé, Aymeric; van Wezel, Gilles P

    2018-01-05

    The World Health Organization (WHO) describes antibiotic resistance as "one of the biggest threats to global health, food security, and development today", as the number of multi- and pan-resistant bacteria is rising dangerously. Acquired resistance phenomena also impair antifungals, antivirals, anti-cancer drug therapy, while herbicide resistance in weeds threatens the crop industry. On the positive side, it is likely that the chemical space of natural products goes far beyond what has currently been discovered. This idea is fueled by genome sequencing of microorganisms which unveiled numerous so-called cryptic biosynthetic gene clusters (BGCs), many of which are transcriptionally silent under laboratory culture conditions, and by the fact that most bacteria cannot yet be cultivated in the laboratory. However, brute force antibiotic discovery does not yield the same results as it did in the past, and researchers have had to develop creative strategies in order to unravel the hidden potential of microorganisms such as Streptomyces and other antibiotic-producing microorganisms. Identifying the cis elements and their corresponding transcription factors(s) involved in the control of BGCs through bioinformatic approaches is a promising strategy. Theoretically, we are a few 'clicks' away from unveiling the culturing conditions or genetic changes needed to activate the production of cryptic metabolites or increase the production yield of known compounds to make them economically viable. In this opinion article, we describe and illustrate the idea beyond 'cracking' the regulatory code for natural product discovery, by presenting a series of proofs of concept, and discuss what still should be achieved to increase the rate of success of this strategy. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Bioenergetic coupling between membrane transport systems and biosynthetic pathways essential for cell cycle progression

    International Nuclear Information System (INIS)

    Leister, K.J.; Cutry, A.F.; Wenner, C.E.

    1986-01-01

    Recently, it has been shown that there exists a point in the cell cycle (approximately 2 h prior to S phase entry) when (Na + /K + )ATPase pump activity is no longer needed for progression through the cycle. These data suggests that pump activity is critical in the biosynthetic processes which enables the cell to proceed through the G 1 phase. A scheme is proposed which is currently being tested that (Na + /K + )ATPase pump activity serves as the driving force in the regulation of other membrane transport processes critical for cell proliferation. For example, in post-confluent quiescent C3H-10T1/2 fibroblasts, when [K + ]/sub o/ is lowered just below the K/sub m/ of the pump for K + there is a 10-fold increase in 3 H-uridine uptake into both acid soluble and insoluble cell fractions. By modulation of the pump in this manner, glucose utilization is enhanced whereas inhibition of the pump by ouabain suppresses glucose utilization. In both methods of affecting the pump, 3 H-leucine incorporation is inhibited. Electron acceptors that influence the redox state of the cell have been shown to both stimulate or inhibit cell cycle progression. Under conditions where [K + ]/sub o/ is lowered, the nucleoside uptake responses observed were modified by electron acceptors depending on the ability to oxidize NAD(P)H directly or to interact with a cytochrome-like component, (e.g. phenazine methosulfate) reversed the enhanced uridine uptake and p-phenylene diamine further enhanced the uridine uptake response. These findings suggest that a plasma membrane redox system (presumably cyt-c like) is linked to nucleoside transport which is subject to (Na + /K + )ATPase activity

  7. High GC Content Cas9-Mediated Genome-Editing and Biosynthetic Gene Cluster Activation in Saccharopolyspora erythraea.

    Science.gov (United States)

    Liu, Yong; Wei, Wen-Ping; Ye, Bang-Ce

    2018-05-18

    The overexpression of bacterial secondary metabolite biosynthetic enzymes is the basis for industrial overproducing strains. Genome editing tools can be used to further improve gene expression and yield. Saccharopolyspora erythraea produces erythromycin, which has extensive clinical applications. In this study, the CRISPR-Cas9 system was used to edit genes in the S. erythraea genome. A temperature-sensitive plasmid containing the PermE promoter, to drive Cas9 expression, and the Pj23119 and PkasO promoters, to drive sgRNAs, was designed. Erythromycin esterase, encoded by S. erythraea SACE_1765, inactivates erythromycin by hydrolyzing the macrolactone ring. Sequencing and qRT-PCR confirmed that reporter genes were successfully inserted into the SACE_1765 gene. Deletion of SACE_1765 in a high-producing strain resulted in a 12.7% increase in erythromycin levels. Subsequent PermE- egfp knock-in at the SACE_0712 locus resulted in an 80.3% increase in erythromycin production compared with that of wild type. Further investigation showed that PermE promoter knock-in activated the erythromycin biosynthetic gene clusters at the SACE_0712 locus. Additionally, deletion of indA (SACE_1229) using dual sgRNA targeting without markers increased the editing efficiency to 65%. In summary, we have successfully applied Cas9-based genome editing to a bacterial strain, S. erythraea, with a high GC content. This system has potential application for both genome-editing and biosynthetic gene cluster activation in Actinobacteria.

  8. IMG-ABC: An Atlas of Biosynthetic Gene Clusters to Fuel the Discovery of Novel Secondary Metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Chen, I-Min; Chu, Ken; Ratner, Anna; Palaniappan, Krishna; Huang, Jinghua; Reddy, T. B.K.; Cimermancic, Peter; Fischbach, Michael; Ivanova, Natalia; Markowitz, Victor; Kyrpides, Nikos; Pati, Amrita

    2014-10-28

    In the discovery of secondary metabolites (SMs), large-scale analysis of sequence data is a promising exploration path that remains largely underutilized due to the lack of relevant computational resources. We present IMG-ABC (https://img.jgi.doe.gov/abc/) -- An Atlas of Biosynthetic gene Clusters within the Integrated Microbial Genomes (IMG) system1. IMG-ABC is a rich repository of both validated and predicted biosynthetic clusters (BCs) in cultured isolates, single-cells and metagenomes linked with the SM chemicals they produce and enhanced with focused analysis tools within IMG. The underlying scalable framework enables traversal of phylogenetic dark matter and chemical structure space -- serving as a doorway to a new era in the discovery of novel molecules.

  9. Reconstitution of Biosynthetic Machinery for the Synthesis of the Highly Elaborated Indole Diterpene Penitrem

    DEFF Research Database (Denmark)

    Liu, Chengwei; Tagami, Koichi; Minami, Atsushi

    2015-01-01

    KULNJ). Importantly, without conventional gene disruption, reconstitution of the biosynthetic machinery provided sufficient data to determine the pathway. It was thus demonstrated that the Aspergillus oryzae reconstitution system is a powerful method for studying the biosynthesis of complex natural products....

  10. Next Generation Sequencing and Transcriptome Analysis Predicts Biosynthetic Pathway of Sennosides from Senna (Cassia angustifolia Vahl., a Non-Model Plant with Potent Laxative Properties.

    Directory of Open Access Journals (Sweden)

    Nagaraja Reddy Rama Reddy

    Full Text Available Senna (Cassia angustifolia Vahl. is a world's natural laxative medicinal plant. Laxative properties are due to sennosides (anthraquinone glycosides natural products. However, little genetic information is available for this species, especially concerning the biosynthetic pathways of sennosides. We present here the transcriptome sequencing of young and mature leaf tissue of Cassia angustifolia using Illumina MiSeq platform that resulted in a total of 6.34 Gb of raw nucleotide sequence. The sequence assembly resulted in 42230 and 37174 transcripts with an average length of 1119 bp and 1467 bp for young and mature leaf, respectively. The transcripts were annotated using NCBI BLAST with 'green plant database (txid 33090', Swiss Prot, Kyoto Encylcopedia of Genes & Genomes (KEGG, Cluster of Orthologous Gene (COG and Gene Ontology (GO. Out of the total transcripts, 40138 (95.0% and 36349 (97.7% from young and mature leaf, respectively, were annotated by BLASTX against green plant database of NCBI. We used InterProscan to see protein similarity at domain level, a total of 34031 (young leaf and 32077 (mature leaf transcripts were annotated against the Pfam domains. All transcripts from young and mature leaf were assigned to 191 KEGG pathways. There were 166 and 159 CDS, respectively, from young and mature leaf involved in metabolism of terpenoids and polyketides. Many CDS encoding enzymes leading to biosynthesis of sennosides were identified. A total of 10,763 CDS differentially expressing in both young and mature leaf libraries of which 2,343 (21.7% CDS were up-regulated in young compared to mature leaf. Several differentially expressed genes found functionally associated with sennoside biosynthesis. CDS encoding for many CYPs and TF families were identified having probable roles in metabolism of primary as well as secondary metabolites. We developed SSR markers for molecular breeding of senna. We have identified a set of putative genes involved in

  11. Next Generation Sequencing and Transcriptome Analysis Predicts Biosynthetic Pathway of Sennosides from Senna (Cassia angustifolia Vahl.), a Non-Model Plant with Potent Laxative Properties.

    Science.gov (United States)

    Rama Reddy, Nagaraja Reddy; Mehta, Rucha Harishbhai; Soni, Palak Harendrabhai; Makasana, Jayanti; Gajbhiye, Narendra Athamaram; Ponnuchamy, Manivel; Kumar, Jitendra

    2015-01-01

    Senna (Cassia angustifolia Vahl.) is a world's natural laxative medicinal plant. Laxative properties are due to sennosides (anthraquinone glycosides) natural products. However, little genetic information is available for this species, especially concerning the biosynthetic pathways of sennosides. We present here the transcriptome sequencing of young and mature leaf tissue of Cassia angustifolia using Illumina MiSeq platform that resulted in a total of 6.34 Gb of raw nucleotide sequence. The sequence assembly resulted in 42230 and 37174 transcripts with an average length of 1119 bp and 1467 bp for young and mature leaf, respectively. The transcripts were annotated using NCBI BLAST with 'green plant database (txid 33090)', Swiss Prot, Kyoto Encylcopedia of Genes & Genomes (KEGG), Cluster of Orthologous Gene (COG) and Gene Ontology (GO). Out of the total transcripts, 40138 (95.0%) and 36349 (97.7%) from young and mature leaf, respectively, were annotated by BLASTX against green plant database of NCBI. We used InterProscan to see protein similarity at domain level, a total of 34031 (young leaf) and 32077 (mature leaf) transcripts were annotated against the Pfam domains. All transcripts from young and mature leaf were assigned to 191 KEGG pathways. There were 166 and 159 CDS, respectively, from young and mature leaf involved in metabolism of terpenoids and polyketides. Many CDS encoding enzymes leading to biosynthesis of sennosides were identified. A total of 10,763 CDS differentially expressing in both young and mature leaf libraries of which 2,343 (21.7%) CDS were up-regulated in young compared to mature leaf. Several differentially expressed genes found functionally associated with sennoside biosynthesis. CDS encoding for many CYPs and TF families were identified having probable roles in metabolism of primary as well as secondary metabolites. We developed SSR markers for molecular breeding of senna. We have identified a set of putative genes involved in various

  12. Aspergillus nidulans as a platform for discovery and characterization of complex biosynthetic pathways

    DEFF Research Database (Denmark)

    Anyaogu, Diana Chinyere

    in industrial applications for the productionof these bioactive compounds and other chemicals as well as for enzyme production. Especially Aspergillusniger and Aspergillus oryzae are used as industrial workhorses for the production of various enzymes. Manyof the secreted proteins are glycosylated, indicating...... aspharmaceuticals. Access to this unexploited reservoir is hampered as many of the clusters are silent orbarely expressed under laboratory conditions. Methods for activating these pathways are thereforeessential for pathway discovery and elucidation.  Filamentous fungi and Aspergillus species in particular are used...... that glycosylation plays an important role in thesecretory pathway. Thus, understanding the role and process of glycosylation will enable directedglycoengineering in Aspergilli to improve protein production and expand the repertoire of proteins, whichcan be produced by these fungi. Aspergillus nidulans has been used...

  13. Responses of Synechocystis sp. PCC 6803 to heterologous biosynthetic pathways

    DEFF Research Database (Denmark)

    Vavitsas, Konstantinos; Rue, Emil Østergaard; Stefánsdóttir, Lára Kristín

    2017-01-01

    BACKGROUND: There are an increasing number of studies regarding genetic manipulation of cyanobacteria to produce commercially interesting compounds. The majority of these works study the expression and optimization of a selected heterologous pathway, largely ignoring the wholeness and complexity...... different compounds, the cyanogenic glucoside dhurrin and the diterpenoid 13R-manoyl oxide in Synechocystis PCC 6803. We used genome-scale metabolic modelling to study fluxes in individual reactions and pathways, and we determined the concentrations of key metabolites, such as amino acids, carotenoids...

  14. Enrichment of provitamin A content in wheat (Triticum aestivum L.) by introduction of the bacterial carotenoid biosynthetic genes CrtB and CrtI.

    Science.gov (United States)

    Wang, Cheng; Zeng, Jian; Li, Yin; Hu, Wei; Chen, Ling; Miao, Yingjie; Deng, Pengyi; Yuan, Cuihong; Ma, Cheng; Chen, Xi; Zang, Mingli; Wang, Qiong; Li, Kexiu; Chang, Junli; Wang, Yuesheng; Yang, Guangxiao; He, Guangyuan

    2014-06-01

    Carotenoid content is a primary determinant of wheat nutritional value and affects its end-use quality. Wheat grains contain very low carotenoid levels and trace amounts of provitamin A content. In order to enrich the carotenoid content in wheat grains, the bacterial phytoene synthase gene (CrtB) and carotene desaturase gene (CrtI) were transformed into the common wheat cultivar Bobwhite. Expression of CrtB or CrtI alone slightly increased the carotenoid content in the grains of transgenic wheat, while co-expression of both genes resulted in a darker red/yellow grain phenotype, accompanied by a total carotenoid content increase of approximately 8-fold achieving 4.76 μg g(-1) of seed dry weight, a β-carotene increase of 65-fold to 3.21 μg g(-1) of seed dry weight, and a provitamin A content (sum of α-carotene, β-carotene, and β-cryptoxanthin) increase of 76-fold to 3.82 μg g(-1) of seed dry weight. The high provitamin A content in the transgenic wheat was stably inherited over four generations. Quantitative PCR analysis revealed that enhancement of provitamin A content in transgenic wheat was also a result of the highly coordinated regulation of endogenous carotenoid biosynthetic genes, suggesting a metabolic feedback regulation in the wheat carotenoid biosynthetic pathway. These transgenic wheat lines are not only valuable for breeding wheat varieties with nutritional benefits for human health but also for understanding the mechanism regulating carotenoid biosynthesis in wheat endosperm. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Evolutionary origins and functions of the carotenoid biosynthetic pathway in marine diatoms

    Czech Academy of Sciences Publication Activity Database

    Coesel, S.; Oborník, Miroslav; Varela, J.; Falciatore, A.; Bowler, C.

    2008-01-01

    Roč. 3, č. 8 (2008), s. 1-16 E-ISSN 1932-6203 R&D Projects: GA AV ČR IAA500220502 Institutional research plan: CEZ:AV0Z60220518 Keywords : marine diatoms * carotenoid pathway * evolution Subject RIV: EB - Genetics ; Molecular Biology

  16. Chapter 3: Omics Advances of Biosynthetic Pathways of Isoprenoid Production in Microalgae

    Energy Technology Data Exchange (ETDEWEB)

    Paniagua-Michel, J.; Subramanian, Venkataramanan

    2017-01-01

    In this chapter, the current status of microalgal isoprenoids and the role of omics technologies, or otherwise specified, in bioproducts optimization and applications are reviewed. Emphasis is focused in the metabolic pathways of microalgae involved in the production of commercially important products, namely, hydrocarbons and biofuels, nutraceuticals, and pharmaceuticals.

  17. Ethylene and 1-MCP regulate major volatile biosynthetic pathways in apple fruit.

    Science.gov (United States)

    Yang, Xiaotang; Song, Jun; Du, Lina; Forney, Charles; Campbell-Palmer, Leslie; Fillmore, Sherry; Wismer, Paul; Zhang, Zhaoqi

    2016-03-01

    The effects of ethylene and 1-methylcyclopropene (1-MCP) on apple fruit volatile biosynthesis and gene expression were investigated. Statistical analysis identified 17 genes that changed significantly in response to ethylene and 1-MCP treatments. Genes encoding branched-chain amino acid aminotransferase (BCAT), aromatic amino acid aminotransferase (ArAT) and amino acid decarboxylases (AADC) were up-regulated during ripening and further enhanced by ethylene treatment. Genes related to fatty acid synthesis and metabolism, including acyl-carrier-proteins (ACPs), malonyl-CoA:ACP transacylase (MCAT), acyl-ACP-desaturase (ACPD), lipoxygenase (LOX), hydroperoxide lyase (HPL), alcohol dehydrogenase (ADH), pyruvate decarboxylase (PDC2), β-oxidation, acyl-CoA synthetase (ACS), enoyl-CoA hydratase (ECHD), acyl-CoA dehydrogenase (ACAD), and alcohol acyltransferases (AATs) also increased during ripening and in response to ethylene treatment. Allene oxide synthase (AOS), alcohol dehydrogenase 1 (ADH1), 3-ketoacyl-CoA thiolase and branched-chain amino acid aminotransferase 2 (BCAT2) decreased in ethylene-treated fruit. Treatment with 1-MCP and ethylene generally produced opposite effects on related genes, which provides evidence that regulation of these genes is ethylene dependent. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  18. Distribution of secondary metabolite biosynthetic gene clusters in 343 Fusarium genomes

    Science.gov (United States)

    Fusarium consists of over 200 phylogenetically distinct species, many of which cause important crop diseases and/or produce mycotoxins and other secondary metabolites (SMs). Some fusaria also cause opportunistic infections in humans and other animals. To investigate the distribution of biosynthetic ...

  19. Rational engineering of p-hydroxybenzoate hydroxylase to enable efficient gallic acid synthesis via a novel artificial biosynthetic pathway.

    Science.gov (United States)

    Chen, Zhenya; Shen, Xiaolin; Wang, Jian; Wang, Jia; Yuan, Qipeng; Yan, Yajun

    2017-11-01

    Gallic acid (GA) is a naturally occurring phytochemical that has strong antioxidant and antibacterial activities. It is also used as a potential platform chemical for the synthesis of diverse high-value compounds. Hydrolytic degradation of tannins by acids, bases or microorganisms serves as a major way for GA production, which however, might cause environmental pollution and low yield and efficiency. Here, we report a novel approach for efficient microbial production of GA. First, structure-based rational engineering of PobA, a p-hydroxybenzoate hydroxylase from Pseudomonas aeruginosa, generated a new mutant, Y385F/T294A PobA, which displayed much higher activity toward 3,4-dihydroxybenzoic acid (3,4-DHBA) than the wild-type and any other reported mutants. Remarkably, expression of this mutant in Escherichia coli enabled generation of 1149.59 mg/L GA from 1000 mg/L 4-hydroxybenzoic acid (4-HBA), representing a 93% molar conversion ratio. Based on that, we designed and reconstituted a novel artificial biosynthetic pathway of GA and achieved 440.53 mg/L GA production from simple carbon sources in E. coli. Further enhancement of precursor supply through reinforcing shikimate pathway was able to improve GA de novo production to 1266.39 mg/L in shake flasks. Overall, this study not only led to the development of a highly active PobA variant for hydroxylating 3,4-DHBA into GA via structure-based protein engineering approach, but also demonstrated a promising pathway for bio-based manufacturing of GA and its derived compounds. Biotechnol. Bioeng. 2017;114: 2571-2580. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Functional characterization of KanP, a methyltransferase from the kanamycin biosynthetic gene cluster of Streptomyces kanamyceticus.

    Science.gov (United States)

    Nepal, Keshav Kumar; Yoo, Jin Cheol; Sohng, Jae Kyung

    2010-09-20

    KanP, a putative methyltransferase, is located in the kanamycin biosynthetic gene cluster of Streptomyces kanamyceticus ATCC12853. Amino acid sequence analysis of KanP revealed the presence of S-adenosyl-L-methionine binding motifs, which are present in other O-methyltransferases. The kanP gene was expressed in Escherichia coli BL21 (DE3) to generate the E. coli KANP recombinant strain. The conversion of external quercetin to methylated quercetin in the culture extract of E. coli KANP proved the function of kanP as S-adenosyl-L-methionine-dependent methyltransferase. This is the first report concerning the identification of an O-methyltransferase gene from the kanamycin gene cluster. The resistant activity assay and RT-PCR analysis demonstrated the leeway for obtaining methylated kanamycin derivatives from the wild-type strain of kanamycin producer. 2009 Elsevier GmbH. All rights reserved.

  1. Selectively improving nikkomycin Z production by blocking the imidazolone biosynthetic pathway of nikkomycin X and uracil feeding in Streptomyces ansochromogenes

    Directory of Open Access Journals (Sweden)

    Yang Haihua

    2009-11-01

    Full Text Available Abstract Background Nikkomycins are a group of peptidyl nucleoside antibiotics and act as potent inhibitors of chitin synthases in fungi and insects. Nikkomycin X and Z are the main components produced by Streptomyces ansochromogenes. Of them, nikkomycin Z is a promising antifungal agent with clinical significance. Since highly structural similarities between nikkomycin Z and X, separation of nikkomycin Z from the culture medium of S. ansochromogenes is difficult. Thus, generating a nikkomycin Z selectively producing strain is vital to scale up the nikkomycin Z yields for clinical trials. Results A nikkomycin Z producing strain (sanPDM was constructed by blocking the imidazolone biosynthetic pathway of nikkomycin X via genetic manipulation and yielded 300 mg/L nikkomycin Z and abolished the nikkomycin X production. To further increase the yield of nikkomycin Z, the effects of different precursors on its production were investigated. Precursors of nucleoside moiety (uracil or uridine had a stimulatory effect on nikkomycin Z production while precursors of peptidyl moiety (L-lysine and L-glutamate had no effect. sanPDM produced the maximum yields of nikkomycin Z (800 mg/L in the presence of uracil at the concentration of 2 g/L and it was approximately 2.6-fold higher than that of the parent strain. Conclusion A high nikkomycin Z selectively producing was obtained by genetic manipulation combined with precursors feeding. The strategy presented here might be applicable in other bacteria to selectively produce targeted antibiotics.

  2. Evolution of the Tetrapyrrole Biosynthetic Pathway in Secondary Algae: Conservation, Redundancy and Replacement

    Czech Academy of Sciences Publication Activity Database

    Cihlář, Jaromír; Füssy, Zoltán; Horák, Aleš; Oborník, Miroslav

    2016-01-01

    Roč. 11, č. 11 (2016), č. článku e0166338. E-ISSN 1932-6203 R&D Projects: GA ČR GAP506/12/1522 Institutional support: RVO:60077344 Keywords : delta aminolevulinic acid * plastid evolution * Euglena gracilis * gene transfer * diatom endosymbionts * Bigelowiella natans * chloroplast genome * sequence alignment * nuclear genomes * protein import Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.806, year: 2016

  3. Exploring triacylglycerol biosynthetic pathway in developing seeds of Chia (Salvia hispanica L.: a transcriptomic approach.

    Directory of Open Access Journals (Sweden)

    Sreedhar R V

    Full Text Available Chia (Salvia hispanica L., a member of the mint family (Lamiaceae, is a rediscovered crop with great importance in health and nutrition and is also the highest known terrestrial plant source of heart-healthy omega-3 fatty acid, alpha linolenic acid (ALA. At present, there is no public genomic information or database available for this crop, hindering research on its genetic improvement through genomics-assisted breeding programs. The first comprehensive analysis of the global transcriptome profile of developing Salvia hispanica L. seeds, with special reference to lipid biosynthesis is presented in this study. RNA from five different stages of seed development was extracted and sequenced separately using the Illumina GAIIx platform. De novo assembly of processed reads in the pooled transcriptome using Trinity yielded 76,014 transcripts. The total transcript length was 66,944,462 bases (66.9 Mb, with an average length of approximately 880 bases. In the molecular functions category of Gene Ontology (GO terms, ATP binding and nucleotide binding were found to be the most abundant and in the biological processes category, the metabolic process and the regulation of transcription-DNA-dependent and oxidation-reduction process were abundant. From the EuKaryotic Orthologous Groups of proteins (KOG classification, the major category was "Metabolism" (31.97%, of which the most prominent class was 'carbohydrate metabolism and transport' (5.81% of total KOG classifications followed by 'secondary metabolite biosynthesis transport and catabolism' (5.34% and 'lipid metabolism' (4.57%. A majority of the candidate genes involved in lipid biosynthesis and oil accumulation were identified. Furthermore, 5596 simple sequence repeats (SSRs were identified. The transcriptome data was further validated through confirmative PCR and qRT-PCR for select lipid genes. Our study provides insight into the complex transcriptome and will contribute to further genome-wide research

  4. IMG-ABC: A Knowledge Base To Fuel Discovery of Biosynthetic Gene Clusters and Novel Secondary Metabolites.

    Science.gov (United States)

    Hadjithomas, Michalis; Chen, I-Min Amy; Chu, Ken; Ratner, Anna; Palaniappan, Krishna; Szeto, Ernest; Huang, Jinghua; Reddy, T B K; Cimermančič, Peter; Fischbach, Michael A; Ivanova, Natalia N; Markowitz, Victor M; Kyrpides, Nikos C; Pati, Amrita

    2015-07-14

    In the discovery of secondary metabolites, analysis of sequence data is a promising exploration path that remains largely underutilized due to the lack of computational platforms that enable such a systematic approach on a large scale. In this work, we present IMG-ABC (https://img.jgi.doe.gov/abc), an atlas of biosynthetic gene clusters within the Integrated Microbial Genomes (IMG) system, which is aimed at harnessing the power of "big" genomic data for discovering small molecules. IMG-ABC relies on IMG's comprehensive integrated structural and functional genomic data for the analysis of biosynthetic gene clusters (BCs) and associated secondary metabolites (SMs). SMs and BCs serve as the two main classes of objects in IMG-ABC, each with a rich collection of attributes. A unique feature of IMG-ABC is the incorporation of both experimentally validated and computationally predicted BCs in genomes as well as metagenomes, thus identifying BCs in uncultured populations and rare taxa. We demonstrate the strength of IMG-ABC's focused integrated analysis tools in enabling the exploration of microbial secondary metabolism on a global scale, through the discovery of phenazine-producing clusters for the first time in Alphaproteobacteria. IMG-ABC strives to fill the long-existent void of resources for computational exploration of the secondary metabolism universe; its underlying scalable framework enables traversal of uncovered phylogenetic and chemical structure space, serving as a doorway to a new era in the discovery of novel molecules. IMG-ABC is the largest publicly available database of predicted and experimental biosynthetic gene clusters and the secondary metabolites they produce. The system also includes powerful search and analysis tools that are integrated with IMG's extensive genomic/metagenomic data and analysis tool kits. As new research on biosynthetic gene clusters and secondary metabolites is published and more genomes are sequenced, IMG-ABC will continue to

  5. Genetic Characterization of the Carotenoid Biosynthetic Pathway in Methylobacterium extorquens AM1 and Isolation of a Colorless Mutant

    OpenAIRE

    Van Dien, Stephen J.; Marx, Christopher J.; O'Brien, Brooke N.; Lidstrom, Mary E.

    2003-01-01

    Genomic searches were used to reconstruct the putative carotenoid biosynthesis pathway in the pink-pigmented facultative methylotroph Methylobacterium extorquens AM1. Four genes for putative phytoene desaturases were identified. A colorless mutant was obtained by transposon mutagenesis, and the insertion was shown to be in one of the putative phytoene desaturase genes. Mutations in the other three did not affect color. The tetracycline marker was removed from the original transposon mutant, r...

  6. Cloning, reassembling and integration of the entire nikkomycin biosynthetic gene cluster into Streptomyces ansochromogenes lead to an improved nikkomycin production

    Directory of Open Access Journals (Sweden)

    Yang Haihua

    2010-01-01

    Full Text Available Abstract Background Nikkomycins are a group of peptidyl nucleoside antibiotics produced by Streptomyces ansochromogenes. They are competitive inhibitors of chitin synthase and show potent fungicidal, insecticidal, and acaricidal activities. Nikkomycin X and Z are the main components produced by S. ansochromogenes. Generation of a high-producing strain is crucial to scale up nikkomycins production for further clinical trials. Results To increase the yields of nikkomycins, an additional copy of nikkomycin biosynthetic gene cluster (35 kb was introduced into nikkomycin producing strain, S. ansochromogenes 7100. The gene cluster was first reassembled into an integrative plasmid by Red/ET technology combining with classic cloning methods and then the resulting plasmid(pNIKwas introduced into S. ansochromogenes by conjugal transfer. Introduction of pNIK led to enhanced production of nikkomycins (880 mg L-1, 4 -fold nikkomycin X and 210 mg L-1, 1.8-fold nikkomycin Z in the resulting exconjugants comparing with the parent strain (220 mg L-1 nikkomycin X and 120 mg L-1 nikkomycin Z. The exconjugants are genetically stable in the absence of antibiotic resistance selection pressure. Conclusion A high nikkomycins producing strain (1100 mg L-1 nikkomycins was obtained by introduction of an extra nikkomycin biosynthetic gene cluster into the genome of S. ansochromogenes. The strategies presented here could be applicable to other bacteria to improve the yields of secondary metabolites.

  7. Antibiotic discovery throughout the Small World Initiative: A molecular strategy to identify biosynthetic gene clusters involved in antagonistic activity.

    Science.gov (United States)

    Davis, Elizabeth; Sloan, Tyler; Aurelius, Krista; Barbour, Angela; Bodey, Elijah; Clark, Brigette; Dennis, Celeste; Drown, Rachel; Fleming, Megan; Humbert, Allison; Glasgo, Elizabeth; Kerns, Trent; Lingro, Kelly; McMillin, MacKenzie; Meyer, Aaron; Pope, Breanna; Stalevicz, April; Steffen, Brittney; Steindl, Austin; Williams, Carolyn; Wimberley, Carmen; Zenas, Robert; Butela, Kristen; Wildschutte, Hans

    2017-06-01

    The emergence of bacterial pathogens resistant to all known antibiotics is a global health crisis. Adding to this problem is that major pharmaceutical companies have shifted away from antibiotic discovery due to low profitability. As a result, the pipeline of new antibiotics is essentially dry and many bacteria now resist the effects of most commonly used drugs. To address this global health concern, citizen science through the Small World Initiative (SWI) was formed in 2012. As part of SWI, students isolate bacteria from their local environments, characterize the strains, and assay for antibiotic production. During the 2015 fall semester at Bowling Green State University, students isolated 77 soil-derived bacteria and genetically characterized strains using the 16S rRNA gene, identified strains exhibiting antagonistic activity, and performed an expanded SWI workflow using transposon mutagenesis to identify a biosynthetic gene cluster involved in toxigenic compound production. We identified one mutant with loss of antagonistic activity and through subsequent whole-genome sequencing and linker-mediated PCR identified a 24.9 kb biosynthetic gene locus likely involved in inhibitory activity in that mutant. Further assessment against human pathogens demonstrated the inhibition of Bacillus cereus, Listeria monocytogenes, and methicillin-resistant Staphylococcus aureus in the presence of this compound, thus supporting our molecular strategy as an effective research pipeline for SWI antibiotic discovery and genetic characterization. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  8. tRNA-dependent cysteine biosynthetic pathway represents a strategy to increase cysteine contents by preventing it from thermal degradation: thermal adaptation of methanogenic archaea ancestor.

    Science.gov (United States)

    Qu, Ge; Wang, Wei; Chen, Ling-Ling; Qian, Shao-Song; Zhang, Hong-Yu

    2009-10-01

    Although cysteine (Cys) is beneficial to stabilize protein structures, it is not prevalent in thermophiles. For instance, the Cys contents in most thermophilic archaea are only around 0.7%. However, methanogenic archaea, no matter thermophilic or not, contain relatively abundant Cys, which remains elusive for a long time. Recently, Klipcan et al. correlated this intriguing property of methanogenic archaea with their unique tRNA-dependent Cys biosynthetic pathway. But, the deep reasons underlying the correlation are ambiguous. Considering the facts that free Cys is thermally labile and the tRNA-dependent Cys biosynthesis avoids the use of free Cys, we speculate that the unique Cys biosynthetic pathway represents a strategy to increase Cys contents by preventing it from thermal degradation, which may be relevant to the thermal adaptation of methanogenic archaea ancestor.

  9. Novel acetylcholinesterase inhibitors from Zijuan tea and biosynthetic pathway of caffeoylated catechin in tea plant.

    Science.gov (United States)

    Wang, Wei; Fu, Xi-Wen; Dai, Xin-Long; Hua, Fang; Chu, Gang-Xiu; Chu, Ming-Jie; Hu, Feng-Lin; Ling, Tie-Jun; Gao, Li-Ping; Xie, Zhong-Wen; Wan, Xiao-Chun; Bao, Guan-Hu

    2017-12-15

    Zijuan tea is a special cultivar of Yunnan broad-leaf tea (Camellia sinensis var. assamica) with purple buds, leaves, and stems. Phytochemical study on this tea led to the discovery of three hydroxycinnamoylated catechins (HCCs) (1-3), seven other catechins (4-10), three proanthocyanidins (11-13), five flavones and flavone glycosides (14-18), two alkaloids (19, 20), one steroid (21), and one phenylpropanoid glycoside (22). The isolation and structural elucidation of the caffeoylated catechin (1) by means of spectroscopic techniques were described. We also provide the first evidence that 1 is synthesized via a two-step pathway in tea plant. The three HCCs (1-3) were investigated on their bioactivity through molecular modeling simulation and biochemical experiments. Our results show that they bind acetylcholinesterase (AChE) tightly and have strong AChE inhibitory activity with IC 50 value at 2.49, 11.41, 62.26μM, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Early Phenylpropanoid Biosynthetic Steps in Cannabis sativa: Link between Genes and Metabolites

    Directory of Open Access Journals (Sweden)

    Immacolata Coraggio

    2013-06-01

    Full Text Available Phenylalanine ammonia-lyase (PAL, Cinnamic acid 4-hydroxylase (C4H and 4-Coumarate: CoA ligase (4CL catalyze the first three steps of the general phenylpropanoid pathway whereas chalcone synthase (CHS catalyzes the first specific step towards flavonoids production. This class of specialized metabolites has a wide range of biological functions in plant development and defence and a broad spectrum of therapeutic activities for human health. In this study, we report the isolation of hemp PAL and 4CL cDNA and genomic clones. Through in silico analysis of their deduced amino acid sequences, more than an 80% identity with homologues genes of other plants was shown and phylogenetic relationships were highlighted. Quantitative expression analysis of the four above mentioned genes, PAL and 4CL enzymatic activities, lignin content and NMR metabolite fingerprinting in different Cannabis sativa tissues were evaluated. Furthermore, the use of different substrates to assay PAL and 4CL enzymatic activities indicated that different isoforms were active in different tissues. The diversity in secondary metabolites content observed in leaves (mainly flavonoids and roots (mainly lignin was discussed in relation to gene expression and enzymatic activities data.

  11. Early phenylpropanoid biosynthetic steps in Cannabis sativa: link between genes and metabolites.

    Science.gov (United States)

    Docimo, Teresa; Consonni, Roberto; Coraggio, Immacolata; Mattana, Monica

    2013-06-28

    Phenylalanine ammonia-lyase (PAL), Cinnamic acid 4-hydroxylase (C4H) and 4-Coumarate: CoA ligase (4CL) catalyze the first three steps of the general phenylpropanoid pathway whereas chalcone synthase (CHS) catalyzes the first specific step towards flavonoids production. This class of specialized metabolites has a wide range of biological functions in plant development and defence and a broad spectrum of therapeutic activities for human health. In this study, we report the isolation of hemp PAL and 4CL cDNA and genomic clones. Through in silico analysis of their deduced amino acid sequences, more than an 80% identity with homologues genes of other plants was shown and phylogenetic relationships were highlighted. Quantitative expression analysis of the four above mentioned genes, PAL and 4CL enzymatic activities, lignin content and NMR metabolite fingerprinting in different Cannabis sativa tissues were evaluated. Furthermore, the use of different substrates to assay PAL and 4CL enzymatic activities indicated that different isoforms were active in different tissues. The diversity in secondary metabolites content observed in leaves (mainly flavonoids) and roots (mainly lignin) was discussed in relation to gene expression and enzymatic activities data.

  12. Genetic and metabolomic dissection of the ergothioneine and selenoneine biosynthetic pathway in the fission yeast, S. pombe, and construction of an overproduction system.

    Directory of Open Access Journals (Sweden)

    Tomáš Pluskal

    Full Text Available Ergothioneine is a small, sulfur-containing metabolite (229 Da synthesized by various species of bacteria and fungi, which can accumulate to millimolar levels in tissues or cells (e.g. erythrocytes of higher eukaryotes. It is commonly marketed as a dietary supplement due to its proposed protective and antioxidative functions. In this study we report the genes forming the two-step ergothioneine biosynthetic pathway in the fission yeast, Schizosaccharomyces pombe. We identified the first gene, egt1+ (SPBC1604.01, by sequence homology to previously published genes from Neurospora crassa and Mycobacterium smegmatis. We showed, using metabolomic analysis, that the Δegt1 deletion mutant completely lacked ergothioneine and its precursors (trimethyl histidine/hercynine and hercynylcysteine sulfoxide. Since the second step of ergothioneine biosynthesis has not been characterized in eukaryotes, we examined four putative homologs (Nfs1/SPBC21D10.11c, SPAC11D3.10, SPCC777.03c, and SPBC660.12c of the corresponding mycobacterial enzyme EgtE. Among deletion mutants of these genes, only one (ΔSPBC660.12c, designated Δegt2 showed a substantial decrease in ergothioneine, accompanied by accumulation of its immediate precursor, hercynylcysteine sulfoxide. Ergothioneine-deficient strains exhibited no phenotypic defects during vegetative growth or quiescence. To effectively study the role of ergothioneine, we constructed an egt1+ overexpression system by replacing its native promoter with the nmt1+ promoter, which is inducible in the absence of thiamine. We employed three versions of the nmt1 promoter with increasing strength of expression and confirmed corresponding accumulations of ergothioneine. We quantified the intracellular concentration of ergothioneine in S. pombe (0.3, 157.4, 41.6, and up to 1606.3 µM in vegetative, nitrogen-starved, glucose-starved, and egt1+-overexpressing cells, respectively and described its gradual accumulation under long

  13. Metabolic engineering of the Stevia rebaudiana ent-kaurene biosynthetic pathway in recombinant Escherichia coli.

    Science.gov (United States)

    Kong, Min Kyung; Kang, Hyun-Jun; Kim, Jin Ho; Oh, Soon Hwan; Lee, Pyung Cheon

    2015-11-20

    The ent-kaurene is a dedicated precursor pool and is responsible for synthesizing natural sweeteners such as steviol glycosides. In this study, to produce ent-kaurene in Escherichia coli, we modularly constructed and expressed two ent-kaurene genes encoding ent-copalyl diphosphate synthase (CPPS) and ent-kaurene synthase (KS) from Stevia rebaudiana known as a typical plant producing steviol glycoside. The CPPS and KS from S. rebaudiana were functionally expressed in a heterologous host E. coli. Furthermore, in order to enhance ent-kaurene production in E. coli, six geranylgeranyl diphosphate synthases (GGPPS) from various microorganisms and eight strains of E. coli as host were compared by measuring ent-kaurene production. The highest ent-kaurene production of approximately 41.1mg/L was demonstrated in E. coli strain MG1655 co-expressing synthetic CPPS-KS module and GGPPS from Rhodobacter sphaeroides. The ent-kaurene production was further increased up to 179.6 mg/L by overexpression of the three key enzymes for isoprenoid precursor, 1-deoxyxylulose-5-phosphate synthase (DXS), farnesyl diphosphate synthase (IspA) and isopentenyl diphosphate isomerase (IDI) from E. coli. Finally, the highest titer of ent-kaurene (578 mg/L) with a specific yield of ent-kaurene of 143.5mg/g dry cell weight was obtained by culturing E. coli strain MG1655 co-expressing the ent-kaurene module, DXS, IDI and IspA in 1L bioreactor containing 20 g/L glycerol. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Biosynthetic routes of hydroxylated carotenoids (xanthophylls) in Marchantia polymorpha, and production of novel and rare xanthophylls through pathway engineering in Escherichia coli.

    Science.gov (United States)

    Takemura, Miho; Maoka, Takashi; Misawa, Norihiko

    2015-03-01

    MpBHY codes for a carotene β-ring 3(,3')-hydroxylase responsible for both zeaxanthin and lutein biosynthesis in liverwort. MpCYP97C functions as an ε-ring hydroxylase (zeinoxanthin 3'-hydroxylase) to produce lutein in liverwort. Xanthophylls are oxygenated or hydroxylated carotenes that are most abundant in the light-harvesting complexes of plants. The plant-type xanthophylls consist of α-xanthophyll (lutein) and β-xanthophylls (zeaxanthin, antheraxanthin, violaxanthin and neoxanthin). The α-xanthophyll and β-xanthophylls are derived from α-carotene and β-carotene by carotene hydroxylase activities, respectively. β-Ring 3,3'-hydroxylase that mediates the route of zeaxanthin from β-carotene via β-cryptoxanthin is present in higher plants and is encoded by the BHY (BCH) gene. On the other hand, CYP97A (or BHY) and CYP97C genes are responsible for β-ring 3-hydroxylation and ε-ring 3'-hydroxylation, respectively, in routes from α-carotene to lutein. To elucidate the evolution of the biosynthetic routes of such hydroxylated carotenoids from carotenes in land plants, we identified and functionally analyzed carotenoid hydroxylase genes of liverwort Marchantia polymorpha L. Three genes homologous to higher plants, BHY, CYP97A, and CYP97C, were isolated and named MpBHY, MpCYP97A, and MpCYP97C, respectively. MpBHY was found to code for β-ring hydroxylase, which is responsible for both routes starting from β-carotene and α-carotene. MpCYP97C functioned as an ε-ring hydroxylase not for α-carotene but for zeinoxanthin, while MpCYP97A showed no hydroxylation activity for β-carotene or α-carotene. These findings suggest the original functions of the hydroxylation enzymes of carotenes in land plants, which are thought to diversify in higher plants. In addition, we generated recombinant Escherichia coli cells, which produced rare and novel carotenoids such as α-echinenone and 4-ketozeinoxanthin, through pathway engineering using bacterial carotenogenic genes

  15. The Distribution of Coumarins and Furanocoumarins in Citrus Species Closely Matches Citrus Phylogeny and Reflects the Organization of Biosynthetic Pathways.

    Directory of Open Access Journals (Sweden)

    Audray Dugrand-Judek

    Full Text Available Citrus plants are able to produce defense compounds such as coumarins and furanocoumarins to cope with herbivorous insects and pathogens. In humans, these chemical compounds are strong photosensitizers and can interact with medications, leading to the "grapefruit juice effect". Removing coumarins and furanocoumarins from food and cosmetics imply additional costs and might alter product quality. Thus, the selection of Citrus cultivars displaying low coumarin and furanocoumarin contents constitutes a valuable alternative. In this study, we performed ultra-performance liquid chromatography coupled with mass spectrometry analyses to determine the contents of these compounds within the peel and the pulp of 61 Citrus species representative of the genetic diversity all Citrus. Generally, Citrus peel contains larger diversity and higher concentrations of coumarin/furanocoumarin than the pulp of the same fruits. According to the chemotypes found in the peel, Citrus species can be separated into 4 groups that correspond to the 4 ancestral taxa (pummelos, mandarins, citrons and papedas and extended with their respective secondary species descendants. Three of the 4 ancestral taxa (pummelos, citrons and papedas synthesize high amounts of these compounds, whereas mandarins appear practically devoid of them. Additionally, all ancestral taxa and their hybrids are logically organized according to the coumarin and furanocoumarin pathways described in the literature. This organization allows hypotheses to be drawn regarding the biosynthetic origin of compounds for which the biogenesis remains unresolved. Determining coumarin and furanocoumarin contents is also helpful for hypothesizing the origin of Citrus species for which the phylogeny is presently not firmly established. Finally, this work also notes favorable hybridization schemes that will lead to low coumarin and furanocoumarin contents, and we propose to select mandarins and Ichang papeda as Citrus

  16. Plasmid-encoded biosynthetic genes alleviate metabolic disadvantages while increasing glucose conversion to shikimate in an engineered Escherichia coli strain.

    Science.gov (United States)

    Rodriguez, Alberto; Martínez, Juan A; Millard, Pierre; Gosset, Guillermo; Portais, Jean-Charles; Létisse, Fabien; Bolivar, Francisco

    2017-06-01

    Metabolic engineering strategies applied over the last two decades to produce shikimate (SA) in Escherichia coli have resulted in a battery of strains bearing many expression systems. However, the effects that these systems have on the host physiology and how they impact the production of SA are still not well understood. In this work we utilized an engineered E. coli strain to determine the consequences of carrying a vector that promotes SA production from glucose with a high-yield but that is also expected to impose a significant cellular burden. Kinetic comparisons in fermentors showed that instead of exerting a negative effect, the sole presence of the plasmid increased glucose consumption without diminishing the growth rate. By constitutively expressing a biosynthetic operon from this vector, the more active glycolytic metabolism was exploited to redirect intermediates toward the production of SA, which further increased the glucose consumption rate and avoided excess acetate production. Fluxomics and metabolomics experiments revealed a global remodeling of the carbon and energy metabolism in the production strain, where the increased SA production reduced the carbon available for oxidative and fermentative pathways. Moreover, the results showed that the production of SA relies on a specific setup of the pentose phosphate pathway, where both its oxidative and non-oxidative branches are strongly activated to supply erythrose-4-phosphate and balance the NADPH requirements. This work improves our understanding of the metabolic reorganization observed in E. coli in response to the plasmid-based expression of the SA biosynthetic pathway. Biotechnol. Bioeng. 2017;114: 1319-1330. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Genetic Characterization of the Carotenoid Biosynthetic Pathway in Methylobacterium extorquens AM1 and Isolation of a Colorless Mutant

    Science.gov (United States)

    Van Dien, Stephen J.; Marx, Christopher J.; O'Brien, Brooke N.; Lidstrom, Mary E.

    2003-01-01

    Genomic searches were used to reconstruct the putative carotenoid biosynthesis pathway in the pink-pigmented facultative methylotroph Methylobacterium extorquens AM1. Four genes for putative phytoene desaturases were identified. A colorless mutant was obtained by transposon mutagenesis, and the insertion was shown to be in one of the putative phytoene desaturase genes. Mutations in the other three did not affect color. The tetracycline marker was removed from the original transposon mutant, resulting in a pigment-free strain with wild-type growth properties useful as a tool for future experiments. PMID:14660416

  18. Genetic characterization of the carotenoid biosynthetic pathway in Methylobacterium extorquens AM1 and isolation of a colorless mutant.

    Science.gov (United States)

    Van Dien, Stephen J; Marx, Christopher J; O'Brien, Brooke N; Lidstrom, Mary E

    2003-12-01

    Genomic searches were used to reconstruct the putative carotenoid biosynthesis pathway in the pink-pigmented facultative methylotroph Methylobacterium extorquens AM1. Four genes for putative phytoene desaturases were identified. A colorless mutant was obtained by transposon mutagenesis, and the insertion was shown to be in one of the putative phytoene desaturase genes. Mutations in the other three did not affect color. The tetracycline marker was removed from the original transposon mutant, resulting in a pigment-free strain with wild-type growth properties useful as a tool for future experiments.

  19. Genetic interrelations in the actinomycin biosynthetic gene clusters of Streptomyces antibioticus IMRU 3720 and Streptomyces chrysomallus ATCC11523, producers of actinomycin X and actinomycin C

    Science.gov (United States)

    Crnovčić, Ivana; Rückert, Christian; Semsary, Siamak; Lang, Manuel; Kalinowski, Jörn; Keller, Ullrich

    2017-01-01

    Sequencing the actinomycin (acm) biosynthetic gene cluster of Streptomyces antibioticus IMRU 3720, which produces actinomycin X (Acm X), revealed 20 genes organized into a highly similar framework as in the bi-armed acm C biosynthetic gene cluster of Streptomyces chrysomallus but without an attached additional extra arm of orthologues as in the latter. Curiously, the extra arm of the S. chrysomallus gene cluster turned out to perfectly match the single arm of the S. antibioticus gene cluster in the same order of orthologues including the the presence of two pseudogenes, scacmM and scacmN, encoding a cytochrome P450 and its ferredoxin, respectively. Orthologues of the latter genes were both missing in the principal arm of the S. chrysomallus acm C gene cluster. All orthologues of the extra arm showed a G +C-contents different from that of their counterparts in the principal arm. Moreover, the similarities of translation products from the extra arm were all higher to the corresponding translation products of orthologue genes from the S. antibioticus acm X gene cluster than to those encoded by the principal arm of their own gene cluster. This suggests that the duplicated structure of the S. chrysomallus acm C biosynthetic gene cluster evolved from previous fusion between two one-armed acm gene clusters each from a different genetic background. However, while scacmM and scacmN in the extra arm of the S. chrysomallus acm C gene cluster are mutated and therefore are non-functional, their orthologues saacmM and saacmN in the S. antibioticus acm C gene cluster show no defects seemingly encoding active enzymes with functions specific for Acm X biosynthesis. Both acm biosynthetic gene clusters lack a kynurenine-3-monooxygenase gene necessary for biosynthesis of 3-hydroxy-4-methylanthranilic acid, the building block of the Acm chromophore, which suggests participation of a genome-encoded relevant monooxygenase during Acm biosynthesis in both S. chrysomallus and S

  20. Genetic interrelations in the actinomycin biosynthetic gene clusters of Streptomyces antibioticus IMRU 3720 and Streptomyces chrysomallus ATCC11523, producers of actinomycin X and actinomycin C

    Directory of Open Access Journals (Sweden)

    Crnovčić I

    2017-04-01

    Full Text Available Ivana Crnovčić,1 Christian Rückert,2 Siamak Semsary,1 Manuel Lang,1 Jörn Kalinowski,2 Ullrich Keller1 1Institut für Chemie, Technische Universität Berlin, Berlin-Charlottenburg, 2Technology Platform Genomics, Center for Biotechnology, Bielefeld University, Bielefeld, Germany Abstract: Sequencing the actinomycin (acm biosynthetic gene cluster of Streptomyces antibioticus IMRU 3720, which produces actinomycin X (Acm X, revealed 20 genes organized into a highly similar framework as in the bi-armed acm C biosynthetic gene cluster of Streptomyces chrysomallus but without an attached additional extra arm of orthologues as in the latter. Curiously, the extra arm of the S. chrysomallus gene cluster turned out to perfectly match the single arm of the S. antibioticus gene cluster in the same order of orthologues including the the presence of two pseudogenes, scacmM and scacmN, encoding a cytochrome P450 and its ferredoxin, respectively. Orthologues of the latter genes were both missing in the principal arm of the S. chrysomallus acm C gene cluster. All orthologues of the extra arm showed a G +C-contents different from that of their counterparts in the principal arm. Moreover, the similarities of translation products from the extra arm were all higher to the corresponding translation products of orthologue genes from the S. antibioticus acm X gene cluster than to those encoded by the principal arm of their own gene cluster. This suggests that the duplicated structure of the S. chrysomallus acm C biosynthetic gene cluster evolved from previous fusion between two one-armed acm gene clusters each from a different genetic background. However, while scacmM and scacmN in the extra arm of the S. chrysomallus acm C gene cluster are mutated and therefore are non-functional, their orthologues saacmM and saacmN in the S. antibioticus acm C gene cluster show no defects seemingly encoding active enzymes with functions specific for Acm X biosynthesis. Both acm

  1. Functional genomics reveals increases in cholesterol biosynthetic genes and highly unsaturated fatty acid biosynthesis after dietary substitution of fish oil with vegetable oils in Atlantic salmon (Salmo salar

    Directory of Open Access Journals (Sweden)

    Bron James E

    2008-06-01

    Full Text Available Abstract Background There is an increasing drive to replace fish oil (FO in finfish aquaculture diets with vegetable oils (VO, driven by the short supply of FO derived from wild fish stocks. However, little is known of the consequences for fish health after such substitution. The effect of dietary VO on hepatic gene expression, lipid composition and growth was determined in Atlantic salmon (Salmo salar, using a combination of cDNA microarray, lipid, and biochemical analysis. FO was replaced with VO, added to diets as rapeseed (RO, soybean (SO or linseed (LO oils. Results Dietary VO had no major effect on growth of the fish, but increased the whole fish protein contents and tended to decrease whole fish lipid content, thus increasing the protein:lipid ratio. Expression levels of genes of the highly unsaturated fatty acid (HUFA and cholesterol biosynthetic pathways were increased in all vegetable oil diets as was SREBP2, a master transcriptional regulator of these pathways. Other genes whose expression was increased by feeding VO included those of NADPH generation, lipid transport, peroxisomal fatty acid oxidation, a marker of intracellular lipid accumulation, and protein and RNA processing. Consistent with these results, HUFA biosynthesis, hepatic β-oxidation activity and enzymic NADPH production were changed by VO, and there was a trend for increased hepatic lipid in LO and SO diets. Tissue cholesterol levels in VO fed fish were the same as animals fed FO, whereas fatty acid composition of the tissues largely reflected those of the diets and was marked by enrichment of 18 carbon fatty acids and reductions in 20 and 22 carbon HUFA. Conclusion This combined gene expression, compositional and metabolic study demonstrates that major lipid metabolic effects occur after replacing FO with VO in salmon diets. These effects are most likely mediated by SREBP2, which responds to reductions in dietary cholesterol. These changes are sufficient to maintain

  2. Biosynthetic Studies of 13-Desmethylspirolide C Produced by Alexandrium ostenfeldii (= A. peruvianum): Rationalization of the Biosynthetic Pathway Following Incorporation of (13)C-Labeled Methionine and Application of the Odd-Even Rule of Methylation.

    Science.gov (United States)

    Anttila, Matthew; Strangman, Wendy; York, Robert; Tomas, Carmelo; Wright, Jeffrey L C

    2016-03-25

    Understanding the biosynthesis of dinoflagellate polyketides presents many unique challenges. Because of the remaining hurdles to dinoflagellate genome sequencing, precursor labeling studies remain the only viable way to investigate dinoflagellate biosynthesis. However, prior studies have shown that polyketide chain assembly does not follow any of the established processes. Additionally, acetate, the common precursor for polyketides, is frequently scrambled, thus compromising interpretation. These factors are further compounded by low production yields of the compounds of interest. A recent report on the biosynthesis of spirolides, a group belonging to the growing class of toxic spiroimines, provided some insight into the polyketide assembly process based on acetate labeling studies, but many details were left uncertain. By feeding (13)C methyl-labeled methionine to cultures of Alexandrium ostenfeldii, the producing organism of 13-desmethylspirolide C, and application of the odd-even methylation rule, the complete biosynthetic pathway has been established.

  3. VIGS approach reveals the modulation of anthocyanin biosynthetic genes by CaMYB in Chili pepper leaves

    Directory of Open Access Journals (Sweden)

    zhen ezhang

    2015-07-01

    Full Text Available The purple coloration of pepper leaves arises from the accumulation of anthocyanin. Three regulatory and 12 structural genes have been characterized for their involvement in the anthocyanin biosynthesis. Examination of the abundance of these genes in leaves showed that the majority of them differed between anthocyanin pigmented line Z1 and non-pigmented line A3. Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation. Moreover, the expression of multiple genes was altered in the silenced leaves. The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern. Most structural genes including CHS, CHI, F3H, F3’5’H, DFR, ANS, UFGT, ANP and GST were repressed in CaMYB-silenced foliage with the exception of PAL, C4H and 4CL. These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes. Besides CaMYB silenced leaves rendered more sporulation of Phytophthora capsici Leonian indicating that CaMYB might be involved in the defense response to pathogens.

  4. Production of Odd-Carbon Dicarboxylic Acids in Escherichia coli Using an Engineered Biotin–Fatty Acid Biosynthetic Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Haushalter, Robert W. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Physical Bioscience Division; Phelan, Ryan M. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Physical Bioscience Division; Hoh, Kristina M. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Physical Bioscience Division; Su, Cindy [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Physical Bioscience Division; Wang, George [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Physical Bioscience Division; Baidoo, Edward E. K. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Physical Bioscience Division; Keasling, Jay D. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Physical Bioscience Division

    2017-03-14

    Dicarboxylic acids are commodity chemicals used in the production of plastics, polyesters, nylons, fragrances, and medications. Bio-based routes to dicarboxylic acids are gaining attention due to environmental concerns about petroleum-based production of these compounds. Some industrial applications require dicarboxylic acids with specific carbon chain lengths, including odd-carbon species. Biosynthetic pathways involving cytochrome P450-catalyzed oxidation of fatty acids in yeast and bacteria have been reported, but these systems produce almost exclusively even-carbon species. Here in this paper we report a novel pathway to odd-carbon dicarboxylic acids directly from glucose in Escherichia coli by employing an engineered pathway combining enzymes from biotin and fatty acid synthesis. Optimization of the pathway will lead to industrial strains for the production of valuable odd-carbon diacids.

  5. BGDMdocker: a Docker workflow for data mining and visualization of bacterial pan-genomes and biosynthetic gene clusters

    Directory of Open Access Journals (Sweden)

    Gong Cheng

    2017-11-01

    Full Text Available Recently, Docker technology has received increasing attention throughout the bioinformatics community. However, its implementation has not yet been mastered by most biologists; accordingly, its application in biological research has been limited. In order to popularize this technology in the field of bioinformatics and to promote the use of publicly available bioinformatics tools, such as Dockerfiles and Images from communities, government sources, and private owners in the Docker Hub Registry and other Docker-based resources, we introduce here a complete and accurate bioinformatics workflow based on Docker. The present workflow enables analysis and visualization of pan-genomes and biosynthetic gene clusters of bacteria. This provides a new solution for bioinformatics mining of big data from various publicly available biological databases. The present step-by-step guide creates an integrative workflow through a Dockerfile to allow researchers to build their own Image and run Container easily.

  6. BGDMdocker: a Docker workflow for data mining and visualization of bacterial pan-genomes and biosynthetic gene clusters.

    Science.gov (United States)

    Cheng, Gong; Lu, Quan; Ma, Ling; Zhang, Guocai; Xu, Liang; Zhou, Zongshan

    2017-01-01

    Recently, Docker technology has received increasing attention throughout the bioinformatics community. However, its implementation has not yet been mastered by most biologists; accordingly, its application in biological research has been limited. In order to popularize this technology in the field of bioinformatics and to promote the use of publicly available bioinformatics tools, such as Dockerfiles and Images from communities, government sources, and private owners in the Docker Hub Registry and other Docker-based resources, we introduce here a complete and accurate bioinformatics workflow based on Docker. The present workflow enables analysis and visualization of pan-genomes and biosynthetic gene clusters of bacteria. This provides a new solution for bioinformatics mining of big data from various publicly available biological databases. The present step-by-step guide creates an integrative workflow through a Dockerfile to allow researchers to build their own Image and run Container easily.

  7. Pederin-type pathways of uncultivated bacterial symbionts: analysis of o-methyltransferases and generation of a biosynthetic hybrid.

    Science.gov (United States)

    Zimmermann, Katrin; Engeser, Marianne; Blunt, John W; Munro, Murray H G; Piel, Jörn

    2009-03-04

    The complex polyketide pederin is a potent antitumor agent isolated from Paederus spp. rove beetles. We have previously isolated a set of genes from a bacterial endosymbiont that are good candidates for pederin biosynthesis. To biochemically study this pathway, we expressed three methyltransferases from the putative pederin pathway and used the partially unmethylated analogue mycalamide A from the marine sponge Mycale hentscheli as test substrate. Analysis by high-resolution MS/MS and NMR revealed that PedO regiospecifically methylates the marine compound to generate the nonnatural hybrid compound 18-O-methylmycalamide A with increased cytotoxicity. To our knowledge, this is the first biochemical evidence that invertebrates can obtain defensive complex polyketides from bacterial symbionts.

  8. Cell wall composition and lignin biosynthetic gene expression along a developmental gradient in an Australian sugarcane cultivar

    Directory of Open Access Journals (Sweden)

    William P. Bewg

    2017-12-01

    Full Text Available Sugarcane bagasse is an abundant source of lignocellulosic material for bioethanol production. Utilisation of bagasse for biofuel production would be environmentally and economically beneficial, but the recalcitrance of lignin continues to provide a challenge. Further understanding of lignin production in specific cultivars will provide a basis for modification of genomes for the production of phenotypes with improved processing characteristics. Here we evaluated the expression profile of lignin biosynthetic genes and the cell wall composition along a developmental gradient in KQ228 sugarcane. The expression levels of nine lignin biosynthesis genes were quantified in five stem sections of increasing maturity and in root tissue. Two distinct expression patterns were seen. The first saw highest gene expression in the youngest tissue, with expression decreasing as tissue matured. The second pattern saw little to no change in transcription levels across the developmental gradient. Cell wall compositional analysis of the stem sections showed total lignin content to be significantly higher in more mature tissue than in the youngest section assessed. There were no changes in structural carbohydrates across developmental sections. These gene expression and cell wall compositional patterns can be used, along with other work in grasses, to inform biotechnological approaches to crop improvement for lignocellulosic biofuel production.

  9. A gene encoding an abscisic acid biosynthetic enzyme (LsNCED4) collocates with the high temperature germination locus Htg6.1 in lettuce (Lactuca sp.).

    Science.gov (United States)

    Argyris, Jason; Truco, María José; Ochoa, Oswaldo; McHale, Leah; Dahal, Peetambar; Van Deynze, Allen; Michelmore, Richard W; Bradford, Kent J

    2011-01-01

    Thermoinhibition, or failure of seeds to germinate when imbibed at warm temperatures, can be a significant problem in lettuce (Lactuca sativa L.) production. The reliability of stand establishment would be improved by increasing the ability of lettuce seeds to germinate at high temperatures. Genes encoding germination- or dormancy-related proteins were mapped in a recombinant inbred line population derived from a cross between L. sativa cv. Salinas and L. serriola accession UC96US23. This revealed several candidate genes that are located in the genomic regions containing quantitative trait loci (QTLs) associated with temperature and light requirements for germination. In particular, LsNCED4, a temperature-regulated gene in the biosynthetic pathway for abscisic acid (ABA), a germination inhibitor, mapped to the center of a previously detected QTL for high temperature germination (Htg6.1) from UC96US23. Three sets of sister BC(3)S(2) near-isogenic lines (NILs) that were homozygous for the UC96US23 allele of LsNCED4 at Htg6.1 were developed by backcrossing to cv. Salinas and marker-assisted selection followed by selfing. The maximum temperature for germination of NIL seed lots with the UC96US23 allele at LsNCED4 was increased by 2-3°C when compared with sister NIL seed lots lacking the introgression. In addition, the expression of LsNCED4 was two- to threefold lower in the former NIL lines as compared to expression in the latter. Together, these data strongly implicate LsNCED4 as the candidate gene responsible for the Htg6.1 phenotype and indicate that decreased ABA biosynthesis at high imbibition temperatures is a major factor responsible for the increased germination thermotolerance of UC96US23 seeds.

  10. Structure and Functional Analysis of ClbQ, an Unusual Intermediate-Releasing Thioesterase from the Colibactin Biosynthetic Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Guntaka, Naga Sandhya; Healy, Alan R.; Crawford, Jason M.; Herzon, Seth B.; Bruner, Steven D. (Yale); (Florida); (Yale-MED)

    2017-09-08

    Colibactin is a genotoxic hybrid nonribosomal peptide/polyketide secondary metabolite produced by various pathogenic and probiotic bacteria residing in the human gut. The presence of colibactin metabolites has been correlated to colorectal cancer formation in several studies. The specific function of many gene products in the colibactin gene cluster can be predicted. However, the role of ClbQ, a type II editing thioesterase, has not been established. The importance of ClbQ has been demonstrated by genetic deletions that abolish colibactin cytotoxic activity, and recent studies suggest an atypical role in releasing pathway intermediates from the assembly line. Here we report the 2.0 Å crystal structure and biochemical characterization of ClbQ. Our data reveal that ClbQ exhibits greater catalytic efficiency toward acyl-thioester substrates as compared to precolibactin intermediates and does not discriminate among carrier proteins. Cyclized pyridone-containing colibactins, which are off-pathway derivatives, are not viable substrates for ClbQ, while linear precursors are, supporting a role of ClbQ in facilitating the promiscuous off-loading of premature precolibactin metabolites and novel insights into colibactin biosynthesis.

  11. Structure and Functional Analysis of ClbQ, an Unusual Intermediate-Releasing Thioesterase from the Colibactin Biosynthetic Pathway.

    Science.gov (United States)

    Guntaka, Naga Sandhya; Healy, Alan R; Crawford, Jason M; Herzon, Seth B; Bruner, Steven D

    2017-10-20

    Colibactin is a genotoxic hybrid nonribosomal peptide/polyketide secondary metabolite produced by various pathogenic and probiotic bacteria residing in the human gut. The presence of colibactin metabolites has been correlated to colorectal cancer formation in several studies. The specific function of many gene products in the colibactin gene cluster can be predicted. However, the role of ClbQ, a type II editing thioesterase, has not been established. The importance of ClbQ has been demonstrated by genetic deletions that abolish colibactin cytotoxic activity, and recent studies suggest an atypical role in releasing pathway intermediates from the assembly line. Here we report the 2.0 Å crystal structure and biochemical characterization of ClbQ. Our data reveal that ClbQ exhibits greater catalytic efficiency toward acyl-thioester substrates as compared to precolibactin intermediates and does not discriminate among carrier proteins. Cyclized pyridone-containing colibactins, which are off-pathway derivatives, are not viable substrates for ClbQ, while linear precursors are, supporting a role of ClbQ in facilitating the promiscuous off-loading of premature precolibactin metabolites and novel insights into colibactin biosynthesis.

  12. Development of a gene cloning system in a fast-growing and moderately thermophilic Streptomyces species and heterologous expression of Streptomyces antibiotic biosynthetic gene clusters

    Science.gov (United States)

    2011-01-01

    Background Streptomyces species are a major source of antibiotics. They usually grow slowly at their optimal temperature and fermentation of industrial strains in a large scale often takes a long time, consuming more energy and materials than some other bacterial industrial strains (e.g., E. coli and Bacillus). Most thermophilic Streptomyces species grow fast, but no gene cloning systems have been developed in such strains. Results We report here the isolation of 41 fast-growing (about twice the rate of S. coelicolor), moderately thermophilic (growing at both 30°C and 50°C) Streptomyces strains, detection of one linear and three circular plasmids in them, and sequencing of a 6996-bp plasmid, pTSC1, from one of them. pTSC1-derived pCWH1 could replicate in both thermophilic and mesophilic Streptomyces strains. On the other hand, several Streptomyces replicons function in thermophilic Streptomyces species. By examining ten well-sporulating strains, we found two promising cloning hosts, 2C and 4F. A gene cloning system was established by using the two strains. The actinorhodin and anthramycin biosynthetic gene clusters from mesophilic S. coelicolor A3(2) and thermophilic S. refuineus were heterologously expressed in one of the hosts. Conclusions We have developed a gene cloning and expression system in a fast-growing and moderately thermophilic Streptomyces species. Although just a few plasmids and one antibiotic biosynthetic gene cluster from mesophilic Streptomyces were successfully expressed in thermophilic Streptomyces species, we expect that by utilizing thermophilic Streptomyces-specific promoters, more genes and especially antibiotic genes clusters of mesophilic Streptomyces should be heterologously expressed. PMID:22032628

  13. Examination of tetrahydrobiopterin pathway genes in autism.

    Science.gov (United States)

    Schnetz-Boutaud, N C; Anderson, B M; Brown, K D; Wright, H H; Abramson, R K; Cuccaro, M L; Gilbert, J R; Pericak-Vance, M A; Haines, J L

    2009-11-01

    Autism is a complex disorder with a high degree of heritability and significant phenotypic and genotypic heterogeneity. Although candidate gene studies and genome-wide screens have failed to identify major causal loci associated with autism, numerous studies have proposed association with several variations in genes in the dopaminergic and serotonergic pathways. Because tetrahydrobiopterin (BH4) is the essential cofactor in the synthesis of these two neurotransmitters, we genotyped 25 SNPs in nine genes of the BH4 pathway in a total of 403 families. Significant nominal association was detected in the gene for 6-pyruvoyl-tetrahydropterin synthase, PTS (chromosome 11), with P = 0.009; this result was not restricted to an affected male-only subset. Multilocus interaction was detected in the BH4 pathway alone, but not across the serotonin, dopamine and BH4 pathways.

  14. Identification and Functional Characterization of Genes Encoding Omega-3 Polyunsaturated Fatty Acid Biosynthetic Activities from Unicellular Microalgae

    Directory of Open Access Journals (Sweden)

    Royah Vaezi

    2013-12-01

    Full Text Available In order to identify novel genes encoding enzymes involved in the biosynthesis of nutritionally important omega-3 long chain polyunsaturated fatty acids, a database search was carried out in the genomes of the unicellular photoautotrophic green alga Ostreococcus RCC809 and cold-water diatom Fragilariopsis cylindrus. The search led to the identification of two putative “front-end” desaturases (Δ6 and Δ4 from Ostreococcus RCC809 and one Δ6-elongase from F. cylindrus. Heterologous expression of putative open reading frames (ORFs in yeast revealed that the encoded enzyme activities efficiently convert their respective substrates: 54.1% conversion of α-linolenic acid for Δ6-desaturase, 15.1% conversion of 22:5n-3 for Δ4-desaturase and 38.1% conversion of γ-linolenic acid for Δ6-elongase. The Δ6-desaturase from Ostreococcus RCC809 displays a very strong substrate preference resulting in the predominant synthesis of stearidonic acid (C18:4Δ6,9,12,15. These data confirm the functional characterization of omega-3 long chain polyunsaturated fatty acid biosynthetic genes from these two species which have until now not been investigated for such activities. The identification of these new genes will also serve to expand the repertoire of activities available for metabolically engineering the omega-3 trait in heterologous hosts as well as providing better insights into the synthesis of eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA in marine microalgae.

  15. An efficient approach to finding Siraitia grosvenorii triterpene biosynthetic genes by RNA-seq and digital gene expression analysis

    Directory of Open Access Journals (Sweden)

    Song Cai

    2011-07-01

    Full Text Available Abstract Background Siraitia grosvenorii (Luohanguo is an herbaceous perennial plant native to southern China and most prevalent in Guilin city. Its fruit contains a sweet, fleshy, edible pulp that is widely used in traditional Chinese medicine. The major bioactive constituents in the fruit extract are the cucurbitane-type triterpene saponins known as mogrosides. Among them, mogroside V is nearly 300 times sweeter than sucrose. However, little is known about mogrosides biosynthesis in S. grosvenorii, especially the late steps of the pathway. Results In this study, a cDNA library generated from of equal amount of RNA taken from S. grosvenorii fruit at 50 days after flowering (DAF and 70 DAF were sequenced using Illumina/Solexa platform. More than 48,755,516 high-quality reads from a cDNA library were generated that was assembled into 43,891 unigenes. De novo assembly and gap-filling generated 43,891 unigenes with an average sequence length of 668 base pairs. A total of 26,308 (59.9% unique sequences were annotated and 11,476 of the unique sequences were assigned to specific metabolic pathways by the Kyoto Encyclopedia of Genes and Genomes. cDNA sequences for all of the known enzymes involved in mogrosides backbone synthesis were identified from our library. Additionally, a total of eighty-five cytochrome P450 (CYP450 and ninety UDP-glucosyltransferase (UDPG unigenes were identified, some of which appear to encode enzymes responsible for the conversion of the mogroside backbone into the various mogrosides. Digital gene expression profile (DGE analysis using Solexa sequencing was performed on three important stages of fruit development, and based on their expression pattern, seven CYP450s and five UDPGs were selected as the candidates most likely to be involved in mogrosides biosynthesis. Conclusion A combination of RNA-seq and DGE analysis based on the next generation sequencing technology was shown to be a powerful method for identifying

  16. Genes and (Common) Pathways Underlying Drug Addiction

    Science.gov (United States)

    Li, Chuan-Yun; Mao, Xizeng; Wei, Liping

    2008-01-01

    Drug addiction is a serious worldwide problem with strong genetic and environmental influences. Different technologies have revealed a variety of genes and pathways underlying addiction; however, each individual technology can be biased and incomplete. We integrated 2,343 items of evidence from peer-reviewed publications between 1976 and 2006 linking genes and chromosome regions to addiction by single-gene strategies, microrray, proteomics, or genetic studies. We identified 1,500 human addiction-related genes and developed KARG (http://karg.cbi.pku.edu.cn), the first molecular database for addiction-related genes with extensive annotations and a friendly Web interface. We then performed a meta-analysis of 396 genes that were supported by two or more independent items of evidence to identify 18 molecular pathways that were statistically significantly enriched, covering both upstream signaling events and downstream effects. Five molecular pathways significantly enriched for all four different types of addictive drugs were identified as common pathways which may underlie shared rewarding and addictive actions, including two new ones, GnRH signaling pathway and gap junction. We connected the common pathways into a hypothetical common molecular network for addiction. We observed that fast and slow positive feedback loops were interlinked through CAMKII, which may provide clues to explain some of the irreversible features of addiction. PMID:18179280

  17. Genes and (common pathways underlying drug addiction.

    Directory of Open Access Journals (Sweden)

    Chuan-Yun Li

    2008-01-01

    Full Text Available Drug addiction is a serious worldwide problem with strong genetic and environmental influences. Different technologies have revealed a variety of genes and pathways underlying addiction; however, each individual technology can be biased and incomplete. We integrated 2,343 items of evidence from peer-reviewed publications between 1976 and 2006 linking genes and chromosome regions to addiction by single-gene strategies, microrray, proteomics, or genetic studies. We identified 1,500 human addiction-related genes and developed KARG (http://karg.cbi.pku.edu.cn, the first molecular database for addiction-related genes with extensive annotations and a friendly Web interface. We then performed a meta-analysis of 396 genes that were supported by two or more independent items of evidence to identify 18 molecular pathways that were statistically significantly enriched, covering both upstream signaling events and downstream effects. Five molecular pathways significantly enriched for all four different types of addictive drugs were identified as common pathways which may underlie shared rewarding and addictive actions, including two new ones, GnRH signaling pathway and gap junction. We connected the common pathways into a hypothetical common molecular network for addiction. We observed that fast and slow positive feedback loops were interlinked through CAMKII, which may provide clues to explain some of the irreversible features of addiction.

  18. Promzea: a pipeline for discovery of co-regulatory motifs in maize and other plant species and its application to the anthocyanin and phlobaphene biosynthetic pathways and the Maize Development Atlas.

    Science.gov (United States)

    Liseron-Monfils, Christophe; Lewis, Tim; Ashlock, Daniel; McNicholas, Paul D; Fauteux, François; Strömvik, Martina; Raizada, Manish N

    2013-03-15

    The discovery of genetic networks and cis-acting DNA motifs underlying their regulation is a major objective of transcriptome studies. The recent release of the maize genome (Zea mays L.) has facilitated in silico searches for regulatory motifs. Several algorithms exist to predict cis-acting elements, but none have been adapted for maize. A benchmark data set was used to evaluate the accuracy of three motif discovery programs: BioProspector, Weeder and MEME. Analysis showed that each motif discovery tool had limited accuracy and appeared to retrieve a distinct set of motifs. Therefore, using the benchmark, statistical filters were optimized to reduce the false discovery ratio, and then remaining motifs from all programs were combined to improve motif prediction. These principles were integrated into a user-friendly pipeline for motif discovery in maize called Promzea, available at http://www.promzea.org and on the Discovery Environment of the iPlant Collaborative website. Promzea was subsequently expanded to include rice and Arabidopsis. Within Promzea, a user enters cDNA sequences or gene IDs; corresponding upstream sequences are retrieved from the maize genome. Predicted motifs are filtered, combined and ranked. Promzea searches the chosen plant genome for genes containing each candidate motif, providing the user with the gene list and corresponding gene annotations. Promzea was validated in silico using a benchmark data set: the Promzea pipeline showed a 22% increase in nucleotide sensitivity compared to the best standalone program tool, Weeder, with equivalent nucleotide specificity. Promzea was also validated by its ability to retrieve the experimentally defined binding sites of transcription factors that regulate the maize anthocyanin and phlobaphene biosynthetic pathways. Promzea predicted additional promoter motifs, and genome-wide motif searches by Promzea identified 127 non-anthocyanin/phlobaphene genes that each contained all five predicted promoter

  19. Functions of some capsular polysaccharide biosynthetic genes in Klebsiella pneumoniae NTUH K-2044.

    Directory of Open Access Journals (Sweden)

    Jin-Yuan Ho

    Full Text Available The growing number of Klebsiella pneumoniae infections, commonly acquired in hospitals, has drawn great concern. It has been shown that the K1 and K2 capsular serotypes are the most detrimental strains, particularly to those with diabetes. The K1 cps (capsular polysaccharide locus in the NTUH-2044 strain of the pyogenic liver abscess (PLA K. pneumoniae has been identified recently, but little is known about the functions of the genes therein. Here we report characterization of a group of cps genes and their roles in the pathogenesis of K1 K. pneumoniae. By sequential gene deletion, the cps gene cluster was first re-delimited between genes galF and ugd, which serve as up- and down-stream ends, respectively. Eight gene products were characterized in vitro and in vivo to be involved in the syntheses of UDP-glucose, UDP-glucuronic acid and GDP-fucose building units. Twelve genes were identified as virulence factors based on the observation that their deletion mutants became avirulent or lost K1 antigenicity. Furthermore, deletion of kp3706, kp3709 or kp3712 (ΔwcaI, ΔwcaG or Δatf, respectively, which are all involved in fucose biosynthesis, led to a broad range of transcriptional suppression for 52 upstream genes. The genes suppressed include those coding for unknown regulatory membrane proteins and six multidrug efflux system proteins, as well as proteins required for the K1 CPS biosynthesis. In support of the suppression of multidrug efflux genes, we showed that these three mutants became more sensitive to antibiotics. Taken together, the results suggest that kp3706, kp3709 or kp3712 genes are strongly related to the pathogenesis of K. pneumoniae K1.

  20. Exploring genes and pathways involved in migraine

    NARCIS (Netherlands)

    Eising, E.

    2017-01-01

    The research in this thesis was aimed at identifying genes and molecular pathways involved in migraine. To this end, two gene expression analyses were performed in brain tissue obtained from transgenic mouse models for familial hemiplegic migraine (FHM), a monogenic subtype of migraine with aura.

  1. The Genome of Tolypocladium inflatum: Evolution, Organization, and Expression of the Cyclosporin Biosynthetic Gene Cluster

    Science.gov (United States)

    Bushley, Kathryn E.; Raja, Rajani; Jaiswal, Pankaj; Cumbie, Jason S.; Nonogaki, Mariko; Boyd, Alexander E.; Owensby, C. Alisha; Knaus, Brian J.; Elser, Justin; Miller, Daniel; Di, Yanming; McPhail, Kerry L.; Spatafora, Joseph W.

    2013-01-01

    The ascomycete fungus Tolypocladium inflatum, a pathogen of beetle larvae, is best known as the producer of the immunosuppressant drug cyclosporin. The draft genome of T. inflatum strain NRRL 8044 (ATCC 34921), the isolate from which cyclosporin was first isolated, is presented along with comparative analyses of the biosynthesis of cyclosporin and other secondary metabolites in T. inflatum and related taxa. Phylogenomic analyses reveal previously undetected and complex patterns of homology between the nonribosomal peptide synthetase (NRPS) that encodes for cyclosporin synthetase (simA) and those of other secondary metabolites with activities against insects (e.g., beauvericin, destruxins, etc.), and demonstrate the roles of module duplication and gene fusion in diversification of NRPSs. The secondary metabolite gene cluster responsible for cyclosporin biosynthesis is described. In addition to genes necessary for cyclosporin biosynthesis, it harbors a gene for a cyclophilin, which is a member of a family of immunophilins known to bind cyclosporin. Comparative analyses support a lineage specific origin of the cyclosporin gene cluster rather than horizontal gene transfer from bacteria or other fungi. RNA-Seq transcriptome analyses in a cyclosporin-inducing medium delineate the boundaries of the cyclosporin cluster and reveal high levels of expression of the gene cluster cyclophilin. In medium containing insect hemolymph, weaker but significant upregulation of several genes within the cyclosporin cluster, including the highly expressed cyclophilin gene, was observed. T. inflatum also represents the first reference draft genome of Ophiocordycipitaceae, a third family of insect pathogenic fungi within the fungal order Hypocreales, and supports parallel and qualitatively distinct radiations of insect pathogens. The T. inflatum genome provides additional insight into the evolution and biosynthesis of cyclosporin and lays a foundation for further investigations of the role

  2. The carotenoid biosynthetic and catabolic genes in wheat and their association with yellow pigments.

    Science.gov (United States)

    Colasuonno, Pasqualina; Lozito, Maria Luisa; Marcotuli, Ilaria; Nigro, Domenica; Giancaspro, Angelica; Mangini, Giacomo; De Vita, Pasquale; Mastrangelo, Anna Maria; Pecchioni, Nicola; Houston, Kelly; Simeone, Rosanna; Gadaleta, Agata; Blanco, Antonio

    2017-01-31

    In plants carotenoids play an important role in the photosynthetic process and photo-oxidative protection, and are the substrate for the synthesis of abscisic acid and strigolactones. In addition to their protective role as antioxidants and precursors of vitamin A, in wheat carotenoids are important as they influence the colour (whiteness vs. yellowness) of the grain. Understanding the genetic basis of grain yellow pigments, and identifying associated markers provide the basis for improving wheat quality by molecular breeding. Twenty-four candidate genes involved in the biosynthesis and catabolism of carotenoid compounds have been identified in wheat by comparative genomics. Single nucleotide polymorphisms (SNPs) found in the coding sequences of 19 candidate genes allowed their chromosomal location and accurate map position on two reference consensus maps to be determined. The genome-wide association study based on genotyping a tetraploid wheat collection with 81,587 gene-associated SNPs validated quantitative trait loci (QTLs) previously detected in biparental populations and discovered new QTLs for grain colour-related traits. Ten carotenoid genes mapped in chromosome regions underlying pigment content QTLs indicating possible functional relationships between candidate genes and the trait. The availability of linked, candidate gene-based markers can facilitate breeding wheat cultivars with desirable levels of carotenoids. Identifying QTLs linked to carotenoid pigmentation can contribute to understanding genes underlying carotenoid accumulation in the wheat kernels. Together these outputs can be combined to exploit the genetic variability of colour-related traits for the nutritional and commercial improvement of wheat products.

  3. Indole-3-acetic acid biosynthetic pathway and aromatic amino acid aminotransferase activities in Pantoea dispersa strain GPK.

    Science.gov (United States)

    Kulkarni, G B; Nayak, A S; Sajjan, S S; Oblesha, A; Karegoudar, T B

    2013-05-01

    This investigation deals with the production of IAA by a bacterial isolate Pantoea dispersa strain GPK (PDG) identified by 16S rRNA gene sequence analysis. HPLC and Mass spectral analysis of metabolites from bacterial spent medium revealed that, IAA production by PDG is Trp-dependent and follows indole-3-pyruvic acid (IPyA) pathway. Substrate specificity study of aromatic amino acid aminotransferase (AAT) showed high activities, only when tryptophan (Trp) and α-ketoglutarate (α-kg) were used as substrates. AAT is highly specific for Trp and α-kg as amino group donor and acceptor, respectively. The effect of exogenous IAA on bacterial growth was established. Low concentration of exogenous IAA induced the growth, whereas high concentration decreased the growth of bacterium. PDG treatment significantly increased the root length, shoot length and dry mass of the chickpea and pigeon pea plants. © 2013 The Society for Applied Microbiology.

  4. In silico exploration of Red Sea Bacillus genomes for natural product biosynthetic gene clusters

    KAUST Repository

    Othoum, Ghofran K; Bougouffa, Salim; Razali, Rozaimi; Bokhari, Ameerah; Alamoudi, Soha; Antunes, André ; Gao, Xin; Hoehndorf, Robert; Arold, Stefan T.; Gojobori, Takashi; Hirt, Heribert; Mijakovic, Ivan; Bajic, Vladimir B.; Lafi, Feras Fawzi; Essack, Magbubah

    2018-01-01

    are better potential sources for novel antibiotics. Moreover, the genome of the Red Sea strain B. paralicheniformis Bac48 is more enriched in modular PKS genes compared to B. licheniformis strains and other B. paralicheniformis strains. This may be linked

  5. Diverse and Abundant Secondary Metabolism Biosynthetic Gene Clusters in the Genomes of Marine Sponge Derived Streptomyces spp. Isolates

    Directory of Open Access Journals (Sweden)

    Stephen A. Jackson

    2018-02-01

    Full Text Available The genus Streptomyces produces secondary metabolic compounds that are rich in biological activity. Many of these compounds are genetically encoded by large secondary metabolism biosynthetic gene clusters (smBGCs such as polyketide synthases (PKS and non-ribosomal peptide synthetases (NRPS which are modular and can be highly repetitive. Due to the repeats, these gene clusters can be difficult to resolve using short read next generation datasets and are often quite poorly predicted using standard approaches. We have sequenced the genomes of 13 Streptomyces spp. strains isolated from shallow water and deep-sea sponges that display antimicrobial activities against a number of clinically relevant bacterial and yeast species. Draft genomes have been assembled and smBGCs have been identified using the antiSMASH (antibiotics and Secondary Metabolite Analysis Shell web platform. We have compared the smBGCs amongst strains in the search for novel sequences conferring the potential to produce novel bioactive secondary metabolites. The strains in this study recruit to four distinct clades within the genus Streptomyces. The marine strains host abundant smBGCs which encode polyketides, NRPS, siderophores, bacteriocins and lantipeptides. The deep-sea strains appear to be enriched with gene clusters encoding NRPS. Marine adaptations are evident in the sponge-derived strains which are enriched for genes involved in the biosynthesis and transport of compatible solutes and for heat-shock proteins. Streptomyces spp. from marine environments are a promising source of novel bioactive secondary metabolites as the abundance and diversity of smBGCs show high degrees of novelty. Sponge derived Streptomyces spp. isolates appear to display genomic adaptations to marine living when compared to terrestrial strains.

  6. Improvement of hairy root cultures and plants by changing biosynthetic pathways leading to pharmaceutical metabolites: strategies and applications.

    Science.gov (United States)

    Ludwig-Müller, Jutta; Jahn, Linda; Lippert, Annemarie; Püschel, Joachim; Walter, Antje

    2014-11-01

    A plethora of bioactive plant metabolites has been explored for pharmaceutical, food chemistry and agricultural applications. The chemical synthesis of these structures is often difficult, so plants are favorably used as producers. While whole plants can serve as a source for secondary metabolites and can be also improved by metabolic engineering, more often cell or organ cultures of relevant plant species are of interest. It should be noted that only in few cases the production for commercial application in such cultures has been achieved. Their genetic manipulation is sometimes faster and the production of a specific metabolite is more reliable, because of less environmental influences. In addition, upscaling in bioreactors is nowadays possible for many of these cultures, so some are already used in industry. There are approaches to alter the profile of metabolites not only by using plant genes, but also by using bacterial genes encoding modifying enzymes. Also, strategies to cope with unwanted or even toxic compounds are available. The need for metabolic engineering of plant secondary metabolite pathways is increasing with the rising demand for (novel) compounds with new bioactive properties. Here, we give some examples of recent developments for the metabolic engineering of plants and organ cultures, which can be used in the production of metabolites with interesting properties. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Effect of immobilization stress on gene expression of catecholamine biosynthetic enzymes in heart auricles of socially isolated rats

    Directory of Open Access Journals (Sweden)

    L. Gavrilovic

    2009-12-01

    Full Text Available Chronic stress is associated with the development of cardiovascular diseases. The sympathoneural system plays an important role in the regulation of cardiac function both in health and disease. In the present study, the changes in gene expression of the catecholamine biosynthetic enzymes tyrosine hydroxylase (TH, dopamine-β-hydroxylase (DBH and phenylethanolamine N-methyltransferase (PNMT and protein levels in the right and left heart auricles of naive control and long-term (12 weeks socially isolated rats were investigated by Taqman RT-PCR and Western blot analysis. The response of these animals to additional immobilization stress (2 h was also examined. Long-term social isolation produced a decrease in TH mRNA level in left auricles (about 70% compared to the corresponding control. Expression of the DBH gene was markedly decreased both in the right (about 62% and left (about 81% auricles compared to the corresponding control, group-maintained rats, whereas PNMT mRNA levels remained unchanged. Exposure of group-housed rats to acute immobilization for 2 h led to a significant increase of mRNA levels of TH (about 267%, DBH (about 37% and PNMT (about 60% only in the right auricles. Additional 2-h immobilization of individually housed rats did not affect gene expression of these enzymes in either the right or left auricle. Protein levels of TH, DBH and PNMT in left and right heart auricles were unchanged either in both individually housed and immobilized rats. The unchanged mRNA levels of the enzymes examined after short-term immobilization suggest that the catecholaminergic system of the heart auricles of animals previously exposed to chronic psychosocial stress was adapted to maintain appropriate cardiovascular homeostasis.

  8. cDNA cloning and expression of anthocyanin biosynthetic genes in ...

    African Journals Online (AJOL)

    GRACE

    2006-05-16

    May 16, 2006 ... that influence anthocyanin pigments have been isolated from Solanaceae. A few genes of anthocyanin ... Long, 1955), and the purple anthocyanin pigments are primarily derived from the related compound ..... anthocyanin production in tuber skins. this result was similar with carrot (daucus carota l) cell ...

  9. plantiSMASH: automated identification, annotation and expression analysis of plant biosynthetic gene clusters

    DEFF Research Database (Denmark)

    Kautsar, Satria A.; Suarez Duran, Hernando G.; Blin, Kai

    2017-01-01

    exploration of the nature and dynamics of gene clustering in plant metabolism. Moreover, spurred by the continuing decrease in costs of plant genome sequencing, they will allow genome mining technologies to be applied to plant natural product discovery. The plantiSMASH web server, precalculated results...

  10. IMG-ABC: new features for bacterial secondary metabolism analysis and targeted biosynthetic gene cluster discovery in thousands of microbial genomes.

    Science.gov (United States)

    Hadjithomas, Michalis; Chen, I-Min A; Chu, Ken; Huang, Jinghua; Ratner, Anna; Palaniappan, Krishna; Andersen, Evan; Markowitz, Victor; Kyrpides, Nikos C; Ivanova, Natalia N

    2017-01-04

    Secondary metabolites produced by microbes have diverse biological functions, which makes them a great potential source of biotechnologically relevant compounds with antimicrobial, anti-cancer and other activities. The proteins needed to synthesize these natural products are often encoded by clusters of co-located genes called biosynthetic gene clusters (BCs). In order to advance the exploration of microbial secondary metabolism, we developed the largest publically available database of experimentally verified and predicted BCs, the Integrated Microbial Genomes Atlas of Biosynthetic gene Clusters (IMG-ABC) (https://img.jgi.doe.gov/abc/). Here, we describe an update of IMG-ABC, which includes ClusterScout, a tool for targeted identification of custom biosynthetic gene clusters across 40 000 isolate microbial genomes, and a new search capability to query more than 700 000 BCs from isolate genomes for clusters with similar Pfam composition. Additional features enable fast exploration and analysis of BCs through two new interactive visualization features, a BC function heatmap and a BC similarity network graph. These new tools and features add to the value of IMG-ABC's vast body of BC data, facilitating their in-depth analysis and accelerating secondary metabolite discovery. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Transcription profile data of phorbol esters biosynthetic genes during developmental stages in Jatropha curcas.

    Science.gov (United States)

    Jadid, Nurul; Mardika, Rizal Kharisma; Purwani, Kristanti Indah; Permatasari, Erlyta Vivi; Prasetyowati, Indah; Irawan, Mohammad Isa

    2018-06-01

    Jatropha curcas is currently known as an alternative source for biodiesel production. Beside its high free fatty acid content, J. curcas also contains typical diterpenoid-toxic compounds of Euphorbiaceae plant namely phorbol esters. This article present the transcription profile data of genes involved in the biosynthesis of phorbol esters at different developmental stages of leaves, fruit, and seed in Jatropha curcas . Transcriptional profiles were analyzed using reverse transcription-polymerase chain reaction (RT-PCR). We used two genes including GGPPS (Geranylgeranyl diphospate synthase), which is responsible for the formation of common diterpenoid precursor (GGPP) and CS (Casbene Synthase), which functions in the synthesis of casbene. Meanwhile, J. curcas Actin ( ACT ) was used as internal standard. We demonstrated dynamic of GGPPS and CS expression among different stage of development of leaves, fruit and seed in Jatropha .

  12. Cloning of the staurosporine biosynthetic gene cluster from Streptomyces sp. TP-A0274 and its heterologous expression in Streptomyces lividans.

    Science.gov (United States)

    Onaka, Hiroyasu; Taniguchi, Shin-ichi; Igarashi, Yasuhiro; Furumai, Tamotsu

    2002-12-01

    Staurosporine is a representative member of indolocarbazole antibiotics. The entire staurosporine biosynthetic and regulatory gene cluster spanning 20-kb was cloned from Streptomyces sp. TP-A0274 and sequenced. The gene cluster consists of 14 ORFs and the amino acid sequence homology search revealed that it contains three genes, staO, staD, and staP, coding for the enzymes involved in the indolocarbazole aglycone biosynthesis, two genes, staG and staN, for the bond formation between the aglycone and deoxysugar, eight genes, staA, staB, staE, staJ, staI, staK, staMA, and staMB, for the deoxysugar biosynthesis and one gene, staR is a transcriptional regulator. Heterologous gene expression of a 38-kb fragment containing a complete set of the biosynthetic genes for staurosporine cloned into pTOYAMAcos confirmed its role in staurosporine biosynthesis. Moreover, the distribution of the gene for chromopyrrolic acid synthase, the key enzyme for the biosynthesis of indolocarbazole aglycone, in actinomycetes was investigated, and rebD homologs were shown to exist only in the strains producing indolocarbazole antibiotics.

  13. Tissue- Specific Expression Analysis of Anthocyanin Biosynthetic Genes in White- and Red-Fleshed Grape Cultivars

    Directory of Open Access Journals (Sweden)

    Sha Xie

    2015-12-01

    Full Text Available Yan73, a teinturier (dyer grape variety in China, is one of the few Vitis vinifera cultivars with red-coloured berry flesh. To examine the tissue-specific expression of genes associated with berry colour in Yan73, we analysed the differential accumulation of anthocyanins in the skin and flesh tissues of two red-skinned grape varieties with either red (Yan73 or white flesh (Muscat Hamburg based on HPLC-MS analysis, as well as the differential expression of 18 anthocyanin biosynthesis genes in both varieties by quantitative RT-PCR. The results revealed that the transcripts of GST, OMT, AM3, CHS3, UFGT, MYBA1, F3′5′H, F3H1 and LDOX were barely detectable in the white flesh of Muscat Hamburg. In particular, GST, OMT, AM3, CHS3 and F3H1 showed approximately 50-fold downregulation in the white flesh of Muscat Hamburg compared to the red flesh of Yan73. A correlation analysis between the accumulation of different types of anthocyanins and gene expression indicated that the cumulative expression of GST, F3′5′H, LDOX and MYBA1 was more closely associated with the acylated anthocyanins and the 3′5′-OH anthocyanins, while OMT and AM3 were more closely associated with the total anthocyanins and methoxylated anthocyanins. Therefore, the transcripts of OMT, AM3, GST, F3′5′H, LDOX and MYBA1 explained most of the variation in the amount and composition of anthocyanins in skin and flesh of Yan73. The data suggest that the specific localization of anthocyanins in the flesh tissue of Yan73 is most likely due to the tissue-specific expression of OMT, AM3, GST, F3′5′H, LDOX and MYBA1 in the flesh.

  14. A novel mechanism of sulfur transfer catalyzed by O-acetylhomoserine sulfhydrylase in the methionine-biosynthetic pathway of Wolinella succinogenes

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Timothy H. [Cornell University, Ithaca, New York 14853-1301 (United States); Krishnamoorthy, Kalyanaraman; Begley, Tadhg P., E-mail: begley@tamu.edu [Texas A& M University, College Station, TX 77842 (United States); Ealick, Steven E., E-mail: begley@tamu.edu [Cornell University, Ithaca, New York 14853-1301 (United States)

    2011-10-01

    MetY is the first reported structure of an O-acetylhomoserine sulfhydrylase that utilizes a protein thiocarboxylate intermediate as the sulfur source in a novel methionine-biosynthetic pathway instead of catalyzing a direct sulfhydrylation reaction. O-Acetylhomoserine sulfhydrylase (OAHS) is a pyridoxal 5′-phosphate (PLP) dependent sulfide-utilizing enzyme in the l-cysteine and l-methionine biosynthetic pathways of various enteric bacteria and fungi. OAHS catalyzes the conversion of O-acetylhomoserine to homocysteine using sulfide in a process known as direct sulfhydrylation. However, the source of the sulfur has not been identified and no structures of OAHS have been reported in the literature. Here, the crystal structure of Wolinella succinogenes OAHS (MetY) determined at 2.2 Å resolution is reported. MetY crystallized in space group C2 with two monomers in the asymmetric unit. Size-exclusion chromatography, dynamic light scattering and crystal packing indicate that the biological unit is a tetramer in solution. This is further supported by the crystal structure, in which a tetramer is formed using a combination of noncrystallographic and crystallographic twofold axes. A search for structurally homologous proteins revealed that MetY has the same fold as cystathionine γ-lyase and methionine γ-lyase. The active sites of these enzymes, which are also PLP-dependent, share a high degree of structural similarity, suggesting that MetY belongs to the γ-elimination subclass of the Cys/Met metabolism PLP-dependent family of enzymes. The structure of MetY, together with biochemical data, provides insight into the mechanism of sulfur transfer to a small molecule via a protein thiocarboxylate intermediate.

  15. Diversity, biological roles and biosynthetic pathways for sugar-glycerate containing compatible solutes in bacteria and archaea.

    Science.gov (United States)

    Empadinhas, Nuno; da Costa, Milton S

    2011-08-01

    A decade ago the compatible solutes mannosylglycerate (MG) and glucosylglycerate (GG) were considered to be rare in nature. Apart from two species of thermophilic bacteria, Thermus thermophilus and Rhodothermus marinus, and a restricted group of hyperthermophilic archaea, the Thermococcales, MG had only been identified in a few red algae. Glucosylglycerate was considered to be even rarer and had only been detected as an insignificant solute in two halophilic microorganisms, a cyanobacterium, as a component of a polysaccharide and of a glycolipid in two actinobacteria. Unlike the hyper/thermophilic MG-accumulating microorganisms, branching close to the root of the Tree of Life, those harbouring GG shared a mesophilic lifestyle. Exceptionally, the thermophilic bacterium Persephonella marina was reported to accumulate GG. However, and especially owing to the identification of the key-genes for MG and GG synthesis and to the escalating numbers of genomes available, a plethora of new organisms with the resources to synthesize these solutes has been recognized. The accumulation of GG as an 'emergency' compatible solute under combined salt stress and nitrogen-deficient conditions now seems to be a disseminated survival strategy from enterobacteria to marine cyanobacteria. In contrast, the thermophilic and extremely radiation-resistant bacterium Rubrobacter xylanophilus is the only actinobacterium known to accumulate MG, and under all growth conditions tested. This review addresses the environmental factors underlying the accumulation of MG, GG and derivatives in bacteria and archaea and their roles during stress adaptation or as precursors for more elaborated macromolecules. The diversity of pathways for MG and GG synthesis as well as those for some of their derivatives is also discussed. The importance of glycerate-derived organic solutes in the microbial world is only now being recognized. Their stress-dependent accumulation and the molecular aspects of their

  16. Variation in siderophore biosynthetic gene distribution and production across environmental and faecal populations of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Laura J Searle

    Full Text Available Iron is essential for Escherichia coli growth and survival in the host and the external environment, but its availability is generally low due to the poor solubility of its ferric form in aqueous environments and the presence of iron-withholding proteins in the host. Most E. coli can increase access to iron by excreting siderophores such as enterobactin, which have a very strong affinity for Fe3+. A smaller proportion of isolates can generate up to 3 additional siderophores linked with pathogenesis; aerobactin, salmochelin, and yersiniabactin. However, non-pathogenic E. coli are also able to synthesise these virulence-associated siderophores. This raises questions about their role in the ecology of E. coli, beyond virulence, and whether specific siderophores might be linked with persistence in the external environment. Under the assumption that selection favours phenotypes that confer a fitness advantage, we compared siderophore production and gene distribution in E. coli isolated either from agricultural plants or the faeces of healthy mammals. This population-level comparison has revealed that under iron limiting growth conditions plant-associated isolates produced lower amounts of siderophores than faecal isolates. Additionally, multiplex PCR showed that environmental isolates were less likely to contain loci associated with aerobactin and yersiniabactin synthesis. Although aerobactin was linked with strong siderophore excretion, a significant difference in production was still observed between plant and faecal isolates when the analysis was restricted to strains only able to synthesise enterobactin. This finding suggests that the regulatory response to iron limitation may be an important trait associated with adaptation to the non-host environment. Our findings are consistent with the hypothesis that the ability to produce multiple siderophores facilitates E. coli gut colonisation and plays an important role in E. coli commensalism.

  17. Characterization of indigoidine biosynthetic genes in Erwinia chrysanthemi and role of this blue pigment in pathogenicity.

    Science.gov (United States)

    Reverchon, Sylvie; Rouanet, Carine; Expert, Dominique; Nasser, William

    2002-02-01

    In the plant-pathogenic bacterium Erwinia chrysanthemi production of pectate lyases, the main virulence determinant, is modulated by a complex network involving several regulatory proteins. One of these regulators, PecS, also controls the synthesis of a blue pigment identified as indigoidine. Since production of this pigment is cryptic in the wild-type strain, E. chrysanthemi ind mutants deficient in indigoidine synthesis were isolated by screening a library of Tn5-B21 insertions in a pecS mutant. These ind mutations were localized close to the regulatory pecS-pecM locus, immediately downstream of pecM. Sequence analysis of this DNA region revealed three open reading frames, indA, indB, and indC, involved in indigoidine biosynthesis. No specific function could be assigned to IndA. In contrast, IndB displays similarity to various phosphatases involved in antibiotic synthesis and IndC reveals significant homology with many nonribosomal peptide synthetases (NRPS). The IndC product contains an adenylation domain showing the signature sequence DAWCFGLI for glutamine recognition and an oxidation domain similar to that found in various thiazole-forming NRPS. These data suggest that glutamine is the precursor of indigoidine. We assume that indigoidine results from the condensation of two glutamine molecules that have been previously cyclized by intramolecular amide bond formation and then dehydrogenated. Expression of ind genes is strongly derepressed in the pecS background, indicating that PecS is the main regulator of this secondary metabolite synthesis. DNA band shift assays support a model whereby the PecS protein represses indA and indC expression by binding to indA and indC promoter regions. The regulatory link, via pecS, between indigoidine and virulence factor production led us to explore a potential role of indigoidine in E. chrysanthemi pathogenicity. Mutants impaired in indigoidine production were unable to cause systemic invasion of potted Saintpaulia ionantha

  18. Flowery odor formation revealed by differential expression of monoterpene biosynthetic genes and monoterpene accumulation in rose (Rosa rugosa Thunb.).

    Science.gov (United States)

    Feng, Liguo; Chen, Chen; Li, Tinglin; Wang, Meng; Tao, Jun; Zhao, Daqiu; Sheng, Lixia

    2014-02-01

    Rosa rugosa is an important ornamental and economical plant. In this paper, four genes encoding 1-deoxy-D-xylulose-5-phosphate synthase (DXS), 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), alcohol acyltransferase (AAT) and linalool synthase (LIS) involved in the monoterpene biosynthesis pathways were isolated from R. rugosa 'Tangzi', and the expression patterns of these genes in different flower development stages and different parts of floral organs were determined by real-time quantitative fluorescence PCR. Furthermore, a comprehensive analysis was carried out into the relationship between expression of four monoterpene synthesis genes and accumulation of main volatile monoterpenes and their acetic acid ester derivatives. The results showed that the genes RrDXS, RrDXR and RrLIS showed consistent expressions during the development process for R. rugosa flower from budding to withering stage, the overall expression levels of gene RrDXS and RrLIS were obviously lower as compared with those of gene RrDXR and RrAAT. Although the gene RrDXS, RrDXR, RrAAT and RrLIS were expressed in all parts of R. rugosa floral organs, the expression levels varied significantly. The variations in the constituent and content of volatile monoterpenes including citronellol, geraniol, nerol, linalool, citronellyl acetate, geranyl acetate and neryl acetate at different development stages and parts of floral organs were significantly different. On this basis, we concluded that the gene RrDXR and RrAAT might play a key role in the biosynthesis of volatile monoterpenes in R. rugosa flowers, and the two genes are important candidate genes for the regulation of secondary metabolism for rose aromatic components. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  19. Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae

    Science.gov (United States)

    2013-01-01

    Background Secondary metabolite production, a hallmark of filamentous fungi, is an expanding area of research for the Aspergilli. These compounds are potent chemicals, ranging from deadly toxins to therapeutic antibiotics to potential anti-cancer drugs. The genome sequences for multiple Aspergilli have been determined, and provide a wealth of predictive information about secondary metabolite production. Sequence analysis and gene overexpression strategies have enabled the discovery of novel secondary metabolites and the genes involved in their biosynthesis. The Aspergillus Genome Database (AspGD) provides a central repository for gene annotation and protein information for Aspergillus species. These annotations include Gene Ontology (GO) terms, phenotype data, gene names and descriptions and they are crucial for interpreting both small- and large-scale data and for aiding in the design of new experiments that further Aspergillus research. Results We have manually curated Biological Process GO annotations for all genes in AspGD with recorded functions in secondary metabolite production, adding new GO terms that specifically describe each secondary metabolite. We then leveraged these new annotations to predict roles in secondary metabolism for genes lacking experimental characterization. As a starting point for manually annotating Aspergillus secondary metabolite gene clusters, we used antiSMASH (antibiotics and Secondary Metabolite Analysis SHell) and SMURF (Secondary Metabolite Unknown Regions Finder) algorithms to identify potential clusters in A. nidulans, A. fumigatus, A. niger and A. oryzae, which we subsequently refined through manual curation. Conclusions This set of 266 manually curated secondary metabolite gene clusters will facilitate the investigation of novel Aspergillus secondary metabolites. PMID:23617571

  20. Markerless gene knockout and integration to express heterologous biosynthetic gene clusters in Pseudomonas putida

    DEFF Research Database (Denmark)

    Choi, Kyeong Rok; Cho, Jae Sung; Cho, In Jin

    2018-01-01

    Pseudomonas putida has gained much interest among metabolic engineers as a workhorse for producing valuable natural products. While a few gene knockout tools for P. putida have been reported, integration of heterologous genes into the chromosome of P. putida, an essential strategy to develop stable...... plasmid curing systems, generating final strains free of antibiotic markers and plasmids. This markerless recombineering system for efficient gene knockout and integration will expedite metabolic engineering of P. putida, a bacterial host strain of increasing academic and industrial interest....

  1. Tat proteins as novel thylakoid membrane anchors organize a biosynthetic pathway in chloroplasts and increase product yield 5-fold

    DEFF Research Database (Denmark)

    Henriques de Jesus, Maria Perestrello Ramos; Nielsen, Agnieszka Janina Zygadlo; Mellor, Silas Busck

    2017-01-01

    to their complex structures. Some of the crucial enzymes catalyzing their biosynthesis are the cytochromes P450 (P450s) situated in the endoplasmic reticulum (ER), powered by electron transfers from NADPH. Dhurrin is a cyanogenic glucoside and its biosynthesis involves a dynamic metabolon formed by two P450s....... Nevertheless, translocation of the pathway from the ER to the chloroplast creates other difficulties, such as the loss of metabolon formation and intermediate diversion into other metabolic pathways. We show here that co-localization of these enzymes in the thylakoid membrane leads to a significant increase...... in product formation, with a concomitant decrease in off-pathway intermediates. This was achieved by exchanging the membrane anchors of the dhurrin pathway enzymes to components of the Twin-arginine translocation pathway, TatB and TatC, which have self-assembly properties. Consequently, we show 5-fold...

  2. Identification and expression analysis of glucosinolate biosynthetic genes and estimation of glucosinolate contents in edible organs of Brassica oleracea subspecies.

    Science.gov (United States)

    Yi, Go-Eun; Robin, Arif Hasan Khan; Yang, Kiwoung; Park, Jong-In; Kang, Jong-Goo; Yang, Tae-Jin; Nou, Ill-Sup

    2015-07-20

    Glucosinolates are anti-carcinogenic, anti-oxidative biochemical compounds that defend plants from insect and microbial attack. Glucosinolates are abundant in all cruciferous crops, including all vegetable and oilseed Brassica species. Here, we studied the expression of glucosinolate biosynthesis genes and determined glucosinolate contents in the edible organs of a total of 12 genotypes of Brassica oleracea: three genotypes each from cabbage, kale, kohlrabi and cauliflower subspecies. Among the 81 genes analyzed by RT-PCR, 19 are transcription factor-related, two different sets of 25 genes are involved in aliphatic and indolic biosynthesis pathways and the rest are breakdown-related. The expression of glucosinolate-related genes in the stems of kohlrabi was remarkably different compared to leaves of cabbage and kale and florets of cauliflower as only eight genes out of 81 were expressed in the stem tissues of kohlrabi. In the stem tissue of kohlrabi, only one aliphatic transcription factor-related gene, Bol036286 (MYB28) and one indolic transcription factor-related gene, Bol030761 (MYB51), were expressed. The results indicated the expression of all genes is not essential for glucosinolate biosynthesis. Using HPLC analysis, a total of 16 different types of glucosinolates were identified in four subspecies, nine of them were aliphatic, four of them were indolic and one was aromatic. Cauliflower florets measured the highest number of 14 glucosinolates. Among the aliphatic glucosinolates, only gluconapin was found in the florets of cauliflower. Glucoiberverin and glucobrassicanapin contents were the highest in the stems of kohlrabi. The indolic methoxyglucobrassicin and aromatic gluconasturtiin accounted for the highest content in the florets of cauliflower. A further detailed investigation and analyses is required to discern the precise roles of each of the genes for aliphatic and indolic glucosinolate biosynthesis in the edible organs.

  3. Identification and Expression Analysis of Glucosinolate Biosynthetic Genes and Estimation of Glucosinolate Contents in Edible Organs of Brassica oleracea Subspecies

    Directory of Open Access Journals (Sweden)

    Go-Eun Yi

    2015-07-01

    Full Text Available Glucosinolates are anti-carcinogenic, anti-oxidative biochemical compounds that defend plants from insect and microbial attack. Glucosinolates are abundant in all cruciferous crops, including all vegetable and oilseed Brassica species. Here, we studied the expression of glucosinolate biosynthesis genes and determined glucosinolate contents in the edible organs of a total of 12 genotypes of Brassica oleracea: three genotypes each from cabbage, kale, kohlrabi and cauliflower subspecies. Among the 81 genes analyzed by RT-PCR, 19 are transcription factor-related, two different sets of 25 genes are involved in aliphatic and indolic biosynthesis pathways and the rest are breakdown-related. The expression of glucosinolate-related genes in the stems of kohlrabi was remarkably different compared to leaves of cabbage and kale and florets of cauliflower as only eight genes out of 81 were expressed in the stem tissues of kohlrabi. In the stem tissue of kohlrabi, only one aliphatic transcription factor-related gene, Bol036286 (MYB28 and one indolic transcription factor-related gene, Bol030761 (MYB51, were expressed. The results indicated the expression of all genes is not essential for glucosinolate biosynthesis. Using HPLC analysis, a total of 16 different types of glucosinolates were identified in four subspecies, nine of them were aliphatic, four of them were indolic and one was aromatic. Cauliflower florets measured the highest number of 14 glucosinolates. Among the aliphatic glucosinolates, only gluconapin was found in the florets of cauliflower. Glucoiberverin and glucobrassicanapin contents were the highest in the stems of kohlrabi. The indolic methoxyglucobrassicin and aromatic gluconasturtiin accounted for the highest content in the florets of cauliflower. A further detailed investigation and analyses is required to discern the precise roles of each of the genes for aliphatic and indolic glucosinolate biosynthesis in the edible organs.

  4. Identification of key pathways and genes influencing prognosis in bladder urothelial carcinoma

    Directory of Open Access Journals (Sweden)

    Ning X

    2017-03-01

    Full Text Available Xin Ning, Yaoliang Deng Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, People’s Republic of China Background: Genomic profiling can be used to identify the predictive effect of genomic subsets for determining prognosis in bladder urothelial carcinoma (BUC after radical cystectomy. This study aimed to investigate potential gene and pathway markers associated with prognosis in BUC.Methods: A microarray dataset of BUC was obtained from The Cancer Genome Atlas database. Differentially expressed genes (DEGs were identified by DESeq of the R platform. Kaplan–Meier analysis was applied for prognostic markers. Key pathways and genes were identified using bioinformatics tools, such as gene set enrichment analysis, gene ontology, the Kyoto Encyclopedia of Genes and Genomes, gene multiple association network integration algorithm (GeneMANIA, Search Tool for the Retrieval of Interacting Genes/Proteins, and Molecular Complex Detection.Results: A comparative gene set enrichment analysis of tumor and adjacent normal tissues suggested BUC tumorigenesis resulted mainly from enrichment of cell cycle and DNA damage and repair-related biological processes and pathways, including TP53 and mitotic recombination. Two hundred and fifty-six genes were identified as potential prognosis-related DEGs. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed that the potential prognosis-related DEGs were enriched in angiogenesis, including the cyclic adenosine monophosphate biosynthetic process, cyclic guanosine monophosphate-protein kinase G, mitogen-activated protein kinase, Rap1, and phosphoinositide-3-kinase-AKT signaling pathway. Nine hub genes, TAGLN, ACTA2, MYH11, CALD1, MYLK, GEM, PRELP, TPM2, and OGN, were identified from the intersection of protein–protein interaction and GeneMANIA networks. Module analysis of protein–protein interaction and GeneMANIA networks mainly showed

  5. Novel NAD+-Farnesal Dehydrogenase from Polygonum minus Leaves. Purification and Characterization of Enzyme in Juvenile Hormone III Biosynthetic Pathway in Plant.

    Directory of Open Access Journals (Sweden)

    Ahmad-Faris Seman-Kamarulzaman

    Full Text Available Juvenile Hormone III is of great concern due to negative effects on major developmental and reproductive maturation in insect pests. Thus, the elucidation of enzymes involved JH III biosynthetic pathway has become increasing important in recent years. One of the enzymes in the JH III biosynthetic pathway that remains to be isolated and characterized is farnesal dehydrogenase, an enzyme responsible to catalyze the oxidation of farnesal into farnesoic acid. A novel NAD+-farnesal dehydrogenase of Polygonum minus was purified (315-fold to apparent homogeneity in five chromatographic steps. The purification procedures included Gigacap S-Toyopearl 650M, Gigacap Q-Toyopearl 650M, and AF-Blue Toyopearl 650ML, followed by TSK Gel G3000SW chromatographies. The enzyme, with isoelectric point of 6.6 is a monomeric enzyme with a molecular mass of 70 kDa. The enzyme was relatively active at 40°C, but was rapidly inactivated above 45°C. The optimal temperature and pH of the enzyme were found to be 35°C and 9.5, respectively. The enzyme activity was inhibited by sulfhydryl agent, chelating agent, and metal ion. The enzyme was highly specific for farnesal and NAD+. Other terpene aldehydes such as trans- cinnamaldehyde, citral and α- methyl cinnamaldehyde were also oxidized but in lower activity. The Km values for farnesal, citral, trans- cinnamaldehyde, α- methyl cinnamaldehyde and NAD+ were 0.13, 0.69, 0.86, 1.28 and 0.31 mM, respectively. The putative P. minus farnesal dehydrogenase that's highly specific towards farnesal but not to aliphatic aldehydes substrates suggested that the enzyme is significantly different from other aldehyde dehydrogenases that have been reported. The MALDI-TOF/TOF-MS/MS spectrometry further identified two peptides that share similarity to those of previously reported aldehyde dehydrogenases. In conclusion, the P. minus farnesal dehydrogenase may represent a novel plant farnesal dehydrogenase that exhibits distinctive substrate

  6. Differential control of the cholesterol biosynthetic pathway in tumor versus liver: evidence for decontrolled tumor cholesterogenesis in a cell-free system

    International Nuclear Information System (INIS)

    Azrolan, N.

    1987-01-01

    Cholesterol biosynthesis was characterized in cell-free post-mitochondrial supernatant (PMS) systems prepared from both normal rat liver and Morris hepatoma 3924A. Per cell, the rate of cholesterol synthesis from either 14 C-citrate of 14 -acetate in the hepatoma system was 9-fold greater than that observed in the liver system. Furthermore, the ratio of sterol-to-fatty acid synthesis rates from 14 C-citrate was more than 3-fold greater in the tumor than in the normal liver system. Incubations using radiolabeled acetate and mevalonate have demonstrated the loss of a normally rate-limiting control site within the early portion of the cholesterol biosynthetic pathway in the tumor system. Upon analysis of the steady-state levels of early lipogenic intermediates, the specific site of decontrol in the tumor was identified as the 3-hydroxy-3-methylglutaryl-CoA → mevalonate site of this pathway. In contrast, this reaction appeared to retain its rate-limiting properties in the cell-free system from normal liver

  7. Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae

    OpenAIRE

    Inglis, Diane O; Binkley, Jonathan; Skrzypek, Marek S; Arnaud, Martha B; Cerqueira, Gustavo C; Shah, Prachi; Wymore, Farrell; Wortman, Jennifer R; Sherlock, Gavin

    2013-01-01

    Background Secondary metabolite production, a hallmark of filamentous fungi, is an expanding area of research for the Aspergilli. These compounds are potent chemicals, ranging from deadly toxins to therapeutic antibiotics to potential anti-cancer drugs. The genome sequences for multiple Aspergilli have been determined, and provide a wealth of predictive information about secondary metabolite production. Sequence analysis and gene overexpression strategies have enabled the discovery of novel s...

  8. Seasonal shifts in accumulation of glycerol biosynthetic gene transcripts in mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, larvae

    Directory of Open Access Journals (Sweden)

    Jordie D. Fraser

    2017-06-01

    Full Text Available Winter mortality is a major factor regulating population size of the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae. Glycerol is the major cryoprotectant in this freeze intolerant insect. We report findings from a gene expression study on an overwintering mountain pine beetle population over the course of 35 weeks. mRNA transcript levels suggest glycerol production in the mountain pine beetle occurs through glycogenolytic, gluconeogenic and potentially glyceroneogenic pathways, but not from metabolism of lipids. A two-week lag period between fall glycogen phosphorylase transcript and phosphoenolpyruvate carboxykinase transcript up-regulation suggests that gluconeogenesis serves as a secondary glycerol-production process, subsequent to exhaustion of the primary glycogenolytic source. These results provide a first look at the details of seasonal gene expression related to the production of glycerol in the mountain pine beetle.

  9. Synthesis of C-Glucosylated Octaketide Anthraquinones in Nicotiana benthamiana by Using a Multispecies-Based Biosynthetic Pathway

    DEFF Research Database (Denmark)

    Andersen-Ranberg, Johan; Kongstad, Kenneth Thermann; Nafisi, Majse

    2017-01-01

    unsuccessful. Herein, a novel combination of enzymes derived from a plant (Aloe arborescens, Aa), a bacterium (Streptomyces sp. R1128, St), and an insect (Dactylopius coccus, Dc) that allows for the biosynthesis of the C-glucosylated anthraquinone, dcII, a precursor for carminic acid, is reported. The pathway...

  10. A novel deconvolution method for modeling UDP-N-acetyl-D-glucosamine biosynthetic pathways based on 13C mass isotopologue profiles under non-steady-state conditions

    Directory of Open Access Journals (Sweden)

    Belshoff Alex C

    2011-05-01

    Full Text Available Abstract Background Stable isotope tracing is a powerful technique for following the fate of individual atoms through metabolic pathways. Measuring isotopic enrichment in metabolites provides quantitative insights into the biosynthetic network and enables flux analysis as a function of external perturbations. NMR and mass spectrometry are the techniques of choice for global profiling of stable isotope labeling patterns in cellular metabolites. However, meaningful biochemical interpretation of the labeling data requires both quantitative analysis and complex modeling. Here, we demonstrate a novel approach that involved acquiring and modeling the timecourses of 13C isotopologue data for UDP-N-acetyl-D-glucosamine (UDP-GlcNAc synthesized from [U-13C]-glucose in human prostate cancer LnCaP-LN3 cells. UDP-GlcNAc is an activated building block for protein glycosylation, which is an important regulatory mechanism in the development of many prominent human diseases including cancer and diabetes. Results We utilized a stable isotope resolved metabolomics (SIRM approach to determine the timecourse of 13C incorporation from [U-13C]-glucose into UDP-GlcNAc in LnCaP-LN3 cells. 13C Positional isotopomers and isotopologues of UDP-GlcNAc were determined by high resolution NMR and Fourier transform-ion cyclotron resonance-mass spectrometry. A novel simulated annealing/genetic algorithm, called 'Genetic Algorithm for Isotopologues in Metabolic Systems' (GAIMS was developed to find the optimal solutions to a set of simultaneous equations that represent the isotopologue compositions, which is a mixture of isotopomer species. The best model was selected based on information theory. The output comprises the timecourse of the individual labeled species, which was deconvoluted into labeled metabolic units, namely glucose, ribose, acetyl and uracil. The performance of the algorithm was demonstrated by validating the computed fractional 13C enrichment in these subunits

  11. Amelogenesis Imperfecta; Genes, Proteins, and Pathways

    Directory of Open Access Journals (Sweden)

    Claire E. L. Smith

    2017-06-01

    Full Text Available Amelogenesis imperfecta (AI is the name given to a heterogeneous group of conditions characterized by inherited developmental enamel defects. AI enamel is abnormally thin, soft, fragile, pitted and/or badly discolored, with poor function and aesthetics, causing patients problems such as early tooth loss, severe embarrassment, eating difficulties, and pain. It was first described separately from diseases of dentine nearly 80 years ago, but the underlying genetic and mechanistic basis of the condition is only now coming to light. Mutations in the gene AMELX, encoding an extracellular matrix protein secreted by ameloblasts during enamel formation, were first identified as a cause of AI in 1991. Since then, mutations in at least eighteen genes have been shown to cause AI presenting in isolation of other health problems, with many more implicated in syndromic AI. Some of the encoded proteins have well documented roles in amelogenesis, acting as enamel matrix proteins or the proteases that degrade them, cell adhesion molecules or regulators of calcium homeostasis. However, for others, function is less clear and further research is needed to understand the pathways and processes essential for the development of healthy enamel. Here, we review the genes and mutations underlying AI presenting in isolation of other health problems, the proteins they encode and knowledge of their roles in amelogenesis, combining evidence from human phenotypes, inheritance patterns, mouse models, and in vitro studies. An LOVD resource (http://dna2.leeds.ac.uk/LOVD/ containing all published gene mutations for AI presenting in isolation of other health problems is described. We use this resource to identify trends in the genes and mutations reported to cause AI in the 270 families for which molecular diagnoses have been reported by 23rd May 2017. Finally we discuss the potential value of the translation of AI genetics to clinical care with improved patient pathways and

  12. Amelogenesis Imperfecta; Genes, Proteins, and Pathways.

    Science.gov (United States)

    Smith, Claire E L; Poulter, James A; Antanaviciute, Agne; Kirkham, Jennifer; Brookes, Steven J; Inglehearn, Chris F; Mighell, Alan J

    2017-01-01

    Amelogenesis imperfecta (AI) is the name given to a heterogeneous group of conditions characterized by inherited developmental enamel defects. AI enamel is abnormally thin, soft, fragile, pitted and/or badly discolored, with poor function and aesthetics, causing patients problems such as early tooth loss, severe embarrassment, eating difficulties, and pain. It was first described separately from diseases of dentine nearly 80 years ago, but the underlying genetic and mechanistic basis of the condition is only now coming to light. Mutations in the gene AMELX , encoding an extracellular matrix protein secreted by ameloblasts during enamel formation, were first identified as a cause of AI in 1991. Since then, mutations in at least eighteen genes have been shown to cause AI presenting in isolation of other health problems, with many more implicated in syndromic AI. Some of the encoded proteins have well documented roles in amelogenesis, acting as enamel matrix proteins or the proteases that degrade them, cell adhesion molecules or regulators of calcium homeostasis. However, for others, function is less clear and further research is needed to understand the pathways and processes essential for the development of healthy enamel. Here, we review the genes and mutations underlying AI presenting in isolation of other health problems, the proteins they encode and knowledge of their roles in amelogenesis, combining evidence from human phenotypes, inheritance patterns, mouse models, and in vitro studies. An LOVD resource (http://dna2.leeds.ac.uk/LOVD/) containing all published gene mutations for AI presenting in isolation of other health problems is described. We use this resource to identify trends in the genes and mutations reported to cause AI in the 270 families for which molecular diagnoses have been reported by 23rd May 2017. Finally we discuss the potential value of the translation of AI genetics to clinical care with improved patient pathways and speculate on the

  13. Seasonal alteration in amounts of lignans and their glucosides and gene expression of the relevant biosynthetic enzymes in the Forsythia suspense leaf.

    Science.gov (United States)

    Morimoto, Kinuyo; Satake, Honoo

    2013-01-01

    Lignans of Forsythia spp. are essential components of various Chinese medicines and health diets. However, the seasonal alteration in lignan amounts and the gene expression profile of lignan-biosynthetic enzymes has yet to be investigated. In this study, we have assessed seasonal alteration in amounts of major lignans, such as pinoresinol, matairesinol, and arctigenin, and examined the gene expression profile of pinoresinol/lariciresinol reductase (PLR), pinoresinol-glucosylating enzyme (UGT71A18), and secoisolariciresinol dehydrogenase (SIRD) in the leaf of Forsythia suspense from April to November. All of the lignans in the leaf continuously increased from April to June, reached the maximal level in June, and then decreased. Ninety percent of pinoresinol and matairesinol was converted into glucosides, while approximately 50% of arctigenin was aglycone. PLR was stably expressed from April to August, whereas the PLR expression was not detected from September to November. In contrast, the UGT71A18 expression was found from August to November, but not from April to July. The SIRD expression was prominent from April to May, not detected in June to July, and then increased again from September to November. These expression profiles of the lignan-synthetic enzymes are largely compatible with the alteration in lignan contents. Furthermore, such seasonal lignan profiles are in good agreement with the fact that the Forsythia leaves for Chinese medicinal tea are harvested in June. This is the first report on seasonal alteration in lignans and the relevant biosynthetic enzyme genes in the leaf of Forsythia species.

  14. Detection of biosynthetic gene and phytohormone production by endophytic actinobacteria associated with Solanum lycopersicum and their plant-growth-promoting effect.

    Science.gov (United States)

    Passari, Ajit Kumar; Chandra, Preeti; Zothanpuia; Mishra, Vineet Kumar; Leo, Vincent Vineeth; Gupta, Vijai Kumar; Kumar, Brijesh; Singh, Bhim Pratap

    2016-10-01

    In the present study, fifteen endophytic actinobacterial isolates recovered from Solanum lycopersicum were studied for their antagonistic potential and plant-growth-promoting (PGP) traits. Among them, eight isolates showed significant antagonistic and PGP traits, identified by amplification of the 16S rRNA gene. Isolate number DBT204, identified as Streptomyces sp., showed multiple PGP traits tested in planta and improved a range of growth parameters in seedlings of chili (Capsicum annuum L.) and tomato (S. lycopersicum L.). Further, genes of indole acetic acid (iaaM) and 1-aminocyclopropane-1-carboxylate (ACC) deaminase (acdS) were successively amplified from five strains. Six antibiotics (trimethoprim, fluconazole, chloramphenicol, nalidixic acid, rifampicin and streptomycin) and two phytohormones [indole acetic acid (IAA) and kinetin (KI)] were detected and quantified in Streptomyces sp. strain DBT204 using UPLC-ESI-MS/MS. The study indicates the potential of these PGP strains for production of phytohormones and shows the presence of biosynthetic genes responsible for production of secondary metabolites. It is the first report showing production of phytohormones (IAA and KI) by endophytic actinobacteria having PGP and biosynthetic potential. We propose Streptomyces sp. strain DBT204 for inoculums production and development of biofertilizers for enhancing growth of chili and tomato seedlings. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  15. ClbM is a versatile, cation-promiscuous MATE transporter found in the colibactin biosynthetic gene cluster.

    Science.gov (United States)

    Mousa, Jarrod J; Newsome, Rachel C; Yang, Ye; Jobin, Christian; Bruner, Steven D

    2017-01-22

    Multidrug transporters play key roles in cellular drug resistance to toxic molecules, yet these transporters are also involved in natural product transport as part of biosynthetic clusters in bacteria and fungi. The genotoxic molecule colibactin is produced by strains of virulent and pathobiont Escherichia coli and Klebsiella pneumoniae. In the biosynthetic cluster is a multidrug and toxic compound extrusion protein (MATE) proposed to transport the prodrug molecule precolibactin across the cytoplasmic membrane, for subsequent cleavage by the peptidase ClbP and cellular export. We recently determined the X-ray structure of ClbM, and showed preliminary data suggesting its specific role in precolibactin transport. Here, we define a functional role of ClbM by examining transport capabilities under various biochemical conditions. Our data indicate ClbM responds to sodium, potassium, and rubidium ion gradients, while also having substantial transport activity in the absence of alkali cations. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Identification and characterization of lbpA, an indigoidine biosynthetic gene in the γ-butyrolactone signaling system of Streptomyces lavendulae FRI-5.

    Science.gov (United States)

    Pait, Ivy Grace Umadhay; Kitani, Shigeru; Kurniawan, Yohanes Novi; Asa, Maeda; Iwai, Takashi; Ikeda, Haruo; Nihira, Takuya

    2017-10-01

    Streptomyces lavendulae FRI-5 produces the blue pigment indigoidine and other secondary metabolites (d-cycloserine and nucleoside antibiotics). The production of these useful compounds is controlled by a signaling cascade mediated by the γ-butyrolactone autoregulator IM-2. Previously we revealed that the far regulatory island includes the IM-2 receptor, the IM-2 biosynthetic enzyme, and several transcriptional regulators, and that it contributes to the regulation of indigoidine production in response to the signaling molecule. Here, we found that the vicinity of the far regulatory island includes the putative gene cluster for the biosynthesis of indigoidine and unidentified compounds, and demonstrated that the expression of the gene cluster is under the control of the IM-2 regulatory system. Heterologous expression of lbpA, encoding a plausible nonribosomal peptide synthetase, in the versatile model host Streptomyces avermitilis SUKA22 led to indigoidine production, which was enhanced dramatically by feeding of the indigoidine precursor l-glutamine. These results confirmed that LbpA is an indigoidine biosynthetic enzyme in the IM-2 signaling cascade. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Separate enrichment analysis of pathways for up- and downregulated genes.

    Science.gov (United States)

    Hong, Guini; Zhang, Wenjing; Li, Hongdong; Shen, Xiaopei; Guo, Zheng

    2014-03-06

    Two strategies are often adopted for enrichment analysis of pathways: the analysis of all differentially expressed (DE) genes together or the analysis of up- and downregulated genes separately. However, few studies have examined the rationales of these enrichment analysis strategies. Using both microarray and RNA-seq data, we show that gene pairs with functional links in pathways tended to have positively correlated expression levels, which could result in an imbalance between the up- and downregulated genes in particular pathways. We then show that the imbalance could greatly reduce the statistical power for finding disease-associated pathways through the analysis of all-DE genes. Further, using gene expression profiles from five types of tumours, we illustrate that the separate analysis of up- and downregulated genes could identify more pathways that are really pertinent to phenotypic difference. In conclusion, analysing up- and downregulated genes separately is more powerful than analysing all of the DE genes together.

  18. Variation in fumonisin and ochratoxin production associated with differences in biosynthetic gene content in Aspergillus niger and A. welwitschiae isolates from multiple crop and geographic origins

    Directory of Open Access Journals (Sweden)

    Antonia Susca

    2016-09-01

    Full Text Available The fungi Aspergillus niger and A. welwitschiae are morphologically indistinguishable species used for industrial fermentation and for food and beverage production. The fungi also occur widely on food crops. Concerns about their safety have arisen with the discovery that some isolates of both species produce fumonisin (FB and ochratoxin A (OTA mycotoxins. Here, we examined FB and OTA production as well as the presence of genes responsible for synthesis of the mycotoxins in a collection of 92 A. niger/A. welwitschiae isolates from multiple crop and geographic origins. The results indicate that i isolates of both species differed in ability to produce the mycotoxins; ii FB-nonproducing isolates of A. niger had an intact fumonisin biosynthetic gene (fum cluster; iii FB-nonproducing isolates of A. welwitschiae exhibited multiple patterns of fum gene deletion; and iv OTA-nonproducing isolates of both species lacked the ochratoxin A biosynthetic gene (ota cluster. Analysis of genome sequence data revealed a single pattern of ota gene deletion in the two species. Phylogenetic analysis suggest that the simplest explanation for this is that ota cluster deletion occurred in a common ancestor of A. niger and A. welwitschiae, and subsequently both the intact and deleted cluster were retained as alternate alleles during divergence of the ancestor into descendent species. Finally, comparison of results from this and previous studies indicate that a majority of A. niger isolates and a minority of A. welwitschiae isolates can produce FBs, whereas a minority of isolates of both species produce OTA. The comparison also suggested that the relative abundance of each species and frequency of FB/OTA-producing isolates can vary with crop and/or geographic origin.

  19. Global identification of the full-length transcripts and alternative splicing related to phenolic acid biosynthetic genes in Salvia miltiorrhiza

    Directory of Open Access Journals (Sweden)

    Zhichao eXu

    2016-02-01

    Full Text Available Salvianolic acids are among the main bioactive components in Salvia miltiorrhiza, and their biosynthesis has attracted widespread interest. However, previous studies on the biosynthesis of phenolic acids using next-generation sequencing platforms are limited with regard to the assembly of full-length transcripts. Based on hybrid-seq (next-generation and single molecular real-time sequencing of the S. miltiorrhiza root transcriptome, we experimentally identified 15 full-length transcripts and 4 alternative splicing events of enzyme-coding genes involved in the biosynthesis of rosmarinic acid. Moreover, we herein demonstrate that lithospermic acid B accumulates in the phloem and xylem of roots, in agreement with the expression patterns of the identified key genes related to rosmarinic acid biosynthesis. According to co-expression patterns, we predicted that 6 candidate cytochrome P450s and 5 candidate laccases participate in the salvianolic acid pathway. Our results provide a valuable resource for further investigation into the synthetic biology of phenolic acids in S. miltiorrhiza.

  20. A complete structural characterization of the desferrioxamine E biosynthetic pathway from the fire blight pathogen Erwinia amylovora.

    Science.gov (United States)

    Salomone-Stagni, Marco; Bartho, Joseph D; Polsinelli, Ivan; Bellini, Dom; Walsh, Martin A; Demitri, Nicola; Benini, Stefano

    2018-02-08

    The Gram-negative bacterium Erwinia amylovora is the etiological agent of fire blight, a devastating disease which affects Rosaceae such as apple, pear and quince. The siderophore desferrioxamine E plays an important role in bacterial pathogenesis by scavenging iron from the host. DfoJ, DfoA and DfoC are the enzymes responsible for desferrioxamine production starting from lysine. We have determined the crystal structures of each enzyme in the desferrioxamine E pathway and demonstrate that the biosynthesis involves the concerted action of DfoJ, followed by DfoA and lastly DfoC. These data provide the first crystal structures of a Group II pyridoxal-dependent lysine decarboxylase, a cadaverine monooxygenase and a desferrioxamine synthetase. DfoJ is a homodimer made up of three domains. Each monomer contributes to the completion of the active site, which is positioned at the dimer interface. DfoA is the first structure of a cadaverine monooxygenase. It forms homotetramers whose subunits are built by two domains: one for FAD and one for NADP + binding, the latter of which is formed by two subdomains. We propose a model for substrate binding and the role of residues 43-47 as gate keepers for FAD binding and the role of Arg97 in cofactors turnover. DfoC is the first structure of a desferrioxamine synthetase and the first of a multi-enzyme siderophore synthetase coupling an acyltransferase domain with a Non-Ribosomal Peptide Synthetase (NRPS)-Independent Siderophore domain (NIS). Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Structural and Functional Analysis of Campylobacter jejuni PseG: a Udp-sugarhydrolase from the Pseudaminic Acid Biosynthetic Pathway

    Energy Technology Data Exchange (ETDEWEB)

    E Rangarajan; A Proteau; Q Cui; S Logan; Z Potetinova; D Whitfield; E Purisima; M Cygler; A Matte; et al.

    2011-12-31

    Flagella of the bacteria Helicobacter pylori and Campylobacter jejuni are important virulence determinants, whose proper assembly and function are dependent upon glycosylation at multiple positions by sialic acid-like sugars, such as 5,7-diacetamido-3,5,7,9-tetradeoxy-l-glycero-l-manno-nonulosonic acid (pseudaminic acid (Pse)). The fourth enzymatic step in the pseudaminic acid pathway, the hydrolysis of UDP-2,4-diacetamido-2,4,6-trideoxy-{beta}-l-altropyranose to generate 2,4-diacetamido-2,4,6-trideoxy-l-altropyranose, is performed by the nucleotide sugar hydrolase PseG. To better understand the molecular basis of the PseG catalytic reaction, we have determined the crystal structures of C. jejuni PseG in apo-form and as a complex with its UDP product at 1.8 and 1.85 {angstrom} resolution, respectively. In addition, molecular modeling was utilized to provide insight into the structure of the PseG-substrate complex. This modeling identifies a His{sup 17}-coordinated water molecule as the putative nucleophile and suggests the UDP-sugar substrate adopts a twist-boat conformation upon binding to PseG, enhancing the exposure of the anomeric bond cleaved and favoring inversion at C-1. Furthermore, based on these structures a series of amino acid substitution derivatives were constructed, altering residues within the active site, and each was kinetically characterized to examine its contribution to PseG catalysis. In conjunction with structural comparisons, the almost complete inactivation of the PseG H17F and H17L derivatives suggests that His{sup 17} functions as an active site base, thereby activating the nucleophilic water molecule for attack of the anomeric C-O bond of the UDP-sugar. As the PseG structure reveals similarity to those of glycosyltransferase family-28 members, in particular that of Escherichia coli MurG, these findings may also be of relevance for the mechanistic understanding of this important enzyme family.

  2. ClbM is a versatile, cation-promiscuous MATE transporter found in the colibactin biosynthetic gene cluster

    International Nuclear Information System (INIS)

    Mousa, Jarrod J.; Newsome, Rachel C.; Yang, Ye; Jobin, Christian; Bruner, Steven D.

    2017-01-01

    Multidrug transporters play key roles in cellular drug resistance to toxic molecules, yet these transporters are also involved in natural product transport as part of biosynthetic clusters in bacteria and fungi. The genotoxic molecule colibactin is produced by strains of virulent and pathobiont Escherichia coli and Klebsiella pneumoniae. In the biosynthetic cluster is a multidrug and toxic compound extrusion protein (MATE) proposed to transport the prodrug molecule precolibactin across the cytoplasmic membrane, for subsequent cleavage by the peptidase ClbP and cellular export. We recently determined the X-ray structure of ClbM, and showed preliminary data suggesting its specific role in precolibactin transport. Here, we define a functional role of ClbM by examining transport capabilities under various biochemical conditions. Our data indicate ClbM responds to sodium, potassium, and rubidium ion gradients, while also having substantial transport activity in the absence of alkali cations. - Highlights: • ClbM is a cation promiscuous MATE multidrug transporter. • The role of key residues were identified in both the cation and proton binding. • The biologically relevant substrate for ClbM is the natural product precolibactin.

  3. Formal modeling and analysis of the hexosamine biosynthetic pathway: role of O-linked N-acetylglucosamine transferase in oncogenesis and cancer progression

    Directory of Open Access Journals (Sweden)

    Muhammad Tariq Saeed

    2016-09-01

    Full Text Available The alteration of glucose metabolism, through increased uptake of glucose and glutamine addiction, is essential to cancer cell growth and invasion. Increased flux of glucose through the Hexosamine Biosynthetic Pathway (HBP drives increased cellular O-GlcNAcylation (hyper-O-GlcNAcylation and contributes to cancer progression by regulating key oncogenes. However, the association between hyper-O-GlcNAcylation and activation of these oncogenes remains poorly characterized. Here, we implement a qualitative modeling framework to analyze the role of the Biological Regulatory Network in HBP activation and its potential effects on key oncogenes. Experimental observations are encoded in a temporal language format and model checking is applied to infer the model parameters and qualitative model construction. Using this model, we discover step-wise genetic alterations that promote cancer development and invasion due to an increase in glycolytic flux, and reveal critical trajectories involved in cancer progression. We compute delay constraints to reveal important associations between the production and degradation rates of proteins. O-linked N-acetylglucosamine transferase (OGT, an enzyme used for addition of O-GlcNAc during O-GlcNAcylation, is identified as a key regulator to promote oncogenesis in a feedback mechanism through the stabilization of c-Myc. Silencing of the OGT and c-Myc loop decreases glycolytic flux and leads to programmed cell death. Results of network analyses also identify a significant cycle that highlights the role of p53-Mdm2 circuit oscillations in cancer recovery and homeostasis. Together, our findings suggest that the OGT and c-Myc feedback loop is critical in tumor progression, and targeting these mediators may provide a mechanism-based therapeutic approach to regulate hyper-O-GlcNAcylation in human cancer.

  4. Distribution and biosynthesis of flavan-3-ols in Camellia sinensis seedlings and expression of genes encoding biosynthetic enzymes.

    Science.gov (United States)

    Ashihara, Hiroshi; Deng, Wei-Wei; Mullen, William; Crozier, Alan

    2010-04-01

    The distribution of phenolic compounds in young and developing leaves, stems, main and lateral roots and cotyledons of 8-week-old tea (Camellia sinensis) seedlings was investigated using HPLC-MS(2). Fourteen compounds, flavan-3-ols, chlorogenic acids, and kaempferol-O-glycosides, were identified on the basis of their retention time, absorbance spectrum, and MS fragmentation pattern. The major phenolics were (-)-epigallocatechin-3-O-gallate and (-)-epicatechin-3-O-gallate, located principally in the green parts of the seedlings. Considerable amounts of radioactivity from [ring-(14)C]phenylalanine were incorporated in (-)-epicatechin, (-)-epigallocatechin, (-)-epicatechin-3-O-gallate and (-)-epigallocatechin-3-O-gallate, by tissues of young and developing leaves and stems. Expression of genes encoding enzymes involved in flavan-3-ol biosynthesis, CHS, CHI, F3H, F3'5'H, DFR, ANS, ANR and LAR was investigated. Transcripts of all genes, except LAR, were more abundant in leaves and stems than in roots and cotyledons. No significant difference was found in the amount of transcript of LAR. These findings indicate that in tea seedlings flavan-3-ols are produced by a naringenin-chalcone-->naringenin-->dihydrokaempferol pathway. Dihydrokaempferol is a branch point in the synthesis of (-)-epigallocatechin-3-O-gallate and other flavan-3-ols which can be formed by routes beginning with either a flavonoid 3'-hydroxylase mediated conversion of the flavonol to dihydroquercetin or a flavonoid 3',5'-hydroxylase-catalysed conversion to dihydromyricetin with subsequent steps involving sequential reactions catalysed by dihydroflavanol 4-reductase, anthocyanidin synthase, anthocyanidin reductase and flavan-3-ol gallate synthase. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Dysregulated Pathway Identification of Alzheimer's Disease Based on Internal Correlation Analysis of Genes and Pathways.

    Science.gov (United States)

    Kong, Wei; Mou, Xiaoyang; Di, Benteng; Deng, Jin; Zhong, Ruxing; Wang, Shuaiqun

    2017-11-20

    Dysregulated pathway identification is an important task which can gain insight into the underlying biological processes of disease. Current pathway-identification methods focus on a set of co-expression genes and single pathways and ignore the correlation between genes and pathways. The method proposed in this study, takes into account the internal correlations not only between genes but also pathways to identifying dysregulated pathways related to Alzheimer's disease (AD), the most common form of dementia. In order to find the significantly differential genes for AD, mutual information (MI) is used to measure interdependencies between genes other than expression valves. Then, by integrating the topology information from KEGG, the significant pathways involved in the feature genes are identified. Next, the distance correlation (DC) is applied to measure the pairwise pathway crosstalks since DC has the advantage of detecting nonlinear correlations when compared to Pearson correlation. Finally, the pathway pairs with significantly different correlations between normal and AD samples are known as dysregulated pathways. The molecular biology analysis demonstrated that many dysregulated pathways related to AD pathogenesis have been discovered successfully by the internal correlation detection. Furthermore, the insights of the dysregulated pathways in the development and deterioration of AD will help to find new effective target genes and provide important theoretical guidance for drug design. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. De Novo Assembly and Genome Analyses of the Marine-Derived Scopulariopsis brevicaulis Strain LF580 Unravels Life-Style Traits and Anticancerous Scopularide Biosynthetic Gene Cluster.

    Science.gov (United States)

    Kumar, Abhishek; Henrissat, Bernard; Arvas, Mikko; Syed, Muhammad Fahad; Thieme, Nils; Benz, J Philipp; Sørensen, Jens Laurids; Record, Eric; Pöggeler, Stefanie; Kempken, Frank

    2015-01-01

    The marine-derived Scopulariopsis brevicaulis strain LF580 produces scopularides A and B, which have anticancerous properties. We carried out genome sequencing using three next-generation DNA sequencing methods. De novo hybrid assembly yielded 621 scaffolds with a total size of 32.2 Mb and 16298 putative gene models. We identified a large non-ribosomal peptide synthetase gene (nrps1) and supporting pks2 gene in the same biosynthetic gene cluster. This cluster and the genes within the cluster are functionally active as confirmed by RNA-Seq. Characterization of carbohydrate-active enzymes and major facilitator superfamily (MFS)-type transporters lead to postulate S. brevicaulis originated from a soil fungus, which came into contact with the marine sponge Tethya aurantium. This marine sponge seems to provide shelter to this fungus and micro-environment suitable for its survival in the ocean. This study also builds the platform for further investigations of the role of life-style and secondary metabolites from S. brevicaulis.

  7. How Did Arthropod Sesquiterpenoids and Ecdysteroids Arise? Comparison of Hormonal Pathway Genes in Noninsect Arthropod Genomes.

    Science.gov (United States)

    Qu, Zhe; Kenny, Nathan James; Lam, Hon Ming; Chan, Ting Fung; Chu, Ka Hou; Bendena, William G; Tobe, Stephen S; Hui, Jerome Ho Lam

    2015-06-25

    The phylum Arthropoda contains the largest number of described living animal species, with insects and crustaceans dominating the terrestrial and aquatic environments, respectively. Their successful radiations have long been linked to their rigid exoskeleton in conjunction with their specialized endocrine systems. In order to understand how hormones can contribute to the evolution of these animals, here, we have categorized the sesquiterpenoid and ecdysteroid pathway genes in the noninsect arthropod genomes, which are known to play important roles in the regulation of molting and metamorphosis in insects. In our analyses, the majority of gene homologs involved in the biosynthetic, degradative, and signaling pathways of sesquiterpenoids and ecdysteroids can be identified, implying these two hormonal systems were present in the last common ancestor of arthropods. Moreover, we found that the "Broad-Complex" was specifically gained in the Pancrustacea, and the innovation of juvenile hormone (JH) in the insect linage correlates with the gain of the JH epoxidase (CYP15A1/C1) and the key residue changes in the binding domain of JH receptor ("Methoprene-tolerant"). Furthermore, the gain of "Phantom" differentiates chelicerates from the other arthropods in using ponasterone A rather than 20-hydroxyecdysone as molting hormone. This study establishes a comprehensive framework for interpreting the evolution of these vital hormonal pathways in these most successful animals, the arthropods, for the first time. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. How Did Arthropod Sesquiterpenoids and Ecdysteroids Arise? Comparison of Hormonal Pathway Genes in Noninsect Arthropod Genomes

    Science.gov (United States)

    Qu, Zhe; Kenny, Nathan James; Lam, Hon Ming; Chan, Ting Fung; Chu, Ka Hou; Bendena, William G.; Tobe, Stephen S.; Hui, Jerome Ho Lam

    2015-01-01

    The phylum Arthropoda contains the largest number of described living animal species, with insects and crustaceans dominating the terrestrial and aquatic environments, respectively. Their successful radiations have long been linked to their rigid exoskeleton in conjunction with their specialized endocrine systems. In order to understand how hormones can contribute to the evolution of these animals, here, we have categorized the sesquiterpenoid and ecdysteroid pathway genes in the noninsect arthropod genomes, which are known to play important roles in the regulation of molting and metamorphosis in insects. In our analyses, the majority of gene homologs involved in the biosynthetic, degradative, and signaling pathways of sesquiterpenoids and ecdysteroids can be identified, implying these two hormonal systems were present in the last common ancestor of arthropods. Moreover, we found that the “Broad-Complex” was specifically gained in the Pancrustacea, and the innovation of juvenile hormone (JH) in the insect linage correlates with the gain of the JH epoxidase (CYP15A1/C1) and the key residue changes in the binding domain of JH receptor (“Methoprene-tolerant”). Furthermore, the gain of “Phantom” differentiates chelicerates from the other arthropods in using ponasterone A rather than 20-hydroxyecdysone as molting hormone. This study establishes a comprehensive framework for interpreting the evolution of these vital hormonal pathways in these most successful animals, the arthropods, for the first time. PMID:26112967

  9. The Aspergillus fumigatus siderophore biosynthetic gene sidA, encoding L-ornithine N5-oxygenase, is required for virulence.

    Science.gov (United States)

    Hissen, Anna H T; Wan, Adrian N C; Warwas, Mark L; Pinto, Linda J; Moore, Margo M

    2005-09-01

    Aspergillus fumigatus is the leading cause of invasive mold infection and is a serious problem in immunocompromised populations worldwide. We have previously shown that survival of A. fumigatus in serum may be related to secretion of siderophores. In this study, we identified and characterized the sidA gene of A. fumigatus, which encodes l-ornithine N(5)-oxygenase, the first committed step in hydroxamate siderophore biosynthesis. A. fumigatus sidA codes for a protein of 501 amino acids with significant homology to other fungal l-ornithine N(5)-oxygenases. A stable DeltasidA strain was created by deletion of A. fumigatus sidA. This strain was unable to synthesize the siderophores N',N",N'''-triacetylfusarinine C (TAF) and ferricrocin. Growth of the DeltasidA strain was the same as that of the wild type in rich media; however, the DeltasidA strain was unable to grow in low-iron defined media or media containing 10% human serum unless supplemented with TAF or ferricrocin. No significant differences in ferric reduction activities were observed between the parental strain and the DeltasidA strain, indicating that blocking siderophore secretion did not result in upregulation of this pathway. Unlike the parental strain, the DeltasidA strain was unable to remove iron from human transferrin. A rescued strain (DeltasidA + sidA) was constructed; it produced siderophores and had the same growth as the wild type on iron-limited media. Unlike the wild-type and rescued strains, the DeltasidA strain was avirulent in a mouse model of invasive aspergillosis, indicating that sidA is necessary for A. fumigatus virulence.

  10. DMPD: Signalling pathways mediating type I interferon gene expression. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17904888 Signalling pathways mediating type I interferon gene expression. Edwards M...hways mediating type I interferon gene expression. PubmedID 17904888 Title Signalling pathways...R, Slater L, Johnston SL. Microbes Infect. 2007 Sep;9(11):1245-51. Epub 2007 Jul 1. (.png) (.svg) (.html) (.csml) Show Signalling pat

  11. Rice Ethylene-Response AP2/ERF Factor OsEATB Restricts Internode Elongation by Down-Regulating a Gibberellin Biosynthetic Gene1[W][OA

    Science.gov (United States)

    Qi, Weiwei; Sun, Fan; Wang, Qianjie; Chen, Mingluan; Huang, Yunqing; Feng, Yu-Qi; Luo, Xiaojin; Yang, Jinshui

    2011-01-01

    Plant height is a decisive factor in plant architecture. Rice (Oryza sativa) plants have the potential for rapid internodal elongation, which determines plant height. A large body of physiological research has shown that ethylene and gibberellin are involved in this process. The APETALA2 (AP2)/Ethylene-Responsive Element Binding Factor (ERF) family of transcriptional factors is only present in the plant kingdom. This family has various developmental and physiological functions. A rice AP2/ERF gene, OsEATB (for ERF protein associated with tillering and panicle branching) was cloned from indica rice variety 9311. Bioinformatic analysis suggested that this ERF has a potential new function. Ectopic expression of OsEATB showed that the cross talk between ethylene and gibberellin, which is mediated by OsEATB, might underlie differences in rice internode elongation. Analyses of gene expression demonstrated that OsEATB restricts ethylene-induced enhancement of gibberellin responsiveness during the internode elongation process by down-regulating the gibberellin biosynthetic gene, ent-kaurene synthase A. Plant height is negatively correlated with tiller number, and higher yields are typically obtained from dwarf crops. OsEATB reduces rice plant height and panicle length at maturity, promoting the branching potential of both tillers and spikelets. These are useful traits for breeding high-yielding crops. PMID:21753115

  12. Rice ethylene-response AP2/ERF factor OsEATB restricts internode elongation by down-regulating a gibberellin biosynthetic gene.

    Science.gov (United States)

    Qi, Weiwei; Sun, Fan; Wang, Qianjie; Chen, Mingluan; Huang, Yunqing; Feng, Yu-Qi; Luo, Xiaojin; Yang, Jinshui

    2011-09-01

    Plant height is a decisive factor in plant architecture. Rice (Oryza sativa) plants have the potential for rapid internodal elongation, which determines plant height. A large body of physiological research has shown that ethylene and gibberellin are involved in this process. The APETALA2 (AP2)/Ethylene-Responsive Element Binding Factor (ERF) family of transcriptional factors is only present in the plant kingdom. This family has various developmental and physiological functions. A rice AP2/ERF gene, OsEATB (for ERF protein associated with tillering and panicle branching) was cloned from indica rice variety 9311. Bioinformatic analysis suggested that this ERF has a potential new function. Ectopic expression of OsEATB showed that the cross talk between ethylene and gibberellin, which is mediated by OsEATB, might underlie differences in rice internode elongation. Analyses of gene expression demonstrated that OsEATB restricts ethylene-induced enhancement of gibberellin responsiveness during the internode elongation process by down-regulating the gibberellin biosynthetic gene, ent-kaurene synthase A. Plant height is negatively correlated with tiller number, and higher yields are typically obtained from dwarf crops. OsEATB reduces rice plant height and panicle length at maturity, promoting the branching potential of both tillers and spikelets. These are useful traits for breeding high-yielding crops.

  13. The simultaneous repression of CCR and CAD, two enzymes of the lignin biosynthetic pathway, results in sterility and dwarfism in Arabidopsis thaliana.

    Science.gov (United States)

    Thévenin, Johanne; Pollet, Brigitte; Letarnec, Bruno; Saulnier, Luc; Gissot, Lionel; Maia-Grondard, Alessandra; Lapierre, Catherine; Jouanin, Lise

    2011-01-01

    Cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) catalyze the last steps of monolignol biosynthesis. In Arabidopsis, one CCR gene (CCR1, At1g15950) and two CAD genes (CAD C At3g19450 and CAD D At4g34230) are involved in this pathway. A triple cad c cad d ccr1 mutant, named ccc, was obtained. This mutant displays a severe dwarf phenotype and male sterility. The lignin content in ccc mature stems is reduced to 50% of the wild-type level. In addition, stem lignin structure is severely affected, as shown by the dramatic enrichment in resistant inter-unit bonds and incorporation into the polymer of monolignol precursors such as coniferaldehyde, sinapaldehyde, and ferulic acid. Male sterility is due to the lack of lignification in the anther endothecium, which causes the failure of anther dehiscence and of pollen release. The ccc hypolignified stems accumulate higher amounts of flavonol glycosides, sinapoyl malate and feruloyl malate, which suggests a redirection of the phenolic pathway. Therefore, the absence of CAD and CCR, key enzymes of the monolignol pathway, has more severe consequences on the phenotype than the individual absence of each of them. Induction of another CCR (CCR2, At1g80820) and another CAD (CAD1, At4g39330) does not compensate the absence of the main CCR and CAD activities. This lack of CCR and CAD activities not only impacts lignification, but also severely affects the development of the plants. These consequences must be carefully considered when trying to reduce the lignin content of plants in order to facilitate the lignocellulose-to-bioethanol conversion process.

  14. Heterologous expression of oxytetracycline biosynthetic gene cluster in Streptomyces venezuelae WVR2006 to improve production level and to alter fermentation process.

    Science.gov (United States)

    Yin, Shouliang; Li, Zilong; Wang, Xuefeng; Wang, Huizhuan; Jia, Xiaole; Ai, Guomin; Bai, Zishang; Shi, Mingxin; Yuan, Fang; Liu, Tiejun; Wang, Weishan; Yang, Keqian

    2016-12-01

    Heterologous expression is an important strategy to activate biosynthetic gene clusters of secondary metabolites. Here, it is employed to activate and manipulate the oxytetracycline (OTC) gene cluster and to alter OTC fermentation process. To achieve these goals, a fast-growing heterologous host Streptomyces venezuelae WVR2006 was rationally selected among several potential hosts. It shows rapid and dispersed growth and intrinsic high resistance to OTC. By manipulating the expression of two cluster-situated regulators (CSR) OtcR and OtrR and precursor supply, the OTC production level was significantly increased in this heterologous host from 75 to 431 mg/l only in 48 h, a level comparable to the native producer Streptomyces rimosus M4018 in 8 days. This work shows that S. venezuelae WVR2006 is a promising chassis for the production of secondary metabolites, and the engineered heterologous OTC producer has the potential to completely alter the fermentation process of OTC production.

  15. Phylogenetic origin and diversification of RNAi pathway genes in insects

    DEFF Research Database (Denmark)

    Dowling, Daniel; Pauli, Thomas; Donath, Alexander

    2016-01-01

    RNAinterference (RNAi) refers tothe set ofmolecular processes foundin eukaryotic organisms in which smallRNAmolecules mediate the silencing or down-regulation of target genes. In insects, RNAi serves a number of functions, including regulation of endogenous genes, anti-viral defense, and defense...... against transposable elements. Despite being well studied in model organisms, such as Drosophila, the distribution of core RNAi pathway genes and their evolution in insects is not well understood. Here we present the most comprehensive overview of the distribution and diversity of core RNAi pathway genes...... across 100 insect species, encompassing all currently recognized insect orders. We inferred the phylogenetic origin of insect-specific RNAi pathway genes and also identified several hitherto unrecorded gene expansions using whole-body transcriptome data from the international 1KITE (1000 Insect...

  16. Text mining in cancer gene and pathway prioritization.

    Science.gov (United States)

    Luo, Yuan; Riedlinger, Gregory; Szolovits, Peter

    2014-01-01

    Prioritization of cancer implicated genes has received growing attention as an effective way to reduce wet lab cost by computational analysis that ranks candidate genes according to the likelihood that experimental verifications will succeed. A multitude of gene prioritization tools have been developed, each integrating different data sources covering gene sequences, differential expressions, function annotations, gene regulations, protein domains, protein interactions, and pathways. This review places existing gene prioritization tools against the backdrop of an integrative Omic hierarchy view toward cancer and focuses on the analysis of their text mining components. We explain the relatively slow progress of text mining in gene prioritization, identify several challenges to current text mining methods, and highlight a few directions where more effective text mining algorithms may improve the overall prioritization task and where prioritizing the pathways may be more desirable than prioritizing only genes.

  17. Polymorphisms in monolignol biosynthetic genes are associated with biomass yield and agronomic traits in European maize (Zea mays L.)

    DEFF Research Database (Denmark)

    Chen, Yongsheng; Zein, Imad; Brenner, Everton A

    2010-01-01

    Background Reduced lignin content leads to higher cell wall digestibility and, therefore, better forage quality and increased conversion of lignocellulosic biomass into ethanol. However, reduced lignin content might lead to weaker stalks, lodging, and reduced biomass yield. Genes encoding enzymes...

  18. A moth pheromone brewery: production of (Z)-11-hexadecenol by heterologous co-expression of two biosynthetic genes from a noctuid moth in a yeast cell factory.

    Science.gov (United States)

    Hagström, Åsa K; Wang, Hong-Lei; Liénard, Marjorie A; Lassance, Jean-Marc; Johansson, Tomas; Löfstedt, Christer

    2013-12-13

    Moths (Lepidoptera) are highly dependent on chemical communication to find a mate. Compared to conventional unselective insecticides, synthetic pheromones have successfully served to lure male moths as a specific and environmentally friendly way to control important pest species. However, the chemical synthesis and purification of the sex pheromone components in large amounts is a difficult and costly task. The repertoire of enzymes involved in moth pheromone biosynthesis in insecta can be seen as a library of specific catalysts that can be used to facilitate the synthesis of a particular chemical component. In this study, we present a novel approach to effectively aid in the preparation of semi-synthetic pheromone components using an engineered vector co-expressing two key biosynthetic enzymes in a simple yeast cell factory. We first identified and functionally characterized a ∆11 Fatty-Acyl Desaturase and a Fatty-Acyl Reductase from the Turnip moth, Agrotis segetum. The ∆11-desaturase produced predominantly Z11-16:acyl, a common pheromone component precursor, from the abundant yeast palmitic acid and the FAR transformed a series of saturated and unsaturated fatty acids into their corresponding alcohols which may serve as pheromone components in many moth species. Secondly, when we co-expressed the genes in the Brewer's yeast Saccharomyces cerevisiae, a set of long-chain fatty acids and alcohols that are not naturally occurring in yeast were produced from inherent yeast fatty acids, and the presence of (Z)-11-hexadecenol (Z11-16:OH), demonstrated that both heterologous enzymes were active in concert. A 100 ml batch yeast culture produced on average 19.5 μg Z11-16:OH. Finally, we demonstrated that oxidized extracts from the yeast cells containing (Z)-11-hexadecenal and other aldehyde pheromone compounds elicited specific electrophysiological activity from male antennae of the Tobacco budworm, Heliothis virescens, supporting the idea that genes from different

  19. Expression Profiling of Glucosinolate Biosynthetic Genes in Brassica oleracea L. var. capitata Inbred Lines Reveals Their Association with Glucosinolate Content

    Directory of Open Access Journals (Sweden)

    Arif Hasan Khan Robin

    2016-06-01

    Full Text Available Glucosinolates are the biochemical compounds that provide defense to plants against pathogens and herbivores. In this study, the relative expression level of 48 glucosinolate biosynthesis genes was explored in four morphologically-different cabbage inbred lines by qPCR analysis. The content of aliphatic and indolic glucosinolate molecules present in those cabbage lines was also estimated by HPLC analysis. The possible association between glucosinolate accumulation and related gene expression level was explored by principal component analysis (PCA. The genotype-dependent variation in the relative expression level of different aliphatic and indolic glucosinolate biosynthesis genes is the novel result of this study. A total of eight different types of glucosinolates, including five aliphatic and three indolic glucosinolates, was detected in four cabbage lines. Three inbred lines BN3383, BN4059 and BN4072 had no glucoraphanin, sinigrin and gluconapin detected, but the inbred line BN3273 had these three aliphatic glucosinolate compounds. PCA revealed that a higher expression level of ST5b genes and lower expression of GSL-OH was associated with the accumulation of these three aliphatic glucosinolate compounds. PCA further revealed that comparatively higher accumulation of neoglucobrassicin in the inbred line, BN4072, was associated with a high level of expression of MYB34 (Bol017062 and CYP81F1 genes. The Dof1 and IQD1 genes probably trans-activated the genes related to biosynthesis of glucoerucin and methoxyglucobrassicin for their comparatively higher accumulation in the BN4059 and BN4072 lines compared to the other two lines, BN3273 and BN3383. A comparatively higher progoitrin level in BN3273 was probably associated with the higher expression level of the GSL-OH gene. The cabbage inbred line BN3383 accounted for the significantly higher relative expression level for the 12 genes out of 48, but this line had comparatively lower total

  20. The rice YABBY4 gene regulates plant growth and development through modulating the gibberellin pathway.

    Science.gov (United States)

    Yang, Chao; Ma, Yamei; Li, Jianxiong

    2016-10-01

    YABBY genes encode seed plant-specific transcription factors that play pivotal roles in diverse aspects of leaf, shoot, and flower development. Members of the YABBY gene family are primarily expressed in lateral organs in a polar manner and function to specify abaxial cell fate in dicotyledons, but this polar expression is not conserved in monocotyledons. The function of YABBY genes is therefore not well understood in monocotyledons. Here we show that overexpression of the rice (Oryza sativa L.) YABBY4 gene (OsYABBY4) leads to a semi-dwarf phenotype, abnormal development in the uppermost internode, an increased number of floral organs, and insensitivity to gibberellin (GA) treatment. We report on an important role for OsYABBY4 in negative control of the expression of a GA biosynthetic gene by binding to the promoter region of the gibberellin 20-oxidase 2 gene (GA20ox2), which is a direct target of SLR1 (the sole DELLA protein negatively controlling GA responses in rice). OsYABBY4 also suppresses the expression level of SLR1 and interacts with SLR1 protein. The interaction inhibits GA-dependent degradation of SLR1 and therefore leads to GA insensitivity. These data together suggest that OsYABBY4 serves as a DNA-binding intermediate protein for SLR1 and is associated with the GA signaling pathway regulating gene expression during plant growth and development. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Optimization of RT-PCR reactions in studies with genes of lignin biosynthetic route in Saccharum spontaneum

    Directory of Open Access Journals (Sweden)

    JUAN P.P. LLERENA

    Full Text Available ABSTRACT Saccharum spontaneum has been used for the development of energy cane a crop aimed to be used for the production of second-generation ethanol, or lignocellulosic ethanol. Lignin is a main challenge in the conversion of cell wall sugars into ethanol. In our studies to isolate the genes the lignin biosynthesis in S. spontaneum we have had great difficulty in RT-PCR reactions. Thus, we evaluated the effectiveness of different additives in the amplification of these genes. While COMT and CCoAOMT genes did not need any additives for other genes there was no amplification (HCT, F5H, 4CL and CCR or the yield was very low (CAD and C4H. The application of supplementary cDNA was enough to overcome the non-specificity and low yield for C4H and C3H, while the addition of 0.04% BSA + 2% formamide was effective to amplify 4CL, CCR, F5H and CCR. HCT was amplified only by addition of 0.04% BSA + 2% formamide + 0.1 M trehalose and amplification of PAL was possible with addition of 2% of DMSO. Besides optimization of expression assays, the results show that additives can act independently or synergistically.

  2. Transcriptome sequencing and de novo assembly in arecanut, Areca catechu L elucidates the secondary metabolite pathway genes

    Directory of Open Access Journals (Sweden)

    Ramaswamy Manimekalai

    2018-03-01

    Full Text Available Areca catechu L. belongs to the Arecaceae family which comprises many economically important palms. The palm is a source of alkaloids and carotenoids. The lack of ample genetic information in public databases has been a constraint for the genetic improvement of arecanut. To gain molecular insight into the palm, high throughput RNA sequencing and de novo assembly of arecanut leaf transcriptome was undertaken in the present study. A total 56,321,907 paired end reads of 101 bp length consisting of 11.343 Gb nucleotides were generated. De novo assembly resulted in 48,783 good quality transcripts, of which 67% of transcripts could be annotated against NCBI non – redundant database. The Gene Ontology (GO analysis with UniProt database identified 9222 biological process, 11268 molecular function and 7574 cellular components GO terms. Large scale expression profiling through Fragments per Kilobase per Million mapped reads (FPKM showed major genes involved in different metabolic pathways of the plant. Metabolic pathway analysis of the assembled transcripts identified 124 plant related pathways. The transcripts related to carotenoid and alkaloid biosynthetic pathways had more number of reads and FPKM values suggesting higher expression of these genes. The arecanut transcript sequences generated in the study showed high similarity with coconut, oil palm and date palm sequences retrieved from public domains. We also identified 6853 genic SSR regions in the arecanut. The possible primers were designed for SSR detection and this would simplify the future efforts in genetic characterization of arecanut.

  3. Aflatoxin B1 inhibition in Aspergillus flavus by Aspergillus niger through down-regulating expression of major biosynthetic genes and AFB1 degradation by atoxigenic A. flavus.

    Science.gov (United States)

    Xing, Fuguo; Wang, Limin; Liu, Xiao; Selvaraj, Jonathan Nimal; Wang, Yan; Zhao, Yueju; Liu, Yang

    2017-09-01

    Twenty Aspergillus niger strains were isolated from peanuts and 14 strains were able to completely inhibit AFB 1 production with co-cultivation. By using a Spin-X centrifuge system, it was confirmed that there are some soluble signal molecules or antibiotics involved in the inhibition by A. niger, although they are absent during the initial 24h of A. flavus growth when it is sensitive to inhibition. In A. flavus, 19 of 20 aflatoxin biosynthetic genes were down-regulated by A. niger. Importantly, the expression of aflS was significantly down-regulated, resulting in a reduction of AflS/AflR ratio. The results suggest that A. niger could directly inhibit AFB 1 biosynthesis through reducing the abundance of aflS to aflR mRNAs. Interestingly, atoxigenic A. flavus JZ2 and GZ15 effectively degrade AFB 1 . Two new metabolites were identified and the key toxic lactone and furofuran rings both were destroyed and hydrogenated, meaning that lactonase and reductase might be involved in the degradation process. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Identification of Secondary Metabolite Gene Clusters in the Pseudovibrio Genus Reveals Encouraging Biosynthetic Potential toward the Production of Novel Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Lynn M. Naughton

    2017-08-01

    Full Text Available Increased incidences of antimicrobial resistance and the emergence of pan-resistant ‘superbugs’ have provoked an extreme sense of urgency amongst researchers focusing on the discovery of potentially novel antimicrobial compounds. A strategic shift in focus from the terrestrial to the marine environment has resulted in the discovery of a wide variety of structurally and functionally diverse bioactive compounds from numerous marine sources, including sponges. Bacteria found in close association with sponges and other marine invertebrates have recently gained much attention as potential sources of many of these novel bioactive compounds. Members of the genus Pseudovibrio are one such group of organisms. In this study, we interrogate the genomes of 21 Pseudovibrio strains isolated from a variety of marine sources, for the presence, diversity and distribution of biosynthetic gene clusters (BGCs. We expand on results obtained from antiSMASH analysis to demonstrate the similarity between the Pseudovibrio-related BGCs and those characterized in other bacteria and corroborate our findings with phylogenetic analysis. We assess how domain organization of the most abundant type of BGCs present among the isolates (Non-ribosomal peptide synthetases and Polyketide synthases may influence the diversity of compounds produced by these organisms and highlight for the first time the potential for novel compound production from this genus of bacteria, using a genome guided approach.

  5. Phase variable O antigen biosynthetic genes control expression of the major protective antigen and bacteriophage receptor in Vibrio cholerae O1.

    Directory of Open Access Journals (Sweden)

    Kimberley D Seed

    2012-09-01

    Full Text Available The Vibrio cholerae lipopolysaccharide O1 antigen is a major target of bacteriophages and the human immune system and is of critical importance for vaccine design. We used an O1-specific lytic bacteriophage as a tool to probe the capacity of V. cholerae to alter its O1 antigen and identified a novel mechanism by which this organism can modulate O antigen expression and exhibit intra-strain heterogeneity. We identified two phase variable genes required for O1 antigen biosynthesis, manA and wbeL. manA resides outside of the previously recognized O1 antigen biosynthetic locus, and encodes for a phosphomannose isomerase critical for the initial step in O1 antigen biosynthesis. We determined that manA and wbeL phase variants are attenuated for virulence, providing functional evidence to further support the critical role of the O1 antigen for infectivity. We provide the first report of phase variation modulating O1 antigen expression in V. cholerae, and show that the maintenance of these phase variable loci is an important means by which this facultative pathogen can generate the diverse subpopulations of cells needed for infecting the host intestinal tract and for escaping predation by an O1-specific phage.

  6. Linking fungal secondary metabolites and pathways to their genes in Aspergillus

    DEFF Research Database (Denmark)

    Petersen, Lene Maj

    . oryzae metabolites, however, revealed the chemical link between the two species. In two parallel projects, involving A. niger and A. aculeatus respectively, the polyketide 6-methyl salicylic acid (6-MSA), and corresponding biosynthetic pathways, were investigated. In A. niger, 6-MSA was converted...

  7. Modification of carotenoid levels by abscission agents and expression of carotenoid biosynthetic genes in 'valencia' sweet orange.

    Science.gov (United States)

    Alferez, Fernando; Pozo, Luis V; Rouseff, Russell R; Burns, Jacqueline K

    2013-03-27

    The effect of 5-chloro-3-methyl-4-nitro-1H-pyrazole (CMNP) and ethephon on peel color, flavedo carotenoid gene expression, and carotenoid accumulation was investigated in mature 'Valencia' orange ( Citrus sinensis L. Osbeck) fruit flavedo at three maturation stages. Abscission agent application altered peel color. CMNP was more effective than ethephon in promoting green-to-red (a) and blue-to-yellow (b) color at the middle and late maturation stages and total carotenoid changes at all maturation stages. Altered flow of carotenoid precursors during maturation due to abscission agents was suggested by changes in phytoene desaturase (Pds) and ζ-carotene desaturase (Zds) gene expression. However, each abscission agent affected downstream expression differentially. Ethephon application increased β-carotene hydroxilase (β-Chx) transcript accumulation 12-fold as maturation advanced from the early to middle and late stages. CMNP markedly increased β- and ε-lycopene cyclase (Lcy) transcript accumulation 45- and 15-fold, respectively, at midmaturation. Patterns of carotenoid accumulation in flavedo were supported in part by gene expression changes. CMNP caused greater accumulation of total flavedo carotenoids at all maturation stages when compared with ethephon or controls. In general, CMNP treatment increased total red carotenoids more than ethephon or the control but decreased total yellow carotenoids at each maturation stage. In control fruit flavedo, total red carotenoids increased and yellow carotenoids decreased as maturation progressed. Trends in total red carotenoids during maturation were consistent with measured a values. Changes in carotenoid accumulation and expression patterns in flavedo suggest that regulation of carotenoid accumulation is under transcriptional, translational, and post-translational control.

  8. Vanillylacetone up-regulates anthocyanin accumulation and expression of anthocyanin biosynthetic genes by inducing endogenous abscisic acid in grapevine tissues.

    Science.gov (United States)

    Enoki, Shinichi; Hattori, Tomoki; Ishiai, Shiho; Tanaka, Sayumi; Mikami, Masachika; Arita, Kayo; Nagasaka, Shu; Suzuki, Shunji

    2017-12-01

    We investigated the effect of vanillylacetone (VA) on anthocyanin accumulation with aim of improving grape berry coloration. Spraying Vitis vinifera cv. Muscat Bailey A berries with VA at veraison increased sugar/acid ratio, an indicator of maturation and total anthocyanin accumulation. To elucidate the molecular mechanism underlying the effect of VA on anthocyanin accumulation, in vitro VA treatment of a grapevine cell culture was carried out. Endogenous abscisic acid (ABA) content was higher in the VA-treated cell cultures than in control at 3h after treatment. Consistent with this, the relative expression levels of anthocyanin-synthesis-related genes, including DFR, LDOX, MybA1 and UFGT, in VA-treated cell cultures were much higher than those in control, and high total anthocyanin accumulation was noted in the VA-treated cell cultures as well. These results suggest that VA up-regulates the expression of genes leading to anthocyanin accumulation by inducing endogenous ABA. In addition, VA increased total anthocyanin content in a dose-dependent manner. Although VA treatment in combination with exogenous ABA did not exhibit any synergistic effect, treatment with VA alone showed an equivalent effect to that with exogenous ABA alone on total anthocyanin accumulation. These findings point to the possibility of using VA for improving grape berry coloration. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Molecular Cloning, Expression Pattern and Genotypic Effects on Glucoraphanin Biosynthetic Related Genes in Chinese Kale (Brassica oleracea var. alboglabra Bailey).

    Science.gov (United States)

    Yin, Ling; Chen, Changming; Chen, Guoju; Cao, Bihao; Lei, Jianjun

    2015-11-11

    Glucoraphanin is a plant secondary metabolite that is involved in plant defense and imparts health-promoting properties to cruciferous vegetables. In this study, three genes involved in glucoraphanin metabolism, branched-chain aminotransferase 4 (BCAT4), methylthioalkylmalate synthase 1 (MAM1) and dihomomethionine N-hydroxylase (CYP79F1), were cloned from Chinese kale (Brassica oleracea var. alboglabra Bailey). Sequence homology and phylogenetic analysis identified these genes and confirmed the evolutionary status of Chinese kale. The transcript levels of BCAT4, MAM1 and CYP79F1 were higher in cotyledon, leaf and stem compared with flower and silique. BCAT4, MAM1 and CYP79F1 were expressed throughout leaf development with lower transcript levels during the younger stages. Glucoraphanin content varied extensively among different varieties, which ranged from 0.25 to 2.73 µmol·g(-1) DW (dry weight). Expression levels of BCAT4 and MAM1 were high at vegetative-reproductive transition phase, while CYP79F1 was expressed high at reproductive phase. BCAT4, MAM1 and CYP79F1 were expressed significantly high in genotypes with high glucoraphanin content. All the results provided a better understanding of the roles of BCAT4, MAM1 and CYP79F1 in the glucoraphanin biosynthesis of Chinese kale.

  10. Analysis of the transcriptome of Erigeron breviscapus uncovers putative scutellarin and chlorogenic acids biosynthetic genes and genetic markers.

    Science.gov (United States)

    Jiang, Ni-Hao; Zhang, Guang-Hui; Zhang, Jia-Jin; Shu, Li-Ping; Zhang, Wei; Long, Guang-Qiang; Liu, Tao; Meng, Zheng-Gui; Chen, Jun-Wen; Yang, Sheng-Chao

    2014-01-01

    Erigeron breviscapus (Vant.) Hand-Mazz. is a famous medicinal plant. Scutellarin and chlorogenic acids are the primary active components in this herb. However, the mechanisms of biosynthesis and regulation for scutellarin and chlorogenic acids in E. breviscapus are considerably unknown. In addition, genomic information of this herb is also unavailable. Using Illumina sequencing on GAIIx platform, a total of 64,605,972 raw sequencing reads were generated and assembled into 73,092 non-redundant unigenes. Among them, 44,855 unigenes (61.37%) were annotated in the public databases Nr, Swiss-Prot, KEGG, and COG. The transcripts encoding the known enzymes involved in flavonoids and in chlorogenic acids biosynthesis were discovered in the Illumina dataset. Three candidate cytochrome P450 genes were discovered which might encode flavone 6-hydroase converting apigenin to scutellarein. Furthermore, 4 unigenes encoding the homologues of maize P1 (R2R3-MYB transcription factors) were defined, which might regulate the biosynthesis of scutellarin. Additionally, a total of 11,077 simple sequence repeat (SSR) were identified from 9,255 unigenes. Of SSRs, tri-nucleotide motifs were the most abundant motif. Thirty-six primer pairs for SSRs were randomly selected for validation of the amplification and polymorphism. The result revealed that 34 (94.40%) primer pairs were successfully amplified and 19 (52.78%) primer pairs exhibited polymorphisms. Using next generation sequencing (NGS) technology, this study firstly provides abundant genomic data for E. breviscapus. The candidate genes involved in the biosynthesis and transcriptional regulation of scutellarin and chlorogenic acids were obtained in this study. Additionally, a plenty of genetic makers were generated by identification of SSRs, which is a powerful tool for molecular breeding and genetics applications in this herb.

  11. Analysis of the transcriptome of Erigeron breviscapus uncovers putative scutellarin and chlorogenic acids biosynthetic genes and genetic markers.

    Directory of Open Access Journals (Sweden)

    Ni-Hao Jiang

    Full Text Available Erigeron breviscapus (Vant. Hand-Mazz. is a famous medicinal plant. Scutellarin and chlorogenic acids are the primary active components in this herb. However, the mechanisms of biosynthesis and regulation for scutellarin and chlorogenic acids in E. breviscapus are considerably unknown. In addition, genomic information of this herb is also unavailable.Using Illumina sequencing on GAIIx platform, a total of 64,605,972 raw sequencing reads were generated and assembled into 73,092 non-redundant unigenes. Among them, 44,855 unigenes (61.37% were annotated in the public databases Nr, Swiss-Prot, KEGG, and COG. The transcripts encoding the known enzymes involved in flavonoids and in chlorogenic acids biosynthesis were discovered in the Illumina dataset. Three candidate cytochrome P450 genes were discovered which might encode flavone 6-hydroase converting apigenin to scutellarein. Furthermore, 4 unigenes encoding the homologues of maize P1 (R2R3-MYB transcription factors were defined, which might regulate the biosynthesis of scutellarin. Additionally, a total of 11,077 simple sequence repeat (SSR were identified from 9,255 unigenes. Of SSRs, tri-nucleotide motifs were the most abundant motif. Thirty-six primer pairs for SSRs were randomly selected for validation of the amplification and polymorphism. The result revealed that 34 (94.40% primer pairs were successfully amplified and 19 (52.78% primer pairs exhibited polymorphisms.Using next generation sequencing (NGS technology, this study firstly provides abundant genomic data for E. breviscapus. The candidate genes involved in the biosynthesis and transcriptional regulation of scutellarin and chlorogenic acids were obtained in this study. Additionally, a plenty of genetic makers were generated by identification of SSRs, which is a powerful tool for molecular breeding and genetics applications in this herb.

  12. Gene prediction validation and functional analysis of redundant pathways

    DEFF Research Database (Denmark)

    Sønderkær, Mads

    2011-01-01

    have employed a large mRNA-seq data set to improve and validate ab initio predicted gene models. This direct experimental evidence also provides reliable determinations of UTR regions and polyadenylation sites, which are not easily predicted in plants. Furthermore, once an annotated genome sequence...... is available, gene expression by mRNA-Seq enables acquisition of a more complete overview of gene isoform usage in complex enzymatic pathways enabling the identification of key genes. Metabolism in potatoes This information is useful e.g. for crop improvement based on manipulation of agronomically important...

  13. Polymorphisms in inflammation pathway genes and endometrial cancer risk

    Science.gov (United States)

    Delahanty, Ryan J.; Xiang, Yong-Bing; Spurdle, Amanda; Beeghly-Fadiel, Alicia; Long, Jirong; Thompson, Deborah; Tomlinson, Ian; Yu, Herbert; Lambrechts, Diether; Dörk, Thilo; Goodman, Marc T.; Zheng, Ying; Salvesen, Helga B.; Bao, Ping-Ping; Amant, Frederic; Beckmann, Matthias W.; Coenegrachts, Lieve; Coosemans, An; Dubrowinskaja, Natalia; Dunning, Alison; Runnebaum, Ingo B.; Easton, Douglas; Ekici, Arif B.; Fasching, Peter A.; Halle, Mari K.; Hein, Alexander; Howarth, Kimberly; Gorman, Maggie; Kaydarova, Dylyara; Krakstad, Camilla; Lose, Felicity; Lu, Lingeng; Lurie, Galina; O’Mara, Tracy; Matsuno, Rayna K.; Pharoah, Paul; Risch, Harvey; Corssen, Madeleine; Trovik, Jone; Turmanov, Nurzhan; Wen, Wanqing; Lu, Wei; Cai, Qiuyin; Zheng, Wei; Shu, Xiao-Ou

    2013-01-01

    Background Experimental and epidemiological evidence have suggested that chronic inflammation may play a critical role in endometrial carcinogenesis. Methods To investigate this hypothesis, a two-stage study was carried out to evaluate single nucleotide polymorphisms (SNPs) in inflammatory pathway genes in association with endometrial cancer risk. In stage 1, 64 candidate pathway genes were identified and 4,542 directly genotyped or imputed SNPs were analyzed among 832 endometrial cancer cases and 2,049 controls, using data from the Shanghai Endometrial Cancer Genetics Study. Linkage disequilibrium of stage 1 SNPs significantly associated with endometrial cancer (PAsian- and European-ancestry samples. Conclusions These findings lend support to the hypothesis that genetic polymorphisms in genes involved in the inflammatory pathway may contribute to genetic susceptibility to endometrial cancer. Impact Statement This study adds to the growing evidence that inflammation plays an important role in endometrial carcinogenesis. PMID:23221126

  14. Mutational analysis of the myxovirescin biosynthetic gene cluster reveals novel insights into the functional elaboration of polyketide backbones.

    Science.gov (United States)

    Simunovic, Vesna; Müller, Rolf

    2007-07-23

    It has been proposed that two acyl carrier proteins (ACPs)-TaB and TaE--and two 3-hydroxy-3-methylglutaryl synthases (HMGSs)--TaC and TaF--could constitute two functional ACP-HMGS pairs (TaB/TaC and TaE/TaF) responsible for the incorporation of acetate and propionate units into the myxovirescin A scaffold, leading to the formation of beta-methyl and beta-ethyl groups, respectively. It has been suggested that three more proteins--TaX and TaY, which are members of the superfamily of enoyl-CoA hydratases (ECHs), and a variant ketosynthase (KS) TaK--are shared between two ACP-HMGS pairs, to give the complete set of enzymes required to perform the beta-alkylations. The beta-methyl branch is presumably further hydroxylated (by TaH) and methylated to produce the methoxymethyl group observed in myxovirescin A. To substantiate this hypothesis, a series of gene-deletion mutants were created, and the effects of these mutations on myxovirescin production were examined. As predicted, DeltataB and DeltataE ACP mutants revealed similar phenotypes to their associated HMGS mutants DeltataC and DeltataF, respectively, thus providing direct evidence for the role of TaE/TaF in the formation of the beta-ethyl branch and implying a role for TaB/TaC in the formation of the beta-methyl group. Production of myxovirescin A was dramatically reduced in a DeltataK mutant and abolished in both the DeltataX and the DeltataY mutant backgrounds. Analysis of a DeltataH mutant confirmed the role of the cytochrome P450 TaH in hydroxylation of the beta-methyl group. Taken together, these experiments support a model in which the discrete ACPs TaB and TaE are compatible only with their associated HMGSs TaC and TaF, respectively, and function in a substrate-specific manner. Both TaB and TaC are essential for myxovirescin production, and the TaB/TaC pair can rescue antibiotic production in the absence of either TaE or TaF. Finally, the reduced level of myxovirescin production in the DeltataE mutant

  15. Plasma Catecholamines (CA) and Gene Expression of CA Biosynthetic Enzymes in Adrenal Medulla and Sympathetic Ganglia of Rats Exposed to Single or Repeated Hypergravity

    Science.gov (United States)

    Petrak, J.; Jurani, M.; Baranovska, M.; Hapala, I.; Frollo, I.; Kvetnansky, R.

    2008-06-01

    The aim of this study was to evaluate plasma epinephrine (EPI) and norepinephrine (NE) levels in blood collected directly during a single or 8-times repeated centrifugation at hypergravity 4G, using remote controlled equipment. Plasma EPI levels showed a huge hypergravity-induced increase. After the last blood collection during hypergravity, the centrifuge was turned off and another blood sampling was performed immediately after the centrifuge decelerated and stopped (10 min). In these samples plasma EPI showed significantly lower levels compared to centrifugation intervals. Plasma NE levels showed none or small changes. Repeated exposure to hypergravity 4G (8 days for 60 min) eliminated the increase in plasma EPI levels at the 15 min interval but did not markedly affect plasma NE levels. To explain these findings we measured mRNA levels of CA biosynthetic enzymes tyrosine hydroxylase (TH), dopamine-β-hydroxylase (DBH) and phenylethanolamine N-methyltransferase (PNMT) in the adrenal medulla (AM) and stellate ganglia (SG) of rats exposed to continuous hypergravity (2G) up to 6 days. In AM, TH, DBH and PNMT mRNA levels were significantly increased in intervals up to 3 days, however, after 6 day hypergravity exposure, no significant elevation was found. In SG, no significant changes in gene expression of CA enzymes were seen both after a single or repeated hypergravity. Thus, our data show that hypergravity highly activates the adrenomedullary system, whereas the sympathoneural system is not significantly changed. In conclusion, our results demonstrate that during repeated or continuous exposure of the organism to hypergravity the adrenomedullary system is adapted, whereas sympathoneural system is not affected.

  16. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes.

    Science.gov (United States)

    Biankin, Andrew V; Waddell, Nicola; Kassahn, Karin S; Gingras, Marie-Claude; Muthuswamy, Lakshmi B; Johns, Amber L; Miller, David K; Wilson, Peter J; Patch, Ann-Marie; Wu, Jianmin; Chang, David K; Cowley, Mark J; Gardiner, Brooke B; Song, Sarah; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Gongora, Milena; Pajic, Marina; Scarlett, Christopher J; Gill, Anthony J; Pinho, Andreia V; Rooman, Ilse; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Nones, Katia; Fink, J Lynn; Christ, Angelika; Bruxner, Tim; Cloonan, Nicole; Kolle, Gabriel; Newell, Felicity; Pinese, Mark; Mead, R Scott; Humphris, Jeremy L; Kaplan, Warren; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chou, Angela; Chin, Venessa T; Chantrill, Lorraine A; Mawson, Amanda; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Daly, Roger J; Merrett, Neil D; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Kakkar, Nipun; Zhao, Fengmei; Wu, Yuan Qing; Wang, Min; Muzny, Donna M; Fisher, William E; Brunicardi, F Charles; Hodges, Sally E; Reid, Jeffrey G; Drummond, Jennifer; Chang, Kyle; Han, Yi; Lewis, Lora R; Dinh, Huyen; Buhay, Christian J; Beck, Timothy; Timms, Lee; Sam, Michelle; Begley, Kimberly; Brown, Andrew; Pai, Deepa; Panchal, Ami; Buchner, Nicholas; De Borja, Richard; Denroche, Robert E; Yung, Christina K; Serra, Stefano; Onetto, Nicole; Mukhopadhyay, Debabrata; Tsao, Ming-Sound; Shaw, Patricia A; Petersen, Gloria M; Gallinger, Steven; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Schulick, Richard D; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Capelli, Paola; Corbo, Vincenzo; Scardoni, Maria; Tortora, Giampaolo; Tempero, Margaret A; Mann, Karen M; Jenkins, Nancy A; Perez-Mancera, Pedro A; Adams, David J; Largaespada, David A; Wessels, Lodewyk F A; Rust, Alistair G; Stein, Lincoln D; Tuveson, David A; Copeland, Neal G; Musgrove, Elizabeth A; Scarpa, Aldo; Eshleman, James R; Hudson, Thomas J; Sutherland, Robert L; Wheeler, David A; Pearson, John V; McPherson, John D; Gibbs, Richard A; Grimmond, Sean M

    2012-11-15

    Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.

  17. Development of transgenic Brassica juncea lines for reduced seed sinapine content by perturbing phenylpropanoid pathway genes.

    Directory of Open Access Journals (Sweden)

    Sachin Kajla

    Full Text Available Sinapine is a major anti-nutritive compound that accumulates in the seeds of Brassica species. When ingested, sinapine imparts gritty flavuor in meat and milk of animals and fishy odor to eggs of brown egg layers, thereby compromising the potential use of the valuable protein rich seed meal. Sinapine content in Brassica juncea germplasm ranges from 6.7 to 15.1 mg/g of dry seed weight (DSW which is significantly higher than the prescribed permissible level of 3.0 mg/g of DSW. Due to limited natural genetic variability, conventional plant breeding approach for reducing the sinapine content has largely been unsuccessful. Hence, transgenic approach for gene silencing was adopted by targeting two genes-SGT and SCT, encoding enzymes UDP- glucose: sinapate glucosyltransferase and sinapoylglucose: choline sinapoyltransferase, respectively, involved in the final two steps of sinapine biosynthetic pathway. These two genes were isolated from B. juncea and eight silencing constructs were developed using three different RNA silencing approaches viz. antisense RNA, RNAi and artificial microRNA. Transgenics in B. juncea were developed following Agrobacterium-mediated transformation. From a total of 1232 independent T0 transgenic events obtained using eight silencing constructs, 25 homozygous lines showing single gene inheritance were identified in the T2 generation. Reduction of seed sinapine content in these lines ranged from 15.8% to 67.2%; the line with maximum reduction had sinapine content of 3.79 mg/g of DSW. The study also revealed that RNAi method was more efficient than the other two methods used in this study.

  18. The ARG1-LIKE2 gene of Arabidopsis functions in a gravity signal transduction pathway that is genetically distinct from the PGM pathway

    Science.gov (United States)

    Guan, Changhui; Rosen, Elizabeth S.; Boonsirichai, Kanokporn; Poff, Kenneth L.; Masson, Patrick H.

    2003-01-01

    The arl2 mutants of Arabidopsis display altered root and hypocotyl gravitropism, whereas their inflorescence stems are fully gravitropic. Interestingly, mutant roots respond like the wild type to phytohormones and an inhibitor of polar auxin transport. Also, their cap columella cells accumulate starch similarly to wild-type cells, and mutant hypocotyls display strong phototropic responses to lateral light stimulation. The ARL2 gene encodes a DnaJ-like protein similar to ARG1, another protein previously implicated in gravity signal transduction in Arabidopsis seedlings. ARL2 is expressed at low levels in all organs of seedlings and plants. arl2-1 arg1-2 double mutant roots display kinetics of gravitropism similar to those of single mutants. However, double mutants carrying both arl2-1 and pgm-1 (a mutation in the starch-biosynthetic gene PHOSPHOGLUCOMUTASE) at the homozygous state display a more pronounced root gravitropic defect than the single mutants. On the other hand, seedlings with a null mutation in ARL1, a paralog of ARG1 and ARL2, behave similarly to the wild type in gravitropism and other related assays. Taken together, the results suggest that ARG1 and ARL2 function in the same gravity signal transduction pathway in the hypocotyl and root of Arabidopsis seedlings, distinct from the pathway involving PGM.

  19. Integrative analysis of RUNX1 downstream pathways and target genes

    Directory of Open Access Journals (Sweden)

    Liu Marjorie

    2008-07-01

    Full Text Available Abstract Background The RUNX1 transcription factor gene is frequently mutated in sporadic myeloid and lymphoid leukemia through translocation, point mutation or amplification. It is also responsible for a familial platelet disorder with predisposition to acute myeloid leukemia (FPD-AML. The disruption of the largely unknown biological pathways controlled by RUNX1 is likely to be responsible for the development of leukemia. We have used multiple microarray platforms and bioinformatic techniques to help identify these biological pathways to aid in the understanding of why RUNX1 mutations lead to leukemia. Results Here we report genes regulated either directly or indirectly by RUNX1 based on the study of gene expression profiles generated from 3 different human and mouse platforms. The platforms used were global gene expression profiling of: 1 cell lines with RUNX1 mutations from FPD-AML patients, 2 over-expression of RUNX1 and CBFβ, and 3 Runx1 knockout mouse embryos using either cDNA or Affymetrix microarrays. We observe that our datasets (lists of differentially expressed genes significantly correlate with published microarray data from sporadic AML patients with mutations in either RUNX1 or its cofactor, CBFβ. A number of biological processes were identified among the differentially expressed genes and functional assays suggest that heterozygous RUNX1 point mutations in patients with FPD-AML impair cell proliferation, microtubule dynamics and possibly genetic stability. In addition, analysis of the regulatory regions of the differentially expressed genes has for the first time systematically identified numerous potential novel RUNX1 target genes. Conclusion This work is the first large-scale study attempting to identify the genetic networks regulated by RUNX1, a master regulator in the development of the hematopoietic system and leukemia. The biological pathways and target genes controlled by RUNX1 will have considerable importance in disease

  20. Simulation and estimation of gene number in a biological pathway using almost complete saturation mutagenesis screening of haploid mouse cells.

    Science.gov (United States)

    Tokunaga, Masahiro; Kokubu, Chikara; Maeda, Yusuke; Sese, Jun; Horie, Kyoji; Sugimoto, Nakaba; Kinoshita, Taroh; Yusa, Kosuke; Takeda, Junji

    2014-11-24

    Genome-wide saturation mutagenesis and subsequent phenotype-driven screening has been central to a comprehensive understanding of complex biological processes in classical model organisms such as flies, nematodes, and plants. The degree of "saturation" (i.e., the fraction of possible target genes identified) has been shown to be a critical parameter in determining all relevant genes involved in a biological function, without prior knowledge of their products. In mammalian model systems, however, the relatively large scale and labor intensity of experiments have hampered the achievement of actual saturation mutagenesis, especially for recessive traits that require biallelic mutations to manifest detectable phenotypes. By exploiting the recently established haploid mouse embryonic stem cells (ESCs), we present an implementation of almost complete saturation mutagenesis in a mammalian system. The haploid ESCs were mutagenized with the chemical mutagen N-ethyl-N-nitrosourea (ENU) and processed for the screening of mutants defective in various steps of the glycosylphosphatidylinositol-anchor biosynthetic pathway. The resulting 114 independent mutant clones were characterized by a functional complementation assay, and were shown to be defective in any of 20 genes among all 22 known genes essential for this well-characterized pathway. Ten mutants were further validated by whole-exome sequencing. The predominant generation of single-nucleotide substitutions by ENU resulted in a gene mutation rate proportional to the length of the coding sequence, which facilitated the experimental design of saturation mutagenesis screening with the aid of computational simulation. Our study enables mammalian saturation mutagenesis to become a realistic proposition. Computational simulation, combined with a pilot mutagenesis experiment, could serve as a tool for the estimation of the number of genes essential for biological processes such as drug target pathways when a positive selection of

  1. Repression of MYBL2 by Both microRNA858a and HY5 Leads to the Activation of Anthocyanin Biosynthetic Pathway in Arabidopsis.

    Science.gov (United States)

    Wang, Yulong; Wang, Yiqing; Song, Zhaoqing; Zhang, Huiyong

    2016-10-10

    Extensive studies in various plants show that the anthocyanin biosynthetic process is affected by environmental factors and regulated by many transcription factors through sophisticated regulatory networks. However, it remains largely unclear about the roles of microRNA in this process. Here, we demonstrate that miR858a is a positive regulator of anthocyanin biosynthesis in Arabidopsis seedlings. Overexpression of miR858a enhances the accumulation of anthocyanins, whereas the reduced miR858a activity results in low levels of anthocyanins in STTM858 transgenic plants. We found that miR858a inhibits the expression of MYBL2, a key negative regulator of anthocyanin biosynthesis, by translational repression. In addition, ELONGATED HYPOCOTYL 5 (HY5) was shown to directly bind the MYBL2 promoter and represses its expression via specific histone modifications. Interestingly, we found that miR858a exhibits light-responsive expression in an HY5-dependent manner. Together, these results delineate the HY5-MIR858a-MYBL2 loop as a cellular mechanism for modulating anthocyanin biosynthesis, suggesting that integration of transcriptional and posttranscriptional regulation is critical for governing proper anthocyanin accumulation in response to light and other environmental factors. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  2. Genome-wide screen in Saccharomyces cerevisiae identifies vacuolar protein sorting, autophagy, biosynthetic, and tRNA methylation genes involved in life span regulation.

    Directory of Open Access Journals (Sweden)

    Paola Fabrizio

    2010-07-01

    Full Text Available The study of the chronological life span of Saccharomyces cerevisiae, which measures the survival of populations of non-dividing yeast, has resulted in the identification of homologous genes and pathways that promote aging in organisms ranging from yeast to mammals. Using a competitive genome-wide approach, we performed a screen of a complete set of approximately 4,800 viable deletion mutants to identify genes that either increase or decrease chronological life span. Half of the putative short-/long-lived mutants retested from the primary screen were confirmed, demonstrating the utility of our approach. Deletion of genes involved in vacuolar protein sorting, autophagy, and mitochondrial function shortened life span, confirming that respiration and degradation processes are essential for long-term survival. Among the genes whose deletion significantly extended life span are ACB1, CKA2, and TRM9, implicated in fatty acid transport and biosynthesis, cell signaling, and tRNA methylation, respectively. Deletion of these genes conferred heat-shock resistance, supporting the link between life span extension and cellular protection observed in several model organisms. The high degree of conservation of these novel yeast longevity determinants in other species raises the possibility that their role in senescence might be conserved.

  3. Genome-wide screen in Saccharomyces cerevisiae identifies vacuolar protein sorting, autophagy, biosynthetic, and tRNA methylation genes involved in life span regulation.

    Science.gov (United States)

    Fabrizio, Paola; Hoon, Shawn; Shamalnasab, Mehrnaz; Galbani, Abdulaye; Wei, Min; Giaever, Guri; Nislow, Corey; Longo, Valter D

    2010-07-15

    The study of the chronological life span of Saccharomyces cerevisiae, which measures the survival of populations of non-dividing yeast, has resulted in the identification of homologous genes and pathways that promote aging in organisms ranging from yeast to mammals. Using a competitive genome-wide approach, we performed a screen of a complete set of approximately 4,800 viable deletion mutants to identify genes that either increase or decrease chronological life span. Half of the putative short-/long-lived mutants retested from the primary screen were confirmed, demonstrating the utility of our approach. Deletion of genes involved in vacuolar protein sorting, autophagy, and mitochondrial function shortened life span, confirming that respiration and degradation processes are essential for long-term survival. Among the genes whose deletion significantly extended life span are ACB1, CKA2, and TRM9, implicated in fatty acid transport and biosynthesis, cell signaling, and tRNA methylation, respectively. Deletion of these genes conferred heat-shock resistance, supporting the link between life span extension and cellular protection observed in several model organisms. The high degree of conservation of these novel yeast longevity determinants in other species raises the possibility that their role in senescence might be conserved.

  4. Depth-related distribution of a key gene of the tetraether lipid biosynthetic pathway in marine Thaumarchaeota

    NARCIS (Netherlands)

    Villanueva, Laura; Schouten, Stefan; Sinninghe Damsté, Jaap S.

    2015-01-01

    The distribution of isoprenoid glycerol dialkyl glycerol tetraethers (GDGT) lipids synthesized by Thaumarchaeota has been shown to be temperature-dependent in world oceans. Depth-related differences in the ammonia monooxygenase (amoA) of Thaumarchaeota have led to the classification of 'shallow' and

  5. Exploring the key genes and pathways in enchondromas using a gene expression microarray.

    Science.gov (United States)

    Shi, Zhongju; Zhou, Hengxing; Pan, Bin; Lu, Lu; Kang, Yi; Liu, Lu; Wei, Zhijian; Feng, Shiqing

    2017-07-04

    Enchondromas are the most common primary benign osseous neoplasms that occur in the medullary bone; they can undergo malignant transformation into chondrosarcoma. However, enchondromas are always undetected in patients, and the molecular mechanism is unclear. To identify key genes and pathways associated with the occurrence and development of enchondromas, we downloaded the gene expression dataset GSE22855 and obtained the differentially expressed genes (DEGs) by analyzing high-throughput gene expression in enchondromas. In total, 635 genes were identified as DEGs. Of these, 225 genes (35.43%) were up-regulated, and the remaining 410 genes (64.57%) were down-regulated. We identified the predominant gene ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that were significantly over-represented in the enchondromas samples compared with the control samples. Subsequently the top 10 core genes were identified from the protein-protein interaction (PPI) network. The enrichment analyses of the genes mainly involved in two significant modules showed that the DEGs were principally related to ribosomes, protein digestion and absorption, ECM-receptor interaction, focal adhesion, amoebiasis and the PI3K-Akt signaling pathway.Together, these data elucidate the molecular mechanisms underlying the occurrence and development of enchondromas and provide promising candidates for therapeutic intervention and prognostic evaluation. However, further experimental studies are needed to confirm these results.

  6. Computational study on a puzzle in the biosynthetic pathway of anthocyanin: Why is an enzymatic oxidation/ reduction process required for a simple tautomerization?

    Science.gov (United States)

    Sato, Hajime; Wang, Chao; Yamazaki, Mami; Saito, Kazuki; Uchiyama, Masanobu

    2018-01-01

    In the late stage of anthocyanin biosynthesis, dihydroflavonol reductase (DFR) and anthocyanidin synthase (ANS) mediate a formal tautomerization. However, such oxidation/reduction process requires high energy and appears to be unnecessary, as the oxidation state does not change during the transformation. Thus, a non-enzymatic pathway of tautomerization has also been proposed. To resolve the long-standing issue of whether this non-enzymatic pathway is the main contributor for the biosynthesis, we carried out density functional theory (DFT) calculations to examine this non-enzymatic pathway from dihydroflavonol to anthocyanidin. We show here that the activation barriers for the proposed non-enzymatic tautomerization are too high to enable the reaction to proceed under normal aqueous conditions in plants. The calculations also explain the experimentally observed requirement for acidic conditions during the final step of conversion of 2-flaven-3,4-diol to anthocyanidin; a thermodynamically and kinetically favorable concerted pathway can operate under these conditions.

  7. Biosynthetic pathways to delta-aminolevulinic acid induced by blue light in the pigment mutant C-2A' of Scenedesmus obliquus

    International Nuclear Information System (INIS)

    Klein, O.; Senger, H.

    1978-01-01

    The X-ray induced mutant C-2A' of Scenedesmus obliquus grows heterotrophically but forms only traces of chlorophyll in the dark. Upon illumination, delta-aminolevulinic acid (ALA) is synthesized and chlorophyll is formed. These processes are blue light dependent and ceased immediately when the cells were transferred back into darkness. Addition of levulinic acid (LA) inhibited the light-dependent formation of chlorophyll and caused accumulation of ALA by competitive inhibition of the ALA dehydratase (EC. 4.2.1.24). By feeding specifically labelled 14 C precursors to the pigment mutant, inhibiting the ALA dehydratase with LA, accumulating, extracting and analyzing the ALA, two pathways leading towards ALA could be established: glycine and succinyl CoA can be condensed to ALA and the 5 carbon skeleton of glutamate can completely be incorporated into ALA via a second pathway. The glycine-succinyl CoA pathway dominated over the glutamate pathway, but both led to chlorophyll formation. (author)

  8. Pathways-driven sparse regression identifies pathways and genes associated with high-density lipoprotein cholesterol in two Asian cohorts.

    Directory of Open Access Journals (Sweden)

    Matt Silver

    2013-11-01

    Full Text Available Standard approaches to data analysis in genome-wide association studies (GWAS ignore any potential functional relationships between gene variants. In contrast gene pathways analysis uses prior information on functional structure within the genome to identify pathways associated with a trait of interest. In a second step, important single nucleotide polymorphisms (SNPs or genes may be identified within associated pathways. The pathways approach is motivated by the fact that genes do not act alone, but instead have effects that are likely to be mediated through their interaction in gene pathways. Where this is the case, pathways approaches may reveal aspects of a trait's genetic architecture that would otherwise be missed when considering SNPs in isolation. Most pathways methods begin by testing SNPs one at a time, and so fail to capitalise on the potential advantages inherent in a multi-SNP, joint modelling approach. Here, we describe a dual-level, sparse regression model for the simultaneous identification of pathways and genes associated with a quantitative trait. Our method takes account of various factors specific to the joint modelling of pathways with genome-wide data, including widespread correlation between genetic predictors, and the fact that variants may overlap multiple pathways. We use a resampling strategy that exploits finite sample variability to provide robust rankings for pathways and genes. We test our method through simulation, and use it to perform pathways-driven gene selection in a search for pathways and genes associated with variation in serum high-density lipoprotein cholesterol levels in two separate GWAS cohorts of Asian adults. By comparing results from both cohorts we identify a number of candidate pathways including those associated with cardiomyopathy, and T cell receptor and PPAR signalling. Highlighted genes include those associated with the L-type calcium channel, adenylate cyclase, integrin, laminin, MAPK

  9. Pathways-Driven Sparse Regression Identifies Pathways and Genes Associated with High-Density Lipoprotein Cholesterol in Two Asian Cohorts

    Science.gov (United States)

    Silver, Matt; Chen, Peng; Li, Ruoying; Cheng, Ching-Yu; Wong, Tien-Yin; Tai, E-Shyong; Teo, Yik-Ying; Montana, Giovanni

    2013-01-01

    Standard approaches to data analysis in genome-wide association studies (GWAS) ignore any potential functional relationships between gene variants. In contrast gene pathways analysis uses prior information on functional structure within the genome to identify pathways associated with a trait of interest. In a second step, important single nucleotide polymorphisms (SNPs) or genes may be identified within associated pathways. The pathways approach is motivated by the fact that genes do not act alone, but instead have effects that are likely to be mediated through their interaction in gene pathways. Where this is the case, pathways approaches may reveal aspects of a trait's genetic architecture that would otherwise be missed when considering SNPs in isolation. Most pathways methods begin by testing SNPs one at a time, and so fail to capitalise on the potential advantages inherent in a multi-SNP, joint modelling approach. Here, we describe a dual-level, sparse regression model for the simultaneous identification of pathways and genes associated with a quantitative trait. Our method takes account of various factors specific to the joint modelling of pathways with genome-wide data, including widespread correlation between genetic predictors, and the fact that variants may overlap multiple pathways. We use a resampling strategy that exploits finite sample variability to provide robust rankings for pathways and genes. We test our method through simulation, and use it to perform pathways-driven gene selection in a search for pathways and genes associated with variation in serum high-density lipoprotein cholesterol levels in two separate GWAS cohorts of Asian adults. By comparing results from both cohorts we identify a number of candidate pathways including those associated with cardiomyopathy, and T cell receptor and PPAR signalling. Highlighted genes include those associated with the L-type calcium channel, adenylate cyclase, integrin, laminin, MAPK signalling and immune

  10. Characterization of a SAM-dependent fluorinase from a latent biosynthetic pathway for fluoroacetate and 4-fluorothreonine formation in Nocardia brasiliensis.

    Science.gov (United States)

    Wang, Yaya; Deng, Zixin; Qu, Xudong

    2014-01-01

    Fluorination has been widely used in chemical synthesis, but is rare in nature. The only known biological fluorination scope is represented by the fl pathway from Streptomyces cattleya that produces fluoroacetate (FAc) and 4-fluorothreonine (4-FT). Here we report the identification of a novel pathway for FAc and 4-FT biosynthesis from the actinomycetoma-causing pathogen Nocardia brasiliensis ATCC 700358. The new pathway shares overall conservation with the fl pathway in S. cattleya. Biochemical characterization of the conserved domains revealed a novel fluorinase NobA that can biosynthesize 5'-fluoro-5'-deoxyadenosine (5'-FDA) from inorganic fluoride and S-adenosyl-l-methionine (SAM). The NobA shows similar halide specificity and characteristics to the fluorination enzyme FlA of the fl pathway. Kinetic parameters for fluoride ( K m 4153 μM, k cat 0.073 min (-1)) and SAM ( K m 416 μM, k cat 0.139 min (-1)) have been determined, revealing that NobA is slightly (2.3 fold) slower than FlA. Upon sequence comparison, we finally identified a distinct loop region in the fluorinases that probably accounts for the disparity of fluorination activity.

  11. Identification of the Key Genes and Pathways in Esophageal Carcinoma.

    Science.gov (United States)

    Su, Peng; Wen, Shiwang; Zhang, Yuefeng; Li, Yong; Xu, Yanzhao; Zhu, Yonggang; Lv, Huilai; Zhang, Fan; Wang, Mingbo; Tian, Ziqiang

    2016-01-01

    Objective . Esophageal carcinoma (EC) is a frequently common malignancy of gastrointestinal cancer in the world. This study aims to screen key genes and pathways in EC and elucidate the mechanism of it. Methods . 5 microarray datasets of EC were downloaded from Gene Expression Omnibus. Differentially expressed genes (DEGs) were screened by bioinformatics analysis. Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and protein-protein interaction (PPI) network construction were performed to obtain the biological roles of DEGs in EC. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the expression level of DEGs in EC. Results . A total of 1955 genes were filtered as DEGs in EC. The upregulated genes were significantly enriched in cell cycle and the downregulated genes significantly enriched in Endocytosis. PPI network displayed CDK4 and CCT3 were hub proteins in the network. The expression level of 8 dysregulated DEGs including CDK4, CCT3, THSD4, SIM2, MYBL2, CENPF, CDCA3, and CDKN3 was validated in EC compared to adjacent nontumor tissues and the results were matched with the microarray analysis. Conclusion . The significantly DEGs including CDK4, CCT3, THSD4, and SIM2 may play key roles in tumorigenesis and development of EC involved in cell cycle and Endocytosis.

  12. Identification of the Key Genes and Pathways in Esophageal Carcinoma

    Directory of Open Access Journals (Sweden)

    Peng Su

    2016-01-01

    Full Text Available Objective. Esophageal carcinoma (EC is a frequently common malignancy of gastrointestinal cancer in the world. This study aims to screen key genes and pathways in EC and elucidate the mechanism of it. Methods. 5 microarray datasets of EC were downloaded from Gene Expression Omnibus. Differentially expressed genes (DEGs were screened by bioinformatics analysis. Gene Ontology (GO enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG enrichment, and protein-protein interaction (PPI network construction were performed to obtain the biological roles of DEGs in EC. Quantitative real-time polymerase chain reaction (qRT-PCR was used to verify the expression level of DEGs in EC. Results. A total of 1955 genes were filtered as DEGs in EC. The upregulated genes were significantly enriched in cell cycle and the downregulated genes significantly enriched in Endocytosis. PPI network displayed CDK4 and CCT3 were hub proteins in the network. The expression level of 8 dysregulated DEGs including CDK4, CCT3, THSD4, SIM2, MYBL2, CENPF, CDCA3, and CDKN3 was validated in EC compared to adjacent nontumor tissues and the results were matched with the microarray analysis. Conclusion. The significantly DEGs including CDK4, CCT3, THSD4, and SIM2 may play key roles in tumorigenesis and development of EC involved in cell cycle and Endocytosis.

  13. Vitamin D metabolic pathway genes and pancreatic cancer risk.

    Directory of Open Access Journals (Sweden)

    Hannah Arem

    Full Text Available Evidence on the association between vitamin D status and pancreatic cancer risk is inconsistent. This inconsistency may be partially attributable to variation in vitamin D regulating genes. We selected 11 vitamin D-related genes (GC, DHCR7, CYP2R1, VDR, CYP27B1, CYP24A1, CYP27A1, RXRA, CRP2, CASR and CUBN totaling 213 single nucleotide polymorphisms (SNPs, and examined associations with pancreatic adenocarcinoma. Our study included 3,583 pancreatic cancer cases and 7,053 controls from the genome-wide association studies of pancreatic cancer PanScans-I-III. We used the Adaptive Joint Test and the Adaptive Rank Truncated Product statistic for pathway and gene analyses, and unconditional logistic regression for SNP analyses, adjusting for age, sex, study and population stratification. We examined effect modification by circulating vitamin D concentration (≤50, >50 nmol/L for the most significant SNPs using a subset of cohort cases (n = 713 and controls (n = 878. The vitamin D metabolic pathway was not associated with pancreatic cancer risk (p = 0.830. Of the individual genes, none were associated with pancreatic cancer risk at a significance level of p<0.05. SNPs near the VDR (rs2239186, LRP2 (rs4668123, CYP24A1 (rs2762932, GC (rs2282679, and CUBN (rs1810205 genes were the top SNPs associated with pancreatic cancer (p-values 0.008-0.037, but none were statistically significant after adjusting for multiple comparisons. Associations between these SNPs and pancreatic cancer were not modified by circulating concentrations of vitamin D. These findings do not support an association between vitamin D-related genes and pancreatic cancer risk. Future research should explore other pathways through which vitamin D status might be associated with pancreatic cancer risk.

  14. Radical SAM, A Novel Protein Superfamily Linking Unresolved Steps in Familiar Biosynthetic Pathways with Radical Mechanisms: Functional Characterization Using New Analysis and Information Visualization Methods

    Energy Technology Data Exchange (ETDEWEB)

    Sofia, Heidi J.; Chen, Guang; Hetzler, Elizabeth G.; Reyes Spindola, Jorge F.; Miller, Nancy E.

    2001-03-01

    A large protein superfamily with over 500 members has been discovered and analyzed using powerful new bioinformatics and information visualization methods. Evidence exists that these proteins generate a 5?-deoxyadenosyl radical by reductive cleavage of S-adenosylmethionine (SAM) through an unusual Fe-S center. Radical SAM superfamily proteins function in DNA precursor, vitamin, cofactor, antibiotic, and herbicide biosynthesis in a collection of basic and familiar pathways. One of the members is interferon-inducible and is considered a candidate drug target for osteoporosis. The identification of this superfamily suggests that radical-based catalysis is important in a number of previously well-studied but unresolved biochemical pathways.

  15. Anthocyanin biosynthesis in fruit tree crops: Genes and their regulation

    African Journals Online (AJOL)

    The anthocyanin biosynthesis pathway is a little complex with branches responsible for the synthesis of a variety of metabolites. In fruit tree crops, during the past decade, many structural genes encoding enzymes in the anthocyanin biosynthetic pathway and various regulatory genes encoding transcription factors that ...

  16. Mining pathway associations for disease-related pathway activity analysis based on gene expression and methylation data.

    Science.gov (United States)

    Lee, Hyeonjeong; Shin, Miyoung

    2017-01-01

    The problem of discovering genetic markers as disease signatures is of great significance for the successful diagnosis, treatment, and prognosis of complex diseases. Even if many earlier studies worked on identifying disease markers from a variety of biological resources, they mostly focused on the markers of genes or gene-sets (i.e., pathways). However, these markers may not be enough to explain biological interactions between genetic variables that are related to diseases. Thus, in this study, our aim is to investigate distinctive associations among active pathways (i.e., pathway-sets) shown each in case and control samples which can be observed from gene expression and/or methylation data. The pathway-sets are obtained by identifying a set of associated pathways that are often active together over a significant number of class samples. For this purpose, gene expression or methylation profiles are first analyzed to identify significant (active) pathways via gene-set enrichment analysis. Then, regarding these active pathways, an association rule mining approach is applied to examine interesting pathway-sets in each class of samples (case or control). By doing so, the sets of associated pathways often working together in activity profiles are finally chosen as our distinctive signature of each class. The identified pathway-sets are aggregated into a pathway activity network (PAN), which facilitates the visualization of differential pathway associations between case and control samples. From our experiments with two publicly available datasets, we could find interesting PAN structures as the distinctive signatures of breast cancer and uterine leiomyoma cancer, respectively. Our pathway-set markers were shown to be superior or very comparable to other genetic markers (such as genes or gene-sets) in disease classification. Furthermore, the PAN structure, which can be constructed from the identified markers of pathway-sets, could provide deeper insights into

  17. Metabolic Profiling of Primary and Secondary Biosynthetic Pathways in Angiosperms: Comparative Metabonomics and Applications of Hyphenated LC-NMR and LC-MS

    OpenAIRE

    Kaiser, Kayla Anne

    2012-01-01

    The goal of this dissertation was to advance plant metabolomics through optimization of biological experimental design, sampling and sample preparation, data acquisition and pre-processing, and multivariable data analysis. The analytical platform most employed for comparative metabonomics was nuclear magnetic resonance (NMR). Liquid-chromatography (LC) coupled to NMR and mass spectrometry (MS) extended metabolic profile coverage from primary into secondary metabolic pathways. Comparative p...

  18. Endogenous gibberellins in Arabidopsis thaliana and possible steps blocked in the biosynthetic pathways of the semidwarf ga4 and ga5 mutants

    International Nuclear Information System (INIS)

    Talon, M.; Zeevaart, J.A.D.; Koornneef, M.

    1990-01-01

    Twenty gibberellins (GAs) have been identified in extracts from shoots of the Landsberg erecta line of Arabidopsis thaliana by full-scan gas chromatography-mass spectrometry and Kovats retention indices. Eight of them are members of the early-13-hydroxylation pathway (GA 53 , GA 44 , GA 19 , GA 17 , GA 20 , GA 1 , GA 29 , and GA 8 ), six are members of the early-3-hydroxylation pathway (GA 37 , GA 27 , GA 36 , GA 13 , GA 4 , and GA 34 ), and the remaining six are members of the non-3,13-hydroxylation pathway (GA 12 , GA 15 , GA 24 , GA 25 , GA 9 , and GFA 51 ). Seven of these GAs were quantified in the Landsberg erecta line of Arabidopsis and in the semidwarf ga4 and ga5 mutants by gas chromatography-selected ion monitoring (SIM) using internal standards. The relative levels of the remaining 13 GAs were compared by the use of ion intensities only. The growth-response data, as well as the accumulation of GA 9 in the ga4 mutant, indicate that GA 9 is not active in Arabidopsis, but it must be 3β-hydroxytlated to GA 4 to become bioactive. It is concluded that the reduced levels of the 3β-hydroxy-GAs, GA 1 and GA 4 , are the cause of the semidwarf growth habit of both mutants

  19. Quantitative evaluation of the biosynthetic pathways leading to δ-aminolevulinic acid from the Shemin precursor glycine via the C5 pathway in Arthrobacter hyalinus by analysis of 13C-labeled coproporphyrinogen III biosynthesized from [2-13C]glycine, [1-13C]acetate, and [2-13C]acetate using 13C NMR spectroscopy

    International Nuclear Information System (INIS)

    Katsumi Iida

    2013-01-01

    The biosynthetic pathways leading to δ-aminolevulinic acid (ALA) from the Shemin precursor glycine via the C5 pathway in Arthrobacter hyalinus were quantitatively evaluated by means of feeding experiments with [2- 13 C]glycine, sodium [1- 13 C]acetate, and sodium [2- 13 C]acetate, followed by analysis of the labeling patterns of coproporphyrinogen III (Copro'gen III) (biosynthesized from ALA) using 13 C NMR spectroscopy. Two biosynthetic pathways leading to ALA from glycine via the C5 pathway were identified: i.e., transformation of glycine to l-serine catalyzed by glycine hydroxymethyltransferase, and glycine synthase-catalyzed catabolism of glycine to N 5 , N 10 -methylene-tetrahydrofolic acid (THF), which reacts with another molecule of glycine to afford l-serine. l-Serine is transformed to acetyl-CoA via pyruvic acid. Acetyl-CoA enters the tricarboxylic acid cycle, affording 2-oxoglutaric acid, which in turn is transformed to l-glutamic acid. The l-glutamic acid enters the C5 pathway, affording ALA in A. hyalinus. A 13 C NMR spectroscopic comparison of the labeling patterns of Copro'gen III obtained after feeding of [2- 13 C]glycine, sodium [1- 13 C]acetate, and sodium [2- 13 C]acetate showed that [2- 13 C]glycine transformation and [2- 13 C]glycine catabolism in A. hyalinus proceed in the ratio of 52 and 48 %. The reaction of [2- 13 C]glycine and N 5 , N 10 -methylene-THF, that of glycine and N 5 , N 10 -[methylene- 13 C]methylene-THF generated from the [2- 13 C]glycine catabolism, and that of [2- 13 C]glycine and N 5 , N 10 -[methylene- 13 C]methylene-THF transformed the fed [2- 13 C]glycine to [1- 13 C]acetyl-CoA, [2- 13 C]acetyl-CoA, and [1,2- 13 C 2 ]acetyl-CoA in the ratios of 42, 37, and 21 %, respectively. These labeled acetyl-CoAs were then incorporated into ALA. Our results provide a quantitative picture of the pathways of biosynthetic transformation to ALA from glycine in A. hyalinus. (author)

  20. Transcriptional control of steroid biosynthesis genes in the Drosophila prothoracic gland by Ventral veins lacking and Knirps

    DEFF Research Database (Denmark)

    Danielsen, Erik Thomas; Møller, Morten Erik; Dorry, Elad

    2014-01-01

    Specialized endocrine cells produce and release steroid hormones that govern development, metabolism and reproduction. In order to synthesize steroids, all the genes in the biosynthetic pathway must be coordinately turned on in steroidogenic cells. In Drosophila, the steroid producing endocrine...

  1. Identification of a trichothecene gene cluster and description of the harzianum A biosynthesis pathway in the fungus Trichoderma arundinaceum

    Science.gov (United States)

    Trichothecenes are sesquiterpenes that act like mycotoxins. Their biosynthesis has been mainly studied in the fungal genera Fusarium, where most of the biosynthetic genes (tri) are grouped in a cluster regulated by ambient conditions and regulatory genes. Unexpectedly, few studies are available abou...

  2. Regulation of FA and TAG biosynthesis pathway genes in endosperms and embryos of high and low oil content genotypes of Jatropha curcas L.

    Science.gov (United States)

    Sood, Archit; Chauhan, Rajinder Singh

    2015-09-01

    The rising demand for biofuels has raised concerns about selecting alternate and promising renewable energy crops which do not compete with food supply. Jatropha (Jatropha curcas L.), a non-edible energy crop of the family euphorbiaceae, has the potential of providing biodiesel feedstock due to the presence of high proportion of unsaturated fatty acids (75%) in seed oil which is mainly accumulated in endosperm and embryo. The molecular basis of seed oil biosynthesis machinery has been studied in J. curcas, however, what genetic differences contribute to differential oil biosynthesis and accumulation in genotypes varying for oil content is poorly understood. We investigated expression profile of 18 FA and TAG biosynthetic pathway genes in different developmental stages of embryo and endosperm from high (42%) and low (30%) oil content genotypes grown at two geographical locations. Most of the genes showed relatively higher expression in endosperms of high oil content genotype, whereas no significant difference was observed in endosperms versus embryos of low oil content genotype. The promoter regions of key genes from FA and TAG biosynthetic pathways as well as other genes implicated in oil accumulation were analyzed for regulatory elements and transcription factors specific to oil or lipid accumulation in plants such as Dof, CBF (LEC1), SORLIP, GATA and Skn-1_motif etc. Identification of key genes from oil biosynthesis and regulatory elements specific to oil deposition will be useful not only in dissecting the molecular basis of high oil content but also improving seed oil content through transgenic or molecular breeding approaches. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. AP2/ERF Transcription Factor, Ii049, Positively Regulates Lignan Biosynthesis in Isatis indigotica through Activating Salicylic Acid Signaling and Lignan/Lignin Pathway Genes

    Directory of Open Access Journals (Sweden)

    Ruifang Ma

    2017-08-01

    Full Text Available Lignans, such as lariciresinol and its derivatives, have been identified as effective antiviral ingredients in Isatis indigotica. Evidence suggests that the APETALA2/ethylene response factor (AP2/ERF family might be related to the biosynthesis of lignans in I. indigotica. However, the special role played by the AP2/ERF family in the metabolism and its underlying putative mechanism still need to be elucidated. One novel AP2/ERF gene, named Ii049, was isolated and characterized from I. indigotica in this study. The quantitative real-time PCR analysis revealed that Ii049 was expressed highest in the root and responded to methyl jasmonate, salicylic acid (SA and abscisic acid treatments to various degrees. Subcellular localization analysis indicated that Ii049 protein was localized in the nucleus. Knocking-down the expression of Ii049 caused a remarkable reduction of lignan/lignin contents and transcript levels of genes involved in the lignan/lignin biosynthetic pathway. Ii049 bound to the coupled element 1, RAV1AAT and CRTAREHVCBF2 motifs of genes IiPAL and IiCCR, the key structural genes in the lignan/lignin pathway. Furthermore, Ii049 was also essential for SA biosynthesis, and SA induced lignan accumulation in I. indigotica. Notably, the transgenic I. indigotica hairy roots overexpressing Ii049 showed high expression levels of lignan/lignin biosynthetic genes and SA content, resulting in significant accumulation of lignan/lignin. The best-engineered line (OVX049-10 produced 425.60 μg·g−1 lariciresinol, an 8.3-fold increase compared with the wild type production. This study revealed the function of Ii049 in regulating lignan/lignin biosynthesis, which had the potential to increase the content of valuable lignan/lignin in economically significant medicinal plants.

  4. Gene pathways that delay Caenorhabditis elegans reproductive senescence.

    Directory of Open Access Journals (Sweden)

    Meng C Wang

    2014-12-01

    Full Text Available Reproductive senescence is a hallmark of aging. The molecular mechanisms regulating reproductive senescence and its association with the aging of somatic cells remain poorly understood. From a full genome RNA interference (RNAi screen, we identified 32 Caenorhabditis elegans gene inactivations that delay reproductive senescence and extend reproductive lifespan. We found that many of these gene inactivations interact with insulin/IGF-1 and/or TGF-β endocrine signaling pathways to regulate reproductive senescence, except nhx-2 and sgk-1 that modulate sodium reabsorption. Of these 32 gene inactivations, we also found that 19 increase reproductive lifespan through their effects on oocyte activities, 8 of them coordinate oocyte and sperm functions to extend reproductive lifespan, and 5 of them can induce sperm humoral response to promote reproductive longevity. Furthermore, we examined the effects of these reproductive aging regulators on somatic aging. We found that 5 of these gene inactivations prolong organismal lifespan, and 20 of them increase healthy life expectancy of an organism without altering total life span. These studies provide a systemic view on the genetic regulation of reproductive senescence and its intersection with organism longevity. The majority of these newly identified genes are conserved, and may provide new insights into age-associated reproductive senescence during human aging.

  5. Comparative study on gene set and pathway topology-based enrichment methods.

    Science.gov (United States)

    Bayerlová, Michaela; Jung, Klaus; Kramer, Frank; Klemm, Florian; Bleckmann, Annalen; Beißbarth, Tim

    2015-10-22

    Enrichment analysis is a popular approach to identify pathways or sets of genes which are significantly enriched in the context of differentially expressed genes. The traditional gene set enrichment approach considers a pathway as a simple gene list disregarding any knowledge of gene or protein interactions. In contrast, the new group of so called pathway topology-based methods integrates the topological structure of a pathway into the analysis. We comparatively investigated gene set and pathway topology-based enrichment approaches, considering three gene set and four topological methods. These methods were compared in two extensive simulation studies and on a benchmark of 36 real datasets, providing the same pathway input data for all methods. In the benchmark data analysis both types of methods showed a comparable ability to detect enriched pathways. The first simulation study was conducted with KEGG pathways, which showed considerable gene overlaps between each other. In this study with original KEGG pathways, none of the topology-based methods outperformed the gene set approach. Therefore, a second simulation study was performed on non-overlapping pathways created by unique gene IDs. Here, methods accounting for pathway topology reached higher accuracy than the gene set methods, however their sensitivity was lower. We conducted one of the first comprehensive comparative works on evaluating gene set against pathway topology-based enrichment methods. The topological methods showed better performance in the simulation scenarios with non-overlapping pathways, however, they were not conclusively better in the other scenarios. This suggests that simple gene set approach might be sufficient to detect an enriched pathway under realistic circumstances. Nevertheless, more extensive studies and further benchmark data are needed to systematically evaluate these methods and to assess what gain and cost pathway topology information introduces into enrichment analysis. Both

  6. Comprehensive analysis of the N-glycan biosynthetic pathway using bioinformatics to generate UniCorn: A theoretical N-glycan structure database.

    Science.gov (United States)

    Akune, Yukie; Lin, Chi-Hung; Abrahams, Jodie L; Zhang, Jingyu; Packer, Nicolle H; Aoki-Kinoshita, Kiyoko F; Campbell, Matthew P

    2016-08-05

    Glycan structures attached to proteins are comprised of diverse monosaccharide sequences and linkages that are produced from precursor nucleotide-sugars by a series of glycosyltransferases. Databases of these structures are an essential resource for the interpretation of analytical data and the development of bioinformatics tools. However, with no template to predict what structures are possible the human glycan structure databases are incomplete and rely heavily on the curation of published, experimentally determined, glycan structure data. In this work, a library of 45 human glycosyltransferases was used to generate a theoretical database of N-glycan structures comprised of 15 or less monosaccharide residues. Enzyme specificities were sourced from major online databases including Kyoto Encyclopedia of Genes and Genomes (KEGG) Glycan, Consortium for Functional Glycomics (CFG), Carbohydrate-Active enZymes (CAZy), GlycoGene DataBase (GGDB) and BRENDA. Based on the known activities, more than 1.1 million theoretical structures and 4.7 million synthetic reactions were generated and stored in our database called UniCorn. Furthermore, we analyzed the differences between the predicted glycan structures in UniCorn and those contained in UniCarbKB (www.unicarbkb.org), a database which stores experimentally described glycan structures reported in the literature, and demonstrate that UniCorn can be used to aid in the assignment of ambiguous structures whilst also serving as a discovery database. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Molecular evolution of the endosperm starch synthesis pathway genes in rice (Oryza sativa L.) and its wild ancestor, O. rufipogon L.

    Science.gov (United States)

    Yu, Guoqin; Olsen, Kenneth M; Schaal, Barbara A

    2011-01-01

    The evolution of metabolic pathways is a fundamental but poorly understood aspect of evolutionary change. One approach for understanding the complexity of pathway evolution is to examine the molecular evolution of genes that together comprise an integrated metabolic pathway. The rice endosperm starch biosynthetic pathway is one of the most thoroughly characterized metabolic pathways in plants, and starch is a trait that has evolved in response to strong selection during rice domestication. In this study, we have examined six key genes (AGPL2, AGPS2b, SSIIa, SBEIIb, GBSSI, ISA1) in the rice endosperm starch biosynthesis pathway to investigate the evolution of these genes before and after rice domestication. Genome-wide sequence tagged sites data were used as a neutral reference to overcome the problems of detecting selection in species with complex demographic histories such as rice. Five variety groups of Oryza sativa (aus, indica, tropical japonica, temperate japonica, aromatic) and its wild ancestor (O. rufipogon) were sampled. Our results showed evidence of purifying selection at AGPL2 in O. rufipogon and strong evidence of positive selection at GBSSI in temperate japonica and tropical japonica varieties and at GBSSI and SBEIIb in aromatic varieties. All the other genes showed a pattern consistent with neutral evolution in both cultivated rice and its wild ancestor. These results indicate the important role of positive selection in the evolution of starch genes during rice domestication. We discuss the role of SBEIIb and GBSSI in the evolution of starch quality during rice domestication and the power and limitation of detecting selection using genome-wide data as a neutral reference.

  8. [Polyketone Reaction in Biosynthetic Pathways of 2, 3, 5, 4'-Tetrahydroxy Stilhene-2-O-β-D-glucoside in Polygonum multiflorum by Biocatalysis].

    Science.gov (United States)

    Lei, Lei; Xia, Wan-xia; Shao, Li; Zhao, Shu-jin

    2015-10-01

    2, 3, 5, 4'-Tetrahydroxy stilbene-2-O-β-D-glucoside (THSG), the active ingredient of Polygonum multiflorum, its polyketone reaction in the biosynthesis pathways was studied by biocatalysis method. The substrates 4-coumaroyl-CoA and malonyl-CoA were catalyzed in vitro by the crude enzyme extracted from Polygonum multiflorum callus, then the products were verified by HPLC and LC-MS methods. And the crude enzyme was analyzed by ammonium sulfate precipitation method and SDS-PAGE. HPLC chromatogram showed the same retention time of both the product and resveratrol standards; LC-MS spectra showed that the m/z of product was 227, which was consistent with resveratrol standards under the mode of negative ion; Ammonium sulfate (AS) precipitation method showed AS of 40% - 70% had catalytic activity,and 50% - 60% was the optimum; SDS-PAGE showed protein bands were obviously different among different AS concentration between 20% - 80%, the protein band of 42 kDa was found in AS of 50% - 60%, which had the same molecular weight with stilbene synthase. The product of polyketone reaction in the biosynthesis of THSG is resveratrol rather than THSG, so it is speculated that THSG is the conversion product of resveratrol instead of the direct product of the polyketone reaction.

  9. High night temperature strongly impacts TCA cycle, amino acid and polyamine biosynthetic pathways in rice in a sensitivity-dependent manner.

    Science.gov (United States)

    Glaubitz, Ulrike; Erban, Alexander; Kopka, Joachim; Hincha, Dirk K; Zuther, Ellen

    2015-10-01

    Global climate change combined with asymmetric warming can have detrimental effects on the yield of crop plants such as rice (Oryza sativa L.). Little is known about metabolic responses of rice to high night temperature (HNT) conditions. Twelve cultivars with different HNT sensitivity were used to investigate metabolic changes in the vegetative stage under HNT compared to control conditions. Central metabolism, especially TCA cycle and amino acid biosynthesis, were strongly affected particularly in sensitive cultivars. Levels of several metabolites were correlated with HNT sensitivity. Furthermore, pool sizes of some metabolites negatively correlated with HNT sensitivity under control conditions, indicating metabolic pre-adaptation in tolerant cultivars. The polyamines putrescine, spermidine and spermine showed increased abundance in sensitive cultivars under HNT conditions. Correlations between the content of polyamines and 75 other metabolites indicated metabolic shifts from correlations with sugar-phosphates and 1-kestose under control to correlations with sugars and amino and organic acids under HNT conditions. Increased expression levels of ADC2 and ODC1, genes encoding enzymes catalysing the first committed steps of putrescine biosynthesis, were restricted to sensitive cultivars under HNT. Additionally, transcript levels of eight polyamine biosynthesis genes were correlated with HNT sensitivity. Responses to HNT in the vegetative stage result in distinct differences between differently responding cultivars with a dysregulation of central metabolism and an increase of polyamine biosynthesis restricted to sensitive cultivars under HNT conditions and a pre-adaptation of tolerant cultivars already under control conditions with higher levels of potentially protective compatible solutes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. MicroRNA-124-3p expression and its prospective functional pathways in hepatocellular carcinoma: A quantitative polymerase chain reaction, gene expression omnibus and bioinformatics study.

    Science.gov (United States)

    He, Rong-Quan; Yang, Xia; Liang, Liang; Chen, Gang; Ma, Jie

    2018-04-01

    The present study aimed to explore the potential clinical significance of microRNA (miR)-124-3p expression in the hepatocarcinogenesis and development of hepatocellular carcinoma (HCC), as well as the potential target genes of functional HCC pathways. Reverse transcription-quantitative polymerase chain reaction was performed to evaluate the expression of miR-124-3p in 101 HCC and adjacent non-cancerous tissue samples. Additionally, the association between miR-124-3p expression and clinical parameters was also analyzed. Differentially expressed genes identified following miR-124-3p transfection, the prospective target genes predicted in silico and the key genes of HCC obtained from Natural Language Processing (NLP) were integrated to obtain potential target genes of miR-124-3p in HCC. Relevant signaling pathways were assessed with protein-protein interaction (PPI) networks, Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Protein Annotation Through Evolutionary Relationships (PANTHER) pathway enrichment analysis. miR-124-3p expression was significantly reduced in HCC tissues compared with expression in adjacent non-cancerous liver tissues. In HCC, miR-124-3p was demonstrated to be associated with clinical stage. The mean survival time of the low miR-124-3p expression group was reduced compared with that of the high expression group. A total of 132 genes overlapped from differentially expressed genes, miR-124-3p predicted target genes and NLP identified genes. PPI network construction revealed a total of 109 nodes and 386 edges, and 20 key genes were identified. The major enriched terms of three GO categories included regulation of cell proliferation, positive regulation of cellular biosynthetic processes, cell leading edge, cytosol and cell projection, protein kinase activity, transcription activator activity and enzyme binding. KEGG analysis revealed pancreatic cancer, prostate cancer and non-small cell lung cancer as the

  11. Enterobacter sp. I-3, a bio-herbicide inhibits gibberellins biosynthetic pathway and regulates abscisic acid and amino acids synthesis to control plant growth.

    Science.gov (United States)

    Radhakrishnan, Ramalingam; Park, Jae-Man; Lee, In-Jung

    2016-12-01

    Very few bacterial species were identified as bio-herbicides for weed control. The present research was focused to elucidate the plant growth retardant properties of Enterobacter sp. I-3 during their interaction by determining the changes in endogenous photosynthetic pigments, plant hormones and amino acids. The two bacterial isolates I-4-5 and I-3 were used to select the superior bacterium for controlling weed seeds (Echinochloa crus-galli L. and Portulaca oleracea L.) germination. The post-inoculation of I-3 (Enterobacter sp. I-3) significantly inhibited the weeds seed germination than their controls. The mechanism of bacterium induced plant growth reduction was identified in lettuce treated with I-3 bacterium and compared their effects with known chemical herbicide, trinexapac-ethyl (TE). The treatment of I-3 and TE showed a significant inhibitory effect on shoot length, leaf number, leaf length, leaf width, shoot weight, root weight and chlorophyll content in lettuce seedlings. The endogenous gibberellins (GAs) and abscisic acid (ABA) analysis showed that Enterobacter sp. I-3 treated plants had lower levels of GAs (GA 12 , GA 19 , GA 20 and GA 8 ) and GAs/ABA ratio and then, the higher level of ABA when compared to their controls. Indeed, the individual amino acids ie., aspartic acid, glutamic acid, glycine, threonine, alanine, serine, leucine, isoleucine and tyrosine were declined in TE and I-3 exposed plants. Our results suggest that the utilization of Enterobacter sp. I-3 inhibits the GAs pathway and amino acids synthesis in weeds to control their growth can be an alternative to chemical herbicides. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. The crystal structure of the bifunctional deaminase/reductase RibD of the riboflavin biosynthetic pathway in Escherichia coli: implications for the reductive mechanism.

    Science.gov (United States)

    Stenmark, Pål; Moche, Martin; Gurmu, Daniel; Nordlund, Pär

    2007-10-12

    We have determined the crystal structure of the bi-functional deaminase/reductase enzyme from Escherichia coli (EcRibD) that catalyzes two consecutive reactions during riboflavin biosynthesis. The polypeptide chain of EcRibD is folded into two domains where the 3D structure of the N-terminal domain (1-145) is similar to cytosine deaminase and the C-terminal domain (146-367) is similar to dihydrofolate reductase. We showed that EcRibD is dimeric and compared our structure to tetrameric RibG, an ortholog from Bacillus subtilis (BsRibG). We have also determined the structure of EcRibD in two binary complexes with the oxidized cofactor (NADP(+)) and with the substrate analogue ribose-5-phosphate (RP5) and superposed these two in order to mimic the ternary complex. Based on this superposition we propose that the invariant Asp200 initiates the reductive reaction by abstracting a proton from the bound substrate and that the pro-R proton from C4 of the cofactor is transferred to C1 of the substrate. A highly flexible loop is found in the reductase active site (159-173) that appears to control cofactor and substrate binding to the reductase active site and was therefore compared to the corresponding Met20 loop of E. coli dihydrofolate reductase (EcDHFR). Lys152, identified by comparing substrate analogue (RP5) coordination in the reductase active site of EcRibD with the homologous reductase from Methanocaldococcus jannaschii (MjaRED), is invariant among bacterial RibD enzymes and could contribute to the various pathways taken during riboflavin biosynthesis in bacteria and yeast.

  13. MicroRNA-gene signaling pathways in pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Alexandra Drakaki

    2013-10-01

    Full Text Available Pancreatic cancer is the fourth most frequent cause of cancer-related deaths and is characterized by early metastasis and pronounced resistance to chemotherapy and radiation therapy. Despite extensive esearch efforts, there is not any substantial progress regarding the identification of novel drugs against pancreatic cancer. Although the introduction of the chemotherapeutic agent gemcitabine improved clinical response, the prognosis of these patients remained extremely poor with a 5-year survival rate of 3-5%. Thus, the identification of the novel molecular pathways involved in pancreatic oncogenesis and the development of new and potent therapeutic options are highly desirable. Here, we describe how microRNAs control signaling pathways that are frequently deregulated during pancreatic oncogenesis. In addition, we provide evidence that microRNAs could be potentially used as novel pancreatic cancer therapeutics through reversal of chemotherapy and radiotherapy resistance or regulation of essential molecular pathways. Further studies should integrate the deregulated genes and microRNAs into molecular networks in order to identify the central regulators of pancreatic oncogenesis. Targeting these central regulators could lead to the development of novel targeted therapeutic approaches for pancreatic cancer patients.

  14. Culture temperature affects gene expression and metabolic pathways in the 2-methylisoborneol-producing cyanobacterium Pseudanabaena galeata.

    Science.gov (United States)

    Kakimoto, Masayuki; Ishikawa, Toshiki; Miyagi, Atsuko; Saito, Kazuaki; Miyazaki, Motonobu; Asaeda, Takashi; Yamaguchi, Masatoshi; Uchimiya, Hirofumi; Kawai-Yamada, Maki

    2014-02-15

    A volatile metabolite, 2-methylisoborneol (2-MIB), causes an unpleasant taste and odor in tap water. Some filamentous cyanobacteria produce 2-MIB via a two-step biosynthetic pathway: methylation of geranyl diphosphate (GPP) by methyl transferase (GPPMT), followed by the cyclization of methyl-GPP by monoterpene cyclase (MIBS). We isolated the genes encoding GPPMT and MIBS from Pseudanabaena galeata, a filamentous cyanobacterium known to be a major causal organism of 2-MIB production in Japanese lakes. The predicted amino acid sequence showed high similarity with that of Pseudanabaena limnetica (96% identity in GPPMT and 97% identity in MIBS). P. galeata was cultured at different temperatures to examine the effect of growth conditions on the production of 2-MIB and major metabolites. Gas chromatograph-mass spectrometry (GC-MS) measurements showed higher accumulation of 2-MIB at 30 °C than at 4 °C or 20 °C after 24 h of culture. Real-time-RT PCR analysis showed that the expression levels of the genes encoding GPPMT and MIBS decreased at 4 °C and increased at 30 °C, compared with at 20 °C. Furthermore, metabolite analysis showed dramatic changes in primary metabolite concentrations in cyanobacteria grown at different temperatures. The data indicate that changes in carbon flow in the TCA cycle affect 2-MIB biosynthesis at higher temperatures. Copyright © 2013 Elsevier GmbH. All rights reserved.

  15. Comparative Transcriptomics to Identify Novel Genes and Pathways in Dinoflagellates

    Science.gov (United States)

    Ryan, D.

    2016-02-01

    The unarmored dinoflagellate Karenia brevis is among the most prominent harmful, bloom-forming phytoplankton species in the Gulf of Mexico. During blooms, the polyketides PbTx-1 and PbTx-2 (brevetoxins) are produced by K. brevis. Brevetoxins negatively impact human health and the Gulf shellfish harvest. However, the genes underlying brevetoxin synthesis are currently unknown. Because the K. brevis genome is extremely large ( 1 × 1011 base pairs long), and with a high proportion of repetitive, non-coding DNA, it has not been sequenced. In fact, large, repetitive genomes are common among the dinoflagellate group. High-throughput RNA sequencing technology enabled us to assemble Karenia transcriptomes de novo and investigate potential genes in the brevetoxin pathway through comparative transcriptomics. The brevetoxin profile varies among K. brevis clonal cultures. For example, well-documented Wilson-CCFWC268 typically produces 8-10 pg PbTx per cell, whereas SP1 produces differences in gene expression. Of the 85,000 transcripts in the K. brevis transcriptome, 4,600 transcripts, including novel unannotated orthologs and putative polyketide synthases (PKSs), were only expressed by brevetoxin-producing K. brevis and K. papilionacea, not K. mikimotoi. Examination of gene expression between the typical- and low-toxin Wilson clones identified about 3,500 genes with significantly different expression levels, including 2 putative PKSs. One of the 2 PKSs was only found in the brevetoxin-producing Karenia species. These transcriptomes could not have been characterized without high-throughput RNA sequencing.

  16. Genes of the mitochondrial apoptotic pathway in Mytilus galloprovincialis.

    Directory of Open Access Journals (Sweden)

    Noelia Estévez-Calvar

    Full Text Available Bivalves play vital roles in marine, brackish, freshwater and terrestrial habitats. In recent years, these ecosystems have become affected through anthropogenic activities. The ecological success of marine bivalves is based on the ability to modify their physiological functions in response to environmental changes. One of the most important mechanisms involved in adaptive responses to environmental and biological stresses is apoptosis, which has been scarcely studied in mollusks, although the final consequence of this process, DNA fragmentation, has been frequently used for pollution monitoring. Environmental stressors induce apoptosis in molluscan cells via an intrinsic pathway. Many of the proteins involved in vertebrate apoptosis have been recognized in model invertebrates; however, this process might not be universally conserved. Mytilus galloprovincialis is presented here as a new model to study the linkage between molecular mechanisms that mediate apoptosis and marine bivalve ecological adaptations. Therefore, it is strictly necessary to identify the key elements involved in bivalve apoptosis. In the present study, six mitochondrial apoptotic-related genes were characterized, and their gene expression profiles following UV irradiation were evaluated. This is the first step for the development of potential biomarkers to assess the biological responses of marine organisms to stress. The results confirmed that apoptosis and, more specifically, the expression of the genes involved in this process can be used to assess the biological responses of marine organisms to stress.

  17. Elucidating the biosynthetic and regulatory mechanisms of flavonoid-derived bioactive components in Epimedium sagittatum

    Directory of Open Access Journals (Sweden)

    Wenjun eHuang

    2015-09-01

    Full Text Available Herba epimedii (Epimedium, a traditional Chinese medicine, has been widely used as a kidney tonic and antirheumatic medicine for thousands of years. In Epimedium, flavonoids have been demonstrated to be the main bioactive components (BCs. However, the molecular biosynthetic and regulatory mechanisms of flavonoid-derived BCs remain obscure. In this study, we isolated twelve structural genes and two putative transcription factors (TFs in the flavonoid pathway. Phytochemical analysis showed that the total content of four representative BCs (epimedin A, B, C and icariin decreased slightly or dramatically in two lines of E. sagittatum during leaf development. Transcriptional analysis revealed that two R2R3-MYB TFs (EsMYBA1 and EsMYBF1, together with a bHLH TF (EsGL3 and WD40 protein (EsTTG1, were supposed to coordinately regulate the anthocyanin and flavonol-derived BCs biosynthesis in leaves. Overexpression of EsFLS (flavonol synthase in tobacco resulted in increased flavonols content and decreased anthocyanins content in flowers. Moreover, EsMYB12 negatively correlated with the accumulation of the four BCs, and might act as a transcriptional repressor in the flavonoid pathway. Therefore, the anthocyanin pathway may coordinate with the flavonol-derived BCs pathway in Epimedium leaves. A better understanding of the flavonoid biosynthetic and regulatory mechanisms in E. sagittatum will facilitate functional characterization, metabolic engineering and molecular breeding studies of Epimedium species.

  18. A search engine to identify pathway genes from expression data on multiple organisms

    Directory of Open Access Journals (Sweden)

    Zambon Alexander C

    2007-05-01

    Full Text Available Abstract Background The completion of several genome projects showed that most genes have not yet been characterized, especially in multicellular organisms. Although most genes have unknown functions, a large collection of data is available describing their transcriptional activities under many different experimental conditions. In many cases, the coregulatation of a set of genes across a set of conditions can be used to infer roles for genes of unknown function. Results We developed a search engine, the Multiple-Species Gene Recommender (MSGR, which scans gene expression datasets from multiple organisms to identify genes that participate in a genetic pathway. The MSGR takes a query consisting of a list of genes that function together in a genetic pathway from one of six organisms: Homo sapiens, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae, Arabidopsis thaliana, and Helicobacter pylori. Using a probabilistic method to merge searches, the MSGR identifies genes that are significantly coregulated with the query genes in one or more of those organisms. The MSGR achieves its highest accuracy for many human pathways when searches are combined across species. We describe specific examples in which new genes were identified to be involved in a neuromuscular signaling pathway and a cell-adhesion pathway. Conclusion The search engine can scan large collections of gene expression data for new genes that are significantly coregulated with a pathway of interest. By integrating searches across organisms, the MSGR can identify pathway members whose coregulation is either ancient or newly evolved.

  19. Gene-Gene Interactions in the Folate Metabolic Pathway and the Risk of Conotruncal Heart Defects

    Directory of Open Access Journals (Sweden)

    Philip J. Lupo

    2010-01-01

    Full Text Available Conotruncal and related heart defects (CTRD are common, complex malformations. Although there are few established risk factors, there is evidence that genetic variation in the folate metabolic pathway influences CTRD risk. This study was undertaken to assess the association between inherited (i.e., case and maternal gene-gene interactions in this pathway and the risk of CTRD. Case-parent triads (n=727, ascertained from the Children's Hospital of Philadelphia, were genotyped for ten functional variants of nine folate metabolic genes. Analyses of inherited genotypes were consistent with the previously reported association between MTHFR A1298C and CTRD (adjusted P=.02, but provided no evidence that CTRD was associated with inherited gene-gene interactions. Analyses of the maternal genotypes provided evidence of a MTHFR C677T/CBS 844ins68 interaction and CTRD risk (unadjusted P=.02. This association is consistent with the effects of this genotype combination on folate-homocysteine biochemistry but remains to be confirmed in independent study populations.

  20. Transcriptomic analysis in the developing zebrafish embryo after compound exposure: Individual gene expression and pathway regulation

    Energy Technology Data Exchange (ETDEWEB)

    Hermsen, Sanne A.B., E-mail: Sanne.Hermsen@rivm.nl [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht (Netherlands); Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.178, 3508 TD, Utrecht (Netherlands); Pronk, Tessa E. [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht (Netherlands); Brandhof, Evert-Jan van den [Centre for Environmental Quality, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Ven, Leo T.M. van der [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Piersma, Aldert H. [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.178, 3508 TD, Utrecht (Netherlands)

    2013-10-01

    The zebrafish embryotoxicity test is a promising alternative assay for developmental toxicity. Classically, morphological assessment of the embryos is applied to evaluate the effects of compound exposure. However, by applying differential gene expression analysis the sensitivity and predictability of the test may be increased. For defining gene expression signatures of developmental toxicity, we explored the possibility of using gene expression signatures of compound exposures based on commonly expressed individual genes as well as based on regulated gene pathways. Four developmental toxic compounds were tested in concentration-response design, caffeine, carbamazepine, retinoic acid and valproic acid, and two non-embryotoxic compounds, D-mannitol and saccharin, were included. With transcriptomic analyses we were able to identify commonly expressed genes, which were mostly development related, after exposure to the embryotoxicants. We also identified gene pathways regulated by the embryotoxicants, suggestive of their modes of action. Furthermore, whereas pathways may be regulated by all compounds, individual gene expression within these pathways can differ for each compound. Overall, the present study suggests that the use of individual gene expression signatures as well as pathway regulation may be useful starting points for defining gene biomarkers for predicting embryotoxicity. - Highlights: • The zebrafish embryotoxicity test in combination with transcriptomics was used. • We explored two approaches of defining gene biomarkers for developmental toxicity. • Four compounds in concentration-response design were tested. • We identified commonly expressed individual genes as well as regulated gene pathways. • Both approaches seem suitable starting points for defining gene biomarkers.

  1. Neurogenic gene regulatory pathways in the sea urchin embryo.

    Science.gov (United States)

    Wei, Zheng; Angerer, Lynne M; Angerer, Robert C

    2016-01-15

    During embryogenesis the sea urchin early pluteus larva differentiates 40-50 neurons marked by expression of the pan-neural marker synaptotagmin B (SynB) that are distributed along the ciliary band, in the apical plate and pharyngeal endoderm, and 4-6 serotonergic neurons that are confined to the apical plate. Development of all neurons has been shown to depend on the function of Six3. Using a combination of molecular screens and tests of gene function by morpholino-mediated knockdown, we identified SoxC and Brn1/2/4, which function sequentially in the neurogenic regulatory pathway and are also required for the differentiation of all neurons. Misexpression of Brn1/2/4 at low dose caused an increase in the number of serotonin-expressing cells and at higher dose converted most of the embryo to a neurogenic epithelial sphere expressing the Hnf6 ciliary band marker. A third factor, Z167, was shown to work downstream of the Six3 and SoxC core factors and to define a branch specific for the differentiation of serotonergic neurons. These results provide a framework for building a gene regulatory network for neurogenesis in the sea urchin embryo. © 2016. Published by The Company of Biologists Ltd.

  2. A gene expression signature of RAS pathway dependence predicts response to PI3K and RAS pathway inhibitors and expands the population of RAS pathway activated tumors.

    Science.gov (United States)

    Loboda, Andrey; Nebozhyn, Michael; Klinghoffer, Rich; Frazier, Jason; Chastain, Michael; Arthur, William; Roberts, Brian; Zhang, Theresa; Chenard, Melissa; Haines, Brian; Andersen, Jannik; Nagashima, Kumiko; Paweletz, Cloud; Lynch, Bethany; Feldman, Igor; Dai, Hongyue; Huang, Pearl; Watters, James

    2010-06-30

    Hyperactivation of the Ras signaling pathway is a driver of many cancers, and RAS pathway activation can predict response to targeted therapies. Therefore, optimal methods for measuring Ras pathway activation are critical. The main focus of our work was to develop a gene expression signature that is predictive of RAS pathway dependence. We used the coherent expression of RAS pathway-related genes across multiple datasets to derive a RAS pathway gene expression signature and generate RAS pathway activation scores in pre-clinical cancer models and human tumors. We then related this signature to KRAS mutation status and drug response data in pre-clinical and clinical datasets. The RAS signature score is predictive of KRAS mutation status in lung tumors and cell lines with high (> 90%) sensitivity but relatively low (50%) specificity due to samples that have apparent RAS pathway activation in the absence of a KRAS mutation. In lung and breast cancer cell line panels, the RAS pathway signature score correlates with pMEK and pERK expression, and predicts resistance to AKT inhibition and sensitivity to MEK inhibition within both KRAS mutant and KRAS wild-type groups. The RAS pathway signature is upregulated in breast cancer cell lines that have acquired resistance to AKT inhibition, and is downregulated by inhibition of MEK. In lung cancer cell lines knockdown of KRAS using siRNA demonstrates that the RAS pathway signature is a better measure of dependence on RAS compared to KRAS mutation status. In human tumors, the RAS pathway signature is elevated in ER negative breast tumors and lung adenocarcinomas, and predicts resistance to cetuximab in metastatic colorectal cancer. These data demonstrate that the RAS pathway signature is superior to KRAS mutation status for the prediction of dependence on RAS signaling, can predict response to PI3K and RAS pathway inhibitors, and is likely to have the most clinical utility in lung and breast tumors.

  3. A gene expression signature of RAS pathway dependence predicts response to PI3K and RAS pathway inhibitors and expands the population of RAS pathway activated tumors

    Directory of Open Access Journals (Sweden)

    Paweletz Cloud

    2010-06-01

    Full Text Available Abstract Background Hyperactivation of the Ras signaling pathway is a driver of many cancers, and RAS pathway activation can predict response to targeted therapies. Therefore, optimal methods for measuring Ras pathway activation are critical. The main focus of our work was to develop a gene expression signature that is predictive of RAS pathway dependence. Methods We used the coherent expression of RAS pathway-related genes across multiple datasets to derive a RAS pathway gene expression signature and generate RAS pathway activation scores in pre-clinical cancer models and human tumors. We then related this signature to KRAS mutation status and drug response data in pre-clinical and clinical datasets. Results The RAS signature score is predictive of KRAS mutation status in lung tumors and cell lines with high (> 90% sensitivity but relatively low (50% specificity due to samples that have apparent RAS pathway activation in the absence of a KRAS mutation. In lung and breast cancer cell line panels, the RAS pathway signature score correlates with pMEK and pERK expression, and predicts resistance to AKT inhibition and sensitivity to MEK inhibition within both KRAS mutant and KRAS wild-type groups. The RAS pathway signature is upregulated in breast cancer cell lines that have acquired resistance to AKT inhibition, and is downregulated by inhibition of MEK. In lung cancer cell lines knockdown of KRAS using siRNA demonstrates that the RAS pathway signature is a better measure of dependence on RAS compared to KRAS mutation status. In human tumors, the RAS pathway signature is elevated in ER negative breast tumors and lung adenocarcinomas, and predicts resistance to cetuximab in metastatic colorectal cancer. Conclusions These data demonstrate that the RAS pathway signature is superior to KRAS mutation status for the prediction of dependence on RAS signaling, can predict response to PI3K and RAS pathway inhibitors, and is likely to have the most clinical

  4. GeneAnalytics Pathway Analysis and Genetic Overlap among Autism Spectrum Disorder, Bipolar Disorder and Schizophrenia

    Directory of Open Access Journals (Sweden)

    Naveen S. Khanzada

    2017-02-01

    Full Text Available Bipolar disorder (BPD and schizophrenia (SCH show similar neuropsychiatric behavioral disturbances, including impaired social interaction and communication, seen in autism spectrum disorder (ASD with multiple overlapping genetic and environmental influences implicated in risk and course of illness. GeneAnalytics software was used for pathway analysis and genetic profiling to characterize common susceptibility genes obtained from published lists for ASD (792 genes, BPD (290 genes and SCH (560 genes. Rank scores were derived from the number and nature of overlapping genes, gene-disease association, tissue specificity and gene functions subdivided into categories (e.g., diseases, tissues or functional pathways. Twenty-three genes were common to all three disorders and mapped to nine biological Superpathways including Circadian entrainment (10 genes, score = 37.0, Amphetamine addiction (five genes, score = 24.2, and Sudden infant death syndrome (six genes, score = 24.1. Brain tissues included the medulla oblongata (11 genes, score = 2.1, thalamus (10 genes, score = 2.0 and hypothalamus (nine genes, score = 2.0 with six common genes (BDNF, DRD2, CHRNA7, HTR2A, SLC6A3, and TPH2. Overlapping genes impacted dopamine and serotonin homeostasis and signal transduction pathways, impacting mood, behavior and physical activity level. Converging effects on pathways governing circadian rhythms support a core etiological relationship between neuropsychiatric illnesses and sleep disruption with hypoxia and central brain stem dysfunction.

  5. Analysis of gene evolution and metabolic pathways using the Candida Gene Order Browser

    LENUS (Irish Health Repository)

    Fitzpatrick, David A

    2010-05-10

    Abstract Background Candida species are the most common cause of opportunistic fungal infection worldwide. Recent sequencing efforts have provided a wealth of Candida genomic data. We have developed the Candida Gene Order Browser (CGOB), an online tool that aids comparative syntenic analyses of Candida species. CGOB incorporates all available Candida clade genome sequences including two Candida albicans isolates (SC5314 and WO-1) and 8 closely related species (Candida dubliniensis, Candida tropicalis, Candida parapsilosis, Lodderomyces elongisporus, Debaryomyces hansenii, Pichia stipitis, Candida guilliermondii and Candida lusitaniae). Saccharomyces cerevisiae is also included as a reference genome. Results CGOB assignments of homology were manually curated based on sequence similarity and synteny. In total CGOB includes 65617 genes arranged into 13625 homology columns. We have also generated improved Candida gene sets by merging\\/removing partial genes in each genome. Interrogation of CGOB revealed that the majority of tandemly duplicated genes are under strong purifying selection in all Candida species. We identified clusters of adjacent genes involved in the same metabolic pathways (such as catabolism of biotin, galactose and N-acetyl glucosamine) and we showed that some clusters are species or lineage-specific. We also identified one example of intron gain in C. albicans. Conclusions Our analysis provides an important resource that is now available for the Candida community. CGOB is available at http:\\/\\/cgob.ucd.ie.

  6. Integration of multiple networks and pathways identifies cancer driver genes in pan-cancer analysis.

    Science.gov (United States)

    Cava, Claudia; Bertoli, Gloria; Colaprico, Antonio; Olsen, Catharina; Bontempi, Gianluca; Castiglioni, Isabella

    2018-01-06

    Modern high-throughput genomic technologies represent a comprehensive hallmark of molecular changes in pan-cancer studies. Although different cancer gene signatures have been revealed, the mechanism of tumourigenesis has yet to be completely understood. Pathways and networks are important tools to explain the role of genes in functional genomic studies. However, few methods consider the functional non-equal roles of genes in pathways and the complex gene-gene interactions in a network. We present a novel method in pan-cancer analysis that identifies de-regulated genes with a functional role by integrating pathway and network data. A pan-cancer analysis of 7158 tumour/normal samples from 16 cancer types identified 895 genes with a central role in pathways and de-regulated in cancer. Comparing our approach with 15 current tools that identify cancer driver genes, we found that 35.6% of the 895 genes identified by our method have been found as cancer driver genes with at least 2/15 tools. Finally, we applied a machine learning algorithm on 16 independent GEO cancer datasets to validate the diagnostic role of cancer driver genes for each cancer. We obtained a list of the top-ten cancer driver genes for each cancer considered in this study. Our analysis 1) confirmed that there are several known cancer driver genes in common among different types of cancer, 2) highlighted that cancer driver genes are able to regulate crucial pathways.

  7. The Pathway From Genes to Gene Therapy in Glaucoma: A Review of Possibilities for Using Genes as Glaucoma Drugs.

    Science.gov (United States)

    Borrás, Teresa

    2017-01-01

    Treatment of diseases with gene therapy is advancing rapidly. The use of gene therapy has expanded from the original concept of re-placing the mutated gene causing the disease to the use of genes to con-trol nonphysiological levels of expression or to modify pathways known to affect the disease. Genes offer numerous advantages over conventional drugs. They have longer duration of action and are more specific. Genes can be delivered to the target site by naked DNA, cells, nonviral, and viral vectors. The enormous progress of the past decade in molecular bi-ology and delivery systems has provided ways for targeting genes to the intended cell/tissue and safe, long-term vectors. The eye is an ideal organ for gene therapy. It is easily accessible and it is an immune-privileged site. Currently, there are clinical trials for diseases affecting practically every tissue of the eye, including those to restore vision in patients with Leber congenital amaurosis. However, the number of eye trials compared with those for systemic diseases is quite low (1.8%). Nevertheless, judg-ing by the vast amount of ongoing preclinical studies, it is expected that such number will increase considerably in the near future. One area of great need for eye gene therapy is glaucoma, where a long-term gene drug would eliminate daily applications and compliance issues. Here, we review the current state of gene therapy for glaucoma and the possibilities for treating the trabecular meshwork to lower intraocular pressure and the retinal ganglion cells to protect them from neurodegeneration. Copyright© 2017 Asia-Pacific Academy of Ophthalmology.

  8. RaMP: A Comprehensive Relational Database of Metabolomics Pathways for Pathway Enrichment Analysis of Genes and Metabolites.

    Science.gov (United States)

    Zhang, Bofei; Hu, Senyang; Baskin, Elizabeth; Patt, Andrew; Siddiqui, Jalal K; Mathé, Ewy A

    2018-02-22

    The value of metabolomics in translational research is undeniable, and metabolomics data are increasingly generated in large cohorts. The functional interpretation of disease-associated metabolites though is difficult, and the biological mechanisms that underlie cell type or disease-specific metabolomics profiles are oftentimes unknown. To help fully exploit metabolomics data and to aid in its interpretation, analysis of metabolomics data with other complementary omics data, including transcriptomics, is helpful. To facilitate such analyses at a pathway level, we have developed RaMP (Relational database of Metabolomics Pathways), which combines biological pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome, WikiPathways, and the Human Metabolome DataBase (HMDB). To the best of our knowledge, an off-the-shelf, public database that maps genes and metabolites to biochemical/disease pathways and can readily be integrated into other existing software is currently lacking. For consistent and comprehensive analysis, RaMP enables batch and complex queries (e.g., list all metabolites involved in glycolysis and lung cancer), can readily be integrated into pathway analysis tools, and supports pathway overrepresentation analysis given a list of genes and/or metabolites of interest. For usability, we have developed a RaMP R package (https://github.com/Mathelab/RaMP-DB), including a user-friendly RShiny web application, that supports basic simple and batch queries, pathway overrepresentation analysis given a list of genes or metabolites of interest, and network visualization of gene-metabolite relationships. The package also includes the raw database file (mysql dump), thereby providing a stand-alone downloadable framework for public use and integration with other tools. In addition, the Python code needed to recreate the database on another system is also publicly available (https://github.com/Mathelab/RaMP-BackEnd). Updates for databases in RaMP will be

  9. Natural Product Biosynthetic Diversity and Comparative Genomics of the Cyanobacteria.

    Science.gov (United States)

    Dittmann, Elke; Gugger, Muriel; Sivonen, Kaarina; Fewer, David P

    2015-10-01

    Cyanobacteria are an ancient lineage of slow-growing photosynthetic bacteria and a prolific source of natural products with intricate chemical structures and potent biological activities. The bulk of these natural products are known from just a handful of genera. Recent efforts have elucidated the mechanisms underpinning the biosynthesis of a diverse array of natural products from cyanobacteria. Many of the biosynthetic mechanisms are unique to cyanobacteria or rarely described from other organisms. Advances in genome sequence technology have precipitated a deluge of genome sequences for cyanobacteria. This makes it possible to link known natural products to biosynthetic gene clusters but also accelerates the discovery of new natural products through genome mining. These studies demonstrate that cyanobacteria encode a huge variety of cryptic gene clusters for the production of natural products, and the known chemical diversity is likely to be just a fraction of the true biosynthetic capabilities of this fascinating and ancient group of organisms. Copyright © 2015. Published by Elsevier Ltd.

  10. Pathway analysis of gene signatures predicting metastasis of node-negative primary breast cancer

    International Nuclear Information System (INIS)

    Yu, Jack X; Sieuwerts, Anieta M; Zhang, Yi; Martens, John WM; Smid, Marcel; Klijn, Jan GM; Wang, Yixin; Foekens, John A

    2007-01-01

    Published prognostic gene signatures in breast cancer have few genes in common. Here we provide a rationale for this observation by studying the prognostic power and the underlying biological pathways of different gene signatures. Gene signatures to predict the development of metastases in estrogen receptor-positive and estrogen receptor-negative tumors were identified using 500 re-sampled training sets and mapping to Gene Ontology Biological Process to identify over-represented pathways. The Global Test program confirmed that gene expression profilings in the common pathways were associated with the metastasis of the patients. The apoptotic pathway and cell division, or cell growth regulation and G-protein coupled receptor signal transduction, were most significantly associated with the metastatic capability of estrogen receptor-positive or estrogen-negative tumors, respectively. A gene signature derived of the common pathways predicted metastasis in an independent cohort. Mapping of the pathways represented by different published prognostic signatures showed that they share 53% of the identified pathways. We show that divergent gene sets classifying patients for the same clinical endpoint represent similar biological processes and that pathway-derived signatures can be used to predict prognosis. Furthermore, our study reveals that the underlying biology related to aggressiveness of estrogen receptor subgroups of breast cancer is quite different

  11. Synthetic lethality between gene defects affecting a single non-essential molecular pathway with reversible steps.

    Directory of Open Access Journals (Sweden)

    Andrei Zinovyev

    2013-04-01

    Full Text Available Systematic analysis of synthetic lethality (SL constitutes a critical tool for systems biology to decipher molecular pathways. The most accepted mechanistic explanation of SL is that the two genes function in parallel, mutually compensatory pathways, known as between-pathway SL. However, recent genome-wide analyses in yeast identified a significant number of within-pathway negative genetic interactions. The molecular mechanisms leading to within-pathway SL are not fully understood. Here, we propose a novel mechanism leading to within-pathway SL involving two genes functioning in a single non-essential pathway. This type of SL termed within-reversible-pathway SL involves reversible pathway steps, catalyzed by different enzymes in the forward and backward directions, and kinetic trapping of a potentially toxic intermediate. Experimental data with recombinational DNA repair genes validate the concept. Mathematical modeling recapitulates the possibility of kinetic trapping and revealed the potential contributions of synthetic, dosage-lethal interactions in such a genetic system as well as the possibility of within-pathway positive masking interactions. Analysis of yeast gene interaction and pathway data suggests broad applicability of this novel concept. These observations extend the canonical interpretation of synthetic-lethal or synthetic-sick interactions with direct implications to reconstruct molecular pathways and improve therapeutic approaches to diseases such as cancer.

  12. Identification of sugarcane genes involved in the purine synthesis pathway

    Directory of Open Access Journals (Sweden)

    Mario A. Jancso

    2001-12-01

    Full Text Available Nucleotide synthesis is of central importance to all cells. In most organisms, the purine nucleotides are synthesized de novo from non-nucleotide precursors such as amino acids, ammonia and carbon dioxide. An understanding of the enzymes involved in sugarcane purine synthesis opens the possibility of using these enzymes as targets for chemicals which may be effective in combating phytopathogen. Such an approach has already been applied to several parasites and types of cancer. The strategy described in this paper was applied to identify sugarcane clusters for each step of the de novo purine synthesis pathway. Representative sequences of this pathway were chosen from the National Center for Biotechnology Information (NCBI database and used to search the translated sugarcane expressed sequence tag (SUCEST database using the available basic local alignment search tool (BLAST facility. Retrieved clusters were further tested for the statistical significance of the alignment by an implementation (PRSS3 of the Monte Carlo shuffling algorithm calibrated using known protein sequences of divergent taxa along the phylogenetic tree. The sequences were compared to each other and to the sugarcane clusters selected using BLAST analysis, with the resulting table of p-values indicating the degree of divergence of each enzyme within different taxa and in relation to the sugarcane clusters. The results obtained by this strategy allowed us to identify the sugarcane proteins participating in the purine synthesis pathway.A via de síntese de purino nucleotídeos é considerada uma via de central importância para todas as células. Na maioria dos organismos, os purino nucleotídeos são sintetizados ''de novo'' a partir de precursores não-nucleotídicos como amino ácidos, amônia e dióxido de carbono. O conhecimento das enzimas envolvidas na via de síntese de purinas da cana-de-açúcar vai abrir a possibilidade do uso dessas enzimas como alvos no desenho

  13. Identification of the Biosynthetic Gene Clusters for the Lipopeptides Fusaristatin A and W493 B in Fusarium graminearum and F. pseudograminearum

    DEFF Research Database (Denmark)

    Sørensen, Jens Laurids; Sondergaard, Teis Esben; Covarelli, Lorenzo

    2014-01-01

    The closely related species Fusarium graminearum and Fusarium pseudograminearum differ in that each contains a gene cluster with a polyketide synthase (PKS) and a nonribosomal peptide synthetase (NRPS) that is not present in the other species. To identify their products, we deleted PKS6 and NRPS7...... Fusarium species. On the basis of genes in the putative gene clusters we propose a model for biosynthesis where the polyketide product is shuttled to the NPRS via a CoA ligase and a thioesterase in F. pseudograminearum. In F. graminearum the polyketide is proposed to be directly assimilated by the NRPS....

  14. A Pathway Based Classification Method for Analyzing Gene Expression for Alzheimer's Disease Diagnosis.

    Science.gov (United States)

    Voyle, Nicola; Keohane, Aoife; Newhouse, Stephen; Lunnon, Katie; Johnston, Caroline; Soininen, Hilkka; Kloszewska, Iwona; Mecocci, Patrizia; Tsolaki, Magda; Vellas, Bruno; Lovestone, Simon; Hodges, Angela; Kiddle, Steven; Dobson, Richard Jb

    2016-01-01

    Recent studies indicate that gene expression levels in blood may be able to differentiate subjects with Alzheimer's disease (AD) from normal elderly controls and mild cognitively impaired (MCI) subjects. However, there is limited replicability at the single marker level. A pathway-based interpretation of gene expression may prove more robust. This study aimed to investigate whether a case/control classification model built on pathway level data was more robust than a gene level model and may consequently perform better in test data. The study used two batches of gene expression data from the AddNeuroMed (ANM) and Dementia Case Registry (DCR) cohorts. Our study used Illumina Human HT-12 Expression BeadChips to collect gene expression from blood samples. Random forest modeling with recursive feature elimination was used to predict case/control status. Age and APOE ɛ4 status were used as covariates for all analysis. Gene and pathway level models performed similarly to each other and to a model based on demographic information only. Any potential increase in concordance from the novel pathway level approach used here has not lead to a greater predictive ability in these datasets. However, we have only tested one method for creating pathway level scores. Further, we have been able to benchmark pathways against genes in datasets that had been extensively harmonized. Further work should focus on the use of alternative methods for creating pathway level scores, in particular those that incorporate pathway topology, and the use of an endophenotype based approach.

  15. Gene expression meta-analysis identifies metastatic pathways and transcription factors in breast cancer

    International Nuclear Information System (INIS)

    Thomassen, Mads; Tan, Qihua; Kruse, Torben A

    2008-01-01

    Metastasis is believed to progress in several steps including different pathways but the determination and understanding of these mechanisms is still fragmentary. Microarray analysis of gene expression patterns in breast tumors has been used to predict outcome in recent studies. Besides classification of outcome, these global expression patterns may reflect biological mechanisms involved in metastasis of breast cancer. Our purpose has been to investigate pathways and transcription factors involved in metastasis by use of gene expression data sets. We have analyzed 8 publicly available gene expression data sets. A global approach, 'gene set enrichment analysis' as well as an approach focusing on a subset of significantly differently regulated genes, GenMAPP, has been applied to rank pathway gene sets according to differential regulation in metastasizing tumors compared to non-metastasizing tumors. Meta-analysis has been used to determine overrepresentation of pathways and transcription factors targets, concordant deregulated in metastasizing breast tumors, in several data sets. The major findings are up-regulation of cell cycle pathways and a metabolic shift towards glucose metabolism reflected in several pathways in metastasizing tumors. Growth factor pathways seem to play dual roles; EGF and PDGF pathways are decreased, while VEGF and sex-hormone pathways are increased in tumors that metastasize. Furthermore, migration, proteasome, immune system, angiogenesis, DNA repair and several signal transduction pathways are associated to metastasis. Finally several transcription factors e.g. E2F, NFY, and YY1 are identified as being involved in metastasis. By pathway meta-analysis many biological mechanisms beyond major characteristics such as proliferation are identified. Transcription factor analysis identifies a number of key factors that support central pathways. Several previously proposed treatment targets are identified and several new pathways that may

  16. A Gene Module-Based eQTL Analysis Prioritizing Disease Genes and Pathways in Kidney Cancer

    Directory of Open Access Journals (Sweden)

    Mary Qu Yang

    Full Text Available Clear cell renal cell carcinoma (ccRCC is the most common and most aggressive form of renal cell cancer (RCC. The incidence of RCC has increased steadily in recent years. The pathogenesis of renal cell cancer remains poorly understood. Many of the tumor suppressor genes, oncogenes, and dysregulated pathways in ccRCC need to be revealed for improvement of the overall clinical outlook of the disease. Here, we developed a systems biology approach to prioritize the somatic mutated genes that lead to dysregulation of pathways in ccRCC. The method integrated multi-layer information to infer causative mutations and disease genes. First, we identified differential gene modules in ccRCC by coupling transcriptome and protein-protein interactions. Each of these modules consisted of interacting genes that were involved in similar biological processes and their combined expression alterations were significantly associated with disease type. Then, subsequent gene module-based eQTL analysis revealed somatic mutated genes that had driven the expression alterations of differential gene modules. Our study yielded a list of candidate disease genes, including several known ccRCC causative genes such as BAP1 and PBRM1, as well as novel genes such as NOD2, RRM1, CSRNP1, SLC4A2, TTLL1 and CNTN1. The differential gene modules and their driver genes revealed by our study provided a new perspective for understanding the molecular mechanisms underlying the disease. Moreover, we validated the results in independent ccRCC patient datasets. Our study provided a new method for prioritizing disease genes and pathways. Keywords: ccRCC, Causative mutation, Pathways, Protein-protein interaction, Gene module, eQTL

  17. TLR-related pathway analysis : novel gene-gene interactions in the development of asthma and atopy

    NARCIS (Netherlands)

    Reijmerink, N. E.; Bottema, R. W. B.; Kerkhof, M.; Gerritsen, J.; Stelma, F. F.; Thijs, C.; van Schayck, C. P.; Smit, H. A.; Brunekreef, B.; Koppelman, G. H.; Postma, D. S.

    P>Background: The toll-like receptor (TLR)-related pathway is important in host defence and may be crucial in the development of asthma and atopy. Numerous studies have shown associations of TLR-related pathway genes with asthma and atopy phenotypes. So far it has not been investigated whether

  18. Floral pathway integrator gene expression mediates gradual transmission of environmental and endogenous cues to flowering time.

    Science.gov (United States)

    van Dijk, Aalt D J; Molenaar, Jaap

    2017-01-01

    The appropriate timing of flowering is crucial for the reproductive success of plants. Hence, intricate genetic networks integrate various environmental and endogenous cues such as temperature or hormonal statues. These signals integrate into a network of floral pathway integrator genes. At a quantitative level, it is currently unclear how the impact of genetic variation in signaling pathways on flowering time is mediated by floral pathway integrator genes. Here, using datasets available from literature, we connect Arabidopsis thaliana flowering time in genetic backgrounds varying in upstream signalling components with the expression levels of floral pathway integrator genes in these genetic backgrounds. Our modelling results indicate that flowering time depends in a quite linear way on expression levels of floral pathway integrator genes. This gradual, proportional response of flowering time to upstream changes enables a gradual adaptation to changing environmental factors such as temperature and light.

  19. Floral pathway integrator gene expression mediates gradual transmission of environmental and endogenous cues to flowering time

    Directory of Open Access Journals (Sweden)

    Aalt D.J. van Dijk

    2017-04-01

    Full Text Available The appropriate timing of flowering is crucial for the reproductive success of plants. Hence, intricate genetic networks integrate various environmental and endogenous cues such as temperature or hormonal statues. These signals integrate into a network of floral pathway integrator genes. At a quantitative level, it is currently unclear how the impact of genetic variation in signaling pathways on flowering time is mediated by floral pathway integrator genes. Here, using datasets available from literature, we connect Arabidopsis thaliana flowering time in genetic backgrounds varying in upstream signalling components with the expression levels of floral pathway integrator genes in these genetic backgrounds. Our modelling results indicate that flowering time depends in a quite linear way on expression levels of floral pathway integrator genes. This gradual, proportional response of flowering time to upstream changes enables a gradual adaptation to changing environmental factors such as temperature and light.

  20. IntPath--an integrated pathway gene relationship database for model organisms and important pathogens.

    Science.gov (United States)

    Zhou, Hufeng; Jin, Jingjing; Zhang, Haojun; Yi, Bo; Wozniak, Michal; Wong, Limsoon

    2012-01-01

    Pathway data are important for understanding the relationship between genes, proteins and many other molecules in living organisms. Pathway gene relationships are crucial information for guidance, prediction, reference and assessment in biochemistry, computational biology, and medicine. Many well-established databases--e.g., KEGG, WikiPathways, and BioCyc--are dedicated to collecting pathway data for public access. However, the effectiveness of these databases is hindered by issues such as incompatible data formats, inconsistent molecular representations, inconsistent molecular relationship representations, inconsistent referrals to pathway names, and incomprehensive data from different databases. In this paper, we overcome these issues through extraction, normalization and integration of pathway data from several major public databases (KEGG, WikiPathways, BioCyc, etc). We build a database that not only hosts our integrated pathway gene relationship data for public access but also maintains the necessary updates in the long run. This public repository is named IntPath (Integrated Pathway gene relationship database for model organisms and important pathogens). Four organisms--S. cerevisiae, M. tuberculosis H37Rv, H. Sapiens and M. musculus--are included in this version (V2.0) of IntPath. IntPath uses the "full unification" approach to ensure no deletion and no introduced noise in this process. Therefore, IntPath contains much richer pathway-gene and pathway-gene pair relationships and much larger number of non-redundant genes and gene pairs than any of the single-source databases. The gene relationships of each gene (measured by average node degree) per pathway are significantly richer. The gene relationships in each pathway (measured by average number of gene pairs per pathway) are also considerably richer in the integrated pathways. Moderate manual curation are involved to get rid of errors and noises from source data (e.g., the gene ID errors in WikiPathways and

  1. Analysis of the ergosterol biosynthesis pathway cloning, molecular characterization and phylogeny of lanosterol 14α-demethylase (ERG11 gene of Moniliophthora perniciosa

    Directory of Open Access Journals (Sweden)

    Geruza de Oliveira Ceita

    2014-12-01

    Full Text Available The phytopathogenic fungus Moniliophthora perniciosa (Stahel Aime & Philips-Mora, causal agent of witches' broom disease of cocoa, causes countless damage to cocoa production in Brazil. Molecular studies have attempted to identify genes that play important roles in fungal survival and virulence. In this study, sequences deposited in the M. perniciosa Genome Sequencing Project database were analyzed to identify potential biological targets. For the first time, the ergosterol biosynthetic pathway in M. perniciosa was studied and the lanosterol 14α-demethylase gene (ERG11 that encodes the main enzyme of this pathway and is a target for fungicides was cloned, characterized molecularly and its phylogeny analyzed. ERG11 genomic DNA and cDNA were characterized and sequence analysis of the ERG11 protein identified highly conserved domains typical of this enzyme, such as SRS1, SRS4, EXXR and the heme-binding region (HBR. Comparison of the protein sequences and phylogenetic analysis revealed that the M. perniciosa enzyme was most closely related to that of Coprinopsis cinerea.

  2. Integrated GWAS and Pathway profiling for feed efficiency traits in pigs leads to novel genes and their molecular pathways

    DEFF Research Database (Denmark)

    Do, Duy Ngoc; Ostersen, Tage; Strathe, Anders Bjerring

    2013-01-01

    Genome wide association studies (GWAS) are being extensively used in revealing genetic architecture of complex traits. However, GWAS offer limited understanding of the biological role of significant single nucleotide polymorphisms (SNPs) affecting complex traits. Pathway analysis using GWAS results...... is an important step where we firstly detect genes located near GWAS-detected SNPs and subsequently we detect enrichment of these genes in various biological processes and pathways. The objective of this study was to apply these steps to identify relevant pathways involved in residual feed intake (RFI) in pigs....... Residual feed intake is a feed efficiency measure and is highly economically important in animal production. In our study, a total of 596 Yorkshire boars had phenotypic and genotypic records. After quality control, 37,915 SNPs were available for GWAS which was implemented in the DMU software package...

  3. Screening key candidate genes and pathways involved in insulinoma by microarray analysis.

    Science.gov (United States)

    Zhou, Wuhua; Gong, Li; Li, Xuefeng; Wan, Yunyan; Wang, Xiangfei; Li, Huili; Jiang, Bin

    2018-06-01

    Insulinoma is a rare type tumor and its genetic features remain largely unknown. This study aimed to search for potential key genes and relevant enriched pathways of insulinoma.The gene expression data from GSE73338 were downloaded from Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified between insulinoma tissues and normal pancreas tissues, followed by pathway enrichment analysis, protein-protein interaction (PPI) network construction, and module analysis. The expressions of candidate key genes were validated by quantitative real-time polymerase chain reaction (RT-PCR) in insulinoma tissues.A total of 1632 DEGs were obtained, including 1117 upregulated genes and 514 downregulated genes. Pathway enrichment results showed that upregulated DEGs were significantly implicated in insulin secretion, and downregulated DEGs were mainly enriched in pancreatic secretion. PPI network analysis revealed 7 hub genes with degrees more than 10, including GCG (glucagon), GCGR (glucagon receptor), PLCB1 (phospholipase C, beta 1), CASR (calcium sensing receptor), F2R (coagulation factor II thrombin receptor), GRM1 (glutamate metabotropic receptor 1), and GRM5 (glutamate metabotropic receptor 5). DEGs involved in the significant modules were enriched in calcium signaling pathway, protein ubiquitination, and platelet degranulation. Quantitative RT-PCR data confirmed that the expression trends of these hub genes were similar to the results of bioinformatic analysis.The present study demonstrated that candidate DEGs and enriched pathways were the potential critical molecule events involved in the development of insulinoma, and these findings were useful for better understanding of insulinoma genesis.

  4. Evolutionary systems biology of amino acid biosynthetic cost in yeast.

    Directory of Open Access Journals (Sweden)

    Michael D Barton

    2010-08-01

    Full Text Available Every protein has a biosynthetic cost to the cell based on the synthesis of its constituent amino acids. In order to optimise growth and reproduction, natural selection is expected, where possible, to favour the use of proteins whose constituents are cheaper to produce, as reduced biosynthetic cost may confer a fitness advantage to the organism. Quantifying the cost of amino acid biosynthesis presents challenges, since energetic requirements may change across different cellular and environmental conditions. We developed a systems biology approach to estimate the cost of amino acid synthesis based on genome-scale metabolic models and investigated the effects of the cost of amino acid synthesis on Saccharomyces cerevisiae gene expression and protein evolution. First, we used our two new and six previously reported measures of amino acid cost in conjunction with codon usage bias, tRNA gene number and atomic composition to identify which of these factors best predict transcript and protein levels. Second, we compared amino acid cost with rates of amino acid substitution across four species in the genus Saccharomyces. Regardless of which cost measure is used, amino acid biosynthetic cost is weakly associated with transcript and protein levels. In contrast, we find that biosynthetic cost and amino acid substitution rates show a negative correlation, but for only a subset of cost measures. In the economy of the yeast cell, we find that the cost of amino acid synthesis plays a limited role in shaping transcript and protein expression levels compared to that of translational optimisation. Biosynthetic cost does, however, appear to affect rates of amino acid evolution in Saccharomyces, suggesting that expensive amino acids may only be used when they have specific structural or functional roles in protein sequences. However, as there appears to be no single currency to compute the cost of amino acid synthesis across all cellular and environmental

  5. Characterization of differentially expressed genes involved in pathways associated with gastric cancer.

    Directory of Open Access Journals (Sweden)

    Hao Li

    Full Text Available To explore the patterns of gene expression in gastric cancer, a total of 26 paired gastric cancer and noncancerous tissues from patients were enrolled for gene expression microarray analyses. Limma methods were applied to analyze the data, and genes were considered to be significantly differentially expressed if the False Discovery Rate (FDR value was 2. Subsequently, Gene Ontology (GO categories were used to analyze the main functions of the differentially expressed genes. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG database, we found pathways significantly associated with the differential genes. Gene-Act network and co-expression network were built respectively based on the relationships among the genes, proteins and compounds in the database. 2371 mRNAs and 350 lncRNAs considered as significantly differentially expressed genes were selected for the further analysis. The GO categories, pathway analyses and the Gene-Act network showed a consistent result that up-regulated genes were responsible for tumorigenesis, migration, angiogenesis and microenvironment formation, while down-regulated genes were involved in metabolism. These results of this study provide some novel findings on coding RNAs, lncRNAs, pathways and the co-expression network in gastric cancer which will be useful to guide further investigation and target therapy for this disease.

  6. A gene pathway analysis highlights the role of cellular adhesion molecules in multiple sclerosis susceptibility

    DEFF Research Database (Denmark)

    Damotte, V; Guillot-Noel, L; Patsopoulos, N A

    2014-01-01

    adhesion molecule (CAMs) biological pathway using Cytoscape software. This network is a strong candidate, as it is involved in the crossing of the blood-brain barrier by the T cells, an early event in MS pathophysiology, and is used as an efficient therapeutic target. We drew up a list of 76 genes...... in interaction with other genes as a group. Pathway analysis is an alternative way to highlight such group of genes. Using SNP association P-values from eight multiple sclerosis (MS) GWAS data sets, we performed a candidate pathway analysis for MS susceptibility by considering genes interacting in the cell...... belonging to the CAM network. We highlighted 64 networks enriched with CAM genes with low P-values. Filtering by a percentage of CAM genes up to 50% and rejecting enriched signals mainly driven by transcription factors, we highlighted five networks associated with MS susceptibility. One of them, constituted...

  7. The Ability of Different Imputation Methods to Preserve the Significant Genes and Pathways in Cancer

    Directory of Open Access Journals (Sweden)

    Rosa Aghdam

    2017-12-01

    Full Text Available Deciphering important genes and pathways from incomplete gene expression data could facilitate a better understanding of cancer. Different imputation methods can be applied to estimate the missing values. In our study, we evaluated various imputation methods for their performance in preserving significant genes and pathways. In the first step, 5% genes are considered in random for two types of ignorable and non-ignorable missingness mechanisms with various missing rates. Next, 10 well-known imputation methods were applied to the complete datasets. The significance analysis of microarrays (SAM method was applied to detect the significant genes in rectal and lung cancers to showcase the utility of imputation approaches in preserving significant genes. To determine the impact of different imputation methods on the identification of important genes, the chi-squared test was used to compare the proportions of overlaps between significant genes detected from original data and those detected from the imputed datasets. Additionally, the significant genes are tested for their enrichment in important pathways, using the ConsensusPathDB. Our results showed that almost all the significant genes and pathways of the original dataset can be detected in all imputed datasets, indicating that there is no significant difference in the performance of various imputation methods tested. The source code and selected datasets are available on http://profiles.bs.ipm.ir/softwares/imputation_methods/.

  8. The Ability of Different Imputation Methods to Preserve the Significant Genes and Pathways in Cancer.

    Science.gov (United States)

    Aghdam, Rosa; Baghfalaki, Taban; Khosravi, Pegah; Saberi Ansari, Elnaz

    2017-12-01

    Deciphering important genes and pathways from incomplete gene expression data could facilitate a better understanding of cancer. Different imputation methods can be applied to estimate the missing values. In our study, we evaluated various imputation methods for their performance in preserving significant genes and pathways. In the first step, 5% genes are considered in random for two types of ignorable and non-ignorable missingness mechanisms with various missing rates. Next, 10 well-known imputation methods were applied to the complete datasets. The significance analysis of microarrays (SAM) method was applied to detect the significant genes in rectal and lung cancers to showcase the utility of imputation approaches in preserving significant genes. To determine the impact of different imputation methods on the identification of important genes, the chi-squared test was used to compare the proportions of overlaps between significant genes detected from original data and those detected from the imputed datasets. Additionally, the significant genes are tested for their enrichment in important pathways, using the ConsensusPathDB. Our results showed that almost all the significant genes and pathways of the original dataset can be detected in all imputed datasets, indicating that there is no significant difference in the performance of various imputation methods tested. The source code and selected datasets are available on http://profiles.bs.ipm.ir/softwares/imputation_methods/. Copyright © 2017. Production and hosting by Elsevier B.V.

  9. Towards a Biosynthetic UAV

    Science.gov (United States)

    Block, Eli; Byemerwa, Jovita; Dispenza, Ross; Doughty, Benjamin; Gillyard, KaNesha; Godbole, Poorwa; Gonzales-Wright, Jeanette; Hull, Ian; Kannappan, Jotthe; Levine, Alexander; hide

    2014-01-01

    We are currently working on a series of projects towards the construction of a fully biological unmanned aerial vehicle (UAV) for use in scientific and humanitarian missions. The prospect of a biologically-produced UAV presents numerous advantages over the current manufacturing paradigm. First, a foundational architecture built by cells allows for construction or repair in locations where it would be difficult to bring traditional tools of production. Second, a major limitation of current research with UAVs is the size and high power consumption of analytical instruments, which require bulky electrical components and large fuselages to support their weight. By moving these functions into cells with biosensing capabilities - for example, a series of cells engineered to report GFP, green fluorescent protein, when conditions exceed a certain threshold concentration of a compound of interest, enabling their detection post-flight - these problems of scale can be avoided. To this end, we are working to engineer cells to synthesize cellulose acetate as a novel bioplastic, characterize biological methods of waterproofing the material, and program this material's systemic biodegradation. In addition, we aim to use an "amberless" system to prevent horizontal gene transfer from live cells on the material to microorganisms in the flight environment.

  10. A cross-study gene set enrichment analysis identifies critical pathways in endometriosis

    Directory of Open Access Journals (Sweden)

    Bai Chunyan

    2009-09-01

    Full Text Available Abstract Background Endometriosis is an enigmatic disease. Gene expression profiling of endometriosis has been used in several studies, but few studies went further to classify subtypes of endometriosis based on expression patterns and to identify possible pathways involved in endometriosis. Some of the observed pathways are more inconsistent between the studies, and these candidate pathways presumably only represent a fraction of the pathways involved in endometriosis. Methods We applied a standardised microarray preprocessing and gene set enrichment analysis to six independent studies, and demonstrated increased concordance between these gene datasets. Results We find 16 up-regulated and 19 down-regulated pathways common in ovarian endometriosis data sets, 22 up-regulated and one down-regulated pathway common in peritoneal endometriosis data sets. Among them, 12 up-regulated and 1 down-regulated were found consistent between ovarian and peritoneal endometriosis. The main canonical pathways identified are related to immunological and inflammatory disease. Early secretory phase has the most over-represented pathways in the three uterine cycle phases. There are no overlapping significant pathways between the dataset from human endometrial endothelial cells and the datasets from ovarian endometriosis which used whole tissues. Conclusion The study of complex diseases through pathway analysis is able to highlight genes weakly connected to the phenotype which may be difficult to detect by using classical univariate statistics. By standardised microarray preprocessing and GSEA, we have increased the concordance in identifying many biological mechanisms involved in endometriosis. The identified gene pathways will shed light on the understanding of endometriosis and promote the development of novel therapies.

  11. Identification of mechanosensitive genes during skeletal development: alteration of genes associated with cytoskeletal rearrangement and cell signalling pathways.

    Science.gov (United States)

    Rolfe, Rebecca A; Nowlan, Niamh C; Kenny, Elaine M; Cormican, Paul; Morris, Derek W; Prendergast, Patrick J; Kelly, Daniel; Murphy, Paula

    2014-01-20

    Mechanical stimulation is necessary for regulating correct formation of the skeleton. Here we test the hypothesis that mechanical stimulation of the embryonic skeletal system impacts expression levels of genes implicated in developmentally important signalling pathways in a genome wide approach. We use a mutant mouse model with altered mechanical stimulation due to the absence of limb skeletal muscle (Splotch-delayed) where muscle-less embryos show specific defects in skeletal elements including delayed ossification, changes in the size and shape of cartilage rudiments and joint fusion. We used Microarray and RNA sequencing analysis tools to identify differentially expressed genes between muscle-less and control embryonic (TS23) humerus tissue. We found that 680 independent genes were down-regulated and 452 genes up-regulated in humeri from muscle-less Spd embryos compared to littermate controls (at least 2-fold; corrected p-value ≤0.05). We analysed the resulting differentially expressed gene sets using Gene Ontology annotations to identify significant enrichment of genes associated with particular biological processes, showing that removal of mechanical stimuli from muscle contractions affected genes associated with development and differentiation, cytoskeletal architecture and cell signalling. Among cell signalling pathways, the most strongly disturbed was Wnt signalling, with 34 genes including 19 pathway target genes affected. Spatial gene expression analysis showed that both a Wnt ligand encoding gene (Wnt4) and a pathway antagonist (Sfrp2) are up-regulated specifically in the developing joint line, while the expression of a Wnt target gene, Cd44, is no longer detectable in muscle-less embryos. The identification of 84 genes associated with the cytoskeleton that are down-regulated in the absence of muscle indicates a number of candidate genes that are both mechanoresponsive and potentially involved in mechanotransduction, converting a mechanical stimulus

  12. Microarray analysis reveals key genes and pathways in Tetralogy of Fallot

    Science.gov (United States)

    He, Yue-E; Qiu, Hui-Xian; Jiang, Jian-Bing; Wu, Rong-Zhou; Xiang, Ru-Lian; Zhang, Yuan-Hai

    2017-01-01

    The aim of the present study was to identify key genes that may be involved in the pathogenesis of Tetralogy of Fallot (TOF) using bioinformatics methods. The GSE26125 microarray dataset, which includes cardiovascular tissue samples derived from 16 children with TOF and five healthy age-matched control infants, was downloaded from the Gene Expression Omnibus database. Differential expression analysis was performed between TOF and control samples to identify differentially expressed genes (DEGs) using Student's t-test, and the R/limma package, with a log2 fold-change of >2 and a false discovery rate of <0.01 set as thresholds. The biological functions of DEGs were analyzed using the ToppGene database. The ReactomeFIViz application was used to construct functional interaction (FI) networks, and the genes in each module were subjected to pathway enrichment analysis. The iRegulon plugin was used to identify transcription factors predicted to regulate the DEGs in the FI network, and the gene-transcription factor pairs were then visualized using Cytoscape software. A total of 878 DEGs were identified, including 848 upregulated genes and 30 downregulated genes. The gene FI network contained seven function modules, which were all comprised of upregulated genes. Genes enriched in Module 1 were enriched in the following three neurological disorder-associated signaling pathways: Parkinson's disease, Alzheimer's disease and Huntington's disease. Genes in Modules 0, 3 and 5 were dominantly enriched in pathways associated with ribosomes and protein translation. The Xbox binding protein 1 transcription factor was demonstrated to be involved in the regulation of genes encoding the subunits of cytoplasmic and mitochondrial ribosomes, as well as genes involved in neurodegenerative disorders. Therefore, dysfunction of genes involved in signaling pathways associated with neurodegenerative disorders, ribosome function and protein translation may contribute to the pathogenesis of TOF

  13. Gene expression profiling demonstrates WNT/β-catenin pathway genes alteration in Mexican patients with colorectal cancer and diabetes mellitus.

    Science.gov (United States)

    Ivonne Wence-Chavez, Laura; Palomares-Chacon, Ulises; Pablo Flores-Gutierrez, Juan; Felipe Jave-Suarez, Luis; Del Carmen Aguilar-Lemarroy, Adriana; Barros-Nunez, Patricio; Esperanza Flores-Martinez, Silvia; Sanchez-Corona, Jose; Alejandra Rosales-Reynoso, Monica

    2017-01-01

    Several studies have shown a strong association between diabetes mellitus (DM) and increased risk of colorectal cancer (CRC). The fundamental mechanisms that support this association are not entirely understood; however, it is believed that hyperinsulinemia and hyperglycemia may be involved. Some proposed mechanisms include upregulation of mitogenic signaling pathways like MAPK, PI3K, mTOR, and WNT, which are involved in cell proliferation, growth, and cancer cell survival. The purpose of this study was to evaluate the gene expression profile and identify differently expressed genes involved in mitogenic pathways in CRC patients with and without DM. In this study, microarray analysis of gene expression followed by quantitative PCR (qPCR) was performed in cancer tissue from CRC patients with and without DM to identify the gene expression profiles and validate the differently expressed genes. Among the study groups, some differently expressed genes were identified. However, when bioinformatics clustering tools were used, a significant modulation of genes involved in the WNT pathway was evident. Therefore, we focused on genes participating in this pathway, such as WNT3A, LRP6, TCF7L2, and FRA-1. Validation of the expression levels of those genes by qPCR showed that CRC patients without type 2 diabetes mellitus (T2DM) expressed significantly more WNT3Ay LRP6, but less TCF7L2 and FRA-1 compared to controls, while in CRC patients with DM the expression levels of WNT3A, LRP6, TCF7L2, and FRA-1 were significantly higher compared to controls. Our results suggest that WNT/β-catenin pathway is upregulated in patients with CRC and DM, demonstrating its importance and involvement in both pathologies.

  14. The proportion of non-aflatoxigenic strains of the Aspergillus flavus/oryzae complex from meju by analyses of the aflatoxin biosynthetic genes.

    Science.gov (United States)

    Hong, Seung-Beom; Lee, Mina; Kim, Dae-Ho; Chung, Soo-Hyun; Shin, Hyeon-Dong; Samson, Robert A

    2013-12-01

    Strains of the Aspergillus flavus/oryzae complex are frequently isolated from meju, a fermented soybean product, that is used as the starting material for ganjang (soy sauce) and doenjang (soybean paste) production. In this study, we examined the aflatoxin producing capacity of A. flavus/oryzae strains isolated from meju. 192 strains of A. flavus/oryzae were isolated from more than 100 meju samples collected from diverse regions of Korea from 2008 to 2011, and the norB-cypA, omtA, and aflR genes in the aflatoxin biosynthesis gene cluster were analyzed. We found that 178 strains (92.7%) belonged to non-aflatoxigenic group (Type I of norB-cypA, IB-L-B-, IC-AO, or IA-L-B- of omtA, and AO type of aflR), and 14 strains (7.3%) belonged to aflatoxin-producible group (Type II of norB-cypA, IC-L-B+/B- or IC-L-B+ of omtA, and AF type of aflR). Only 7 strains (3.6%) in the aflatoxin-producible group produced aflatoxins on Czapek yeast-extract medium. The aflatoxin-producing capability of A. flavus/oryzae strains from other sources in Korea were also investigated, and 92.9% (52/56) strains from air, 93.9% (31/33) strains from rice straw, 91.7% (11/12) strains from soybean, 81.3% (13/16) strains from corn, 82% (41/50) strains from peanut, and 73.2% (41/56) strains from arable soil were included in the non-aflatoxigenic group. The proportion of non-aflatoxigenicity of meju strains was similar to that of strains from soybean, air and rice straw, all of which have an effect on the fermentation of meju. The data suggest that meju does not have a preference for non-aflatoxigenic or aflatoxin-producible strains of A. flavus/oryzae from the environment of meju. The non-aflatoxigenic meju strains are proposed to be named A. oryzae, while the meju strains that can produce aflatoxins should be referred to A. flavus in this study.

  15. Integrated bioinformatics analysis reveals key candidate genes and pathways in breast cancer.

    Science.gov (United States)

    Wang, Yuzhi; Zhang, Yi; Huang, Qian; Li, Chengwen

    2018-04-19

    Breast cancer (BC) is the leading malignancy in women worldwide, yet relatively little is known about the genes and signaling pathways involved in BC tumorigenesis and progression. The present study aimed to elucidate potential key candidate genes and pathways in BC. Five gene expression profile data sets (GSE22035, GSE3744, GSE5764, GSE21422 and GSE26910) were downloaded from the Gene Expression Omnibus (GEO) database, which included data from 113 tumorous and 38 adjacent non‑tumorous tissue samples. Differentially expressed genes (DEGs) were identified using t‑tests in the limma R package. These DEGs were subsequently investigated by pathway enrichment analysis and a protein‑protein interaction (PPI) network was constructed. The most significant module from the PPI network was selected for pathway enrichment analysis. In total, 227 DEGs were identified, of which 82 were upregulated and 145 were downregulated. Pathway enrichment analysis results revealed that the upregulated DEGs were mainly enriched in 'cell division', the 'proteinaceous extracellular matrix (ECM)', 'ECM structural constituents' and 'ECM‑receptor interaction', whereas downregulated genes were mainly enriched in 'response to drugs', 'extracellular space', 'transcriptional activator activity' and the 'peroxisome proliferator‑activated receptor signaling pathway'. The PPI network contained 174 nodes and 1,257 edges. DNA topoisomerase 2‑a, baculoviral inhibitor of apoptosis repeat‑containing protein 5, cyclin‑dependent kinase 1, G2/mitotic‑specific cyclin‑B1 and kinetochore protein NDC80 homolog were identified as the top 5 hub genes. Furthermore, the genes in the most significant module were predominantly involved in 'mitotic nuclear division', 'mid‑body', 'protein binding' and 'cell cycle'. In conclusion, the DEGs, relative pathways and hub genes identified in the present study may aid in understanding of the molecular mechanisms underlying BC progression and provide

  16. Coregulation of terpenoid pathway genes and prediction of isoprene production in Bacillus subtilis using transcriptomics

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Becky M.; Xue, Junfeng; Markillie, Lye Meng; Taylor, Ronald C.; Wiley, H. S.; Ahring, Birgitte K.; Linggi, Bryan E.

    2013-06-19

    The isoprenoid pathway converts pyruvate to isoprene and related isoprenoid compounds in plants and some bacteria. Currently, this pathway is of great interest because of the critical role that isoprenoids play in basic cellular processes as well as the industrial value of metabolites such as isoprene. Although the regulation of several pathway genes has been described, there is a paucity of information regarding the system level regulation and control of the pathway. To address this limitation, we examined Bacillus subtilis grown under multiple conditions and then determined the relationship between altered isoprene production and the pattern of gene expression. We found that terpenoid genes appeared to fall into two distinct subsets with opposing correlations with respect to the amount of isoprene produced. The group whose expression levels positively correlated with isoprene production included dxs, the gene responsible for the commitment step in the pathway, as well as ispD, and two genes that participate in the mevalonate pathway, yhfS and pksG. The subset of terpenoid genes that inversely correlated with isoprene production included ispH, ispF, hepS, uppS, ispE, and dxr. A genome wide partial least squares regression model was created to identify other genes or pathways that contribute to isoprene production. This analysis showed that a subset of 213 regulated genes was sufficient to create a predictive model of isoprene production under different conditions and showed correlations at the transcriptional level. We conclude that gene expression levels alone are sufficiently informative about the metabolic state of a cell that produces increased isoprene and can be used to build a model which accurately predicts production of this secondary metabolite across many simulated environmental conditions.

  17. The biosynthetic origin of irregular monoterpenes in Lavandula: isolation and biochemical characterization of a novel cis-prenyl diphosphate synthase gene, lavandulyl diphosphate synthase.

    Science.gov (United States)

    Demissie, Zerihun A; Erland, Lauren A E; Rheault, Mark R; Mahmoud, Soheil S

    2013-03-01

    Lavender essential oils are constituted predominantly of regular monoterpenes, for example linalool, 1,8-cineole, and camphor. However, they also contain irregular monoterpenes including lavandulol and lavandulyl acetate. Although the majority of genes responsible for the production of regular monoterpenes in lavenders are now known, enzymes (including lavandulyl diphosphate synthase (LPPS)) catalyzing the biosynthesis of irregular monoterpenes in these plants have not been described. Here, we report the isolation and functional characterization of a novel cis-prenyl diphosphate synthase cDNA, termed Lavandula x intermedia lavandulyl diphosphate synthase (LiLPPS), through a homology-based cloning strategy. The LiLPPS ORF, encoding for a 305-amino acid long protein, was expressed in Escherichia coli, and the recombinant protein was purified by nickel-nitrilotriacetic acid affinity chromatography. The approximately 34.5-kDa bacterially produced protein specifically catalyzed the head-to-middle condensation of two dimethylallyl diphosphate units to LPP in vitro with apparent Km and kcat values of 208 ± 12 μm and 0.1 s(-1), respectively. LiLPPS is a homodimeric enzyme with a sigmoidal saturation curve and Hill coefficient of 2.7, suggesting a positive co-operative interaction among its catalytic sites. LiLPPS could be used to modulate the production of lavandulol and its derivatives in plants through metabolic engineering.

  18. Coexpression landscape in ATTED-II: usage of gene list and gene network for various types of pathways.

    Science.gov (United States)

    Obayashi, Takeshi; Kinoshita, Kengo

    2010-05-01

    Gene coexpression analyses are a powerful method to predict the function of genes and/or to identify genes that are functionally related to query genes. The basic idea of gene coexpression analyses is that genes with similar functions should have similar expression patterns under many different conditions. This approach is now widely used by many experimental researchers, especially in the field of plant biology. In this review, we will summarize recent successful examples obtained by using our gene coexpression database, ATTED-II. Specifically, the examples will describe the identification of new genes, such as the subunits of a complex protein, the enzymes in a metabolic pathway and transporters. In addition, we will discuss the discovery of a new intercellular signaling factor and new regulatory relationships between transcription factors and their target genes. In ATTED-II, we provide two basic views of gene coexpression, a gene list view and a gene network view, which can be used as guide gene approach and narrow-down approach, respectively. In addition, we will discuss the coexpression effectiveness for various types of gene sets.

  19. Assembly of inflammation-related genes for pathway-focused genetic analysis.

    Directory of Open Access Journals (Sweden)

    Matthew J Loza

    2007-10-01

    Full Text Available Recent identifications of associations between novel variants in inflammation-related genes and several common diseases emphasize the need for systematic evaluations of these genes in disease susceptibility. Considering that many genes are involved in the complex inflammation responses and many genetic variants in these genes have the potential to alter the functions and expression of these genes, we assembled a list of key inflammation-related genes to facilitate the identification of genetic associations of diseases with an inflammation-related etiology. We first reviewed various phases of inflammation responses, including the development of immune cells, sensing of danger, influx of cells to sites of insult, activation and functional responses of immune and non-immune cells, and resolution of the immune response. Assisted by the Ingenuity Pathway Analysis, we then identified 17 functional sub-pathways that are involved in one or multiple phases. This organization would greatly increase the chance of detecting gene-gene interactions by hierarchical clustering of genes with their functional closeness in a pathway. Finally, as an example application, we have developed tagging single nucleotide polymorphism (tSNP arrays for populations of European and African descent to capture all the common variants of these key inflammation-related genes. Assays of these tSNPs have been designed and assembled into two Affymetrix ParAllele customized chips, one each for European (12,011 SNPs and African (21,542 SNPs populations. These tSNPs have greater coverage for these inflammation-related genes compared to the existing genome-wide arrays, particularly in the African population. These tSNP arrays can facilitate systematic evaluation of inflammation pathways in disease susceptibility. For additional applications, other genotyping platforms could also be employed. For existing genome-wide association data, this list of key inflammation-related genes and

  20. Systematic enrichment analysis of gene expression profiling studies identifies consensus pathways implicated in colorectal cancer development

    Directory of Open Access Journals (Sweden)

    Jesús Lascorz

    2011-01-01

    Full Text Available Background: A large number of gene expression profiling (GEP studies on colorectal carcinogenesis have been performed but no reliable gene signature has been identified so far due to the lack of reproducibility in the reported genes. There is growing evidence that functionally related genes, rather than individual genes, contribute to the etiology of complex traits. We used, as a novel approach, pathway enrichment tools to define functionally related genes that are consistently up- or down-regulated in colorectal carcinogenesis. Materials and Methods: We started the analysis with 242 unique annotated genes that had been reported by any of three recent meta-analyses covering GEP studies on genes differentially expressed in carcinoma vs normal mucosa. Most of these genes (218, 91.9% had been reported in at least three GEP studies. These 242 genes were submitted to bioinformatic analysis using a total of nine tools to detect enrichment of Gene Ontology (GO categories or Kyoto Encyclopedia of Genes and Genomes (KEGG pathways. As a final consistency criterion the pathway categories had to be enriched by several tools to be taken into consideration. Results: Our pathway-based enrichment analysis identified the categories of ribosomal protein constituents, extracellular matrix receptor interaction, carbonic anhydrase isozymes, and a general category related to inflammation and cellular response as significantly and consistently overrepresented entities. Conclusions: We triaged the genes covered by the published GEP literature on colorectal carcinogenesis and subjected them to multiple enrichment tools in order to identify the consistently enriched gene categories. These turned out to have known functional relationships to cancer development and thus deserve further investigation.

  1. MicroRNA expression, target genes, and signaling pathways in infants with a ventricular septal defect.

    Science.gov (United States)

    Chai, Hui; Yan, Zhaoyuan; Huang, Ke; Jiang, Yuanqing; Zhang, Lin

    2018-02-01

    This study aimed to systematically investigate the relationship between miRNA expression and the occurrence of ventricular septal defect (VSD), and characterize the miRNA target genes and pathways that can lead to VSD. The miRNAs that were differentially expressed in blood samples from VSD and normal infants were screened and validated by implementing miRNA microarrays and qRT-PCR. The target genes regulated by differentially expressed miRNAs were predicted using three target gene databases. The functions and signaling pathways of the target genes were enriched using the GO database and KEGG database, respectively. The transcription and protein expression of specific target genes in critical pathways were compared in the VSD and normal control groups using qRT-PCR and western blotting, respectively. Compared with the normal control group, the VSD group had 22 differentially expressed miRNAs; 19 were downregulated and three were upregulated. The 10,677 predicted target genes participated in many biological functions related to cardiac development and morphogenesis. Four target genes (mGLUR, Gq, PLC, and PKC) were involved in the PKC pathway and four (ECM, FAK, PI3 K, and PDK1) were involved in the PI3 K-Akt pathway. The transcription and protein expression of these eight target genes were significantly upregulated in the VSD group. The 22 miRNAs that were dysregulated in the VSD group were mainly downregulated, which may result in the dysregulation of several key genes and biological functions related to cardiac development. These effects could also be exerted via the upregulation of eight specific target genes, the subsequent over-activation of the PKC and PI3 K-Akt pathways, and the eventual abnormal cardiac development and VSD.

  2. Halobenzoquinone-Induced Alteration of Gene Expression Associated with Oxidative Stress Signaling Pathways.

    Science.gov (United States)

    Li, Jinhua; Moe, Birget; Liu, Yanming; Li, Xing-Fang

    2018-06-05

    Halobenzoquinones (HBQs) are emerging disinfection byproducts (DBPs) that effectively induce reactive oxygen species and oxidative damage in vitro. However, the impacts of HBQs on oxidative-stress-related gene expression have not been investigated. In this study, we examined alterations in the expression of 44 genes related to oxidative-stress-induced signaling pathways in human uroepithelial cells (SV-HUC-1) upon exposure to six HBQs. The results show the structure-dependent effects of HBQs on the studied gene expression. After 2 h of exposure, the expression levels of 9 to 28 genes were altered, while after 8 h of exposure, the expression levels of 29 to 31 genes were altered. Four genes ( HMOX1, NQO1, PTGS2, and TXNRD1) were significantly upregulated by all six HBQs at both exposure time points. Ingenuity pathway analysis revealed that the Nrf2 pathway was significantly responsive to HBQ exposure. Other canonical pathways responsive to HBQ exposure included GSH redox reductions, superoxide radical degradation, and xenobiotic metabolism signaling. This study has demonstrated that HBQs significantly alter the gene expression of oxidative-stress-related signaling pathways and contributes to the understanding of HBQ-DBP-associated toxicity.

  3. Gene expression profiling and candidate gene resequencing identifies pathways and mutations important for malignant transformation caused by leukemogenic fusion genes.

    Science.gov (United States)

    Novak, Rachel L; Harper, David P; Caudell, David; Slape, Christopher; Beachy, Sarah H; Aplan, Peter D

    2012-12-01

    NUP98-HOXD13 (NHD13) and CALM-AF10 (CA10) are oncogenic fusion proteins produced by recurrent chromosomal translocations in patients with acute myeloid leukemia (AML). Transgenic mice that express these fusions develop AML with a long latency and incomplete penetrance, suggesting that collaborating genetic events are required for leukemic transformation. We employed genetic techniques to identify both preleukemic abnormalities in healthy transgenic mice as well as collaborating events leading to leukemic transformation. Candidate gene resequencing revealed that 6 of 27 (22%) CA10 AMLs spontaneously acquired a Ras pathway mutation and 8 of 27 (30%) acquired an Flt3 mutation. Two CA10 AMLs acquired an Flt3 internal-tandem duplication, demonstrating that these mutations can be acquired in murine as well as human AML. Gene expression profiles revealed a marked upregulation of Hox genes, particularly Hoxa5, Hoxa9, and Hoxa10 in both NHD13 and CA10 mice. Furthermore, mir196b, which is embedded within the Hoxa locus, was overexpressed in both CA10 and NHD13 samples. In contrast, the Hox cofactors Meis1 and Pbx3 were differentially expressed; Meis1 was increased in CA10 AMLs but not NHD13 AMLs, whereas Pbx3 was consistently increased in NHD13 but not CA10 AMLs. Silencing of Pbx3 in NHD13 cells led to decreased proliferation, increased apoptosis, and decreased colony formation in vitro, suggesting a previously unexpected role for Pbx3 in leukemic transformation. Published by Elsevier Inc.

  4. The association of environmental, individual factors, and dopamine pathway gene variation with smoking cessation.

    Science.gov (United States)

    Li, Suyun; Wang, Qiang; Pan, Lulu; Yang, Xiaorong; Li, Huijie; Jiang, Fan; Zhang, Nan; Han, Mingkui; Jia, Chongqi

    2017-09-01

    This study aimed to examine whether dopamine (DA) pathway gene variation were associated with smoking cessation, and compare the relative importance of infulence factors on smoking cessation. Participants were recruited from 17 villages of Shandong Province, China. Twenty-five single nucleotide polymorphisms in 8 DA pathway genes were genotyped. Weighted gene score of each gene was used to analyze the whole gene effect. Logistic regression was used to calculate odds ratios (OR) of the total gene score for smoking cessation. Dominance analysis was employed to compare the relative importance of individual, heaviness of smoking, psychological and genetic factors on smoking cessation. 415 successful spontaneous smoking quitters served as the cases, and 404 unsuccessful quitters served as the controls. A significant negative association of total DA pathway gene score and smoking cessation was observed (p smoking cessation was heaviness of smoking score (42%), following by individual (40%), genetic (10%) and psychological score (8%). In conclusion, although the DA pathway gene variation was significantly associated with successful smoking cessation, heaviness of smoking and individual factors had bigger effect than genetic factors on smoking cessation.

  5. Inferring the functional effect of gene expression changes in signaling pathways

    Science.gov (United States)

    Sebastián-León, Patricia; Carbonell, José; Salavert, Francisco; Sanchez, Rubén; Medina, Ignacio; Dopazo, Joaquín

    2013-01-01

    Signaling pathways constitute a valuable source of information that allows interpreting the way in which alterations in gene activities affect to particular cell functionalities. There are web tools available that allow viewing and editing pathways, as well as representing experimental data on them. However, few methods aimed to identify the signaling circuits, within a pathway, associated to the biological problem studied exist and none of them provide a convenient graphical web interface. We present PATHiWAYS, a web-based signaling pathway visualization system that infers changes in signaling that affect cell functionality from the measurements of gene expression values in typical expression microarray case–control experiments. A simple probabilistic model of the pathway is used to estimate the probabilities for signal transmission from any receptor to any final effector molecule (taking into account the pathway topology) using for this the individual probabilities of gene product presence/absence inferred from gene expression values. Significant changes in these probabilities allow linking different cell functionalities triggered by the pathway to the biological problem studied. PATHiWAYS is available at: http://pathiways.babelomics.org/. PMID:23748960

  6. About miRNAs, miRNA seeds, target genes and target pathways.

    Science.gov (United States)

    Kehl, Tim; Backes, Christina; Kern, Fabian; Fehlmann, Tobias; Ludwig, Nicole; Meese, Eckart; Lenhof, Hans-Peter; Keller, Andreas

    2017-12-05

    miRNAs are typically repressing gene expression by binding to the 3' UTR, leading to degradation of the mRNA. This process is dominated by the eight-base seed region of the miRNA. Further, miRNAs are known not only to target genes but also to target significant parts of pathways. A logical line of thoughts is: miRNAs with similar (seed) sequence target similar sets of genes and thus similar sets of pathways. By calculating similarity scores for all 3.25 million pairs of 2,550 human miRNAs, we found that this pattern frequently holds, while we also observed exceptions. Respective results were obtained for both, predicted target genes as well as experimentally validated targets. We note that miRNAs target gene set similarity follows a bimodal distribution, pointing at a set of 282 miRNAs that seems to target genes with very high specificity. Further, we discuss miRNAs with different (seed) sequences that nonetheless regulate similar gene sets or pathways. Most intriguingly, we found miRNA pairs that regulate different gene sets but similar pathways such as miR-6886-5p and miR-3529-5p. These are jointly targeting different parts of the MAPK signaling cascade. The main goal of this study is to provide a general overview on the results, to highlight a selection of relevant results on miRNAs, miRNA seeds, target genes and target pathways and to raise awareness for artifacts in respective comparisons. The full set of information that allows to infer detailed results on each miRNA has been included in miRPathDB, the miRNA target pathway database (https://mpd.bioinf.uni-sb.de).

  7. Evolutionary Rate Heterogeneity of Primary and Secondary Metabolic Pathway Genes in Arabidopsis thaliana.

    Science.gov (United States)

    Mukherjee, Dola; Mukherjee, Ashutosh; Ghosh, Tapash Chandra

    2015-11-10

    Primary metabolism is essential to plants for growth and development, and secondary metabolism helps plants to interact with the environment. Many plant metabolites are industrially important. These metabolites are produced by plants through complex metabolic pathways. Lack of knowledge about these pathways is hindering the successful breeding practices for these metabolites. For a better knowledge of the metabolism in plants as a whole, evolutionary rate variation of primary and secondary metabolic pathway genes is a prerequisite. In this study, evolutionary rate variation of primary and secondary metabolic pathway genes has been analyzed in the model plant Arabidopsis thaliana. Primary metabolic pathway genes were found to be more conserved than secondary metabolic pathway genes. Several factors such as gene structure, expression level, tissue specificity, multifunctionality, and domain number are the key factors behind this evolutionary rate variation. This study will help to better understand the evolutionary dynamics of plant metabolism. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Silencing of the pentose phosphate pathway genes influences DNA replication in human fibroblasts.

    Science.gov (United States)

    Fornalewicz, Karolina; Wieczorek, Aneta; Węgrzyn, Grzegorz; Łyżeń, Robert

    2017-11-30

    Previous reports and our recently published data indicated that some enzymes of glycolysis and the tricarboxylic acid cycle can affect the genome replication process by changing either the efficiency or timing of DNA synthesis in human normal cells. Both these pathways are connected with the pentose phosphate pathway (PPP pathway). The PPP pathway supports cell growth by generating energy and precursors for nucleotides and amino acids. Therefore, we asked if silencing of genes coding for enzymes involved in the pentose phosphate pathway may also affect the control of DNA replication in human fibroblasts. Particular genes coding for PPP pathway enzymes were partially silenced with specific siRNAs. Such cells remained viable. We found that silencing of the H6PD, PRPS1, RPE genes caused less efficient enterance to the S phase and decrease in efficiency of DNA synthesis. On the other hand, in cells treated with siRNA against G6PD, RBKS and TALDO genes, the fraction of cells entering the S phase was increased. However, only in the case of G6PD and TALDO, the ratio of BrdU incorporation to DNA was significantly changed. The presented results together with our previously published studies illustrate the complexity of the influence of genes coding for central carbon metabolism on the control of DNA replication in human fibroblasts, and indicate which of them are especially important in this process. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. An ensemble method to predict target genes and pathways in uveal melanoma

    Directory of Open Access Journals (Sweden)

    Wei Chao

    2018-04-01

    Full Text Available This work proposes to predict target genes and pathways for uveal melanoma (UM based on an ensemble method and pathway analyses. Methods: The ensemble method integrated a correlation method (Pearson correlation coefficient, PCC, a causal inference method (IDA and a regression method (Lasso utilizing the Borda count election method. Subsequently, to validate the performance of PIL method, comparisons between confirmed database and predicted miRNA targets were performed. Ultimately, pathway enrichment analysis was conducted on target genes in top 1000 miRNA-mRNA interactions to identify target pathways for UM patients. Results: Thirty eight of the predicted interactions were matched with the confirmed interactions, indicating that the ensemble method was a suitable and feasible approach to predict miRNA targets. We obtained 50 seed miRNA-mRNA interactions of UM patients and extracted target genes from these interactions, such as ASPG, BSDC1 and C4BP. The 601 target genes in top 1,000 miRNA-mRNA interactions were enriched in 12 target pathways, of which Phototransduction was the most significant one. Conclusion: The target genes and pathways might provide a new way to reveal the molecular mechanism of UM and give hand for target treatments and preventions of this malignant tumor.

  10. Optimal structural inference of signaling pathways from unordered and overlapping gene sets.

    Science.gov (United States)

    Acharya, Lipi R; Judeh, Thair; Wang, Guangdi; Zhu, Dongxiao

    2012-02-15

    A plethora of bioinformatics analysis has led to the discovery of numerous gene sets, which can be interpreted as discrete measurements emitted from latent signaling pathways. Their potential to infer signaling pathway structures, however, has not been sufficiently exploited. Existing methods accommodating discrete data do not explicitly consider signal cascading mechanisms that characterize a signaling pathway. Novel computational methods are thus needed to fully utilize gene sets and broaden the scope from focusing only on pairwise interactions to the more general cascading events in the inference of signaling pathway structures. We propose a gene set based simulated annealing (SA) algorithm for the reconstruction of signaling pathway structures. A signaling pathway structure is a directed graph containing up to a few hundred nodes and many overlapping signal cascades, where each cascade represents a chain of molecular interactions from the cell surface to the nucleus. Gene sets in our context refer to discrete sets of genes participating in signal cascades, the basic building blocks of a signaling pathway, with no prior information about gene orderings in the cascades. From a compendium of gene sets related to a pathway, SA aims to search for signal cascades that characterize the optimal signaling pathway structure. In the search process, the extent of overlap among signal cascades is used to measure the optimality of a structure. Throughout, we treat gene sets as random samples from a first-order Markov chain model. We evaluated the performance of SA in three case studies. In the first study conducted on 83 KEGG pathways, SA demonstrated a significantly better performance than Bayesian network methods. Since both SA and Bayesian network methods accommodate discrete data, use a 'search and score' network learning strategy and output a directed network, they can be compared in terms of performance and computational time. In the second study, we compared SA and

  11. Susceptible genes and molecular pathways related to heavy ion irradiation in oral squamous cell carcinoma cells

    International Nuclear Information System (INIS)

    Fushimi, Kazuaki; Uzawa, Katsuhiro; Ishigami, Takashi; Yamamoto, Nobuharu; Kawata, Tetsuya; Shibahara, Takahiko; Ito, Hisao; Mizoe, Jun-etsu; Tsujii, Hirohiko; Tanzawa, Hideki

    2008-01-01

    Background and purpose: Heavy ion beams are high linear energy transfer (LET) radiation characterized by a higher relative biologic effectiveness than low LET radiation. The aim of the current study was to determine the difference of gene expression between heavy ion beams and X-rays in oral squamous cell carcinoma (OSCC)-derived cells. Materials and methods: The OSCC cells were irradiated with accelerated carbon or neon ion irradiation or X-rays using three different doses. We sought to identify genes the expression of which is affected by carbon and neon ion irradiation using Affymetrix GeneChip analysis. The identified genes were analyzed using the Ingenuity Pathway Analysis Tool to investigate the functional network and gene ontology. Changes in mRNA expression in the genes were assessed by real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Results: The microarray analysis identified 84 genes that were modulated by carbon and neon ion irradiation at all doses in OSCC cells. Among the genes, three genes (TGFBR2, SMURF2, and BMP7) and two genes (CCND1 and E2F3), respectively, were found to be involved in the transforming growth factor β-signaling pathway and cell cycle:G1/S checkpoint regulation pathway. The qRT-PCR data from the five genes after heavy ion irradiation were consistent with the microarray data (P < 0.01). Conclusion: Our findings should serve as a basis for global characterization of radiation-regulated genes and pathways in heavy ion-irradiated OSCC

  12. Wound-induced expression of DEFECTIVE IN ANTHER DEHISCENCE1 and DAD1-like lipase genes is mediated by both CORONATINE INSENSITIVE1-dependent and independent pathways in Arabidopsis thaliana.

    Science.gov (United States)

    Ruduś, Izabela; Terai, Haruka; Shimizu, Takafumi; Kojima, Hisae; Hattori, Kazuki; Nishimori, Yuka; Tsukagoshi, Hironaka; Kamiya, Yuji; Seo, Mitsunori; Nakamura, Kenzo; Kępczyński, Jan; Ishiguro, Sumie

    2014-06-01

    Endogenous JA production is not necessary for wound-induced expression of JA-biosynthetic lipase genes such as DAD1 in Arabidopsis. However, the JA-Ile receptor COI1 is often required for their JA-independent induction. Wounding is a serious event in plants that may result from insect feeding and increase the risk of pathogen infection. Wounded plants produce high amounts of jasmonic acid (JA), which triggers the expression of insect and pathogen resistance genes. We focused on the transcriptional regulation of DEFECTIVE IN ANTHER DEHISCENCE1 and six of its homologs including DONGLE (DGL) in Arabidopsis, which encode lipases involved in JA biosynthesis. Plants constitutively expressing DAD1 accumulated a higher amount of JA than control plants after wounding, indicating that the expression of these lipase genes contributes to determining JA levels. We found that the expression of DAD1, DGL, and other DAD1-LIKE LIPASE (DALL) genes is induced upon wounding. Some DALLs were also expressed in unwounded leaves. Further experiments using JA-biosynthetic and JA-response mutants revealed that the wound induction of these genes is regulated by several distinct pathways. DAD1 and most of its homologs other than DALL4 were fully induced without relying on endogenous JA-Ile production and were only partly affected by JA deficiency, indicating that positive feedback by JA is not necessary for induction of these genes. However, DAD1 and DGL required CORONATINE INSENSITIVE1 (COI1) for their expression, suggesting that a molecule other than JA might act as a regulator of COI1. Wound induction of DALL1, DALL2, and DALL3 did not require COI1. This differential regulation of DAD1 and its homologs might explain their functions at different time points after wounding.

  13. Chapter 7. Cloning and analysis of natural product pathways.

    Science.gov (United States)

    Gust, Bertolt

    2009-01-01

    The identification of gene clusters of natural products has lead to an enormous wealth of information about their biosynthesis and its regulation, and about self-resistance mechanisms. Well-established routine techniques are now available for the cloning and sequencing of gene clusters. The subsequent functional analysis of the complex biosynthetic machinery requires efficient genetic tools for manipulation. Until recently, techniques for the introduction of defined changes into Streptomyces chromosomes were very time-consuming. In particular, manipulation of large DNA fragments has been challenging due to the absence of suitable restriction sites for restriction- and ligation-based techniques. The homologous recombination approach called recombineering (referred to as Red/ET-mediated recombination in this chapter) has greatly facilitated targeted genetic modifications of complex biosynthetic pathways from actinomycetes by eliminating many of the time-consuming and labor-intensive steps. This chapter describes techniques for the cloning and identification of biosynthetic gene clusters, for the generation of gene replacements within such clusters, for the construction of integrative library clones and their expression in heterologous hosts, and for the assembly of entire biosynthetic gene clusters from the inserts of individual library clones. A systematic approach toward insertional mutation of a complete Streptomyces genome is shown by the use of an in vitro transposon mutagenesis procedure.

  14. Alteration in expression of defence genes in Pisum sativum after exposure to supplementary ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Strid, A.

    1993-01-01

    Alterations in the amounts of mRNA for different types of defence genes after exposure of peas to supplementary ultraviolet-B radiation are demonstrated. The expression of the genes which encode the chalcone synthase of the flavonoid biosynthetic pathway and glutathione reductase was induced, while a decrease was found for the chloroplastic radical-scavenging enzyme, superoxide dismutase. (author)

  15. Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus

    Science.gov (United States)

    Monier, Adam; Pagarete, António; de Vargas, Colomban; Allen, Michael J.; Read, Betsy; Claverie, Jean-Michel; Ogata, Hiroyuki

    2009-01-01

    Interactions between viruses and phytoplankton, the main primary producers in the oceans, affect global biogeochemical cycles and climate. Recent studies are increasingly revealing possible cases of gene transfers between cyanobacteria and phages, which might have played significant roles in the evolution of cyanobacteria/phage systems. However, little has been documented about the occurrence of horizontal gene transfer in eukaryotic phytoplankton/virus systems. Here we report phylogenetic evidence for the transfer of seven genes involved in the sphingolipid biosynthesis pathway between the cosmopolitan eukaryotic microalga Emiliania huxleyi and its large DNA virus EhV. PCR assays indicate that these genes are prevalent in E. huxleyi and EhV strains isolated from different geographic locations. Patterns of protein and gene sequence conservation support that these genes are functional in both E. huxleyi and EhV. This is the first clear case of horizontal gene transfer of multiple functionally linked enzymes in a eukaryotic phytoplankton–virus system. We examine arguments for the possible direction of the gene transfer. The virus-to-host direction suggests the existence of ancient viruses that controlled the complex metabolic pathway in order to infect primitive eukaryotic cells. In contrast, the host-to-virus direction suggests that the serial acquisition of genes involved in the same metabolic pathway might have been a strategy for the ancestor of EhVs to stay ahead of their closest relatives in the great evolutionary race for survival. PMID:19451591

  16. Analyzing the genes related to Alzheimer's disease via a network and pathway-based approach.

    Science.gov (United States)

    Hu, Yan-Shi; Xin, Juncai; Hu, Ying; Zhang, Lei; Wang, Ju

    2017-04-27

    Our understanding of the molecular mechanisms underlying Alzheimer's disease (AD) remains incomplete. Previous studies have revealed that genetic factors provide a significant contribution to the pathogenesis and development of AD. In the past years, numerous genes implicated in this disease have been identified via genetic association studies on candidate genes or at the genome-wide level. However, in many cases, the roles of these genes and their interactions in AD are still unclear. A comprehensive and systematic analysis focusing on the biological function and interactions of these genes in the context of AD will therefore provide valuable insights to understand the molecular features of the disease. In this study, we collected genes potentially associated with AD by screening publications on genetic association studies deposited in PubMed. The major biological themes linked with these genes were then revealed by function and biochemical pathway enrichment analysis, and the relation between the pathways was explored by pathway crosstalk analysis. Furthermore, the network features of these AD-related genes were analyzed in the context of human interactome and an AD-specific network was inferred using the Steiner minimal tree algorithm. We compiled 430 human genes reported to be associated with AD from 823 publications. Biological theme analysis indicated that the biological processes and biochemical pathways related to neurodevelopment, metabolism, cell growth and/or survival, and immunology were enriched in these genes. Pathway crosstalk analysis then revealed that the significantly enriched pathways could be grouped into three interlinked modules-neuronal and metabolic module, cell growth/survival and neuroendocrine pathway module, and immune response-related module-indicating an AD-specific immune-endocrine-neuronal regulatory network. Furthermore, an AD-specific protein network was inferred and novel genes potentially associated with AD were identified. By

  17. Engineering the spatial organization of metabolic pathways

    DEFF Research Database (Denmark)

    Albertsen, Line; Maury, Jerome; Bach, Lars Stougaard

    One of the goals of metabolic engineering is to optimize the production of valuable metabolites in cell factories. In this context, modulating the gene expression and activity of enzymes are tools that have been extensively used. Another approach that is gaining interest is the engineering...... of the spatial organization of biosynthetic pathways. Several natural systems for ensuring optimal spatial arrangement of biosynthetic enzymes exist. Sequentially acting enzymes can for example be positioned in close proximity by attachment to cellular structures, up-concentration in membrane enclosed organelles...... or assembly into large complexes. The vision is that by positioning sequentially acting enzymes in close proximity, the cell can accelerate reaction rates and thereby prevent loss of intermediates through diffusion, degradation or competing pathways. The production of valuable metabolites in cell factories...

  18. The oxylipin pathway in Arabidopsis.

    Science.gov (United States)

    Creelman, Robert A; Mulpuri, Rao

    2002-01-01

    Oxylipins are acyclic or cyclic oxidation products derived from the catabolism of fatty acids which regulate many defense and developmental pathways in plants. The dramatic increase in the volume of publications and reviews on these compounds since 1997 documents the increasing interest in this compound and its role in plants. Research on this topic has solidified our understanding of the chemistry and biosynthetic pathways for oxylipin production. However, more information is still needed on how free fatty acids are produced and the role of beta-oxidation in the biosynthetic pathway for oxylipins. It is also becoming apparent that oxylipin content and composition changes during growth and development and during pathogen or insect attack. Oxylipins such as jasmonic acid (JA) or 12-oxo-phytodienoic acid modulate the expression of numerous genes and influence specific aspects of plant growth, development and responses to abiotic and biotic stresses. Although oxylipins are believed to act alone, several examples were presented to illustrate that JA-induced responses are modulated by the type and the nature of crosstalk with other signaling molecules such as ethylene and salicylic acid. How oxylipins cause changes in gene expression and instigate a physiological response is becoming understood with the isolation of mutations in both positive and negative regulators in the jasmonate signaling pathway and the use of cDNA microarrays.

  19. Genomics of Human Pulmonary Tuberculosis: from Genes to Pathways

    DEFF Research Database (Denmark)

    Stein, Catherine M.; Sausville, Lindsay; Wejse, Christian

    2017-01-01

    Purpose of Review Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), remains a major public health threat globally. Several lines of evidence support a role for host genetic factors in resistance/susceptibility to TB disease and MTB infection. However, results across candidate gene...

  20. Cloning and Expression Analysis of MEP Pathway Enzyme-encoding Genes in Osmanthus fragrans

    Directory of Open Access Journals (Sweden)

    Chen Xu

    2016-09-01

    Full Text Available The 2-C-methyl-d-erythritol 4-phosphate (MEP pathway is responsible for the biosynthesis of many crucial secondary metabolites, such as carotenoids, monoterpenes, plastoquinone, and tocopherols. In this study, we isolated and identified 10 MEP pathway genes in the important aromatic plant sweet osmanthus (Osmanthus fragrans. Multiple sequence alignments revealed that 10 MEP pathway genes shared high identities with other reported proteins. The genes showed distinctive expression profiles in various tissues, or at different flower stages and diel time points. The qRT-PCR results demonstrated that these genes were highly expressed in inflorescences, which suggested a tissue-specific transcript pattern. Our results also showed that OfDXS1, OfDXS2, and OfHDR1 had a clear diurnal oscillation pattern. The isolation and expression analysis provides a strong foundation for further research on the MEP pathway involved in gene function and molecular evolution, and improves our understanding of the molecular mechanism underlying this pathway in plants.

  1. Gene expression profiles reveal key pathways and genes associated with neuropathic pain in patients with spinal cord injury.

    Science.gov (United States)

    He, Xijing; Fan, Liying; Wu, Zhongheng; He, Jiaxuan; Cheng, Bin

    2017-04-01

    Previous gene expression profiling studies of neuropathic pain (NP) following spinal cord injury (SCI) have predominantly been performed in animal models. The present study aimed to investigate gene alterations in patients with spinal cord injury and to further examine the mechanisms underlying NP following SCI. The GSE69901 gene expression profile was downloaded from the public Gene Expression Omnibus database. Samples of peripheral blood mononuclear cells (PBMCs) derived from 12 patients with intractable NP and 13 control patients without pain were analyzed to identify the differentially expressed genes (DEGs), followed by functional enrichment analysis and protein‑protein interaction (PPI) network construction. In addition, a transcriptional regulation network was constructed and functional gene clustering was performed. A total of 70 upregulated and 61 downregulated DEGs were identified in the PBMC samples from patients with NP. The upregulated and downregulated genes were significantly involved in different Gene Ontology terms and pathways, including focal adhesion, T cell receptor signaling pathway and mitochondrial function. Glycogen synthase kinase 3 β (GSK3B) was identified as a hub protein in the PPI network. In addition, ornithine decarboxylase 1 (ODC1) and ornithine aminotransferase (OAT) were regulated by additional transcription factors in the regulation network. GSK3B, OAT and ODC1 were significantly enriched in two functional gene clusters, the function of mitochondrial membrane and DNA binding. Focal adhesion and the T cell receptor signaling pathway may be significantly linked with NP, and GSK3B, OAT and ODC1 may be potential targets for the treatment of NP.

  2. Application of R to investigate common gene regulatory network pathway among bipolar disorder and associate diseases

    Directory of Open Access Journals (Sweden)

    Nahida Habib

    2016-12-01

    Full Text Available Depression, Major Depression or mental disorder creates severe diseases. Mental illness such as Unipolar Major Depression, Bipolar Disorder, Dysthymia, Schizophrenia, Cardiovascular Diseases (Hypertension, Coronary Heart Disease, Stroke etc., are known as Major Depression. Several studies have revealed the possibilities about the association among Bipolar Disorder, Schizophrenia, Coronary Heart Diseases and Stroke with each other. The current study aimed to investigate the relationships between genetic variants in the above four diseases and to create a common pathway or PPI network. The associated genes of each disease are collected from different gene database with verification using R. After performing some preprocessing, mining and operations using R on collected genes, seven (7 common associated genes are discovered on selected four diseases (SZ, BD, CHD and Stroke. In each of the iteration, the numbers of collected genes are reduced up to 51%, 36%, 10%, 2% and finally less than 1% respectively. Moreover, common pathway on selected diseases has been investigated in this research.

  3. Minimum Information about a Biosynthetic Gene cluster

    Czech Academy of Sciences Publication Activity Database

    Medema, M.H.; Petříček, Miroslav

    2015-01-01

    Roč. 11, č. 9 (2015), s. 625-631 ISSN 1552-4450 Institutional support: RVO:61388971 Keywords : NATURAL-PRODUCTS * DATABASE * DISCOVERY Subject RIV: CE - Biochemistry Impact factor: 12.709, year: 2015

  4. Sequence analysis of porothramycin biosynthetic gene cluster

    Czech Academy of Sciences Publication Activity Database

    Najmanová, Lucie; Ulanová, Dana; Jelínková, Markéta; Kameník, Zdeněk; Kettnerová, Eliška; Koběrská, Markéta; Gažák, Radek; Radojevič, Bojana; Janata, Jiří

    2014-01-01

    Roč. 59, č. 6 (2014), s. 543-552 ISSN 0015-5632 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) EE2.3.20.0055; GA MŠk(CZ) EE2.3.30.0003 Institutional support: RVO:61388971 Keywords : BIOLOGICAL-ACTIVITY * ANTHRAMYCIN * SPECIFICITY Subject RIV: EE - Microbiology, Virology Impact factor: 1.000, year: 2014

  5. Didemnin Biosynthetic Gene Cluster In Tistrella Mobilis

    KAUST Repository

    Qian, Pei-Yuan; Xu, Ying Sharon; Lai, Pok-Yui

    2014-01-01

    A novel Tistrella mobilis strain having Accession Deposit Number NRRL B-50531 is provided. A method of producing a didemnin precursor, didemnin or didemnin derivative by using the Tistrella mobilis strain, and the therapeutic composition comprising

  6. Didemnin Biosynthetic Gene Cluster In Tistrella Mobilis

    KAUST Repository

    Qian, Pei-Yuan

    2014-10-02

    A novel Tistrella mobilis strain having Accession Deposit Number NRRL B-50531 is provided. A method of producing a didemnin precursor, didemnin or didemnin derivative by using the Tistrella mobilis strain, and the therapeutic composition comprising at least one didemnin or didemnin derivative produced from the strain or modified strain thereof are also provided.

  7. Identification of Key Pathways and Genes in Advanced Coronary Atherosclerosis Using Bioinformatics Analysis

    Directory of Open Access Journals (Sweden)

    Xiaowen Tan

    2017-01-01

    Full Text Available Background. Coronary artery atherosclerosis is a chronic inflammatory disease. This study aimed to identify the key changes of gene expression between early and advanced carotid atherosclerotic plaque in human. Methods. Gene expression dataset GSE28829 was downloaded from Gene Expression Omnibus (GEO, including 16 advanced and 13 early stage atherosclerotic plaque samples from human carotid. Differentially expressed genes (DEGs were analyzed. Results. 42,450 genes were obtained from the dataset. Top 100 up- and downregulated DEGs were listed. Functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG identification were performed. The result of functional and pathway enrichment analysis indicted that the immune system process played a critical role in the progression of carotid atherosclerotic plaque. Protein-protein interaction (PPI networks were performed either. Top 10 hub genes were identified from PPI network and top 6 modules were inferred. These genes were mainly involved in chemokine signaling pathway, cell cycle, B cell receptor signaling pathway, focal adhesion, and regulation of actin cytoskeleton. Conclusion. The present study indicated that analysis of DEGs would make a deeper understanding of the molecular mechanisms of atherosclerosis development and they might be used as molecular targets and diagnostic biomarkers for the treatment of atherosclerosis.

  8. Prediction of novel target genes and pathways involved in irinotecan-resistant colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Precious Takondwa Makondi

    Full Text Available Acquired drug resistance to the chemotherapeutic drug irinotecan (the active metabolite of which is SN-38 is one of the significant obstacles in the treatment of advanced colorectal cancer (CRC. The molecular mechanism or targets mediating irinotecan resistance are still unclear. It is urgent to find the irinotecan response biomarkers to improve CRC patients' therapy.Genetic Omnibus Database GSE42387 which contained the gene expression profiles of parental and irinotecan-resistant HCT-116 cell lines was used. Differentially expressed genes (DEGs between parental and irinotecan-resistant cells, protein-protein interactions (PPIs, gene ontologies (GOs and pathway analysis were performed to identify the overall biological changes. The most common DEGs in the PPIs, GOs and pathways were identified and were validated clinically by their ability to predict overall survival and disease free survival. The gene-gene expression correlation and gene-resistance correlation was also evaluated in CRC patients using The Cancer Genomic Atlas data (TCGA.The 135 DEGs were identified of which 36 were upregulated and 99 were down regulated. After mapping the PPI networks, the GOs and the pathways, nine genes (GNAS, PRKACB, MECOM, PLA2G4C, BMP6, BDNF, DLG4, FGF2 and FGF9 were found to be commonly enriched. Signal transduction was the most significant GO and MAPK pathway was the most significant pathway. The five genes (FGF2, FGF9, PRKACB, MECOM and PLA2G4C in the MAPK pathway were all contained in the signal transduction and the levels of those genes were upregulated. The FGF2, FGF9 and MECOM expression were highly associated with CRC patients' survival rate but not PRKACB and PLA2G4C. In addition, FGF9 was also associated with irinotecan resistance and poor disease free survival. FGF2, FGF9 and PRKACB were positively correlated with each other while MECOM correlated positively with FGF9 and PLA2G4C, and correlated negatively with FGF2 and PRKACB after doing gene-gene

  9. Identification of Two Suppressors of CSG2 Calcium Sensitivity, SCS7 and SUR2, as Genes Encoding Hydroxylases of the Sphingolipid Biosynthetic Pathway of Saccharomyces cerevisiae

    National Research Council Canada - National Science Library

    Haak, Dale A

    1997-01-01

    .... The biochemical significance of much of this structural variability is not well understood. The sphingolipids of the yeast Saccharomyces cerevisiae undergo the a-hydroxylation of the very long chain fatty acid (VLCFA...

  10. Transposon mutations in the flagella biosynthetic pathway of the solvent-tolerant Pseudomonas putida S12 result in a decreased expression of solvent efflux genes

    NARCIS (Netherlands)

    Kieboom, J; Bruinenberg, R; Keizer-Gunnink, [No Value; de Bont, JAM

    2001-01-01

    Fourteen solvent-sensitive transposon mutants were generated from the solvent-tolerant Pseudomonas putida strain S12 by applying the TnMOD-KmO mutagenesis system. These mutants were unable to grow in the presence of octanol and toluene. By cloning the region flanking the transposon insertion point a

  11. Differences in gene expression profiles and signaling pathways in rhabdomyolysis-induced acute kidney injury.

    Science.gov (United States)

    Geng, Xiaodong; Wang, Yuanda; Hong, Quan; Yang, Jurong; Zheng, Wei; Zhang, Gang; Cai, Guangyan; Chen, Xiangmei; Wu, Di

    2015-01-01

    Rhabdomyolysis is a threatening syndrome because it causes the breakdown of skeletal muscle. Muscle destruction leads to the release of myoglobin, intracellular proteins, and electrolytes into the circulation. The aim of this study was to investigate the differences in gene expression profiles and signaling pathways upon rhabdomyolysis-induced acute kidney injury (AKI). In this study, we used glycerol-induced renal injury as a model of rhabdomyolysis-induced AKI. We analyzed data and relevant information from the Gene Expression Omnibus database (No: GSE44925). The gene expression data for three untreated mice were compared to data for five mice with rhabdomyolysis-induced AKI. The expression profiling of the three untreated mice and the five rhabdomyolysis-induced AKI mice was performed using microarray analysis. We examined the levels of Cyp3a13, Rela, Aldh7a1, Jun, CD14. And Cdkn1a using RT-PCR to determine the accuracy of the microarray results. The microarray analysis showed that there were 1050 downregulated and 659 upregulated genes in the rhabdomyolysis-induced AKI mice compared to the control group. The interactions of all differentially expressed genes in the Signal-Net were analyzed. Cyp3a13 and Rela had the most interactions with other genes. The data showed that Rela and Aldh7a1 were the key nodes and had important positions in the Signal-Net. The genes Jun, CD14, and Cdkn1a were also significantly upregulated. The pathway analysis classified the differentially expressed genes into 71 downregulated and 48 upregulated pathways including the PI3K/Akt, MAPK, and NF-κB signaling pathways. The results of this study indicate that the NF-κB, MAPK, PI3K/Akt, and apoptotic pathways are regulated in rhabdomyolysis-induced AKI.

  12. RNA Interference Screen to Identify Pathways That Enhance or Reduce Nonviral Gene Transfer During Lipofection

    OpenAIRE

    Barker, Gregory A; Diamond, Scott L

    2008-01-01

    Some barriers to DNA lipofection are well characterized; however, there is as yet no method of finding unknown pathways that impact the process. A druggable genome small-interfering RNA (siRNA) screen against 5,520 genes was tested for its effect on lipofection of human aortic endothelial cells (HAECs). We found 130 gene targets which, when silenced by pooled siRNAs (three siRNAs per gene), resulted in enhanced luminescence after lipofection (86 gene targets showed reduced expression). In con...

  13. Integrated pathway-based transcription regulation network mining and visualization based on gene expression profiles.

    Science.gov (United States)

    Kibinge, Nelson; Ono, Naoaki; Horie, Masafumi; Sato, Tetsuo; Sugiura, Tadao; Altaf-Ul-Amin, Md; Saito, Akira; Kanaya, Shigehiko

    2016-06-01

    Conventionally, workflows examining transcription regulation networks from gene expression data involve distinct analytical steps. There is a need for pipelines that unify data mining and inference deduction into a singular framework to enhance interpretation and hypotheses generation. We propose a workflow that merges network construction with gene expression data mining focusing on regulation processes in the context of transcription factor driven gene regulation. The pipeline implements pathway-based modularization of expression profiles into functional units to improve biological interpretation. The integrated workflow was implemented as a web application software (TransReguloNet) with functions that enable pathway visualization and comparison of transcription factor activity between sample conditions defined in the experimental design. The pipeline merges differential expression, network construction, pathway-based abstraction, clustering and visualization. The framework was applied in analysis of actual expression datasets related to lung, breast and prostrate cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Smoking, genes encoding dopamine pathway and risk for Parkinson's disease.

    Science.gov (United States)

    Gu, Zhuqin; Feng, Xiuli; Dong, Xiumin; Chan, Piu

    2010-09-20

    Smoking has been reported to be inversely associated with Parkinson's disease (PD) in many studies, but a recent study in China found that smoking increased the risk of PD. Variants in genes associated with dopamine metabolism found to increase the risk for PD have also been associated with smoking behavior. To investigate the association between smoking and PD in a Chinese population and determine whether the genetic variants of genes involved in dopamine metabolism influence the relationship between smoking and risk for PD. Chinese PD patients were recruited from Xuanwu Hospital. Controls were sampled from community. Detailed information on life-long smoking behavior was collected by face-to-face interview. Genotypes were determined for SLC6A3 VNTR, COMT Val108/158Met and MAO-B intron13 A/G polymorphisms by PCR-RFLP, DHPLC and sequencing. Chi-square and logistic regression model were used in the analysis. 176 PD cases and 354 controls were enrolled in this study. 23.9% cases are smokers, compared to 48.0% in controls. Ever smoking is inversely associated with PD (odds ratio=0.14, 95% CI 0.08-0.26, adjusted for age and gender). None of the above-mentioned genetic polymorphisms was associated with PD risk or smoking. When each variant was included in the logistic regression model, the inverse association between smoking and PD remained the same, and the interactions between smoking and variants were not significant in the model. Our data support a reduction of PD risk associated with smoking in a Chinese population. These variants of genes associated with DA uptake and metabolism do not affect the inverse association between smoking and PD. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  15. Candidate gene approach for parasite resistance in sheep--variation in immune pathway genes and association with fecal egg count.

    Directory of Open Access Journals (Sweden)

    Kathiravan Periasamy

    Full Text Available Sheep chromosome 3 (Oar3 has the largest number of QTLs reported to be significantly associated with resistance to gastro-intestinal nematodes. This study aimed to identify single nucleotide polymorphisms (SNPs within candidate genes located in sheep chromosome 3 as well as genes involved in major immune pathways. A total of 41 SNPs were identified across 38 candidate genes in a panel of unrelated sheep and genotyped in 713 animals belonging to 22 breeds across Asia, Europe and South America. The variations and evolution of immune pathway genes were assessed in sheep populations across these macro-environmental regions that significantly differ in the diversity and load of pathogens. The mean minor allele frequency (MAF did not vary between Asian and European sheep reflecting the absence of ascertainment bias. Phylogenetic analysis revealed two major clusters with most of South Asian, South East Asian and South West Asian breeds clustering together while European and South American sheep breeds clustered together distinctly. Analysis of molecular variance revealed strong phylogeographic structure at loci located in immune pathway genes, unlike microsatellite and genome wide SNP markers. To understand the influence of natural selection processes, SNP loci located in chromosome 3 were utilized to reconstruct haplotypes, the diversity of which showed significant deviations from selective neutrality. Reduced Median network of reconstructed haplotypes showed balancing selection in force at these loci. Preliminary association of SNP genotypes with phenotypes recorded 42 days post challenge revealed significant differences (P<0.05 in fecal egg count, body weight change and packed cell volume at two, four and six SNP loci respectively. In conclusion, the present study reports strong phylogeographic structure and balancing selection operating at SNP loci located within immune pathway genes. Further, SNP loci identified in the study were found to have

  16. Identification of differentially expressed genes and biological pathways in bladder cancer

    Science.gov (United States)

    Tang, Fucai; He, Zhaohui; Lei, Hanqi; Chen, Yuehan; Lu, Zechao; Zeng, Guohua; Wang, Hangtao

    2018-01-01

    The purpose of the present study was to identify key genes and investigate the related molecular mechanisms of bladder cancer (BC) progression. From the Gene Expression Omnibus database, the gene expression dataset GSE7476 was downloaded, which contained 43 BC samples and 12 normal bladder tissues. GSE7476 was analyzed to screen the differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed for the DEGs using the DAVID database, and a protein-protein interaction (PPI) network was then constructed using Cytoscape software. The results of the GO analysis showed that the upregulated DEGs were significantly enriched in cell division, nucleoplasm and protein binding, while the downregulated DEGs were significantly enriched in ‘extracellular matrix organization’, ‘proteinaceous extracellular matrix’ and ‘heparin binding’. The results of the KEGG pathway analysis showed that the upregulated DEGs were significantly enriched in the ‘cell cycle’, whereas the downregulated DEGs were significantly enriched in ‘complement and coagulation cascades’. JUN, cyclin-dependent kinase 1, FOS, PCNA, TOP2A, CCND1 and CDH1 were found to be hub genes in the PPI network. Sub-networks revealed that these gene were enriched in significant pathways, including the ‘cell cycle’ signaling pathway and ‘PI3K-Akt signaling pathway’. In summary, the present study identified DEGs and key target genes in the progression of BC, providing potential molecular targets and diagnostic biomarkers for the treatment of BC. PMID:29532898

  17. Signaling pathway-focused gene expression profiling in pressure overloaded hearts

    Directory of Open Access Journals (Sweden)

    Marco Musumeci

    2011-01-01

    Full Text Available The β-blocker propranolol displays antihypertrophic and antifibrotic properties in the heart subjected to pressure overload. Yet the underlying mechanisms responsible for these important effects remain to be completely understood. The purpose of this study was to determine signaling pathway-focused gene expression profile associated with the antihypertrophic action of propranolol in pressure overloaded hearts. To address this question, a focused real-time PCR array was used to screen left ventricular RNA expression of 84 gene transcripts representative of 18 different signaling pathways in C57BL/6 mice subjected to transverse aortic constriction (TAC or sham surgery. On the surgery day, mice received either propranolol (80 mg/kg/day or vehicle for 14 days. TAC caused a 49% increase in the left ventricular weight-to-body weight (LVW/BW ratio without changing gene expression. Propranolol blunted LVW/BW ratio increase by approximately 50% while causing about a 3-fold increase in the expression of two genes, namely Brca1 and Cdkn2a, belonging to the TGF-beta and estrogen pathways, respectively. In conclusion, after 2 weeks of pressure overload, TAC hearts show a gene expression profile superimposable to that of sham hearts. Conversely, propranolol treatment is associated with an increased expression of genes which negatively regulate cell cycle progression. It remains to be established whether a mechanistic link between gene expression changes and the antihypertrophic action of propranolol occurs.