WorldWideScience

Sample records for biosynthetic pathway gene

  1. Dothistroma pini, a Forest Pathogen, Contains Homologs of Aflatoxin Biosynthetic Pathway Genes

    OpenAIRE

    Bradshaw, Rosie E.; Bhatnagar, Deepak; Ganley, Rebecca J.; Gillman, Carmel J.; Brendon J. Monahan; Seconi, Janet M.

    2002-01-01

    Homologs of aflatoxin biosynthetic genes have been identified in the pine needle pathogen Dothistroma pini. D. pini produces dothistromin, a difuranoanthraquinone toxin with structural similarity to the aflatoxin precursor versicolorin B. Previous studies with purified dothistromin suggest a possible role for this toxin in pathogenicity. By using an aflatoxin gene as a hybridization probe, a genomic D. pini clone was identified that contained four dot genes with similarity to genes in aflatox...

  2. Living with high putrescine: expression of ornithine and arginine biosynthetic pathway genes in high and low putrescine producing poplar cells.

    Science.gov (United States)

    Page, Andrew F; Minocha, Rakesh; Minocha, Subhash C

    2012-01-01

    Arginine (Arg) and ornithine (Orn), both derived from glutamate (Glu), are the primary substrates for polyamine (PA) biosynthesis, and also play important roles as substrates and intermediates of overall N metabolism in plants. Their cellular homeostasis is subject to multiple levels of regulation. Using reverse transcription quantitative PCR (RT-qPCR), we studied changes in the expression of all genes of the Orn/Arg biosynthetic pathway in response to up-regulation [via transgenic expression of mouse Orn decarboxylase (mODC)] of PA biosynthesis in poplar (Populus nigra × maximowiczii) cells grown in culture. Cloning and sequencing of poplar genes involved in the Orn/Arg biosynthetic pathway showed that they have high homology with similar genes in other plants. The expression of the genes of Orn, Arg and PA biosynthetic pathway fell into two hierarchical clusters; expression of one did not change in response to high putrescine, while members of the other cluster showed a shift in expression pattern during the 7-day culture cycle. Gene expression of branch point enzymes (N-acetyl-Glu synthase, Orn aminotransferase, Arg decarboxylase, and spermidine synthase) in the sub-pathways, constituted a separate cluster from those involved in intermediary reactions of the pathway (N-acetyl-Glu kinase, N-acetyl-Glu-5-P reductase, N-acetyl-Orn aminotransferase, N (2)-acetylOrn:N-acetyl-Glu acetyltransferase, N (2)-acetyl-Orn deacetylase, Orn transcarbamylase, argininosuccinate synthase, carbamoylphosphate synthetase, argininosuccinate lyase, S-adenosylmethionine decarboxylase, spermine synthase). We postulate that expression of all genes of the Glu-Orn-Arg pathway is constitutively coordinated and is not influenced by the increase in flux rate through this pathway in response to increased utilization of Orn by mODC; thus the pathway involves mostly biochemical regulation rather than changes in gene expression. We further suggest that Orn itself plays a major role in the

  3. Comparative SNP diversity among four Eucalyptus species for genes from secondary metabolite biosynthetic pathways

    OpenAIRE

    Foley William J; Maintz Jens; Hui Yeoh Suat; Külheim Carsten; Moran Gavin F

    2009-01-01

    Abstract Background There is little information about the DNA sequence variation within and between closely related plant species. The combination of re-sequencing technologies, large-scale DNA pools and availability of reference gene sequences allowed the extensive characterisation of single nucleotide polymorphisms (SNPs) in genes of four biosynthetic pathways leading to the formation of ecologically relevant secondary metabolites in Eucalyptus. With this approach the occurrence and pattern...

  4. Comparative SNP diversity among four Eucalyptus species for genes from secondary metabolite biosynthetic pathways

    Directory of Open Access Journals (Sweden)

    Foley William J

    2009-09-01

    Full Text Available Abstract Background There is little information about the DNA sequence variation within and between closely related plant species. The combination of re-sequencing technologies, large-scale DNA pools and availability of reference gene sequences allowed the extensive characterisation of single nucleotide polymorphisms (SNPs in genes of four biosynthetic pathways leading to the formation of ecologically relevant secondary metabolites in Eucalyptus. With this approach the occurrence and patterns of SNP variation for a set of genes can be compared across different species from the same genus. Results In a single GS-FLX run, we sequenced over 103 Mbp and assembled them to approximately 50 kbp of reference sequences. An average sequencing depth of 315 reads per nucleotide site was achieved for all four eucalypt species, Eucalyptus globulus, E. nitens, E. camaldulensis and E. loxophleba. We sequenced 23 genes from 1,764 individuals and discovered 8,631 SNPs across the species, with about 1.5 times as many SNPs per kbp in the introns compared to exons. The exons of the two closely related species (E. globulus and E. nitens had similar numbers of SNPs at synonymous and non-synonymous sites. These species also had similar levels of SNP diversity, whereas E. camaldulensis and E. loxophleba had much higher SNP diversity. Neither the pathway nor the position in the pathway influenced gene diversity. The four species share between 20 and 43% of the SNPs in these genes. Conclusion By using conservative statistical detection methods, we were confident about the validity of each SNP. With numerous individuals sampled over the geographical range of each species, we discovered one SNP in every 33 bp for E. nitens and one in every 31 bp in E. globulus. In contrast, the more distantly related species contained more SNPs: one in every 16 bp for E. camaldulensis and one in 17 bp for E. loxophleba, which is, to the best of our knowledge, the highest frequency of SNPs

  5. Differential expression of carotenoid biosynthetic pathway genes in two contrasting tomato genotypes for lycopene content

    Indian Academy of Sciences (India)

    Shilpa Pandurangaiah; Kundapura V Ravishankar; Kodthalu S Shivashankar; Avverahally T Sadashiva; Kavitha Pillakenchappa; Sunil Kumar Narayanan

    2016-06-01

    Tomato (Solanum lycopersicum L.) is one of the model plants to study the carotenoid biosynthesis. In the present study, the fruit carotenoid content were quantified at different developmental stages for two contrasting genotypes viz. IIHR-249-1and IIHR-2866 by UPLC. Lycopene content was high in IIHR-249-1(19.45 mg/100g fresh weight) compared to IIHR-2866 ((1.88 mg/100g fresh weight) at the ripe stage. qPCR was performed for genes that are involved in the carotenoid biosynthetic pathway to study the difference in lycopene content in fruits of both the genotypes. The expression of Phytoene Synthase (PSY) increased by 36 fold and Phytoene desaturase (PDS) increased by 14fold from immature green stage to ripe stage in IIHR-249-1. The expression of Chloroplast lycopene β cyclase (LCY-B) and Chromoplast lycopene β cyclase (CYC-B) decreased gradually from the initial stage to the ripe stage in IIHR-249-1. IIHR 249-1 showed 3 and 1.8 fold decrease in gene expression for Chloroplast lycopene β cyclase ((LCY-B) and Chromoplast lycopene β cyclase (CYC-B) .The F2 hybrids derived from IIHR-249-1 and IIHR-2866 were analyzed at the ripe stage for lycopene content. The gene expression of Chloroplast lycopene β cyclase (LCY-B) and Chromoplast lycopene β cyclase (CYC-B) in high and low lycopene lines from F2 progenies also showed the decrease in transcript levels of both the genes in high lycopene F2 lines. We wish to suggest that the differential expression of Lycopene β -cyclases can be used in marker assisted breeding.

  6. New Insight into the Ochratoxin A Biosynthetic Pathway through Deletion of a Nonribosomal Peptide Synthetase Gene in Aspergillus carbonarius

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, A.; Bruno, K. S.; Solfrizzo, M.; Perrone, G.; Mule, G.; Visconti, A.; Baker, S. E.

    2012-09-14

    Ochratoxin A (OTA), a mycotoxin produced by Aspergillus and Penicillium species, is composed of a dihydroisocoumarin ring linked to phenylalanine and its biosynthetic pathway has not yet been completely elucidated. Most of the knowledge regarding the genetic and enzymatic aspects of OTA biosynthesis has been obtained in Penicillium species. In Aspergillus species only pks genes involved in the initial steps of the pathway have been partially characterized. In our study, the inactivation of a gene encoding a nonribosomal peptide synthetase in OTA producing A. carbonarius ITEM 5010 has removed the ability of the fungus to produce OTA. This is the first report on the involvement of an nrps gene product in OTA biosynthetic pathway in Aspergillus species. The absence of OTA and ochratoxin α-the isocoumaric derivative of OTA, and the concomitant increase of ochratoxin β- the dechloro analog of ochratoxin α- were observed in the liquid culture of transformed strain. The data provide the first evidence that the enzymatic step adding phenylalanine to polyketide dihydroisocoumarin precedes the chlorination step to form OTA in A. carbonarius, and that ochratoxin α is a product of hydrolysis of OTA, giving an interesting new insight in the biosynthetic pathway of the toxin.

  7. Depth-related distribution of a key gene of the tetraether lipid biosynthetic pathway in marine Thaumarchaeota

    OpenAIRE

    Villanueva, L.; Schouten, S; Sinninghe Damsté, J.S.

    2015-01-01

    The distribution of isoprenoid glycerol dialkyl glycerol tetraethers (GDGT) lipids synthesized by Thaumarchaeota has been shown to be temperature-dependent in world oceans. Depth-related differences in the ammonia monooxygenase (amoA) of Thaumarchaeota have led to the classification of ‘shallow’ and ‘deep water’ clusters, potentially affecting GDGT distributions. Here, we investigate if this classification is also reflected in a key gene of the thaumarchaeotal lipid biosynthetic pathway codin...

  8. Comparative Analysis of the Biosynthetic Gene Clusters and Pathways for Three Structurally Related Antitumor Antibiotics Bleomycin, Tallysomycin and Zorbamycin†

    OpenAIRE

    Galm, Ute; Wendt-Pienkowski, Evelyn; Wang, Liyan; Huang, Sheng-Xiong; Unsin, Claudia; Tao, Meifeng; Coughlin, Jane M.; Shen, Ben

    2011-01-01

    The biosynthetic gene clusters for the glycopeptide antitumor antibiotics bleomycin (BLM), tallysomycin (TLM), and zorbamycin (ZBM) have been recently cloned and characterized from Streptomyces verticillus ATCC15003, Streptoalloteichus hindustanus E465-94 ATCC31158, and Streptomyces flavoviridis ATCC21892, respectively. The striking similarities and differences among the biosynthetic gene clusters for the three structurally related glycopeptide antitumor antibiotics prompted us to compare and...

  9. Targeted Gene Disruption of the Cyclo (L-Phe, L-Pro Biosynthetic Pathway in Streptomyces sp. US24 Strain

    Directory of Open Access Journals (Sweden)

    Samiha Sioud

    2007-01-01

    Full Text Available We have previously isolated a new actinomycete strain from Tunisian soil called Streptomyces sp. US24, and have shown that it produces two bioactive molecules including a Cyclo (L-Phe, L-Pro diketopiperazine (DKP. To identify the structural genes responsible for the synthesis of this DKP derivative, a PCR amplification (696 bp was carried out using the Streptomyces sp. US24 genomic DNA as template and two degenerate oligonucleotides designed by analogy with genes encoding peptide synthetases (NRPS. The detection of DKP derivative biosynthetic pathway of the Streptomyces sp. US24 strain was then achieved by gene disruption via homologous recombination using a suicide vector derived from the conjugative plasmid pSET152 and containing the PCR product. Chromatography analysis, biological tests and spectroscopic studies of supernatant cultures of the wild-type Streptomyces sp. US24 strain and three mutants obtained by this gene targeting disruption approach showed that the amplified DNA fragment is required for Cyclo (L-Phe, L-Pro biosynthesis in Streptomyces sp. US24 strain. This DKP derivative seems to be produced either directly via a nonribosomal pathway or as a side product in the course of nonribosomal synthesis of a longer peptide.

  10. Cloning and characterization of the gene encoding β-amyrin synthase in the glycyrrhizic acid biosynthetic pathway in Glycyrrhiza uralensis

    Directory of Open Access Journals (Sweden)

    Honghao Chen

    2013-12-01

    Full Text Available Glycyrrhiza uralensis is considered to be one of the most important herbs in traditional Chinese medicine due to its numerous pharmacological effects particularly its ability to relieve cough and act as a mucolytic. Based on previous research, these effects are mediated by a number of active ingredients, especially glycyrrhizic acid (GA. In the present study, a gene encoding β-amyrin synthase (β-AS involved in GA biosynthesis in G. uralensis has been cloned and expressed in Saccharomyces cerevisiae. The cloned enzyme showed similar activity to native enzymes isolated from other Glycyrrhiza species to catalyze the conversion of 2,3-oxidosqualene into β-amyrin. In fact the β-AS gene is particularly important in the GA biosynthetic pathway in G. uralensis. The complete sequence of the enzyme was determined and a phylogenetic tree based on the β-AS gene of G. uralensis and 20 other species was created. This showed that Glycyrrhiza glabra had the closest kinship with G. uralensis. The results of this work will be useful in determining how to improve the efficacy of G. uralensis by improving its GA content and in exploring the biosynthesis of GA in vitro.

  11. Triterpenoid Saponin Biosynthetic Pathway Profiling and Candidate Gene Mining of the Ilex asprella Root Using RNA-Seq

    Directory of Open Access Journals (Sweden)

    Xiasheng Zheng

    2014-04-01

    Full Text Available Ilex asprella, which contains abundant α-amyrin type triterpenoid saponins, is an anti-influenza herbal drug widely used in south China. In this work, we first analysed the transcriptome of the I. asprella root using RNA-Seq, which provided a dataset for functional gene mining. mRNA was isolated from the total RNA of the I. asprella root and reverse-transcribed into cDNA. Then, the cDNA library was sequenced using an Illumina HiSeq™ 2000, which generated 55,028,452 clean reads. De novo assembly of these reads generated 51,865 unigenes, in which 39,269 unigenes were annotated (75.71% yield. According to the structures of the triterpenoid saponins of I. asprella, a putative biosynthetic pathway downstream of 2,3-oxidosqualene was proposed and candidate unigenes in the transcriptome data that were potentially involved in the pathway were screened using homology-based BLAST and phylogenetic analysis. Further amplification and functional analysis of these putative unigenes will provide insight into the biosynthesis of Ilex triterpenoid saponins.

  12. Involvement of the Octadecanoid Pathway and Protein Phosphorylation in Fungal Elicitor-Induced Expression of Terpenoid Indole Alkaloid Biosynthetic Genes in Catharanthus roseus

    Science.gov (United States)

    Menke, Frank L.H.; Parchmann, Stefanie; Mueller, Martin J.; Kijne, Jan W.; Memelink, Johan

    1999-01-01

    Two key genes in terpenoid indole alkaloid biosynthesis, Tdc and Str, encoding tryptophan decarboxylase and strictosidine synthase, respectively, are coordinately induced by fungal elicitors in suspension-cultured Catharanthus roseus cells. We have studied the roles of the jasmonate biosynthetic pathway and of protein phosphorylation in signal transduction initiated by a partially purified elicitor from yeast extract. In addition to activating Tdc and Str gene expression, the elicitor also induced the biosynthesis of jasmonic acid. The jasmonate precursor α-linolenic acid or methyl jasmonate (MeJA) itself induced Tdc and Str gene expression when added exogenously . Diethyldithiocarbamic acid, an inhibitor of jasmonate biosynthesis, blocked both the elicitor-induced formation of jasmonic acid and the activation of terpenoid indole alkaloid biosynthetic genes. The protein kinase inhibitor K-252a abolished both elicitor-induced jasmonate biosynthesis and MeJA-induced Tdc and Str gene expression. Analysis of the expression of Str promoter/gusA fusions in transgenic C. roseus cells showed that the elicitor and MeJA act at the transcriptional level. These results demonstrate that the jasmonate biosynthetic pathway is an integral part of the elicitor-triggered signal transduction pathway that results in the coordinate expression of the Tdc and Str genes and that protein kinases act both upstream and downstream of jasmonates. PMID:10198087

  13. Depth-related distribution of a key gene of the tetraether lipid biosynthetic pathway in marine Thaumarchaeota.

    Science.gov (United States)

    Villanueva, Laura; Schouten, Stefan; Sinninghe Damsté, Jaap S

    2015-10-01

    The distribution of isoprenoid glycerol dialkyl glycerol tetraethers (GDGT) lipids synthesized by Thaumarchaeota has been shown to be temperature-dependent in world oceans. Depth-related differences in the ammonia monooxygenase (amoA) of Thaumarchaeota have led to the classification of 'shallow' and 'deep water' clusters, potentially affecting GDGT distributions. Here, we investigate if this classification is also reflected in a key gene of the thaumarchaeotal lipid biosynthetic pathway coding for geranylgeranylglyceryl phosphate (GGGP) synthase. We investigated metagenomic databases, suspended particulate matter and surface sediment of the Arabian Sea oxygen minimum zone. These revealed significant differences in amoA and GGGP synthase between 'shallow' and 'deep water' Thaumarchaeota. Intriguingly, amoA and GGGP synthase sequences of benthic Thaumarchaeota clustered with the 'shallow water' rather than with 'deep water' Thaumarchaeota. This suggests that pressure and temperature are unlikely factors that drive the differentiation, and suggests an important role of ammonia concentration that is higher in benthic and 'shallow water' niches. Analysis of the relative abundance of GDGTs in the Arabian Sea and in globally distributed surface sediments showed differences in GDGT distributions from subsurface to deep waters that may be explained by differences in the GGGP synthase, suggesting a genetic control on GDGT distributions. PMID:24813867

  14. Systems approaches to unraveling plant metabolism: identifying biosynthetic genes of secondary metabolic pathways.

    Science.gov (United States)

    Spiering, Martin J; Kaur, Bhavneet; Parsons, James F; Eisenstein, Edward

    2014-01-01

    The diversity of useful compounds produced by plant secondary metabolism has stimulated broad systems biology approaches to identify the genes involved in their biosynthesis. Systems biology studies in non-model plants pose interesting but addressable challenges, and have been greatly facilitated by the ability to grow and maintain plants, develop laboratory culture systems, and profile key metabolites in order to identify critical genes involved their biosynthesis. In this chapter we describe a suite of approaches that have been useful in Actaea racemosa (L.; syn. Cimicifuga racemosa, Nutt., black coshosh), a non-model medicinal plant with no genome sequence and little horticultural information available, that have led to the development of initial gene-metabolite relationships for the production of several bioactive metabolites in this multicomponent botanical therapeutic, and that can be readily applied to a wide variety of under-characterized medicinal plants. PMID:24218220

  15. Anthocyanin biosynthetic genes in Brassica rapa

    OpenAIRE

    Guo, Ning; Cheng, Feng; Wu, Jian; Liu, Bo; Zheng, Shuning; Liang, Jianli; Wang, Xiaowu

    2014-01-01

    Background Anthocyanins are a group of flavonoid compounds. As a group of important secondary metabolites, they perform several key biological functions in plants. Anthocyanins also play beneficial health roles as potentially protective factors against cancer and heart disease. To elucidate the anthocyanin biosynthetic pathway in Brassica rapa, we conducted comparative genomic analyses between Arabidopsis thaliana and B. rapa on a genome-wide level. Results In total, we identified 73 genes in...

  16. Biosynthetic pathway of terpenoid indole alkaloids in Catharanthus roseus.

    Science.gov (United States)

    Zhu, Xiaoxuan; Zeng, Xinyi; Sun, Chao; Chen, Shilin

    2014-09-01

    Catharanthus roseus is one of the most extensively investigated medicinal plants, which can produce more than 130 alkaloids, including the powerful antitumor drugs vinblastine and vincristine. Here we review the recent advances in the biosynthetic pathway of terpenoid indole alkaloids (TIAs) in C. roseus, and the identification and characterization of the corresponding enzymes involved in this pathway. Strictosidine is the central intermediate in the biosynthesis of different TIAs, which is formed by the condensation of secologanin and tryptamine. Secologanin is derived from terpenoid (isoprenoid) biosynthetic pathway, while tryptamine is derived from indole biosynthetic pathway. Then various specific end products are produced by different routes during downstream process. Although many genes and corresponding enzymes have been characterized in this pathway, our knowledge on the whole TIA biosynthetic pathway still remains largely unknown up to date. Full elucidation of TIA biosynthetic pathway is an important prerequisite to understand the regulation of the TIA biosynthesis in the medicinal plant and to produce valuable TIAs by synthetic biological technology. PMID:25159992

  17. Increased glycopeptide production after overexpression of shikimate pathway genes being part of the balhimycin biosynthetic gene cluster

    DEFF Research Database (Denmark)

    Thykær, Jette; Nielsen, Jens; Wohlleben, W.;

    2010-01-01

    Amycolatopsis balhimycina produces the vancomycin-analogue balhimycin. The strain therefore serves as a model strain for glycopeptide antibiotic production. Previous characterisation of the balhimycin biosynthetic cluster had shown that the border sequences contained both, a putative 3-deoxy-d-ar...

  18. Gene transcript profiles of the TIA biosynthetic pathway in response to ethylene and copper reveal their interactive role in modulating TIA biosynthesis in Catharanthus roseus.

    Science.gov (United States)

    Pan, Ya-Jie; Liu, Jia; Guo, Xiao-Rui; Zu, Yuan-Gang; Tang, Zhong-Hua

    2015-05-01

    Research on transcriptional regulation of terpenoid indole alkaloid (TIA) biosynthesis of the medicinal plant, Catharanthus roseus, has largely been focused on gene function and not clustering analysis of multiple genes at the transcript level. Here, more than ten key genes encoding key enzyme of alkaloid synthesis in TIA biosynthetic pathways were chosen to investigate the integrative responses to exogenous elicitor ethylene and copper (Cu) at both transcriptional and metabolic levels. The ethylene-induced gene transcripts in leaves and roots, respectively, were subjected to principal component analysis (PCA) and the results showed the overall expression of TIA pathway genes indicated as the Q value followed a standard normal distribution after ethylene treatments. Peak gene expression was at 15-30 μM of ethephon, and the pre-mature leaf had a higher Q value than the immature or mature leaf and root. Treatment with elicitor Cu found that Cu up-regulated overall TIA gene expression more in roots than in leaves. The combined effects of Cu and ethephon on TIA gene expression were stronger than their separate effects. It has been documented that TIA gene expression is tightly regulated by the transcriptional factor (TF) ethylene responsive factor (ERF) and mitogen-activated protein kinase (MAPK) cascade. The loading plot combination with correlation analysis for the genes of C. roseus showed that expression of the MPK gene correlated with strictosidine synthase (STR) and strictosidine b-D-glucosidase(SGD). In addition, ERF expression correlated with expression of secologanin synthase (SLS) and tryptophan decarboxylase (TDC), specifically in roots, whereas MPK and myelocytomatosis oncogene (MYC) correlated with STR and SGD genes. In conclusion, the ERF regulates the upstream pathway genes in response to heavy metal Cu mainly in C. roseus roots, while the MPK mainly participates in regulating the STR gene in response to ethylene in pre-mature leaf. Interestingly, the

  19. Analysis of biochemical compounds and differentially expressed genes of the anthocyanin biosynthetic pathway in variegated peach flowers.

    Science.gov (United States)

    Hassani, D; Liu, H L; Chen, Y N; Wan, Z B; Zhuge, Q; Li, S X

    2015-01-01

    Variegated plants are highly valuable in the floricultural market, yet the genetic mechanism underlying this attractive phenomenon has not been completely elucidated. In this study, we identified and measured different compounds in pink and white flower petals of peach (Prunus persica) by high-performance liquid chromatography and liquid chromatography/mass spectrometry analyses. No cyanidin-based or pelargonidin-based compounds were detected in white petals, but high levels of these compounds were found in pink petals. Additionally, we sequenced and analyzed the expression of six key structural genes in the anthocyanin biosynthesis pathway (CHI, CHS, DFR, F3'H, ANS, and UFGT) in both white and pink petals. Quantitative real-time polymerase chain reaction revealed all six genes to be expressed at greatly reduced levels in white flower petals, relative to pink. No allelic variations were found in the transcribed sequences. However, alignment of transcribed and genomic sequences of the ANS gene detected alternative splicing, resulting in transcripts of 1.071 and 942 bp. Only the longer transcript was observed in white flower petals. Since ANS is the key intermediate enzyme catalyzing the colorless leucopelargonidin and leucocyanidin to substrates required for completion of anthocyanin biosynthesis, the ANS gene is implicated in flower color variegation and should be explored in future studies. This article, together with a previous transcriptome study, elucidates the mechanism underlying peach flower color variegation in terms of the key structural genes involved in anthocyanin biosynthesis. PMID:26535657

  20. Carotenoid biosynthetic genes in Brassica rapa: comparative genomic analysis, phylogenetic analysis, and expression profiling

    OpenAIRE

    Li, Peirong; Zhang, Shujiang; Zhang, Shifan; Li, Fei; Zhang, Hui; Cheng, Feng; Wu, Jian; Wang, Xiaowu; Sun, Rifei

    2015-01-01

    Background Carotenoids are isoprenoid compounds synthesized by all photosynthetic organisms. Despite much research on carotenoid biosynthesis in the model plant Arabidopsis thaliana, there is a lack of information on the carotenoid pathway in Brassica rapa. To better understand its carotenoid biosynthetic pathway, we performed a systematic analysis of carotenoid biosynthetic genes at the genome level in B. rapa. Results We identified 67 carotenoid biosynthetic genes in B. rapa, which were ort...

  1. Origin of saxitoxin biosynthetic genes in cyanobacteria.

    Directory of Open Access Journals (Sweden)

    Ahmed Moustafa

    Full Text Available BACKGROUND: Paralytic shellfish poisoning (PSP is a potentially fatal syndrome associated with the consumption of shellfish that have accumulated saxitoxin (STX. STX is produced by microscopic marine dinoflagellate algae. Little is known about the origin and spread of saxitoxin genes in these under-studied eukaryotes. Fortuitously, some freshwater cyanobacteria also produce STX, providing an ideal model for studying its biosynthesis. Here we focus on saxitoxin-producing cyanobacteria and their non-toxic sisters to elucidate the origin of genes involved in the putative STX biosynthetic pathway. METHODOLOGY/PRINCIPAL FINDINGS: We generated a draft genome assembly of the saxitoxin-producing (STX+ cyanobacterium Anabaena circinalis ACBU02 and searched for 26 candidate saxitoxin-genes (named sxtA to sxtZ that were recently identified in the toxic strain Cylindrospermopsis raciborskii T3. We also generated a draft assembly of the non-toxic (STX- sister Anabaena circinalis ACFR02 to aid the identification of saxitoxin-specific genes. Comparative phylogenomic analyses revealed that nine putative STX genes were horizontally transferred from non-cyanobacterial sources, whereas one key gene (sxtA originated in STX+ cyanobacteria via two independent horizontal transfers followed by fusion. In total, of the 26 candidate saxitoxin-genes, 13 are of cyanobacterial provenance and are monophyletic among the STX+ taxa, four are shared amongst STX+ and STX-cyanobacteria, and the remaining nine genes are specific to STX+ cyanobacteria. CONCLUSIONS/SIGNIFICANCE: Our results provide evidence that the assembly of STX genes in ACBU02 involved multiple HGT events from different sources followed presumably by coordination of the expression of foreign and native genes in the common ancestor of STX+ cyanobacteria. The ability to produce saxitoxin was subsequently lost multiple independent times resulting in a nested relationship of STX+ and STX- strains among Anabaena

  2. Overexpression of the riboflavin biosynthetic pathway in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Mattanovich Diethard

    2008-07-01

    Full Text Available Abstract Background High cell density cultures of Pichia pastoris grown on methanol tend to develop yellow colored supernatants, attributed to the release of free flavins. The potential of P. pastoris for flavin overproduction is therefore given, but not pronounced when the yeast is grown on glucose. The aim of this study is to characterize the relative regulatory impact of each riboflavin synthesis gene. Deeper insight into pathway control and the potential of deregulation is established by overexpression of the single genes as well as a combined deregulation of up to all six riboflavin synthesis genes. Results Overexpression of the first gene of the riboflavin biosynthetic pathway (RIB1 is already sufficient to obtain yellow colonies and the accumulation of riboflavin in the supernatant of shake flask cultures growing on glucose. Sequential deregulation of all the genes, by exchange of their native promoter with the strong and constitutive glyceraldehyde-3-phosphate dehydrogenase promoter (PGAP increases the riboflavin accumulation significantly. Conclusion The regulation of the pathway is distributed over more than one gene. High cell density cultivations of a P. pastoris strain overexpressing all six RIB genes allow the accumulation of 175 mg/L riboflavin in the supernatant. The basis for rational engineering of riboflavin production in P. pastoris has thus been established.

  3. In silico analysis and expression profiling of miRNAs targeting genes of steviol glycosides biosynthetic pathway and their relationship with steviol glycosides content in different tissues of Stevia rebaudiana.

    Science.gov (United States)

    Saifi, Monica; Nasrullah, Nazima; Ahmad, Malik Mobeen; Ali, Athar; Khan, Jawaid A; Abdin, M Z

    2015-09-01

    miRNAs are emerging as potential regulators of the gene expression. Their proven promising role in regulating biosynthetic pathways related gene networks may hold the key to understand the genetic regulation of these pathways which may assist in selection and manipulation to get high performing plant genotypes with better secondary metabolites yields and increased biomass. miRNAs associated with genes of steviol glycosides biosynthetic pathway, however, have not been identified so far. In this study miRNAs targeting genes of steviol glycosides biosynthetic pathway were identified for the first time whose precursors were potentially generated from ESTs and nucleotide sequences of Stevia rebaudiana. Thereafter, stem-loop coupled real time PCR based expressions of these miRNAs in different tissues of Stevia rebaudiana were investigated and their relationship pattern was analysed with the expression levels of their target mRNAs as well as steviol glycoside contents. All the miRNAs investigated showed differential expressions in all the three tissues studied, viz. leaves, flowers and stems. Out of the eleven miRNAs validated, the expression levels of nine miRNAs (miR319a, miR319b, miR319c, miR319d, miR319e, miR319f, miR319h, miRstv_7, miRstv_9) were found to be inversely related, while expression levels of the two, i.e. miR319g and miRstv_11 on the contrary, showed direct relation with the expression levels of their target mRNAs and steviol glycoside contents in the leaves, flowers and stems. This study provides a platform for better understanding of the steviol glycosides biosynthetic pathway and these miRNAs can further be employed to manipulate the biosynthesis of these metabolites to enhance their contents and yield in S. rebaudiana. PMID:26042546

  4. Transcription of Genes in the Biosynthetic Pathway for Fumonisin Mycotoxins Is Epigenetically and Differentially Regulated in the Fungal Maize Pathogen Fusarium verticillioides

    OpenAIRE

    Visentin, I.; Montis, V.; Doll, K.; Alabouvette, C.; Tamietti, G.; Karlovsky, P.; Cardinale, F.

    2011-01-01

    When the fungal pathogen Gibberella moniliformis (anamorph, Fusarium verticillioides) colonizes maize and maize-based products, it produces class B fumonisin (FB) mycotoxins, which are a significant threat to human and animal health. FB biosynthetic enzymes and accessory proteins are encoded by a set of clustered and cotranscribed genes collectively named FUM, whose molecular regulation is beginning to be unraveled by researchers. FB accumulation correlates with the amount of transcripts from...

  5. Molecular cloning and characterization of three genes encoding dihydroflavonol-4-reductase from Ginkgo biloba in anthocyanin biosynthetic pathway.

    Directory of Open Access Journals (Sweden)

    Cheng Hua

    Full Text Available Dihydroflavonol-4-reductase (DFR, EC1.1.1.219 catalyzes a key step late in the biosynthesis of anthocyanins, condensed tannins (proanthocyanidins, and other flavonoids important to plant survival and human nutrition. Three DFR cDNA clones (designated GbDFRs were isolated from the gymnosperm Ginkgo biloba. The deduced GbDFR proteins showed high identities to other plant DFRs, which form three distinct DFR families. Southern blot analysis showed that the three GbDFRs each belong to a different DFR family. Phylogenetic tree analysis revealed that the GbDFRs share the same ancestor as other DFRs. The expression of the three recombinant GbDFRs in Escherichia coli showed that their actual protein sizes were in agreement with predictions from the cDNA sequences. The recombinant proteins were purified and their activity was analyzed; both GbDFR1 and GbDFR3 could catalyze dihydroquercetin conversion to leucocyanidin, while GbDFR2 catalyzed dihydrokaempferol conversion to leucopelargonidin. qRT-PCR showed that the GbDFRs were expressed in a tissue-specific manner, and transcript accumulation for the three genes was highest in young leaves and stamens. These transcription patterns were in good agreement with the pattern of anthocyanin accumulation in G.biloba. The expression profiles suggested that GbDFR1 and GbDFR2 are mainly involved in responses to plant hormones, environmental stress and damage. During the annual growth cycle, the GbDFRs were significantly correlated with anthocyanin accumulation in leaves. A fitted linear curve showed the best model for relating GbDFR2 and GbDFR3 with anthocyanin accumulation in leaves. GbDFR1 appears to be involved in environmental stress response, while GbDFR3 likely has primary functions in the synthesis of anthocyanins. These data revealed unexpected properties and differences in three DFR proteins from a single species.

  6. The flavonoid biosynthetic pathway in plants: function and evolution

    International Nuclear Information System (INIS)

    Flavonoids are a class of low molecular weight phenolic compounds that is widely distributed in the plant kingdom. They exhibit a diverse spectrum of biological functions and play an important role in the interaction between plants and their environment. Flavonoids not only protect the plant from the harmful effects of UV irradiation but also play a crucial role in the sexual reproduction process. A special class of flavonoid polymers, the tannins, plays a structural role in the plant. Yet other classes of flavonoids, flavonols and anthocyanins, have been implicated in the attraction of pollinators. Certain flavonoids participate in the interaction between plants and other organisms such as symbiotic bacteria and parasites. This raises the intriguing question as to how these different compounds arose and evolved. Based on taxonomy and molecular analysis of gene expression patterns it is possible to deduce a putative sequence of acquisition of the different branches of the biosynthetic pathway and their regulators. (author)

  7. Evolution of tryptophan biosynthetic pathway in microbial genomes: a comparative genetic study.

    Science.gov (United States)

    Priya, V K; Sarkar, Susmita; Sinha, Somdatta

    2014-03-01

    Biosynthetic pathway evolution needs to consider the evolution of a group of genes that code for enzymes catalysing the multiple chemical reaction steps leading to the final end product. Tryptophan biosynthetic pathway has five chemical reaction steps that are highly conserved in diverse microbial genomes, though the genes of the pathway enzymes show considerable variations in arrangements, operon structure (gene fusion and splitting) and regulation. We use a combined bioinformatic and statistical analyses approach to address the question if the pathway genes from different microbial genomes, belonging to a wide range of groups, show similar evolutionary relationships within and between them. Our analyses involved detailed study of gene organization (fusion/splitting events), base composition, relative synonymous codon usage pattern of the genes, gene expressivity, amino acid usage, etc. to assess inter- and intra-genic variations, between and within the pathway genes, in diverse group of microorganisms. We describe these genetic and genomic variations in the tryptophan pathway genes in different microorganisms to show the similarities across organisms, and compare the same genes across different organisms to find the possible variability arising possibly due to horizontal gene transfers. Such studies form the basis for moving from single gene evolution to pathway evolutionary studies that are important steps towards understanding the systems biology of intracellular pathways. PMID:24592292

  8. Ochratoxin A Producing Fungi, Biosynthetic Pathway and Regulatory Mechanisms

    Science.gov (United States)

    Wang, Yan; Wang, Liuqing; Liu, Fei; Wang, Qi; Selvaraj, Jonathan Nimal; Xing, Fuguo; Zhao, Yueju; Liu, Yang

    2016-01-01

    Ochratoxin A (OTA), mainly produced by Aspergillus and Penicillum species, is one of the most important mycotoxin contaminants in agricultural products. It is detrimental to human health because of its nephrotoxicity, hepatotoxicity, carcinogenicity, teratogenicity, and immunosuppression. OTA structurally consists of adihydrocoumarin moiety linked with l-phenylalanine via an amide bond. OTA biosynthesis has been putatively hypothesized, although several contradictions exist on some processes of the biosynthetic pathway. We discuss recent information on molecular studies of OTA biosynthesis despite insufficient genetic background in detail. Accordingly, genetic regulation has also been explored with regard to the interaction between the regulators and the environmental factors. In this review, we focus on three aspects of OTA: OTA-producing strains, OTA biosynthetic pathway and the regulation mechanisms of OTA production. This can pave the way to assist in protecting food and feed from OTA contamination by understanding OTA biosynthetic pathway and regulatory mechanisms. PMID:27007394

  9. THE CAROTENOID BIOSYNTHETIC PATHWAY: THINKING IN ALL DIMENSIONS

    OpenAIRE

    Shumskaya, Maria; Wurtzel, Eleanore T.

    2013-01-01

    The carotenoid biosynthetic pathway serves manifold roles in plants related to photosynthesis, photoprotection, development, stress hormones, and various volatiles and signalling apocarotenoids. The pathway also produces compounds that impact human nutrition and metabolic products that contribute to fragrance and flavour of food and non-food crops. It is no surprise that the pathway has been a target of metabolic engineering, most prominently in the case of Golden Rice. The future success and...

  10. Elucidation and in planta reconstitution of the parthenolide biosynthetic pathway

    DEFF Research Database (Denmark)

    Liu, Qing; Manzano, David; Tanić, Nikola;

    2014-01-01

    Parthenolide, the main bioactive compound of the medicinal plant feverfew (Tanacetum parthenium), is a promising anti-cancer drug. However, the biosynthetic pathway of parthenolide has not been elucidated yet. Here we report on the isolation and characterization of all the genes from feverfew tha...

  11. Precise cloning and tandem integration of large polyketide biosynthetic gene cluster using Streptomyces artificial chromosome system

    OpenAIRE

    Nah, Hee-Ju; Woo, Min-Woo; Choi, Si-Sun; Kim, Eung-Soo

    2015-01-01

    Background Direct cloning combined with heterologous expression of a secondary metabolite biosynthetic gene cluster has become a useful strategy for production improvement and pathway modification of potentially valuable natural products present at minute quantities in original isolates of actinomycetes. However, precise cloning and efficient overexpression of an entire biosynthetic gene cluster remains challenging due to the ineffectiveness of current genetic systems in manipulating large-si...

  12. Reassembled biosynthetic pathway for large-scale carbohydrate synthesis: alpha-Gal epitope producing "superbug".

    Science.gov (United States)

    Chen, Xi; Liu, Ziye; Zhang, Jianbo; Zhang, Wei; Kowal, Przemyslaw; Wang, Peng George

    2002-01-01

    A metabolic pathway engineered Escherichia coli strain (superbug) containing one plasmid harboring an artificial gene cluster encoding all the five enzymes in the biosynthetic pathway of Galalpha l,3Lac through galactose metabolism has been developed. The plasmid contains a lambda promoter, a c1857 repressor gene, an ampicillin resistance gene, and a T7 terminator. Each gene was preceded by a Shine - Dalgarno sequence for ribosome binding. In a reaction catalyzed by the recombinant E. coli strain, Galalpha 1,3Lac trisaccharide accumulated at concentrations of 14.2 mM (7.2 gL(-1)) in a reaction mixture containing galactose, glucose, lactose, and a catalytic amount of uridine 5'-diphosphoglucose. This work demonstrates that large-scale synthesis of complex oligosaccharides can be achieved economically and efficiently through a single, biosynthetic pathway engineered microorganism. PMID:17590953

  13. Biosynthetic Pathway for the Epipolythiodioxopiperazine Acetylaranotin in Aspergillus terreus Revealed by Genome-based Deletion Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Chun-Jun; Yeh, Hsu-Hua; Chiang, Yi Ming; Sanchez, James F.; Chang, ShuLin; Bruno, Kenneth S.; Wang, Clay C.

    2013-04-15

    Abstract Epipolythiodioxopiperazines (ETPs) are a class of fungal secondary metabolites derived from cyclic peptides. Acetylaranotin belongs to one structural subgroup of ETPs characterized by the presence of a seven-membered dihydrooxepine ring. Defining the genes involved in acetylaranotin biosynthesis should provide a means to increase production of these compounds and facilitate the engineering of second-generation molecules. The filamentous fungus Aspergillus terreus produces acetylaranotin and related natural products. Using targeted gene deletions, we have identified a cluster of 9 genes including one nonribosomal peptide synthase gene, ataP, that is required for acetylaranotin biosynthesis. Chemical analysis of the wild type and mutant strains enabled us to isolate seventeen natural products that are either intermediates in the normal biosynthetic pathway or shunt products that are produced when the pathway is interrupted through mutation. Nine of the compounds identified in this study are novel natural products. Our data allow us to propose a complete biosynthetic pathway for acetylaranotin and related natural products.

  14. A kinetic model for the penicillin biosynthetic pathway in

    DEFF Research Database (Denmark)

    Nielsen, Jens; Jørgensen, Henrik

    1996-01-01

    A kinetic model for the first two steps in the penicillin biosynthetic pathway, i.e. the ACV synthetase (ACVS) and the isopenicillin N synthetase (IPNS) is proposed. The model is based on Michaelis-Menten type kinetics with non-competitive inhibition of the ACVS by ACV, and competitive inhibition...

  15. The carotenoid biosynthetic pathway: thinking in all dimensions.

    Science.gov (United States)

    Shumskaya, Maria; Wurtzel, Eleanore T

    2013-07-01

    The carotenoid biosynthetic pathway serves manifold roles in plants related to photosynthesis, photoprotection, development, stress hormones, and various volatiles and signaling apocarotenoids. The pathway also produces compounds that impact human nutrition and metabolic products that contribute to fragrance and flavor of food and non-food crops. It is no surprise that the pathway has been a target of metabolic engineering, most prominently in the case of Golden Rice. The future success and predictability of metabolic engineering of carotenoids rests in the ability to target carotenoids for specific physiological purposes as well as to simultaneously modify carotenoids along with other desired traits. Here, we ask whether predictive metabolic engineering of the carotenoid pathway is indeed possible. Despite a long history of research on the pathway, at this point in time we can only describe the pathway as a parts list and have almost no knowledge of the location of the complete pathway, how it is assembled, and whether there exists any trafficking of the enzymes or the carotenoids themselves. We discuss the current state of knowledge regarding the "complete" pathway and make the argument that predictive metabolic engineering of the carotenoid pathway (and other pathways) will require investigation of the three dimensional state of the pathway as it may exist in plastids of different ultrastructures. Along with this message we point out the need to develop new types of visualization tools and resources that better reflect the dynamic nature of biosynthetic pathways. PMID:23683930

  16. Arabidopsis cytochrome P450 cyp83B1 mutations activate the tryptophan biosynthetic pathway.

    OpenAIRE

    Smolen, Gromoslaw; Bender, Judith

    2002-01-01

    In plants, the tryptophan biosynthetic pathway provides a number of important secondary metabolites including the growth regulator indole-3-acetic acid (IAA) and indole glucosinolate defense compounds. Genes encoding tryptophan pathway enzymes are transcriptionally induced by a variety of stress signals, presumably to increase the production of both tryptophan and secondary metabolites during defense responses. To understand the mechanism of transcriptional induction, we isolated altered tryp...

  17. The Biosynthetic Pathways of Tanshinones and Phenolic Acids in Salvia miltiorrhiza

    Directory of Open Access Journals (Sweden)

    Xiao-Hui Ma

    2015-09-01

    Full Text Available Secondary metabolites from plants play key roles in human medicine and chemical industries. Due to limited accumulation of secondary metabolites in plants and their important roles, characterization of key enzymes involved in biosynthetic pathway will enable metabolic engineering or synthetic biology to improve or produce the compounds in plants or microorganisms, which provides an alternative for production of these valuable compounds. Salvia miltiorrhiza, containing tanshinones and phenolic acids as its active compounds, has been widely used for the treatment of cardiovascular and cerebrovascular diseases. The biosynthetic analysis of secondary metabolites in S. miltiorrhiza has made great progress due to the successful genetic transformation system, simplified hairy roots system, and high-throughput sequencing. The cloned genes in S. miltiorrhiza had provided references for functional characterization of the post-modification steps involved in biosynthesis of tanshinones and phenolic acids, and further utilization of these steps in metabolic engineering. The strategies used in these studies could provide solid foundation for elucidation of biosynthetic pathways of diterpenoids and phenolic acids in other species. The present review systematically summarizes recent advances in biosynthetic pathway analysis of tanshinones and phenolic acids as well as synthetic biology and metabolic engineering applications of the rate-limiting genes involved in the secondary metabolism in S. miltiorrhiza.

  18. A kinetic model for the penicillin biosynthetic pathway in

    DEFF Research Database (Denmark)

    Nielsen, Jens; Jørgensen, Henrik

    1996-01-01

    A kinetic model for the first two steps in the penicillin biosynthetic pathway, i.e. the ACV synthetase (ACVS) and the isopenicillin N synthetase (IPNS) is proposed. The model is based on Michaelis-Menten type kinetics with non-competitive inhibition of the ACVS by ACV, and competitive inhibition...... of the IPNS by glutathione. The model predicted flux through the pathway corresponds well with the measured rate of penicillin biosynthesis. From the kinetic model the elasticity coefficients and the flux control coefficients are calculated throughout a fed-batch cultivation, and it is found that...

  19. Biosynthetic Analysis of the Petrobactin Siderophore Pathway from Bacillus anthracis▿

    OpenAIRE

    Lee, Jung Yeop; Janes, Brian K.; Passalacqua, Karla D; Pfleger, Brian F.; Bergman, Nicholas H; Liu, Haichuan; Håkansson, Kristina; Somu, Ravindranadh V.; Aldrich, Courtney C.; Cendrowski, Stephen; Hanna, Philip C.; Sherman, David H.

    2006-01-01

    The asbABCDEF gene cluster from Bacillus anthracis is responsible for biosynthesis of petrobactin, a catecholate siderophore that functions in both iron acquisition and virulence in a murine model of anthrax. We initiated studies to determine the biosynthetic details of petrobactin assembly based on mutational analysis of the asb operon, identification of accumulated intermediates, and addition of exogenous siderophores to asb mutant strains. As a starting point, in-frame deletions of each of...

  20. Expression profile of genes coding for carotenoid biosynthetic pathway during ripening and their association with accumulation of lycopene in tomato fruits

    Indian Academy of Sciences (India)

    Shuchi Smita; Ravi Rajwanshi; Sangram Keshari Lenka; Amit Katiyar; Viswanathan Chinnusamy; Kailash Chander Bansal

    2013-12-01

    Fruit ripening process is associated with change in carotenoid profile and accumulation of lycopene in tomato (Solanum lycopersicum L.). In this study, we quantified the -carotene and lycopene content at green, breaker and red-ripe stages of fruit ripening in eight tomato genotypes by using high-performance liquid chromatography. Among the genotypes, lycopene content was found highest in Pusa Rohini and lowest in VRT-32-1. To gain further insight into the regulation of lycopene biosynthesis and accumulation during fruit ripening, expression analysis of nine carotenoid pathway-related genes was carried out in the fruits of high lycopene genotype—Pusa Rohini. We found that expression of phytoene synthase and -carotene hydroxylase-1 was four and thirty-fold higher, respectively, at breaker stage as compared to red-ripe stage of fruit ripening. Changes in the expression level of these genes were associated with a 40% increase in lycopene content at red-ripe stage as compared with breaker stage. Thus, the results from our study suggest the role of specific carotenoid pathway-related genes in accumulation of high lycopene during the fruit ripening processes.

  1. Biosynthetic Pathway of the Reduced Polyketide Product Citreoviridin in Aspergillus terreus var. aureus Revealed by Heterologous Expression in Aspergillus nidulans.

    Science.gov (United States)

    Lin, Tzu-Shyang; Chiang, Yi-Ming; Wang, Clay C C

    2016-03-18

    Citreoviridin (1) belongs to a class of F1-ATPase β-subunit inhibitors that are synthesized by highly reducing polyketide synthases. These potent mycotoxins share an α-pyrone polyene structure, and they include aurovertin, verrucosidin, and asteltoxin. The identification of the citreoviridin biosynthetic gene cluster in Aspergillus terreus var. aureus and its reconstitution using heterologous expression in Aspergillus nidulans are reported. Two intermediates were isolated that allowed the proposal of the biosynthetic pathway of citreoviridin. PMID:26954888

  2. Quantification of trichothecene biosynthetic genes during the growth cycle of Fusarium sporotrichioides in culture

    Science.gov (United States)

    Trichothecene mycotoxins are secondary metabolites produced by several species of phytopathogenic fungi, and are potent inhibitors of protein biosynthesis. The genes involved in the biosynthetic pathway of T-2 toxin in Fusarium sporotrichioides have been characterized and are located in four identi...

  3. Substrate specificity of the sialic acid biosynthetic pathway

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Christina L.; Goon, Scarlett; Yarema, Kevin J.; Hinderlich, Stephan; Hang, Howard C.; Chai, Diana H.; Bertozzi, Carolyn R.

    2001-07-18

    Unnatural analogs of sialic acid can be delivered to mammalian cell surfaces through the metabolic transformation of unnatural N-acetylmannosamine (ManNAc) derivatives. In previous studies, mannosamine analogs bearing simple N-acyl groups up to five carbon atoms in length were recognized as substrates by the biosynthetic machinery and transformed into cell-surface sialoglycoconjugates [Keppler, O. T., et al. (2001) Glycobiology 11, 11R-18R]. Such structural alterations to cell surface glycans can be used to probe carbohydrate-dependent phenomena. This report describes our investigation into the extent of tolerance of the pathway toward additional structural alterations of the N-acyl substituent of ManNAc. A panel of analogs with ketone-containing N-acyl groups that varied in the lengthor steric bulk was chemically synthesized and tested for metabolic conversion to cell-surface glycans. We found that extension of the N-acyl chain to six, seven, or eight carbon atoms dramatically reduced utilization by the biosynthetic machinery. Likewise, branching from the linear chain reduced metabolic conversion. Quantitation of metabolic intermediates suggested that cellular metabolism is limited by the phosphorylation of the N-acylmannosamines by ManNAc 6-kinase in the first step of the pathway. This was confirmed by enzymatic assay of the partially purified enzyme with unnatural substrates. Identification of ManNAc 6-kinase as a bottleneck for unnatural sialic acid biosynthesis provides a target for expanding the metabolic promiscuity of mammalian cells.

  4. Variation in the Trichothecene Mycotoxin Biosynthetic Gene Cluster in Fusarium

    Science.gov (United States)

    Trichothecene mycotoxins are produced by some plant pathogenic species of the fungus Fusarium and can contribute to its virulence on some plants. In Fusarium graminearum and F. sporotrichioides trichothecene biosynthetic enzymes are encoded at three loci: the single-gene TRI101 locus; the two-gene ...

  5. Bioactivity-guided genome mining reveals the lomaiviticin biosynthetic gene cluster in Salinispora tropica

    OpenAIRE

    Kersten, Roland D.; Lane, Amy L.; Nett, Markus; Richter, Taylor K. S.; Duggan, Brendan M.; Dorrestein, Pieter C.; Moore, Bradley S.

    2013-01-01

    The use of genome sequences has become routine in guiding the discovery and identification of microbial natural products and their biosynthetic pathways. In silico prediction of molecular features, such as metabolic building blocks, physico-chemical properties or biological functions, from orphan gene clusters has opened up the characterization of many new chemo- and genotypes in genome mining approaches. Here, we guided our genome mining of two predicted enediyne pathways in Salinispora trop...

  6. CrBPF1 overexpression alters transcript levels of terpenoid indole alkaloid biosynthetic and regulatory genes.

    Science.gov (United States)

    Li, Chun Yao; Leopold, Alex L; Sander, Guy W; Shanks, Jacqueline V; Zhao, Le; Gibson, Susan I

    2015-01-01

    Terpenoid indole alkaloid (TIA) biosynthesis in Catharanthus roseus is a complex and highly regulated process. Understanding the biochemistry and regulation of the TIA pathway is of particular interest as it may allow the engineering of plants to accumulate higher levels of pharmaceutically important alkaloids. Toward this end, we generated a transgenic C. roseus hairy root line that overexpresses the CrBPF1 transcriptional activator under the control of a β-estradiol inducible promoter. CrBPF1 is a MYB-like protein that was previously postulated to help regulate the expression of the TIA biosynthetic gene STR. However, the role of CrBPF1 in regulation of the TIA and related pathways had not been previously characterized. In this study, transcriptional profiling revealed that overexpression of CrBPF1 results in increased transcript levels for genes from both the indole and terpenoid biosynthetic pathways that provide precursors for TIA biosynthesis, as well as for genes in the TIA biosynthetic pathway. In addition, overexpression of CrBPF1 causes increases in the transcript levels for 11 out of 13 genes postulated to act as transcriptional regulators of genes from the TIA and TIA feeder pathways. Interestingly, overexpression of CrBPF1 causes increased transcript levels for both TIA transcriptional activators and repressors. Despite the fact that CrBPF1 overexpression affects transcript levels of a large percentage of TIA biosynthetic and regulatory genes, CrBPF1 overexpression has only very modest effects on the levels of the TIA metabolites analyzed. This finding may be due, at least in part, to the up-regulation of both transcriptional activators and repressors in response to CrBPF1 overexpression, suggesting that CrBPF1 may serve as a "fine-tune" regulator for TIA biosynthesis, acting to help regulate the timing and amplitude of TIA gene expression. PMID:26483828

  7. CrBPF1 overexpression alters transcript levels of terpenoid indole alkaloid biosynthetic and regulatory genes

    Directory of Open Access Journals (Sweden)

    Chun Yao eLi

    2015-10-01

    Full Text Available Terpenoid indole alkaloid (TIA biosynthesis in Catharanthus roseus is a complex and highly regulated process. Understanding the biochemistry and regulation of the TIA pathway is of particular interest as it may allow the engineering of plants to accumulate higher levels of pharmaceutically important alkaloids. Towards this end, we generated a transgenic C. roseus hairy root line that overexpresses the CrBPF1 transcriptional activator under the control of a β-estradiol inducible promoter. CrBPF1 is a MYB-like protein that was previously postulated to help regulate the expression of the TIA biosynthetic gene STR. However, the role of CrBPF1 in regulation of the TIA and related pathways had not been previously characterized. In this study, transcriptional profiling revealed that overexpression of CrBPF1 results in increased transcript levels for genes from both the indole and terpenoid biosynthetic pathways that provide precursors for TIA biosynthesis, as well as for genes in the TIA biosynthetic pathway. In addition, overexpression of CrBPF1 causes increases in the transcript levels for 11 out of 13 genes postulated to act as transcriptional regulators of genes from the TIA and TIA feeder pathways. Interestingly, overexpression of CrBPF1 causes increased transcript levels for both TIA transcriptional activators and repressors. Despite the fact that CrBPF1 overexpression affects transcript levels of a large percentage of TIA biosynthetic and regulatory genes, CrBPF1 overexpression has only very modest effects on the levels of the TIA metabolites analyzed. This finding may be due, at least in part, to the up-regulation of both transcriptional activators and repressors in response to CrBPF1 overexpression, suggesting that CrBPF1 may serve as a fine-tune regulator for TIA biosynthesis, acting to help regulate the timing and amplitude of TIA gene expression.

  8. Characterization of the cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimurium.

    OpenAIRE

    Roth, J R; Lawrence, J. G.; Rubenfield, M; Kieffer-Higgins, S; Church, G M

    1993-01-01

    Salmonella typhimurium synthesizes cobalamin (vitamin B12) de novo under anaerobic conditions. Of the 30 cobalamin synthetic genes, 25 are clustered in one operon, cob, and are arranged in three groups, each group encoding enzymes for a biochemically distinct portion of the biosynthetic pathway. We have determined the DNA sequence for the promoter region and the proximal 17.1 kb of the cob operon. This sequence includes 20 translationally coupled genes that encode the enzymes involved in part...

  9. Heterologous stable expression of terpenoid biosynthetic genes using the moss Physcomitrella patens.

    Science.gov (United States)

    Bach, Søren Spanner; King, Brian Christopher; Zhan, Xin; Simonsen, Henrik Toft; Hamberger, Björn

    2014-01-01

    Heterologous and stable expression of genes encoding terpenoid biosynthetic enzymes in planta is an important tool for functional characterization and is an attractive alternative to expression in microbial hosts for biotechnological production. Despite improvements to the procedure, such as streamlining of large scale Agrobacterium infiltration and upregulation of the upstream pathways, transient in planta heterologous expression quickly reaches limitations when used for production of terpenoids. Stable integration of transgenes into the nuclear genome of the moss Physcomitrella patens has already been widely recognized as a viable alternative for industrial-scale production of biopharmaceuticals. For expression of terpenoid biosynthetic genes, and reconstruction of heterologous pathways, Physcomitrella has unique attributes that makes it a very promising biotechnological host. These features include a high native tolerance to terpenoids, a simple endogenous terpenoid profile, convenient genome editing using homologous recombination, and cultivation techniques that allow up-scaling from single cells in microtiter plates to industrial photo-bioreactors. Beyond its use for functional characterization of terpenoid biosynthetic genes, engineered Physcomitrella can be a green biotechnological platform for production of terpenoids. Here, we describe two complementary and simple procedures for stable nuclear transformation of Physcomitrella with terpenoid biosynthetic genes, selection and cultivation of transgenic lines, and metabolite analysis of terpenoids produced in transgenic moss lines. We also provide tools for metabolic engineering through genome editing using homologous recombination. PMID:24777804

  10. Comprehensive curation and analysis of fungal biosynthetic gene clusters of published natural products.

    Science.gov (United States)

    Li, Yong Fuga; Tsai, Kathleen J S; Harvey, Colin J B; Li, James Jian; Ary, Beatrice E; Berlew, Erin E; Boehman, Brenna L; Findley, David M; Friant, Alexandra G; Gardner, Christopher A; Gould, Michael P; Ha, Jae H; Lilley, Brenna K; McKinstry, Emily L; Nawal, Saadia; Parry, Robert C; Rothchild, Kristina W; Silbert, Samantha D; Tentilucci, Michael D; Thurston, Alana M; Wai, Rebecca B; Yoon, Yongjin; Aiyar, Raeka S; Medema, Marnix H; Hillenmeyer, Maureen E; Charkoudian, Louise K

    2016-04-01

    Microorganisms produce a wide range of natural products (NPs) with clinically and agriculturally relevant biological activities. In bacteria and fungi, genes encoding successive steps in a biosynthetic pathway tend to be clustered on the chromosome as biosynthetic gene clusters (BGCs). Historically, "activity-guided" approaches to NP discovery have focused on bioactivity screening of NPs produced by culturable microbes. In contrast, recent "genome mining" approaches first identify candidate BGCs, express these biosynthetic genes using synthetic biology methods, and finally test for the production of NPs. Fungal genome mining efforts and the exploration of novel sequence and NP space are limited, however, by the lack of a comprehensive catalog of BGCs encoding experimentally-validated products. In this study, we generated a comprehensive reference set of fungal NPs whose biosynthetic gene clusters are described in the published literature. To generate this dataset, we first identified NCBI records that included both a peer-reviewed article and an associated nucleotide record. We filtered these records by text and homology criteria to identify putative NP-related articles and BGCs. Next, we manually curated the resulting articles, chemical structures, and protein sequences. The resulting catalog contains 197 unique NP compounds covering several major classes of fungal NPs, including polyketides, non-ribosomal peptides, terpenoids, and alkaloids. The distribution of articles published per compound shows a bias toward the study of certain popular compounds, such as the aflatoxins. Phylogenetic analysis of biosynthetic genes suggests that much chemical and enzymatic diversity remains to be discovered in fungi. Our catalog was incorporated into the recently launched Minimum Information about Biosynthetic Gene cluster (MIBiG) repository to create the largest known set of fungal BGCs and associated NPs, a resource that we anticipate will guide future genome mining and

  11. The cobalamin (coenzyme B12) biosynthetic genes of Escherichia coli.

    OpenAIRE

    Lawrence, J. G.; Roth, J R

    1995-01-01

    The enteric bacterium Escherichia coli synthesizes cobalamin (coenzyme B12) only when provided with the complex intermediate cobinamide. Three cobalamin biosynthetic genes have been cloned from Escherichia coli K-12, and their nucleotide sequences have been determined. The three genes form an operon (cob) under the control of several promoters and are induced by cobinamide, a precursor of cobalamin. The cob operon of E. coli comprises the cobU gene, encoding the bifunctional cobinamide kinase...

  12. Trichodiene Production in a Trichoderma harzianum erg1-Silenced Strain Provides Evidence of the Importance of the Sterol Biosynthetic Pathway in Inducing Plant Defense-Related Gene Expression.

    Science.gov (United States)

    Malmierca, M G; McCormick, S P; Cardoza, R E; Monte, E; Alexander, N J; Gutiérrez, S

    2015-11-01

    Trichoderma species are often used as biocontrol agents against plant-pathogenic fungi. A complex molecular interaction occurs among the biocontrol agent, the antagonistic fungus, and the plant. Terpenes and sterols produced by the biocontrol fungus have been found to affect gene expression in both the antagonistic fungus and the plant. The terpene trichodiene (TD) elicits the expression of genes related to tomato defense and to Botrytis virulence. We show here that TD itself is able to induce the expression of Botrytis genes involved in the synthesis of botrydial (BOT) and also induces terpene gene expression in Trichoderma spp. The terpene ergosterol, in addition to its role as a structural component of the fungal cell membranes, acts as an elicitor of defense response in plants. In the present work, using a transformant of T. harzianum, which is silenced in the erg1 gene and accumulates high levels of squalene, we show that this ergosterol precursor also acts as an important elicitor molecule of tomato defense-related genes and induces Botrytis genes involved in BOT biosynthesis, in both cases, in a concentration-dependent manner. Our data emphasize the importance of a balance of squalene and ergosterol in fungal interactions as well as in the biocontrol activity of Trichoderma spp. PMID:26168138

  13. Cloning and Characterization of Genes Encoded in 187 dTDP-D-mycaminose Biosynthetic Pathway from a Midecamycin-producing Strain,Streptomyces mycarofaciens

    Institute of Scientific and Technical Information of China (English)

    Lina CONG; Wolfgang PIEPERSBERG

    2007-01-01

    Two subclusters from Streptomyces mycarofaciens,a midecamycin producer,were cloned and partially sequenced.One region was located at the 5'end of the mid polyketide synthase (PKS) genes and contained the genes midA,midB and midC.The other region was at the 3'end of the PKS genes and contained midK,midI and midH.Analysis of the nucleotide sequence revealed that these genes encode dTDP-glucose synthase (midA),dTDP-glucose dehydratase(midB),aminotransferase (midC),methyltransferase (midK),glycosyltransferase(midI)and an assistant gene(midH).All of these genes are involved in the biosynthesis of dTDP-D-mycaminose,the first deoxysugar of midecamycin,and in transferring the mycaminose to the midecamycin aglycone in S.mycarofaciens.Similar to gene pairs des VIII/des VII in S.venezuelae and tylMIII/tylMII in S.fradiae,the product of midH probably functions as an auxiliary protein required by the MidI protein for efficient glycosyltransfer in midecamycin biosynthesis.

  14. The pyrimidine nucleotide biosynthetic pathway modulates production of biofilm determinants in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Marco Garavaglia

    Full Text Available Bacteria are often found in multicellular communities known as biofilms, which constitute a resistance form against environmental stresses. Extracellular adhesion and cell aggregation factors, responsible for bacterial biofilm formation and maintenance, are tightly regulated in response to physiological and environmental cues. We show that, in Escherichia coli, inactivation of genes belonging to the de novo uridine monophosphate (UMP biosynthetic pathway impairs production of curli fibers and cellulose, important components of the bacterial biofilm matrix, by inhibiting transcription of the csgDEFG operon, thus preventing production of the biofilm master regulator CsgD protein. Supplementing growth media with exogenous uracil, which can be converted to UMP through the pyrimidine nucleotide salvage pathway, restores csgDEFG transcription and curli production. In addition, however, exogenous uracil triggers cellulose production, particularly in strains defective in either carB or pyrB genes, which encode enzymes catalyzing the first steps of de novo UMP biosynthesis. Our results indicate the existence of tight and complex links between pyrimidine metabolism and curli/cellulose production: transcription of the csgDEFG operon responds to pyrimidine nucleotide availability, while cellulose production is triggered by exogenous uracil in the absence of active de novo UMP biosynthesis. We speculate that perturbations in the UMP biosynthetic pathways allow the bacterial cell to sense signals such as starvation, nucleic acids degradation, and availability of exogenous pyrimidines, and to adapt the production of the extracellular matrix to the changing environmental conditions.

  15. Identification of the Scopularide Biosynthetic Gene Cluster in Scopulariopsis brevicaulis

    Science.gov (United States)

    Lukassen, Mie Bech; Saei, Wagma; Sondergaard, Teis Esben; Tamminen, Anu; Kumar, Abhishek; Kempken, Frank; Wiebe, Marilyn G.; Sørensen, Jens Laurids

    2015-01-01

    Scopularide A is a promising potent anticancer lipopeptide isolated from a marine derived Scopulariopsis brevicaulis strain. The compound consists of a reduced carbon chain (3-hydroxy-methyldecanoyl) attached to five amino acids (glycine, l-valine, d-leucine, l-alanine, and l-phenylalanine). Using the newly sequenced S. brevicaulis genome we were able to identify the putative biosynthetic gene cluster using genetic information from the structurally related emericellamide A from Aspergillus nidulans and W493-B from Fusarium pseudograminearum. The scopularide A gene cluster includes a nonribosomal peptide synthetase (NRPS1), a polyketide synthase (PKS2), a CoA ligase, an acyltransferase, and a transcription factor. Homologous recombination was low in S. brevicaulis so the local transcription factor was integrated randomly under a constitutive promoter, which led to a three to four-fold increase in scopularide A production. This indirectly verifies the identity of the proposed biosynthetic gene cluster. PMID:26184239

  16. Identification of the Scopularide Biosynthetic Gene Cluster in Scopulariopsis brevicaulis

    Directory of Open Access Journals (Sweden)

    Mie Bech Lukassen

    2015-07-01

    Full Text Available Scopularide A is a promising potent anticancer lipopeptide isolated from a marine derived Scopulariopsis brevicaulis strain. The compound consists of a reduced carbon chain (3-hydroxy-methyldecanoyl attached to five amino acids (glycine, l-valine, d-leucine, l-alanine, and l-phenylalanine. Using the newly sequenced S. brevicaulis genome we were able to identify the putative biosynthetic gene cluster using genetic information from the structurally related emericellamide A from Aspergillus nidulans and W493-B from Fusarium pseudograminearum. The scopularide A gene cluster includes a nonribosomal peptide synthetase (NRPS1, a polyketide synthase (PKS2, a CoA ligase, an acyltransferase, and a transcription factor. Homologous recombination was low in S. brevicaulis so the local transcription factor was integrated randomly under a constitutive promoter, which led to a three to four-fold increase in scopularide A production. This indirectly verifies the identity of the proposed biosynthetic gene cluster.

  17. Identification of the Scopularide Biosynthetic Gene Cluster in Scopulariopsis brevicaulis.

    Science.gov (United States)

    Lukassen, Mie Bech; Saei, Wagma; Sondergaard, Teis Esben; Tamminen, Anu; Kumar, Abhishek; Kempken, Frank; Wiebe, Marilyn G; Sørensen, Jens Laurids

    2015-07-01

    Scopularide A is a promising potent anticancer lipopeptide isolated from a marine derived Scopulariopsis brevicaulis strain. The compound consists of a reduced carbon chain (3-hydroxy-methyldecanoyl) attached to five amino acids (glycine, l-valine, d-leucine, l-alanine, and l-phenylalanine). Using the newly sequenced S. brevicaulis genome we were able to identify the putative biosynthetic gene cluster using genetic information from the structurally related emericellamide A from Aspergillus nidulans and W493-B from Fusarium pseudograminearum. The scopularide A gene cluster includes a nonribosomal peptide synthetase (NRPS1), a polyketide synthase (PKS2), a CoA ligase, an acyltransferase, and a transcription factor. Homologous recombination was low in S. brevicaulis so the local transcription factor was integrated randomly under a constitutive promoter, which led to a three to four-fold increase in scopularide A production. This indirectly verifies the identity of the proposed biosynthetic gene cluster. PMID:26184239

  18. A genomics based discovery of secondary metabolite biosynthetic gene clusters in Aspergillus ustus.

    Directory of Open Access Journals (Sweden)

    Borui Pi

    Full Text Available Secondary metabolites (SMs produced by Aspergillus have been extensively studied for their crucial roles in human health, medicine and industrial production. However, the resulting information is almost exclusively derived from a few model organisms, including A. nidulans and A. fumigatus, but little is known about rare pathogens. In this study, we performed a genomics based discovery of SM biosynthetic gene clusters in Aspergillus ustus, a rare human pathogen. A total of 52 gene clusters were identified in the draft genome of A. ustus 3.3904, such as the sterigmatocystin biosynthesis pathway that was commonly found in Aspergillus species. In addition, several SM biosynthetic gene clusters were firstly identified in Aspergillus that were possibly acquired by horizontal gene transfer, including the vrt cluster that is responsible for viridicatumtoxin production. Comparative genomics revealed that A. ustus shared the largest number of SM biosynthetic gene clusters with A. nidulans, but much fewer with other Aspergilli like A. niger and A. oryzae. These findings would help to understand the diversity and evolution of SM biosynthesis pathways in genus Aspergillus, and we hope they will also promote the development of fungal identification methodology in clinic.

  19. Characterization of cyanobacterial hydrocarbon composition and distribution of biosynthetic pathways.

    Directory of Open Access Journals (Sweden)

    R Cameron Coates

    Full Text Available Cyanobacteria possess the unique capacity to naturally produce hydrocarbons from fatty acids. Hydrocarbon compositions of thirty-two strains of cyanobacteria were characterized to reveal novel structural features and insights into hydrocarbon biosynthesis in cyanobacteria. This investigation revealed new double bond (2- and 3-heptadecene and methyl group positions (3-, 4- and 5-methylheptadecane for a variety of strains. Additionally, results from this study and literature reports indicate that hydrocarbon production is a universal phenomenon in cyanobacteria. All cyanobacteria possess the capacity to produce hydrocarbons from fatty acids yet not all accomplish this through the same metabolic pathway. One pathway comprises a two-step conversion of fatty acids first to fatty aldehydes and then alkanes that involves a fatty acyl ACP reductase (FAAR and aldehyde deformylating oxygenase (ADO. The second involves a polyketide synthase (PKS pathway that first elongates the acyl chain followed by decarboxylation to produce a terminal alkene (olefin synthase, OLS. Sixty-one strains possessing the FAAR/ADO pathway and twelve strains possessing the OLS pathway were newly identified through bioinformatic analyses. Strains possessing the OLS pathway formed a cohesive phylogenetic clade with the exception of three Moorea strains and Leptolyngbya sp. PCC 6406 which may have acquired the OLS pathway via horizontal gene transfer. Hydrocarbon pathways were identified in one-hundred-forty-two strains of cyanobacteria over a broad phylogenetic range and there were no instances where both the FAAR/ADO and the OLS pathways were found together in the same genome, suggesting an unknown selective pressure maintains one or the other pathway, but not both.

  20. Identification of the Scopularide Biosynthetic Gene Cluster in Scopulariopsis brevicaulis

    OpenAIRE

    Mie Bech Lukassen; Wagma Saei; Teis Esben Sondergaard; Anu Tamminen; Abhishek Kumar; Frank Kempken; Wiebe, Marilyn G.; Jens Laurids Sørensen

    2015-01-01

    Scopularide A is a promising potent anticancer lipopeptide isolated from a marine derived Scopulariopsis brevicaulis strain. The compound consists of a reduced carbon chain (3-hydroxy-methyldecanoyl) attached to five amino acids (glycine, l-valine, d-leucine, l-alanine, and l-phenylalanine). Using the newly sequenced S. brevicaulis genome we were able to identify the putative biosynthetic gene cluster using genetic information from the structurally related emericellamide A from Aspergillus n...

  1. Metabolic engineering of the carotenoid biosynthetic pathway in the yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma)

    NARCIS (Netherlands)

    Verdoes, J.C.; Sandmann, G.; Visser, H.; Diaz, M.; Mossel, van M.; Ooyen, van A.J.J.

    2003-01-01

    The crtYB locus was used as an integrative platform for the construction of specific carotenoid biosynthetic mutants in the astaxanthin-producing yeast Xanthophyllomyces dendrorhous. The crtYB gene of X. dendrorhous, encoding a chimeric carotenoid biosynthetic enzyme, could be inactivated by both si

  2. Overexpression of the riboflavin biosynthetic pathway in Pichia pastoris

    OpenAIRE

    Mattanovich Diethard; Marx Hans; Sauer Michael

    2008-01-01

    Abstract Background High cell density cultures of Pichia pastoris grown on methanol tend to develop yellow colored supernatants, attributed to the release of free flavins. The potential of P. pastoris for flavin overproduction is therefore given, but not pronounced when the yeast is grown on glucose. The aim of this study is to characterize the relative regulatory impact of each riboflavin synthesis gene. Deeper insight into pathway control and the potential of deregulation is established by ...

  3. Two Cytochrome P450 Monooxygenases Catalyze Early Hydroxylation Steps in the Potato Steroid Glycoalkaloid Biosynthetic Pathway.

    Science.gov (United States)

    Umemoto, Naoyuki; Nakayasu, Masaru; Ohyama, Kiyoshi; Yotsu-Yamashita, Mari; Mizutani, Masaharu; Seki, Hikaru; Saito, Kazuki; Muranaka, Toshiya

    2016-08-01

    α-Solanine and α-chaconine, steroidal glycoalkaloids (SGAs) found in potato (Solanum tuberosum), are among the best-known secondary metabolites in food crops. At low concentrations in potato tubers, SGAs are distasteful; however, at high concentrations, SGAs are harmful to humans and animals. Here, we show that POTATO GLYCOALKALOID BIOSYNTHESIS1 (PGA1) and PGA2, two genes that encode cytochrome P450 monooxygenases (CYP72A208 and CYP72A188), are involved in the SGA biosynthetic pathway, respectively. The knockdown plants of either PGA1 or PGA2 contained very little SGA, yet vegetative growth and tuber production were not affected. Analyzing metabolites that accumulated in the plants and produced by in vitro enzyme assays revealed that PGA1 and PGA2 catalyzed the 26- and 22-hydroxylation steps, respectively, in the SGA biosynthetic pathway. The PGA-knockdown plants had two unique phenotypic characteristics: The plants were sterile and tubers of these knockdown plants did not sprout during storage. Functional analyses of PGA1 and PGA2 have provided clues for controlling both potato glycoalkaloid biosynthesis and tuber sprouting, two traits that can significantly impact potato breeding and the industry. PMID:27307258

  4. A flower-specific Myb protein activates transcription of phenylpropanoid biosynthetic genes.

    Science.gov (United States)

    Sablowski, R W; Moyano, E; Culianez-Macia, F A; Schuch, W; Martin, C; Bevan, M

    1994-01-01

    Synthesis of flavonoid pigments in flowers requires the co-ordinated expression of genes encoding enzymes in th phenylpropanoid biosynthetic pathway. Some cis-elements involved in the transcriptional control of these genes have been defined. We report binding of petal-specific activities from tobacco and Antirrhinum majus (snapdragon) to an element conserved in promoters of phenylpropanoid biosynthetic genes and implicated in expression in flowers. These binding activities were inhibited by antibodies raised against Myb305, a flower-specific Myb protein previously cloned from Antirrhinum by sequence homology. Myb305 bound to the same element and formed a DNA-protein complex with the same mobility as the Antirrhinum petal protein in electrophoretic mobility shift experiments. Myb305 activated expression from its binding site in yeast and in tobacco protoplasts. In protoplasts, activation also required a G-box-like element, suggesting co-operation with other elements and factors. The results strongly suggest a role for Myb305-related proteins in the activation of phenylpropanoid biosynthetic genes in flowers. This is consistent with the genetically demonstrated role of plant Myb proteins in the regulation of genes involved in flavonoid synthesis. PMID:8306956

  5. Trehalose Polyphleates Are Produced by a Glycolipid Biosynthetic Pathway Conserved across Phylogenetically Distant Mycobacteria.

    Science.gov (United States)

    Burbaud, Sophie; Laval, Françoise; Lemassu, Anne; Daffé, Mamadou; Guilhot, Christophe; Chalut, Christian

    2016-02-18

    Mycobacteria synthesize a variety of structurally related glycolipids with major biological functions. Common themes have emerged for the biosynthesis of these glycolipids, including several families of proteins. Genes encoding these proteins are usually clustered on bacterial chromosomal islets dedicated to the synthesis of one glycolipid family. Here, we investigated the function of a cluster of five genes widely distributed across non-tuberculous mycobacteria. Using defined mutant analysis and in-depth structural characterization of glycolipids from wild-type or mutant strains of Mycobacterium smegmatis and Mycobacterium abscessus, we established that they are involved in the formation of trehalose polyphleates (TPP), a family of compounds originally described in Mycobacterium phlei. Comparative genomics and lipid analysis of strains distributed along the mycobacterial phylogenetic tree revealed that TPP is synthesized by a large number of non-tuberculous mycobacteria. This work unravels a novel glycolipid biosynthetic pathway in mycobacteria and extends the spectrum of bacteria that produce TPP. PMID:27028886

  6. In silico tools for the analysis of antibiotic biosynthetic pathways

    DEFF Research Database (Denmark)

    Weber, Tilmann

    2014-01-01

    Natural products of bacteria and fungi are the most important source for antimicrobial drug leads. For decades, such compounds were exclusively found by chemical/bioactivity-guided screening approaches. The rapid progress in sequencing technologies only recently allowed the development of novel...... screening methods based on the genome sequences of potential producing organisms. The basic principle of such genome mining approaches is to identify genes, which are involved in the biosynthesis of such molecules, and to predict the products of the identified pathways. Thus, bioinformatics methods and...... tools are crucial for genome mining. In this review, a comprehensive overview is given on programs and databases for the identification and analysis of antibiotic biosynthesis gene clusters in genomic data....

  7. Spook and Spookier code for stage-specific components of the ecdysone biosynthetic pathway in Diptera

    DEFF Research Database (Denmark)

    Ono, Hajime; Rewitz, Kim; Shinoda, Tetsu;

    2006-01-01

    that catalyze the terminal hydroxylation steps in the conversion of cholesterol to the molting hormone 20-hydroxyecdysone. These P450s are conserved in other insects and each is thought to function throughout development as the sole mediator of a particular biosynthetic step since, where analyzed, each...... Bombyx and Manduca that is expressed in both embryos and larva. These studies suggest an evolutionary split between Diptera and Lepidoptera in how the ecdysone biosynthetic pathway is regulated during development....

  8. Genome sequence of Thermofilum pendens reveals an exceptional loss of biosynthetic pathways without genome reduction

    Energy Technology Data Exchange (ETDEWEB)

    Kyrpides, Nikos; Anderson, Iain; Rodriguez, Jason; Susanti, Dwi; Porat, Iris; Reich, Claudia; Ulrich, Luke E.; Elkins, James G.; Mavromatis, Kostas; Lykidis, Athanasios; Kim, Edwin; Thompson, Linda S.; Nolan, Matt; Land, Miriam; Copeland, Alex; Lapidus, Alla; Lucas, Susan; Detter, Chris; Zhulin, Igor B.; Olsen, Gary J.; Whitman, William; Mukhopadhyay, Biswarup; Bristow, James; Kyrpides, Nikos

    2008-01-01

    We report the complete genome of Thermofilum pendens, a deep-branching, hyperthermophilic member of the order Thermoproteales within the archaeal kingdom Crenarchaeota. T. pendens is a sulfur-dependent, anaerobic heterotroph isolated from a solfatara in Iceland. It is an extracellular commensal, requiring an extract of Thermoproteus tenax for growth, and the genome sequence reveals that biosynthetic pathways for purines, most amino acids, and most cofactors are absent. In fact T. pendens has fewer biosynthetic enzymes than obligate intracellular parasites, although it does not display other features common among obligate parasites and thus does not appear to be in the process of becoming a parasite. It appears that T. pendens has adapted to life in an environment rich in nutrients. T. pendens was known to utilize peptides as an energy source, but the genome reveals substantial ability to grow on carbohydrates. T. pendens is the first crenarchaeote and only the second archaeon found to have a transporter of the phosphotransferase system. In addition to fermentation, T. pendens may gain energy from sulfur reduction with hydrogen and formate as electron donors. It may also be capable of sulfur-independent growth on formate with formate hydrogenlyase. Additional novel features are the presence of a monomethylamine:corrinoid methyltransferase, the first time this enzyme has been found outside of Methanosarcinales, and a presenilin-related protein. Predicted highly expressed proteins do not include housekeeping genes, and instead include ABC transporters for carbohydrates and peptides, and CRISPR-associated proteins.

  9. Functional characterization of ent-copalyl diphosphate synthase, kaurene synthase and kaurene oxidase in the Salvia miltiorrhiza gibberellin biosynthetic pathway.

    Science.gov (United States)

    Su, Ping; Tong, Yuru; Cheng, Qiqing; Hu, Yating; Zhang, Meng; Yang, Jian; Teng, Zhongqiu; Gao, Wei; Huang, Luqi

    2016-01-01

    Salvia miltiorrhiza Bunge is highly valued in traditional Chinese medicine for its roots and rhizomes. Its bioactive diterpenoid tanshinones have been reported to have many pharmaceutical activities, including antibacterial, anti-inflammatory, and anticancer properties. Previous studies found four different diterpenoid biosynthetic pathways from the universal diterpenoid precursor (E,E,E)-geranylgeranyl diphosphate (GGPP) in S. miltiorrhiza. Here, we describe the functional characterization of ent-copalyl diphosphate synthase (SmCPSent), kaurene synthase (SmKS) and kaurene oxidase (SmKO) in the gibberellin (GA) biosynthetic pathway. SmCPSent catalyzes the cyclization of GGPP to ent-copalyl diphosphate (ent-CPP), which is converted to ent-kaurene by SmKS. Then, SmKO catalyzes the three-step oxidation of ent-kaurene to ent-kaurenoic acid. Our results show that the fused enzyme SmKS-SmCPSent increases ent-kaurene production by several fold compared with separate expression of SmCPSent and SmKS in yeast strains. In this study, we clarify the GA biosynthetic pathway from GGPP to ent-kaurenoic acid and provide a foundation for further characterization of the subsequent enzymes involved in this pathway. These insights may allow for better growth and the improved accumulation of bioactive tanshinones in S. miltiorrhiza through the regulation of the expression of these genes during developmental processes. PMID:26971881

  10. Variability in mycotoxin biosynthetic genes in Fusarium and its effect on mycotoxin contamination of crops

    Science.gov (United States)

    The Fusarium metabolites fumonisins and trichothecenes are among the mycotoxins of greatest concern to food and feed safety worldwide. As is the case for other fungal secondary metabolite biosynthetic genes, mycotoxin biosynthetic genes are often located adjacent to one another in gene clusters. Thu...

  11. A revised biosynthetic pathway for phosphatidylinositol in Mycobacteria.

    Science.gov (United States)

    Morii, Hiroyuki; Ogawa, Midori; Fukuda, Kazumasa; Taniguchi, Hatsumi; Koga, Yosuke

    2010-11-01

    For the last decade, it has been believed that phosphatidylinositol (PI) in mycobacteria is synthesized from free inositol and CDP-diacylglycerol by PI synthase in the presence of ATP. The role of ATP in this process, however, is not understood. Additionally, the PI synthase activity is extremely low compared with the PI synthase activity of yeast. When CDP-diacylglycerol and [(14)C]1L-myo-inositol 1-phosphate were incubated with the cell wall components of Mycobacterium smegmatis, both phosphatidylinositol phosphate (PIP) and PI were formed, as identified by fast atom bombardment-mass spectrometry and thin-layer chromatography. PI was formed from PIP by incubation with the cell wall components. Thus, mycobacterial PI was synthesized from CDP-diacylglycerol and myo-inositol 1-phosphate via PIP, which was dephosphorylated to PI. The gene-encoding PIP synthase from four species of mycobacteria was cloned and expressed in Escherichia coli, and PIP synthase activity was confirmed. A very low, but significant level of free [(3)H]inositol was incorporated into PI in mycobacterial cell wall preparations, but not in recombinant E. coli cell homogenates. This activity could be explained by the presence of two minor PI metabolic pathways: PI/inositol exchange reaction and phosphorylation of inositol by ATP prior to entering the PIP synthase pathway. PMID:20798167

  12. Insights into the pyrimidine biosynthetic pathway of human malaria parasite Plasmodium falciparum as chemotherapeutic target.

    Science.gov (United States)

    Krungkrai, Sudaratana R; Krungkrai, Jerapan

    2016-06-01

    Malaria is a major cause of morbidity and mortality in humans. Artemisinins remain as the first-line treatment for Plasmodium falciparum (P. falciparum) malaria although drug resistance has already emerged and spread in Southeast Asia. Thus, to fight this disease, there is an urgent need to develop new antimalarial drugs for malaria chemotherapy. Unlike human host cells, P. falciparum cannot salvage preformed pyrimidine bases or nucleosides from the extracellular environment and relies solely on nucleotides synthesized through the de novo biosynthetic pathway. This review presents significant progress on understanding the de novo pyrimidine pathway and the functional enzymes in the human parasite P. falciparum. Current knowledge in genomics and metabolomics are described, particularly focusing on the parasite purine and pyrimidine nucleotide metabolism. These include gene annotation, characterization and molecular mechanism of the enzymes that are different from the human host pathway. Recent elucidation of the three-dimensional crystal structures and the catalytic reactions of three enzymes: dihydroorotate dehydrogenase, orotate phosphoribosyltransferase, and orotidine 5'-monophosphate decarboxylase, as well as their inhibitors are reviewed in the context of their therapeutic potential against malaria. PMID:27262062

  13. Stress and developmental responses of terpenoid biosynthetic genes in Cistus creticus subsp. creticus.

    Science.gov (United States)

    Pateraki, Irene; Kanellis, Angelos K

    2010-06-01

    Plants, and specially species adapted in non-friendly environments, produce secondary metabolites that help them to cope with biotic or abiotic stresses. These metabolites could be of great pharmaceutical interest because several of those show cytotoxic, antibacterial or antioxidant activities. Leaves' trichomes of Cistus creticus ssp. creticus, a Mediterranean xerophytic shrub, excrete a resin rich in several labdane-type diterpenes with verified in vitro and in vivo cytotoxic and cytostatic activity against human cancer cell lines. Bearing in mind the properties and possible future exploitation of these natural products, it seemed interesting to study their biosynthesis and its regulation, initially at the molecular level. For this purpose, genes encoding enzymes participating in the early steps of the terpenoids biosynthetic pathways were isolated and their gene expression patterns were investigated in different organs and in response to various stresses and defence signals. The genes studied were the CcHMGR from the mevalonate pathway, CcDXS and CcDXR from the methylerythritol 4-phosphate pathway and the two geranylgeranyl diphosphate synthases (CcGGDPS1 and 2) previously characterized from this species. The present work indicates that the leaf trichomes are very active biosynthetically as far as it concerns terpenoids biosynthesis, and the terpenoid production from this tissue seems to be transcriptionally regulated. Moreover, the CcHMGR and CcDXS genes (the rate-limiting steps of the isoprenoids' pathways) showed an increase during mechanical wounding and application of defence signals (like meJA and SA), which is possible to reflect an increased need of the plant tissues for the corresponding metabolites. PMID:20364257

  14. Identification of a dTDP-rhamnose biosynthetic pathway that oscillates with the molting cycle in Caenorhabditis elegans.

    Science.gov (United States)

    Feng, Likui; Shou, Qingyao; Butcher, Rebecca A

    2016-06-01

    L-Rhamnose is a common component of cell-wall polysaccharides, glycoproteins and some natural products in bacteria and plants, but is rare in fungi and animals. In the present study, we identify and characterize a biosynthetic pathway for dTDP-rhamnose in Caenorhabditis elegans that is highly conserved across nematode species. We show that RML-1 activates glucose 1-phosphate (Glc-1-P) in the presence of either dTTP or UTP to yield dTDP-glucose or UDP-glucose, respectively. RML-2 is a dTDP-glucose 4,6-dehydratase, converting dTDP-glucose into dTDP-4-keto-6-deoxyglucose. Using mass spectrometry and NMR spectroscopy, we demonstrate that coincubation of dTDP-4-keto-6-deoxyglucose with RML-3 (3,5-epimerase) and RML-4 (4-keto-reductase) produces dTDP-rhamnose. RML-4 could only be expressed and purified in an active form through co-expression with a co-regulated protein, RML-5, which forms a complex with RML-4. Analysis of the sugar nucleotide pool in C. elegans established the presence of dTDP-rhamnose in vivo Targeting the expression of the rhamnose biosynthetic genes by RNAi resulted in significant reductions in dTDP-rhamnose, but had no effect on the biosynthesis of a closely related sugar, ascarylose, found in the ascaroside pheromones. Therefore, the rhamnose and ascarylose biosynthetic pathways are distinct. We also show that transcriptional reporters for the rhamnose biosynthetic genes are expressed highly in the embryo, in the hypodermis during molting cycles and in the hypodermal seam cells specifically before the molt to the stress-resistant dauer larval stage. These expression patterns suggest that rhamnose biosynthesis may play an important role in hypodermal development or the production of the cuticle or surface coat during molting. PMID:27009306

  15. Coordinated regulation of biosynthetic and regulatory genes coincides with anthocyanin accumulation in developing eggplant fruit

    Science.gov (United States)

    Violet to black pigmentation of eggplant (Solanum melongena) fruit is attributed to anthocyanin accumulation. Model systems support the interaction of biosynthetic and regulatory genes for anthocyanin biosynthesis. Anthocyanin structural gene transcription requires the expression of at least one m...

  16. Evolution of the Structure and Chromosomal Distribution of Histidine Biosynthetic Genes

    Science.gov (United States)

    Fani, Renato; Mori, Elena; Tamburini, Elena; Lazcano, Antonio

    1998-10-01

    A database of more than 100 histidine biosynthetic genes from different organisms belonging to the three primary domains has been analyzed, including those found in the now completely sequenced genomes of Haemophilus influenzae, Mycoplasma genitalium, Synechocystis sp., Methanococcus jannaschii, and Saccharomyces cerevisiae. The ubiquity of his genes suggests that it is a highly conserved pathway that was probably already present in the last common ancestor of all extant life. The chromosomal distribution of the his genes shows that the enterobacterial histidine operon structure is not the only possible organization, and that there is a diversity of gene arrays for the his pathway. Analysis of the available sequences shows that gene fusions (like those involved in the origin of the Escherichia coli and Salmonella typhimurium hisIE and hisB gene structures) are not universal. In contrast, the elongation event that led to the extant hisA gene from two homologous ancestral modules, as well as the subsequent paralogous duplication that originated hisF, appear to be irreversible and are conserved in all known organisms. The available evidence supports the hypothesis that histidine biosynthesis was assembled by a gene recruitment process.

  17. Transcriptomic Analysis and Systematic Mining of Genes Involved in Biosynthetic Pathway of Triterpenoid Saponins in Ilex Asprella%岗梅转录组及其乌索烷型三萜皂苷生物合成相关酶基因的发掘

    Institute of Scientific and Technical Information of China (English)

    郑夏生; 罗秀秀; 徐晖; 詹若挺; 陈蔚文

    2014-01-01

    This study was aimed to screen candidate genes involved in the triterpenoid saponins biosynthetic pathway of the Ilex asprella root. The Illumina platform was applied to perform transcriptomic sequencing of I. asprella root, followed by a series of bioinformatics analysis. The results showed that a total of 272 candidate unigenes were anno-tated to be involved in the biosynthetic pathway of terpenoid in the transcriptome of I. asprella root, including 72 u-nigenes for the upstream pathway and 26 unigenes for cyclization, oxidation and glycosylation in the downstream pathway. Phylogenetic analysis was carried out to further analyze the evolution relationship of some candidate uni-genes and their homologous genes. Two genes IaA S1 and IaA S2 were proved to be mixed amyrin synthases in yeast expression system. Moreover, IaA S1 was identified to one of the rare ASs with α-amyrin as the major product. It was concluded that a series of candidate genes, which might be involved in the biosynthetic pathway of triterpenoid saponins, were screened out from the transcriptome of I. asprella root. Further investigation of these candidate genes will provide insight into their actual functions in the triterpenoid saponins biosynthetic pathway in I. asprella.%目的:发掘与岗梅乌索烷型三萜皂苷生物合成相关的酶基因。方法:利用Illumina测序平台对岗梅根进行转录组测序,通过基因注释、同源分析、系统发生分析等生物信息学手段,发掘可能参与合成的单基因簇(Unigenes)。结果:在岗梅根转录组中发现了272条与萜类生物合成相关的Unigenes。这其中包括72条可能参与萜类生物合成上游途径的Unigenes,以及26条可能与三萜合成途径下游母核合成、氧化和糖基化相关的Unigenes。对其中部分Unigenes进行系统发生分析,进一步揭示了这些Unigenes与同源基因间的进化关系。利用酵母表达系统,鉴定了两个香树酯醇合酶IaAS1

  18. A simple biosynthetic pathway for large product generation from small substrate amounts

    International Nuclear Information System (INIS)

    A recently emerging discipline of synthetic biology has the aim of constructing new biosynthetic pathways with useful biological functions. A major application of these pathways is generating a large amount of the desired product. However, toxicity due to the possible presence of toxic precursors is one of the main problems for such production. We consider here the problem of generating a large amount of product from a potentially toxic substrate. To address this, we propose a simple biosynthetic pathway, which can be induced in order to produce a large number of the product molecules, by keeping the substrate amount at low levels. Surprisingly, we show that the large product generation crucially depends on fast non-specific degradation of the substrate molecules. We derive an optimal induction strategy, which allows as much as three orders of magnitude increase in the product amount through biologically realistic parameter values. We point to a recently discovered bacterial immune system (CRISPR/Cas in E. coli) as a putative example of the pathway analysed here. We also argue that the scheme proposed here can be used not only as a stand-alone pathway, but also as a strategy to produce a large amount of the desired molecules with small perturbations of endogenous biosynthetic pathways. (paper)

  19. A simple biosynthetic pathway for large product generation from small substrate amounts

    Science.gov (United States)

    Djordjevic, Marko; Djordjevic, Magdalena

    2012-10-01

    A recently emerging discipline of synthetic biology has the aim of constructing new biosynthetic pathways with useful biological functions. A major application of these pathways is generating a large amount of the desired product. However, toxicity due to the possible presence of toxic precursors is one of the main problems for such production. We consider here the problem of generating a large amount of product from a potentially toxic substrate. To address this, we propose a simple biosynthetic pathway, which can be induced in order to produce a large number of the product molecules, by keeping the substrate amount at low levels. Surprisingly, we show that the large product generation crucially depends on fast non-specific degradation of the substrate molecules. We derive an optimal induction strategy, which allows as much as three orders of magnitude increase in the product amount through biologically realistic parameter values. We point to a recently discovered bacterial immune system (CRISPR/Cas in E. coli) as a putative example of the pathway analysed here. We also argue that the scheme proposed here can be used not only as a stand-alone pathway, but also as a strategy to produce a large amount of the desired molecules with small perturbations of endogenous biosynthetic pathways.

  20. Betacyanin biosynthetic genes and enzymes are differentially induced by (abiotic stress in Amaranthus hypochondriacus.

    Directory of Open Access Journals (Sweden)

    Gabriela Casique-Arroyo

    Full Text Available An analysis of key genes and enzymes of the betacyanin biosynthetic pathway in Amaranthus hypochondriacus (Ah was performed. Complete cDNA sequence of Ah genes coding for cyclo-DOPA 5-O glucosyltransferase (AhcDOPA5-GT, two 4, 5-DOPA-extradiol-dioxygenase isoforms (AhDODA-1 and AhDODA-2, respectively, and a betanidin 5-O-glucosyltransferase (AhB5-GT, plus the partial sequence of an orthologue of the cytochrome P-450 R gene (CYP76AD1 were obtained. With the exception AhDODA-2, which had a closer phylogenetic relationship to DODA-like genes in anthocyanin-synthesizing plants, all genes analyzed closely resembled those reported in related Caryophyllales species. The measurement of basal gene expression levels, in addition to the DOPA oxidase tyrosinase (DOT activity, in different tissues of three Ah genotypes having contrasting pigmentation levels (green to red-purple was determined. Additional analyses were performed in Ah plants subjected to salt and drought stress and to two different insect herbivory regimes. Basal pigmentation accumulation in leaves, stems and roots of betacyanic plants correlated with higher expression levels of AhDODA-1 and AhB5-GT, whereas DOT activity levels coincided with pigment accumulation in stems and roots and with the acyanic nature of green plants, respectively, but not with pigmentation in leaves. Although the abiotic stress treatments tested produced changes in pigment levels in different tissues, pigment accumulation was the highest in leaves and stems of drought stressed betacyanic plants, respectively. However, tissue pigment accumulation in stressed Ah plants did not always correlate with betacyanin biosynthetic gene expression levels and/or DOT activity. This effect was tissue- and genotype-dependent, and further suggested that other unexamined factors were influencing pigment content in stressed Ah. The results obtained from the insect herbivory assays, particularly in acyanic plants, also support the

  1. Localization and interactions between Arabidopsis auxin biosynthetic enzymes in the TAA/YUC-dependent pathway.

    Science.gov (United States)

    Kriechbaumer, Verena; Botchway, Stanley W; Hawes, Chris

    2016-07-01

    The growth regulator auxin is involved in all key developmental processes in plants. A complex network of a multiplicity of potential biosynthetic pathways as well as transport, signalling plus conjugation and deconjugation lead to a complex and multifaceted system system for auxin function. This raises the question how such a system can be effectively organized and controlled. Here we report that a subset of auxin biosynthetic enzymes in the TAA/YUC route of auxin biosynthesis is localized to the endoplasmic reticulum (ER). ER microsomal fractions also contain a significant percentage of auxin biosynthetic activity. This could point toward a model of auxin function using ER membrane location and subcellular compartmentation for supplementary layers of regulation. Additionally we show specific protein-protein interactions between some of the enzymes in the TAA/YUC route of auxin biosynthesis. PMID:27208541

  2. Nonlinear Biosynthetic Gene Cluster Dose Effect on Penicillin Production by Penicillium chrysogenum

    NARCIS (Netherlands)

    Nijland, Jeroen G.; Ebbendorf, Bjorg; Woszczynska, Marta; Boer, Remon; Bovenberg, Roel A. L.; Driessen, Arnold J. M.

    2010-01-01

    Industrial penicillin production levels by the filamentous fungus Penicillium chrysogenum increased dramatically by classical strain improvement. High-yielding strains contain multiple copies of the penicillin biosynthetic gene cluster that encodes three key enzymes of the beta-lactam biosynthetic p

  3. Apicoplast Biosynthetic Pathways as Possible Targetsfor Combination Therapy of Malaria

    Institute of Scientific and Technical Information of China (English)

    Solomon Tesfaye; Bhanu Prakash; Prati Pal Singh

    2015-01-01

    The emergence of malaria parasite strains resistant to practically all the antimalarial drugs in clinical use is now making itnecessary to discover and develop both new antimalarial drugs and treatments. Recent advances in molecular techniques along withthe availability of genome sequence ofPlasmodiumfalciparum may provide a wide range of novel targets in metabolic pathways likeisoprenoid biosynthesis, fatty acid biosynthesis and heme biosynthesis in the apicoplast of Plasmodiurn. On the other hand, thecombination therapy approach (currently used to retard the selection of parasite strains resistant to individual components of acombination of drugs) has proved to be a success in the combination of sulphadoxine and pyrimethamine, which targets two differentsteps in the folate pathway of malaria parasite. However, after the success of this therapeutic combination, the efficacy of othercombinations of drugs which target different enzymes in a particular metabolic pathway has, apparently, not been reported. Therefore,herein, we review various drug targets so far discovered in apicoplast-related anabolic pathways, especially, with a sharper focus onthe possibility to target more than one enzyme at a time in a particular metabolic pathway of malaria parasites.

  4. Distribution of δ-aminolevulinic acid biosynthetic pathways among phototrophic and related bacteria

    International Nuclear Information System (INIS)

    Two biosynthetic pathways are known for the universal tetrapyrrole precursor, δ-aminolevulinic acid (ALA): condensation of glycine and succinyl-CoA to form ALA with the loss of C-1 of glycine as CO2, and conversion of the intact carbon skeleton of glutamate to ALA in a process requiring tRNAGlu, ATP, Mg2+, NADPH, and pyridoxal phosphate. The distribution of the two ALA biosynthetic pathways among various bacterial genera was determined, using cell-free extracts obtained from representative organisms. Evidence for the operation of the glutamate pathway was obtained by the measurement of RNase-sensitive label incorporation from glutamate into ALA using 3,4-[3H]glutamate and 1-[14C]glutamate as substrate. The glycine pathway was indicated by RNase-insensitive incorporation of level from 2-[14C]glycine into ALA. The distribution of the two pathways among the bacteria tested was in general agreement with their previously phylogenetic relationships and clearly indicates that the glutamate pathway is the more ancient process, whereas the glycine pathway probably evolved much later. The glutamate pathway is the more widely utilized one among bacteria, while the glycine pathway is apparently limited to the α subgroup of purple bacteria (including Rhodobacter, Rhodospirillum, and Rhizobium). E. coli was found ALA via the glutamate pathway. The ALA-requiring hemA mutant of E. coli was determined to lack the dehydrogenase activity that utilizes glutamyl-tRNA as a substrate

  5. Variability in mycotoxin biosynthetic genes and gene clusters in Fusarium and its implications for mycotoxin contamination of crops

    Science.gov (United States)

    The Fusarium metabolites fumonisins and trichothecenes are among the mycotoxins of greatest concern to food and feed safety worldwide. As with other fungal secondary metabolites, mycotoxin biosynthetic genes are often located adjacent to one another in gene clusters. Thus, fumonisin biosynthetic gen...

  6. Metabolic engineering of the purine biosynthetic pathway in Corynebacterium glutamicum results in increased intracellular pool sizes of IMP and hypoxanthine

    Directory of Open Access Journals (Sweden)

    Peifer Susanne

    2012-10-01

    Full Text Available Abstract Background Purine nucleotides exhibit various functions in cellular metabolism. Besides serving as building blocks for nucleic acid synthesis, they participate in signaling pathways and energy metabolism. Further, IMP and GMP represent industrially relevant biotechnological products used as flavor enhancing additives in food industry. Therefore, this work aimed towards the accumulation of IMP applying targeted genetic engineering of Corynebacterium glutamicum. Results Blocking of the degrading reactions towards AMP and GMP lead to a 45-fold increased intracellular IMP pool of 22 μmol gCDW-1. Deletion of the pgi gene encoding glucose 6-phosphate isomerase in combination with the deactivated AMP and GMP generating reactions, however, resulted in significantly decreased IMP pools (13 μmol gCDW-1. Targeted metabolite profiling of the purine biosynthetic pathway further revealed a metabolite shift towards the formation of the corresponding nucleobase hypoxanthine (102 μmol gCDW-1 derived from IMP degradation. Conclusions The purine biosynthetic pathway is strongly interconnected with various parts of the central metabolism and therefore tightly controlled. However, deleting degrading reactions from IMP to AMP and GMP significantly increased intracellular IMP levels. Due to the complexity of this pathway further degradation from IMP to the corresponding nucleobase drastically increased suggesting additional targets for future strain optimization.

  7. Differential involvement of indole-3-acetic acid biosynthetic pathways in pathogenicity and epiphytic fitness of Erwinia herbicola pv. gypsophilae.

    Science.gov (United States)

    Manulis, S; Haviv-Chesner, A; Brandl, M T; Lindow, S E; Barash, I

    1998-07-01

    Erwinia herbicola pv. gypsophilae (Ehg), which induces galls on Gypsophila paniculata, harbors two major pathways for indole-3-acetic acid (IAA) synthesis, the indole-3-acetamide (IAM) and indole-3-pyruvate (IPyA) routes, as well as cytokinin biosynthetic genes. Mutants were generated in which the various biosynthetic routes were disrupted separately or jointly in order to assess the contribution of IAA of various origins and cytokinins to pathogenicity and epiphytic fitness. Inactivation of the IAM pathway or cytokinin biosynthesis caused the largest reduction in gall size. Inactivation of the IPyA pathway caused a minor, nonsignificant decrease in pathogenicity. No further reduction in gall size was observed by the simultaneous inactivation of both IAA pathways only or in combination with that of cytokinin production. However, inactivation of the IPyA pathway caused a 14-fold reduction in the population of Ehg on bean plants. Inactivation of the IAM pathway or cytokinin production did not affect epiphytic fitness. While the apparent transcriptional activity of iaaM-inaZ fusion increased slightly in cells of Ehg on bean and gypsophila leaves, compared with that in culture, very high levels of induction were observed in cells injected into gypsophila stems. In contrast, moderate levels of induction of ipdC-inaZ in Ehg were observed on leaves of these plants and in gypsophila stems, when compared with that in culture. These results suggest that the IAM pathway is involved primarily in gall formation and support the main contribution of the IpyA pathway to the epiphytic fitness of this bacterial species. PMID:9650296

  8. R2R3 MYB transcription factors: key regulators of the flavonoid biosynthetic pathway in grapevine.

    Science.gov (United States)

    Czemmel, Stefan; Heppel, Simon C; Bogs, Jochen

    2012-06-01

    Flavonoids compose one of the most abundant and important subgroups of secondary metabolites with more than 6,000 compounds detected so far in higher plants. They are found in various compositions and concentrations in nearly all plant tissues. Besides the attraction of pollinators and dispersers to fruits and flowers, flavonoids also protect against a plethora of stresses including pathogen attack, wounding and UV irradiation. Flavonoid content and composition of fruits such as grapes, bilberries, strawberries and apples as well as food extracts such as green tea, wine and chocolate have been associated with fruit quality including taste, colour and health-promoting effects. To unravel the beneficial potentials of flavonoids on fruit quality, research has been focused recently on the molecular basis of flavonoid biosynthesis and regulation in economically important fruit-producing plants such as grapevine (Vitis vinifera L.). Transcription factors and genes encoding biosynthetic enzymes have been characterized, studies that set a benchmark for future research on the regulatory networks controlling flavonoid biosynthesis and diversity. This review summarizes recent advances in the knowledge of regulatory cascades involved in flavonoid biosynthesis in grapevine. Transcriptional regulation of flavonoid biosynthesis during berry development is highlighted, with a particular focus on MYB transcription factors as molecular clocks, key regulators and powerful biotechnological tools to identify novel pathway enzymes to optimize flavonoid content and composition in grapes. PMID:22307206

  9. Introduction of new carotenoids into the bacterial photosynthetic apparatus by combining the carotenoid biosynthetic pathways of Erwinia herbicola and Rhodobacter sphaeroides.

    OpenAIRE

    Hunter, C N; Hundle, B S; Hearst, J E; Lang, H.P.; Gardiner, A.T.; Takaichi, S; Cogdell, R. J.

    1994-01-01

    Carotenoids have two major functions in bacterial photosynthesis, photoprotection and accessory light harvesting. The genes encoding many carotenoid biosynthetic pathways have now been mapped and cloned in several different species, and the availability of cloned genes which encode the biosynthesis of carotenoids not found in the photosynthetic genus Rhodobacter opens up the possibility of introducing a wider range of foreign carotenoids into the bacterial photosynthetic apparatus than would ...

  10. 钝齿棒杆菌argR基因缺失株构建及其缺失对精氨酸生物合成途径相关基因转录水平的影响%Construction of Corynebacterium crenatum AS 1.542△argR and analysis of transcriptional levels of the related genes of arginine biosynthetic pathway

    Institute of Scientific and Technical Information of China (English)

    陈雪岚; 汤立; 焦海涛; 徐峰; 熊勇华

    2013-01-01

    [Objective] ArgR, coded by the argR gene from Corynebacterium crenatum AS 1. 542, acts as a negative regulator in arginine biosynthetic pathway. However, the effect of argR on transcriptional levels of the related biosynthetic genes has not been reported. Here, we constructed a deletion mutant of argR gene; C. Crenatum AS 1.542 △argR using marker-less knockout technology, and compared the changes of transcriptional levels of the arginine biosynthetic genes between the mutant strain and the wild-type strain. [Methods] We used marker-less knockout technology to construct C. Crenatum AS 1. 542△argR and analyzed the changes of the relate genes at the transcriptional level using real-time fluorescence quantitative PCR. [Results] C. Crenatum AS 1. 542△argR was successfully obtained and the transcriptional level of arginine biosynthetic genes in this mutant increased significantly with an average of about 162. 1 folds. [Conclusion] The arginine biosynthetic genes in C. Crenatum are clearly controlled by the negative regulator ArgR. However, the deletion of this regulator does not result in a clear change in arginine production in the bacteria.%[目的]钝齿棒杆菌AS 1.542中argR基因编码的蛋白ArgR在精氨酸生物合成途径中扮演负调控的角色,但其对相关基因在转录水平的影响还未见报道.因此,本课题组构建了钝齿棒杆菌argR基因缺失株,并在转录水平上比较野生株与缺失株精氨酸生物合成途径相关基因的变化.[方法]采用无痕敲除的方法构建了钝齿棒杆菌argR基因缺失株,并采用荧光定量PCR方法分析缺失株和野生株精氨酸生物合成途径相关基因在转录水平的变化.[结果]利用pK18mobsacB质粒中蔗糖致死基因sacB反向筛选标记及PCR方法成功筛选到钝齿棒杆菌argR基因缺失株;荧光定量PCR结果表明,argR基因缺失株精氨酸生物合成途径中相关基因在转录水平获得大量提高,平均约上调162.13倍.[结论]

  11. Hexosamine Biosynthetic Pathway Mutations Cause Neuromuscular Transmission Defect

    OpenAIRE

    Senderek, Jan; Müller, Juliane S.; Dusl, Marina; Strom, Tim M.; Guergueltcheva, Velina; Diepolder, Irmgard; Laval, Steven H.; Maxwell, Susan; Cossins, Judy; Krause, Sabine; Muelas, Nuria; Vilchez, Juan J.; Colomer, Jaume; Mallebrera, Cecilia Jimenez; Nascimento, Andres

    2011-01-01

    Neuromuscular junctions (NMJs) are synapses that transmit impulses from motor neurons to skeletal muscle fibers leading to muscle contraction. Study of hereditary disorders of neuromuscular transmission, termed congenital myasthenic syndromes (CMS), has helped elucidate fundamental processes influencing development and function of the nerve-muscle synapse. Using genetic linkage, we find 18 different biallelic mutations in the gene encoding glutamine-fructose-6-phosphate transaminase 1 (GFPT1)...

  12. Contribution of trehalose biosynthetic pathway to drought stress tolerance of Capparis ovata Desf.

    Science.gov (United States)

    Ilhan, S; Ozdemir, F; Bor, M

    2015-03-01

    Trehalose and the trehalose biosynthetic pathway are important contributors and regulators of stress responses in plants. Among recent findings for trehalose and its metabolism, the role of signalling in the regulation of growth and development and its potential for use as a storage energy source can be listed. The xerophytic plant Capparis ovata (caper) is well adapted to drought and high temperature stress in arid and semi-arid regions of the Mediterranean. The contribution of trehalose and the trehalose biosynthetic pathway to drought stress responses and tolerance in C. ovata are not known. We investigated the effects of PEG-mediated drought stress in caper plants and analysed physiological parameters and trehalose biosynthetic pathway components, trehalose-6-phosphate synthase (TPS), trehalose-6-phosphate phosphatase (TPP), trehalase activity, trehalose and proline content in drought stress-treated and untreated plants. Our results indicated that trehalose and the trehalose biosynthetic pathway contributed to drought stress tolerance of C. ovata. Overall growth and leaf water status were not dramatically affected by drought, as both high relative growth rate and relative water content were recorded even after 14 days of drought stress. Trehalose accumulation increased in parallel to induced TPS and TPP activities and decreased trehalase activity in caper plants on day 14. Constitutive trehalose levels were 28.75 to 74.75 μg·g·FW(-1) , and drought stress significantly induced trehalose accumulation (385.25 μg·g·FW(-1) on day 14) in leaves of caper. On day 14 of drought, proline levels were lower than on day 7. Under drought stress the discrepancy between trehalose and proline accumulation trends might result from the mode of action of these osmoprotectant molecules in C. ovata. PMID:25294040

  13. DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency

    OpenAIRE

    Benčina, Mojca; Hodnik, Vesna; Mori, Jerneja; Koprivnjak, Tomaž; Gaber, Rok; Tomšič, Nejc; Turnšek, Jernej; Lebar, Tina; Conrado, Robert J.; Jerala, Roman; Glavnik, Vesna; Avbelj, Monika; Vovk, Irena; Anderluh, Gregor

    2015-01-01

    Synthetic scaffolds that permit spatial and temporal organization of enzymes in living cells are a promising post-translational strategy for controlling the flow of information in both metabolic and signaling pathways. Here, we describe the use of plasmid DNA as a stable, robust and configurable scaffold for arranging biosynthetic enzymes in the cytoplasm of Escherichia coli. This involved conversion of individual enzymes into custom DNA-binding proteins by genetic fusion to zinc-finger domai...

  14. Mutagenesis as a Functional Genomics Platform for Pharmaceutical Alkaloid Biosynthetic Gene Discovery in Opium Poppy

    International Nuclear Information System (INIS)

    Opium poppy (Papaver somniferum) accumulates the analgesic benzyl-isoquinoline alkaloids morphine, codeine and thebaine, and remains one of the world's most important medicinal plants. The development of varieties that accumulate valuable compounds, such as thebaine and codeine, but not morphine precludes the illicit synthesis of heroin (O,O-diacetylmorphine) and has led to the establishment of alternative cash crops. Novel cDNAs encoding a growing number of biosynthetic enzymes have been isolated, and various -omics resources including EST databases and DNA microarray chips have been established. However, the full potential of functional genomics as a tool for gene discovery in opium poppy remains limited by the relative inefficiency of genetic transformation protocols, which also restricts the application of metabolic engineering for both experimental and commercial purposes. We are establishing an effective functional genomics initiative based on induced mutagenesis and recently developed reverse genetics methodology, such as TILLING (Targeting Induced Local Lesions IN Genomes), with the aim of identifying biosynthetic genes that can be used to engineer opium poppy for the production of copious levels of high-value pharmaceutical alkaloids. Mutagenesis involves the treatment of seeds with ethyl methane sulfonate (EMS) or by fast-neutron bombardment (FNB). In preliminary experiments with EMS-treated seeds, the screening of 1,250 independent M2 plants led to the isolation of four mutants that displayed two distinctly altered alkaloid profiles. Two lines accumulated the central pathway intermediate reticuline and relatively low levels of morphine, codeine and thebaine compared to wild-type plants. Two other lines showed the unusual accumulation in the latex of the antimicrobial alkaloid sanguinarine, which is the product of a branch pathway distinct from that leading to morphine. The present status of -omics resources and functional genomics platforms available to

  15. Mutagenesis as a functional genomics platform for pharmaceutical alkaloid biosynthetic gene discovery in opium poppy

    International Nuclear Information System (INIS)

    Opium poppy (Papaver somniferum) accumulates the analgesic alkaloids morphine, codeine and thebaine, and remains one of the world's most important medicinal plants. The development of varieties that accumulate valuable compounds, such as thebaine and codeine, but not morphine precludes the illicit synthesis of heroin (O,O-diacetylmorphine) and has created opportunities to establish alternative cash crops. Novel cDNAs encoding more than a dozen biosynthetic enzymes have been isolated, and substantial EST databases and DNA microarray chips have been established. The full potential of functional genomics as a tool for gene discovery in opium poppy remains limited by the relative inefficiency of genetic transformation protocols, which also restricts the application of metabolic engineering for both experimental and commercial purposes. We are establishing an effective functional genomics initiative based on induced mutagenesis and TILLING (Targeting Induced Local Lesions IN Genomes) and with the aim of identifying biosynthetic genes that can be used to engineer opium poppy to produce copious levels of high-value pharmaceutical alkaloids. Mutagenesis involves the treatment of seeds by fast-neutron bombardment (FNB) or with ethyl methane sulfonate (EMS). Mutagenized opium poppy plants are cultivated in a secure underground growth facility in partnership with a Canadian biotechnology company. In preliminary experiments with EMS-treated seeds, the screening of 1,250 independent M2 plants led to the isolation of four mutants that displayed two distinctly altered alkaloid profiles. Two lines accumulated the central pathway intermediate (S)- reticuline and only low levels of morphine, codeine and thebaine. Two other lines showed the unusual accumulation of the antimicrobial alkaloid sanguinarine, which is the product of a branch pathway distinct from that leading to morphine, in the latex. The present status of -omics resources and functional genomics platforms available to

  16. A re-evaluation of the archaeal membrane lipid biosynthetic pathway.

    Science.gov (United States)

    Villanueva, Laura; Damsté, Jaap S Sinninghe; Schouten, Stefan

    2014-06-01

    Archaea produce unique membrane lipids in which isoprenoid alkyl chains are bound to glycerol moieties via ether linkages. As cultured representatives of the Archaea have become increasingly available throughout the past decade, archaeal genomic and membrane lipid-composition data have also become available. In this Analysis article, we compare the amino acid sequences of the key enzymes of the archaeal ether-lipid biosynthesis pathway and critically evaluate past studies on the biochemical functions of these enzymes. We propose an alternative archaeal lipid biosynthetic pathway that is based on a 'multiple-key, multiple-lock' mechanism. PMID:24801941

  17. Two Cytochrome P450 Monooxygenases Catalyze Early Hydroxylation Steps in the Potato Steroid Glycoalkaloid Biosynthetic Pathway1[OPEN

    Science.gov (United States)

    Nakayasu, Masaru; Ohyama, Kiyoshi; Saito, Kazuki

    2016-01-01

    α-Solanine and α-chaconine, steroidal glycoalkaloids (SGAs) found in potato (Solanum tuberosum), are among the best-known secondary metabolites in food crops. At low concentrations in potato tubers, SGAs are distasteful; however, at high concentrations, SGAs are harmful to humans and animals. Here, we show that POTATO GLYCOALKALOID BIOSYNTHESIS1 (PGA1) and PGA2, two genes that encode cytochrome P450 monooxygenases (CYP72A208 and CYP72A188), are involved in the SGA biosynthetic pathway, respectively. The knockdown plants of either PGA1 or PGA2 contained very little SGA, yet vegetative growth and tuber production were not affected. Analyzing metabolites that accumulated in the plants and produced by in vitro enzyme assays revealed that PGA1 and PGA2 catalyzed the 26- and 22-hydroxylation steps, respectively, in the SGA biosynthetic pathway. The PGA-knockdown plants had two unique phenotypic characteristics: The plants were sterile and tubers of these knockdown plants did not sprout during storage. Functional analyses of PGA1 and PGA2 have provided clues for controlling both potato glycoalkaloid biosynthesis and tuber sprouting, two traits that can significantly impact potato breeding and the industry. PMID:27307258

  18. antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters.

    Science.gov (United States)

    Weber, Tilmann; Blin, Kai; Duddela, Srikanth; Krug, Daniel; Kim, Hyun Uk; Bruccoleri, Robert; Lee, Sang Yup; Fischbach, Michael A; Müller, Rolf; Wohlleben, Wolfgang; Breitling, Rainer; Takano, Eriko; Medema, Marnix H

    2015-07-01

    Microbial secondary metabolism constitutes a rich source of antibiotics, chemotherapeutics, insecticides and other high-value chemicals. Genome mining of gene clusters that encode the biosynthetic pathways for these metabolites has become a key methodology for novel compound discovery. In 2011, we introduced antiSMASH, a web server and stand-alone tool for the automatic genomic identification and analysis of biosynthetic gene clusters, available at http://antismash.secondarymetabolites.org. Here, we present version 3.0 of antiSMASH, which has undergone major improvements. A full integration of the recently published ClusterFinder algorithm now allows using this probabilistic algorithm to detect putative gene clusters of unknown types. Also, a new dereplication variant of the ClusterBlast module now identifies similarities of identified clusters to any of 1172 clusters with known end products. At the enzyme level, active sites of key biosynthetic enzymes are now pinpointed through a curated pattern-matching procedure and Enzyme Commission numbers are assigned to functionally classify all enzyme-coding genes. Additionally, chemical structure prediction has been improved by incorporating polyketide reduction states. Finally, in order for users to be able to organize and analyze multiple antiSMASH outputs in a private setting, a new XML output module allows offline editing of antiSMASH annotations within the Geneious software. PMID:25948579

  19. Genome mining of astaxanthin biosynthetic genes from Sphingomonas sp. ATCC 55669 for heterologous overproduction in Escherichia coli.

    Science.gov (United States)

    Ma, Tian; Zhou, Yuanjie; Li, Xiaowei; Zhu, Fayin; Cheng, Yongbo; Liu, Yi; Deng, Zixin; Liu, Tiangang

    2016-02-01

    As a highly valued keto-carotenoid, astaxanthin is widely used in nutritional supplements and pharmaceuticals. Therefore, the demand for biosynthetic astaxanthin and improved efficiency of astaxanthin biosynthesis has driven the investigation of metabolic engineering of native astaxanthin producers and heterologous hosts. However, microbial resources for astaxanthin are limited. In this study, we found that the α-Proteobacterium Sphingomonas sp. ATCC 55669 could produce astaxanthin naturally. We used whole-genome sequencing to identify the astaxanthin biosynthetic pathway using a combined PacBio-Illumina approach. The putative astaxanthin biosynthetic pathway in Sphingomonas sp. ATCC 55669 was predicted. For further confirmation, a high-efficiency targeted engineering carotenoid synthesis platform was constructed in E. coli for identifying the functional roles of candidate genes. All genes involved in astaxanthin biosynthesis showed discrete distributions on the chromosome. Moreover, the overexpression of exogenous E. coli idi in Sphingomonas sp. ATCC 55669 increased astaxanthin production by 5.4-fold. This study described a new astaxanthin producer and provided more biosynthesis components for bioengineering of astaxanthin in the future. PMID:26580858

  20. Global regulation of nucleotide biosynthetic genes by c-Myc.

    Directory of Open Access Journals (Sweden)

    Yen-Chun Liu

    Full Text Available BACKGROUND: The c-Myc transcription factor is a master regulator and integrates cell proliferation, cell growth and metabolism through activating thousands of target genes. Our identification of direct c-Myc target genes by chromatin immunoprecipitation (ChIP coupled with pair-end ditag sequencing analysis (ChIP-PET revealed that nucleotide metabolic genes are enriched among c-Myc targets, but the role of Myc in regulating nucleotide metabolic genes has not been comprehensively delineated. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report that the majority of genes in human purine and pyrimidine biosynthesis pathway were induced and directly bound by c-Myc in the P493-6 human Burkitt's lymphoma model cell line. The majority of these genes were also responsive to the ligand-activated Myc-estrogen receptor fusion protein, Myc-ER, in a Myc null rat fibroblast cell line, HO.15 MYC-ER. Furthermore, these targets are also responsive to Myc activation in transgenic mouse livers in vivo. To determine the functional significance of c-Myc regulation of nucleotide metabolism, we sought to determine the effect of loss of function of direct Myc targets inosine monophosphate dehydrogenases (IMPDH1 and IMPDH2 on c-Myc-induced cell growth and proliferation. In this regard, we used a specific IMPDH inhibitor mycophenolic acid (MPA and found that MPA dramatically inhibits c-Myc-induced P493-6 cell proliferation through S-phase arrest and apoptosis. CONCLUSIONS/SIGNIFICANCE: Taken together, these results demonstrate the direct induction of nucleotide metabolic genes by c-Myc in multiple systems. Our finding of an S-phase arrest in cells with diminished IMPDH activity suggests that nucleotide pool balance is essential for c-Myc's orchestration of DNA replication, such that uncoupling of these two processes create DNA replication stress and apoptosis.

  1. Narrow-spectrum inhibitors targeting an alternative menaquinone biosynthetic pathway of Helicobacter pylori.

    Science.gov (United States)

    Yamamoto, Tsuyoshi; Matsui, Hidenori; Yamaji, Kenzaburo; Takahashi, Tetsufumi; Øverby, Anders; Nakamura, Masahiko; Matsumoto, Atsuko; Nonaka, Kenichi; Sunazuka, Toshiaki; Ōmura, Satoshi; Nakano, Hirofumi

    2016-09-01

    We aimed to identify narrow-spectrum natural compounds that specifically inhibit an alternative menaquinone (MK; vitamin K2) biosynthetic pathway (the futalosine pathway) of Helicobacter pylori. Culture broth samples of 6183 microbes were examined using the paper disc method with different combinations of 2 of the following 3 indicator microorganisms: Bacillus halodurans C-125 and Kitasatospora setae KM-6054(T), which have only the futalosine pathway of MK biosynthesis, and Bacillus subtilis H17, which has only the canonical MK biosynthetic pathway. Most of the active compounds isolated from culture broth samples were from the families of polyunsaturated fatty acids (PUFAs). Only one compound isolated from the culture broth of Streptomyces sp. K12-1112, siamycin I (a 21-residue lasso peptide antibiotic), targeted the futalosine pathway. The inhibitory activities of representative PUFAs and siamycin I against the growth of B. halodurans or K. setae were abrogated by supplementation with MK. Thereafter, the growth of H. pylori strains SS1 and TN2GF4 in broth cultures was dose-dependently suppressed by eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or siamycin I, and these inhibitory effects were reduced by supplementation with MK. Daily administration of EPA (100 μM), DHA (100 μM), or siamycin I (2.5 μM) in drinking water reduced the H. pylori SS1 colonization in the gastric mucosa of C57BL/6 mice by 96%, 78%, and 68%, respectively. These data suggest that EPA, DHA, and siamycin I prevented H. pylori infection by inhibiting the futalosine pathway of MK biosynthesis. PMID:27346378

  2. Generation of the natamycin analogs by gene engineering of natamycin biosynthetic genes in Streptomyces chattanoogensis L10.

    Science.gov (United States)

    Liu, Shui-Ping; Yuan, Peng-Hui; Wang, Yue-Yue; Liu, Xiao-Fang; Zhou, Zhen-Xing; Bu, Qing-ting; Yu, Pin; Jiang, Hui; Li, Yong-Quan

    2015-04-01

    The polyene antibiotic natamycin is widely used as an antifungal agent in both human therapy and the food industry. Here we obtained four natamycin analogs with high titers, including two new compounds, by engineering of six post-polyketide synthase (PKS) tailoring enzyme encoding genes in a natamycin industrial producing strain, Streptomyces chattanoogensis L10. Precise analysis of S. chattanoogensis L10 culture identified natamycin and two natamycin analogs, 4,5-deepoxy-natamycin and 4,5-deepoxy-natamycinolide. The scnD deletion mutant of S. chattanoogensis L10 did not produce natamycin but increased the titer of 4,5-deepoxy-natamycin. Inactivation of each of scnK, scnC, and scnJ in S. chattanoogensis L10 abolished natamycin production and accumulated 4,5-deepoxy-natamycinolide. Deletion of scnG in S. chattanoogensis L10 resulted in production of two new compounds, 4,5-deepoxy-12-decarboxyl-12-methyl-natamycin and its dehydration product without natamycin production. Inactivation of the ScnG-associated ferredoxin ScnF resulted in impaired production of natamycin. Bioassay of these natamycin analogs showed that three natamycin analogs remained antifungal activities. We found that homologous glycosyltransferases genes including amphDI and nysDI can partly complement the ΔscnK mutant. Our results here also support that ScnG, ScnK, and ScnD catalyze carboxylation, glycosylation, and epoxidation in turn in the natamycin biosynthetic pathway. Thus this paper provided a method to generate natamycin analogs and shed light on the natamycin biosynthetic pathway. PMID:25801968

  3. Butenyl-spinosyns, a natural example of genetic engineering of antibiotic biosynthetic genes.

    Science.gov (United States)

    Hahn, Donald R; Gustafson, Gary; Waldron, Clive; Bullard, Brian; Jackson, James D; Mitchell, Jon

    2006-02-01

    Spinosyns, a novel class of insect active macrolides produced by Saccharopolyspora spinosa, are used for insect control in a number of commercial crops. Recently, a new class of spinosyns was discovered from S. pogona NRRL 30141. The butenyl-spinosyns, also called pogonins, are very similar to spinosyns, differing in the length of the side chain at C-21 and in the variety of novel minor factors. The butenyl-spinosyn biosynthetic genes (bus) were cloned on four cosmids covering a contiguous 110-kb region of the NRRL 30141 chromosome. Their function in butenyl-spinosyn biosynthesis was confirmed by a loss-of-function deletion, and subsequent complementation by cloned genes. The coding sequences of the butenyl-spinosyn biosynthetic genes and the spinosyn biosynthetic genes from S. spinosa were highly conserved. In particular, the PKS-coding genes from S. spinosa and S. pogona have 91-94% nucleic acid identity, with one notable exception. The butenyl-spinosyn gene sequence codes for one additional PKS module, which is responsible for the additional two carbons in the C-21 tail. The DNA sequence of spinosyn genes in this region suggested that the S. spinosa spnA gene could have been the result of an in-frame deletion of the S. pogona busA gene. Therefore, the butenyl-spinosyn genes represent the putative parental gene structure that was naturally engineered by deletion to create the spinosyn genes. PMID:16179985

  4. Alterations in the heme biosynthetic pathway as an index of exposure to toxins

    Energy Technology Data Exchange (ETDEWEB)

    Marks, G.S.; Zelt, D.T.; Cole, S.P.

    1982-07-01

    Under normal circumstances the heme biosynthetic pathway is carefully controlled and porphyrins are formed in only trace amounts. When control mechanisms are disturbed by xenobiotics, porphyrins may be formed and serve as a signal of the interaction between a xenobiotic and the heme biosynthetic pathway. For example, porphyrinuria was an early manifestation of a hexachlorobenzene-induced porphyria outbreak in Turkey. In humans exposed to polybrominated biphenyls and to 2,3,7,8-tetrachlorodibenzo-p-dioxin the urinary porphyrin pattern was significantly different from normal in a large number of exposed individuals. The question is raised whether measurement of urinary porphyrin profiles by improved methods will enable an estimate to be made of the extent of exposure to haloaromatic hydrocarbons in the human population. A wide variety of xenobiotics interact with the prosthetic heme of cytochrome P-450 forming novel N-alkylporphyrins. Identification of these N-alkylporphyrins in body fluids might provide a means of assessing exposure to a variety of xenobiotics in human populations.

  5. Indole-3-acetic acid in Fusarium graminearum: Identification of biosynthetic pathways and characterization of physiological effects.

    Science.gov (United States)

    Luo, Kun; Rocheleau, Hélène; Qi, Peng-Fei; Zheng, You-Liang; Zhao, Hui-Yan; Ouellet, Thérèse

    2016-09-01

    Fusarium graminearum is a devastating pathogenic fungus causing fusarium head blight (FHB) of wheat. This fungus can produce indole-3-acetic acid (IAA) and a very large amount of IAA accumulates in wheat head tissues during the first few days of infection by F. graminearum. Using liquid culture conditions, we have determined that F. graminearum can use tryptamine (TAM) and indole-3-acetonitrile (IAN) as biosynthetic intermediates to produce IAA. It is the first time that F. graminearum is shown to use the l-tryptophan-dependent TAM and IAN pathways rather than the indole-3-acetamide or indole-3-pyruvic acid pathways to produce IAA. Our experiments also showed that exogenous IAA was metabolized by F. graminearum. Exogenous IAA, TAM, and IAN inhibited mycelial growth; IAA and IAN also affected the hyphae branching pattern and delayed macroconidium germination. IAA and TAM had a small positive effect on the production of the mycotoxin 15-ADON while IAN inhibited its production. Our results showed that IAA and biosynthetic intermediates had a significant effect on F. graminearum physiology and suggested a new area of exploration for fungicidal compounds. PMID:27567719

  6. A cell-free framework for rapid biosynthetic pathway prototyping and enzyme discovery.

    Science.gov (United States)

    Karim, Ashty S; Jewett, Michael C

    2016-07-01

    Speeding up design-build-test (DBT) cycles is a fundamental challenge facing biochemical engineering. To address this challenge, we report a new cell-free protein synthesis driven metabolic engineering (CFPS-ME) framework for rapid biosynthetic pathway prototyping. In our framework, cell-free cocktails for synthesizing target small molecules are assembled in a mix-and-match fashion from crude cell lysates either containing selectively enriched pathway enzymes from heterologous overexpression or directly producing pathway enzymes in lysates by CFPS. As a model, we apply our approach to n-butanol biosynthesis showing that Escherichia coli lysates support a highly active 17-step CoA-dependent n-butanol pathway in vitro. The elevated degree of flexibility in the cell-free environment allows us to manipulate physiochemical conditions, access enzymatic nodes, discover new enzymes, and prototype enzyme sets with linear DNA templates to study pathway performance. We anticipate that CFPS-ME will facilitate efforts to define, manipulate, and understand metabolic pathways for accelerated DBT cycles without the need to reengineer organisms. PMID:26996382

  7. Accumulation of Kaempferitrin and Expression of Phenyl-Propanoid Biosynthetic Genes in Kenaf (Hibiscus cannabinus

    Directory of Open Access Journals (Sweden)

    Shicheng Zhao

    2014-10-01

    Full Text Available Kenaf (Hibiscus cannabinus is cultivated worldwide for its fiber; however, the medicinal properties of this plant are currently attracting increasing attention. In this study, we investigated the expression levels of genes involved in the biosynthesis of kaempferitrin, a compound with many biological functions, in different kenaf organs. We found that phenylalanine ammonia lyase (HcPAL was more highly expressed in stems than in other organs. Expression levels of cinnamate 4-hydroxylase (HcC4H and 4-coumarate-CoA ligase (Hc4CL were highest in mature leaves, followed by stems and young leaves, and lowest in roots and mature flowers. The expression of chalcone synthase (HcCHS, chalcone isomerase (HcCHI, and flavone 3-hydroxylase (HcF3H was highest in young flowers, whereas that of flavone synthase (HcFLS was highest in leaves. An analysis of kaempferitrin accumulation in the different organs of kenaf revealed that the accumulation of this compound was considerably higher (>10-fold in leaves than in other organs. On the basis of a comparison of kaempferitrin contents with the expression levels of different genes in different organs, we speculate that HcFLS plays an important regulatory role in the kaempferitrin biosynthetic pathway in kenaf.

  8. Design-based re-engineering of biosynthetic gene clusters: plug-and-play in practice

    OpenAIRE

    Frasch, Hans-Jörg; Medema, Marnix H.; Takano, Eriko; Breitling, Rainer; Gago, Federico; Parayil, Ajikumar

    2013-01-01

    Synthetic biology is revolutionizing the way in which the biosphere is explored for natural products. Through computational genome mining, thousands of biosynthetic gene clusters are being identified in microbial genomes, which constitute a rich source of potential novel pharmaceuticals. New methods are currently being devised to prioritize these gene clusters in terms of their potential for yielding biochemical novelty. High-potential gene clusters from any biological source can then be acti...

  9. Sequencing, physical organization and kinetic expression of the patulin biosynthetic gene cluster from Penicillium expansum

    International Nuclear Information System (INIS)

    Patulin is a polyketide-derived mycotoxin produced by numerous filamentous fungi. Among them, Penicillium expansum is by far the most problematic species. This fungus is a destructive phytopathogen capable of growing on fruit, provoking the blue mold decay of apples and producing significant amounts of patulin. The biosynthetic pathway of this mycotoxin is chemically well-characterized, but its genetic bases remain largely unknown with only few characterized genes in less economic relevant species. The present study consisted of the identification and positional organization of the patulin gene cluster in P. expansum strain NRRL 35695. Several amplification reactions were performed with degenerative primers that were designed based on sequences from the orthologous genes available in other species. An improved genome Walking approach was used in order to sequence the remaining adjacent genes of the cluster. RACE-PCR was also carried out from mRNAs to determine the start and stop codons of the coding sequences. The patulin gene cluster in P. expansum consists of 15 genes in the following order: patH, patG, patF, patE, patD, patC, patB, patA, patM, patN, patO, patL, patI, patJ, and patK. These genes share 60–70% of identity with orthologous genes grouped differently, within a putative patulin cluster described in a non-producing strain of Aspergillus clavatus. The kinetics of patulin cluster genes expression was studied under patulin-permissive conditions (natural apple-based medium) and patulin-restrictive conditions (Eagle's minimal essential medium), and demonstrated a significant association between gene expression and patulin production. In conclusion, the sequence of the patulin cluster in P. expansum constitutes a key step for a better understanding of themechanisms leading to patulin production in this fungus. It will allow the role of each gene to be elucidated, and help to define strategies to reduce patulin production in apple-based products

  10. Insights into the evolution of macrolactam biosynthesis through cloning and comparative analysis of the biosynthetic gene cluster for a novel macrocyclic lactam, ML-449.

    Science.gov (United States)

    Jørgensen, Hanne; Degnes, Kristin F; Dikiy, Alexander; Fjaervik, Espen; Klinkenberg, Geir; Zotchev, Sergey B

    2010-01-01

    A new compound, designated ML-449, structurally similar to the known 20-membered macrolactam BE-14106, was isolated from a marine sediment-derived Streptomyces sp. Cloning and sequencing of the 83-kb ML-449 biosynthetic gene cluster revealed its high level of similarity to the BE-14106 gene cluster. Comparison of the respective biosynthetic pathways indicated that the difference in the compounds' structures stems from the incorporation of one extra acetate unit during the synthesis of the acyl side chain. A phylogenetic analysis of the beta-ketosynthase (KS) domains from polyketide synthases involved in the biosynthesis of macrolactams pointed to a common ancestry for the two clusters. Furthermore, the analysis demonstrated the formation of a macrolactam-specific subclade for the majority of the KS domains from several macrolactam-biosynthetic gene clusters, indicating a closer relationship between macrolactam clusters than with the macrolactone clusters included in the analysis. Some KS domains from the ML-449, BE-14106, and salinilactam gene clusters did, however, show a closer relationship with KS domains from the polyene macrolide clusters, suggesting potential acquisition rather than duplication of certain PKS genes. Comparison of the ML-449, BE-14106, vicenistatin, and salinilactam biosynthetic gene clusters indicated an evolutionary relationship between them and provided new insights into the processes governing the evolution of small-ring macrolactam biosynthesis. PMID:19854930

  11. Insights into the Evolution of Macrolactam Biosynthesis through Cloning and Comparative Analysis of the Biosynthetic Gene Cluster for a Novel Macrocyclic Lactam, ML-449 ▿ †

    Science.gov (United States)

    Jørgensen, Hanne; Degnes, Kristin F.; Dikiy, Alexander; Fjærvik, Espen; Klinkenberg, Geir; Zotchev, Sergey B.

    2010-01-01

    A new compound, designated ML-449, structurally similar to the known 20-membered macrolactam BE-14106, was isolated from a marine sediment-derived Streptomyces sp. Cloning and sequencing of the 83-kb ML-449 biosynthetic gene cluster revealed its high level of similarity to the BE-14106 gene cluster. Comparison of the respective biosynthetic pathways indicated that the difference in the compounds' structures stems from the incorporation of one extra acetate unit during the synthesis of the acyl side chain. A phylogenetic analysis of the β-ketosynthase (KS) domains from polyketide synthases involved in the biosynthesis of macrolactams pointed to a common ancestry for the two clusters. Furthermore, the analysis demonstrated the formation of a macrolactam-specific subclade for the majority of the KS domains from several macrolactam-biosynthetic gene clusters, indicating a closer relationship between macrolactam clusters than with the macrolactone clusters included in the analysis. Some KS domains from the ML-449, BE-14106, and salinilactam gene clusters did, however, show a closer relationship with KS domains from the polyene macrolide clusters, suggesting potential acquisition rather than duplication of certain PKS genes. Comparison of the ML-449, BE-14106, vicenistatin, and salinilactam biosynthetic gene clusters indicated an evolutionary relationship between them and provided new insights into the processes governing the evolution of small-ring macrolactam biosynthesis. PMID:19854930

  12. Design-based re-engineering of biosynthetic gene clusters : plug-and-play in practice

    NARCIS (Netherlands)

    Frasch, Hans-Jörg; Medema, Marnix H.; Takano, Eriko; Breitling, Rainer; Gago, Federico; Parayil, Ajikumar

    2013-01-01

    Synthetic biology is revolutionizing the way in which the biosphere is explored for natural products. Through computational genome mining, thousands of biosynthetic gene clusters are being identified in microbial genomes, which constitute a rich source of potential novel pharmaceuticals. New methods

  13. Cloning and characterization of the goadsporin biosynthetic gene cluster from Streptomyces sp. TP-A0584.

    Science.gov (United States)

    Onaka, Hiroyasu; Nakaho, Mizuho; Hayashi, Keiko; Igarashi, Yasuhiro; Furumai, Tamotsu

    2005-12-01

    The biosynthetic gene cluster of goadsporin, a polypeptide antibiotic containing thiazole and oxazole rings, was cloned from Streptomyces sp. TP-A0584. The cluster contains a structural gene, godA, and nine god (goadsporin) genes involved in post-translational modification, immunity and transcriptional regulation. Although the gene organization is similar to typical bacteriocin biosynthetic gene clusters, each goadsporin biosynthetic gene shows low homology to these genes. Goadsporin biosynthesis is initiated by the translation of godA, and the subsequent cyclization, dehydration and acetylation are probably catalysed by godD, godE, godF, godG and godH gene products. godI shows high similarity to the 54 kDa subunit of the signal recognition particle and plays an important role in goadsporin immunity. Furthermore, four goadsporin analogues were produced by site-directed mutagenesis of godA, suggesting that this biosynthesis machinery is used for the heterocyclization of peptides. PMID:16339937

  14. Genome mining of the sordarin biosynthetic gene cluster from Sordaria araneosa Cain ATCC 36386: characterization of cycloaraneosene synthase and GDP-6-deoxyaltrose transferase.

    Science.gov (United States)

    Kudo, Fumitaka; Matsuura, Yasunori; Hayashi, Takaaki; Fukushima, Masayuki; Eguchi, Tadashi

    2016-07-01

    Sordarin is a glycoside antibiotic with a unique tetracyclic diterpene aglycone structure called sordaricin. To understand its intriguing biosynthetic pathway that may include a Diels-Alder-type [4+2]cycloaddition, genome mining of the gene cluster from the draft genome sequence of the producer strain, Sordaria araneosa Cain ATCC 36386, was carried out. A contiguous 67 kb gene cluster consisting of 20 open reading frames encoding a putative diterpene cyclase, a glycosyltransferase, a type I polyketide synthase, and six cytochrome P450 monooxygenases were identified. In vitro enzymatic analysis of the putative diterpene cyclase SdnA showed that it catalyzes the transformation of geranylgeranyl diphosphate to cycloaraneosene, a known biosynthetic intermediate of sordarin. Furthermore, a putative glycosyltransferase SdnJ was found to catalyze the glycosylation of sordaricin in the presence of GDP-6-deoxy-d-altrose to give 4'-O-demethylsordarin. These results suggest that the identified sdn gene cluster is responsible for the biosynthesis of sordarin. Based on the isolated potential biosynthetic intermediates and bioinformatics analysis, a plausible biosynthetic pathway for sordarin is proposed. PMID:27072286

  15. Phylogenomic Analysis of Natural Products Biosynthetic Gene Clusters Allows Discovery of Arseno-Organic Metabolites in Model Streptomycetes

    Science.gov (United States)

    Cruz-Morales, Pablo; Kopp, Johannes Florian; Martínez-Guerrero, Christian; Yáñez-Guerra, Luis Alfonso; Selem-Mojica, Nelly; Ramos-Aboites, Hilda; Feldmann, Jörg; Barona-Gómez, Francisco

    2016-01-01

    Natural products from microbes have provided humans with beneficial antibiotics for millennia. However, a decline in the pace of antibiotic discovery exerts pressure on human health as antibiotic resistance spreads, a challenge that may better faced by unveiling chemical diversity produced by microbes. Current microbial genome mining approaches have revitalized research into antibiotics, but the empirical nature of these methods limits the chemical space that is explored. Here, we address the problem of finding novel pathways by incorporating evolutionary principles into genome mining. We recapitulated the evolutionary history of twenty-three enzyme families previously uninvestigated in the context of natural product biosynthesis in Actinobacteria, the most proficient producers of natural products. Our genome evolutionary analyses where based on the assumption that expanded—repurposed enzyme families—from central metabolism, occur frequently and thus have the potential to catalyze new conversions in the context of natural products biosynthesis. Our analyses led to the discovery of biosynthetic gene clusters coding for hidden chemical diversity, as validated by comparing our predictions with those from state-of-the-art genome mining tools; as well as experimentally demonstrating the existence of a biosynthetic pathway for arseno-organic metabolites in Streptomyces coelicolor and Streptomyces lividans, Using a gene knockout and metabolite profile combined strategy. As our approach does not rely solely on sequence similarity searches of previously identified biosynthetic enzymes, these results establish the basis for the development of an evolutionary-driven genome mining tool termed EvoMining that complements current platforms. We anticipate that by doing so real ‘chemical dark matter’ will be unveiled. PMID:27289100

  16. Phylogenomic Analysis of Natural Products Biosynthetic Gene Clusters Allows Discovery of Arseno-Organic Metabolites in Model Streptomycetes.

    Science.gov (United States)

    Cruz-Morales, Pablo; Kopp, Johannes Florian; Martínez-Guerrero, Christian; Yáñez-Guerra, Luis Alfonso; Selem-Mojica, Nelly; Ramos-Aboites, Hilda; Feldmann, Jörg; Barona-Gómez, Francisco

    2016-01-01

    Natural products from microbes have provided humans with beneficial antibiotics for millennia. However, a decline in the pace of antibiotic discovery exerts pressure on human health as antibiotic resistance spreads, a challenge that may better faced by unveiling chemical diversity produced by microbes. Current microbial genome mining approaches have revitalized research into antibiotics, but the empirical nature of these methods limits the chemical space that is explored.Here, we address the problem of finding novel pathways by incorporating evolutionary principles into genome mining. We recapitulated the evolutionary history of twenty-three enzyme families previously uninvestigated in the context of natural product biosynthesis in Actinobacteria, the most proficient producers of natural products. Our genome evolutionary analyses where based on the assumption that expanded-repurposed enzyme families-from central metabolism, occur frequently and thus have the potential to catalyze new conversions in the context of natural products biosynthesis. Our analyses led to the discovery of biosynthetic gene clusters coding for hidden chemical diversity, as validated by comparing our predictions with those from state-of-the-art genome mining tools; as well as experimentally demonstrating the existence of a biosynthetic pathway for arseno-organic metabolites in Streptomyces coelicolor and Streptomyces lividans, Using a gene knockout and metabolite profile combined strategy.As our approach does not rely solely on sequence similarity searches of previously identified biosynthetic enzymes, these results establish the basis for the development of an evolutionary-driven genome mining tool termed EvoMining that complements current platforms. We anticipate that by doing so real 'chemical dark matter' will be unveiled. PMID:27289100

  17. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae (on linr)

    NARCIS (Netherlands)

    Wang, Kui-Lin; Bolitho, Karen; Grafton, Karryn; Kortstee, A.J.; Karunairetnam, Sakuntala; McGhie, T.K.; Espley, R.V.; Hellens, R.P.; Allan, A.C.

    2010-01-01

    Background - The control of plant anthocyanin accumulation is via transcriptional regulation of the genes encoding the biosynthetic enzymes. A key activator appears to be an R2R3 MYB transcription factor. In apple fruit, skin anthocyanin levels are controlled by a gene called MYBA or MYB1, while the

  18. Complete set of glycosyltransferase structures in the calicheamicin biosynthetic pathway reveals the origin of regiospecificity

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Aram; Singh, Shanteri; Helmich, Kate E.; Goff, Randal D.; Bingman, Craig A.; Thorson, Jon S.; Phillips, Jr., George N. (UW)

    2012-03-15

    Glycosyltransferases are useful synthetic catalysts for generating natural products with sugar moieties. Although several natural product glycosyltransferase structures have been reported, design principles of glycosyltransferase engineering for the generation of glycodiversified natural products has fallen short of its promise, partly due to a lack of understanding of the relationship between structure and function. Here, we report structures of all four calicheamicin glycosyltransferases (CalG1, CalG2, CalG3, and CalG4), whose catalytic functions are clearly regiospecific. Comparison of these four structures reveals a conserved sugar donor binding motif and the principles of acceptor binding region reshaping. Among them, CalG2 possesses a unique catalytic motif for glycosylation of hydroxylamine. Multiple glycosyltransferase structures in a single natural product biosynthetic pathway are a valuable resource for understanding regiospecific reactions and substrate selectivities and will help future glycosyltransferase engineering.

  19. Elucidation of the Vanillin Biosynthetic Pathway in Vanilla planifolia

    DEFF Research Database (Denmark)

    Gallage, Nethaji Janeshawari

    harvested pods are processed by curing to stop the natural vegetative process and to initiate the enzymes that are responsible for the formation of the well-known aromatic flavour constituents. Vanillin (3-methoxy-4-hydroxybenzaldehyde) is the main flavour component of vanilla extract from cured vanilla...... pods. As vanillin is toxic to living organisms in high concentrations, vanilla plants store vanillin almost entirely as the glucose conjugated form, vanillin-β-D-glucoside. The highest concentration of vanillin glucoside is localized in the inner part of the pod including mesocarp and placenta 6 months...... after the pollination. Subcellular localization of vanillin and its glucoside was speculated to be in the vacuole. Despite the popularity of the flavour, the vanillin biosynthetic pathway has remained elusive, presumably due to lack of genetic and genomic resources during past few decades. The research...

  20. Hydroxycinnamic acid functional ingredients and their biosynthetic genes in tubers of Solanum tuberosum Group Phureja

    Directory of Open Access Journals (Sweden)

    Liyao Ji

    2016-12-01

    Full Text Available Potato is an ideal candidate for the delivery of functional ingredients due to its high worldwide consumption. The metabolites in cooked tubers of eight diploid potato genotypes from Colombia were explored. Potato tubers were harvested, cooked,lyophilized, and then stored at −80°C. Metabolites were extracted from flesh samples and analyzed using liquid chromatography and high-resolution mass spectrometry. A total of 294 metabolites were putatively identified, of which 87 metabolites were associated with health-benefiting roles for humans, such as anticancer and anti-inflammatory properties. Two metabolites, chlorogenic acid and N-Feruloyltyramine were detected in high abundance and were mapped on to the potato metabolic pathways to predict the related biosynthetic enzymes: hydroxycinnamoyl-CoA quinate transferase (HQT and tyramine hydroxycinnamoyl transferase (THT, respectively. The coding genes of these enzymes identified nonsynonymous single-nucleotide polymorphisms (nsSNPs in AC09, AC64, and Russet Burbank, with the highest enzyme stability found in AC09. This is consistent with the highest presence of hydroxycinnamic acids in the AC09 genotype. The metabolites detected at high fold change, their functional ingredient properties, and their enhancement through breeding to improve health of the indigenous communities’ of Colombia are discussed.

  1. Cloning, sequencing and characterization of the biosynthetic gene cluster of sanglifehrin A, a potent cyclophilin inhibitor.

    Science.gov (United States)

    Qu, Xudong; Jiang, Nan; Xu, Fei; Shao, Lei; Tang, Gongli; Wilkinson, Barrie; Liu, Wen

    2011-03-01

    Sanglifehrin A (SFA), a potent cyclophilin inhibitor produced by Streptomyces flaveolus DSM 9954, bears a unique [5.5] spirolactam moiety conjugated with a 22-membered, highly functionalized macrolide through a linear carbon chain. SFA displays a diverse range of biological activities and offers significant therapeutic potential. However, the structural complexity of SFA poses a tremendous challenge for new analogue development via chemical synthesis. Based on a rational prediction of its biosynthetic origin, herein we report the cloning, sequencing and characterization of the gene cluster responsible for SFA biosynthesis. Analysis of the 92 776 bp contiguous DNA region reveals a mixed polyketide synthase (PKS)/non-ribosomal peptide synthetase (NRPS) pathway which includes a variety of unique features for unusual PKS and NRPS building block formation. Our findings suggest that SFA biosynthesis requires a crotonyl-CoA reductase/carboxylase (CCR) for generation of the putative unusual PKS starter unit (2R)-2-ethylmalonamyl-CoA, an iterative type I PKS for the putative atypical extender unit (2S)-2-(2-oxo-butyl)malonyl-CoA and a phenylalanine hydroxylase for the NRPS extender unit (2S)-m-tyrosine. A spontaneous ketalization of significant note, may trigger spirolactam formation in a stereo-selective manner. This study provides a framework for the application of combinatorial biosynthesis methods in order to expand the structural diversity of SFA. PMID:21416665

  2. Expression of fatty acid and lipid biosynthetic genes in developing endosperm of Jatropha curcas

    Directory of Open Access Journals (Sweden)

    Gu Keyu

    2012-07-01

    Full Text Available Abstract Background Temporal and spatial expression of fatty acid and lipid biosynthetic genes are associated with the accumulation of storage lipids in the seeds of oil plants. In jatropha (Jatropha curcas L., a potential biofuel plant, the storage lipids are mainly synthesized and accumulated in the endosperm of seeds. Although the fatty acid and lipid biosynthetic genes in jatropha have been identified, the expression of these genes at different developing stages of endosperm has not been systemically investigated. Results Transmission electron microscopy study revealed that the oil body formation in developing endosperm of jatropha seeds initially appeared at 28 days after fertilization (DAF, was actively developed at 42 DAF and reached to the maximum number and size at 56 DAF. Sixty-eight genes that encode enzymes, proteins or their subunits involved in fatty acid and lipid biosynthesis were identified from a normalized cDNA library of jatropha developing endosperm. Gene expression with quantitative reverse-transcription polymerase chain reaction analysis demonstrated that the 68 genes could be collectively grouped into five categories based on the patterns of relative expression of the genes during endosperm development. Category I has 47 genes and they displayed a bell-shaped expression pattern with the peak expression at 28 or 42 DAF, but low expression at 14 and 56 DAF. Category II contains 8 genes and expression of the 8 genes was constantly increased from 14 to 56 DAF. Category III comprises of 2 genes and both genes were constitutively expressed throughout endosperm development. Category IV has 9 genes and they showed a high expression at 14 and 28 DAF, but a decreased expression from 42 to 56 DAF. Category V consists of 2 genes and both genes showed a medium expression at 14 DAF, the lowest expression at 28 or 42 DAF, and the highest expression at 56 DAF. In addition, genes encoding enzymes or proteins with similar function were

  3. Engineering of the aspartate family biosynthetic pathway in barley (Hordeum vulgare L.) by transformation with heterologous genes encoding feed-back-insensitive aspartate kinase and dihydrodipicolinate synthase

    DEFF Research Database (Denmark)

    Brinch-Pedersen, Henrik; Galili, G; Knudsen, S;

    1996-01-01

    In prokaryotes and plants the synthesis of the essential amino acids lysine and threonine is predominantly regulated by feed-back inhibition of aspartate kinase (AK) and dihydrodipicolinate synthase (DHPS). In order to modify the flux through the aspartate family pathway in barley and enhance the...

  4. Identification and analysis of the paulomycin biosynthetic gene cluster and titer improvement of the paulomycins in Streptomyces paulus NRRL 8115.

    Directory of Open Access Journals (Sweden)

    Jine Li

    Full Text Available The paulomycins are a group of glycosylated compounds featuring a unique paulic acid moiety. To locate their biosynthetic gene clusters, the genomes of two paulomycin producers, Streptomyces paulus NRRL 8115 and Streptomyces sp. YN86, were sequenced. The paulomycin biosynthetic gene clusters were defined by comparative analyses of the two genomes together with the genome of the third paulomycin producer Streptomyces albus J1074. Subsequently, the identity of the paulomycin biosynthetic gene cluster was confirmed by inactivation of two genes involved in biosynthesis of the paulomycose branched chain (pau11 and the ring A moiety (pau18 in Streptomyces paulus NRRL 8115. After determining the gene cluster boundaries, a convergent biosynthetic model was proposed for paulomycin based on the deduced functions of the pau genes. Finally, a paulomycin high-producing strain was constructed by expressing an activator-encoding gene (pau13 in S. paulus, setting the stage for future investigations.

  5. Bioinformatic analysis of an unusual gene-enzyme relationship in the arginine biosynthetic pathway among marine gamma proteobacteria: implications concerning the formation of N-acetylated intermediates in prokaryotes.

    OpenAIRE

    Labedan Bernard; Glansdorff Nicolas; Xu Ying

    2006-01-01

    Abstract Background The N-acetylation of L-glutamate is regarded as a universal metabolic strategy to commit glutamate towards arginine biosynthesis. Until recently, this reaction was thought to be catalyzed by either of two enzymes: (i) the classical N-acetylglutamate synthase (NAGS, gene argA) first characterized in Escherichia coli and Pseudomonas aeruginosa several decades ago and also present in vertebrates, or (ii) the bifunctional version of ornithine acetyltransferase (OAT, gene argJ)...

  6. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae (on linr)

    OpenAIRE

    Wang, Kui-Lin; Bolitho, Karen; Grafton, Karryn; Kortstee, A J; Karunairetnam, Sakuntala; McGhie, T.K.; Espley, R.V.; Hellens, R.P.; Allan, A.C.

    2010-01-01

    Background - The control of plant anthocyanin accumulation is via transcriptional regulation of the genes encoding the biosynthetic enzymes. A key activator appears to be an R2R3 MYB transcription factor. In apple fruit, skin anthocyanin levels are controlled by a gene called MYBA or MYB1, while the gene determining fruit flesh and foliage anthocyanin has been termed MYB10. In order to further understand tissue-specific anthocyanin regulation we have isolated orthologous MYB genes from all th...

  7. Assembly of a novel biosynthetic pathway for production of the plant flavonoid fisetin in Escherichia coli

    DEFF Research Database (Denmark)

    Stahlhut, Steen Gustav; Siedler, Solvej; Malla, Sailesh;

    2015-01-01

    anti-aging activity. Moreover, fisetin has recently been shown to prevent Alzheimer׳s disease in mice and to prevent complications associated with diabetes type I. Thus far the biosynthetic pathway of fisetin in plants remains elusive. Here, we present the heterologous assembly of a novel fisetin...

  8. Evolutionary rate patterns of the Gibberellin pathway genes

    Directory of Open Access Journals (Sweden)

    Zhang Fu-min

    2009-08-01

    Full Text Available Abstract Background Analysis of molecular evolutionary patterns of different genes within metabolic pathways allows us to determine whether these genes are subject to equivalent evolutionary forces and how natural selection shapes the evolution of proteins in an interacting system. Although previous studies found that upstream genes in the pathway evolved more slowly than downstream genes, the correlation between evolutionary rate and position of the genes in metabolic pathways as well as its implications in molecular evolution are still less understood. Results We sequenced and characterized 7 core structural genes of the gibberellin biosynthetic pathway from 8 representative species of the rice tribe (Oryzeae to address alternative hypotheses regarding evolutionary rates and patterns of metabolic pathway genes. We have detected significant rate heterogeneity among 7 GA pathway genes for both synonymous and nonsynonymous sites. Such rate variation is mostly likely attributed to differences of selection intensity rather than differential mutation pressures on the genes. Unlike previous argument that downstream genes in metabolic pathways would evolve more slowly than upstream genes, the downstream genes in the GA pathway did not exhibited the elevated substitution rate and instead, the genes that encode either the enzyme at the branch point (GA20ox or enzymes catalyzing multiple steps (KO, KAO and GA3ox in the pathway had the lowest evolutionary rates due to strong purifying selection. Our branch and codon models failed to detect signature of positive selection for any lineage and codon of the GA pathway genes. Conclusion This study suggests that significant heterogeneity of evolutionary rate of the GA pathway genes is mainly ascribed to differential constraint relaxation rather than the positive selection and supports the pathway flux theory that predicts that natural selection primarily targets enzymes that have the greatest control on fluxes.

  9. Yeast artificial chromosomes employed for random assembly of biosynthetic pathways and production of diverse compounds in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Mitra Partha P

    2009-08-01

    Full Text Available Abstract Background Natural products are an important source of drugs and other commercially interesting compounds, however their isolation and production is often difficult. Metabolic engineering, mainly in bacteria and yeast, has sought to circumvent some of the associated problems but also this approach is impeded by technical limitations. Here we describe a novel strategy for production of diverse natural products, comprising the expression of an unprecedented large number of biosynthetic genes in a heterologous host. Results As an example, genes from different sources, representing enzymes of a seven step flavonoid pathway, were individually cloned into yeast expression cassettes, which were then randomly combined on Yeast Artificial Chromosomes and used, in a single transformation of yeast, to create a variety of flavonoid producing pathways. Randomly picked clones were analysed, and approximately half of them showed production of the flavanone naringenin, and a third of them produced the flavonol kaempferol in various amounts. This reflected the assembly of 5–7 step multi-species pathways converting the yeast metabolites phenylalanine and/or tyrosine into flavonoids, normally only produced by plants. Other flavonoids were also produced that were either direct intermediates or derivatives thereof. Feeding natural and unnatural, halogenated precursors to these recombinant clones demonstrated the potential to further diversify the type of molecules that can be produced with this technology. Conclusion The technology has many potential uses but is particularly suited for generating high numbers of structurally diverse compounds, some of which may not be amenable to chemical synthesis, thus greatly facilitating access to a huge chemical space in the search for new commercially interesting compounds

  10. Expression of fatty acid and lipid biosynthetic genes in developing endosperm of Jatropha curcas

    OpenAIRE

    Gu Keyu; Yi Chengxin; Tian Dongsheng; Sangha Jatinder; Hong Yan; Yin Zhongchao

    2012-01-01

    Abstract Background Temporal and spatial expression of fatty acid and lipid biosynthetic genes are associated with the accumulation of storage lipids in the seeds of oil plants. In jatropha (Jatropha curcas L.), a potential biofuel plant, the storage lipids are mainly synthesized and accumulated in the endosperm of seeds. Although the fatty acid and lipid biosynthetic genes in jatropha have been identified, the expression of these genes at different developing stages of endosperm has not been...

  11. Bioinformatic analysis of an unusual gene-enzyme relationship in the arginine biosynthetic pathway among marine gamma proteobacteria: implications concerning the formation of N-acetylated intermediates in prokaryotes

    Directory of Open Access Journals (Sweden)

    Labedan Bernard

    2006-01-01

    Full Text Available Abstract Background The N-acetylation of L-glutamate is regarded as a universal metabolic strategy to commit glutamate towards arginine biosynthesis. Until recently, this reaction was thought to be catalyzed by either of two enzymes: (i the classical N-acetylglutamate synthase (NAGS, gene argA first characterized in Escherichia coli and Pseudomonas aeruginosa several decades ago and also present in vertebrates, or (ii the bifunctional version of ornithine acetyltransferase (OAT, gene argJ present in Bacteria, Archaea and many Eukaryotes. This paper focuses on a new and surprising aspect of glutamate acetylation. We recently showed that in Moritella abyssi and M. profunda, two marine gamma proteobacteria, the gene for the last enzyme in arginine biosynthesis (argH is fused to a short sequence that corresponds to the C-terminal, N-acetyltransferase-encoding domain of NAGS and is able to complement an argA mutant of E. coli. Very recently, other authors identified in Mycobacterium tuberculosis an independent gene corresponding to this short C-terminal domain and coding for a new type of NAGS. We have investigated the two prokaryotic Domains for patterns of gene-enzyme relationships in the first committed step of arginine biosynthesis. Results The argH-A fusion, designated argH(A, and discovered in Moritella was found to be present in (and confined to marine gamma proteobacteria of the Alteromonas- and Vibrio-like group. Most of them have a classical NAGS with the exception of Idiomarina loihiensis and Pseudoalteromonas haloplanktis which nevertheless can grow in the absence of arginine and therefore appear to rely on the arg(A sequence for arginine biosynthesis. Screening prokaryotic genomes for virtual argH-X 'fusions' where X stands for a homologue of arg(A, we retrieved a large number of Bacteria and several Archaea, all of them devoid of a classical NAGS. In the case of Thermus thermophilus and Deinococcus radiodurans, the arg(A-like sequence

  12. The heme biosynthetic pathway of the obligate Wolbachia endosymbiont of Brugia malayi as a potential anti-filarial drug target.

    Directory of Open Access Journals (Sweden)

    Bo Wu

    Full Text Available BACKGROUND: Filarial parasites (e.g., Brugia malayi, Onchocerca volvulus, and Wuchereria bancrofti are causative agents of lymphatic filariasis and onchocerciasis, which are among the most disabling of neglected tropical diseases. There is an urgent need to develop macro-filaricidal drugs, as current anti-filarial chemotherapy (e.g., diethylcarbamazine [DEC], ivermectin and albendazole can interrupt transmission predominantly by killing microfilariae (mf larvae, but is less effective on adult worms, which can live for decades in the human host. All medically relevant human filarial parasites appear to contain an obligate endosymbiotic bacterium, Wolbachia. This alpha-proteobacterial mutualist has been recognized as a potential target for filarial nematode life cycle intervention, as antibiotic treatments of filarial worms harboring Wolbachia result in the loss of worm fertility and viability upon antibiotic treatments both in vitro and in vivo. Human trials have confirmed this approach, although the length of treatments, high doses required and medical counter-indications for young children and pregnant women warrant the identification of additional anti-Wolbachia drugs. METHODS AND FINDINGS: Genome sequence analysis indicated that enzymes involved in heme biosynthesis might constitute a potential anti-Wolbachia target set. We tested different heme biosynthetic pathway inhibitors in ex vivo B. malayi viability assays and report a specific effect of N-methyl mesoporphyrin (NMMP, which targets ferrochelatase (FC, the last step. Our phylogenetic analysis indicates evolutionarily significant divergence between Wolbachia heme genes and their human homologues. We therefore undertook the cloning, overexpression and analysis of several enzymes of this pathway alongside their human homologues, and prepared proteins for drug targeting. In vitro enzyme assays revealed a approximately 600-fold difference in drug sensitivities to succinyl acetone (SA between

  13. Ancient horizontal gene transfer from bacteria enhances biosynthetic capabilities of fungi.

    Directory of Open Access Journals (Sweden)

    Imke Schmitt

    Full Text Available BACKGROUND: Polyketides are natural products with a wide range of biological functions and pharmaceutical applications. Discovery and utilization of polyketides can be facilitated by understanding the evolutionary processes that gave rise to the biosynthetic machinery and the natural product potential of extant organisms. Gene duplication and subfunctionalization, as well as horizontal gene transfer are proposed mechanisms in the evolution of biosynthetic gene clusters. To explain the amount of homology in some polyketide synthases in unrelated organisms such as bacteria and fungi, interkingdom horizontal gene transfer has been evoked as the most likely evolutionary scenario. However, the origin of the genes and the direction of the transfer remained elusive. METHODOLOGY/PRINCIPAL FINDINGS: We used comparative phylogenetics to infer the ancestor of a group of polyketide synthase genes involved in antibiotic and mycotoxin production. We aligned keto synthase domain sequences of all available fungal 6-methylsalicylic acid (6-MSA-type PKSs and their closest bacterial relatives. To assess the role of symbiotic fungi in the evolution of this gene we generated 24 6-MSA synthase sequence tags from lichen-forming fungi. Our results support an ancient horizontal gene transfer event from an actinobacterial source into ascomycete fungi, followed by gene duplication. CONCLUSIONS/SIGNIFICANCE: Given that actinobacteria are unrivaled producers of biologically active compounds, such as antibiotics, it appears particularly promising to study biosynthetic genes of actinobacterial origin in fungi. The large number of 6-MSA-type PKS sequences found in lichen-forming fungi leads us hypothesize that the evolution of typical lichen compounds, such as orsellinic acid derivatives, was facilitated by the gain of this bacterial polyketide synthase.

  14. Regulation of the tryptophan biosynthetic genes in Bacillus halodurans: common elements but different strategies than those used by Bacillus subtilis.

    Science.gov (United States)

    Szigeti, Reka; Milescu, Mirela; Gollnick, Paul

    2004-02-01

    In Bacillus subtilis, an RNA binding protein called TRAP regulates both transcription and translation of the tryptophan biosynthetic genes. Bacillus halodurans is an alkaliphilic Bacillus species that grows at high pHs. Previous studies of this bacterium have focused on mechanisms of adaptation for growth in alkaline environments. We have characterized the regulation of the tryptophan biosynthetic genes in B. halodurans and compared it to that in B. subtilis. B. halodurans encodes a TRAP protein with 71% sequence identity to the B. subtilis protein. Expression of anthranilate synthetase, the first enzyme in the pathway to tryptophan, is regulated significantly less in B. halodurans than in B. subtilis. Examination of the control of the B. halodurans trpEDCFBA operon both in vivo and in vitro shows that only transcription is regulated, whereas in B. subtilis both transcription of the operon and translation of trpE are controlled. The attenuation mechanism that controls transcription in B. halodurans is similar to that in B. subtilis, but there are some differences in the predicted RNA secondary structures in the B. halodurans trp leader region, including the presence of a potential anti-antiterminator structure. Translation of trpG, which is within the folate operon in both bacilli, is regulated similarly in the two species. PMID:14729709

  15. Cloning, mutagenesis, and nucleotide sequence of a siderophore biosynthetic gene (amoA) from Aeromonas hydrophila.

    OpenAIRE

    Barghouthi, S; Payne, S M; Arceneaux, J E; Byers, B R

    1991-01-01

    Many isolates of the Aeromonas species produce amonabactin, a phenolate siderophore containing 2,3-dihydroxybenzoic acid (2,3-DHB). An amonabactin biosynthetic gene (amoA) was identified (in a Sau3A1 gene library of Aeromonas hydrophila 495A2 chromosomal DNA) by its complementation of the requirement of Escherichia coli SAB11 for exogenous 2,3-DHB to support siderophore (enterobactin) synthesis. The gene amoA was subcloned as a SalI-HindIII 3.4-kb DNA fragment into pSUP202, and the complete n...

  16. Functional analysis of aromatic biosynthetic pathways in Pseudomonas putida KT2440.

    Science.gov (United States)

    Molina-Henares, M Antonia; García-Salamanca, Adela; Molina-Henares, A Jesús; de la Torre, Jesús; Herrera, M Carmen; Ramos, Juan L; Duque, Estrella

    2009-01-01

    Pseudomonas putida KT2440 is a non-pathogenic prototrophic bacterium with high potential for biotechnological applications. Despite all that is known about this strain, the biosynthesis of essential chemicals has not been fully analysed and auxotroph mutants are scarce. We carried out massive mini-Tn5 random mutagenesis and screened for auxotrophs that require aromatic amino acids. The biosynthesis of aromatic amino acids was analysed in detail including physical and transcriptional organization of genes, complementation assays and feeding experiments to establish pathway intermediates. There is a single pathway from chorismate leading to the biosynthesis of tryptophan, whereas the biosynthesis of phenylalanine and tyrosine is achieved through multiple convergent pathways. Genes for tryptophan biosynthesis are grouped in unlinked regions with the trpBA and trpGDE genes organized as operons and the trpI, trpE and trpF genes organized as single transcriptional units. The pheA and tyrA gene-encoding multifunctional enzymes for phenylalanine and tyrosine biosynthesis are linked in the chromosome and form an operon with the serC gene involved in serine biosynthesis. The last step in the biosynthesis of these two amino acids requires an amino transferase activity for which multiple tyrB-like genes are present in the host chromosome. PMID:21261884

  17. Biosynthetic investigation of phomopsins reveals a widespread pathway for ribosomal natural products in Ascomycetes.

    Science.gov (United States)

    Ding, Wei; Liu, Wan-Qiu; Jia, Youli; Li, Yongzhen; van der Donk, Wilfred A; Zhang, Qi

    2016-03-29

    Production of ribosomally synthesized and posttranslationally modified peptides (RiPPs) has rarely been reported in fungi, even though organisms of this kingdom have a long history as a prolific source of natural products. Here we report an investigation of the phomopsins, antimitotic mycotoxins. We show that phomopsin is a fungal RiPP and demonstrate the widespread presence of a pathway for the biosynthesis of a family of fungal cyclic RiPPs, which we term dikaritins. We characterize PhomM as an S-adenosylmethionine-dependent α-N-methyltransferase that converts phomopsin A to anN,N-dimethylated congener (phomopsin E), and show that the methyltransferases involved in dikaritin biosynthesis have evolved differently and likely have broad substrate specificities. Genome mining studies identified eight previously unknown dikaritins in different strains, highlighting the untapped capacity of RiPP biosynthesis in fungi and setting the stage for investigating the biological activities and unknown biosynthetic transformations of this family of fungal natural products. PMID:26979951

  18. Molecular and Biochemical Analysis of Chalcone Synthase from Freesia hybrid in flavonoid biosynthetic pathway.

    Directory of Open Access Journals (Sweden)

    Wei Sun

    Full Text Available Chalcone synthase (CHS catalyzes the first committed step in the flavonoid biosynthetic pathway. In this study, the cDNA (FhCHS1 encoding CHS from Freesia hybrida was successfully isolated and analyzed. Multiple sequence alignments showed that both the conserved CHS active site residues and CHS signature sequence were found in the deduced amino acid sequence of FhCHS1. Meanwhile, crystallographic analysis revealed that protein structure of FhCHS1 is highly similar to that of alfalfa CHS2, and the biochemical analysis results indicated that it has an enzymatic role in naringenin biosynthesis. Moreover, quantitative real-time PCR was performed to detect the transcript levels of FhCHS1 in flowers and different tissues, and patterns of FhCHS1 expression in flowers showed significant correlation to the accumulation patterns of anthocyanin during flower development. To further characterize the functionality of FhCHS1, its ectopic expression in Arabidopsis thaliana tt4 mutants and Petunia hybrida was performed. The results showed that overexpression of FhCHS1 in tt4 mutants fully restored the pigmentation phenotype of the seed coats, cotyledons and hypocotyls, while transgenic petunia expressing FhCHS1 showed flower color alteration from white to pink. In summary, these results suggest that FhCHS1 plays an essential role in the biosynthesis of flavonoid in Freesia hybrida and may be used to modify the components of flavonoids in other plants.

  19. ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Lindemose, Søren; De Masi, Federico;

    2013-01-01

    ATAF1, an Arabidopsis thaliana NAC transcription factor, plays important roles in plant adaptation to environmental stress and development. To search for ATAF1 target genes, we used protein binding microarrays and chromatin-immunoprecipitation (ChIP). This identified T[A,C,G]CGT[A,G] and TT...... key abscisic acid (ABA) phytohormone biosynthetic gene NCED3. ChIP-qPCR and expression analysis showed that ATAF1 binding to the NCED3 promoter correlated with increased NCED3 expression and ABA hormone levels. These results indicate that ATAF1 regulates ABA biosynthesis....

  20. Cloning and Expression Analysis of a Brassinosteroid Biosynthetic Enzyme Gene, GhDWF1, from Cotton (Gossypium hirsuturm L.)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Brassinosteroids (BRs) are an important class of plant steroidal hormones that are essential in a wide variety of physiological processes. To determine the effects of BRs on the development of cotton fibers, through screening cotton fiber EST database and contigging the candidate ESTs, a key gene (GhDWF1) involved in the upstream biosynthetic pathway of BRs was cloned from developing fibers of upland cotton (Gossypium hirsutum L.) cv. Xuzhou 142. The full length of the cloned cDNA is 1 849 bp, including a 37 bp 5'-untranslated region, an ORF of 1692 bp, and a 120 bp 3'-untranslated region.The cDNA encodes a polypeptide of 563 amino acid residues with a predicted molecular mass of 65 kD. The deduced amino acid sequence has high homology with the BR biosynthetic enzyme, DWARF1/DIMINUTO, from rice, maize, pea,tomato, and Arabidopsis. Furthermore, the typical conserved structures, such as the transmembrane domain, the FAD-dependent oxidase domain, and the FAD-binding site, are present in the GhDWF1 protein. The Southern blot indicated that the GhDWF1 gene is a single copy in upland cotton genome. RT-PCR analysis revealed that the highest level of GhDWF1 expression was detected in 0 DPA (day post anthesis) ovule (with fibers) while the lowest level was observed in cotyledon. The GhDWF1 gene presents high expression levels in root, young stem, and fiber, especially, at the fiber developmental stage of secondary cell wall accumulation. Moreover, the expression level was higher in ovules (with fibers) of wildtype (Xuzhou 142) than in ovules of fuzzless-lintless mutant at the same developmental stages (0 and 4 DPA). The results suggest that the GhDWF1 gene plays a crucial role in fiber development.

  1. Arctic mustard flower color polymorphism controlled by petal-specific downregulation at the threshold of the anthocyanin biosynthetic pathway.

    Directory of Open Access Journals (Sweden)

    Cynthia A Dick

    Full Text Available Intra- and interspecific variation in flower color is a hallmark of angiosperm diversity. The evolutionary forces underlying the variety of flower colors can be nearly as diverse as the colors themselves. In addition to pollinator preferences, non-pollinator agents of selection can have a major influence on the evolution of flower color polymorphisms, especially when the pigments in question are also expressed in vegetative tissues. In such cases, identifying the target(s of selection starts with determining the biochemical and molecular basis for the flower color variation and examining any pleiotropic effects manifested in vegetative tissues. Herein, we describe a widespread purple-white flower color polymorphism in the mustard Parrya nudicaulis spanning Alaska. The frequency of white-flowered individuals increases with increasing growing-season temperature, consistent with the role of anthocyanin pigments in stress tolerance. White petals fail to produce the stress responsive flavonoid intermediates in the anthocyanin biosynthetic pathway (ABP, suggesting an early pathway blockage. Petal cDNA sequences did not reveal blockages in any of the eight enzyme-coding genes in white-flowered individuals, nor any color differentiating SNPs. A qRT-PCR analysis of white petals identified a 24-fold reduction in chalcone synthase (CHS at the threshold of the ABP, but no change in CHS expression in leaves and sepals. This arctic species has avoided the deleterious effects associated with the loss of flavonoid intermediates in vegetative tissues by decoupling CHS expression in petals and leaves, yet the correlation of flower color and climate suggests that the loss of flavonoids in the petals alone may affect the tolerance of white-flowered individuals to colder environments.

  2. Evolutionary Conservation of Xylan Biosynthetic Genes in Selaginella moellendorffii and Physcomitrella patens.

    Science.gov (United States)

    Haghighat, Marziyeh; Teng, Quincy; Zhong, Ruiqin; Ye, Zheng-Hua

    2016-08-01

    Xylan is a major cross-linking hemicellulose in secondary walls of vascular tissues, and the recruitment of xylan as a secondary wall component was suggested to be a pivotal event for the evolution of vascular tissues. To decipher the evolution of xylan structure and xylan biosynthetic genes, we analyzed xylan substitution patterns and characterized genes mediating methylation of glucuronic acid (GlcA) side chains in xylan of the model seedless vascular plant, Selaginella moellendorffii, and investigated GT43 genes from S. moellendorffii and the model non-vascular plant, Physcomitrella patens, for their roles in xylan biosynthesis. Using nuclear magentic resonance spectroscopy, we have demonstrated that S. moellendorffii xylan consists of β-1,4-linked xylosyl residues subsituted solely with methylated GlcA residues and that xylans from both S. moellendorffii and P. patens are acetylated at O-2 and O-3. To investigate genes responsible for GlcA methylation of xylan, we identified two DUF579 genes in the S. moellendorffii genome and showed that one of them, SmGXM, encodes a glucuronoxylan methyltransferase capable of adding the methyl group onto the GlcA side chain of xylooligomers. Furthermore, we revealed that the two GT43 genes in S. moellendorffii, SmGT43A and SmGT43B, are functional orthologs of the Arabidopsis xylan backbone biosynthetic genes IRX9 and IRX14, respectively, indicating the evolutionary conservation of the involvement of two functionally non-redundant groups of GT43 genes in xylan backbone biosynthesis between seedless and seed vascular plants. Among the five GT43 genes in P. patens, PpGT43A was found to be a functional ortholog of Arabidopsis IRX9, suggesting that the recruitment of GT43 genes in xylan backbone biosynthesis occurred when non-vascular plants appeared on land. PMID:27345025

  3. A R2R3-MYB Transcription Factor Regulates the Flavonol Biosynthetic Pathway in a Traditional Chinese Medicinal Plant, Epimedium sagittatum

    Science.gov (United States)

    Huang, Wenjun; Khaldun, A. B. M.; Chen, Jianjun; Zhang, Chanjuan; Lv, Haiyan; Yuan, Ling; Wang, Ying

    2016-01-01

    Flavonols as plant secondary metabolites with vital roles in plant development and defense against UV light, have been demonstrated to be the main bioactive components (BCs) in the genus Epimedium plants, several species of which are used as materials for Herba Epimedii, an important traditional Chinese medicine. The flavonol biosynthetic pathway genes had been already isolated from Epimedium sagittatum, but a R2R3-MYB transcription factor regulating the flavonol synthesis has not been functionally characterized so far in Epimedium plants. In this study, we isolated and characterized the R2R3-MYB transcription factor EsMYBF1 involved in regulation of the flavonol biosynthetic pathway from E. sagittatum. Sequence analysis indicated that EsMYBF1 belongs to the subgroup 7 of R2R3-MYB family which contains the flavonol-specific MYB regulators identified to date. Transient reporter assay showed that EsMYBF1 strongly activated the promoters of EsF3H (flavanone 3-hydroxylase) and EsFLS (flavonol synthase), but not the promoters of EsDFRs (dihydroflavonol 4-reductase) and EsANS (anthocyanidin synthase) in transiently transformed Nicotiana benthamiana leaves. Both yeast two-hybrid assay and transient reporter assay validated EsMYBF1 to be independent of EsTT8, or AtTT8 bHLH regulators of the flavonoid pathway as cofactors. Ectopic expression of EsMYBF1 in transgenic tobacco resulted in the increased flavonol content and the decreased anthocyanin content in flowers. Correspondingly, the structural genes involved in flavonol synthesis were upregulated in the EsMYBF1 overexpression lines, including NtCHS (chalcone synthase), NtCHI (chalcone isomerase), NtF3H and NtFLS, whereas the late biosynthetic genes of the anthocyanin pathway (NtDFR and NtANS) were remarkably downregulated, compared to the controls. These results suggest that EsMYBF1 is a flavonol-specific R2R3-MYB regulator, and involved in regulation of the biosynthesis of the flavonol-derived BCs in E. sagittatum. Thus

  4. A R2R3-MYB Transcription Factor Regulates the Flavonol Biosynthetic Pathway in a Traditional Chinese Medicinal Plant, Epimedium sagittatum.

    Science.gov (United States)

    Huang, Wenjun; Khaldun, A B M; Chen, Jianjun; Zhang, Chanjuan; Lv, Haiyan; Yuan, Ling; Wang, Ying

    2016-01-01

    Flavonols as plant secondary metabolites with vital roles in plant development and defense against UV light, have been demonstrated to be the main bioactive components (BCs) in the genus Epimedium plants, several species of which are used as materials for Herba Epimedii, an important traditional Chinese medicine. The flavonol biosynthetic pathway genes had been already isolated from Epimedium sagittatum, but a R2R3-MYB transcription factor regulating the flavonol synthesis has not been functionally characterized so far in Epimedium plants. In this study, we isolated and characterized the R2R3-MYB transcription factor EsMYBF1 involved in regulation of the flavonol biosynthetic pathway from E. sagittatum. Sequence analysis indicated that EsMYBF1 belongs to the subgroup 7 of R2R3-MYB family which contains the flavonol-specific MYB regulators identified to date. Transient reporter assay showed that EsMYBF1 strongly activated the promoters of EsF3H (flavanone 3-hydroxylase) and EsFLS (flavonol synthase), but not the promoters of EsDFRs (dihydroflavonol 4-reductase) and EsANS (anthocyanidin synthase) in transiently transformed Nicotiana benthamiana leaves. Both yeast two-hybrid assay and transient reporter assay validated EsMYBF1 to be independent of EsTT8, or AtTT8 bHLH regulators of the flavonoid pathway as cofactors. Ectopic expression of EsMYBF1 in transgenic tobacco resulted in the increased flavonol content and the decreased anthocyanin content in flowers. Correspondingly, the structural genes involved in flavonol synthesis were upregulated in the EsMYBF1 overexpression lines, including NtCHS (chalcone synthase), NtCHI (chalcone isomerase), NtF3H and NtFLS, whereas the late biosynthetic genes of the anthocyanin pathway (NtDFR and NtANS) were remarkably downregulated, compared to the controls. These results suggest that EsMYBF1 is a flavonol-specific R2R3-MYB regulator, and involved in regulation of the biosynthesis of the flavonol-derived BCs in E. sagittatum. Thus

  5. Differential gene expression in liver and small intestine from lactating rats compared to age-matched virgin controls detects increased mRNA of cholesterol biosynthetic genes

    Directory of Open Access Journals (Sweden)

    Jungsuwadee Paiboon

    2011-02-01

    Full Text Available Abstract Background Lactation increases energy demands four- to five-fold, leading to a two- to three-fold increase in food consumption, requiring a proportional adjustment in the ability of the lactating dam to absorb nutrients and to synthesize critical biomolecules, such as cholesterol, to meet the dietary needs of both the offspring and the dam. The size and hydrophobicity of the bile acid pool increases during lactation, implying an increased absorption and disposition of lipids, sterols, nutrients, and xenobiotics. In order to investigate changes at the transcriptomics level, we utilized an exon array and calculated expression levels to investigate changes in gene expression in the liver, duodenum, jejunum, and ileum of lactating dams when compared against age-matched virgin controls. Results A two-way mixed models ANOVA was applied to detect differentially expressed genes. Significance calls were defined as a p Cyp7a1, which catalyzes the rate limiting step in the bile acid biosynthetic pathway, was also significantly increased in liver. In addition, decreased levels of mRNA associated with T-cell signaling were found in the jejunum and ileum. Several members of the Solute Carrier (SLC and Adenosine Triphosphate Binding Cassette (ABC superfamilies of membrane transporters were found to be differentially expressed; these genes may play a role in differences in nutrient and xenobiotic absorption and disposition. mRNA expression of SLC39a4_predicted, a zinc transporter, was increased in all tissues, suggesting that it is involved in increased zinc uptake during lactation. Microarray data are available through GEO under GSE19175. Conclusions We detected differential expression of mRNA from several pathways in lactating dams, including upregulation of the cholesterol biosynthetic pathway in liver and intestine, consistent with Srebp activation. Differential T-Cell signaling in the two most distal regions of the small intestine (ileum and

  6. De novo transcriptome assembly and the putative biosynthetic pathway of steroidal sapogenins of Dioscorea composita.

    Directory of Open Access Journals (Sweden)

    Xia Wang

    Full Text Available The plant Dioscorea composita has important applications in the medical and energy industries, and can be used for the extraction of steroidal sapogenins (important raw materials for the synthesis of steroidal drugs and bioethanol production. However, little is known at the genetic level about how sapogenins are biosynthesized in this plant. Using Illumina deep sequencing, 62,341 unigenes were obtained by assembling its transcriptome, and 27,720 unigenes were annotated. Of these, 8,022 unigenes were mapped to 243 specific pathways, and 531 unigenes were identified to be involved in 24 secondary metabolic pathways. 35 enzymes, which were encoded by 79 unigenes, were related to the biosynthesis of steroidal sapogenins in this transcriptome database, covering almost all the nodes in the steroidal pathway. The results of real-time PCR experiments on ten related transcripts (HMGR, MK, SQLE, FPPS, DXS, CAS, HMED, CYP51, DHCR7, and DHCR24 indicated that sapogenins were mainly biosynthesized by the mevalonate pathway. The expression of these ten transcripts in the tuber and leaves was found to be much higher than in the stem. Also, expression in the shoots was low. The nucleotide and protein sequences and conserved domains of four related genes (HMGR, CAS, SQS, and SMT1 were highly conserved between D. composita and D. zingiberensis; but expression of these four genes is greater in D. composita. However, there is no expression of these key enzymes in potato and no steroidal sapogenins are synthesized.

  7. De novo transcriptome assembly and the putative biosynthetic pathway of steroidal sapogenins of Dioscorea composita.

    Science.gov (United States)

    Wang, Xia; Chen, Dijia; Wang, Yuqi; Xie, Jun

    2015-01-01

    The plant Dioscorea composita has important applications in the medical and energy industries, and can be used for the extraction of steroidal sapogenins (important raw materials for the synthesis of steroidal drugs) and bioethanol production. However, little is known at the genetic level about how sapogenins are biosynthesized in this plant. Using Illumina deep sequencing, 62,341 unigenes were obtained by assembling its transcriptome, and 27,720 unigenes were annotated. Of these, 8,022 unigenes were mapped to 243 specific pathways, and 531 unigenes were identified to be involved in 24 secondary metabolic pathways. 35 enzymes, which were encoded by 79 unigenes, were related to the biosynthesis of steroidal sapogenins in this transcriptome database, covering almost all the nodes in the steroidal pathway. The results of real-time PCR experiments on ten related transcripts (HMGR, MK, SQLE, FPPS, DXS, CAS, HMED, CYP51, DHCR7, and DHCR24) indicated that sapogenins were mainly biosynthesized by the mevalonate pathway. The expression of these ten transcripts in the tuber and leaves was found to be much higher than in the stem. Also, expression in the shoots was low. The nucleotide and protein sequences and conserved domains of four related genes (HMGR, CAS, SQS, and SMT1) were highly conserved between D. composita and D. zingiberensis; but expression of these four genes is greater in D. composita. However, there is no expression of these key enzymes in potato and no steroidal sapogenins are synthesized. PMID:25860891

  8. Changes in the biosynthetic pathways involved in selenium assimilation in wheat from a seleniferous area

    International Nuclear Information System (INIS)

    weight), which appear to be the highest selenium concentrations ever recorded in grains for human consumption. Selenium speciation revealed complex changes in the relative dominance of the biosynthetic pathways involved in selenium assimilation when uptake from soil increases. The preliminary results of this study also indicate that actions to limit the exposure of the population in the study area to excessive selenium are needed. On the other hand, it is clear that a proactive approach to tackle the problems of the local agricultural system is needed. Exploring the opportunities for producing naturally enriched products as selenium supplements for human and animal nutrition in areas worldwide with a low selenium status is part of this approach and will continue to be the subject of research.

  9. The tryptophan pathway genes of the Sargasso Sea metagenome: new operon structures and the prevalence of non-operon organization

    OpenAIRE

    Kagan, Juliana; Sharon, Itai; Beja, Oded; Kuhn, Jonathan C

    2008-01-01

    Background The enormous database of microbial DNA generated from the Sargasso Sea metagenome provides a unique opportunity to locate genes participating in different biosynthetic pathways and to attempt to understand the relationship and evolution of those genes. In this article, an analysis of the Sargasso Sea metagenome is made with respect to the seven genes of the tryptophan pathway. Results At least 5% of all the genes that are related to amino acid biosynthesis are tryptophan (trp) gene...

  10. Molecular interaction of the first 3 enzymes of the de novo pyrimidine biosynthetic pathway of Trypanosoma cruzi

    International Nuclear Information System (INIS)

    Highlights: ► An Escherichia coli strain co-expressing CPSII, ATC, and DHO of Trypanosoma cruzi was constructed. ► Molecular interactions between CPSII, ATC, and DHO of T. cruzi were demonstrated. ► CPSII bound with both ATC and DHO. ► ATC bound with both CPSII and DHO. ► A functional tri-enzyme complex might precede the establishment of the fused enzyme. -- Abstract: The first 3 reaction steps of the de novo pyrimidine biosynthetic pathway are catalyzed by carbamoyl-phosphate synthetase II (CPSII), aspartate transcarbamoylase (ATC), and dihydroorotase (DHO), respectively. In eukaryotes, these enzymes are structurally classified into 2 types: (1) a CPSII-DHO-ATC fusion enzyme (CAD) found in animals, fungi, and amoebozoa, and (2) stand-alone enzymes found in plants and the protist groups. In the present study, we demonstrate direct intermolecular interactions between CPSII, ATC, and DHO of the parasitic protist Trypanosoma cruzi, which is the causative agent of Chagas disease. The 3 enzymes were expressed in a bacterial expression system and their interactions were examined. Immunoprecipitation using an antibody specific for each enzyme coupled with Western blotting-based detection using antibodies for the counterpart enzymes showed co-precipitation of all 3 enzymes. From an evolutionary viewpoint, the formation of a functional tri-enzyme complex may have preceded—and led to—gene fusion to produce the CAD protein. This is the first report to demonstrate the structural basis of these 3 enzymes as a model of CAD. Moreover, in conjunction with the essentiality of de novo pyrimidine biosynthesis in the parasite, our findings provide a rationale for new strategies for developing drugs for Chagas disease, which target the intermolecular interactions of these 3 enzymes.

  11. Molecular interaction of the first 3 enzymes of the de novo pyrimidine biosynthetic pathway of Trypanosoma cruzi

    Energy Technology Data Exchange (ETDEWEB)

    Nara, Takeshi, E-mail: tnara@juntendo.ac.jp [Department of Molecular and Cellular Parasitology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Hashimoto, Muneaki; Hirawake, Hiroko [Department of Molecular and Cellular Parasitology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Liao, Chien-Wei [Department of Molecular and Cellular Parasitology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Department of Parasitology, Taipei Medical University, 250 Wu-Xing Street, Taipei 110, Taiwan, ROC (China); Fukai, Yoshihisa; Suzuki, Shigeo; Tsubouchi, Akiko; Morales, Jorge; Takamiya, Shinzaburo [Department of Molecular and Cellular Parasitology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Fujimura, Tsutomu; Taka, Hikari; Mineki, Reiko [Division of Proteomics and Biomolecular Science, Biomedical Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Fan, Chia-Kwung [Department of Parasitology, Taipei Medical University, 250 Wu-Xing Street, Taipei 110, Taiwan, ROC (China); Inaoka, Daniel Ken [Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Inoue, Masayuki [Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Tanaka, Akiko [Systems and Structural Biology Center, RIKEN, Tsurumi, Yokohama 230-0045 (Japan); Harada, Shigeharu [Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Kita, Kiyoshi [Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); and others

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer An Escherichia coli strain co-expressing CPSII, ATC, and DHO of Trypanosoma cruzi was constructed. Black-Right-Pointing-Pointer Molecular interactions between CPSII, ATC, and DHO of T. cruzi were demonstrated. Black-Right-Pointing-Pointer CPSII bound with both ATC and DHO. Black-Right-Pointing-Pointer ATC bound with both CPSII and DHO. Black-Right-Pointing-Pointer A functional tri-enzyme complex might precede the establishment of the fused enzyme. -- Abstract: The first 3 reaction steps of the de novo pyrimidine biosynthetic pathway are catalyzed by carbamoyl-phosphate synthetase II (CPSII), aspartate transcarbamoylase (ATC), and dihydroorotase (DHO), respectively. In eukaryotes, these enzymes are structurally classified into 2 types: (1) a CPSII-DHO-ATC fusion enzyme (CAD) found in animals, fungi, and amoebozoa, and (2) stand-alone enzymes found in plants and the protist groups. In the present study, we demonstrate direct intermolecular interactions between CPSII, ATC, and DHO of the parasitic protist Trypanosoma cruzi, which is the causative agent of Chagas disease. The 3 enzymes were expressed in a bacterial expression system and their interactions were examined. Immunoprecipitation using an antibody specific for each enzyme coupled with Western blotting-based detection using antibodies for the counterpart enzymes showed co-precipitation of all 3 enzymes. From an evolutionary viewpoint, the formation of a functional tri-enzyme complex may have preceded-and led to-gene fusion to produce the CAD protein. This is the first report to demonstrate the structural basis of these 3 enzymes as a model of CAD. Moreover, in conjunction with the essentiality of de novo pyrimidine biosynthesis in the parasite, our findings provide a rationale for new strategies for developing drugs for Chagas disease, which target the intermolecular interactions of these 3 enzymes.

  12. Structure-Based Design of Inhibitors of the Crucial Cysteine Biosynthetic Pathway Enzyme O-Acetyl Serine Sulfhydrylase.

    Science.gov (United States)

    Mazumder, Mohit; Gourinath, Samudrala

    2016-01-01

    The cysteine biosynthetic pathway is of fundamental importance for the growth, survival, and pathogenicity of the many pathogens. This pathway is present in many species but is absent in mammals. The ability of pathogens to counteract the oxidative defences of a host is critical for the survival of these pathogens during their long latent phases, especially in anaerobic pathogens such as Entamoeba histolytica, Leishmania donovani, Trichomonas vaginalis, and Salmonella typhimurium. All of these organisms rely on the de novo cysteine biosynthetic pathway to assimilate sulphur and maintain a ready supply of cysteine. The de novo cysteine biosynthetic pathway, on account of its being important for the survival of pathogens and at the same time being absent in mammals, is an important drug target for diseases such as amoebiasis, trichomoniasis & tuberculosis. Cysteine biosynthesis is catalysed by two enzymes: serine acetyl transferase (SAT) followed by O-acetylserine sulfhydrylase (OASS). OASS is well studied, and with the availability of crystal structures of this enzyme in different conformations, it is a suitable template for structure-based inhibitor development. Moreover, OASS is highly conserved, both structurally and sequence-wise, among the above-mentioned organisms. There have been several reports of inhibitor screening and development against this enzyme from different organisms such as Salmonella typhimurium, Mycobacterium tuberculosis and Entamoeba histolytica. All of these inhibitors have been reported to display micromolar to nanomolar binding affinities for the open conformation of the enzyme. In this review, we highlight the structural similarities of this enzyme in different organisms and the attempts for inhibitor development so far. We also propose that the intermediate state of the enzyme may be the ideal target for the design of effective highaffinity inhibitors. PMID:26303427

  13. Overexpressions of Lambda Phage Lysis Genes and Biosynthetic Genes of Poly-β-hydroxybutyrate in Recombinant E.coli

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    A plasmid (pTU9) containing the lambda (λ) phage lysis genes S(-)RRz and the biosynthetic genes phbCAB of poly-β-hydroxybutyrate (PHB) was constructed and transformed into E.coli JM109. Cultured in Luria-Bertani (LB) medium with 20 g/L glucose, E.coli JM109 (pTU9) could accumulate PHB in cells up to 40% (g PHB per g dry cells). A chelating agent EDTA was applied to induce a complete cell lysis and PHB granules were released. This method has a potential application in PHB separation.

  14. Bacterial Long-Chain Polyunsaturated Fatty Acids: Their Biosynthetic Genes, Functions, and Practical Use

    Directory of Open Access Journals (Sweden)

    Kiyohito Yoshida

    2016-05-01

    Full Text Available The nutritional and pharmaceutical values of long-chain polyunsaturated fatty acids (LC-PUFAs such as arachidonic, eicosapentaenoic and docosahexaenoic acids have been well recognized. These LC-PUFAs are physiologically important compounds in bacteria and eukaryotes. Although little is known about the biosynthetic mechanisms and functions of LC-PUFAs in bacteria compared to those in higher organisms, a combination of genetic, bioinformatic, and molecular biological approaches to LC-PUFA-producing bacteria and some eukaryotes have revealed the notably diverse organization of the pfa genes encoding a polyunsaturated fatty acid synthase complex (PUFA synthase, the LC-PUFA biosynthetic processes, and tertiary structures of the domains of this enzyme. In bacteria, LC-PUFAs appear to take part in specific functions facilitating individual membrane proteins rather than in the adjustment of the physical fluidity of the whole cell membrane. Very long chain polyunsaturated hydrocarbons (LC-HCs such as hentriacontanonaene are considered to be closely related to LC-PUFAs in their biosynthesis and function. The possible role of LC-HCs in strictly anaerobic bacteria under aerobic and anaerobic environments and the evolutionary relationships of anaerobic and aerobic bacteria carrying pfa-like genes are also discussed.

  15. Bacterial Long-Chain Polyunsaturated Fatty Acids: Their Biosynthetic Genes, Functions, and Practical Use

    Science.gov (United States)

    Yoshida, Kiyohito; Hashimoto, Mikako; Hori, Ryuji; Adachi, Takumi; Okuyama, Hidetoshi; Orikasa, Yoshitake; Nagamine, Tadashi; Shimizu, Satoru; Ueno, Akio; Morita, Naoki

    2016-01-01

    The nutritional and pharmaceutical values of long-chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic, eicosapentaenoic and docosahexaenoic acids have been well recognized. These LC-PUFAs are physiologically important compounds in bacteria and eukaryotes. Although little is known about the biosynthetic mechanisms and functions of LC-PUFAs in bacteria compared to those in higher organisms, a combination of genetic, bioinformatic, and molecular biological approaches to LC-PUFA-producing bacteria and some eukaryotes have revealed the notably diverse organization of the pfa genes encoding a polyunsaturated fatty acid synthase complex (PUFA synthase), the LC-PUFA biosynthetic processes, and tertiary structures of the domains of this enzyme. In bacteria, LC-PUFAs appear to take part in specific functions facilitating individual membrane proteins rather than in the adjustment of the physical fluidity of the whole cell membrane. Very long chain polyunsaturated hydrocarbons (LC-HCs) such as hentriacontanonaene are considered to be closely related to LC-PUFAs in their biosynthesis and function. The possible role of LC-HCs in strictly anaerobic bacteria under aerobic and anaerobic environments and the evolutionary relationships of anaerobic and aerobic bacteria carrying pfa-like genes are also discussed. PMID:27187420

  16. A specialized flavone biosynthetic pathway has evolved in the medicinal plant, Scutellaria baicalensis

    Science.gov (United States)

    Zhao, Qing; Zhang, Yang; Wang, Gang; Hill, Lionel; Weng, Jing-Ke; Chen, Xiao-Ya; Xue, Hongwei; Martin, Cathie

    2016-01-01

    Wogonin and baicalein are bioactive flavones in the popular Chinese herbal remedy Huang-Qin (Scutellaria baicalensis Georgi). These specialized flavones lack a 4′-hydroxyl group on the B ring (4′-deoxyflavones) and induce apoptosis in a wide spectrum of human tumor cells in vitro and inhibit tumor growth in vivo in different mouse tumor models. Root-specific flavones (RSFs) from Scutellaria have a variety of reported additional beneficial effects including antioxidant and antiviral properties. We describe the characterization of a new pathway for the synthesis of these compounds, in which pinocembrin (a 4′-deoxyflavanone) serves as a key intermediate. Although two genes encoding flavone synthase II (FNSII) are expressed in the roots of S. baicalensis, FNSII-1 has broad specificity for flavanones as substrates, whereas FNSII-2 is specific for pinocembrin. FNSII-2 is responsible for the synthesis of 4′-deoxyRSFs, such as chrysin and wogonin, wogonoside, baicalein, and baicalin, which are synthesized from chrysin. A gene encoding a cinnamic acid–specific coenzyme A ligase (SbCLL-7), which is highly expressed in roots, is required for the synthesis of RSFs by FNSII-2, as demonstrated by gene silencing. A specific isoform of chalcone synthase (SbCHS-2) that is highly expressed in roots producing RSFs is also required for the synthesis of chrysin. Our studies reveal a recently evolved pathway for biosynthesis of specific, bioactive 4′-deoxyflavones in the roots of S. baicalensis.

  17. A specialized flavone biosynthetic pathway has evolved in the medicinal plant, Scutellaria baicalensis.

    Science.gov (United States)

    Zhao, Qing; Zhang, Yang; Wang, Gang; Hill, Lionel; Weng, Jing-Ke; Chen, Xiao-Ya; Xue, Hongwei; Martin, Cathie

    2016-04-01

    Wogonin and baicalein are bioactive flavones in the popular Chinese herbal remedy Huang-Qin (Scutellaria baicalensis Georgi). These specialized flavones lack a 4'-hydroxyl group on the B ring (4'-deoxyflavones) and induce apoptosis in a wide spectrum of human tumor cells in vitro and inhibit tumor growth in vivo in different mouse tumor models. Root-specific flavones (RSFs) from Scutellaria have a variety of reported additional beneficial effects including antioxidant and antiviral properties. We describe the characterization of a new pathway for the synthesis of these compounds, in which pinocembrin (a 4'-deoxyflavanone) serves as a key intermediate. Although two genes encoding flavone synthase II (FNSII) are expressed in the roots of S. baicalensis, FNSII-1 has broad specificity for flavanones as substrates, whereas FNSII-2 is specific for pinocembrin. FNSII-2 is responsible for the synthesis of 4'-deoxyRSFs, such as chrysin and wogonin, wogonoside, baicalein, and baicalin, which are synthesized from chrysin. A gene encoding a cinnamic acid-specific coenzyme A ligase (SbCLL-7), which is highly expressed in roots, is required for the synthesis of RSFs by FNSII-2, as demonstrated by gene silencing. A specific isoform of chalcone synthase (SbCHS-2) that is highly expressed in roots producing RSFs is also required for the synthesis of chrysin. Our studies reveal a recently evolved pathway for biosynthesis of specific, bioactive 4'-deoxyflavones in the roots of S. baicalensis. PMID:27152350

  18. Cloning of artemisinin biosynthetic cDNAs and novel ESTs and quantification of low temperature-induced gene overexpression

    Institute of Scientific and Technical Information of China (English)

    ZENG QingPing; ZHAO Chang; YIN LuLu; YANG RuiYi; ZENG XiaoMei; HUANG Ying; FENG LiLing; YANG XueQin

    2008-01-01

    To isolate and verify novel genes from qinghao (Artemisia annua) based on the development-specific and environment-induced transcriptomics, leaves have been harvested from the flowering A. annua plants and exposed to low temperature for isolation of total RNAs and cloning of full-length cDNAs and cDNA fragments, or expressed sequence tags (ESTs). After being sequenced and browsed for homology, these sequences have been submitted to GenBank. Among the accessed 75 sequences, 4 full-length cDNAs are highly homologous to the known A. annua genes, but 71 ESTs are absent in the sequence records of A. annua genes, in which 34 sequences are homologous to other plant genes,including 24 identified protein-coding sequences and 10 unidentified protein-coding sequences, while other 37 sequences are not present in the sequence records of any plant genes, representing the first cloned plant genes. In order to investigate the responsive patterns of A. annua genes to extreme environmental stresses, especially low temperature, the expression levels of 3 critical qinhaosu (artemisinin) biosynthetic genes, ADS, CYP71AV1 and CPR, have been measured in pre- and post-chilling A.annua seedlings cultured in vitro by semi-quantitative PCR (SQ-PCR). Consequently, ADS and CYP71AV1 genes are strongly induced by chilling, but CPR gene is not significantly affected by such treatment. Furthermore, induction of these genes by chilling can be potently suppressed by Ca2+channel inhibitor LaCl3 or Ca2+ chelator EGTA, suggesting a putative involvement of Ca2+-CaM signal transduction pathway in chilling-induced overexpression of ADS and CYP71AV1 genes. The real-time fluorescent quantitative PCR (RFQ-PCR) assay of A. annua seedlings exposed to chilling has shown that the expression level of CaM gene is up-regulated for more than 2.5 folds, thereby confirming our above inference on the relevance of Ca2+-CaM-mediated signal transduction to chilling-induced gene overexpression. Finally, 7 newly isolated A

  19. Cloning of artemisinin biosynthetic cDNAs and novel ESTs and quantification of low temperature-induced gene overexpression

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To isolate and verify novel genes from qinghao (Artemisia annua) based on the development-specific and environment-induced transcriptomics, leaves have been harvested from the flowering A. annua plants and exposed to low temperature for isolation of total RNAs and cloning of full-length cDNAs and cDNA fragments, or expressed sequence tags (ESTs). After being sequenced and browsed for homol- ogy, these sequences have been submitted to GenBank. Among the accessed 75 sequences, 4 full-length cDNAs are highly homologous to the known A. annua genes, but 71 ESTs are absent in the sequence records of A. annua genes, in which 34 sequences are homologous to other plant genes, including 24 identified protein-coding sequences and 10 unidentified protein-coding sequences, while other 37 sequences are not present in the sequence records of any plant genes, representing the first cloned plant genes. In order to investigate the responsive patterns of A. annua genes to extreme envi- ronmental stresses, especially low temperature, the expression levels of 3 critical qinhaosu (artemisi- nin) biosynthetic genes, ADS, CYP71AV1 and CPR, have been measured in pre- and post-chilling A. annua seedlings cultured in vitro by semi-quantitative PCR (SQ-PCR). Consequently, ADS and CYP71AV1 genes are strongly induced by chilling, but CPR gene is not significantly affected by such treatment. Furthermore, induction of these genes by chilling can be potently suppressed by Ca2+ channel inhibitor LaCl3 or Ca2+ chelator EGTA, suggesting a putative involvement of Ca2+-CaM signal transduction pathway in chilling-induced overexpression of ADS and CYP71AV1 genes. The real-time fluorescent quantitative PCR (RFQ-PCR) assay of A. annua seedlings exposed to chilling has shown that the expression level of CaM gene is up-regulated for more than 2.5 folds, thereby confirming our above inference on the relevance of Ca2+-CaM-mediated signal transduction to chilling-induced gene overexpression. Finally, 7 newly

  20. Effects of Cerium on Accumulation of Anthocyanins and Expression of Anthocyanin Biosynthetic Genes in Potato Cell Tissue Cultures

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The effects of Ce (Ⅳ) on callus growth, anthocyanin content, and expression of anthocyanin biosynthetic genes in callus suspension cultures of Solanum tuberosum cv. Chieftain were studied by the measurement of fresh weight, spectrophotometric assays, and semiquantitative RT-PCR. The results indicate that 0.1 mmol·L-1 Ce (Ⅳ) can promote callus growth, increase the accumulation of anthocyanins, and enhance the expression of five anthocyanin biosynthetic genes (CHS, F3H, F3′5′H, DFR, and 3GT) most efficiently. At high concentrations of 1 mmol·L-1, Ce (Ⅳ) partially inhibits callus growth and at 2 mmol·L-1 eventually lends to cell death. The results show that Ce(Ⅳ) can induce the expression of anthocyanin biosynthetic genes to produce and accumulate anthocyanins and increase the yield of anthocyanins.

  1. Decoding Biosynthetic Pathways in Plants by Pulse-Chase Strategies Using 13CO2 as a Universal Tracer

    Directory of Open Access Journals (Sweden)

    Adelbert Bacher

    2016-07-01

    Full Text Available 13CO2 pulse-chase experiments monitored by high-resolution NMR spectroscopy and mass spectrometry can provide 13C-isotopologue compositions in biosynthetic products. Experiments with a variety of plant species have documented that the isotopologue profiles generated with 13CO2 pulse-chase labeling are directly comparable to those that can be generated by the application of [U-13C6]glucose to aseptically growing plants. However, the application of the 13CO2 labeling technology is not subject to the experimental limitations that one has to take into account for experiments with [U-13C6]glucose and can be applied to plants growing under physiological conditions, even in the field. In practical terms, the results of biosynthetic studies with 13CO2 consist of the detection of pairs, triples and occasionally quadruples of 13C atoms that have been jointly contributed to the target metabolite, at an abundance that is well above the stochastic occurrence of such multiples. Notably, the connectivities of jointly transferred 13C multiples can have undergone modification by skeletal rearrangements that can be diagnosed from the isotopologue data. As shown by the examples presented in this review article, the approach turns out to be powerful in decoding the carbon topology of even complex biosynthetic pathways.

  2. Characterization of TDP-4-keto-6-deoxy-D-glucose-3,4-ketoisomerase from the D-mycaminose biosynthetic pathway of Streptomyces fradiae: in vitro activity and substrate specificity studies.

    Science.gov (United States)

    Melançon, Charles E; Hong, Lin; White, Jess A; Liu, Yung-nan; Liu, Hung-wen

    2007-01-16

    Deoxysugars are critical structural elements for the bioactivity of many natural products. Ongoing work on elucidating a variety of deoxysugar biosynthetic pathways has paved the way for manipulation of these pathways for the generation of structurally diverse glycosylated natural products. In the course of this work, the biosynthesis of d-mycaminose in the tylosin pathway of Streptomyces fradiae was investigated. Attempts to reconstitute the entire mycaminose biosynthetic machinery in a heterologous host led to the discovery of a previously overlooked gene, tyl1a, encoding an enzyme thought to convert TDP-4-keto-6-deoxy-d-glucose to TDP-3-keto-6-deoxy-d-glucose, a 3,4-ketoisomerization reaction in the pathway. Tyl1a has now been overexpressed, purified, and assayed, and its activity has been verified by product analysis. Incubation of Tyl1a and the C-3 aminotransferase TylB, the next enzyme in the pathway, produced TDP-3-amino-3,6-dideoxy-d-glucose, confirming that these two enzymes act sequentially. Steady state kinetic parameters of the Tyl1a-catalyzed reaction were determined, and the ability of Tyl1a and TylB to process a C-2 deoxygenated substrate and a CDP-linked substrate was also demonstrated. Enzymes catalyzing 3,4-ketoisomerization of hexoses represent a new class of enzymes involved in unusual sugar biosynthesis. The fact that Tyl1a exhibits a relaxed substrate specificity holds potential for future deoxysugar biosynthetic engineering endeavors. PMID:17209568

  3. Phenylpropanoids accumulation in eggplant fruit: characterization of biosynthetic genes and regulation by a MYB transcription factor

    Directory of Open Access Journals (Sweden)

    Teresa eDocimo

    2016-01-01

    Full Text Available Phenylpropanoids are major secondary metabolites in eggplant (Solanum melongena fruits. Chlorogenic acid (CGA accounts for 70 to 90% of total phenolics in flesh tissues, while anthocyanins are mainly present in the fruit skin. As a contribution to the understanding of the peculiar accumulation of these health-promoting metabolites in eggplant, we report on metabolite abundance, regulation of CGA and anthocyanin biosynthesis, and characterization of candidate CGA biosynthetic genes in S. melongena.Higher contents of CGA, Delphinidin 3-rutinoside and rutin were found in eggplant fruits compared to other tissues, associated to an elevated transcript abundance of structural genes such as PAL, HQT, DFR and ANS, suggesting that active in situ biosynthesis contributes to anthocyanin and CGA accumulation in fruit tissues. Putative orthologs of the two CGA biosynthetic genes PAL and HQT, as well as a variant of a MYB1 transcription factor showing identity with group 6 MYBs, were isolated from an Occidental S. melongena traditional variety and demonstrated to differ from published sequences from Asiatic varieties.In silico analysis of the isolated SmPAL1, SmHQT1, SmANS, and SmMyb1 promoters revealed the presence of several Myb regulatory elements for the biosynthetic genes and unique elements for the TF, suggesting its involvement in other physiological roles beside phenylpropanoid biosynthesis regulation.Transient overexpression in Nicotiana benthamiana leaves of SmMyb1 and of a C-terminal SmMyb1 truncated form (SmMyb1Δ9 resulted in anthocyanin accumulation only of SmMyb1 agro-infiltrated leaves. A yeast two-hybrid assay confirmed the interaction of both SmMyb1 and SmMyb1Δ9 with an anthocyanin-related potato bHLH1 TF. Interestingly, a doubled amount of CGA was detected in both SmMyb1 and SmMyb1Δ9 agro-infiltrated leaves, thus suggesting that the N-terminal region of SmMyb1 is sufficient to activate its synthesis. These data suggest that a deletion of

  4. Laccase-catalysed oxidations of naturally occurring phenols: from in vivo biosynthetic pathways to green synthetic applications.

    Science.gov (United States)

    Jeon, Jong-Rok; Baldrian, Petr; Murugesan, Kumarasamy; Chang, Yoon-Seok

    2012-05-01

    Laccases are oxidases that contain several copper atoms, and catalyse single-electron oxidations of phenolic compounds with concomitant reduction of oxygen to water. The enzymes are particularly widespread in ligninolytic basidiomycetes, but also occur in certain prokaryotes, insects and plants. Depending on the species, laccases are involved in various biosynthetic processes contributing to carbon recycling in land ecosystems and the morphogenesis of biomatrices, wherein low-molecular-weight naturally occurring phenols serve as key enzyme substrates. Studies of these in vivo synthetic pathways have afforded new insights into fungal laccase applicability in green synthetic chemistry. Thus, we here review fungal laccase-catalysed oxidations of naturally occurring phenols that are particularly relevant to the synthesis of fine organic chemicals, and we discuss how the discovered synthetic strategies mimic laccase-involved in vivo pathways, thus enhancing the green nature of such reactions. Laccase-catalysed in vivo processes yield several types of biopolymers, including those of cuticles, lignin, polyflavonoids, humus and the melanin pigments, using natural mono- or poly-phenols as building blocks. The in vivo synthetic pathways involve either phenoxyl radical-mediated coupling or cross-linking reactions, and can be adapted to the design of in vitro oxidative processes involving fungal laccases in organic synthesis; the laccase substrates and the synthetic mechanisms reflect in vivo processes. Notably, such in vitro synthetic pathways can also reproduce physicochemical properties (e.g. those of chromophores, and radical-scavenging, hydration and antimicrobial activities) found in natural biomaterials. Careful study of laccase-associated in vivo metabolic pathways has been rewarded by the discovery of novel green applications for fungal laccases. This review comprehensively summarizes the available data on laccase-catalysed biosynthetic pathways and associated

  5. Flower color alteration in Lotus japonicus by modification of the carotenoid biosynthetic pathway.

    Science.gov (United States)

    Suzuki, Sakae; Nishihara, Masahiro; Nakatsuka, Takashi; Misawa, Norihiko; Ogiwara, Isao; Yamamura, Saburo

    2007-07-01

    To establish a model system for alteration of flower color by carotenoid pigments, we modified the carotenoid biosynthesis pathway of Lotus japonicus using overexpression of the crtW gene isolated from marine bacteria Agrobacterium aurantiacum and encoding beta-carotene ketolase (4,4'-beta-oxygenase) for the production of pink to red color ketocarotenoids. The crtW gene with the transit peptide sequence of the pea Rubisco small subunit under the regulation of the CaMV35S promoter was introduced to L. japonicus. In most of the resulting transgenic plants, the color of flower petals changed from original light yellow to deep yellow or orange while otherwise exhibiting normal phenotype. HPLC and TLC analyses revealed that leaves and flower petals of these plants accumulated novel carotenoids, believed to be ketocarotenoids consisting of including astaxanthin, adonixanthin, canthaxanthin and echinenone. Results indicated that modification of the carotenoid biosynthesis pathway is a means of altering flower color in ornamental crops. PMID:17265153

  6. Identification of a 12-gene Fusaric Acid Biosynthetic Gene Cluster in Fusarium Species Through Comparative and Functional Genomics.

    Science.gov (United States)

    Brown, Daren W; Lee, Seung-Ho; Kim, Lee-Han; Ryu, Jae-Gee; Lee, Soohyung; Seo, Yunhee; Kim, Young Ho; Busman, Mark; Yun, Sung-Hwan; Proctor, Robert H; Lee, Theresa

    2015-03-01

    In fungi, genes involved in biosynthesis of a secondary metabolite (SM) are often located adjacent to one another in the genome and are coordinately regulated. These SM biosynthetic gene clusters typically encode enzymes, one or more transcription factors, and a transport protein. Fusaric acid is a polyketide-derived SM produced by multiple species of the fungal genus Fusarium. This SM is of concern because it is toxic to animals and, therefore, is considered a mycotoxin and may contribute to plant pathogenesis. Preliminary descriptions of the fusaric acid (FA) biosynthetic gene (FUB) cluster have been reported in two Fusarium species, the maize pathogen F. verticillioides and the rice pathogen F. fujikuroi. The cluster consisted of five genes and did not include a transcription factor or transporter gene. Here, analysis of the FUB region in F. verticillioides, F. fujikuroi, and F. oxysporum, a plant pathogen with multiple hosts, indicates the FUB cluster consists of at least 12 genes (FUB1 to FUB12). Deletion analysis confirmed that nine FUB genes, including two Zn(II)2Cys6 transcription factor genes, are required for production of wild-type levels of FA. Comparisons of FUB cluster homologs across multiple Fusarium isolates and species revealed insertion of non-FUB genes at one or two locations in some homologs. Although the ability to produce FA contributed to the phytotoxicity of F. oxysporum culture extracts, lack of production did not affect virulence of F. oxysporum on cactus or F. verticillioides on maize seedlings. These findings provide new insights into the genetic and biochemical processes required for FA production. PMID:25372119

  7. Saponin determination, expression analysis and functional characterization of saponin biosynthetic genes in Chenopodium quinoa leaves.

    Science.gov (United States)

    Fiallos-Jurado, Jennifer; Pollier, Jacob; Moses, Tessa; Arendt, Philipp; Barriga-Medina, Noelia; Morillo, Eduardo; Arahana, Venancio; de Lourdes Torres, Maria; Goossens, Alain; Leon-Reyes, Antonio

    2016-09-01

    Quinoa (Chenopodium quinoa Willd.) is a highly nutritious pseudocereal with an outstanding protein, vitamin, mineral and nutraceutical content. The leaves, flowers and seed coat of quinoa contain triterpenoid saponins, which impart bitterness to the grain and make them unpalatable without postharvest removal of the saponins. In this study, we quantified saponin content in quinoa leaves from Ecuadorian sweet and bitter genotypes and assessed the expression of saponin biosynthetic genes in leaf samples elicited with methyl jasmonate. We found saponin accumulation in leaves after MeJA treatment in both ecotypes tested. As no reference genes were available to perform qPCR in quinoa, we mined publicly available RNA-Seq data for orthologs of 22 genes known to be stably expressed in Arabidopsis thaliana using geNorm, NormFinder and BestKeeper algorithms. The quinoa ortholog of At2g28390 (Monensin Sensitivity 1, MON1) was stably expressed and chosen as a suitable reference gene for qPCR analysis. Candidate saponin biosynthesis genes were screened in the quinoa RNA-Seq data and subsequent functional characterization in yeast led to the identification of CqbAS1, CqCYP716A78 and CqCYP716A79. These genes were found to be induced by MeJA, suggesting this phytohormone might also modulate saponin biosynthesis in quinoa leaves. Knowledge of the saponin biosynthesis and its regulation in quinoa may aid the further development of sweet cultivars that do not require postharvest processing. PMID:27457995

  8. Duplication of partial spinosyn biosynthetic gene cluster in Saccharopolyspora spinosa enhances spinosyn production.

    Science.gov (United States)

    Tang, Ying; Xia, Liqiu; Ding, Xuezhi; Luo, Yushuang; Huang, Fan; Jiang, Yuanwei

    2011-12-01

    Spinosyns, the secondary metabolites produced by Saccharopolyspora spinosa, are the active ingredients in a family of insect control agents. Most of the S. spinosa genes involved in spinosyn biosynthesis are found in a contiguous c. 74-kb cluster. To increase the spinosyn production through overexpression of their biosynthetic genes, part of its gene cluster (c. 18 kb) participating in the conversion of the cyclized polyketide to spinosyn was obtained by direct cloning via Red/ET recombination rather than by constructing and screening the genomic library. The resultant plasmid pUCAmT-spn was introduced into S. spinosa CCTCC M206084 from Escherichia coli S17-1 by conjugal transfer. The subsequent single-crossover homologous recombination caused a duplication of the partial gene cluster. Integration of this plasmid enhanced production of spinosyns with a total of 388 (± 25.0) mg L(-1) for spinosyns A and D in the exconjugant S. spinosa trans1 compared with 100 (± 7.7) mg L(-1) in the parental strain. Quantitative real time polymerase chain reaction analysis of three selected genes (spnH, spnI, and spnK) confirmed the positive effect of the overexpression of these genes on the spinosyn production. This study provides a simple avenue for enhancing spinosyn production. The strategies could also be used to improve the yield of other secondary metabolites. PMID:22092858

  9. Metabolic engineering Corynebacterium glutamicum for the L-lysine production by increasing the flux into L-lysine biosynthetic pathway.

    Science.gov (United States)

    Xu, Jianzhong; Han, Mei; Zhang, Junlan; Guo, Yanfeng; Zhang, Weiguo

    2014-09-01

    The experiments presented here were based on the conclusions of our previous results. In order to avoid introduction of expression plasmid and to balance the NADH/NAD ratio, the NADH biosynthetic enzyme, i.e., NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (GADPH), was replaced by NADP-dependent GADPH, which was used to biosynthesize NADPH rather than NADH. The results indicated that the NADH/NAD ratio significantly decreased, and glucose consumption and L-lysine production drastically improved. Moreover, increasing the flux through L-lysine biosynthetic pathway and disruption of ilvN and hom, which involve in the branched amino acid and L-methionine biosynthesis, further improved L-lysine production by Corynebacterium glutamicum. Compared to the original strain C. glutamicum Lys5, the L-lysine production and glucose conversion efficiency (α) were enhanced to 81.0 ± 6.59 mM and 36.45% by the resulting strain C. glutamicum Lys5-8 in shake flask. In addition, the by-products (i.e., L-threonine, L-methionine and L-valine) were significantly decreased as results of genetic modification in homoserine dehydrogenase (HSD) and acetohydroxyacid synthase (AHAS). In fed-batch fermentation, C. glutamicum Lys5-8 began to produce L-lysine at post-exponential growth phase and continuously increased over 36 h to a final titer of 896 ± 33.41 mM. The L-lysine productivity was 2.73 g l(-1) h(-1) and the α was 47.06% after 48 h. However, the attenuation of MurE was not beneficial to increase the L-lysine production because of decreasing the cell growth. Based on the above-mentioned results, we get the following conclusions: cofactor NADPH, precursor, the flux through L-lysine biosynthetic pathway and DCW are beneficial to improve L-lysine production in C. glutamicum. PMID:24879631

  10. Environmental cues induce changes of steviol glycosides contents and transcription of corresponding biosynthetic genes in Stevia rebaudiana.

    Science.gov (United States)

    Yang, Yongheng; Huang, Suzhen; Han, Yulin; Yuan, Haiyan; Gu, Chunsun; Wang, Zhongwei

    2015-01-01

    Plant growth and secondary metabolism are commonly regulated by external cues such as light, temperature and water availability. In this study, the influences of low and high temperatures, dehydration, photoperiods, and different growing stages on the changes of steviol glycosides (SGs) contents and transcription levels of fifteen genes involved in SGs biosynthesis of Stevia rebaudiana Bertoni were examined using HPLC and RT-PCR. The observations showed that the transcript levels of all the fifteen genes were maximum under 25 °C treatment, and the transcription of SrDXS, SrDXR, SrMCT, SrCMK, SrMDS, SrHDS, SrHDR, SrIDI, SrGGDPS, SrCPPS1, SrUGT85C2 and SrUGT76G1 were restrained both in low temperature (15 °C) and high temperature (35 °C). Most genes in SGs biosynthesis pathway exhibited down-regulation in dehydration. To elucidate the effect of photoperiods, the plants were treated by different simulated photoperiods (8 L/16 D, 1 0L/14 D, 14 L/10 D and 16 L/8 D), but no significant transcription changes were observed. In the study of growing stages, there were evident changes of SGs contents, and the transcript levels of all the fifteen genes were minimal in fast growing period, and exhibited evident increase both in flower-bud appearing stage and flowering stage. The obtained results strongly suggest that the effect of environmental cues on steviol glycosides contents and transcription of corresponding biosynthetic genes in S. rebaudiana is significant. It is worth to study deeply. PMID:25500454

  11. Use of the valine biosynthetic pathway to convert glucose into isobutanol.

    Science.gov (United States)

    Savrasova, Ekaterina A; Kivero, Aleksander D; Shakulov, Rustem S; Stoynova, Nataliya V

    2011-09-01

    Microbiological synthesis of higher alcohols (1-butanol, isobutanol, 2-methyl-1-butanol, etc.) from plant biomass is critically important due to their advantages over ethanol as a motor fuel. In recent years, the use of branched-chain amino acid (BCAA) biosynthesis pathways together with heterologous Ehrlich pathway enzyme system (Hazelwood et al. in Appl Environ Microbiol 74:2259-2266, 2008) has been proposed by the Liao group as an alternative approach to aerobic production of higher alcohols as new-generation biofuels (Atsumi et al. in Nature 451:86-90, 2008; Atsumi et al. in Appl Microbiol Biotechnol 85:651-657, 2010; Cann and Liao in Appl Microbiol Biotechnol 81:89-98, 2008; Connor and Liao in Appl Environ Microbiol 74:5769-5775, 2008; Shen and Liao in Metab Eng 10:312-320, 2008; Yan and Liao in J Ind Microbiol Biotechnol 36:471-479, 2009). On the basis of these remarkable investigations, we re-engineered Escherichia coli valine-producing strain H-81, which possess overexpressed ilvGMED operon, for the aerobic conversion of sugar into isobutanol. To redirect valine biosynthesis to the production of alcohol, we also--as has been demonstrated previously (Atsumi et al. in Nature 451:86-90, 2008; Atsumi et al. in Appl Microbiol Biotechnol 85:651-657, 2010; Cann and Liao in Appl Microbiol Biotechnol 81:89-98, 2008; Connor and Liao in Appl Environ Microbiol 74:5769-5775, 2008; Shen and Liao in Metab Eng 10:312-320, 2008; Yan and Liao in J Ind Microbiol Biotechnol 36:471-479, 2009)--used enzymes of Ehrlich pathway. In particular, in our study, the following heterologous proteins were exploited: branched-chain 2-keto acid decarboxylase (BCKAD) encoded by the kdcA gene from Lactococcus lactis with rare codons substituted, and alcohol dehydrogenase (ADH) encoded by the ADH2 gene from Saccharomyces cerevisiae. We show that expression of both of these genes in the valine-producing strain H-81 results in accumulation of isobutanol instead of valine. Expression of BCKAD

  12. Structure, function and regulation of the enzymes in the starch biosynthetic pathway.

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, Jim

    2013-11-30

    structure of ADP- Glucose pyrophosphorylase from potato in its inhibited conformation, and bound to both ATP and ADP-glucose. In addition, we have determined the first structure of glycogen synthase in its "closed", catalytically active conformation bound to ADP-glucose. We also determined the structure of glycogen synthase bound to malto-oligosaccharides, showing for the first time that an enzyme in the starch biosynthetic pathway recognizes glucans not just in its active site but on binding sites on the surface of the enzyme ten’s of Angstroms from the active site. In addition our structure of a glycogen branching enzyme bound to malto-oligosaccharides identified seven distinct binding sites distributed about the surface of the enzyme. We will now determine the function of these sites to get a molecular-level picture of exactly how these enzymes interact with their polymeric substrates and confer specificity leading to the complex structure of the starch granule. We will extend our studies to other isoforms of the enzymes, to understand how their structures give rise to their distinct function. Our goal is to understand what accounts for the various functional differences between SS and SBE isoforms at a molecular level.

  13. Production of the Streptomyces scabies coronafacoyl phytotoxins involves a novel biosynthetic pathway with an F420 -dependent oxidoreductase and a short-chain dehydrogenase/reductase.

    Science.gov (United States)

    Bown, Luke; Altowairish, Mead S; Fyans, Joanna K; Bignell, Dawn R D

    2016-07-01

    Coronafacoyl phytotoxins are secondary metabolites that are produced by various phytopathogenic bacteria, including several pathovars of the Gram-negative bacterium Pseudomonas syringae as well as the Gram-positive potato scab pathogen Streptomyces scabies. The phytotoxins are composed of the polyketide coronafacic acid (CFA) linked via an amide bond to amino acids or amino acid derivatives, and their biosynthesis involves the cfa and cfa-like gene clusters that are found in P. syringae and S. scabies, respectively. The S. scabies cfa-like gene cluster was previously reported to contain several genes that are absent from the P. syringae cfa gene cluster, including one (oxr) encoding a putative F420 -dependent oxidoreductase, and another (sdr) encoding a predicted short-chain dehydrogenase/reductase. Using gene deletion analysis, we demonstrated that both oxr and sdr are required for normal production of the S. scabies coronafacoyl phytotoxins, and structural analysis of metabolites that accumulated in the Δsdr mutant cultures revealed that Sdr is directly involved in the biosynthesis of the CFA moiety. Our results suggest that S. scabies and P. syringae use distinct biosynthetic pathways for producing coronafacoyl phytotoxins, which are important mediators of host-pathogen interactions in various plant pathosystems. PMID:26991928

  14. Screening for the presence of biosynthetic genes for antimicrobial lipopeptides in natural isolates of Bacillus sp.

    Directory of Open Access Journals (Sweden)

    Stanković S.

    2012-01-01

    Full Text Available A collection of 205 natural isolates of Bacillus was tested for the presence of genes for biosynthesis of antimicrobial lipopeptides, iturin, surfactin, fengycin and bacillomycin D. For the detection of iturin producers by PCR screening, we used forward ITUP1-F and reverse ITUP2-R primers which are capable of detecting a 2-kb region that includes the intergenic sequence between the ituA and ituB genes. A 675-bp fragment from the gene sfp from B. subtilis encoding 4’-phosphopantetheinyl transferase involved in the biosynthesis of surfactin was targeted for amplification by using primers P17 and P18. Other two pairs of primers were BACC1F and BACC1R for bacillomycin D and FEND1F and FEND1R for potential fengycin producers, respectively. The results of the screening showed that the majority of tested strains had more than one biosynthetic operon, since 81% possessed the genes for bacillomycin D production, 54% for surfactin, 38% for iturin and 25% for fengycin production. [Projekat Ministarstva nauke Republike Srbije, br. 173026

  15. Phylogenomic Study of Lipid Genes Involved in Microalgal Biofuel Production—Candidate Gene Mining and Metabolic Pathway Analyses

    OpenAIRE

    Barada Kanta Mishra; Bikram Kumar Parida; Prasanna Kumar Panda; Namrata Misra

    2012-01-01

    Optimizing microalgal biofuel production using metabolic engineering tools requires an in-depth understanding of the structure-function relationship of genes involved in lipid biosynthetic pathway. In the present study, genome-wide identification and characterization of 398 putative genes involved in lipid biosynthesis in Arabidopsis thaliana Chlamydomonas reinhardtii, Volvox carteri, Ostreococcus lucimarinus, Ostreococcus tauri and Cyanidioschyzon merolae was undertaken on the basis of their...

  16. Mutational analysis of a phenazine biosynthetic gene cluster in Streptomyces anulatus 9663

    Directory of Open Access Journals (Sweden)

    Orwah Saleh

    2012-04-01

    Full Text Available The biosynthetic gene cluster for endophenazines, i.e., prenylated phenazines from Streptomyces anulatus 9663, was heterologously expressed in several engineered host strains derived from Streptomyces coelicolor M145. The highest production levels were obtained in strain M512. Mutations in the rpoB and rpsL genes of the host, which result in increased production of other secondary metabolites, had no beneficial effect on the production of phenazines. The heterologous expression strains produced, besides the known phenazine compounds, a new prenylated phenazine, termed endophenazine E. The structure of endophenazine E was determined by high-resolution mass spectrometry and by one- and two-dimensional NMR spectroscopy. It represented a conjugate of endophenazine A (9-dimethylallylphenazine-1-carboxylic acid and L-glutamine (L-Gln, with the carboxyl group of endophenazine A forming an amide bond to the α-amino group of L-Gln. Gene inactivation experiments in the gene cluster proved that ppzM codes for a phenazine N-methyltransferase. The gene ppzV apparently represents a new type of TetR-family regulator, specifically controlling the prenylation in endophenazine biosynthesis. The gene ppzY codes for a LysR-type regulator and most likely controls the biosynthesis of the phenazine core. A further putative transcriptional regulator is located in the vicinity of the cluster, but was found not to be required for phenazine or endophenazine formation. This is the first investigation of the regulatory genes of phenazine biosynthesis in Streptomyces.

  17. New erythromycin derivatives from Saccharopolyspora erythraea using sugar O-methyltransferases from the spinosyn biosynthetic gene cluster.

    Science.gov (United States)

    Gaisser, S; Lill, R; Wirtz, G; Grolle, F; Staunton, J; Leadlay, P F

    2001-09-01

    Using a previously developed expression system based on the erythromycin-producing strain of Saccharopolyspora erythraea, O-methyltransferases from the spinosyn biosynthetic gene cluster of Saccharopolyspora spinosa have been shown to modify a rhamnosyl sugar attached to a 14-membered polyketide macrolactone. The spnI, spnK and spnH methyltransferase genes were expressed individually in the S. erythraea mutant SGT2, which is blocked both in endogenous macrolide biosynthesis and in ery glycosyltransferases eryBV and eryCIII. Exogenous 3-O-rhamnosyl-erythronolide B was efficiently converted into 3-O-(2'-O-methylrhamnosyl)-erythronolide B by the S. erythraea SGT2 (spnI) strain only. When 3-O-(2'-O-methylrhamnosyl)-erythronolide B was, in turn, fed to a culture of S. erythraea SGT2 (spnK), 3-O-(2',3'-bis-O-methylrhamnosyl)-erythronolide B was identified in the culture supernatant, whereas S. erythraea SGT2 (spnH) was without effect. These results confirm the identity of the 2'- and 3'-O-methyltransferases, and the specific sequence in which they act, and they demonstrate that these methyltransferases may be used to methylate rhamnose units in other polyketide natural products with the same specificity as in the spinosyn pathway. In contrast, 3-O-(2',3'-bis-O-methylrhamnosyl)-erythronolide B was found not to be a substrate for the 4'-O-methyltransferase SpnH. Although rhamnosylerythromycins did not serve directly as substrates for the spinosyn methyltransferases, methylrhamnosyl-erythromycins were obtained by subsequent conversion of the corresponding methylrhamnosyl-erythronolide precursors using the S. erythraea strain SGT2 housing EryCIII, the desosaminyltransferase of the erythromycin pathway. 3-O-(2'-O-methylrhamnosyl)-erythromycin D was tested and found to be significantly active against a strain of erythromycin-sensitive Bacillus subtilis. PMID:11555300

  18. Differential Expression of Anthocyanin Biosynthetic Genes and Transcription Factor PcMYB10 in Pears (Pyrus communis L.)

    OpenAIRE

    Li LI; Ban, Zhao-Jun; Li, Xi-Hong; Wu, Mao-Yu; Wang, Ai-Li; Jiang, Yu-Qian; Jiang, Yun-Hong

    2012-01-01

    Anthocyanin biosynthesis in various plants is affected by environmental conditions and controlled by the transcription level of the corresponding genes. In pears (Pyrus communis cv. ‘Wujiuxiang’), anthocyanin biosynthesis is significantly induced during low temperature storage compared with that at room temperature. We further examined the transcriptional levels of anthocyanin biosynthetic genes in ‘Wujiuxiang’ pears during developmental ripening and temperature-induced storage. The expressio...

  19. Cytochrome P450 promiscuity leads to a bifurcating biosynthetic pathway for tanshinones.

    Science.gov (United States)

    Guo, Juan; Ma, Xiaohui; Cai, Yuan; Ma, Ying; Zhan, Zhilai; Zhou, Yongjin J; Liu, Wujun; Guan, Mengxin; Yang, Jian; Cui, Guanghong; Kang, Liping; Yang, Lei; Shen, Ye; Tang, Jinfu; Lin, Huixin; Ma, Xiaojing; Jin, Baolong; Liu, Zhenming; Peters, Reuben J; Zhao, Zongbao K; Huang, Luqi

    2016-04-01

    Cytochromes P450 (CYPs) play a key role in generating the structural diversity of terpenoids, the largest group of plant natural products. However, functional characterization of CYPs has been challenging because of the expansive families found in plant genomes, diverse reactivity and inaccessibility of their substrates and products. Here we present the characterization of two CYPs, CYP76AH3 and CYP76AK1, which act sequentially to form a bifurcating pathway for the biosynthesis of tanshinones, the oxygenated diterpenoids from the Chinese medicinal plant Danshen (Salvia miltiorrhiza). These CYPs had similar transcription profiles to that of the known gene responsible for tanshinone production in elicited Danshen hairy roots. Biochemical and RNA interference studies demonstrated that both CYPs are promiscuous. CYP76AH3 oxidizes ferruginol at two different carbon centers, and CYP76AK1 hydroxylates C-20 of two of the resulting intermediates. Together, these convert ferruginol into 11,20-dihydroxy ferruginol and 11,20-dihydroxy sugiol en route to tanshinones. Moreover, we demonstrated the utility of these CYPs by engineering yeast for heterologous production of six oxygenated diterpenoids, which in turn enabled structural characterization of three novel compounds produced by CYP-mediated oxidation. Our results highlight the incorporation of multiple CYPs into diterpenoid metabolic engineering, and a continuing trend of CYP promiscuity generating complex networks in terpenoid biosynthesis. PMID:26682704

  20. Signal Transduction Pathways that Regulate CAB Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Chory, Joanne

    2006-01-16

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  1. Signal Transduction Pathways that Regulate CAB Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Chory, Joanne

    2004-12-31

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  2. A red pigment synthesized by an Aspergillus parasiticus mutant as a possible new intermediate in the aflatoxin biosynthetic pathway.

    Science.gov (United States)

    García, M E; Herce, M D; Blanco, J L; Suárez, G

    1994-11-01

    The isolation of a red pigment from an Aspergillus parasiticus mutant obtained by 366 nm u.v. light treatment of A. parasiticus NRRL 2999 is described. Studies of conversion in aflatoxin B1 and G1 suggest that the red pigment could be a possible new intermediate in the aflatoxin biosynthetic pathway not described to date, and this has been verified by studies in gas chromatography/mass spectrometry. The solubility and stability characteristics under refrigeration storage, and the influence of the temperature and the pH on its production by the A. parasiticus mutant were also studied. It grew best at 30 degrees C and pH 6. The red pigment was most soluble in ethyl acetate. The results obtained in water are emphasized where there was high stability. PMID:8002480

  3. Nutritional regulation of long-chain PUFA biosynthetic genes in rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Gregory, Melissa K; Collins, Robert O; Tocher, Douglas R; James, Michael J; Turchini, Giovanni M

    2016-05-01

    Most studies on dietary vegetable oil in rainbow trout (Oncorhynchus mykiss) have been conducted on a background of dietary EPA (20 : 5n-3) and DHA (22 : 6n-3) contained in the fishmeal used as a protein source in aquaculture feed. If dietary EPA and DHA repress their endogenous synthesis from α-linolenic acid (ALA, 18 : 3n-3), then the potential of ALA-containing vegetable oils to maintain tissue EPA and DHA has been underestimated. We examined the effect of individual dietary n-3 PUFA on the expression of the biosynthetic genes required for metabolism of ALA to DHA in rainbow trout. A total of 720 juvenile rainbow trout were allocated to twenty-four experimental tanks and assigned one of eight diets. The effect of dietary ALA, EPA or DHA, in isolation or in combination, on hepatic expression of fatty acyl desaturase (FADS)2a(Δ6), FADS2b(Δ5), elongation of very long-chain fatty acid (ELOVL)5 and ELOVL2 was examined after 3 weeks of dietary intervention. The effect of these diets on liver and muscle phospholipid PUFA composition was also examined. The expression levels of FADS2a(Δ6), ELOVL5 and ELOVL2 were highest when diets were high in ALA, with no added EPA or DHA. Under these conditions ALA was readily converted to tissue DHA. Dietary DHA had the largest and most consistent effect in down-regulating the gene expression of all four genes. The ELOVL5 expression was the least responsive of the four genes to dietary n-3 PUFA changes. These findings should be considered when optimising aquaculture feeds containing vegetable oils and/or fish oil or fishmeal to achieve maximum DHA synthesis. PMID:26987422

  4. Diversity of Culturable Thermophilic Actinobacteria in Hot Springs in Tengchong, China and Studies of their Biosynthetic Gene Profiles.

    Science.gov (United States)

    Liu, Lan; Salam, Nimaichand; Jiao, Jian-Yu; Jiang, Hong-Chen; Zhou, En-Min; Yin, Yi-Rui; Ming, Hong; Li, Wen-Jun

    2016-07-01

    The class Actinobacteria has been a goldmine for the discovery of antibiotics and has attracted interest from both academics and industries. However, an absence of novel approaches during the last few decades has limited the discovery of new microbial natural products useful for industries. Scientists are now focusing on the ecological aspects of diverse environments including unexplored or underexplored habitats and extreme environments in the search for new metabolites. This paper reports on the diversity of culturable actinobacteria associated with hot springs located in Tengchong County, Yunnan Province, southwestern China. A total of 58 thermophilic actinobacterial strains were isolated from the samples collected from ten hot springs distributed over three geothermal fields (e.g., Hehua, Rehai, and Ruidian). Phylogenetic positions and their biosynthetic profiles were analyzed by sequencing 16S rRNA gene and three biosynthetic gene clusters (KS domain of PKS-I, KSα domain of PKS-II and A domain of NRPS). On the basis of 16S rRNA gene phylogenetic analysis, the 58 strains were affiliated with 12 actinobacterial genera: Actinomadura Micromonospora, Microbispora, Micrococcus, Nocardiopsis, Nonomuraea, Promicromonospora, Pseudonocardia, Streptomyces, Thermoactinospora, Thermocatellispora, and Verrucosispora, of which the two novel genera Thermoactinospora and Thermocatellisopora were recently described from among these strains. Considering the biosynthetic potential of these actinobacterial strains, 22 were positive for PCR amplification of at least one of the three biosynthetic gene clusters (PKS-I, PKS-II, and NRPS). These actinobacteria were further subjected to antimicrobial assay against five opportunistic human pathogens (Acinetobacter baumannii, Escherichia coli, Micrococcus luteus, Staphylococcus aureus and Streptococcus faecalis). All of the 22 strains that were positive for PCR amplification of at least one of the biosynthetic gene domains exhibited

  5. Reconstitution of the costunolide biosynthetic pathway in yeast and Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Qing Liu

    Full Text Available The sesquiterpene costunolide has a broad range of biological activities and is the parent compound for many other biologically active sesquiterpenes such as parthenolide. Two enzymes of the pathway leading to costunolide have been previously characterized: germacrene A synthase (GAS and germacrene A oxidase (GAO, which together catalyse the biosynthesis of germacra-1(10,4,11(13-trien-12-oic acid. However, the gene responsible for the last step toward costunolide has not been characterized until now. Here we show that chicory costunolide synthase (CiCOS, CYP71BL3, can catalyse the oxidation of germacra-1(10,4,11(13-trien-12-oic acid to yield costunolide. Co-expression of feverfew GAS (TpGAS, chicory GAO (CiGAO, and chicory COS (CiCOS in yeast resulted in the biosynthesis of costunolide. The catalytic activity of TpGAS, CiGAO and CiCOS was also verified in planta by transient expression in Nicotiana benthamiana. Mitochondrial targeting of TpGAS resulted in a significant increase in the production of germacrene A compared with the native cytosolic targeting. When the N. benthamiana leaves were co-infiltrated with TpGAS and CiGAO, germacrene A almost completely disappeared as a result of the presence of CiGAO. Transient expression of TpGAS, CiGAO and CiCOS in N. benthamiana leaves resulted in costunolide production of up to 60 ng.g(-1 FW. In addition, two new compounds were formed that were identified as costunolide-glutathione and costunolide-cysteine conjugates.

  6. OsWOX3A is involved in negative feedback regulation of the gibberellic acid biosynthetic pathway in rice (Oryza sativa).

    Science.gov (United States)

    Cho, Sung-Hwan; Kang, Kiyoon; Lee, Sang-Hwa; Lee, In-Jung; Paek, Nam-Chon

    2016-04-01

    The plant-specific WUSCHEL-related homeobox (WOX) nuclear proteins have important roles in the transcriptional regulation of many developmental processes. Among the rice (Oryza sativa) WOX proteins, a loss of OsWOX3A function in narrow leaf2 (nal2) nal3 double mutants (termed nal2/3) causes pleiotropic effects, such as narrow and curly leaves, opened spikelets, narrow grains, more tillers, and fewer lateral roots, but almost normal plant height. To examine OsWOX3A function in more detail, transgenic rice overexpressing OsWOX3A (OsWOX3A-OX) were generated; unexpectedly, all of them consistently exhibited severe dwarfism with very short and wide leaves, a phenotype that resembles that of gibberellic acid (GA)-deficient or GA-insensitive mutants. Exogenous GA3 treatment fully rescued the developmental defects of OsWOX3A-OX plants, suggesting that constitutive overexpression of OsWOX3A downregulates GA biosynthesis. Quantitative analysis of GA intermediates revealed significantly reduced levels of GA20 and bioactive GA1 in OsWOX3A-OX, possibly due to downregulation of the expression of KAO, which encodes ent-kaurenoic acid oxidase, a GA biosynthetic enzyme. Yeast one-hybrid and electrophoretic mobility shift assays revealed that OsWOX3A directly interacts with the KAO promoter. OsWOX3A expression is drastically and temporarily upregulated by GA3 and downregulated by paclobutrazol, a blocker of GA biosynthesis. These data indicate that OsWOX3A is a GA-responsive gene and functions in the negative feedback regulation of the GA biosynthetic pathway for GA homeostasis to maintain the threshold levels of endogenous GA intermediates throughout development. PMID:26767749

  7. New Role of Rosea1 in Regulating Anthocyanin Biosynthetic Pathway in Hairy Root of Snapdragon (Antirrhinum majus L.

    Directory of Open Access Journals (Sweden)

    An Zhang

    2013-09-01

    Full Text Available We investigated the transcriptional regulation of anthocyanin biosynthesis in hairy roots system by ectopically expressing Rosea1 and Delila and we found something different from previous research. The RT-PCR results revealed that Rosea1 could activate early and late biosynthetic genes tested, including CHS, DFR and ANS. Delila enhanced the expression of CHS weakly, but did not influence DFR or ANS. The two regulators, Rosea1 and Delila, failed to interplay each other. It was speculated that Delila would be ineffective in the absence of Rosea1, another MYB factor specifically controlling CHS may exist. This investigation provided a new way to increase anthocyanin content by over expressing a MYB factor, potentially to be used in the field of agriculture and food

  8. Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers

    Directory of Open Access Journals (Sweden)

    Luo Hongmei

    2011-12-01

    Full Text Available Abstract Background Panax notoginseng (Burk F.H. Chen is important medicinal plant of the Araliacease family. Triterpene saponins are the bioactive constituents in P. notoginseng. However, available genomic information regarding this plant is limited. Moreover, details of triterpene saponin biosynthesis in the Panax species are largely unknown. Results Using the 454 pyrosequencing technology, a one-quarter GS FLX titanium run resulted in 188,185 reads with an average length of 410 bases for P. notoginseng root. These reads were processed and assembled by 454 GS De Novo Assembler software into 30,852 unique sequences. A total of 70.2% of unique sequences were annotated by Basic Local Alignment Search Tool (BLAST similarity searches against public sequence databases. The Kyoto Encyclopedia of Genes and Genomes (KEGG assignment discovered 41 unique sequences representing 11 genes involved in triterpene saponin backbone biosynthesis in the 454-EST dataset. In particular, the transcript encoding dammarenediol synthase (DS, which is the first committed enzyme in the biosynthetic pathway of major triterpene saponins, is highly expressed in the root of four-year-old P. notoginseng. It is worth emphasizing that the candidate cytochrome P450 (Pn02132 and Pn00158 and UDP-glycosyltransferase (Pn00082 gene most likely to be involved in hydroxylation or glycosylation of aglycones for triterpene saponin biosynthesis were discovered from 174 cytochrome P450s and 242 glycosyltransferases by phylogenetic analysis, respectively. Putative transcription factors were detected in 906 unique sequences, including Myb, homeobox, WRKY, basic helix-loop-helix (bHLH, and other family proteins. Additionally, a total of 2,772 simple sequence repeat (SSR were identified from 2,361 unique sequences, of which, di-nucleotide motifs were the most abundant motif. Conclusion This study is the first to present a large-scale EST dataset for P. notoginseng root acquired by next

  9. Cloning, Characterization and Heterologous Expression of the Indolocarbazole Biosynthetic Gene Cluster from Marine-Derived Streptomyces sanyensis FMA

    OpenAIRE

    Wenli Li; Kui Hong; Weiming Zhu; Jingtao Zhang; Qiu Cui; Yuanyuan Du; Tong Li

    2013-01-01

    The indolocarbazole (ICZ) alkaloids have attracted much attention due to their unique structures and potential therapeutic applications. A series of ICZs were recently isolated and identified from a marine-derived actinomycete strain, Streptomyces sanyensis FMA. To elucidate the biosynthetic machinery associated with ICZs production in S. sanyensis FMA, PCR using degenerate primers was carried out to clone the FAD-dependent monooxygenase gene fragment for ICZ ring formation, which was used as...

  10. Fructan Biosynthetic and Breakdown Enzymes in Dicots Evolved From Different Invertases. Expression of Fructan Genes Throughout Chicory Development

    OpenAIRE

    Wim Van den Ende; An Michiels; Joke De Roover; Andrea Van Laere

    2002-01-01

    Fructans are fructose-based oligo- and polymers that serve as reserve carbohydrates in many plant species. The biochemistry of fructan biosynthesis in dicots has been resolved, and the respective cDNAs have been cloned. Recent progress has now succeeded in elucidating the biochemistry and molecular biology of fructan biodegradation in chicory, an economically important species used for commercial inulin extraction. Unlike fructan biosynthetic genes that originated from vacuolar-type invertase...

  11. Engineering a novel biosynthetic pathway in Escherichia coli for production of renewable ethylene glycol.

    Science.gov (United States)

    Pereira, Brian; Zhang, Haoran; De Mey, Marjan; Lim, Chin Giaw; Li, Zheng-Jun; Stephanopoulos, Gregory

    2016-02-01

    Ethylene glycol (EG) is an important commodity chemical with broad industrial applications. It is presently produced from petroleum or natural gas feedstocks in processes requiring consumption of significant quantities of non-renewable resources. Here, we report a novel pathway for biosynthesis of EG from the renewable sugar glucose in metabolically engineered Escherichia coli. Serine-to-EG conversion was first achieved through a pathway comprising serine decarboxylase, ethanolamine oxidase, and glycolaldehyde reductase. Serine provision in E. coli was then enhanced by overexpression of the serine-biosynthesis pathway. The integration of these two parts into the complete EG-biosynthesis pathway in E. coli allowed for production of 4.1 g/L EG at a cumulative yield of 0.14 g-EG/g-glucose, establishing a foundation for a promising biotechnology. PMID:26221864

  12. Biosynthetic pathways in Methanospirillum hungatei as determined by 13C nuclear magnetic resonance.

    OpenAIRE

    Ekiel, I; Smith, I C; Sprott, G D

    1983-01-01

    The main metabolic pathways in Methanospirillum hungatei GP1 were followed by using 13C nuclear magnetic resonance, with 13C-labeled acetate and CO2 as carbon sources. The labeling patterns found in carbohydrates, amino acids, lipids, and nucleosides were consistent with the formation of pyruvate from acetate and CO2 as the first step in biosynthesis. Carbohydrates are formed by the glucogenic pathway, and no scrambling of label was observed, indicating that the oxidative or reductive pentose...

  13. The Biosynthetic Pathways for Shikimate and Aromatic Amino Acids in Arabidopsis thaliana

    OpenAIRE

    Tzin, Vered; Galili, Gad

    2010-01-01

    The aromatic amino acids phenylalanine, tyrosine and tryptophan in plants are not only essential components of protein synthesis, but also serve as precursors for a wide range of secondary metabolites that are important for plant growth as well as for human nutrition and health. The aromatic amino acids are synthesized via the shikimate pathway followed by the branched aromatic amino acid metabolic pathway, with chorismate serving as a major branch point intermediate metabolite. Yet, the regu...

  14. Reconstitution of Biosynthetic Machinery for the Synthesis of the Highly Elaborated Indole Diterpene Penitrem

    DEFF Research Database (Denmark)

    Liu, Chengwei; Tagami, Koichi; Minami, Atsushi;

    2015-01-01

    KULNJ). Importantly, without conventional gene disruption, reconstitution of the biosynthetic machinery provided sufficient data to determine the pathway. It was thus demonstrated that the Aspergillus oryzae reconstitution system is a powerful method for studying the biosynthesis of complex natural products....

  15. Physiological and molecular responses of the isoprenoid biosynthetic pathway in a drought-resistant Mediterranean shrub, Cistus creticus exposed to water deficit.

    Science.gov (United States)

    Munné-Bosch, Sergi; Falara, Vasiliki; Pateraki, Irene; López-Carbonell, Marta; Cela, Jana; Kanellis, Angelos K

    2009-01-30

    The goal of the present research was to obtain new insights into the mechanisms underlying drought stress resistance in plants. Specifically, we evaluated changes in the expression of genes encoding enzymes involved in isoprenoid biosynthesis, together with the levels of the corresponding metabolites (chlorophylls, carotenoids, tocopherols and abscisic acid), in a drought-resistant Mediterranean shrub, Cistus creticus grown under Mediterranean field conditions. Summer drought led to reductions in the relative leaf water content (RWC) by 25%, but did not alter the maximum efficiency of PSII, indicating the absence of damage to the photosynthetic apparatus. While the expression of genes encoding C. creticus chlorophyll a oxygenase/chlorophyll b synthase (CAO) and phytoene synthase (PSY) were not affected by water deficit, the genes encoding homogentisate phytyl-transferase (HPT) and 9-cis-epoxycarotenoid dioxygenase (NCED) were induced in water-stressed (WS) plants. Drought-induced changes in gene expression were observed at early stages of drought and were strongly correlated with levels of the corresponding metabolites, with simultaneous increases in abscisic acid and alpha-tocopherol levels of up to 4-fold and 62%, respectively. Furthermore, alpha-tocopherol levels were strongly positively correlated with abscisic acid contents, but not with the levels of jasmonic acid and salicylic acid. We conclude that the abscisic acid and tocopherol biosynthetic pathway may be regulated at the transcript level in WS C. creticus plants, and that the genes encoding HPT and NCED may play a key role in the drought stress resistance of this Mediterranean shrub by modulating abscisic acid and tocopherol biosynthesis. PMID:18455260

  16. Subcloning of the enterobactin biosynthetic gene entB: Expression, purification, characterization, and substrate specificity of isochorismatase

    International Nuclear Information System (INIS)

    The Escherichia coli entB, coding for the enterobactin biosynthetic enzyme isochorismatase, has been subcloned into the multicopy plasmid pKK223-3 under the control of the tac promoter. The resulting recombinant plasmid pFR1 expresses isochorismatase amounting to over 50% of the total cellular protein. The enzyme has been purified to homogeneity and a convenient assay developed. The enzyme has a Km for isochorismate of 14.7 μM and a turnover number of 600 min-1. By use of 1H NMR spectroscopy, the progress of the reaction was followed with the expected formation of 2,3-dihydro-2,3-dihydroxybenzoate product. Several substrate analogues were also utilized by the enzyme including chorismic acid, the immediate precursor to isochorismic acid in the enterobactin biosynthetic pathway

  17. SCS3 and YFT2 link transcription of phospholipid biosynthetic genes to ER stress and the UPR.

    Directory of Open Access Journals (Sweden)

    Robyn D Moir

    2012-08-01

    Full Text Available The ability to store nutrients in lipid droplets (LDs is an ancient function that provides the primary source of metabolic energy during periods of nutrient insufficiency and between meals. The Fat storage-Inducing Transmembrane (FIT proteins are conserved ER-resident proteins that facilitate fat storage by partitioning energy-rich triglycerides into LDs. FIT2, the ancient ortholog of the FIT gene family first identified in mammals has two homologs in Saccharomyces cerevisiae (SCS3 and YFT2 and other fungi of the Saccharomycotina lineage. Despite the coevolution of these genes for more than 170 million years and their divergence from higher eukaryotes, SCS3, YFT2, and the human FIT2 gene retain some common functions: expression of the yeast genes in a human embryonic kidney cell line promotes LD formation, and expression of human FIT2 in yeast rescues the inositol auxotrophy and chemical and genetic phenotypes of strains lacking SCS3. To better understand the function of SCS3 and YFT2, we investigated the chemical sensitivities of strains deleted for either or both genes and identified synthetic genetic interactions against the viable yeast gene-deletion collection. We show that SCS3 and YFT2 have shared and unique functions that connect major biosynthetic processes critical for cell growth. These include lipid metabolism, vesicular trafficking, transcription of phospholipid biosynthetic genes, and protein synthesis. The genetic data indicate that optimal strain fitness requires a balance between phospholipid synthesis and protein synthesis and that deletion of SCS3 and YFT2 impacts a regulatory mechanism that coordinates these processes. Part of this mechanism involves a role for SCS3 in communicating changes in the ER (e.g. due to low inositol to Opi1-regulated transcription of phospholipid biosynthetic genes. We conclude that SCS3 and YFT2 are required for normal ER membrane biosynthesis in response to perturbations in lipid metabolism and ER

  18. Yeast Extract and Silver Nitrate Induce the Expression of Phenylpropanoid Biosynthetic Genes and Induce the Accumulation of Rosmarinic Acid in Agastache rugosa Cell Culture

    Directory of Open Access Journals (Sweden)

    Woo Tae Park

    2016-03-01

    Full Text Available The present study aimed to investigate the role of yeast extract and silver nitrate on the enhancement of phenylpropanoid pathway genes and accumulation of rosmarinic acid in Agastache rugosa cell cultures. The treatment of cell cultures with yeast extract (500 mg/L and silver nitrate (30 mg/L for varying times enhanced the expression of genes in the phenylpropanoid pathway and the production of rosmarinic acid. The results indicated that the expression of RAS and HPPR was proportional to the amount of yeast extract and silver nitrate. The transcript levels of HPPR under yeast extract treatment were 1.84-, 1.97-, and 2.86-fold higher than the control treatments after 3, 6, and 12 h, respectively, whereas PAL expression under silver nitrate treatment was 52.31-fold higher than in the non-treated controls after 24 h of elicitation. The concentration of rosmarinic acid was directly proportional to the concentration of the applied elicitors. Yeast extract supplementation documented the highest amount of rosmarinic acid at 4.98 mg/g, whereas silver nitrate addition resulted in a comparatively lower amount of rosmarinic acid at 0.65 mg/g. In conclusion, addition of yeast extract to the cell cultures enhanced the accumulation of rosmarinic acid, which was evidenced by the expression levels of the phenylpropanoid biosynthetic pathway genes in A. rugosa.

  19. Bioenergetic coupling between membrane transport systems and biosynthetic pathways essential for cell cycle progression

    International Nuclear Information System (INIS)

    Recently, it has been shown that there exists a point in the cell cycle (approximately 2 h prior to S phase entry) when (Na+/K+)ATPase pump activity is no longer needed for progression through the cycle. These data suggests that pump activity is critical in the biosynthetic processes which enables the cell to proceed through the G1 phase. A scheme is proposed which is currently being tested that (Na+/K+)ATPase pump activity serves as the driving force in the regulation of other membrane transport processes critical for cell proliferation. For example, in post-confluent quiescent C3H-10T1/2 fibroblasts, when [K+]/sub o/ is lowered just below the K/sub m/ of the pump for K+ there is a 10-fold increase in 3H-uridine uptake into both acid soluble and insoluble cell fractions. By modulation of the pump in this manner, glucose utilization is enhanced whereas inhibition of the pump by ouabain suppresses glucose utilization. In both methods of affecting the pump, 3H-leucine incorporation is inhibited. Electron acceptors that influence the redox state of the cell have been shown to both stimulate or inhibit cell cycle progression. Under conditions where [K+]/sub o/ is lowered, the nucleoside uptake responses observed were modified by electron acceptors depending on the ability to oxidize NAD(P)H directly or to interact with a cytochrome-like component, (e.g. phenazine methosulfate) reversed the enhanced uridine uptake and p-phenylene diamine further enhanced the uridine uptake response. These findings suggest that a plasma membrane redox system (presumably cyt-c like) is linked to nucleoside transport which is subject to (Na+/K+)ATPase activity

  20. Regulatory role of hexosamine biosynthetic pathway on hepatic cancer stem cell marker CD133 under low glucose conditions

    Science.gov (United States)

    Lin, Shu-Hai; Liu, Tengfei; Ming, Xiaoyan; Tang, Zhi; Fu, Li; Schmitt-Kopplin, Philippe; Kanawati, Basem; Guan, Xin-Yuan; Cai, Zongwei

    2016-02-01

    Cancer was hypothesized to be driven by cancer stem cells (CSCs), but the metabolic determinants of CSC-like phenotype still remain elusive. Here, we present that hexosamine biosynthetic pathway (HBP) at least in part rescues cancer cell fate with inactivation of glycolysis. Firstly, metabolomic analysis profiled cellular metabolome in CSCs of hepatocellular carcinoma using CD133 cell-surface marker. The metabolic signatures of CD133-positive subpopulation compared to CD133-negative cells highlighted HBP as one of the distinct metabolic pathways, prompting us to uncover the role of HBP in maintenance of CSC-like phenotype. To address this, CSC-like phenotypes and cell survival were investigated in cancer cells under low glucose conditions. As a result, HBP inhibitor azaserine reduced CD133-positive subpopulation and CD133 expression under high glucose condition. Furthermore, treatment of N-Acetylglucosamine in part restores CD133-positive subpopulation when either 2.5 mM glucose in culture media or glycolytic inhibitor 2-deoxy-D-glucose in HCC cell lines was applied, enhancing CD133 expression as well as promoting cancer cell survival. Together, HBP might be a key metabolic determinant in the functions of hepatic CSC marker CD133.

  1. Evolutionary origins and functions of the carotenoid biosynthetic pathway in marine diatoms

    Czech Academy of Sciences Publication Activity Database

    Coesel, S.; Oborník, Miroslav; Varela, J.; Falciatore, A.; Bowler, C.

    2008-01-01

    Roč. 3, č. 8 (2008), s. 1-16. E-ISSN 1932-6203 R&D Projects: GA AV ČR IAA500220502 Institutional research plan: CEZ:AV0Z60220518 Keywords : marine diatoms * carotenoid pathway * evolution Subject RIV: EB - Genetics ; Molecular Biology

  2. Ethylene and 1-MCP regulate major volatile biosynthetic pathways in apple fruit.

    Science.gov (United States)

    Yang, Xiaotang; Song, Jun; Du, Lina; Forney, Charles; Campbell-Palmer, Leslie; Fillmore, Sherry; Wismer, Paul; Zhang, Zhaoqi

    2016-03-01

    The effects of ethylene and 1-methylcyclopropene (1-MCP) on apple fruit volatile biosynthesis and gene expression were investigated. Statistical analysis identified 17 genes that changed significantly in response to ethylene and 1-MCP treatments. Genes encoding branched-chain amino acid aminotransferase (BCAT), aromatic amino acid aminotransferase (ArAT) and amino acid decarboxylases (AADC) were up-regulated during ripening and further enhanced by ethylene treatment. Genes related to fatty acid synthesis and metabolism, including acyl-carrier-proteins (ACPs), malonyl-CoA:ACP transacylase (MCAT), acyl-ACP-desaturase (ACPD), lipoxygenase (LOX), hydroperoxide lyase (HPL), alcohol dehydrogenase (ADH), pyruvate decarboxylase (PDC2), β-oxidation, acyl-CoA synthetase (ACS), enoyl-CoA hydratase (ECHD), acyl-CoA dehydrogenase (ACAD), and alcohol acyltransferases (AATs) also increased during ripening and in response to ethylene treatment. Allene oxide synthase (AOS), alcohol dehydrogenase 1 (ADH1), 3-ketoacyl-CoA thiolase and branched-chain amino acid aminotransferase 2 (BCAT2) decreased in ethylene-treated fruit. Treatment with 1-MCP and ethylene generally produced opposite effects on related genes, which provides evidence that regulation of these genes is ethylene dependent. PMID:26471562

  3. Heterologous production of glidobactins/luminmycins in Escherichia coli Nissle containing the glidobactin biosynthetic gene cluster from Burkholderia DSM7029.

    Science.gov (United States)

    Bian, Xiaoying; Huang, Fan; Wang, Hailong; Klefisch, Thorsten; Müller, Rolf; Zhang, Youming

    2014-10-13

    Natural product peptide-based proteasome inhibitors show great potential as anticancer drugs. Here we have cloned the biosynthetic gene cluster of a potent proteasome inhibitor-glidobactin from Burkholderia DSM7029-and successfully detected glidobactins/luminmycins in E. coli Nissle. We have also improved the yield of glidobactin A tenfold by promoter change in a heterologous host. In addition, two new biosynthetic intermediates were identified by comparative MS/MS fragmentation analysis. Identification of acyclic luminmycin E implies substrate specificity of the TE domain for cyclization. The establishment of a heterologous expression system for syrbactins provided the basis for the generation of new syrbactins as proteasome inhibitors by molecular engineering, but the TE domain's specificity cannot be ignored. PMID:25147087

  4. IMG-ABC: An Atlas of Biosynthetic Gene Clusters to Fuel the Discovery of Novel Secondary Metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Chen, I-Min; Chu, Ken; Ratner, Anna; Palaniappan, Krishna; Huang, Jinghua; Reddy, T. B.K.; Cimermancic, Peter; Fischbach, Michael; Ivanova, Natalia; Markowitz, Victor; Kyrpides, Nikos; Pati, Amrita

    2014-10-28

    In the discovery of secondary metabolites (SMs), large-scale analysis of sequence data is a promising exploration path that remains largely underutilized due to the lack of relevant computational resources. We present IMG-ABC (https://img.jgi.doe.gov/abc/) -- An Atlas of Biosynthetic gene Clusters within the Integrated Microbial Genomes (IMG) system1. IMG-ABC is a rich repository of both validated and predicted biosynthetic clusters (BCs) in cultured isolates, single-cells and metagenomes linked with the SM chemicals they produce and enhanced with focused analysis tools within IMG. The underlying scalable framework enables traversal of phylogenetic dark matter and chemical structure space -- serving as a doorway to a new era in the discovery of novel molecules.

  5. Molecular Characterization of Carotenoid Biosynthetic Genes and Carotenoid Accumulation in Lycium chinense

    Directory of Open Access Journals (Sweden)

    Shicheng Zhao

    2014-07-01

    Full Text Available Lycium chinense is a shrub that has health benefits and is used as a source of medicines in Asia. In this study, a full-length cDNA clone encoding β-ring carotene hydroxylase (LcCHXB and partial-length cDNA clones encoding phytoene synthase (LcPSY, phytoene desaturase (LcPDS, ξ-carotene desaturase (LcZDS, lycopene β-cyclase (LcLCYB, lycopene ε-cyclase (LcLCYE, ε-ring carotene hydroxylase (LcCHXE, zeaxanthin epoxidase (LcZEP, carotenoid cleavage dioxygenase (LcCCD1, and 9-cis epoxycarotenoid dioxygenase (LcNCED were identified in L. chinense. The transcripts were constitutively expressed at high levels in leaves, flowers and red fruits, where the carotenoids are mostly distributed. In contrast, most of the carotenoid biosynthetic genes were weakly expressed in the roots and stems, which contained only small amounts of carotenoids. The level of LcLCYE transcripts was very high in leaves and correlated with the abundance of lutein in this plant tissue. During maturation, the levels of lutein and zeaxanthin in L. chinense fruits dramatically increased, concomitant with a rise in the level of β-cryptoxanthin. LcPSY, LcPDS, LcZDS, LcLCYB, and LcCHXE were highly expressed in red fruits, leading to their substantially higher total carotenoid content compared to that in green fruits. Total carotenoid content was high in both the leaves and red fruits of L. chinense. Our findings on the biosynthesis of carotenoids in L. chinense provide insights into the molecular mechanisms involved in carotenoid biosynthesis and may facilitate the optimization of carotenoid production in L. chinense.

  6. Cyclic Lipopeptide Biosynthetic Genes and Products, and Inhibitory Activity of Plant-Associated Bacillus against Phytopathogenic Bacteria

    OpenAIRE

    Mora, Isabel; Cabrefiga, Jordi; Montesinos, Emilio

    2015-01-01

    The antibacterial activity against bacterial plant pathogens and its relationships with the presence of the cyclic lipopeptide (cLP) biosynthetic genes ituC (iturin), bmyB (bacillomycin), fenD (fengycin) and srfAA (surfactin), and their corresponding antimicrobial peptide products have been studied in a collection of 64 strains of Bacillus spp. isolated from plant environments. The most frequent antimicrobial peptide (AMP) genes were bmyB, srfAA and fenD (34-50% of isolates). Most isolates (9...

  7. Identification and characterization of a new erythromycin biosynthetic gene cluster in Actinopolyspora erythraea YIM90600, a novel erythronolide-producing halophilic actinomycete isolated from salt field.

    Directory of Open Access Journals (Sweden)

    Dandan Chen

    Full Text Available Erythromycins (Ers are clinically potent macrolide antibiotics in treating pathogenic bacterial infections. Microorganisms capable of producing Ers, represented by Saccharopolyspora erythraea, are mainly soil-dwelling actinomycetes. So far, Actinopolyspora erythraea YIM90600, a halophilic actinomycete isolated from Baicheng salt field, is the only known Er-producing extremophile. In this study, we have reported the draft genome sequence of Ac. erythraea YIM90600, genome mining of which has revealed a new Er biosynthetic gene cluster encoding several novel Er metabolites. This Er gene cluster shares high identity and similarity with the one of Sa. erythraea NRRL2338, except for two absent genes, eryBI and eryG. By correlating genotype and chemotype, the biosynthetic pathways of 3'-demethyl-erythromycin C, erythronolide H (EH and erythronolide I have been proposed. The formation of EH is supposed to be sequentially biosynthesized via C-6/C-18 epoxidation and C-14 hydroxylation from 6-deoxyerythronolide B. Although an in vitro enzymatic activity assay has provided limited evidence for the involvement of the cytochrome P450 oxidase EryFAc (derived from Ac. erythraea YIM90600 in the catalysis of a two-step oxidation, resulting in an epoxy moiety, the attempt to construct an EH-producing Sa. erythraea mutant via gene complementation was not successful. Characterization of EryKAc (derived from Ac. erythraea YIM90600 in vitro has confirmed its unique role as a C-12 hydroxylase, rather than a C-14 hydroxylase of the erythronolide. Genomic characterization of the halophile Ac. erythraea YIM90600 will assist us to explore the great potential of extremophiles, and promote the understanding of EH formation, which will shed new insights into the biosynthesis of Er metabolites.

  8. Hijacking the Hexosamine Biosynthetic Pathway to Promote EMT-Mediated Neoplastic Phenotypes

    Science.gov (United States)

    Taparra, Kekoa; Tran, Phuoc T.; Zachara, Natasha E.

    2016-01-01

    The epithelial–mesenchymal transition (EMT) is a highly conserved program necessary for orchestrating distant cell migration during embryonic development. Multiple studies in cancer have demonstrated a critical role for EMT during the initial stages of tumorigenesis and later during tumor invasion. Transcription factors (TFs) such as SNAIL, TWIST, and ZEB are master EMT regulators that are aberrantly overexpressed in many malignancies. Recent evidence correlates EMT-related transcriptomic alterations with metabolic reprograming in cancer. Metabolic alterations may allow cancer to adapt to environmental stressors, supporting the irregular macromolecular demand of rapid proliferation. One potential metabolic pathway of increasing importance is the hexosamine biosynthesis pathway (HBP). The HBP utilizes glycolytic intermediates to generate the metabolite UDP–GlcNAc. This and other charged nucleotide sugars serve as the basis for biosynthesis of glycoproteins and other glycoconjugates. Recent reports in the field of glycobiology have cultivated great curiosity within the cancer research community. However, specific mechanistic relationships between the HBP and fundamental pathways of cancer, such as EMT, have yet to be elucidated. Altered protein glycosylation downstream of the HBP is well positioned to mediate many cellular changes associated with EMT including cell–cell adhesion, responsiveness to growth factors, immune system evasion, and signal transduction programs. Here, we outline some of the basics of the HBP and putative roles the HBP may have in driving EMT-related cancer processes. With novel appreciation of the HBP’s connection to EMT, we hope to illuminate the potential for new therapeutic targets of cancer. PMID:27148477

  9. Phylogenomic study of lipid genes involved in microalgal biofuel production-candidate gene mining and metabolic pathway analyses.

    Science.gov (United States)

    Misra, Namrata; Panda, Prasanna Kumar; Parida, Bikram Kumar; Mishra, Barada Kanta

    2012-01-01

    Optimizing microalgal biofuel production using metabolic engineering tools requires an in-depth understanding of the structure-function relationship of genes involved in lipid biosynthetic pathway. In the present study, genome-wide identification and characterization of 398 putative genes involved in lipid biosynthesis in Arabidopsis thaliana Chlamydomonas reinhardtii, Volvox carteri, Ostreococcus lucimarinus, Ostreococcus tauri and Cyanidioschyzon merolae was undertaken on the basis of their conserved motif/domain organization and phylogenetic profile. The results indicated that the core lipid metabolic pathways in all the species are carried out by a comparable number of orthologous proteins. Although the fundamental gene organizations were observed to be invariantly conserved between microalgae and Arabidopsis genome, with increased order of genome complexity there seems to be an association with more number of genes involved in triacylglycerol (TAG) biosynthesis and catabolism. Further, phylogenomic analysis of the genes provided insights into the molecular evolution of lipid biosynthetic pathway in microalgae and confirm the close evolutionary proximity between the Streptophyte and Chlorophyte lineages. Together, these studies will improve our understanding of the global lipid metabolic pathway and contribute to the engineering of regulatory networks of algal strains for higher accumulation of oil. PMID:23032611

  10. Exploring triacylglycerol biosynthetic pathway in developing seeds of Chia (Salvia hispanica L.): a transcriptomic approach.

    Science.gov (United States)

    R V, Sreedhar; Kumari, Priya; Rupwate, Sunny D; Rajasekharan, Ram; Srinivasan, Malathi

    2015-01-01

    Chia (Salvia hispanica L.), a member of the mint family (Lamiaceae), is a rediscovered crop with great importance in health and nutrition and is also the highest known terrestrial plant source of heart-healthy omega-3 fatty acid, alpha linolenic acid (ALA). At present, there is no public genomic information or database available for this crop, hindering research on its genetic improvement through genomics-assisted breeding programs. The first comprehensive analysis of the global transcriptome profile of developing Salvia hispanica L. seeds, with special reference to lipid biosynthesis is presented in this study. RNA from five different stages of seed development was extracted and sequenced separately using the Illumina GAIIx platform. De novo assembly of processed reads in the pooled transcriptome using Trinity yielded 76,014 transcripts. The total transcript length was 66,944,462 bases (66.9 Mb), with an average length of approximately 880 bases. In the molecular functions category of Gene Ontology (GO) terms, ATP binding and nucleotide binding were found to be the most abundant and in the biological processes category, the metabolic process and the regulation of transcription-DNA-dependent and oxidation-reduction process were abundant. From the EuKaryotic Orthologous Groups of proteins (KOG) classification, the major category was "Metabolism" (31.97%), of which the most prominent class was 'carbohydrate metabolism and transport' (5.81% of total KOG classifications) followed by 'secondary metabolite biosynthesis transport and catabolism' (5.34%) and 'lipid metabolism' (4.57%). A majority of the candidate genes involved in lipid biosynthesis and oil accumulation were identified. Furthermore, 5596 simple sequence repeats (SSRs) were identified. The transcriptome data was further validated through confirmative PCR and qRT-PCR for select lipid genes. Our study provides insight into the complex transcriptome and will contribute to further genome-wide research and

  11. Cloning, Characterization and Heterologous Expression of the Indolocarbazole Biosynthetic Gene Cluster from Marine-Derived Streptomyces sanyensis FMA

    Directory of Open Access Journals (Sweden)

    Wenli Li

    2013-02-01

    Full Text Available The indolocarbazole (ICZ alkaloids have attracted much attention due to their unique structures and potential therapeutic applications. A series of ICZs were recently isolated and identified from a marine-derived actinomycete strain, Streptomyces sanyensis FMA. To elucidate the biosynthetic machinery associated with ICZs production in S. sanyensis FMA, PCR using degenerate primers was carried out to clone the FAD-dependent monooxygenase gene fragment for ICZ ring formation, which was used as a probe to isolate the 34.6-kb DNA region containing the spc gene cluster. Sequence analysis revealed genes for ICZ ring formation (spcO, D, P, C, sugar unit formation (spcA, B, E, K, J, I, glycosylation (spcN, G, methylation (spcMA, MB, as well as regulation (spcR. Their involvement in ICZ biosynthesis was confirmed by gene inactivation and heterologous expression in Streptomyces coelicolor M1152. This work represents the first cloning and characterization of an ICZ gene cluster isolated from a marine-derived actinomycete strain and would be helpful for thoroughly understanding the biosynthetic mechanism of ICZ glycosides.

  12. The Structure of L-Tyrosine 2,3-Aminomutase frmo the C-1027 Enediyne Antitumor Antibiotic Biosynthetic Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Christianson,C.; Montavon, T.; Van Lanen, S.; Shen, B.; Bruner, S.

    2007-01-01

    The SgcC4 L-tyrosine 2,3-aminomutase (SgTAM) catalyzes the formation of (S)-{beta}-tyrosine in the biosynthetic pathway of the enediyne antitumor antibiotic C-1027. SgTAM is homologous to the histidine ammonia lyase family of enzymes whose activity is dependent on the methylideneimidazole-5-one (MIO) cofactor. Unlike the lyase enzymes, SgTAM catalyzes additional chemical transformations resulting in an overall stereospecific 1,2-amino shift in the substrate L-tyrosine to generate (S)-{beta}-tyrosine. Previously, we provided kinetic, spectroscopic, and mutagenesis data supporting the presence of MIO in the active site of SgTAM [Christenson, S. D.; Wu, W.; Spies, A.; Shen, B.; and Toney, M. D. (2003) Biochemistry 42, 12708-12718]. Here we report the first X-ray crystal structure of an MIO-containing aminomutase, SgTAM, and confirm the structural homology of SgTAM to ammonia lyases. Comparison of the structure of SgTAM to the L-tyrosine ammonia lyase from Rhodobacter sphaeroides provides insight into the structural basis for aminomutase activity. The results show that SgTAM has a closed active site well suited to retain ammonia and minimize the formation of lyase elimination products. The amino acid determinants for substrate recognition and catalysis can be predicted from the structure, setting the framework for detailed mechanistic investigations.

  13. The structure of L-tyrosine 2,3-aminomutase from the C-1027 enediyne antitumor antibiotic biosynthetic pathway.

    Science.gov (United States)

    Christianson, Carl V; Montavon, Timothy J; Van Lanen, Steven G; Shen, Ben; Bruner, Steven D

    2007-06-19

    The SgcC4 l-tyrosine 2,3-aminomutase (SgTAM) catalyzes the formation of (S)-beta-tyrosine in the biosynthetic pathway of the enediyne antitumor antibiotic C-1027. SgTAM is homologous to the histidine ammonia lyase family of enzymes whose activity is dependent on the methylideneimidazole-5-one (MIO) cofactor. Unlike the lyase enzymes, SgTAM catalyzes additional chemical transformations resulting in an overall stereospecific 1,2-amino shift in the substrate l-tyrosine to generate (S)-beta-tyrosine. Previously, we provided kinetic, spectroscopic, and mutagenesis data supporting the presence of MIO in the active site of SgTAM [Christenson, S. D.; Wu, W.; Spies, A.; Shen, B.; and Toney, M. D. (2003) Biochemistry 42, 12708-12718]. Here we report the first X-ray crystal structure of an MIO-containing aminomutase, SgTAM, and confirm the structural homology of SgTAM to ammonia lyases. Comparison of the structure of SgTAM to the l-tyrosine ammonia lyase from Rhodobacter sphaeroides provides insight into the structural basis for aminomutase activity. The results show that SgTAM has a closed active site well suited to retain ammonia and minimize the formation of lyase elimination products. The amino acid determinants for substrate recognition and catalysis can be predicted from the structure, setting the framework for detailed mechanistic investigations. PMID:17516659

  14. Selectively improving nikkomycin Z production by blocking the imidazolone biosynthetic pathway of nikkomycin X and uracil feeding in Streptomyces ansochromogenes

    Directory of Open Access Journals (Sweden)

    Yang Haihua

    2009-11-01

    Full Text Available Abstract Background Nikkomycins are a group of peptidyl nucleoside antibiotics and act as potent inhibitors of chitin synthases in fungi and insects. Nikkomycin X and Z are the main components produced by Streptomyces ansochromogenes. Of them, nikkomycin Z is a promising antifungal agent with clinical significance. Since highly structural similarities between nikkomycin Z and X, separation of nikkomycin Z from the culture medium of S. ansochromogenes is difficult. Thus, generating a nikkomycin Z selectively producing strain is vital to scale up the nikkomycin Z yields for clinical trials. Results A nikkomycin Z producing strain (sanPDM was constructed by blocking the imidazolone biosynthetic pathway of nikkomycin X via genetic manipulation and yielded 300 mg/L nikkomycin Z and abolished the nikkomycin X production. To further increase the yield of nikkomycin Z, the effects of different precursors on its production were investigated. Precursors of nucleoside moiety (uracil or uridine had a stimulatory effect on nikkomycin Z production while precursors of peptidyl moiety (L-lysine and L-glutamate had no effect. sanPDM produced the maximum yields of nikkomycin Z (800 mg/L in the presence of uracil at the concentration of 2 g/L and it was approximately 2.6-fold higher than that of the parent strain. Conclusion A high nikkomycin Z selectively producing was obtained by genetic manipulation combined with precursors feeding. The strategy presented here might be applicable in other bacteria to selectively produce targeted antibiotics.

  15. Crystal Structure of Baeyer−Villiger Monooxygenase MtmOIV, the Key Enzyme of the Mithramycin Biosynthetic Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Beam, Miranda P.; Bosserman, Mary A.; Noinaj, Nicholas; Wehenkel, Marie; Rohr, Jurgen; Kentucky

    2009-06-01

    Baeyer-Villiger monooxygenases (BVMOs), mostly flavoproteins, were shown to be powerful biocatalysts for synthetic organic chemistry applications and were also suggested to play key roles for the biosyntheses of various natural products. Here we present the three-dimensional structure of MtmOIV, a 56 kDa homodimeric FAD- and NADPH-dependent monooxygenase, which catalyzes the key frame-modifying step of the mithramycin biosynthetic pathway and currently the only BVMO proven to react with its natural substrate via a Baeyer-Villiger reaction. MtmOIV's structure was determined by X-ray crystallography using molecular replacement to a resolution of 2.9 A. MtmOIV cleaves a C-C bond, essential for the conversion of the biologically inactive precursor, premithramycin B, into the active drug mithramycin. The MtmOIV structure combined with substrate docking calculations and site-directed mutagenesis experiments identifies several residues that participate in cofactor and substrate binding. Future experimentation aimed at broadening the substrate specificity of the enzyme could facilitate the generation of chemically diverse mithramycin analogues through combinatorial biosynthesis.

  16. Characterization of the TDP-d-ravidosamine biosynthetic pathway: one-pot enzymatic synthesis of TDP-d-ravidosamine from thymidine-5-phosphate and glucose-1-phosphate†

    OpenAIRE

    Kharel, Madan K.; Lian, Hui; Rohr, Jürgen

    2011-01-01

    Ravidomycin V and related compounds, e.g., FE35A-B, exhibit potent anticancer activities against various cancer cell lines in the presence of visible light. The amino sugar moieties (d-ravidosamine and its analogues, respectively) in these molecules contribute to the higher potencies of ravidomycin and analogues when compared to closely related compounds with neutral or branched sugars. Within the ravidomycin V biosynthetic gene cluster, five putative genes encoding NDP-d-ravidosamine biosynt...

  17. Orthogonal Fatty Acid Biosynthetic Pathway Improves Fatty Acid Ethyl Ester Production in Saccharomyces cerevisiae.

    Science.gov (United States)

    Eriksen, Dawn T; HamediRad, Mohammad; Yuan, Yongbo; Zhao, Huimin

    2015-07-17

    Fatty acid ethyl esters (FAEEs) are a form of biodiesel that can be microbially produced via a transesterification reaction of fatty acids with ethanol. The titer of microbially produced FAEEs can be greatly reduced by unbalanced metabolism and an insufficient supply of fatty acids, resulting in a commercially inviable process. Here, we report on a pathway engineering strategy in Saccharomyces cerevisiae for enhancing the titer of microbially produced FAEEs by providing the cells with an orthogonal route for fatty acid synthesis. The fatty acids generated from this heterologous pathway would supply the FAEE production, safeguarding endogenous fatty acids for cellular metabolism and growth. We investigated the heterologous expression of a Type-I fatty acid synthase (FAS) from Brevibacterium ammoniagenes coupled with WS/DGAT, the wax ester synthase/acyl-coenzyme that catalyzes the transesterification reaction with ethanol. Strains harboring the orthologous fatty acid synthesis yielded a 6.3-fold increase in FAEE titer compared to strains without the heterologous FAS. Variations in fatty acid chain length and degree of saturation can affect the quality of the biodiesel; therefore, we also investigated the diversity of the fatty acid production profile of FAS enzymes from other Actinomyces organisms. PMID:25594225

  18. Exploring triacylglycerol biosynthetic pathway in developing seeds of Chia (Salvia hispanica L.: a transcriptomic approach.

    Directory of Open Access Journals (Sweden)

    Sreedhar R V

    Full Text Available Chia (Salvia hispanica L., a member of the mint family (Lamiaceae, is a rediscovered crop with great importance in health and nutrition and is also the highest known terrestrial plant source of heart-healthy omega-3 fatty acid, alpha linolenic acid (ALA. At present, there is no public genomic information or database available for this crop, hindering research on its genetic improvement through genomics-assisted breeding programs. The first comprehensive analysis of the global transcriptome profile of developing Salvia hispanica L. seeds, with special reference to lipid biosynthesis is presented in this study. RNA from five different stages of seed development was extracted and sequenced separately using the Illumina GAIIx platform. De novo assembly of processed reads in the pooled transcriptome using Trinity yielded 76,014 transcripts. The total transcript length was 66,944,462 bases (66.9 Mb, with an average length of approximately 880 bases. In the molecular functions category of Gene Ontology (GO terms, ATP binding and nucleotide binding were found to be the most abundant and in the biological processes category, the metabolic process and the regulation of transcription-DNA-dependent and oxidation-reduction process were abundant. From the EuKaryotic Orthologous Groups of proteins (KOG classification, the major category was "Metabolism" (31.97%, of which the most prominent class was 'carbohydrate metabolism and transport' (5.81% of total KOG classifications followed by 'secondary metabolite biosynthesis transport and catabolism' (5.34% and 'lipid metabolism' (4.57%. A majority of the candidate genes involved in lipid biosynthesis and oil accumulation were identified. Furthermore, 5596 simple sequence repeats (SSRs were identified. The transcriptome data was further validated through confirmative PCR and qRT-PCR for select lipid genes. Our study provides insight into the complex transcriptome and will contribute to further genome-wide research

  19. Polymorphisms in monolignol biosynthetic genes are associated with biomass yield and agronomic traits in European maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Andersen Jeppe

    2010-01-01

    Full Text Available Abstract Background Reduced lignin content leads to higher cell wall digestibility and, therefore, better forage quality and increased conversion of lignocellulosic biomass into ethanol. However, reduced lignin content might lead to weaker stalks, lodging, and reduced biomass yield. Genes encoding enzymes involved in cell wall lignification have been shown to influence both cell wall digestibility and yield traits. Results In this study, associations between monolignol biosynthetic genes and plant height (PHT, days to silking (DTS, dry matter content (DMC, and dry matter yield (DMY were identified by using a panel of 39 European elite maize lines. In total, 10 associations were detected between polymorphisms or tight linkage disequilibrium (LD groups within the COMT, CCoAOMT2, 4CL1, 4CL2, F5H, and PAL genomic fragments, respectively, and the above mentioned traits. The phenotypic variation explained by these polymorphisms or tight LD groups ranged from 6% to 25.8% in our line collection. Only 4CL1 and F5H were found to have polymorphisms associated with both yield and forage quality related characters. However, no pleiotropic polymorphisms affecting both digestibility of neutral detergent fiber (DNDF, and PHT or DMY were discovered, even under less stringent statistical conditions. Conclusion Due to absence of pleiotropic polymorphisms affecting both forage yield and quality traits, identification of optimal monolignol biosynthetic gene haplotype(s combining beneficial quantitative trait polymorphism (QTP alleles for both quality and yield traits appears possible within monolignol biosynthetic genes. This is beneficial to maximize forage and bioethanol yield per unit land area.

  20. Metabolic Reprogramming by Hexosamine Biosynthetic and Golgi N-Glycan Branching Pathways.

    Science.gov (United States)

    Ryczko, Michael C; Pawling, Judy; Chen, Rui; Abdel Rahman, Anas M; Yau, Kevin; Copeland, Julia K; Zhang, Cunjie; Surendra, Anu; Guttman, David S; Figeys, Daniel; Dennis, James W

    2016-01-01

    De novo uridine-diphosphate-N-acetylglucosamine (UDP-GlcNAc) biosynthesis requires glucose, glutamine, acetyl-CoA and uridine, however GlcNAc salvaged from glycoconjugate turnover and dietary sources also makes a significant contribution to the intracellular pool. Herein we ask whether dietary GlcNAc regulates nutrient transport and intermediate metabolism in C57BL/6 mice by increasing UDP-GlcNAc and in turn Golgi N-glycan branching. GlcNAc added to the drinking water showed a dose-dependent increase in growth of young mice, while in mature adult mice fat and body-weight increased without affecting calorie-intake, activity, energy expenditure, or the microbiome. Oral GlcNAc increased hepatic UDP-GlcNAc and N-glycan branching on hepatic glycoproteins. Glucose homeostasis, hepatic glycogen, lipid metabolism and response to fasting were altered with GlcNAc treatment. In cultured cells GlcNAc enhanced uptake of glucose, glutamine and fatty-acids, and enhanced lipid synthesis, while inhibition of Golgi N-glycan branching blocked GlcNAc-dependent lipid accumulation. The N-acetylglucosaminyltransferase enzymes of the N-glycan branching pathway (Mgat1,2,4,5) display multistep ultrasensitivity to UDP-GlcNAc, as well as branching-dependent compensation. Indeed, oral GlcNAc rescued fat accumulation in lean Mgat5(-/-) mice and in cultured Mgat5(-/-) hepatocytes, consistent with N-glycan branching compensation. Our results suggest GlcNAc reprograms cellular metabolism by enhancing nutrient uptake and lipid storage through the UDP-GlcNAc supply to N-glycan branching pathway. PMID:26972830

  1. 1. Improving the Yield of Biodiesel from Microalgae and Other Lipids. 2. Studies of the Wax Ester Biosynthetic Pathway and Potential Biotechnological Application

    OpenAIRE

    Wahlen, Bradley D.

    2012-01-01

    The production of biofuels and oleochemicals from renewable sources offers an opportunity to reduce our dependence on fossil fuels. The work contained in this dissertation has focused on developing and improving methods for the production of biodiesel from non-traditional feedstocks and understanding biosynthetic pathways that result in the production of oleochemicals and fuels. Pure vegetable oil can account for 70-80% of the total cost of biodiesel production. Many low-cost oils contain ...

  2. Cloning, sequencing, and functional analysis of the biosynthetic gene cluster of macrolactam antibiotic vicenistatin in Streptomyces halstedii.

    Science.gov (United States)

    Ogasawara, Yasushi; Katayama, Kinya; Minami, Atsushi; Otsuka, Miyuki; Eguchi, Tadashi; Kakinuma, Katsumi

    2004-01-01

    Vicenistatin, an antitumor antibiotic isolated from Streptomyces halstedii, is a unique 20-membered macrocyclic lactam with a novel aminosugar vicenisamine. The vicenistatin biosynthetic gene cluster (vin) spanning approximately 64 kbp was cloned and sequenced. The cluster contains putative genes for the aglycon biosynthesis including four modular polyketide synthases (PKSs), glutamate mutase, acyl CoA-ligase, and AMP-ligase. Also found in the cluster are genes of NDP-hexose 4,6-dehydratase and aminotransferase for vicenisamine biosynthesis. For the functional confirmation of the cluster, a putative glycosyltransferase gene product, VinC, was heterologously expressed, and the vicenisamine transfer reaction to the aglycon was chemically proved. A unique feature of the vicenistatin PKS is that the loading module contains only an acyl carrier protein domain, in contrast to other known PKS-loading modules containing certain activation domains. Activation of the starter acyl group by separate polypeptides is postulated as well. PMID:15112997

  3. Divergent non-heme iron enzymes in the nogalamycin biosynthetic pathway.

    Science.gov (United States)

    Siitonen, Vilja; Selvaraj, Brinda; Niiranen, Laila; Lindqvist, Ylva; Schneider, Gunter; Metsä-Ketelä, Mikko

    2016-05-10

    Nogalamycin, an aromatic polyketide displaying high cytotoxicity, has a unique structure, with one of the carbohydrate units covalently attached to the aglycone via an additional carbon-carbon bond. The underlying chemistry, which implies a particularly challenging reaction requiring activation of an aliphatic carbon atom, has remained enigmatic. Here, we show that the unusual C5''-C2 carbocyclization is catalyzed by the non-heme iron α-ketoglutarate (α-KG)-dependent SnoK in the biosynthesis of the anthracycline nogalamycin. The data are consistent with a mechanistic proposal whereby the Fe(IV) = O center abstracts the H5'' atom from the amino sugar of the substrate, with subsequent attack of the aromatic C2 carbon on the radical center. We further show that, in the same metabolic pathway, the homologous SnoN (38% sequence identity) catalyzes an epimerization step at the adjacent C4'' carbon, most likely via a radical mechanism involving the Fe(IV) = O center. SnoK and SnoN have surprisingly similar active site architectures considering the markedly different chemistries catalyzed by the enzymes. Structural studies reveal that the differences are achieved by minor changes in the alignment of the substrates in front of the reactive ferryl-oxo species. Our findings significantly expand the repertoire of reactions reported for this important protein family and provide an illustrative example of enzyme evolution. PMID:27114534

  4. Combining Stable Isotope Labeling and Molecular Networking for Biosynthetic Pathway Characterization

    DEFF Research Database (Denmark)

    Klitgaard, Andreas; Nielsen, Jakob Blæsbjerg; Frandsen, Rasmus John Normand; Andersen, Mikael Rørdam; Nielsen, Kristian Fog

    2015-01-01

    Filamentous fungi are a rich source of bioactive compounds, ranging from statins over immunosuppressants to antibiotics. The coupling of genes to metabolites is of large commercial interest for production of the bioactives of the future. To this end, we have investigated the use of stable isotope...... these metabolites were all produced by the same nonribosomal peptide synthase. The combination of stable isotope labeling and molecular network generation was shown to very effective for the automated detection of structurally related nonribosomal peptides, while the labeling was effective for...... labeled amino acids (SILAAs). SILAAs were added to the cultivation media of the filamentous fungus Aspergillus nidulans for the study of the cyclic tetrapeptide nidulanin A. Analysis by UHPLC-TOFMS confirmed that the SILAAs were incorporated into produced nidulanin A, and the change in observed m/z could...

  5. Yeast homologous recombination-based promoter engineering for the activation of silent natural product biosynthetic gene clusters.

    Science.gov (United States)

    Montiel, Daniel; Kang, Hahk-Soo; Chang, Fang-Yuan; Charlop-Powers, Zachary; Brady, Sean F

    2015-07-21

    Large-scale sequencing of prokaryotic (meta)genomic DNA suggests that most bacterial natural product gene clusters are not expressed under common laboratory culture conditions. Silent gene clusters represent a promising resource for natural product discovery and the development of a new generation of therapeutics. Unfortunately, the characterization of molecules encoded by these clusters is hampered owing to our inability to express these gene clusters in the laboratory. To address this bottleneck, we have developed a promoter-engineering platform to transcriptionally activate silent gene clusters in a model heterologous host. Our approach uses yeast homologous recombination, an auxotrophy complementation-based yeast selection system and sequence orthogonal promoter cassettes to exchange all native promoters in silent gene clusters with constitutively active promoters. As part of this platform, we constructed and validated a set of bidirectional promoter cassettes consisting of orthogonal promoter sequences, Streptomyces ribosome binding sites, and yeast selectable marker genes. Using these tools we demonstrate the ability to simultaneously insert multiple promoter cassettes into a gene cluster, thereby expediting the reengineering process. We apply this method to model active and silent gene clusters (rebeccamycin and tetarimycin) and to the silent, cryptic pseudogene-containing, environmental DNA-derived Lzr gene cluster. Complete promoter refactoring and targeted gene exchange in this "dead" cluster led to the discovery of potent indolotryptoline antiproliferative agents, lazarimides A and B. This potentially scalable and cost-effective promoter reengineering platform should streamline the discovery of natural products from silent natural product biosynthetic gene clusters. PMID:26150486

  6. Genetic and metabolomic dissection of the ergothioneine and selenoneine biosynthetic pathway in the fission yeast, S. pombe, and construction of an overproduction system.

    Directory of Open Access Journals (Sweden)

    Tomáš Pluskal

    Full Text Available Ergothioneine is a small, sulfur-containing metabolite (229 Da synthesized by various species of bacteria and fungi, which can accumulate to millimolar levels in tissues or cells (e.g. erythrocytes of higher eukaryotes. It is commonly marketed as a dietary supplement due to its proposed protective and antioxidative functions. In this study we report the genes forming the two-step ergothioneine biosynthetic pathway in the fission yeast, Schizosaccharomyces pombe. We identified the first gene, egt1+ (SPBC1604.01, by sequence homology to previously published genes from Neurospora crassa and Mycobacterium smegmatis. We showed, using metabolomic analysis, that the Δegt1 deletion mutant completely lacked ergothioneine and its precursors (trimethyl histidine/hercynine and hercynylcysteine sulfoxide. Since the second step of ergothioneine biosynthesis has not been characterized in eukaryotes, we examined four putative homologs (Nfs1/SPBC21D10.11c, SPAC11D3.10, SPCC777.03c, and SPBC660.12c of the corresponding mycobacterial enzyme EgtE. Among deletion mutants of these genes, only one (ΔSPBC660.12c, designated Δegt2 showed a substantial decrease in ergothioneine, accompanied by accumulation of its immediate precursor, hercynylcysteine sulfoxide. Ergothioneine-deficient strains exhibited no phenotypic defects during vegetative growth or quiescence. To effectively study the role of ergothioneine, we constructed an egt1+ overexpression system by replacing its native promoter with the nmt1+ promoter, which is inducible in the absence of thiamine. We employed three versions of the nmt1 promoter with increasing strength of expression and confirmed corresponding accumulations of ergothioneine. We quantified the intracellular concentration of ergothioneine in S. pombe (0.3, 157.4, 41.6, and up to 1606.3 µM in vegetative, nitrogen-starved, glucose-starved, and egt1+-overexpressing cells, respectively and described its gradual accumulation under long

  7. Comprehensive Analysis of the Triterpenoid Saponins Biosynthetic Pathway in Anemone flaccida by Transcriptome and Proteome Profiling

    Science.gov (United States)

    Zhan, Chuansong; Li, Xiaohua; Zhao, Zeying; Yang, Tewu; Wang, Xuekui; Luo, Biaobiao; Zhang, Qiyun; Hu, Yanru; Hu, Xuebo

    2016-01-01

    Background: Anemone flaccida Fr. Shmidt (Ranunculaceae), commonly known as ‘Di Wu’ in China, is a perennial herb with limited distribution. The rhizome of A. flaccida has long been used to treat arthritis as a tradition in China. Studies disclosed that the plant contains a rich source of triterpenoid saponins. However, little is known about triterpenoid saponins biosynthesis in A. flaccida. Results: In this study, we conducted the tandem transcriptome and proteome profiling of a non-model medicinal plant, A. flaccida. Using Illumina HiSeq 2000 sequencing and iTRAQ technique, a total of 46,962 high-quality unigenes were obtained with an average sequence length of 1,310 bp, along with 1473 unique proteins from A. flaccida. Among the A. flaccida transcripts, 36,617 (77.97%) showed significant similarity (E-value HiSeq 2000 sequencing platform and iTRAQ technique was shown to be a powerful method for the discovery of candidate genes, which encoded enzymes that were responsible for the biosynthesis of novel secondary metabolites in a non-model plant. The transcriptome data of our study provides a very important resource for the understanding of the triterpenoid saponins biosynthesis of A. flaccida. PMID:27504115

  8. Primitive Extracellular Lipid Components on the Surface of the Charophytic Alga Klebsormidium flaccidum and Their Possible Biosynthetic Pathways as Deduced from the Genome Sequence

    Science.gov (United States)

    Kondo, Satoshi; Hori, Koichi; Sasaki-Sekimoto, Yuko; Kobayashi, Atsuko; Kato, Tsubasa; Yuno-Ohta, Naoko; Nobusawa, Takashi; Ohtaka, Kinuka; Shimojima, Mie; Ohta, Hiroyuki

    2016-01-01

    Klebsormidium flaccidum is a charophytic alga living in terrestrial and semiaquatic environments. K. flaccidum grows in various habitats, such as low-temperature areas and under desiccated conditions, because of its ability to tolerate harsh environments. Wax and cuticle polymers that contribute to the cuticle layer of plants are important for the survival of land plants, as they protect against those harsh environmental conditions and were probably critical for the transition from aquatic microorganism to land plants. Bryophytes, non-vascular land plants, have similar, but simpler, extracellular waxes and polyester backbones than those of vascular plants. The presence of waxes in terrestrial algae, especially in charophytes, which are the closest algae to land plants, could provide clues in elucidating the mechanism of land colonization by plants. Here, we compared genes involved in the lipid biosynthetic pathways of Arabidopsis thaliana to the K. flaccidum and the Chlamydomonas reinhardtii genomes, and identified wax-related genes in both algae. A simple and easy extraction method was developed for the recovery of the surface lipids from K. flaccidum and C. reinhardtii. Although these algae have wax components, their surface lipids were largely different from those of land plants. We also investigated aliphatic substances in the cell wall fraction of K. flaccidum and C. reinhardtii. Many of the fatty acids were determined to be lipophilic monomers in K. flaccidum, and a Fourier transform infrared spectroscopic analysis revealed that their possible binding mode was distinct from that of A. thaliana. Thus, we propose that K. flaccidum has a cuticle-like hydrophobic layer composed of lipids and glycoproteins, with a different composition from the cutin polymer typically found in land plant cuticles.

  9. Primitive Extracellular Lipid Components on the Surface of the Charophytic Alga Klebsormidium flaccidum and Their Possible Biosynthetic Pathways as Deduced from the Genome Sequence.

    Science.gov (United States)

    Kondo, Satoshi; Hori, Koichi; Sasaki-Sekimoto, Yuko; Kobayashi, Atsuko; Kato, Tsubasa; Yuno-Ohta, Naoko; Nobusawa, Takashi; Ohtaka, Kinuka; Shimojima, Mie; Ohta, Hiroyuki

    2016-01-01

    Klebsormidium flaccidum is a charophytic alga living in terrestrial and semiaquatic environments. K. flaccidum grows in various habitats, such as low-temperature areas and under desiccated conditions, because of its ability to tolerate harsh environments. Wax and cuticle polymers that contribute to the cuticle layer of plants are important for the survival of land plants, as they protect against those harsh environmental conditions and were probably critical for the transition from aquatic microorganism to land plants. Bryophytes, non-vascular land plants, have similar, but simpler, extracellular waxes and polyester backbones than those of vascular plants. The presence of waxes in terrestrial algae, especially in charophytes, which are the closest algae to land plants, could provide clues in elucidating the mechanism of land colonization by plants. Here, we compared genes involved in the lipid biosynthetic pathways of Arabidopsis thaliana to the K. flaccidum and the Chlamydomonas reinhardtii genomes, and identified wax-related genes in both algae. A simple and easy extraction method was developed for the recovery of the surface lipids from K. flaccidum and C. reinhardtii. Although these algae have wax components, their surface lipids were largely different from those of land plants. We also investigated aliphatic substances in the cell wall fraction of K. flaccidum and C. reinhardtii. Many of the fatty acids were determined to be lipophilic monomers in K. flaccidum, and a Fourier transform infrared spectroscopic analysis revealed that their possible binding mode was distinct from that of A. thaliana. Thus, we propose that K. flaccidum has a cuticle-like hydrophobic layer composed of lipids and glycoproteins, with a different composition from the cutin polymer typically found in land plant cuticles. PMID:27446179

  10. Primitive extracellular lipid components on the surface of the charophytic alga Klebsormidium flaccidum and their possible biosynthetic pathways as deduced from the genome sequence

    Directory of Open Access Journals (Sweden)

    Satoshi eKondo

    2016-06-01

    Full Text Available Klebsormidium flaccidum is a charophytic alga living in terrestrial and semiaquatic environments. K. flaccidum grows in various habitats, such as low-temperature areas and under desiccated conditions, because of its ability to tolerate harsh environments. Wax and cuticle polymers that contribute to the cuticle layer of plants are important for the survival of land plants, as they protect against those harsh environmental conditions and were probably critical for the transition from aquatic microorganism to land plants. Bryophytes, non-vascular land plants, have similar, but simpler, extracellular waxes and polyester backbones than those of vascular plants. The presence of waxes in terrestrial algae, especially in charophytes, which are the closest algae to land plants, could provide clues in elucidating the mechanism of land colonization by plants. Here, we compared genes involved in the lipid biosynthetic pathways of Arabidopsis thaliana to the K. flaccidum and the Chlamydomonas reinhardtii genomes, and identified wax-related genes in both algae. A simple and easy extraction method was developed for the recovery of the surface lipids from K. flaccidum and C. reinhardtii. Although these algae have wax components, their surface lipids were largely different from those of land plants. We also investigated aliphatic substances in the cell wall fraction of K. flaccidum and C. reinhardtii. Many of the fatty acids were determined to be lipophilic monomers in K. flaccidum, and a Fourier transform infrared spectroscopic analysis revealed that their possible binding mode was distinct from that of A. thaliana. Thus, we propose that K. flaccidum has a cuticle-like hydrophobic layer composed of lipids and glycoproteins, with a different composition from the cutin polymer typically found in land plant cuticles.

  11. Cloning, reassembling and integration of the entire nikkomycin biosynthetic gene cluster into Streptomyces ansochromogenes lead to an improved nikkomycin production

    Directory of Open Access Journals (Sweden)

    Yang Haihua

    2010-01-01

    Full Text Available Abstract Background Nikkomycins are a group of peptidyl nucleoside antibiotics produced by Streptomyces ansochromogenes. They are competitive inhibitors of chitin synthase and show potent fungicidal, insecticidal, and acaricidal activities. Nikkomycin X and Z are the main components produced by S. ansochromogenes. Generation of a high-producing strain is crucial to scale up nikkomycins production for further clinical trials. Results To increase the yields of nikkomycins, an additional copy of nikkomycin biosynthetic gene cluster (35 kb was introduced into nikkomycin producing strain, S. ansochromogenes 7100. The gene cluster was first reassembled into an integrative plasmid by Red/ET technology combining with classic cloning methods and then the resulting plasmid(pNIKwas introduced into S. ansochromogenes by conjugal transfer. Introduction of pNIK led to enhanced production of nikkomycins (880 mg L-1, 4 -fold nikkomycin X and 210 mg L-1, 1.8-fold nikkomycin Z in the resulting exconjugants comparing with the parent strain (220 mg L-1 nikkomycin X and 120 mg L-1 nikkomycin Z. The exconjugants are genetically stable in the absence of antibiotic resistance selection pressure. Conclusion A high nikkomycins producing strain (1100 mg L-1 nikkomycins was obtained by introduction of an extra nikkomycin biosynthetic gene cluster into the genome of S. ansochromogenes. The strategies presented here could be applicable to other bacteria to improve the yields of secondary metabolites.

  12. Metabolic engineering of the Stevia rebaudiana ent-kaurene biosynthetic pathway in recombinant Escherichia coli.

    Science.gov (United States)

    Kong, Min Kyung; Kang, Hyun-Jun; Kim, Jin Ho; Oh, Soon Hwan; Lee, Pyung Cheon

    2015-11-20

    The ent-kaurene is a dedicated precursor pool and is responsible for synthesizing natural sweeteners such as steviol glycosides. In this study, to produce ent-kaurene in Escherichia coli, we modularly constructed and expressed two ent-kaurene genes encoding ent-copalyl diphosphate synthase (CPPS) and ent-kaurene synthase (KS) from Stevia rebaudiana known as a typical plant producing steviol glycoside. The CPPS and KS from S. rebaudiana were functionally expressed in a heterologous host E. coli. Furthermore, in order to enhance ent-kaurene production in E. coli, six geranylgeranyl diphosphate synthases (GGPPS) from various microorganisms and eight strains of E. coli as host were compared by measuring ent-kaurene production. The highest ent-kaurene production of approximately 41.1mg/L was demonstrated in E. coli strain MG1655 co-expressing synthetic CPPS-KS module and GGPPS from Rhodobacter sphaeroides. The ent-kaurene production was further increased up to 179.6 mg/L by overexpression of the three key enzymes for isoprenoid precursor, 1-deoxyxylulose-5-phosphate synthase (DXS), farnesyl diphosphate synthase (IspA) and isopentenyl diphosphate isomerase (IDI) from E. coli. Finally, the highest titer of ent-kaurene (578 mg/L) with a specific yield of ent-kaurene of 143.5mg/g dry cell weight was obtained by culturing E. coli strain MG1655 co-expressing the ent-kaurene module, DXS, IDI and IspA in 1L bioreactor containing 20 g/L glycerol. PMID:26392384

  13. Acyl-Acyl carrier protein regulates transcription of fatty acid biosynthetic genes via the FabT repressor in Streptococcus pneumoniae.

    Science.gov (United States)

    Jerga, Agoston; Rock, Charles O

    2009-06-01

    Long-chain acyl-acyl carrier proteins (acyl-ACP) are established biochemical regulators of bacterial type II fatty acid synthases due to their ability to feedback-inhibit the early steps in the biosynthetic pathway. In Streptococcus pneumoniae, the expression of the fatty acid synthase (fab) genes is controlled by a helix-turn-helix transcriptional repressor called FabT. A screen of pathway intermediates identified acyl-ACP as a ligand that increased the affinity of FabT for DNA. FabT bound to a wide range of acyl-ACP chain lengths in the absence of DNA, but only the long-chain acyl-ACPs increase the affinity of FabT for DNA. FabT affinity for DNA increased with increasing acyl-ACP chain length with cis-vaccenoyl-ACP being the most effective ligand. Thus, FabT is a new ACP-interacting partner that acts as a transcriptional rheostat to fine tune the expression of the fab genes based on the demand for fatty acids. PMID:19376778

  14. Acyl-Acyl Carrier Protein Regulates Transcription of Fatty Acid Biosynthetic Genes via the FabT Repressor in Streptococcus pneumoniae*

    Science.gov (United States)

    Jerga, Agoston; Rock, Charles O.

    2009-01-01

    Long-chain acyl-acyl carrier proteins (acyl-ACP) are established biochemical regulators of bacterial type II fatty acid synthases due to their ability to feedback-inhibit the early steps in the biosynthetic pathway. In Streptococcus pneumoniae, the expression of the fatty acid synthase (fab) genes is controlled by a helix-turn-helix transcriptional repressor called FabT. A screen of pathway intermediates identified acyl-ACP as a ligand that increased the affinity of FabT for DNA. FabT bound to a wide range of acyl-ACP chain lengths in the absence of DNA, but only the long-chain acyl-ACPs increase the affinity of FabT for DNA. FabT affinity for DNA increased with increasing acyl-ACP chain length with cis-vaccenoyl-ACP being the most effective ligand. Thus, FabT is a new ACP-interacting partner that acts as a transcriptional rheostat to fine tune the expression of the fab genes based on the demand for fatty acids. PMID:19376778

  15. Identification of the Fluvirucin B2 (Sch 38518) Biosynthetic Gene Cluster from Actinomadura fulva subsp. indica ATCC 53714: substrate Specificity of the β-Amino Acid Selective Adenylating Enzyme FlvN.

    Science.gov (United States)

    Miyanaga, Akimasa; Hayakawa, Yuki; Numakura, Mario; Hashimoto, Junko; Teruya, Kuniko; Hirano, Takashi; Shin-Ya, Kazuo; Kudo, Fumitaka; Eguchi, Tadashi

    2016-05-01

    Fluvirucins are 14-membered macrolactam polyketides that show antifungal and antivirus activities. Fluvirucins have the β-alanine starter unit at their polyketide skeletons. To understand the construction mechanism of the β-alanine moiety in fluvirucin biosyntheses, we have identified the biosynthetic cluster of fluvirucin B2 produced from Actinomadura fulva subsp. indica ATCC 53714. The identified gene cluster contains three polyketide synthases, four characteristic β-amino acid-carrying enzymes, one decarboxylase, and one amidohydrolase. We next investigated the activity of the adenylation enzyme FlvN, which is a key enzyme for the selective incorporation of a β-amino acid substrate. FlvN showed strong preference for l-aspartate over other amino acids such as β-alanine. Based on these results, we propose a biosynthetic pathway for fluvirucin B2. PMID:26818633

  16. The Distribution of Coumarins and Furanocoumarins in Citrus Species Closely Matches Citrus Phylogeny and Reflects the Organization of Biosynthetic Pathways

    Science.gov (United States)

    Dugrand-Judek, Audray; Olry, Alexandre; Hehn, Alain; Costantino, Gilles; Ollitrault, Patrick; Froelicher, Yann; Bourgaud, Frédéric

    2015-01-01

    Citrus plants are able to produce defense compounds such as coumarins and furanocoumarins to cope with herbivorous insects and pathogens. In humans, these chemical compounds are strong photosensitizers and can interact with medications, leading to the “grapefruit juice effect”. Removing coumarins and furanocoumarins from food and cosmetics imply additional costs and might alter product quality. Thus, the selection of Citrus cultivars displaying low coumarin and furanocoumarin contents constitutes a valuable alternative. In this study, we performed ultra-performance liquid chromatography coupled with mass spectrometry analyses to determine the contents of these compounds within the peel and the pulp of 61 Citrus species representative of the genetic diversity all Citrus. Generally, Citrus peel contains larger diversity and higher concentrations of coumarin/furanocoumarin than the pulp of the same fruits. According to the chemotypes found in the peel, Citrus species can be separated into 4 groups that correspond to the 4 ancestral taxa (pummelos, mandarins, citrons and papedas) and extended with their respective secondary species descendants. Three of the 4 ancestral taxa (pummelos, citrons and papedas) synthesize high amounts of these compounds, whereas mandarins appear practically devoid of them. Additionally, all ancestral taxa and their hybrids are logically organized according to the coumarin and furanocoumarin pathways described in the literature. This organization allows hypotheses to be drawn regarding the biosynthetic origin of compounds for which the biogenesis remains unresolved. Determining coumarin and furanocoumarin contents is also helpful for hypothesizing the origin of Citrus species for which the phylogeny is presently not firmly established. Finally, this work also notes favorable hybridization schemes that will lead to low coumarin and furanocoumarin contents, and we propose to select mandarins and Ichang papeda as Citrus varieties for use in

  17. Early Phenylpropanoid Biosynthetic Steps in Cannabis sativa: Link between Genes and Metabolites

    Directory of Open Access Journals (Sweden)

    Immacolata Coraggio

    2013-06-01

    Full Text Available Phenylalanine ammonia-lyase (PAL, Cinnamic acid 4-hydroxylase (C4H and 4-Coumarate: CoA ligase (4CL catalyze the first three steps of the general phenylpropanoid pathway whereas chalcone synthase (CHS catalyzes the first specific step towards flavonoids production. This class of specialized metabolites has a wide range of biological functions in plant development and defence and a broad spectrum of therapeutic activities for human health. In this study, we report the isolation of hemp PAL and 4CL cDNA and genomic clones. Through in silico analysis of their deduced amino acid sequences, more than an 80% identity with homologues genes of other plants was shown and phylogenetic relationships were highlighted. Quantitative expression analysis of the four above mentioned genes, PAL and 4CL enzymatic activities, lignin content and NMR metabolite fingerprinting in different Cannabis sativa tissues were evaluated. Furthermore, the use of different substrates to assay PAL and 4CL enzymatic activities indicated that different isoforms were active in different tissues. The diversity in secondary metabolites content observed in leaves (mainly flavonoids and roots (mainly lignin was discussed in relation to gene expression and enzymatic activities data.

  18. A new member of the 4-methylideneimidazole-5-one–containing aminomutase family from the enediyne kedarcidin biosynthetic pathway

    Science.gov (United States)

    Huang, Sheng-Xiong; Lohman, Jeremy R.; Huang, Tingting; Shen, Ben

    2013-01-01

    4-Methylideneimidazole-5-one (MIO)-containing aminomutases catalyze the conversion of l-α-amino acids to β-amino acids with either an (R) or an (S) configuration. l-Phenylalanine and l-tyrosine are the only two natural substrates identified to date. The enediyne chromophore of the chromoprotein antitumor antibiotic kedarcidin (KED) harbors an (R)-2-aza-3-chloro-β-tyrosine moiety reminiscent of the (S)-3-chloro-5-hydroxy-β-tyrosine moiety of the C-1027 enediyne chromophore, the biosynthesis of which uncovered the first known MIO-containing aminomutase, SgcC4. Comparative analysis of the KED and C-1027 biosynthetic gene clusters inspired the proposal for (R)-2-aza-3-chloro-β-tyrosine biosynthesis starting from 2-aza-l-tyrosine, featuring KedY4 as a putative MIO-containing aminomutase. Here we report the biochemical characterization of KedY4, confirming its proposed role in KED biosynthesis. KedY4 is an MIO-containing aminomutase that stereospecifically catalyzes the conversion of 2-aza-l-tyrosine to (R)-2-aza-β-tyrosine, exhibiting no detectable activity toward 2-aza-l-phenylalanine or l-tyrosine as an alternative substrate. In contrast, SgcC4, which stereospecifically catalyzes the conversion of l-tyrosine to (S)-β-tyrosine in C-1027 biosynthesis, exhibits minimal activity with 2-aza-l-tyrosine as an alternative substrate but generating (S)-2-aza-β-tyrosine, a product with the opposite stereochemistry of KedY4. This report of KedY4 broadens the scope of known substrates for the MIO-containing aminomutase family, and comparative studies of KedY4 and SgcC4 provide an outstanding opportunity to examine how MIO-containing aminomutases control substrate specificity and product enantioselectivity. PMID:23633564

  19. Cloning and sequencing of the kedarcidin biosynthetic gene cluster from Streptoalloteichus sp. ATCC 53650 revealing new insights into biosynthesis of the enediyne family of antitumor antibiotics†

    Science.gov (United States)

    Lohman, Jeremy R.; Huang, Sheng-Xiong; Horsman, Geoffrey P.; Dilfer, Paul E.; Huang, Tingting; Chen, Yihua; Wendt-Pienkowski, Evelyn; Shen, Ben

    2013-01-01

    Enediyne natural product biosynthesis is characterized by a convergence of multiple pathways, generating unique peripheral moieties that are appended onto the distinctive enediyne core. Kedarcidin (KED) possesses two unique peripheral moieties, a (R)-2-aza-3-chloro-β-tyrosine and an iso-propoxy-bearing 2-naphthonate moiety, as well as two deoxysugars. The appendage pattern of these peripheral moieties to the enediyne core in KED differs from the other enediynes studied to date with respect to stereochemical configuration. To investigate the biosynthesis of these moieties and expand our understanding of enediyne core formation, the biosynthetic gene cluster for KED was cloned from Streptoalloteichus sp. ATCC 53650 and sequenced. Bioinformatics analysis of the ked cluster revealed the presence of the conserved genes encoding for enediyne core biosynthesis, type I and type II polyketide synthase loci likely responsible for 2-aza-L-tyrosine and 3,6,8-trihydroxy-2-naphthonate formation, and enzymes known for deoxysugar biosynthesis. Genes homologous to those responsible for the biosynthesis, activation, and coupling of the L-tyrosine-derived moieties from C-1027 and maduropeptin and of the naphthonate moiety from neocarzinostatin are present in the ked cluster, supporting 2-aza-L-tyrosine and 3,6,8-trihydroxy-2-naphthoic acid as precursors, respectively, for the (R)-2-aza-3-chloro-β-tyrosine and the 2-naphthonate moieties in KED biosynthesis. PMID:23360970

  20. Cloning and sequencing of the kedarcidin biosynthetic gene cluster from Streptoalloteichus sp. ATCC 53650 revealing new insights into biosynthesis of the enediyne family of antitumor antibiotics.

    Science.gov (United States)

    Lohman, Jeremy R; Huang, Sheng-Xiong; Horsman, Geoffrey P; Dilfer, Paul E; Huang, Tingting; Chen, Yihua; Wendt-Pienkowski, Evelyn; Shen, Ben

    2013-03-01

    Enediyne natural product biosynthesis is characterized by a convergence of multiple pathways, generating unique peripheral moieties that are appended onto the distinctive enediyne core. Kedarcidin (KED) possesses two unique peripheral moieties, a (R)-2-aza-3-chloro-β-tyrosine and an iso-propoxy-bearing 2-naphthonate moiety, as well as two deoxysugars. The appendage pattern of these peripheral moieties to the enediyne core in KED differs from the other enediynes studied to date with respect to stereochemical configuration. To investigate the biosynthesis of these moieties and expand our understanding of enediyne core formation, the biosynthetic gene cluster for KED was cloned from Streptoalloteichus sp. ATCC 53650 and sequenced. Bioinformatics analysis of the ked cluster revealed the presence of the conserved genes encoding for enediyne core biosynthesis, type I and type II polyketide synthase loci likely responsible for 2-aza-l-tyrosine and 3,6,8-trihydroxy-2-naphthonate formation, and enzymes known for deoxysugar biosynthesis. Genes homologous to those responsible for the biosynthesis, activation, and coupling of the l-tyrosine-derived moieties from C-1027 and maduropeptin and of the naphthonate moiety from neocarzinostatin are present in the ked cluster, supporting 2-aza-l-tyrosine and 3,6,8-trihydroxy-2-naphthoic acid as precursors, respectively, for the (R)-2-aza-3-chloro-β-tyrosine and the 2-naphthonate moieties in KED biosynthesis. PMID:23360970

  1. Genome wide transcriptome profiling reveals differential gene expression in secondary metabolite pathway of Cymbopogon winterianus.

    Science.gov (United States)

    Devi, Kamalakshi; Mishra, Surajit K; Sahu, Jagajjit; Panda, Debashis; Modi, Mahendra K; Sen, Priyabrata

    2016-01-01

    Advances in transcriptome sequencing provide fast, cost-effective and reliable approach to generate large expression datasets especially suitable for non-model species to identify putative genes, key pathway and regulatory mechanism. Citronella (Cymbopogon winterianus) is an aromatic medicinal grass used for anti-tumoral, antibacterial, anti-fungal, antiviral, detoxifying and natural insect repellent properties. Despite of having number of utilities, the genes involved in terpenes biosynthetic pathway is not yet clearly elucidated. The present study is a pioneering attempt to generate an exhaustive molecular information of secondary metabolite pathway and to increase genomic resources in Citronella. Using high-throughput RNA-Seq technology, root and leaf transcriptome was analysed at an unprecedented depth (11.7 Gb). Targeted searches identified majority of the genes associated with metabolic pathway and other natural product pathway viz. antibiotics synthesis along with many novel genes. Terpenoid biosynthesis genes comparative expression results were validated for 15 unigenes by RT-PCR and qRT-PCR. Thus the coverage of these transcriptome is comprehensive enough to discover all known genes of major metabolic pathways. This transcriptome dataset can serve as important public information for gene expression, genomics and function genomics studies in Citronella and shall act as a benchmark for future improvement of the crop. PMID:26877149

  2. Fructan Biosynthetic and Breakdown Enzymes in Dicots Evolved From Different Invertases. Expression of Fructan Genes Throughout Chicory Development

    Directory of Open Access Journals (Sweden)

    Wim Van den Ende

    2002-01-01

    Full Text Available Fructans are fructose-based oligo- and polymers that serve as reserve carbohydrates in many plant species. The biochemistry of fructan biosynthesis in dicots has been resolved, and the respective cDNAs have been cloned. Recent progress has now succeeded in elucidating the biochemistry and molecular biology of fructan biodegradation in chicory, an economically important species used for commercial inulin extraction. Unlike fructan biosynthetic genes that originated from vacuolar-type invertase, fructan exohydrolases (FEHs seem to have evolved from a cell-wall invertase ancestor gene that later obtained a low iso-electric point and a vacuolar targeting signal. Expression analysis reveals that fructan enzymes are controlled mainly at the transcriptional level. Using chicory as a model system, northern analysis was consistent with enzymatic activity measurements and observed carbohydrate changes throughout its development.

  3. Genes and (common pathways underlying drug addiction.

    Directory of Open Access Journals (Sweden)

    Chuan-Yun Li

    2008-01-01

    Full Text Available Drug addiction is a serious worldwide problem with strong genetic and environmental influences. Different technologies have revealed a variety of genes and pathways underlying addiction; however, each individual technology can be biased and incomplete. We integrated 2,343 items of evidence from peer-reviewed publications between 1976 and 2006 linking genes and chromosome regions to addiction by single-gene strategies, microrray, proteomics, or genetic studies. We identified 1,500 human addiction-related genes and developed KARG (http://karg.cbi.pku.edu.cn, the first molecular database for addiction-related genes with extensive annotations and a friendly Web interface. We then performed a meta-analysis of 396 genes that were supported by two or more independent items of evidence to identify 18 molecular pathways that were statistically significantly enriched, covering both upstream signaling events and downstream effects. Five molecular pathways significantly enriched for all four different types of addictive drugs were identified as common pathways which may underlie shared rewarding and addictive actions, including two new ones, GnRH signaling pathway and gap junction. We connected the common pathways into a hypothetical common molecular network for addiction. We observed that fast and slow positive feedback loops were interlinked through CAMKII, which may provide clues to explain some of the irreversible features of addiction.

  4. Effect of phenolic compounds and osmotic stress on the expression of penicillin biosynthetic genes from Penicillium chrysogenum var. halophenolicum strain

    Directory of Open Access Journals (Sweden)

    Sumaya Ferreira Guedes

    2012-01-01

    Full Text Available Phenol and phenolic compounds are aromatic pollutants that inhibit biological treatment of wastewaters. Penicillium chrysogenum var. halophenolicum is a halotolerant fungus that previously showed the ability to degrade phenol and resorcinol in high salinity conditions. The presence of the penicillin biosynthetic cluster in P. chrysogenum var. halophenolicum was recently described. In this article, we examined the expression of pcbAB, pcbC and penDE, genes responsible for δ-(L-α-aminoadipyl-L-cysteinyl-D-valine synthetase, isopenicillin N synthase and isopenicillin N acyltransferase activities, respectively, in P. chrysogenum var. halophenolicum. A quantitative PCR (qPCR approach was used to determine how these genes were expressed in media with 2% and 5.9% NaCl supplemented with phenol, catechol, hydroquinone and resorcinol as the sole carbon source. The effect of salt on the capability of P. chrysogenum var. halophenolicum to degrade aromatic compounds was measured using HPLC. qPCR analysis of RNA extracted from P. chrysogenum var. halophenolicum indicated that the expression levels of pcbAB, pcbC and penDE decreased in high saline concentrations compared to the levels expressed in media with glucose. High concentrations of salt significantly repress the expression of pcbAB and penDE. The pcbC gene was expressed differentially in catechol containing medium. There was no evident relationship between the expression levels of penicillin biosynthetic genes and yields of penicillin. Meanwhile, the presence of phenol and phenolic compounds seems to positively influence the antibiotic production; high concentrations of salt stimulated penicillin production. These results support the hypothesis that phenol, phenolic compounds and high concentrations of salt could act like a stress factor for P. chrysogenum var. halophenolicum resulting in higher yields of β-lactam antibiotic production.

  5. Coordinated transcriptional regulation of the divinyl ether biosynthetic genes in tobacco by signal molecules related to defense.

    Science.gov (United States)

    Fammartino, Alessandro; Verdaguer, Bertrand; Fournier, Joëlle; Tamietti, Giacomo; Carbonne, Francis; Esquerré-Tugayé, Marie-Thérèse; Cardinale, Francesca

    2010-04-01

    In tobacco, 9-divinyl ethers (DVEs) produced by the lipoxygenase NtLOX1 and DVE synthase NtDES1 are important for full resistance to pathogens. In this work, the regulation of NtLOX1 and NtDES1 expression by signal molecules was investigated in LOX1 promoter-reporter transgenic plants and by RT-qPCR. Methyl jasmonate, ACC and elicitor were shown to coordinately trigger the DVE pathway. Induction was strongly attenuated in the presence of salicylic acid, which seems to act as a negative regulator of the 9-DVE biosynthetic enzymes. Our data suggest that, in tobacco, DVE biosynthesis is cross-regulated by jasmonates, and by other hormonal and signal molecules such as ethylene and SA. PMID:20137961

  6. Pederin-type pathways of uncultivated bacterial symbionts: analysis of o-methyltransferases and generation of a biosynthetic hybrid.

    Science.gov (United States)

    Zimmermann, Katrin; Engeser, Marianne; Blunt, John W; Munro, Murray H G; Piel, Jörn

    2009-03-01

    The complex polyketide pederin is a potent antitumor agent isolated from Paederus spp. rove beetles. We have previously isolated a set of genes from a bacterial endosymbiont that are good candidates for pederin biosynthesis. To biochemically study this pathway, we expressed three methyltransferases from the putative pederin pathway and used the partially unmethylated analogue mycalamide A from the marine sponge Mycale hentscheli as test substrate. Analysis by high-resolution MS/MS and NMR revealed that PedO regiospecifically methylates the marine compound to generate the nonnatural hybrid compound 18-O-methylmycalamide A with increased cytotoxicity. To our knowledge, this is the first biochemical evidence that invertebrates can obtain defensive complex polyketides from bacterial symbionts. PMID:19206228

  7. Biosynthetic Functional Gene Analysis of Bis-Indole Metabolites from 25D7, a Clone Derived from a Deep-Sea Sediment Metagenomic Library

    Science.gov (United States)

    Yan, Xia; Tang, Xi-Xiang; Qin, Dan; Yi, Zhi-Wei; Fang, Mei-Juan; Wu, Zhen; Qiu, Ying-Kun

    2016-01-01

    This work investigated the metabolites and their biosynthetic functional hydroxylase genes of the deep-sea sediment metagenomic clone 25D7. 5-Bromoindole was added to the 25D7 clone derived Escherichia coli fermentation broth. The new-generated metabolites and their biosynthetic byproducts were located through LC-MS, in which the isotope peaks of brominated products emerged. Two new brominated bis-indole metabolites, 5-bromometagenediindole B (1), and 5-bromometagenediindole C (2) were separated under the guidance of LC-MS. Their structures were elucidated on the basis of 1D and 2D NMR spectra (COSY, HSQC, and HMBC). The biosynthetic functional genes of the two new compounds were revealed through LC-MS and transposon mutagenesis analysis. 5-Bromometagenediindole B (1) also demonstrated moderately cytotoxic activity against MCF7, B16, CNE2, Bel7402, and HT1080 tumor cell lines in vitro. PMID:27258289

  8. VIGS approach reveals the modulation of anthocyanin biosynthetic genes by CaMYB in Chili pepper leaves

    Directory of Open Access Journals (Sweden)

    zhen ezhang

    2015-07-01

    Full Text Available The purple coloration of pepper leaves arises from the accumulation of anthocyanin. Three regulatory and 12 structural genes have been characterized for their involvement in the anthocyanin biosynthesis. Examination of the abundance of these genes in leaves showed that the majority of them differed between anthocyanin pigmented line Z1 and non-pigmented line A3. Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation. Moreover, the expression of multiple genes was altered in the silenced leaves. The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern. Most structural genes including CHS, CHI, F3H, F3’5’H, DFR, ANS, UFGT, ANP and GST were repressed in CaMYB-silenced foliage with the exception of PAL, C4H and 4CL. These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes. Besides CaMYB silenced leaves rendered more sporulation of Phytophthora capsici Leonian indicating that CaMYB might be involved in the defense response to pathogens.

  9. VIGS approach reveals the modulation of anthocyanin biosynthetic genes by CaMYB in chili pepper leaves.

    Science.gov (United States)

    Zhang, Zhen; Li, Da-Wei; Jin, Jing-Hao; Yin, Yan-Xu; Zhang, Huai-Xia; Chai, Wei-Guo; Gong, Zhen-Hui

    2015-01-01

    The purple coloration of pepper leaves arises from the accumulation of anthocyanin. Three regulatory and 12 structural genes have been characterized for their involvement in the anthocyanin biosynthesis. Examination of the abundance of these genes in leaves showed that the majority of them differed between anthocyanin pigmented line Z1 and non-pigmented line A3. Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation. Moreover, the expression of multiple genes was altered in the silenced leaves. The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern. Most structural genes including CHS, CHI, F3H, F3'5'H, DFR, ANS, UFGT, ANP, and GST were repressed in CaMYB-silenced foliage with the exception of PAL, C4H, and 4CL. These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes. Besides CaMYB silenced leaves rendered more sporulation of Phytophthora capsici Leonian indicating that CaMYB might be involved in the defense response to pathogens. PMID:26217354

  10. New lessons for combinatorial biosynthesis from myxobacteria. The myxothiazol biosynthetic gene cluster of Stigmatella aurantiaca DW4/3-1.

    Science.gov (United States)

    Silakowski, B; Schairer, H U; Ehret, H; Kunze, B; Weinig, S; Nordsiek, G; Brandt, P; Blöcker, H; Höfle, G; Beyer, S; Müller, R

    1999-12-24

    The biosynthetic mta gene cluster responsible for myxothiazol formation from the fruiting body forming myxobacterium Stigmatella aurantiaca DW4/3-1 was sequenced and analyzed. Myxothiazol, an inhibitor of the electron transport via the bc(1)-complex of the respiratory chain, is biosynthesized by a unique combination of several polyketide synthases (PKS) and nonribosomal peptide synthetases (NRPS), which are activated by the 4'-phosphopantetheinyl transferase MtaA. Genomic replacement of a fragment of mtaB and insertion of a kanamycin resistance gene into mtaA both impaired myxothiazol synthesis. Genes mtaC and mtaD encode the enzymes for bis-thiazol(ine) formation and chain extension on one pure NRPS (MtaC) and on a unique combination of PKS and NRPS (MtaD). The genes mtaE and mtaF encode PKSs including peptide fragments with homology to methyltransferases. These methyltransferase modules are assumed to be necessary for the formation of the proposed methoxy- and beta-methoxy-acrylate intermediates of myxothiazol biosynthesis. The last gene of the cluster, mtaG, again resembles a NRPS and provides insight into the mechanism of the formation of the terminal amide of myxothiazol. The carbon backbone of an amino acid added to the myxothiazol-acid is assumed to be removed via an unprecedented module with homology to monooxygenases within MtaG. PMID:10601310

  11. Structure of ThiM from Vitamin B1 biosynthetic pathway of Staphylococcus aureus – Insights into a novel pro-drug approach addressing MRSA infections

    Science.gov (United States)

    Drebes, Julia; Künz, Madeleine; Windshügel, Björn; Kikhney, Alexey G.; Müller, Ingrid B.; Eberle, Raphael J.; Oberthür, Dominik; Cang, Huaixing; Svergun, Dmitri I.; Perbandt, Markus; Betzel, Christian; Wrenger, Carsten

    2016-03-01

    Infections caused by the methicillin-resistant Staphylococcus aureus (MRSA) are today known to be a substantial threat for global health. Emerging multi-drug resistant bacteria have created a substantial need to identify and discover new drug targets and to develop novel strategies to treat bacterial infections. A promising and so far untapped antibiotic target is the biosynthesis of vitamin B1 (thiamin). Thiamin in its activated form, thiamin pyrophosphate, is an essential co-factor for all organisms. Therefore, thiamin analogous compounds, when introduced into the vitamin B1 biosynthetic pathway and further converted into non-functional co-factors by the bacterium can function as pro-drugs which thus block various co-factor dependent pathways. We characterized one of the key enzymes within the S. aureus vitamin B1 biosynthetic pathway, 5-(hydroxyethyl)-4-methylthiazole kinase (SaThiM; EC 2.7.1.50), a potential target for pro-drug compounds and analyzed the native structure of SaThiM and complexes with the natural substrate 5-(hydroxyethyl)-4-methylthiazole (THZ) and two selected substrate analogues.

  12. Biosynthesis of monoterpenoids in higher plants. The biosynthetic pathway leading to the monoterpenoids from amino acids with a carbon-skeleton similar to mevalonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Tange, K. (Hiroshima Univ. (Japan). Faculty of Science)

    1981-09-01

    Radioisotopically labeled L-valine, DL-alanine, sodium acetate, and DL-mevalonic acid were incorporated into linalool by the intact plant of Cinnamomum camphora Sieb. var. linalooliferum Fujita and into geraniol and citronellol by that of Pelargonium roseum Bourbon. The uptake of leucine and valine resulted in the preferential location of the radioactivity on the 3,3-dimethylallyl pyrophosphate-derived moiety of these acyclic monoterpenoids, whereas the uptake of alanine resulted in the preferential location on the isopentenyl pyrophosphate-derived moiety, much as in the cases of mevalonic acid and sodium acetate. A biosynthetic pathway leading to the monoterpenoids from the amino acids is discussed.

  13. AtROS1 overexpression provides evidence for epigenetic regulation of genes encoding enzymes of flavonoid biosynthesis and antioxidant pathways during salt stress in transgenic tobacco.

    Science.gov (United States)

    Bharti, Poonam; Mahajan, Monika; Vishwakarma, Ajay K; Bhardwaj, Jyoti; Yadav, Sudesh Kumar

    2015-09-01

    In plants, epigenetic changes have been identified as regulators of developmental events during normal growth as well as environmental stress exposures. Flavonoid biosynthetic and antioxidant pathways play a significant role in plant defence during their exposure to environmental cues. The aim of this study was to unravel whether genes encoding enzymes of flavonoid biosynthetic and antioxidant pathways are under epigenetic regulation, particularly DNA methylation, during salt stress. For this, a repressor of silencing from Arabidopsis, AtROS1, was overexpressed in transgenic tobacco. Generated transgenics were evaluated to examine the influence of AtROS1 on methylation status of promoters as well as on coding regions of genes encoding enzymes of flavonoids biosynthesis and antioxidant pathways. Overexpression of AtROS1 increases the demethylation levels of both promoters as well as coding regions of genes encoding chalcone synthase, chalcone isomerase, flavanone 3-hydroxylase, flavonol synthase, dihydroflavonol 4-reductase, and anthocyanidin synthase of the flavonoid biosynthetic pathway, and glutathione S-transferase, ascorbate peroxidase, glutathione peroxidase, and glutathione reductase of the antioxidant pathway during control conditions. The level of demethylation was further increased at promoters as well as coding regions of these genes during salt-stress conditions. Transgenic tobacco overexpressing AtROS1 showed tolerance to salt stress that could have been due to the higher expression levels of the genes encoding enzymes of the flavonoid biosynthetic and antioxidant pathways. This is the first comprehensive study documenting the epigenetic regulation of flavonoid biosynthetic and antioxidant pathways during salt-stress exposure of plants. PMID:26116024

  14. Violet/blue chrysanthemums--metabolic engineering of the anthocyanin biosynthetic pathway results in novel petal colors.

    Science.gov (United States)

    Brugliera, Filippa; Tao, Guo-Qing; Tems, Ursula; Kalc, Gianna; Mouradova, Ekaterina; Price, Kym; Stevenson, Kim; Nakamura, Noriko; Stacey, Iolanda; Katsumoto, Yukihisa; Tanaka, Yoshikazu; Mason, John G

    2013-10-01

    Chrysanthemums (Chrysanthemum×morifolium Ramat.) are an important cut-flower and potted plant crop in the horticultural industry world wide. Chrysanthemums express the flavonoid 3'-hydroxylase (F3'H) gene and thus accumulate anthocyanins derived from cyanidin in their inflorescences which appear pink/red. Delphinidin-based anthocyanins are lacking due to the deficiency of a flavonoid 3', 5'-hydroxylase (F3'5'H), and so violet/blue chrysanthemum flower colors are not found. In this study, together with optimization of transgene expression and selection of the host cultivars and gene source, F3'5'H genes have been successfully utilized to produce transgenic bluish chrysanthemums that accumulate delphinidin-based anthocyanins. HPLC analysis and feeding experiments with a delphinidin precursor identified 16 cultivars of chrysanthemums out of 75 that were predicted to turn bluish upon delphinidin accumulation. A selection of eight cultivars were successfully transformed with F3'5'H genes under the control of different promoters. A pansy F3'5'H gene under the control of a chalcone synthase promoter fragment from rose resulted in the effective diversion of the anthocyanin pathway to produce delphinidin in transgenic chrysanthemum flower petals. The resultant petal color was bluish, with 40% of total anthocyanidins attributed to delphinidin. Increased delphinidin levels (up to 80%) were further achieved by hairpin RNA interference-mediated silencing of the endogenous F3'H gene. The resulting petal colors were novel bluish hues, not possible by hybridization breeding. This is the first report of the production of anthocyanins derived from delphinidin in chrysanthemum petals leading to novel flower color. PMID:23926066

  15. Exploring the Transcriptome Landscape of Pomegranate Fruit Peel for Natural Product Biosynthetic Gene and SSR Marker Discovery

    Institute of Scientific and Technical Information of China (English)

    Nadia Nicole Ono; Monica Therese Britton; Joseph Nathaniel Fass; Charles Meyer Nicolet; Dawei Lin; Li Tian

    2011-01-01

    Pomegranate fruit peel is rich in bioactive plant natural products,such as hydrolyzable tannins and anthocyanins.Despite their documented roles in human nutrition and fruit quality,genes involved in natural product biosynthesis have not been cloned from pomegranate and very little sequence information is available on pomegranate in the public domain.Shotgun transcriptome sequencing of pomegranate fruit peel cDNA was performed using RNA-Seq on the Illumina Genome Analyzer platform.Over 100 million raw sequence reads were obtained and assembled into 9,839 transcriptome assemblies (TAs) (>200 bp).Candidate genes for hydrolyzable tannin,anthocyanin,flavonoid,terpenoid and fatty acid biosynthesis and/or regulation were identified.Three lipid transfer proteins were obtained that may contribute to the previously reported IgE reactivity of pomegranate fruit extracts.In addition,115 SSR markers were identified from the pomegranate fruit peel transcriptome and primers were designed for 77 SSR markers.The pomegranate fruit peel transcriptome set provides a valuable platform for natural product biosynthetic gene and SSR marker discovery in pomegranate.This work also demonstrates that next-generation transcriptome sequencing is an economical and effective approach for investigating natural product biosynthesis,identifying genes controlling important agronomic traits,and discovering molecular markers in non-model specialty crop species.

  16. Laccase‐catalysed oxidations of naturally occurring phenols: from in vivo biosynthetic pathways to green synthetic applications

    OpenAIRE

    Jeon, Jong‐Rok; Baldrian, Petr; Murugesan, Kumarasamy; Chang, Yoon‐Seok

    2012-01-01

    Summary Laccases are oxidases that contain several copper atoms, and catalyse single‐electron oxidations of phenolic compounds with concomitant reduction of oxygen to water. The enzymes are particularly widespread in ligninolytic basidiomycetes, but also occur in certain prokaryotes, insects and plants. Depending on the species, laccases are involved in various biosynthetic processes contributing to carbon recycling in land ecosystems and the morphogenesis of biomatrices, wherein low‐molecula...

  17. Organization and characterization of a biosynthetic gene cluster for bafilomycin from Streptomyces griseus DSM 2608

    OpenAIRE

    Hwang, Jae Yoon; Kim, Hyo Sun; Kim, Soo Hee; Oh, Hye Ryeung; Nam, Doo Hyun

    2013-01-01

    Streptomyces griseus DSM 2608 produces bafilomycin, an antifungal plecomacrolide antibiotic. We cloned and sequenced an 87.4-kb region, including a polyketide synthase (PKS) region, methoxymalonate genes, flavensomycinate genes, and other putative regulatory genes. The 58.5kb of PKS region consisting 12 PKS modules arranged in five different PKS genes, was assumed to be responsible for the biosynthesis of plecomacrolide backbone including 16-membered macrocyclic lactone. All the modules showe...

  18. Identification and Functional Characterization of Genes Encoding Omega-3 Polyunsaturated Fatty Acid Biosynthetic Activities from Unicellular Microalgae

    Directory of Open Access Journals (Sweden)

    Royah Vaezi

    2013-12-01

    Full Text Available In order to identify novel genes encoding enzymes involved in the biosynthesis of nutritionally important omega-3 long chain polyunsaturated fatty acids, a database search was carried out in the genomes of the unicellular photoautotrophic green alga Ostreococcus RCC809 and cold-water diatom Fragilariopsis cylindrus. The search led to the identification of two putative “front-end” desaturases (Δ6 and Δ4 from Ostreococcus RCC809 and one Δ6-elongase from F. cylindrus. Heterologous expression of putative open reading frames (ORFs in yeast revealed that the encoded enzyme activities efficiently convert their respective substrates: 54.1% conversion of α-linolenic acid for Δ6-desaturase, 15.1% conversion of 22:5n-3 for Δ4-desaturase and 38.1% conversion of γ-linolenic acid for Δ6-elongase. The Δ6-desaturase from Ostreococcus RCC809 displays a very strong substrate preference resulting in the predominant synthesis of stearidonic acid (C18:4Δ6,9,12,15. These data confirm the functional characterization of omega-3 long chain polyunsaturated fatty acid biosynthetic genes from these two species which have until now not been investigated for such activities. The identification of these new genes will also serve to expand the repertoire of activities available for metabolically engineering the omega-3 trait in heterologous hosts as well as providing better insights into the synthesis of eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA in marine microalgae.

  19. Identification and functional characterization of genes encoding omega-3 polyunsaturated fatty acid biosynthetic activities from unicellular microalgae.

    Science.gov (United States)

    Vaezi, Royah; Napier, Johnathan A; Sayanova, Olga

    2013-12-01

    In order to identify novel genes encoding enzymes involved in the biosynthesis of nutritionally important omega-3 long chain polyunsaturated fatty acids, a database search was carried out in the genomes of the unicellular photoautotrophic green alga Ostreococcus RCC809 and cold-water diatom Fragilariopsis cylindrus. The search led to the identification of two putative "front-end" desaturases (Δ6 and Δ4) from Ostreococcus RCC809 and one Δ6-elongase from F. cylindrus. Heterologous expression of putative open reading frames (ORFs) in yeast revealed that the encoded enzyme activities efficiently convert their respective substrates: 54.1% conversion of α-linolenic acid for Δ6-desaturase, 15.1% conversion of 22:5n-3 for Δ4-desaturase and 38.1% conversion of γ-linolenic acid for Δ6-elongase. The Δ6-desaturase from Ostreococcus RCC809 displays a very strong substrate preference resulting in the predominant synthesis of stearidonic acid (C18:4Δ6,9,12,15). These data confirm the functional characterization of omega-3 long chain polyunsaturated fatty acid biosynthetic genes from these two species which have until now not been investigated for such activities. The identification of these new genes will also serve to expand the repertoire of activities available for metabolically engineering the omega-3 trait in heterologous hosts as well as providing better insights into the synthesis of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in marine microalgae. PMID:24351909

  20. RecET direct cloning and Redαβ recombineering of biosynthetic gene clusters, large operons or single genes for heterologous expression.

    Science.gov (United States)

    Wang, Hailong; Li, Zhen; Jia, Ruonan; Hou, Yu; Yin, Jia; Bian, Xiaoying; Li, Aiying; Müller, Rolf; Stewart, A Francis; Fu, Jun; Zhang, Youming

    2016-07-01

    Full-length RecE and RecT from Rac prophage mediate highly efficient linear-linear homologous recombination that can be used to clone large DNA regions directly from genomic DNA into expression vectors, bypassing library construction and screening. Homologous recombination mediated by Redαβ from lambda phage has been widely used for recombinant DNA engineering. Here we present a protocol for direct cloning and engineering of biosynthetic gene clusters, large operons or single genes from genomic DNA using one Escherichia coli host that harbors both RecET and Redαβ systems. The pipeline uses standardized cassettes for horizontal gene transfer options, as well as vectors with different replication origins configured to minimize recombineering background through the use of selectively replicating templates or CcdB counterselection. These optimized reagents and protocols facilitate fast acquisition of transgenes from genomic DNA preparations, which are ready for heterologous expression within 1 week. PMID:27254463

  1. An efficient approach to finding Siraitia grosvenorii triterpene biosynthetic genes by RNA-seq and digital gene expression analysis

    Directory of Open Access Journals (Sweden)

    Song Cai

    2011-07-01

    Full Text Available Abstract Background Siraitia grosvenorii (Luohanguo is an herbaceous perennial plant native to southern China and most prevalent in Guilin city. Its fruit contains a sweet, fleshy, edible pulp that is widely used in traditional Chinese medicine. The major bioactive constituents in the fruit extract are the cucurbitane-type triterpene saponins known as mogrosides. Among them, mogroside V is nearly 300 times sweeter than sucrose. However, little is known about mogrosides biosynthesis in S. grosvenorii, especially the late steps of the pathway. Results In this study, a cDNA library generated from of equal amount of RNA taken from S. grosvenorii fruit at 50 days after flowering (DAF and 70 DAF were sequenced using Illumina/Solexa platform. More than 48,755,516 high-quality reads from a cDNA library were generated that was assembled into 43,891 unigenes. De novo assembly and gap-filling generated 43,891 unigenes with an average sequence length of 668 base pairs. A total of 26,308 (59.9% unique sequences were annotated and 11,476 of the unique sequences were assigned to specific metabolic pathways by the Kyoto Encyclopedia of Genes and Genomes. cDNA sequences for all of the known enzymes involved in mogrosides backbone synthesis were identified from our library. Additionally, a total of eighty-five cytochrome P450 (CYP450 and ninety UDP-glucosyltransferase (UDPG unigenes were identified, some of which appear to encode enzymes responsible for the conversion of the mogroside backbone into the various mogrosides. Digital gene expression profile (DGE analysis using Solexa sequencing was performed on three important stages of fruit development, and based on their expression pattern, seven CYP450s and five UDPGs were selected as the candidates most likely to be involved in mogrosides biosynthesis. Conclusion A combination of RNA-seq and DGE analysis based on the next generation sequencing technology was shown to be a powerful method for identifying

  2. Modeling biochemical pathways in the gene ontology.

    Science.gov (United States)

    Hill, David P; D'Eustachio, Peter; Berardini, Tanya Z; Mungall, Christopher J; Renedo, Nikolai; Blake, Judith A

    2016-01-01

    The concept of a biological pathway, an ordered sequence of molecular transformations, is used to collect and represent molecular knowledge for a broad span of organismal biology. Representations of biomedical pathways typically are rich but idiosyncratic presentations of organized knowledge about individual pathways. Meanwhile, biomedical ontologies and associated annotation files are powerful tools that organize molecular information in a logically rigorous form to support computational analysis. The Gene Ontology (GO), representing Molecular Functions, Biological Processes and Cellular Components, incorporates many aspects of biological pathways within its ontological representations. Here we present a methodology for extending and refining the classes in the GO for more comprehensive, consistent and integrated representation of pathways, leveraging knowledge embedded in current pathway representations such as those in the Reactome Knowledgebase and MetaCyc. With carbohydrate metabolic pathways as a use case, we discuss how our representation supports the integration of variant pathway classes into a unified ontological structure that can be used for data comparison and analysis. PMID:27589964

  3. Improvement of the enediyne antitumor antibiotic C-1027 production by manipulating its biosynthetic pathway regulation in Streptomyces globisporus.

    Science.gov (United States)

    Chen, Yihua; Yin, Min; Horsman, Geoff P; Shen, Ben

    2011-03-25

    The production of C-1027 in Streptomyces globisporus was previously increased 2- to 3-fold by manipulating three pathway-specific activators, SgcR1, SgcR2, and SgcR3. In this study, we have further characterized two putative C-1027 regulatory genes, sgcE1 and sgcR, by in vivo inactivation. The HxlR family DNA-binding protein SgcE1 was not essential for C-1027 biosynthesis, since inactivation of sgcE1 showed no effect on C-1027 production. In contrast, the proposed repressive role of the sgcR gene was confirmed by a 3-fold increase in C-1027 production in the ΔsgcR mutant S. globisporus SB1022 strain relative to the wild-type strain. Considering SgcR shows no significant similarity to any protein of known function, it may be representative of a new family of regulatory proteins. Finally, overexpression of the previously characterized activator sgcR1 in S. globisporus SB1022 increased the C-1027 yield to 37.5 ± 7.7 mg/L, which is about 7-fold higher than the wild-type strain. PMID:21250756

  4. Improvement of hairy root cultures and plants by changing biosynthetic pathways leading to pharmaceutical metabolites: strategies and applications.

    Science.gov (United States)

    Ludwig-Müller, Jutta; Jahn, Linda; Lippert, Annemarie; Püschel, Joachim; Walter, Antje

    2014-11-01

    A plethora of bioactive plant metabolites has been explored for pharmaceutical, food chemistry and agricultural applications. The chemical synthesis of these structures is often difficult, so plants are favorably used as producers. While whole plants can serve as a source for secondary metabolites and can be also improved by metabolic engineering, more often cell or organ cultures of relevant plant species are of interest. It should be noted that only in few cases the production for commercial application in such cultures has been achieved. Their genetic manipulation is sometimes faster and the production of a specific metabolite is more reliable, because of less environmental influences. In addition, upscaling in bioreactors is nowadays possible for many of these cultures, so some are already used in industry. There are approaches to alter the profile of metabolites not only by using plant genes, but also by using bacterial genes encoding modifying enzymes. Also, strategies to cope with unwanted or even toxic compounds are available. The need for metabolic engineering of plant secondary metabolite pathways is increasing with the rising demand for (novel) compounds with new bioactive properties. Here, we give some examples of recent developments for the metabolic engineering of plants and organ cultures, which can be used in the production of metabolites with interesting properties. PMID:24699436

  5. Functions of some capsular polysaccharide biosynthetic genes in Klebsiella pneumoniae NTUH K-2044.

    Directory of Open Access Journals (Sweden)

    Jin-Yuan Ho

    Full Text Available The growing number of Klebsiella pneumoniae infections, commonly acquired in hospitals, has drawn great concern. It has been shown that the K1 and K2 capsular serotypes are the most detrimental strains, particularly to those with diabetes. The K1 cps (capsular polysaccharide locus in the NTUH-2044 strain of the pyogenic liver abscess (PLA K. pneumoniae has been identified recently, but little is known about the functions of the genes therein. Here we report characterization of a group of cps genes and their roles in the pathogenesis of K1 K. pneumoniae. By sequential gene deletion, the cps gene cluster was first re-delimited between genes galF and ugd, which serve as up- and down-stream ends, respectively. Eight gene products were characterized in vitro and in vivo to be involved in the syntheses of UDP-glucose, UDP-glucuronic acid and GDP-fucose building units. Twelve genes were identified as virulence factors based on the observation that their deletion mutants became avirulent or lost K1 antigenicity. Furthermore, deletion of kp3706, kp3709 or kp3712 (ΔwcaI, ΔwcaG or Δatf, respectively, which are all involved in fucose biosynthesis, led to a broad range of transcriptional suppression for 52 upstream genes. The genes suppressed include those coding for unknown regulatory membrane proteins and six multidrug efflux system proteins, as well as proteins required for the K1 CPS biosynthesis. In support of the suppression of multidrug efflux genes, we showed that these three mutants became more sensitive to antibiotics. Taken together, the results suggest that kp3706, kp3709 or kp3712 genes are strongly related to the pathogenesis of K. pneumoniae K1.

  6. Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance.

    Science.gov (United States)

    Sahni, Sangita; Prasad, Bishun D; Liu, Qing; Grbic, Vojislava; Sharpe, Andrew; Singh, Surinder P; Krishna, Priti

    2016-01-01

    As a resource allocation strategy, plant growth and defense responses are generally mutually antagonistic. Brassinosteroid (BR) regulates many aspects of plant development and stress responses, however, genetic evidence of its integrated effects on plant growth and stress tolerance is lacking. We overexpressed the Arabidopsis BR biosynthetic gene AtDWF4 in the oilseed plant Brassica napus and scored growth and stress response phenotypes. The transgenic B. napus plants, in comparison to wild type, displayed increased seed yield leading to increased overall oil content per plant, higher root biomass and root length, significantly better tolerance to dehydration and heat stress, and enhanced resistance to necrotrophic fungal pathogens Leptosphaeria maculans and Sclerotinia sclerotiorum. Transcriptome analysis supported the integrated effects of BR on growth and stress responses; in addition to BR responses associated with growth, a predominant plant defense signature, likely mediated by BES1/BZR1, was evident in the transgenic plants. These results establish that BR can interactively and simultaneously enhance abiotic and biotic stress tolerance and plant productivity. The ability to confer pleiotropic beneficial effects that are associated with different agronomic traits suggests that BR-related genes may be important targets for simultaneously increasing plant productivity and performance under stress conditions. PMID:27324083

  7. The genome of tolypocladium inflatum: evolution, organization, and expression of the cyclosporin biosynthetic gene cluster.

    Directory of Open Access Journals (Sweden)

    Kathryn E Bushley

    2013-06-01

    Full Text Available The ascomycete fungus Tolypocladium inflatum, a pathogen of beetle larvae, is best known as the producer of the immunosuppressant drug cyclosporin. The draft genome of T. inflatum strain NRRL 8044 (ATCC 34921, the isolate from which cyclosporin was first isolated, is presented along with comparative analyses of the biosynthesis of cyclosporin and other secondary metabolites in T. inflatum and related taxa. Phylogenomic analyses reveal previously undetected and complex patterns of homology between the nonribosomal peptide synthetase (NRPS that encodes for cyclosporin synthetase (simA and those of other secondary metabolites with activities against insects (e.g., beauvericin, destruxins, etc., and demonstrate the roles of module duplication and gene fusion in diversification of NRPSs. The secondary metabolite gene cluster responsible for cyclosporin biosynthesis is described. In addition to genes necessary for cyclosporin biosynthesis, it harbors a gene for a cyclophilin, which is a member of a family of immunophilins known to bind cyclosporin. Comparative analyses support a lineage specific origin of the cyclosporin gene cluster rather than horizontal gene transfer from bacteria or other fungi. RNA-Seq transcriptome analyses in a cyclosporin-inducing medium delineate the boundaries of the cyclosporin cluster and reveal high levels of expression of the gene cluster cyclophilin. In medium containing insect hemolymph, weaker but significant upregulation of several genes within the cyclosporin cluster, including the highly expressed cyclophilin gene, was observed. T. inflatum also represents the first reference draft genome of Ophiocordycipitaceae, a third family of insect pathogenic fungi within the fungal order Hypocreales, and supports parallel and qualitatively distinct radiations of insect pathogens. The T. inflatum genome provides additional insight into the evolution and biosynthesis of cyclosporin and lays a foundation for further

  8. Screening for the presence of biosynthetic genes for antimicrobial lipopeptides in natural isolates of Bacillus sp.

    OpenAIRE

    Stanković S.; Mihajlović Sanja; Draganić V.; Dimkić I.; Vukotić G.; Berić Tanja; Fira Đ.

    2012-01-01

    A collection of 205 natural isolates of Bacillus was tested for the presence of genes for biosynthesis of antimicrobial lipopeptides, iturin, surfactin, fengycin and bacillomycin D. For the detection of iturin producers by PCR screening, we used forward ITUP1-F and reverse ITUP2-R primers which are capable of detecting a 2-kb region that includes the intergenic sequence between the ituA and ituB genes. A 675-bp fragment from the gene sfp from B. subtilis encoding 4’-phosphopantetheinyl ...

  9. Human Genetic Disorders Caused by Mutations in Genes Encoding Biosynthetic Enzymes for Sulfated Glycosaminoglycans*

    OpenAIRE

    Mizumoto, Shuji; Ikegawa, Shiro; Sugahara, Kazuyuki

    2013-01-01

    A number of genetic disorders are caused by mutations in the genes encoding glycosyltransferases and sulfotransferases, enzymes responsible for the synthesis of sulfated glycosaminoglycan (GAG) side chains of proteoglycans, including chondroitin sulfate, dermatan sulfate, and heparan sulfate. The phenotypes of these genetic disorders reflect disturbances in crucial biological functions of GAGs in human. Recent studies have revealed that mutations in genes encoding chondroitin sulfate and derm...

  10. Discovery of diversity in xylan biosynthetic genes by transcriptional profiling of a heteroxylan containing mucilaginous tissue

    Directory of Open Access Journals (Sweden)

    Jacob Kruger Jensen

    2013-06-01

    Full Text Available The exact biochemical steps of xylan backbone synthesis remain elusive. In Arabidopsis, three non-redundant genes from two glycosyltransferase (GT families, IRX9 and IRX14 from GT43 and IRX10 from GT47, are candidates for forming the xylan backbone. In other plants, evidence exists that different tissues express these three genes at widely different levels, which suggests that diversity in the makeup of the xylan synthase complex exists. Recently we have profiled the transcripts present in the developing mucilaginous tissue of psyllium (Plantago ovata Forsk. This tissue was found to have high expression levels of an IRX10 homolog, but very low levels of the two GT43 family members. This contrasts with recent wheat endosperm tissue profiling that found a relatively high abundance of the GT43 family members. We have performed an in-depth analysis of all GTs genes expressed in four developmental stages of the psyllium mucilagenous layer and in a single stage of the psyllium stem using RNA-Seq. This analysis revealed several IRX10 homologs, an expansion in GT61 (homologs of At3g18170/At3g18180, and several GTs from other GT families that are highly abundant and specifically expressed in the mucilaginous tissue. Our current hypothesis is that the four IRX10 genes present in the mucilagenous tissues have evolved to function without the GT43 genes. These four genes represent some of the most divergent IRX10 genes identified to date. Conversely, those present in the psyllium stem are very similar to those in other eudicots. This suggests these genes are under selective pressure, likely due to the synthesis of the various xylan structures present in mucilage that has a different biochemical role than that present in secondary walls. The numerous GT61 family members also show a wide sequence diversity and may be responsible for the larger number of side chain structures present in the psyllium mucilage.

  11. Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis

    OpenAIRE

    Ikeda, Haruo; Nonomiya, Tomoko; Usami, Masayo; Ohta, Toshio; Ōmura, Satoshi

    1999-01-01

    Analysis of the gene cluster from Streptomyces avermitilis that governs the biosynthesis of the polyketide anthelmintic avermectin revealed that it contains four large ORFs encoding giant multifunctional polypeptides of the avermectin polyketide synthase (AVES 1, AVES 2, AVES 3, and AVES 4). These clustered polyketide synthase genes responsible for avermectin biosynthesis together encode 12 homologous sets of enzyme activities (modules), each catalyzing a specific round of polyketide chain el...

  12. Discovery of diversity in xylan biosynthetic genes by transcriptional profiling of a heteroxylan containing mucilaginous tissue.

    Science.gov (United States)

    Jensen, Jacob K; Johnson, Nathan; Wilkerson, Curtis G

    2013-01-01

    The exact biochemical steps of xylan backbone synthesis remain elusive. In Arabidopsis, three non-redundant genes from two glycosyltransferase (GT) families, IRX9 and IRX14 from GT43 and IRX10 from GT47, are candidates for forming the xylan backbone. In other plants, evidence exists that different tissues express these three genes at widely different levels, which suggests that diversity in the makeup of the xylan synthase complex exists. Recently we have profiled the transcripts present in the developing mucilaginous tissue of psyllium (Plantago ovata Forsk). This tissue was found to have high expression levels of an IRX10 homolog, but very low levels of the two GT43 family members. This contrasts with recent wheat endosperm tissue profiling that found a relatively high abundance of the GT43 family members. We have performed an in-depth analysis of all GTs genes expressed in four developmental stages of the psyllium mucilagenous layer and in a single stage of the psyllium stem using RNA-Seq. This analysis revealed several IRX10 homologs, an expansion in GT61 (homologs of At3g18170/At3g18180), and several GTs from other GT families that are highly abundant and specifically expressed in the mucilaginous tissue. Our current hypothesis is that the four IRX10 genes present in the mucilagenous tissues have evolved to function without the GT43 genes. These four genes represent some of the most divergent IRX10 genes identified to date. Conversely, those present in the psyllium stem are very similar to those in other eudicots. This suggests these genes are under selective pressure, likely due to the synthesis of the various xylan structures present in mucilage that has a different biochemical role than that present in secondary walls. The numerous GT61 family members also show a wide sequence diversity and may be responsible for the larger number of side chain structures present in the psyllium mucilage. PMID:23761806

  13. Early Phenylpropanoid Biosynthetic Steps in Cannabis sativa: Link between Genes and Metabolites

    OpenAIRE

    Immacolata Coraggio; Monica Mattana; Roberto Consonni; Teresa Docimo

    2013-01-01

    Phenylalanine ammonia-lyase (PAL), Cinnamic acid 4-hydroxylase (C4H) and 4-Coumarate: CoA ligase (4CL) catalyze the first three steps of the general phenylpropanoid pathway whereas chalcone synthase (CHS) catalyzes the first specific step towards flavonoids production. This class of specialized metabolites has a wide range of biological functions in plant development and defence and a broad spectrum of therapeutic activities for human health. In this study, we report the isolation of hemp PAL...

  14. Next-generation sequencing approach for connecting secondary metabolites to biosynthetic gene clusters in fungi

    Directory of Open Access Journals (Sweden)

    Ralph A Cacho

    2015-01-01

    Full Text Available Genomics has revolutionized the research on fungal secondary metabolite biosynthesis. To elucidate the molecular and enzymatic mechanisms underlying the biosynthesis of a specific secondary metabolite compound, the important first step is often to find the genes that responsible for its synthesis. The accessibility to fungal genome sequences allows the bypass of the cumbersome traditional library construction and screening approach. The advance in next-generation sequencing (NGS technologies have further improved the speed and reduced the cost of microbial genome sequencing in the past few years, which has accelerated the research in this field. Here, we will present an example work flow for identifying the gene cluster encoding the biosynthesis of secondary metabolites of interest using an NGS approach. We will also review the different strategies that can be employed to pinpoint the targeted gene clusters rapidly by giving several examples stemming from our work.

  15. Effect of immobilization stress on gene expression of catecholamine biosynthetic enzymes in heart auricles of socially isolated rats

    Directory of Open Access Journals (Sweden)

    L. Gavrilovic

    2009-12-01

    Full Text Available Chronic stress is associated with the development of cardiovascular diseases. The sympathoneural system plays an important role in the regulation of cardiac function both in health and disease. In the present study, the changes in gene expression of the catecholamine biosynthetic enzymes tyrosine hydroxylase (TH, dopamine-β-hydroxylase (DBH and phenylethanolamine N-methyltransferase (PNMT and protein levels in the right and left heart auricles of naive control and long-term (12 weeks socially isolated rats were investigated by Taqman RT-PCR and Western blot analysis. The response of these animals to additional immobilization stress (2 h was also examined. Long-term social isolation produced a decrease in TH mRNA level in left auricles (about 70% compared to the corresponding control. Expression of the DBH gene was markedly decreased both in the right (about 62% and left (about 81% auricles compared to the corresponding control, group-maintained rats, whereas PNMT mRNA levels remained unchanged. Exposure of group-housed rats to acute immobilization for 2 h led to a significant increase of mRNA levels of TH (about 267%, DBH (about 37% and PNMT (about 60% only in the right auricles. Additional 2-h immobilization of individually housed rats did not affect gene expression of these enzymes in either the right or left auricle. Protein levels of TH, DBH and PNMT in left and right heart auricles were unchanged either in both individually housed and immobilized rats. The unchanged mRNA levels of the enzymes examined after short-term immobilization suggest that the catecholaminergic system of the heart auricles of animals previously exposed to chronic psychosocial stress was adapted to maintain appropriate cardiovascular homeostasis.

  16. Tissue- Specific Expression Analysis of Anthocyanin Biosynthetic Genes in White- and Red-Fleshed Grape Cultivars

    OpenAIRE

    Sha Xie; Changzheng Song; Xingjie Wang; Meiying Liu; Zhenwen Zhang; Zhumei Xi

    2015-01-01

    Yan73, a teinturier (dyer) grape variety in China, is one of the few Vitis vinifera cultivars with red-coloured berry flesh. To examine the tissue-specific expression of genes associated with berry colour in Yan73, we analysed the differential accumulation of anthocyanins in the skin and flesh tissues of two red-skinned grape varieties with either red (Yan73) or white flesh (Muscat Hamburg) based on HPLC-MS analysis, as well as the differential expression of 18 anthocyanin biosynthesis genes ...

  17. Variation in Sequence and Location of the Fumonisin Mycotoxin Biosynthetic Gene Cluster in Fusarium

    Science.gov (United States)

    Several Fusarium species in the Gibberella fujikuroi species complex (GFSC) and rare strains of F. oxysporum can produce fumonisins, a family of mycotoxins associated with multiple health disorders in humans and animals. In Fusarium, the ability to produce fumonisins is governed by a 17-gene fumoni...

  18. Expression of the bacterial type III effector DspA/E in Saccharomyces cerevisiae down-regulates the sphingolipid biosynthetic pathway leading to growth arrest.

    Science.gov (United States)

    Siamer, Sabrina; Guillas, Isabelle; Shimobayashi, Mitsugu; Kunz, Caroline; Hall, Michael N; Barny, Marie-Anne

    2014-06-27

    Erwinia amylovora, the bacterium responsible for fire blight, relies on a type III secretion system and a single injected effector, DspA/E, to induce disease in host plants. DspA/E belongs to the widespread AvrE family of type III effectors that suppress plant defense responses and promote bacterial growth following infection. Ectopic expression of DspA/E in plant or in Saccharomyces cerevisiae is toxic, indicating that DspA/E likely targets a cellular process conserved between yeast and plant. To unravel the mode of action of DspA/E, we screened the Euroscarf S. cerevisiae library for mutants resistant to DspA/E-induced growth arrest. The most resistant mutants (Δsur4, Δfen1, Δipt1, Δskn1, Δcsg1, Δcsg2, Δorm1, and Δorm2) were impaired in the sphingolipid biosynthetic pathway. Exogenously supplied sphingolipid precursors such as the long chain bases (LCBs) phytosphingosine and dihydrosphingosine also suppressed the DspA/E-induced yeast growth defect. Expression of DspA/E in yeast down-regulated LCB biosynthesis and induced a rapid decrease in LCB levels, indicating that serine palmitoyltransferase (SPT), the first and rate-limiting enzyme of the sphingolipid biosynthetic pathway, was repressed. SPT down-regulation was mediated by dephosphorylation and activation of Orm proteins that negatively regulate SPT. A Δcdc55 mutation affecting Cdc55-PP2A protein phosphatase activity prevented Orm dephosphorylation and suppressed DspA/E-induced growth arrest. PMID:24828506

  19. Deciphering Ascorbic Acid Regulatory Pathways in Ripening Tomato Fruit Using a Weighted Gene Correlation Network Analysis Approach

    Institute of Scientific and Technical Information of China (English)

    Chao Gao; Zheng Ju; Shan Li; Jinhua Zuo; Daqi Fu; Huiqin Tian; Yunbo Luo; Benzhong Zhu

    2013-01-01

    Genotype is generally determined by the co-expression of diverse genes and multiple regulatory pathways in plants. Gene co-expression analysis combining with physiological trait data provides very important information about the gene function and regulatory mechanism. L-Ascorbic acid (AsA), which is an essential nutrient component for human health and plant metabolism, plays key roles in diverse biological processes such as cell cycle, cell expansion, stress resistance, hormone synthesis, and signaling. Here, we applied a weighted gene correlation network analysis approach based on gene expression values and AsA content data in ripening tomato (Solanum lycopersicum L.) fruit with different AsA content levels, which leads to identification of AsA relevant modules and vital genes in AsA regulatory pathways. Twenty-four modules were compartmentalized according to gene expression profiling. Among these modules, one negatively related module containing genes involved in redox processes and one positively related module enriched with genes involved in AsA biosynthetic and recycling pathways were further analyzed. The present work herein indicates that redox pathways as well as hormone-signal pathways are closely correlated with AsA accumulation in ripening tomato fruit, and allowed us to prioritize candidate genes for follow-up studies to dissect this interplay at the biochemical and molecular level.

  20. Biosynthetic engineering of nonribosomal peptide synthetases.

    Science.gov (United States)

    Kries, Hajo

    2016-09-01

    From the evolutionary melting pot of natural product synthetase genes, microorganisms elicit antibiotics, communication tools, and iron scavengers. Chemical biologists manipulate these genes to recreate similarly diverse and potent biological activities not on evolutionary time scales but within months. Enzyme engineering has progressed considerably in recent years and offers new screening, modelling, and design tools for natural product designers. Here, recent advances in enzyme engineering and their application to nonribosomal peptide synthetases are reviewed. Among the nonribosomal peptides that have been subjected to biosynthetic engineering are the antibiotics daptomycin, calcium-dependent antibiotic, and gramicidin S. With these peptides, incorporation of unnatural building blocks and modulation of bioactivities via various structural modifications have been successfully demonstrated. Natural product engineering on the biosynthetic level is not a reliable method yet. However, progress in the understanding and manipulation of biosynthetic pathways may enable the routine production of optimized peptide drugs in the near future. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. PMID:27465074

  1. Cloning of the staurosporine biosynthetic gene cluster from Streptomyces sp. TP-A0274 and its heterologous expression in Streptomyces lividans.

    Science.gov (United States)

    Onaka, Hiroyasu; Taniguchi, Shin-ichi; Igarashi, Yasuhiro; Furumai, Tamotsu

    2002-12-01

    Staurosporine is a representative member of indolocarbazole antibiotics. The entire staurosporine biosynthetic and regulatory gene cluster spanning 20-kb was cloned from Streptomyces sp. TP-A0274 and sequenced. The gene cluster consists of 14 ORFs and the amino acid sequence homology search revealed that it contains three genes, staO, staD, and staP, coding for the enzymes involved in the indolocarbazole aglycone biosynthesis, two genes, staG and staN, for the bond formation between the aglycone and deoxysugar, eight genes, staA, staB, staE, staJ, staI, staK, staMA, and staMB, for the deoxysugar biosynthesis and one gene, staR is a transcriptional regulator. Heterologous gene expression of a 38-kb fragment containing a complete set of the biosynthetic genes for staurosporine cloned into pTOYAMAcos confirmed its role in staurosporine biosynthesis. Moreover, the distribution of the gene for chromopyrrolic acid synthase, the key enzyme for the biosynthesis of indolocarbazole aglycone, in actinomycetes was investigated, and rebD homologs were shown to exist only in the strains producing indolocarbazole antibiotics. PMID:12617516

  2. Activation T-DNA tagging. Gene isolation and molecular dissection of complex biological pathways

    International Nuclear Information System (INIS)

    Activation tagging is a powerful means of isolating plant genes whose products are involved in complex biochemical processes. The dominant mutation produced allows direct selection for a defined phenotype. Plasmid rescue can be used to recover both the T-DNA and the flanking plant sequences containing the tagged gene. Activation tagging has been used to create a number of differing tobacco mutants, including those whose cells are characterized by their ability to grow in culture in the absence of auxin in the media. The tagged genes in this case are, in effect, cellular proto-oncogenes and are likely to play a role in the auxin biosynthetic and perception pathway. (author). 16 refs

  3. Inherited variation in immune genes and pathways and glioblastoma risk

    OpenAIRE

    Schwartzbaum, Judith A.; Xiao, Yuanyuan; Liu, Yanhong; Tsavachidis, Spyros; Berger, Mitchel S.; Bondy, Melissa L,; Chang, Jeffrey S.; Chang, Susan M.; Decker, Paul A.; Ding, Bo; Hepworth, Sarah J; Richard S. Houlston; Hosking, Fay J; Jenkins, Robert B.; Kosel, Matthew L.

    2010-01-01

    To determine whether inherited variations in immune function single-nucleotide polymorphisms (SNPs), genes or pathways affect glioblastoma risk, we analyzed data from recent genome-wide association studies in conjunction with predefined immune function genes and pathways. Gene and pathway analyses were conducted on two independent data sets using 6629 SNPs in 911 genes on 17 immune pathways from 525 glioblastoma cases and 602 controls from the University of California, San Francisco (UCSF) an...

  4. Next-generation sequencing approach for connecting secondary metabolites to biosynthetic gene clusters in fungi

    OpenAIRE

    Cacho, Ralph A.; Yi eTang; Yit-Heng eChooi

    2015-01-01

    Genomics has revolutionized the research on fungal secondary metabolite biosynthesis. To elucidate the molecular and enzymatic mechanisms underlying the biosynthesis of a specific secondary metabolite compound, the important first step is often to find the genes that responsible for its synthesis. The accessibility to fungal genome sequences allows the bypass of the cumbersome traditional library construction and screening approach. The advance in next-generation sequencing (NGS) technologies...

  5. Next-generation sequencing approach for connecting secondary metabolites to biosynthetic gene clusters in fungi

    OpenAIRE

    Cacho, Ralph A.; Tang, Yi; Chooi, Yit-Heng

    2015-01-01

    Genomics has revolutionized the research on fungal secondary metabolite (SM) biosynthesis. To elucidate the molecular and enzymatic mechanisms underlying the biosynthesis of a specific SM compound, the important first step is often to find the genes that responsible for its synthesis. The accessibility to fungal genome sequences allows the bypass of the cumbersome traditional library construction and screening approach. The advance in next-generation sequencing (NGS) technologies have further...

  6. Heterogeneous transcription of an indoleacetic acid biosynthetic gene in Erwinia herbicola on plant surfaces

    OpenAIRE

    Brandl, M. T.; Quiñones, B.; Lindow, S E

    2001-01-01

    We investigated the spatial pattern of expression of ipdC, a plant inducible gene involved in indoleacetic acid biosynthesis in Erwinia herbicola, among individual cells on plants to gain a better understanding of the role of this phenotype in the epiphytic ecology of bacteria and the factors involved in the regulation of ipdC. Nonpathogenic E. herbicola strain 299R harboring a transcriptional fusion of ipdC to gfp was inoculated onto bean plants, recovered fro...

  7. Transgenic rice seed expressing flavonoid biosynthetic genes accumulate glycosylated and/or acylated flavonoids in protein bodies

    OpenAIRE

    Ogo, Yuko; Mori, Tetsuya; Nakabayashi, Ryo; Saito, Kazuki; Takaiwa, Fumio

    2015-01-01

    Highlight Glycosylated and/or acylated flavonoids in transgenic rice seeds were characterized by metabolome analysis, suggesting that ectopic expression of flavonoid biosynthetic enzymes can be used as a tool to expand their structural diversity.

  8. Cyclic Lipopeptide Biosynthetic Genes and Products, and Inhibitory Activity of Plant-Associated Bacillus against Phytopathogenic Bacteria.

    Directory of Open Access Journals (Sweden)

    Isabel Mora

    Full Text Available The antibacterial activity against bacterial plant pathogens and its relationships with the presence of the cyclic lipopeptide (cLP biosynthetic genes ituC (iturin, bmyB (bacillomycin, fenD (fengycin and srfAA (surfactin, and their corresponding antimicrobial peptide products have been studied in a collection of 64 strains of Bacillus spp. isolated from plant environments. The most frequent antimicrobial peptide (AMP genes were bmyB, srfAA and fenD (34-50% of isolates. Most isolates (98.4% produced surfactin isoforms, 90.6% iturins and 79.7% fengycins. The antibacterial activity was very frequent and generally intense among the collection of strains because 75% of the isolates were active against at least 6 of the 8 bacterial plant pathogens tested. Hierarchical and correspondence analysis confirmed the presence of two clearly differentiated groups. One group consisted of Bacillus strains that showed a strong antibacterial activity, presented several cLPs genes and produced several isoforms of cLPs simultaneously, mainly composed of B. subtilis and B. amyloliquefaciens, although the last one was exclusive to this group. Another group was characterized by strains with very low or none antibacterial activity, that showed one or none of the cLP genes and produced a few or none of the corresponding cLPs, and was the most heterogenous group including B. subtilis, B. licheniformis, B. megaterium, B. pumilus, B. cereus and B. thuringiensis, although the last two were exclusive to this group. This work demonstrated that the antagonistic capacity of plant-associated Bacillus against plant pathogenic bacteria is related to the presence of cLP genes and to the production of the corresponding cLPs, and it is mainly associated to the species B. subtilis and B. amyloliquefaciens. Our findings would help to increase the yield and efficiency of screening methods to obtain candidate strains to biocontrol agents with a mechanism of action relaying on the

  9. Cyclic Lipopeptide Biosynthetic Genes and Products, and Inhibitory Activity of Plant-Associated Bacillus against Phytopathogenic Bacteria.

    Science.gov (United States)

    Mora, Isabel; Cabrefiga, Jordi; Montesinos, Emilio

    2015-01-01

    The antibacterial activity against bacterial plant pathogens and its relationships with the presence of the cyclic lipopeptide (cLP) biosynthetic genes ituC (iturin), bmyB (bacillomycin), fenD (fengycin) and srfAA (surfactin), and their corresponding antimicrobial peptide products have been studied in a collection of 64 strains of Bacillus spp. isolated from plant environments. The most frequent antimicrobial peptide (AMP) genes were bmyB, srfAA and fenD (34-50% of isolates). Most isolates (98.4%) produced surfactin isoforms, 90.6% iturins and 79.7% fengycins. The antibacterial activity was very frequent and generally intense among the collection of strains because 75% of the isolates were active against at least 6 of the 8 bacterial plant pathogens tested. Hierarchical and correspondence analysis confirmed the presence of two clearly differentiated groups. One group consisted of Bacillus strains that showed a strong antibacterial activity, presented several cLPs genes and produced several isoforms of cLPs simultaneously, mainly composed of B. subtilis and B. amyloliquefaciens, although the last one was exclusive to this group. Another group was characterized by strains with very low or none antibacterial activity, that showed one or none of the cLP genes and produced a few or none of the corresponding cLPs, and was the most heterogenous group including B. subtilis, B. licheniformis, B. megaterium, B. pumilus, B. cereus and B. thuringiensis, although the last two were exclusive to this group. This work demonstrated that the antagonistic capacity of plant-associated Bacillus against plant pathogenic bacteria is related to the presence of cLP genes and to the production of the corresponding cLPs, and it is mainly associated to the species B. subtilis and B. amyloliquefaciens. Our findings would help to increase the yield and efficiency of screening methods to obtain candidate strains to biocontrol agents with a mechanism of action relaying on the production of

  10. Biosynthetic Investigations of Lactonamycin and Lactonamycin Z: Cloning of the Biosynthetic Gene Clusters and Discovery of an Unusual Starter Unit▿ †

    OpenAIRE

    ZHANG, XIUJUN; Lawrence B. Alemany; Fiedler, Hans-Peter; Goodfellow, Michael; Parry, Ronald J.

    2007-01-01

    The antibiotics lactonamycin and lactonamycin Z provide attractive leads for antibacterial drug development. Both antibiotics contain a novel aglycone core called lactonamycinone. To gain insight into lactonamycinone biosynthesis, cloning and precursor incorporation experiments were undertaken. The lactonamycin gene cluster was initially cloned from Streptomyces rishiriensis. Sequencing of ca. 61 kb of S. rishiriensis DNA revealed the presence of 57 open reading frames. These included genes c...

  11. Impact of bacterial biocontrol agents on aflatoxin biosynthetic genes, aflD and aflR expression, and phenotypic aflatoxin B₁ production by Aspergillus flavus under different environmental and nutritional regimes.

    Science.gov (United States)

    Al-Saad, Labeed A; Al-Badran, Adnan I; Al-Jumayli, Sami A; Magan, Naresh; Rodríguez, Alicia

    2016-01-18

    The objectives of this study were to examine the efficacy of four bacterial antagonists against Aspergillus flavus using 50:50 ratio of bacterial cells/conidia for the control of aflatoxin B1 (AFB1) production on two different nutritional matrices, nutrient and maize-based media at different water availabilities (0.98, 0.94 water activity (aw) on nutrient medium; 0.995, 0.98 aw on maize meal agar medium) at 35°C. The indicators of efficacy used were the relative expression of one structural and regulatory gene in the biosynthetic pathway (aflD and aflR respectively) and the production of AFB1. These studies showed that some of the bacterial species could significantly inhibit the relative expression of the aflD and aflR genes at both 0.98 and 0.94 aw on nutrient agar. On maize-based media some of the bacterial antagonists reduced the activity of both genes at 0.94 aw and some at 0.995 aw. However, the results for AFB1 production were not consistent with the effects on gene expression. Some bacterial species stimulated AFB1 production on both nutrient and maize-based media regardless of aw. However, some bacterial treatments did inhibit AFB1 production significantly when compared to the control. Overall, this study suggests that temporal studies are required on the biosynthetic genes under different environmental and nutritional conditions to evaluate the potential of antagonists to control AFB1. PMID:26513252

  12. T-box-mediated control of the anabolic proline biosynthetic genes of Bacillus subtilis.

    Science.gov (United States)

    Brill, Jeanette; Hoffmann, Tamara; Putzer, Harald; Bremer, Erhard

    2011-04-01

    Bacillus subtilis possesses interlinked routes for the synthesis of proline. The ProJ-ProA-ProH route is responsible for the production of proline as an osmoprotectant, and the ProB-ProA-ProI route provides proline for protein synthesis. We show here that the transcription of the anabolic proBA and proI genes is controlled in response to proline limitation via a T-box-mediated termination/antitermination regulatory mechanism, a tRNA-responsive riboswitch. Primer extension analysis revealed mRNA leader transcripts of 270 and 269 nt for the proBA and proI genes, respectively, both of which are synthesized from SigA-type promoters. These leader transcripts are predicted to fold into two mutually exclusive secondary mRNA structures, forming either a terminator or an antiterminator configuration. Northern blot analysis allowed the detection of both the leader and the full-length proBA and proI transcripts. Assessment of the level of the proBA transcripts revealed that the amount of the full-length mRNA species strongly increased in proline-starved cultures. Genetic studies with a proB-treA operon fusion reporter strain demonstrated that proBA transcription is sensitively tied to proline availability and is derepressed as soon as cellular starvation for proline sets in. Both the proBA and the proI leader sequences contain a CCU proline-specific specifier codon prone to interact with the corresponding uncharged proline-specific tRNA. By replacing the CCU proline specifier codon in the proBA T-box leader with UUC, a codon recognized by a Phe-specific tRNA, we were able to synthetically re-engineer the proline-specific control of proBA transcription to a control that was responsive to starvation for phenylalanine. PMID:21233158

  13. Variation in siderophore biosynthetic gene distribution and production across environmental and faecal populations of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Laura J Searle

    Full Text Available Iron is essential for Escherichia coli growth and survival in the host and the external environment, but its availability is generally low due to the poor solubility of its ferric form in aqueous environments and the presence of iron-withholding proteins in the host. Most E. coli can increase access to iron by excreting siderophores such as enterobactin, which have a very strong affinity for Fe3+. A smaller proportion of isolates can generate up to 3 additional siderophores linked with pathogenesis; aerobactin, salmochelin, and yersiniabactin. However, non-pathogenic E. coli are also able to synthesise these virulence-associated siderophores. This raises questions about their role in the ecology of E. coli, beyond virulence, and whether specific siderophores might be linked with persistence in the external environment. Under the assumption that selection favours phenotypes that confer a fitness advantage, we compared siderophore production and gene distribution in E. coli isolated either from agricultural plants or the faeces of healthy mammals. This population-level comparison has revealed that under iron limiting growth conditions plant-associated isolates produced lower amounts of siderophores than faecal isolates. Additionally, multiplex PCR showed that environmental isolates were less likely to contain loci associated with aerobactin and yersiniabactin synthesis. Although aerobactin was linked with strong siderophore excretion, a significant difference in production was still observed between plant and faecal isolates when the analysis was restricted to strains only able to synthesise enterobactin. This finding suggests that the regulatory response to iron limitation may be an important trait associated with adaptation to the non-host environment. Our findings are consistent with the hypothesis that the ability to produce multiple siderophores facilitates E. coli gut colonisation and plays an important role in E. coli commensalism.

  14. Heterogeneous transcription of an indoleacetic acid biosynthetic gene in Erwinia herbicola on plant surfaces.

    Science.gov (United States)

    Brandl, M T; Quiñones, B; Lindow, S E

    2001-03-13

    We investigated the spatial pattern of expression of ipdC, a plant inducible gene involved in indoleacetic acid biosynthesis in Erwinia herbicola, among individual cells on plants to gain a better understanding of the role of this phenotype in the epiphytic ecology of bacteria and the factors involved in the regulation of ipdC. Nonpathogenic E. herbicola strain 299R harboring a transcriptional fusion of ipdC to gfp was inoculated onto bean plants, recovered from individual leaves 48 h after inoculation, and subjected to fluorescence in situ hybridization using a 16S rRNA oligonucleotide probe specific to strain 299R. Epifluorescence images captured through a rhodamine filter were used to distinguish the 5carboxytetramethylrhodamine-labeled cells of strain 299R from other leaf microflora. Quantification of the green fluorescence intensity of individual cells by analysis of digital images revealed that about 65% of the 299R cells recovered from bean leaves had higher ipdC expression than in culture. Additionally, 10% of the cells exhibited much higher levels of green fluorescence than the median fluorescence intensity, indicating that they are more heterogeneous with respect to ipdC expression on plants than in culture. Examination of 299R cells in situ on leaf surfaces by confocal laser scanning microscopy after fluorescence in situ hybridization of cells on leaf samples showed that even cells that were in close proximity exhibited dramatically different green fluorescence intensities, and thus, were in a physical or chemical microenvironment that induced differential expression of ipdC. PMID:11248099

  15. Targeting of the polyhydroxybutyrate biosynthetic pathway to the plastids of Arabidopsis thaliana results in high levels of polymer accumulation.

    OpenAIRE

    Nawrath, C; Poirier, Y; Somerville, C

    1994-01-01

    In the bacterium Alcaligenes eutrophus, three genes encode the enzymes necessary to catalyze the synthesis of poly[(R)-(-)-3-hydroxybutyrate] (PHB) from acetyl-CoA. In order to target these enzymes into the plastids of higher plants, the genes were modified by addition of DNA fragments encoding a pea chloroplast transit peptide, a constitutive plant promoter, and a poly(A) addition sequence. Each of the modified bacterial genes was introduced into Arabidopsis thaliana by Agrobacterium-mediate...

  16. Characterization of indigoidine biosynthetic genes in Erwinia chrysanthemi and role of this blue pigment in pathogenicity.

    Science.gov (United States)

    Reverchon, Sylvie; Rouanet, Carine; Expert, Dominique; Nasser, William

    2002-02-01

    In the plant-pathogenic bacterium Erwinia chrysanthemi production of pectate lyases, the main virulence determinant, is modulated by a complex network involving several regulatory proteins. One of these regulators, PecS, also controls the synthesis of a blue pigment identified as indigoidine. Since production of this pigment is cryptic in the wild-type strain, E. chrysanthemi ind mutants deficient in indigoidine synthesis were isolated by screening a library of Tn5-B21 insertions in a pecS mutant. These ind mutations were localized close to the regulatory pecS-pecM locus, immediately downstream of pecM. Sequence analysis of this DNA region revealed three open reading frames, indA, indB, and indC, involved in indigoidine biosynthesis. No specific function could be assigned to IndA. In contrast, IndB displays similarity to various phosphatases involved in antibiotic synthesis and IndC reveals significant homology with many nonribosomal peptide synthetases (NRPS). The IndC product contains an adenylation domain showing the signature sequence DAWCFGLI for glutamine recognition and an oxidation domain similar to that found in various thiazole-forming NRPS. These data suggest that glutamine is the precursor of indigoidine. We assume that indigoidine results from the condensation of two glutamine molecules that have been previously cyclized by intramolecular amide bond formation and then dehydrogenated. Expression of ind genes is strongly derepressed in the pecS background, indicating that PecS is the main regulator of this secondary metabolite synthesis. DNA band shift assays support a model whereby the PecS protein represses indA and indC expression by binding to indA and indC promoter regions. The regulatory link, via pecS, between indigoidine and virulence factor production led us to explore a potential role of indigoidine in E. chrysanthemi pathogenicity. Mutants impaired in indigoidine production were unable to cause systemic invasion of potted Saintpaulia ionantha

  17. Rhamnolipids in perspective: gene regulatory pathways, metabolic engineering, production and technological forecasting.

    Science.gov (United States)

    Dobler, Leticia; Vilela, Leonardo F; Almeida, Rodrigo V; Neves, Bianca C

    2016-01-25

    Rhamnolipids have emerged as a very promising class of biosurfactants in the last decades, exhibiting properties of great interest in several industrial applications, and have represented a suitable alternative to chemically-synthesized surfactants. This class of biosurfactants has been extensively studied in recent years, aiming at their large-scale production based on renewable resources, which still require high financial costs. Development of non-pathogenic, high-producing strains has been the focus of a number of studies involving heterologous microbial hosts as platforms. However, the intricate gene regulation network controlling rhamnolipid biosynthesis represents a challenge to metabolic engineering and remains to be further understood and explored. This article provides an overview of the biosynthetic pathways and the main gene regulatory factors involved in rhamnolipid production within Pseudomonas aeruginosa, the prototypal producing species. In addition, we provide a perspective view into the main strategies applied to metabolic engineering and biotechnological production. PMID:26409933

  18. Identification and Expression Analysis of Glucosinolate Biosynthetic Genes and Estimation of Glucosinolate Contents in Edible Organs of Brassica oleracea Subspecies

    Directory of Open Access Journals (Sweden)

    Go-Eun Yi

    2015-07-01

    Full Text Available Glucosinolates are anti-carcinogenic, anti-oxidative biochemical compounds that defend plants from insect and microbial attack. Glucosinolates are abundant in all cruciferous crops, including all vegetable and oilseed Brassica species. Here, we studied the expression of glucosinolate biosynthesis genes and determined glucosinolate contents in the edible organs of a total of 12 genotypes of Brassica oleracea: three genotypes each from cabbage, kale, kohlrabi and cauliflower subspecies. Among the 81 genes analyzed by RT-PCR, 19 are transcription factor-related, two different sets of 25 genes are involved in aliphatic and indolic biosynthesis pathways and the rest are breakdown-related. The expression of glucosinolate-related genes in the stems of kohlrabi was remarkably different compared to leaves of cabbage and kale and florets of cauliflower as only eight genes out of 81 were expressed in the stem tissues of kohlrabi. In the stem tissue of kohlrabi, only one aliphatic transcription factor-related gene, Bol036286 (MYB28 and one indolic transcription factor-related gene, Bol030761 (MYB51, were expressed. The results indicated the expression of all genes is not essential for glucosinolate biosynthesis. Using HPLC analysis, a total of 16 different types of glucosinolates were identified in four subspecies, nine of them were aliphatic, four of them were indolic and one was aromatic. Cauliflower florets measured the highest number of 14 glucosinolates. Among the aliphatic glucosinolates, only gluconapin was found in the florets of cauliflower. Glucoiberverin and glucobrassicanapin contents were the highest in the stems of kohlrabi. The indolic methoxyglucobrassicin and aromatic gluconasturtiin accounted for the highest content in the florets of cauliflower. A further detailed investigation and analyses is required to discern the precise roles of each of the genes for aliphatic and indolic glucosinolate biosynthesis in the edible organs.

  19. Identification and expression analysis of glucosinolate biosynthetic genes and estimation of glucosinolate contents in edible organs of Brassica oleracea subspecies.

    Science.gov (United States)

    Yi, Go-Eun; Robin, Arif Hasan Khan; Yang, Kiwoung; Park, Jong-In; Kang, Jong-Goo; Yang, Tae-Jin; Nou, Ill-Sup

    2015-01-01

    Glucosinolates are anti-carcinogenic, anti-oxidative biochemical compounds that defend plants from insect and microbial attack. Glucosinolates are abundant in all cruciferous crops, including all vegetable and oilseed Brassica species. Here, we studied the expression of glucosinolate biosynthesis genes and determined glucosinolate contents in the edible organs of a total of 12 genotypes of Brassica oleracea: three genotypes each from cabbage, kale, kohlrabi and cauliflower subspecies. Among the 81 genes analyzed by RT-PCR, 19 are transcription factor-related, two different sets of 25 genes are involved in aliphatic and indolic biosynthesis pathways and the rest are breakdown-related. The expression of glucosinolate-related genes in the stems of kohlrabi was remarkably different compared to leaves of cabbage and kale and florets of cauliflower as only eight genes out of 81 were expressed in the stem tissues of kohlrabi. In the stem tissue of kohlrabi, only one aliphatic transcription factor-related gene, Bol036286 (MYB28) and one indolic transcription factor-related gene, Bol030761 (MYB51), were expressed. The results indicated the expression of all genes is not essential for glucosinolate biosynthesis. Using HPLC analysis, a total of 16 different types of glucosinolates were identified in four subspecies, nine of them were aliphatic, four of them were indolic and one was aromatic. Cauliflower florets measured the highest number of 14 glucosinolates. Among the aliphatic glucosinolates, only gluconapin was found in the florets of cauliflower. Glucoiberverin and glucobrassicanapin contents were the highest in the stems of kohlrabi. The indolic methoxyglucobrassicin and aromatic gluconasturtiin accounted for the highest content in the florets of cauliflower. A further detailed investigation and analyses is required to discern the precise roles of each of the genes for aliphatic and indolic glucosinolate biosynthesis in the edible organs. PMID:26205053

  20. Deep Sequencing of the Scutellaria baicalensis Georgi Transcriptome Reveals Flavonoid Biosynthetic Profiling and Organ-Specific Gene Expression.

    Directory of Open Access Journals (Sweden)

    Jinxin Liu

    Full Text Available Scutellaria baicalensis Georgi has long been used in traditional medicine to treat various such widely varying diseases and has been listed in the Chinese Pharmacopeia, the Japanese Pharmacopeia, the Korean Pharmacopoeia and the European Pharmacopoeia. Flavonoids, especially wogonin, wogonoside, baicalin, and baicalein, are its main functional ingredients with various pharmacological activities. Although pharmaological studies for these flavonoid components have been well conducted, the molecular mechanism of their biosynthesis remains unclear in S. baicalensis. In this study, Illumina/Solexa deep sequencing generated more than 91 million paired-end reads and 49,507 unigenes from S. baicalensis roots, stems, leaves and flowers. More than 70% unigenes were annotated in at least one of the five public databases and 13,627 unigenes were assigned to 3,810 KEGG genes involved in 579 different pathways. 54 unigenes that encode 12 key enzymes involved in the pathway of flavonoid biosynthesis were discovered. One baicalinase and three baicalein 7-O-glucuronosyltransferases genes potentially involved in the transformation between baicalin/wogonoside and baicalein/wogonin were identified. Four candidate 6-hydroxylase genes for the formation of baicalin/baicalein and one candidate 8-O-methyltransferase gene for the biosynthesis of wogonoside/wogonin were also recognized. Our results further support the conclusion that, in S. baicalensis, 3,5,7-trihydroxyflavone was the precursor of the four above compounds. Then, the differential expression models and simple sequence repeats associated with these genes were carefully analyzed. All of these results not only enrich the gene resource but also benefit research into the molecular genetics and functional genomics in S. baicalensis.

  1. Application of an Efficient Gene Targeting System Linking Secondary Metabolites to their Biosynthetic Genes in Aspergillus terreus

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Chun-Jun; Knox, Benjamin P.; Sanchez, James F.; Chiang, Yi-Ming; Bruno, Kenneth S.; Wang, Clay C.

    2013-07-19

    Nonribosomal peptides (NRPs) are natural products biosynthesized by NRP synthetases. A kusA-, pyrG- mutant strain of Aspergillusterreus NIH 2624 was developed that greatly facilitated the gene targeting efficiency in this organism. Application of this tool allowed us to link four major types of NRP related secondary metabolites to their responsible genes in A. terreus. In addition, an NRP related melanin synthetase was also identified in this species.

  2. A novel deconvolution method for modeling UDP-N-acetyl-D-glucosamine biosynthetic pathways based on 13C mass isotopologue profiles under non-steady-state conditions

    Directory of Open Access Journals (Sweden)

    Belshoff Alex C

    2011-05-01

    Full Text Available Abstract Background Stable isotope tracing is a powerful technique for following the fate of individual atoms through metabolic pathways. Measuring isotopic enrichment in metabolites provides quantitative insights into the biosynthetic network and enables flux analysis as a function of external perturbations. NMR and mass spectrometry are the techniques of choice for global profiling of stable isotope labeling patterns in cellular metabolites. However, meaningful biochemical interpretation of the labeling data requires both quantitative analysis and complex modeling. Here, we demonstrate a novel approach that involved acquiring and modeling the timecourses of 13C isotopologue data for UDP-N-acetyl-D-glucosamine (UDP-GlcNAc synthesized from [U-13C]-glucose in human prostate cancer LnCaP-LN3 cells. UDP-GlcNAc is an activated building block for protein glycosylation, which is an important regulatory mechanism in the development of many prominent human diseases including cancer and diabetes. Results We utilized a stable isotope resolved metabolomics (SIRM approach to determine the timecourse of 13C incorporation from [U-13C]-glucose into UDP-GlcNAc in LnCaP-LN3 cells. 13C Positional isotopomers and isotopologues of UDP-GlcNAc were determined by high resolution NMR and Fourier transform-ion cyclotron resonance-mass spectrometry. A novel simulated annealing/genetic algorithm, called 'Genetic Algorithm for Isotopologues in Metabolic Systems' (GAIMS was developed to find the optimal solutions to a set of simultaneous equations that represent the isotopologue compositions, which is a mixture of isotopomer species. The best model was selected based on information theory. The output comprises the timecourse of the individual labeled species, which was deconvoluted into labeled metabolic units, namely glucose, ribose, acetyl and uracil. The performance of the algorithm was demonstrated by validating the computed fractional 13C enrichment in these subunits

  3. A cautionary tale of structure-guided inhibitor development against an essential enzyme in the aspartate-biosynthetic pathway.

    Science.gov (United States)

    Pavlovsky, Alexander G; Thangavelu, Bharani; Bhansali, Pravin; Viola, Ronald E

    2014-12-01

    The aspartate pathway is essential for the production of the amino acids required for protein synthesis and of the metabolites needed in bacterial development. This pathway also leads to the production of several classes of quorum-sensing molecules that can trigger virulence in certain microorganisms. The second enzyme in this pathway, aspartate β-semialdehyde dehydrogenase (ASADH), is absolutely required for bacterial survival and has been targeted for the design of selective inhibitors. Fragment-library screening has identified a new set of inhibitors that, while they do not resemble the substrates for this reaction, have been shown to bind at the active site of ASADH. Structure-guided development of these lead compounds has produced moderate inhibitors of the target enzyme, with some selectivity observed between the Gram-negative and Gram-positive orthologs of ASADH. However, many of these inhibitor analogs and derivatives have not yet achieved the expected enhanced affinity. Structural characterization of these enzyme-inhibitor complexes has provided detailed explanations for the barriers that interfere with optimal binding. Despite binding in the same active-site region, significant changes are observed in the orientation of these bound inhibitors that are caused by relatively modest structural alterations. Taken together, these studies present a cautionary tale for issues that can arise in the systematic approach to the modification of lead compounds that are being used to develop potent inhibitors. PMID:25478842

  4. Enhanced production of steviol glycosides in mycorrhizal plants: a concerted effect of arbuscular mycorrhizal symbiosis on transcription of biosynthetic genes.

    Science.gov (United States)

    Mandal, Shantanu; Upadhyay, Shivangi; Singh, Ved Pal; Kapoor, Rupam

    2015-04-01

    Stevia rebaudiana (Bertoni) produces steviol glycosides (SGs)--stevioside (stev) and rebaudioside-A (reb-A) that are valued as low calorie sweeteners. Inoculation with arbuscular mycorrhizal fungi (AMF) augments SGs production, though the effect of this interaction on SGs biosynthesis has not been studied at molecular level. In this study transcription profiles of eleven key genes grouped under three stages of the SGs biosynthesis pathway were compared. The transcript analysis showed upregulation of genes encoding 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway enzymes viz.,1-deoxy-D-xylulose 5-phospate synthase (DXS), 1-deoxy-D-xylulose 5-phospate reductoisomerase (DXR) and 2-C-methyl-D-erytrithol 2,4-cyclodiphosphate synthase (MDS) in mycorrhizal (M) plants. Zn and Mn are imperative for the expression of MDS and their enhanced uptake in M plants could be responsible for the increased transcription of MDS. Furthermore, in the second stage of SGs biosynthesis pathway, mycorrhization enhanced the transcription of copalyl diphosphate synthase (CPPS) and kaurenoic acid hydroxylase (KAH). Their expression is decisive for SGs biosynthesis as CPPS regulates flow of metabolites towards synthesis of kaurenoid precursors and KAH directs these towards steviol synthesis instead of gibberellins. In the third stage glucosylation of steviol to reb-A by four specific uridine diphosphate (UDP)-dependent glycosyltransferases (UGTs) occurs. While higher transcription of all the three characterized UGTs in M plants explains augmented production of SGs; higher transcript levels of UGT76G1, specifically improved reb-A to stev ratio implying increased sweetness. The work signifies that AM symbiosis upregulates the transcription of all eleven SGs biosynthesis genes as a result of improved nutrition and enhanced sugar concentration due to increased photosynthesis in M plants. PMID:25734328

  5. Products of the iron-molybdenum cofactor-specific biosynthetic genes, nifE and nifN, are structurally homologous to the products of the nitrogenase molybdenum-iron protein genes, nifD and nifK.

    OpenAIRE

    Brigle, K E; Weiss, M C; Newton, W E; Dean, D R

    1987-01-01

    The genes from Azotobacter vinelandii, which are homologous to the iron-molybdenum cofactor biosynthetic genes, nifE and nifN, from Klebsiella pneumoniae, have been cloned and sequenced. These genes comprise a single transcription unit and are located immediately downstream from the nitrogenase structural gene cluster (nifHDK). DNA sequence analysis has revealed that the products of the nifE and nifN genes contain considerable homology when compared with the nifD (MoFe protein alpha subunit) ...

  6. Method development and analysis of free HS and HS in proteoglycans from pre- and postmenopausal women: Evidence for biosynthetic pathway changes in sulfotransferase and sulfatase enzymes

    Science.gov (United States)

    Wei, Wei; Miller, Rebecca L.; Leary, Julie A.

    2013-01-01

    Heparan sulfate (HS) is one of the most complex and informative biopolymers found on the cell surface or in the extracellular matrix as either free HS fragments or constituents of HS proteoglycans (HSPGs). Analysis of free HS and HSPG sugar chains in human serum at the disaccharide level has great potential for early disease diagnosis and prognosis, however, the low concentration of HS in human serum, together with the complexity of the serum matrix, limits the information on HS. In this study, we present and validate the development of a new sensitive method for in-depth compositional analysis of free HS and HSPG sugar chains. This protocol involved several steps including weak anion exchange chromatography, ultrafiltration and solid phase extraction for enhanced detection prior to LC-MS/MS analysis. Using this protocol, a total of 51 serum samples from 26 premenopausal and 25 postmenopausal women were analyzed. Statistically significant differences in heparin/HS disaccharide profiles were observed. The proportion of N-acetylation and N-sulfation in both free HS and HSPG sugar chains were significantly different between pre- and postmenopausal women, indicating changes in N-deacetylase/N-sulfotransferases (NDSTs), the enzymes involved in the initial step of the biosynthetic pathway. Differences in the proportion of 6-O-sulfation suggest that 6-O-sulfotransferase and/or 6-O-sulfatase enzymes may also be implicated. PMID:23659730

  7. Inhibition of green tea and the catechins against 1-deoxy-d-xylulose 5-phosphate reductoisomerase, the key enzyme of the MEP terpenoid biosynthetic pathway.

    Science.gov (United States)

    Hui, Xian; Liu, Hui; Tian, Fang-Lin; Li, Fei-Fei; Li, Heng; Gao, Wen-Yun

    2016-09-01

    1-Deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) is the first committed enzyme in the MEP terpenoid biosynthetic pathway and also a validated antimicrobial target. Green tea which is rich in polyphenolic components such as the catechins, possesses a plenty of pharmacological activities, in particular an antibacterial effect. To uncover the antibacterial mechanism of green tea and to seek new DXR inhibitors from natural sources, the DXR inhibitory activity of green tea and its main antimicrobial catechins were investigated in this study. The results show that the raw extract of green tea and its ethyl acetate fraction are able to suppress DXR activity explicitly. Further determination of the DXR inhibitory capacity of eight catechin compounds demonstrates that the most active compound is gallocatechin gallate that is able to inhibit around 50% activity of DXR at 25μM. Based on these data, the primary structure-activity relationship of the catechins against DXR is discussed. This study would be very helpful to elucidate the antimicrobial mechanism of green tea and the catechins and also would be very useful to direct the rational utilization of them as food additives. PMID:27439219

  8. Crystallization and X-ray diffraction properties of Baeyer–Villiger monooxygenase MtmOIV from the mithramycin biosynthetic pathway in Streptomyces argillaceus

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chenchen; Gibson, Miranda; Rohr, Jurgen, E-mail: jrohr2@email.uky.edu [Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0082 (United States); Oliveira, Marcos A., E-mail: jrohr2@email.uky.edu [Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0082 (United States); Center for Structural Biology, University of Kentucky (United States)

    2005-11-01

    Crystals of the type I Baeyer–Villiger monooxygenase (BVMO) MtmOIV from the biosynthetic pathway of mithramycin were obtained; the crystals diffracted to 2.69 Å resolution and belong to the monoclinic space group C2 (a = 143.5, b = 114.2, c = 137.8 Å β = 102.5°). Light scattering indicates that MtmOIV is a dimer of 127 kDa in solution, while in the crystalline state the data are consistent with two dimers in the asymmetric unit. The Baeyer–Villiger monooxygenase MtmOIV from Streptomyces argillaceus is a 56 kDa FAD-dependent and NADPH-dependent enzyme that is responsible for the key frame-modifying step in the biosynthesis of the natural product mithramycin. Crystals of MtmOIV were flash-cooled and diffracted to 2.69 Å resolution using synchrotron radiation on beamline SER-CAT 22-ID at the Advanced Photon Source. Crystals of MtmOIV are monoclinic and light-scattering data reveal that the enzyme forms dimers in solution. The rotation function suggests the presence of two dimers in the asymmetric unit. l-Selenomethionine-incorporated MtmOIV has been obtained. Structural solution combining molecular-replacement phases and anomalous phases from selenium is in progress.

  9. Evaluation of Biosynthetic Pathways of 2Н- and 13С-Labeled Amino Acids by an Obligate Methylotrophic Bacterium Methylobacillus Flagellatum and a Facultative Methylotrophic Bacterium Brevibacterium Methylicum

    Directory of Open Access Journals (Sweden)

    Oleg Mosin

    2016-06-01

    Full Text Available By the method of electron impact mass-spectrometry was studied the pathways of biosynthesis of 2H, 13C-labeled amino acids of a facultative methylotrophic bacterium Brevibacterium methylicum and an obligate methylotrophic bacterium Methylobacillus flagellatum obtained on growth media containing as a source of stable isotopes [2H]methanol, [13C]methanol and 2H2O. For mass-spectrometric analysis the multicomponential mixtures of 2H- and 13C-labeled amino acids, derived from cultural media and protein hydrolysates after hydrolysis in 6 M 2HСl (3 % phenol and 2 M Ва(OH2 were modified into N-benzyloxycarbonyl-derivatives of amino acids as well as into methyl esters of N-5-(dimethylaminonaphthalene-1-sulfonyl chloride (dansyl derivatives of [2H, 13С]amino acids, which were preparative separated using a method of reverse-phase HCLP. Biosynthetically obtained 2H- and 13C-labeled amino acids represented the mixtures differing in quantities of isotopes incorporated into molecule. The levels of 2H and 13С enrichment of secreted amino acids and amino acid resigues of protein were found to vary from 20,0 atom % to L-leucine/isoleucine up to 97,5 atom % for L-alanine depending on concentration of 2H- and 13C-labelled substrates.

  10. Combined effects of benomyl and environmental factors on growth and expression of the fumonisin biosynthetic genes FUM1 and FUM19 by Fusarium verticillioides.

    Science.gov (United States)

    Cruz, A; Marín, P; Magan, N; González-Jaén, M T

    2014-11-17

    Fusarium verticillioides is predominantly responsible of fumonisin contamination of maize and other cereals in Mediterranean climatic regions. This study examined the interaction of the fungicide benomyl, at ED₅₀ and ED₉₀ concentrations (effective doses of benomyl to reduce growth by 50% and 90%, respectively), with a range of temperatures (20-35 °C) and water potentials (-0.7, -2.8 and -7.0 MPa) compatible with current and foreseen climate change scenarios for these regions on growth and fumonisin biosynthesis in in vitro assays. The expression of fumonisin biosynthetic genes (FUM1 and FUM19) was quantified by real time RT-PCR. FUM1 encodes a polyketide synthase and FUM19 an ABC-type transporter, located both in the fumonisin biosynthetic cluster. The ED₅₀ and ED₉₀ concentrations obtained at 25 °C were 0.93 mg/L and 3.30 mg/L, respectively. Benomyl affected growth and fumonisin gene expression differently but it generally reduced fungal growth and fumonisin biosynthesis and both were significantly affected by temperature and water potential. This indicated that efficacy of benomyl might be compromised at certain conditions, although at similar or lower levels than other fungicides tested. Both fumonisin biosynthetic genes had similar expression patterns in all treatments and their correlation was positive and significant. The results suggested that Mediterranean climatic scenarios might suffer an additional negative impact of climate change by reducing the efficacy of antifungals used to control pathogens and toxigenic fungi. PMID:25217721

  11. Conservation and expression patterns divergence of ascorbic acid D-mannose/L-galactose pathway genes in Brassica rapa

    Directory of Open Access Journals (Sweden)

    Weike eDuan

    2016-06-01

    Full Text Available Ascorbic acid (AsA participates in diverse biological processes, is regulated by multiple factors and is a potent antioxidant and cellular reductant. The D-mannose/L-galactose pathway is a major plant AsA biosynthetic pathway that is highly connected within biosynthetic networks, and generally conserved across plants. Previous work has shown that, although most genes of this pathway are expressed under standard growth conditions in Brassica rapa, some paralogs of these genes are not. We hypothesize that regulatory evolution in duplicate AsA pathway genes has occurred as an adaptation to environmental stressors, and that gene retention has been influenced by polyploidation events in Brassicas. To test these hypotheses, we explored the conservation of these genes in Brassicas and their expression patterns divergence in B. rapa. Similar retention and a high degree of gene sequence similarity were identified in B. rapa (A genome, Brassica oleracea (C genome and Brassica napus (AC genome. However, the number of genes that encode the same type of enzymes varied among the three plant species. With the exception of GMP, which has nine genes, there were one to four genes that encoded the other enzymes. Moreover, we found that expression patterns divergence widely exists among these genes. i VTC2 and VTC5 are paralogous genes, but only VTC5 is influenced by FLC. ii Under light treatment, PMI1 co-regulates the AsA pool size with other D-Man/L-Gal pathway genes, whereas PMI2 is regulated only by darkness. iii Under NaCl, Cu2+, MeJA and wounding stresses, most of the paralogs exhibit different expression patterns. Additionally, GME and GPP are the key regulatory enzymes that limit AsA biosynthesis in response to these treatments. In conclusion, our data support that the conservative and divergent expression patterns of D-Man/L-Gal pathway genes not only avoid AsA biosynthesis network instability but also allow B. rapa to better adapt to complex environments.

  12. Conservation and Expression Patterns Divergence of Ascorbic Acid d-mannose/l-galactose Pathway Genes in Brassica rapa.

    Science.gov (United States)

    Duan, Weike; Ren, Jun; Li, Yan; Liu, Tongkun; Song, Xiaoming; Chen, Zhongwen; Huang, Zhinan; Hou, Xilin; Li, Ying

    2016-01-01

    Ascorbic acid (AsA) participates in diverse biological processes, is regulated by multiple factors and is a potent antioxidant and cellular reductant. The D-Mannose/L-Galactose pathway is a major plant AsA biosynthetic pathway that is highly connected within biosynthetic networks, and generally conserved across plants. Previous work has shown that, although most genes of this pathway are expressed under standard growth conditions in Brassica rapa, some paralogs of these genes are not. We hypothesize that regulatory evolution in duplicate AsA pathway genes has occurred as an adaptation to environmental stressors, and that gene retention has been influenced by polyploidation events in Brassicas. To test these hypotheses, we explored the conservation of these genes in Brassicas and their expression patterns divergence in B. rapa. Similar retention and a high degree of gene sequence similarity were identified in B. rapa (A genome), B. oleracea (C genome) and B. napus (AC genome). However, the number of genes that encode the same type of enzymes varied among the three plant species. With the exception of GMP, which has nine genes, there were one to four genes that encoded the other enzymes. Moreover, we found that expression patterns divergence widely exists among these genes. (i) VTC2 and VTC5 are paralogous genes, but only VTC5 is influenced by FLC. (ii) Under light treatment, PMI1 co-regulates the AsA pool size with other D-Man/L-Gal pathway genes, whereas PMI2 is regulated only by darkness. (iii) Under NaCl, Cu(2+), MeJA and wounding stresses, most of the paralogs exhibit different expression patterns. Additionally, GME and GPP are the key regulatory enzymes that limit AsA biosynthesis in response to these treatments. In conclusion, our data support that the conservative and divergent expression patterns of D-Man/L-Gal pathway genes not only avoid AsA biosynthesis network instability but also allow B. rapa to better adapt to complex environments. PMID:27313597

  13. Conservation and Expression Patterns Divergence of Ascorbic Acid d-mannose/l-galactose Pathway Genes in Brassica rapa

    Science.gov (United States)

    Duan, Weike; Ren, Jun; Li, Yan; Liu, Tongkun; Song, Xiaoming; Chen, Zhongwen; Huang, Zhinan; Hou, Xilin; Li, Ying

    2016-01-01

    Ascorbic acid (AsA) participates in diverse biological processes, is regulated by multiple factors and is a potent antioxidant and cellular reductant. The D-Mannose/L-Galactose pathway is a major plant AsA biosynthetic pathway that is highly connected within biosynthetic networks, and generally conserved across plants. Previous work has shown that, although most genes of this pathway are expressed under standard growth conditions in Brassica rapa, some paralogs of these genes are not. We hypothesize that regulatory evolution in duplicate AsA pathway genes has occurred as an adaptation to environmental stressors, and that gene retention has been influenced by polyploidation events in Brassicas. To test these hypotheses, we explored the conservation of these genes in Brassicas and their expression patterns divergence in B. rapa. Similar retention and a high degree of gene sequence similarity were identified in B. rapa (A genome), B. oleracea (C genome) and B. napus (AC genome). However, the number of genes that encode the same type of enzymes varied among the three plant species. With the exception of GMP, which has nine genes, there were one to four genes that encoded the other enzymes. Moreover, we found that expression patterns divergence widely exists among these genes. (i) VTC2 and VTC5 are paralogous genes, but only VTC5 is influenced by FLC. (ii) Under light treatment, PMI1 co-regulates the AsA pool size with other D-Man/L-Gal pathway genes, whereas PMI2 is regulated only by darkness. (iii) Under NaCl, Cu2+, MeJA and wounding stresses, most of the paralogs exhibit different expression patterns. Additionally, GME and GPP are the key regulatory enzymes that limit AsA biosynthesis in response to these treatments. In conclusion, our data support that the conservative and divergent expression patterns of D-Man/L-Gal pathway genes not only avoid AsA biosynthesis network instability but also allow B. rapa to better adapt to complex environments. PMID:27313597

  14. Genome-scale transcriptome analysis in response to nitric oxide in birch cells: implications of the triterpene biosynthetic pathway.

    Directory of Open Access Journals (Sweden)

    Fansuo Zeng

    Full Text Available Evidence supporting nitric oxide (NO as a mediator of plant biochemistry continues to grow, but its functions at the molecular level remains poorly understood and, in some cases, controversial. To study the role of NO at the transcriptional level in Betula platyphylla cells, we conducted a genome-scale transcriptome analysis of these cells. The transcriptome of untreated birch cells and those treated by sodium nitroprusside (SNP were analyzed using the Solexa sequencing. Data were collected by sequencing cDNA libraries of birch cells, which had a long period to adapt to the suspension culture conditions before SNP-treated cells and untreated cells were sampled. Among the 34,100 UniGenes detected, BLASTX search revealed that 20,631 genes showed significant (E-values≤10-5 sequence similarity with proteins from the NR-database. Numerous expressed sequence tags (i.e., 1374 were identified as differentially expressed between the 12 h SNP-treated cells and control cells samples: 403 up-regulated and 971 down-regulated. From this, we specifically examined a core set of NO-related transcripts. The altered expression levels of several transcripts, as determined by transcriptome analysis, was confirmed by qRT-PCR. The results of transcriptome analysis, gene expression quantification, the content of triterpenoid and activities of defensive enzymes elucidated NO has a significant effect on many processes including triterpenoid production, carbohydrate metabolism and cell wall biosynthesis.

  15. Seasonal alteration in amounts of lignans and their glucosides and gene expression of the relevant biosynthetic enzymes in the Forsythia suspense leaf.

    Science.gov (United States)

    Morimoto, Kinuyo; Satake, Honoo

    2013-01-01

    Lignans of Forsythia spp. are essential components of various Chinese medicines and health diets. However, the seasonal alteration in lignan amounts and the gene expression profile of lignan-biosynthetic enzymes has yet to be investigated. In this study, we have assessed seasonal alteration in amounts of major lignans, such as pinoresinol, matairesinol, and arctigenin, and examined the gene expression profile of pinoresinol/lariciresinol reductase (PLR), pinoresinol-glucosylating enzyme (UGT71A18), and secoisolariciresinol dehydrogenase (SIRD) in the leaf of Forsythia suspense from April to November. All of the lignans in the leaf continuously increased from April to June, reached the maximal level in June, and then decreased. Ninety percent of pinoresinol and matairesinol was converted into glucosides, while approximately 50% of arctigenin was aglycone. PLR was stably expressed from April to August, whereas the PLR expression was not detected from September to November. In contrast, the UGT71A18 expression was found from August to November, but not from April to July. The SIRD expression was prominent from April to May, not detected in June to July, and then increased again from September to November. These expression profiles of the lignan-synthetic enzymes are largely compatible with the alteration in lignan contents. Furthermore, such seasonal lignan profiles are in good agreement with the fact that the Forsythia leaves for Chinese medicinal tea are harvested in June. This is the first report on seasonal alteration in lignans and the relevant biosynthetic enzyme genes in the leaf of Forsythia species. PMID:23832493

  16. Structures and comparative characterization of biosynthetic gene clusters for cyanosporasides, enediyne-derived natural products from marine actinomycetes

    OpenAIRE

    Lane, Amy L.; Nam, Sang Jip; Fukuda, Takashi; Yamanaka, Kazuya; Kauffman, Christopher A.; Jensen, Paul R; Fenical, William; Moore, Bradley S.

    2013-01-01

    Cyanosporasides are marine bacterial natural products containing a chlorinated cyclopenta[a]indene core of suspected enediyne polyketide biosynthetic origin. Herein, we report the isolation and characterization of novel cyanosporasides C–F (3–6) from the marine actinomycetes “Salinispora pacifica” CNS-143 and Streptomyces sp. CNT-179, highlighted by the unprecedented C-2' N-acetylcysteamine functionalized hexose group of 6. Cloning, sequencing, and mutagenesis of homologous ~50 kb cyanosporas...

  17. Crystal Structure of Vancosaminyltransferase GtfD from the Vancomycin Biosynthetic Pathway: Interactions with Acceptor and Nucleotide Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Mulichak, A.M.; Lu, W.; Losey, H.C.; Walsh, C.T.; Garavito, R.M. (Harvard-Med); (MSU)

    2010-03-08

    The TDP-vancosaminyltransferase GtfD catalyzes the attachment of L-vancosamine to a monoglucosylated heptapeptide intermediate during the final stage of vancomycin biosynthesis. Glycosyltransferases from this and similar antibiotic pathways are potential tools for the design of new compounds that are effective against vancomycin resistant bacterial strains. We have determined the X-ray crystal structure of GtfD as a complex with TDP and the natural glycopeptide substrate at 2.0 {angstrom} resolution. GtfD, a member of the bidomain GT-B glycosyltransferase superfamily, binds TDP in the interdomain cleft, while the aglycone acceptor binds in a deep crevice in the N-terminal domain. However, the two domains are more interdependent in terms of substrate binding and overall structure than was evident in the structures of closely related glycosyltransferases GtfA and GtfB. Structural and kinetic analyses support the identification of Asp13 as a catalytic general base, with a possible secondary role for Thr10. Several residues have also been identified as being involved in donor sugar binding and recognition.

  18. Pyocyanine Biosynthetic Genes in Clinical and Environmental Isolates of Pseudomonas aeruginosa and Detection of Pyocyanine’s Antimicrobial Effects with or without Colloidal Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Afrooz Rashnonejad

    2012-01-01

    Full Text Available Objective: Pyocyanine plays an important role in the pathogenesis of Pseudomonas aeruginosa, (P. aeruginosa and is known to have inhibitory and bactericidal effects. This study has aimed to detect the phenazine biosynthetic operon (phz ABCDEFG and two phenazine modifying genes (phzM and phzS by polymerase chain reaction (PCR and detection of its possible protein bands by sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE. The antimicrobial effects of pyocyanine alone and mixed with colloidal silver nanoparticles were studied.Materials and Methods: In this descriptive study, clinical and environmental species of P. aeruginosa were isolated by thioglycollate medium culture and cetrimide agar, respectively. The existence of a phenazine biosynthetic operon and two phenazine modifying genes as well as their protein products were confirmed by PCR and SDS-PAGE, respectively. Pyocyanine was extracted with chloroform and its antimicrobial effects against bacteria such as; Escherichia coli (E. coli, P. aeruginosaand Staphylococcus aureus (S. aureus bacteria and yeast Candida albicans (C. albicans were tested using well, spot and disk diffusion methods.Results: In this study, 3 out of 48 clinical strains were unable to produce pyocyanine on cetrimide and Mueller Hinton (MH agar. Two strains did not have phenazine modifying gene bands. Another strain did not have the possible protein band of the phzM gene. Pyocyanine had antimicrobial effects against the microbial strains, which increased in the presence of silver nanoparticles.Conclusion: According to the results of the present study, some P. aeruginosa strains are unable to produce pyocyanine due to the absence of the phzM or phzS genes. Therefore, these genes have an important role in pyocyanine production in P. aeruginosa. Pyocyanine shows synergistic antimicrobial effects in the presence of silver nanoparticles against microbial strains.

  19. Structural and Functional Analysis of Campylobacter jejuni PseG: a Udp-sugarhydrolase from the Pseudaminic Acid Biosynthetic Pathway

    Energy Technology Data Exchange (ETDEWEB)

    E Rangarajan; A Proteau; Q Cui; S Logan; Z Potetinova; D Whitfield; E Purisima; M Cygler; A Matte; et al.

    2011-12-31

    Flagella of the bacteria Helicobacter pylori and Campylobacter jejuni are important virulence determinants, whose proper assembly and function are dependent upon glycosylation at multiple positions by sialic acid-like sugars, such as 5,7-diacetamido-3,5,7,9-tetradeoxy-l-glycero-l-manno-nonulosonic acid (pseudaminic acid (Pse)). The fourth enzymatic step in the pseudaminic acid pathway, the hydrolysis of UDP-2,4-diacetamido-2,4,6-trideoxy-{beta}-l-altropyranose to generate 2,4-diacetamido-2,4,6-trideoxy-l-altropyranose, is performed by the nucleotide sugar hydrolase PseG. To better understand the molecular basis of the PseG catalytic reaction, we have determined the crystal structures of C. jejuni PseG in apo-form and as a complex with its UDP product at 1.8 and 1.85 {angstrom} resolution, respectively. In addition, molecular modeling was utilized to provide insight into the structure of the PseG-substrate complex. This modeling identifies a His{sup 17}-coordinated water molecule as the putative nucleophile and suggests the UDP-sugar substrate adopts a twist-boat conformation upon binding to PseG, enhancing the exposure of the anomeric bond cleaved and favoring inversion at C-1. Furthermore, based on these structures a series of amino acid substitution derivatives were constructed, altering residues within the active site, and each was kinetically characterized to examine its contribution to PseG catalysis. In conjunction with structural comparisons, the almost complete inactivation of the PseG H17F and H17L derivatives suggests that His{sup 17} functions as an active site base, thereby activating the nucleophilic water molecule for attack of the anomeric C-O bond of the UDP-sugar. As the PseG structure reveals similarity to those of glycosyltransferase family-28 members, in particular that of Escherichia coli MurG, these findings may also be of relevance for the mechanistic understanding of this important enzyme family.

  20. The Role of Gene Duplication in the Evolution of Purine Nucleotide Salvage Pathways

    Science.gov (United States)

    Becerra, Arturo; Lazcano, Antonio

    1998-10-01

    Purine nucleotides are formed de novo by a widespread biochemical route that may be of monophyletic origin, or are synthesized from preformed purine bases and nucleosides through different salvage pathways. Three monophyletic sets of purine salvage enzymes, each of which catalyzes mechanistically similar reactions, can be identified: (a) adenine-, xanthine-, hypoxanthine- and guanine-phosphoribosyltransferases, which are all homologous among themselves, as well as to nucleoside phosphorylases; (b) adenine deaminase, adenosine deaminase, and adenosine monophophate deaminase; and (c) guanine reductase and inosine monophosphate dehydrogenase. These homologies support the idea that substrate specificity is the outcome of gene duplication, and that the purine nucleotide salvage pathways were assembled by a patchwork process that probably took place before the divergence of the three cell domains (Bacteria, Archaea, and Eucarya). Based on the ability of adenine PRTase to catalyze the condensation of PRPP with 4-aminoimidazole-5-carboxamide (AICA), a simpler scheme of purine nucleotide biosynthesis is presented. This hypothetical route requires the prior evolution of PRPP biosynthesis. Since it has been argued that PRPP, nucleosides, and nucleotides are susceptible to hydrolysis, they are very unlikely prebiotic compounds. If this is the case, it implies that many purine salvage pathways appeared only after the evolution of phosphorylated sugar biosynthetic pathways made ribosides available.

  1. DMPD: Signalling pathways mediating type I interferon gene expression. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17904888 Signalling pathways mediating type I interferon gene expression. Edwards M...R, Slater L, Johnston SL. Microbes Infect. 2007 Sep;9(11):1245-51. Epub 2007 Jul 1. (.png) (.svg) (.html) (.csml) Show Signal...ling pathways mediating type I interferon gene expression. PubmedID 17904888 Title Signalli

  2. Characterization of Glycolytic Pathway Genes Using RNA-Seq in Developing Kernels of Eucommia ulmoides.

    Science.gov (United States)

    Feng, Yanzhi; Zhang, Lin; Fu, Jianmin; Li, Fangdong; Wang, Lu; Tan, Xiaofeng; Mo, Wenjuan; Cao, Heping

    2016-05-11

    Eucommia ulmoides Oliver, the only member of the Eucommiaceae family, is a rare and valuable tree used to produce a highly valued traditional Chinese medicine and contains α-linolenic acid (ALA) up to 60% of the total fatty acids in the kernels (embryos). Glycolysis provides both cellular energy and the intermediates for other biosynthetic processes. However, nothing was known about the molecular basis of the glycolytic pathway in E. ulmoides kernels. The purposes of this study were to identify novel genes of E. ulmoides related to glycolytic metabolism and to analyze the expression patterns of selected genes in the kernels. Transcriptome sequencing based on the Illumina platform generated 96,469 unigenes in four cDNA libraries constructed using RNAs from 70 and 160 days after flowering kernels of both low- and high-ALA varieties. We identified and characterized the digital expression of 120 unigenes coding for 24 protein families involved in kernel glycolytic pathway. The expression levels of glycolytic genes were generally higher in younger kernels than in more mature kernels. Importantly, several unigenes from kernels of the high-ALA variety were expressed more than those from the low-ALA variety. The expression of 10 unigenes encoding key enzymes in the glycolytic pathway was validated by qPCR using RNAs from six kernel stages of each variety. The qPCR data were well consistent with their digital expression in transcriptomic analyses. This study identified a comprehensive set of genes for glycolytic metabolism and suggests that several glycolytic genes may play key roles in ALA accumulation in the kernels of E. ulmoides. PMID:27074598

  3. Metabolomic profiling and genomic analysis of wheat aneuploid lines to identify genes controlling biochemical pathways in mature grain.

    Science.gov (United States)

    Francki, Michael G; Hayton, Sarah; Gummer, Joel P A; Rawlinson, Catherine; Trengove, Robert D

    2016-02-01

    Metabolomics is becoming an increasingly important tool in plant genomics to decipher the function of genes controlling biochemical pathways responsible for trait variation. Although theoretical models can integrate genes and metabolites for trait variation, biological networks require validation using appropriate experimental genetic systems. In this study, we applied an untargeted metabolite analysis to mature grain of wheat homoeologous group 3 ditelosomic lines, selected compounds that showed significant variation between wheat lines Chinese Spring and at least one ditelosomic line, tracked the genes encoding enzymes of their biochemical pathway using the wheat genome survey sequence and determined the genetic components underlying metabolite variation. A total of 412 analytes were resolved in the wheat grain metabolome, and principal component analysis indicated significant differences in metabolite profiles between Chinese Spring and each ditelosomic lines. The grain metabolome identified 55 compounds positively matched against a mass spectral library where the majority showed significant differences between Chinese Spring and at least one ditelosomic line. Trehalose and branched-chain amino acids were selected for detailed investigation, and it was expected that if genes encoding enzymes directly related to their biochemical pathways were located on homoeologous group 3 chromosomes, then corresponding ditelosomic lines would have a significant reduction in metabolites compared with Chinese Spring. Although a proportion showed a reduction, some lines showed significant increases in metabolites, indicating that genes directly and indirectly involved in biosynthetic pathways likely regulate the metabolome. Therefore, this study demonstrated that wheat aneuploid lines are suitable experimental genetic system to validate metabolomics-genomics networks. PMID:26032167

  4. Studying of Biosynthetic Pathways of 2H-labeled Purine Ribonucleoside Inosine in a Chemoheterotrophic Bacterium Bacillus subtilis B-3157 by FAB Mass-Spectrometry

    Directory of Open Access Journals (Sweden)

    Oleg Mosin

    2015-09-01

    Full Text Available This paper deals with studying biosynthetic pathways of 2H-labeled purine ribonucleoside inosine excreted into liquid microbial culture (LC by Gram-positive chemoheterotrophic bacterium Bacillus subtilis B-3157 while growing of this bacterium on heavy water (HW medium with 2% (v/v hydrolysate of deuterated biomass of the methylotrophic bacterium Brevibacterium methylicum B-5662 as a source of 2H-labeled growth substrates. Isolation of 2H-labeled inosine from LC was performed by adsorption/desorption on activated carbon with following extraction by 0,3 M ammonium–formate buffer (pH = 8,9, crystallization in 80% (v/v EtOH, and ion exchange chromatography (IEC on a column with AG50WX 4 cation exchange resin equilibrated with 0,3 M ammonium–formate buffer and 0,045 M NH4Cl. The investigation of deuterium incorporation into the inosine molecule by FAB method demonstrated incorporation of 5 deuterium atoms into the molecule (the total level of deuterium enrichment – 65,5 atom% 2H with 3 deuterium atoms being included into the ribose and 2 deuterium atoms – into the hypoxanthine residue of the molecule. Three non-exchangeable deuterium atoms were incorporated into the ribose residue owing to the preservation in this bacterium the minor pathways of de novo glucose biosynthesis in 2H2O-medium. These non-exchangeable deuterium atoms in the ribose residue were originated from HMP shunt reactions, while two other deuterium atoms at C2, C8-positions in the hypoxanthine residue were synthesized from [2H]amino acids, primarily glutamine and glycine, that originated from deuterated hydrolysate. A glycoside proton at -N9-glycosidic bond could be replaced with deuterium via the reaction of СО2 elimination at the stage of ribulose-5-monophosphate formation from 3-keto-6-phosphogluconic acid with subsequent proton (deuteron attachment at the С1-position of ribulose-5-monophosphate. Two other protons at C2(C3 and C4 positions in ribose residue could be

  5. Text Mining in Cancer Gene and Pathway Prioritization

    OpenAIRE

    Yuan Luo; Gregory Riedlinger; Peter Szolovits

    2014-01-01

    Prioritization of cancer implicated genes has received growing attention as an effective way to reduce wet lab cost by computational analysis that ranks candidate genes according to the likelihood that experimental verifications will succeed. A multitude of gene prioritization tools have been developed, each integrating different data sources covering gene sequences, differential expressions, function annotations, gene regulations, protein domains, protein interactions, and pathways. This rev...

  6. The efflux pump MlcE from the Penicillium solitum compactin biosynthetic gene cluster increases Saccharomyces cerevisiae resistance to natural statins

    DEFF Research Database (Denmark)

    Ley, Ana; Frandsen, Rasmus John Normand

    natural producers difficult to culture in bioreactors. The production limitations associated with the use of natural producers can be overcome by heterologous expression of the biosynthetic pathway in Saccharomyces cerevisiae (1), however, it is crucial to establish a nondestructive resistance mechanism...... in yeast, which would overcome the undesirable effects of statins. One possible mechanism is an active export of statins, a mechanism that does not just provide the resistance but can also significantly ease the purification of the produced compounds. In order to establish export of statins from...... transmembrane efflux pump, capable of exporting natural and semi-natural statins from yeast, and overexpression of MlcE in a statinproducing yeast could therefore greatly improve the commercial production of natural and semi-natural statins. Reference: (1) Xu W. et al., (2013), “LovG: The Thioesterase Required...

  7. Variation suggestive of horizontal gene transfer at a lipopolysaccharide (lps biosynthetic locus in Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen of rice

    Directory of Open Access Journals (Sweden)

    Sonti Ramesh V

    2004-10-01

    Full Text Available Abstract Background In animal pathogenic bacteria, horizontal gene transfer events (HGT have been frequently observed in genomic regions that encode functions involved in biosynthesis of the outer membrane located lipopolysaccharide (LPS. As a result, different strains of the same pathogen can have substantially different lps biosynthetic gene clusters. Since LPS is highly antigenic, the variation at lps loci is attributed to be of advantage in evading the host immune system. Although LPS has been suggested as a potentiator of plant defense responses, interstrain variation at lps biosynthetic gene clusters has not been reported for any plant pathogenic bacterium. Results We report here the complete sequence of a 12.2 kb virulence locus of Xanthomonas oryzae pv. oryzae (Xoo encoding six genes whose products are homologous to functions involved in LPS biosynthesis and transport. All six open reading frames (ORFs have atypical G+C content and altered codon usage, which are the hallmarks of genomic islands that are acquired by horizontal gene transfer. The lps locus is flanked by highly conserved genes, metB and etfA, respectively encoding cystathionine gamma lyase and electron transport flavoprotein. Interestingly, two different sets of lps genes are present at this locus in the plant pathogens, Xanthomonas campestris pv. campestris (Xcc and Xanthomonas axonopodis pv. citri (Xac. The genomic island is present in a number of Xoo strains from India and other Asian countries but is not present in two strains, one from India (BXO8 and another from Nepal (Nepal624 as well as the closely related rice pathogen, Xanthomonas oryzae pv. oryzicola (Xoor. TAIL-PCR analysis indicates that sequences related to Xac are present at the lps locus in both BXO8 and Nepal624. The Xoor strain has a hybrid lps gene cluster, with sequences at the metB and etfA ends, being most closely related to sequences from Xac and the tomato pathogen, Pseudomonas syringae pv. tomato

  8. Target-specific identification and characterization of the putative gene cluster for brasilinolide biosynthesis revealing the mechanistic insights and combinatorial synthetic utility of 2-deoxy-l-fucose biosynthetic enzymes.

    Science.gov (United States)

    Chiu, Hsien-Tai; Weng, Chien-Pao; Lin, Yu-Chin; Chen, Kuan-Hung

    2016-02-14

    Brasilinolides exhibiting potent immunosuppressive and antifungal activities with remarkably low toxicity are structurally characterized by an unusual modified 2-deoxy-l-fucose (2dF) attached to a type I polyketide (PK-I) macrolactone. From the pathogenic producer Nocardia terpenica (Nocardia brasiliensis IFM-0406), a 210 kb genomic fragment was identified by target-specific degenerate primers and subsequently sequenced, revealing a giant nbr gene cluster harboring genes (nbrCDEF) required for TDP-2dF biosynthesis and those for PK-I biosynthesis, modification and regulation. The results showed that the genetic and domain arrangements of nbr PK-I synthases agreed colinearly with the PK-I structures of brasilinolides. Subsequent heterologous expression of nbrCDEF in Escherichia coli accomplished in vitro reconstitution of TDP-2dF biosynthesis. The catalytic functions and mechanisms of NbrCDEF enzymes were further characterized by systematic mix-and-match experiments. The enzymes were revealed to display remarkable substrate and partner promiscuity, leading to the establishment of in vitro hybrid deoxysugar biosynthetic pathways throughout an in situ one-pot (iSOP) method. This study represents the first demonstration of TDP-2dF biosynthesis at the enzyme and molecular levels, and provides new hope for expanding the structural diversity of brasilinolides by combinatorial biosynthesis. PMID:26754528

  9. De Novo Assembly and Genome Analyses of the Marine-Derived Scopulariopsis brevicaulis Strain LF580 Unravels Life-Style Traits and Anticancerous Scopularide Biosynthetic Gene Cluster

    Science.gov (United States)

    Kumar, Abhishek; Henrissat, Bernard; Arvas, Mikko; Syed, Muhammad Fahad; Thieme, Nils; Benz, J. Philipp; Sørensen, Jens Laurids; Record, Eric; Pöggeler, Stefanie; Kempken, Frank

    2015-01-01

    The marine-derived Scopulariopsis brevicaulis strain LF580 produces scopularides A and B, which have anticancerous properties. We carried out genome sequencing using three next-generation DNA sequencing methods. De novo hybrid assembly yielded 621 scaffolds with a total size of 32.2 Mb and 16298 putative gene models. We identified a large non-ribosomal peptide synthetase gene (nrps1) and supporting pks2 gene in the same biosynthetic gene cluster. This cluster and the genes within the cluster are functionally active as confirmed by RNA-Seq. Characterization of carbohydrate-active enzymes and major facilitator superfamily (MFS)-type transporters lead to postulate S. brevicaulis originated from a soil fungus, which came into contact with the marine sponge Tethya aurantium. This marine sponge seems to provide shelter to this fungus and micro-environment suitable for its survival in the ocean. This study also builds the platform for further investigations of the role of life-style and secondary metabolites from S. brevicaulis. PMID:26505484

  10. Yeast Extract and Silver Nitrate Induce the Expression of Phenylpropanoid Biosynthetic Genes and Induce the Accumulation of Rosmarinic Acid in Agastache rugosa Cell Culture

    OpenAIRE

    Woo Tae Park; Mariadhas Valan Arasu; Naif Abdullah Al-Dhabi; Sun Kyung Yeo; Jin Jeon; Jong Seok Park; Sook Young Lee; Sang Un Park

    2016-01-01

    The present study aimed to investigate the role of yeast extract and silver nitrate on the enhancement of phenylpropanoid pathway genes and accumulation of rosmarinic acid in Agastache rugosa cell cultures. The treatment of cell cultures with yeast extract (500 mg/L) and silver nitrate (30 mg/L) for varying times enhanced the expression of genes in the phenylpropanoid pathway and the production of rosmarinic acid. The results indicated that the expression of RAS and HPPR was proportional to t...

  11. Effects of Adding Vindoline and MeJA on Production of Vincristine and Vinblastine, and Transcription of their Biosynthetic Genes in the Cultured CMCs of Catharanthus roseus.

    Science.gov (United States)

    Zhang, Wenjin; Yang, Jiazeng; Zi, Jiachen; Zhu, Jianhua; Song, Liyan; Yu, Rongmin

    2015-12-01

    Vincristine and vinblastine were found by Liquid Chromatography-Mass Spectrometry (LC-MS) in Catharanthus roseuscambial meristem cells (CMCs) jointly treated with 0.25 mM vindoline and methyl jasmonate (MeJA), suggesting that C. roseus CMCs contain a complete set of the enzymes which are in response to convert vindoline into vincristine and vinblastine. Based on the facts that the transcript levels of vindoline-biosynthetic genes (STR, SGD and D4H) were up-regulated instead of being down-regulated by adding itself to the culture, and that the transcriptional factor ORCA3 was up-regulated simultaneously, we further confirmed that the transcription of STR, SGD, D4H was manipulated by ORCA3. PMID:26882673

  12. Inherited variation in immune genes and pathways and glioblastoma risk.

    Science.gov (United States)

    Schwartzbaum, Judith A; Xiao, Yuanyuan; Liu, Yanhong; Tsavachidis, Spyros; Berger, Mitchel S; Bondy, Melissa L; Chang, Jeffrey S; Chang, Susan M; Decker, Paul A; Ding, Bo; Hepworth, Sarah J; Houlston, Richard S; Hosking, Fay J; Jenkins, Robert B; Kosel, Matthew L; McCoy, Lucie S; McKinney, Patricia A; Muir, Kenneth; Patoka, Joe S; Prados, Michael; Rice, Terri; Robertson, Lindsay B; Schoemaker, Minouk J; Shete, Sanjay; Swerdlow, Anthony J; Wiemels, Joe L; Wiencke, John K; Yang, Ping; Wrensch, Margaret R

    2010-10-01

    To determine whether inherited variations in immune function single-nucleotide polymorphisms (SNPs), genes or pathways affect glioblastoma risk, we analyzed data from recent genome-wide association studies in conjunction with predefined immune function genes and pathways. Gene and pathway analyses were conducted on two independent data sets using 6629 SNPs in 911 genes on 17 immune pathways from 525 glioblastoma cases and 602 controls from the University of California, San Francisco (UCSF) and a subset of 6029 SNPs in 893 genes from 531 cases and 1782 controls from MD Anderson (MDA). To further assess consistency of SNP-level associations, we also compared data from the UK (266 cases and 2482 controls) and the Mayo Clinic (114 cases and 111 controls). Although three correlated epidermal growth factor receptor (EGFR) SNPs were consistently associated with glioblastoma in all four data sets (Mantel-Haenzel P values = 1 × 10⁻⁵ to 4 × 10⁻³), independent replication is required as genome-wide significance was not attained. In gene-level analyses, eight immune function genes were significantly (minP < 0.05) associated with glioblastoma; the IL-2RA (CD25) cytokine gene had the smallest minP values in both UCSF (minP = 0.01) and MDA (minP = 0.001) data sets. The IL-2RA receptor is found on the surface of regulatory T cells potentially contributing to immunosuppression characteristic of the glioblastoma microenvironment. In pathway correlation analyses, cytokine signaling and adhesion-extravasation-migration pathways showed similar associations with glioblastoma risk in both MDA and UCSF data sets. Our findings represent the first systematic description of immune genes and pathways that characterize glioblastoma risk. PMID:20668009

  13. Pathway level analysis of gene expression using singular value decomposition

    Directory of Open Access Journals (Sweden)

    Kepler Thomas B

    2005-09-01

    Full Text Available Abstract Background A promising direction in the analysis of gene expression focuses on the changes in expression of specific predefined sets of genes that are known in advance to be related (e.g., genes coding for proteins involved in cellular pathways or complexes. Such an analysis can reveal features that are not easily visible from the variations in the individual genes and can lead to a picture of expression that is more biologically transparent and accessible to interpretation. In this article, we present a new method of this kind that operates by quantifying the level of 'activity' of each pathway in different samples. The activity levels, which are derived from singular value decompositions, form the basis for statistical comparisons and other applications. Results We demonstrate our approach using expression data from a study of type 2 diabetes and another of the influence of cigarette smoke on gene expression in airway epithelia. A number of interesting pathways are identified in comparisons between smokers and non-smokers including ones related to nicotine metabolism, mucus production, and glutathione metabolism. A comparison with results from the related approach, 'gene-set enrichment analysis', is also provided. Conclusion Our method offers a flexible basis for identifying differentially expressed pathways from gene expression data. The results of a pathway-based analysis can be complementary to those obtained from one more focused on individual genes. A web program PLAGE (Pathway Level Analysis of Gene Expression for performing the kinds of analyses described here is accessible at http://dulci.biostat.duke.edu/pathways.

  14. The Simultaneous Repression of CCR and CAD, Two Enzymes of the Lignin Biosynthetic Pathway, Results in Sterility and Dwarfism in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Johanne Thévenin; Brigitte Pollet; Bruno Letarnec; Luc Saulnier; Lionel Gissot; Alessandra Maia-Grondard; Catherine Lapierre; Lise Jouanina

    2011-01-01

    Cinnamoyl CoA reductase(CCR)and cinnamyl alcohol dehydrogenase(CAD)catalyze the last steps of monolignol biosynthesis.In Arabidopsis,one CCR gene(CCR1,At1g15950)and two CAD genes(CAD C At3g19450 and CAD D At4g34230)are involved in this pathway.A triple cad c cad d ccr1 mutant,named ccc,was obtained.This mutant displays a severe dwarf phenotype and male sterility.The lignin content in ccc mature stems is reduced to 50% of the wild-type level.In addition,stem lignin structure is severely affected,as shown by the dramatic enrichment in resistant inter-unit bonds and incorporation into the polymer of monolignol precursors such as coniferaldehyde,sinapaldehyde,and ferulic acid.Male sterility is due to the lack of lignification in the anther endothecium,which causes the failure of anther dehiscence and of pollen release.The ccc hypolignified stems accumulate higher amounts of flavonol glycosides,sinapoyl malate and feruloyl malate,which suggests a redirection of the phenolic pathway.Therefore,the absence of CAD and CCR,key enzymes of the monolignol pathway,has more severe consequences on the phenotype than the individual absence of each of them.Induction of another CCR(CCR2,At1g80820)and another CAD(CAD1,At4g39330)does not compensate the absence of the main CCR and CAD activities.This lack of CCR and CAD activities not only impacts lignification,but also severely affects the development of the plants.These consequences must be carefully considered when trying to reduce the lignin content of plants in order to facilitate the lignocellulose-to-bioethanol conversion process.

  15. Genes of the de novo and salvage biosynthesis pathways of vitamin B6 are regulated under oxidative stress in the plant pathogen Rhizoctonia solani

    Directory of Open Access Journals (Sweden)

    Jamil eSamsatly

    2016-01-01

    Full Text Available B6 is recognized as an important cofactor required for numerous metabolic enzymes, and has been shown to act as an antioxidant and play a role in stress responses. It can be synthesized through two different routes: salvage and de novo pathways. However, little is known about the possible function of the vitamin B6 pathways in the fungal plant pathogen Rhizoctonia solani. Using genome walking, the de novo biosynthetic pathway genes; RsolPDX1 and RsolPDX2 and the salvage biosynthetic pathway gene, RsolPLR were sequenced. The predicted amino acid sequences of the three genes had high degree of similarity to other fungal PDX1, PDX2, and PLR proteins and are closely related to other R. solani anastomosis groups. We also examined their regulation when subjected to ROS stress inducers, the superoxide generator paraquat, or H2O2, and compared it to the well-known antioxidant genes, catalase and glutathione-S-transferase (GST. The genes were differentially regulated with substantial transcript levels as high as 33 fold depending on the gene and type of stress reflecting that differences in the type of damage induced by ROS. Exogenous addition of the vitamers PN or PLP in culture medium significantly induced the transcription of the vitamin B6 de novo encoding genes as early as 0.5 hour post treatment (HPT. On the other hand, transcription of RsolPLR was vitamer-specific; a down regulation upon supplementation of PN and upregualtion with PLP. Our results suggest that accumulation of ROS in R. solani mycelia was linked to transcriptional regulation of the three genes and R. solani vitamin B6 biosynthesis machinery could be implicated similar to catalases and GST as an antioxidant stress protector against oxidative stress.

  16. Activation of glyoxylate pathway without the activation of its related gene in succinate-producing engineered Escherichia coli.

    Science.gov (United States)

    Zhu, Li-Wen; Li, Xiao-Hong; Zhang, Lei; Li, Hong-Mei; Liu, Jian-Hua; Yuan, Zhan-Peng; Chen, Tao; Tang, Ya-Jie

    2013-11-01

    For the first time, glyoxylate pathway in the biosynthesis of succinate was activated without the genetic manipulations of any gene related with glyoxylate pathway. Furthermore, the inactivation of succinate biosynthesis by-products genes encoding acetate kinase (ackA) and phosphotransacetylase (pta) was proven to be the key factor to activate glyoxylate pathway in the metabolically engineered Escherichia coli under anaerobic conditions. In order to enhance the succinate biosynthesis specifically, the genes (i.e., ldhA, ptsG, ackA-pta, focA-pflB, adhE) that disrupt by-products biosynthesis pathways were combinatorially deleted, while the E. coli malate dehydrogenase (MDH) was overexpression. The highest succinate production of 150.78 mM was obtained with YJ003 (ΔldhA, ptsG, ackA-pta), which were 5-folds higher than that obtained with wild type control strain DY329 (25.13 mM). For further understand the metabolic response as a result of several genetic manipulations, an anaerobic stoichiometric model that takes into account the glyoxylate pathway have successfully been implemented to estimate the intracellular fluxes in various recombinant E. coli. The fraction to the glyoxylate pathway from OAA in DY329 was 0 and 31% in YJ003, which indicated that even without the absence of the iclR mutation; the glyoxylate pathway was also activated by deleting the by-products biosynthetic genes, and to be responsible for the higher succinate yields. For further strengthen glyoxylate pathway, a two-stage fed-batch fermentation process was developed by using a 600 g l(-1) glucose feed to achieve a cell growth rate of 0.07 h(-1) in aerobic fermentation, and using a 750 g l(-1) glucose feed to maintain the residual glucose concentration around 40 g l(-1) when its residual level decreased to 10gl(-1) in anaerobic fermentation. The best mutant strain YJ003/pTrc99A-mdh produces final succinate concentration of 274 mM by fed-batch culture, which was 10-folds higher than that obtained

  17. Differential effect of environmental conditions on the growth and regulation of the fumonisin biosynthetic gene FUM1 in the maize pathogens and fumonisin producers Fusarium verticillioides and Fusarium proliferatum

    OpenAIRE

    Marin, P.; Magan, Naresh; Vazquez, C.; Gonzalez-Jaen, M. T.

    2010-01-01

    The effects of ecophysiological factors, temperature and solute potential, on both the growth and the regulation of the fumonisin biosynthetic FUM1 gene were studied and compared in one isolate each of the two closely related fumonisin- producing and maize pathogens Fusarium verticillioides and Fusarium proliferatum. The effect of solute potential and temperature was examined on in vitro mycelia growth and on the expression of the FUM1 gene, quantified by species-specific re...

  18. Fusarium verticillioides SGE1 is required for full virulence and regulates expression of protein effector and secondary metabolite biosynthetic genes.

    Science.gov (United States)

    Brown, Daren W; Busman, Mark; Proctor, Robert H

    2014-08-01

    The transition from one lifestyle to another in some fungi is initiated by a single orthologous gene, SGE1, that regulates markedly different genes in different fungi. Despite these differences, many of the regulated genes encode effector proteins or proteins involved in the synthesis of secondary metabolites (SM), both of which can contribute to pathogenicity. Fusarium verticillioides is both an endophyte and a pathogen of maize and can grow as a saprophyte on dead plant material. During growth on live maize plants, the fungus can synthesize a number of toxic SM, including fumonisins, fusarins, and fusaric acid, that can contaminate kernels and kernel-based food and feed. In this study, the role of F. verticillioides SGE1 in pathogenicity and secondary metabolism was examined by gene deletion analysis and transcriptomics. SGE1 is not required for vegetative growth or conidiation but is required for wild-type pathogenicity and affects synthesis of multiple SM, including fumonisins and fusarins. Induced expression of SGE1 enhanced or reduced expression of hundreds of genes, including numerous putative effector genes that could contribute to growth in planta; genes encoding cell surface proteins; gene clusters required for synthesis of fusarins, bikaverin, and an unknown metabolite; as well as the gene encoding the fumonisin cluster transcriptional activator. Together, our results indicate that SGE1 has a role in global regulation of transcription in F. verticillioides that impacts but is not absolutely required for secondary metabolism and pathogenicity on maize. PMID:24742071

  19. A chain reaction approach to modelling gene pathways.

    Science.gov (United States)

    Cheng, Gary C; Chen, Dung-Tsa; Chen, James J; Soong, Seng-Jaw; Lamartiniere, Coral; Barnes, Stephen

    2012-08-01

    BACKGROUND: Of great interest in cancer prevention is how nutrient components affect gene pathways associated with the physiological events of puberty. Nutrient-gene interactions may cause changes in breast or prostate cells and, therefore, may result in cancer risk later in life. Analysis of gene pathways can lead to insights about nutrient-gene interactions and the development of more effective prevention approaches to reduce cancer risk. To date, researchers have relied heavily upon experimental assays (such as microarray analysis, etc.) to identify genes and their associated pathways that are affected by nutrient and diets. However, the vast number of genes and combinations of gene pathways, coupled with the expense of the experimental analyses, has delayed the progress of gene-pathway research. The development of an analytical approach based on available test data could greatly benefit the evaluation of gene pathways, and thus advance the study of nutrient-gene interactions in cancer prevention. In the present study, we have proposed a chain reaction model to simulate gene pathways, in which the gene expression changes through the pathway are represented by the species undergoing a set of chemical reactions. We have also developed a numerical tool to solve for the species changes due to the chain reactions over time. Through this approach we can examine the impact of nutrient-containing diets on the gene pathway; moreover, transformation of genes over time with a nutrient treatment can be observed numerically, which is very difficult to achieve experimentally. We apply this approach to microarray analysis data from an experiment which involved the effects of three polyphenols (nutrient treatments), epigallo-catechin-3-O-gallate (EGCG), genistein, and resveratrol, in a study of nutrient-gene interaction in the estrogen synthesis pathway during puberty. RESULTS: In this preliminary study, the estrogen synthesis pathway was simulated by a chain reaction model. By

  20. Research Progress of Terpenoid Indole Alkaloids (TIAs) Biosynthetic Pathway of Catharanthus roseus%长春花萜类吲哚生物碱的生物合成途径

    Institute of Scientific and Technical Information of China (English)

    邢世海; 王荃; 潘琪芳; 赵静雅; 唐克轩

    2012-01-01

    There are more than 130 types of terpenoid indole alkaloids (TIAs) in medicinal plant Catharanthus roseus (L. ) G. Don. In this review, the upstream and downstream of the biosynthesis of these alkaloids in C. roseus, and related studies were summarized. During upstream pathway, tryptamine which came from indole biosynthetic pathway and secologamn which came from monoterpenoid pathway were synthesized into 3a(S)-Strictosidine which is the common precurors of different TIAs by the corresponding enzymatic catalysis. Then various TIAs were found from 3α(S)-Strictosidine by enzymes during downstream process. The TIAs biosynthetic pathway in C. roseus were outlined in the article in order to provide useful information for the researchers who are interested in terpenoid indole alkaloids biosynthetic pathway and metabolic regulation.%药用植物长春花含有130余种萜类吲哚生物碱,该文对近年来国内外有关长春花生物碱合成的上游和下游阶段及其相关研究进行详细的归纳总结.长春花上游合成途径中在相应的酶促作用下由吲哚途径产生的色胺和由类萜途径产生的裂环马钱子苷在异胡豆苷合成酶的催化作用下形成了所有长春花TIAs的共同前体物质3α-异胡豆苷,3α-异胡豆苷再由下游途径的各种酶促作用下生成种类各异的长春花TIAs.通过对长春花TIAs合成途径的阐述,为萜类吲哚生物碱合成及其代谢调控的相关研究提供参考.

  1. Characterization of SpnQ from the spinosyn biosynthetic pathway of Saccharopolyspora spinosa: mechanistic and evolutionary implications for C-3 deoxygenation in deoxysugar biosynthesis.

    Science.gov (United States)

    Hong, Lin; Zhao, Zongbao; Liu, Hung-wen

    2006-11-01

    The C-3 deoxygenation step in the biosynthesis of d-forosamine (4-N,N-dimethylamino-2,3,4,6-tetradeoxy-d-threo-hexopyranose), a constituent of spinosyn produced by Saccharopolyspora spinosa, was investigated. The spnQ gene, proposed to encode a TDP-4-keto-2,6-dideoxy-d-glucose 3-dehydratase was cloned and overexpressed in E. coli. Characterization of the purified enzyme established that it is a PMP and iron-sulfur containing enzyme which catalyzes the C-3 deoxygenation in a reductase-dependent manner similar to that of the previously well characterized hexose 3-dehydrase E1 from Yersinia pseudotuberculosis. However, unlike E1, which has evolved to work with a specific reductase partner present in its gene cluster, SpnQ lacks a specific reductase, and works efficiently with general cellular reductases ferredoxin/ferredoxin reductase or flavodoxin/flavodoxin reductase. SpnQ also catalyzes C-4 transamination in the absence of an electron transfer intermediary and in the presence of PLP and l-glutamate. Under the same conditions, both E1 and the related hexose 3-dehydrase, ColD, catalyze C-3 deoxygenation. Thus, SpnQ possesses important features which distinguish it from other well studied homologues, suggesting unique evolutionary pathways for each of the three hexose 3-dehydrases studied thus far. PMID:17076492

  2. Polymorphisms in monolignol biosynthetic genes are associated with biomass yield and agronomic traits in European maize (Zea mays L.)

    DEFF Research Database (Denmark)

    Chen, Yongsheng; Zein, Imad; Brenner, Everton A;

    2010-01-01

    Background Reduced lignin content leads to higher cell wall digestibility and, therefore, better forage quality and increased conversion of lignocellulosic biomass into ethanol. However, reduced lignin content might lead to weaker stalks, lodging, and reduced biomass yield. Genes encoding enzymes...

  3. Endocytotic uptake, processing, and retroendocytosis of human biosynthetic proinsulin by rat fibroblasts transfected with the human insulin receptor gene.

    OpenAIRE

    Levy, J R; Ullrich, A; Olefsky, J M

    1988-01-01

    The cellular itinerary and processing of insulin and proinsulin were studied to elucidate possible mechanisms for the observed in vivo differences in the biologic half-lives of these two hormones. A rat fibroblast cell line transfected with a normal human insulin receptor gene was used. Due to gene amplification, the cells express large numbers of receptors and are ideal for studying a ligand, such as proinsulin, that has a low affinity for the insulin receptor. Competitive binding at 4 degre...

  4. Expression Profiling of Glucosinolate Biosynthetic Genes in Brassica oleracea L. var. capitata Inbred Lines Reveals Their Association with Glucosinolate Content.

    Science.gov (United States)

    Robin, Arif Hasan Khan; Yi, Go-Eun; Laila, Rawnak; Yang, Kiwoung; Park, Jong-In; Kim, Hye Ran; Nou, Ill-Sup

    2016-01-01

    Glucosinolates are the biochemical compounds that provide defense to plants against pathogens and herbivores. In this study, the relative expression level of 48 glucosinolate biosynthesis genes was explored in four morphologically-different cabbage inbred lines by qPCR analysis. The content of aliphatic and indolic glucosinolate molecules present in those cabbage lines was also estimated by HPLC analysis. The possible association between glucosinolate accumulation and related gene expression level was explored by principal component analysis (PCA). The genotype-dependent variation in the relative expression level of different aliphatic and indolic glucosinolate biosynthesis genes is the novel result of this study. A total of eight different types of glucosinolates, including five aliphatic and three indolic glucosinolates, was detected in four cabbage lines. Three inbred lines BN3383, BN4059 and BN4072 had no glucoraphanin, sinigrin and gluconapin detected, but the inbred line BN3273 had these three aliphatic glucosinolate compounds. PCA revealed that a higher expression level of ST5b genes and lower expression of GSL-OH was associated with the accumulation of these three aliphatic glucosinolate compounds. PCA further revealed that comparatively higher accumulation of neoglucobrassicin in the inbred line, BN4072, was associated with a high level of expression of MYB34 (Bol017062) and CYP81F1 genes. The Dof1 and IQD1 genes probably trans-activated the genes related to biosynthesis of glucoerucin and methoxyglucobrassicin for their comparatively higher accumulation in the BN4059 and BN4072 lines compared to the other two lines, BN3273 and BN3383. A comparatively higher progoitrin level in BN3273 was probably associated with the higher expression level of the GSL-OH gene. The cabbage inbred line BN3383 accounted for the significantly higher relative expression level for the 12 genes out of 48, but this line had comparatively lower total glucosinolates detected

  5. Expression Profiling of Glucosinolate Biosynthetic Genes in Brassica oleracea L. var. capitata Inbred Lines Reveals Their Association with Glucosinolate Content

    Directory of Open Access Journals (Sweden)

    Arif Hasan Khan Robin

    2016-06-01

    Full Text Available Glucosinolates are the biochemical compounds that provide defense to plants against pathogens and herbivores. In this study, the relative expression level of 48 glucosinolate biosynthesis genes was explored in four morphologically-different cabbage inbred lines by qPCR analysis. The content of aliphatic and indolic glucosinolate molecules present in those cabbage lines was also estimated by HPLC analysis. The possible association between glucosinolate accumulation and related gene expression level was explored by principal component analysis (PCA. The genotype-dependent variation in the relative expression level of different aliphatic and indolic glucosinolate biosynthesis genes is the novel result of this study. A total of eight different types of glucosinolates, including five aliphatic and three indolic glucosinolates, was detected in four cabbage lines. Three inbred lines BN3383, BN4059 and BN4072 had no glucoraphanin, sinigrin and gluconapin detected, but the inbred line BN3273 had these three aliphatic glucosinolate compounds. PCA revealed that a higher expression level of ST5b genes and lower expression of GSL-OH was associated with the accumulation of these three aliphatic glucosinolate compounds. PCA further revealed that comparatively higher accumulation of neoglucobrassicin in the inbred line, BN4072, was associated with a high level of expression of MYB34 (Bol017062 and CYP81F1 genes. The Dof1 and IQD1 genes probably trans-activated the genes related to biosynthesis of glucoerucin and methoxyglucobrassicin for their comparatively higher accumulation in the BN4059 and BN4072 lines compared to the other two lines, BN3273 and BN3383. A comparatively higher progoitrin level in BN3273 was probably associated with the higher expression level of the GSL-OH gene. The cabbage inbred line BN3383 accounted for the significantly higher relative expression level for the 12 genes out of 48, but this line had comparatively lower total

  6. The ARG1-LIKE2 gene of Arabidopsis functions in a gravity signal transduction pathway that is genetically distinct from the PGM pathway

    Science.gov (United States)

    Guan, Changhui; Rosen, Elizabeth S.; Boonsirichai, Kanokporn; Poff, Kenneth L.; Masson, Patrick H.

    2003-01-01

    The arl2 mutants of Arabidopsis display altered root and hypocotyl gravitropism, whereas their inflorescence stems are fully gravitropic. Interestingly, mutant roots respond like the wild type to phytohormones and an inhibitor of polar auxin transport. Also, their cap columella cells accumulate starch similarly to wild-type cells, and mutant hypocotyls display strong phototropic responses to lateral light stimulation. The ARL2 gene encodes a DnaJ-like protein similar to ARG1, another protein previously implicated in gravity signal transduction in Arabidopsis seedlings. ARL2 is expressed at low levels in all organs of seedlings and plants. arl2-1 arg1-2 double mutant roots display kinetics of gravitropism similar to those of single mutants. However, double mutants carrying both arl2-1 and pgm-1 (a mutation in the starch-biosynthetic gene PHOSPHOGLUCOMUTASE) at the homozygous state display a more pronounced root gravitropic defect than the single mutants. On the other hand, seedlings with a null mutation in ARL1, a paralog of ARG1 and ARL2, behave similarly to the wild type in gravitropism and other related assays. Taken together, the results suggest that ARG1 and ARL2 function in the same gravity signal transduction pathway in the hypocotyl and root of Arabidopsis seedlings, distinct from the pathway involving PGM.

  7. Circular Polymerase Extension Cloning of Complex Gene Libraries and Pathways

    OpenAIRE

    Quan, Jiayuan; Tian, Jingdong

    2009-01-01

    High-throughput genomics and the emerging field of synthetic biology demand ever more convenient, economical, and efficient technologies to assemble and clone genes, gene libraries and synthetic pathways. Here, we describe the development of a novel and extremely simple cloning method, circular polymerase extension cloning (CPEC). This method uses a single polymerase to assemble and clone multiple inserts with any vector in a one-step reaction in vitro. No restriction digestion, ligation, or ...

  8. Expression data on liver metabolic pathway genes and proteins

    OpenAIRE

    Mooli Raja Gopal Reddy; Chodisetti Pavan Kumar; Malleswarapu Mahesh; Manchiryala Sravan Kumar; Jeyakumar, Shanmugam M

    2016-01-01

    Here, we present the expression data on various metabolic pathways of liver with special emphasize on lipid and carbohydrate metabolism and long chain polyunsaturated fatty acid (PUFA) synthesis, both at gene and protein levels. The data were obtained to understand the effect of vitamin A deficiency on the expression status (both gene and protein levels) of some of the key factors involved in lipogenesis, fatty acid oxidation, triglyceride secretion, long chain PUFA, resolvin D1 synthesis, gl...

  9. Biosynthetic Gene Cluster of Cetoniacytone A, an Unusual Aminocyclitol from the Endosymbiotic Bacterium Actinomyces sp. Lu 9419

    OpenAIRE

    Wu, Xiumei; Flatt, Patricia M.; Xu, Hui; Mahmud, Taifo

    2009-01-01

    A gene cluster responsible for the biosynthesis of the antitumor agent cetoniacytone A was identified in Actinomyces sp. strain Lu 9419, an endosymbiotic bacteria isolated from the intestines of the rose chafer beetle (Cetonia aurata). The nucleotide sequence analysis of the 46 kb DNA region revealed the presence of 31 complete ORFs, including genes predicted to encode a 2-epi-5-epi-valiolone synthase (CetA), a glyoxalase/bleomycin resistance protein (CetB), an acyltransferase (CetD), an FAD-...

  10. VIGS approach reveals the modulation of anthocyanin biosynthetic genes by CaMYB in chili pepper leaves

    OpenAIRE

    Zhang, Zhen; Li, Da-Wei; Jin, Jing-Hao; Yin, Yan-Xu; Zhang, Huai-Xia; Chai, Wei-Guo; Gong, Zhen-Hui

    2015-01-01

    The purple coloration of pepper leaves arises from the accumulation of anthocyanin. Three regulatory and 12 structural genes have been characterized for their involvement in the anthocyanin biosynthesis. Examination of the abundance of these genes in leaves showed that the majority of them differed between anthocyanin pigmented line Z1 and non-pigmented line A3. Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation. Moreov...

  11. Identification of Quorum-Sensing Signal Molecules and a Biosynthetic Gene in Alicycliphilus sp. Isolated from Activated Sludge.

    Science.gov (United States)

    Morohoshi, Tomohiro; Okutsu, Noriya; Xie, Xiaonan; Ikeda, Tsukasa

    2016-01-01

    Activated sludge is a complicated mixture of various microorganisms that is used to treat sewage and industrial wastewater. Many bacteria produce N-acylhomoserine lactone (AHL) as a quorum-sensing signal molecule to regulate the expression of the exoenzymes used for wastewater treatment. Here, we isolated an AHL-producing bacteria from an activated sludge sample collected from an electronic component factory, which we named Alicycliphilus sp. B1. Clone library analysis revealed that Alicycliphilus was a subdominant genus in this sample. When we screened the activated sludge sample for AHL-producing strains, 12 of 14 the AHL-producing isolates were assigned to the genus Alicycliphilus. A putative AHL-synthase gene, ALISP_0667, was cloned from the genome of B1 and transformed into Escherichia coli DH5α. The AHLs were extracted from the culture supernatants of the B1 strain and E. coli DH5α cells harboring the ALISP_0667 gene and were identified by liquid chromatography-mass spectrometry as N-(3-hydroxydecanoyl)-l-homoserine lactone and N-(3-hydroxydodecanoyl)-l-homoserine lactone. The results of comparative genomic analysis suggested that the quorum-sensing genes in the B1 strain might have been acquired by horizontal gene transfer within activated sludge. PMID:27490553

  12. Phase variable O antigen biosynthetic genes control expression of the major protective antigen and bacteriophage receptor in Vibrio cholerae O1.

    Directory of Open Access Journals (Sweden)

    Kimberley D Seed

    2012-09-01

    Full Text Available The Vibrio cholerae lipopolysaccharide O1 antigen is a major target of bacteriophages and the human immune system and is of critical importance for vaccine design. We used an O1-specific lytic bacteriophage as a tool to probe the capacity of V. cholerae to alter its O1 antigen and identified a novel mechanism by which this organism can modulate O antigen expression and exhibit intra-strain heterogeneity. We identified two phase variable genes required for O1 antigen biosynthesis, manA and wbeL. manA resides outside of the previously recognized O1 antigen biosynthetic locus, and encodes for a phosphomannose isomerase critical for the initial step in O1 antigen biosynthesis. We determined that manA and wbeL phase variants are attenuated for virulence, providing functional evidence to further support the critical role of the O1 antigen for infectivity. We provide the first report of phase variation modulating O1 antigen expression in V. cholerae, and show that the maintenance of these phase variable loci is an important means by which this facultative pathogen can generate the diverse subpopulations of cells needed for infecting the host intestinal tract and for escaping predation by an O1-specific phage.

  13. Azithromycin treatment alters gene expression in inflammatory, lipid metabolism, and cell cycle pathways in well-differentiated human airway epithelia.

    Directory of Open Access Journals (Sweden)

    Carla Maria P Ribeiro

    Full Text Available Prolonged macrolide antibiotic therapy at low doses improves clinical outcome in patients affected with diffuse panbronchiolitis and cystic fibrosis. Consensus is building that the therapeutic effects are due to anti-inflammatory, rather than anti-microbial activities, but the mode of action is likely complex. To gain insights into how the macrolide azithromycin (AZT modulates inflammatory responses in airways, well-differentiated primary cultures of human airway epithelia were exposed to AZT alone, an inflammatory stimulus consisting of soluble factors from cystic fibrosis airways, or AZT followed by the inflammatory stimulus. RNA microarrays were conducted to identify global and specific gene expression changes. Analysis of gene expression changes revealed that the AZT treatment alone altered the gene profile of the cells, primarily by significantly increasing the expression of lipid/cholesterol genes and decreasing the expression of cell cycle/mitosis genes. The increase in cholesterol biosynthetic genes was confirmed by increased filipin staining, an index of free cholesterol, after AZT treatment. AZT also affected genes with inflammatory annotations, but the effect was variable (both up- and down-regulation and gene specific. AZT pretreatment prevented the up-regulation of some genes, such as MUC5AC and MMP9, triggered by the inflammatory stimulus, but the up-regulation of other inflammatory genes, e.g., cytokines and chemokines, such as interleukin-8, was not affected. On the other hand, HLA genes were increased by AZT. Notably, secreted IL-8 protein levels did not reflect mRNA levels, and were, in fact, higher after AZT pretreatment in cultures exposed to the inflammatory stimulus, suggesting that AZT can affect inflammatory pathways other than by altering gene expression. These findings suggest that the specific effects of AZT on inflamed and non-inflamed airway epithelia are likely relevant to its clinical activity, and their apparent

  14. Integrative analysis of RUNX1 downstream pathways and target genes

    Directory of Open Access Journals (Sweden)

    Liu Marjorie

    2008-07-01

    Full Text Available Abstract Background The RUNX1 transcription factor gene is frequently mutated in sporadic myeloid and lymphoid leukemia through translocation, point mutation or amplification. It is also responsible for a familial platelet disorder with predisposition to acute myeloid leukemia (FPD-AML. The disruption of the largely unknown biological pathways controlled by RUNX1 is likely to be responsible for the development of leukemia. We have used multiple microarray platforms and bioinformatic techniques to help identify these biological pathways to aid in the understanding of why RUNX1 mutations lead to leukemia. Results Here we report genes regulated either directly or indirectly by RUNX1 based on the study of gene expression profiles generated from 3 different human and mouse platforms. The platforms used were global gene expression profiling of: 1 cell lines with RUNX1 mutations from FPD-AML patients, 2 over-expression of RUNX1 and CBFβ, and 3 Runx1 knockout mouse embryos using either cDNA or Affymetrix microarrays. We observe that our datasets (lists of differentially expressed genes significantly correlate with published microarray data from sporadic AML patients with mutations in either RUNX1 or its cofactor, CBFβ. A number of biological processes were identified among the differentially expressed genes and functional assays suggest that heterozygous RUNX1 point mutations in patients with FPD-AML impair cell proliferation, microtubule dynamics and possibly genetic stability. In addition, analysis of the regulatory regions of the differentially expressed genes has for the first time systematically identified numerous potential novel RUNX1 target genes. Conclusion This work is the first large-scale study attempting to identify the genetic networks regulated by RUNX1, a master regulator in the development of the hematopoietic system and leukemia. The biological pathways and target genes controlled by RUNX1 will have considerable importance in disease

  15. Multiple gene sequence analysis using genes of the bacterial DNA repair pathway

    Directory of Open Access Journals (Sweden)

    Miguel Rotelok Neto

    2015-06-01

    Full Text Available The ability to recognize and repair abnormal DNA structures is common to all forms of life. Physiological studies and genomic sequencing of a variety of bacterial species have identified an incredible diversity of DNA repair pathways. Despite the amount of available genes in public database, the usual method to place genomes in a taxonomic context is based mainly on the 16S rRNA or housekeeping genes. Thus, the relationships among genomes remain poorly understood. In this work, an approach of multiple gene sequence analysis based on genes of DNA repair pathway was used to compare bacterial genomes. Housekeeping and DNA repair genes were searched in 872 completely sequenced bacterial genomes. Seven DNA repair and housekeeping genes from distinct metabolic pathways were selected, aligned, edited and concatenated head-to-tail to form a super-gene. Results showed that the multiple gene sequence analysis using DNA repair genes had better resolution at class level than the housekeeping genes. As housekeeping genes, the DNA repair genes were advantageous to separate bacterial groups at low taxonomic levels and also sensitive to genes derived from horizontal transfer.

  16. Modular optimization of multi-gene pathways for fumarate production.

    Science.gov (United States)

    Chen, Xiulai; Zhu, Pan; Liu, Liming

    2016-01-01

    Microbial fumarate production from renewable feedstock is a promising and sustainable alternative to petroleum-based chemical synthesis. Here, we report a modular engineering approach that systematically removed metabolic pathway bottlenecks and led to significant titer improvements in a multi-gene fumarate metabolic pathway. On the basis of central pathway architecture, yeast fumarate biosynthesis was re-cast into three modules: reduction module, oxidation module, and byproduct module. We targeted reduction module and oxidation module to the cytoplasm and the mitochondria, respectively. Combinatorially tuning pathway efficiency by constructing protein fusions RoMDH-P160A and KGD2-SUCLG2 and optimizing metabolic balance by controlling genes RoPYC, RoMDH-P160A, KGD2-SUCLG2 and SDH1 expression strengths led to significantly improved fumarate production (20.46 g/L). In byproduct module, synthetizing DNA-guided scaffolds and designing sRNA switchs enabled further production improvement up to 33.13 g/L. These results suggest that modular pathway engineering can systematically optimize biosynthesis pathways to enable an efficient production of fumarate. PMID:26241189

  17. Differential Expression of Anthocyanin Biosynthetic Genes in Relation to Anthocyanin Accumulation in the Pericarp of Litchi Chinensis Sonn

    OpenAIRE

    Yong-Zan Wei; Fu-Chu Hu; Gui-Bing Hu; Xiao-Jing Li; Xu-Ming Huang; Hui-Cong Wang

    2011-01-01

    Litchi has diverse fruit color phenotypes, yet no research reflects the biochemical background of this diversity. In this study, we evaluated 12 litchi cultivars for chromatic parameters and pigments, and investigated the effects of abscisic acid, forchlorofenron (CPPU), bagging and debagging treatments on fruit coloration in cv. Feizixiao, an unevenly red cultivar. Six genes encoding chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), dihydroflavonol 4-reductase...

  18. Organization, Evolution, and Expression Analysis of the Biosynthetic Gene Cluster for Scytonemin, a Cyanobacterial UV-Absorbing Pigment▿ †

    OpenAIRE

    Sorrels, Carla M.; Proteau, Philip J.; Gerwick, William H.

    2009-01-01

    Cyanobacteria are photosynthetic prokaryotes capable of protecting themselves from UV radiation through the biosynthesis of UV-absorbing secondary metabolites, such as the mycosporines and scytonemin. Scytonemin, a novel indolic-phenolic pigment, is found sequestered in the sheath, where it provides protection to the subtending cells during exposure to UV radiation. The biosynthesis of scytonemin is encoded by a previously identified gene cluster that is present in six cyanobacterial species ...

  19. Identification and activation of novel biosynthetic gene clusters by genome mining in the kirromycin producer Streptomyces collinus Tü 365

    DEFF Research Database (Denmark)

    Iftime, Dumitrita; Kulik, Andreas; Härtner, Thomas;

    2016-01-01

    Streptomycetes are prolific sources of novel biologically active secondary metabolites with pharmaceutical potential. S. collinus Tü 365 is a Streptomyces strain, isolated 1972 from Kouroussa (Guinea). It is best known as producer of the antibiotic kirromycin, an inhibitor of the protein biosynth...... of a lanthipeptide, a carotenoid, five terpenoid compounds, an ectoine, a siderophore and a spore pigment-associated gene cluster to their respective biosynthesis products....

  20. Identification and Expression Analysis of Glucosinolate Biosynthetic Genes and Estimation of Glucosinolate Contents in Edible Organs of Brassica oleracea Subspecies

    OpenAIRE

    Go-Eun Yi; Arif Hasan Khan Robin; Kiwoung Yang; Jong-In Park; Jong-Goo Kang; Tae-Jin Yang; Ill-Sup Nou

    2015-01-01

    Glucosinolates are anti-carcinogenic, anti-oxidative biochemical compounds that defend plants from insect and microbial attack. Glucosinolates are abundant in all cruciferous crops, including all vegetable and oilseed Brassica species. Here, we studied the expression of glucosinolate biosynthesis genes and determined glucosinolate contents in the edible organs of a total of 12 genotypes of Brassica oleracea: three genotypes each from cabbage, kale, kohlrabi and cauliflower subspecies. Among t...

  1. Identification and Functional Characterization of Genes Encoding Omega-3 Polyunsaturated Fatty Acid Biosynthetic Activities from Unicellular Microalgae

    OpenAIRE

    Royah Vaezi; Napier, Johnathan A.; Olga Sayanova

    2013-01-01

    In order to identify novel genes encoding enzymes involved in the biosynthesis of nutritionally important omega-3 long chain polyunsaturated fatty acids, a database search was carried out in the genomes of the unicellular photoautotrophic green alga Ostreococcus RCC809 and cold-water diatom Fragilariopsis cylindrus. The search led to the identification of two putative “front-end” desaturases (Δ6 and Δ4) from Ostreococcus RCC809 and one Δ6-elongase from F. cylindrus. Heterologous expression of...

  2. antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters

    DEFF Research Database (Denmark)

    Weber, Tilmann; Blin, Kai; Duddela, Srikanth; Krug, Daniel; Kim, Hyun Uk; Bruccoleri, Robert; Lee, Sang Yup; Fischbach, Michael A.; Müller, Rolf; Wohlleben, Wolfgang

    recently published ClusterFinder algorithm now allows using this probabilistic algorithm to detect putative gene clusters of unknown types. Also, a new dereplication variant of the ClusterBlast module now identifies similarities of identified clusters to any of 1172 clusters with known end products. At the...... reduction states. Finally, in order for users to be able to organize and analyze multiple antiSMASH outputs in a private setting, a new XML output module allows offline editing of antiSMASH annotations within the Geneious software....

  3. Molecular Cloning, Expression Pattern and Genotypic Effects on Glucoraphanin Biosynthetic Related Genes in Chinese Kale (Brassica oleracea var. alboglabra Bailey

    Directory of Open Access Journals (Sweden)

    Ling Yin

    2015-11-01

    Full Text Available Glucoraphanin is a plant secondary metabolite that is involved in plant defense and imparts health-promoting properties to cruciferous vegetables. In this study, three genes involved in glucoraphanin metabolism, branched-chain aminotransferase 4 (BCAT4, methylthioalkylmalate synthase 1 (MAM1 and dihomomethionine N-hydroxylase (CYP79F1, were cloned from Chinese kale (Brassica oleracea var. alboglabra Bailey. Sequence homology and phylogenetic analysis identified these genes and confirmed the evolutionary status of Chinese kale. The transcript levels of BCAT4, MAM1 and CYP79F1 were higher in cotyledon, leaf and stem compared with flower and silique. BCAT4, MAM1 and CYP79F1 were expressed throughout leaf development with lower transcript levels during the younger stages. Glucoraphanin content varied extensively among different varieties, which ranged from 0.25 to 2.73 µmol·g−1 DW (dry weight. Expression levels of BCAT4 and MAM1 were high at vegetative–reproductive transition phase, while CYP79F1 was expressed high at reproductive phase. BCAT4, MAM1 and CYP79F1 were expressed significantly high in genotypes with high glucoraphanin content. All the results provided a better understanding of the roles of BCAT4, MAM1 and CYP79F1 in the glucoraphanin biosynthesis of Chinese kale.

  4. Pathways-driven sparse regression identifies pathways and genes associated with high-density lipoprotein cholesterol in two Asian cohorts.

    Directory of Open Access Journals (Sweden)

    Matt Silver

    2013-11-01

    Full Text Available Standard approaches to data analysis in genome-wide association studies (GWAS ignore any potential functional relationships between gene variants. In contrast gene pathways analysis uses prior information on functional structure within the genome to identify pathways associated with a trait of interest. In a second step, important single nucleotide polymorphisms (SNPs or genes may be identified within associated pathways. The pathways approach is motivated by the fact that genes do not act alone, but instead have effects that are likely to be mediated through their interaction in gene pathways. Where this is the case, pathways approaches may reveal aspects of a trait's genetic architecture that would otherwise be missed when considering SNPs in isolation. Most pathways methods begin by testing SNPs one at a time, and so fail to capitalise on the potential advantages inherent in a multi-SNP, joint modelling approach. Here, we describe a dual-level, sparse regression model for the simultaneous identification of pathways and genes associated with a quantitative trait. Our method takes account of various factors specific to the joint modelling of pathways with genome-wide data, including widespread correlation between genetic predictors, and the fact that variants may overlap multiple pathways. We use a resampling strategy that exploits finite sample variability to provide robust rankings for pathways and genes. We test our method through simulation, and use it to perform pathways-driven gene selection in a search for pathways and genes associated with variation in serum high-density lipoprotein cholesterol levels in two separate GWAS cohorts of Asian adults. By comparing results from both cohorts we identify a number of candidate pathways including those associated with cardiomyopathy, and T cell receptor and PPAR signalling. Highlighted genes include those associated with the L-type calcium channel, adenylate cyclase, integrin, laminin, MAPK

  5. Analysis of the transcriptome of Erigeron breviscapus uncovers putative scutellarin and chlorogenic acids biosynthetic genes and genetic markers.

    Directory of Open Access Journals (Sweden)

    Ni-Hao Jiang

    Full Text Available Erigeron breviscapus (Vant. Hand-Mazz. is a famous medicinal plant. Scutellarin and chlorogenic acids are the primary active components in this herb. However, the mechanisms of biosynthesis and regulation for scutellarin and chlorogenic acids in E. breviscapus are considerably unknown. In addition, genomic information of this herb is also unavailable.Using Illumina sequencing on GAIIx platform, a total of 64,605,972 raw sequencing reads were generated and assembled into 73,092 non-redundant unigenes. Among them, 44,855 unigenes (61.37% were annotated in the public databases Nr, Swiss-Prot, KEGG, and COG. The transcripts encoding the known enzymes involved in flavonoids and in chlorogenic acids biosynthesis were discovered in the Illumina dataset. Three candidate cytochrome P450 genes were discovered which might encode flavone 6-hydroase converting apigenin to scutellarein. Furthermore, 4 unigenes encoding the homologues of maize P1 (R2R3-MYB transcription factors were defined, which might regulate the biosynthesis of scutellarin. Additionally, a total of 11,077 simple sequence repeat (SSR were identified from 9,255 unigenes. Of SSRs, tri-nucleotide motifs were the most abundant motif. Thirty-six primer pairs for SSRs were randomly selected for validation of the amplification and polymorphism. The result revealed that 34 (94.40% primer pairs were successfully amplified and 19 (52.78% primer pairs exhibited polymorphisms.Using next generation sequencing (NGS technology, this study firstly provides abundant genomic data for E. breviscapus. The candidate genes involved in the biosynthesis and transcriptional regulation of scutellarin and chlorogenic acids were obtained in this study. Additionally, a plenty of genetic makers were generated by identification of SSRs, which is a powerful tool for molecular breeding and genetics applications in this herb.

  6. Advances in the Plant Isoprenoid Biosynthesis Pathway and Its Metabolic Engineering

    Institute of Scientific and Technical Information of China (English)

    Yan LIU; Hong WANG; He-Chun YE; Guo-Feng LI

    2005-01-01

    Although the cytosolic isoprenoid biosynthetic pathway, mavolonate pathway, in plants has been known for many years, a new plastidial 1-deoxyxylulose-5-phosphate (DXP) pathway was identified in the past few years and its related intermediates, enzymes, and genes have been characterized quite recently.With a deep insight into the biosynthetic pathway of isoprenoids, investigations into the metabolic engineering of isoprenoid biosynthesis have started to prosper. In the present article, recent advances in the discoveries and regulatory roles of new genes and enzymes in the plastidial isoprenoid biosynthesis path way are reviewed and examples of the metabolic engineering of cytosolic and plastidial isoprenoids biosnthesis are discussed.

  7. Vitamin D metabolic pathway genes and pancreatic cancer risk.

    Directory of Open Access Journals (Sweden)

    Hannah Arem

    Full Text Available Evidence on the association between vitamin D status and pancreatic cancer risk is inconsistent. This inconsistency may be partially attributable to variation in vitamin D regulating genes. We selected 11 vitamin D-related genes (GC, DHCR7, CYP2R1, VDR, CYP27B1, CYP24A1, CYP27A1, RXRA, CRP2, CASR and CUBN totaling 213 single nucleotide polymorphisms (SNPs, and examined associations with pancreatic adenocarcinoma. Our study included 3,583 pancreatic cancer cases and 7,053 controls from the genome-wide association studies of pancreatic cancer PanScans-I-III. We used the Adaptive Joint Test and the Adaptive Rank Truncated Product statistic for pathway and gene analyses, and unconditional logistic regression for SNP analyses, adjusting for age, sex, study and population stratification. We examined effect modification by circulating vitamin D concentration (≤50, >50 nmol/L for the most significant SNPs using a subset of cohort cases (n = 713 and controls (n = 878. The vitamin D metabolic pathway was not associated with pancreatic cancer risk (p = 0.830. Of the individual genes, none were associated with pancreatic cancer risk at a significance level of p<0.05. SNPs near the VDR (rs2239186, LRP2 (rs4668123, CYP24A1 (rs2762932, GC (rs2282679, and CUBN (rs1810205 genes were the top SNPs associated with pancreatic cancer (p-values 0.008-0.037, but none were statistically significant after adjusting for multiple comparisons. Associations between these SNPs and pancreatic cancer were not modified by circulating concentrations of vitamin D. These findings do not support an association between vitamin D-related genes and pancreatic cancer risk. Future research should explore other pathways through which vitamin D status might be associated with pancreatic cancer risk.

  8. mTOR signaling pathway genes in focal epilepsies.

    Science.gov (United States)

    Baulac, S

    2016-01-01

    Focal epilepsies, where seizures initiate in spatially limited networks, are the most frequent epilepsy type, accounting for two-thirds of patients. Focal epilepsies have long been thought to be acquired disorders; several focal epilepsy syndromes are now proven to be (genetically heterogeneous) monogenic disorders. While earlier genetic studies have demonstrated a strong contribution of ion channel and neurotransmitter receptor genes, or synaptic secreted protein genes, later work has revealed a new class of genes encoding components of the mechanistic target of rapamycin (mTOR) signal transduction pathway. The mTOR pathway controls a myriad of biological processes among which cell growth and protein synthesis in response to several extracellular and intracellular. Recently, germline mutations have been found in genes encoding the components of the GATOR1 complex (DEPDC5, NPRL2, NPRL3), a repressor of mTORC1. These mutations are increasingly recognized as causing a wide and yet evolving spectrum of focal epilepsy syndromes, with and without cortical structural abnormalities (usually focal cortical dysplasia). Brain somatic mutations in the gene encoding mTOR (MTOR) have recently been linked to focal cortical dysplasia and other associated brain pathologies including hemimegalencephaly. This chapter reviews the genetics and neurobiology of DEPDC5, NPRL2, and NPRL3, and summarizes the clinical and molecular spectrum of GATOR1-related epilepsies. PMID:27323939

  9. Circular polymerase extension cloning of complex gene libraries and pathways.

    Directory of Open Access Journals (Sweden)

    Jiayuan Quan

    Full Text Available High-throughput genomics and the emerging field of synthetic biology demand ever more convenient, economical, and efficient technologies to assemble and clone genes, gene libraries and synthetic pathways. Here, we describe the development of a novel and extremely simple cloning method, circular polymerase extension cloning (CPEC. This method uses a single polymerase to assemble and clone multiple inserts with any vector in a one-step reaction in vitro. No restriction digestion, ligation, or single-stranded homologous recombination is required. In this study, we elucidate the CPEC reaction mechanism and demonstrate its usage in demanding synthetic biology applications such as one-step assembly and cloning of complex combinatorial libraries and multi-component pathways.

  10. Gene Expression Profiling of Biological Pathway Alterations by Radiation Exposure

    OpenAIRE

    Lee, Kuei-Fang; Weng, Julia Tzu-Ya; Hsu, Paul Wei-Che; Chi, Yu-Hsiang; Chen, Ching-Kai; Liu, Ingrid Y.; CHEN, YI-CHENG; Wu, Lawrence Shih-Hsin

    2014-01-01

    Though damage caused by radiation has been the focus of rigorous research, the mechanisms through which radiation exerts harmful effects on cells are complex and not well-understood. In particular, the influence of low dose radiation exposure on the regulation of genes and pathways remains unclear. In an attempt to investigate the molecular alterations induced by varying doses of radiation, a genome-wide expression analysis was conducted. Peripheral blood mononuclear cells were collected from...

  11. Depth-related distribution of a key gene of the tetraether lipid biosynthetic pathway in marine Thaumarchaeota

    NARCIS (Netherlands)

    Villanueva, L.; Schouten, S.; Sinninghe Damsté, J.S.

    2015-01-01

    The distribution of isoprenoid glycerol dialkyl glycerol tetraethers (GDGT) lipids synthesized by Thaumarchaeota has been shown to be temperature-dependent in world oceans. Depth-related differences in the ammonia monooxygenase (amoA) of Thaumarchaeota have led to the classification of ‘shallow’ and

  12. Contribution of taxane biosynthetic pathway gene expression to observed variability in paclitaxel accumulation in Taxus suspension cultures

    OpenAIRE

    Patil, Rohan A.; Kolewe, Martin E.; Normanly, Jennifer; Walker, Elsbeth L.; Roberts, Susan C.

    2012-01-01

    Variability in product accumulation is one of the major obstacles limiting the widespread commercialization of plant cell culture technology to supply natural product pharmaceuticals. Despite extensive process engineering efforts, which have led to increased yields, plant cells exhibit variability in productivity that is poorly understood. Elicitation of Taxus cultures with methyl jasmonate (MeJA) induces paclitaxel accumulation, but to varying extents in different cultures. In this work, cul...

  13. FSH and FOXO1 Regulate Genes in the Sterol/Steroid and Lipid Biosynthetic Pathways in Granulosa Cells

    OpenAIRE

    Liu, Zhilin; Rudd, Michael D.; Hernandez-Gonzalez, Inmaculata; Gonzalez-Robayna, Ignacio; Fan, Heng-Yu; Zeleznik, Anthony J.; Richards, JoAnne S.

    2009-01-01

    The forkhead box transcription factor FOXO1 is highly expressed in granulosa cells of growing follicles but is down-regulated by FSH in culture or by LH-induced luteinization in vivo. To analyze the function of FOXO1, we infected rat and mouse granulosa cells with adenoviral vectors expressing two FOXO1 mutants: a gain-of-function mutant FOXOA3 that has two serine residues and one threonine residue mutated to alanines rendering this protein constitutively active and nuclear and FOXOA3-mutant ...

  14. Evolution in biosynthetic pathways: two enzymes catalyzing consecutive steps in methionine biosynthesis originate from a common ancestor and possess a similar regulatory region.

    OpenAIRE

    Belfaiza, J.; Parsot, C; Martel, A.; de la Tour, C B; Margarita, D; Cohen, G. N.; Saint-Girons, I

    1986-01-01

    The metC gene of Escherichia coli K-12 was cloned and the nucleotide sequence of the metC gene and its flanking regions was determined. The translation initiation codon was identified by sequencing the NH2-terminal part of beta-cystathionase, the MetC gene product. The metC gene (1185 nucleotides) encodes a protein having 395 amino acid residues. The 5' noncoding region was found to contain a "Met box" homologous to sequences suggestive of operator structures upstream from other methionine ge...

  15. A PSO-Based Approach for Pathway Marker Identification From Gene Expression Data.

    Science.gov (United States)

    Mandal, Monalisa; Mondal, Jyotirmay; Mukhopadhyay, Anirban

    2015-09-01

    In this article, a new and robust pathway activity inference scheme is proposed from gene expression data using Particle Swarm Optimization (PSO). From microarray gene expression data, the corresponding pathway information of the genes are collected from a public database. For identifying the pathway markers, the expression values of each pathway consisting of genes, termed as pathway activity, are summarized. To measure the goodness of a pathway activity vector, t-score is widely used in the existing literature. The weakness of existing techniques for inferring pathway activity is that they intend to consider all the member genes of a pathway. But in reality, all the member genes may not be significant to the corresponding pathway. Therefore, those genes, which are responsible in the corresponding pathway, should be included only. Motivated by this, in the proposed method, using PSO, important genes with respect to each pathway are identified. The objective is to maximize the average t-score. For the pathway activities inferred from different percentage of significant pathways, the average absolute t -scores are plotted. In addition, the top 50% pathway markers are evaluated using 10-fold cross validation and its performance is compared with that of other existing techniques. Biological relevance of the results is also studied. PMID:25935045

  16. Regulation of FA and TAG biosynthesis pathway genes in endosperms and embryos of high and low oil content genotypes of Jatropha curcas L.

    Science.gov (United States)

    Sood, Archit; Chauhan, Rajinder Singh

    2015-09-01

    The rising demand for biofuels has raised concerns about selecting alternate and promising renewable energy crops which do not compete with food supply. Jatropha (Jatropha curcas L.), a non-edible energy crop of the family euphorbiaceae, has the potential of providing biodiesel feedstock due to the presence of high proportion of unsaturated fatty acids (75%) in seed oil which is mainly accumulated in endosperm and embryo. The molecular basis of seed oil biosynthesis machinery has been studied in J. curcas, however, what genetic differences contribute to differential oil biosynthesis and accumulation in genotypes varying for oil content is poorly understood. We investigated expression profile of 18 FA and TAG biosynthetic pathway genes in different developmental stages of embryo and endosperm from high (42%) and low (30%) oil content genotypes grown at two geographical locations. Most of the genes showed relatively higher expression in endosperms of high oil content genotype, whereas no significant difference was observed in endosperms versus embryos of low oil content genotype. The promoter regions of key genes from FA and TAG biosynthetic pathways as well as other genes implicated in oil accumulation were analyzed for regulatory elements and transcription factors specific to oil or lipid accumulation in plants such as Dof, CBF (LEC1), SORLIP, GATA and Skn-1_motif etc. Identification of key genes from oil biosynthesis and regulatory elements specific to oil deposition will be useful not only in dissecting the molecular basis of high oil content but also improving seed oil content through transgenic or molecular breeding approaches. PMID:26134579

  17. Exploring two plant hosts for expression of diterpenoid pathway genes

    DEFF Research Database (Denmark)

    Bach, Søren Spanner

    Plants produce more than 10.000 diterpenoid compounds of which the large majority is involved in specialized metabolism, while a few are involved in general metabolism. Specialized metabolism diterpenoids have functions in interactions of plants with other organisms and selected ones are utilized...... by humanity in biopharmaceuticals or as industrial bioproducts. Yields and purity of diterpenoids purified from natural sources or made by chemical synthesis are generally insufficient for large-volume or high-end applications, thus alternative sources are needed. Synthetic biology, where heterologous pathways...... is compatible with native codon usage, and through the conserved mechanisms of protein targeting and posttranslational odifications, has the capacity to produce functional enzymes. To further explore plant based expression and characterization of diterpenoid pathway genes, two different plant expression hosts...

  18. Gene pathways that delay Caenorhabditis elegans reproductive senescence.

    Directory of Open Access Journals (Sweden)

    Meng C Wang

    2014-12-01

    Full Text Available Reproductive senescence is a hallmark of aging. The molecular mechanisms regulating reproductive senescence and its association with the aging of somatic cells remain poorly understood. From a full genome RNA interference (RNAi screen, we identified 32 Caenorhabditis elegans gene inactivations that delay reproductive senescence and extend reproductive lifespan. We found that many of these gene inactivations interact with insulin/IGF-1 and/or TGF-β endocrine signaling pathways to regulate reproductive senescence, except nhx-2 and sgk-1 that modulate sodium reabsorption. Of these 32 gene inactivations, we also found that 19 increase reproductive lifespan through their effects on oocyte activities, 8 of them coordinate oocyte and sperm functions to extend reproductive lifespan, and 5 of them can induce sperm humoral response to promote reproductive longevity. Furthermore, we examined the effects of these reproductive aging regulators on somatic aging. We found that 5 of these gene inactivations prolong organismal lifespan, and 20 of them increase healthy life expectancy of an organism without altering total life span. These studies provide a systemic view on the genetic regulation of reproductive senescence and its intersection with organism longevity. The majority of these newly identified genes are conserved, and may provide new insights into age-associated reproductive senescence during human aging.

  19. New Biosynthetic Step in the Melanin Pathway of Wangiella (Exophiala) dermatitidis: Evidence for 2-Acetyl-1,3,6,8-Tetrahydroxynaphthalene as a Novel Precursor

    Science.gov (United States)

    The predominant cell wall melanin of Wangiella dermatitidis, a black fungal pathogen of humans, is synthesized from 1,8-dihydroxynaphthalene (D2HN). An early precursor, 1,3,6,8-tetrahydroxynaphthalene (T4HN), in the pathway leading to D2HN is reportedly produced as a pentaketide directly by an iter...

  20. Multiple gene sequence analysis using genes of the bacterial DNA repair pathway

    OpenAIRE

    Miguel Rotelok Neto; Carolina Weigert Galvão; Leonardo Magalhães Cruz; Dieval Guizelini; Leilane Caline Silva; Jarem Raul Garcia; Rafael Mazer Etto

    2015-01-01

    The ability to recognize and repair abnormal DNA structures is common to all forms of life. Physiological studies and genomic sequencing of a variety of bacterial species have identified an incredible diversity of DNA repair pathways. Despite the amount of available genes in public database, the usual method to place genomes in a taxonomic context is based mainly on the 16S rRNA or housekeeping genes. Thus, the relationships among genomes remain poorly understood. In this work, an approach of...

  1. Overexpression of the Trichoderma brevicompactum tri5 Gene: Effect on the Expression of the Trichodermin Biosynthetic Genes and on Tomato Seedlings

    Directory of Open Access Journals (Sweden)

    Josefina Aleu

    2011-09-01

    Full Text Available Trichoderma brevicompactum IBT 40841 produces trichodermin, a trichothecene-type toxin that shares most of the steps of its biosynthesis with harzianum A, another trichothecene produced by several Trichoderma species. The first specific step in the trichothecene biosynthesis is carried out by a terpene cylcase, trichodiene synthase, that catalyzes the conversion of farnesyl pyrophosphate to trichodiene and that is encoded by the tri5 gene. Overexpression of tri5 resulted in increased levels of trichodermin production, but also in an increase in tyrosol and hydroxytyrosol production, two antioxidant compounds that may play a regulatory role in trichothecene biosynthesis, and also in a higher expression of three trichothecene genes, tri4, tri6 and tri10, and of the erg1 gene, which participates in the synthesis of triterpenes. The effect of tri5 overexpression on tomato seedling disease response was also studied.

  2. Deciphering the Late Biosynthetic Steps of Antimalarial Compound FR-900098

    OpenAIRE

    Johannes, Tyler W.; DeSieno, Matthew A.; Griffin, Benjamin M.; Thomas, Paul M.; Kelleher, Neil L.; Metcalf, William W.; Zhao, Huimin

    2010-01-01

    FR-900098 is a potent chemotherapeutic agent for the treatment of malaria. Here we report the heterologous production of this compound in E. coli by re-constructing the entire biosynthetic pathway using a three plasmid system. Based on this system, whole cell feeding assays in combination with in vitro enzymatic activity assays reveal an unprecedented functional role of nucleotide conjugation and lead to the complete elucidation of the previously unassigned late biosynthetic steps. These stud...

  3. MicroRNA-gene signaling pathways in pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Alexandra Drakaki

    2013-10-01

    Full Text Available Pancreatic cancer is the fourth most frequent cause of cancer-related deaths and is characterized by early metastasis and pronounced resistance to chemotherapy and radiation therapy. Despite extensive esearch efforts, there is not any substantial progress regarding the identification of novel drugs against pancreatic cancer. Although the introduction of the chemotherapeutic agent gemcitabine improved clinical response, the prognosis of these patients remained extremely poor with a 5-year survival rate of 3-5%. Thus, the identification of the novel molecular pathways involved in pancreatic oncogenesis and the development of new and potent therapeutic options are highly desirable. Here, we describe how microRNAs control signaling pathways that are frequently deregulated during pancreatic oncogenesis. In addition, we provide evidence that microRNAs could be potentially used as novel pancreatic cancer therapeutics through reversal of chemotherapy and radiotherapy resistance or regulation of essential molecular pathways. Further studies should integrate the deregulated genes and microRNAs into molecular networks in order to identify the central regulators of pancreatic oncogenesis. Targeting these central regulators could lead to the development of novel targeted therapeutic approaches for pancreatic cancer patients.

  4. Alginate biosynthetic enzymes in mucoid and nonmucoid Pseudomonas aeruginosa: overproduction of phosphomannose isomerase, phosphomannomutase, and GDP-mannose pyrophosphorylase by overexpression of the phosphomannose isomerase (pmi) gene.

    OpenAIRE

    Sá-Correia, I.; Darzins, A; Wang, S K; Berry, A.; Chakrabarty, A M

    1987-01-01

    The specific activities of phosphomannose isomerase (PMI), phosphomannomutase (PMM), GDP-mannose pyrophosphorylase (GMP), and GDP-mannose dehydrogenase (GMD) were compared in a mucoid cystic fibrosis isolate of Pseudomonas aeruginosa and in two spontaneous nonmucoid revertants. In both revertants some or all of the alginate biosynthetic enzymes we examined appeared to be repressed, indicating that the loss of the mucoid phenotype may be a result of decreased formation of sugar-nucleotide prec...

  5. Structural Insights Into the Evolutionary Paths of Oxylipin Biosynthetic Enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.-S.; Nioche, P.; Hamberg, M.; Raman, C.S.

    2009-05-20

    The oxylipin pathway generates not only prostaglandin-like jasmonates but also green leaf volatiles (GLVs), which confer characteristic aromas to fruits and vegetables. Although allene oxide synthase (AOS) and hydroperoxide lyase are atypical cytochrome P450 family members involved in the synthesis of jasmonates and GLVs, respectively, it is unknown how these enzymes rearrange their hydroperoxide substrates into different products. Here we present the crystal structures of Arabidopsis thaliana AOS, free and in complex with substrate or intermediate analogues. The structures reveal an unusual active site poised to control the reactivity of an epoxyallylic radical and its cation by means of interactions with an aromatic {pi}-system. Replacing the amino acid involved in these steps by a non-polar residue markedly reduces AOS activity and, unexpectedly, is both necessary and sufficient for converting AOS into a GLV biosynthetic enzyme. Furthermore, by combining our structural data with bioinformatic and biochemical analyses, we have discovered previously unknown hydroperoxide lyase in plant growth-promoting rhizobacteria, AOS in coral, and epoxyalcohol synthase in amphioxus. These results indicate that oxylipin biosynthetic genes were present in the last common ancestor of plants and animals, but were subsequently lost in all metazoan lineages except Placozoa, Cnidaria and Cephalochordata.

  6. Analysis of tumor suppressor genes based on gene ontology and the KEGG pathway.

    Directory of Open Access Journals (Sweden)

    Jing Yang

    Full Text Available Cancer is a serious disease that causes many deaths every year. We urgently need to design effective treatments to cure this disease. Tumor suppressor genes (TSGs are a type of gene that can protect cells from becoming cancerous. In view of this, correct identification of TSGs is an alternative method for identifying effective cancer therapies. In this study, we performed gene ontology (GO and pathway enrichment analysis of the TSGs and non-TSGs. Some popular feature selection methods, including minimum redundancy maximum relevance (mRMR and incremental feature selection (IFS, were employed to analyze the enrichment features. Accordingly, some GO terms and KEGG pathways, such as biological adhesion, cell cycle control, genomic stability maintenance and cell death regulation, were extracted, which are important factors for identifying TSGs. We hope these findings can help in building effective prediction methods for identifying TSGs and thereby, promoting the discovery of effective cancer treatments.

  7. The floral transcriptome of ylang ylang (Cananga odorata var. fruticosa) uncovers biosynthetic pathways for volatile organic compounds and a multifunctional and novel sesquiterpene synthase

    OpenAIRE

    Jin, Jingjing; Kim, Mi Jung; Dhandapani, Savitha; Tjhang, Jessica Gambino; Yin, Jun-Lin; Wong, Limsoon; Sarojam, Rajani; Chua, Nam-Hai; Jang, In-Cheol

    2015-01-01

    The pleasant fragrance of ylang ylang varieties (Cananga odorata) is mainly due to volatile organic compounds (VOCs) produced by the flowers. Floral scents are a key factor in plant–insect interactions and are vital for successful pollination. C. odorata var. fruticosa, or dwarf ylang ylang, is a variety of ylang ylang that is popularly grown in Southeast Asia as a small shrub with aromatic flowers. Here, we describe the combined use of bioinformatics and chemical analysis to discover genes f...

  8. ZCT1 and ZCT2 transcription factors repress the activity of a gene promoter from the methyl erythritol phosphate pathway in Madagascar periwinkle cells.

    Science.gov (United States)

    Chebbi, Mouadh; Ginis, Olivia; Courdavault, Vincent; Glévarec, Gaëlle; Lanoue, Arnaud; Clastre, Marc; Papon, Nicolas; Gaillard, Cécile; Atanassova, Rossitza; St-Pierre, Benoit; Giglioli-Guivarc'h, Nathalie; Courtois, Martine; Oudin, Audrey

    2014-10-15

    In Catharanthus roseus, accumulating data highlighted the existence of a coordinated transcriptional regulation of structural genes that takes place within the secoiridoid biosynthetic branch, including the methyl erythritol phosphate (MEP) pathway and the following steps leading to secologanin. To identify transcription factors acting in these pathways, we performed a yeast one-hybrid screening using as bait a promoter region of the hydroxymethylbutenyl 4-diphosphate synthase (HDS) gene involved in the responsiveness of C. roseus cells to hormonal signals inducing monoterpene indole alkaloid (MIA) production. We identified that ZCT2, one of the three members of the zinc finger Catharanthus protein (ZCT) family, can bind to a HDS promoter region involved in hormonal responsiveness. By trans-activation assays, we demonstrated that ZCT1 and ZCT2 but not ZCT3 repress the HDS promoter activity. Gene expression analyses in C. roseus cells exposed to methyljasmonate revealed a persistence of induction of ZCT2 gene expression suggesting the existence of feed-back regulatory events acting on HDS gene expression in correlation with the MIA production. PMID:25108262

  9. Molecular Genetic Characterization of Terreic Acid Pathway in Aspergillus terreus

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Chun-Jun; Sun, Wei-wen; Bruno, Kenneth S.; Wang, Clay C.

    2014-09-29

    Terreic acid is a natural product derived from 6-methylsalicylic acid (6-MSA). A compact gene cluster for its biosynthesis was characterized. Isolation of the intermediates and shunt products from the mutant strains, in combined with bioinformatic analyses, allowed us to propose a biosynthetic pathway for terreic acid. Defining the pathway and the genes involved will facilitate the engineering of this molecule with interesting antimicrobial and antitumor bioactivities.

  10. Genes of the mitochondrial apoptotic pathway in Mytilus galloprovincialis.

    Directory of Open Access Journals (Sweden)

    Noelia Estévez-Calvar

    Full Text Available Bivalves play vital roles in marine, brackish, freshwater and terrestrial habitats. In recent years, these ecosystems have become affected through anthropogenic activities. The ecological success of marine bivalves is based on the ability to modify their physiological functions in response to environmental changes. One of the most important mechanisms involved in adaptive responses to environmental and biological stresses is apoptosis, which has been scarcely studied in mollusks, although the final consequence of this process, DNA fragmentation, has been frequently used for pollution monitoring. Environmental stressors induce apoptosis in molluscan cells via an intrinsic pathway. Many of the proteins involved in vertebrate apoptosis have been recognized in model invertebrates; however, this process might not be universally conserved. Mytilus galloprovincialis is presented here as a new model to study the linkage between molecular mechanisms that mediate apoptosis and marine bivalve ecological adaptations. Therefore, it is strictly necessary to identify the key elements involved in bivalve apoptosis. In the present study, six mitochondrial apoptotic-related genes were characterized, and their gene expression profiles following UV irradiation were evaluated. This is the first step for the development of potential biomarkers to assess the biological responses of marine organisms to stress. The results confirmed that apoptosis and, more specifically, the expression of the genes involved in this process can be used to assess the biological responses of marine organisms to stress.

  11. A mechanism of oxygen sensing in yeast. Multiple oxygen-responsive steps in the heme biosynthetic pathway affect Hap1 activity.

    Science.gov (United States)

    Hon, Thomas; Dodd, Athena; Dirmeier, Reinhard; Gorman, Nadia; Sinclair, Peter R; Zhang, Li; Poyton, Robert O

    2003-12-12

    Heme plays central roles in oxygen sensing and utilization in many living organisms. In yeast, heme mediates the effect of oxygen on the expression of many genes involved in using or detoxifying oxygen. However, a direct link between intracellular heme level and oxygen concentration has not been vigorously established. In this report, we have examined the relationships among oxygen levels, heme levels, Hap1 activity, and HAP1 expression. We found that Hap1 activity is controlled in vivo by heme and not by its precursors and that heme activates Hap1 even in anoxic cells. We also found that Hap1 activity exhibits the same oxygen dose-response curves as Hap1-dependent aerobic genes and that these dose-response curves have a sharp break at approximately 1 microM O2. The results show that the intracellular signaling heme level, reflected as Hap1 activity, is closely correlated with oxygen concentration. Furthermore, we found that bypass of all heme synthetic steps but ferrochelatase by deuteroporphyrin IX does not circumvent the need for oxygen in Hap1 full activation by heme, suggesting that the last step of heme synthesis, catalyzed by ferrochelatase, is also subjected to oxygen control. Our results show that multiple heme synthetic steps can sense oxygen concentration and provide significant insights into the mechanism of oxygen sensing in yeast. PMID:14512429

  12. Comprehensive analysis of the N-glycan biosynthetic pathway using bioinformatics to generate UniCorn: A theoretical N-glycan structure database.

    Science.gov (United States)

    Akune, Yukie; Lin, Chi-Hung; Abrahams, Jodie L; Zhang, Jingyu; Packer, Nicolle H; Aoki-Kinoshita, Kiyoko F; Campbell, Matthew P

    2016-08-01

    Glycan structures attached to proteins are comprised of diverse monosaccharide sequences and linkages that are produced from precursor nucleotide-sugars by a series of glycosyltransferases. Databases of these structures are an essential resource for the interpretation of analytical data and the development of bioinformatics tools. However, with no template to predict what structures are possible the human glycan structure databases are incomplete and rely heavily on the curation of published, experimentally determined, glycan structure data. In this work, a library of 45 human glycosyltransferases was used to generate a theoretical database of N-glycan structures comprised of 15 or less monosaccharide residues. Enzyme specificities were sourced from major online databases including Kyoto Encyclopedia of Genes and Genomes (KEGG) Glycan, Consortium for Functional Glycomics (CFG), Carbohydrate-Active enZymes (CAZy), GlycoGene DataBase (GGDB) and BRENDA. Based on the known activities, more than 1.1 million theoretical structures and 4.7 million synthetic reactions were generated and stored in our database called UniCorn. Furthermore, we analyzed the differences between the predicted glycan structures in UniCorn and those contained in UniCarbKB (www.unicarbkb.org), a database which stores experimentally described glycan structures reported in the literature, and demonstrate that UniCorn can be used to aid in the assignment of ambiguous structures whilst also serving as a discovery database. PMID:27318307

  13. A search engine to identify pathway genes from expression data on multiple organisms

    Directory of Open Access Journals (Sweden)

    Zambon Alexander C

    2007-05-01

    Full Text Available Abstract Background The completion of several genome projects showed that most genes have not yet been characterized, especially in multicellular organisms. Although most genes have unknown functions, a large collection of data is available describing their transcriptional activities under many different experimental conditions. In many cases, the coregulatation of a set of genes across a set of conditions can be used to infer roles for genes of unknown function. Results We developed a search engine, the Multiple-Species Gene Recommender (MSGR, which scans gene expression datasets from multiple organisms to identify genes that participate in a genetic pathway. The MSGR takes a query consisting of a list of genes that function together in a genetic pathway from one of six organisms: Homo sapiens, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae, Arabidopsis thaliana, and Helicobacter pylori. Using a probabilistic method to merge searches, the MSGR identifies genes that are significantly coregulated with the query genes in one or more of those organisms. The MSGR achieves its highest accuracy for many human pathways when searches are combined across species. We describe specific examples in which new genes were identified to be involved in a neuromuscular signaling pathway and a cell-adhesion pathway. Conclusion The search engine can scan large collections of gene expression data for new genes that are significantly coregulated with a pathway of interest. By integrating searches across organisms, the MSGR can identify pathway members whose coregulation is either ancient or newly evolved.

  14. Hormonal Regulation and Expression Profiles of Wheat Genes Involved during Phytic Acid Biosynthesis Pathway

    OpenAIRE

    Sipla Aggarwal; Vishnu Shukla; Kaushal Kumar Bhati; Mandeep Kaur; Shivani Sharma; Anuradha Singh; Shrikant Mantri; Ajay Kumar Pandey

    2015-01-01

    Phytic acid (PA) biosynthesis pathway genes were reported from multiple crop species. PA accumulation was enhanced during grain filling and at that time, hormones like Abscisic acid (ABA) and Gibberellic acid (GA3) interplay to control the process of seed development. Regulation of wheat PA pathway genes has not yet been reported in seeds. In an attempt to find the clues for the regulation by hormones, the promoter region of wheat PA pathway genes was analyzed for the presence of cis-elements...

  15. Effects of overexpressing individual lignin biosynthetic enzymes on feeding and growth of corn earworms and fall armyworms

    Science.gov (United States)

    Lignin is an important insect resistance component of plants. Enhancing or disrupting the lignin biosynthetic pathway for different bioenergy uses may alter pest resistance. The lignin biosynthetic pathway is complex, and a number of pathway compounds are also involved in the biosynthesis of simpler...

  16. Transcriptomic analysis in the developing zebrafish embryo after compound exposure: Individual gene expression and pathway regulation

    Energy Technology Data Exchange (ETDEWEB)

    Hermsen, Sanne A.B., E-mail: Sanne.Hermsen@rivm.nl [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht (Netherlands); Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.178, 3508 TD, Utrecht (Netherlands); Pronk, Tessa E. [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht (Netherlands); Brandhof, Evert-Jan van den [Centre for Environmental Quality, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Ven, Leo T.M. van der [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Piersma, Aldert H. [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.178, 3508 TD, Utrecht (Netherlands)

    2013-10-01

    The zebrafish embryotoxicity test is a promising alternative assay for developmental toxicity. Classically, morphological assessment of the embryos is applied to evaluate the effects of compound exposure. However, by applying differential gene expression analysis the sensitivity and predictability of the test may be increased. For defining gene expression signatures of developmental toxicity, we explored the possibility of using gene expression signatures of compound exposures based on commonly expressed individual genes as well as based on regulated gene pathways. Four developmental toxic compounds were tested in concentration-response design, caffeine, carbamazepine, retinoic acid and valproic acid, and two non-embryotoxic compounds, D-mannitol and saccharin, were included. With transcriptomic analyses we were able to identify commonly expressed genes, which were mostly development related, after exposure to the embryotoxicants. We also identified gene pathways regulated by the embryotoxicants, suggestive of their modes of action. Furthermore, whereas pathways may be regulated by all compounds, individual gene expression within these pathways can differ for each compound. Overall, the present study suggests that the use of individual gene expression signatures as well as pathway regulation may be useful starting points for defining gene biomarkers for predicting embryotoxicity. - Highlights: • The zebrafish embryotoxicity test in combination with transcriptomics was used. • We explored two approaches of defining gene biomarkers for developmental toxicity. • Four compounds in concentration-response design were tested. • We identified commonly expressed individual genes as well as regulated gene pathways. • Both approaches seem suitable starting points for defining gene biomarkers.

  17. A gene expression signature of RAS pathway dependence predicts response to PI3K and RAS pathway inhibitors and expands the population of RAS pathway activated tumors

    Directory of Open Access Journals (Sweden)

    Paweletz Cloud

    2010-06-01

    Full Text Available Abstract Background Hyperactivation of the Ras signaling pathway is a driver of many cancers, and RAS pathway activation can predict response to targeted therapies. Therefore, optimal methods for measuring Ras pathway activation are critical. The main focus of our work was to develop a gene expression signature that is predictive of RAS pathway dependence. Methods We used the coherent expression of RAS pathway-related genes across multiple datasets to derive a RAS pathway gene expression signature and generate RAS pathway activation scores in pre-clinical cancer models and human tumors. We then related this signature to KRAS mutation status and drug response data in pre-clinical and clinical datasets. Results The RAS signature score is predictive of KRAS mutation status in lung tumors and cell lines with high (> 90% sensitivity but relatively low (50% specificity due to samples that have apparent RAS pathway activation in the absence of a KRAS mutation. In lung and breast cancer cell line panels, the RAS pathway signature score correlates with pMEK and pERK expression, and predicts resistance to AKT inhibition and sensitivity to MEK inhibition within both KRAS mutant and KRAS wild-type groups. The RAS pathway signature is upregulated in breast cancer cell lines that have acquired resistance to AKT inhibition, and is downregulated by inhibition of MEK. In lung cancer cell lines knockdown of KRAS using siRNA demonstrates that the RAS pathway signature is a better measure of dependence on RAS compared to KRAS mutation status. In human tumors, the RAS pathway signature is elevated in ER negative breast tumors and lung adenocarcinomas, and predicts resistance to cetuximab in metastatic colorectal cancer. Conclusions These data demonstrate that the RAS pathway signature is superior to KRAS mutation status for the prediction of dependence on RAS signaling, can predict response to PI3K and RAS pathway inhibitors, and is likely to have the most clinical

  18. Metabolic pathway reconstruction of eugenol to vanillin bioconversion in Aspergillus niger

    OpenAIRE

    Srivastava, Suchita; Luqman, Suaib; Khan, Feroz; Chanotiya, Chandan S; Darokar, Mahendra P

    2010-01-01

    Identification of missing genes or proteins participating in the metabolic pathways as enzymes are of great interest. One such class of pathway is involved in the eugenol to vanillin bioconversion. Our goal is to develop an integral approach for identifying the topology of a reference or known pathway in other organism. We successfully identify the missing enzymes and then reconstruct the vanillin biosynthetic pathway in Aspergillus niger. The procedure combines enzyme sequence similarity sea...

  19. HPLC-MS/MS analyses show that the near-Starchless aps1 and pgm leaves accumulate wild type levels of ADPglucose: further evidence for the occurrence of important ADPglucose biosynthetic pathway(s alternative to the pPGI-pPGM-AGP pathway.

    Directory of Open Access Journals (Sweden)

    Abdellatif Bahaji

    Full Text Available In leaves, it is widely assumed that starch is the end-product of a metabolic pathway exclusively taking place in the chloroplast that (a involves plastidic phosphoglucomutase (pPGM, ADPglucose (ADPG pyrophosphorylase (AGP and starch synthase (SS, and (b is linked to the Calvin-Benson cycle by means of the plastidic phosphoglucose isomerase (pPGI. This view also implies that AGP is the sole enzyme producing the starch precursor molecule, ADPG. However, mounting evidence has been compiled pointing to the occurrence of important sources, other than the pPGI-pPGM-AGP pathway, of ADPG. To further explore this possibility, in this work two independent laboratories have carried out HPLC-MS/MS analyses of ADPG content in leaves of the near-starchless pgm and aps1 mutants impaired in pPGM and AGP, respectively, and in leaves of double aps1/pgm mutants grown under two different culture conditions. We also measured the ADPG content in wild type (WT and aps1 leaves expressing in the plastid two different ADPG cleaving enzymes, and in aps1 leaves expressing in the plastid GlgC, a bacterial AGP. Furthermore, we measured the ADPG content in ss3/ss4/aps1 mutants impaired in starch granule initiation and chloroplastic ADPG synthesis. We found that, irrespective of their starch contents, pgm and aps1 leaves, WT and aps1 leaves expressing in the plastid ADPG cleaving enzymes, and aps1 leaves expressing in the plastid GlgC accumulate WT ADPG content. In clear contrast, ss3/ss4/aps1 leaves accumulated ca. 300 fold-more ADPG than WT leaves. The overall data showed that, in Arabidopsis leaves, (a there are important ADPG biosynthetic pathways, other than the pPGI-pPGM-AGP pathway, (b pPGM and AGP are not major determinants of intracellular ADPG content, and (c the contribution of the chloroplastic ADPG pool to the total ADPG pool is low.

  20. Signalling pathway impact analysis based on the strength of interaction between genes.

    Science.gov (United States)

    Bao, Zhenshen; Li, Xianbin; Zan, Xiangzhen; Shen, Liangzhong; Ma, Runnian; Liu, Wenbin

    2016-08-01

    Signalling pathway analysis is a popular approach that is used to identify significant cancer-related pathways based on differentially expressed genes (DEGs) from biological experiments. The main advantage of signalling pathway analysis lies in the fact that it assesses both the number of DEGs and the propagation of signal perturbation in signalling pathways. However, this method simplifies the interactions between genes by categorising them only as activation (+1) and suppression (-1), which does not encompass the range of interactions in real pathways, where interaction strength between genes may vary. In this study, the authors used newly developed signalling pathway impact analysis (SPIA) methods, SPIA based on Pearson correlation coefficient (PSPIA), and mutual information (MSPIA), to measure the interaction strength between pairs of genes. In analyses of a colorectal cancer dataset, a lung cancer dataset, and a pancreatic cancer dataset, PSPIA and MSPIA identified more candidate cancer-related pathways than were identified by SPIA. Generally, MSPIA performed better than PSPIA. PMID:27444024

  1. Reconstruction of metabolic pathways by the exploration of gene expression data with factor analysis

    OpenAIRE

    Henderson, David Allen

    2001-01-01

    Microarray gene expression data for thousands of genes in many organisms is quickly becoming available. The information this data can provide the experimental biologist is powerful. This data may provide information clarifying the regulatory linkages between genes within a single metabolic pathway, or alternative pathway routes under different environmental conditions, or provide information leading to the identification of genes for selection in animal and plant genetic improvement program...

  2. Improving gene expression similarity measurement using pathway-based analytic dimension

    OpenAIRE

    2009-01-01

    Background Gene expression similarity measuring methods were developed and applied to search rapidly growing public microarray databases. However, current expression similarity measuring methods need to be improved to accurately measure similarity between gene expression profiles from different platforms or different experiments. Results We devised new gene expression similarity measuring method based on pathway information. In short, newly devised method measure similarity between gene expre...

  3. Analysis of gene evolution and metabolic pathways using the Candida Gene Order Browser

    LENUS (Irish Health Repository)

    Fitzpatrick, David A

    2010-05-10

    Abstract Background Candida species are the most common cause of opportunistic fungal infection worldwide. Recent sequencing efforts have provided a wealth of Candida genomic data. We have developed the Candida Gene Order Browser (CGOB), an online tool that aids comparative syntenic analyses of Candida species. CGOB incorporates all available Candida clade genome sequences including two Candida albicans isolates (SC5314 and WO-1) and 8 closely related species (Candida dubliniensis, Candida tropicalis, Candida parapsilosis, Lodderomyces elongisporus, Debaryomyces hansenii, Pichia stipitis, Candida guilliermondii and Candida lusitaniae). Saccharomyces cerevisiae is also included as a reference genome. Results CGOB assignments of homology were manually curated based on sequence similarity and synteny. In total CGOB includes 65617 genes arranged into 13625 homology columns. We have also generated improved Candida gene sets by merging\\/removing partial genes in each genome. Interrogation of CGOB revealed that the majority of tandemly duplicated genes are under strong purifying selection in all Candida species. We identified clusters of adjacent genes involved in the same metabolic pathways (such as catabolism of biotin, galactose and N-acetyl glucosamine) and we showed that some clusters are species or lineage-specific. We also identified one example of intron gain in C. albicans. Conclusions Our analysis provides an important resource that is now available for the Candida community. CGOB is available at http:\\/\\/cgob.ucd.ie.

  4. Systematic enrichment analysis of gene expression profiling studies identifies consensus pathways implicated in colorectal cancer development

    OpenAIRE

    Jesús Lascorz; Kari Hemminki; Asta Försti

    2011-01-01

    Background: A large number of gene expression profiling (GEP) studies on colorectal carcinogenesis have been performed but no reliable gene signature has been identified so far due to the lack of reproducibility in the reported genes. There is growing evidence that functionally related genes, rather than individual genes, contribute to the etiology of complex traits. We used, as a novel approach, pathway enrichment tools to define functionally related genes that are consistently up- or down-r...

  5. Pathway analysis of gene signatures predicting metastasis of node-negative primary breast cancer

    International Nuclear Information System (INIS)

    Published prognostic gene signatures in breast cancer have few genes in common. Here we provide a rationale for this observation by studying the prognostic power and the underlying biological pathways of different gene signatures. Gene signatures to predict the development of metastases in estrogen receptor-positive and estrogen receptor-negative tumors were identified using 500 re-sampled training sets and mapping to Gene Ontology Biological Process to identify over-represented pathways. The Global Test program confirmed that gene expression profilings in the common pathways were associated with the metastasis of the patients. The apoptotic pathway and cell division, or cell growth regulation and G-protein coupled receptor signal transduction, were most significantly associated with the metastatic capability of estrogen receptor-positive or estrogen-negative tumors, respectively. A gene signature derived of the common pathways predicted metastasis in an independent cohort. Mapping of the pathways represented by different published prognostic signatures showed that they share 53% of the identified pathways. We show that divergent gene sets classifying patients for the same clinical endpoint represent similar biological processes and that pathway-derived signatures can be used to predict prognosis. Furthermore, our study reveals that the underlying biology related to aggressiveness of estrogen receptor subgroups of breast cancer is quite different

  6. Identification of sugarcane genes involved in the purine synthesis pathway

    Directory of Open Access Journals (Sweden)

    Mario A. Jancso

    2001-12-01

    Full Text Available Nucleotide synthesis is of central importance to all cells. In most organisms, the purine nucleotides are synthesized de novo from non-nucleotide precursors such as amino acids, ammonia and carbon dioxide. An understanding of the enzymes involved in sugarcane purine synthesis opens the possibility of using these enzymes as targets for chemicals which may be effective in combating phytopathogen. Such an approach has already been applied to several parasites and types of cancer. The strategy described in this paper was applied to identify sugarcane clusters for each step of the de novo purine synthesis pathway. Representative sequences of this pathway were chosen from the National Center for Biotechnology Information (NCBI database and used to search the translated sugarcane expressed sequence tag (SUCEST database using the available basic local alignment search tool (BLAST facility. Retrieved clusters were further tested for the statistical significance of the alignment by an implementation (PRSS3 of the Monte Carlo shuffling algorithm calibrated using known protein sequences of divergent taxa along the phylogenetic tree. The sequences were compared to each other and to the sugarcane clusters selected using BLAST analysis, with the resulting table of p-values indicating the degree of divergence of each enzyme within different taxa and in relation to the sugarcane clusters. The results obtained by this strategy allowed us to identify the sugarcane proteins participating in the purine synthesis pathway.A via de síntese de purino nucleotídeos é considerada uma via de central importância para todas as células. Na maioria dos organismos, os purino nucleotídeos são sintetizados ''de novo'' a partir de precursores não-nucleotídicos como amino ácidos, amônia e dióxido de carbono. O conhecimento das enzimas envolvidas na via de síntese de purinas da cana-de-açúcar vai abrir a possibilidade do uso dessas enzimas como alvos no desenho

  7. Genomics of pyrrolnitrin biosynthetic loci: evidence for conservation and whole-operon mobility within gram-negative bacteria.

    Science.gov (United States)

    Costa, Rodrigo; van Aarle, Ingrid M; Mendes, Rodrigo; van Elsas, Jan Dirk

    2009-01-01

    Pyrrolnitrin (PRN) is a tryptophan-derived secondary metabolite produced by a narrow range of gram-negative bacteria. The PRN biosynthesis by rhizobacteria presumably has a key role in their life strategies and in the biocontrol of plant diseases. The biosynthetic operon that encodes the pathway that converts tryptophan to PRN is composed of four genes, prnA through D, whose diversity, genomic context and spread over bacterial genomes are poorly understood. Therefore, we launched an endeavour aimed at retrieving, by in vitro and in silico means, diverse bacteria carrying the prnABCD biosynthetic loci in their genomes. Analysis of polymorphisms of the prnD gene sequences revealed a high level of conservation between Burkholderia, Pseudomonas and Serratia spp. derived sequences. Whole-operon- and prnD-based phylogeny resulted in tree topologies that are incongruent with the taxonomic status of the evaluated strains as predicted by 16S rRNA gene phylogeny. The genomic composition of c. 20 kb DNA fragments containing the PRN operon varied in different strains. Highly conserved and distinct transposase-encoding genes surrounding the PRN biosynthetic operons of Burkholderia pseudomallei strains were found. A prnABCD-deprived genomic region in B. pseudomallei strain K96243 contained the same gene composition as, and shared high homology with, the flanking regions of the PRN operon in B. pseudomallei strains 668, 1106a and 1710b. Our results strongly suggest that the PRN biosynthetic operon is mobile. The extent, frequency and promiscuity of this mobility remain to be understood. PMID:18793314

  8. A gene pathway analysis highlights the role of cellular adhesion molecules in multiple sclerosis susceptibility

    DEFF Research Database (Denmark)

    Damotte, V; Guillot-Noel, L; Patsopoulos, N A; Madireddy, L; El Behi, M; De Jager, P L; Baranzini, S E; Cournu-Rebeix, I; Fontaine, B; Sørensen, Per Soelberg

    2014-01-01

    interaction with other genes as a group. Pathway analysis is an alternative way to highlight such group of genes. Using SNP association P-values from eight multiple sclerosis (MS) GWAS data sets, we performed a candidate pathway analysis for MS susceptibility by considering genes interacting in the cell...... adhesion molecule (CAMs) biological pathway using Cytoscape software. This network is a strong candidate, as it is involved in the crossing of the blood-brain barrier by the T cells, an early event in MS pathophysiology, and is used as an efficient therapeutic target. We drew up a list of 76 genes...

  9. Meta-analysis of gene expression profiles indicates genes in spliceosome pathway are up-regulated in hepatocellular carcinoma (HCC).

    Science.gov (United States)

    Xu, Weijin; Huang, Huixing; Yu, Long; Cao, Lihuan

    2015-04-01

    Hepatocellular carcinoma (HCC) is among the commonest kind of malignant tumors, which accounts for more than 500,000 cases of newly diagnosed cancer annually. Many microarray studies for identifying differentially expressed genes (DEGs) in HCC have been conducted, but results have varied across different studies. Here, we performed a meta-analysis of publicly available microarray Gene Expression Omnibus datasets, which covers five independent studies, containing 753 HCC samples and 638 non-tumor liver samples. We identified 192 DEGs that were consistently up-regulated in HCC vs. normal liver tissue. For the 192 up-regulated genes, we performed Kyoto Encyclopedia of Genes and Genomes pathway analysis. To our surprise, besides several cell growth-related pathways, spliceosome pathway was also up-regulated in HCC. For further exploring the relationship between spliceosome pathway and HCC, we investigated the expression data of spliceosome pathway genes in 15 independent studies in Nextbio database ( https://www.nextbio.com/b/nextbioCorp.nb ). It was found that many genes of spliceosome pathway such as HSPA1A, SNRPE, SF3B2, SF3B4 and TRA2A genes which we identified to be up-regulated in our meta-analysis were generally overexpressed in HCC. At last, using real-time PCR, we also found that BUD31, SF3B2, SF3B4, SNRPE, SPINK1, TPA2A and HSPA1A genes are significantly up-regulated in clinical HCC samples when compared to the corresponding non-tumorous liver tissues. Our study for the first time indicates that many genes of spliceosome pathway are up-regulated in HCC. This finding might put new insights for people's understanding about the relationship of spliceosome pathway and HCC. PMID:25731616

  10. Gene expression meta-analysis identifies metastatic pathways and transcription factors in breast cancer

    International Nuclear Information System (INIS)

    Metastasis is believed to progress in several steps including different pathways but the determination and understanding of these mechanisms is still fragmentary. Microarray analysis of gene expression patterns in breast tumors has been used to predict outcome in recent studies. Besides classification of outcome, these global expression patterns may reflect biological mechanisms involved in metastasis of breast cancer. Our purpose has been to investigate pathways and transcription factors involved in metastasis by use of gene expression data sets. We have analyzed 8 publicly available gene expression data sets. A global approach, 'gene set enrichment analysis' as well as an approach focusing on a subset of significantly differently regulated genes, GenMAPP, has been applied to rank pathway gene sets according to differential regulation in metastasizing tumors compared to non-metastasizing tumors. Meta-analysis has been used to determine overrepresentation of pathways and transcription factors targets, concordant deregulated in metastasizing breast tumors, in several data sets. The major findings are up-regulation of cell cycle pathways and a metabolic shift towards glucose metabolism reflected in several pathways in metastasizing tumors. Growth factor pathways seem to play dual roles; EGF and PDGF pathways are decreased, while VEGF and sex-hormone pathways are increased in tumors that metastasize. Furthermore, migration, proteasome, immune system, angiogenesis, DNA repair and several signal transduction pathways are associated to metastasis. Finally several transcription factors e.g. E2F, NFY, and YY1 are identified as being involved in metastasis. By pathway meta-analysis many biological mechanisms beyond major characteristics such as proliferation are identified. Transcription factor analysis identifies a number of key factors that support central pathways. Several previously proposed treatment targets are identified and several new pathways that may

  11. Screening and functional pathway analysis of genes associated with pediatric allergic asthma using a DNA microarray

    OpenAIRE

    Lu, Li-Qun; Liao, Wei

    2015-01-01

    The present study aimed to identify differentially expressed genes (DEGs) associated with pediatric allergic asthma, and to analyze the functional pathways of the selected target genes, in order to explore the pathogenesis of the disease. The GSE18965 gene expression profile was downloaded from the Gene Expression Omnibus database and was preprocessed. This gene expression profile consisted of seven normal samples and nine samples from patients with pediatric allergic asthma. The DEGs between...

  12. Differential gene expression by fiber-optic beadarray and pathway in adrenocorticotrophin-secreting pituitary adenomas

    Institute of Scientific and Technical Information of China (English)

    JIANG Zhi-quan; GUI Song-bo; ZHANG Ya-zhuo

    2010-01-01

    Background Adrenocorticotrophin (ACTH)-secreting pituitary adenomas account for approximately 7%-14% of all pituitary adenomas, but its pathogenesis is still enigmatic. This study aimed to explore mechanisms underlying the pathogenesis of ACTH-secreting pituitary adenomas.Methods We used fiber-optic beadarray to examine gene expression in three ACTH-secreting adenomas compared with three normal pituitaries. Four differentially expressed genes from the three ACTH-secreting adenomas and three normal pituitaries were chosen randomly for validation by reverse transcriptase-real time quantitative polymerase chain reaction (RT-qPCR). We then analyzed the differentially expressed gene profile with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway.Results Fiber-optic beadarray analysis showed that the expression of 28 genes and 8 expressed sequence tags (ESTs)were significantly increased and the expression of 412 genes and 31 ESTs were significantly decreased. Bioinformatic and pathway analysis showed that the genes HIGD1B, EPS8, HPGD, DAPK2, and IGFBP3 and the transforming growth factor (TGF)-β signaling pathway and extracellular matrix (ECM)-receptor interaction pathway may play important roles in tumorigenesis and progression of ACTH-secreting pituitary adenomas.Conclusions Our data suggest that numerous aberrantly expressed genes and several pathways are involved in the pathogenesis of ACTH-secreting pituitary adenomas. Fiber-optic beadarray combined with pathway analysis of differential gene expression appears to be a valid method of investigating tumour pathogenesis.

  13. Analysis of the ergosterol biosynthesis pathway cloning, molecular characterization and phylogeny of lanosterol 14 α-demethylase (ERG11) gene of Moniliophthora perniciosa

    Science.gov (United States)

    de Oliveira Ceita, Geruza; Vilas-Boas, Laurival Antônio; Castilho, Marcelo Santos; Carazzolle, Marcelo Falsarella; Pirovani, Carlos Priminho; Selbach-Schnadelbach, Alessandra; Gramacho, Karina Peres; Ramos, Pablo Ivan Pereira; Barbosa, Luciana Veiga; Pereira, Gonçalo Amarante Guimarães; Góes-Neto, Aristóteles

    2014-01-01

    The phytopathogenic fungus Moniliophthora perniciosa (Stahel) Aime & Philips-Mora, causal agent of witches’ broom disease of cocoa, causes countless damage to cocoa production in Brazil. Molecular studies have attempted to identify genes that play important roles in fungal survival and virulence. In this study, sequences deposited in the M. perniciosa Genome Sequencing Project database were analyzed to identify potential biological targets. For the first time, the ergosterol biosynthetic pathway in M. perniciosa was studied and the lanosterol 14α-demethylase gene (ERG11) that encodes the main enzyme of this pathway and is a target for fungicides was cloned, characterized molecularly and its phylogeny analyzed. ERG11 genomic DNA and cDNA were characterized and sequence analysis of the ERG11 protein identified highly conserved domains typical of this enzyme, such as SRS1, SRS4, EXXR and the heme-binding region (HBR). Comparison of the protein sequences and phylogenetic analysis revealed that the M. perniciosa enzyme was most closely related to that of Coprinopsis cinerea. PMID:25505843

  14. DIFFERENTIAL EXPRESSION OF RETINOIC ACID BIOSYNTHETIC AND METABOLISM GENES IN LIVERS FROM MICE TREATED WITH HEPATOTUMORIGENIC AND NON-HEPATOTUMORIGENIC CONAZOLES

    Science.gov (United States)

    Conazoles are fungicides used in crop protection and as pharmaceuticals. Triadimefon and propiconazole are hepatotumorigenic in mice, while myclobutanil is not. Previous toxicogenomic studies suggest that alteration of the retinoic acid metabolism pathway may play a key event in ...

  15. Identification of hub genes and pathways associated with retinoblastoma based on co-expression network analysis.

    Science.gov (United States)

    Wang, Q L; Chen, X; Zhang, M H; Shen, Q H; Qin, Z M

    2015-01-01

    The objective of this paper was to identify hub genes and pathways associated with retinoblastoma using centrality analysis of the co-expression network and pathway-enrichment analysis. The co-expression network of retinoblastoma was constructed by weighted gene co-expression network analysis (WGCNA) based on differentially expressed (DE) genes, and clusters were obtained through the molecular complex detection (MCODE) algorithm. Degree centrality analysis of the co-expression network was performed to explore hub genes present in retinoblastoma. Pathway-enrichment analysis was performed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Validation of hub gene expression in retinoblastoma was performed by reverse transcription-polymerase chain reaction (RT-PCR) analysis. The co-expression network based on 221 DE genes between retinoblastoma and normal controls consisted of 210 nodes and 3965 edges, and 5 clusters of the network were evaluated. By assessing the centrality analysis of the co-expression network, 21 hub genes were identified, such as SNORD115-41, RASSF2, and SNORD115-44. According to RT-PCR analysis, 16 of the 21 hub genes were differently expressed, including RASSF2 and CDCA7, and 5 were not differently expressed in retinoblastoma compared to normal controls. Pathway analysis showed that genes in 2 clusters were enriched in 3 pathways: purine metabolism, p53 signaling pathway, and melanogenesis. In this study, we successfully identified 16 hub genes and 3 pathways associated with retinoblastoma, which may be potential biomarkers for early detection and therapy for retinoblastoma. PMID:26662407

  16. Combinations of gene ontology and pathway characterize and predict prognosis genes for recurrence of gastric cancer after surgery.

    Science.gov (United States)

    Fan, Haiyan; Guo, Zhanjun; Wang, Cuijv

    2015-09-01

    Gastric cancer (GC) is the second leading cause of death from cancer globally. The most common cause of GC is the infection of Helicobacter pylori, but ∼11% of cases are caused by genetic factors. However, recurrences occur in approximately one-third of stage II GC patients, even if they are treated with adjuvant chemotherapy or chemoradiotherapy. This is potentially due to expression variation of genes; some candidate prognostic genes were identified in patients with high-risk recurrences. The objective of this study was to develop an effective computational method for meaningfully interpreting these GC-related genes and accurately predicting novel prognostic genes for high-risk recurrence patients. We employed properties of genes (gene ontology [GO] and KEGG pathway information) as features to characterize GC-related genes. We obtained an optimal set of features for interpreting these genes. By applying the minimum redundancy maximum relevance algorithm, we predicted the GC-related genes. With the same approach, we further predicted the genes for the prognostic of high-risk recurrence. We obtained 1104 GO terms and KEGG pathways and 530 GO terms and KEGG pathways, respectively, that characterized GC-related genes and recurrence-related genes well. Finally, three novel prognostic genes were predicted to help supplement genetic markers of high-risk GC patients for recurrence after surgery. An in-depth text mining indicated that the results are quite consistent with previous knowledge. Survival analysis of patients confirmed the novel prognostic genes as markers. By analyzing the related genes, we developed a systematic method to interpret the possible underlying mechanism of GC. The novel prognostic genes facilitate the understanding and therapy of GC recurrences after surgery. PMID:26154702

  17. Identification and Analysis of the Balhimycin Biosynthetic Gene Cluster and Its Use for Manipulating Glycopeptide Biosynthesis in Amycolatopsis mediterranei DSM5908

    OpenAIRE

    Pelzer, S.; Süßmuth, R.; Heckmann, D.; Recktenwald, J.; Huber, P; Jung, G; Wohlleben, W

    1999-01-01

    Seven complete genes and one incomplete gene for the biosynthesis of the glycopeptide antibiotic balhimycin were isolated from the producer, Amycolatopsis mediterranei DSM5908, by a reverse-cloning approach and characterized. Using oligonucleotides derived from glycosyltransferase sequences, a 900-bp glycosyltransferase gene fragment was amplified and used to identify a DNA fragment of 9,882 bp. Of the identified open reading frames, three (oxyA to -C) showed significant sequence similarities...

  18. Genome-wide transcriptome directed pathway analysis of maternal pre-eclampsia susceptibility genes.

    Directory of Open Access Journals (Sweden)

    Hannah E J Yong

    Full Text Available Preeclampsia (PE is a serious hypertensive pregnancy disorder with a significant genetic component. Numerous genetic studies, including our own, have yielded many susceptibility genes from distinct functional groups. Additionally, transcriptome profiling of tissues at the maternal-fetal interface has likewise yielded many differentially expressed genes. Often there is little overlap between these two approaches, although genes identified in both approaches are significantly associated with PE. We have thus taken a novel integrative bioinformatics approach of analysing pathways common to the susceptibility genes and the PE transcriptome.Using Illumina Human Ht12v4 and Wg6v3 BeadChips, transcriptome profiling was conducted on n = 65 normotensive and n = 60 PE decidua basalis tissues collected at delivery. The R software package libraries lumi and limma were used to preprocess transcript data for pathway analysis. Pathways were analysed and constructed using Pathway Studio. We examined ten candidate genes, which are from these functional groups: activin/inhibin signalling-ACVR1, ACVR1C, ACVR2A, INHA, INHBB; structural components-COL4A1, COL4A2 and M1 family aminopeptidases-ERAP1, ERAP2 and LNPEP.Major common regulators/targets of these susceptibility genes identified were AGT, IFNG, IL6, INHBA, SERPINE1, TGFB1 and VEGFA. The top two categories of pathways associated with the susceptibility genes, which were significantly altered in the PE decidual transcriptome, were apoptosis and cell signaling (p < 0.001. Thus, susceptibility genes from distinct functional groups share similar downstream pathways through common regulators/targets, some of which are altered in PE. This study contributes to a better understanding of how susceptibility genes may interact in the development of PE. With this knowledge, more targeted functional analyses of PE susceptibility genes in these key pathways can be performed to examine their contributions to the pathogenesis

  19. Transcriptional gene expression profiles of HGF/SF-met signaling pathway in colorectal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Xue-Nong Li; Yan-Qing Ding; Guo-Bing Liu

    2003-01-01

    AIM: To explore the transcriptional gene expression profiles of HGF/SF-met signaling pathway in colorectal carcinoma to understand mechanisms of the signaling pathway at so gene level.METHODS: Total RNA was isolated from human colorectal carcinoma cell line LoVo treated with HGF/SF (80 ng/L)for 48 h. Fluorescent probes were prepared from RNA labeled with cy3-dUTP for the control groups and with cy5-dUTP for the HGF/SF-treated groups through reversetranscription. The probes were mixed and hybridized on the microarray at 60 ℃ for 15-20 h, then the microarray was scanned by laser scanner (GenePix 4000B). The intensity of each spot and ratios of Cy5/Cy3 were analyzed and finally the differentially expressed genes were selected by GenePix Pro 3.0 software. 6 differential expression genes (3 up-regulated genes and 3 down-regulated genes) were selected randomly and analyzed by β-actin semiquantitative RT-PCR.RESULTS: The fluorescent intensities of built-in negative control spots were less than 200, and the fluorescent intensities of positive control spots were more than 5000.Of the 4004 human genes analyzed by microarray, 129 genes (holding 3.22 % of the investigated genes) revealed differential expression in HGF/SF-treated groups compared with the control groups, of which 61 genes were up-regulated (holding 1.52 % of the investigated genes) and 68 genes were down-regulated (holding 1.70 % of the investigated genes), which supplied abundant information about target genes of HGF/SF-met signaling.CONCLUSION: HGF/SF-met signaling may up-regulate oncogenes, signal transduction genes, apoptosis-related genes, metastasis related genes, and down-regulate a number of genes. The complexity of HGF/SF-met signaling to control the gene expression is revealed as a whole by the gene chip technology.

  20. Genetic variation in the immunosuppression pathway genes and breast cancer susceptibility

    DEFF Research Database (Denmark)

    Lei, Jieping; Rudolph, Anja; Moysich, Kirsten B;

    2016-01-01

    Immunosuppression plays a pivotal role in assisting tumors to evade immune destruction and promoting tumor development. We hypothesized that genetic variation in the immunosuppression pathway genes may be implicated in breast cancer tumorigenesis. We included 42,510 female breast cancer cases and.......5 × 10(-4) and 0.63, respectively). Our data provide evidence that the immunosuppression pathway genes STAT3, IL5, and GM-CSF may be novel susceptibility loci for breast cancer in women of European ancestry....

  1. The Histone H3 Methyltransferase G9A Epigenetically Activates the Serine-Glycine Synthesis Pathway to Sustain Cancer Cell Survival and Proliferation

    OpenAIRE

    Ding, Jane; Li, Tai; Wang, Xiangwei; Zhao, Erhu; Choi, Jeong-Hyeon; Yang, Liqun; Zha, Yunhong; Zheng DONG; Huang, Shuang; John M. Asara; CUI, HONGJUAN; Ding, Han-Fei

    2013-01-01

    Increased activation of the serine-glycine biosynthetic pathway is an integral part of cancer metabolism that drives macromolecule synthesis needed for cell proliferation. Whether this pathway is under epigenetic control is unknown. Here we show that the histone H3 lysine 9 (H3K9) methyltransferase G9A is required for maintaining the pathway enzyme genes in an active state marked by H3K9 monomethylation and for the transcriptional activation of this pathway in response to serine deprivation. ...

  2. Coregulation of terpenoid pathway genes and prediction of isoprene production in Bacillus subtilis using transcriptomics

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Becky M.; Xue, Junfeng; Markillie, Lye Meng; Taylor, Ronald C.; Wiley, H. S.; Ahring, Birgitte K.; Linggi, Bryan E.

    2013-06-19

    The isoprenoid pathway converts pyruvate to isoprene and related isoprenoid compounds in plants and some bacteria. Currently, this pathway is of great interest because of the critical role that isoprenoids play in basic cellular processes as well as the industrial value of metabolites such as isoprene. Although the regulation of several pathway genes has been described, there is a paucity of information regarding the system level regulation and control of the pathway. To address this limitation, we examined Bacillus subtilis grown under multiple conditions and then determined the relationship between altered isoprene production and the pattern of gene expression. We found that terpenoid genes appeared to fall into two distinct subsets with opposing correlations with respect to the amount of isoprene produced. The group whose expression levels positively correlated with isoprene production included dxs, the gene responsible for the commitment step in the pathway, as well as ispD, and two genes that participate in the mevalonate pathway, yhfS and pksG. The subset of terpenoid genes that inversely correlated with isoprene production included ispH, ispF, hepS, uppS, ispE, and dxr. A genome wide partial least squares regression model was created to identify other genes or pathways that contribute to isoprene production. This analysis showed that a subset of 213 regulated genes was sufficient to create a predictive model of isoprene production under different conditions and showed correlations at the transcriptional level. We conclude that gene expression levels alone are sufficiently informative about the metabolic state of a cell that produces increased isoprene and can be used to build a model which accurately predicts production of this secondary metabolite across many simulated environmental conditions.

  3. Association and gene-gene interactions study of reelin signaling pathway related genes with autism in the Han Chinese population.

    Science.gov (United States)

    Shen, Yidong; Xun, Guanglei; Guo, Hui; He, Yiqun; Ou, Jianjun; Dong, Huixi; Xia, Kun; Zhao, Jingping

    2016-04-01

    Autism is a neurodevelopmental disorder with unclear etiology. Reelin had been proposed to participate in the etiology of autism due to its important role in brain development. The goal of this study was to explore the association and gene-gene interactions of reelin signaling pathway related genes (RELN, VLDLR, LRP8, DAB1, FYN, and CDK5) with autism in Han Chinese population. Genotyping data of the six genes were obtained from a recent genome-wide association study performed in 430 autistic children who fulfilled the DSM-IV-TR criteria for autistic disorder, and 1,074 healthy controls. Single marker case-control association analysis and haplotype case-control association analysis were conducted after the data was screened. Multifactor dimensionality reduction (MDR) was applied to further test gene-gene interactions. Neither the single marker nor the haplotype association tests found any significant difference between the autistic group and the control group after permutation test of 1,000 rounds. The 4-locus MDR model (comprising rs6143734, rs1858782, rs634500, and rs1924267 which belong to RELN and DAB1) was determined to be the model with the highest cross-validation consistency (CVC) and testing balanced accuracy. The results indicate that an interaction between RELN and DAB1 may increase the risk of autism in the Han Chinese population. Furthermore, it can also be inferred that the involvement of RELN in the etiology of autism would occur through interaction with DAB1. Autism Res 2016, 9: 436-442. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. PMID:26285919

  4. Identification of Genes Related to Nasopharyngeal Carcinoma with the Help of Pathway-based Networks

    Institute of Scientific and Technical Information of China (English)

    Hui LI; Cai-Ping REN; Xiao-Jun TAN; Xu-Yu YANG; Hong-Bo ZHANG; Wen ZHOU; Kai-Tai YAO

    2006-01-01

    cDNA microarray is a powerful tool to analyze simultaneously the expression levels of tens of thousands of genes. Compared with normal nasopharynx (NP) tissues, 2210 genes were highly differentially expressed in nasopharyngeal carcinoma (NPC) tissues detected by cDNA microarray. Since signal pathway is widely used to describe the complex relationship between genes, a pathway-based network was constructed to visualize the connection between the genes obtained from microarray data in this report. We analyzed the targeted genes that may have more important influence on this gene network with statistical methods and found that some genes might have significant influence on this network, especially Ras-related nuclear protein (RAN), carboxyl ester lipase (CEL), v-rel reticuloendotheliosis viral oncogene homolog A (RELA) genes. To verify the results from pathway-based selection, reverse transcription-polymerase chain reaction (RT-PCR) and real-time RT-PCR were performed to detect the expression levels of RAN, CEL and RELA genes and it was found that the RAN and CEL genes were significantly up-regulated in more than 80%of NPC tissues. To further elucidate the function of the RAN gene, RAN expression was specifically suppressed in a 5-8F NPC cell line by RNA interference (RNAi). As expected, the depletion of RAN could effectively block the proliferation of tumor cells. Therefore, our study may open up a new way to analyze the vast microarray data.

  5. Identification of key pathways and genes in colorectal cancer using bioinformatics analysis.

    Science.gov (United States)

    Liang, Bin; Li, Chunning; Zhao, Jianying

    2016-10-01

    Colorectal cancer (CRC) is the most common malignant tumor of digestive system. The aim of this study was to identify gene signatures during CRC and uncover their potential mechanisms. The gene expression profiles of GSE21815 were downloaded from GEO database. The GSE21815 dataset contained 141 samples, including 132 CRC and 9 normal colon epitheliums. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses were performed, and protein-protein interaction (PPI) network of the differentially expressed genes (DEGs) was constructed by Cytoscape software. In total, 3500 DEGs were identified in CRC, including 1370 up-regulated genes and 2130 down-regulated genes. GO analysis results showed that up-regulated DEGs were significantly enriched in biological processes (BP), including cell cycle, cell division, and cell proliferation; the down-regulated DEGs were significantly enriched in biological processes, including immune response, intracellular signaling cascade and defense response. KEGG pathway analysis showed the up-regulated DEGs were enriched in cell cycle and DNA replication, while the down-regulated DEGs were enriched in drug metabolism, metabolism of xenobiotics by cytochrome P450, and retinol metabolism pathways. The top 10 hub genes, GNG2, AGT, SAA1, ADCY5, LPAR1, NMU, IL8, CXCL12, GNAI1, and CCR2 were identified from the PPI network, and sub-networks revealed these genes were involved in significant pathways, including G protein-coupled receptors signaling pathway, gastrin-CREB signaling pathway via PKC and MAPK, and extracellular matrix organization. In conclusion, the present study indicated that the identified DEGs and hub genes promote our understanding of the molecular mechanisms underlying the development of CRC, and might be used as molecular targets and diagnostic biomarkers for the treatment of CRC. PMID:27581154

  6. Systematic enrichment analysis of gene expression profiling studies identifies consensus pathways implicated in colorectal cancer development

    Directory of Open Access Journals (Sweden)

    Jesús Lascorz

    2011-01-01

    Full Text Available Background: A large number of gene expression profiling (GEP studies on colorectal carcinogenesis have been performed but no reliable gene signature has been identified so far due to the lack of reproducibility in the reported genes. There is growing evidence that functionally related genes, rather than individual genes, contribute to the etiology of complex traits. We used, as a novel approach, pathway enrichment tools to define functionally related genes that are consistently up- or down-regulated in colorectal carcinogenesis. Materials and Methods: We started the analysis with 242 unique annotated genes that had been reported by any of three recent meta-analyses covering GEP studies on genes differentially expressed in carcinoma vs normal mucosa. Most of these genes (218, 91.9% had been reported in at least three GEP studies. These 242 genes were submitted to bioinformatic analysis using a total of nine tools to detect enrichment of Gene Ontology (GO categories or Kyoto Encyclopedia of Genes and Genomes (KEGG pathways. As a final consistency criterion the pathway categories had to be enriched by several tools to be taken into consideration. Results: Our pathway-based enrichment analysis identified the categories of ribosomal protein constituents, extracellular matrix receptor interaction, carbonic anhydrase isozymes, and a general category related to inflammation and cellular response as significantly and consistently overrepresented entities. Conclusions: We triaged the genes covered by the published GEP literature on colorectal carcinogenesis and subjected them to multiple enrichment tools in order to identify the consistently enriched gene categories. These turned out to have known functional relationships to cancer development and thus deserve further investigation.

  7. Cloning and sequencing of the kedarcidin biosynthetic gene cluster from Streptoalloteichus sp. ATCC 53650 revealing new insights into biosynthesis of the enediyne family of antitumor antibiotics†

    OpenAIRE

    Lohman, Jeremy R.; Huang, Sheng-Xiong; Horsman, Geoffrey P.; Dilfer, Paul E.; Huang, Tingting; Chen, Yihua; Wendt-Pienkowski, Evelyn; Shen, Ben

    2013-01-01

    Enediyne natural product biosynthesis is characterized by a convergence of multiple pathways, generating unique peripheral moieties that are appended onto the distinctive enediyne core. Kedarcidin (KED) possesses two unique peripheral moieties, a (R)-2-aza-3-chloro-β-tyrosine and an iso-propoxy-bearing 2-naphthonate moiety, as well as two deoxysugars. The appendage pattern of these peripheral moieties to the enediyne core in KED differs from the other enediynes studied to date with respect to...

  8. Starch biosynthetic genes and enzymes are expressed and active in the absence of starch accumulation in sugar beet tap-root

    OpenAIRE

    Turesson, Helle; Andersson, Mariette; Marttila, Salla; Thulin, Ingela; Hofvander, Per

    2014-01-01

    BACKGROUND: Starch is the predominant storage compound in underground plant tissues like roots and tubers. An exception is sugar beet tap-root (Beta vulgaris ssp altissima) which exclusively stores sucrose. The underlying mechanism behind this divergent storage accumulation in sugar beet is currently not fully known. From the general presence of starch in roots and tubers it could be speculated that the lack in sugar beet tap-roots would originate from deficiency in pathways leading to starch...

  9. Evolution of pigment synthesis pathways by gene and genome duplication in fish

    Directory of Open Access Journals (Sweden)

    Volff Jean-Nicolas

    2007-05-01

    Full Text Available Abstract Background Coloration and color patterning belong to the most diverse phenotypic traits in animals. Particularly, teleost fishes possess more pigment cell types than any other group of vertebrates. As the result of an ancient fish-specific genome duplication (FSGD, teleost genomes might contain more copies of genes involved in pigment cell development than tetrapods. No systematic genomic inventory allowing to test this hypothesis has been drawn up so far for pigmentation genes in fish, and almost nothing is known about the evolution of these genes in different fish lineages. Results Using a comparative genomic approach including phylogenetic reconstructions and synteny analyses, we have studied two major pigment synthesis pathways in teleost fish, the melanin and the pteridine pathways, with respect to different types of gene duplication. Genes encoding three of the four enzymes involved in the synthesis of melanin from tyrosine have been retained as duplicates after the FSGD. In the pteridine pathway, two cases of duplicated genes originating from the FSGD as well as several lineage-specific gene duplications were observed. In both pathways, genes encoding the rate-limiting enzymes, tyrosinase and GTP-cyclohydrolase I (GchI, have additional paralogs in teleosts compared to tetrapods, which have been generated by different modes of duplication. We have also observed a previously unrecognized diversity of gchI genes in vertebrates. In addition, we have found evidence for divergent resolution of duplicated pigmentation genes, i.e., differential gene loss in divergent teleost lineages, particularly in the tyrosinase gene family. Conclusion Mainly due to the FSGD, teleost fishes apparently have a greater repertoire of pigment synthesis genes than any other vertebrate group. Our results support an important role of the FSGD and other types of duplication in the evolution of pigmentation in fish.

  10. Functional expression of the FeMo-cofactor-specific biosynthetic genes nifEN as a NifE-N fusion protein synthesizing unit in Azotobacter vinelandii.

    Science.gov (United States)

    Suh, Man Hee; Pulakat, Lakshmi; Gavini, Nara

    2002-11-29

    The nifEN encodes an E2N2 tetrameric metalloprotein complex that serves as scaffold for assembly of the FeMo cofactor of nitrogenase. In most diazotrophs, the NifE and NifN are translated as separate polypeptides and then assembled into tetrameric E2N2 complex. However, in Anabaena variabilis which has two nif clusters that encode two different NifEN complexes, the NifEN2 is encoded by a single nifE-N like gene, which has high homology to the NifE at amino-terminus and to the NifN at the carboxy-terminus. These observations implied that a metalloprotein like NifEN can accommodate large variations in their amino acid composition and also in the way they are synthesized (as two separate proteins or as a single protein) and yet remain functional. In Azotobacter vinelandii NifE and NifN are synthesized separately. To test whether NifEN could retain its functionality when encoded by a single gene, we generated a translational fusion of the nifE and nifN genes of A. vinelandii that could encode a large NifE-N fusion protein. When expressed in the nifEN-minus strain of A. vinelandii, the nifE-N gene fusion could complement the NifEN function. Western blot analysis by using polyclonal NifEN antibodies revealed that the complementing nifEN product is a large NifE-N fusion protein unit. The fact that the gene fusion of nifE-N specifies a functional NifE-N fusion protein reflects that these metalloproteins can accommodate a wide range of flexibility in their gene organization, structure, and assembly. PMID:12437975

  11. Regulation of Gene Expression of Catecholamine Biosynthetic Enzymes in Dopamine-β-Hydroxylase- and CRH-Knockout Mice Exposed to Stress

    OpenAIRE

    Richard, Kvetnansky; Olga, Krizanova; Andrej, Tillinger; Sabban Esther, L.; Thomas Steven, A; Lucia, Kubovcakova

    2008-01-01

    Norepinephrine-deficient mice harbor a disruption of the gene for dopamine-β-hydroxylase (DBH-KO). Corticotropin-releasing hormone knockout mice (CRH-KO) have markedly reduced HPA activity. The aim of the present work was to study how deficiency of DBH and CRH would affect tyrosine hydroxylase (TH), DBH, and phenylethanolamine N-methyltransferase (PNMT) gene expression and protein levels in the adrenal medulla (AM) and stellate ganglia (SG) of control and stressed mice. Both in AM and SG, sin...

  12. Enrichment of provitamin A content in wheat (Triticum aestivum L.) by introduction of the bacterial carotenoid biosynthetic genes CrtB and CrtI

    OpenAIRE

    Wang, Cheng; Zeng, Jian; Li, Yin; Hu, Wei; Chen, Ling; Miao, Yingjie; Deng, Pengyi; Yuan, Cuihong; Ma, Cheng; Chen, Xi; Zang, Mingli; Wang, Qiong; Li, Kexiu; Chang, Junli; Wang, Yuesheng

    2014-01-01

    Carotenoid content is a primary determinant of wheat nutritional value and affects its end-use quality. Wheat grains contain very low carotenoid levels and trace amounts of provitamin A content. In order to enrich the carotenoid content in wheat grains, the bacterial phytoene synthase gene (CrtB) and carotene desaturase gene (CrtI) were transformed into the common wheat cultivar Bobwhite. Expression of CrtB or CrtI alone slightly increased the carotenoid content in the grains of transgenic wh...

  13. Characterization of changes in gene expression and biochemical pathways at low levels of benzene exposure.

    Directory of Open Access Journals (Sweden)

    Reuben Thomas

    Full Text Available Benzene, a ubiquitous environmental pollutant, causes acute myeloid leukemia (AML. Recently, through transcriptome profiling of peripheral blood mononuclear cells (PBMC, we reported dose-dependent effects of benzene exposure on gene expression and biochemical pathways in 83 workers exposed across four airborne concentration ranges (from 10 ppm compared with 42 subjects with non-workplace ambient exposure levels. Here, we further characterize these dose-dependent effects with continuous benzene exposure in all 125 study subjects. We estimated air benzene exposure levels in the 42 environmentally-exposed subjects from their unmetabolized urinary benzene levels. We used a novel non-parametric, data-adaptive model selection method to estimate the change with dose in the expression of each gene. We describe non-parametric approaches to model pathway responses and used these to estimate the dose responses of the AML pathway and 4 other pathways of interest. The response patterns of majority of genes as captured by mean estimates of the first and second principal components of the dose-response for the five pathways and the profiles of 6 AML pathway response-representative genes (identified by clustering exhibited similar apparent supra-linear responses. Responses at or below 0.1 ppm benzene were observed for altered expression of AML pathway genes and CYP2E1. Together, these data show that benzene alters disease-relevant pathways and genes in a dose-dependent manner, with effects apparent at doses as low as 100 ppb in air. Studies with extensive exposure assessment of subjects exposed in the low-dose range between 10 ppb and 1 ppm are needed to confirm these findings.

  14. Identification of novel genes and pathways in carotid atheroma using integrated bioinformatic methods.

    Science.gov (United States)

    Nai, Wenqing; Threapleton, Diane; Lu, Jingbo; Zhang, Kewei; Wu, Hongyuan; Fu, You; Wang, Yuanyuan; Ou, Zejin; Shan, Lanlan; Ding, Yan; Yu, Yanlin; Dai, Meng

    2016-01-01

    Atherosclerosis is the primary cause of cardiovascular events and its molecular mechanism urgently needs to be clarified. In our study, atheromatous plaques (ATH) and macroscopically intact tissue (MIT) sampled from 32 patients were compared and an integrated series of bioinformatic microarray analyses were used to identify altered genes and pathways. Our work showed 816 genes were differentially expressed between ATH and MIT, including 443 that were up-regulated and 373 that were down-regulated in ATH tissues. GO functional-enrichment analysis for differentially expressed genes (DEGs) indicated that genes related to the "immune response" and "muscle contraction" were altered in ATHs. KEGG pathway-enrichment analysis showed that up-regulated DEGs were significantly enriched in the "FcεRI-mediated signaling pathway", while down-regulated genes were significantly enriched in the "transforming growth factor-β signaling pathway". Protein-protein interaction network and module analysis demonstrated that VAV1, SYK, LYN and PTPN6 may play critical roles in the network. Additionally, similar observations were seen in a validation study where SYK, LYN and PTPN6 were markedly elevated in ATH. All in all, identification of these genes and pathways not only provides new insights into the pathogenesis of atherosclerosis, but may also aid in the development of prognostic and therapeutic biomarkers for advanced atheroma. PMID:26742467

  15. The major volatile compound 2-phenylethanol from the biocontrol yeast, Pichia anomala, inhibits growth and expression of aflatoxin biosynthetic genes of Aspergillus flavus.

    Science.gov (United States)

    Hua, Sui Sheng T; Beck, John J; Sarreal, Siov Bouy L; Gee, Wai

    2014-05-01

    Aspergillus flavus is a ubiquitous saprophyte that is able to produce the most potent natural carcinogenic compound known as aflatoxin B1 (AFB1). This toxin frequently contaminates crops including corn, cotton, peanuts, and tree nuts causing substantial economic loss worldwide. Consequently, more than 100 countries have strict regulations limiting AFB1 in foodstuffs and feedstuffs. Plants and microbes are able to produce volatile compounds that act as a defense mechanism against other organisms. Pichia anomala strain WRL-076 is a biocontrol yeast currently being tested to reduce AF contamination of tree nuts in California. We used the SPME-GC/MS analysis and identified the major volatile compound produced by this strain to be 2-phenylethanol (2-PE). It inhibited spore germination and AF production of A. flavus. Inhibition of AF formation by 2-PE was correlated with significant down regulation of clustering AF biosynthesis genes as evidenced by several to greater than 10,000-fold decrease in gene expression. In a time-course analysis we found that 2-PE also altered the expression patterns of chromatin modifying genes, MYST1, MYST2, MYST3, gcn5, hdaA and rpdA. The biocontrol capacity of P. anomala can be attributed to the production of 2-PE, which affects spore germination, growth, toxin production, and gene expression in A. flavus. PMID:24504634

  16. Susceptible genes and molecular pathways related to heavy ion irradiation in oral squamous cell carcinoma cells

    International Nuclear Information System (INIS)

    Background and purpose: Heavy ion beams are high linear energy transfer (LET) radiation characterized by a higher relative biologic effectiveness than low LET radiation. The aim of the current study was to determine the difference of gene expression between heavy ion beams and X-rays in oral squamous cell carcinoma (OSCC)-derived cells. Materials and methods: The OSCC cells were irradiated with accelerated carbon or neon ion irradiation or X-rays using three different doses. We sought to identify genes the expression of which is affected by carbon and neon ion irradiation using Affymetrix GeneChip analysis. The identified genes were analyzed using the Ingenuity Pathway Analysis Tool to investigate the functional network and gene ontology. Changes in mRNA expression in the genes were assessed by real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Results: The microarray analysis identified 84 genes that were modulated by carbon and neon ion irradiation at all doses in OSCC cells. Among the genes, three genes (TGFBR2, SMURF2, and BMP7) and two genes (CCND1 and E2F3), respectively, were found to be involved in the transforming growth factor β-signaling pathway and cell cycle:G1/S checkpoint regulation pathway. The qRT-PCR data from the five genes after heavy ion irradiation were consistent with the microarray data (P < 0.01). Conclusion: Our findings should serve as a basis for global characterization of radiation-regulated genes and pathways in heavy ion-irradiated OSCC

  17. Signaling pathway-based identification of extensive prognostic gene signatures for lung adenocarcinoma

    OpenAIRE

    Wan, Ying-Wooi; Beer, David G.; Guo, Nancy Lan

    2011-01-01

    Tumor recurrence is the major cause of death in lung cancer treatment. To date, there is no clinically applied gene expression-based model to predict the risk for tumor recurrence in non-small cell lung cancer (NSCLC). We sought to embed crosstalk with major signaling pathways into biomarker identification. Three approaches were used to identify prognostic gene signatures from 442 lung adenocarcinoma samples. Candidate genes co-expressed with 6 or 7 major NSCLC signaling hallmarks were identi...

  18. Evidence for cross-pathway regulation of metabolic gene expression in plants.

    OpenAIRE

    Guyer, D; Patton, D; Ward, E

    1995-01-01

    In Arabidopsis thaliana, blocking histidine biosynthesis with a specific inhibitor of imidazoleglycerol-phosphate dehydratase caused increased expression of eight genes involved in the biosynthesis of aromatic amino acids, histidine, lysine, and purines. A decrease in expression of glutamine synthetase was also observed. Addition of histidine eliminated the gene-regulating effects of the inhibitor, demonstrating that the changes in gene expression resulted from histidine-pathway blockage. The...

  19. Association of single nucleotide polymorphisms in Wnt signaling pathway genes with breast cancer in Saudi patients.

    Directory of Open Access Journals (Sweden)

    Mohammad Saud Alanazi

    Full Text Available Breast cancer is a complex heterogeneous disease involving genetic and epigenetic alterations in genes encoding proteins that are components of various signaling pathways. Candidate gene approach have identified association of genetic variants in the Wnt signaling pathway genes and increased susceptibility to several diseases including breast cancer. Due to the rarity of somatic mutations in key genes of Wnt pathway, we investigated the association of genetic variants in these genes with predisposition to breast cancers. We performed a case-control study to identify risk variants by examining 15 SNPs located in 8 genes associated with Wnt signaling. Genotypic analysis of individual locus showed statistically significant association of five SNPs located in β-catenin, AXIN2, DKK3, SFRP3 and TCF7L2 with breast cancers. Increased risk was observed only with the SNP in β-catenin while the other four SNPs conferred protection against breast cancers. Majority of these associations persisted after stratification of the cases based on estrogen receptor status and age of on-set of breast cancer. The rs7775 SNP in exon 6 of SFRP3 gene that codes for either arginine or glycine exhibited very strong association with breast cancer, even after Bonferroni's correction. Apart from these five variants, rs3923086 in AXIN2 and rs3763511 in DKK4 that did not show any association in the overall population were significantly associated with early on-set and estrogen receptor negative breast cancers, respectively. This is the first study to utilize pathway based approach to identify association of risk variants in the Wnt signaling pathway genes with breast cancers. Confirmation of our findings in larger populations of different ethnicities would provide evidence for the role of Wnt pathway as well as screening markers for early detection of breast carcinomas.

  20. Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus.

    Science.gov (United States)

    Monier, Adam; Pagarete, António; de Vargas, Colomban; Allen, Michael J; Read, Betsy; Claverie, Jean-Michel; Ogata, Hiroyuki

    2009-08-01

    Interactions between viruses and phytoplankton, the main primary producers in the oceans, affect global biogeochemical cycles and climate. Recent studies are increasingly revealing possible cases of gene transfers between cyanobacteria and phages, which might have played significant roles in the evolution of cyanobacteria/phage systems. However, little has been documented about the occurrence of horizontal gene transfer in eukaryotic phytoplankton/virus systems. Here we report phylogenetic evidence for the transfer of seven genes involved in the sphingolipid biosynthesis pathway between the cosmopolitan eukaryotic microalga Emiliania huxleyi and its large DNA virus EhV. PCR assays indicate that these genes are prevalent in E. huxleyi and EhV strains isolated from different geographic locations. Patterns of protein and gene sequence conservation support that these genes are functional in both E. huxleyi and EhV. This is the first clear case of horizontal gene transfer of multiple functionally linked enzymes in a eukaryotic phytoplankton-virus system. We examine arguments for the possible direction of the gene transfer. The virus-to-host direction suggests the existence of ancient viruses that controlled the complex metabolic pathway in order to infect primitive eukaryotic cells. In contrast, the host-to-virus direction suggests that the serial acquisition of genes involved in the same metabolic pathway might have been a strategy for the ancestor of EhVs to stay ahead of their closest relatives in the great evolutionary race for survival. PMID:19451591

  1. Silent no more: Endogenous small RNA pathways promote gene expression

    OpenAIRE

    Wedeles, Christopher J; Wu, Monica Z.; Claycomb, Julie M.

    2014-01-01

    Endogenous small RNA pathways related to RNA interference (RNAi) play a well-documented role in protecting host genomes from the invasion of foreign nucleic acids. In C. elegans, the PIWI type Argonaute, PRG-1, through an association with 21U-RNAs, mediates a genome surveillance process by constantly scanning the genome for potentially deleterious invading elements. Upon recognition of foreign nucleic acids, PRG-1 initiates a cascade of cytoplasmic and nuclear events that results in heritable...

  2. Evolutionary systems biology of amino acid biosynthetic cost in yeast.

    Directory of Open Access Journals (Sweden)

    Michael D Barton

    Full Text Available Every protein has a biosynthetic cost to the cell based on the synthesis of its constituent amino acids. In order to optimise growth and reproduction, natural selection is expected, where possible, to favour the use of proteins whose constituents are cheaper to produce, as reduced biosynthetic cost may confer a fitness advantage to the organism. Quantifying the cost of amino acid biosynthesis presents challenges, since energetic requirements may change across different cellular and environmental conditions. We developed a systems biology approach to estimate the cost of amino acid synthesis based on genome-scale metabolic models and investigated the effects of the cost of amino acid synthesis on Saccharomyces cerevisiae gene expression and protein evolution. First, we used our two new and six previously reported measures of amino acid cost in conjunction with codon usage bias, tRNA gene number and atomic composition to identify which of these factors best predict transcript and protein levels. Second, we compared amino acid cost with rates of amino acid substitution across four species in the genus Saccharomyces. Regardless of which cost measure is used, amino acid biosynthetic cost is weakly associated with transcript and protein levels. In contrast, we find that biosynthetic cost and amino acid substitution rates show a negative correlation, but for only a subset of cost measures. In the economy of the yeast cell, we find that the cost of amino acid synthesis plays a limited role in shaping transcript and protein expression levels compared to that of translational optimisation. Biosynthetic cost does, however, appear to affect rates of amino acid evolution in Saccharomyces, suggesting that expensive amino acids may only be used when they have specific structural or functional roles in protein sequences. However, as there appears to be no single currency to compute the cost of amino acid synthesis across all cellular and environmental

  3. Erwinia carotovora ssp. carotovora Infection Induced "Defense Lignin" Accumulation and Lignin Biosynthetic Gene Expression in Chinese Cabbage (Brassica rapa L. ssp. pekinensis)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Erwinia carotovora subsp. carotovora (Ecc) infects and causes soft rot disease in hundreds of crop species including vegetables, flowers and fruits. Lignin biosynthesis has been implicated in defensive reactions to injury and pathogen Infection in plants. In this work, variations of lignin content and gene expression in the molecular interaction between Chinese cabbage and Ecc were investigated. H2O2 accumulation and peroxidase activity were detected by 3, 3'-Dimethoxybenzidine staining at mocked and Ecc-inoculated sites of Chinese cabbage leafstalks. Klason lignin content in inoculated plants increased by about 7.84%, 40.37%, and 43.13% more than that of the mocked site at 12, 24 and 72 h after inoculation, respectively. Gas chromatography detected more p-coumaryl (H) and less coniferyl (G) and sinapyl (S)monolignins in leafstalks of Chinese cabbage. All three monomers increased in Ecc-infected leafstalks, and the Ecc-induced "defense lignin" were composed of more G and H monolignins, and less S monolignin. After searching the expressed sequence tags (EST) data of Chinese cabbage, 12 genes putatively encoding enzymes involved in lignin biosynthesis were selected to study their expression. All of these genes could be Induced by mock inoculation and Ecc infection, while the gene expression lasted for several more hours in the infected samples than in mocked and untreated plants. Our results indicated that "defense lignin" was different from the developmental lignin in composition; G and S monolignins were significantly induced in plants in response to the soft rot Ecc; thus, lignin biosynthesis was differentially regulated and played a role in plant response to the soft rot Ecc.

  4. Identification of a cis-acting factor modulating the transcription of FUM1, a key fumonisin-biosynthetic gene in the fungal maize pathogen Fusarium verticillioides.

    Science.gov (United States)

    Montis, V; Pasquali, M; Visentin, I; Karlovsky, P; Cardinale, F

    2013-02-01

    Fumonisins, toxic secondary metabolites produced by some Fusarium spp. and Aspergillus niger, have strong agro-economic and health impacts. The genes needed for their biosynthesis, named FUM, are clustered and co-expressed in fumonisin producers. In eukaryotes, coordination of transcription can be attained through shared transcription factors, whose specificity relies on the recognition of cis-regulatory elements on target promoters. A bioinformatic analysis on FUM promoters in the maize pathogens Fusarium verticillioides and Aspergillus niger identified a degenerated, over-represented motif potentially involved in the cis-regulation of FUM genes, and of fumonisin biosynthesis. The same motif was not found in various FUM homologues of fungi that do not produce fumonisins. Comparison of the transcriptional strength of the intact FUM1 promoter with a synthetic version, where the motif had been mutated, was carried out in vivo and in planta for F. verticillioides. The results showed that the motif is important for efficient transcription of the FUM1 gene. PMID:23219667

  5. Sense-antisense gene-pairs in breast cancer and associated pathological pathways

    Science.gov (United States)

    Grinchuk, Oleg V.; Motakis, Efthymios; Yenamandra, Surya Pavan; Ow, Ghim Siong; Jenjaroenpun, Piroon; Tang, Zhiqun; Yarmishyn, Aliaksandr A.; Ivshina, Anna V.; Kuznetsov, Vladimir A.

    2015-01-01

    More than 30% of human protein-coding genes form hereditary complex genome architectures composed of sense-antisense (SA) gene pairs (SAGPs) transcribing their RNAs from both strands of a given locus. Such architectures represent important novel components of genome complexity contributing to gene expression deregulation in cancer cells. Therefore, the architectures might be involved in cancer pathways and, in turn, be used for novel drug targets discovery. However, the global roles of SAGPs in cancer pathways has not been studied. Here we investigated SAGPs associated with breast cancer (BC)-related pathways using systems biology, prognostic survival and experimental methods. Gene expression analysis identified 73 BC-relevant SAGPs that are highly correlated in BC. Survival modelling and metadata analysis of the 1161 BC patients allowed us to develop a novel patient prognostic grouping method selecting the 12 survival-significant SAGPs. The qRT-PCR-validated 12-SAGP prognostic signature reproducibly stratified BC patients into low- and high-risk prognostic subgroups. The 1381 SAGP-defined differentially expressed genes common across three studied cohorts were identified. The functional enrichment analysis of these genes revealed the GABPA gene network, including BC-relevant SAGPs, specific gene sets involved in cell cycle, spliceosomal and proteasomal pathways. The co-regulatory function of GABPA in BC cells was supported using siRNA knockdown studies. Thus, we demonstrated SAGPs as the synergistically functional genome architectures interconnected with cancer-related pathways and associated with BC patient clinical outcomes. Taken together, SAGPs represent an important component of genome complexity which can be used to identify novel aspects of coordinated pathological gene networks in cancers. PMID:26517092

  6. NAA和ABA处理对‘京优’葡萄花色苷生物合成相关基因表达的影响%Effects of NAA and ABA treatments on the expression of anthocyanin biosynthetic genes in 'Jing You' grape berry skin

    Institute of Scientific and Technical Information of China (English)

    周莉; 王军

    2011-01-01

    为人工调控花色苷合成,以‘京优’葡萄为实验材料,应用液相色谱-质谱(HPLC-MS)技术和荧光定量PCR,研究了萘乙酸(NAA)和脱落酸(ABA)处理对葡萄果皮花色苷积累及其生物合成相关基因表达的影响。结果表明:在‘京优’葡萄果皮中,可检测到16种花色苷;ABA处理的花色苷含量高于对照,NAA处理低于对照,并且ABA处理的果皮比对照和NAA多出3种花色苷;葡萄果实发育进入转色期,花色苷合成过程中类黄酮途径的结构基因上调表达,完熟后下调表达;ABA处理的果皮花色苷结构基因相对表达量高于对照,而NAA则低于对%In order to control anthocyanin synthesis of 'Jingyou' grape,we applied high performance liquid chromatography-mass spectrometry(HPLC-MS) and real time reverse transcription-polymerase chain reaction(RT-PCR) for studying the effects of naphthaleneacetic aicd(NAA) and abscisic acid(ABA) treatments on the accumulation of anthocyanins,as well as the expression of anthocyanin biosynthetic correlative genes.The results showed that there were 16 sorts of anthocyanins in 'Jing You' berry skin.The anthocyanin contents of ABA treatment were higher but NAA treatment lower than that of control.And there were three extra anthocyanins in ABA treatment of berry skin.The structural genes in flavonoid pathway of anthocyanin synthesis were up-regulated at veraison,but down-regulated after complete maturity.The expression of anthocyanin structural genes was higher in ABA treatment than control,but lower for NAA treatment than control.The accumulation of anthocyanin and the correlative genes of anthocyanin synthesis were promoted by exogenous ABA.And NAA treatment had the opposite impacts.

  7. Integrated pathway-based transcription regulation network mining and visualization based on gene expression profiles.

    Science.gov (United States)

    Kibinge, Nelson; Ono, Naoaki; Horie, Masafumi; Sato, Tetsuo; Sugiura, Tadao; Altaf-Ul-Amin, Md; Saito, Akira; Kanaya, Shigehiko

    2016-06-01

    Conventionally, workflows examining transcription regulation networks from gene expression data involve distinct analytical steps. There is a need for pipelines that unify data mining and inference deduction into a singular framework to enhance interpretation and hypotheses generation. We propose a workflow that merges network construction with gene expression data mining focusing on regulation processes in the context of transcription factor driven gene regulation. The pipeline implements pathway-based modularization of expression profiles into functional units to improve biological interpretation. The integrated workflow was implemented as a web application software (TransReguloNet) with functions that enable pathway visualization and comparison of transcription factor activity between sample conditions defined in the experimental design. The pipeline merges differential expression, network construction, pathway-based abstraction, clustering and visualization. The framework was applied in analysis of actual expression datasets related to lung, breast and prostrate cancer. PMID:27064123

  8. Gene expression meta-analysis identifies metastatic pathways and transcription factors in breast cancer

    OpenAIRE

    Tan Qihua; Thomassen Mads; Kruse Torben A

    2008-01-01

    Abstract Background Metastasis is believed to progress in several steps including different pathways but the determination and understanding of these mechanisms is still fragmentary. Microarray analysis of gene expression patterns in breast tumors has been used to predict outcome in recent studies. Besides classification of outcome, these global expression patterns may reflect biological mechanisms involved in metastasis of breast cancer. Our purpose has been to investigate pathways and trans...

  9. Gene expression meta-analysis identifies metastatic pathways and transcription factors in breast cancer

    OpenAIRE

    Thomassen, Mads; Tan, Qihua; Kruse, Torben A.

    2008-01-01

    Background Metastasis is believed to progress in several steps including different pathways but the determination and understanding of these mechanisms is still fragmentary. Microarray analysis of gene expression patterns in breast tumors has been used to predict outcome in recent studies. Besides classification of outcome, these global expression patterns may reflect biological mechanisms involved in metastasis of breast cancer. Our purpose has been to investigate pathways and transcription ...

  10. Frequent and simultaneous epigenetic inactivation of TP53 pathway genes in acute lymphoblastic leukemia.

    Directory of Open Access Journals (Sweden)

    Amaia Vilas-Zornoza

    Full Text Available Aberrant DNA methylation is one of the most frequent alterations in patients with Acute Lymphoblastic Leukemia (ALL. Using methylation bead arrays we analyzed the methylation status of 807 genes implicated in cancer in a group of ALL samples at diagnosis (n = 48. We found that 154 genes were methylated in more than 10% of ALL samples. Interestingly, the expression of 13 genes implicated in the TP53 pathway was downregulated by hypermethylation. Direct or indirect activation of TP53 pathway with 5-aza-2'-deoxycitidine, Curcumin or Nutlin-3 induced an increase in apoptosis of ALL cells. The results obtained with the initial group of 48 patients was validated retrospectively in a second cohort of 200 newly diagnosed ALL patients. Methylation of at least 1 of the 13 genes implicated in the TP53 pathway was observed in 78% of the patients, which significantly correlated with a higher relapse (p = 0.001 and mortality (p<0.001 rate being an independent prognostic factor for disease-free survival (DFS (p = 0.006 and overall survival (OS (p = 0.005 in the multivariate analysis. All these findings indicate that TP53 pathway is altered by epigenetic mechanisms in the majority of ALL patients and correlates with prognosis. Treatments with compounds that may reverse the epigenetic abnormalities or activate directly the p53 pathway represent a new therapeutic alternative for patients with ALL.

  11. Signaling pathway-focused gene expression profiling in pressure overloaded hearts

    Directory of Open Access Journals (Sweden)

    Marco Musumeci

    2011-01-01

    Full Text Available The β-blocker propranolol displays antihypertrophic and antifibrotic properties in the heart subjected to pressure overload. Yet the underlying mechanisms responsible for these important effects remain to be completely understood. The purpose of this study was to determine signaling pathway-focused gene expression profile associated with the antihypertrophic action of propranolol in pressure overloaded hearts. To address this question, a focused real-time PCR array was used to screen left ventricular RNA expression of 84 gene transcripts representative of 18 different signaling pathways in C57BL/6 mice subjected to transverse aortic constriction (TAC or sham surgery. On the surgery day, mice received either propranolol (80 mg/kg/day or vehicle for 14 days. TAC caused a 49% increase in the left ventricular weight-to-body weight (LVW/BW ratio without changing gene expression. Propranolol blunted LVW/BW ratio increase by approximately 50% while causing about a 3-fold increase in the expression of two genes, namely Brca1 and Cdkn2a, belonging to the TGF-beta and estrogen pathways, respectively. In conclusion, after 2 weeks of pressure overload, TAC hearts show a gene expression profile superimposable to that of sham hearts. Conversely, propranolol treatment is associated with an increased expression of genes which negatively regulate cell cycle progression. It remains to be established whether a mechanistic link between gene expression changes and the antihypertrophic action of propranolol occurs.

  12. Candidate gene analysis of organ pigmentation loci in the Solanaceae

    OpenAIRE

    Thorup, T. A.; Tanyolac, B.; Livingstone, K D; Popovsky, S.; Paran, I.; Jahn, Molly

    2000-01-01

    Ten structural genes from the Capsicum (pepper) carotenoid biosynthetic pathway have been localized on a (Capsicum annuum × Capsicum chinense)F2 genetic map anchored in Lycopersicon (tomato). The positions of these genes were compared with positions of the same genes in tomato when known, and with loci from pepper, potato, and tomato that affect carotenoid levels in different tissues. C2, one of three phenotypically defined loci determining pepper fruit color, ...

  13. Integrative Analysis of Gene Expression Data Including an Assessment of Pathway Enrichment for Predicting Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Pingzhao Hu

    2006-01-01

    Full Text Available Background: Microarray technology has been previously used to identify genes that are differentially expressed between tumour and normal samples in a single study, as well as in syntheses involving multiple studies. When integrating results from several Affymetrix microarray datasets, previous studies summarized probeset-level data, which may potentially lead to a loss of information available at the probe-level. In this paper, we present an approach for integrating results across studies while taking probe-level data into account. Additionally, we follow a new direction in the analysis of microarray expression data, namely to focus on the variation of expression phenotypes in predefined gene sets, such as pathways. This targeted approach can be helpful for revealing information that is not easily visible from the changes in the individual genes. Results: We used a recently developed method to integrate Affymetrix expression data across studies. The idea is based on a probe-level based test statistic developed for testing for differentially expressed genes in individual studies. We incorporated this test statistic into a classic random-effects model for integrating data across studies. Subsequently, we used a gene set enrichment test to evaluate the significance of enriched biological pathways in the differentially expressed genes identified from the integrative analysis. We compared statistical and biological significance of the prognostic gene expression signatures and pathways identified in the probe-level model (PLM with those in the probeset-level model (PSLM. Our integrative analysis of Affymetrix microarray data from 110 prostate cancer samples obtained from three studies reveals thousands of genes significantly correlated with tumour cell differentiation. The bioinformatics analysis, mapping these genes to the publicly available KEGG database, reveals evidence that tumour cell differentiation is significantly associated with many

  14. Gene expression meta-analysis identifies metastatic pathways and transcription factors in breast cancer

    DEFF Research Database (Denmark)

    Thomassen, Mads; Tan, Qihua; Kruse, Torben

    2008-01-01

    studies. Besides classification of outcome, these global expression patterns may reflect biological mechanisms involved in metastasis of breast cancer. Our purpose has been to investigate pathways and transcription factors involved in metastasis by use of gene expression data sets. METHODS: We have...... tumors compared to non-metastasizing tumors. Meta-analysis has been used to determine overrepresentation of pathways and transcription factors targets, concordant deregulated in metastasizing breast tumors, in several data sets. RESULTS: The major findings are upregulation of cell cycle pathways and a...... system, angiogenesis, DNA repair and several signal transduction pathways are associated to metastasis. Finally several transcription factors e.g. E2F, NFY, and YY1 are identified as being involved in metastasis. CONCLUSIONS: By pathway meta-analysis many biological mechanisms beyond major...

  15. Conserved Senescence Associated Genes and Pathways in Primary Human Fibroblasts Detected by RNA-Seq.

    Directory of Open Access Journals (Sweden)

    S Marthandan

    Full Text Available Cellular senescence correlates with changes in the transcriptome. To obtain a complete view on senescence-associated transcription networks and pathways, we assessed by deep RNA sequencing the transcriptomes of five of the most commonly used laboratory strains of human fibroblasts during their transition into senescence. In a number of cases, we verified the RNA-seq data by real-time PCR. By determining cellular protein levels we observed that the age-related expression of most but not all genes is regulated at the transcriptional level. We found that 78% of the age-affected differentially expressed genes were commonly regulated in the same direction (either up- or down-regulated in all five fibroblast strains, indicating a strong conservation of age-associated changes in the transcriptome. KEGG pathway analyses confirmed up-regulation of the senescence-associated secretory phenotype and down-regulation of DNA synthesis/repair and most cell cycle pathways common in all five cell strains. Newly identified senescence-induced pathways include up-regulation of endocytotic/phagocytic pathways and down-regulation of the mRNA metabolism and the mRNA splicing pathways. Our results provide an unprecedented comprehensive and deep view into the individual and common transcriptome and pathway changes during the transition into of senescence of five human fibroblast cell strains.

  16. Expression analysis of eight amphioxus genes involved in the Wnt/β-catenin signaling pathway

    Science.gov (United States)

    WANG, Jing; LI, Guang; QIAN, Guang-Hui; HUA, Jun-Hao; WANG, Yi-Quan

    2016-01-01

    The Wnt/β-catenin signaling pathway plays a crucial role in the embryonic development of metazoans. Although the pathway has been studied extensively in many model animals, its function in amphioxus, the most primitive chordate, remains largely uncharacterized. To obtain basic data for functional analysis, we identified and isolated seven genes (Lrp5/6, Dvl, APC, CkIα, CkIδ, Gsk3β, and Gro) of the Wnt/β-catenin signaling pathway from the amphioxus (Branchiostoma floridae) genome. Phylogenetic analysis revealed that amphioxus had fewer members of each gene family than that found in vertebrates. Whole-mount in situ hybridization showed that the genes were maternally expressed and broadly distributed throughout the whole embryo at the cleavage and blastula stages. Among them, Dvl was expressed asymmetrically towards the animal pole, while the others were evenly distributed in all blastomeres. At the mid-gastrula stage, the genes were specifically expressed in the primitive endomesoderm, but displayed different patterns. When the embryo developed into the neurula stage, the gene expressions were mainly detected in either paraxial somites or the tail bud. With the development of the embryo, the expression levels further decreased gradually and remained only in some pharyngeal regions or the tail bud at the larva stage. Our results suggest that the Wnt/β-catenin pathway might be involved in amphioxus somite formation and posterior growth, but not in endomesoderm specification. PMID:27265651

  17. RNA-Seq analysis for indigo biosynthesis pathway genes in Indigofera tinctoria and Polygonum tinctorium

    Directory of Open Access Journals (Sweden)

    Bijaya K. Sarangi

    2015-12-01

    Full Text Available Natural indigo is the most important blue dye for textile dyeing and valuable secondary metabolite biosynthesized in Indigofera tinctoria and Polygonum tinctorium plants. Present investigation is made to generation of gene resource for pathway enrichment and to understand possible gene expression involved in indigo biosynthesis. The data about raw reads and the transcriptome assembly project has been deposited at GenBank under the accessions SRA180766 and SRX692542 for I. tinctoria and P. tinctorium, respectively.

  18. RNA-Seq analysis for indigo biosynthesis pathway genes in Indigofera tinctoria and Polygonum tinctorium.

    Science.gov (United States)

    Sarangi, Bijaya K; Minami, Yoshiko; Thul, Sanjog T

    2015-12-01

    Natural indigo is the most important blue dye for textile dyeing and valuable secondary metabolite biosynthesized in Indigofera tinctoria and Polygonum tinctorium plants. Present investigation is made to generation of gene resource for pathway enrichment and to understand possible gene expression involved in indigo biosynthesis. The data about raw reads and the transcriptome assembly project has been deposited at GenBank under the accessions SRA180766 and SRX692542 for I. tinctoria and P. tinctorium, respectively. PMID:26697377

  19. RNA-Seq analysis for indigo biosynthesis pathway genes in Indigofera tinctoria and Polygonum tinctorium

    OpenAIRE

    Bijaya K. Sarangi; Yoshiko Minami; Thul, Sanjog T.

    2015-01-01

    Natural indigo is the most important blue dye for textile dyeing and valuable secondary metabolite biosynthesized in Indigofera tinctoria and Polygonum tinctorium plants. Present investigation is made to generation of gene resource for pathway enrichment and to understand possible gene expression involved in indigo biosynthesis. The data about raw reads and the transcriptome assembly project has been deposited at GenBank under the accessions SRA180766 and SRX692542 for I. tinctoria and P. tin...

  20. Identification of novel genes and pathways in carotid atheroma using integrated bioinformatic methods

    OpenAIRE

    Wenqing Nai; Diane Threapleton; Jingbo Lu; Kewei Zhang; Hongyuan Wu; You Fu; Yuanyuan Wang; Zejin Ou; Lanlan Shan; Yan Ding; Yanlin Yu; Meng Dai

    2016-01-01

    Atherosclerosis is the primary cause of cardiovascular events and its molecular mechanism urgently needs to be clarified. In our study, atheromatous plaques (ATH) and macroscopically intact tissue (MIT) sampled from 32 patients were compared and an integrated series of bioinformatic microarray analyses were used to identify altered genes and pathways. Our work showed 816 genes were differentially expressed between ATH and MIT, including 443 that were up-regulated and 373 that were down-regula...

  1. Gene-based GWAS and -biological pathway analysis of the resilience of executive functioning

    OpenAIRE

    Mukherjee, Shubhabrata; Kim, Sungeun; Ramanan, Vijay K.; Gibbons, Laura E.; Nho, Kwangsik; Glymour, M. Maria; Ertekin-Taner, Nilüfer; Thomas J Montine; Saykin, Andrew J; Crane, Paul K.

    2014-01-01

    Resilience in executive functioning (EF) is characterized by high EF measured by neuropsychological test performance despite structural brain damage from neurodegenerative conditions. We previously reported single nucleotide polymorphism (SNP) genome-wide association study (GWAS) results for EF resilience. Here, we report gene- and pathway-based analyses of the same resilience phenotype, using an optimal SNP-set (Sequence) Kernel Association Test (SKAT) for gene-based analyses (conservative t...

  2. Multiple Transcriptome Data Analysis Reveals Biologically Relevant Atopic Dermatitis Signature Genes and Pathways

    Science.gov (United States)

    Ghosh, Debajyoti; Ding, Lili; Sivaprasad, Umasundari; Geh, Esmond; Biagini Myers, Jocelyn; Bernstein, Jonathan A.; Khurana Hershey, Gurjit K; Mersha, Tesfaye B.

    2015-01-01

    Several studies have identified genes that are differentially expressed in atopic dermatitis (AD) compared to normal skin. However, there is also considerable variation in the list of differentially expressed genes (DEGs) reported by different groups and the exact cause of AD is still not fully understood. Using a rank-based approach, we analyzed gene expression data from five different microarray studies, comprising a total of 127 samples and more than 250,000 transcripts. A total of 89 AD gene expression signatures ‘89ADGES’, including FLG gene, were identified to show dysregulation consistently across these studies. Using a Support Vector Machine, we showed that the ‘89ADGES’ discriminates AD from normal skin with 98% predictive accuracy. Functional annotation of these genes implicated their roles in immune responses (e.g., betadefensin, microseminoprotein), keratinocyte differentiation/epidermal development (e.g., FLG, CORIN, AQP, LOR, KRT16), inflammation (e.g., IL37, IL27RA, CCL18) and lipid metabolism (e.g., AKR1B10, FAD7, FAR2). Subsequently, we validated a subset of signature genes using quantitative PCR in a mouse model. Using a bioinformatic approach, we identified keratinocyte pathway over-represented (P = genes. Keratinocytes are known to play a major role in barrier function due to their location in the epidermis. Our result suggests that besides immune- mediated pathway, skin barrier pathways such as the keratinocyte differentiation pathway play a key role in AD pathogenesis. A better understanding of the role of keratinocytes in AD will be important for developing novel “barrier therapy” for this disease. PMID:26717000

  3. Cloning of the Aspergillus parasiticus apa-2 gene associated with the regulation of aflatoxin biosynthesis.

    OpenAIRE

    Chang, P K; Cary, J W; D. Bhatnagar; Cleveland, T E; Bennett, J W; Linz, J E; Woloshuk, C P; Payne, G A

    1993-01-01

    An Aspergillus parasiticus gene, designated apa-2, was identified as a regulatory gene associated with aflatoxin biosynthesis. The apa-2 gene was cloned on the basis of overproduction of pathway intermediates following transformation of fungal strains with cosmid DNA containing the aflatoxin biosynthetic genes nor-1 and ver-1. Transformation of an O-methylsterigmatocystin-accumulating strain, A. parasiticus SRRC 2043, with a 5.5-kb HindIII-XbaI DNA fragment containing apa-2 resulted in overpr...

  4. Characterization of gene expression and activated signaling pathways in solid-pseudopapillary neoplasm of pancreas.

    Science.gov (United States)

    Park, Minhee; Kim, Minhyung; Hwang, Daehee; Park, Misun; Kim, Won Kyu; Kim, Sang Kyum; Shin, Jihye; Park, Eun Sung; Kang, Chang Moo; Paik, Young-Ki; Kim, Hoguen

    2014-04-01

    Solid-pseudopapillary neoplasm is an uncommon pancreatic tumor with distinct clinicopathologic features. Solid-pseudopapillary neoplasms are characterized by mutations in exon 3 of CTNNB1. However, little is known about the gene and microRNA expression profiles of solid-pseudopapillary neoplasms. Thus, we sought to characterize solid-pseudopapillary neoplasm-specific gene expression and identify the signaling pathways activated in these tumors. Comparisons of gene expression in solid-pseudopapillary neoplasm to pancreatic ductal carcinomas, neuroendocrine tumors, and non-neoplastic pancreatic tissues identified solid-pseudopapillary neoplasm-specific mRNA and microRNA profiles. By analyzing 1686 (1119 upregulated and 567 downregulated) genes differentially expressed in solid-pseudopapillary neoplasm, we found that the Wnt/β-catenin, Hedgehog, and androgen receptor signaling pathways, as well as genes involved in epithelial mesenchymal transition, are activated in solid-pseudopapillary neoplasms. We validated these results experimentally by assessing the expression of β-catenin, WIF-1, GLI2, androgen receptor, and epithelial-mesenchymal transition-related markers with western blotting and immunohistochemistry. Our analysis also revealed 17 microRNAs, especially the miR-200 family and miR-192/215, closely associated with the upregulated genes associated with the three pathways activated in solid-pseudopapillary neoplasm and epithelial mesenchymal transition. Our results provide insight into the molecular mechanisms underlying solid-pseudopapillary neoplasm tumorigenesis and its characteristic less epithelial cell differentiation than the other common pancreatic tumors. PMID:24072181

  5. Differential selection on carotenoid biosynthesis genes as a function of gene position in the metabolic pathway: a study on the carrot and dicots.

    Directory of Open Access Journals (Sweden)

    Jérémy Clotault

    Full Text Available BACKGROUND: Selection of genes involved in metabolic pathways could target them differently depending on the position of genes in the pathway and on their role in controlling metabolic fluxes. This hypothesis was tested in the carotenoid biosynthesis pathway using population genetics and phylogenetics. METHODOLOGY/PRINCIPAL FINDINGS: Evolutionary rates of seven genes distributed along the carotenoid biosynthesis pathway, IPI, PDS, CRTISO, LCYB, LCYE, CHXE and ZEP, were compared in seven dicot taxa. A survey of deviations from neutrality expectations at these genes was also undertaken in cultivated carrot (Daucus carota subsp. sativus, a species that has been intensely bred for carotenoid pattern diversification in its root during its cultivation history. Parts of sequences of these genes were obtained from 46 individuals representing a wide diversity of cultivated carrots. Downstream genes exhibited higher deviations from neutral expectations than upstream genes. Comparisons of synonymous and nonsynonymous substitution rates between genes among dicots revealed greater constraints on upstream genes than on downstream genes. An excess of intermediate frequency polymorphisms, high nucleotide diversity and/or high differentiation of CRTISO, LCYB1 and LCYE in cultivated carrot suggest that balancing selection may have targeted genes acting centrally in the pathway. CONCLUSIONS/SIGNIFICANCE: Our results are consistent with relaxed constraints on downstream genes and selection targeting the central enzymes of the carotenoid biosynthesis pathway during carrot breeding history.

  6. Chitosan oligosaccharide and salicylic acid up-regulate gene expression differently in relation to the biosynthesis of artemisinin in Artemisia annua L

    DEFF Research Database (Denmark)

    Yin, Heng; Kjær, Anders; Fretté, Xavier;

    2012-01-01

    oligosaccharide (COS) and salicylic acid (SA) on both artemisinin production and gene expression related to the biosynthetic pathway of artemisinin. COS up-regulated the transcriptional levels of the genes ADS and TTG1 2.5 fold and 1.8 fold after 48 h individually, whereas SA only up-regulated ADS 2.0 fold after...

  7. Expression and clinical significance of the genes of Hedgehog signaling pathway in sporadic keratocystic odontogenic tumor of the jaw bones

    Institute of Scientific and Technical Information of China (English)

    Kong Li; Yuan Rong-tao; Jia Mu-yun; Wang Ke; Wang Bingchao; Yang Yinhui

    2015-01-01

    PURPOSE It was to study the role of genes of Hedgehog signaling pathway in sporadic keratocystic odontogenic tumor (KCOT)of the jaw bones.METHODS Fresh specimens of sporadic KCOT and the same patient 's normal oral mucosa were obtained.Then RNA was extracted.Gene chip was used to detect the genes of Hedgehog signaling pathway.RESULTS Com-pared to normal oral mucosa,there were five genes of Hedgehog signaling pathway in KCOT changed,including PRKX ,WNT5a,PTCH1 up -regulated.CONCLUSION There were abnormal ex-pressions of genes of Hedgehog pathway in sporadicKCOT.Genes of Hedgehog pathway played roles in sporadic KCOT.

  8. Characterization of phenylpropanoid pathway genes within European maize (Zea mays L.) inbreds

    DEFF Research Database (Denmark)

    Andersen, Jeppe Reitan; Zein, Imad; Wenzel, Gerhard;

    2008-01-01

    genomic fragments of six putative phenylpropanoid pathway genes in a panel of elite European inbred lines of maize (Zea mays L.) contrasting in forage quality traits. Six loci, encoding C4H, 4CL1, 4CL2, C3H, F5H, and CAD, displayed different levels of nucleotide diversity and linkage disequilibrium (LD...

  9. Mutational analysis of hedgehog signaling pathway genes in human malignant mesothelioma.

    Directory of Open Access Journals (Sweden)

    Chuan Bian Lim

    Full Text Available BACKGROUND: The Hedgehog (HH signaling pathway is critical for embryonic development and adult homeostasis. Recent studies have identified regulatory roles for this pathway in certain cancers with mutations in the HH pathway genes. The extent to which mutations of the HH pathway genes are involved in the pathogenesis of malignant mesothelioma (MMe is unknown. METHODOLOGY/PRINCIPAL FINDINGS: Real-time PCR analysis of HH pathway genes PTCH1, GLI1 and GLI2 were performed on 7 human MMe cell lines. Exon sequencing of 13 HH pathway genes was also performed in cell lines and human MMe tumors. In silico programs were used to predict the likelihood that an amino-acid substitution would have a functional effect. GLI1, GLI2 and PTCH1 were highly expressed in MMe cells, indicative of active HH signaling. PTCH1, SMO and SUFU mutations were found in 2 of 11 MMe cell lines examined. A non-synonymous missense SUFU mutation (p.T411M was identified in LO68 cells. In silico characterization of the SUFU mutant suggested that the p.T411M mutation might alter protein function. However, we were unable to demonstrate any functional effect of this mutation on Gli activity. Deletion of exons of the PTCH1 gene was found in JU77 cells, resulting in loss of one of two extracellular loops implicated in HH ligand binding and the intracellular C-terminal domain. A 3-bp insertion (69_70insCTG in SMO, predicting an additional leucine residue in the signal peptide segment of SMO protein was also identified in LO68 cells and a MMe tumour. CONCLUSIONS/SIGNIFICANCE: We identified the first novel mutations in PTCH1, SUFU and SMO associated with MMe. Although HH pathway mutations are relatively rare in MMe, these data suggest a possible role for dysfunctional HH pathway in the pathogenesis of a subgroup of MMe and help rationalize the exploration of HH pathway inhibitors for MMe therapy.

  10. Gene expression profiling identifies molecular pathways associated with collagen VI deficiency and provides novel therapeutic targets.

    Directory of Open Access Journals (Sweden)

    Sonia Paco

    Full Text Available Ullrich congenital muscular dystrophy (UCMD, caused by collagen VI deficiency, is a common congenital muscular dystrophy. At present, the role of collagen VI in muscle and the mechanism of disease are not fully understood. To address this we have applied microarrays to analyse the transcriptome of UCMD muscle and compare it to healthy muscle and other muscular dystrophies. We identified 389 genes which are differentially regulated in UCMD relative to controls. In addition, there were 718 genes differentially expressed between UCMD and dystrophin deficient muscle. In contrast, only 29 genes were altered relative to other congenital muscular dystrophies. Changes in gene expression were confirmed by real-time PCR. The set of regulated genes was analysed by Gene Ontology, KEGG pathways and Ingenuity Pathway analysis to reveal the molecular functions and gene networks associated with collagen VI defects. The most significantly regulated pathways were those involved in muscle regeneration, extracellular matrix remodelling and inflammation. We characterised the immune response in UCMD biopsies as being mainly mediated via M2 macrophages and the complement pathway indicating that anti-inflammatory treatment may be beneficial to UCMD as for other dystrophies. We studied the immunolocalisation of ECM components and found that biglycan, a collagen VI interacting proteoglycan, was reduced in the basal lamina of UCMD patients. We propose that biglycan reduction is secondary to collagen VI loss and that it may be contributing towards UCMD pathophysiology. Consequently, strategies aimed at over-expressing biglycan and restore the link between the muscle cell surface and the extracellular matrix should be considered.

  11. Regulatory Network of Secondary Metabolism in Brassica rapa: Insight into the Glucosinolate Pathway

    OpenAIRE

    Dunia Pino Del Carpio; Ram Kumar Basnet; Danny Arends; Ke Lin; Ric C H De Vos; Dorota Muth; Jan Kodde; Kim Boutilier; Johan Bucher; Xiaowu Wang; Ritsert Jansen; Guusje Bonnema

    2014-01-01

    Brassica rapa studies towards metabolic variation have largely been focused on the profiling of the diversity of metabolic compounds in specific crop types or regional varieties, but none aimed to identify genes with regulatory function in metabolite composition. Here we followed a genetical genomics approach to identify regulatory genes for six biosynthetic pathways of health-related phytochemicals, i.e carotenoids, tocopherols, folates, glucosinolates, flavonoids and phenylpropanoids. Leave...

  12. Common biosynthetic origins for polycyclic tetramate macrolactams from phylogenetically diverse bacteria.

    Science.gov (United States)

    Blodgett, Joshua A V; Oh, Dong-Chan; Cao, Shugeng; Currie, Cameron R; Kolter, Roberto; Clardy, Jon

    2010-06-29

    A combination of small molecule chemistry, biosynthetic analysis, and genome mining has revealed the unexpected conservation of polycyclic tetramate macrolactam biosynthetic loci in diverse bacteria. Initially our chemical analysis of a Streptomyces strain associated with the southern pine beetle led to the discovery of frontalamides A and B, two previously undescribed members of this antibiotic family. Genome analyses and genetic manipulation of the producing organism led to the identification of the frontalamide biosynthetic gene cluster and several biosynthetic intermediates. The biosynthetic locus for the frontalamides' mixed polyketide/amino acid structure encodes a hybrid polyketide synthase nonribosomal peptide synthetase (PKS-NRPS), which resembles iterative enzymes known in fungi. No such mixed iterative PKS-NRPS enzymes have been characterized in bacteria. Genome-mining efforts revealed strikingly conserved frontalamide-like biosynthetic clusters in the genomes of phylogenetically diverse bacteria ranging from proteobacteria to actinomycetes. Screens for environmental actinomycete isolates carrying frontalamide-like biosynthetic loci led to the isolation of a number of positive strains, the majority of which produced candidate frontalamide-like compounds under suitable growth conditions. These results establish the prevalence of frontalamide-like gene clusters in diverse bacterial types, with medicinally important Streptomyces species being particularly enriched. PMID:20547882

  13. Switch-like genes populate cell communication pathways and are enriched for extracellular proteins

    Directory of Open Access Journals (Sweden)

    Tozeren Aydin

    2008-01-01

    Full Text Available Abstract Background Recent studies have placed gene expression in the context of distribution profiles including housekeeping, graded, and bimodal (switch-like. Single-gene studies have shown bimodal expression results from healthy cell signaling and complex diseases such as cancer, however developing a comprehensive list of human bimodal genes has remained a major challenge due to inherent noise in human microarray data. This study presents a two-component mixture analysis of mouse gene expression data for genes on the Affymetrix MG-U74Av2 array for the detection and annotation of switch-like genes. Two-component normal mixtures were fit to the data to identify bimodal genes and their potential roles in cell signaling and disease progression. Results Seventeen percent of the genes on the MG-U74Av2 array (1519 out of 9091 were identified as bimodal or switch-like. KEGG pathways significantly enriched for bimodal genes included ECM-receptor interaction, cell communication, and focal adhesion. Similarly, the GO biological process "cell adhesion" and cellular component "extracellular matrix" were significantly enriched. Switch-like genes were found to be associated with such diseases as congestive heart failure, Alzheimer's disease, arteriosclerosis, breast neoplasms, hypertension, myocardial infarction, obesity, rheumatoid arthritis, and type I and type II diabetes. In diabetes alone, over two hundred bimodal genes were in a different mode of expression compared to normal tissue. Conclusion This research identified and annotated bimodal or switch-like genes in the mouse genome using a large collection of microarray data. Genes with bimodal expression were enriched within the cell membrane and extracellular environment. Hundreds of bimodal genes demonstrated alternate modes of expression in diabetic muscle, pancreas, liver, heart, and adipose tissue. Bimodal genes comprise a candidate set of biomarkers for a large number of disease states because

  14. Pathway Analysis Using Genome-Wide Association Study Data for Coronary Restenosis – A Potential Role for the PARVB Gene

    Science.gov (United States)

    Verschuren, Jeffrey J. W.; Trompet, Stella; Sampietro, M. Lourdes; Heijmans, Bastiaan T.; Koch, Werner; Kastrati, Adnan; Houwing-Duistermaat, Jeanine J.; Slagboom, P. Eline; Quax, Paul H. A.; Jukema, J. Wouter

    2013-01-01

    Background Coronary restenosis after percutaneous coronary intervention (PCI) still remains a significant limitation of the procedure. The causative mechanisms of restenosis have not yet been fully identified. The goal of the current study was to perform gene-set analysis of biological pathways related to inflammation, proliferation, vascular function and transcriptional regulation on coronary restenosis to identify novel genes and pathways related to this condition. Methods The GENetic DEterminants of Restenosis (GENDER) databank contains genotypic data of 556,099SNPs of 295 cases with restenosis and 571 matched controls. Fifty-four pathways, related to known restenosis-related processes, were selected. Gene-set analysis was performed using PLINK, GRASS and ALIGATOR software. Pathways with a p<0.01 were fine-mapped and significantly associated SNPs were analyzed in an independent replication cohort. Results Six pathways (cell-extracellular matrix (ECM) interactions pathway, IL2 signaling pathway, IL6 signaling pathway, platelet derived growth factor pathway, vitamin D receptor pathway and the mitochondria pathway) were significantly associated in one or two of the software packages. Two SNPs in the cell-ECM interactions pathway were replicated in an independent restenosis cohort. No replication was obtained for the other pathways. Conclusion With these results we demonstrate a potential role of the cell-ECM interactions pathway in the development of coronary restenosis. These findings contribute to the increasing knowledge of the genetic etiology of restenosis formation and could serve as a hypothesis-generating effort for further functional studies. PMID:23950981

  15. Copy number variants including RAS pathway genes-How much RASopathy is in the phenotype?

    Science.gov (United States)

    Lissewski, Christina; Kant, Sarina G; Stark, Zornitza; Schanze, Ina; Zenker, Martin

    2015-11-01

    The RASopathies comprise a group of clinically overlapping developmental syndromes the common pathogenetic basis of which is dysregulated signal flow through the RAS-MAPK pathway. Mutations in several components or modifiers of the pathway have been identified in Noonan syndrome and related disorders. Over the past years copy number variants (CNVs) encompassing RAS pathway genes (PTPN11, RAF1, MEK2, or SHOC2) have been reported in children with developmental syndromes. These observations raised speculations that the associated phenotypes represent RASopathies, implying that the increased or reduced expression of the respective RAS pathway component and a consecutive dysregulation of RAS pathway signalling is responsible for the clinical picture. Herein, we present two individuals and three of their relatives harboring duplications of either 3p25.2 including the RAF1 locus or 19p13.3 including the MEK2 locus. Duplication carriers exhibited variable clinical phenotypes including non-specific facial dysmorphism, short stature, and learning difficulties. A careful review of the literature supported the impression that phenotypes associated with CNVs including RAS pathway genes commonly share non-specific symptoms with RASopathies, while the characteristic "gestalt" is lacking. Considering the known molecular pathogenesis of RASopathies, it is questionable that a modest increase in the expression of a functionally normal signaling component can mimic the effects of a qualitatively abnormal (hyperactive) mutant protein. We thus argue that current empirical and biological evidence is still insufficient to allow the conclusion that an altered copy number of a RAS pathway component is indeed the mechanism that is critical for the phenotype associated with CNVs including RASopathy genes. PMID:25974318

  16. Agrobacterium mediated transient gene silencing (AMTS in Stevia rebaudiana: insights into steviol glycoside biosynthesis pathway.

    Directory of Open Access Journals (Sweden)

    Praveen Guleria

    Full Text Available BACKGROUND: Steviol glycoside biosynthesis pathway has emerged as bifurcation from ent-kaurenoic acid, substrate of methyl erythritol phosphate pathway that also leads to gibberellin biosynthesis. However, the genetic regulation of steviol glycoside biosynthesis has not been studied. So, in present study RNA interference (RNAi based Agrobacterium mediated transient gene silencing (AMTS approach was followed. SrKA13H and three SrUGTs (SrUGT85C2, SrUGT74G1 and SrUGT76G1 genes encoding ent-kaurenoic acid-13 hydroxylase and three UDP glycosyltransferases of steviol glycoside biosynthesis pathway were silenced in Stevia rebaudiana to understand its molecular mechanism and association with gibberellins. METHODOLOGY/PRINCIPAL FINDINGS: RNAi mediated AMTS of SrKA13H and three SrUGTs has significantly reduced the expression of targeted endogenous genes as well as total steviol glycoside accumulation. While gibberellins (GA3 content was significantly enhanced on AMTS of SrUGT85C2 and SrKA13H. Silencing of SrKA13H and SrUGT85C2 was found to block the metabolite flux of steviol glycoside pathway and shifted it towards GA3 biosynthesis. Further, molecular docking of three SrUGT proteins has documented highest affinity of SrUGT76G1 for the substrates of alternate pathways synthesizing steviol glycosides. This could be a plausible reason for maximum reduction in steviol glycoside content on silencing of SrUGT76G1 than other genes. CONCLUSIONS: SrKA13H and SrUGT85C2 were identified as regulatory genes influencing carbon flux between steviol glycoside and gibberellin biosynthesis. This study has also documented the existence of alternate steviol glycoside biosynthesis route.

  17. Identification of genes regulated by Wnt/β-catenin pathway and involved in apoptosis via microarray analysis

    International Nuclear Information System (INIS)

    Wnt/β-catenin pathway has critical roles in development and oncogenesis. Although significant progress has been made in understanding the downstream signaling cascade of this pathway, little is known regarding Wnt/β-catenin pathway modification of the cellular apoptosis. To identify potential genes regulated by Wnt/β-catenin pathway and involved in apoptosis, we used a stably integrated, inducible RNA interference (RNAi) vector to specific inhibit the expression and the transcriptional activity of β-catenin in HeLa cells. Meanwhile, we designed an oligonucleotide microarray covering 1384 apoptosis-related genes. Using oligonucleotide microarrays, a series of differential expression of genes was identified and further confirmed by RT-PCR. Stably integrated inducible RNAi vector could effectively suppress β-catenin expression and the transcriptional activity of β-catenin/TCF. Meanwhile, depletion of β-catenin in this manner made the cells more sensitive to apoptosis. 130 genes involved in some important cell-apoptotic pathways, such as PTEN-PI3K-AKT pathway, NF-κB pathway and p53 pathway, showed significant alteration in their expression level after the knockdown of β-catenin. Coupling RNAi knockdown with microarray and RT-PCR analyses proves to be a versatile strategy for identifying genes regulated by Wnt/β-catenin pathway and for a better understanding the role of this pathway in apoptosis. Some of the identified β-catenin/TCF directed or indirected target genes may represent excellent targets to limit tumor growth

  18. Role of the domains of human gene ZNF569 in MAPK pathway

    Institute of Scientific and Technical Information of China (English)

    YUAN Wuzhou; HUANG Xinqiong; ZHU Chuanbing; WANG Yuequn; LI Yongqing; WU Xiushan

    2006-01-01

    Mitogen-activated protein kinase (MAPK) signal pathways are important components in signal transduction connecting cell-surface receptors to critical regulatory targets within cells,mediating multiple intracetlular signal cascades and phosphorylating their target proteins,such as transcriptional factors ELK-l,SRE and AP-1,and finally activating the expression of intracellular functional genes.Zinc finger genes are some of the largest gene families in humans,and Zinc finger proteins play an essential role in altering gene expression by acting as transcription factors.Zinc finger proteins are also involved in multiple cell processes,including proliferation,differentiation and development,by interacting with DNA.Here,we reported the transcriptional activities of the domains of zinc finger gene ZNF569 taking advantage of MAPK pathway.Overexpression of ZNF569 in COS-7 cells dramatically inhibited the transcriptional repressor activities of SRE and AP-1,which was also confirmed by subcellular localization analysis.Report assays indicated that the potent repression domains of ZNF569 were the KRAB and ZNF motifs.The results suggested that ZNF569 protein might act as a transcriptional repressor in MAPK signaling pathway