WorldWideScience

Sample records for biosynthetic gene discovery

  1. A genomics based discovery of secondary metabolite biosynthetic gene clusters in Aspergillus ustus.

    Directory of Open Access Journals (Sweden)

    Borui Pi

    Full Text Available Secondary metabolites (SMs produced by Aspergillus have been extensively studied for their crucial roles in human health, medicine and industrial production. However, the resulting information is almost exclusively derived from a few model organisms, including A. nidulans and A. fumigatus, but little is known about rare pathogens. In this study, we performed a genomics based discovery of SM biosynthetic gene clusters in Aspergillus ustus, a rare human pathogen. A total of 52 gene clusters were identified in the draft genome of A. ustus 3.3904, such as the sterigmatocystin biosynthesis pathway that was commonly found in Aspergillus species. In addition, several SM biosynthetic gene clusters were firstly identified in Aspergillus that were possibly acquired by horizontal gene transfer, including the vrt cluster that is responsible for viridicatumtoxin production. Comparative genomics revealed that A. ustus shared the largest number of SM biosynthetic gene clusters with A. nidulans, but much fewer with other Aspergilli like A. niger and A. oryzae. These findings would help to understand the diversity and evolution of SM biosynthesis pathways in genus Aspergillus, and we hope they will also promote the development of fungal identification methodology in clinic.

  2. IMG-ABC: An Atlas of Biosynthetic Gene Clusters to Fuel the Discovery of Novel Secondary Metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Chen, I-Min; Chu, Ken; Ratner, Anna; Palaniappan, Krishna; Huang, Jinghua; Reddy, T. B.K.; Cimermancic, Peter; Fischbach, Michael; Ivanova, Natalia; Markowitz, Victor; Kyrpides, Nikos; Pati, Amrita

    2014-10-28

    In the discovery of secondary metabolites (SMs), large-scale analysis of sequence data is a promising exploration path that remains largely underutilized due to the lack of relevant computational resources. We present IMG-ABC (https://img.jgi.doe.gov/abc/) -- An Atlas of Biosynthetic gene Clusters within the Integrated Microbial Genomes (IMG) system1. IMG-ABC is a rich repository of both validated and predicted biosynthetic clusters (BCs) in cultured isolates, single-cells and metagenomes linked with the SM chemicals they produce and enhanced with focused analysis tools within IMG. The underlying scalable framework enables traversal of phylogenetic dark matter and chemical structure space -- serving as a doorway to a new era in the discovery of novel molecules.

  3. Gene Discovery for Synthetic Biology: Exploring the Novel Natural Product Biosynthetic Capacity of Eukaryotic Microalgae.

    Science.gov (United States)

    O'Neill, E C; Saalbach, G; Field, R A

    2016-01-01

    Eukaryotic microalgae are an incredibly diverse group of organisms whose sole unifying feature is their ability to photosynthesize. They are known for producing a range of potent toxins, which can build up during harmful algal blooms causing damage to ecosystems and fisheries. Genome sequencing is lagging behind in these organisms because of their genetic complexity, but transcriptome sequencing is beginning to make up for this deficit. As more sequence data becomes available, it is apparent that eukaryotic microalgae possess a range of complex natural product biosynthesis capabilities. Some of the genes concerned are responsible for the biosynthesis of known toxins, but there are many more for which we do not know the products. Bioinformatic and analytical techniques have been developed for natural product discovery in bacteria and these approaches can be used to extract information about the products synthesized by algae. Recent analyses suggest that eukaryotic microalgae produce many complex natural products that remain to be discovered.

  4. Exploring the Transcriptome Landscape of Pomegranate Fruit Peel for Natural Product Biosynthetic Gene and SSR Marker Discovery(F).

    Science.gov (United States)

    Ono, Nadia Nicole; Britton, Monica Therese; Fass, Joseph Nathaniel; Nicolet, Charles Meyer; Lin, Dawei; Tian, Li

    2011-10-01

    Pomegranate fruit peel is rich in bioactive plant natural products, such as hydrolyzable tannins and anthocyanins. Despite their documented roles in human nutrition and fruit quality, genes involved in natural product biosynthesis have not been cloned from pomegranate and very little sequence information is available on pomegranate in the public domain. Shotgun transcriptome sequencing of pomegranate fruit peel cDNA was performed using RNA-Seq on the Illumina Genome Analyzer platform. Over 100 million raw sequence reads were obtained and assembled into 9,839 transcriptome assemblies (TAs) (>200 bp). Candidate genes for hydrolyzable tannin, anthocyanin, flavonoid, terpenoid and fatty acid biosynthesis and/or regulation were identified. Three lipid transfer proteins were obtained that may contribute to the previously reported IgE reactivity of pomegranate fruit extracts. In addition, 115 SSR markers were identified from the pomegranate fruit peel transcriptome and primers were designed for 77 SSR markers. The pomegranate fruit peel transcriptome set provides a valuable platform for natural product biosynthetic gene and SSR marker discovery in pomegranate. This work also demonstrates that next-generation transcriptome sequencing is an economical and effective approach for investigating natural product biosynthesis, identifying genes controlling important agronomic traits, and discovering molecular markers in non-model specialty crop species.

  5. Exploring the Transcriptome Landscape of Pomegranate Fruit Peel for Natural Product Biosynthetic Gene and SSR Marker Discovery

    Institute of Scientific and Technical Information of China (English)

    Nadia Nicole Ono; Monica Therese Britton; Joseph Nathaniel Fass; Charles Meyer Nicolet; Dawei Lin; Li Tian

    2011-01-01

    Pomegranate fruit peel is rich in bioactive plant natural products,such as hydrolyzable tannins and anthocyanins.Despite their documented roles in human nutrition and fruit quality,genes involved in natural product biosynthesis have not been cloned from pomegranate and very little sequence information is available on pomegranate in the public domain.Shotgun transcriptome sequencing of pomegranate fruit peel cDNA was performed using RNA-Seq on the Illumina Genome Analyzer platform.Over 100 million raw sequence reads were obtained and assembled into 9,839 transcriptome assemblies (TAs) (>200 bp).Candidate genes for hydrolyzable tannin,anthocyanin,flavonoid,terpenoid and fatty acid biosynthesis and/or regulation were identified.Three lipid transfer proteins were obtained that may contribute to the previously reported IgE reactivity of pomegranate fruit extracts.In addition,115 SSR markers were identified from the pomegranate fruit peel transcriptome and primers were designed for 77 SSR markers.The pomegranate fruit peel transcriptome set provides a valuable platform for natural product biosynthetic gene and SSR marker discovery in pomegranate.This work also demonstrates that next-generation transcriptome sequencing is an economical and effective approach for investigating natural product biosynthesis,identifying genes controlling important agronomic traits,and discovering molecular markers in non-model specialty crop species.

  6. Discovery of putative capsaicin biosynthetic genes by RNA-Seq and digital gene expression analysis of pepper

    Science.gov (United States)

    Zhang, Zi-Xin; Zhao, Shu-Niu; Liu, Gao-Feng; Huang, Zu-Mei; Cao, Zhen-Mu; Cheng, Shan-Han; Lin, Shi-Sen

    2016-01-01

    The Indian pepper ‘Guijiangwang’ (Capsicum frutescens L.), one of the world’s hottest chili peppers, is rich in capsaicinoids. The accumulation of the alkaloid capsaicin and its analogs in the epidermal cells of the placenta contribute to the pungency of Capsicum fruits. To identify putative genes involved in capsaicin biosynthesis, RNA-Seq was used to analyze the pepper’s expression profiles over five developmental stages. Five cDNA libraries were constructed from the total RNA of placental tissue and sequenced using an Illumina HiSeq 2000. More than 19 million clean reads were obtained from each library, and greater than 50% of the reads were assignable to reference genes. Digital gene expression (DGE) profile analysis using Solexa sequencing was performed at five fruit developmental stages and resulted in the identification of 135 genes of known function; their expression patterns were compared to the capsaicin accumulation pattern. Ten genes of known function were identified as most likely to be involved in regulating capsaicin synthesis. Additionally, 20 new candidate genes were identified related to capsaicin synthesis. We use a combination of RNA-Seq and DGE analyses to contribute to the understanding of the biosynthetic regulatory mechanism(s) of secondary metabolites in a nonmodel plant and to identify candidate enzyme-encoding genes. PMID:27756914

  7. Natural product proteomining, a quantitative proteomics platform, allows rapid discovery of biosynthetic gene clusters for different classes of natural products.

    Science.gov (United States)

    Gubbens, Jacob; Zhu, Hua; Girard, Geneviève; Song, Lijiang; Florea, Bogdan I; Aston, Philip; Ichinose, Koji; Filippov, Dmitri V; Choi, Young H; Overkleeft, Herman S; Challis, Gregory L; van Wezel, Gilles P

    2014-06-19

    Information on gene clusters for natural product biosynthesis is accumulating rapidly because of the current boom of available genome sequencing data. However, linking a natural product to a specific gene cluster remains challenging. Here, we present a widely applicable strategy for the identification of gene clusters for specific natural products, which we name natural product proteomining. The method is based on using fluctuating growth conditions that ensure differential biosynthesis of the bioactivity of interest. Subsequent combination of metabolomics and quantitative proteomics establishes correlations between abundance of natural products and concomitant changes in the protein pool, which allows identification of the relevant biosynthetic gene cluster. We used this approach to elucidate gene clusters for different natural products in Bacillus and Streptomyces, including a novel juglomycin-type antibiotic. Natural product proteomining does not require prior knowledge of the gene cluster or secondary metabolite and therefore represents a general strategy for identification of all types of gene clusters.

  8. IMG-ABC: new features for bacterial secondary metabolism analysis and targeted biosynthetic gene cluster discovery in thousands of microbial genomes

    Science.gov (United States)

    Hadjithomas, Michalis; Chen, I-Min A.; Chu, Ken; Huang, Jinghua; Ratner, Anna; Palaniappan, Krishna; Andersen, Evan; Markowitz, Victor; Kyrpides, Nikos C.; Ivanova, Natalia N.

    2017-01-01

    Secondary metabolites produced by microbes have diverse biological functions, which makes them a great potential source of biotechnologically relevant compounds with antimicrobial, anti-cancer and other activities. The proteins needed to synthesize these natural products are often encoded by clusters of co-located genes called biosynthetic gene clusters (BCs). In order to advance the exploration of microbial secondary metabolism, we developed the largest publically available database of experimentally verified and predicted BCs, the Integrated Microbial Genomes Atlas of Biosynthetic gene Clusters (IMG-ABC) (https://img.jgi.doe.gov/abc/). Here, we describe an update of IMG-ABC, which includes ClusterScout, a tool for targeted identification of custom biosynthetic gene clusters across 40 000 isolate microbial genomes, and a new search capability to query more than 700 000 BCs from isolate genomes for clusters with similar Pfam composition. Additional features enable fast exploration and analysis of BCs through two new interactive visualization features, a BC function heatmap and a BC similarity network graph. These new tools and features add to the value of IMG-ABC's vast body of BC data, facilitating their in-depth analysis and accelerating secondary metabolite discovery. PMID:27903896

  9. Minimum Information about a Biosynthetic Gene cluster

    NARCIS (Netherlands)

    Medema, M.H.; Kottmann, Renzo; Yilmaz, Pelin; Cummings, Matthew; Biggins, J.B.; Blin, Kai; Bruijn, De Irene; Chooi, Yit Heng; Claesen, Jan; Coates, R.C.; Cruz-Morales, Pablo; Duddela, Srikanth; Düsterhus, Stephanie; Edwards, Daniel J.; Fewer, David P.; Garg, Neha; Geiger, Christoph; Gomez-Escribano, Juan Pablo; Greule, Anja; Hadjithomas, Michalis; Haines, Anthony S.; Helfrich, Eric J.N.; Hillwig, Matthew L.; Ishida, Keishi; Jones, Adam C.; Jones, Carla S.; Jungmann, Katrin; Kegler, Carsten; Kim, Hyun Uk; Kötter, Peter; Krug, Daniel; Masschelein, Joleen; Melnik, Alexey V.; Mantovani, Simone M.; Monroe, Emily A.; Moore, Marcus; Moss, Nathan; Nützmann, Hans Wilhelm; Pan, Guohui; Pati, Amrita; Petras, Daniel; Reen, F.J.; Rosconi, Federico; Rui, Zhe; Tian, Zhenhua; Tobias, Nicholas J.; Tsunematsu, Yuta; Wiemann, Philipp; Wyckoff, Elizabeth; Yan, Xiaohui; Yim, Grace; Yu, Fengan; Xie, Yunchang; Aigle, Bertrand; Apel, Alexander K.; Balibar, Carl J.; Balskus, Emily P.; Barona-Gómez, Francisco; Bechthold, Andreas; Bode, Helge B.; Borriss, Rainer; Brady, Sean F.; Brakhage, Axel A.; Caffrey, Patrick; Cheng, Yi Qiang; Clardy, Jon; Cox, Russell J.; Mot, De René; Donadio, Stefano; Donia, Mohamed S.; Donk, Van Der Wilfred A.; Dorrestein, Pieter C.; Doyle, Sean; Driessen, Arnold J.M.; Ehling-Schulz, Monika; Entian, Karl Dieter; Fischbach, Michael A.; Gerwick, Lena; Gerwick, William H.; Gross, Harald; Gust, Bertolt; Hertweck, Christian; Höfte, Monica; Jensen, Susan E.; Ju, Jianhua; Katz, Leonard; Kaysser, Leonard; Klassen, Jonathan L.; Keller, Nancy P.; Kormanec, Jan; Kuipers, Oscar P.; Kuzuyama, Tomohisa; Kyrpides, Nikos C.; Kwon, Hyung Jin; Lautru, Sylvie; Lavigne, Rob; Lee, Chia Y.; Linquan, Bai; Liu, Xinyu; Liu, Wen; Luzhetskyy, Andriy; Mahmud, Taifo; Mast, Yvonne; Méndez, Carmen; Metsä-Ketelä, Mikko; Micklefield, Jason; Mitchell, Douglas A.; Moore, Bradley S.; Moreira, Leonilde M.; Müller, Rolf; Neilan, Brett A.; Nett, Markus; Nielsen, Jens; O'Gara, Fergal; Oikawa, Hideaki; Osbourn, Anne; Osburne, Marcia S.; Ostash, Bohdan; Payne, Shelley M.; Pernodet, Jean Luc; Petricek, Miroslav; Piel, Jörn; Ploux, Olivier; Raaijmakers, Jos M.; Salas, José A.; Schmitt, Esther K.; Scott, Barry; Seipke, Ryan F.; Shen, Ben; Sherman, David H.; Sivonen, Kaarina; Smanski, Michael J.; Sosio, Margherita; Stegmann, Evi; Süssmuth, Roderich D.; Tahlan, Kapil; Thomas, Christopher M.; Tang, Yi; Truman, Andrew W.; Viaud, Muriel; Walton, Jonathan D.; Walsh, Christopher T.; Weber, Tilmann; Wezel, Van Gilles P.; Wilkinson, Barrie; Willey, Joanne M.; Wohlleben, Wolfgang; Wright, Gerard D.; Ziemert, Nadine; Zhang, Changsheng; Zotchev, Sergey B.; Breitling, Rainer; Takano, Eriko; Glöckner, Frank Oliver

    2015-01-01

    A wide variety of enzymatic pathways that produce specialized metabolites in bacteria, fungi and plants are known to be encoded in biosynthetic gene clusters. Information about these clusters, pathways and metabolites is currently dispersed throughout the literature, making it difficult to exploi

  10. Analysis of an inactive cyanobactin biosynthetic gene cluster leads to discovery of new natural products from strains of the genus Microcystis.

    Directory of Open Access Journals (Sweden)

    Niina Leikoski

    Full Text Available Cyanobactins are cyclic peptides assembled through the cleavage and modification of short precursor proteins. An inactive cyanobactin gene cluster has been described from the genome Microcystis aeruginosa NIES843. Here we report the discovery of active counterparts in strains of the genus Microcystis guided by this silent cyanobactin gene cluster. The end products of the gene clusters were structurally diverse cyclic peptides, which we named piricyclamides. Some of the piricyclamides consisted solely of proteinogenic amino acids while others contained disulfide bridges and some were prenylated or geranylated. The piricyclamide gene clusters encoded between 1 and 4 precursor genes. They encoded highly diverse core peptides ranging in length from 7-17 amino acids with just a single conserved amino acid. Heterologous expression of the pir gene cluster from Microcystis aeruginosa PCC7005 in Escherichia coli confirmed that this gene cluster is responsible for the biosynthesis of piricyclamides. Chemical analysis demonstrated that Microcystis strains could produce an array of piricyclamides some of which are geranylated or prenylated. The genetic diversity of piricyclamides in a bloom sample was explored and 19 different piricyclamide precursor genes were found. This study provides evidence for a stunning array of piricyclamides in Microcystis, a worldwide occurring bloom forming cyanobacteria.

  11. Origin of saxitoxin biosynthetic genes in cyanobacteria.

    Directory of Open Access Journals (Sweden)

    Ahmed Moustafa

    Full Text Available BACKGROUND: Paralytic shellfish poisoning (PSP is a potentially fatal syndrome associated with the consumption of shellfish that have accumulated saxitoxin (STX. STX is produced by microscopic marine dinoflagellate algae. Little is known about the origin and spread of saxitoxin genes in these under-studied eukaryotes. Fortuitously, some freshwater cyanobacteria also produce STX, providing an ideal model for studying its biosynthesis. Here we focus on saxitoxin-producing cyanobacteria and their non-toxic sisters to elucidate the origin of genes involved in the putative STX biosynthetic pathway. METHODOLOGY/PRINCIPAL FINDINGS: We generated a draft genome assembly of the saxitoxin-producing (STX+ cyanobacterium Anabaena circinalis ACBU02 and searched for 26 candidate saxitoxin-genes (named sxtA to sxtZ that were recently identified in the toxic strain Cylindrospermopsis raciborskii T3. We also generated a draft assembly of the non-toxic (STX- sister Anabaena circinalis ACFR02 to aid the identification of saxitoxin-specific genes. Comparative phylogenomic analyses revealed that nine putative STX genes were horizontally transferred from non-cyanobacterial sources, whereas one key gene (sxtA originated in STX+ cyanobacteria via two independent horizontal transfers followed by fusion. In total, of the 26 candidate saxitoxin-genes, 13 are of cyanobacterial provenance and are monophyletic among the STX+ taxa, four are shared amongst STX+ and STX-cyanobacteria, and the remaining nine genes are specific to STX+ cyanobacteria. CONCLUSIONS/SIGNIFICANCE: Our results provide evidence that the assembly of STX genes in ACBU02 involved multiple HGT events from different sources followed presumably by coordination of the expression of foreign and native genes in the common ancestor of STX+ cyanobacteria. The ability to produce saxitoxin was subsequently lost multiple independent times resulting in a nested relationship of STX+ and STX- strains among Anabaena

  12. Aspergillus nidulans as a platform for discovery and characterization of complex biosynthetic pathways

    DEFF Research Database (Denmark)

    Anyaogu, Diana Chinyere

    andfeed. Secondary metabolites therefore both have a positive and deleterious impact on the human health.The increase in available genome sequences of fungi has revealed that there is a large number of putativesecondary metabolite biosynthetic gene clusters to be discovered and potentially exploited...... of secondary metabolites and 2) Developing A. nidulans as a model systemfor protein production with human-like glycan structure.  The first part of this study resulted in the development of a method for the transfer and expression ofintact biosynthetic gene clusters to A. nidulans to facilitate pathway...... and product discovery. As proof ofconcept the biosynthetic gene cluster for production of the polyketide geodin was identified andtransferred from A. terreus to A. nidulans. The cluster was integrated in a well characterized locus in A.nidulans. Reconstitution of the cluster resulted in the production...

  13. Minimum Information about a Biosynthetic Gene cluster : commentary

    NARCIS (Netherlands)

    Medema, Marnix H; Kottmann, Renzo; Yilmaz, Pelin; Cummings, Matthew; Biggins, John B; Blin, Kai; de Bruijn, Irene; Chooi, Yit Heng; Claesen, Jan; Coates, R Cameron; Cruz-Morales, Pablo; Duddela, Srikanth; Dusterhus, Stephanie; Edwards, Daniel J; Fewer, David P; Garg, Neha; Geiger, Christoph; Gomez-Escribano, Juan Pablo; Greule, Anja; Hadjithomas, Michalis; Haines, Anthony S; Helfrich, Eric J N; Hillwig, Matthew L; Ishida, Keishi; Jones, Adam C; Jones, Carla S; Jungmann, Katrin; Kegler, Carsten; Kim, Hyun Uk; Kotter, Peter; Krug, Daniel; Masschelein, Joleen; Melnik, Alexey V; Mantovani, Simone M; Monroe, Emily A; Moore, Marcus; Moss, Nathan; Nutzmann, Hans-Wilhelm; Pan, Guohui; Pati, Amrita; Petras, Daniel; Reen, F Jerry; Rosconi, Federico; Rui, Zhe; Tian, Zhenhua; Tobias, Nicholas J; Tsunematsu, Yuta; Wiemann, Philipp; Wyckoff, Elizabeth; Yan, Xiaohui; Yim, Grace; Yu, Fengan; Xie, Yunchang; Aigle, Bertrand; Apel, Alexander K; Balibar, Carl J; Balskus, Emily P; Barona-Gomez, Francisco; Bechthold, Andreas; Bode, Helge B; Borriss, Rainer; Brady, Sean F; Brakhage, Axel A; Caffrey, Patrick; Cheng, Yi-Qiang; Clardy, Jon; Cox, Russell J; De Mot, Rene; Donadio, Stefano; Donia, Mohamed S; van der Donk, Wilfred A; Dorrestein, Pieter C; Doyle, Sean; Driessen, Arnold J M; Ehling-Schulz, Monika; Entian, Karl-Dieter; Fischbach, Michael A; Gerwick, Lena; Gerwick, William H; Gross, Harald; Gust, Bertolt; Hertweck, Christian; Hofte, Monica; Jensen, Susan E; Ju, Jianhua; Katz, Leonard; Kaysser, Leonard; Klassen, Jonathan L; Keller, Nancy P; Kormanec, Jan; Kuipers, Oscar P; Kuzuyama, Tomohisa; Kyrpides, Nikos C; Kwon, Hyung-Jin; Lautru, Sylvie; Lavigne, Rob; Lee, Chia Y; Linquan, Bai; Liu, Xinyu; Liu, Wen; Luzhetskyy, Andriy; Mahmud, Taifo; Mast, Yvonne; Mendez, Carmen; Metsa-Ketela, Mikko; Micklefield, Jason; Mitchell, Douglas A; Moore, Bradley S; Moreira, Leonilde M; Muller, Rolf; Neilan, Brett A; Nett, Markus; Nielsen, Jens; O'Gara, Fergal; Oikawa, Hideaki; Osbourn, Anne; Osburne, Marcia S; Ostash, Bohdan; Payne, Shelley M; Pernodet, Jean-Luc; Petricek, Miroslav; Piel, Jorn; Ploux, Olivier; Raaijmakers, Jos M; Salas, Jose A; Schmitt, Esther K; Scott, Barry; Seipke, Ryan F; Shen, Ben; Sherman, David H; Sivonen, Kaarina; Smanski, Michael J; Sosio, Margherita; Stegmann, Evi; Sussmuth, Roderich D; Tahlan, Kapil; Thomas, Christopher M; Tang, Yi; Truman, Andrew W; Viaud, Muriel; Walton, Jonathan D; Walsh, Christopher T; Weber, Tilmann; van Wezel, Gilles P; Wilkinson, Barrie; Willey, Joanne M; Wohlleben, Wolfgang; Wright, Gerard D; Ziemert, Nadine; Zhang, Changsheng; Zotchev, Sergey B; Breitling, Rainer; Takano, Eriko; Glockner, Frank Oliver

    2015-01-01

    A wide variety of enzymatic pathways that produce specialized metabolites in bacteria, fungi and plants are known to be encoded in biosynthetic gene clusters. Information about these clusters, pathways and metabolites is currently dispersed throughout the literature, making it difficult to exploit.

  14. YUCCA auxin biosynthetic genes are required for Arabidopsis shade avoidance

    Directory of Open Access Journals (Sweden)

    Patricia Müller-Moulé

    2016-10-01

    Full Text Available Plants respond to neighbor shade by increasing stem and petiole elongation. Shade, sensed by phytochrome photoreceptors, causes stabilization of PHYTOCHROME INTERACTING FACTOR proteins and subsequent induction of YUCCA auxin biosynthetic genes. To investigate the role of YUCCA genes in phytochrome-mediated elongation, we examined auxin signaling kinetics after an end-of-day far-red (EOD-FR light treatment, and found that an auxin responsive reporter is rapidly induced within 2 hours of far-red exposure. YUCCA2, 5, 8, and 9 are all induced with similar kinetics suggesting that they could act redundantly to control shade-mediated elongation. To test this hypothesis we constructed a yucca2, 5, 8, 9 quadruple mutant and found that the hypocotyl and petiole EOD-FR and shade avoidance responses are completely disrupted. This work shows that YUCCA auxin biosynthetic genes are essential for detectable shade avoidance and that YUCCA genes are important for petiole shade avoidance.

  15. YUCCA auxin biosynthetic genes are required for Arabidopsis shade avoidance

    Science.gov (United States)

    Müller-Moulé, Patricia; Nozue, Kazunari; Pytlak, Melissa L.; Palmer, Christine M.; Covington, Michael F.; Wallace, Andreah D.; Harmer, Stacey L.

    2016-01-01

    Plants respond to neighbor shade by increasing stem and petiole elongation. Shade, sensed by phytochrome photoreceptors, causes stabilization of PHYTOCHROME INTERACTING FACTOR proteins and subsequent induction of YUCCA auxin biosynthetic genes. To investigate the role of YUCCA genes in phytochrome-mediated elongation, we examined auxin signaling kinetics after an end-of-day far-red (EOD-FR) light treatment, and found that an auxin responsive reporter is rapidly induced within 2 hours of far-red exposure. YUCCA2, 5, 8, and 9 are all induced with similar kinetics suggesting that they could act redundantly to control shade-mediated elongation. To test this hypothesis we constructed a yucca2, 5, 8, 9 quadruple mutant and found that the hypocotyl and petiole EOD-FR and shade avoidance responses are completely disrupted. This work shows that YUCCA auxin biosynthetic genes are essential for detectable shade avoidance and that YUCCA genes are important for petiole shade avoidance. PMID:27761349

  16. Identification of the Scopularide Biosynthetic Gene Cluster in Scopulariopsis brevicaulis

    Directory of Open Access Journals (Sweden)

    Mie Bech Lukassen

    2015-07-01

    Full Text Available Scopularide A is a promising potent anticancer lipopeptide isolated from a marine derived Scopulariopsis brevicaulis strain. The compound consists of a reduced carbon chain (3-hydroxy-methyldecanoyl attached to five amino acids (glycine, l-valine, d-leucine, l-alanine, and l-phenylalanine. Using the newly sequenced S. brevicaulis genome we were able to identify the putative biosynthetic gene cluster using genetic information from the structurally related emericellamide A from Aspergillus nidulans and W493-B from Fusarium pseudograminearum. The scopularide A gene cluster includes a nonribosomal peptide synthetase (NRPS1, a polyketide synthase (PKS2, a CoA ligase, an acyltransferase, and a transcription factor. Homologous recombination was low in S. brevicaulis so the local transcription factor was integrated randomly under a constitutive promoter, which led to a three to four-fold increase in scopularide A production. This indirectly verifies the identity of the proposed biosynthetic gene cluster.

  17. Origin of Saxitoxin Biosynthetic Genes in Cyanobacteria

    OpenAIRE

    Ahmed Moustafa; Jeannette E Loram; Hackett, Jeremiah D.; Anderson, Donald M.; F Gerald Plumley; Debashish Bhattacharya

    2009-01-01

    BACKGROUND: Paralytic shellfish poisoning (PSP) is a potentially fatal syndrome associated with the consumption of shellfish that have accumulated saxitoxin (STX). STX is produced by microscopic marine dinoflagellate algae. Little is known about the origin and spread of saxitoxin genes in these under-studied eukaryotes. Fortuitously, some freshwater cyanobacteria also produce STX, providing an ideal model for studying its biosynthesis. Here we focus on saxitoxin-producing cyanobacteria and th...

  18. Ancient horizontal gene transfer from bacteria enhances biosynthetic capabilities of fungi.

    Directory of Open Access Journals (Sweden)

    Imke Schmitt

    Full Text Available BACKGROUND: Polyketides are natural products with a wide range of biological functions and pharmaceutical applications. Discovery and utilization of polyketides can be facilitated by understanding the evolutionary processes that gave rise to the biosynthetic machinery and the natural product potential of extant organisms. Gene duplication and subfunctionalization, as well as horizontal gene transfer are proposed mechanisms in the evolution of biosynthetic gene clusters. To explain the amount of homology in some polyketide synthases in unrelated organisms such as bacteria and fungi, interkingdom horizontal gene transfer has been evoked as the most likely evolutionary scenario. However, the origin of the genes and the direction of the transfer remained elusive. METHODOLOGY/PRINCIPAL FINDINGS: We used comparative phylogenetics to infer the ancestor of a group of polyketide synthase genes involved in antibiotic and mycotoxin production. We aligned keto synthase domain sequences of all available fungal 6-methylsalicylic acid (6-MSA-type PKSs and their closest bacterial relatives. To assess the role of symbiotic fungi in the evolution of this gene we generated 24 6-MSA synthase sequence tags from lichen-forming fungi. Our results support an ancient horizontal gene transfer event from an actinobacterial source into ascomycete fungi, followed by gene duplication. CONCLUSIONS/SIGNIFICANCE: Given that actinobacteria are unrivaled producers of biologically active compounds, such as antibiotics, it appears particularly promising to study biosynthetic genes of actinobacterial origin in fungi. The large number of 6-MSA-type PKS sequences found in lichen-forming fungi leads us hypothesize that the evolution of typical lichen compounds, such as orsellinic acid derivatives, was facilitated by the gain of this bacterial polyketide synthase.

  19. Engineered Streptomyces avermitilis host for heterologous expression of biosynthetic gene cluster for secondary metabolites.

    Science.gov (United States)

    Komatsu, Mamoru; Komatsu, Kyoko; Koiwai, Hanae; Yamada, Yuuki; Kozone, Ikuko; Izumikawa, Miho; Hashimoto, Junko; Takagi, Motoki; Omura, Satoshi; Shin-ya, Kazuo; Cane, David E; Ikeda, Haruo

    2013-07-19

    An industrial microorganism, Streptomyces avermitilis, which is a producer of anthelmintic macrocyclic lactones, avermectins, has been constructed as a versatile model host for heterologous expression of genes encoding secondary metabolite biosynthesis. Twenty of the entire biosynthetic gene clusters for secondary metabolites were successively cloned and introduced into a versatile model host S. avermitilis SUKA17 or 22. Almost all S. avermitilis transformants carrying the entire gene cluster produced metabolites as a result of the expression of biosynthetic gene clusters introduced. A few transformants were unable to produce metabolites, but their production was restored by the expression of biosynthetic genes using an alternative promoter or the expression of a regulatory gene in the gene cluster that controls the expression of biosynthetic genes in the cluster using an alternative promoter. Production of metabolites in some transformants of the versatile host was higher than that of the original producers, and cryptic biosynthetic gene clusters in the original producer were also expressed in a versatile host.

  20. Heterologous stable expression of terpenoid biosynthetic genes using the moss Physcomitrella patens

    DEFF Research Database (Denmark)

    Bach, Søren Spanner; King, Brian Christopher; Zhan, Xin

    2014-01-01

    characterization of terpenoid biosynthetic genes, engineered Physcomitrella can be a green biotechnological platform for production of terpenoids. Here, we describe two complementary and simple procedures for stable nuclear transformation of Physcomitrella with terpenoid biosynthetic genes, selection......Heterologous and stable expression of genes encoding terpenoid biosynthetic enzymes in planta is an important tool for functional characterization and is an attractive alternative to expression in microbial hosts for biotechnological production. Despite improvements to the procedure...... already been widely recognized as a viable alternative for industrial-scale production of biopharmaceuticals. For expression of terpenoid biosynthetic genes, and reconstruction of heterologous pathways, Physcomitrella has unique attributes that makes it a very promising biotechnological host...

  1. Alanylclavam Biosynthetic Genes Are Clustered Together with One Group of Clavulanic Acid Biosynthetic Genes in Streptomyces clavuligerus▿ §

    Science.gov (United States)

    Zelyas, Nathan J.; Cai, Hui; Kwong, Thomas; Jensen, Susan E.

    2008-01-01

    Streptomyces clavuligerus produces at least five different clavam metabolites, including clavulanic acid and the methionine antimetabolite, alanylclavam. In vitro transposon mutagenesis was used to analyze a 13-kb region upstream of the known paralogue gene cluster. The paralogue cluster includes one group of clavulanic acid biosynthetic genes in S. clavuligerus. Twelve open reading frames (ORFs) were found in this area, and mutants were generated in each using either in vitro transposon or PCR-targeted mutagenesis. Mutants with defects in any of the genes orfA, orfB, orfC, or orfD were unable to produce alanylclavam but could produce all of the other clavams, including clavulanic acid. orfA encodes a predicted hydroxymethyltransferase, orfB encodes a YjgF/YER057c/UK114-family regulatory protein, orfC encodes an aminotransferase, and orfD encodes a dehydratase. All of these types of proteins are normally involved in amino acid metabolism. Mutants in orfC or orfD also accumulated a novel clavam metabolite instead of alanylclavam, and a complemented orfC mutant was able to produce trace amounts of alanylclavam while still producing the novel clavam. Mass spectrometric analyses, together with consideration of the enzymes involved in its production, led to tentative identification of the novel clavam as 8-OH-alanylclavam, an intermediate in the proposed alanylclavam biosynthetic pathway. PMID:18931110

  2. Metagenomic natural product discovery in lichen provides evidence for a family of biosynthetic pathways in diverse symbioses.

    Science.gov (United States)

    Kampa, Annette; Gagunashvili, Andrey N; Gulder, Tobias A M; Morinaka, Brandon I; Daolio, Cristina; Godejohann, Markus; Miao, Vivian P W; Piel, Jörn; Andrésson, Ólafur S

    2013-08-13

    Bacteria are a major source of natural products that provide rich opportunities for both chemical and biological investigation. Although the vast majority of known bacterial metabolites derive from free-living organisms, increasing evidence supports the widespread existence of chemically prolific bacteria living in symbioses. A strategy based on bioinformatic prediction, symbiont cultivation, isotopic enrichment, and advanced analytics was used to characterize a unique polyketide, nosperin, from a lichen-associated Nostoc sp. cyanobacterium. The biosynthetic gene cluster and the structure of nosperin, determined from 30 μg of compound, are related to those of the pederin group previously known only from nonphotosynthetic bacteria associated with beetles and marine sponges. The presence of this natural product family in such highly dissimilar associations suggests that some bacterial metabolites may be specific to symbioses with eukaryotes and encourages exploration of other symbioses for drug discovery and better understanding of ecological interactions mediated by complex bacterial metabolites.

  3. Functional Analysis of the Fusarielin Biosynthetic Gene Cluster

    Directory of Open Access Journals (Sweden)

    Aida Droce

    2016-12-01

    Full Text Available Fusarielins are polyketides with a decalin core produced by various species of Aspergillus and Fusarium. Although the responsible gene cluster has been identified, the biosynthetic pathway remains to be elucidated. In the present study, members of the gene cluster were deleted individually in a Fusarium graminearum strain overexpressing the local transcription factor. The results suggest that a trans-acting enoyl reductase (FSL5 assists the polyketide synthase FSL1 in biosynthesis of a polyketide product, which is released by hydrolysis by a trans-acting thioesterase (FSL2. Deletion of the epimerase (FSL3 resulted in accumulation of an unstable compound, which could be the released product. A novel compound, named prefusarielin, accumulated in the deletion mutant of the cytochrome P450 monooxygenase FSL4. Unlike the known fusarielins from Fusarium, this compound does not contain oxygenized decalin rings, suggesting that FSL4 is responsible for the oxygenation.

  4. Carotenoid biosynthetic genes in Brassica rapa: comparative genomic analysis, phylogenetic analysis, and expression profiling

    OpenAIRE

    Li, Peirong; Zhang, Shujiang; Zhang, Shifan; Li, Fei; Zhang, Hui; Cheng, Feng; Wu, Jian; Wang, Xiaowu; Sun, Rifei

    2015-01-01

    Background Carotenoids are isoprenoid compounds synthesized by all photosynthetic organisms. Despite much research on carotenoid biosynthesis in the model plant Arabidopsis thaliana, there is a lack of information on the carotenoid pathway in Brassica rapa. To better understand its carotenoid biosynthetic pathway, we performed a systematic analysis of carotenoid biosynthetic genes at the genome level in B. rapa. Results We identified 67 carotenoid biosynthetic genes in B. rapa, which were ort...

  5. antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters

    DEFF Research Database (Denmark)

    Weber, Tilmann; Blin, Kai; Duddela, Srikanth

    2015-01-01

    Microbial secondary metabolism constitutes a rich source of antibiotics, chemotherapeutics, insecticides and other high-value chemicals. Genome mining of gene clusters that encode the biosynthetic pathways for these metabolites has become a key methodology for novel compound discovery. In 2011, we...... introduced antiSMASH, a web server and stand-alone tool for the automatic genomic identification and analysis of biosynthetic gene clusters, available at http://antismash.secondarymetabolites.org. Here, we present version 3.0 of antiSMASH, which has undergone major improvements. A full integration...... of the recently published ClusterFinder algorithm now allows using this probabilistic algorithm to detect putative gene clusters of unknown types. Also, a new dereplication variant of the ClusterBlast module now identifies similarities of identified clusters to any of 1172 clusters with known end products...

  6. Detection of additional genes of the patulin biosynthetic pathway in Penicillium griseofulvum

    Science.gov (United States)

    Genes in the patulin biosynthetic pathway are likely to be arranged in a cluster as has been found for biosynthetic pathways of other mycotoxins. The mycotoxin patulin, common in apples and apple juice, is most often associated with Penicillium expansum. However, of 15 fungal species capable of sy...

  7. Diversity of Culturable Thermophilic Actinobacteria in Hot Springs in Tengchong, China and Studies of their Biosynthetic Gene Profiles.

    Science.gov (United States)

    Liu, Lan; Salam, Nimaichand; Jiao, Jian-Yu; Jiang, Hong-Chen; Zhou, En-Min; Yin, Yi-Rui; Ming, Hong; Li, Wen-Jun

    2016-07-01

    The class Actinobacteria has been a goldmine for the discovery of antibiotics and has attracted interest from both academics and industries. However, an absence of novel approaches during the last few decades has limited the discovery of new microbial natural products useful for industries. Scientists are now focusing on the ecological aspects of diverse environments including unexplored or underexplored habitats and extreme environments in the search for new metabolites. This paper reports on the diversity of culturable actinobacteria associated with hot springs located in Tengchong County, Yunnan Province, southwestern China. A total of 58 thermophilic actinobacterial strains were isolated from the samples collected from ten hot springs distributed over three geothermal fields (e.g., Hehua, Rehai, and Ruidian). Phylogenetic positions and their biosynthetic profiles were analyzed by sequencing 16S rRNA gene and three biosynthetic gene clusters (KS domain of PKS-I, KSα domain of PKS-II and A domain of NRPS). On the basis of 16S rRNA gene phylogenetic analysis, the 58 strains were affiliated with 12 actinobacterial genera: Actinomadura Micromonospora, Microbispora, Micrococcus, Nocardiopsis, Nonomuraea, Promicromonospora, Pseudonocardia, Streptomyces, Thermoactinospora, Thermocatellispora, and Verrucosispora, of which the two novel genera Thermoactinospora and Thermocatellisopora were recently described from among these strains. Considering the biosynthetic potential of these actinobacterial strains, 22 were positive for PCR amplification of at least one of the three biosynthetic gene clusters (PKS-I, PKS-II, and NRPS). These actinobacteria were further subjected to antimicrobial assay against five opportunistic human pathogens (Acinetobacter baumannii, Escherichia coli, Micrococcus luteus, Staphylococcus aureus and Streptococcus faecalis). All of the 22 strains that were positive for PCR amplification of at least one of the biosynthetic gene domains exhibited

  8. Differential hexosamine biosynthetic pathway gene expression with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Megan Coomer

    2014-01-01

    Full Text Available The hexosamine biosynthetic pathway (HBP culminates in the attachment of O-linked β-N-acetylglucosamine (O-GlcNAc onto serine/threonine residues of target proteins. The HBP is regulated by several modulators, i.e. O-linked β-N-acetylglucosaminyl transferase (OGT and β-N-acetylglucosaminidase (OGA catalyze the addition and removal of O-GlcNAc moieties, respectively; while flux is controlled by the rate-limiting enzyme glutamine:fructose-6-phosphate amidotransferase (GFPT, transcribed by two genes, GFPT1 and GFPT2. Since increased HBP flux is glucose-responsive and linked to insulin resistance/type 2 diabetes onset, we hypothesized that diabetic individuals exhibit differential expression of HBP regulatory genes. Volunteers (n = 60; n = 20 Mixed Ancestry, n = 40 Caucasian were recruited from Stellenbosch and Paarl (Western Cape, South Africa and classified as control, pre- or diabetic according to fasting plasma glucose and HbA1c levels, respectively. RNA was purified from leukocytes isolated from collected blood samples and OGT, OGA, GFPT1 and GFPT2 expressions determined by quantitative real-time PCR. The data reveal lower OGA expression in diabetic individuals (P < 0.01, while pre- and diabetic subjects displayed attenuated OGT expression vs. controls (P < 0.01 and P < 0.001, respectively. Moreover, GFPT2 expression decreased in pre- and diabetic Caucasians vs. controls (P < 0.05 and P < 0.01, respectively. We also found ethnic differences, i.e. Mixed Ancestry individuals exhibited a 2.4-fold increase in GFPT2 expression vs. Caucasians, despite diagnosis (P < 0.01. Gene expression of HBP regulators differs between diabetic and non-diabetic individuals, together with distinct ethnic-specific gene profiles. Thus differential HBP gene regulation may offer diagnostic utility and provide candidate susceptibility genes for different ethnic groupings.

  9. Yeast homologous recombination-based promoter engineering for the activation of silent natural product biosynthetic gene clusters.

    Science.gov (United States)

    Montiel, Daniel; Kang, Hahk-Soo; Chang, Fang-Yuan; Charlop-Powers, Zachary; Brady, Sean F

    2015-07-21

    Large-scale sequencing of prokaryotic (meta)genomic DNA suggests that most bacterial natural product gene clusters are not expressed under common laboratory culture conditions. Silent gene clusters represent a promising resource for natural product discovery and the development of a new generation of therapeutics. Unfortunately, the characterization of molecules encoded by these clusters is hampered owing to our inability to express these gene clusters in the laboratory. To address this bottleneck, we have developed a promoter-engineering platform to transcriptionally activate silent gene clusters in a model heterologous host. Our approach uses yeast homologous recombination, an auxotrophy complementation-based yeast selection system and sequence orthogonal promoter cassettes to exchange all native promoters in silent gene clusters with constitutively active promoters. As part of this platform, we constructed and validated a set of bidirectional promoter cassettes consisting of orthogonal promoter sequences, Streptomyces ribosome binding sites, and yeast selectable marker genes. Using these tools we demonstrate the ability to simultaneously insert multiple promoter cassettes into a gene cluster, thereby expediting the reengineering process. We apply this method to model active and silent gene clusters (rebeccamycin and tetarimycin) and to the silent, cryptic pseudogene-containing, environmental DNA-derived Lzr gene cluster. Complete promoter refactoring and targeted gene exchange in this "dead" cluster led to the discovery of potent indolotryptoline antiproliferative agents, lazarimides A and B. This potentially scalable and cost-effective promoter reengineering platform should streamline the discovery of natural products from silent natural product biosynthetic gene clusters.

  10. antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters.

    Science.gov (United States)

    Weber, Tilmann; Blin, Kai; Duddela, Srikanth; Krug, Daniel; Kim, Hyun Uk; Bruccoleri, Robert; Lee, Sang Yup; Fischbach, Michael A; Müller, Rolf; Wohlleben, Wolfgang; Breitling, Rainer; Takano, Eriko; Medema, Marnix H

    2015-07-01

    Microbial secondary metabolism constitutes a rich source of antibiotics, chemotherapeutics, insecticides and other high-value chemicals. Genome mining of gene clusters that encode the biosynthetic pathways for these metabolites has become a key methodology for novel compound discovery. In 2011, we introduced antiSMASH, a web server and stand-alone tool for the automatic genomic identification and analysis of biosynthetic gene clusters, available at http://antismash.secondarymetabolites.org. Here, we present version 3.0 of antiSMASH, which has undergone major improvements. A full integration of the recently published ClusterFinder algorithm now allows using this probabilistic algorithm to detect putative gene clusters of unknown types. Also, a new dereplication variant of the ClusterBlast module now identifies similarities of identified clusters to any of 1172 clusters with known end products. At the enzyme level, active sites of key biosynthetic enzymes are now pinpointed through a curated pattern-matching procedure and Enzyme Commission numbers are assigned to functionally classify all enzyme-coding genes. Additionally, chemical structure prediction has been improved by incorporating polyketide reduction states. Finally, in order for users to be able to organize and analyze multiple antiSMASH outputs in a private setting, a new XML output module allows offline editing of antiSMASH annotations within the Geneious software.

  11. Comparison of carotenoid accumulation and biosynthetic gene expression between Valencia and Rohde Red Valencia sweet oranges

    Science.gov (United States)

    Carotenoid accumulation and biosynthetic gene expression levels during fruit maturation were compared between ordinary Valencia (VAL) and its more deeply colored mutant Rohde Red Valencia orange (RRV). The two cultivars exhibited different carotenoid profiles and regulatory mechanisms in flavedo and...

  12. Discovery of an unusual biosynthetic origin for circular proteins in legumes.

    Science.gov (United States)

    Poth, Aaron G; Colgrave, Michelle L; Lyons, Russell E; Daly, Norelle L; Craik, David J

    2011-06-21

    Cyclotides are plant-derived proteins that have a unique cyclic cystine knot topology and are remarkably stable. Their natural function is host defense, but they have a diverse range of pharmaceutically important activities, including uterotonic activity and anti-HIV activity, and have also attracted recent interest as templates in drug design. Here we report an unusual biosynthetic origin of a precursor protein of a cyclotide from the butterfly pea, Clitoria ternatea, a representative member of the Fabaceae plant family. Unlike all previously reported cyclotides, the domain corresponding to the mature cyclotide from this Fabaceae plant is embedded within an albumin precursor protein. We confirmed the expression and correct processing of the cyclotide encoded by the Cter M precursor gene transcript following extraction from C. ternatea leaf and sequencing by tandem mass spectrometry. The sequence was verified by direct chemical synthesis and the peptide was found to adopt a classic knotted cyclotide fold as determined by NMR spectroscopy. Seven additional cyclotide sequences were also identified from C. ternatea leaf and flower, five of which were unique. Cter M displayed insecticidal activity against the cotton budworm Helicoverpa armigera and bound to phospholipid membranes, suggesting its activity is modulated by membrane disruption. The Fabaceae is the third largest family of flowering plants and many Fabaceous plants are of huge significance for human nutrition. Knowledge of Fabaceae cyclotide gene transcripts should enable the production of modified cyclotides in crop plants for a variety of agricultural or pharmaceutical applications, including plant-produced designer peptide drugs.

  13. Nonlinear biosynthetic gene cluster dose effect on penicillin production by Penicillium chrysogenum.

    Science.gov (United States)

    Nijland, Jeroen G; Ebbendorf, Bjorg; Woszczynska, Marta; Boer, Rémon; Bovenberg, Roel A L; Driessen, Arnold J M

    2010-11-01

    Industrial penicillin production levels by the filamentous fungus Penicillium chrysogenum increased dramatically by classical strain improvement. High-yielding strains contain multiple copies of the penicillin biosynthetic gene cluster that encodes three key enzymes of the β-lactam biosynthetic pathway. We have analyzed the gene cluster dose effect on penicillin production using the high-yielding P. chrysogenum strain DS17690 that was cured from its native clusters. The amount of penicillin V produced increased with the penicillin biosynthetic gene cluster number but was saturated at high copy numbers. Likewise, transcript levels of the biosynthetic genes pcbAB [δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine synthetase], pcbC (isopenicillin N synthase), and penDE (acyltransferase) correlated with the cluster copy number. Remarkably, the protein level of acyltransferase, which localizes to peroxisomes, was saturated already at low cluster copy numbers. At higher copy numbers, intracellular levels of isopenicillin N increased, suggesting that the acyltransferase reaction presents a limiting step at a high gene dose. Since the number and appearance of the peroxisomes did not change significantly with the gene cluster copy number, we conclude that the acyltransferase activity is limiting for penicillin biosynthesis at high biosynthetic gene cluster copy numbers. These results suggest that at a high penicillin production level, productivity is limited by the peroxisomal acyltransferase import activity and/or the availability of coenzyme A (CoA)-activated side chains.

  14. Dothistroma pini, a Forest Pathogen, Contains Homologs of Aflatoxin Biosynthetic Pathway Genes

    OpenAIRE

    2002-01-01

    Homologs of aflatoxin biosynthetic genes have been identified in the pine needle pathogen Dothistroma pini. D. pini produces dothistromin, a difuranoanthraquinone toxin with structural similarity to the aflatoxin precursor versicolorin B. Previous studies with purified dothistromin suggest a possible role for this toxin in pathogenicity. By using an aflatoxin gene as a hybridization probe, a genomic D. pini clone was identified that contained four dot genes with similarity to genes in aflatox...

  15. Discovery of Unclustered Fungal Indole Diterpene Biosynthetic Pathways through Combinatorial Pathway Reassembly in Engineered Yeast.

    Science.gov (United States)

    Tang, Man-Cheng; Lin, Hsiao-Ching; Li, Dehai; Zou, Yi; Li, Jian; Xu, Wei; Cacho, Ralph A; Hillenmeyer, Maureen E; Garg, Neil K; Tang, Yi

    2015-11-01

    The structural diversity and biological activities of fungal indole diterpenes (IDTs) are generated in large part by the IDT cyclases (IDTCs). Identifying different IDTCs from IDT biosynthetic pathways is therefore important toward understanding how these enzymes introduce chemical diversity from a common linear precursor. However, IDTCs involved in the cyclization of the well-known aflavinine subgroup of IDTs have not been discovered. Here, using Saccharomyces cerevisiae as a heterologous host and a phylogenetically guided enzyme mining approach, we combinatorially assembled IDT biosynthetic pathways using IDTCs homologues identified from different fungal hosts. We identified the genetically standalone IDTCs involved in the cyclization of aflavinine and anominine and produced new IDTs not previously isolated. The cyclization mechanisms of the new IDTCs were proposed based on the yeast reconstitution results. Our studies demonstrate heterologous pathway assembly is a useful tool in the reconstitution of unclustered biosynthetic pathways.

  16. Accumulation of Rutin and Betulinic Acid and Expression of Phenylpropanoid and Triterpenoid Biosynthetic Genes in Mulberry (Morus alba L.).

    Science.gov (United States)

    Zhao, Shicheng; Park, Chang Ha; Li, Xiaohua; Kim, Yeon Bok; Yang, Jingli; Sung, Gyoo Byung; Park, Nam Il; Kim, Soonok; Park, Sang Un

    2015-09-30

    Mulberry (Morus alba L.) is used in traditional Chinese medicine and is the sole food source of the silkworm. Here, 21 cDNAs encoding phenylpropanoid biosynthetic genes and 21 cDNAs encoding triterpene biosynthetic genes were isolated from mulberry. The expression levels of genes involved in these biosynthetic pathways and the accumulation of rutin, betulin, and betulinic acid, important secondary metabolites, were investigated in different plant organs. Most phenylpropanoid and triterpene biosynthetic genes were highly expressed in leaves and/or fruit, and most genes were downregulated during fruit ripening. The accumulation of rutin was more than fivefold higher in leaves than in other organs, and higher levels of betulin and betulinic acid were found in roots and leaves than in fruit. By comparing the contents of these compounds with gene expression levels, we speculate that MaUGT78D1 and MaLUS play important regulatory roles in the rutin and betulin biosynthetic pathways.

  17. The biosynthetic gene cluster for the beta-lactam carbapenem thienamycin in Streptomyces cattleya.

    Science.gov (United States)

    Núñez, Luz Elena; Méndez, Carmen; Braña, Alfredo F; Blanco, Gloria; Salas, José A

    2003-04-01

    beta-lactam ring formation in carbapenem and clavam biosynthesis proceeds through an alternative mechanism to the biosynthetic pathway of classic beta-lactam antibiotics. This involves the participation of a beta-lactam synthetase. Using available information from beta-lactam synthetases, we generated a probe for the isolation of the thienamycin cluster from Streptomyces cattleya. Genes homologous to carbapenem and clavulanic acid biosynthetic genes have been identified. They would participate in early steps of thienamycin biosynthesis leading to the formation of the beta-lactam ring. Other genes necessary for the biosynthesis of thienamycin have also been identified in the cluster (methyltransferases, cysteinyl transferases, oxidoreductases, hydroxylase, etc.) together with two regulatory genes, genes involved in exportation and/or resistance, and a quorum sensing system. Involvement of the cluster in thienamycin biosynthesis was demonstrated by insertional inactivation of several genes generating thienamycin nonproducing mutants.

  18. Complete Genome Sequence of the Filamentous Fungus Aspergillus westerdijkiae Reveals the Putative Biosynthetic Gene Cluster of Ochratoxin A

    Science.gov (United States)

    Chakrabortti, Alolika; Li, Jinming

    2016-01-01

    Ochratoxin A (OTA) is a common mycotoxin that contaminates food and agricultural products. Sequencing of the complete genome of Aspergillus westerdijkiae, a major producer of OTA, reveals more than 50 biosynthetic gene clusters, including a putative OTA biosynthetic gene cluster that encodes a dozen of enzymes, transporters, and regulatory proteins. PMID:27635003

  19. Characterization of the fumonisin B2 biosynthetic gene cluster in Aspergillus niger and A. awamori.

    Science.gov (United States)

    Aspergillus niger and A. awamori strains isolated from grapes cultivated in Mediterranean basin were examined for fumonisin B2 (FB2) production and presence/absence of sequences within the fumonisin biosynthetic gene (fum) cluster. Presence of 13 regions in the fum cluster was evaluated by PCR assay...

  20. Design-based re-engineering of biosynthetic gene clusters : plug-and-play in practice

    NARCIS (Netherlands)

    Frasch, Hans-Jörg; Medema, Marnix H.; Takano, Eriko; Breitling, Rainer; Gago, Federico; Parayil, Ajikumar

    2013-01-01

    Synthetic biology is revolutionizing the way in which the biosphere is explored for natural products. Through computational genome mining, thousands of biosynthetic gene clusters are being identified in microbial genomes, which constitute a rich source of potential novel pharmaceuticals. New methods

  1. Characterization of the biosynthetic gene cluster of rebeccamycin from Lechevalieria aerocolonigenes ATCC 39243.

    Science.gov (United States)

    Onaka, Hiroyasu; Taniguchi, Shin-ichi; Igarashi, Yasuhiro; Furumai, Tamotsu

    2003-01-01

    The biosynthetic gene cluster for rebeccamycin, an indolocarbazole antibiotic, from Lechevalieria aerocolonigenes ATCC 39243 has 11 ORFs. To clarify their functions, mutants with rebG, rebD, rebC, rebP, rebM, rebR, rebH, rebT, or orfD2 disrupted were constructed, and the gene products were examined. rebP disruptants produced 11,11'-dichlorochromopyrrolic acid, found to be a biosynthetic intermediate by a bioconversion experiment. Other genes encoded N-glycosyltransferase (rebG), monooxygenase (rebC), methyltransferase (rebM), a transcriptional activator (rebR), and halogenase (rebH). rebT disruptants produced rebeccamycin as much as the wild strain, so rebT was probably not involved in rebeccamycin production. Biosynthetic genes of staurosporine, an another indolocarbazole antibiotic, were cloned from Streptomyces sp. TP-A0274. staO, staD, and staP were similar to rebO, rebD, and rebP, respectively, all of which are responsible for indolocarbazole biosynthesis, But a rebC homolog, encoding a putative enzyme oxidizing the C-7 site of pyrrole rings, was not found in the staurosporine biosynthetic gene cluster. These results suggest that indolocarbazole is constructed by oxidative decarboxylation of chromopyrrolic acid (11,11'-dichlorochromopyrrolic acid in rebeccamycin) generated from two molecules of tryptophan by coupling and that the oxidation state at the C-7 position depends on the additional enzyme(s) encoded by the biosynthetic genes.

  2. Effective use of heterologous hosts for characterization of biosynthetic enzymes allows production of natural products and promotes new natural product discovery.

    Science.gov (United States)

    Watanabe, Kenji

    2014-01-01

    In the past few years, there has been impressive progress in elucidating the mechanism of biosynthesis of various natural products accomplished through the use of genetic, molecular biological and biochemical techniques. Here, we present a comprehensive overview of the current results from our studies on fungal natural product biosynthetic enzymes, including nonribosomal peptide synthetase and polyketide synthase-nonribosomal peptide synthetase hybrid synthetase, as well as auxiliary enzymes, such as methyltransferases and oxygenases. Specifically, biosynthesis of the following compounds is described in detail: (i) Sch210972, potentially involving a Diels-Alder reaction that may be catalyzed by CghA, a functionally unknown protein identified by targeted gene disruption in the wild type fungus; (ii) chaetoglobosin A, formed via multi-step oxidations catalyzed by three redox enzymes, one flavin-containing monooxygenase and two cytochrome P450 oxygenases as characterized by in vivo biotransformation of relevant intermediates in our engineered Saccharomyces cerevisiae; (iii) (-)-ditryptophenaline, formed by a cytochrome P450, revealing the dimerization mechanism for the biosynthesis of diketopiperazine alkaloids; (iv) pseurotins, whose variations in the C- and O-methylations and the degree of oxidation are introduced combinatorially by multiple redox enzymes; and (v) spirotryprostatins, whose spiro-carbon moiety is formed by a flavin-containing monooxygenase or a cytochrome P450 as determined by heterologous de novo production of the biosynthetic intermediates and final products in Aspergillus niger. We close our discussion by summarizing some of the key techniques that have facilitated the discovery of new natural products, production of their analogs and identification of biosynthetic mechanisms in our study.

  3. Characterization of the promoter region of biosynthetic enzyme genes involved in berberine biosynthesis in Coptis japonica

    Directory of Open Access Journals (Sweden)

    Yasuyuki Yamada

    2016-09-01

    Full Text Available The presence of alkaloids is rather specific to certain plant species. However, berberine, an isoquinoline alkaloid, is relatively broadly distributed in the plant kingdom. Thus, berberine biosynthesis has been intensively investigated, especially using Coptis japonica cell cultures. Almost all biosynthetic enzyme genes have already been characterized at the molecular level. Particularly, two transcription factors (TFs, a plant-specific WRKY-type transcription factor, CjWRKY1, and a basic helix-loop-helix (bHLH transcription factor, CjbHLH1, were shown to comprehensively regulate berberine biosynthesis in C. japonica cells. In this study, we characterized the promoter region of some biosynthetic enzyme genes and associated cis-acting elements involved in the transcriptional regulation via two TFs. The promoter regions of three berberine biosynthetic enzyme genes (CYP80B2, 4’OMT and CYP719A1 were isolated, and their promoter activities were dissected by a transient assay involving the sequentially truncated promoter::luciferase (LUC reporter constructs. Furthermore, transactivation activities of CjWRKY1 were determined using the truncated promoter::LUC reporter constructs or constructs with mutated cis-elements. These results suggest the involvement of a putative W-box in the regulation of biosynthetic enzyme genes. Direct binding of CjWRKY1 to the W-box DNA sequence was also confirmed by an electrophoresis mobility shift assay (EMSA and by a chromatin immunoprecipitation (ChIP assay. In addition, CjbHLH1 also activated transcription from truncated 4’OMT and CYP719A1 promoters independently of CjWRKY1, suggesting the involvement of a putative E-box. Unexpected transcriptional activation of biosynthetic enzyme genes via a non-W-box sequence and by CjWRKY1 as well as the possible involvement of a GCC-box in berberine biosynthesis in C. japonica are discussed.

  4. Genetic localization and in vivo characterization of a Monascus azaphilone pigment biosynthetic gene cluster.

    Science.gov (United States)

    Balakrishnan, Bijinu; Karki, Suman; Chiu, Shih-Hau; Kim, Hyun-Ju; Suh, Jae-Won; Nam, Bora; Yoon, Yeo-Min; Chen, Chien-Chi; Kwon, Hyung-Jin

    2013-07-01

    Monascus spp. produce several well-known polyketides such as monacolin K, citrinin, and azaphilone pigments. In this study, the azaphilone pigment biosynthetic gene cluster was identified through T-DNA random mutagenesis in Monascus purpureus. The albino mutant W13 bears a T-DNA insertion upstream of a transcriptional regulator gene (mppR1). The transcription of mppR1 and the nearby polyketide synthase gene (MpPKS5) was significantly repressed in the W13 mutant. Targeted inactivation of MpPKS5 also gave rise to an albino mutant, confirming that mppR1 and MpPKS5 belong to an azaphilone pigment biosynthetic gene cluster. This M. purpureus sequence was used to identify the whole biosynthetic gene cluster in the Monascus pilosus genome. MpPKS5 contains SAT/KS/AT/PT/ACP/MT/R domains, and this domain organization is preserved in other azaphilone polyketide synthases. This biosynthetic gene cluster also encodes fatty acid synthase (FAS), which is predicted to assist the synthesis of 3-oxooactanoyl-CoA and 3-oxodecanoyl-CoA. These 3-oxoacyl compounds are proposed to be incorporated into the azaphilone backbone to complete the pigment biosynthesis. A monooxygenase gene (an azaH and tropB homolog) that is located far downstream of the FAS gene is proposed to be involved in pyrone ring formation. A homology search on other fungal genome sequences suggests that this azaphilone pigment gene cluster also exists in the Penicillium marneffei and Talaromyces stipitatus genomes.

  5. Expression of fatty acid and lipid biosynthetic genes in developing endosperm of Jatropha curcas

    Directory of Open Access Journals (Sweden)

    Gu Keyu

    2012-07-01

    Full Text Available Abstract Background Temporal and spatial expression of fatty acid and lipid biosynthetic genes are associated with the accumulation of storage lipids in the seeds of oil plants. In jatropha (Jatropha curcas L., a potential biofuel plant, the storage lipids are mainly synthesized and accumulated in the endosperm of seeds. Although the fatty acid and lipid biosynthetic genes in jatropha have been identified, the expression of these genes at different developing stages of endosperm has not been systemically investigated. Results Transmission electron microscopy study revealed that the oil body formation in developing endosperm of jatropha seeds initially appeared at 28 days after fertilization (DAF, was actively developed at 42 DAF and reached to the maximum number and size at 56 DAF. Sixty-eight genes that encode enzymes, proteins or their subunits involved in fatty acid and lipid biosynthesis were identified from a normalized cDNA library of jatropha developing endosperm. Gene expression with quantitative reverse-transcription polymerase chain reaction analysis demonstrated that the 68 genes could be collectively grouped into five categories based on the patterns of relative expression of the genes during endosperm development. Category I has 47 genes and they displayed a bell-shaped expression pattern with the peak expression at 28 or 42 DAF, but low expression at 14 and 56 DAF. Category II contains 8 genes and expression of the 8 genes was constantly increased from 14 to 56 DAF. Category III comprises of 2 genes and both genes were constitutively expressed throughout endosperm development. Category IV has 9 genes and they showed a high expression at 14 and 28 DAF, but a decreased expression from 42 to 56 DAF. Category V consists of 2 genes and both genes showed a medium expression at 14 DAF, the lowest expression at 28 or 42 DAF, and the highest expression at 56 DAF. In addition, genes encoding enzymes or proteins with similar function were

  6. Identification and analysis of the paulomycin biosynthetic gene cluster and titer improvement of the paulomycins in Streptomyces paulus NRRL 8115.

    Directory of Open Access Journals (Sweden)

    Jine Li

    Full Text Available The paulomycins are a group of glycosylated compounds featuring a unique paulic acid moiety. To locate their biosynthetic gene clusters, the genomes of two paulomycin producers, Streptomyces paulus NRRL 8115 and Streptomyces sp. YN86, were sequenced. The paulomycin biosynthetic gene clusters were defined by comparative analyses of the two genomes together with the genome of the third paulomycin producer Streptomyces albus J1074. Subsequently, the identity of the paulomycin biosynthetic gene cluster was confirmed by inactivation of two genes involved in biosynthesis of the paulomycose branched chain (pau11 and the ring A moiety (pau18 in Streptomyces paulus NRRL 8115. After determining the gene cluster boundaries, a convergent biosynthetic model was proposed for paulomycin based on the deduced functions of the pau genes. Finally, a paulomycin high-producing strain was constructed by expressing an activator-encoding gene (pau13 in S. paulus, setting the stage for future investigations.

  7. Reconstructing fungal natural product biosynthetic pathways.

    Science.gov (United States)

    Lazarus, C M; Williams, K; Bailey, A M

    2014-10-01

    Large scale fungal genome sequencing has revealed a multitude of potential natural product biosynthetic pathways that remain uncharted. Here we describe some of the methods that have been used to explore them via heterologous gene expression. We focus on filamentous fungal hosts and discuss the technological challenges and successes behind the reconstruction of fungal natural product pathways. Optimised, efficient heterologous expression of reconstructed biosynthetic pathways promises progress in the discovery of novel compounds that could be utilised by the pharmaceutical and agrochemical industries.

  8. Global regulation of nucleotide biosynthetic genes by c-Myc.

    Directory of Open Access Journals (Sweden)

    Yen-Chun Liu

    Full Text Available BACKGROUND: The c-Myc transcription factor is a master regulator and integrates cell proliferation, cell growth and metabolism through activating thousands of target genes. Our identification of direct c-Myc target genes by chromatin immunoprecipitation (ChIP coupled with pair-end ditag sequencing analysis (ChIP-PET revealed that nucleotide metabolic genes are enriched among c-Myc targets, but the role of Myc in regulating nucleotide metabolic genes has not been comprehensively delineated. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report that the majority of genes in human purine and pyrimidine biosynthesis pathway were induced and directly bound by c-Myc in the P493-6 human Burkitt's lymphoma model cell line. The majority of these genes were also responsive to the ligand-activated Myc-estrogen receptor fusion protein, Myc-ER, in a Myc null rat fibroblast cell line, HO.15 MYC-ER. Furthermore, these targets are also responsive to Myc activation in transgenic mouse livers in vivo. To determine the functional significance of c-Myc regulation of nucleotide metabolism, we sought to determine the effect of loss of function of direct Myc targets inosine monophosphate dehydrogenases (IMPDH1 and IMPDH2 on c-Myc-induced cell growth and proliferation. In this regard, we used a specific IMPDH inhibitor mycophenolic acid (MPA and found that MPA dramatically inhibits c-Myc-induced P493-6 cell proliferation through S-phase arrest and apoptosis. CONCLUSIONS/SIGNIFICANCE: Taken together, these results demonstrate the direct induction of nucleotide metabolic genes by c-Myc in multiple systems. Our finding of an S-phase arrest in cells with diminished IMPDH activity suggests that nucleotide pool balance is essential for c-Myc's orchestration of DNA replication, such that uncoupling of these two processes create DNA replication stress and apoptosis.

  9. Analysis of carotenoid biosynthetic gene expression during marigold petal development.

    Science.gov (United States)

    Moehs, C P; Tian, L; Osteryoung, K W; Dellapenna, D

    2001-02-01

    Marigold (Tagetes erecta L.) flower petals synthesize and accumulate carotenoids at levels greater than 20 times that in leaves and provide an excellent model system to investigate the molecular biology and biochemistry of carotenoid biosynthesis in plants. In addition, marigold cultivars exist with flower colors ranging from white to dark orange due to >100-fold differences in carotenoid levels, and presumably similar changes in carbon flux through the pathway. To examine the expression of carotenoid genes in marigold petals, we have cloned the majority of the genes in this pathway and used these to assess their steady-state mRNA levels in four marigold cultivars with extreme differences in carotenoid content. We have also cloned genes encoding early steps in the biosynthesis of isopentenyl pyrophosphate (IPP), the precursor of all isoprenoids, including carotenoids, as well as two genes required for plastid division. Differences among the marigold varieties in the expression of these genes suggest that differences in mRNA transcription or stability underlie the vast differences in carotenoid synthesis and accumulation in the different marigold varieties.

  10. Exploitation of the Streptomyces coelicolor A3(2) genome sequence for discovery of new natural products and biosynthetic pathways.

    Science.gov (United States)

    Challis, Gregory L

    2014-02-01

    Streptomyces, and related genera of Actinobacteria, are renowned for their ability to produce antibiotics and other bioactive natural products with a wide range of applications in medicine and agriculture. Streptomyces coelicolor A3(2) is a model organism that has been used for more than five decades to study the genetic and biochemical basis for the production of bioactive metabolites. In 2002, the complete genome sequence of S. coelicolor was published. This greatly accelerated progress in understanding the biosynthesis of metabolites known or suspected to be produced by S. coelicolor and revealed that streptomycetes have far greater potential to produce bioactive natural products than suggested by classical bioassay-guided isolation studies. In this article, efforts to exploit the S. coelicolor genome sequence for the discovery of novel natural products and biosynthetic pathways are summarized.

  11. Divergent evolutionary pattern of starch biosynthetic pathway genes in grasses and dicots.

    Science.gov (United States)

    Li, Chun; Li, Qi-Gang; Dunwell, Jim M; Zhang, Yuan-Ming

    2012-10-01

    Starch is the most widespread and abundant storage carbohydrate in crops and its production is critical to both crop yield and quality. In regard to the starch content in the seeds of crop plants, there is a distinct difference between grasses (Poaceae) and dicots. However, few studies have described the evolutionary pattern of genes in the starch biosynthetic pathway in these two groups of plants. In this study, therefore, an attempt was made to compare evolutionary rate, gene duplication, and selective pattern of the key genes involved in this pathway between the two groups, using five grasses and five dicots as materials. The results showed 1) distinct differences in patterns of gene duplication and loss between grasses and dicots; duplication in grasses mainly occurred before the divergence of grasses, whereas duplication mostly occurred in individual species within the dicots; there is less gene loss in grasses than in dicots, 2) a considerably higher evolutionary rate in grasses than in dicots in most gene families analyzed, and 3) evidence of a different selective pattern between grasses and dicots; positive selection may have occurred asymmetrically in grasses in some gene families, for example, ADP-glucose pyrophosphorylase small subunit. Therefore, we deduced that gene duplication contributes to, and a higher evolutionary rate is associated with, the higher starch content in grasses. In addition, two novel aspects of the evolution of the starch biosynthetic pathway were observed.

  12. Dereplication Guided Discovery of Secondary Metabolites of Mixed Biosynthetic Origin from Aspergillus aculeatus

    DEFF Research Database (Denmark)

    Petersen, Lene Maj; Hoeck, Casper; Frisvad, Jens Christian;

    2014-01-01

    Investigation of the chemical profile of the industrially important black filamentous fungus Aspergillus aculeatus by UHPLC-DAD-HRMS and subsequent dereplication has led to the discovery of several novel compounds. Isolation and extensive 1D and 2D NMR spectroscopic analyses allowed for structura...... Candida albicans, however all showed only weak or no activity. Aspergillus aculeatus IBT 21030 was additionally shown to be capable of producing sclerotia. Examination of the sclerotia revealed a highly regulated production of metabolites in these morphological structures....

  13. ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Lindemose, Søren; De Masi, Federico

    2013-01-01

    ATAF1, an Arabidopsis thaliana NAC transcription factor, plays important roles in plant adaptation to environmental stress and development. To search for ATAF1 target genes, we used protein binding microarrays and chromatin-immunoprecipitation (ChIP). This identified T[A,C,G]CGT[A,G] and TT[A,C,G...... abscisic acid (ABA) phytohormone biosynthetic gene NCED3. ChIP-qPCR and expression analysis showed that ATAF1 binding to the NCED3 promoter correlated with increased NCED3 expression and ABA hormone levels. These results indicate that ATAF1 regulates ABA biosynthesis....

  14. Identification and developmental expression profiling of putative alkaloid biosynthetic genes in Corydalis yanhusuo bulbs.

    Science.gov (United States)

    Liao, Dengqun; Wang, Pengfei; Jia, Chan; Sun, Peng; Qi, Jianjun; Zhou, Lili; Li, Xian'en

    2016-01-18

    Alkaloids in bulbs of Corydalis (C.) yanhusuo are the major pharmacologically active compounds in treatment of blood vessel diseases, tumors and various pains. However, due to the absence of gene sequences in C. yanhusuo, the genes involved in alkaloid biosynthesis and their expression during bulb development remain unknown. We therefore established the first transcriptome database of C. yanhusuo via Illumina mRNA-Sequencing of a RNA composite sample collected at Bulb initiation (Day 0), early enlargement (Day 10) and maturation (Day 30). 25,013,630 clean 90 bp paired-end reads were de novo assembled into 47,081 unigenes with an average length of 489 bp, among which 30,868 unigenes (65.56%) were annotated in four protein databases. Of 526 putative unigenes involved in biosynthesis o f various alkaloids, 187 were identified as the candidate genes involved in the biosynthesis of benzylisoquinoline alkaloids (BIAs), the only alkaloid type reported in C. yanhusuo untill now. BIAs biosynthetic genes were highly upregulated in the overall pathway during bulb development. Identification of alkaloid biosynthetic genes in C. yanhusuo provide insights on pathways and molecular regulation of alkaloid biosynthesis, to initiate metabolic engineering in order to improve the yield of interesting alkaloids and to identify potentially new alkaloids predicted from the transcriptomic information.

  15. Ethylene biosynthetic genes are differentially expressed during carnation (Dianthus caryophyllus L.) flower senescence.

    Science.gov (United States)

    ten Have, A; Woltering, E J

    1997-05-01

    Ethylene production and expression patterns of an 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (CARAO1) and of two ACC synthase (EC 4.4.1.14) genes (CARACC3 and CARAS1) were studied in floral organs of cut carnation flowers (Dianthus caryophyllus L.) cv. White Sim. During the vase life and after treatment of fresh flowers with ethylene, production of ethylene and expression of ethylene biosynthetic genes first started in the ovary followed by the styles and the petals. ACC oxidase was expressed in all the floral organs whereas, during the vase life, tissue-specific expression of the two ACC synthase genes was observed. After treatment with a high ethylene concentration, tissue specificity of the two ACC synthase genes was lost and only a temporal difference in expression remained. In styles, poor correlation between ethylene production and ACC synthase (CARAS1) gene expression was observed suggesting that either activity is regulated at the translational level or that the CARAS1 gene product requires an additional factor for activity. Isolated petals showed no increase in ethylene production and expression of ethylene biosynthetic genes when excised from the flower before the increase in petal ethylene production (before day 7); showed rapid cessation of ethylene production and gene expression when excised during the early phase of petal ethylene production (day 7) and showed a pattern of ethylene production and gene expression similar to the pattern observed in the attached petals when isolated at day 8. The interorgan regulation of gene expression and ethylene as a signal molecule in flower senescence are discussed.

  16. Expression of carotenoid biosynthetic pathway genes and changes in carotenoids during ripening in tomato (Lycopersicon esculentum).

    Science.gov (United States)

    Namitha, Kanakapura Krishnamurthy; Archana, Surya Narayana; Negi, Pradeep Singh

    2011-04-01

    To study the expression pattern of carotenoid biosynthetic pathway genes, changes in their expression at different stages of maturity in tomato fruit (cv. Arka Ahuti) were investigated. The genes regulating carotenoid production were quantified by a dot blot method using a DIG (dioxigenin) labelling and detection kit. The results revealed that there was an increase in the levels of upstream genes of the carotenoid biosynthetic pathway such as 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), 4-hydroxy-3-methyl-but-2-enyl diphosphate reductase (Lyt B), phytoene synthase (PSY), phytoene desaturase (PDS) and ζ-carotene desaturase (ZDS) by 2-4 fold at the breaker stage as compared to leaf. The lycopene and β-carotene content was analyzed by HPLC at different stages of maturity. The lycopene (15.33 ± 0.24 mg per 100 g) and β-carotene (10.37 ± 0.46 mg per 100 g) content were found to be highest at 5 days post-breaker and 10 days post-breaker stage, respectively. The lycopene accumulation pattern also coincided with the color values at different stages of maturity. These studies may provide insight into devising gene-based strategies for enhancing carotenoid accumulation in tomato fruits.

  17. Independent Gene Discovery and Testing

    Science.gov (United States)

    Palsule, Vrushalee; Coric, Dijana; Delancy, Russell; Dunham, Heather; Melancon, Caleb; Thompson, Dennis; Toms, Jamie; White, Ashley; Shultz, Jeffry

    2010-01-01

    A clear understanding of basic gene structure is critical when teaching molecular genetics, the central dogma and the biological sciences. We sought to create a gene-based teaching project to improve students' understanding of gene structure and to integrate this into a research project that can be implemented by instructors at the secondary level…

  18. Gene discovery of modular diterpene metabolism in nonmodel systems.

    Science.gov (United States)

    Zerbe, Philipp; Hamberger, Björn; Yuen, Macaire M S; Chiang, Angela; Sandhu, Harpreet K; Madilao, Lina L; Nguyen, Anh; Hamberger, Britta; Bach, Søren Spanner; Bohlmann, Jörg

    2013-06-01

    Plants produce over 10,000 different diterpenes of specialized (secondary) metabolism, and fewer diterpenes of general (primary) metabolism. Specialized diterpenes may have functions in ecological interactions of plants with other organisms and also benefit humanity as pharmaceuticals, fragrances, resins, and other industrial bioproducts. Examples of high-value diterpenes are taxol and forskolin pharmaceuticals or ambroxide fragrances. Yields and purity of diterpenes obtained from natural sources or by chemical synthesis are often insufficient for large-volume or high-end applications. Improvement of agricultural or biotechnological diterpene production requires knowledge of biosynthetic genes and enzymes. However, specialized diterpene pathways are extremely diverse across the plant kingdom, and most specialized diterpenes are taxonomically restricted to a few plant species, genera, or families. Consequently, there is no single reference system to guide gene discovery and rapid annotation of specialized diterpene pathways. Functional diversification of genes and plasticity of enzyme functions of these pathways further complicate correct annotation. To address this challenge, we used a set of 10 different plant species to develop a general strategy for diterpene gene discovery in nonmodel systems. The approach combines metabolite-guided transcriptome resources, custom diterpene synthase (diTPS) and cytochrome P450 reference gene databases, phylogenies, and, as shown for select diTPSs, single and coupled enzyme assays using microbial and plant expression systems. In the 10 species, we identified 46 new diTPS candidates and over 400 putatively terpenoid-related P450s in a resource of nearly 1 million predicted transcripts of diterpene-accumulating tissues. Phylogenetic patterns of lineage-specific blooms of genes guided functional characterization.

  19. Improvement of gougerotin and nikkomycin production by engineering their biosynthetic gene clusters.

    Science.gov (United States)

    Du, Deyao; Zhu, Yu; Wei, Junhong; Tian, Yuqing; Niu, Guoqing; Tan, Huarong

    2013-07-01

    Nikkomycins and gougerotin are peptidyl nucleoside antibiotics with broad biological activities. The nikkomycin biosynthetic gene cluster comprises one pathway-specific regulatory gene (sanG) and 21 structural genes, whereas the gene cluster for gougerotin biosynthesis includes one putative regulatory gene, one major facilitator superfamily transporter gene, and 13 structural genes. In the present study, we introduced sanG driven by six different promoters into Streptomyces ansochromogenes TH322. Nikkomycin production was increased significantly with the highest increase in engineered strain harboring hrdB promoter-driven sanG. In the meantime, we replaced the native promoter of key structural genes in the gougerotin (gou) gene cluster with the hrdB promoters. The heterologous producer Streptomyces coelicolor M1146 harboring the modified gene cluster produced gougerotin up to 10-fold more than strains carrying the unmodified cluster. Therefore, genetic manipulations of genes involved in antibiotics biosynthesis with the constitutive hrdB promoter present a robust, easy-to-use system generally useful for the improvement of antibiotics production in Streptomyces.

  20. Expression of phenazine biosynthetic genes during the arbuscular mycorrhizal symbiosis of Glomus intraradices

    Directory of Open Access Journals (Sweden)

    Dionicia Gloria León-Martínez

    2012-06-01

    Full Text Available To explore the molecular mechanisms that prevail during the establishment of the arbuscular mycorrhiza symbiosis involving the genus Glomus, we transcriptionally analysed spores of Glomus intraradices BE3 during early hyphal growth. Among 458 transcripts initially identified as being expressed at presymbiotic stages, 20% of sequences had homology to previously characterized eukaryotic genes, 30% were homologous to fungal coding sequences, and 9% showed homology to previously characterized bacterial genes. Among them, GintPbr1a encodes a homolog to Phenazine Biosynthesis Regulator (Pbr of Burkholderia cenocepacia, an pleiotropic regulatory protein that activates phenazine production through transcriptional activation of the protein D isochorismatase biosynthetic enzyme phzD (Ramos et al., 2010. Whereas GintPbr1a is expressed during the presymbiotic phase, the G. intraradices BE3 homolog of phzD (BGintphzD is transcriptionally active at the time of the establishment of the arbuscular mycorrhizal symbiosis. DNA from isolated bacterial cultures found in spores of G. intraradices BE3 confirmed that both BGintPbr1a and BGintphzD are present in the genome of its potential endosymbionts. Taken together, our results indicate that spores of G. intraradices BE3 express bacterial phenazine biosynthetic genes at the onset of the fungal-plant symbiotic interaction.

  1. Treadmill exercise does not change gene expression of adrenal catecholamine biosynthetic enzymes in chronically stressed rats

    Directory of Open Access Journals (Sweden)

    LJUBICA GAVRILOVIC

    2013-09-01

    Full Text Available ABSTRACT Chronic isolation of adult animals represents a form of psychological stress that produces sympatho-adrenomedullar activation. Exercise training acts as an important modulator of sympatho-adrenomedullary system. This study aimed to investigate physical exercise-related changes in gene expression of catecholamine biosynthetic enzymes (tyrosine hydroxylase, dopamine-ß-hydroxylase and phenylethanolamine N-methyltransferase and cyclic adenosine monophosphate response element-binding (CREB in the adrenal medulla, concentrations of catecholamines and corticosterone (CORT in the plasma and the weight of adrenal glands of chronically psychosocially stressed adult rats exposed daily to 20 min treadmill running for 12 weeks. Also, we examined how additional acute immobilization stress changes the mentioned parameters. Treadmill running did not result in modulation of gene expression of catecholamine synthesizing enzymes and it decreased the level of CREB mRNA in the adrenal medulla of chronically psychosocially stressed adult rats. The potentially negative physiological adaptations after treadmill running were recorded as increased concentrations of catecholamines and decreased morning CORT concentration in the plasma, as well as the adrenal gland hypertrophy of chronically psychosocially stressed rats. The additional acute immobilization stress increases gene expression of catecholamine biosynthetic enzymes in the adrenal medulla, as well as catecholamines and CORT levels in the plasma. Treadmill exercise does not change the activity of sympatho-adrenomedullary system of chronically psychosocially stressed rats.

  2. Identification of a new diterpene biosynthetic gene cluster that produces O-methylkolavelool in Herpetosiphon aurantiacus.

    Science.gov (United States)

    Nakano, Chiaki; Oshima, Misaki; Kurashima, Nodoka; Hoshino, Tsutomu

    2015-03-23

    Diterpenoids are usually found in plants and fungi, but are rare in bacteria. We have previously reported new diterpenes, named tuberculosinol and isotuberculosinol, which are generated from the Mycobacterium tuberculosis gene products Rv3377c and Rv3378c. No homologous gene was found at that time, but we recently found highly homologous proteins in the Herpetosiphon aurantiacus ATCC 23779 genome. Haur_2145 was a class II diterpene cyclase responsible for the conversion of geranylgeranyl diphosphate into kolavenyl diphosphate. Haur_2146, homologous to Rv3378c, synthesized (+)-kolavelool through the nucleophilic addition of a water molecule to the incipient cation formed after the diphosphate moiety was released. Haur_2147 afforded (+)-O-methylkolavelool from (+)-kolavelool, so this enzyme was an O-methyltransferase. This new diterpene was indeed detected in H. aurantiacus cells. This is the first report of the identification of a (+)-O-methylkolavelool biosynthetic gene cluster.

  3. Expression of Terpenoid Biosynthetic Genes and Accumulation of Chemical Constituents in Valeriana fauriei

    Directory of Open Access Journals (Sweden)

    Yun Ji Park

    2016-05-01

    Full Text Available Valeriana fauriei (V. fauriei, which emits a characteristic and unpleasant odor, is important in traditional medicine. In this study, the expression of terpenoid biosynthetic genes was investigated in different organs that were also screened for volatile compounds including valerenic acid and its derivatives. Specific expression patterns from different parts of V. fauriei were observed using quantitative real-time PCR (qRT-PCR. The highest transcript levels of biosynthetic genes involved in mevalonic acid (MVA and methylerythritol phosphate (MEP production were found in the stem. Although the amounts of volatile compounds were varied by organ, most of the volatile terpenoids were accumulated in the root. Gas chromatography mass spectrometry (GC-MS analysis identified 128 volatile compounds, which represented 65.33% to 95.66% of total volatiles. Certain compounds were only found in specific organs. For example, isovalerenic acid and valerenic acid and its derivatives were restricted to the root. Organs with high transcript levels did not necessarily have high levels of the corresponding chemical constituents. According to these results, we hypothesize that translocation may occur between different organs in V. fauriei.

  4. Bacterial Long-Chain Polyunsaturated Fatty Acids: Their Biosynthetic Genes, Functions, and Practical Use.

    Science.gov (United States)

    Yoshida, Kiyohito; Hashimoto, Mikako; Hori, Ryuji; Adachi, Takumi; Okuyama, Hidetoshi; Orikasa, Yoshitake; Nagamine, Tadashi; Shimizu, Satoru; Ueno, Akio; Morita, Naoki

    2016-05-12

    The nutritional and pharmaceutical values of long-chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic, eicosapentaenoic and docosahexaenoic acids have been well recognized. These LC-PUFAs are physiologically important compounds in bacteria and eukaryotes. Although little is known about the biosynthetic mechanisms and functions of LC-PUFAs in bacteria compared to those in higher organisms, a combination of genetic, bioinformatic, and molecular biological approaches to LC-PUFA-producing bacteria and some eukaryotes have revealed the notably diverse organization of the pfa genes encoding a polyunsaturated fatty acid synthase complex (PUFA synthase), the LC-PUFA biosynthetic processes, and tertiary structures of the domains of this enzyme. In bacteria, LC-PUFAs appear to take part in specific functions facilitating individual membrane proteins rather than in the adjustment of the physical fluidity of the whole cell membrane. Very long chain polyunsaturated hydrocarbons (LC-HCs) such as hentriacontanonaene are considered to be closely related to LC-PUFAs in their biosynthesis and function. The possible role of LC-HCs in strictly anaerobic bacteria under aerobic and anaerobic environments and the evolutionary relationships of anaerobic and aerobic bacteria carrying pfa-like genes are also discussed.

  5. Bacterial Long-Chain Polyunsaturated Fatty Acids: Their Biosynthetic Genes, Functions, and Practical Use

    Directory of Open Access Journals (Sweden)

    Kiyohito Yoshida

    2016-05-01

    Full Text Available The nutritional and pharmaceutical values of long-chain polyunsaturated fatty acids (LC-PUFAs such as arachidonic, eicosapentaenoic and docosahexaenoic acids have been well recognized. These LC-PUFAs are physiologically important compounds in bacteria and eukaryotes. Although little is known about the biosynthetic mechanisms and functions of LC-PUFAs in bacteria compared to those in higher organisms, a combination of genetic, bioinformatic, and molecular biological approaches to LC-PUFA-producing bacteria and some eukaryotes have revealed the notably diverse organization of the pfa genes encoding a polyunsaturated fatty acid synthase complex (PUFA synthase, the LC-PUFA biosynthetic processes, and tertiary structures of the domains of this enzyme. In bacteria, LC-PUFAs appear to take part in specific functions facilitating individual membrane proteins rather than in the adjustment of the physical fluidity of the whole cell membrane. Very long chain polyunsaturated hydrocarbons (LC-HCs such as hentriacontanonaene are considered to be closely related to LC-PUFAs in their biosynthesis and function. The possible role of LC-HCs in strictly anaerobic bacteria under aerobic and anaerobic environments and the evolutionary relationships of anaerobic and aerobic bacteria carrying pfa-like genes are also discussed.

  6. Transcriptome and Metabolite analysis reveal candidate genes of the cardiac glycoside biosynthetic pathway from Calotropis procera

    Science.gov (United States)

    Pandey, Akansha; Swarnkar, Vishakha; Pandey, Tushar; Srivastava, Piush; Kanojiya, Sanjeev; Mishra, Dipak Kumar; Tripathi, Vineeta

    2016-01-01

    Calotropis procera is a medicinal plant of immense importance due to its pharmaceutical active components, especially cardiac glycosides (CG). As genomic resources for this plant are limited, the genes involved in CG biosynthetic pathway remain largely unknown till date. Our study on stage and tissue specific metabolite accumulation showed that CG’s were maximally accumulated in stems of 3 month old seedlings. De novo transcriptome sequencing of same was done using high throughput Illumina HiSeq platform generating 44074 unigenes with average mean length of 1785 base pair. Around 66.6% of unigenes were annotated by using various public databases and 5324 unigenes showed significant match in the KEGG database involved in 133 different pathways of plant metabolism. Further KEGG analysis resulted in identification of 336 unigenes involved in cardenolide biosynthesis. Tissue specific expression analysis of 30 putative transcripts involved in terpenoid, steroid and cardenolide pathways showed a positive correlation between metabolite and transcript accumulation. Wound stress elevated CG levels as well the levels of the putative transcripts involved in its biosynthetic pathways. This result further validated the involvement of identified transcripts in CGs biosynthesis. The identified transcripts will lay a substantial foundation for further research on metabolic engineering and regulation of cardiac glycosides biosynthesis pathway genes. PMID:27703261

  7. Mutational analysis of the thienamycin biosynthetic gene cluster from Streptomyces cattleya.

    Science.gov (United States)

    Rodríguez, Miriam; Núñez, Luz Elena; Braña, Alfredo F; Méndez, Carmen; Salas, José A; Blanco, Gloria

    2011-04-01

    The generation of non-thienamycin-producing mutants with mutations in the thnL, thnN, thnO, and thnI genes within the thn gene cluster from Streptomyces cattleya and their involvement in thienamycin biosynthesis and regulation were previously reported. Four additional mutations were independently generated in the thnP, thnG, thnR, and thnT genes by insertional inactivation. Only the first two genes were found to play a role in thienamycin biosynthesis, since these mutations negatively or positively affect antibiotic production. A mutation of thnP results in the absence of thienamycin production, whereas a 2- to 3-fold increase in thienamycin production was observed for the thnG mutant. On the other hand, mutations in thnR and thnT showed that although these genes were previously reported to participate in this pathway, they seem to be nonessential for thienamycin biosynthesis, as thienamycin production was not affected in these mutants. High-performance liquid chromatography (HPLC)-mass spectrometry (MS) analysis of all available mutants revealed some putative intermediates in the thienamycin biosynthetic pathway. A compound with a mass corresponding to carbapenam-3-carboxylic acid was detected in some of the mutants, suggesting that the assembly of the bicyclic nucleus of thienamycin might proceed in a way analogous to that of the simplest natural carbapenem, 1-carbapen-2-em-3-carboxylic acid biosynthesis. The accumulation of a compound with a mass corresponding to 2,3-dihydrothienamycin in the thnG mutant suggests that it might be the last intermediate in the biosynthetic pathway. These data, together with the establishment of cross-feeding relationships by the cosynthesis analysis of the non-thienamycin-producing mutants, lead to a proposal for some enzymatic steps during thienamycin assembly.

  8. Overexpressions of Lambda Phage Lysis Genes and Biosynthetic Genes of Poly-β-hydroxybutyrate in Recombinant E.coli

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    A plasmid (pTU9) containing the lambda (λ) phage lysis genes S(-)RRz and the biosynthetic genes phbCAB of poly-β-hydroxybutyrate (PHB) was constructed and transformed into E.coli JM109. Cultured in Luria-Bertani (LB) medium with 20 g/L glucose, E.coli JM109 (pTU9) could accumulate PHB in cells up to 40% (g PHB per g dry cells). A chelating agent EDTA was applied to induce a complete cell lysis and PHB granules were released. This method has a potential application in PHB separation.

  9. Multiplex PCR analysis of fumonisin biosynthetic genes in fumonisin-nonproducing Aspergillus niger and A. awamori strains

    Science.gov (United States)

    In order to determine the genetic basis for loss of fumonisin B¬2 (FB2) biosynthesis in FB2 non-producing A. niger strains, we developed multiplex PCR primer sets to amplify fragments of eight fumonisin biosynthetic pathway (fum) genes. Fragments of all eight fum genes were amplified in FB2-produci...

  10. Effects of Cerium on Accumulation of Anthocyanins and Expression of Anthocyanin Biosynthetic Genes in Potato Cell Tissue Cultures

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The effects of Ce (Ⅳ) on callus growth, anthocyanin content, and expression of anthocyanin biosynthetic genes in callus suspension cultures of Solanum tuberosum cv. Chieftain were studied by the measurement of fresh weight, spectrophotometric assays, and semiquantitative RT-PCR. The results indicate that 0.1 mmol·L-1 Ce (Ⅳ) can promote callus growth, increase the accumulation of anthocyanins, and enhance the expression of five anthocyanin biosynthetic genes (CHS, F3H, F3′5′H, DFR, and 3GT) most efficiently. At high concentrations of 1 mmol·L-1, Ce (Ⅳ) partially inhibits callus growth and at 2 mmol·L-1 eventually lends to cell death. The results show that Ce(Ⅳ) can induce the expression of anthocyanin biosynthetic genes to produce and accumulate anthocyanins and increase the yield of anthocyanins.

  11. Human brain evolution: from gene discovery to phenotype discovery.

    Science.gov (United States)

    Preuss, Todd M

    2012-06-26

    The rise of comparative genomics and related technologies has added important new dimensions to the study of human evolution. Our knowledge of the genes that underwent expression changes or were targets of positive selection in human evolution is rapidly increasing, as is our knowledge of gene duplications, translocations, and deletions. It is now clear that the genetic differences between humans and chimpanzees are far more extensive than previously thought; their genomes are not 98% or 99% identical. Despite the rapid growth in our understanding of the evolution of the human genome, our understanding of the relationship between genetic changes and phenotypic changes is tenuous. This is true even for the most intensively studied gene, FOXP2, which underwent positive selection in the human terminal lineage and is thought to have played an important role in the evolution of human speech and language. In part, the difficulty of connecting genes to phenotypes reflects our generally poor knowledge of human phenotypic specializations, as well as the difficulty of interpreting the consequences of genetic changes in species that are not amenable to invasive research. On the positive side, investigations of FOXP2, along with genomewide surveys of gene-expression changes and selection-driven sequence changes, offer the opportunity for "phenotype discovery," providing clues to human phenotypic specializations that were previously unsuspected. What is more, at least some of the specializations that have been proposed are amenable to testing with noninvasive experimental techniques appropriate for the study of humans and apes.

  12. Phenylpropanoids accumulation in eggplant fruit: characterization of biosynthetic genes and regulation by a MYB transcription factor

    Directory of Open Access Journals (Sweden)

    Teresa eDocimo

    2016-01-01

    Full Text Available Phenylpropanoids are major secondary metabolites in eggplant (Solanum melongena fruits. Chlorogenic acid (CGA accounts for 70 to 90% of total phenolics in flesh tissues, while anthocyanins are mainly present in the fruit skin. As a contribution to the understanding of the peculiar accumulation of these health-promoting metabolites in eggplant, we report on metabolite abundance, regulation of CGA and anthocyanin biosynthesis, and characterization of candidate CGA biosynthetic genes in S. melongena.Higher contents of CGA, Delphinidin 3-rutinoside and rutin were found in eggplant fruits compared to other tissues, associated to an elevated transcript abundance of structural genes such as PAL, HQT, DFR and ANS, suggesting that active in situ biosynthesis contributes to anthocyanin and CGA accumulation in fruit tissues. Putative orthologs of the two CGA biosynthetic genes PAL and HQT, as well as a variant of a MYB1 transcription factor showing identity with group 6 MYBs, were isolated from an Occidental S. melongena traditional variety and demonstrated to differ from published sequences from Asiatic varieties.In silico analysis of the isolated SmPAL1, SmHQT1, SmANS, and SmMyb1 promoters revealed the presence of several Myb regulatory elements for the biosynthetic genes and unique elements for the TF, suggesting its involvement in other physiological roles beside phenylpropanoid biosynthesis regulation.Transient overexpression in Nicotiana benthamiana leaves of SmMyb1 and of a C-terminal SmMyb1 truncated form (SmMyb1Δ9 resulted in anthocyanin accumulation only of SmMyb1 agro-infiltrated leaves. A yeast two-hybrid assay confirmed the interaction of both SmMyb1 and SmMyb1Δ9 with an anthocyanin-related potato bHLH1 TF. Interestingly, a doubled amount of CGA was detected in both SmMyb1 and SmMyb1Δ9 agro-infiltrated leaves, thus suggesting that the N-terminal region of SmMyb1 is sufficient to activate its synthesis. These data suggest that a deletion of

  13. Phylogenomics of the benzoxazinoid biosynthetic pathway of Poaceae: gene duplications and origin of the Bx cluster

    Directory of Open Access Journals (Sweden)

    Dutartre Leslie

    2012-05-01

    Full Text Available Abstract Background The benzoxazinoids 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA and 2,4-dihydroxy-7- methoxy-1,4-benzoxazin-3-one (DIMBOA, are key defense compounds present in major agricultural crops such as maize and wheat. Their biosynthesis involves nine enzymes thought to form a linear pathway leading to the storage of DI(MBOA as glucoside conjugates. Seven of the genes (Bx1-Bx6 and Bx8 form a cluster at the tip of the short arm of maize chromosome 4 that includes four P450 genes (Bx2-5 belonging to the same CYP71C subfamily. The origin of this cluster is unknown. Results We show that the pathway appeared following several duplications of the TSA gene (α-subunit of tryptophan synthase and of a Bx2-like ancestral CYP71C gene and the recruitment of Bx8 before the radiation of Poaceae. The origins of Bx6 and Bx7 remain unclear. We demonstrate that the Bx2-like CYP71C ancestor was not committed to the benzoxazinoid pathway and that after duplications the Bx2-Bx5 genes were under positive selection on a few sites and underwent functional divergence, leading to the current specific biochemical properties of the enzymes. The absence of synteny between available Poaceae genomes involving the Bx gene regions is in contrast with the conserved synteny in the TSA gene region. Conclusions These results demonstrate that rearrangements following duplications of an IGL/TSA gene and of a CYP71C gene probably resulted in the clustering of the new copies (Bx1 and Bx2 at the tip of a chromosome in an ancestor of grasses. Clustering favored cosegregation and tip chromosomal location favored gene rearrangements that allowed the further recruitment of genes to the pathway. These events, a founding event and elongation events, may have been the key to the subsequent evolution of the benzoxazinoid biosynthetic cluster.

  14. Saponin determination, expression analysis and functional characterization of saponin biosynthetic genes in Chenopodium quinoa leaves.

    Science.gov (United States)

    Fiallos-Jurado, Jennifer; Pollier, Jacob; Moses, Tessa; Arendt, Philipp; Barriga-Medina, Noelia; Morillo, Eduardo; Arahana, Venancio; de Lourdes Torres, Maria; Goossens, Alain; Leon-Reyes, Antonio

    2016-09-01

    Quinoa (Chenopodium quinoa Willd.) is a highly nutritious pseudocereal with an outstanding protein, vitamin, mineral and nutraceutical content. The leaves, flowers and seed coat of quinoa contain triterpenoid saponins, which impart bitterness to the grain and make them unpalatable without postharvest removal of the saponins. In this study, we quantified saponin content in quinoa leaves from Ecuadorian sweet and bitter genotypes and assessed the expression of saponin biosynthetic genes in leaf samples elicited with methyl jasmonate. We found saponin accumulation in leaves after MeJA treatment in both ecotypes tested. As no reference genes were available to perform qPCR in quinoa, we mined publicly available RNA-Seq data for orthologs of 22 genes known to be stably expressed in Arabidopsis thaliana using geNorm, NormFinder and BestKeeper algorithms. The quinoa ortholog of At2g28390 (Monensin Sensitivity 1, MON1) was stably expressed and chosen as a suitable reference gene for qPCR analysis. Candidate saponin biosynthesis genes were screened in the quinoa RNA-Seq data and subsequent functional characterization in yeast led to the identification of CqbAS1, CqCYP716A78 and CqCYP716A79. These genes were found to be induced by MeJA, suggesting this phytohormone might also modulate saponin biosynthesis in quinoa leaves. Knowledge of the saponin biosynthesis and its regulation in quinoa may aid the further development of sweet cultivars that do not require postharvest processing.

  15. Cloning and expression analyses of the anthocyanin biosynthetic genes in mulberry plants.

    Science.gov (United States)

    Qi, Xiwu; Shuai, Qin; Chen, Hu; Fan, Li; Zeng, Qiwei; He, Ningjia

    2014-10-01

    Anthocyanins are natural food colorants produced by plants that play important roles in their growth and development. Mulberry fruits are rich in anthocyanins, which are the most important active components of mulberry and have many potentially beneficial effects on human health. The study of anthocyanin biosynthesis will bring benefits for quality improvement and industrial exploration of mulberry fruits. In the present study, nine putative genes involved in anthocyanin biosynthesis in mulberry plants were identified and cloned. Sequence analysis revealed that the mulberry anthocyanin biosynthetic genes were conserved and had counterparts in other plants. Spatial transcriptional analysis showed detectable expression of eight of these genes in different tissues. The results of expression and UPLC analyses in two mulberry cultivars with differently colored fruit indicated that anthocyanin concentrations correlated with the expression levels of genes associated with anthocyanin biosynthesis including CHS1, CHI, F3H1, F3'H1, and ANS during the fruit ripening process. The present studies provide insight into anthocyanin biosynthesis in mulberry plants and may facilitate genetic engineering for improvement of the anthocyanin content in mulberry fruit.

  16. Minimization of biosynthetic costs in adaptive gene expression responses of yeast to environmental changes.

    Directory of Open Access Journals (Sweden)

    Ester Vilaprinyo

    2010-02-01

    Full Text Available Yeast successfully adapts to an environmental stress by altering physiology and fine-tuning metabolism. This fine-tuning is achieved through regulation of both gene expression and protein activity, and it is shaped by various physiological requirements. Such requirements impose a sustained evolutionary pressure that ultimately selects a specific gene expression profile, generating a suitable adaptive response to each environmental change. Although some of the requirements are stress specific, it is likely that others are common to various situations. We hypothesize that an evolutionary pressure for minimizing biosynthetic costs might have left signatures in the physicochemical properties of proteins whose gene expression is fine-tuned during adaptive responses. To test this hypothesis we analyze existing yeast transcriptomic data for such responses and investigate how several properties of proteins correlate to changes in gene expression. Our results reveal signatures that are consistent with a selective pressure for economy in protein synthesis during adaptive response of yeast to various types of stress. These signatures differentiate two groups of adaptive responses with respect to how cells manage expenditure in protein biosynthesis. In one group, significant trends towards downregulation of large proteins and upregulation of small ones are observed. In the other group we find no such trends. These results are consistent with resource limitation being important in the evolution of the first group of stress responses.

  17. Cloning and expression of anthocyanin biosynthetic genes in red and white pomegranate.

    Science.gov (United States)

    Zhao, Xueqing; Yuan, Zhaohe; Feng, Lijuan; Fang, Yanming

    2015-07-01

    Exterior fruit color is an important trait for the evaluation of pomegranate fruit quality, but the molecular mechanism underlying the variation in color between red- and white-fruited pomegranate is poorly understood. In this study, full-length cDNA clones encoding enzymes involved in anthocyanin biosynthesis-such as chalcone synthase, chalcone isomerase, flavanone 3-hydoxylase, dihydroflavonol 4-reductase, anthocyanidin synthase (ANS), UDP-glucose-flavonoid 3-O-glucosyltransferase, and the R2R3 MYB transcription factor PgMYB-were isolated from fruit peels. In addition, transcript levels of anthocyanin biosynthetic genes were quantitatively measured by real-time PCR in red and white fruits. In both cultivars, two expression peaks for structural genes were detected during fruit development, whereas only one peak was observed-during early development-for PgMYB. While PgMYB is important for flavonoid biosynthesis, other transcription factors appear to also be necessary for the regulation of anthocyanin biosynthesis. No anthocyanins were detected in the white cultivar. Peels of white fruits contained transcripts of all identified genes except for PgANS, suggesting that the lack of PgANS expression may be the main factor responsible for the absence of anthocyanins in white pomegranate. PgANS may be the key gene involved in anthocyanin biosynthesis in pomegranate fruit.

  18. Labellum transcriptome reveals alkene biosynthetic genes involved in orchid sexual deception and pollination-induced senescence.

    Science.gov (United States)

    Monteiro, Filipa; Sebastiana, Mónica; Figueiredo, Andreia; Sousa, Lisete; Cotrim, Helena C; Pais, Maria Salomé

    2012-11-01

    One of the most remarkable pollination strategy in orchids biology is pollination by sexual deception, in which the modified petal labellum lures pollinators by mimicking the chemical (e.g. sex pheromones), visual (e.g. colour and shape/size) and tactile (e.g. labellum trichomes) cues of the receptive female insect species. The present study aimed to characterize the transcriptional changes occurring after pollination in the labellum of a sexually deceptive orchid (Ophrys fusca Link) in order to identify genes involved on signals responsible for pollinator attraction, the major goal of floral tissues. Novel information on alterations in the orchid petal labellum gene expression occurring after pollination demonstrates a reduction in the expression of alkene biosynthetic genes using O. fusca Link as the species under study. Petal labellum transcriptional analysis revealed downregulation of transcripts involved in both pigment machinery and scent compounds, acting as visual and olfactory cues, respectively, important in sexual mimicry. Regulation of petal labellum senescence was revealed by transcripts related to macromolecules breakdown, protein synthesis and remobilization of nutrients.

  19. Sequencing, physical organization and kinetic expression of the patulin biosynthetic gene cluster from Penicillium expansum.

    Science.gov (United States)

    Tannous, Joanna; El Khoury, Rhoda; Snini, Selma P; Lippi, Yannick; El Khoury, André; Atoui, Ali; Lteif, Roger; Oswald, Isabelle P; Puel, Olivier

    2014-10-17

    Patulin is a polyketide-derived mycotoxin produced by numerous filamentous fungi. Among them, Penicillium expansum is by far the most problematic species. This fungus is a destructive phytopathogen capable of growing on fruit, provoking the blue mold decay of apples and producing significant amounts of patulin. The biosynthetic pathway of this mycotoxin is chemically well-characterized, but its genetic bases remain largely unknown with only few characterized genes in less economic relevant species. The present study consisted of the identification and positional organization of the patulin gene cluster in P. expansum strain NRRL 35695. Several amplification reactions were performed with degenerative primers that were designed based on sequences from the orthologous genes available in other species. An improved genome Walking approach was used in order to sequence the remaining adjacent genes of the cluster. RACE-PCR was also carried out from mRNAs to determine the start and stop codons of the coding sequences. The patulin gene cluster in P. expansum consists of 15 genes in the following order: patH, patG, patF, patE, patD, patC, patB, patA, patM, patN, patO, patL, patI, patJ, and patK. These genes share 60-70% of identity with orthologous genes grouped differently, within a putative patulin cluster described in a non-producing strain of Aspergillus clavatus. The kinetics of patulin cluster genes expression was studied under patulin-permissive conditions (natural apple-based medium) and patulin-restrictive conditions (Eagle's minimal essential medium), and demonstrated a significant association between gene expression and patulin production. In conclusion, the sequence of the patulin cluster in P. expansum constitutes a key step for a better understanding of the mechanisms leading to patulin production in this fungus. It will allow the role of each gene to be elucidated, and help to define strategies to reduce patulin production in apple-based products.

  20. Allelic effects on starch structure and properties of six starch biosynthetic genes in a rice recombinant inbred line population

    OpenAIRE

    2015-01-01

    Background The genetic diversity of six starch biosynthetic genes (Wx, SSI, SSIIa, SBEI, SBEIIa and SBEIIb) in indica and japonica rices opens an opportunity to produce a new variety with more favourable grain starch quality. However, there is limited information about the effects of these six gene allele combinations on starch structure and properties. A recombinant inbred line population from a cross between indica and japonica varieties offers opportunities to combine specific alleles of t...

  1. Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers

    Directory of Open Access Journals (Sweden)

    Luo Hongmei

    2011-12-01

    Full Text Available Abstract Background Panax notoginseng (Burk F.H. Chen is important medicinal plant of the Araliacease family. Triterpene saponins are the bioactive constituents in P. notoginseng. However, available genomic information regarding this plant is limited. Moreover, details of triterpene saponin biosynthesis in the Panax species are largely unknown. Results Using the 454 pyrosequencing technology, a one-quarter GS FLX titanium run resulted in 188,185 reads with an average length of 410 bases for P. notoginseng root. These reads were processed and assembled by 454 GS De Novo Assembler software into 30,852 unique sequences. A total of 70.2% of unique sequences were annotated by Basic Local Alignment Search Tool (BLAST similarity searches against public sequence databases. The Kyoto Encyclopedia of Genes and Genomes (KEGG assignment discovered 41 unique sequences representing 11 genes involved in triterpene saponin backbone biosynthesis in the 454-EST dataset. In particular, the transcript encoding dammarenediol synthase (DS, which is the first committed enzyme in the biosynthetic pathway of major triterpene saponins, is highly expressed in the root of four-year-old P. notoginseng. It is worth emphasizing that the candidate cytochrome P450 (Pn02132 and Pn00158 and UDP-glycosyltransferase (Pn00082 gene most likely to be involved in hydroxylation or glycosylation of aglycones for triterpene saponin biosynthesis were discovered from 174 cytochrome P450s and 242 glycosyltransferases by phylogenetic analysis, respectively. Putative transcription factors were detected in 906 unique sequences, including Myb, homeobox, WRKY, basic helix-loop-helix (bHLH, and other family proteins. Additionally, a total of 2,772 simple sequence repeat (SSR were identified from 2,361 unique sequences, of which, di-nucleotide motifs were the most abundant motif. Conclusion This study is the first to present a large-scale EST dataset for P. notoginseng root acquired by next

  2. Glutamic acid promotes monacolin K production and monacolin K biosynthetic gene cluster expression in Monascus.

    Science.gov (United States)

    Zhang, Chan; Liang, Jian; Yang, Le; Chai, Shiyuan; Zhang, Chenxi; Sun, Baoguo; Wang, Chengtao

    2017-12-01

    This study investigated the effects of glutamic acid on production of monacolin K and expression of the monacolin K biosynthetic gene cluster. When Monascus M1 was grown in glutamic medium instead of in the original medium, monacolin K production increased from 48.4 to 215.4 mg l(-1), monacolin K production increased by 3.5 times. Glutamic acid enhanced monacolin K production by upregulating the expression of mokB-mokI; on day 8, the expression level of mokA tended to decrease by Reverse Transcription-polymerase Chain Reaction. Our findings demonstrated that mokA was not a key gene responsible for the quantity of monacolin K production in the presence of glutamic acid. Observation of Monascus mycelium morphology using Scanning Electron Microscope showed glutamic acid significantly increased the content of Monascus mycelium, altered the permeability of Monascus mycelium, enhanced secretion of monacolin K from the cell, and reduced the monacolin K content in Monascus mycelium, thereby enhancing monacolin K production.

  3. Diurnal Regulation of the Brassinosteroid-Biosynthetic CPD Gene in Arabidopsis1[W

    Science.gov (United States)

    Bancos, Simona; Szatmári, Anna-Mária; Castle, Julie; Kozma-Bognár, László; Shibata, Kyomi; Yokota, Takao; Bishop, Gerard J.; Nagy, Ferenc; Szekeres, Miklós

    2006-01-01

    Plant steroid hormones, brassinosteroids (BRs), are essential for normal photomorphogenesis. However, the mechanism by which light controls physiological functions via BRs is not well understood. Using transgenic plants carrying promoter-luciferase reporter gene fusions, we show that in Arabidopsis (Arabidopsis thaliana) the BR-biosynthetic CPD and CYP85A2 genes are under diurnal regulation. The complex diurnal expression profile of CPD is determined by dual, light-dependent, and circadian control. The severely decreased expression level of CPD in phytochrome-deficient background and the red light-specific induction in wild-type plants suggest that light regulation of CPD is primarily mediated by phytochrome signaling. The diurnal rhythmicity of CPD expression is maintained in brassinosteroid insensitive 1 transgenic seedlings, indicating that its transcriptional control is independent of hormonal feedback regulation. Diurnal changes in the expression of CPD and CYP85A2 are accompanied by changes of the endogenous BR content during the day, leading to brassinolide accumulation at the middle of the light phase. We also show that CPD expression is repressed in extended darkness in a BR feedback-dependent manner. In the dark the level of the bioactive hormone did not increase; therefore, our data strongly suggest that light also influences the sensitivity of plants to BRs. PMID:16531479

  4. Diurnal regulation of the brassinosteroid-biosynthetic CPD gene in Arabidopsis.

    Science.gov (United States)

    Bancos, Simona; Szatmári, Anna-Mária; Castle, Julie; Kozma-Bognár, László; Shibata, Kyomi; Yokota, Takao; Bishop, Gerard J; Nagy, Ferenc; Szekeres, Miklós

    2006-05-01

    Plant steroid hormones, brassinosteroids (BRs), are essential for normal photomorphogenesis. However, the mechanism by which light controls physiological functions via BRs is not well understood. Using transgenic plants carrying promoter-luciferase reporter gene fusions, we show that in Arabidopsis (Arabidopsis thaliana) the BR-biosynthetic CPD and CYP85A2 genes are under diurnal regulation. The complex diurnal expression profile of CPD is determined by dual, light-dependent, and circadian control. The severely decreased expression level of CPD in phytochrome-deficient background and the red light-specific induction in wild-type plants suggest that light regulation of CPD is primarily mediated by phytochrome signaling. The diurnal rhythmicity of CPD expression is maintained in brassinosteroid insensitive 1 transgenic seedlings, indicating that its transcriptional control is independent of hormonal feedback regulation. Diurnal changes in the expression of CPD and CYP85A2 are accompanied by changes of the endogenous BR content during the day, leading to brassinolide accumulation at the middle of the light phase. We also show that CPD expression is repressed in extended darkness in a BR feedback-dependent manner. In the dark the level of the bioactive hormone did not increase; therefore, our data strongly suggest that light also influences the sensitivity of plants to BRs.

  5. Accumulation of Kaempferitrin and Expression of Phenyl-Propanoid Biosynthetic Genes in Kenaf (Hibiscus cannabinus

    Directory of Open Access Journals (Sweden)

    Shicheng Zhao

    2014-10-01

    Full Text Available Kenaf (Hibiscus cannabinus is cultivated worldwide for its fiber; however, the medicinal properties of this plant are currently attracting increasing attention. In this study, we investigated the expression levels of genes involved in the biosynthesis of kaempferitrin, a compound with many biological functions, in different kenaf organs. We found that phenylalanine ammonia lyase (HcPAL was more highly expressed in stems than in other organs. Expression levels of cinnamate 4-hydroxylase (HcC4H and 4-coumarate-CoA ligase (Hc4CL were highest in mature leaves, followed by stems and young leaves, and lowest in roots and mature flowers. The expression of chalcone synthase (HcCHS, chalcone isomerase (HcCHI, and flavone 3-hydroxylase (HcF3H was highest in young flowers, whereas that of flavone synthase (HcFLS was highest in leaves. An analysis of kaempferitrin accumulation in the different organs of kenaf revealed that the accumulation of this compound was considerably higher (>10-fold in leaves than in other organs. On the basis of a comparison of kaempferitrin contents with the expression levels of different genes in different organs, we speculate that HcFLS plays an important regulatory role in the kaempferitrin biosynthetic pathway in kenaf.

  6. Multiple GCD genes required for repression of GCN4, a transcriptional activator of amino acid biosynthetic genes in Saccharomyces cerevisiae.

    Science.gov (United States)

    Harashima, S; Hinnebusch, A G

    1986-11-01

    GCN4 encodes a positive regulator of multiple unlinked genes encoding amino acid biosynthetic enzymes in Saccharomyces cerevisiae. Expression of GCN4 is coupled to amino acid availability by a control mechanism involving GCD1 as a negative effector and GCN1, GCN2, and GCN3 as positive effectors of GCN4 expression. We used reversion of a gcn2 gcn3 double mutation to isolate new alleles of GCD1 and mutations in four additional GCD genes which we designate GCD10, GCD11, GCD12, and GCD13. All of the mutations lead to constitutive derepression of HIS4 transcription in the absence of the GCN2+ and GCN3+ alleles. By contrast, the gcd mutations require the wild-type GCN4 allele for their derepressing effect, suggesting that each acts by influencing the level of GCN4 activity in the cell. Consistent with this interpretation, mutations in each GCD gene lead to constitutive derepression of a GCN4::lacZ gene fusion. Thus, at least five gene products are required to maintain the normal repressed level of GCN4 expression in nonstarvation conditions. Interestingly, the gcd mutations are pleiotropic and also affect growth rate in nonstarvation conditions. In addition, certain alleles lead to a loss of M double-stranded RNA required for the killer phenotype. This pleiotropy suggests that the GCD gene products contribute to an essential cellular function, in addition to, or in conjunction with, their role in GCN4 regulation.

  7. Differential expression of carotenoid biosynthetic pathway genes in two contrasting tomato genotypes for lycopene content

    Indian Academy of Sciences (India)

    Shilpa Pandurangaiah; Kundapura V Ravishankar; Kodthalu S Shivashankar; Avverahally T Sadashiva; Kavitha Pillakenchappa; Sunil Kumar Narayanan

    2016-06-01

    Tomato (Solanum lycopersicum L.) is one of the model plants to study the carotenoid biosynthesis. In the present study, the fruit carotenoid content were quantified at different developmental stages for two contrasting genotypes viz. IIHR-249-1and IIHR-2866 by UPLC. Lycopene content was high in IIHR-249-1(19.45 mg/100g fresh weight) compared to IIHR-2866 ((1.88 mg/100g fresh weight) at the ripe stage. qPCR was performed for genes that are involved in the carotenoid biosynthetic pathway to study the difference in lycopene content in fruits of both the genotypes. The expression of Phytoene Synthase (PSY) increased by 36 fold and Phytoene desaturase (PDS) increased by 14fold from immature green stage to ripe stage in IIHR-249-1. The expression of Chloroplast lycopene β cyclase (LCY-B) and Chromoplast lycopene β cyclase (CYC-B) decreased gradually from the initial stage to the ripe stage in IIHR-249-1. IIHR 249-1 showed 3 and 1.8 fold decrease in gene expression for Chloroplast lycopene β cyclase ((LCY-B) and Chromoplast lycopene β cyclase (CYC-B) .The F2 hybrids derived from IIHR-249-1 and IIHR-2866 were analyzed at the ripe stage for lycopene content. The gene expression of Chloroplast lycopene β cyclase (LCY-B) and Chromoplast lycopene β cyclase (CYC-B) in high and low lycopene lines from F2 progenies also showed the decrease in transcript levels of both the genes in high lycopene F2 lines. We wish to suggest that the differential expression of Lycopene β -cyclases can be used in marker assisted breeding.

  8. Genome mining of the hitachimycin biosynthetic gene cluster: involvement of a phenylalanine-2,3-aminomutase in biosynthesis.

    Science.gov (United States)

    Kudo, Fumitaka; Kawamura, Koichi; Uchino, Asuka; Miyanaga, Akimasa; Numakura, Mario; Takayanagi, Ryuichi; Eguchi, Tadashi

    2015-04-13

    Hitachimycin is a macrolactam antibiotic with (S)-β-phenylalanine (β-Phe) at the starter position of its polyketide skeleton. To understand the incorporation mechanism of β-Phe and the modification mechanism of the unique polyketide skeleton, the biosynthetic gene cluster for hitachimycin in Streptomyces scabrisporus was identified by genome mining. The identified gene cluster contains a putative phenylalanine-2,3-aminomutase (PAM), five polyketide synthases, four β-amino-acid-carrying enzymes, and a characteristic amidohydrolase. A hitA knockout mutant showed no hitachimycin production, but antibiotic production was restored by feeding with (S)-β-Phe. We also confirmed the enzymatic activity of the HitA PAM. The results suggest that the identified gene cluster is responsible for the biosynthesis of hitachimycin. A plausible biosynthetic pathway for hitachimycin, including a unique polyketide skeletal transformation mechanism, is proposed.

  9. Variation in Fumonisin and Ochratoxin Production Associated with Differences in Biosynthetic Gene Content in Aspergillus niger and A. welwitschiae Isolates from Multiple Crop and Geographic Origins

    Science.gov (United States)

    Susca, Antonia; Proctor, Robert H.; Morelli, Massimiliano; Haidukowski, Miriam; Gallo, Antonia; Logrieco, Antonio F.; Moretti, Antonio

    2016-01-01

    The fungi Aspergillus niger and A. welwitschiae are morphologically indistinguishable species used for industrial fermentation and for food and beverage production. The fungi also occur widely on food crops. Concerns about their safety have arisen with the discovery that some isolates of both species produce fumonisin (FB) and ochratoxin A (OTA) mycotoxins. Here, we examined FB and OTA production as well as the presence of genes responsible for synthesis of the mycotoxins in a collection of 92 A. niger/A. welwitschiae isolates from multiple crop and geographic origins. The results indicate that (i) isolates of both species differed in ability to produce the mycotoxins; (ii) FB-nonproducing isolates of A. niger had an intact fumonisin biosynthetic gene (fum) cluster; (iii) FB-nonproducing isolates of A. welwitschiae exhibited multiple patterns of fum gene deletion; and (iv) OTA-nonproducing isolates of both species lacked the ochratoxin A biosynthetic gene (ota) cluster. Analysis of genome sequence data revealed a single pattern of ota gene deletion in the two species. Phylogenetic analysis suggest that the simplest explanation for this is that ota cluster deletion occurred in a common ancestor of A. niger and A. welwitschiae, and subsequently both the intact and deleted cluster were retained as alternate alleles during divergence of the ancestor into descendent species. Finally, comparison of results from this and previous studies indicate that a majority of A. niger isolates and a minority of A. welwitschiae isolates can produce FBs, whereas, a minority of isolates of both species produce OTA. The comparison also suggested that the relative abundance of each species and frequency of FB/OTA-producing isolates can vary with crop and/or geographic origin. PMID:27667988

  10. Hydroxycinnamic acid functional ingredients and their biosynthetic genes in tubers of Solanum tuberosum Group Phureja

    Directory of Open Access Journals (Sweden)

    Liyao Ji

    2016-12-01

    Full Text Available Potato is an ideal candidate for the delivery of functional ingredients due to its high worldwide consumption. The metabolites in cooked tubers of eight diploid potato genotypes from Colombia were explored. Potato tubers were harvested, cooked,lyophilized, and then stored at −80°C. Metabolites were extracted from flesh samples and analyzed using liquid chromatography and high-resolution mass spectrometry. A total of 294 metabolites were putatively identified, of which 87 metabolites were associated with health-benefiting roles for humans, such as anticancer and anti-inflammatory properties. Two metabolites, chlorogenic acid and N-Feruloyltyramine were detected in high abundance and were mapped on to the potato metabolic pathways to predict the related biosynthetic enzymes: hydroxycinnamoyl-CoA quinate transferase (HQT and tyramine hydroxycinnamoyl transferase (THT, respectively. The coding genes of these enzymes identified nonsynonymous single-nucleotide polymorphisms (nsSNPs in AC09, AC64, and Russet Burbank, with the highest enzyme stability found in AC09. This is consistent with the highest presence of hydroxycinnamic acids in the AC09 genotype. The metabolites detected at high fold change, their functional ingredient properties, and their enhancement through breeding to improve health of the indigenous communities’ of Colombia are discussed.

  11. Purine biosynthetic genes are required for cadmium tolerance in Schizosaccharomyces pombe

    Energy Technology Data Exchange (ETDEWEB)

    Speiser, D.M.; Ortiz, D.F.; Kreppel, L.; Scheel, G.; McDonald, G.; Ow, D.W. (Dept. of Agriculture, Albany, CA (United States) Univ. of California, Berkeley (United States))

    1992-12-01

    Phytochelatins (PCs) are metal-chelating peptides produced in plants and some fungi in response to heavy metal exposure. A Cd-sensitive mutant of the fission yeast Schizosaccharomyces pombe, defective in production of a PC-Cd-sulfide complex essential for metal tolerance, was found to harbor mutations in specific genes of the purine biosynthetic pathway. Genetic analysis of the link between metal complex accumulation and purine biosynthesis enzymes revealed that genetic lesions blocking two segments of the pathway, before and after the IMP branchpoint, are required to produce the Cd-sensitive phenotype. The biochemical functions of these two segments of the pathway are similar, and a model based on the alternate use of a sulfur analog substrate is presented. The novel participation of purine biosynthesis enzymes in the conversion of the PC-Cd complex to the PC-Cd-sulfide complex in the fission yeast raises an intriguing possibility that these same enzymes might have a role in sulfur metabolism in the fission yeast S. pombe, and perhaps in other biological systems. 41 refs., 8 figs., 2 tabs.

  12. Generation of the natamycin analogs by gene engineering of natamycin biosynthetic genes in Streptomyces chattanoogensis L10.

    Science.gov (United States)

    Liu, Shui-Ping; Yuan, Peng-Hui; Wang, Yue-Yue; Liu, Xiao-Fang; Zhou, Zhen-Xing; Bu, Qing-ting; Yu, Pin; Jiang, Hui; Li, Yong-Quan

    2015-04-01

    The polyene antibiotic natamycin is widely used as an antifungal agent in both human therapy and the food industry. Here we obtained four natamycin analogs with high titers, including two new compounds, by engineering of six post-polyketide synthase (PKS) tailoring enzyme encoding genes in a natamycin industrial producing strain, Streptomyces chattanoogensis L10. Precise analysis of S. chattanoogensis L10 culture identified natamycin and two natamycin analogs, 4,5-deepoxy-natamycin and 4,5-deepoxy-natamycinolide. The scnD deletion mutant of S. chattanoogensis L10 did not produce natamycin but increased the titer of 4,5-deepoxy-natamycin. Inactivation of each of scnK, scnC, and scnJ in S. chattanoogensis L10 abolished natamycin production and accumulated 4,5-deepoxy-natamycinolide. Deletion of scnG in S. chattanoogensis L10 resulted in production of two new compounds, 4,5-deepoxy-12-decarboxyl-12-methyl-natamycin and its dehydration product without natamycin production. Inactivation of the ScnG-associated ferredoxin ScnF resulted in impaired production of natamycin. Bioassay of these natamycin analogs showed that three natamycin analogs remained antifungal activities. We found that homologous glycosyltransferases genes including amphDI and nysDI can partly complement the ΔscnK mutant. Our results here also support that ScnG, ScnK, and ScnD catalyze carboxylation, glycosylation, and epoxidation in turn in the natamycin biosynthetic pathway. Thus this paper provided a method to generate natamycin analogs and shed light on the natamycin biosynthetic pathway.

  13. Comparative SNP diversity among four Eucalyptus species for genes from secondary metabolite biosynthetic pathways

    Directory of Open Access Journals (Sweden)

    Foley William J

    2009-09-01

    Full Text Available Abstract Background There is little information about the DNA sequence variation within and between closely related plant species. The combination of re-sequencing technologies, large-scale DNA pools and availability of reference gene sequences allowed the extensive characterisation of single nucleotide polymorphisms (SNPs in genes of four biosynthetic pathways leading to the formation of ecologically relevant secondary metabolites in Eucalyptus. With this approach the occurrence and patterns of SNP variation for a set of genes can be compared across different species from the same genus. Results In a single GS-FLX run, we sequenced over 103 Mbp and assembled them to approximately 50 kbp of reference sequences. An average sequencing depth of 315 reads per nucleotide site was achieved for all four eucalypt species, Eucalyptus globulus, E. nitens, E. camaldulensis and E. loxophleba. We sequenced 23 genes from 1,764 individuals and discovered 8,631 SNPs across the species, with about 1.5 times as many SNPs per kbp in the introns compared to exons. The exons of the two closely related species (E. globulus and E. nitens had similar numbers of SNPs at synonymous and non-synonymous sites. These species also had similar levels of SNP diversity, whereas E. camaldulensis and E. loxophleba had much higher SNP diversity. Neither the pathway nor the position in the pathway influenced gene diversity. The four species share between 20 and 43% of the SNPs in these genes. Conclusion By using conservative statistical detection methods, we were confident about the validity of each SNP. With numerous individuals sampled over the geographical range of each species, we discovered one SNP in every 33 bp for E. nitens and one in every 31 bp in E. globulus. In contrast, the more distantly related species contained more SNPs: one in every 16 bp for E. camaldulensis and one in 17 bp for E. loxophleba, which is, to the best of our knowledge, the highest frequency of SNPs

  14. The Sound of Silence: Activating Silent Biosynthetic Gene Clusters in Marine Microorganisms

    Directory of Open Access Journals (Sweden)

    F. Jerry Reen

    2015-07-01

    Full Text Available Unlocking the rich harvest of marine microbial ecosystems has the potential to both safeguard the existence of our species for the future, while also presenting significant lifestyle benefits for commercial gain. However, while significant advances have been made in the field of marine biodiscovery, leading to the introduction of new classes of therapeutics for clinical medicine, cosmetics and industrial products, much of what this natural ecosystem has to offer is locked in, and essentially hidden from our screening methods. Releasing this silent potential represents a significant technological challenge, the key to which is a comprehensive understanding of what controls these systems. Heterologous expression systems have been successful in awakening a number of these cryptic marine biosynthetic gene clusters (BGCs. However, this approach is limited by the typically large size of the encoding sequences. More recently, focus has shifted to the regulatory proteins associated with each BGC, many of which are signal responsive raising the possibility of exogenous activation. Abundant among these are the LysR-type family of transcriptional regulators, which are known to control production of microbial aromatic systems. Although the environmental signals that activate these regulatory systems remain unknown, it offers the exciting possibility of evoking mimic molecules and synthetic expression systems to drive production of potentially novel natural products in microorganisms. Success in this field has the potential to provide a quantum leap forward in medical and industrial bio-product development. To achieve these new endpoints, it is clear that the integrated efforts of bioinformaticians and natural product chemists will be required as we strive to uncover new and potentially unique structures from silent or cryptic marine gene clusters.

  15. New Insight into the Ochratoxin A Biosynthetic Pathway through Deletion of a Nonribosomal Peptide Synthetase Gene in Aspergillus carbonarius

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, A.; Bruno, K. S.; Solfrizzo, M.; Perrone, G.; Mule, G.; Visconti, A.; Baker, S. E.

    2012-09-14

    Ochratoxin A (OTA), a mycotoxin produced by Aspergillus and Penicillium species, is composed of a dihydroisocoumarin ring linked to phenylalanine and its biosynthetic pathway has not yet been completely elucidated. Most of the knowledge regarding the genetic and enzymatic aspects of OTA biosynthesis has been obtained in Penicillium species. In Aspergillus species only pks genes involved in the initial steps of the pathway have been partially characterized. In our study, the inactivation of a gene encoding a nonribosomal peptide synthetase in OTA producing A. carbonarius ITEM 5010 has removed the ability of the fungus to produce OTA. This is the first report on the involvement of an nrps gene product in OTA biosynthetic pathway in Aspergillus species. The absence of OTA and ochratoxin α-the isocoumaric derivative of OTA, and the concomitant increase of ochratoxin β- the dechloro analog of ochratoxin α- were observed in the liquid culture of transformed strain. The data provide the first evidence that the enzymatic step adding phenylalanine to polyketide dihydroisocoumarin precedes the chlorination step to form OTA in A. carbonarius, and that ochratoxin α is a product of hydrolysis of OTA, giving an interesting new insight in the biosynthetic pathway of the toxin.

  16. SCS3 and YFT2 link transcription of phospholipid biosynthetic genes to ER stress and the UPR.

    Directory of Open Access Journals (Sweden)

    Robyn D Moir

    2012-08-01

    Full Text Available The ability to store nutrients in lipid droplets (LDs is an ancient function that provides the primary source of metabolic energy during periods of nutrient insufficiency and between meals. The Fat storage-Inducing Transmembrane (FIT proteins are conserved ER-resident proteins that facilitate fat storage by partitioning energy-rich triglycerides into LDs. FIT2, the ancient ortholog of the FIT gene family first identified in mammals has two homologs in Saccharomyces cerevisiae (SCS3 and YFT2 and other fungi of the Saccharomycotina lineage. Despite the coevolution of these genes for more than 170 million years and their divergence from higher eukaryotes, SCS3, YFT2, and the human FIT2 gene retain some common functions: expression of the yeast genes in a human embryonic kidney cell line promotes LD formation, and expression of human FIT2 in yeast rescues the inositol auxotrophy and chemical and genetic phenotypes of strains lacking SCS3. To better understand the function of SCS3 and YFT2, we investigated the chemical sensitivities of strains deleted for either or both genes and identified synthetic genetic interactions against the viable yeast gene-deletion collection. We show that SCS3 and YFT2 have shared and unique functions that connect major biosynthetic processes critical for cell growth. These include lipid metabolism, vesicular trafficking, transcription of phospholipid biosynthetic genes, and protein synthesis. The genetic data indicate that optimal strain fitness requires a balance between phospholipid synthesis and protein synthesis and that deletion of SCS3 and YFT2 impacts a regulatory mechanism that coordinates these processes. Part of this mechanism involves a role for SCS3 in communicating changes in the ER (e.g. due to low inositol to Opi1-regulated transcription of phospholipid biosynthetic genes. We conclude that SCS3 and YFT2 are required for normal ER membrane biosynthesis in response to perturbations in lipid metabolism and ER

  17. Living with high putrescine: expression of ornithine and arginine biosynthetic pathway genes in high and low putrescine producing poplar cells.

    Science.gov (United States)

    Page, Andrew F; Minocha, Rakesh; Minocha, Subhash C

    2012-01-01

    Arginine (Arg) and ornithine (Orn), both derived from glutamate (Glu), are the primary substrates for polyamine (PA) biosynthesis, and also play important roles as substrates and intermediates of overall N metabolism in plants. Their cellular homeostasis is subject to multiple levels of regulation. Using reverse transcription quantitative PCR (RT-qPCR), we studied changes in the expression of all genes of the Orn/Arg biosynthetic pathway in response to up-regulation [via transgenic expression of mouse Orn decarboxylase (mODC)] of PA biosynthesis in poplar (Populus nigra × maximowiczii) cells grown in culture. Cloning and sequencing of poplar genes involved in the Orn/Arg biosynthetic pathway showed that they have high homology with similar genes in other plants. The expression of the genes of Orn, Arg and PA biosynthetic pathway fell into two hierarchical clusters; expression of one did not change in response to high putrescine, while members of the other cluster showed a shift in expression pattern during the 7-day culture cycle. Gene expression of branch point enzymes (N-acetyl-Glu synthase, Orn aminotransferase, Arg decarboxylase, and spermidine synthase) in the sub-pathways, constituted a separate cluster from those involved in intermediary reactions of the pathway (N-acetyl-Glu kinase, N-acetyl-Glu-5-P reductase, N-acetyl-Orn aminotransferase, N (2)-acetylOrn:N-acetyl-Glu acetyltransferase, N (2)-acetyl-Orn deacetylase, Orn transcarbamylase, argininosuccinate synthase, carbamoylphosphate synthetase, argininosuccinate lyase, S-adenosylmethionine decarboxylase, spermine synthase). We postulate that expression of all genes of the Glu-Orn-Arg pathway is constitutively coordinated and is not influenced by the increase in flux rate through this pathway in response to increased utilization of Orn by mODC; thus the pathway involves mostly biochemical regulation rather than changes in gene expression. We further suggest that Orn itself plays a major role in the

  18. Genome mining of astaxanthin biosynthetic genes from Sphingomonas sp. ATCC 55669 for heterologous overproduction in Escherichia coli.

    Science.gov (United States)

    Ma, Tian; Zhou, Yuanjie; Li, Xiaowei; Zhu, Fayin; Cheng, Yongbo; Liu, Yi; Deng, Zixin; Liu, Tiangang

    2016-02-01

    As a highly valued keto-carotenoid, astaxanthin is widely used in nutritional supplements and pharmaceuticals. Therefore, the demand for biosynthetic astaxanthin and improved efficiency of astaxanthin biosynthesis has driven the investigation of metabolic engineering of native astaxanthin producers and heterologous hosts. However, microbial resources for astaxanthin are limited. In this study, we found that the α-Proteobacterium Sphingomonas sp. ATCC 55669 could produce astaxanthin naturally. We used whole-genome sequencing to identify the astaxanthin biosynthetic pathway using a combined PacBio-Illumina approach. The putative astaxanthin biosynthetic pathway in Sphingomonas sp. ATCC 55669 was predicted. For further confirmation, a high-efficiency targeted engineering carotenoid synthesis platform was constructed in E. coli for identifying the functional roles of candidate genes. All genes involved in astaxanthin biosynthesis showed discrete distributions on the chromosome. Moreover, the overexpression of exogenous E. coli idi in Sphingomonas sp. ATCC 55669 increased astaxanthin production by 5.4-fold. This study described a new astaxanthin producer and provided more biosynthesis components for bioengineering of astaxanthin in the future.

  19. Clustered array of ochratoxin A biosynthetic genes in Aspergillus steynii and their expression patterns in permissive conditions.

    Science.gov (United States)

    Gil-Serna, Jessica; Vázquez, Covadonga; González-Jaén, María Teresa; Patiño, Belén

    2015-12-01

    Aspergillus steynii is probably the most relevant species of section Circumdati producing ochratoxin A (OTA). This mycotoxin contaminates a wide number of commodities and it is highly toxic for humans and animals. Little is known on the biosynthetic genes and their regulation in Aspergillus species. In this work, we identified and analysed three contiguous genes in A. steynii using 5'-RACE and genome walking approaches which predicted a cytochrome P450 monooxygenase (p450ste), a non-ribosomal peptide synthetase (nrpsste) and a polyketide synthase (pksste). These three genes were contiguous within a 20742 bp long genomic DNA fragment. Their corresponding cDNA were sequenced and their expression was analysed in three A. steynii strains using real time RT-PCR specific assays in permissive conditions in in vitro cultures. OTA was also analysed in these cultures. Comparative analyses of predicted genomic, cDNA and amino acid sequences were performed with sequences of similar gene functions. All the results obtained in these analyses were consistent and point out the involvement of these three genes in OTA biosynthesis by A. steynii and showed a co-ordinated expression pattern. This is the first time that a clustered organization OTA biosynthetic genes has been reported in Aspergillus genus. The results also suggested that this situation might be common in Aspergillus OTA-producing species and distinct to the one described for Penicillium species.

  20. Antibiotic resistance gene discovery in food-producing animals.

    Science.gov (United States)

    Allen, Heather K

    2014-06-01

    Numerous environmental reservoirs contribute to the widespread antibiotic resistance problem in human pathogens. One environmental reservoir of particular importance is the intestinal bacteria of food-producing animals. In this review I examine recent discoveries of antibiotic resistance genes in agricultural animals. Two types of antibiotic resistance gene discoveries will be discussed: the use of classic microbiological and molecular techniques, such as culturing and PCR, to identify known genes not previously reported in animals; and the application of high-throughput technologies, such as metagenomics, to identify novel genes and gene transfer mechanisms. These discoveries confirm that antibiotics should be limited to prudent uses.

  1. Identification and characterization of genes involved in the jasmonate biosynthetic and signaling pathways in mulberry (Morus notabilis)

    Institute of Scientific and Technical Information of China (English)

    Qing Wang; Bi Ma; Xiwu Qi; Qing Guo; Xuwei Wang; Qiwei Zeng; Ningjia He

    2014-01-01

    Jasmonate (JA) is an important phytohormone regulating growth, development, and environmental response in plants, particularly defense response against herbivorous insects. Recently, completion of the draft genome of the mulberry (Morus notabilis) in conjunction with genome sequencing of silkworm (Bombyx mori) provides an opportuni-ty to study this unique plant-herbivore interaction. Here, we identified genes involved in JA biosynthetic and signaling pathways in the genome of mulberry for the first time, with the majority of samples showing a tissue-biased expression pattern. The analysis of the representative genes 12-oxophy-todienoic acid reductase (OPRs) and jasmonate ZIM-domain (JAZs) was performed and the results indicated that the mulberry genome contains a relatively smal number of JA biosynthetic and signaling pathway genes. A gene encoding an important repressor, MnNINJA, was identified as an alternative splicing variant lacking an ethylene-responsive element binding factor-associated amphiphilic repression motif. Having this fundamental information wil facilitate future functional study of JA-related genes pertaining to mulberry-silkworm interactions.

  2. Cloning, reassembling and integration of the entire nikkomycin biosynthetic gene cluster into Streptomyces ansochromogenes lead to an improved nikkomycin production

    Directory of Open Access Journals (Sweden)

    Yang Haihua

    2010-01-01

    Full Text Available Abstract Background Nikkomycins are a group of peptidyl nucleoside antibiotics produced by Streptomyces ansochromogenes. They are competitive inhibitors of chitin synthase and show potent fungicidal, insecticidal, and acaricidal activities. Nikkomycin X and Z are the main components produced by S. ansochromogenes. Generation of a high-producing strain is crucial to scale up nikkomycins production for further clinical trials. Results To increase the yields of nikkomycins, an additional copy of nikkomycin biosynthetic gene cluster (35 kb was introduced into nikkomycin producing strain, S. ansochromogenes 7100. The gene cluster was first reassembled into an integrative plasmid by Red/ET technology combining with classic cloning methods and then the resulting plasmid(pNIKwas introduced into S. ansochromogenes by conjugal transfer. Introduction of pNIK led to enhanced production of nikkomycins (880 mg L-1, 4 -fold nikkomycin X and 210 mg L-1, 1.8-fold nikkomycin Z in the resulting exconjugants comparing with the parent strain (220 mg L-1 nikkomycin X and 120 mg L-1 nikkomycin Z. The exconjugants are genetically stable in the absence of antibiotic resistance selection pressure. Conclusion A high nikkomycins producing strain (1100 mg L-1 nikkomycins was obtained by introduction of an extra nikkomycin biosynthetic gene cluster into the genome of S. ansochromogenes. The strategies presented here could be applicable to other bacteria to improve the yields of secondary metabolites.

  3. Novel polyoxins generated by heterologously expressing polyoxin biosynthetic gene cluster in the sanN inactivated mutant of Streptomyces ansochromogenes

    Directory of Open Access Journals (Sweden)

    Li Jine

    2012-10-01

    Full Text Available Abstract Background Polyoxins are potent inhibitors of chitin synthetases in fungi and insects. The gene cluster responsible for biosynthesis of polyoxins has been cloned and sequenced from Streptomyces cacaoi and tens of polyoxin analogs have been identified already. Results The polyoxin biosynthetic gene cluster from Streptomyces cacaoi was heterologously expressed in the sanN inactivated mutant of Streptomyces ansochromogenes as a nikkomycin producer. Besides hybrid antibiotics (polynik A and polyoxin N and some known polyoxins, two novel polyoxin analogs were accumulated. One of them is polyoxin P that has 5-aminohexuronic acid with N-glycosidically bound thymine as the nucleoside moiety and dehydroxyl-carbamoylpolyoxic acid as the peptidyl moiety. The other analog is polyoxin O that contains 5-aminohexuronic acid bound thymine as the nucleoside moiety, but recruits polyoximic acid as the sole peptidyl moiety. Bioassay against phytopathogenic fungi showed that polyoxin P displayed comparatively strong inhibitory activity, whereas the inhibitory activity of polyoxin O was weak under the same testing conditions. Conclusion Two novel polyoxin analogs (polyoxin P and O were generated by the heterologous expression of polyoxin biosynthetic gene cluster in the sanN inactivated mutant of Streptomyces ansochromogenes. Polyoxin P showed potent antifungal activity,while the activity of polyoxin O was weak. The strategy presented here may be available for other antibiotics producers.

  4. Lovastatin biosynthetic genes of Aspergillus terreus are expressed differentially in solid-state and in liquid submerged fermentation.

    Science.gov (United States)

    Barrios-González, J; Baños, J G; Covarrubias, A A; Garay-Arroyo, A

    2008-05-01

    Molecular studies were performed to establish the causes of the superior lovastatin productivity of a novel solid-state fermentation (SSF) process, in relation with liquid submerged fermentation (SmF; 20 mg/g vs. 0.65 mg/ml). In SSF, biosynthetic genes lovE and lovF transcripts accumulated to high levels from day 1 to day 7. In this period, lovE transcript showed 4.6-fold higher accumulation levels (transcription) than the highest level detected in SmF (day 5). lovF transcript showed two-fold higher expression than the highest point in SmF. In SmF, the expression was only detected clearly on day 5 and, showing a 50% decrease, on day 7. These results show that the higher lovastatin production in SSF is related to a more intense transcription of these biosynthetic genes. A strong expression of gldB gene in lovastatin SSF indicated that Aspergillus terreus senses osmotic stress during the course of SSF, but not in SmF. However, when a liquid medium of identical concentration was used in SmF, lovastatin production decreased in SSF.

  5. Chronic physical stress changes gene expression of catecholamine biosynthetic enzymes in the adrenal medulla of adult rats

    Directory of Open Access Journals (Sweden)

    Gavrilović Ljubica

    2012-01-01

    Full Text Available In this study we examined how chronic forced running (CFR affects the expression of catecholamine biosynthetic enzymes and cAMP response element-binding (CREB in the adrenal medulla and the weight of adrenal glands of rats. Also, we examined how CFR and additional acute immobilization stress affect the expression of catecholamine biosynthetic enzymes in the adrenal medulla and the concentration of catecholamines and corticosterone (CORT in the blood plasma. In this experiment we used as a model forced exercise in rats (treadmill running. We used the most advanced method for determining the level of gene expression, Real-time PCR with TaqMan probes, as well as Western blot analysis (ECL. We found that CFR decreases tyrosine hydroxylase (TH, and dopamine-β-hydroxylase (DBH mRNA and protein levels in the adrenal medulla. The decreased TH and DBH mRNA levels coincide with the reduced expression of CREB in the adrenal medulla and with the reduced plasma CORT level. Additionally, CFR reduces the level of phenylethanolamine N-methyltransferase (PNMT mRNA, but elevates its protein level in the adrenal medulla and increases the concentration of adrenaline (A in the plasma. Reduced level of PNMT mRNA in the adrenal medulla coincides with reduced plasma CORT level. The additional acute immobilization stress increases gene expression of catecholamine biosynthetic enzymes in the adrenal medulla, as well as catecholamines and CORT levels in the plasma. The increased synthesis of PNMT enzyme in the adrenal medulla may result in an increased biosynthesis of A under chronic stress conditions. Additionally, increased level of catecholamines in the plasma after chronic physical stress is the allostatic load that may induce numerous diseases and pathological conditions.

  6. Identification and activation of novel biosynthetic gene clusters by genome mining in the kirromycin producer Streptomyces collinus Tü 365

    DEFF Research Database (Denmark)

    Iftime, Dumitrita; Kulik, Andreas; Härtner, Thomas;

    2016-01-01

    Streptomycetes are prolific sources of novel biologically active secondary metabolites with pharmaceutical potential. S. collinus Tü 365 is a Streptomyces strain, isolated 1972 from Kouroussa (Guinea). It is best known as producer of the antibiotic kirromycin, an inhibitor of the protein...... metabolisms predicted for S. collinus Tü 365 includes PKS, NRPS, PKS-NRPS hybrids, a lanthipeptide, terpenes and siderophores. While some of these gene clusters were found to contain genes related to known secondary metabolites, which also could be detected in HPLC–MS analyses, most of the uncharacterized...... biosynthesis interacting with elongation factor EF-Tu. Genome Mining revealed 32 gene clusters encoding the biosynthesis of diverse secondary metabolites in the genome of Streptomyces collinus Tü 365, indicating an enormous biosynthetic potential of this strain. The structural diversity of secondary...

  7. Natural Product Biosynthetic Diversity and Comparative Genomics of the Cyanobacteria.

    Science.gov (United States)

    Dittmann, Elke; Gugger, Muriel; Sivonen, Kaarina; Fewer, David P

    2015-10-01

    Cyanobacteria are an ancient lineage of slow-growing photosynthetic bacteria and a prolific source of natural products with intricate chemical structures and potent biological activities. The bulk of these natural products are known from just a handful of genera. Recent efforts have elucidated the mechanisms underpinning the biosynthesis of a diverse array of natural products from cyanobacteria. Many of the biosynthetic mechanisms are unique to cyanobacteria or rarely described from other organisms. Advances in genome sequence technology have precipitated a deluge of genome sequences for cyanobacteria. This makes it possible to link known natural products to biosynthetic gene clusters but also accelerates the discovery of new natural products through genome mining. These studies demonstrate that cyanobacteria encode a huge variety of cryptic gene clusters for the production of natural products, and the known chemical diversity is likely to be just a fraction of the true biosynthetic capabilities of this fascinating and ancient group of organisms.

  8. Fructan Biosynthetic and Breakdown Enzymes in Dicots Evolved From Different Invertases. Expression of Fructan Genes Throughout Chicory Development

    Directory of Open Access Journals (Sweden)

    Wim Van den Ende

    2002-01-01

    Full Text Available Fructans are fructose-based oligo- and polymers that serve as reserve carbohydrates in many plant species. The biochemistry of fructan biosynthesis in dicots has been resolved, and the respective cDNAs have been cloned. Recent progress has now succeeded in elucidating the biochemistry and molecular biology of fructan biodegradation in chicory, an economically important species used for commercial inulin extraction. Unlike fructan biosynthetic genes that originated from vacuolar-type invertase, fructan exohydrolases (FEHs seem to have evolved from a cell-wall invertase ancestor gene that later obtained a low iso-electric point and a vacuolar targeting signal. Expression analysis reveals that fructan enzymes are controlled mainly at the transcriptional level. Using chicory as a model system, northern analysis was consistent with enzymatic activity measurements and observed carbohydrate changes throughout its development.

  9. Identification and activation of novel biosynthetic gene clusters by genome mining in the kirromycin producer Streptomyces collinus Tü 365.

    Science.gov (United States)

    Iftime, Dumitrita; Kulik, Andreas; Härtner, Thomas; Rohrer, Sabrina; Niedermeyer, Timo Horst Johannes; Stegmann, Evi; Weber, Tilmann; Wohlleben, Wolfgang

    2016-03-01

    Streptomycetes are prolific sources of novel biologically active secondary metabolites with pharmaceutical potential. S. collinus Tü 365 is a Streptomyces strain, isolated 1972 from Kouroussa (Guinea). It is best known as producer of the antibiotic kirromycin, an inhibitor of the protein biosynthesis interacting with elongation factor EF-Tu. Genome Mining revealed 32 gene clusters encoding the biosynthesis of diverse secondary metabolites in the genome of Streptomyces collinus Tü 365, indicating an enormous biosynthetic potential of this strain. The structural diversity of secondary metabolisms predicted for S. collinus Tü 365 includes PKS, NRPS, PKS-NRPS hybrids, a lanthipeptide, terpenes and siderophores. While some of these gene clusters were found to contain genes related to known secondary metabolites, which also could be detected in HPLC-MS analyses, most of the uncharacterized gene clusters are not expressed under standard laboratory conditions. With this study we aimed to characterize the genome information of S. collinus Tü 365 to make use of gene clusters, which previously have not been described for this strain. We were able to connect the gene clusters of a lanthipeptide, a carotenoid, five terpenoid compounds, an ectoine, a siderophore and a spore pigment-associated gene cluster to their respective biosynthesis products.

  10. Effect of phenolic compounds and osmotic stress on the expression of penicillin biosynthetic genes from Penicillium chrysogenum var. halophenolicum strain

    Directory of Open Access Journals (Sweden)

    Sumaya Ferreira Guedes

    2012-01-01

    Full Text Available Phenol and phenolic compounds are aromatic pollutants that inhibit biological treatment of wastewaters. Penicillium chrysogenum var. halophenolicum is a halotolerant fungus that previously showed the ability to degrade phenol and resorcinol in high salinity conditions. The presence of the penicillin biosynthetic cluster in P. chrysogenum var. halophenolicum was recently described. In this article, we examined the expression of pcbAB, pcbC and penDE, genes responsible for δ-(L-α-aminoadipyl-L-cysteinyl-D-valine synthetase, isopenicillin N synthase and isopenicillin N acyltransferase activities, respectively, in P. chrysogenum var. halophenolicum. A quantitative PCR (qPCR approach was used to determine how these genes were expressed in media with 2% and 5.9% NaCl supplemented with phenol, catechol, hydroquinone and resorcinol as the sole carbon source. The effect of salt on the capability of P. chrysogenum var. halophenolicum to degrade aromatic compounds was measured using HPLC. qPCR analysis of RNA extracted from P. chrysogenum var. halophenolicum indicated that the expression levels of pcbAB, pcbC and penDE decreased in high saline concentrations compared to the levels expressed in media with glucose. High concentrations of salt significantly repress the expression of pcbAB and penDE. The pcbC gene was expressed differentially in catechol containing medium. There was no evident relationship between the expression levels of penicillin biosynthetic genes and yields of penicillin. Meanwhile, the presence of phenol and phenolic compounds seems to positively influence the antibiotic production; high concentrations of salt stimulated penicillin production. These results support the hypothesis that phenol, phenolic compounds and high concentrations of salt could act like a stress factor for P. chrysogenum var. halophenolicum resulting in higher yields of β-lactam antibiotic production.

  11. Gene discovery in the Acanthamoeba castellanii genome

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain J.; Watkins, Russell F.; Samuelson, John; Spencer,David F.; Majoros, William H.; Gray, Michael W.; Loftus, Brendan J.

    2005-08-01

    Acanthamoeba castellanii is a free-living amoeba found in soil, freshwater, and marine environments and an important predator of bacteria. Acanthamoeba castellanii is also an opportunistic pathogen of clinical interest, responsible for several distinct diseases in humans. In order to provide a genomic platform for the study of this ubiquitous and important protist, we generated a sequence survey of approximately 0.5 x coverage of the genome. The data predict that A. castellanii exhibits a greater biosynthetic capacity than the free-living Dictyostelium discoideum and the parasite Entamoeba histolytica, providing an explanation for the ability of A. castellanii to inhabit adversity of environments. Alginate lyase may provide access to bacteria within biofilms by breaking down the biofilm matrix, and polyhydroxybutyrate depolymerase may facilitate utilization of the bacterial storage compound polyhydroxybutyrate as a food source. Enzymes for the synthesis and breakdown of cellulose were identified, and they likely participate in encystation and excystation as in D. discoideum. Trehalose-6-phosphate synthase is present, suggesting that trehalose plays a role in stress adaptation. Detection and response to a number of stress conditions is likely accomplished with a large set of signal transduction histidine kinases and a set of putative receptorserine/threonine kinases similar to those found in E. histolytica. Serine, cysteine and metalloproteases were identified, some of which are likely involved in pathogenicity.

  12. VIGS approach reveals the modulation of anthocyanin biosynthetic genes by CaMYB in Chili pepper leaves

    Directory of Open Access Journals (Sweden)

    zhen ezhang

    2015-07-01

    Full Text Available The purple coloration of pepper leaves arises from the accumulation of anthocyanin. Three regulatory and 12 structural genes have been characterized for their involvement in the anthocyanin biosynthesis. Examination of the abundance of these genes in leaves showed that the majority of them differed between anthocyanin pigmented line Z1 and non-pigmented line A3. Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation. Moreover, the expression of multiple genes was altered in the silenced leaves. The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern. Most structural genes including CHS, CHI, F3H, F3’5’H, DFR, ANS, UFGT, ANP and GST were repressed in CaMYB-silenced foliage with the exception of PAL, C4H and 4CL. These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes. Besides CaMYB silenced leaves rendered more sporulation of Phytophthora capsici Leonian indicating that CaMYB might be involved in the defense response to pathogens.

  13. Bioinformatics Assisted Gene Discovery and Annotation of Human Genome

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    As the sequencing stage of human genome project is near the end, the work has begun for discovering novel genes from genome sequences and annotating their biological functions. Here are reviewed current major bioinformatics tools and technologies available for large scale gene discovery and annotation from human genome sequences. Some ideas about possible future development are also provided.

  14. Cloning of artemisinin biosynthetic cDNAs and novel ESTs and quantification of low temperature-induced gene overexpression

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To isolate and verify novel genes from qinghao (Artemisia annua) based on the development-specific and environment-induced transcriptomics, leaves have been harvested from the flowering A. annua plants and exposed to low temperature for isolation of total RNAs and cloning of full-length cDNAs and cDNA fragments, or expressed sequence tags (ESTs). After being sequenced and browsed for homol- ogy, these sequences have been submitted to GenBank. Among the accessed 75 sequences, 4 full-length cDNAs are highly homologous to the known A. annua genes, but 71 ESTs are absent in the sequence records of A. annua genes, in which 34 sequences are homologous to other plant genes, including 24 identified protein-coding sequences and 10 unidentified protein-coding sequences, while other 37 sequences are not present in the sequence records of any plant genes, representing the first cloned plant genes. In order to investigate the responsive patterns of A. annua genes to extreme envi- ronmental stresses, especially low temperature, the expression levels of 3 critical qinhaosu (artemisi- nin) biosynthetic genes, ADS, CYP71AV1 and CPR, have been measured in pre- and post-chilling A. annua seedlings cultured in vitro by semi-quantitative PCR (SQ-PCR). Consequently, ADS and CYP71AV1 genes are strongly induced by chilling, but CPR gene is not significantly affected by such treatment. Furthermore, induction of these genes by chilling can be potently suppressed by Ca2+ channel inhibitor LaCl3 or Ca2+ chelator EGTA, suggesting a putative involvement of Ca2+-CaM signal transduction pathway in chilling-induced overexpression of ADS and CYP71AV1 genes. The real-time fluorescent quantitative PCR (RFQ-PCR) assay of A. annua seedlings exposed to chilling has shown that the expression level of CaM gene is up-regulated for more than 2.5 folds, thereby confirming our above inference on the relevance of Ca2+-CaM-mediated signal transduction to chilling-induced gene overexpression. Finally, 7 newly

  15. Cloning of artemisinin biosynthetic cDNAs and novel ESTs and quantification of low temperature-induced gene overexpression

    Institute of Scientific and Technical Information of China (English)

    ZENG QingPing; ZHAO Chang; YIN LuLu; YANG RuiYi; ZENG XiaoMei; HUANG Ying; FENG LiLing; YANG XueQin

    2008-01-01

    To isolate and verify novel genes from qinghao (Artemisia annua) based on the development-specific and environment-induced transcriptomics, leaves have been harvested from the flowering A. annua plants and exposed to low temperature for isolation of total RNAs and cloning of full-length cDNAs and cDNA fragments, or expressed sequence tags (ESTs). After being sequenced and browsed for homology, these sequences have been submitted to GenBank. Among the accessed 75 sequences, 4 full-length cDNAs are highly homologous to the known A. annua genes, but 71 ESTs are absent in the sequence records of A. annua genes, in which 34 sequences are homologous to other plant genes,including 24 identified protein-coding sequences and 10 unidentified protein-coding sequences, while other 37 sequences are not present in the sequence records of any plant genes, representing the first cloned plant genes. In order to investigate the responsive patterns of A. annua genes to extreme environmental stresses, especially low temperature, the expression levels of 3 critical qinhaosu (artemisinin) biosynthetic genes, ADS, CYP71AV1 and CPR, have been measured in pre- and post-chilling A.annua seedlings cultured in vitro by semi-quantitative PCR (SQ-PCR). Consequently, ADS and CYP71AV1 genes are strongly induced by chilling, but CPR gene is not significantly affected by such treatment. Furthermore, induction of these genes by chilling can be potently suppressed by Ca2+channel inhibitor LaCl3 or Ca2+ chelator EGTA, suggesting a putative involvement of Ca2+-CaM signal transduction pathway in chilling-induced overexpression of ADS and CYP71AV1 genes. The real-time fluorescent quantitative PCR (RFQ-PCR) assay of A. annua seedlings exposed to chilling has shown that the expression level of CaM gene is up-regulated for more than 2.5 folds, thereby confirming our above inference on the relevance of Ca2+-CaM-mediated signal transduction to chilling-induced gene overexpression. Finally, 7 newly isolated A

  16. Gene Discovery of Modular Diterpene Metabolism in Nonmodel Systems1[W][OA

    Science.gov (United States)

    Zerbe, Philipp; Hamberger, Björn; Yuen, Macaire M.S.; Chiang, Angela; Sandhu, Harpreet K.; Madilao, Lina L.; Nguyen, Anh; Hamberger, Britta; Bach, Søren Spanner; Bohlmann, Jörg

    2013-01-01

    Plants produce over 10,000 different diterpenes of specialized (secondary) metabolism, and fewer diterpenes of general (primary) metabolism. Specialized diterpenes may have functions in ecological interactions of plants with other organisms and also benefit humanity as pharmaceuticals, fragrances, resins, and other industrial bioproducts. Examples of high-value diterpenes are taxol and forskolin pharmaceuticals or ambroxide fragrances. Yields and purity of diterpenes obtained from natural sources or by chemical synthesis are often insufficient for large-volume or high-end applications. Improvement of agricultural or biotechnological diterpene production requires knowledge of biosynthetic genes and enzymes. However, specialized diterpene pathways are extremely diverse across the plant kingdom, and most specialized diterpenes are taxonomically restricted to a few plant species, genera, or families. Consequently, there is no single reference system to guide gene discovery and rapid annotation of specialized diterpene pathways. Functional diversification of genes and plasticity of enzyme functions of these pathways further complicate correct annotation. To address this challenge, we used a set of 10 different plant species to develop a general strategy for diterpene gene discovery in nonmodel systems. The approach combines metabolite-guided transcriptome resources, custom diterpene synthase (diTPS) and cytochrome P450 reference gene databases, phylogenies, and, as shown for select diTPSs, single and coupled enzyme assays using microbial and plant expression systems. In the 10 species, we identified 46 new diTPS candidates and over 400 putatively terpenoid-related P450s in a resource of nearly 1 million predicted transcripts of diterpene-accumulating tissues. Phylogenetic patterns of lineage-specific blooms of genes guided functional characterization. PMID:23613273

  17. Targeted Gene Disruption of the Cyclo (L-Phe, L-Pro Biosynthetic Pathway in Streptomyces sp. US24 Strain

    Directory of Open Access Journals (Sweden)

    Samiha Sioud

    2007-01-01

    Full Text Available We have previously isolated a new actinomycete strain from Tunisian soil called Streptomyces sp. US24, and have shown that it produces two bioactive molecules including a Cyclo (L-Phe, L-Pro diketopiperazine (DKP. To identify the structural genes responsible for the synthesis of this DKP derivative, a PCR amplification (696 bp was carried out using the Streptomyces sp. US24 genomic DNA as template and two degenerate oligonucleotides designed by analogy with genes encoding peptide synthetases (NRPS. The detection of DKP derivative biosynthetic pathway of the Streptomyces sp. US24 strain was then achieved by gene disruption via homologous recombination using a suicide vector derived from the conjugative plasmid pSET152 and containing the PCR product. Chromatography analysis, biological tests and spectroscopic studies of supernatant cultures of the wild-type Streptomyces sp. US24 strain and three mutants obtained by this gene targeting disruption approach showed that the amplified DNA fragment is required for Cyclo (L-Phe, L-Pro biosynthesis in Streptomyces sp. US24 strain. This DKP derivative seems to be produced either directly via a nonribosomal pathway or as a side product in the course of nonribosomal synthesis of a longer peptide.

  18. Expression of genes associated with the biosynthetic pathways of abscisic acid, gibberellin, and ethylene during the germination of lettuce seeds.

    Science.gov (United States)

    Clemente, A C S; Guimarães, R M; Martins, D C; Gomes, L A A; Caixeta, F; Reis, R G E; Rosa, S D V F

    2015-01-01

    Seed germination and dormancy are complex phenomena that are controlled by many genes and environmental factors. Such genes are indicated by phytohormones that interact with each other, and may cause dormancy or promote seed germination. The objective of this study was to investigate gene expression associated with the biosynthetic pathways of abscisic acid (ABA), gibberellic acid (GA), and ethylene (ET) in dormant and germinated lettuce seeds. The expressions of LsNCED, LsGA3ox1, and ACO-B were evaluated in germinating and dormant seeds from the cultivars Everglades, Babá de Verão, Verônica, Salinas, Colorado, and Regina 71. The expressions of LsNCED, LsGA3ox1, and ACO-B were related to the biosynthesis of ABA, GA, and ET, respectively; therefore, the presence of these substances depends on genotype. LsNCED expression only occurred in dormant seeds, and was connected to dormancy. LsGA3ox1expression only occurred in germinated seeds, and was connected to germination. The ACO-B gene was involved in ET biosynthesis, and was expressed differently in germinated and dormant seeds, depending on the genotype, indicating different functions for different characteristics. Furthermore, sensitivity to phytohormones appeared to be more important than the expression levels of LsNCED, LsGA3ox1, or ACO-B.

  19. Maximizing biomarker discovery by minimizing gene signatures

    Directory of Open Access Journals (Sweden)

    Chang Chang

    2011-12-01

    Full Text Available Abstract Background The use of gene signatures can potentially be of considerable value in the field of clinical diagnosis. However, gene signatures defined with different methods can be quite various even when applied the same disease and the same endpoint. Previous studies have shown that the correct selection of subsets of genes from microarray data is key for the accurate classification of disease phenotypes, and a number of methods have been proposed for the purpose. However, these methods refine the subsets by only considering each single feature, and they do not confirm the association between the genes identified in each gene signature and the phenotype of the disease. We proposed an innovative new method termed Minimize Feature's Size (MFS based on multiple level similarity analyses and association between the genes and disease for breast cancer endpoints by comparing classifier models generated from the second phase of MicroArray Quality Control (MAQC-II, trying to develop effective meta-analysis strategies to transform the MAQC-II signatures into a robust and reliable set of biomarker for clinical applications. Results We analyzed the similarity of the multiple gene signatures in an endpoint and between the two endpoints of breast cancer at probe and gene levels, the results indicate that disease-related genes can be preferably selected as the components of gene signature, and that the gene signatures for the two endpoints could be interchangeable. The minimized signatures were built at probe level by using MFS for each endpoint. By applying the approach, we generated a much smaller set of gene signature with the similar predictive power compared with those gene signatures from MAQC-II. Conclusions Our results indicate that gene signatures of both large and small sizes could perform equally well in clinical applications. Besides, consistency and biological significances can be detected among different gene signatures, reflecting the

  20. Cloning and characterization of the gene encoding β-amyrin synthase in the glycyrrhizic acid biosynthetic pathway in Glycyrrhiza uralensis

    Directory of Open Access Journals (Sweden)

    Honghao Chen

    2013-12-01

    Full Text Available Glycyrrhiza uralensis is considered to be one of the most important herbs in traditional Chinese medicine due to its numerous pharmacological effects particularly its ability to relieve cough and act as a mucolytic. Based on previous research, these effects are mediated by a number of active ingredients, especially glycyrrhizic acid (GA. In the present study, a gene encoding β-amyrin synthase (β-AS involved in GA biosynthesis in G. uralensis has been cloned and expressed in Saccharomyces cerevisiae. The cloned enzyme showed similar activity to native enzymes isolated from other Glycyrrhiza species to catalyze the conversion of 2,3-oxidosqualene into β-amyrin. In fact the β-AS gene is particularly important in the GA biosynthetic pathway in G. uralensis. The complete sequence of the enzyme was determined and a phylogenetic tree based on the β-AS gene of G. uralensis and 20 other species was created. This showed that Glycyrrhiza glabra had the closest kinship with G. uralensis. The results of this work will be useful in determining how to improve the efficacy of G. uralensis by improving its GA content and in exploring the biosynthesis of GA in vitro.

  1. Genistein: A Novel Anthocyanin Synthesis Promoter that Directly Regulates Biosynthetic Genes in Red Cabbage in a Light-Dependent Way

    Science.gov (United States)

    Zhang, Na; Qi, Yan; Zhang, Hai-Jun; Wang, Xiaoyun; Li, Hongfei; Shi, Yantong; Guo, Yang-Dong

    2016-01-01

    Genistein (GNT), an isoflavone, is used in the clinical treatment of various health disorders. GNT is found in primary food source plants and some medical plants. However, studies on the functions of GNT in plants are rarely reported. In this study, we demonstrated that GNT plays an important role in promoting anthocyanin accumulation in red cabbage. GNT solutions (10, 20, 30, 40, and 50 mg/L) as foliar fertilizers were applied to red cabbage. Consequently, anthocyanin accumulation in red cabbage increased in a light-dependent manner. GNT solution at 30 mg/L exhibited the optimal effect on anthocyanin accumulation, which was twice that of the control. Quantitative real-time PCR analysis indicated that GNT application upregulated the expression of all structural genes, contributing to anthocyanin biosynthesis under light conditions. Under dark conditions, GNT exerted no significant promotive effect on anthocyanin accumulation; only early biosynthetic genes of anthocyanin biosynthesis responded to GNT. The promotive effect of GNT on anthocyanin biosynthesis is directly attributable to the regulation of structural gene expression. Transcription factors exhibited no response to GNT. The levels of anthocyanin in red cabbage positively correlated with the enzyme activities of antioxidant systems. This finding correlation suggested that the promotive effect of GNT on anthocyanin levels was correlated with improved antioxidant activity in the red cabbage. PMID:27990149

  2. Identification and Functional Characterization of Genes Encoding Omega-3 Polyunsaturated Fatty Acid Biosynthetic Activities from Unicellular Microalgae

    Directory of Open Access Journals (Sweden)

    Royah Vaezi

    2013-12-01

    Full Text Available In order to identify novel genes encoding enzymes involved in the biosynthesis of nutritionally important omega-3 long chain polyunsaturated fatty acids, a database search was carried out in the genomes of the unicellular photoautotrophic green alga Ostreococcus RCC809 and cold-water diatom Fragilariopsis cylindrus. The search led to the identification of two putative “front-end” desaturases (Δ6 and Δ4 from Ostreococcus RCC809 and one Δ6-elongase from F. cylindrus. Heterologous expression of putative open reading frames (ORFs in yeast revealed that the encoded enzyme activities efficiently convert their respective substrates: 54.1% conversion of α-linolenic acid for Δ6-desaturase, 15.1% conversion of 22:5n-3 for Δ4-desaturase and 38.1% conversion of γ-linolenic acid for Δ6-elongase. The Δ6-desaturase from Ostreococcus RCC809 displays a very strong substrate preference resulting in the predominant synthesis of stearidonic acid (C18:4Δ6,9,12,15. These data confirm the functional characterization of omega-3 long chain polyunsaturated fatty acid biosynthetic genes from these two species which have until now not been investigated for such activities. The identification of these new genes will also serve to expand the repertoire of activities available for metabolically engineering the omega-3 trait in heterologous hosts as well as providing better insights into the synthesis of eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA in marine microalgae.

  3. Genistein: a novel anthocyanin synthesis promoter that directly regulates biosynthetic genes in red cabbage in a light-dependent way

    Directory of Open Access Journals (Sweden)

    Na Zhang

    2016-12-01

    Full Text Available Genistein (GNT, an isoflavone, is used in the clinical treatment of various health disorders. GNT is found in primary food source plants and some medical plants. However, studies on the functions of GNT in plants are rarely reported. In this study, we demonstrated that GNT plays an important role in promoting anthocyanin accumulation in red cabbage. GNT solutions (10, 20, 30, 40, and 50 mg/L as foliar fertilizers were applied to red cabbage. Consequently, anthocyanin accumulation in red cabbage increased in a light-dependent manner. GNT solution at 30 mg/L exhibited the optimal effect on anthocyanin accumulation, which was twice that of the control. Quantitative real-time PCR analysis indicated that GNT application upregulated the expression of all structural genes, contributing to anthocyanin biosynthesis under light conditions. Under dark conditions, GNT exerted no significant promotive effect on anthocyanin accumulation; only early biosynthetic genes of anthocyanin biosynthesis responded to GNT. The promotive effect of GNT on anthocyanin biosynthesis is directly attributable to the regulation of structural gene expression. Transcription factors exhibited no response to GNT. The levels of anthocyanin in red cabbage positively correlated with the enzyme activities of antioxidant systems. This finding correlation suggested that the promotive effect of GNT on anthocyanin levels was correlated with improved antioxidant activity in the red cabbage.

  4. Genome mining of the sordarin biosynthetic gene cluster from Sordaria araneosa Cain ATCC 36386: characterization of cycloaraneosene synthase and GDP-6-deoxyaltrose transferase.

    Science.gov (United States)

    Kudo, Fumitaka; Matsuura, Yasunori; Hayashi, Takaaki; Fukushima, Masayuki; Eguchi, Tadashi

    2016-07-01

    Sordarin is a glycoside antibiotic with a unique tetracyclic diterpene aglycone structure called sordaricin. To understand its intriguing biosynthetic pathway that may include a Diels-Alder-type [4+2]cycloaddition, genome mining of the gene cluster from the draft genome sequence of the producer strain, Sordaria araneosa Cain ATCC 36386, was carried out. A contiguous 67 kb gene cluster consisting of 20 open reading frames encoding a putative diterpene cyclase, a glycosyltransferase, a type I polyketide synthase, and six cytochrome P450 monooxygenases were identified. In vitro enzymatic analysis of the putative diterpene cyclase SdnA showed that it catalyzes the transformation of geranylgeranyl diphosphate to cycloaraneosene, a known biosynthetic intermediate of sordarin. Furthermore, a putative glycosyltransferase SdnJ was found to catalyze the glycosylation of sordaricin in the presence of GDP-6-deoxy-d-altrose to give 4'-O-demethylsordarin. These results suggest that the identified sdn gene cluster is responsible for the biosynthesis of sordarin. Based on the isolated potential biosynthetic intermediates and bioinformatics analysis, a plausible biosynthetic pathway for sordarin is proposed.

  5. eSNaPD: a versatile, web-based bioinformatics platform for surveying and mining natural product biosynthetic diversity from metagenomes.

    Science.gov (United States)

    Reddy, Boojala Vijay B; Milshteyn, Aleksandr; Charlop-Powers, Zachary; Brady, Sean F

    2014-08-14

    Environmental Surveyor of Natural Product Diversity (eSNaPD) is a web-based bioinformatics and data aggregation platform that aids in the discovery of gene clusters encoding both novel natural products and new congeners of medicinally relevant natural products using (meta)genomic sequence data. Using PCR-generated sequence tags, the eSNaPD data-analysis pipeline profiles biosynthetic diversity hidden within (meta)genomes by comparing sequence tags to a reference data set of characterized gene clusters. Sample mapping, molecule discovery, library mapping, and new clade visualization modules facilitate the interrogation of large (meta)genomic sequence data sets for diverse downstream analyses, including, but not limited to, the identification of environments rich in untapped biosynthetic diversity, targeted molecule discovery efforts, and chemical ecology studies. eSNaPD is designed to generate a global atlas of biosynthetic diversity that can facilitate a systematic, sequence-based interrogation of nature's biosynthetic potential.

  6. Elucidation of the biosynthetic pathway for Okenone in Thiodictyon sp. CAD16 leads to the discovery of two novel carotene ketolases.

    Science.gov (United States)

    Vogl, Kajetan; Bryant, Donald A

    2011-11-01

    Okenone is a unique ketocarotenoid found in many purple sulfur bacteria; it is important because of its unique light absorption and photoprotection properties. Okenane, a compound formed by diagenetic reduction of okenone, is an important biomarker in geochemical analyses of sedimentary rocks. Despite its ecological and biogeochemical importance, the biochemical pathway for okenone synthesis has not yet been fully described. The genome sequence of an okenone-producing organism, Thiodictyon sp. strain CAD16, revealed four genes whose predicted proteins had strong sequence similarity to enzymes known to produce ψ-end group modifications of carotenoids in proteobacteria. These four genes encoded homologs of a 1,2-carotenoid hydratase (CrtC), an O-methyltransferase (CrtF), and two paralogs of carotenoid 3,4-desaturases (CrtD). Expression studies in lycopene- or neurosporene-producing strains of Escherichia coli confirmed the functions of crtC and crtF, but the crtD paralogs encoded enzymes with previously undescribed functions. One enzyme, CruS, was only distantly related to CrtD desaturases, was bifunctional, and performed a 3,4-desaturation and introduced a C-2 keto group into neurosporene derivatives in the presence of dioxygen. The enzyme encoded by the other crtD paralog also represents a new enzyme in carotenogenesis and was named cruO. CruO encodes the C-4/4' ketolase uniquely required for okenone biosynthesis. The identification of CruO and the demonstration of its biochemical activity complete the elucidation of the biosynthetic pathway for okenone and other related ketocarotenoids.

  7. Environmental cues induce changes of steviol glycosides contents and transcription of corresponding biosynthetic genes in Stevia rebaudiana.

    Science.gov (United States)

    Yang, Yongheng; Huang, Suzhen; Han, Yulin; Yuan, Haiyan; Gu, Chunsun; Wang, Zhongwei

    2015-01-01

    Plant growth and secondary metabolism are commonly regulated by external cues such as light, temperature and water availability. In this study, the influences of low and high temperatures, dehydration, photoperiods, and different growing stages on the changes of steviol glycosides (SGs) contents and transcription levels of fifteen genes involved in SGs biosynthesis of Stevia rebaudiana Bertoni were examined using HPLC and RT-PCR. The observations showed that the transcript levels of all the fifteen genes were maximum under 25 °C treatment, and the transcription of SrDXS, SrDXR, SrMCT, SrCMK, SrMDS, SrHDS, SrHDR, SrIDI, SrGGDPS, SrCPPS1, SrUGT85C2 and SrUGT76G1 were restrained both in low temperature (15 °C) and high temperature (35 °C). Most genes in SGs biosynthesis pathway exhibited down-regulation in dehydration. To elucidate the effect of photoperiods, the plants were treated by different simulated photoperiods (8 L/16 D, 1 0L/14 D, 14 L/10 D and 16 L/8 D), but no significant transcription changes were observed. In the study of growing stages, there were evident changes of SGs contents, and the transcript levels of all the fifteen genes were minimal in fast growing period, and exhibited evident increase both in flower-bud appearing stage and flowering stage. The obtained results strongly suggest that the effect of environmental cues on steviol glycosides contents and transcription of corresponding biosynthetic genes in S. rebaudiana is significant. It is worth to study deeply.

  8. Functions of some capsular polysaccharide biosynthetic genes in Klebsiella pneumoniae NTUH K-2044.

    Directory of Open Access Journals (Sweden)

    Jin-Yuan Ho

    Full Text Available The growing number of Klebsiella pneumoniae infections, commonly acquired in hospitals, has drawn great concern. It has been shown that the K1 and K2 capsular serotypes are the most detrimental strains, particularly to those with diabetes. The K1 cps (capsular polysaccharide locus in the NTUH-2044 strain of the pyogenic liver abscess (PLA K. pneumoniae has been identified recently, but little is known about the functions of the genes therein. Here we report characterization of a group of cps genes and their roles in the pathogenesis of K1 K. pneumoniae. By sequential gene deletion, the cps gene cluster was first re-delimited between genes galF and ugd, which serve as up- and down-stream ends, respectively. Eight gene products were characterized in vitro and in vivo to be involved in the syntheses of UDP-glucose, UDP-glucuronic acid and GDP-fucose building units. Twelve genes were identified as virulence factors based on the observation that their deletion mutants became avirulent or lost K1 antigenicity. Furthermore, deletion of kp3706, kp3709 or kp3712 (ΔwcaI, ΔwcaG or Δatf, respectively, which are all involved in fucose biosynthesis, led to a broad range of transcriptional suppression for 52 upstream genes. The genes suppressed include those coding for unknown regulatory membrane proteins and six multidrug efflux system proteins, as well as proteins required for the K1 CPS biosynthesis. In support of the suppression of multidrug efflux genes, we showed that these three mutants became more sensitive to antibiotics. Taken together, the results suggest that kp3706, kp3709 or kp3712 genes are strongly related to the pathogenesis of K. pneumoniae K1.

  9. Rice mutant resources for gene discovery

    NARCIS (Netherlands)

    Hirochika, H.; Guiderdoni, E.; An, G.; Hsing, Y.I.; Eun, M.Y.; Han, C.D.; Upadhyaya, N.; Ramachandran, S.; Zhang, Q.F.; Pereira, A.B.; Sundaresan, V.; Leung, H.

    2004-01-01

    With the completion of genomic sequencing of rice, rice has been firmly established as a model organism for both basic and applied research. The next challenge is to uncover the functions of genes predicted by sequence analysis. Considering the amount of effort and the diversity of disciplines requi

  10. Ultraviolet Radiation-Elicited Enhancement of Isoflavonoid Accumulation, Biosynthetic Gene Expression, and Antioxidant Activity in Astragalus membranaceus Hairy Root Cultures.

    Science.gov (United States)

    Jiao, Jiao; Gai, Qing-Yan; Wang, Wei; Luo, Meng; Gu, Cheng-Bo; Fu, Yu-Jie; Ma, Wei

    2015-09-23

    In this work, Astragalus membranaceus hairy root cultures (AMHRCs) were exposed to ultraviolet radiation (UV-A, UV-B, and UV-C) for promoting isoflavonoid accumulation. The optimum enhancement for isoflavonoid production was achieved in 34-day-old AMHRCs elicited by 86.4 kJ/m(2) of UV-B. The resulting isoflavonoid yield was 533.54 ± 13.61 μg/g dry weight (DW), which was 2.29-fold higher relative to control (232.93 ± 3.08 μg/g DW). UV-B up-regulated the transcriptional expressions of all investigated genes involved in isoflavonoid biosynthetic pathway. PAL and C4H were found to be two potential key genes that controlled isoflavonoid biosynthesis. Moreover, a significant increase was noted in antioxidant activity of extracts from UV-B-elicited AMHRCs (IC50 values = 0.85 and 1.08 mg/mL) in comparison with control (1.38 and 1.71 mg/mL). Overall, this study offered a feasible elicitation strategy to enhance isoflavonoid accumulation in AMHRCs and also provided a basis for metabolic engineering of isoflavonoid biosynthesis in the future.

  11. Developmental and Genotypic Variation in Leaf Wax Content and Composition, and in Expression of Wax Biosynthetic Genes in Brassica oleracea var. capitata

    Science.gov (United States)

    Laila, Rawnak; Robin, Arif Hasan Khan; Yang, Kiwoung; Park, Jong-In; Suh, Mi Chung; Kim, Juyoung; Nou, Ill-Sup

    2017-01-01

    Cuticular waxes act as a protective barrier against environmental stresses. In the present study, we investigated developmental and genotypic variation in wax formation of cabbage lines, with a view to understand the related morphology, genetics and biochemistry. Our studies revealed that the relative expression levels of wax biosynthetic genes in the first-formed leaf of the highest-wax line remained constantly higher but were decreased in other genotypes with leaf aging. Similarly, the expression of most of the tested genes exhibited decrease from the inner leaves to the outer leaves of 5-month-old cabbage heads in the low-wax lines in contrast to the highest-wax line. In 10-week-old plants, expression of wax biosynthetic genes followed a quadratic function and was generally increased in the early developing leaves but substantially decreased at the older leaves. The waxy compounds in all cabbage lines were predominately C29-alkane, -secondary alcohol, and -ketone. Its deposition was increased with leaf age in 5-month-old plants. The high-wax lines had dense, prominent and larger crystals on the leaf surface compared to low-wax lines under scanning electron microscopy. Principal component analysis revealed that the higher expression of LTP2 genes in the lowest-wax line and the higher expression of CER3 gene in the highest-wax line were probably associated with the comparatively lower and higher wax content in those two lines, respectively. This study furthers our understanding of the relationships between the expression of wax biosynthetic genes and the wax deposition in cabbage lines. Highlight: In cabbage, expression of wax-biosynthetic genes was generally decreased in older and senescing leaves, while wax deposition was increased with leaf aging, and C29-hydrocarbon was predominant in the wax crystals. PMID:28119701

  12. Psychiatric gene discoveries shape evidence on ADHD's biology

    NARCIS (Netherlands)

    Thapar, A.; Martin, J.; Mick, E.; Arias Vasquez, A.; Langley, K.; Scherer, S.W.; Schachar, R.; Crosbie, J.; Williams, N.; Franke, B.; Elia, J.; Glessner, J.; Hakonarson, H.; Owen, M.J.; Faraone, S.V; O'Donovan, M.C.; Holmans, P.

    2016-01-01

    A strong motivation for undertaking psychiatric gene discovery studies is to provide novel insights into unknown biology. Although attention-deficit hyperactivity disorder (ADHD) is highly heritable, and large, rare copy number variants (CNVs) contribute to risk, little is known about its pathogenes

  13. Inhibitory Effect of Cinnamaldehyde, Citral, and Eugenol on Aflatoxin Biosynthetic Gene Expression and Aflatoxin B1 Biosynthesis in Aspergillus flavus.

    Science.gov (United States)

    Liang, Dandan; Xing, Fuguo; Selvaraj, Jonathan Nimal; Liu, Xiao; Wang, Limin; Hua, Huijuan; Zhou, Lu; Zhao, Yueju; Wang, Yan; Liu, Yang

    2015-12-01

    In order to reveal the inhibitory effects of cinnamaldehyde, citral, and eugenol on aflatoxin biosynthesis, the expression levels of 5 key aflatoxin biosynthetic genes were evaluated by real-time PCR. Aspergillus flavus growth and AFB1 production were completely inhibited by 0.80 mmol/L of cinnamaldehyde and 2.80 mmol/L of citral. However, at lower concentration, cinnamaldehyde (0.40 mmol/L), eugenol (0.80 mmol/L), and citral (0.56 mmol/L) significantly reduced AFB1 production with inhibition rate of 68.9%, 95.4%, and 41.8%, respectively, while no effect on fungal growth. Real-time PCR showed that the expressions of aflR, aflT, aflD, aflM, and aflP were down-regulated by cinnamaldehyde (0.40 mmol/L), eugenol (0.80 mmol/L), and citral (0.56 mmol/L). In the presence of cinnamaldehyde, AflM was highly down-regulated (average of 5963 folds), followed by aflP, aflR, aflD, and aflT with the average folds of 55, 18, 6.5, and 5.8, respectively. With 0.80 mmol/L of eugenol, aflP was highly down-regulated (average of 2061-folds), followed by aflM, aflR, aflD, and aflT with average of 138-, 15-, 5.2-, and 4.8-folds reduction, respectively. With 0.56 mmol/L of citral, aflT was completely inhibited, followed by aflM, aflP, aflR, and aflD with average of 257-, 29-, 3.5-, and 2.5-folds reduction, respectively. These results suggest that the reduction in AFB1 production by cinnamaldehyde, eugenol, and citral at low concentration may be due to the down-regulations of the transcription level of aflatoxin biosynthetic genes. Cinnamaldehyde and eugenol may be employed successfully as a good candidate in controlling of toxigenic fungi and subsequently contamination with aflatoxins in practice.

  14. Indole-Diterpene Biosynthetic Capability of Epichloë Endophytes as Predicted by ltm Gene Analysis▿

    Science.gov (United States)

    Young, Carolyn A.; Tapper, Brian A.; May, Kimberley; Moon, Christina D.; Schardl, Christopher L.; Scott, Barry

    2009-01-01

    Bioprotective alkaloids produced by Epichloë and closely related asexual Neotyphodium fungal endophytes protect their grass hosts from insect and mammalian herbivory. One class of these compounds, known for antimammalian toxicity, is the indole-diterpenes. The LTM locus of Neotyphodium lolii (Lp19) and Epichloë festuce (Fl1), required for the biosynthesis of the indole-diterpene lolitrem, consists of 10 ltm genes. We have used PCR and Southern analysis to screen a broad taxonomic range of 44 endophyte isolates to determine why indole-diterpenes are present in so few endophyte-grass associations in comparison to that of the other bioprotective alkaloids, which are more widespread among the endophtyes. All 10 ltm genes were present in only three epichloë endophytes. A predominance of the asexual Neotyphodium spp. examined contained 8 of the 10 ltm genes, with only one N. lolii containing the entire LTM locus and the ability to produce lolitrems. Liquid chromatography-tandem mass spectrometry profiles of indole-diterpenes from a subset of endophyte-infected perennial ryegrass showed that endophytes that contained functional genes present in ltm clusters 1 and 2 were capable of producing simple indole-diterpenes such as paspaline, 13-desoxypaxilline, and terpendoles, compounds predicted to be precursors of lolitrem B. Analysis of toxin biosynthesis genes by PCR now enables a diagnostic method to screen endophytes for both beneficial and detrimental alkaloids and can be used as a resource for screening isolates required for forage improvement. PMID:19181837

  15. Exploration of geosmin synthase from Streptomyces peucetius ATCC 27952 by deletion of doxorubicin biosynthetic gene cluster.

    Science.gov (United States)

    Singh, Bijay; Oh, Tae-Jin; Sohng, Jae Kyung

    2009-10-01

    Thorough investigation of Streptomyces peucetius ATCC 27952 genome revealed a sesquiterpene synthase, named spterp13, which encodes a putative protein of 732 amino acids with significant similarity to S. avermitilis MA-4680 (SAV2163, GeoA) and S. coelicolor A3(2) (SCO6073). The proteins encoded by SAV2163 and SCO6073 produce geosmin in the respective strains. However, the spterp13 gene seemed to be silent in S. peucetius. Deletion of the doxorubicin gene cluster from S. peucetius resulted in increased cell growth rate along with detectable production of geosmin. When we over expressed the spterp13 gene in S. peucetius DM07 under the control of an ermE* promoter, 2.4 +/- 0.4-fold enhanced production of geosmin was observed.

  16. Effect of immobilization stress on gene expression of catecholamine biosynthetic enzymes in heart auricles of socially isolated rats

    Directory of Open Access Journals (Sweden)

    L. Gavrilovic

    2009-12-01

    Full Text Available Chronic stress is associated with the development of cardiovascular diseases. The sympathoneural system plays an important role in the regulation of cardiac function both in health and disease. In the present study, the changes in gene expression of the catecholamine biosynthetic enzymes tyrosine hydroxylase (TH, dopamine-β-hydroxylase (DBH and phenylethanolamine N-methyltransferase (PNMT and protein levels in the right and left heart auricles of naive control and long-term (12 weeks socially isolated rats were investigated by Taqman RT-PCR and Western blot analysis. The response of these animals to additional immobilization stress (2 h was also examined. Long-term social isolation produced a decrease in TH mRNA level in left auricles (about 70% compared to the corresponding control. Expression of the DBH gene was markedly decreased both in the right (about 62% and left (about 81% auricles compared to the corresponding control, group-maintained rats, whereas PNMT mRNA levels remained unchanged. Exposure of group-housed rats to acute immobilization for 2 h led to a significant increase of mRNA levels of TH (about 267%, DBH (about 37% and PNMT (about 60% only in the right auricles. Additional 2-h immobilization of individually housed rats did not affect gene expression of these enzymes in either the right or left auricle. Protein levels of TH, DBH and PNMT in left and right heart auricles were unchanged either in both individually housed and immobilized rats. The unchanged mRNA levels of the enzymes examined after short-term immobilization suggest that the catecholaminergic system of the heart auricles of animals previously exposed to chronic psychosocial stress was adapted to maintain appropriate cardiovascular homeostasis.

  17. Genetic control of lithium sensitivity and regulation of inositol biosynthetic genes.

    Directory of Open Access Journals (Sweden)

    Jason King

    Full Text Available Lithium (Li(+ is a common treatment for bipolar mood disorder, a major psychiatric illness with a lifetime prevalence of more than 1%. Risk of bipolar disorder is heavily influenced by genetic predisposition, but is a complex genetic trait and, to date, genetic studies have provided little insight into its molecular origins. An alternative approach is to investigate the genetics of Li(+ sensitivity. Using the social amoeba Dictyostelium, we previously identified prolyl oligopeptidase (PO as a modulator of Li(+ sensitivity. In a link to the clinic, PO enzyme activity is altered in bipolar disorder patients. Further studies demonstrated that PO is a negative regulator of inositol(1,4,5trisphosphate (IP(3 synthesis, a Li(+ sensitive intracellular signal. However, it was unclear how PO could influence either Li(+ sensitivity or risk of bipolar disorder. Here we show that in both Dictyostelium and cultured human cells PO acts via Multiple Inositol Polyphosphate Phosphatase (Mipp1 to control gene expression. This reveals a novel, gene regulatory network that modulates inositol metabolism and Li(+ sensitivity. Among its targets is the inositol monophosphatase gene IMPA2, which has also been associated with risk of bipolar disorder in some family studies, and our observations offer a cellular signalling pathway in which PO activity and IMPA2 gene expression converge.

  18. Diversity and distribution of a key sulpholipid biosynthetic gene in marine microbial assemblages

    NARCIS (Netherlands)

    Villanueva, L.; Hopmans, E.C.; Bale, N.; Schouten, S.; Sinninghe Damsté, J.S.

    2014-01-01

    Sulphoquinovosyldiacylglycerols (SQDG) are polar sulphur-containing membrane lipids, whose presence has been related to a microbial strategy to adapt to phosphate deprivation. In this study, we have targeted the sqdB gene coding the uridine 5-diphosphate-sulphoquinovose (UDP-SQ) synthase involved in

  19. Genes of primary sulfate assimilation are part of the glucosinolate biosynthetic network in Arabidopsis thaliana.

    Science.gov (United States)

    Yatusevich, Ruslan; Mugford, Sarah G; Matthewman, Colette; Gigolashvili, Tamara; Frerigmann, Henning; Delaney, Sean; Koprivova, Anna; Flügge, Ulf-Ingo; Kopriva, Stanislav

    2010-04-01

    Glucosinolates are plant secondary metabolites involved in responses to biotic stress. The final step of their synthesis is the transfer of a sulfo group from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) onto a desulfo precursor. Thus, glucosinolate synthesis is linked to sulfate assimilation. The sulfate donor for this reaction is synthesized from sulfate in two steps catalyzed by ATP sulfurylase (ATPS) and adenosine 5'-phosphosulfate kinase (APK). Here we demonstrate that R2R3-MYB transcription factors, which are known to regulate both aliphatic and indolic glucosinolate biosynthesis in Arabidopsis thaliana, also control genes of primary sulfate metabolism. Using trans-activation assays we found that two isoforms of APK, APK1, and APK2, are regulated by both classes of glucosinolate MYB transcription factors; whereas two ATPS genes, ATPS1 and ATPS3, are differentially regulated by these two groups of MYB factors. In addition, we show that the adenosine 5'-phosphosulfate reductases APR1, APR2, and APR3, which participate in primary sulfate reduction, are also activated by the MYB factors. These observations were confirmed by analysis of transgenic lines with modulated expression levels of the glucosinolate MYB factors. The changes in transcript levels also affected enzyme activities, the thiol content and the sulfate reduction rate in some of the transgenic plants. Altogether the data revealed that the MYB transcription factors regulate genes of primary sulfate metabolism and that the genes involved in the synthesis of activated sulfate are part of the glucosinolate biosynthesis network.

  20. Carotenoid profiling, in silico analysis and transcript profiling of miRNAs targeting carotenoid biosynthetic pathway genes in different developmental tissues of tomato.

    Science.gov (United States)

    Koul, Archana; Yogindran, Sneha; Sharma, Deepak; Kaul, Sanjana; Rajam, Manchikatla Venkat; Dhar, Manoj K

    2016-11-01

    Carotenoid biosynthetic pathway is one of the highly significant and very well elucidated secondary metabolic pathways in plants. microRNAs are the potential regulators, widely known for playing a pivotal role in the regulation of various biological as well as metabolic processes. miRNAs may assist in the metabolic engineering of the secondary metabolites for the production of elite genotypes with increased biomass and content of various metabolites. miRNA mediated regulation of carotenoid biosynthetic genes has not been elucidated so far. To illustrate the potential regulatory role of miRNAs in carotenoid biosynthesis, transcript profiling of the known miRNAs and their possible target carotenoid genes was undertaken at eight different developmental stages of tomato, using stem-loop PCR approach combined with quantitative RT-PCR. The inter-relationship amongst carotenoid content, biosynthetic genes and miRNAs was studied in depth. Comparative expression profiles of miRNA and target genes showed variable expression in different tissues studied. The expression level of miRNAs and their target carotenoid genes displayed similar pattern in the vegetative tissues as compared to the reproductive ones, viz. fruit (different stages), indicating the possibility of regulation of carotenoid biosynthesis at various stages of fruit development. This was later confirmed by the HPLC analysis of the carotenoids. The present study has further enhanced the understanding of regulation of carotenoid biosynthetic pathway in plants. The identified miRNAs can be employed to manipulate the biosynthesis of different carotenoids, through metabolic engineering for the production of lycopene rich tomatoes.

  1. Triterpenoid Saponin Biosynthetic Pathway Profiling and Candidate Gene Mining of the Ilex asprella Root Using RNA-Seq

    Directory of Open Access Journals (Sweden)

    Xiasheng Zheng

    2014-04-01

    Full Text Available Ilex asprella, which contains abundant α-amyrin type triterpenoid saponins, is an anti-influenza herbal drug widely used in south China. In this work, we first analysed the transcriptome of the I. asprella root using RNA-Seq, which provided a dataset for functional gene mining. mRNA was isolated from the total RNA of the I. asprella root and reverse-transcribed into cDNA. Then, the cDNA library was sequenced using an Illumina HiSeq™ 2000, which generated 55,028,452 clean reads. De novo assembly of these reads generated 51,865 unigenes, in which 39,269 unigenes were annotated (75.71% yield. According to the structures of the triterpenoid saponins of I. asprella, a putative biosynthetic pathway downstream of 2,3-oxidosqualene was proposed and candidate unigenes in the transcriptome data that were potentially involved in the pathway were screened using homology-based BLAST and phylogenetic analysis. Further amplification and functional analysis of these putative unigenes will provide insight into the biosynthesis of Ilex triterpenoid saponins.

  2. Discovery of pinoresinol reductase genes in sphingomonads.

    Science.gov (United States)

    Fukuhara, Y; Kamimura, N; Nakajima, M; Hishiyama, S; Hara, H; Kasai, D; Tsuji, Y; Narita-Yamada, S; Nakamura, S; Katano, Y; Fujita, N; Katayama, Y; Fukuda, M; Kajita, S; Masai, E

    2013-01-10

    Bacterial genes for the degradation of major dilignols produced in lignifying xylem are expected to be useful tools for the structural modification of lignin in plants. For this purpose, we isolated pinZ involved in the conversion of pinoresinol from Sphingobium sp. strain SYK-6. pinZ showed 43-77% identity at amino acid level with bacterial NmrA-like proteins of unknown function, a subgroup of atypical short chain dehydrogenases/reductases, but revealed only 15-21% identity with plant pinoresinol/lariciresinol reductases. PinZ completely converted racemic pinoresinol to lariciresinol, showing a specific activity of 46±3 U/mg in the presence of NADPH at 30°C. In contrast, the activity for lariciresinol was negligible. This substrate preference is similar to a pinoresinol reductase, AtPrR1, of Arabidopsis thaliana; however, the specific activity of PinZ toward (±)-pinoresinol was significantly higher than that of AtPrR1. The role of pinZ and a pinZ ortholog of Novosphingobium aromaticivorans DSM 12444 were also characterized.

  3. Engineering of avermectin biosynthetic genes to improve production of ivermectin in Streptomyces avermitilis.

    Science.gov (United States)

    Li, Meng; Chen, Zhi; Lin, Xiuping; Zhang, Xuan; Song, Yuan; Wen, Ying; Li, Jilun

    2008-10-15

    Two new recombinants of avermectin polyketide synthases were constructed by domain and module swapping in Streptomyces avermitilis 73-12. However, only the strain, S. avermitilis OI-31, formed by domain substitution could produce ivermectin. Analysis of the ivermectin synthesized gene cluster showed that decreased amount of aveC transcripts was one of the factors causing low yield of ivermectin. Overexpression of aveC could improve ivermectin yield.

  4. Early Phenylpropanoid Biosynthetic Steps in Cannabis sativa: Link between Genes and Metabolites

    Directory of Open Access Journals (Sweden)

    Immacolata Coraggio

    2013-06-01

    Full Text Available Phenylalanine ammonia-lyase (PAL, Cinnamic acid 4-hydroxylase (C4H and 4-Coumarate: CoA ligase (4CL catalyze the first three steps of the general phenylpropanoid pathway whereas chalcone synthase (CHS catalyzes the first specific step towards flavonoids production. This class of specialized metabolites has a wide range of biological functions in plant development and defence and a broad spectrum of therapeutic activities for human health. In this study, we report the isolation of hemp PAL and 4CL cDNA and genomic clones. Through in silico analysis of their deduced amino acid sequences, more than an 80% identity with homologues genes of other plants was shown and phylogenetic relationships were highlighted. Quantitative expression analysis of the four above mentioned genes, PAL and 4CL enzymatic activities, lignin content and NMR metabolite fingerprinting in different Cannabis sativa tissues were evaluated. Furthermore, the use of different substrates to assay PAL and 4CL enzymatic activities indicated that different isoforms were active in different tissues. The diversity in secondary metabolites content observed in leaves (mainly flavonoids and roots (mainly lignin was discussed in relation to gene expression and enzymatic activities data.

  5. Characterization of the Biosynthetic Gene Cluster for Benzoxazole Antibiotics A33853 Reveals Unusual Assembly Logic.

    Science.gov (United States)

    Lv, Meinan; Zhao, Junfeng; Deng, Zixin; Yu, Yi

    2015-10-22

    A33853, which shows excellent bioactivity against Leishmania, is a benzoxazole-family compound formed from two moieties of 3-hydroxyanthranilic acid and one 3-hydroxypicolinic acid. In this study, we have identified the gene cluster responsible for the biosynthesis of A33853 in Streptomyces sp. NRRL12068 through genome mining and heterologous expression. Bioinformatics analysis and functional characterization of the orfs contained in the gene cluster revealed that the biosynthesis of A33853 is directed by a group of unusual enzymes. In particular, BomK, annotated as a ketosynthase, was found to catalyze the amide bond formation between 3-hydroxypicolinic and 3-hydroxyanthranilic acid during the assembly of A33853. BomJ, a putative ATP-dependent coenzyme A ligase, and BomN, a putative amidohydrolase, were further proposed to be involved in the benzoxazole formation in A33853 according to gene deletion experiments. Finally, we have successfully utilized mutasynthesis to generate two analogs of A33853, which were reported previously to possess excellent anti-leishmanial activity.

  6. Effects of white, blue, and red light-emitting diodes on carotenoid biosynthetic gene expression levels and carotenoid accumulation in sprouts of tartary buckwheat (Fagopyrum tataricum Gaertn.).

    Science.gov (United States)

    Tuan, Pham Anh; Thwe, Aye Aye; Kim, Yeon Bok; Kim, Jae Kwang; Kim, Sun-Ju; Lee, Sanghyun; Chung, Sun-Ok; Park, Sang Un

    2013-12-18

    In this study, the optimum wavelengths of light required for carotenoid biosynthesis were determined by investigating the expression levels of carotenoid biosynthetic genes and carotenoid accumulation in sprouts of tartary buckwheat (Fagopyrum tataricum Gaertn.) exposed to white, blue, and red light-emitting diodes (LEDs). Most carotenoid biosynthetic genes showed higher expression in sprouts irradiated with white light at 8 days after sowing than in those irradiated with blue and red lights. The dominant carotenoids in tartary buckwheat sprouts were lutein and β-carotene. The richest accumulation of total carotenoids was observed in sprouts grown under white light (1282.63 μg g(-1) dry weight), which was relatively higher than that in sprouts grown under blue and red lights (940.86 and 985.54 μg g(-1), respectively). This study might establish an effective strategy for maximizing the production of carotenoids and other important secondary metabolites in tartary buckwheat sprouts by using LED technology.

  7. Differential gene expression in liver and small intestine from lactating rats compared to age-matched virgin controls detects increased mRNA of cholesterol biosynthetic genes

    Directory of Open Access Journals (Sweden)

    Jungsuwadee Paiboon

    2011-02-01

    Full Text Available Abstract Background Lactation increases energy demands four- to five-fold, leading to a two- to three-fold increase in food consumption, requiring a proportional adjustment in the ability of the lactating dam to absorb nutrients and to synthesize critical biomolecules, such as cholesterol, to meet the dietary needs of both the offspring and the dam. The size and hydrophobicity of the bile acid pool increases during lactation, implying an increased absorption and disposition of lipids, sterols, nutrients, and xenobiotics. In order to investigate changes at the transcriptomics level, we utilized an exon array and calculated expression levels to investigate changes in gene expression in the liver, duodenum, jejunum, and ileum of lactating dams when compared against age-matched virgin controls. Results A two-way mixed models ANOVA was applied to detect differentially expressed genes. Significance calls were defined as a p Cyp7a1, which catalyzes the rate limiting step in the bile acid biosynthetic pathway, was also significantly increased in liver. In addition, decreased levels of mRNA associated with T-cell signaling were found in the jejunum and ileum. Several members of the Solute Carrier (SLC and Adenosine Triphosphate Binding Cassette (ABC superfamilies of membrane transporters were found to be differentially expressed; these genes may play a role in differences in nutrient and xenobiotic absorption and disposition. mRNA expression of SLC39a4_predicted, a zinc transporter, was increased in all tissues, suggesting that it is involved in increased zinc uptake during lactation. Microarray data are available through GEO under GSE19175. Conclusions We detected differential expression of mRNA from several pathways in lactating dams, including upregulation of the cholesterol biosynthetic pathway in liver and intestine, consistent with Srebp activation. Differential T-Cell signaling in the two most distal regions of the small intestine (ileum and

  8. Beegle: from literature mining to disease-gene discovery.

    Science.gov (United States)

    ElShal, Sarah; Tranchevent, Léon-Charles; Sifrim, Alejandro; Ardeshirdavani, Amin; Davis, Jesse; Moreau, Yves

    2016-01-29

    Disease-gene identification is a challenging process that has multiple applications within functional genomics and personalized medicine. Typically, this process involves both finding genes known to be associated with the disease (through literature search) and carrying out preliminary experiments or screens (e.g. linkage or association studies, copy number analyses, expression profiling) to determine a set of promising candidates for experimental validation. This requires extensive time and monetary resources. We describe Beegle, an online search and discovery engine that attempts to simplify this process by automating the typical approaches. It starts by mining the literature to quickly extract a set of genes known to be linked with a given query, then it integrates the learning methodology of Endeavour (a gene prioritization tool) to train a genomic model and rank a set of candidate genes to generate novel hypotheses. In a realistic evaluation setup, Beegle has an average recall of 84% in the top 100 returned genes as a search engine, which improves the discovery engine by 12.6% in the top 5% prioritized genes. Beegle is publicly available at http://beegle.esat.kuleuven.be/.

  9. Tissue- Specific Expression Analysis of Anthocyanin Biosynthetic Genes in White- and Red-Fleshed Grape Cultivars

    Directory of Open Access Journals (Sweden)

    Sha Xie

    2015-12-01

    Full Text Available Yan73, a teinturier (dyer grape variety in China, is one of the few Vitis vinifera cultivars with red-coloured berry flesh. To examine the tissue-specific expression of genes associated with berry colour in Yan73, we analysed the differential accumulation of anthocyanins in the skin and flesh tissues of two red-skinned grape varieties with either red (Yan73 or white flesh (Muscat Hamburg based on HPLC-MS analysis, as well as the differential expression of 18 anthocyanin biosynthesis genes in both varieties by quantitative RT-PCR. The results revealed that the transcripts of GST, OMT, AM3, CHS3, UFGT, MYBA1, F3′5′H, F3H1 and LDOX were barely detectable in the white flesh of Muscat Hamburg. In particular, GST, OMT, AM3, CHS3 and F3H1 showed approximately 50-fold downregulation in the white flesh of Muscat Hamburg compared to the red flesh of Yan73. A correlation analysis between the accumulation of different types of anthocyanins and gene expression indicated that the cumulative expression of GST, F3′5′H, LDOX and MYBA1 was more closely associated with the acylated anthocyanins and the 3′5′-OH anthocyanins, while OMT and AM3 were more closely associated with the total anthocyanins and methoxylated anthocyanins. Therefore, the transcripts of OMT, AM3, GST, F3′5′H, LDOX and MYBA1 explained most of the variation in the amount and composition of anthocyanins in skin and flesh of Yan73. The data suggest that the specific localization of anthocyanins in the flesh tissue of Yan73 is most likely due to the tissue-specific expression of OMT, AM3, GST, F3′5′H, LDOX and MYBA1 in the flesh.

  10. Transcriptional control of anthocyanin biosynthetic genes in extreme phenotypes for berry pigmentation of naturally occurring grapevines

    Directory of Open Access Journals (Sweden)

    Castellarin Simone D

    2007-08-01

    Full Text Available Abstract Background Fruit coloration of red-skinned grapevines is mainly due to anthocyanin pigments. We analysed a panel of nine cultivars that included extreme phenotypes for berry colour, ranging from green (absence of anthocyanins to red, purple, violet and blue. Expression of six genes of the anthocyanin pathway coding for flavanone-hydroxylase (F3H, flavonoid 3'-hydroxylase (F3'H, flavonoid 3',5'-hydroxylase (F3'5'H, UDP-glucose:flavonoid-3-O-glucosyltransferase (UFGT, glutathione-S-transferase (GST, O-methyltransferase (OMT and four transcription factors (MybA, MybB, MybC, MybD was analysed by quantitative RT-PCR at four developmental stages from before the onset of ripening until full maturity and compared to anthocyanin metabolites. Results Total anthocyanin content at full maturity correlated well with the cumulative expression of F3H, UFGT and GST throughout ripening. Transcripts of the last two genes were absent in the green-skinned cultivar 'Sauvignonasse', also known as 'Tocai friulano', and were at least 10-fold less abundant in pale red cultivars, such as 'Pinot gris' and 'Gewürztraminer', compared to fully coloured cultivars. Predominance of tri-hydroxylated anthocyanins (delphinidin, petunidin and malvidin in cultivars bearing dark berries with violet and blue hue was associated with higher ratios of F3'5'H/F3'H transcription, compared to red-skinned cultivars. Higher levels of OMT transcripts were observed in berries of cultivars that accumulated methoxylated forms of anthocyanins more abundantly than non-methoxylated forms. Conclusion Colour variation of the grape berry conforms to a peculiar pattern of genotype-specific expression of the whole set of anthocyanin genes in a direct transcript-metabolite-phenotype relationship. Cumulative mRNA levels of the structural genes and their relative abundance throughout ripening explained per se the final phenotype for anthocyanin content, anthocyanin composition, colour intensity

  11. Characterization of algG encoding C5-epimerase in the alginate biosynthetic gene cluster of Pseudomonas fluorescens.

    Science.gov (United States)

    Morea, A; Mathee, K; Franklin, M J; Giacomini, A; O'Regan, M; Ohman, D E

    2001-10-31

    The organization of the alginate gene cluster in Pseudomonas fluorescens was characterized. A bank of genomic DNA from P. fluorescens was mobilized to a strain of Pseudomonas aeruginosa with a transposon insertion (algJ::Tn501) in the alginate biosynthetic operon that rendered it non-mucoid. Phenotypic complementation in this heterologous host was observed, and a complementing clone containing 32 kb of P. fluorescens DNA was obtained. Southern hybridization studies showed that genes involved in alginate biosynthesis (e.g. algD, algG, and algA) were approximately in the same order and position as in P. aeruginosa. When the clone was mobilized to a P. aeruginosa algG mutant that produced alginate as polymannuronate due to its C5-epimerase defect, complementation was observed and the alginate from the recombinant strain contained L-guluronate as determined by proton nuclear magnetic resonance spectroscopy. A sequence analysis of the P. fluorescens DNA containing algG revealed sequences similar to P. aeruginosa algG that were also flanked by algE- and algX-like sequences. The predicted AlgG amino acid sequence of P. fluorescens was 67% identical (80% similar) to P. aeruginosa AlgG and 60% identical (76% similar) to Azotobacter vinelandii AlgG. As in P. aeruginosa, AlgG from P. fluorescens appeared to have a signal sequence that would localize it to the periplasm where AlgG presumably acts as a C5-epimerase at the polymer level. Non-polar algG knockout mutants of P. fluorescens were defective in alginate production, suggesting a potential role for this protein in polymer formation.

  12. Effects of methyl jasmonate and salicylic acid on tanshinone production and biosynthetic gene expression in transgenic Salvia miltiorrhiza hairy roots.

    Science.gov (United States)

    Hao, Xiaolong; Shi, Min; Cui, Lijie; Xu, Chao; Zhang, Yanjie; Kai, Guoyin

    2015-01-01

    Tanshinone is a group of active diterpenes, which are widely used in the treatment of cardiovascular disease. In this study, methyl jasmonate (MJ) and salicylic acid (SA) were used to investigate their effects on tanshinone accumulation and biosynthetic gene expression in the hairy roots of geranylgeranyl diphosphate synthase (SmGGPPS) overexpression line (G50) in Salvia miltiorrhiza. High-performance liquid chromatography analysis showed that total tanshinone content in G50 was obviously increased by 3.10-fold (11.33 mg/g) with MJ at 36 H and 1.63 times (5.95 mg/g) after SA treatment for 36 H in comparison with their mimic treatment control. Furthermore, quantitative reverse-transcription PCR analysis showed that the expression of isopentenyl-diphosphate delta-isomerase (SmIPPI), SmGGPPS, copalyl diphosphate synthase (SmCPS), and kaurene synthase-like (SmKSL) increased significantly with MJ treatment. However, the expression of SmIPPI reached the highest level at 144 H, whereas those of SmGGPPS, SmCPS, and SmKSL only increased slightly with SA treatment. The two elicitor treatments suggested that tanshinone accumulation positively correlated to the expression of key genes such as SmGGPPS, SmCPS, and SmKSL. Meanwhile, the study also indicated that it was a feasible strategy to combine elicitor treatment with transgenic technology for the enhancement of tanshinone, which paved the way for further metabolic engineering of tanshinone biosynthesis.

  13. Cloning and characterization of the biosynthetic gene cluster of the bacterial RNA polymerase inhibitor tirandamycin from marine-derived Streptomyces sp. SCSIO1666.

    Science.gov (United States)

    Mo, Xuhua; Wang, Zhongwen; Wang, Bo; Ma, Junying; Huang, Hongbo; Tian, Xinpeng; Zhang, Si; Zhang, Changsheng; Ju, Jianhua

    2011-03-18

    Tirandamycins are bacterial RNA polymerase inhibitors holding great potential for antibacterial agent design. To elucidate the biosynthetic machinery and generate new derivatives, the tirandamycin biosynthetic gene cluster was cloned and sequenced from marine-derived Streptomyces sp. SCSIO1666. The biosynthetic gene cluster of tirandamycin spans a DNA region of ∼56kb and consists of 15 open reading frames (ORFs) which encode three type I polyketide synthases (TrdAI, AII, AIII), one non-ribosomal peptide synthetase (TrdD), one phosphopantetheinyl transferase (TrdM), one Type II thioesterase (TrdB), one FAD-dependent oxidoreductase (TrdL), one cytochrome P450 monooxygenase (TrdI), three proteins related to resistance and regulations (TrdHJK), and four proteins with unknown function (TrdCEFG). To investigate the roles of the genes played in the biosynthetic machinery, seven genes (trdAI and trdBDFHIK) were inactivated via in frame replacement with an apramycin gene cassette using λ-RED recombination technology. The ΔtrdAI and ΔtrdD mutants targeting the ketosynthase and adenylation domain of TrdAI and TrdD, respectively, abolished the production of tirandamycins, confirming their involvement in the tirandamycin biosynthesis. TrdH showed high homology to LuxR family transcriptional regulatory proteins, disruption of which abolished the production of tirandamycins, indicating that TrdH is a positive regulator for tirandamycin biosynthesis. On the other hand, TrdK showed high homology to TetR-family transcriptional regulatory proteins, disruption of which significantly increased the yields of tirandamycins almost one-fold, implicating that TrdK is a negative regulator for tirandamycin biosynthesis. Disruption of the gene trdI resulted in the accumulation of the intermediate tirandamycin C (3) and a trace amount of new product tirandamycin C2 (5). A model of tirandamycin biosynthesis was proposed based on bioinformatics analyses, gene inactivation experiments and

  14. Characterization of biosynthetic gene cluster for the production of virginiamycin M, a streptogramin type A antibiotic, in Streptomyces virginiae.

    Science.gov (United States)

    Pulsawat, Nattika; Kitani, Shigeru; Nihira, Takuya

    2007-05-15

    Virginiamycin M (VM) of Streptomyces virginiae is a hybrid polyketide-peptide antibiotic with peptide antibiotic virginiamycin S (VS) as its synergistic counterpart. VM and VS belong to the Streptogramin family, which is characterized by strong synergistic antibacterial activity, and their water-soluble derivatives are a new therapeutic option for combating vancomycin-resistant Gram-positive bacteria. Here, the VM biosynthetic gene cluster was isolated from S. virginiae in the 62-kb region located in the vicinity of the regulatory island for virginiamycin production. Sequence analysis revealed that the region consists of 19 complete open reading frames (ORFs) and one C-terminally truncated ORF, encoding hybrid polyketide synthase (PKS)-nonribosomal peptide synthetase (NRPS), typical PKS, enzymes synthesizing precursors for VM, transporters for resistance, regulatory proteins, and auxiliary enzymes. The involvement of the cloned gene cluster in VM biosynthesis was confirmed by gene disruption of virA encoding a hybrid PKS-NRPS megasynthetase, which resulted in complete loss of VM production without any effect on VS production. To assemble the VM core structure, VirA, VirF, VirG, and VirH consisting, as a whole, of 24 domains in 8 PKS modules and 7 domains in 2 NRPS modules were predicted to act as an acyltransferase (AT)-less hybrid PKS-NRPS, whereas VirB, VirC, VirD, and VirE are likely to be essential for the incorporation of the methyl group into the VM framework by a HMG-CoA synthase-based reaction. Among several uncommon features of gene organization in the VM gene cluster, the lack of AT domain in every PKS module and the presence of a discrete AT encoded by virI are notable. AT-overexpression by an additional copy of virI driven by ermEp() resulted in 1.5-fold increase of VM production, suggesting that the amount of VirI is partly limiting VM biosynthesis.

  15. Differential expression of anthocyanin biosynthetic genes in relation to anthocyanin accumulation in the pericarp of Litchi chinensis Sonn.

    Science.gov (United States)

    Wei, Yong-Zan; Hu, Fu-Chu; Hu, Gui-Bing; Li, Xiao-Jing; Huang, Xu-Ming; Wang, Hui-Cong

    2011-04-29

    Litchi has diverse fruit color phenotypes, yet no research reflects the biochemical background of this diversity. In this study, we evaluated 12 litchi cultivars for chromatic parameters and pigments, and investigated the effects of abscisic acid, forchlorofenron (CPPU), bagging and debagging treatments on fruit coloration in cv. Feizixiao, an unevenly red cultivar. Six genes encoding chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS) and UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT) were isolated from the pericarp of the fully red litchi cv. Nuomici, and their expression was analyzed in different cultivars and under the above mentioned treatments. Pericarp anthocyanin concentration varied from none to 734 mg m(-2) among the 12 litchi cultivars, which were divided into three coloration types, i.e. non-red ('Kuixingqingpitian', 'Xingqiumili', 'Yamulong'and 'Yongxing No. 2'), unevenly red ('Feizixiao' and 'Sanyuehong') and fully red ('Meiguili', 'Baila', Baitangying' 'Guiwei', 'Nuomici' and 'Guinuo'). The fully red type cultivars had different levels of anthocyanin but with the same composition. The expression of the six genes, especially LcF3H, LcDFR, LcANS and LcUFGT, in the pericarp of non-red cultivars was much weaker as compared to those red cultivars. Their expression, LcDFR and LcUFGT in particular, was positively correlated with anthocyanin concentrations in the pericarp. These results suggest the late genes in the anthocyanin biosynthetic pathway were coordinately expressed during red coloration of litchi fruits. Low expression of these genes resulted in absence or extremely low anthocyanin accumulation in non-red cultivars. Zero-red pericarp from either immature or CPPU treated fruits appeared to be lacking in anthocyanins due to the absence of UFGT expression. Among these six genes, only the expression of UFGT was found significantly correlated with the

  16. Differential expression of anthocyanin biosynthetic genes in relation to anthocyanin accumulation in the pericarp of Litchi chinensis Sonn.

    Directory of Open Access Journals (Sweden)

    Yong-Zan Wei

    Full Text Available Litchi has diverse fruit color phenotypes, yet no research reflects the biochemical background of this diversity. In this study, we evaluated 12 litchi cultivars for chromatic parameters and pigments, and investigated the effects of abscisic acid, forchlorofenron (CPPU, bagging and debagging treatments on fruit coloration in cv. Feizixiao, an unevenly red cultivar. Six genes encoding chalcone synthase (CHS, chalcone isomerase (CHI, flavanone 3-hydroxylase (F3H, dihydroflavonol 4-reductase (DFR, anthocyanidin synthase (ANS and UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT were isolated from the pericarp of the fully red litchi cv. Nuomici, and their expression was analyzed in different cultivars and under the above mentioned treatments. Pericarp anthocyanin concentration varied from none to 734 mg m(-2 among the 12 litchi cultivars, which were divided into three coloration types, i.e. non-red ('Kuixingqingpitian', 'Xingqiumili', 'Yamulong'and 'Yongxing No. 2', unevenly red ('Feizixiao' and 'Sanyuehong' and fully red ('Meiguili', 'Baila', Baitangying' 'Guiwei', 'Nuomici' and 'Guinuo'. The fully red type cultivars had different levels of anthocyanin but with the same composition. The expression of the six genes, especially LcF3H, LcDFR, LcANS and LcUFGT, in the pericarp of non-red cultivars was much weaker as compared to those red cultivars. Their expression, LcDFR and LcUFGT in particular, was positively correlated with anthocyanin concentrations in the pericarp. These results suggest the late genes in the anthocyanin biosynthetic pathway were coordinately expressed during red coloration of litchi fruits. Low expression of these genes resulted in absence or extremely low anthocyanin accumulation in non-red cultivars. Zero-red pericarp from either immature or CPPU treated fruits appeared to be lacking in anthocyanins due to the absence of UFGT expression. Among these six genes, only the expression of UFGT was found significantly correlated

  17. Anthocyanin accumulation and expression of anthocyanin biosynthetic genes in radish (Raphanus sativus).

    Science.gov (United States)

    Park, Nam Il; Xu, Hui; Li, Xiaohua; Jang, In Hyuk; Park, Suhyoung; Ahn, Gil Hwan; Lim, Yong Pyo; Kim, Sun Ju; Park, Sang Un

    2011-06-08

    Radish [Raphanus sativus (Rs)] is an important dietary vegetable in Asian countries, especially China, Japan, and Korea. To elucidate the molecular mechanisms of anthocyanin accumulation in radish, the gene expression of enzymes directly involved in anthocyanin biosynthesis was analyzed. These genes include phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumarate-CoA ligase (4CL), chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), dihydroflavonol reductase (DFR), and anthocyanidin synthase (ANS). RsDFR and RsANS were found to accumulate in the flesh or skin of two radish cultivars (Man Tang Hong and Hong Feng No.1). Radish skin contained higher CHS, CHI, and F3H transcript levels than radish flesh in all three cultivars. In the red radish, 16 anthocyanins were separated and identified by high-performance liquid chromatography (HPLC) and elctrospray ionization-tandem mass spectrometry (ESI-MS/MS). Some of them were acylated with coumaroyl, malonoyl, feruoyl, and caffeoyl moieties. Furthermore (-)-epicatechin and ferulic acid were also identified in the three cultivars.

  18. Water-deficit inducible expression of a cytokinin biosynthetic gene IPT improves drought tolerance in cotton.

    Directory of Open Access Journals (Sweden)

    Sundaram Kuppu

    Full Text Available Water-deficit stress is a major environmental factor that limits agricultural productivity worldwide. Recent episodes of extreme drought have severely affected cotton production in the Southwestern USA. There is a pressing need to develop cotton varieties with improved tolerance to water-deficit stress for sustainable production in water-limited regions. One approach to engineer drought tolerance is by delaying drought-induced senescence via up-regulation of cytokinin biosynthesis. The isopentenyltransferase gene (IPT that encodes a rate limiting enzyme in cytokinin biosynthesis, under the control of a water-deficit responsive and maturation specific promoter P(SARK was introduced into cotton and the performance of the P(SARK::IPT transgenic cotton plants was analyzed in the greenhouse and growth chamber conditions. The data indicate that P(SARK::IPT-transgenic cotton plants displayed delayed senescence under water deficit conditions in the greenhouse. These plants produced more root and shoot biomass, dropped fewer flowers, maintained higher chlorophyll content, and higher photosynthetic rates under reduced irrigation conditions in comparison to wild-type and segregated non-transgenic lines. Furthermore, P(SARK::IPT-transgenic cotton plants grown in growth chamber condition also displayed greater drought tolerance. These results indicate that water-deficit induced expression of an isopentenyltransferase gene in cotton could significantly improve drought tolerance.

  19. Integrated analysis of gene expression by association rules discovery

    Directory of Open Access Journals (Sweden)

    Carazo Jose M

    2006-02-01

    Full Text Available Abstract Background Microarray technology is generating huge amounts of data about the expression level of thousands of genes, or even whole genomes, across different experimental conditions. To extract biological knowledge, and to fully understand such datasets, it is essential to include external biological information about genes and gene products to the analysis of expression data. However, most of the current approaches to analyze microarray datasets are mainly focused on the analysis of experimental data, and external biological information is incorporated as a posterior process. Results In this study we present a method for the integrative analysis of microarray data based on the Association Rules Discovery data mining technique. The approach integrates gene annotations and expression data to discover intrinsic associations among both data sources based on co-occurrence patterns. We applied the proposed methodology to the analysis of gene expression datasets in which genes were annotated with metabolic pathways, transcriptional regulators and Gene Ontology categories. Automatically extracted associations revealed significant relationships among these gene attributes and expression patterns, where many of them are clearly supported by recently reported work. Conclusion The integration of external biological information and gene expression data can provide insights about the biological processes associated to gene expression programs. In this paper we show that the proposed methodology is able to integrate multiple gene annotations and expression data in the same analytic framework and extract meaningful associations among heterogeneous sources of data. An implementation of the method is included in the Engene software package.

  20. Mouse models for the discovery of colorectal cancer driver genes.

    Science.gov (United States)

    Clark, Christopher R; Starr, Timothy K

    2016-01-14

    Colorectal cancer (CRC) constitutes a major public health problem as the third most commonly diagnosed and third most lethal malignancy worldwide. The prevalence and the physical accessibility to colorectal tumors have made CRC an ideal model for the study of tumor genetics. Early research efforts using patient derived CRC samples led to the discovery of several highly penetrant mutations (e.g., APC, KRAS, MMR genes) in both hereditary and sporadic CRC tumors. This knowledge has enabled researchers to develop genetically engineered and chemically induced tumor models of CRC, both of which have had a substantial impact on our understanding of the molecular basis of CRC. Despite these advances, the morbidity and mortality of CRC remains a cause for concern and highlight the need to uncover novel genetic drivers of CRC. This review focuses on mouse models of CRC with particular emphasis on a newly developed cancer gene discovery tool, the Sleeping Beauty transposon-based mutagenesis model of CRC.

  1. Variation in siderophore biosynthetic gene distribution and production across environmental and faecal populations of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Laura J Searle

    Full Text Available Iron is essential for Escherichia coli growth and survival in the host and the external environment, but its availability is generally low due to the poor solubility of its ferric form in aqueous environments and the presence of iron-withholding proteins in the host. Most E. coli can increase access to iron by excreting siderophores such as enterobactin, which have a very strong affinity for Fe3+. A smaller proportion of isolates can generate up to 3 additional siderophores linked with pathogenesis; aerobactin, salmochelin, and yersiniabactin. However, non-pathogenic E. coli are also able to synthesise these virulence-associated siderophores. This raises questions about their role in the ecology of E. coli, beyond virulence, and whether specific siderophores might be linked with persistence in the external environment. Under the assumption that selection favours phenotypes that confer a fitness advantage, we compared siderophore production and gene distribution in E. coli isolated either from agricultural plants or the faeces of healthy mammals. This population-level comparison has revealed that under iron limiting growth conditions plant-associated isolates produced lower amounts of siderophores than faecal isolates. Additionally, multiplex PCR showed that environmental isolates were less likely to contain loci associated with aerobactin and yersiniabactin synthesis. Although aerobactin was linked with strong siderophore excretion, a significant difference in production was still observed between plant and faecal isolates when the analysis was restricted to strains only able to synthesise enterobactin. This finding suggests that the regulatory response to iron limitation may be an important trait associated with adaptation to the non-host environment. Our findings are consistent with the hypothesis that the ability to produce multiple siderophores facilitates E. coli gut colonisation and plays an important role in E. coli commensalism.

  2. Sulphate as a xylem-borne chemical signal precedes the expression of ABA biosynthetic genes in maize roots.

    Science.gov (United States)

    Ernst, Laura; Goodger, Jason Q D; Alvarez, Sophie; Marsh, Ellen L; Berla, Bert; Lockhart, Eric; Jung, Jiyul; Li, Pinghua; Bohnert, Hans J; Schachtman, Daniel P

    2010-07-01

    Recent reports suggest that early sensing of soil water stress by plant roots and the concomitant reduction in stomatal conductance may not be mediated by root-sourced abscisic acid (ABA), but that other xylem-borne chemicals may be the primary stress signal(s). To gain more insight into the role of root-sourced ABA, the timing and location of the expression of genes for key enzymes involved in ABA biosynthesis in Zea mays roots was measured and a comprehensive analysis of root xylem sap constituents from the early to the later stages of water stress was conducted. Xylem sap and roots were sampled from plants at an early stage of water stress when only a reduction in leaf conductance was measured, as well as at later stages when leaf xylem pressure potential decreased. It was found that the majority of ABA biosynthetic genes examined were only significantly expressed in the elongation region of roots at a later stage of water stress. Apart from ABA, sulphate was the only xylem-borne chemical that consistently showed significantly higher concentrations from the early to the later stages of stress. Moreover, there was an interactive effect of ABA and sulphate in decreasing maize transpiration rate and Vicia faba stomatal aperture, as compared to ABA alone. The expression of a sulphate transporter gene was also analysed and it was found that it had increased in the elongation region of roots from the early to the later stages of water stress. Our results support the suggestion that in the early stage of water stress, increased levels of ABA in xylem sap may not be due to root biosynthesis, ABA glucose ester catabolism or pH-mediated redistribution, but may be due to shoot biosynthesis and translocation to the roots. The analysis of xylem sap mineral content and bioassays indicate that the anti-transpirant effect of the ABA reaching the stomata at the early stages of water stress may be enhanced by the increased concentrations of sulphate in the xylem which is also

  3. CYP99A3: Functional identification of a diterpene oxidase from the momilactone biosynthetic gene cluster in rice

    Science.gov (United States)

    Wang, Qiang; Hillwig, Matthew L.; Peters, Reuben J.

    2013-01-01

    SUMMARY Rice (Oryza sativa) produces momilactone diterpenoids as both phytoalexins and allelochemicals. Strikingly, the rice genome contains a biosynthetic gene cluster for momilactone production, located on rice chromosome 4, which contains two cytochromes P450 mono-oxygenases, CYP99A2 and CYP99A3, with undefined roles; although it has been previously shown that RNAi double knock-down of this pair of closely related CYP reduced momilactone accumulation. Here we attempted biochemical characterization of CYP99A2 and CYP99A3, which ultimately was achieved by complete gene recoding, enabling functional recombinant expression in bacteria. With these synthetic gene constructs it was possible to demonstrate that, while CYP99A2 does not exhibit significant activity with diterpene substrates, CYP99A3 catalyzes consecutive oxidations of the C19 methyl group of the momilactone precursor syn-pimara-7,15-diene to form, sequentially, syn-pimaradien-19-ol, syn-pimaradien-19-al and syn-pimaradien-19-oic acid. These are presumably intermediates in momilactone biosynthesis, as a C19 carboxylic acid moiety is required for formation of the core 19,6-γ-lactone ring structure. We further were able to detect syn-pimaradien-19-oic acid in rice plants, which indicates physiological relevance for the observed activity of CYP99A3. In addition, we found that CYP99A3 also oxidized syn-stemod-13(17)-ene at C19 to produce, sequentially, syn-stemoden-19-ol, syn-stemoden-19-al and syn-stemoden-19-oic acid, albeit with lower catalytic efficiency than with syn-pimaradiene. Although the CYP99A3 syn-stemodene derived products were not detected in planta, these results nevertheless provide a hint at the currently unknown metabolic fate of this diterpene in rice. Regardless of any wider role, our results strongly indicate that CYP99A3 acts as a multifunctional diterpene oxidase in momilactone biosynthesis. PMID:21175892

  4. Species-independent MicroRNA Gene Discovery

    KAUST Repository

    Kamanu, Timothy K.

    2012-12-01

    MicroRNA (miRNA) are a class of small endogenous non-coding RNA that are mainly negative transcriptional and post-transcriptional regulators in both plants and animals. Recent studies have shown that miRNA are involved in different types of cancer and other incurable diseases such as autism and Alzheimer’s. Functional miRNAs are excised from hairpin-like sequences that are known as miRNA genes. There are about 21,000 known miRNA genes, most of which have been determined using experimental methods. miRNA genes are classified into different groups (miRNA families). This study reports about 19,000 unknown miRNA genes in nine species whereby approximately 15,300 predictions were computationally validated to contain at least one experimentally verified functional miRNA product. The predictions are based on a novel computational strategy which relies on miRNA family groupings and exploits the physics and geometry of miRNA genes to unveil the hidden palindromic signals and symmetries in miRNA gene sequences. Unlike conventional computational miRNA gene discovery methods, the algorithm developed here is species-independent: it allows prediction at higher accuracy and resolution from arbitrary RNA/DNA sequences in any species and thus enables examination of repeat-prone genomic regions which are thought to be non-informative or ’junk’ sequences. The information non-redundancy of uni-directional RNA sequences compared to information redundancy of bi-directional DNA is demonstrated, a fact that is overlooked by most pattern discovery algorithms. A novel method for computing upstream and downstream miRNA gene boundaries based on mathematical/statistical functions is suggested, as well as cutoffs for annotation of miRNA genes in different miRNA families. Another tool is proposed to allow hypotheses generation and visualization of data matrices, intra- and inter-species chromosomal distribution of miRNA genes or miRNA families. Our results indicate that: miRNA and mi

  5. Identification of transcriptional activators for thienamycin and cephamycin C biosynthetic genes within the thienamycin gene cluster from Streptomyces cattleya.

    Science.gov (United States)

    Rodríguez, Miriam; Núñez, Luz Elena; Braña, Alfredo F; Méndez, Carmen; Salas, José A; Blanco, Gloria

    2008-08-01

    Two regulatory genes, thnI and thnU, were identified in the thienamycin (thn) gene cluster from Streptomyces cattleya. ThnI resembles LysR-type transcriptional activators and ThnU belongs to the SARP family of transcriptional activators. Their functional role was established after independent inactivation by gene replacement together with transcriptional analysis involving reverse transcription polymerase chain reaction (RT-PCR). Deletion of thnI abolished thienamycin production showing its involvement in thienamycin biosynthesis. Gene expression analysis applied to the thn gene cluster demonstrated that ThnI is a transcriptional activator essential for thienamycin biosynthesis that regulates the expression of nine genes involved in thienamycin assembly and export (thnH, thnJ, thnK, thnL, thnM, thnN, thnO, thnP and thnQ). Unexpectedly, the thnU disrupted mutant was not affected in thienamycin production but turned out to be essential for cephamycin C biosynthesis. Transcript analysis applied to early and late structural genes for cephamycin C biosynthesis (pcbAB and cmcI), revealed that ThnU is the transcriptional activator of these cephamycin C genes although they are not physically linked to the thn cluster. In addition, it was shown that deletion of thnI has an upregulatory effect on pcbAB and cmcI transcription consistent with a significant increase in cephamycin C biosynthesis in this mutant.

  6. The efflux pump MlcE from the Penicillium solitum compactin biosynthetic gene cluster increases Saccharomyces cerevisiae resistance to natural statins

    DEFF Research Database (Denmark)

    Ley, Ana; Frandsen, Rasmus John Normand

    The use of statins as cholesterol-lowering drugs is based on their ability to inhibit 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), the key enzyme in the mevalonate pathway, which is responsible for the production of ergosterol in fungi and cholesterol in human. Industrial scale...... integrated a putative efflux pump-encoding gene mlcE from the P. solitum compactin biosynthetic gene cluster into S. cerevisiae genome. The resulting strain was tested for susceptibility to statins by growing the strain on media containing statins. The constructed strain showed an increased resistance...

  7. Application of an Efficient Gene Targeting System Linking Secondary Metabolites to their Biosynthetic Genes in Aspergillus terreus

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Chun-Jun; Knox, Benjamin P.; Sanchez, James F.; Chiang, Yi-Ming; Bruno, Kenneth S.; Wang, Clay C.

    2013-07-19

    Nonribosomal peptides (NRPs) are natural products biosynthesized by NRP synthetases. A kusA-, pyrG- mutant strain of Aspergillusterreus NIH 2624 was developed that greatly facilitated the gene targeting efficiency in this organism. Application of this tool allowed us to link four major types of NRP related secondary metabolites to their responsible genes in A. terreus. In addition, an NRP related melanin synthetase was also identified in this species.

  8. Identification of anrF gene, a homology of admM of andrimid biosynthetic gene cluster related to the antagonistic activity of Enterobacter cloacae B8

    Institute of Scientific and Technical Information of China (English)

    Xu-Ping Yu; Jun-Li Zhu; Xue-Ping Yao; Shi-Cheng He; Hai-Ning Huang; Wei-Liang Chen; Yong-Hao Hu; De-Bao Li

    2005-01-01

    AIM: To identify the gene (s) related to the antagonistic activity of Enterobacter cloacae B8 and to elucidate its antagonistic mechanism.METHODS: Transposon-mediated mutagenesis and tagging method and cassette PCR-based chromosomal walking method were adopted to isolate the mutant strain(s) of B8 that lost the antagonistic activity and to clone DNA fragments around Tn5 insertion site. Sequence compiling and open reading frame (ORF) finding were done with DNAStar program and homologous sequence and conserved domain searches were performed with BlastN or BlastP programs at www. ncbi.nlm.nih.gov. To verify the gene involved in the antagonistic activity, complementation of a full-length clone of the anrFgene to the mutant B8F strain was used.RESULTS: A 3 321 bp contig around the Tn5 insertion site was obtained and an ORF of 2 634 bp in length designated as anrFgene encoding for a 877 aa polyketide synthase-like protein was identified. It had a homology of 83% at the nucleotide level and 79% ID/87% SIM at the protein level, to the admM gene of Pantoea agglornerans andrimid biosynthetic gene cluster (AY192157). The Tn5was inserted at 2 420 bp of the gene corresponding to the COG3319 (the thioesterase domain of type Ⅰ polyketide synthase) coding region on B8F. The antagonistic activity against Xanthomonas oryzae pv. oryzae was resumed with complementation of the full-length anrFgene to the mutant B8F.CONCLUSION: The anrFgene obtained is related to the antagonistic activity of B8, and the antagonistic substances produced by B8 are andrimid and/or its analogs.

  9. The Biosynthesis of Capuramycin-type Antibiotics: IDENTIFICATION OF THE A-102395 BIOSYNTHETIC GENE CLUSTER, MECHANISM OF SELF-RESISTANCE, AND FORMATION OF URIDINE-5'-CARBOXAMIDE.

    Science.gov (United States)

    Cai, Wenlong; Goswami, Anwesha; Yang, Zhaoyong; Liu, Xiaodong; Green, Keith D; Barnard-Britson, Sandra; Baba, Satoshi; Funabashi, Masanori; Nonaka, Koichi; Sunkara, Manjula; Morris, Andrew J; Spork, Anatol P; Ducho, Christian; Garneau-Tsodikova, Sylvie; Thorson, Jon S; Van Lanen, Steven G

    2015-05-29

    A-500359s, A-503083s, and A-102395 are capuramycin-type nucleoside antibiotics that were discovered using a screen to identify inhibitors of bacterial translocase I, an essential enzyme in peptidoglycan cell wall biosynthesis. Like the parent capuramycin, A-500359s and A-503083s consist of three structural components: a uridine-5'-carboxamide (CarU), a rare unsaturated hexuronic acid, and an aminocaprolactam, the last of which is substituted by an unusual arylamine-containing polyamide in A-102395. The biosynthetic gene clusters for A-500359s and A-503083s have been reported, and two genes encoding a putative non-heme Fe(II)-dependent α-ketoglutarate:UMP dioxygenase and an l-Thr:uridine-5'-aldehyde transaldolase were uncovered, suggesting that C-C bond formation during assembly of the high carbon (C6) sugar backbone of CarU proceeds from the precursors UMP and l-Thr to form 5'-C-glycyluridine (C7) as a biosynthetic intermediate. Here, isotopic enrichment studies with the producer of A-503083s were used to indeed establish l-Thr as the direct source of the carboxamide of CarU. With this knowledge, the A-102395 gene cluster was subsequently cloned and characterized. A genetic system in the A-102395-producing strain was developed, permitting the inactivation of several genes, including those encoding the dioxygenase (cpr19) and transaldolase (cpr25), which abolished the production of A-102395, thus confirming their role in biosynthesis. Heterologous production of recombinant Cpr19 and CapK, the transaldolase homolog involved in A-503083 biosynthesis, confirmed their expected function. Finally, a phosphotransferase (Cpr17) conferring self-resistance was functionally characterized. The results provide the opportunity to use comparative genomics along with in vivo and in vitro approaches to probe the biosynthetic mechanism of these intriguing structures.

  10. Genome-enabled Discovery of Carbon Sequestration Genes

    Energy Technology Data Exchange (ETDEWEB)

    Tuskan, Gerald A [ORNL; Tschaplinski, Timothy J [ORNL; Kalluri, Udaya C [ORNL; Yin, Tongming [ORNL; Yang, Xiaohan [ORNL; Zhang, Xinye [ORNL; Engle, Nancy L [ORNL; Ranjan, Priya [ORNL; Basu, Manojit M [ORNL; Gunter, Lee E [ORNL; Jawdy, Sara [ORNL; Martin, Madhavi Z [ORNL; Campbell, Alina S [ORNL; DiFazio, Stephen P [ORNL; Davis, John M [University of Florida; Hinchee, Maud [ORNL; Pinnacchio, Christa [U.S. Department of Energy, Joint Genome Institute; Meilan, R [Purdue University; Busov, V. [Michigan Technological University; Strauss, S [Oregon State University

    2009-01-01

    The fate of carbon below ground is likely to be a major factor determining the success of carbon sequestration strategies involving plants. Despite their importance, molecular processes controlling belowground C allocation and partitioning are poorly understood. This project is leveraging the Populus trichocarpa genome sequence to discover genes important to C sequestration in plants and soils. The focus is on the identification of genes that provide key control points for the flow and chemical transformations of carbon in roots, concentrating on genes that control the synthesis of chemical forms of carbon that result in slower turnover rates of soil organic matter (i.e., increased recalcitrance). We propose to enhance carbon allocation and partitioning to roots by 1) modifying the auxin signaling pathway, and the invertase family, which controls sucrose metabolism, and by 2) increasing root proliferation through transgenesis with genes known to control fine root proliferation (e.g., ANT), 3) increasing the production of recalcitrant C metabolites by identifying genes controlling secondary C metabolism by a major mQTL-based gene discovery effort, and 4) increasing aboveground productivity by enhancing drought tolerance to achieve maximum C sequestration. This broad, integrated approach is aimed at ultimately enhancing root biomass as well as root detritus longevity, providing the best prospects for significant enhancement of belowground C sequestration.

  11. Hydroxycinnamic acids and UV-B depletion: Profiling and biosynthetic gene expression in flesh and peel of wild-type and hp-1.

    Science.gov (United States)

    Calvenzani, Valentina; Castagna, Antonella; Ranieri, Annamaria; Tonelli, Chiara; Petroni, Katia

    2015-06-01

    Hydroxycinnamic acids (HCAs) are phenolic compounds widely found in most plant families. Aim of the present work was to investigate their accumulation and biosynthetic gene expression in presence or absence of UV-B radiation in tomato fruits of wild-type and hp-1, a mutant characterized by exaggerated photoresponsiveness and increased fruit pigmentation. Gene expression and HCAs content were higher in hp-1 than in wild type peel and UV-B depletion determined a decrease in HCAs accumulation in wild-type and an increase in hp-1 fruits, generally in accordance with biosynthetic gene expression. In flesh, despite a similar transcript level of most genes between the two genotypes, HCAs content was generally higher in wild type than in hp-1, although remaining at a lower level with respect to wild type peel. Under UV-B depletion, a general reduction of HCAs content was observed in wild-type flesh, whereas an increase in the content of p-coumaric acid and caffeic acid was observed in hp-1 flesh.

  12. Inflammatory bowel disease gene discovery. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-09

    The ultimate goal of this project is to identify the human gene(s) responsible for the disorder known as IBD. The work was planned in two phases. The desired products resulting from Phase 1 were BAC clone(s) containing the genetic marker(s) identified by gene/Networks, Inc. as potentially linked to IBD, plasmid subclones of those BAC(s), and new genetic markers developed from these plasmid subclones. The newly developed markers would be genotyped by gene/Networks, Inc. to ascertain evidence for linkage or non-linkage of IBD to this region. If non-linkage was indicated, the project would move to investigation of other candidate chromosomal regions. Where linkage was indicated, the project would move to Phase 2, in which a physical map of the candidate region(s) would be developed. The products of this phase would be contig(s) of BAC clones in the region exhibiting linkage to IBD, as well as plasmic subclones of the BACs and further genetic marker development. There would also be continued genotyping with new polymorphic markers during this phase. It was anticipated that clones identified and developed during these two phases would provide the physical resources for eventual disease gene discovery.

  13. Ribozymes: applications to functional analysis and gene discovery.

    Science.gov (United States)

    Shiota, Maki; Sano, Masayuki; Miyagishi, Makoto; Taira, Kazunari

    2004-08-01

    Ribozymes are catalytic RNA molecules that cleave RNAs with high specificity. Since the discovery of these non-protein enzymes, the rapidly developing field of ribozymes has been of particular interest because of the potential utility of ribozymes as tools for reversed genetics. However, despite extensive efforts, the activity of ribozymes in vivo has not usually been high enough to achieve the desirable biological effects. Now, by the use of RNA polymerase III (pol III) promoters, the ribozyme activity in cells has been successfully improved by developing efficient transport systems for the transcripts to the cytoplasm. In addition, it is possible to cleave a specific target RNA in cells by using an allosterically controllable ribozyme or an RNA-protein hybrid ribozyme. These ribozymes are potentially applicable to molecular gene therapy and efficient gene discovery systems. Furthermore, the developed pol III expression system is applicable to the expression of small interfering RNAs (siRNAs). The advantage of such ribozymes over siRNAs is the high specificity of the ribozyme that would not cause interferon responses.

  14. Expression of. Arabidopsis tryptophan biosynthetic pathway genes: effect of the 5’ coding region of phosphoribosylanthranilate isomerase gene

    Institute of Scientific and Technical Information of China (English)

    何奕昆; 刘新仿; 李家洋

    1999-01-01

    There are three non-allelic isogenes encoding phosphoribosylanthranilate isomerase (PAI) in Arabidopsis thaliana. The expression plasmids were constructed by fusion of the GUS reporter gene to the three PAI promoters with or without the 5’ region encoding PAI N-terminal polypeptides and transferred into Arabidopsis plants by Agrobacterium tumefaciens. Analysis of GUS activity revealed that the PAI 5’ coding region was necessary for high expression of GUS activity. GUS activity in transgenic plants transformed with the expression plasmids containing the 5’ coding region of PAI1 or PAI3 was 60—100-fold higher than that without the corresponding 5’ region. However, the effect of 5’ coding region of PAI2 gene on the GUS activity was very small (only about 1 time difference). The GUS histochemical staining showed a similar result as revealed by GUS activity assay. It was expressed in the mesophyll cells and guard cells, but not in the epidermic cells, indicating that the N-terminal polypeptides encoded by t

  15. Genome mining of the Streptomyces avermitilis genome and development of genome-minimized hosts for heterologous expression of biosynthetic gene clusters.

    Science.gov (United States)

    Ikeda, Haruo; Kazuo, Shin-ya; Omura, Satoshi

    2014-02-01

    To date, several actinomycete genomes have been completed and annotated. Among them, Streptomyces microorganisms are of major pharmaceutical interest because they are a rich source of numerous secondary metabolites. S. avermitilis is an industrial microorganism used for the production of an anthelmintic agent, avermectin, which is a commercially important antiparasitic agent in human and veterinary medicine, and agricultural pesticides. Genome analysis of S. avermitilis provides significant information for not only industrial applications but also understanding the features of this genus. On genome mining of S. avermitilis, the microorganism has been found to harbor at least 38 secondary metabolic gene clusters and 46 insertion sequence (IS)-like sequences on the genome, which have not been searched so far. A significant use of the genome data of Streptomyces microorganisms is the construction of a versatile host for heterologous expression of exogenous biosynthetic gene clusters by genetic engineering. Since S. avermitilis is used as an industrial microorganism, the microorganism is already optimized for the efficient supply of primary metabolic precursors and biochemical energy to support multistep biosynthesis. The feasibility of large-deletion mutants of S. avermitilis has been confirmed by heterologous expression of more than 20 exogenous biosynthetic gene clusters.

  16. Seasonal alteration in amounts of lignans and their glucosides and gene expression of the relevant biosynthetic enzymes in the Forsythia suspense leaf.

    Science.gov (United States)

    Morimoto, Kinuyo; Satake, Honoo

    2013-01-01

    Lignans of Forsythia spp. are essential components of various Chinese medicines and health diets. However, the seasonal alteration in lignan amounts and the gene expression profile of lignan-biosynthetic enzymes has yet to be investigated. In this study, we have assessed seasonal alteration in amounts of major lignans, such as pinoresinol, matairesinol, and arctigenin, and examined the gene expression profile of pinoresinol/lariciresinol reductase (PLR), pinoresinol-glucosylating enzyme (UGT71A18), and secoisolariciresinol dehydrogenase (SIRD) in the leaf of Forsythia suspense from April to November. All of the lignans in the leaf continuously increased from April to June, reached the maximal level in June, and then decreased. Ninety percent of pinoresinol and matairesinol was converted into glucosides, while approximately 50% of arctigenin was aglycone. PLR was stably expressed from April to August, whereas the PLR expression was not detected from September to November. In contrast, the UGT71A18 expression was found from August to November, but not from April to July. The SIRD expression was prominent from April to May, not detected in June to July, and then increased again from September to November. These expression profiles of the lignan-synthetic enzymes are largely compatible with the alteration in lignan contents. Furthermore, such seasonal lignan profiles are in good agreement with the fact that the Forsythia leaves for Chinese medicinal tea are harvested in June. This is the first report on seasonal alteration in lignans and the relevant biosynthetic enzyme genes in the leaf of Forsythia species.

  17. Inhibitory effect of eugenol on aflatoxin B1 production in Aspergillus parasiticus by downregulating the expression of major genes in the toxin biosynthetic pathway.

    Science.gov (United States)

    Jahanshiri, Zahra; Shams-Ghahfarokhi, Masoomeh; Allameh, Abdolamir; Razzaghi-Abyaneh, Mehdi

    2015-07-01

    Aflatoxin contamination of grains and agro-products is a serious food safety issue and a significant economic concern worldwide. In the present study, the effects of eugenol on Aspergillus parasiticus growth and aflatoxin production were studied in relation to the expression of some essential genes involved in aflatoxin biosynthetic pathway. The fungus was cultured in presence of serial two-fold concentrations of eugenol (15.62-500 μg mL(-1)) for 3 days at 28 °C. Mycelia dry weight was determined as an index of fungal growth, while aflatoxin production was assessed by high performance liquid chromatography. The expression of aflatoxin biosynthetic genes including ver-1, nor-1, pksA, omtA and aflR were evaluated by real-time PCR. Eugenol strongly inhibited A. parasiticus growth in the range of 19.16-95.83 % in a dose-dependent manner. Aflatoxin B1 production was also inhibited by the compound in the range of 15.07-98.0 %. The expressions of ver-1, nor-1, pksA, omtA and aflR genes were significantly suppressed by eugenol at concentrations of 62.5 and 125 μg mL(-1). These results indicate that eugenol may be considered as a good candidate to control toxigenic fungal growth and the subsequent contamination of food, feed and agricultural commodities by carcinogenic aflatoxins.

  18. An efficient approach to finding Siraitia grosvenorii triterpene biosynthetic genes by RNA-seq and digital gene expression analysis

    Directory of Open Access Journals (Sweden)

    Song Cai

    2011-07-01

    Full Text Available Abstract Background Siraitia grosvenorii (Luohanguo is an herbaceous perennial plant native to southern China and most prevalent in Guilin city. Its fruit contains a sweet, fleshy, edible pulp that is widely used in traditional Chinese medicine. The major bioactive constituents in the fruit extract are the cucurbitane-type triterpene saponins known as mogrosides. Among them, mogroside V is nearly 300 times sweeter than sucrose. However, little is known about mogrosides biosynthesis in S. grosvenorii, especially the late steps of the pathway. Results In this study, a cDNA library generated from of equal amount of RNA taken from S. grosvenorii fruit at 50 days after flowering (DAF and 70 DAF were sequenced using Illumina/Solexa platform. More than 48,755,516 high-quality reads from a cDNA library were generated that was assembled into 43,891 unigenes. De novo assembly and gap-filling generated 43,891 unigenes with an average sequence length of 668 base pairs. A total of 26,308 (59.9% unique sequences were annotated and 11,476 of the unique sequences were assigned to specific metabolic pathways by the Kyoto Encyclopedia of Genes and Genomes. cDNA sequences for all of the known enzymes involved in mogrosides backbone synthesis were identified from our library. Additionally, a total of eighty-five cytochrome P450 (CYP450 and ninety UDP-glucosyltransferase (UDPG unigenes were identified, some of which appear to encode enzymes responsible for the conversion of the mogroside backbone into the various mogrosides. Digital gene expression profile (DGE analysis using Solexa sequencing was performed on three important stages of fruit development, and based on their expression pattern, seven CYP450s and five UDPGs were selected as the candidates most likely to be involved in mogrosides biosynthesis. Conclusion A combination of RNA-seq and DGE analysis based on the next generation sequencing technology was shown to be a powerful method for identifying

  19. Genome mining of astaxanthin biosynthetic genes from Sphingomonas sp. ATCC 55669 for heterologous overproduction in Escherichia coli

    OpenAIRE

    Ma, Tian; Zhou, Yuanjie; Li, Xiaowei; Zhu, Fayin; Cheng, Yongbo; Liu, Yi; Deng, Zixin; Liu, Tiangang

    2015-01-01

    Abstract As a highly valued keto‐carotenoid, astaxanthin is widely used in nutritional supplements and pharmaceuticals. Therefore, the demand for biosynthetic astaxanthin and improved efficiency of astaxanthin biosynthesis has driven the investigation of metabolic engineering of native astaxanthin producers and heterologous hosts. However, microbial resources for astaxanthin are limited. In this study, we found that the α‐Proteobacterium Sphingomonas sp. ATCC 55669 could produce astaxanthin n...

  20. Psychiatric gene discoveries shape evidence on ADHD's biology

    Science.gov (United States)

    Thapar, A; Martin, J; Mick, E; Arias Vásquez, A; Langley, K; Scherer, S W; Schachar, R; Crosbie, J; Williams, N; Franke, B; Elia, J; Glessner, J; Hakonarson, H; Owen, M J; Faraone, S V; O'Donovan, M C; Holmans, P

    2016-01-01

    A strong motivation for undertaking psychiatric gene discovery studies is to provide novel insights into unknown biology. Although attention-deficit hyperactivity disorder (ADHD) is highly heritable, and large, rare copy number variants (CNVs) contribute to risk, little is known about its pathogenesis and it remains commonly misunderstood. We assembled and pooled five ADHD and control CNV data sets from the United Kingdom, Ireland, United States of America, Northern Europe and Canada. Our aim was to test for enrichment of neurodevelopmental gene sets, implicated by recent exome-sequencing studies of (a) schizophrenia and (b) autism as a means of testing the hypothesis that common pathogenic mechanisms underlie ADHD and these other neurodevelopmental disorders. We also undertook hypothesis-free testing of all biological pathways. We observed significant enrichment of individual genes previously found to harbour schizophrenia de novo non-synonymous single-nucleotide variants (SNVs; P=5.4 × 10−4) and targets of the Fragile X mental retardation protein (P=0.0018). No enrichment was observed for activity-regulated cytoskeleton-associated protein (P=0.23) or N-methyl-D-aspartate receptor (P=0.74) post-synaptic signalling gene sets previously implicated in schizophrenia. Enrichment of ADHD CNV hits for genes impacted by autism de novo SNVs (P=0.019 for non-synonymous SNV genes) did not survive Bonferroni correction. Hypothesis-free testing yielded several highly significantly enriched biological pathways, including ion channel pathways. Enrichment findings were robust to multiple testing corrections and to sensitivity analyses that excluded the most significant sample. The findings reveal that CNVs in ADHD converge on biologically meaningful gene clusters, including ones now established as conferring risk of other neurodevelopmental disorders. PMID:26573769

  1. Genome Enabled Discovery of Carbon Sequestration Genes in Poplar

    Energy Technology Data Exchange (ETDEWEB)

    Filichkin, Sergei; Etherington, Elizabeth; Ma, Caiping; Strauss, Steve

    2007-02-22

    The goals of the S.H. Strauss laboratory portion of 'Genome-enabled discovery of carbon sequestration genes in poplar' are (1) to explore the functions of candidate genes using Populus transformation by inserting genes provided by Oakridge National Laboratory (ORNL) and the University of Florida (UF) into poplar; (2) to expand the poplar transformation toolkit by developing transformation methods for important genotypes; and (3) to allow induced expression, and efficient gene suppression, in roots and other tissues. As part of the transformation improvement effort, OSU developed transformation protocols for Populus trichocarpa 'Nisqually-1' clone and an early flowering P. alba clone, 6K10. Complete descriptions of the transformation systems were published (Ma et. al. 2004, Meilan et. al 2004). Twenty-one 'Nisqually-1' and 622 6K10 transgenic plants were generated. To identify root predominant promoters, a set of three promoters were tested for their tissue-specific expression patterns in poplar and in Arabidopsis as a model system. A novel gene, ET304, was identified by analyzing a collection of poplar enhancer trap lines generated at OSU (Filichkin et. al 2006a, 2006b). Other promoters include the pGgMT1 root-predominant promoter from Casuarina glauca and the pAtPIN2 promoter from Arabidopsis root specific PIN2 gene. OSU tested two induction systems, alcohol- and estrogen-inducible, in multiple poplar transgenics. Ethanol proved to be the more efficient when tested in tissue culture and greenhouse conditions. Two estrogen-inducible systems were evaluated in transgenic Populus, neither of which functioned reliably in tissue culture conditions. GATEWAY-compatible plant binary vectors were designed to compare the silencing efficiency of homologous (direct) RNAi vs. heterologous (transitive) RNAi inverted repeats. A set of genes was targeted for post transcriptional silencing in the model Arabidopsis system; these include the floral

  2. Characterization of an echinocandin B-producing strain blocked for sterigmatocystin biosynthesis reveals a translocation in the stcW gene of the aflatoxin biosynthetic pathway.

    Science.gov (United States)

    Hodges, R L; Kelkar, H S; Xuei, X; Skatrud, P L; Keller, N P; Adams, T H; Kaiser, R E; Vinci, V A; McGilvray, D

    2000-12-01

    Echinocandin B (ECB), a lipopolypeptide used as a starting material for chemical manufacture of the anti-Candida agent LY303366, is produced by fermentation using a strain of Aspergillus nidulans. In addition to ECB, the wild-type strain also produces a significant level of sterigmatocystin (ST), a potent carcinogen structurally related to the aflatoxins. Characterization of a mutant designated A42355-OC-1 (OC-1), which is blocked in ST biosynthesis, was the result of a chromosomal translocation. The chromosomal regions containing the breakpoints of the translocation were isolated and DNA sequencing and PCR analysis of the chromosomal breakpoints demonstrated the translocation occurred within the stcW gene of the ST biosynthetic pathway, resulting in disruption of the open reading frame for this gene. Biochemical feeding studies indicate the involvement of this gene product in the conversion of averufin to 1-hydroxy versicolorone. This work demonstrates an effective synergy between classical strain improvement methods and molecular genetics.

  3. Pyocyanine Biosynthetic Genes in Clinical and Environmental Isolates of Pseudomonas aeruginosa and Detection of Pyocyanine’s Antimicrobial Effects with or without Colloidal Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Afrooz Rashnonejad

    2012-01-01

    Full Text Available Objective: Pyocyanine plays an important role in the pathogenesis of Pseudomonas aeruginosa, (P. aeruginosa and is known to have inhibitory and bactericidal effects. This study has aimed to detect the phenazine biosynthetic operon (phz ABCDEFG and two phenazine modifying genes (phzM and phzS by polymerase chain reaction (PCR and detection of its possible protein bands by sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE. The antimicrobial effects of pyocyanine alone and mixed with colloidal silver nanoparticles were studied.Materials and Methods: In this descriptive study, clinical and environmental species of P. aeruginosa were isolated by thioglycollate medium culture and cetrimide agar, respectively. The existence of a phenazine biosynthetic operon and two phenazine modifying genes as well as their protein products were confirmed by PCR and SDS-PAGE, respectively. Pyocyanine was extracted with chloroform and its antimicrobial effects against bacteria such as; Escherichia coli (E. coli, P. aeruginosaand Staphylococcus aureus (S. aureus bacteria and yeast Candida albicans (C. albicans were tested using well, spot and disk diffusion methods.Results: In this study, 3 out of 48 clinical strains were unable to produce pyocyanine on cetrimide and Mueller Hinton (MH agar. Two strains did not have phenazine modifying gene bands. Another strain did not have the possible protein band of the phzM gene. Pyocyanine had antimicrobial effects against the microbial strains, which increased in the presence of silver nanoparticles.Conclusion: According to the results of the present study, some P. aeruginosa strains are unable to produce pyocyanine due to the absence of the phzM or phzS genes. Therefore, these genes have an important role in pyocyanine production in P. aeruginosa. Pyocyanine shows synergistic antimicrobial effects in the presence of silver nanoparticles against microbial strains.

  4. The Matchmaker Exchange: a platform for rare disease gene discovery.

    Science.gov (United States)

    Philippakis, Anthony A; Azzariti, Danielle R; Beltran, Sergi; Brookes, Anthony J; Brownstein, Catherine A; Brudno, Michael; Brunner, Han G; Buske, Orion J; Carey, Knox; Doll, Cassie; Dumitriu, Sergiu; Dyke, Stephanie O M; den Dunnen, Johan T; Firth, Helen V; Gibbs, Richard A; Girdea, Marta; Gonzalez, Michael; Haendel, Melissa A; Hamosh, Ada; Holm, Ingrid A; Huang, Lijia; Hurles, Matthew E; Hutton, Ben; Krier, Joel B; Misyura, Andriy; Mungall, Christopher J; Paschall, Justin; Paten, Benedict; Robinson, Peter N; Schiettecatte, François; Sobreira, Nara L; Swaminathan, Ganesh J; Taschner, Peter E; Terry, Sharon F; Washington, Nicole L; Züchner, Stephan; Boycott, Kym M; Rehm, Heidi L

    2015-10-01

    There are few better examples of the need for data sharing than in the rare disease community, where patients, physicians, and researchers must search for "the needle in a haystack" to uncover rare, novel causes of disease within the genome. Impeding the pace of discovery has been the existence of many small siloed datasets within individual research or clinical laboratory databases and/or disease-specific organizations, hoping for serendipitous occasions when two distant investigators happen to learn they have a rare phenotype in common and can "match" these cases to build evidence for causality. However, serendipity has never proven to be a reliable or scalable approach in science. As such, the Matchmaker Exchange (MME) was launched to provide a robust and systematic approach to rare disease gene discovery through the creation of a federated network connecting databases of genotypes and rare phenotypes using a common application programming interface (API). The core building blocks of the MME have been defined and assembled. Three MME services have now been connected through the API and are available for community use. Additional databases that support internal matching are anticipated to join the MME network as it continues to grow.

  5. 番茄与西瓜中番茄红素生物合成途径基因的比较分析%Comparison of Lycopene Biosynthetic Genes between Tomato and Watermelon

    Institute of Scientific and Technical Information of China (English)

    王辉; 李文丽; 王富

    2015-01-01

    为了阐明番茄和西瓜中番茄红素生物合成途径的相关基因,借助比较基因组学,在全基因组水平上对两物种间该代谢途径进行了比较分析。在番茄中共鉴定了12个番茄红素生物合成途径基因,在西瓜中发现了14个相应的番茄红素生物合成途径基因,同时将所有基因定位到相应的染色体上。番茄和西瓜中直系同源番茄红素生物合成基因在核酸水平保持在54.8%~75.0%的一致性,而西瓜中相应的旁系同源基因在核酸水平上的一致性为70.5%~74.8%。番茄与西瓜中番茄红素直系同源基因间在基因结构上高度相似。且系统进化分析发现西瓜中番茄红素生物合成关键基因PSY (Cla005425)和LCYE(Cla016840)可能与胡萝卜中的直系同源基因拥有共同的祖先。%In order to elucidate the genes related to the lycopene biosynthetic pathway in tomato and watermelon , we conducted comparative genomic analyses of lycopene biosynthetic pathway in these two crop species at a genome -wide level .We identified 12 lycopene biosynthetic genes in tomato , and found 14 relevant lycopene biosynthetic genes in watermelon .All these genes were suc-cessfully mapped on the related chromosomes .The orthologous lycopene biosynthetic genes between tomato and watermelon shared 54.8%~75.0% nucleotide sequence identity , while the relevant paralogous lycopene biosynthetic genes in watermelon shared 70.5%~74.8%nucleotide sequence identity .The structure of lycopene biosynthetic genes in tomato was highly similar to that of their orthologous genes in watermelon .Moreover, the phylogenetic trees indicated that the lycopene biosynthetic genes PSY (Cla005425) and LCYE (Cla016840) in watermelon maybe shared the same ancestor with their orthologous genes in carrot .

  6. Enrichment of provitamin A content in wheat (Triticum aestivum L.) by introduction of the bacterial carotenoid biosynthetic genes CrtB and CrtI.

    Science.gov (United States)

    Wang, Cheng; Zeng, Jian; Li, Yin; Hu, Wei; Chen, Ling; Miao, Yingjie; Deng, Pengyi; Yuan, Cuihong; Ma, Cheng; Chen, Xi; Zang, Mingli; Wang, Qiong; Li, Kexiu; Chang, Junli; Wang, Yuesheng; Yang, Guangxiao; He, Guangyuan

    2014-06-01

    Carotenoid content is a primary determinant of wheat nutritional value and affects its end-use quality. Wheat grains contain very low carotenoid levels and trace amounts of provitamin A content. In order to enrich the carotenoid content in wheat grains, the bacterial phytoene synthase gene (CrtB) and carotene desaturase gene (CrtI) were transformed into the common wheat cultivar Bobwhite. Expression of CrtB or CrtI alone slightly increased the carotenoid content in the grains of transgenic wheat, while co-expression of both genes resulted in a darker red/yellow grain phenotype, accompanied by a total carotenoid content increase of approximately 8-fold achieving 4.76 μg g(-1) of seed dry weight, a β-carotene increase of 65-fold to 3.21 μg g(-1) of seed dry weight, and a provitamin A content (sum of α-carotene, β-carotene, and β-cryptoxanthin) increase of 76-fold to 3.82 μg g(-1) of seed dry weight. The high provitamin A content in the transgenic wheat was stably inherited over four generations. Quantitative PCR analysis revealed that enhancement of provitamin A content in transgenic wheat was also a result of the highly coordinated regulation of endogenous carotenoid biosynthetic genes, suggesting a metabolic feedback regulation in the wheat carotenoid biosynthetic pathway. These transgenic wheat lines are not only valuable for breeding wheat varieties with nutritional benefits for human health but also for understanding the mechanism regulating carotenoid biosynthesis in wheat endosperm.

  7. Variation suggestive of horizontal gene transfer at a lipopolysaccharide (lps) biosynthetic locus in Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen of rice

    Science.gov (United States)

    Patil, Prabhu B; Sonti, Ramesh V

    2004-01-01

    Background In animal pathogenic bacteria, horizontal gene transfer events (HGT) have been frequently observed in genomic regions that encode functions involved in biosynthesis of the outer membrane located lipopolysaccharide (LPS). As a result, different strains of the same pathogen can have substantially different lps biosynthetic gene clusters. Since LPS is highly antigenic, the variation at lps loci is attributed to be of advantage in evading the host immune system. Although LPS has been suggested as a potentiator of plant defense responses, interstrain variation at lps biosynthetic gene clusters has not been reported for any plant pathogenic bacterium. Results We report here the complete sequence of a 12.2 kb virulence locus of Xanthomonas oryzae pv. oryzae (Xoo) encoding six genes whose products are homologous to functions involved in LPS biosynthesis and transport. All six open reading frames (ORFs) have atypical G+C content and altered codon usage, which are the hallmarks of genomic islands that are acquired by horizontal gene transfer. The lps locus is flanked by highly conserved genes, metB and etfA, respectively encoding cystathionine gamma lyase and electron transport flavoprotein. Interestingly, two different sets of lps genes are present at this locus in the plant pathogens, Xanthomonas campestris pv. campestris (Xcc) and Xanthomonas axonopodis pv. citri (Xac). The genomic island is present in a number of Xoo strains from India and other Asian countries but is not present in two strains, one from India (BXO8) and another from Nepal (Nepal624) as well as the closely related rice pathogen, Xanthomonas oryzae pv. oryzicola (Xoor). TAIL-PCR analysis indicates that sequences related to Xac are present at the lps locus in both BXO8 and Nepal624. The Xoor strain has a hybrid lps gene cluster, with sequences at the metB and etfA ends, being most closely related to sequences from Xac and the tomato pathogen, Pseudomonas syringae pv. tomato respectively

  8. De Novo Assembly and Genome Analyses of the Marine-Derived Scopulariopsis brevicaulis Strain LF580 Unravels Life-Style Traits and Anticancerous Scopularide Biosynthetic Gene Cluster

    Science.gov (United States)

    Kumar, Abhishek; Henrissat, Bernard; Arvas, Mikko; Syed, Muhammad Fahad; Thieme, Nils; Benz, J. Philipp; Sørensen, Jens Laurids; Record, Eric; Pöggeler, Stefanie; Kempken, Frank

    2015-01-01

    The marine-derived Scopulariopsis brevicaulis strain LF580 produces scopularides A and B, which have anticancerous properties. We carried out genome sequencing using three next-generation DNA sequencing methods. De novo hybrid assembly yielded 621 scaffolds with a total size of 32.2 Mb and 16298 putative gene models. We identified a large non-ribosomal peptide synthetase gene (nrps1) and supporting pks2 gene in the same biosynthetic gene cluster. This cluster and the genes within the cluster are functionally active as confirmed by RNA-Seq. Characterization of carbohydrate-active enzymes and major facilitator superfamily (MFS)-type transporters lead to postulate S. brevicaulis originated from a soil fungus, which came into contact with the marine sponge Tethya aurantium. This marine sponge seems to provide shelter to this fungus and micro-environment suitable for its survival in the ocean. This study also builds the platform for further investigations of the role of life-style and secondary metabolites from S. brevicaulis. PMID:26505484

  9. Direct cloning and heterologous expression of the salinomycin biosynthetic gene cluster from Streptomyces albus DSM41398 in Streptomyces coelicolor A3(2).

    Science.gov (United States)

    Yin, Jia; Hoffmann, Michael; Bian, Xiaoying; Tu, Qiang; Yan, Fu; Xia, Liqiu; Ding, Xuezhi; Stewart, A Francis; Müller, Rolf; Fu, Jun; Zhang, Youming

    2015-10-13

    Linear plus linear homologous recombination-mediated recombineering (LLHR) is ideal for obtaining natural product biosynthetic gene clusters from pre-digested bacterial genomic DNA in one or two steps of recombineering. The natural product salinomycin has a potent and selective activity against cancer stem cells and is therefore a potential anti-cancer drug. Herein, we separately isolated three fragments of the salinomycin gene cluster (salO-orf18) from Streptomyces albus (S. albus) DSM41398 using LLHR and assembled them into intact gene cluster (106 kb) by Red/ET and expressed it in the heterologous host Streptomyces coelicolor (S. coelicolor) A3(2). We are the first to report a large genomic region from a Gram-positive strain has been cloned using LLHR. The successful reconstitution and heterologous expression of the salinomycin gene cluster offer an attractive system for studying the function of the individual genes and identifying novel and potential analogues of complex natural products in the recipient strain.

  10. De Novo Assembly and Genome Analyses of the Marine-Derived Scopulariopsis brevicaulis Strain LF580 Unravels Life-Style Traits and Anticancerous Scopularide Biosynthetic Gene Cluster.

    Science.gov (United States)

    Kumar, Abhishek; Henrissat, Bernard; Arvas, Mikko; Syed, Muhammad Fahad; Thieme, Nils; Benz, J Philipp; Sørensen, Jens Laurids; Record, Eric; Pöggeler, Stefanie; Kempken, Frank

    2015-01-01

    The marine-derived Scopulariopsis brevicaulis strain LF580 produces scopularides A and B, which have anticancerous properties. We carried out genome sequencing using three next-generation DNA sequencing methods. De novo hybrid assembly yielded 621 scaffolds with a total size of 32.2 Mb and 16298 putative gene models. We identified a large non-ribosomal peptide synthetase gene (nrps1) and supporting pks2 gene in the same biosynthetic gene cluster. This cluster and the genes within the cluster are functionally active as confirmed by RNA-Seq. Characterization of carbohydrate-active enzymes and major facilitator superfamily (MFS)-type transporters lead to postulate S. brevicaulis originated from a soil fungus, which came into contact with the marine sponge Tethya aurantium. This marine sponge seems to provide shelter to this fungus and micro-environment suitable for its survival in the ocean. This study also builds the platform for further investigations of the role of life-style and secondary metabolites from S. brevicaulis.

  11. Risk genes for schizophrenia: translational opportunities for drug discovery.

    Science.gov (United States)

    Winchester, Catherine L; Pratt, Judith A; Morris, Brian J

    2014-07-01

    Despite intensive research over many years, the treatment of schizophrenia remains a major health issue. Current and emerging treatments for schizophrenia are based upon the classical dopamine and glutamate hypotheses of disease. Existing first and second generation antipsychotic drugs based upon the dopamine hypothesis are limited by their inability to treat all symptom domains and their undesirable side effect profiles. Third generation drugs based upon the glutamate hypothesis of disease are currently under evaluation but are more likely to be used as add on treatments. Hence there is a large unmet clinical need. A major challenge in neuropsychiatric disease research is the relatively limited knowledge of disease mechanisms. However, as our understanding of the genetic causes of the disease evolves, novel strategies for the development of improved therapeutic agents will become apparent. In this review we consider the current status of knowledge of the genetic basis of schizophrenia, including methods for identifying genetic variants associated with the disorder and how they impact on gene function. Although the genetic architecture of schizophrenia is complex, some targets amenable to pharmacological intervention can be discerned. We conclude that many challenges lie ahead but the stratification of patients according to biobehavioural constructs that cross existing disease classifications but with common genetic and neurobiological bases, offer opportunities for new approaches to effective drug discovery.

  12. The discovery of the microphthalmia locus and its gene, Mitf.

    Science.gov (United States)

    Arnheiter, Heinz

    2010-12-01

    The history of the discovery of the microphthalmia locus and its gene, now called Mitf, is a testament to the triumph of serendipity. Although the first microphthalmia mutation was discovered among the descendants of a mouse that was irradiated for the purpose of mutagenesis, the mutation most likely was not radiation induced but occurred spontaneously in one of the parents of a later breeding. Although Mitf might eventually have been identified by other molecular genetic techniques, it was first cloned from a chance transgene insertion at the microphthalmia locus. And although Mitf was found to encode a member of a well-known transcription factor family, its analysis might still be in its infancy had Mitf not turned out to be of crucial importance for the physiology and pathology of many distinct organs, including eye, ear, immune system, bone, and skin, and in particular for melanoma. In fact, near seven decades of Mitf research have led to many insights about development, function, degeneration, and malignancies of a number of specific cell types, and it is hoped that these insights will one day lead to therapies benefitting those afflicted with diseases originating in these cell types.

  13. Technology development for gene discovery and full-length sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Marcelo Bento Soares

    2004-07-19

    In previous years, with support from the U.S. Department of Energy, we developed methods for construction of normalized and subtracted cDNA libraries, and constructed hundreds of high-quality libraries for production of Expressed Sequence Tags (ESTs). Our clones were made widely available to the scientific community through the IMAGE Consortium, and millions of ESTs were produced from our libraries either by collaborators or by our own sequencing laboratory at the University of Iowa. During this grant period, we focused on (1) the development of a method for preferential cloning of tissue-specific and/or rare transcripts, (2) its utilization to expedite EST-based gene discovery for the NIH Mouse Brain Molecular Anatomy Project, (3) further development and optimization of a method for construction of full-length-enriched cDNA libraries, and (4) modification of a plasmid vector to maximize efficiency of full-length cDNA sequencing by the transposon-mediated approach. It is noteworthy that the technology developed for preferential cloning of rare mRNAs enabled identification of over 2,000 mouse transcripts differentially expressed in the hippocampus. In addition, the method that we optimized for construction of full-length-enriched cDNA libraries was successfully utilized for the production of approximately fifty libraries from the developing mouse nervous system, from which over 2,500 full-ORF-containing cDNAs have been identified and accurately sequenced in their entirety either by our group or by the NIH-Mammalian Gene Collection Program Sequencing Team.

  14. Carotenoid profiling and biosynthetic gene expression in flesh and peel of wild-type and hp-1 tomato fruit under UV-B depletion.

    Science.gov (United States)

    Lazzeri, Valerio; Calvenzani, Valentina; Petroni, Katia; Tonelli, Chiara; Castagna, Antonella; Ranieri, Annamaria

    2012-05-16

    Although light is recognized as one of the main factors influencing fruit carotenogenesis, the specific role of UV-B radiation has been poorly investigated. The present work is addressed to assess the molecular events underlying carotenoid accumulation in presence or absence of ultraviolet-B (UV-B) light in tomato fruits of wild-type and high pigment-1 (hp-1), a mutant characterized by exaggerated photoresponsiveness and increased fruit pigmentation. Gene expression analyses indicated that in wild-type fruits UV-B radiation mainly negatively affects the carotenoid biosynthetic genes encoding enzymes downstream of lycopene both in flesh and peel, suggesting that the down-regulation of genes CrtL-b and CrtL-e and the subsequent accumulation of lycopene during tomato ripening are determined at least in part by UV-B light. In contrast to wild-type, UV-B depletion did not greatly affect carotenoid accumulation in hp-1 and generally determined minor differences in gene expression between control and UV-B-depleted conditions.

  15. Yeast Extract and Silver Nitrate Induce the Expression of Phenylpropanoid Biosynthetic Genes and Induce the Accumulation of Rosmarinic Acid in Agastache rugosa Cell Culture.

    Science.gov (United States)

    Park, Woo Tae; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Yeo, Sun Kyung; Jeon, Jin; Park, Jong Seok; Lee, Sook Young; Park, Sang Un

    2016-01-01

    The present study aimed to investigate the role of yeast extract and silver nitrate on the enhancement of phenylpropanoid pathway genes and accumulation of rosmarinic acid in Agastache rugosa cell cultures. The treatment of cell cultures with yeast extract (500 mg/L) and silver nitrate (30 mg/L) for varying times enhanced the expression of genes in the phenylpropanoid pathway and the production of rosmarinic acid. The results indicated that the expression of RAS and HPPR was proportional to the amount of yeast extract and silver nitrate. The transcript levels of HPPR under yeast extract treatment were 1.84-, 1.97-, and 2.86-fold higher than the control treatments after 3, 6, and 12 h, respectively, whereas PAL expression under silver nitrate treatment was 52.31-fold higher than in the non-treated controls after 24 h of elicitation. The concentration of rosmarinic acid was directly proportional to the concentration of the applied elicitors. Yeast extract supplementation documented the highest amount of rosmarinic acid at 4.98 mg/g, whereas silver nitrate addition resulted in a comparatively lower amount of rosmarinic acid at 0.65 mg/g. In conclusion, addition of yeast extract to the cell cultures enhanced the accumulation of rosmarinic acid, which was evidenced by the expression levels of the phenylpropanoid biosynthetic pathway genes in A. rugosa.

  16. Molecular cloning and promoter analysis of the specific salicylic acid biosynthetic pathway gene phenylalanine ammonia-lyase (AaPAL1) from Artemisia annua.

    Science.gov (United States)

    Zhang, Ying; Fu, Xueqing; Hao, Xiaolong; Zhang, Lida; Wang, Luyao; Qian, Hongmei; Zhao, Jingya

    2016-07-01

    Phenylalanine ammonia-lyase (PAL) is the key enzyme in the biosynthetic pathway of salicylic acid (SA). In this study, a full-length cDNA of PAL gene (named as AaPAL1) was cloned from Artemisia annua. The gene contains an open reading frame of 2,151 bps encoding 716 amino acids. Comparative and bioinformatics analysis revealed that the polypeptide protein of AaPAL1 was highly homologous to PALs from other plant species. Southern blot analysis revealed that it belonged to a gene family with three members. Quantitative RT-PCR analysis of various tissues of A. annua showed that AaPAL1 transcript levels were highest in the young leaves. A 1160-bp promoter region was also isolated resulting in identification of distinct cis-regulatory elements including W-box, TGACG-motif, and TC-rich repeats. Quantitative RT-PCR indicated that AaPAL1 was upregulated by salinity, drought, wounding, and SA stresses, which were corroborated positively with the identified cis-elements within the promoter region. AaPAL1 was successfully expressed in Escherichia. coli and the enzyme activity of the purified AaPAL1 was approximately 287.2 U/mg. These results substantiated the involvement of AaPAL1 in the phenylalanine pathway.

  17. Gene discovery for the carcinogenic human liver fluke, Opisthorchis viverrini

    Directory of Open Access Journals (Sweden)

    Gasser Robin B

    2007-06-01

    Full Text Available Abstract Background Cholangiocarcinoma (CCA – cancer of the bile ducts – is associated with chronic infection with the liver fluke, Opisthorchis viverrini. Despite being the only eukaryote that is designated as a 'class I carcinogen' by the International Agency for Research on Cancer, little is known about its genome. Results Approximately 5,000 randomly selected cDNAs from the adult stage of O. viverrini were characterized and accounted for 1,932 contigs, representing ~14% of the entire transcriptome, and, presently, the largest sequence dataset for any species of liver fluke. Twenty percent of contigs were assigned GO classifications. Abundantly represented protein families included those involved in physiological functions that are essential to parasitism, such as anaerobic respiration, reproduction, detoxification, surface maintenance and feeding. GO assignments were well conserved in relation to other parasitic flukes, however, some categories were over-represented in O. viverrini, such as structural and motor proteins. An assessment of evolutionary relationships showed that O. viverrini was more similar to other parasitic (Clonorchis sinensis and Schistosoma japonicum than to free-living (Schmidtea mediterranea flatworms, and 105 sequences had close homologues in both parasitic species but not in S. mediterranea. A total of 164 O. viverrini contigs contained ORFs with signal sequences, many of which were platyhelminth-specific. Examples of convergent evolution between host and parasite secreted/membrane proteins were identified as were homologues of vaccine antigens from other helminths. Finally, ORFs representing secreted proteins with known roles in tumorigenesis were identified, and these might play roles in the pathogenesis of O. viverrini-induced CCA. Conclusion This gene discovery effort for O. viverrini should expedite molecular studies of cholangiocarcinogenesis and accelerate research focused on developing new interventions

  18. Identification and Expression Analysis of Glucosinolate Biosynthetic Genes and Estimation of Glucosinolate Contents in Edible Organs of Brassica oleracea Subspecies

    Directory of Open Access Journals (Sweden)

    Go-Eun Yi

    2015-07-01

    Full Text Available Glucosinolates are anti-carcinogenic, anti-oxidative biochemical compounds that defend plants from insect and microbial attack. Glucosinolates are abundant in all cruciferous crops, including all vegetable and oilseed Brassica species. Here, we studied the expression of glucosinolate biosynthesis genes and determined glucosinolate contents in the edible organs of a total of 12 genotypes of Brassica oleracea: three genotypes each from cabbage, kale, kohlrabi and cauliflower subspecies. Among the 81 genes analyzed by RT-PCR, 19 are transcription factor-related, two different sets of 25 genes are involved in aliphatic and indolic biosynthesis pathways and the rest are breakdown-related. The expression of glucosinolate-related genes in the stems of kohlrabi was remarkably different compared to leaves of cabbage and kale and florets of cauliflower as only eight genes out of 81 were expressed in the stem tissues of kohlrabi. In the stem tissue of kohlrabi, only one aliphatic transcription factor-related gene, Bol036286 (MYB28 and one indolic transcription factor-related gene, Bol030761 (MYB51, were expressed. The results indicated the expression of all genes is not essential for glucosinolate biosynthesis. Using HPLC analysis, a total of 16 different types of glucosinolates were identified in four subspecies, nine of them were aliphatic, four of them were indolic and one was aromatic. Cauliflower florets measured the highest number of 14 glucosinolates. Among the aliphatic glucosinolates, only gluconapin was found in the florets of cauliflower. Glucoiberverin and glucobrassicanapin contents were the highest in the stems of kohlrabi. The indolic methoxyglucobrassicin and aromatic gluconasturtiin accounted for the highest content in the florets of cauliflower. A further detailed investigation and analyses is required to discern the precise roles of each of the genes for aliphatic and indolic glucosinolate biosynthesis in the edible organs.

  19. Polymorphisms in monolignol biosynthetic genes are associated with biomass yield and agronomic traits in European maize (Zea mays L.)

    DEFF Research Database (Denmark)

    Chen, Yongsheng; Zein, Imad; Brenner, Everton A;

    2010-01-01

    Background Reduced lignin content leads to higher cell wall digestibility and, therefore, better forage quality and increased conversion of lignocellulosic biomass into ethanol. However, reduced lignin content might lead to weaker stalks, lodging, and reduced biomass yield. Genes encoding enzymes...

  20. Linking fungal secondary metabolites and pathways to their genes in Aspergillus

    DEFF Research Database (Denmark)

    Petersen, Lene Maj

    organisms for genetic studies and human opportunistic pathogens. The aim of this PhD study has been divided into two major topics: 1) Discovery and characterization of novel SMs from filamentous fungi 2) Linking of fungal SMs to genes and elucidation of biosynthetic pathways The first part of this study......, analytical and natural products chemistry is critical for advances in both the linking of fungal SMs to genes and unraveling the biosynthetic pathways, as well as for the discovery of novel SMs hidden in a treasury of biosynthetic potential of filamentous fungi....

  1. The inhibitory effect of Bacillus megaterium on aflatoxin and cyclopiazonic acid biosynthetic pathway gene expression in Aspergillus flavus.

    Science.gov (United States)

    Kong, Qing; Chi, Chen; Yu, Jiujiang; Shan, Shihua; Li, Qiyu; Li, Qianting; Guan, Bin; Nierman, William C; Bennett, Joan W

    2014-06-01

    Aspergillus flavus is one of the major moulds that colonize peanut in the field and during storage. The impact to human and animal health, and to the economy in agriculture and commerce, is significant since this mold produces the most potent known natural toxins, aflatoxins, which are carcinogenic, mutagenic, immunosuppressive, and teratogenic. A strain of marine Bacillus megaterium isolated from the Yellow Sea of East China was evaluated for its effect in inhibiting aflatoxin formation in A. flavus through down-regulating aflatoxin pathway gene expression as demonstrated by gene chip analysis. Aflatoxin accumulation in potato dextrose broth liquid medium and liquid minimal medium was almost totally (more than 98 %) inhibited by co-cultivation with B. megaterium. Growth was also reduced. Using expression studies, we identified the fungal genes down-regulated by co-cultivation with B. megaterium across the entire fungal genome and specifically within the aflatoxin pathway gene cluster (aflF, aflT, aflS, aflJ, aflL, aflX). Modulating the expression of these genes could be used for controlling aflatoxin contamination in crops such as corn, cotton, and peanut. Importantly, the expression of the regulatory gene aflS was significantly down-regulated during co-cultivation. We present a model showing a hypothesis of the regulatory mechanism of aflatoxin production suppression by AflS and AflR through B. megaterium co-cultivation.

  2. Expression Profiling of Glucosinolate Biosynthetic Genes in Brassica oleracea L. var. capitata Inbred Lines Reveals Their Association with Glucosinolate Content

    Directory of Open Access Journals (Sweden)

    Arif Hasan Khan Robin

    2016-06-01

    Full Text Available Glucosinolates are the biochemical compounds that provide defense to plants against pathogens and herbivores. In this study, the relative expression level of 48 glucosinolate biosynthesis genes was explored in four morphologically-different cabbage inbred lines by qPCR analysis. The content of aliphatic and indolic glucosinolate molecules present in those cabbage lines was also estimated by HPLC analysis. The possible association between glucosinolate accumulation and related gene expression level was explored by principal component analysis (PCA. The genotype-dependent variation in the relative expression level of different aliphatic and indolic glucosinolate biosynthesis genes is the novel result of this study. A total of eight different types of glucosinolates, including five aliphatic and three indolic glucosinolates, was detected in four cabbage lines. Three inbred lines BN3383, BN4059 and BN4072 had no glucoraphanin, sinigrin and gluconapin detected, but the inbred line BN3273 had these three aliphatic glucosinolate compounds. PCA revealed that a higher expression level of ST5b genes and lower expression of GSL-OH was associated with the accumulation of these three aliphatic glucosinolate compounds. PCA further revealed that comparatively higher accumulation of neoglucobrassicin in the inbred line, BN4072, was associated with a high level of expression of MYB34 (Bol017062 and CYP81F1 genes. The Dof1 and IQD1 genes probably trans-activated the genes related to biosynthesis of glucoerucin and methoxyglucobrassicin for their comparatively higher accumulation in the BN4059 and BN4072 lines compared to the other two lines, BN3273 and BN3383. A comparatively higher progoitrin level in BN3273 was probably associated with the higher expression level of the GSL-OH gene. The cabbage inbred line BN3383 accounted for the significantly higher relative expression level for the 12 genes out of 48, but this line had comparatively lower total

  3. Two genes, rif15 and rif16, of the rifamycin biosynthetic gene cluster in Amycolatopsis mediterranei likely encode a transketolase and a P450 monooxygenase,respectively, both essential for the conversion of rifamycin SV into B

    Institute of Scientific and Technical Information of China (English)

    Hua Yuan; Wei Zhao; Yi Zhong; Jin Wang; Zhongiun Qin; Xiaoming Ding; Guo-Ping Zhao

    2011-01-01

    Amycolatopsis mediterranei produces an important antibiotic rifamycin,the biosynthesis of which involves many unusual modifications.Previous work suggested a putative P450 enzyme encoded by rif16 within the rifamycin biosynthetic gene cluster (rif) was required for the conversion of the intermediate rifamycin SV into the end product rifamycin B.In this study,we genetically proved that a putative transketolase encoded by rif15 is another essential enzyme for this conversion.Expression of merely rif15 and rif16 in a rif cluster null mutant ofA.mediterranei U32 was able to convert rifamycin SV into B.However,this Rifl5- and Rifl6-mediated conversion was only detected in intact cells of A.meidterranei,but not in Streptomyce coelicolor or Mycobacterium smegmatis,suggesting that yet-characterized gene(s) in A.mediterranei other than those encoded by the rif cluster should be involved in this process.

  4. Selection for phase variation of LOS biosynthetic genes frequently occurs in progression of non-typeable Haemophilus influenzae infection from the nasopharynx to the middle ear of human patients.

    Directory of Open Access Journals (Sweden)

    Kate L Fox

    Full Text Available Surface structures in Haemophilus influenzae are subject to rapid ON/OFF switching of expression, a process termed phase variation. We analyse tetranucleotide repeats controlling phase variation in lipo-oligosaccharide (LOS genes of H. influenzae in paired isolates from both the nasopharynx and middle ears of paediatric patients with chronic or recurrent otitis media. A change in expression of at least one of the seven phase variable LOS biosynthesis genes was seen in 12 of the 21 strain pairs. Several strains showed switching of expression in multiple LOS genes, consistent with a key role for phase variable LOS biosynthetic genes in human infection.

  5. CLUSEAN: a computer-based framework for the automated analysis of bacterial secondary metabolite biosynthetic gene clusters.

    Science.gov (United States)

    Weber, T; Rausch, C; Lopez, P; Hoof, I; Gaykova, V; Huson, D H; Wohlleben, W

    2009-03-10

    Bacterial secondary metabolites are an important source of antimicrobial and cytostatic drugs. These molecules are often synthesized in a stepwise fashion by multimodular megaenzymes that are encoded in clusters of genes encoding enzymes for precursor supply and modification. In this work,we present an open source software pipeline, CLUSEAN (CLUster SEquence ANalyzer) that helps to annotate and analyze such gene clusters. CLUSEAN integrates standard analysis tools, like BLAST and HMMer, with specific tools for the identification of the functional domains and motifs in nonribosomal peptide synthetases (NRPS)/type I polyketide synthases (PKS) and the prediction of specificities of NRPS.

  6. Phase variable O antigen biosynthetic genes control expression of the major protective antigen and bacteriophage receptor in Vibrio cholerae O1.

    Directory of Open Access Journals (Sweden)

    Kimberley D Seed

    2012-09-01

    Full Text Available The Vibrio cholerae lipopolysaccharide O1 antigen is a major target of bacteriophages and the human immune system and is of critical importance for vaccine design. We used an O1-specific lytic bacteriophage as a tool to probe the capacity of V. cholerae to alter its O1 antigen and identified a novel mechanism by which this organism can modulate O antigen expression and exhibit intra-strain heterogeneity. We identified two phase variable genes required for O1 antigen biosynthesis, manA and wbeL. manA resides outside of the previously recognized O1 antigen biosynthetic locus, and encodes for a phosphomannose isomerase critical for the initial step in O1 antigen biosynthesis. We determined that manA and wbeL phase variants are attenuated for virulence, providing functional evidence to further support the critical role of the O1 antigen for infectivity. We provide the first report of phase variation modulating O1 antigen expression in V. cholerae, and show that the maintenance of these phase variable loci is an important means by which this facultative pathogen can generate the diverse subpopulations of cells needed for infecting the host intestinal tract and for escaping predation by an O1-specific phage.

  7. Characterization of the LP28 strain-specific exopolysaccharide biosynthetic gene cluster found in the whole circular genome of Pediococcus pentosaceus

    Directory of Open Access Journals (Sweden)

    Tetsuya Yasutake

    2016-03-01

    As a first step to deduce the probiotic function of the EPS together with the biosynthesis, we determined the whole genome sequence of the LP28 strain, demonstrating that the genome is a circular DNA, which is composed of 1,774,865 bp (1683 ORFs with a GC content of 37.1%. We also found that the LP28 strain harbors a plasmid carrying 6 ORFs composed of 5366 bp with a GC content of 36.5%. By comparing all of the genome sequences among the LP28 strain and four strains of P. pentosaceus reported previously, we found that 53 proteins in the LP28 strain display a similarity of less than 50% with those in the four P. pentosaceus strains. Significantly, 4 of the 53 proteins, which may be enzymes necessary for the EPS production on the LP28 strain, were absent in the other four P. pentosaceus strains and displayed less than 50% similarity with other LAB species. The EPS-biosynthetic gene cluster detected only in the LP28 genome consisted of 12 ORFs containing a priming enzyme, five glycosyltransferases, and a putative polysaccharide pyruvyltransferase.

  8. Computational method for discovery of estrogen responsive genes

    DEFF Research Database (Denmark)

    Tang, Suisheng; Tan, Sin Lam; Ramadoss, Suresh Kumar;

    2004-01-01

    Estrogen has a profound impact on human physiology and affects numerous genes. The classical estrogen reaction is mediated by its receptors (ERs), which bind to the estrogen response elements (EREs) in target gene's promoter region. Due to tedious and expensive experiments, a limited number...... of human genes are functionally well characterized. It is still unclear how many and which human genes respond to estrogen treatment. We propose a simple, economic, yet effective computational method to predict a subclass of estrogen responsive genes. Our method relies on the similarity of ERE frames...... across different promoters in the human genome. Matching ERE frames of a test set of 60 known estrogen responsive genes to the collection of over 18,000 human promoters, we obtained 604 candidate genes. Evaluating our result by comparison with the published microarray data and literature, we found...

  9. In silico analysis and expression profiling of miRNAs targeting genes of steviol glycosides biosynthetic pathway and their relationship with steviol glycosides content in different tissues of Stevia rebaudiana.

    Science.gov (United States)

    Saifi, Monica; Nasrullah, Nazima; Ahmad, Malik Mobeen; Ali, Athar; Khan, Jawaid A; Abdin, M Z

    2015-09-01

    miRNAs are emerging as potential regulators of the gene expression. Their proven promising role in regulating biosynthetic pathways related gene networks may hold the key to understand the genetic regulation of these pathways which may assist in selection and manipulation to get high performing plant genotypes with better secondary metabolites yields and increased biomass. miRNAs associated with genes of steviol glycosides biosynthetic pathway, however, have not been identified so far. In this study miRNAs targeting genes of steviol glycosides biosynthetic pathway were identified for the first time whose precursors were potentially generated from ESTs and nucleotide sequences of Stevia rebaudiana. Thereafter, stem-loop coupled real time PCR based expressions of these miRNAs in different tissues of Stevia rebaudiana were investigated and their relationship pattern was analysed with the expression levels of their target mRNAs as well as steviol glycoside contents. All the miRNAs investigated showed differential expressions in all the three tissues studied, viz. leaves, flowers and stems. Out of the eleven miRNAs validated, the expression levels of nine miRNAs (miR319a, miR319b, miR319c, miR319d, miR319e, miR319f, miR319h, miRstv_7, miRstv_9) were found to be inversely related, while expression levels of the two, i.e. miR319g and miRstv_11 on the contrary, showed direct relation with the expression levels of their target mRNAs and steviol glycoside contents in the leaves, flowers and stems. This study provides a platform for better understanding of the steviol glycosides biosynthetic pathway and these miRNAs can further be employed to manipulate the biosynthesis of these metabolites to enhance their contents and yield in S. rebaudiana.

  10. Distribution, structure and biosynthetic gene families of (1,3;1,4)-β-glucan in Sorghum bicolor.

    Science.gov (United States)

    Ermawar, Riksfardini A; Collins, Helen M; Byrt, Caitlin S; Betts, Natalie S; Henderson, Marilyn; Shirley, Neil J; Schwerdt, Julian; Lahnstein, Jelle; Fincher, Geoffrey B; Burton, Rachel A

    2015-04-01

    In cereals, the presence of soluble polysaccharides including (1,3;1,4)-β-glucan has downstream implications for human health, animal feed and biofuel applications. Sorghum bicolor (L.) Moench is a versatile crop, but there are limited reports regarding the content of such soluble polysaccharides. Here, the amount of (1,3;1,4)-β-glucan present in sorghum tissues was measured using a Megazyme assay. Very low amounts were present in the grain, ranging from 0.16%-0.27% (w/w), while there was a greater quantity in vegetative tissues at 0.12-1.71% (w/w). The fine structure of (1,3;1,4)-β-glucan, as denoted by the ratio of cellotriosyl and cellotetraosyl residues, was assessed by high performance liquid chromatography (HPLC) and ranged from 2.6-3:1 in the grain, while ratios in vegetative tissues were lower at 2.1-2.6:1. The distribution of (1,3;1,4)-β-glucan was examined using a specific antibody and observed with fluorescence and transmission electron microscopy. Micrographs showed a variable distribution of (1,3;1,4)-β-glucan influenced by temporal and spatial factors. The sorghum orthologs of genes implicated in the synthesis of (1,3;1,4)-β-glucan in other cereals, such as the Cellulose synthase-like (Csl) F and H gene families were defined. Transcript profiling of these genes across sorghum tissues was carried out using real-time quantitative polymerase chain reaction, indicating that, as in other cereals, CslF6 transcripts dominated.

  11. Tissue-Specific Expression Analysis of Anthocyanin Biosynthetic Genes in White- and Red-Fleshed Grape Cultivars.

    Science.gov (United States)

    Xie, Sha; Song, Changzheng; Wang, Xingjie; Liu, Meiying; Zhang, Zhenwen; Xi, Zhumei

    2015-12-19

    Yan73, a teinturier (dyer) grape variety in China, is one of the few Vitis vinifera cultivars with red-coloured berry flesh. To examine the tissue-specific expression of genes associated with berry colour in Yan73, we analysed the differential accumulation of anthocyanins in the skin and flesh tissues of two red-skinned grape varieties with either red (Yan73) or white flesh (Muscat Hamburg) based on HPLC-MS analysis, as well as the differential expression of 18 anthocyanin biosynthesis genes in both varieties by quantitative RT-PCR. The results revealed that the transcripts of GST, OMT, AM3, CHS3, UFGT, MYBA1, F3'5'H, F3H1 and LDOX were barely detectable in the white flesh of Muscat Hamburg. In particular, GST, OMT, AM3, CHS3 and F3H1 showed approximately 50-fold downregulation in the white flesh of Muscat Hamburg compared to the red flesh of Yan73. A correlation analysis between the accumulation of different types of anthocyanins and gene expression indicated that the cumulative expression of GST, F3'5'H, LDOX and MYBA1 was more closely associated with the acylated anthocyanins and the 3'5'-OH anthocyanins, while OMT and AM3 were more closely associated with the total anthocyanins and methoxylated anthocyanins. Therefore, the transcripts of OMT, AM3, GST, F3'5'H, LDOX and MYBA1 explained most of the variation in the amount and composition of anthocyanins in skin and flesh of Yan73. The data suggest that the specific localization of anthocyanins in the flesh tissue of Yan73 is most likely due to the tissue-specific expression of OMT, AM3, GST, F3'5'H, LDOX and MYBA1 in the flesh.

  12. Modification of carotenoid levels by abscission agents and expression of carotenoid biosynthetic genes in 'valencia' sweet orange.

    Science.gov (United States)

    Alferez, Fernando; Pozo, Luis V; Rouseff, Russell R; Burns, Jacqueline K

    2013-03-27

    The effect of 5-chloro-3-methyl-4-nitro-1H-pyrazole (CMNP) and ethephon on peel color, flavedo carotenoid gene expression, and carotenoid accumulation was investigated in mature 'Valencia' orange ( Citrus sinensis L. Osbeck) fruit flavedo at three maturation stages. Abscission agent application altered peel color. CMNP was more effective than ethephon in promoting green-to-red (a) and blue-to-yellow (b) color at the middle and late maturation stages and total carotenoid changes at all maturation stages. Altered flow of carotenoid precursors during maturation due to abscission agents was suggested by changes in phytoene desaturase (Pds) and ζ-carotene desaturase (Zds) gene expression. However, each abscission agent affected downstream expression differentially. Ethephon application increased β-carotene hydroxilase (β-Chx) transcript accumulation 12-fold as maturation advanced from the early to middle and late stages. CMNP markedly increased β- and ε-lycopene cyclase (Lcy) transcript accumulation 45- and 15-fold, respectively, at midmaturation. Patterns of carotenoid accumulation in flavedo were supported in part by gene expression changes. CMNP caused greater accumulation of total flavedo carotenoids at all maturation stages when compared with ethephon or controls. In general, CMNP treatment increased total red carotenoids more than ethephon or the control but decreased total yellow carotenoids at each maturation stage. In control fruit flavedo, total red carotenoids increased and yellow carotenoids decreased as maturation progressed. Trends in total red carotenoids during maturation were consistent with measured a values. Changes in carotenoid accumulation and expression patterns in flavedo suggest that regulation of carotenoid accumulation is under transcriptional, translational, and post-translational control.

  13. Enhanced production of steviol glycosides in mycorrhizal plants: a concerted effect of arbuscular mycorrhizal symbiosis on transcription of biosynthetic genes.

    Science.gov (United States)

    Mandal, Shantanu; Upadhyay, Shivangi; Singh, Ved Pal; Kapoor, Rupam

    2015-04-01

    Stevia rebaudiana (Bertoni) produces steviol glycosides (SGs)--stevioside (stev) and rebaudioside-A (reb-A) that are valued as low calorie sweeteners. Inoculation with arbuscular mycorrhizal fungi (AMF) augments SGs production, though the effect of this interaction on SGs biosynthesis has not been studied at molecular level. In this study transcription profiles of eleven key genes grouped under three stages of the SGs biosynthesis pathway were compared. The transcript analysis showed upregulation of genes encoding 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway enzymes viz.,1-deoxy-D-xylulose 5-phospate synthase (DXS), 1-deoxy-D-xylulose 5-phospate reductoisomerase (DXR) and 2-C-methyl-D-erytrithol 2,4-cyclodiphosphate synthase (MDS) in mycorrhizal (M) plants. Zn and Mn are imperative for the expression of MDS and their enhanced uptake in M plants could be responsible for the increased transcription of MDS. Furthermore, in the second stage of SGs biosynthesis pathway, mycorrhization enhanced the transcription of copalyl diphosphate synthase (CPPS) and kaurenoic acid hydroxylase (KAH). Their expression is decisive for SGs biosynthesis as CPPS regulates flow of metabolites towards synthesis of kaurenoid precursors and KAH directs these towards steviol synthesis instead of gibberellins. In the third stage glucosylation of steviol to reb-A by four specific uridine diphosphate (UDP)-dependent glycosyltransferases (UGTs) occurs. While higher transcription of all the three characterized UGTs in M plants explains augmented production of SGs; higher transcript levels of UGT76G1, specifically improved reb-A to stev ratio implying increased sweetness. The work signifies that AM symbiosis upregulates the transcription of all eleven SGs biosynthesis genes as a result of improved nutrition and enhanced sugar concentration due to increased photosynthesis in M plants.

  14. Global identification of the full-length transcripts and alternative splicing related to phenolic acid biosynthetic genes in Salvia miltiorrhiza

    Directory of Open Access Journals (Sweden)

    Zhichao eXu

    2016-02-01

    Full Text Available Salvianolic acids are among the main bioactive components in Salvia miltiorrhiza, and their biosynthesis has attracted widespread interest. However, previous studies on the biosynthesis of phenolic acids using next-generation sequencing platforms are limited with regard to the assembly of full-length transcripts. Based on hybrid-seq (next-generation and single molecular real-time sequencing of the S. miltiorrhiza root transcriptome, we experimentally identified 15 full-length transcripts and 4 alternative splicing events of enzyme-coding genes involved in the biosynthesis of rosmarinic acid. Moreover, we herein demonstrate that lithospermic acid B accumulates in the phloem and xylem of roots, in agreement with the expression patterns of the identified key genes related to rosmarinic acid biosynthesis. According to co-expression patterns, we predicted that 6 candidate cytochrome P450s and 5 candidate laccases participate in the salvianolic acid pathway. Our results provide a valuable resource for further investigation into the synthetic biology of phenolic acids in S. miltiorrhiza.

  15. Molecular Cloning, Expression Pattern and Genotypic Effects on Glucoraphanin Biosynthetic Related Genes in Chinese Kale (Brassica oleracea var. alboglabra Bailey).

    Science.gov (United States)

    Yin, Ling; Chen, Changming; Chen, Guoju; Cao, Bihao; Lei, Jianjun

    2015-11-11

    Glucoraphanin is a plant secondary metabolite that is involved in plant defense and imparts health-promoting properties to cruciferous vegetables. In this study, three genes involved in glucoraphanin metabolism, branched-chain aminotransferase 4 (BCAT4), methylthioalkylmalate synthase 1 (MAM1) and dihomomethionine N-hydroxylase (CYP79F1), were cloned from Chinese kale (Brassica oleracea var. alboglabra Bailey). Sequence homology and phylogenetic analysis identified these genes and confirmed the evolutionary status of Chinese kale. The transcript levels of BCAT4, MAM1 and CYP79F1 were higher in cotyledon, leaf and stem compared with flower and silique. BCAT4, MAM1 and CYP79F1 were expressed throughout leaf development with lower transcript levels during the younger stages. Glucoraphanin content varied extensively among different varieties, which ranged from 0.25 to 2.73 µmol·g(-1) DW (dry weight). Expression levels of BCAT4 and MAM1 were high at vegetative-reproductive transition phase, while CYP79F1 was expressed high at reproductive phase. BCAT4, MAM1 and CYP79F1 were expressed significantly high in genotypes with high glucoraphanin content. All the results provided a better understanding of the roles of BCAT4, MAM1 and CYP79F1 in the glucoraphanin biosynthesis of Chinese kale.

  16. Enhancement of poly-3-hydroxybutyrate production in Synechocystis sp. PCC 6803 by overexpression of its native biosynthetic genes.

    Science.gov (United States)

    Khetkorn, Wanthanee; Incharoensakdi, Aran; Lindblad, Peter; Jantaro, Saowarath

    2016-08-01

    Synechocystis sp. PCC 6803 strains overexpressing pha genes were constructed and characterized for poly-3-hydroxybutyrate (PHB) production. These pha overexpressing strains showed slightly reduced growth rates. Under N-deprived condition, the strains overexpressing (OE) phaAB, phaEC and phaABEC showed significantly higher PHB contents than the wild type. The maximum PHB content, a 2.6-fold increase producing 26% PHB (dcw), was observed in OE phaAB cells grown for 9days in N-deprived medium. Under this condition, these OE phaAB cells increased PHB production to 35% PHB (dcw) upon addition of 0.4% (w/v) acetate. Higher PHB granules in OE phaAB cells were clearly visualized by both Nile red staining and TEM imaging. All OE strains under N-deficient condition had increased glgX transcript levels. Overall results demonstrate an enhanced PHB production in Synechocystis cells overexpressing pha genes, particularly phaA and phaB, when grown in N-deprived medium containing 0.4% (w/v) acetate.

  17. Analysis of the transcriptome of Erigeron breviscapus uncovers putative scutellarin and chlorogenic acids biosynthetic genes and genetic markers.

    Directory of Open Access Journals (Sweden)

    Ni-Hao Jiang

    Full Text Available Erigeron breviscapus (Vant. Hand-Mazz. is a famous medicinal plant. Scutellarin and chlorogenic acids are the primary active components in this herb. However, the mechanisms of biosynthesis and regulation for scutellarin and chlorogenic acids in E. breviscapus are considerably unknown. In addition, genomic information of this herb is also unavailable.Using Illumina sequencing on GAIIx platform, a total of 64,605,972 raw sequencing reads were generated and assembled into 73,092 non-redundant unigenes. Among them, 44,855 unigenes (61.37% were annotated in the public databases Nr, Swiss-Prot, KEGG, and COG. The transcripts encoding the known enzymes involved in flavonoids and in chlorogenic acids biosynthesis were discovered in the Illumina dataset. Three candidate cytochrome P450 genes were discovered which might encode flavone 6-hydroase converting apigenin to scutellarein. Furthermore, 4 unigenes encoding the homologues of maize P1 (R2R3-MYB transcription factors were defined, which might regulate the biosynthesis of scutellarin. Additionally, a total of 11,077 simple sequence repeat (SSR were identified from 9,255 unigenes. Of SSRs, tri-nucleotide motifs were the most abundant motif. Thirty-six primer pairs for SSRs were randomly selected for validation of the amplification and polymorphism. The result revealed that 34 (94.40% primer pairs were successfully amplified and 19 (52.78% primer pairs exhibited polymorphisms.Using next generation sequencing (NGS technology, this study firstly provides abundant genomic data for E. breviscapus. The candidate genes involved in the biosynthesis and transcriptional regulation of scutellarin and chlorogenic acids were obtained in this study. Additionally, a plenty of genetic makers were generated by identification of SSRs, which is a powerful tool for molecular breeding and genetics applications in this herb.

  18. Strategic Applications of Gene Expression: From Drug Discovery/Development to Bedside

    OpenAIRE

    Bai, Jane P. F.; Alekseyenko, Alexander V.; Statnikov, Alexander; Wang, I-Ming; Wong, Peggy H.

    2013-01-01

    Gene expression is useful for identifying the molecular signature of a disease and for correlating a pharmacodynamic marker with the dose-dependent cellular responses to exposure of a drug. Gene expression offers utility to guide drug discovery by illustrating engagement of the desired cellular pathways/networks, as well as avoidance of acting on the toxicological pathways. Successful employment of gene-expression signatures in the later stages of drug development depends on their linkage to ...

  19. Congenital erythropoietic porphyria: prolonged high-level expression and correction of the heme biosynthetic defect by retroviral-mediated gene transfer into porphyric and erythroid cells.

    Science.gov (United States)

    Kauppinen, R; Glass, I A; Aizencang, G; Astrin, K H; Atweh, G F; Desnick, R J

    1998-09-01

    Congenital erythropoietic porphyria (CEP) is an autosomal recessive disorder resulting from the deficient activity of the heme biosynthetic enzyme uroporphyrinogen III synthase (UROS). Severely affected patients are transfusion dependent and have mutilating cutaneous manifestations. Successful bone marrow transplantation has proven curative, providing the rationale for stem cell gene therapy. Toward this goal, two retroviral MFG vectors containing the UROS cDNA were constructed, one with the wild-type sequence (MFG-UROS-wt) and a second with an optimized Kozak consensus sequence (MFG-UROS-K). Following transduction of CEP fibroblasts, the MFG-UROS-wt and MFG-UROS-K vectors increased the endogenous activity without selection to levels that were 18- and 5-fold greater, respectively, than the mean activity in normal fibroblasts. Notably, the MFG-UROS-wt vector expressed UROS activity in CEP fibroblasts at these high levels for over 6 months without cell toxicity. Addition of either delta-aminolevulinic acid (ALA) or ferric chloride did not affect expression of the transduced UROS gene nor did the increased concentrations of uroporphyrin isomers or porphyrin intermediates affect cell viability. Similarly, transduction of CEP lymphoblasts with the MFG-UROS-wt vector without G418 selection increased the endogenous UROS activity by 7-fold or almost 2-fold greater than that in normal lymphoblasts. Transduction of K562 erythroleukemia cells by cocultivation with the MFG-UROS-wt producer cells increased their high endogenous UROS activity by 1.6-fold without selection. Clonally isolated K562 cells expressed UROS for over 4 months at mean levels 4.7-fold greater than the endogenous activity without cell toxicity. Thus, the prolonged, high-level expression of UROS in transduced CEP fibroblasts and lymphoblasts, as well as in transduced K562 erythroid cells, demonstrated that the enzymatic defect in CEP cells could be corrected by retroviral-mediated gene therapy without

  20. Metabolomic analysis and differential expression of anthocyanin biosynthetic genes in white- and red-flowered buckwheat cultivars (Fagopyrum esculentum).

    Science.gov (United States)

    Kim, Yeon Bok; Park, Soo-Yun; Thwe, Aye Aye; Seo, Jeong Min; Suzuki, Tastsuro; Kim, Sun-Ju; Kim, Jae Kwang; Park, Sang Un

    2013-11-01

    Red-flowered buckwheat ( Fagopyrum esculentum ) is used in the production of tea, juice, and alcohols after the detoxification of fagopyrin. In order to investigate the metabolomics and regulatory of anthocyanin production in red-flowered (Gan-Chao) and white-flowered (Tanno) buckwheat cultivars, quantitative real-time RT-PCR (qRT-PCR), gas chromatography time-of-flight mass spectrometry (GC-TOFMS), and high performance liquid chromatography (HPLC) were conducted. The transcriptions of FePAL, FeC4H, Fe4CL1, FeF3H, FeANS, and FeDFR increased gradually from flowering stage 1 and reached their highest peaks at flowering stage 3 in Gan-Chao flower. In total 44 metabolites, 18 amino acids, 15 organic acids, 7 sugars, 3 sugar alcohols, and 1 amine were detected in Gan-Chao flowers. Two anthocyanins, cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside, were identified in Gan-Chao cultivar. The first component of the partial least-squares to latent structures-discriminate analysis (PLS-DA) indicated that high amounts of phenolic, shikimic, and pyruvic acids were present in Gan-Chao. We suggest that transcriptions of genes involved in anthocyanin biosynthesis, anthocyanin contents, and metabolites have correlation in the red-flowered buckwheat Gan-Chao flowers. Our results may be helpful to understand anthocyanin biosynthesis in red-flowered buckwheat.

  1. Speeding disease gene discovery by sequence based candidate prioritization

    Directory of Open Access Journals (Sweden)

    Porteous David J

    2005-03-01

    Full Text Available Abstract Background Regions of interest identified through genetic linkage studies regularly exceed 30 centimorgans in size and can contain hundreds of genes. Traditionally this number is reduced by matching functional annotation to knowledge of the disease or phenotype in question. However, here we show that disease genes share patterns of sequence-based features that can provide a good basis for automatic prioritization of candidates by machine learning. Results We examined a variety of sequence-based features and found that for many of them there are significant differences between the sets of genes known to be involved in human hereditary disease and those not known to be involved in disease. We have created an automatic classifier called PROSPECTR based on those features using the alternating decision tree algorithm which ranks genes in the order of likelihood of involvement in disease. On average, PROSPECTR enriches lists for disease genes two-fold 77% of the time, five-fold 37% of the time and twenty-fold 11% of the time. Conclusion PROSPECTR is a simple and effective way to identify genes involved in Mendelian and oligogenic disorders. It performs markedly better than the single existing sequence-based classifier on novel data. PROSPECTR could save investigators looking at large regions of interest time and effort by prioritizing positional candidate genes for mutation detection and case-control association studies.

  2. Molecular cloning and characterization of three genes encoding dihydroflavonol-4-reductase from Ginkgo biloba in anthocyanin biosynthetic pathway.

    Directory of Open Access Journals (Sweden)

    Cheng Hua

    Full Text Available Dihydroflavonol-4-reductase (DFR, EC1.1.1.219 catalyzes a key step late in the biosynthesis of anthocyanins, condensed tannins (proanthocyanidins, and other flavonoids important to plant survival and human nutrition. Three DFR cDNA clones (designated GbDFRs were isolated from the gymnosperm Ginkgo biloba. The deduced GbDFR proteins showed high identities to other plant DFRs, which form three distinct DFR families. Southern blot analysis showed that the three GbDFRs each belong to a different DFR family. Phylogenetic tree analysis revealed that the GbDFRs share the same ancestor as other DFRs. The expression of the three recombinant GbDFRs in Escherichia coli showed that their actual protein sizes were in agreement with predictions from the cDNA sequences. The recombinant proteins were purified and their activity was analyzed; both GbDFR1 and GbDFR3 could catalyze dihydroquercetin conversion to leucocyanidin, while GbDFR2 catalyzed dihydrokaempferol conversion to leucopelargonidin. qRT-PCR showed that the GbDFRs were expressed in a tissue-specific manner, and transcript accumulation for the three genes was highest in young leaves and stamens. These transcription patterns were in good agreement with the pattern of anthocyanin accumulation in G.biloba. The expression profiles suggested that GbDFR1 and GbDFR2 are mainly involved in responses to plant hormones, environmental stress and damage. During the annual growth cycle, the GbDFRs were significantly correlated with anthocyanin accumulation in leaves. A fitted linear curve showed the best model for relating GbDFR2 and GbDFR3 with anthocyanin accumulation in leaves. GbDFR1 appears to be involved in environmental stress response, while GbDFR3 likely has primary functions in the synthesis of anthocyanins. These data revealed unexpected properties and differences in three DFR proteins from a single species.

  3. The Aspergillus fumigatus siderophore biosynthetic gene sidA, encoding L-ornithine N5-oxygenase, is required for virulence.

    Science.gov (United States)

    Hissen, Anna H T; Wan, Adrian N C; Warwas, Mark L; Pinto, Linda J; Moore, Margo M

    2005-09-01

    Aspergillus fumigatus is the leading cause of invasive mold infection and is a serious problem in immunocompromised populations worldwide. We have previously shown that survival of A. fumigatus in serum may be related to secretion of siderophores. In this study, we identified and characterized the sidA gene of A. fumigatus, which encodes l-ornithine N(5)-oxygenase, the first committed step in hydroxamate siderophore biosynthesis. A. fumigatus sidA codes for a protein of 501 amino acids with significant homology to other fungal l-ornithine N(5)-oxygenases. A stable DeltasidA strain was created by deletion of A. fumigatus sidA. This strain was unable to synthesize the siderophores N',N",N'''-triacetylfusarinine C (TAF) and ferricrocin. Growth of the DeltasidA strain was the same as that of the wild type in rich media; however, the DeltasidA strain was unable to grow in low-iron defined media or media containing 10% human serum unless supplemented with TAF or ferricrocin. No significant differences in ferric reduction activities were observed between the parental strain and the DeltasidA strain, indicating that blocking siderophore secretion did not result in upregulation of this pathway. Unlike the parental strain, the DeltasidA strain was unable to remove iron from human transferrin. A rescued strain (DeltasidA + sidA) was constructed; it produced siderophores and had the same growth as the wild type on iron-limited media. Unlike the wild-type and rescued strains, the DeltasidA strain was avirulent in a mouse model of invasive aspergillosis, indicating that sidA is necessary for A. fumigatus virulence.

  4. Biosynthetic multitasking facilitates thalassospiramide structural diversity in marine bacteria

    KAUST Repository

    Ross, Avena C.

    2013-01-23

    Thalassospiramides A and B are immunosuppressant cyclic lipopeptides first reported from the marine α-proteobacterium Thalassospira sp. CNJ-328. We describe here the discovery and characterization of an extended family of 14 new analogues from four Tistrella and Thalassospira isolates. These potent calpain 1 protease inhibitors belong to six structure classes in which the length and composition of the acylpeptide side chain varies extensively. Genomic sequence analysis of the thalassospiramide-producing microbes revealed related, genus-specific biosynthetic loci encoding hybrid nonribosomal peptide synthetase/polyketide synthases consistent with thalassospiramide assembly. The bioinformatics analysis of the gene clusters suggests that structural diversity, which ranges from the 803.4 Da thalassospiramide C to the 1291.7 Da thalassospiramide F, results from a complex sequence of reactions involving amino acid substrate channeling and enzymatic multimodule skipping and iteration. Preliminary biochemical analysis of the N-terminal nonribosomal peptide synthetase module from the Thalassospira TtcA megasynthase supports a biosynthetic model in which in cis amino acid activation competes with in trans activation to increase the range of amino acid substrates incorporated at the N terminus. © 2012 American Chemical Society.

  5. GENOME-ENABLED DISCOVERY OF CARBON SEQUESTRATION GENES IN POPLAR

    Energy Technology Data Exchange (ETDEWEB)

    DAVIS J M

    2007-10-11

    Plants utilize carbon by partitioning the reduced carbon obtained through photosynthesis into different compartments and into different chemistries within a cell and subsequently allocating such carbon to sink tissues throughout the plant. Since the phytohormones auxin and cytokinin are known to influence sink strength in tissues such as roots (Skoog & Miller 1957, Nordstrom et al. 2004), we hypothesized that altering the expression of genes that regulate auxin-mediated (e.g., AUX/IAA or ARF transcription factors) or cytokinin-mediated (e.g., RR transcription factors) control of root growth and development would impact carbon allocation and partitioning belowground (Fig. 1 - Renewal Proposal). Specifically, the ARF, AUX/IAA and RR transcription factor gene families mediate the effects of the growth regulators auxin and cytokinin on cell expansion, cell division and differentiation into root primordia. Invertases (IVR), whose transcript abundance is enhanced by both auxin and cytokinin, are critical components of carbon movement and therefore of carbon allocation. Thus, we initiated comparative genomic studies to identify the AUX/IAA, ARF, RR and IVR gene families in the Populus genome that could impact carbon allocation and partitioning. Bioinformatics searches using Arabidopsis gene sequences as queries identified regions with high degrees of sequence similarities in the Populus genome. These Populus sequences formed the basis of our transgenic experiments. Transgenic modification of gene expression involving members of these gene families was hypothesized to have profound effects on carbon allocation and partitioning.

  6. Gene discovery in the horned beetle Onthophagus taurus

    Directory of Open Access Journals (Sweden)

    Yang Youngik

    2010-12-01

    Full Text Available Abstract Background Horned beetles, in particular in the genus Onthophagus, are important models for studies on sexual selection, biological radiations, the origin of novel traits, developmental plasticity, biocontrol, conservation, and forensic biology. Despite their growing prominence as models for studying both basic and applied questions in biology, little genomic or transcriptomic data are available for this genus. We used massively parallel pyrosequencing (Roche 454-FLX platform to produce a comprehensive EST dataset for the horned beetle Onthophagus taurus. To maximize sequence diversity, we pooled RNA extracted from a normalized library encompassing diverse developmental stages and both sexes. Results We used 454 pyrosequencing to sequence ESTs from all post-embryonic stages of O. taurus. Approximately 1.36 million reads assembled into 50,080 non-redundant sequences encompassing a total of 26.5 Mbp. The non-redundant sequences match over half of the genes in Tribolium castaneum, the most closely related species with a sequenced genome. Analyses of Gene Ontology annotations and biochemical pathways indicate that the O. taurus sequences reflect a wide and representative sampling of biological functions and biochemical processes. An analysis of sequence polymorphisms revealed that SNP frequency was negatively related to overall expression level and the number of tissue types in which a given gene is expressed. The most variable genes were enriched for a limited number of GO annotations whereas the least variable genes were enriched for a wide range of GO terms directly related to fitness. Conclusions This study provides the first large-scale EST database for horned beetles, a much-needed resource for advancing the study of these organisms. Furthermore, we identified instances of gene duplications and alternative splicing, useful for future study of gene regulation, and a large number of SNP markers that could be used in population

  7. Literature mining for the discovery of hidden connections between drugs, genes and diseases.

    Science.gov (United States)

    Frijters, Raoul; van Vugt, Marianne; Smeets, Ruben; van Schaik, René; de Vlieg, Jacob; Alkema, Wynand

    2010-09-23

    The scientific literature represents a rich source for retrieval of knowledge on associations between biomedical concepts such as genes, diseases and cellular processes. A commonly used method to establish relationships between biomedical concepts from literature is co-occurrence. Apart from its use in knowledge retrieval, the co-occurrence method is also well-suited to discover new, hidden relationships between biomedical concepts following a simple ABC-principle, in which A and C have no direct relationship, but are connected via shared B-intermediates. In this paper we describe CoPub Discovery, a tool that mines the literature for new relationships between biomedical concepts. Statistical analysis using ROC curves showed that CoPub Discovery performed well over a wide range of settings and keyword thesauri. We subsequently used CoPub Discovery to search for new relationships between genes, drugs, pathways and diseases. Several of the newly found relationships were validated using independent literature sources. In addition, new predicted relationships between compounds and cell proliferation were validated and confirmed experimentally in an in vitro cell proliferation assay. The results show that CoPub Discovery is able to identify novel associations between genes, drugs, pathways and diseases that have a high probability of being biologically valid. This makes CoPub Discovery a useful tool to unravel the mechanisms behind disease, to find novel drug targets, or to find novel applications for existing drugs.

  8. Gene Expression Data Knowledge Discovery using Global and Local Clustering

    CERN Document Server

    H, Swathi

    2010-01-01

    To understand complex biological systems, the research community has produced huge corpus of gene expression data. A large number of clustering approaches have been proposed for the analysis of gene expression data. However, extracting important biological knowledge is still harder. To address this task, clustering techniques are used. In this paper, hybrid Hierarchical k-Means algorithm is used for clustering and biclustering gene expression data is used. To discover both local and global clustering structure biclustering and clustering algorithms are utilized. A validation technique, Figure of Merit is used to determine the quality of clustering results. Appropriate knowledge is mined from the clusters by embedding a BLAST similarity search program into the clustering and biclustering process. To discover both local and global clustering structure biclustering and clustering algorithms are utilized. To determine the quality of clustering results, a validation technique, Figure of Merit is used. Appropriate ...

  9. Discovery of Novel Gene Elements Associated with Prostate Cancer Progression

    Science.gov (United States)

    2012-10-01

    transcripts more closely, we performed 5’ and 3’ rapid amplification of cDNA ends (RACE) for PCAT-1 and PCAT-14. Interestingly, the PCAT-14 locus...Sequencing Core. RNA-ligase-mediated rapid amplification of cDNA ends (RACE) 5’ and 3’ RACE was performed using the GeneRacer RLM-RACE kit (Invitrogen

  10. Gene Discovery and Functional Analyses in the Model Plant Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Cai-Ping Feng; John Mundy

    2006-01-01

    The present mini-review describes newer methods and strategies, including transposon and T-DNA insertions,TILLING, Deleteagene, and RNA interference, to functionally analyze genes of interest in the model plant Arabidopsis. The relative advantages and disadvantages of the systems are also discussed.

  11. Gene Discovery and Functional Analyses in the Model Plant Arabidopsis

    DEFF Research Database (Denmark)

    Feng, Cai-ping; Mundy, J.

    2006-01-01

    The present mini-review describes newer methods and strategies, including transposon and T-DNA insertions, TILLING, Deleteagene, and RNA interference, to functionally analyze genes of interest in the model plant Arabidopsis. The relative advantages and disadvantages of the systems are also...

  12. Improving functional modules discovery by enriching interaction networks with gene profiles

    KAUST Repository

    Salem, Saeed

    2013-05-01

    Recent advances in proteomic and transcriptomic technologies resulted in the accumulation of vast amount of high-throughput data that span multiple biological processes and characteristics in different organisms. Much of the data come in the form of interaction networks and mRNA expression arrays. An important task in systems biology is functional modules discovery where the goal is to uncover well-connected sub-networks (modules). These discovered modules help to unravel the underlying mechanisms of the observed biological processes. While most of the existing module discovery methods use only the interaction data, in this work we propose, CLARM, which discovers biological modules by incorporating gene profiles data with protein-protein interaction networks. We demonstrate the effectiveness of CLARM on Yeast and Human interaction datasets, and gene expression and molecular function profiles. Experiments on these real datasets show that the CLARM approach is competitive to well established functional module discovery methods.

  13. Africa: the next frontier for human disease gene discovery?

    Science.gov (United States)

    Ramsay, Michèle; Tiemessen, Caroline T; Choudhury, Ananyo; Soodyall, Himla

    2011-10-15

    The populations of Africa harbour the greatest human genetic diversity following an evolutionary history tracing its beginnings on the continent to time before the emergence of Homo sapiens. Signatures of selection are detectable as responses to ancient environments and cultural practices, modulated by more recent events including infectious epidemics, migrations, admixture and, of course, chance. The age of high-throughput biology is not passing Africa by. African-based cohort studies and networks with an African footprint are ideal springboards for disease-related genetic and genomic studies. Initiatives like HapMap, the 1000 Genomes Project, MalariaGEN, the INDEPTH network and Human Heredity and Health in Africa are catalysts to exploring African genetic diversity and its role in the spectrum from health to disease. The challenges are abundant in dissecting biological questions in the light of linguistic, cultural, geographic and political boundaries and their respective roles in shaping health-related profiles. Will studies based on African populations lead to a new wave of discovery of genetic contributors to disease?

  14. A Computer-Based Microarray Experiment Design-System for Gene-Regulation Pathway Discovery

    OpenAIRE

    2003-01-01

    This paper reports the methods and evaluation of a computer-based system that recommends microarray experimental design for biologists — causal discovery in Gene Expression data using Expected Value of Experimentation (GEEVE). The GEEVE system uses causal Bayesian networks and generates a decision tree for recommendations.

  15. TILLING in forage grasses for gene discovery and breeding improvement.

    Science.gov (United States)

    Manzanares, Chloe; Yates, Steven; Ruckle, Michael; Nay, Michelle; Studer, Bruno

    2016-09-25

    Mutation breeding has a long-standing history and in some major crop species, many of the most important cultivars have their origin in germplasm generated by mutation induction. For almost two decades, methods for TILLING (Targeting Induced Local Lesions IN Genomes) have been established in model plant species such as Arabidopsis (Arabidopsis thaliana L.), enabling the functional analysis of genes. Recent advances in mutation detection by second generation sequencing technology have brought its utility to major crop species. However, it has remained difficult to apply similar approaches in forage and turf grasses, mainly due to their outbreeding nature maintained by an efficient self-incompatibility system. Starting with a description of the extent to which traditional mutagenesis methods have contributed to crop yield increase in the past, this review focuses on technological approaches to implement TILLING-based strategies for the improvement of forage grass breeding through forward and reverse genetics. We present first results from TILLING in allogamous forage grasses for traits such as stress tolerance and evaluate prospects for rapid implementation of beneficial alleles to forage grass breeding. In conclusion, large-scale induced mutation resources, used for forward genetic screens, constitute a valuable tool to increase the genetic diversity for breeding and can be generated with relatively small investments in forage grasses. Furthermore, large libraries of sequenced mutations can be readily established, providing enhanced opportunities to discover mutations in genes controlling traits of agricultural importance and to study gene functions by reverse genetics.

  16. Biosynthetic inorganic chemistry.

    Science.gov (United States)

    Lu, Yi

    2006-08-25

    Inorganic chemistry and biology can benefit greatly from each other. Although synthetic and physical inorganic chemistry have been greatly successful in clarifying the role of metal ions in biological systems, the time may now be right to utilize biological systems to advance coordination chemistry. One such example is the use of small, stable, easy-to-make, and well-characterized proteins as ligands to synthesize novel inorganic compounds. This biosynthetic inorganic chemistry is possible thanks to a number of developments in biology. This review summarizes the progress in the synthesis of close models of complex metalloproteins, followed by a description of recent advances in using the approach for making novel compounds that are unprecedented in either inorganic chemistry or biology. The focus is mainly on synthetic "tricks" learned from biology, as well as novel structures and insights obtained. The advantages and disadvantages of this biosynthetic approach are discussed.

  17. Cross-pollination of research findings, although uncommon, may accelerate discovery of human disease genes

    Directory of Open Access Journals (Sweden)

    Duda Marlena

    2012-11-01

    Full Text Available Abstract Background Technological leaps in genome sequencing have resulted in a surge in discovery of human disease genes. These discoveries have led to increased clarity on the molecular pathology of disease and have also demonstrated considerable overlap in the genetic roots of human diseases. In light of this large genetic overlap, we tested whether cross-disease research approaches lead to faster, more impactful discoveries. Methods We leveraged several gene-disease association databases to calculate a Mutual Citation Score (MCS for 10,853 pairs of genetically related diseases to measure the frequency of cross-citation between research fields. To assess the importance of cooperative research, we computed an Individual Disease Cooperation Score (ICS and the average publication rate for each disease. Results For all disease pairs with one gene in common, we found that the degree of genetic overlap was a poor predictor of cooperation (r2=0.3198 and that the vast majority of disease pairs (89.56% never cited previous discoveries of the same gene in a different disease, irrespective of the level of genetic similarity between the diseases. A fraction (0.25% of the pairs demonstrated cross-citation in greater than 5% of their published genetic discoveries and 0.037% cross-referenced discoveries more than 10% of the time. We found strong positive correlations between ICS and publication rate (r2=0.7931, and an even stronger correlation between the publication rate and the number of cross-referenced diseases (r2=0.8585. These results suggested that cross-disease research may have the potential to yield novel discoveries at a faster pace than singular disease research. Conclusions Our findings suggest that the frequency of cross-disease study is low despite the high level of genetic similarity among many human diseases, and that collaborative methods may accelerate and increase the impact of new genetic discoveries. Until we have a better

  18. Metagenomics and novel gene discovery: promise and potential for novel therapeutics.

    Science.gov (United States)

    Culligan, Eamonn P; Sleator, Roy D; Marchesi, Julian R; Hill, Colin

    2014-04-01

    Metagenomics provides a means of assessing the total genetic pool of all the microbes in a particular environment, in a culture-independent manner. It has revealed unprecedented diversity in microbial community composition, which is further reflected in the encoded functional diversity of the genomes, a large proportion of which consists of novel genes. Herein, we review both sequence-based and functional metagenomic methods to uncover novel genes and outline some of the associated problems of each type of approach, as well as potential solutions. Furthermore, we discuss the potential for metagenomic biotherapeutic discovery, with a particular focus on the human gut microbiome and finally, we outline how the discovery of novel genes may be used to create bioengineered probiotics.

  19. Implementation of BacMam virus gene delivery technology in a drug discovery setting.

    Science.gov (United States)

    Kost, Thomas A; Condreay, J Patrick; Ames, Robert S; Rees, Stephen; Romanos, Michael A

    2007-05-01

    Membrane protein targets constitute a key segment of drug discovery portfolios and significant effort has gone into increasing the speed and efficiency of pursuing these targets. However, issues still exist in routine gene expression and stable cell-based assay development for membrane proteins, which are often multimeric or toxic to host cells. To enhance cell-based assay capabilities, modified baculovirus (BacMam virus) gene delivery technology has been successfully applied to the transient expression of target proteins in mammalian cells. Here, we review the development, full implementation and benefits of this platform-based gene expression technology in support of SAR and HTS assays across GlaxoSmithKline.

  20. Pine Gene Discovery Project - Final Report - 08/31/1997 - 02/28/2001

    Energy Technology Data Exchange (ETDEWEB)

    Whetten, R. W.; Sederoff, R. R.; Kinlaw, C.; Retzel, E.

    2001-04-30

    Integration of pines into the large scope of plant biology research depends on study of pines in parallel with study of annual plants, and on availability of research materials from pine to plant biologists interested in comparing pine with annual plant systems. The objectives of the Pine Gene Discovery Project were to obtain 10,000 partial DNA sequences of genes expressed in loblolly pine, to determine which of those pine genes were similar to known genes from other organisms, and to make the DNA sequences and isolated pine genes available to plant researchers to stimulate integration of pines into the wider scope of plant biology research. Those objectives have been completed, and the results are available to the public. Requests for pine genes have been received from a number of laboratories that would otherwise not have included pine in their research, indicating that progress is being made toward the goal of integrating pine research into the larger molecular biology research community.

  1. Overexpression of the Trichoderma brevicompactum tri5 Gene: Effect on the Expression of the Trichodermin Biosynthetic Genes and on Tomato Seedlings

    Directory of Open Access Journals (Sweden)

    Josefina Aleu

    2011-09-01

    Full Text Available Trichoderma brevicompactum IBT 40841 produces trichodermin, a trichothecene-type toxin that shares most of the steps of its biosynthesis with harzianum A, another trichothecene produced by several Trichoderma species. The first specific step in the trichothecene biosynthesis is carried out by a terpene cylcase, trichodiene synthase, that catalyzes the conversion of farnesyl pyrophosphate to trichodiene and that is encoded by the tri5 gene. Overexpression of tri5 resulted in increased levels of trichodermin production, but also in an increase in tyrosol and hydroxytyrosol production, two antioxidant compounds that may play a regulatory role in trichothecene biosynthesis, and also in a higher expression of three trichothecene genes, tri4, tri6 and tri10, and of the erg1 gene, which participates in the synthesis of triterpenes. The effect of tri5 overexpression on tomato seedling disease response was also studied.

  2. Gene set-based module discovery in the breast cancer transcriptome

    Directory of Open Access Journals (Sweden)

    Zhang Michael Q

    2009-02-01

    Full Text Available Abstract Background Although microarray-based studies have revealed global view of gene expression in cancer cells, we still have little knowledge about regulatory mechanisms underlying the transcriptome. Several computational methods applied to yeast data have recently succeeded in identifying expression modules, which is defined as co-expressed gene sets under common regulatory mechanisms. However, such module discovery methods are not applied cancer transcriptome data. Results In order to decode oncogenic regulatory programs in cancer cells, we developed a novel module discovery method termed EEM by extending a previously reported module discovery method, and applied it to breast cancer expression data. Starting from seed gene sets prepared based on cis-regulatory elements, ChIP-chip data, and gene locus information, EEM identified 10 principal expression modules in breast cancer based on their expression coherence. Moreover, EEM depicted their activity profiles, which predict regulatory programs in each subtypes of breast tumors. For example, our analysis revealed that the expression module regulated by the Polycomb repressive complex 2 (PRC2 is downregulated in triple negative breast cancers, suggesting similarity of transcriptional programs between stem cells and aggressive breast cancer cells. We also found that the activity of the PRC2 expression module is negatively correlated to the expression of EZH2, a component of PRC2 which belongs to the E2F expression module. E2F-driven EZH2 overexpression may be responsible for the repression of the PRC2 expression modules in triple negative tumors. Furthermore, our network analysis predicts regulatory circuits in breast cancer cells. Conclusion These results demonstrate that the gene set-based module discovery approach is a powerful tool to decode regulatory programs in cancer cells.

  3. From mouse to humans: discovery of the CACNG2 pain susceptibility gene.

    Science.gov (United States)

    Nissenbaum, J

    2012-10-01

    Chronic pain is a major healthcare problem affecting the daily lives of millions with enormous financial costs. The notorious variability and lack of efficient pain relief pharmaceuticals provide both genetic and therapeutic challenge. There are several genetic approaches that aim to uncover the molecular nature of pain phenotypes into their genetic components. Gene mapping using model organisms for various pain phenotypes has led to the identification of novel genes affecting susceptibility and response to pain stimuli. Translational studies have succeeded to tie those genes to human pain syndromes, thus suggesting new targets for drug discovery. In this short review, a perspective on pain genetics and the trajectory from pain phenotype to pain gene involving fine-mapping strategies, bioinformatic analysis and microarray profiling alongside human association analysis will be introduced. This integrated approach has led to identification of CACNG2 as a novel neuropathic pain gene affecting pain susceptibility both in mice and humans. It also serves as a prototype for efficient and economic discovery of pain genes. Comparisons to other methods as well as future directions of pain genetics will be discussed as well.

  4. Characterisation of betalain biosynthesis in Parakeelya flowers identifies the key biosynthetic gene DOD as belonging to an expanded LigB gene family that is conserved in betalain-producing species

    Directory of Open Access Journals (Sweden)

    Hsiao-Hang eChung

    2015-07-01

    Full Text Available Plant betalain pigments are intriguing because they are restricted to the Caryophyllales and are mutually exclusive with the more common anthocyanins. However, betalain biosynthesis is poorly understood compared to that of anthocyanins. In this study, betalain production and betalain-related genes were characterized in Parakeelya mirabilis (Montiaceae. RT-PCR and transcriptomics identified three sequences related to the key biosynthetic enzyme Dopa 4,5-dioxgenase (DOD. In addition to a LigB gene similar to that of non-Caryophyllales species (Class I genes, two other P. mirabilis LigB genes were found (DOD and DOD-like, termed Class II. PmDOD and PmDOD-like had 70% amino acid identity. Only PmDOD was implicated in betalain synthesis based on transient assays of enzyme activity and correlation of transcript abundance to spatio-temporal betalain accumulation. The role of PmDOD-like remains unknown. The striking pigment patterning of the flowers was due to distinct zones of red betacyanin and yellow betaxanthin production. The major betacyanin was the unglycosylated betanidin rather than the commonly found glycosides, an occurrence for which there are a few previous reports. The white petal zones lacked pigment but had DOD activity suggesting alternate regulation of the pathway in this tissue. DOD and DOD-like sequences were also identified in other betalain-producing species but not in examples of anthocyanin-producing Caryophyllales or non-Caryophyllales species. A Class I LigB sequence from the anthocyanin-producing Caryophyllaceae species Dianthus superbus and two DOD-like sequences from the Amaranthaceae species Beta vulgaris and Ptilotus spp. did not show DOD activity in the transient assay. The additional sequences suggests that DOD is part of a larger LigB gene family in betalain-producing Caryophyllales taxa, and the tandem genomic arrangement of two of the three B. vulgaris LigB genes suggests the involvement of duplication in the gene

  5. Impact of bacterial biocontrol agents on aflatoxin biosynthetic genes, aflD and aflR expression, and phenotypic aflatoxin B₁ production by Aspergillus flavus under different environmental and nutritional regimes.

    Science.gov (United States)

    Al-Saad, Labeed A; Al-Badran, Adnan I; Al-Jumayli, Sami A; Magan, Naresh; Rodríguez, Alicia

    2016-01-18

    The objectives of this study were to examine the efficacy of four bacterial antagonists against Aspergillus flavus using 50:50 ratio of bacterial cells/conidia for the control of aflatoxin B1 (AFB1) production on two different nutritional matrices, nutrient and maize-based media at different water availabilities (0.98, 0.94 water activity (aw) on nutrient medium; 0.995, 0.98 aw on maize meal agar medium) at 35°C. The indicators of efficacy used were the relative expression of one structural and regulatory gene in the biosynthetic pathway (aflD and aflR respectively) and the production of AFB1. These studies showed that some of the bacterial species could significantly inhibit the relative expression of the aflD and aflR genes at both 0.98 and 0.94 aw on nutrient agar. On maize-based media some of the bacterial antagonists reduced the activity of both genes at 0.94 aw and some at 0.995 aw. However, the results for AFB1 production were not consistent with the effects on gene expression. Some bacterial species stimulated AFB1 production on both nutrient and maize-based media regardless of aw. However, some bacterial treatments did inhibit AFB1 production significantly when compared to the control. Overall, this study suggests that temporal studies are required on the biosynthetic genes under different environmental and nutritional conditions to evaluate the potential of antagonists to control AFB1.

  6. Transcriptome profiling for discovery of genes involved in shoot apical meristem and flower development

    Directory of Open Access Journals (Sweden)

    Vikash K. Singh

    2014-12-01

    Full Text Available Flower development is one of the major developmental processes that governs seed setting in angiosperms. However, little is known about the molecular mechanisms underlying flower development in legumes. Employing RNA-seq for various stages of flower development and few vegetative tissues in chickpea, we identified differentially expressed genes in flower tissues/stages in comparison to vegetative tissues, which are related to various biological processes and molecular functions during flower development. Here, we provide details of experimental methods, RNA-seq data (available at Gene Expression Omnibus database under GSE42679 and analysis pipeline published by Singh and colleagues in the Plant Biotechnology Journal (Singh et al., 2013, along with additional analysis for discovery of genes involved in shoot apical meristem (SAM development. Our data provide a resource for exploring the complex molecular mechanisms underlying SAM and flower development and identification of gene targets for functional and applied genomics in legumes.

  7. Discovery of the faithfulness gene: a model of transmission and transformation of scientific information.

    Science.gov (United States)

    Green, Eva G T; Clémence, Alain

    2008-09-01

    The purpose of this paper is to study the diffusion and transformation of scientific information in everyday discussions. Based on rumour models and social representations theory, the impact of interpersonal communication and pre-existing beliefs on transmission of the content of a scientific discovery was analysed. In three experiments, a communication chain was simulated to investigate how laypeople make sense of a genetic discovery first published in a scientific outlet, then reported in a mainstream newspaper and finally discussed in groups. Study 1 (N=40) demonstrated a transformation of information when the scientific discovery moved along the communication chain. During successive narratives, scientific expert terminology disappeared while scientific information associated with lay terminology persisted. Moreover, the idea of a discovery of a faithfulness gene emerged. Study 2 (N=70) revealed that transmission of the scientific message varied as a function of attitudes towards genetic explanations of behaviour (pro-genetics vs. anti-genetics). Pro-genetics employed more scientific terminology than anti-genetics. Study 3 (N=75) showed that endorsement of genetic explanations was related to descriptive accounts of the scientific information, whereas rejection of genetic explanations was related to evaluative accounts of the information.

  8. Weighted gene co-expression based biomarker discovery for psoriasis detection.

    Science.gov (United States)

    Sundarrajan, Sudharsana; Arumugam, Mohanapriya

    2016-11-15

    Psoriasis is a chronic inflammatory disease of the skin with an unknown aetiology. The disease manifests itself as red and silvery scaly plaques distributed over the scalp, lower back and extensor aspects of the limbs. After receiving scant consideration for quite a few years, psoriasis has now become a prominent focus for new drug development. A group of closely connected and differentially co-expressed genes may act in a network and may serve as molecular signatures for an underlying phenotype. A weighted gene coexpression network analysis (WGCNA), a system biology approach has been utilized for identification of new molecular targets for psoriasis. Gene coexpression relationships were investigated in 58 psoriatic lesional samples resulting in five gene modules, clustered based on the gene coexpression patterns. The coexpression pattern was validated using three psoriatic datasets. 10 highly connected and informative genes from each module was selected and termed as psoriasis specific hub signatures. A random forest based binary classifier built using the expression profiles of signature genes robustly distinguished psoriatic samples from the normal samples in the validation set with an accuracy of 0.95 to 1. These signature genes may serve as potential candidates for biomarker discovery leading to new therapeutic targets. WGCNA, the network based approach has provided an alternative path to mine out key controllers and drivers of psoriasis. The study principle from the current work can be extended to other pathological conditions.

  9. Gene expression, single nucleotide variant and fusion transcript discovery in archival material from breast tumors.

    Directory of Open Access Journals (Sweden)

    Nadine Norton

    Full Text Available Advantages of RNA-Seq over array based platforms are quantitative gene expression and discovery of expressed single nucleotide variants (eSNVs and fusion transcripts from a single platform, but the sensitivity for each of these characteristics is unknown. We measured gene expression in a set of manually degraded RNAs, nine pairs of matched fresh-frozen, and FFPE RNA isolated from breast tumor with the hybridization based, NanoString nCounter (226 gene panel and with whole transcriptome RNA-Seq using RiboZeroGold ScriptSeq V2 library preparation kits. We performed correlation analyses of gene expression between samples and across platforms. We then specifically assessed whole transcriptome expression of lincRNA and discovery of eSNVs and fusion transcripts in the FFPE RNA-Seq data. For gene expression in the manually degraded samples, we observed Pearson correlations of >0.94 and >0.80 with NanoString and ScriptSeq protocols, respectively. Gene expression data for matched fresh-frozen and FFPE samples yielded mean Pearson correlations of 0.874 and 0.783 for NanoString (226 genes and ScriptSeq whole transcriptome protocols respectively, p<2x10(-16. Specifically for lincRNAs, we observed superb Pearson correlation (0.988 between matched fresh-frozen and FFPE pairs. FFPE samples across NanoString and RNA-Seq platforms gave a mean Pearson correlation of 0.838. In FFPE libraries, we detected 53.4% of high confidence SNVs and 24% of high confidence fusion transcripts. Sensitivity of fusion transcript detection was not overcome by an increase in depth of sequencing up to 3-fold (increase from ~56 to ~159 million reads. Both NanoString and ScriptSeq RNA-Seq technologies yield reliable gene expression data for degraded and FFPE material. The high degree of correlation between NanoString and RNA-Seq platforms suggests discovery based whole transcriptome studies from FFPE material will produce reliable expression data. The RiboZeroGold ScriptSeq protocol

  10. Estimating P-coverage of biosynthetic pathways in DNA libraries and screening by genetic selection: biotin biosynthesis in the marine microorganism Chromohalobacter.

    Science.gov (United States)

    Kim, Eun Jin; Angell, Scott; Janes, Jeff; Watanabe, Coran M H

    2008-06-01

    Traditional approaches to natural product discovery involve cell-based screening of natural product extracts followed by compound isolation and characterization. Their importance notwithstanding, continued mining leads to depletion of natural resources and the reisolation of previously identified metabolites. Metagenomic strategies aimed at localizing the biosynthetic cluster genes and expressing them in surrogate hosts offers one possible alternative. A fundamental question that naturally arises when pursuing such a strategy is, how large must the genomic library be to effectively represent the genome of an organism(s) and the biosynthetic gene clusters they harbor? Such an issue is certainly augmented in the absence of expensive robotics to expedite colony picking and/or screening of clones. We have developed an algorism, named BPC (biosynthetic pathway coverage), supported by molecular simulations to deduce the number of BAC clones required to achieve proper coverage of the genome and their respective biosynthetic pathways. The strategy has been applied to the construction of a large-insert BAC library from a marine microorganism, Hon6 (isolated from Honokohau, Maui) thought to represent a new species. The genomic library is constructed with a BAC yeast shuttle vector pClasper lacZ paving the way for the culturing of libraries in both prokaryotic and eukaryotic hosts. Flow cytometric methods are utilized to estimate the genome size of the organism and BPC implemented to assess P-coverage or percent coverage. A genetic selection strategy is illustrated, applications of which could expedite screening efforts in the identification and localization of biosynthetic pathways from marine microbial consortia, offering a powerful complement to genome sequencing and degenerate probe strategies. Implementing this approach, we report on the biotin biosynthetic pathway from the marine microorganism Hon6.

  11. Systematic discovery of unannotated genes in 11 yeast species using a database of orthologous genomic segments

    LENUS (Irish Health Repository)

    OhEigeartaigh, Sean S

    2011-07-26

    Abstract Background In standard BLAST searches, no information other than the sequences of the query and the database entries is considered. However, in situations where two genes from different species have only borderline similarity in a BLAST search, the discovery that the genes are located within a region of conserved gene order (synteny) can provide additional evidence that they are orthologs. Thus, for interpreting borderline search results, it would be useful to know whether the syntenic context of a database hit is similar to that of the query. This principle has often been used in investigations of particular genes or genomic regions, but to our knowledge it has never been implemented systematically. Results We made use of the synteny information contained in the Yeast Gene Order Browser database for 11 yeast species to carry out a systematic search for protein-coding genes that were overlooked in the original annotations of one or more yeast genomes but which are syntenic with their orthologs. Such genes tend to have been overlooked because they are short, highly divergent, or contain introns. The key features of our software - called SearchDOGS - are that the database entries are classified into sets of genomic segments that are already known to be orthologous, and that very weak BLAST hits are retained for further analysis if their genomic location is similar to that of the query. Using SearchDOGS we identified 595 additional protein-coding genes among the 11 yeast species, including two new genes in Saccharomyces cerevisiae. We found additional genes for the mating pheromone a-factor in six species including Kluyveromyces lactis. Conclusions SearchDOGS has proven highly successful for identifying overlooked genes in the yeast genomes. We anticipate that our approach can be adapted for study of further groups of species, such as bacterial genomes. More generally, the concept of doing sequence similarity searches against databases to which external

  12. A computer-based microarray experiment design-system for gene-regulation pathway discovery.

    Science.gov (United States)

    Yoo, Changwon; Cooper, Gregory F

    2003-01-01

    This paper reports the methods and evaluation of a computer-based system that recommends microarray experimental design for biologists - causal discovery in Gene Expression data using Expected Value of Experimentation (GEEVE). The GEEVE system uses causal Bayesian networks and generates a decision tree for recommendations. To evaluate the GEEVE system, we first built an expression simulation model based on a gene regulation model assessed by an expert biologist. Using the simulation model, we conducted a controlled study that involved 10 biologists, some of whom used GEEVE and some of whom did not. The results show that biologists who used GEEVE reached correct causal assessments about gene regulation more often than did those biologists who did not use GEEVE.

  13. Systems Pharmacology‐Based Discovery of Natural Products for Precision Oncology Through Targeting Cancer Mutated Genes

    Science.gov (United States)

    Fang, J; Cai, C; Wang, Q; Lin, P

    2017-01-01

    Massive cancer genomics data have facilitated the rapid revolution of a novel oncology drug discovery paradigm through targeting clinically relevant driver genes or mutations for the development of precision oncology. Natural products with polypharmacological profiles have been demonstrated as promising agents for the development of novel cancer therapies. In this study, we developed an integrated systems pharmacology framework that facilitated identifying potential natural products that target mutated genes across 15 cancer types or subtypes in the realm of precision medicine. High performance was achieved for our systems pharmacology framework. In case studies, we computationally identified novel anticancer indications for several US Food and Drug Administration‐approved or clinically investigational natural products (e.g., resveratrol, quercetin, genistein, and fisetin) through targeting significantly mutated genes in multiple cancer types. In summary, this study provides a powerful tool for the development of molecularly targeted cancer therapies through targeting the clinically actionable alterations by exploiting the systems pharmacology of natural products. PMID:28294568

  14. FORGE Canada Consortium: outcomes of a 2-year national rare-disease gene-discovery project.

    Science.gov (United States)

    Beaulieu, Chandree L; Majewski, Jacek; Schwartzentruber, Jeremy; Samuels, Mark E; Fernandez, Bridget A; Bernier, Francois P; Brudno, Michael; Knoppers, Bartha; Marcadier, Janet; Dyment, David; Adam, Shelin; Bulman, Dennis E; Jones, Steve J M; Avard, Denise; Nguyen, Minh Thu; Rousseau, Francois; Marshall, Christian; Wintle, Richard F; Shen, Yaoqing; Scherer, Stephen W; Friedman, Jan M; Michaud, Jacques L; Boycott, Kym M

    2014-06-01

    Inherited monogenic disease has an enormous impact on the well-being of children and their families. Over half of the children living with one of these conditions are without a molecular diagnosis because of the rarity of the disease, the marked clinical heterogeneity, and the reality that there are thousands of rare diseases for which causative mutations have yet to be identified. It is in this context that in 2010 a Canadian consortium was formed to rapidly identify mutations causing a wide spectrum of pediatric-onset rare diseases by using whole-exome sequencing. The FORGE (Finding of Rare Disease Genes) Canada Consortium brought together clinicians and scientists from 21 genetics centers and three science and technology innovation centers from across Canada. From nation-wide requests for proposals, 264 disorders were selected for study from the 371 submitted; disease-causing variants (including in 67 genes not previously associated with human disease; 41 of these have been genetically or functionally validated, and 26 are currently under study) were identified for 146 disorders over a 2-year period. Here, we present our experience with four strategies employed for gene discovery and discuss FORGE's impact in a number of realms, from clinical diagnostics to the broadening of the phenotypic spectrum of many diseases to the biological insight gained into both disease states and normal human development. Lastly, on the basis of this experience, we discuss the way forward for rare-disease genetic discovery both in Canada and internationally.

  15. A Review of Whole-Exome Sequencing Efforts Toward Hereditary Breast Cancer Susceptibility Gene Discovery.

    Science.gov (United States)

    Chandler, Madison R; Bilgili, Erin P; Merner, Nancy D

    2016-09-01

    Inherited genetic risk factors contribute toward breast cancer (BC) onset. BC risk variants can be divided into three categories of penetrance (high, moderate, and low) that reflect the probability of developing the disease. Traditional BC susceptibility gene discovery approaches that searched for high- and moderate-risk variants in familial BC cases have had limited success; to date, these risk variants explain only ∼30% of familial BC cases. Next-generation sequencing technologies can be used to search for novel high and moderate BC risk variants, and this manuscript reviews 12 familial BC whole-exome sequencing efforts. Study design, filtering strategies, and segregation and validation analyses are discussed. Overall, only a modest number of novel BC risk genes were identified, and 90% and 97% of the exome-sequenced families and cases, respectively, had no BC risk variants reported. It is important to learn from these studies and consider alternate strategies in order to make further advances. The discovery of new BC susceptibility genes is critical for improved risk assessment and to provide insight toward disease mechanisms for the development of more effective therapies.

  16. MAGIC Database and Interfaces: An Integrated Package for Gene Discovery and Expression

    Directory of Open Access Journals (Sweden)

    Lee H. Pratt

    2006-03-01

    Full Text Available The rapidly increasing rate at which biological data is being produced requires a corresponding growth in relational databases and associated tools that can help laboratories contend with that data. With this need in mind, we describe here a Modular Approach to a Genomic, Integrated and Comprehensive (MAGIC Database. This Oracle 9i database derives from an initial focus in our laboratory on gene discovery via production and analysis of expressed sequence tags (ESTs, and subsequently on gene expression as assessed by both EST clustering and microarrays. The MAGIC Gene Discovery portion of the database focuses on information derived from DNA sequences and on its biological relevance. In addition to MAGIC SEQ-LIMS, which is designed to support activities in the laboratory, it contains several additional subschemas. The latter include MAGIC Admin for database administration, MAGIC Sequence for sequence processing as well as sequence and clone attributes, MAGIC Cluster for the results of EST clustering, MAGIC Polymorphism in support of microsatellite and single-nucleotide-polymorphism discovery, and MAGIC Annotation for electronic annotation by BLAST and BLAT. The MAGIC Microarray portion is a MIAME-compliant database with two components at present. These are MAGIC Array-LIMS, which makes possible remote entry of all information into the database, and MAGIC Array Analysis, which provides data mining and visualization. Because all aspects of interaction with the MAGIC Database are via a web browser, it is ideally suited not only for individual research laboratories but also for core facilities that serve clients at any distance.

  17. Abiotic Stress Tolerance: From Gene Discovery in Model Organisms to Crop Improvement

    Institute of Scientific and Technical Information of China (English)

    Ray Bressan; Hans Bohnert; Jian-Kang Zhu

    2009-01-01

    Productive and sustainable agriculture necessitates growing plants in sub-optimal environments with less input of precious resources such as fresh water. For a better understanding and rapid improvement of abiotic stress tolerance, it is important to link physiological and biochemical work to molecular studies in genetically tractable model organisms. With the use of several technologies for the discovery of stress tolerance genes and their appropriate alleles,transgenic approaches to improving stress tolerance in crops remarkably parallels breeding principles with a greatly expanded germplasm base and will succeed eventually.

  18. Inherited retinal diseases in dogs: advances in gene/mutation discovery.

    Science.gov (United States)

    Miyadera, Keiko

    1. Inherited retinal diseases (RDs) are vision-threatening conditions affecting humans as well as many domestic animals. Through many years of clinical studies of the domestic dog population, a wide array of RDs has been phenotypically characterized. Extensive effort to map the causative gene and to identify the underlying mutation followed. Through candidate gene, linkage analysis, genome-wide association studies, and more recently, by means of next-generation sequencing, as many as 31 mutations in 24 genes have been identified as the underlying cause for canine RDs. Most of these genes have been associated with human RDs providing opportunities to study their roles in the disease pathogenesis and in normal visual function. The canine model has also contributed in developing new treatments such as gene therapy which has been clinically applied to human patients. Meanwhile, with increasing knowledge of the molecular architecture of RDs in different subpopulations of dogs, the conventional understanding of RDs as a simple monogenic disease is beginning to change. Emerging evidence of modifiers that alters the disease outcome is complicating the interpretation of DNA tests. In this review, advances in the gene/mutation discovery approaches and the emerging genetic complexity of canine RDs are discussed.

  19. RNA-Seq analysis and gene discovery of Andrias davidianus using Illumina short read sequencing.

    Directory of Open Access Journals (Sweden)

    Fenggang Li

    Full Text Available The Chinese giant salamander, Andrias davidianus, is an important species in the course of evolution; however, there is insufficient genomic data in public databases for understanding its immunologic mechanisms. High-throughput transcriptome sequencing is necessary to generate an enormous number of transcript sequences from A. davidianus for gene discovery. In this study, we generated more than 40 million reads from samples of spleen and skin tissue using the Illumina paired-end sequencing technology. De novo assembly yielded 87,297 transcripts with a mean length of 734 base pairs (bp. Based on the sequence similarities, searching with known proteins, 38,916 genes were identified. Gene enrichment analysis determined that 981 transcripts were assigned to the immune system. Tissue-specific expression analysis indicated that 443 of transcripts were specifically expressed in the spleen and skin. Among these transcripts, 147 transcripts were found to be involved in immune responses and inflammatory reactions, such as fucolectin, β-defensins and lymphotoxin beta. Eight tissue-specific genes were selected for validation using real time reverse transcription quantitative PCR (qRT-PCR. The results showed that these genes were significantly more expressed in spleen and skin than in other tissues, suggesting that these genes have vital roles in the immune response. This work provides a comprehensive genomic sequence resource for A. davidianus and lays the foundation for future research on the immunologic and disease resistance mechanisms of A. davidianus and other amphibians.

  20. Evaluation of gene association methods for coexpression network construction and biological knowledge discovery.

    Directory of Open Access Journals (Sweden)

    Sapna Kumari

    Full Text Available BACKGROUND: Constructing coexpression networks and performing network analysis using large-scale gene expression data sets is an effective way to uncover new biological knowledge; however, the methods used for gene association in constructing these coexpression networks have not been thoroughly evaluated. Since different methods lead to structurally different coexpression networks and provide different information, selecting the optimal gene association method is critical. METHODS AND RESULTS: In this study, we compared eight gene association methods - Spearman rank correlation, Weighted Rank Correlation, Kendall, Hoeffding's D measure, Theil-Sen, Rank Theil-Sen, Distance Covariance, and Pearson - and focused on their true knowledge discovery rates in associating pathway genes and construction coordination networks of regulatory genes. We also examined the behaviors of different methods to microarray data with different properties, and whether the biological processes affect the efficiency of different methods. CONCLUSIONS: We found that the Spearman, Hoeffding and Kendall methods are effective in identifying coexpressed pathway genes, whereas the Theil-sen, Rank Theil-Sen, Spearman, and Weighted Rank methods perform well in identifying coordinated transcription factors that control the same biological processes and traits. Surprisingly, the widely used Pearson method is generally less efficient, and so is the Distance Covariance method that can find gene pairs of multiple relationships. Some analyses we did clearly show Pearson and Distance Covariance methods have distinct behaviors as compared to all other six methods. The efficiencies of different methods vary with the data properties to some degree and are largely contingent upon the biological processes, which necessitates the pre-analysis to identify the best performing method for gene association and coexpression network construction.

  1. Next-generation diagnostics and disease-gene discovery with the Exomiser.

    Science.gov (United States)

    Smedley, Damian; Jacobsen, Julius O B; Jäger, Marten; Köhler, Sebastian; Holtgrewe, Manuel; Schubach, Max; Siragusa, Enrico; Zemojtel, Tomasz; Buske, Orion J; Washington, Nicole L; Bone, William P; Haendel, Melissa A; Robinson, Peter N

    2015-12-01

    Exomiser is an application that prioritizes genes and variants in next-generation sequencing (NGS) projects for novel disease-gene discovery or differential diagnostics of Mendelian disease. Exomiser comprises a suite of algorithms for prioritizing exome sequences using random-walk analysis of protein interaction networks, clinical relevance and cross-species phenotype comparisons, as well as a wide range of other computational filters for variant frequency, predicted pathogenicity and pedigree analysis. In this protocol, we provide a detailed explanation of how to install Exomiser and use it to prioritize exome sequences in a number of scenarios. Exomiser requires ∼3 GB of RAM and roughly 15-90 s of computing time on a standard desktop computer to analyze a variant call format (VCF) file. Exomiser is freely available for academic use from http://www.sanger.ac.uk/science/tools/exomiser.

  2. TargetMine, an integrated data warehouse for candidate gene prioritisation and target discovery.

    Directory of Open Access Journals (Sweden)

    Yi-An Chen

    Full Text Available Prioritising candidate genes for further experimental characterisation is a non-trivial challenge in drug discovery and biomedical research in general. An integrated approach that combines results from multiple data types is best suited for optimal target selection. We developed TargetMine, a data warehouse for efficient target prioritisation. TargetMine utilises the InterMine framework, with new data models such as protein-DNA interactions integrated in a novel way. It enables complicated searches that are difficult to perform with existing tools and it also offers integration of custom annotations and in-house experimental data. We proposed an objective protocol for target prioritisation using TargetMine and set up a benchmarking procedure to evaluate its performance. The results show that the protocol can identify known disease-associated genes with high precision and coverage. A demonstration version of TargetMine is available at http://targetmine.nibio.go.jp/.

  3. SPARCoC: a new framework for molecular pattern discovery and cancer gene identification.

    Directory of Open Access Journals (Sweden)

    Shiqian Ma

    Full Text Available It is challenging to cluster cancer patients of a certain histopathological type into molecular subtypes of clinical importance and identify gene signatures directly relevant to the subtypes. Current clustering approaches have inherent limitations, which prevent them from gauging the subtle heterogeneity of the molecular subtypes. In this paper we present a new framework: SPARCoC (Sparse-CoClust, which is based on a novel Common-background and Sparse-foreground Decomposition (CSD model and the Maximum Block Improvement (MBI co-clustering technique. SPARCoC has clear advantages compared with widely-used alternative approaches: hierarchical clustering (Hclust and nonnegative matrix factorization (NMF. We apply SPARCoC to the study of lung adenocarcinoma (ADCA, an extremely heterogeneous histological type, and a significant challenge for molecular subtyping. For testing and verification, we use high quality gene expression profiling data of lung ADCA patients, and identify prognostic gene signatures which could cluster patients into subgroups that are significantly different in their overall survival (with p-values < 0.05. Our results are only based on gene expression profiling data analysis, without incorporating any other feature selection or clinical information; we are able to replicate our findings with completely independent datasets. SPARCoC is broadly applicable to large-scale genomic data to empower pattern discovery and cancer gene identification.

  4. Discovery of time-delayed gene regulatory networks based on temporal gene expression profiling

    Directory of Open Access Journals (Sweden)

    Guo Zheng

    2006-01-01

    Full Text Available Abstract Background It is one of the ultimate goals for modern biological research to fully elucidate the intricate interplays and the regulations of the molecular determinants that propel and characterize the progression of versatile life phenomena, to name a few, cell cycling, developmental biology, aging, and the progressive and recurrent pathogenesis of complex diseases. The vast amount of large-scale and genome-wide time-resolved data is becoming increasing available, which provides the golden opportunity to unravel the challenging reverse-engineering problem of time-delayed gene regulatory networks. Results In particular, this methodological paper aims to reconstruct regulatory networks from temporal gene expression data by using delayed correlations between genes, i.e., pairwise overlaps of expression levels shifted in time relative each other. We have thus developed a novel model-free computational toolbox termed TdGRN (Time-delayed Gene Regulatory Network to address the underlying regulations of genes that can span any unit(s of time intervals. This bioinformatics toolbox has provided a unified approach to uncovering time trends of gene regulations through decision analysis of the newly designed time-delayed gene expression matrix. We have applied the proposed method to yeast cell cycling and human HeLa cell cycling and have discovered most of the underlying time-delayed regulations that are supported by multiple lines of experimental evidence and that are remarkably consistent with the current knowledge on phase characteristics for the cell cyclings. Conclusion We established a usable and powerful model-free approach to dissecting high-order dynamic trends of gene-gene interactions. We have carefully validated the proposed algorithm by applying it to two publicly available cell cycling datasets. In addition to uncovering the time trends of gene regulations for cell cycling, this unified approach can also be used to study the complex

  5. Variation in fumonisin and ochratoxin production associated with differences in biosynthetic gene content in Aspergillus niger and A. welwitschiae isolates from multiple crop and geographic origins

    Science.gov (United States)

    The fungi Aspergillus niger and A. welwitschiae are morphologically indistinguishable species used for industrial fermentation and for food and beverage production. The fungi also occur widely on food crops. Concerns about their safety have arisen with the discovery that some isolates of both specie...

  6. Recent advances in genome-based polyketide discovery.

    Science.gov (United States)

    Helfrich, Eric J N; Reiter, Silke; Piel, Jörn

    2014-10-01

    Polyketides are extraordinarily diverse secondary metabolites of great pharmacological value and with interesting ecological functions. The post-genomics era has led to fundamental changes in natural product research by inverting the workflow of secondary metabolite discovery. As opposed to traditional bioactivity-guided screenings, genome mining is an in silico method to screen and analyze sequenced genomes for natural product biosynthetic gene clusters. Since genes for known compounds can be recognized at the early computational stage, genome mining presents an opportunity for dereplication. This review highlights recent progress in bioinformatics, pathway engineering and chemical analytics to extract the biosynthetic secrets hidden in the genome of both well-known natural product sources as well as previously neglected bacteria.

  7. Targeted SNP discovery in Atlantic salmon (Salmo salar genes using a 3'UTR-primed SNP detection approach

    Directory of Open Access Journals (Sweden)

    Høyheim Bjørn

    2010-12-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs represent the most widespread type of DNA variation in vertebrates and may be used as genetic markers for a range of applications. This has led to an increased interest in identification of SNP markers in non-model species and farmed animals. The in silico SNP mining method used for discovery of most known SNPs in Atlantic salmon (Salmo salar has applied a global (genome-wide approach. In this study we present a targeted 3'UTR-primed SNP discovery strategy that utilizes sequence data from Salmo salar full length sequenced cDNAs (FLIcs. We compare the efficiency of this new strategy to the in silico SNP mining method when using both methods for targeted SNP discovery. Results The SNP discovery efficiency of the two methods was tested in a set of FLIc target genes. The 3'UTR-primed SNP discovery method detected novel SNPs in 35% of the target genes while the in silico SNP mining method detected novel SNPs in 15% of the target genes. Furthermore, the 3'UTR-primed SNP discovery strategy was the less labor intensive one and revealed a higher success rate than the in silico SNP mining method in the initial amplification step. When testing the methods we discovered 112 novel bi-allelic polymorphisms (type I markers in 88 salmon genes [dbSNP: ss179319972-179320081, ss250608647-250608648], and three of the SNPs discovered were missense substitutions. Conclusions Full length insert cDNAs (FLIcs are important genomic resources that have been developed in many farmed animals. The 3'UTR-primed SNP discovery strategy successfully utilized FLIc data to detect novel SNPs in the partially tetraploid Atlantic salmon. This strategy may therefore be useful for targeted SNP discovery in several species, and particularly useful in species that, like salmonids, have duplicated genomes.

  8. High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome

    Directory of Open Access Journals (Sweden)

    Pappas Georgios J

    2008-06-01

    Full Text Available Abstract Background Benefits from high-throughput sequencing using 454 pyrosequencing technology may be most apparent for species with high societal or economic value but few genomic resources. Rapid means of gene sequence and SNP discovery using this novel sequencing technology provide a set of baseline tools for genome-level research. However, it is questionable how effective the sequencing of large numbers of short reads for species with essentially no prior gene sequence information will support contig assemblies and sequence annotation. Results With the purpose of generating the first broad survey of gene sequences in Eucalyptus grandis, the most widely planted hardwood tree species, we used 454 technology to sequence and assemble 148 Mbp of expressed sequences (EST. EST sequences were generated from a normalized cDNA pool comprised of multiple tissues and genotypes, promoting discovery of homologues to almost half of Arabidopsis genes, and a comprehensive survey of allelic variation in the transcriptome. By aligning the sequencing reads from multiple genotypes we detected 23,742 SNPs, 83% of which were validated in a sample. Genome-wide nucleotide diversity was estimated for 2,392 contigs using a modified theta (θ parameter, adapted for measuring genetic diversity from polymorphisms detected by randomly sequencing a multi-genotype cDNA pool. Diversity estimates in non-synonymous nucleotides were on average 4x smaller than in synonymous, suggesting purifying selection. Non-synonymous to synonymous substitutions (Ka/Ks among 2,001 contigs averaged 0.30 and was skewed to the right, further supporting that most genes are under purifying selection. Comparison of these estimates among contigs identified major functional classes of genes under purifying and diversifying selection in agreement with previous researches. Conclusion In providing an abundance of foundational transcript sequences where limited prior genomic information existed, this

  9. Effector genomics accelerates discovery and functional profiling of potato disease resistance and phytophthora infestans avirulence genes.

    Directory of Open Access Journals (Sweden)

    Vivianne G A A Vleeshouwers

    Full Text Available Potato is the world's fourth largest food crop yet it continues to endure late blight, a devastating disease caused by the Irish famine pathogen Phytophthora infestans. Breeding broad-spectrum disease resistance (R genes into potato (Solanum tuberosum is the best strategy for genetically managing late blight but current approaches are slow and inefficient. We used a repertoire of effector genes predicted computationally from the P. infestans genome to accelerate the identification, functional characterization, and cloning of potentially broad-spectrum R genes. An initial set of 54 effectors containing a signal peptide and a RXLR motif was profiled for activation of innate immunity (avirulence or Avr activity on wild Solanum species and tentative Avr candidates were identified. The RXLR effector family IpiO induced hypersensitive responses (HR in S. stoloniferum, S. papita and the more distantly related S. bulbocastanum, the source of the R gene Rpi-blb1. Genetic studies with S. stoloniferum showed cosegregation of resistance to P. infestans and response to IpiO. Transient co-expression of IpiO with Rpi-blb1 in a heterologous Nicotiana benthamiana system identified IpiO as Avr-blb1. A candidate gene approach led to the rapid cloning of S. stoloniferum Rpi-sto1 and S. papita Rpi-pta1, which are functionally equivalent to Rpi-blb1. Our findings indicate that effector genomics enables discovery and functional profiling of late blight R genes and Avr genes at an unprecedented rate and promises to accelerate the engineering of late blight resistant potato varieties.

  10. Reducing AsA leads to leaf lesion and defence response in knock-down of the AsA biosynthetic enzyme GDP-D-mannose pyrophosphorylase gene in tomato plant.

    Science.gov (United States)

    Zhang, Chanjuan; Ouyang, Bo; Yang, Changxian; Zhang, Xiaohui; Liu, Hui; Zhang, Yuyang; Zhang, Junhong; Li, Hanxia; Ye, Zhibiao

    2013-01-01

    As a vital antioxidant, L-ascorbic acid (AsA) affects diverse biological processes in higher plants. Lack of AsA in cell impairs plant development. In the present study, we manipulated a gene of GDP-mannose pyrophosphorylase which catalyzes the conversion of D-mannose-1-P to GDP-D-mannose in AsA biosynthetic pathway and found out the phenotype alteration of tomato. In the tomato genome, there are four members of GMP gene family and they constitutively expressed in various tissues in distinct expression patterns. As expected, over-expression of SlGMP3 increased total AsA contents and enhanced the tolerance to oxidative stress in tomato. On the contrary, knock-down of SlGMP3 significantly decreased AsA contents below the threshold level and altered the phenotype of tomato plants with lesions and further senescence. Further analysis indicated the causes for this symptom could result from failing to instantly deplete the reactive oxygen species (ROS) as decline of free radical scavenging activity. More ROS accumulated in the leaves and then triggered expressions of defence-related genes and mimic symptom occurred on the leaves similar to hypersensitive responses against pathogens. Consequently, the photosynthesis of leaves was dramatically fallen. These results suggested the vital roles of AsA as an antioxidant in leaf function and defence response of tomato.

  11. Reducing AsA leads to leaf lesion and defence response in knock-down of the AsA biosynthetic enzyme GDP-D-mannose pyrophosphorylase gene in tomato plant.

    Directory of Open Access Journals (Sweden)

    Chanjuan Zhang

    Full Text Available As a vital antioxidant, L-ascorbic acid (AsA affects diverse biological processes in higher plants. Lack of AsA in cell impairs plant development. In the present study, we manipulated a gene of GDP-mannose pyrophosphorylase which catalyzes the conversion of D-mannose-1-P to GDP-D-mannose in AsA biosynthetic pathway and found out the phenotype alteration of tomato. In the tomato genome, there are four members of GMP gene family and they constitutively expressed in various tissues in distinct expression patterns. As expected, over-expression of SlGMP3 increased total AsA contents and enhanced the tolerance to oxidative stress in tomato. On the contrary, knock-down of SlGMP3 significantly decreased AsA contents below the threshold level and altered the phenotype of tomato plants with lesions and further senescence. Further analysis indicated the causes for this symptom could result from failing to instantly deplete the reactive oxygen species (ROS as decline of free radical scavenging activity. More ROS accumulated in the leaves and then triggered expressions of defence-related genes and mimic symptom occurred on the leaves similar to hypersensitive responses against pathogens. Consequently, the photosynthesis of leaves was dramatically fallen. These results suggested the vital roles of AsA as an antioxidant in leaf function and defence response of tomato.

  12. The endometrial cancer cell lines Ishikawa and HEC-1A, and the control cell line HIEEC, differ in expression of estrogen biosynthetic and metabolic genes, and in androstenedione and estrone-sulfate metabolism.

    Science.gov (United States)

    Hevir-Kene, Neli; Rižner, Tea Lanišnik

    2015-06-05

    Estrogens have important roles in the pathogenesis of endometrial cancer. They can have carcinogenic effects through stimulation of cell proliferation or formation of DNA-damaging species. To characterize model cell lines of endometrial cancer, we determined the expression profiles of the estrogen receptors (ERs) ESR1, ESR2 and GPER, and 23 estrogen biosynthetic and metabolic genes, and investigated estrogen biosynthesis in the control HIEEC cell line and the Ishikawa and HEC-1A EC cell lines. HIEEC and Ishikawa expressed all ERs to different extents, while HEC-1A cells lacked expression of ESR1. Considering the estrogen biosynthetic and metabolic enzymes, these cells showed statistically significant different gene expression profiles for SULT2B1, HSD3B2, CYP19A1, AKR1C3, HSD17B1, HSD17B7, HSD17B12, CYP1B1, CYP3A5, COMT, SULT1A1, GSTP1 and NQO2. In these cells, E2 was formed from E1S and E1, while androstenedione was not converted to estrogens. HIEEC and Ishikawa had similar profiles of androstenedione and E1 metabolism, but hydrolysis of E1S to E1 was weaker in Ishikawa cells. HEC-1A cells were less efficient for activation of E1 into the potent E2, but metabolized androstenedione to other androgenic metabolites better than HIEEC and Ishikawa cells. This study reveals that HIEEC, Ishikawa, and HEC-1A cells can all form estrogens only via the sulfatase pathway. HIEEC, Ishikawa, and HEC-1A cells expressed all the major genes in the production of hydroxyestrogens and estrogen quinones, and in their conjugation. Significantly higher CYP1B1 mRNA levels in Ishikawa cells compared to HEC-1A cells, together with lack of UGT2B7 expression, indicate that Ishikawa cells can accumulate more toxic estrogen-3,4-quinones than HEC-1A cells, as also for HIEEC cells. This study provides further characterization of HIEEC, Ishikawa, and HEC-1A cells, and shows that they differ greatly in expression of the genes investigated and in their capacity for E2 formation, and thus they

  13. 武夷菌素部分生物合成基因簇的克隆和分析%Cloning and Analysis of Wuyiencin Partial Biosynthetic Gene Cluster of Streptomyces ahygroscopicus var. wuyiensis CK-15

    Institute of Scientific and Technical Information of China (English)

    葛蓓孛; 杨振娟; 檀贝贝; 刘彦彦; 刘艳; 孙蕾; 张克诚

    2014-01-01

    不吸水链霉菌武夷变种Streptomyces ahygroscopicus var. wuyiensis CK-15是从福建省武夷山土样中分离得到的一株链霉菌,其代谢产物武夷菌素对果蔬真菌病害具有良好的防治效果,但是因其产量低的缺点限制了武夷菌素工业化生产和农业生产中的应用。为了实现利用基因工程培育高产新菌株的目标,首先要获得武夷菌素的生物合成基因。根据大环内酯类抗生素聚酮合成酶基因设计引物筛选菌株CK-15的基因组文库,共获得9个阳性克隆。克隆和测序获得3个较长scaffold片段,序列总长度达53.291 kb,其中包含了14个可能阅读框,通过同源比对证实该序列与S. noursei ATCC 11455的制霉素生物合成基因有很高的同源性。本研究为进一步研究武夷菌素生物合成基因的功能,并通过基因工程培育高产新菌株奠定了基础。%A wuyiencin producing strain Streptomyces ahygroscopicus var. wuyiensis CK-15 was isolated and purified from Wuyi mountain soil in Fujian province. Wuyiencin as secondary metabolites has good control effect on fruit and vegetable fungal diseases whereas which is limited on its low production disadvantage in industrial production and agricultural application. In order to achieve the aim of breeding high yield strain by genetic engineering, an attempt to obtain the biosynthetic gene cluster of wuyiencin generated strain was made. In this study, primers were designed according to a sequence of macrolide antibiotic polyketone synthetase gene, which was used for screening CK-15 genomic library. Nine positive clones were identified from the Streptomyces ahygroscopicus var. wuyiensis CK-15 fosmid genomic library. The positive clones were sequenced. There were three large scaffolds with approximately 53.291 kb of gene sequence. This sequence contains 14 possible ORFs and show high homology with nystatin biosynthetic gene of S. noursei ATCC 11455. The research will

  14. Leveraging gene-environment interactions and endotypes for asthma gene discovery.

    Science.gov (United States)

    Bønnelykke, Klaus; Ober, Carole

    2016-03-01

    Asthma is a heterogeneous clinical syndrome that includes subtypes of disease with different underlying causes and disease mechanisms. Asthma is caused by a complex interaction between genes and environmental exposures; early-life exposures in particular play an important role. Asthma is also heritable, and a number of susceptibility variants have been discovered in genome-wide association studies, although the known risk alleles explain only a small proportion of the heritability. In this review, we present evidence supporting the hypothesis that focusing on more specific asthma phenotypes, such as childhood asthma with severe exacerbations, and on relevant exposures that are involved in gene-environment interactions (GEIs), such as rhinovirus infections, will improve detection of asthma genes and our understanding of the underlying mechanisms. We will discuss the challenges of considering GEIs and the advantages of studying responses to asthma-associated exposures in clinical birth cohorts, as well as in cell models of GEIs, to dissect the context-specific nature of genotypic risks, to prioritize variants in genome-wide association studies, and to identify pathways involved in pathogenesis in subgroups of patients. We propose that such approaches, in spite of their many challenges, present great opportunities for better understanding of asthma pathogenesis and heterogeneity and, ultimately, for improving prevention and treatment of disease.

  15. A comparative review of estimates of the proportion unchanged genes and the false discovery rate

    Directory of Open Access Journals (Sweden)

    Broberg Per

    2005-08-01

    Full Text Available Abstract Background In the analysis of microarray data one generally produces a vector of p-values that for each gene give the likelihood of obtaining equally strong evidence of change by pure chance. The distribution of these p-values is a mixture of two components corresponding to the changed genes and the unchanged ones. The focus of this article is how to estimate the proportion unchanged and the false discovery rate (FDR and how to make inferences based on these concepts. Six published methods for estimating the proportion unchanged genes are reviewed, two alternatives are presented, and all are tested on both simulated and real data. All estimates but one make do without any parametric assumptions concerning the distributions of the p-values. Furthermore, the estimation and use of the FDR and the closely related q-value is illustrated with examples. Five published estimates of the FDR and one new are presented and tested. Implementations in R code are available. Results A simulation model based on the distribution of real microarray data plus two real data sets were used to assess the methods. The proposed alternative methods for estimating the proportion unchanged fared very well, and gave evidence of low bias and very low variance. Different methods perform well depending upon whether there are few or many regulated genes. Furthermore, the methods for estimating FDR showed a varying performance, and were sometimes misleading. The new method had a very low error. Conclusion The concept of the q-value or false discovery rate is useful in practical research, despite some theoretical and practical shortcomings. However, it seems possible to challenge the performance of the published methods, and there is likely scope for further developing the estimates of the FDR. The new methods provide the scientist with more options to choose a suitable method for any particular experiment. The article advocates the use of the conjoint information

  16. SAGExplore: a web server for unambiguous tag mapping in serial analysis of gene expression oriented to gene discovery and annotation.

    Science.gov (United States)

    Norambuena, Tomás; Malig, Rodrigo; Melo, Francisco

    2007-07-01

    We describe a web server for the accurate mapping of experimental tags in serial analysis of gene expression (SAGE). The core of the server relies on a database of genomic virtual tags built by a recently described method that attempts to reduce the amount of ambiguous assignments for those tags that are not unique in the genome. The method provides a complete annotation of potential virtual SAGE tags within a genome, along with an estimation of their confidence for experimental observation that ranks tags that present multiple matches in the genome. The output of the server consists of a table in HTML format that contains links to a graphic representation of the results and to some external servers and databases, facilitating the tasks of analysis of gene expression and gene discovery. Also, a table in tab delimited text format is produced, allowing the user to export the results into custom databases and software for further analysis. The current server version provides the most accurate and complete SAGE tag mapping source that is available for the yeast organism. In the near future, this server will also allow the accurate mapping of experimental SAGE-tags from other model organisms such as human, mouse, frog and fly. The server is freely available on the web at: http://dna.bio.puc.cl/SAGExplore.html.

  17. Sleeping Beauty transposon insertional mutagenesis based mouse models for cancer gene discovery

    Science.gov (United States)

    Moriarity, Branden S; Largaespada, David A

    2016-01-01

    Large-scale genomic efforts to study human cancer, such as the cancer gene atlas (TCGA), have identified numerous cancer drivers in a wide variety of tumor types. However, there are limitations to this approach, the mutations and expression or copy number changes that are identified are not always clearly functionally relevant, and only annotated genes and genetic elements are thoroughly queried. The use of complimentary, nonbiased, functional approaches to identify drivers of cancer development and progression is ideal to maximize the rate at which cancer discoveries are achieved. One such approach that has been successful is the use of the Sleeping Beauty (SB) transposon-based mutagenesis system in mice. This system uses a conditionally expressed transposase and mutagenic transposon allele to target mutagenesis to somatic cells of a given tissue in mice to cause random mutations leading to tumor development. Analysis of tumors for transposon common insertion sites (CIS) identifies candidate cancer genes specific to that tumor type. While similar screens have been performed in mice with the PiggyBac (PB) transposon and viral approaches, we limit extensive discussion to SB. Here we discuss the basic structure of these screens, screens that have been performed, methods used to identify CIS. PMID:26051241

  18. Indole-3-acetic acid (IAA) induced changes in oil content, fatty acid profiles and expression of four fatty acid biosynthetic genes in Chlorella vulgaris at early stationary growth phase.

    Science.gov (United States)

    Jusoh, Malinna; Loh, Saw Hong; Chuah, Tse Seng; Aziz, Ahmad; Cha, Thye San

    2015-03-01

    Microalgae lipids and oils are potential candidates for renewable biodiesel. Many microalgae species accumulate a substantial amount of lipids and oils under environmental stresses. However, low growth rate under these adverse conditions account for the decrease in overall biomass productivity which directly influence the oil yield. This study was undertaken to investigate the effect of exogenously added auxin (indole-3-acetic acid; IAA) on the oil content, fatty acid compositions, and the expression of fatty acid biosynthetic genes in Chlorella vulgaris (UMT-M1). Auxin has been shown to regulate growth and metabolite production of several microalgae. Results showed that oil accumulation was highest on days after treatment (DAT)-2 with enriched levels of palmitic (C16:0) and stearic (C18:0) acids, while the linoleic (C18:2) and α-linolenic (C18:3n3) acids levels were markedly reduced by IAA. The elevated levels of saturated fatty acids (C16:0 and C18:0) were consistent with high expression of the β-ketoacyl ACP synthase I (KAS I) gene, while low expression of omega-6 fatty acid desaturase (ω-6 FAD) gene was consistent with low production of C18:2. However, the increment of stearoyl-ACP desaturase (SAD) gene expression upon IAA induction did not coincide with oleic acid (C18:1) production. The expression of omega-3 fatty acid desaturase (ω-3 FAD) gene showed a positive correlation with the synthesis of PUFA and C18:3n3.

  19. Metabolic engineering of the carotenoid biosynthetic pathway in the yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma)

    NARCIS (Netherlands)

    Verdoes, J.C.; Sandmann, G.; Visser, H.; Diaz, M.; Mossel, van M.; Ooyen, van A.J.J.

    2003-01-01

    The crtYB locus was used as an integrative platform for the construction of specific carotenoid biosynthetic mutants in the astaxanthin-producing yeast Xanthophyllomyces dendrorhous. The crtYB gene of X. dendrorhous, encoding a chimeric carotenoid biosynthetic enzyme, could be inactivated by both si

  20. Trichodiene Production in a Trichoderma harzianum erg1-Silenced Strain Provides Evidence of the Importance of the Sterol Biosynthetic Pathway in Inducing Plant Defense-Related Gene Expression.

    Science.gov (United States)

    Malmierca, M G; McCormick, S P; Cardoza, R E; Monte, E; Alexander, N J; Gutiérrez, S

    2015-11-01

    Trichoderma species are often used as biocontrol agents against plant-pathogenic fungi. A complex molecular interaction occurs among the biocontrol agent, the antagonistic fungus, and the plant. Terpenes and sterols produced by the biocontrol fungus have been found to affect gene expression in both the antagonistic fungus and the plant. The terpene trichodiene (TD) elicits the expression of genes related to tomato defense and to Botrytis virulence. We show here that TD itself is able to induce the expression of Botrytis genes involved in the synthesis of botrydial (BOT) and also induces terpene gene expression in Trichoderma spp. The terpene ergosterol, in addition to its role as a structural component of the fungal cell membranes, acts as an elicitor of defense response in plants. In the present work, using a transformant of T. harzianum, which is silenced in the erg1 gene and accumulates high levels of squalene, we show that this ergosterol precursor also acts as an important elicitor molecule of tomato defense-related genes and induces Botrytis genes involved in BOT biosynthesis, in both cases, in a concentration-dependent manner. Our data emphasize the importance of a balance of squalene and ergosterol in fungal interactions as well as in the biocontrol activity of Trichoderma spp.

  1. Ligand-dependent regulation of the activity of the orphan nuclear receptor, small heterodimer partner (SHP), in the repression of bile acid biosynthetic CYP7A1 and CYP8B1 genes.

    Science.gov (United States)

    Miao, Ji; Choi, Sung-E; Seok, Sun Mi; Yang, Linda; Zuercher, William J; Xu, Yong; Willson, Timothy M; Xu, H Eric; Kemper, Jongsook Kim

    2011-07-01

    Small heterodimer partner (SHP) plays important roles in diverse biological processes by directly interacting with transcription factors and inhibiting their activities. SHP has been designated an orphan nuclear receptor, but whether its activity can be modulated by ligands has been a long-standing question. Recently, retinoid-related molecules, including 4-[3-(1-adamantyl)-4-hydroxyphenyl]-3-chlorocinnamic acid (3Cl-AHPC), were shown to bind to SHP and enhance apoptosis. We have examined whether 3Cl-AHPC acts as an agonist and increases SHP activity in the repression of bile acid biosynthetic CYP7A1 and CYP8B1 genes and delineated the underlying mechanisms. Contrary to this expectation, micromolar concentrations of 3Cl-AHPC increased CYP7A1 expression but indirectly via p38 kinase signaling. Nanomolar concentrations, however, repressed CYP7A1 expression and decreased bile acid levels in HepG2 cells, and little repression was observed when SHP was down-regulated by small hairpin RNA. Mechanistic studies revealed that 3Cl-AHPC bound to SHP, increased the interaction of SHP with liver receptor homologue (LRH)-1, a hepatic activator for CYP7A1 and CYP8B1 genes, and with repressive cofactors, Brahma, mammalian Sin3a, and histone deacetylase-1, and, subsequently, increased the occupancy of SHP and these cofactors at the promoters. Mutation of Leu-100, predicted to contact 3Cl-AHPC within the SHP ligand binding pocket by molecular modeling, severely impaired the increased interaction with LRH-1, and repression of LRH-1 activity mediated by 3Cl-AHPC. 3Cl-AHPC repressed SHP metabolic target genes in a gene-specific manner in human primary hepatocytes and HepG2 cells. These data suggest that SHP may act as a ligand-regulated receptor in metabolic pathways. Modulation of SHP activity by synthetic ligands may be a useful therapeutic strategy.

  2. Elucidation and in planta reconstitution of the parthenolide biosynthetic pathway

    NARCIS (Netherlands)

    Liu, Q.; Manzano, D.; Tanic, N.; Pesic, M.; Bankovic, J.; Pateraki, I.; Ricard, L.; Ferrer, A.; Vos, de R.C.H.; Krol, van der A.R.; Bouwmeester, H.J.

    2014-01-01

    Parthenolide, the main bioactive compound of the medicinal plant feverfew (Tanacetum parthenium), is a promising anti-cancer drug. However, the biosynthetic pathway of parthenolide has not been elucidated yet. Here we report on the isolation and characterization of all the genes from feverfew that a

  3. Gene discovery using mutagen-induced polymorphisms and deep sequencing: application to plant disease resistance.

    Science.gov (United States)

    Zhu, Ying; Mang, Hyung-gon; Sun, Qi; Qian, Jun; Hipps, Ashley; Hua, Jian

    2012-09-01

    Next-generation sequencing technologies are accelerating gene discovery by combining multiple steps of mapping and cloning used in the traditional map-based approach into one step using DNA sequence polymorphisms existing between two different accessions/strains/backgrounds of the same species. The existing next-generation sequencing method, like the traditional one, requires the use of a segregating population from a cross of a mutant organism in one accession with a wild-type (WT) organism in a different accession. It therefore could potentially be limited by modification of mutant phenotypes in different accessions and/or by the lengthy process required to construct a particular mapping parent in a second accession. Here we present mapping and cloning of an enhancer mutation with next-generation sequencing on bulked segregants in the same accession using sequence polymorphisms induced by a chemical mutagen. This method complements the conventional cloning approach and makes forward genetics more feasible and powerful in molecularly dissecting biological processes in any organisms. The pipeline developed in this study can be used to clone causal genes in background of single mutants or higher order of mutants and in species with or without sequence information on multiple accessions.

  4. TaWRKY70 transcription factor in wheat QTL-2DL regulates downstream metabolite biosynthetic genes to resist Fusarium graminearum infection spread within spike

    Science.gov (United States)

    Kage, Udaykumar; Yogendra, Kalenahalli N.; Kushalappa, Ajjamada C.

    2017-01-01

    A semi-comprehensive metabolomics was used to identify the candidate metabolites and genes to decipher mechanisms of resistance in wheat near-isogenic lines (NILs) containing QTL-2DL against Fusarium graminearum (Fg). Metabolites, with high fold-change in abundance, belonging to hydroxycinnamic acid amides (HCAAs): such as coumaroylagmatine, coumaroylputrescine and Fatty acids: phosphatidic acids (PAs) were identified as resistance related induced (RRI) metabolites in rachis of resistant NIL (NIL-R), inoculated with Fg. A WRKY like transcription factor (TF) was identified within the QTL-2DL region, along with three resistance genes that biosynthesized RRI metabolites. Sequencing and in-silico analysis of WRKY confirmed it to be wheat TaWRKY70. Quantitative real time-PCR studies showed a higher expression of TaWRKY70 in NIL-R as compared to NIL-S after Fg inoculation. Further, the functional validation of TaWRKY70 based on virus induced gene silencing (VIGS) in NIL-R, not only confirmed an increased fungal biomass but also decreased expressions of downstream resistance genes: TaACT, TaDGK and TaGLI1, along with decreased abundances of RRI metabolites biosynthesized by them. Among more than 200 FHB resistance QTL identified in wheat, this is the first QTL from which a TF was identified, and its downstream target genes as well as the FHB resistance functions were deciphered. PMID:28198421

  5. Identification of the Biosynthetic Gene Clusters for the Lipopeptides Fusaristatin A and W493 B in Fusarium graminearum and F. pseudograminearum

    DEFF Research Database (Denmark)

    Sørensen, Jens Laurids; Sondergaard, Teis Esben; Covarelli, Lorenzo;

    2014-01-01

    The closely related species Fusarium graminearum and Fusarium pseudograminearum differ in that each contains a gene cluster with a polyketide synthase (PKS) and a nonribosomal peptide synthetase (NRPS) that is not present in the other species. To identify their products, we deleted PKS6 and NRPS7...

  6. Sterol Composition and Biosynthetic Genes of Vitrella brassicaformis, a Recently Discovered Chromerid: Comparison to Chromera velia and Phylogenetic Relationship with Apicomplexan Parasites.

    Science.gov (United States)

    Khadka, Manoj; Salem, Mohamed; Leblond, Jeffrey D

    2015-01-01

    Vitrella brassicaformis is the second discovered species in the Chromerida, and first in the family Vitrellaceae. Chromera velia, the first discovered species, forms an independent photosynthetic lineage with V. brassicaformis, and both are closely related to peridinin-containing dinoflagellates and nonphotosynthetic apicomplexans; both also show phylogenetic closeness with red algal plastids. We have utilized gas chromatography/mass spectrometry to identify two free sterols, 24-ethylcholest-5-en-3β-ol, and a minor unknown sterol which appeared to be a C(28:4) compound. We have also used RNA Seq analysis to identify seven genes found in the nonmevalonate/methylerythritol pathway (MEP) for sterol biosynthesis. Subsequent genome analysis of V. brassicaformis showed the presence of two mevalonate (MVA) pathway genes, though the genes were not observed in the transcriptome analysis. Transcripts from four genes (dxr, ispf, ispd, and idi) were selected and translated into proteins to study the phylogenetic relationship of sterol biosynthesis in V. brassicaformis and C. velia to other groups of algae and apicomplexans. On the basis of our genomic and transcriptomic analyses, we hypothesize that the MEP pathway was the primary pathway that apicomplexans used for sterol biosynthesis before they lost their sterol biosynthesis ability, although contribution of the MVA pathway cannot be discounted.

  7. Trichodiene production in a Trichoderma harzianum erg1-silenced strain provides evidence of the importance of the sterol biosynthetic pathway in inducing plant defense-related gene expression

    Science.gov (United States)

    Trichoderma species are often used as biocontrol agents against plant-pathogenic fungi. A complex molecular interaction occurs among the biocontrol agent, the antagonistic fungus, and the plant. Terpenes and sterols produced by the biocontrol fungus have been found to affect gene expression in both ...

  8. Functional Gene Discovery and Characterization of Genes and Alleles Affecting Wood Biomass Yield and Quality in Populus

    Energy Technology Data Exchange (ETDEWEB)

    Busov, Victor [Michigan Technological Univ., Houghton, MI (United States)

    2017-02-12

    Adoption of biofuels as economically and environmentally viable alternative to fossil fuels would require development of specialized bioenergy varieties. A major goal in the breeding of such varieties is the improvement of lignocellulosic biomass yield and quality. These are complex traits and understanding the underpinning molecular mechanism can assist and accelerate their improvement. This is particularly important for tree bioenergy crops like poplars (species and hybrids from the genus Populus), for which breeding progress is extremely slow due to long generation cycles. A variety of approaches have been already undertaken to better understand the molecular bases of biomass yield and quality in poplar. An obvious void in these undertakings has been the application of mutagenesis. Mutagenesis has been instrumental in the discovery and characterization of many plant traits including such that affect biomass yield and quality. In this proposal we use activation tagging to discover genes that can significantly affect biomass associated traits directly in poplar, a premier bioenergy crop. We screened a population of 5,000 independent poplar activation tagging lines under greenhouse conditions for a battery of biomass yield traits. These same plants were then analyzed for changes in wood chemistry using pyMBMS. As a result of these screens we have identified nearly 800 mutants, which are significantly (P<0.05) different when compared to wild type. Of these majority (~700) are affected in one of ten different biomass yield traits and 100 in biomass quality traits (e.g., lignin, S/G ration and C6/C5 sugars). We successfully recovered the position of the tag in approximately 130 lines, showed activation in nearly half of them and performed recapitulation experiments with 20 genes prioritized by the significance of the phenotype. Recapitulation experiments are still ongoing for many of the genes but the results are encouraging. For example, we have shown successful

  9. Evolutionary systems biology of amino acid biosynthetic cost in yeast.

    Directory of Open Access Journals (Sweden)

    Michael D Barton

    Full Text Available Every protein has a biosynthetic cost to the cell based on the synthesis of its constituent amino acids. In order to optimise growth and reproduction, natural selection is expected, where possible, to favour the use of proteins whose constituents are cheaper to produce, as reduced biosynthetic cost may confer a fitness advantage to the organism. Quantifying the cost of amino acid biosynthesis presents challenges, since energetic requirements may change across different cellular and environmental conditions. We developed a systems biology approach to estimate the cost of amino acid synthesis based on genome-scale metabolic models and investigated the effects of the cost of amino acid synthesis on Saccharomyces cerevisiae gene expression and protein evolution. First, we used our two new and six previously reported measures of amino acid cost in conjunction with codon usage bias, tRNA gene number and atomic composition to identify which of these factors best predict transcript and protein levels. Second, we compared amino acid cost with rates of amino acid substitution across four species in the genus Saccharomyces. Regardless of which cost measure is used, amino acid biosynthetic cost is weakly associated with transcript and protein levels. In contrast, we find that biosynthetic cost and amino acid substitution rates show a negative correlation, but for only a subset of cost measures. In the economy of the yeast cell, we find that the cost of amino acid synthesis plays a limited role in shaping transcript and protein expression levels compared to that of translational optimisation. Biosynthetic cost does, however, appear to affect rates of amino acid evolution in Saccharomyces, suggesting that expensive amino acids may only be used when they have specific structural or functional roles in protein sequences. However, as there appears to be no single currency to compute the cost of amino acid synthesis across all cellular and environmental

  10. Research Progress on Capsaicinoids Biosynthetic Pathway and Its Related Genes%辣椒素类物质生物合成途径及其相关基因研究进展

    Institute of Scientific and Technical Information of China (English)

    吴智明; 程蛟文; 唐鑫; 胡开林

    2012-01-01

    辣椒素类物质是辣椒果实胎座中产生的特异辣味代谢产物的总称.辣椒素类物质在辣椒果实中的生物合成主要有两条途径:以苯丙氨酸为前体的苯丙烷途径和以缬氨酸或亮氨酸为前体的支链脂肪酸途径.本文综述了近年来国内外学者在辣椒素类物质生物合成过程中的主要酶类基因的克隆、基因表达调控机制研究方面取得的最新进展.%Capsaicinoids are the substances responsible for the pungent sensation that synthesize and accumulate unique in fruits placental tissues of Capsicum species. Capsaicinoids are biosynthesized through 2 pathways: phenylpropanoid and branched-chain fatty acid pathways, which provide the precursors phenylalanine and valine or leucine, respectively. This paper reviewed the new research progress on studying the enzymes and genes participating in the biosynthetic pathway and the regulatory process that accounts for different accumulation levels of capsaicinoids in chili pepper fruits.

  11. Adeno-associated virus at 50: a golden anniversary of discovery, research, and gene therapy success--a personal perspective.

    Science.gov (United States)

    Hastie, Eric; Samulski, R Jude

    2015-05-01

    Fifty years after the discovery of adeno-associated virus (AAV) and more than 30 years after the first gene transfer experiment was conducted, dozens of gene therapy clinical trials are in progress, one vector is approved for use in Europe, and breakthroughs in virus modification and disease modeling are paving the way for a revolution in the treatment of rare diseases, cancer, as well as HIV. This review will provide a historical perspective on the progression of AAV for gene therapy from discovery to the clinic, focusing on contributions from the Samulski lab regarding basic science and cloning of AAV, optimized large-scale production of vectors, preclinical large animal studies and safety data, vector modifications for improved efficacy, and successful clinical applications.

  12. Elucidation and in planta reconstitution of the parthenolide biosynthetic pathway

    DEFF Research Database (Denmark)

    Liu, Qing; Manzano, David; Tanić, Nikola

    2014-01-01

    Parthenolide, the main bioactive compound of the medicinal plant feverfew (Tanacetum parthenium), is a promising anti-cancer drug. However, the biosynthetic pathway of parthenolide has not been elucidated yet. Here we report on the isolation and characterization of all the genes from feverfew...... that are required for the biosynthesis of parthenolide, using a combination of 454 sequencing of a feverfew glandular trichome cDNA library, co-expression analysis and metabolomics. When parthenolide biosynthesis was reconstituted by transient co-expression of all pathway genes in Nicotiana benthamiana, up to 1.......4μgg-1 parthenolide was produced, mostly present as cysteine and glutathione conjugates. These relatively polar conjugates were highly active against colon cancer cells, with only slightly lower activity than free parthenolide. In addition to these biosynthetic genes, another gene encoding...

  13. The influence of salt (NaCl) on ochratoxin A biosynthetic genes, growth and ochratoxin A production by three strains of Penicillium nordicum on a dry-cured ham-based medium.

    Science.gov (United States)

    Rodríguez, Alicia; Medina, Ángel; Córdoba, Juan J; Magan, Naresh

    2014-05-16

    Iberian dry-cured ham is colonised by moulds during the ripening process. The environmental conditions occurring during the process including the salt content predisposes the surface to colonisation by Penicillium species, including Penicillium nordicum which can contaminate the curing ham with ochratoxin A (OTA). The objective of this study was to examine the effect of NaCl (10% and 22%=0.94 and 0.87 water activity (aw)) on the activation of two genes involved in the biosynthetic pathway for OTA production, otapksPN and otanpsPN, relative growth and phenotypic OTA production by three strains of P. nordicum (CBS 110.769, FHSCC1 and FHSCC2) on a ham-based medium over a period of 12days at 25°C. Growth of the three strains was faster at 0.87 than 0.94 aw on the ham-based media. However, some intra- and inter-strain differences were observed. Of the three strains, only two (CBS 110.789; FHSCC2) were able to express the two genes involved in the biosynthesis of OTA in the two salt treatments. RT-qPCR showed that the temporal expression of the two genes (otapksPN and otanpsPN) was relatively similar for the wild type strain (FHSCC2) at both 0.94 and 0.87 aw over the 12day period. However, in the type strain (CBS 110.769) expression increased rapidly at 0.94 aw but was significantly lower at 0.87 aw. Expression of these two genes occurred after 3day incubation, while phenotypic OTA production was observed only after 6days in the two toxigenic strains. The other strain did not produce any OTA. The OTA concentrations confirmed the results observed with the molecular tools. This suggests that the RT-qPCR gene expression of these two genes may be a good early indicator of potential contamination of dry-cured ham with OTA during dry-cured ham ripening.

  14. Towards a Biosynthetic UAV

    Science.gov (United States)

    Block, Eli; Byemerwa, Jovita; Dispenza, Ross; Doughty, Benjamin; Gillyard, KaNesha; Godbole, Poorwa; Gonzales-Wright, Jeanette; Hull, Ian; Kannappan, Jotthe; Levine, Alexander; Nelakanti, Raman; Ruffner, Lydia; Shumate, Alaina; Sorayya, Aryo; Ugwu, Kyla

    2014-01-01

    We are currently working on a series of projects towards the construction of a fully biological unmanned aerial vehicle (UAV) for use in scientific and humanitarian missions. The prospect of a biologically-produced UAV presents numerous advantages over the current manufacturing paradigm. First, a foundational architecture built by cells allows for construction or repair in locations where it would be difficult to bring traditional tools of production. Second, a major limitation of current research with UAVs is the size and high power consumption of analytical instruments, which require bulky electrical components and large fuselages to support their weight. By moving these functions into cells with biosensing capabilities - for example, a series of cells engineered to report GFP, green fluorescent protein, when conditions exceed a certain threshold concentration of a compound of interest, enabling their detection post-flight - these problems of scale can be avoided. To this end, we are working to engineer cells to synthesize cellulose acetate as a novel bioplastic, characterize biological methods of waterproofing the material, and program this material's systemic biodegradation. In addition, we aim to use an "amberless" system to prevent horizontal gene transfer from live cells on the material to microorganisms in the flight environment.

  15. Erwinia carotovora ssp. carotovora Infection Induced "Defense Lignin" Accumulation and Lignin Biosynthetic Gene Expression in Chinese Cabbage (Brassica rapa L. ssp. pekinensis)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Erwinia carotovora subsp. carotovora (Ecc) infects and causes soft rot disease in hundreds of crop species including vegetables, flowers and fruits. Lignin biosynthesis has been implicated in defensive reactions to injury and pathogen Infection in plants. In this work, variations of lignin content and gene expression in the molecular interaction between Chinese cabbage and Ecc were investigated. H2O2 accumulation and peroxidase activity were detected by 3, 3'-Dimethoxybenzidine staining at mocked and Ecc-inoculated sites of Chinese cabbage leafstalks. Klason lignin content in inoculated plants increased by about 7.84%, 40.37%, and 43.13% more than that of the mocked site at 12, 24 and 72 h after inoculation, respectively. Gas chromatography detected more p-coumaryl (H) and less coniferyl (G) and sinapyl (S)monolignins in leafstalks of Chinese cabbage. All three monomers increased in Ecc-infected leafstalks, and the Ecc-induced "defense lignin" were composed of more G and H monolignins, and less S monolignin. After searching the expressed sequence tags (EST) data of Chinese cabbage, 12 genes putatively encoding enzymes involved in lignin biosynthesis were selected to study their expression. All of these genes could be Induced by mock inoculation and Ecc infection, while the gene expression lasted for several more hours in the infected samples than in mocked and untreated plants. Our results indicated that "defense lignin" was different from the developmental lignin in composition; G and S monolignins were significantly induced in plants in response to the soft rot Ecc; thus, lignin biosynthesis was differentially regulated and played a role in plant response to the soft rot Ecc.

  16. The neomycin biosynthetic gene cluster of Streptomyces fradiae NCIMB 8233: genetic and biochemical evidence for the roles of two glycosyltransferases and a deacetylase.

    Science.gov (United States)

    Fan, Qingzhi; Huang, Fanglu; Leadlay, Peter F; Spencer, Jonathan B

    2008-09-21

    An efficient protocol has been developed for the genetic manipulation of Streptomyces fradiae NCIMB 8233, which produces the 2-deoxystreptamine (2-DOS)-containing aminoglycoside antibiotic neomycin. This has allowed the in vivo analysis of the respective roles of the glycosyltransferases Neo8 and Neo15, and of the deacetylase Neo16 in neomycin biosynthesis. Specific deletion of each of the neo8, neo15 and neo16 genes confirmed that they are all essential for neomycin biosynthesis. The pattern of metabolites produced by feeding putative pathway intermediates to these mutants provided unambiguous support for a scheme in which Neo8 and Neo15, whose three-dimensional structures are predicted to be highly similar, have distinct roles: Neo8 catalyses transfer of N-acetylglucosamine to 2-DOS early in the pathway, while Neo15 catalyses transfer of the same aminosugar to ribostamycin later in the pathway. The in vitro substrate specificity of Neo15, purified from recombinant Escherichia coli, was fully consistent with these findings. The in vitro activity of Neo16, the only deacetylase so far recognised in the neo gene cluster, showed that it is capable of acting in tandem with both Neo8 and Neo15 as previously proposed. However, the deacetylation of N-acetylglucosaminylribostamycin was still observed in a strain deleted of the neo16 gene and fed with suitable pathway precursors, providing evidence for the existence of a second enzyme in S. fradiae with this activity.

  17. Expression profile of genes coding for carotenoid biosynthetic pathway during ripening and their association with accumulation of lycopene in tomato fruits

    Indian Academy of Sciences (India)

    Shuchi Smita; Ravi Rajwanshi; Sangram Keshari Lenka; Amit Katiyar; Viswanathan Chinnusamy; Kailash Chander Bansal

    2013-12-01

    Fruit ripening process is associated with change in carotenoid profile and accumulation of lycopene in tomato (Solanum lycopersicum L.). In this study, we quantified the -carotene and lycopene content at green, breaker and red-ripe stages of fruit ripening in eight tomato genotypes by using high-performance liquid chromatography. Among the genotypes, lycopene content was found highest in Pusa Rohini and lowest in VRT-32-1. To gain further insight into the regulation of lycopene biosynthesis and accumulation during fruit ripening, expression analysis of nine carotenoid pathway-related genes was carried out in the fruits of high lycopene genotype—Pusa Rohini. We found that expression of phytoene synthase and -carotene hydroxylase-1 was four and thirty-fold higher, respectively, at breaker stage as compared to red-ripe stage of fruit ripening. Changes in the expression level of these genes were associated with a 40% increase in lycopene content at red-ripe stage as compared with breaker stage. Thus, the results from our study suggest the role of specific carotenoid pathway-related genes in accumulation of high lycopene during the fruit ripening processes.

  18. Expression profile of genes coding for carotenoid biosynthetic pathway during ripening and their association with accumulation of lycopene in tomato fruits.

    Science.gov (United States)

    Smita, Shuchi; Rajwanshi, Ravi; Lenka, Sangram Keshari; Katiyar, Amit; Chinnusamy, Viswanathan; Bansal, Kailash Chander

    2013-12-01

    Fruit ripening process is associated with change in carotenoid profile and accumulation of lycopene in tomato (Solanum lycopersicum L.). In this study, we quantified the beta-carotene and lycopene content at green, breaker and red-ripe stages of fruit ripening in eight tomato genotypes by using high-performance liquid chromatography. Among the genotypes, lycopene content was found highest in Pusa Rohini and lowest in VRT-32-1. To gain further insight into the regulation of lycopene biosynthesis and accumulation during fruit ripening, expression analysis of nine carotenoid pathway-related genes was carried out in the fruits of high lycopene genotype-Pusa Rohini. We found that expression of phytoene synthase and beta-carotene hydroxylase-1 was four and thirty-fold higher, respectively, at breaker stage as compared to red-ripe stage of fruit ripening. Changes in the expression level of these genes were associated with a 40% increase in lycopene content at red-ripe stage as compared with breaker stage. Thus, the results from our study suggest the role of specific carotenoid pathway-related genes in accumulation of high lycopene during the fruit ripening processes.

  19. Culture-independent discovery of natural products from soil metagenomes.

    Science.gov (United States)

    Katz, Micah; Hover, Bradley M; Brady, Sean F

    2016-03-01

    Bacterial natural products have proven to be invaluable starting points in the development of many currently used therapeutic agents. Unfortunately, traditional culture-based methods for natural product discovery have been deemphasized by pharmaceutical companies due in large part to high rediscovery rates. Culture-independent, or "metagenomic," methods, which rely on the heterologous expression of DNA extracted directly from environmental samples (eDNA), have the potential to provide access to metabolites encoded by a large fraction of the earth's microbial biosynthetic diversity. As soil is both ubiquitous and rich in bacterial diversity, it is an appealing starting point for culture-independent natural product discovery efforts. This review provides an overview of the history of soil metagenome-driven natural product discovery studies and elaborates on the recent development of new tools for sequence-based, high-throughput profiling of environmental samples used in discovering novel natural product biosynthetic gene clusters. We conclude with several examples of these new tools being employed to facilitate the recovery of novel secondary metabolite encoding gene clusters from soil metagenomes and the subsequent heterologous expression of these clusters to produce bioactive small molecules.

  20. The Neurospora crassa mutant NcΔEgt-1 identifies an ergothioneine biosynthetic gene and demonstrates that ergothioneine enhances conidial survival and protects against peroxide toxicity during conidial germination.

    Science.gov (United States)

    Bello, Marco H; Barrera-Perez, Viviana; Morin, Dexter; Epstein, Lynn

    2012-02-01

    Ergothioneine (EGT) is a histidine derivative with sulfur on the imidazole ring and a trimethylated amine; it is postulated to have an antioxidant function. Although EGT apparently is only produced by fungi and some prokaryotes, it is acquired by animals and plants from the environment, and is concentrated in animal tissues in cells with an EGT transporter. Monobromobimane derivatives of EGT allowed conclusive identification of EGT by LC/MS and the quantification of EGT in Colletotrichum graminicola and Neurospora crassa conidia and mycelia. EGT concentrations were significantly (α=0.05) higher in conidia than in mycelia, with approximately 17X and 5X more in C. graminicola and N. crassa, respectively. The first EGT biosynthetic gene in a fungus was identified by quantifying EGT in N. crassa wild type and knockouts in putative homologs of actinomycete EGT biosynthetic genes. NcΔEgt-1, a strain with a knockout in gene NCU04343, does not produce EGT, in contrast to the wild type. To determine the effects of EGT in vivo, we compared NcΔEgt-1 to the wild type. NcΔEgt-1 is not pleiotropically affected in rate of hyphal elongation in Vogel's medium either with or without ammonium nitrate and in the rate of germination of macroconidia on Vogel's medium. The superoxide-producer menadione had indistinguishable effects on conidial germination between the two strains. Cupric sulfate also had indistinguishable effects on conidial germination and on hyphal growth between the two strains. In contrast, germination of NcΔEgt-1 conidia was significantly more sensitive to tert-butyl hydroperoxide than the wild type; germination of 50% (GI(50)) of the NcΔEgt-1 conidia was prevented at 2.7 mM tert-butyl hydroperoxide whereas the GI(50) for the wild type was 4.7 mM tert-butyl hydroperoxide, or at a 1.7X greater concentration. In the presence of tert-butyl hydroperoxide and the fluorescent reactive oxygen species indicator 5-(and-6)-carboxy-2',7'-dichlorodihydrofluorescein

  1. Reconstitution of Biosynthetic Machinery for the Synthesis of the Highly Elaborated Indole Diterpene Penitrem

    DEFF Research Database (Denmark)

    Liu, Chengwei; Tagami, Koichi; Minami, Atsushi;

    2015-01-01

    KULNJ). Importantly, without conventional gene disruption, reconstitution of the biosynthetic machinery provided sufficient data to determine the pathway. It was thus demonstrated that the Aspergillus oryzae reconstitution system is a powerful method for studying the biosynthesis of complex natural products....

  2. Using Phenomic Analysis of Photosynthetic Function for Abiotic Stress Response Gene Discovery

    KAUST Repository

    Rungrat, Tepsuda

    2016-09-09

    Monitoring the photosynthetic performance of plants is a major key to understanding how plants adapt to their growth conditions. Stress tolerance traits have a high genetic complexity as plants are constantly, and unavoidably, exposed to numerous stress factors, which limits their growth rates in the natural environment. Arabidopsis thaliana, with its broad genetic diversity and wide climatic range, has been shown to successfully adapt to stressful conditions to ensure the completion of its life cycle. As a result, A. thaliana has become a robust and renowned plant model system for studying natural variation and conducting gene discovery studies. Genome wide association studies (GWAS) in restructured populations combining natural and recombinant lines is a particularly effective way to identify the genetic basis of complex traits. As most abiotic stresses affect photosynthetic activity, chlorophyll fluorescence measurements are a potential phenotyping technique for monitoring plant performance under stress conditions. This review focuses on the use of chlorophyll fluorescence as a tool to study genetic variation underlying the stress tolerance responses to abiotic stress in A. thaliana.

  3. The c4h, tat, hppr and hppd genes prompted engineering of rosmarinic acid biosynthetic pathway in Salvia miltiorrhiza hairy root cultures.

    Directory of Open Access Journals (Sweden)

    Ying Xiao

    Full Text Available Rational engineering to produce biologically active plant compounds has been greatly impeded by our poor understanding of the regulatory and metabolic pathways underlying the biosynthesis of these compounds. Here we capitalized on our previously described gene-to-metabolite network in order to engineer rosmarinic acid (RA biosynthesis pathway for the production of beneficial RA and lithospermic acid B (LAB in Salvia miltiorrhiza hairy root cultures. Results showed their production was greatly elevated by (1 overexpression of single gene, including cinnamic acid 4-hydroxylase (c4h, tyrosine aminotransferase (tat, and 4-hydroxyphenylpyruvate reductase (hppr, (2 overexpression of both tat and hppr, and (3 suppression of 4-hydroxyphenylpyruvate dioxygenase (hppd. Co-expression of tat/hppr produced the most abundant RA (906 mg/liter and LAB (992 mg/liter, which were 4.3 and 3.2-fold more than in their wild-type (wt counterparts respectively. And the value of RA concentration was also higher than that reported before, that produced by means of nutrient medium optimization or elicitor treatment. It is the first report of boosting RA and LAB biosynthesis through genetic manipulation, providing an effective approach for their large-scale commercial production by using hairy root culture systems as bioreactors.

  4. Regulation of purine biosynthetic genes expression in Salmonella typhimurium Ⅳ O~c mutation site of purG and its function analysis

    Institute of Scientific and Technical Information of China (English)

    刘奔; 黄谊; 王敖全

    1997-01-01

    Salmonella typhimurium 5 phosphoribosylformylglycinamide (FGAR) amidotransferase encoded by purG gene catalyzes the conversion of FGAR to formylglycinamide ribonucleotide (FGAM) in the presence of glu-tamine and ATP for the de novo purine nucleotide biosynthesis. purG gene is negatively regulated by a repressor-oper-ator system. The O+ purG and OC purG were cloned respectively in vivo. Restriction enzymes analysis of preliminary clones pLBG-1 (O + ) and pLBG-2 (OC) were carried out. The hybrid plasmids pLB1933 (O+ ) and pLB1927 (OC) containing 5 control region of purG were constructed and the DNA sequences were determined respectively. DNA se-quences data showed that Oc mutation of purG occurred at the 3rd position of 16 bp PUR box in the 5’ control region ( G→A). Gel retardation experiment indicated that the repressor bound well with O+ PUR box, but not with Oc PUR box. The result strongly supported the idea that PUR box is the binding region of represser protein and the 3rd posi-tion base G of PUR bo

  5. Binding of Shewanella FadR to the fabA fatty acid biosynthetic gene: implications for contraction of the fad regulon.

    Science.gov (United States)

    Zhang, Huimin; Zheng, Beiwen; Gao, Rongsui; Feng, Youjun

    2015-09-01

    The Escherichia coli fadR protein product, a paradigm/prototypical FadR regulator, positively regulates fabA and fabB, the two critical genes for unsaturated fatty acid (UFA) biosynthesis. However the scenario in the other Ɣ-proteobacteria, such as Shewanella with the marine origin, is unusual in that Rodionov and coworkers predicted that only fabA (not fabB) has a binding site for FadR protein. It raised the possibility of fad regulon contraction. Here we report that this is the case. Sequence alignment of the FadR homologs revealed that the N-terminal DNA-binding domain exhibited remarkable similarity, whereas the ligand-accepting motif at C-terminus is relatively-less conserved. The FadR homologue of S. oneidensis (referred to FadR_she) was over-expressed and purified to homogeneity. Integrative evidence obtained by FPLC (fast protein liquid chromatography) and chemical cross-linking analyses elucidated that FadR_she protein can dimerize in solution, whose identity was determined by MALDI-TOF-MS. In vitro data from electrophoretic mobility shift assays suggested that FadR_she is almost functionally-exchangeable/equivalent to E. coli FadR (FadR_ec) in the ability of binding the E. coli fabA (and fabB) promoters. In an agreement with that of E. coli fabA, S. oneidensis fabA promoter bound both FadR_she and FadR_ec, and was disassociated specifically with the FadR regulatory protein upon the addition of long-chain acyl-CoA thioesters. To monitor in vivo effect exerted by FadR on Shewanella fabA expression, the native promoter of S. oneidensis fabA was fused to a LacZ reporter gene to engineer a chromosome fabA-lacZ transcriptional fusion in E. coli. As anticipated, the removal of fadR gene gave about 2-fold decrement of Shewanella fabA expression by β-gal activity, which is almost identical to the inhibitory level by the addition of oleate. Therefore, we concluded that fabA is contracted to be the only one member of fad regulon in the context of fatty acid

  6. Evaluation of Biosynthetic Pathway and Engineered Biosynthesis of Alkaloids

    Directory of Open Access Journals (Sweden)

    Shinji Kishimoto

    2016-08-01

    Full Text Available Varieties of alkaloids are known to be produced by various organisms, including bacteria, fungi and plants, as secondary metabolites that exhibit useful bioactivities. However, understanding of how those metabolites are biosynthesized still remains limited, because most of these compounds are isolated from plants and at a trace level of production. In this review, we focus on recent efforts in identifying the genes responsible for the biosynthesis of those nitrogen-containing natural products and elucidating the mechanisms involved in the biosynthetic processes. The alkaloids discussed in this review are ditryptophenaline (dimeric diketopiperazine alkaloid, saframycin (tetrahydroisoquinoline alkaloid, strictosidine (monoterpene indole alkaloid, ergotamine (ergot alkaloid and opiates (benzylisoquinoline and morphinan alkaloid. This review also discusses the engineered biosynthesis of these compounds, primarily through heterologous reconstitution of target biosynthetic pathways in suitable hosts, such as Escherichia coli, Saccharomyces cerevisiae and Aspergillus nidulans. Those heterologous biosynthetic systems can be used to confirm the functions of the isolated genes, economically scale up the production of the alkaloids for commercial distributions and engineer the biosynthetic pathways to produce valuable analogs of the alkaloids. In particular, extensive involvement of oxidation reactions catalyzed by oxidoreductases, such as cytochrome P450s, during the secondary metabolite biosynthesis is discussed in details.

  7. Computational strategies for genome-based natural product discovery and engineering in fungi.

    Science.gov (United States)

    van der Lee, Theo A J; Medema, Marnix H

    2016-04-01

    Fungal natural products possess biological activities that are of great value to medicine, agriculture and manufacturing. Recent metagenomic studies accentuate the vastness of fungal taxonomic diversity, and the accompanying specialized metabolic diversity offers a great and still largely untapped resource for natural product discovery. Although fungal natural products show an impressive variation in chemical structures and biological activities, their biosynthetic pathways share a number of key characteristics. First, genes encoding successive steps of a biosynthetic pathway tend to be located adjacently on the chromosome in biosynthetic gene clusters (BGCs). Second, these BGCs are often are located on specific regions of the genome and show a discontinuous distribution among evolutionarily related species and isolates. Third, the same enzyme (super)families are often involved in the production of widely different compounds. Fourth, genes that function in the same pathway are often co-regulated, and therefore co-expressed across various growth conditions. In this mini-review, we describe how these partly interlinked characteristics can be exploited to computationally identify BGCs in fungal genomes and to connect them to their products. Particular attention will be given to novel algorithms to identify unusual classes of BGCs, as well as integrative pan-genomic approaches that use a combination of genomic and metabolomic data for parallelized natural product discovery across multiple strains. Such novel technologies will not only expedite the natural product discovery process, but will also allow the assembly of a high-quality toolbox for the re-design or even de novo design of biosynthetic pathways using synthetic biology approaches.

  8. Structural determination of Streptococcus pneumoniae repeat units in serotype 41A and 41F capsular polysaccharides to probe gene functions in the corresponding capsular biosynthetic loci.

    Science.gov (United States)

    Petersen, Bent O; Skovsted, Ian C; Paulsen, Berit Smestad; Redondo, Antonio R; Meier, Sebastian

    2014-12-05

    We report the repeating unit structures of the native capsular polysaccharides of Streptococcus pneumoniae serotypes 41A and 41F. Structural determinations yielded six carbohydrate units in the doubly branched repeating unit to give the following structure for serotype 41A: The structure determinations were motivated (1) by an ambition to help close the remaining gaps in S. pneumoniae capsular polysaccharide structures, and (2) by the attempt to derive functional annotations of carbohydrate active enzymes in the biosynthesis of bacterial polysaccharides from the determined structures. An activity present in 41F but not 41A is identified as an acetyltransferase acting on the rhamnopyranosyl sidechain E. The genes encoding the formation of the six glycosidic bonds in serogroup 41 were determined from the capsular polysaccharide structures of serotype 41A, 41F, and genetically related serotypes, in conjunction with corresponding genomic information and computational homology searches. In combination with complementary information, NMR spectroscopy considerably simplifies the functional annotation of carbohydrate active enzymes in the biosynthesis of bacterial polysaccharides.

  9. Natural product discovery: past, present, and future.

    Science.gov (United States)

    Katz, Leonard; Baltz, Richard H

    2016-03-01

    Microorganisms have provided abundant sources of natural products which have been developed as commercial products for human medicine, animal health, and plant crop protection. In the early years of natural product discovery from microorganisms (The Golden Age), new antibiotics were found with relative ease from low-throughput fermentation and whole cell screening methods. Later, molecular genetic and medicinal chemistry approaches were applied to modify and improve the activities of important chemical scaffolds, and more sophisticated screening methods were directed at target disease states. In the 1990s, the pharmaceutical industry moved to high-throughput screening of synthetic chemical libraries against many potential therapeutic targets, including new targets identified from the human genome sequencing project, largely to the exclusion of natural products, and discovery rates dropped dramatically. Nonetheless, natural products continued to provide key scaffolds for drug development. In the current millennium, it was discovered from genome sequencing that microbes with large genomes have the capacity to produce about ten times as many secondary metabolites as was previously recognized. Indeed, the most gifted actinomycetes have the capacity to produce around 30-50 secondary metabolites. With the precipitous drop in cost for genome sequencing, it is now feasible to sequence thousands of actinomycete genomes to identify the "biosynthetic dark matter" as sources for the discovery of new and novel secondary metabolites. Advances in bioinformatics, mass spectrometry, proteomics, transcriptomics, metabolomics and gene expression are driving the new field of microbial genome mining for applications in natural product discovery and development.

  10. Metabolomics-Driven Discovery of a Prenylated Isatin Antibiotic Produced by Streptomyces Species MBT28.

    Science.gov (United States)

    Wu, Changsheng; Du, Chao; Gubbens, Jacob; Choi, Young Hae; van Wezel, Gilles P

    2015-10-23

    Actinomycetes are a major source of antimicrobials, anticancer compounds, and other medically important products, and their genomes harbor extensive biosynthetic potential. Major challenges in the screening of these microorganisms are to activate the expression of cryptic biosynthetic gene clusters and the development of technologies for efficient dereplication of known molecules. Here we report the identification of a previously unidentified isatin-type antibiotic produced by Streptomyces sp. MBT28, following a strategy based on NMR-based metabolomics combined with the introduction of streptomycin resistance in the producer strain. NMR-guided isolation by tracking the target proton signal resulted in the characterization of 7-prenylisatin (1) with antimicrobial activity against Bacillus subtilis. The metabolite-guided genome mining of Streptomyces sp. MBT28 combined with proteomics identified a gene cluster with an indole prenyltransferase that catalyzes the conversion of tryptophan into 7-prenylisatin. This study underlines the applicability of NMR-based metabolomics in facilitating the discovery of novel antibiotics.

  11. Single cell genome amplification accelerates identification of the apratoxin biosynthetic pathway from a complex microbial assemblage.

    Directory of Open Access Journals (Sweden)

    Rashel V Grindberg

    Full Text Available Filamentous marine cyanobacteria are extraordinarily rich sources of structurally novel, biomedically relevant natural products. To understand their biosynthetic origins as well as produce increased supplies and analog molecules, access to the clustered biosynthetic genes that encode for the assembly enzymes is necessary. Complicating these efforts is the universal presence of heterotrophic bacteria in the cell wall and sheath material of cyanobacteria obtained from the environment and those grown in uni-cyanobacterial culture. Moreover, the high similarity in genetic elements across disparate secondary metabolite biosynthetic pathways renders imprecise current gene cluster targeting strategies and contributes sequence complexity resulting in partial genome coverage. Thus, it was necessary to use a dual-method approach of single-cell genomic sequencing based on multiple displacement amplification (MDA and metagenomic library screening. Here, we report the identification of the putative apratoxin. A biosynthetic gene cluster, a potent cancer cell cytotoxin with promise for medicinal applications. The roughly 58 kb biosynthetic gene cluster is composed of 12 open reading frames and has a type I modular mixed polyketide synthase/nonribosomal peptide synthetase (PKS/NRPS organization and features loading and off-loading domain architecture never previously described. Moreover, this work represents the first successful isolation of a complete biosynthetic gene cluster from Lyngbya bouillonii, a tropical marine cyanobacterium renowned for its production of diverse bioactive secondary metabolites.

  12. Didemnin Biosynthetic Gene Cluster In Tistrella Mobilis

    KAUST Repository

    Qian, Pei-Yuan

    2014-10-02

    A novel Tistrella mobilis strain having Accession Deposit Number NRRL B-50531 is provided. A method of producing a didemnin precursor, didemnin or didemnin derivative by using the Tistrella mobilis strain, and the therapeutic composition comprising at least one didemnin or didemnin derivative produced from the strain or modified strain thereof are also provided.

  13. New biosynthetic pathway for pink pigments from uncultured oceanic viruses.

    Science.gov (United States)

    Ledermann, Benjamin; Béjà, Oded; Frankenberg-Dinkel, Nicole

    2016-12-01

    The pink open-chain tetrapyrrole pigment phycoerythrobilin (PEB) is employed by marine cyanobacteria, red algae and cryptophytes as a light-harvesting chromophore in phycobiliproteins. Genes encoding biosynthesis proteins for PEB have also been discovered in cyanophages, viruses that infect cyanobacteria, and mimic host pigment biosynthesis with the exception of PebS which combines the enzymatic activities of two host enzymes. In this study, we have identified novel members of the PEB biosynthetic enzyme families, heme oxygenases and ferredoxin-dependent bilin reductases. Encoding genes were found in metagenomic datasets and could be traced back to bacteriophage but not cyanophage origin. While the heme oxygenase exhibited standard activity, a new bilin reductase with highest homology to the teal pigment producing enzyme PcyA revealed PEB biosynthetic activity. Although PcyX possesses PebS-like activity both enzymes share only 9% sequence identity and likely catalyze the reaction via two independent mechanisms. Our data point towards the presence of phycobilin biosynthetic genes in phages that probably infect alphaproteobacteria and, therefore, further support a role of phycobilins outside oxygenic phototrophs.

  14. A control study to evaluate a computer-based microarray experiment design recommendation system for gene-regulation pathways discovery.

    Science.gov (United States)

    Yoo, Changwon; Cooper, Gregory F; Schmidt, Martin

    2006-04-01

    The main topic of this paper is evaluating a system that uses the expected value of experimentation for discovering causal pathways in gene expression data. By experimentation we mean both interventions (e.g., a gene knock-out experiment) and observations (e.g., passively observing the expression level of a "wild-type" gene). We introduce a system called GEEVE (causal discovery in Gene Expression data using Expected Value of Experimentation), which implements expected value of experimentation in discovering causal pathways using gene expression data. GEEVE provides the following assistance, which is intended to help biologists in their quest to discover gene-regulation pathways: Recommending which experiments to perform (with a focus on "knock-out" experiments) using an expected value of experimentation (EVE) method. Recommending the number of measurements (observational and experimental) to include in the experimental design, again using an EVE method. Providing a Bayesian analysis that combines prior knowledge with the results of recent microarray experimental results to derive posterior probabilities of gene regulation relationships. In recommending which experiments to perform (and how many times to repeat them) the EVE approach considers the biologist's preferences for which genes to focus the discovery process. Also, since exact EVE calculations are exponential in time, GEEVE incorporates approximation methods. GEEVE is able to combine data from knock-out experiments with data from wild-type experiments to suggest additional experiments to perform and then to analyze the results of those microarray experimental results. It models the possibility that unmeasured (latent) variables may be responsible for some of the statistical associations among the expression levels of the genes under study. To evaluate the GEEVE system, we used a gene expression simulator to generate data from specified models of gene regulation. Using the simulator, we evaluated the GEEVE

  15. Discovery of germline-related genes in Cephalochordate amphioxus: A genome wide survey using genome annotation and transcriptome data.

    Science.gov (United States)

    Yue, Jia-Xing; Li, Kun-Lung; Yu, Jr-Kai

    2015-12-01

    The generation of germline cells is a critical process in the reproduction of multicellular organisms. Studies in animal models have identified a common repertoire of genes that play essential roles in primordial germ cell (PGC) formation. However, comparative studies also indicate that the timing and regulation of this core genetic program vary considerably in different animals, raising the intriguing questions regarding the evolution of PGC developmental mechanisms in metazoans. Cephalochordates (commonly called amphioxus or lancelets) represent one of the invertebrate chordate groups and can provide important information about the evolution of developmental mechanisms in the chordate lineage. In this study, we used genome and transcriptome data to identify germline-related genes in two distantly related cephalochordate species, Branchiostoma floridae and Asymmetron lucayanum. Branchiostoma and Asymmetron diverged more than 120 MYA, and the most conspicuous difference between them is their gonadal morphology. We used important germline developmental genes in several model animals to search the amphioxus genome and transcriptome dataset for conserved homologs. We also annotated the assembled transcriptome data using Gene Ontology (GO) terms to facilitate the discovery of putative genes associated with germ cell development and reproductive functions in amphioxus. We further confirmed the expression of 14 genes in developing oocytes or mature eggs using whole mount in situ hybridization, suggesting their potential functions in amphioxus germ cell development. The results of this global survey provide a useful resource for testing potential functions of candidate germline-related genes in cephalochordates and for investigating differences in gonad developmental mechanisms between Branchiostoma and Asymmetron species.

  16. Mapping gene clusters within arrayed metagenomic libraries to expand the structural diversity of biomedically relevant natural products.

    Science.gov (United States)

    Owen, Jeremy G; Reddy, Boojala Vijay B; Ternei, Melinda A; Charlop-Powers, Zachary; Calle, Paula Y; Kim, Jeffrey H; Brady, Sean F

    2013-07-16

    Complex microbial ecosystems contain large reservoirs of unexplored biosynthetic diversity. Here we provide an experimental framework and data analysis tool to facilitate the targeted discovery of natural-product biosynthetic gene clusters from the environment. Multiplex sequencing of barcoded PCR amplicons is followed by sequence similarity directed data parsing to identify sequences bearing close resemblance to biosynthetically or biomedically interesting gene clusters. Amplicons are then mapped onto arrayed metagenomic libraries to guide the recovery of targeted gene clusters. When applied to adenylation- and ketosynthase-domain amplicons derived from saturating soil DNA libraries, our analysis pipeline led to the recovery of biosynthetic clusters predicted to encode for previously uncharacterized glycopeptide- and lipopeptide-like antibiotics; thiocoraline-, azinomycin-, and bleomycin-like antitumor agents; and a rapamycin-like immunosuppressant. The utility of the approach is demonstrated by using recovered eDNA sequences to generate glycopeptide derivatives. The experiments described here constitute a systematic interrogation of a soil metagenome for gene clusters capable of encoding naturally occurring derivatives of biomedically relevant natural products. Our results show that previously undetected biosynthetic gene clusters with potential biomedical relevance are very common in the environment. This general process should permit the routine screening of environmental samples for gene clusters capable of encoding the systematic expansion of the structural diversity seen in biomedically relevant families of natural products.

  17. Meiosis-specific gene discovery in plants: RNA-Seq applied to isolated Arabidopsis male meiocytes

    Directory of Open Access Journals (Sweden)

    May Gregory D

    2010-12-01

    Full Text Available Abstract Background Meiosis is a critical process in the reproduction and life cycle of flowering plants in which homologous chromosomes pair, synapse, recombine and segregate. Understanding meiosis will not only advance our knowledge of the mechanisms of genetic recombination, but also has substantial applications in crop improvement. Despite the tremendous progress in the past decade in other model organisms (e.g., Saccharomyces cerevisiae and Drosophila melanogaster, the global identification of meiotic genes in flowering plants has remained a challenge due to the lack of efficient methods to collect pure meiocytes for analyzing the temporal and spatial gene expression patterns during meiosis, and for the sensitive identification and quantitation of novel genes. Results A high-throughput approach to identify meiosis-specific genes by combining isolated meiocytes, RNA-Seq, bioinformatic and statistical analysis pipelines was developed. By analyzing the studied genes that have a meiosis function, a pipeline for identifying meiosis-specific genes has been defined. More than 1,000 genes that are specifically or preferentially expressed in meiocytes have been identified as candidate meiosis-specific genes. A group of 55 genes that have mitochondrial genome origins and a significant number of transposable element (TE genes (1,036 were also found to have up-regulated expression levels in meiocytes. Conclusion These findings advance our understanding of meiotic genes, gene expression and regulation, especially the transcript profiles of MGI genes and TE genes, and provide a framework for functional analysis of genes in meiosis.

  18. Antibiotic resistance mechanisms inform discovery: identification and characterization of a novel amycolatopsis strain producing ristocetin.

    Science.gov (United States)

    Truman, Andrew W; Kwun, Min Jung; Cheng, Jinhua; Yang, Seung Hwan; Suh, Joo-Won; Hong, Hee-Jeon

    2014-10-01

    Discovering new antibiotics is a major scientific challenge, made increasingly urgent by the continued development of resistance in bacterial pathogens. A fundamental understanding of the mechanisms of bacterial antibiotic resistance will be vital for the future discovery or design of new, more effective antibiotics. We have exploited our intimate knowledge of the molecular mechanism of glycopeptide antibiotic resistance in the harmless bacterium Streptomyces coelicolor to develop a new two-step cell wall bioactivity screen, which efficiently identified a new actinomycete strain containing a previously uncharacterized glycopeptide biosynthetic gene cluster. The screen first identifies natural product extracts capable of triggering a generalized cell wall stress response and then specifically selects for glycopeptide antibacterials by assaying for the induction of glycopeptide resistance genes. In this study, we established a diverse natural product extract library from actinomycete strains isolated from locations with widely varying climates and ecologies, and we screened them using the novel two-step bioassay system. The bioassay ultimately identified a single strain harboring the previously unidentified biosynthetic gene cluster for the glycopeptide ristocetin, providing a proof of principle for the effectiveness of the screen. This is the first report of the ristocetin biosynthetic gene cluster, which is predicted to include some interesting and previously uncharacterized enzymes. By focusing on screening libraries of microbial extracts, this strategy provides the certainty that identified producer strains are competent for growth and biosynthesis of the detected glycopeptide under laboratory conditions.

  19. SSHscreen and SSHdb, generic software for microarray based gene discovery: application to the stress response in cowpea

    Directory of Open Access Journals (Sweden)

    Oelofse Dean

    2010-04-01

    Full Text Available Abstract Background Suppression subtractive hybridization is a popular technique for gene discovery from non-model organisms without an annotated genome sequence, such as cowpea (Vigna unguiculata (L. Walp. We aimed to use this method to enrich for genes expressed during drought stress in a drought tolerant cowpea line. However, current methods were inefficient in screening libraries and management of the sequence data, and thus there was a need to develop software tools to facilitate the process. Results Forward and reverse cDNA libraries enriched for cowpea drought response genes were screened on microarrays, and the R software package SSHscreen 2.0.1 was developed (i to normalize the data effectively using spike-in control spot normalization, and (ii to select clones for sequencing based on the calculation of enrichment ratios with associated statistics. Enrichment ratio 3 values for each clone showed that 62% of the forward library and 34% of the reverse library clones were significantly differentially expressed by drought stress (adjusted p value 88% of the clones in both libraries were derived from rare transcripts in the original tester samples, thus supporting the notion that suppression subtractive hybridization enriches for rare transcripts. A set of 118 clones were chosen for sequencing, and drought-induced cowpea genes were identified, the most interesting encoding a late embryogenesis abundant Lea5 protein, a glutathione S-transferase, a thaumatin, a universal stress protein, and a wound induced protein. A lipid transfer protein and several components of photosynthesis were down-regulated by the drought stress. Reverse transcriptase quantitative PCR confirmed the enrichment ratio values for the selected cowpea genes. SSHdb, a web-accessible database, was developed to manage the clone sequences and combine the SSHscreen data with sequence annotations derived from BLAST and Blast2GO. The self-BLAST function within SSHdb grouped

  20. Ataxin1L is a regulator of HSC function highlighting the utility of cross-tissue comparisons for gene discovery.

    Science.gov (United States)

    Kahle, Juliette J; Souroullas, George P; Yu, Peng; Zohren, Fabian; Lee, Yoontae; Shaw, Chad A; Zoghbi, Huda Y; Goodell, Margaret A

    2013-03-01

    Hematopoietic stem cells (HSCs) are rare quiescent cells that continuously replenish the cellular components of the peripheral blood. Observing that the ataxia-associated gene Ataxin-1-like (Atxn1L) was highly expressed in HSCs, we examined its role in HSC function through in vitro and in vivo assays. Mice lacking Atxn1L had greater numbers of HSCs that regenerated the blood more quickly than their wild-type counterparts. Molecular analyses indicated Atxn1L null HSCs had gene expression changes that regulate a program consistent with their higher level of proliferation, suggesting that Atxn1L is a novel regulator of HSC quiescence. To determine if additional brain-associated genes were candidates for hematologic regulation, we examined genes encoding proteins from autism- and ataxia-associated protein-protein interaction networks for their representation in hematopoietic cell populations. The interactomes were found to be highly enriched for proteins encoded by genes specifically expressed in HSCs relative to their differentiated progeny. Our data suggest a heretofore unappreciated similarity between regulatory modules in the brain and HSCs, offering a new strategy for novel gene discovery in both systems.

  1. Ataxin1L is a regulator of HSC function highlighting the utility of cross-tissue comparisons for gene discovery.

    Directory of Open Access Journals (Sweden)

    Juliette J Kahle

    2013-03-01

    Full Text Available Hematopoietic stem cells (HSCs are rare quiescent cells that continuously replenish the cellular components of the peripheral blood. Observing that the ataxia-associated gene Ataxin-1-like (Atxn1L was highly expressed in HSCs, we examined its role in HSC function through in vitro and in vivo assays. Mice lacking Atxn1L had greater numbers of HSCs that regenerated the blood more quickly than their wild-type counterparts. Molecular analyses indicated Atxn1L null HSCs had gene expression changes that regulate a program consistent with their higher level of proliferation, suggesting that Atxn1L is a novel regulator of HSC quiescence. To determine if additional brain-associated genes were candidates for hematologic regulation, we examined genes encoding proteins from autism- and ataxia-associated protein-protein interaction networks for their representation in hematopoietic cell populations. The interactomes were found to be highly enriched for proteins encoded by genes specifically expressed in HSCs relative to their differentiated progeny. Our data suggest a heretofore unappreciated similarity between regulatory modules in the brain and HSCs, offering a new strategy for novel gene discovery in both systems.

  2. Discovery of possible gene relationships through the application of self-organizing maps to DNA microarray databases.

    Directory of Open Access Journals (Sweden)

    Rocio Chavez-Alvarez

    Full Text Available DNA microarrays and cell cycle synchronization experiments have made possible the study of the mechanisms of cell cycle regulation of Saccharomyces cerevisiae by simultaneously monitoring the expression levels of thousands of genes at specific time points. On the other hand, pattern recognition techniques can contribute to the analysis of such massive measurements, providing a model of gene expression level evolution through the cell cycle process. In this paper, we propose the use of one of such techniques--an unsupervised artificial neural network called a Self-Organizing Map (SOM-which has been successfully applied to processes involving very noisy signals, classifying and organizing them, and assisting in the discovery of behavior patterns without requiring prior knowledge about the process under analysis. As a test bed for the use of SOMs in finding possible relationships among genes and their possible contribution in some biological processes, we selected 282 S. cerevisiae genes that have been shown through biological experiments to have an activity during the cell cycle. The expression level of these genes was analyzed in five of the most cited time series DNA microarray databases used in the study of the cell cycle of this organism. With the use of SOM, it was possible to find clusters of genes with similar behavior in the five databases along two cell cycles. This result suggested that some of these genes might be biologically related or might have a regulatory relationship, as was corroborated by comparing some of the clusters obtained with SOMs against a previously reported regulatory network that was generated using biological knowledge, such as protein-protein interactions, gene expression levels, metabolism dynamics, promoter binding, and modification, regulation and transport of proteins. The methodology described in this paper could be applied to the study of gene relationships of other biological processes in different organisms.

  3. Discovery of sequence motifs related to coexpression of genes using evolutionary computation

    OpenAIRE

    Fogel, Gary B.; Weekes, Dana G.; Varga, Gabor; Dow, Ernst R.; Harlow, Harry B.; Onyia, Jude E.; Su, Chen

    2004-01-01

    Transcription factors are key regulatory elements that control gene expression. Recognition of transcription factor binding site (TFBS) motifs in the upstream region of coexpressed genes is therefore critical towards a true understanding of the regulations of gene expression. The task of discovering eukaryotic TFBSs remains a challenging problem. Here, we demonstrate that evolutionary computation can be used to search for TFBSs in upstream regions of genes known to be coexpressed. Evolutionar...

  4. Discovery and analysis of inflammatory disease-related genes using cDNA microarrays

    OpenAIRE

    1997-01-01

    cDNA microarray technology is used to profile complex diseases and discover novel disease-related genes. In inflammatory disease such as rheumatoid arthritis, expression patterns of diverse cell types contribute to the pathology. We have monitored gene expression in this disease state with a microarray of selected human genes of probable significance in inflammation as well as with genes expressed in peripheral human blood cells. Messenger RNA from cultured macrophages, chondrocyte cell lines...

  5. Update of the Gene Discovery Program in Schistosoma mansoni with the Expressed Sequence Tag Approach

    Directory of Open Access Journals (Sweden)

    Élida ML Rabelo

    1997-09-01

    Full Text Available Continuing the Schistosoma mansoni Genome Project 363 new templates were sequenced generating 205 more ESTs corresponding to 91 genes. Seventy four of these genes (81% had not previously been described in S. mansoni. Among the newly discovered genes there are several of significant biological interest such as synaptophysin, NIFs-like and rho-GDP dissociation inhibitor

  6. Discovery by the Epistasis Project of an epistatic interaction between the GSTM3 gene and the HHEX/IDE/KIF11 locus in the risk of Alzheimer's disease

    NARCIS (Netherlands)

    J.M. Bullock (James); C. Medway (Christopher); M. Cortina-Borja (Mario); J.C. Turton (James); J.A. Prince (Jonathan); C.A. Ibrahim-Verbaas (Carla); M. Schuur (Maaike); M.M.B. Breteler (Monique); C.M. van Duijn (Cock); P.G. Kehoe (Patrick); R. Barber (Rachel); E. Coto (Eliecer); V. Alvarez (Victoria); P. Deloukas (Panagiotis); N. Hammond (Naomi); O. Combarros (Onofre); I. Mateo (Ignacio); D.R. Warden (Donald); M.G. Lehmann (Michael); O. Belbin (Olivia); K. Brown (Kristelle); G.K. Wilcock (Gordon); R. Heun (Reinhard); H. Kölsch (Heike); A.D. Smith; D.J. Lehmann (Donald); K. Morgan (Kevin)

    2013-01-01

    textabstractDespite recent discoveries in the genetics of sporadic Alzheimer's disease, there remains substantial " hidden heritability." It is thought that some of this missing heritability may be because of gene-gene, i.e., epistatic, interactions. We examined potential epistasis between 110 candi

  7. Discovery of CTCF-sensitive Cis-spliced fusion RNAs between adjacent genes in human prostate cells.

    Directory of Open Access Journals (Sweden)

    Fujun Qin

    2015-02-01

    Full Text Available Genes or their encoded products are not expected to mingle with each other unless in some disease situations. In cancer, a frequent mechanism that can produce gene fusions is chromosomal rearrangement. However, recent discoveries of RNA trans-splicing and cis-splicing between adjacent genes (cis-SAGe support for other mechanisms in generating fusion RNAs. In our transcriptome analyses of 28 prostate normal and cancer samples, 30% fusion RNAs on average are the transcripts that contain exons belonging to same-strand neighboring genes. These fusion RNAs may be the products of cis-SAGe, which was previously thought to be rare. To validate this finding and to better understand the phenomenon, we used LNCaP, a prostate cell line as a model, and identified 16 additional cis-SAGe events by silencing transcription factor CTCF and paired-end RNA sequencing. About half of the fusions are expressed at a significant level compared to their parental genes. Silencing one of the in-frame fusions resulted in reduced cell motility. Most out-of-frame fusions are likely to function as non-coding RNAs. The majority of the 16 fusions are also detected in other prostate cell lines, as well as in the 14 clinical prostate normal and cancer pairs. By studying the features associated with these fusions, we developed a set of rules: 1 the parental genes are same-strand-neighboring genes; 2 the distance between the genes is within 30kb; 3 the 5' genes are actively transcribing; and 4 the chimeras tend to have the second-to-last exon in the 5' genes joined to the second exon in the 3' genes. We then randomly selected 20 neighboring genes in the genome, and detected four fusion events using these rules in prostate cancer and non-cancerous cells. These results suggest that splicing between neighboring gene transcripts is a rather frequent phenomenon, and it is not a feature unique to cancer cells.

  8. Discovery and analysis of pancreatic adenocarcinoma genes using cDNA microarrays

    Institute of Scientific and Technical Information of China (English)

    Gang Jin; Xian-Gui Hu; Kang Ying; Yan Tang; Rui Liu; Yi-Jie Zhang; Zai-Ping Jing; Yi Xie; Yu-Min Mao

    2005-01-01

    AIM: To study the pathogenetic processes and the role of gene expression by microarray analyses in expediting our understanding of the molecular pathophysiology of pancreatic adenocarcinoma, and to identify the novel cancer-associated genes.METHODS: Nine histologically defined pancreatic head adenocarcinoma specimens associated with clinical data were studied. Total RNA and mRNA were isolated and labeled by reverse transcription reaction with Cy5 and Cy3 for cDNA probe. The cDNA microarrays that represent a set of 4 096 human genes were hybridized with labeled cDNA probe and screened for molecular profiling analyses.RESULTS: Using this methodology, 184 genes were screened out for differences in gene expression level after nine couples of hybridizations. Of the 184 genes,87 were upregulated and 97 downregulated, including 11 novel human genes. In pancreatic adenocarcinoma tissue, several invasion and metastasis related genes showed their high expression levels, suggesting that poor prognosis of pancreatic adenocarcinoma might have a solid molecular biological basis.CONCLUSION: The application of cDNA microarray technique for analysis of gene expression patterns is a powerful strategy to identify novel cancer-associated genes, and to rapidly explore their role in clinical pancreatic adenocarcinoma. Microarray profiles provide us new insights into the carcinogenesis and invasive process of pancreatic adenocarcinoma. Our results suggest that a highly organized and structured process of tumor invasion exists in the pancreas.

  9. Natural products discovery from micro-organisms in the post-genome era.

    Science.gov (United States)

    Ikeda, Haruo

    2017-01-01

    With the decision to award the Nobel Prize in Physiology or Medicine to Drs. S. Ōmura, W.C. Campbell, and Y. Tu, the importance and usefulness of natural drug discovery and development have been revalidated. Since the end of the twentieth century, many genome analyses of organisms have been conducted, and accordingly, numerous microbial genomes have been decoded. In particular, genomic studies of actinomycetes, micro-organisms that readily produce natural products, led to the discovery of biosynthetic gene clusters responsible for producing natural products. New explorations for natural products through a comprehensive approach combining genomic information with conventional methods show great promise for the discovery of new natural products and even systematic generation of unnaturally occurring compounds.

  10. Discovery of sequence motifs related to coexpression of genes using evolutionary computation

    Science.gov (United States)

    Fogel, Gary B.; Weekes, Dana G.; Varga, Gabor; Dow, Ernst R.; Harlow, Harry B.; Onyia, Jude E.; Su, Chen

    2004-01-01

    Transcription factors are key regulatory elements that control gene expression. Recognition of transcription factor binding site (TFBS) motifs in the upstream region of coexpressed genes is therefore critical towards a true understanding of the regulations of gene expression. The task of discovering eukaryotic TFBSs remains a challenging problem. Here, we demonstrate that evolutionary computation can be used to search for TFBSs in upstream regions of genes known to be coexpressed. Evolutionary computation was used to search for TFBSs of genes regulated by octamer-binding factor and nuclear factor kappa B. The discovered binding sites included experimentally determined known binding motifs as well as lists of putative, previously unknown TFBSs. We believe that this method to search nucleotide sequence information efficiently for similar motifs will be useful for discovering TFBSs that affect gene regulation. PMID:15266008

  11. Discovery and Replication of Gene Influences on Brain Structure Using LASSO Regression.

    Science.gov (United States)

    Kohannim, Omid; Hibar, Derrek P; Stein, Jason L; Jahanshad, Neda; Hua, Xue; Rajagopalan, Priya; Toga, Arthur W; Jack, Clifford R; Weiner, Michael W; de Zubicaray, Greig I; McMahon, Katie L; Hansell, Narelle K; Martin, Nicholas G; Wright, Margaret J; Thompson, Paul M

    2012-01-01

    We implemented least absolute shrinkage and selection operator (LASSO) regression to evaluate gene effects in genome-wide association studies (GWAS) of brain images, using an MRI-derived temporal lobe volume measure from 729 subjects scanned as part of the Alzheimer's Disease Neuroimaging Initiative (ADNI). Sparse groups of SNPs in individual genes were selected by LASSO, which identifies efficient sets of variants influencing the data. These SNPs were considered jointly when assessing their association with neuroimaging measures. We discovered 22 genes that passed genome-wide significance for influencing temporal lobe volume. This was a substantially greater number of significant genes compared to those found with standard, univariate GWAS. These top genes are all expressed in the brain and include genes previously related to brain function or neuropsychiatric disorders such as MACROD2, SORCS2, GRIN2B, MAGI2, NPAS3, CLSTN2, GABRG3, NRXN3, PRKAG2, GAS7, RBFOX1, ADARB2, CHD4, and CDH13. The top genes we identified with this method also displayed significant and widespread post hoc effects on voxelwise, tensor-based morphometry (TBM) maps of the temporal lobes. The most significantly associated gene was an autism susceptibility gene known as MACROD2. We were able to successfully replicate the effect of the MACROD2 gene in an independent cohort of 564 young, Australian healthy adult twins and siblings scanned with MRI (mean age: 23.8 ± 2.2 SD years). Our approach powerfully complements univariate techniques in detecting influences of genes on the living brain.

  12. ETS gene fusions in prostate cancer: from discovery to daily clinical practice.

    NARCIS (Netherlands)

    Tomlins, S.A.; Bjartell, A.; Chinnaiyan, A.M.; Jenster, G.; Nam, R.K.; Rubin, M.A.; Schalken, J.A.

    2009-01-01

    CONTEXT: In 2005, fusions between the androgen-regulated transmembrane protease serine 2 gene, TMPRSS2, and E twenty-six (ETS) transcription factors were discovered in prostate cancer. OBJECTIVE: To review advances in our understanding of ETS gene fusions, focusing on challenges affecting translatio

  13. Discovery of differentially expressed genes in cashmere goat (Capra hircus) hair follicles by RNA sequencing.

    Science.gov (United States)

    Qiao, X; Wu, J H; Wu, R B; Su, R; Li, C; Zhang, Y J; Wang, R J; Zhao, Y H; Fan, Y X; Zhang, W G; Li, J Q

    2016-09-02

    The mammalian hair follicle (HF) is a unique, highly regenerative organ with a distinct developmental cycle. Cashmere goat (Capra hircus) HFs can be divided into two categories based on structure and development time: primary and secondary follicles. To identify differentially expressed genes (DEGs) in the primary and secondary HFs of cashmere goats, the RNA sequencing of six individuals from Arbas, Inner Mongolia, was performed. A total of 617 DEGs were identified; 297 were upregulated while 320 were downregulated. Gene ontology analysis revealed that the main functions of the upregulated genes were electron transport, respiratory electron transport, mitochondrial electron transport, and gene expression. The downregulated genes were mainly involved in cell autophagy, protein complexes, neutrophil aggregation, and bacterial fungal defense reactions. According to the Kyoto Encyclopedia of Genes and Genomes database, these genes are mainly involved in the metabolism of cysteine and methionine, RNA polymerization, and the MAPK signaling pathway, and were enriched in primary follicles. A microRNA-target network revealed that secondary follicles are involved in several important biological processes, such as the synthesis of keratin-associated proteins and enzymes involved in amino acid biosynthesis. In summary, these findings will increase our understanding of the complex molecular mechanisms of HF development and cycling, and provide a basis for the further study of the genes and functions of HF development.

  14. Discovery of mitochondrial chimeric-gene associated with cytoplasmic male sterility of HL-rice

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The mitochondrial genome libraries of HL-type sterile line(A) and maintainer line(B) have been constructed.Mitochondrial gene, atp6, was used to screen libraries, due to the different Southern and Northern blot results between sterile and maintainer line. Sequencing analysis of positive clones proved that there were two copies of atp6 gene in sterile line and only one in maintainer line. One copy of atpt6 in sterile line was same to that in maintainer line; the other showed different flanking sequence from the 49th nucleotide downstream of the termination codon of atp6 gene. A new chimeric gene, orfH79, was found in the region. OrfH79 had homology to mitochondrial gene coxⅡ and orfl07, and was special to HL-sterile cytoplasm.``

  15. Correlating overrepresented upstream motifs to gene expression a computational approach to regulatory element discovery in eukaryotes

    CERN Document Server

    Caselle, M; Provero, P

    2002-01-01

    Gene regulation in eukaryotes is mainly effected through transcription factors binding to rather short recognition motifs generally located upstream of the coding region. We present a novel computational method to identify regulatory elements in the upstream region of eukaryotic genes. The genes are grouped in sets sharing an overrepresented short motif in their upstream sequence. For each set, the average expression level from a microarray experiment is determined: If this level is significantly higher or lower than the average taken over the whole genome, then the overerpresented motif shared by the genes in the set is likely to play a role in their regulation. The method was tested by applying it to the genome of Saccharomyces cerevisiae, using the publicly available results of a DNA microarray experiment, in which expression levels for virtually all the genes were measured during the diauxic shift from fermentation to respiration. Several known motifs were correctly identified, and a new candidate regulat...

  16. Identification and characterization of a novel diterpene gene cluster in Aspergillus nidulans.

    Directory of Open Access Journals (Sweden)

    Kirsi Bromann

    Full Text Available Fungal secondary metabolites are a rich source of medically useful compounds due to their pharmaceutical and toxic properties. Sequencing of fungal genomes has revealed numerous secondary metabolite gene clusters, yet products of many of these biosynthetic pathways are unknown since the expression of the clustered genes usually remains silent in normal laboratory conditions. Therefore, to discover new metabolites, it is important to find ways to induce the expression of genes in these otherwise silent biosynthetic clusters. We discovered a novel secondary metabolite in Aspergillus nidulans by predicting a biosynthetic gene cluster with genomic mining. A Zn(II(2Cys(6-type transcription factor, PbcR, was identified, and its role as a pathway-specific activator for the predicted gene cluster was demonstrated. Overexpression of pbcR upregulated the transcription of seven genes in the identified cluster and led to the production of a diterpene compound, which was characterized with GC/MS as ent-pimara-8(14,15-diene. A change in morphology was also observed in the strains overexpressing pbcR. The activation of a cryptic gene cluster by overexpression of its putative Zn(II(2Cys(6-type transcription factor led to discovery of a novel secondary metabolite in Aspergillus nidulans. Quantitative real-time PCR and DNA array analysis allowed us to predict the borders of the biosynthetic gene cluster. Furthermore, we identified a novel fungal pimaradiene cyclase gene as well as genes encoding 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA reductase and a geranylgeranyl pyrophosphate (GGPP synthase. None of these genes have been previously implicated in the biosynthesis of terpenes in Aspergillus nidulans. These results identify the first Aspergillus nidulans diterpene gene cluster and suggest a biosynthetic pathway for ent-pimara-8(14,15-diene.

  17. Identification and Characterization of a Novel Diterpene Gene Cluster in Aspergillus nidulans

    Science.gov (United States)

    Bromann, Kirsi; Toivari, Mervi; Viljanen, Kaarina; Vuoristo, Anu; Ruohonen, Laura; Nakari-Setälä, Tiina

    2012-01-01

    Fungal secondary metabolites are a rich source of medically useful compounds due to their pharmaceutical and toxic properties. Sequencing of fungal genomes has revealed numerous secondary metabolite gene clusters, yet products of many of these biosynthetic pathways are unknown since the expression of the clustered genes usually remains silent in normal laboratory conditions. Therefore, to discover new metabolites, it is important to find ways to induce the expression of genes in these otherwise silent biosynthetic clusters. We discovered a novel secondary metabolite in Aspergillus nidulans by predicting a biosynthetic gene cluster with genomic mining. A Zn(II)2Cys6–type transcription factor, PbcR, was identified, and its role as a pathway-specific activator for the predicted gene cluster was demonstrated. Overexpression of pbcR upregulated the transcription of seven genes in the identified cluster and led to the production of a diterpene compound, which was characterized with GC/MS as ent-pimara-8(14),15-diene. A change in morphology was also observed in the strains overexpressing pbcR. The activation of a cryptic gene cluster by overexpression of its putative Zn(II)2Cys6–type transcription factor led to discovery of a novel secondary metabolite in Aspergillus nidulans. Quantitative real-time PCR and DNA array analysis allowed us to predict the borders of the biosynthetic gene cluster. Furthermore, we identified a novel fungal pimaradiene cyclase gene as well as genes encoding 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase and a geranylgeranyl pyrophosphate (GGPP) synthase. None of these genes have been previously implicated in the biosynthesis of terpenes in Aspergillus nidulans. These results identify the first Aspergillus nidulans diterpene gene cluster and suggest a biosynthetic pathway for ent-pimara-8(14),15-diene. PMID:22506079

  18. Gene discovery in the hamster: a comparative genomics approach for gene annotation by sequencing of hamster testis cDNAs

    Directory of Open Access Journals (Sweden)

    Khan Shafiq A

    2003-06-01

    Full Text Available Abstract Background Complete genome annotation will likely be achieved through a combination of computer-based analysis of available genome sequences combined with direct experimental characterization of expressed regions of individual genomes. We have utilized a comparative genomics approach involving the sequencing of randomly selected hamster testis cDNAs to begin to identify genes not previously annotated on the human, mouse, rat and Fugu (pufferfish genomes. Results 735 distinct sequences were analyzed for their relatedness to known sequences in public databases. Eight of these sequences were derived from previously unidentified genes and expression of these genes in testis was confirmed by Northern blotting. The genomic locations of each sequence were mapped in human, mouse, rat and pufferfish, where applicable, and the structure of their cognate genes was derived using computer-based predictions, genomic comparisons and analysis of uncharacterized cDNA sequences from human and macaque. Conclusion The use of a comparative genomics approach resulted in the identification of eight cDNAs that correspond to previously uncharacterized genes in the human genome. The proteins encoded by these genes included a new member of the kinesin superfamily, a SET/MYND-domain protein, and six proteins for which no specific function could be predicted. Each gene was expressed primarily in testis, suggesting that they may play roles in the development and/or function of testicular cells.

  19. Discovery of clubroot-resistant genes in Brassica napus by transcriptome sequencing.

    Science.gov (United States)

    Chen, S W; Liu, T; Gao, Y; Zhang, C; Peng, S D; Bai, M B; Li, S J; Xu, L; Zhou, X Y; Lin, L B

    2016-01-01

    Clubroot significantly affects plants of the Brassicaceae family and is one of the main diseases causing serious losses in B. napus yield. Few studies have investigated the clubroot-resistance mechanism in B. napus. Identification of clubroot-resistant genes may be used in clubroot-resistant breeding, as well as to elucidate the molecular mechanism behind B. napus clubroot-resistance. We used three B. napus transcriptome samples to construct a transcriptome sequencing library by using Illumina HiSeq™ 2000 sequencing and bioinformatic analysis. In total, 171 million high-quality reads were obtained, containing 96,149 unigenes of N50-value. We aligned the obtained unigenes with the Nr, Swiss-Prot, clusters of orthologous groups, and gene ontology databases and annotated their functions. In the Kyoto encyclopedia of genes and genomes database, 25,033 unigenes (26.04%) were assigned to 124 pathways. Many genes, including broad-spectrum disease-resistance genes, specific clubroot-resistant genes, and genes related to indole-3-acetic acid (IAA) signal transduction, cytokinin synthesis, and myrosinase synthesis in the Huashuang 3 variety of B. napus were found to be related to clubroot-resistance. The effective clubroot-resistance observed in this variety may be due to the induced increased expression of these disease-resistant genes and strong inhibition of the IAA signal transduction, cytokinin synthesis, and myrosinase synthesis. The homology observed between unigenes 0048482, 0061770 and the Crr1 gene shared 94% nucleotide similarity. Furthermore, unigene 0061770 could have originated from an inversion of the Crr1 5'-end sequence.

  20. Gene discovery for the bark beetle-vectored fungal tree pathogen Grosmannia clavigera

    Directory of Open Access Journals (Sweden)

    Robertson Gordon

    2010-10-01

    Full Text Available Abstract Background Grosmannia clavigera is a bark beetle-vectored fungal pathogen of pines that causes wood discoloration and may kill trees by disrupting nutrient and water transport. Trees respond to attacks from beetles and associated fungi by releasing terpenoid and phenolic defense compounds. It is unclear which genes are important for G. clavigera's ability to overcome antifungal pine terpenoids and phenolics. Results We constructed seven cDNA libraries from eight G. clavigera isolates grown under various culture conditions, and Sanger sequenced the 5' and 3' ends of 25,000 cDNA clones, resulting in 44,288 high quality ESTs. The assembled dataset of unique transcripts (unigenes consists of 6,265 contigs and 2,459 singletons that mapped to 6,467 locations on the G. clavigera reference genome, representing ~70% of the predicted G. clavigera genes. Although only 54% of the unigenes matched characterized proteins at the NCBI database, this dataset extensively covers major metabolic pathways, cellular processes, and genes necessary for response to environmental stimuli and genetic information processing. Furthermore, we identified genes expressed in spores prior to germination, and genes involved in response to treatment with lodgepole pine phloem extract (LPPE. Conclusions We provide a comprehensively annotated EST dataset for G. clavigera that represents a rich resource for gene characterization in this and other ophiostomatoid fungi. Genes expressed in response to LPPE treatment are indicative of fungal oxidative stress response. We identified two clusters of potentially functionally related genes responsive to LPPE treatment. Furthermore, we report a simple method for identifying contig misassemblies in de novo assembled EST collections caused by gene overlap on the genome.

  1. Challenges in microarray class discovery: a comprehensive examination of normalization, gene selection and clustering

    Directory of Open Access Journals (Sweden)

    Landfors Mattias

    2010-10-01

    Full Text Available Abstract Background Cluster analysis, and in particular hierarchical clustering, is widely used to extract information from gene expression data. The aim is to discover new classes, or sub-classes, of either individuals or genes. Performing a cluster analysis commonly involve decisions on how to; handle missing values, standardize the data and select genes. In addition, pre-processing, involving various types of filtration and normalization procedures, can have an effect on the ability to discover biologically relevant classes. Here we consider cluster analysis in a broad sense and perform a comprehensive evaluation that covers several aspects of cluster analyses, including normalization. Result We evaluated 2780 cluster analysis methods on seven publicly available 2-channel microarray data sets with common reference designs. Each cluster analysis method differed in data normalization (5 normalizations were considered, missing value imputation (2, standardization of data (2, gene selection (19 or clustering method (11. The cluster analyses are evaluated using known classes, such as cancer types, and the adjusted Rand index. The performances of the different analyses vary between the data sets and it is difficult to give general recommendations. However, normalization, gene selection and clustering method are all variables that have a significant impact on the performance. In particular, gene selection is important and it is generally necessary to include a relatively large number of genes in order to get good performance. Selecting genes with high standard deviation or using principal component analysis are shown to be the preferred gene selection methods. Hierarchical clustering using Ward's method, k-means clustering and Mclust are the clustering methods considered in this paper that achieves the highest adjusted Rand. Normalization can have a significant positive impact on the ability to cluster individuals, and there are indications that

  2. Pattern Discovery using Fuzzy FP-growth Algorithm from Gene Expression Data

    OpenAIRE

    Sabita Barik; Debahuti Mishra; Shruti Mishra; Sandeep Ku. Satapathy; Amiya Ku. Rath; Milu Acharya

    2010-01-01

    Abstract- The goal of microarray experiments is to identify genes that are differentially transcribed with respect to different biological conditions of cell cultures and samples. Hence, method of data analysis needs to be carefully evaluated such as clustering, classification, prediction etc. In this paper, we have proposed an efficient frequent pattern based clustering to find the gene which forms frequent patterns showing similar phenotypes leading to specific symptoms for specific disease...

  3. Network-based gene prediction for Plasmodium falciparum malaria towards genetics-based drug discovery

    OpenAIRE

    Chen, Yang; Xu, Rong

    2015-01-01

    Background Malaria is the most deadly parasitic infectious disease. Existing drug treatments have limited efficacy in malaria elimination, and the complex pathogenesis of the disease is not fully understood. Detecting novel malaria-associated genes not only contributes in revealing the disease pathogenesis, but also facilitates discovering new targets for anti-malaria drugs. Methods In this study, we developed a network-based approach to predict malaria-associated genes. We constructed a cros...

  4. Discovery and characterization of novel vascular and hematopoietic genes downstream of etsrp in zebrafish.

    Directory of Open Access Journals (Sweden)

    Gustavo A Gomez

    Full Text Available The transcription factor Etsrp is required for vasculogenesis and primitive myelopoiesis in zebrafish. When ectopically expressed, etsrp is sufficient to induce the expression of many vascular and myeloid genes in zebrafish. The mammalian homolog of etsrp, ER71/Etv2, is also essential for vascular and hematopoietic development. To identify genes downstream of etsrp, gain-of-function experiments were performed for etsrp in zebrafish embryos followed by transcription profile analysis by microarray. Subsequent in vivo expression studies resulted in the identification of fourteen genes with blood and/or vascular expression, six of these being completely novel. Regulation of these genes by etsrp was confirmed by ectopic induction in etsrp overexpressing embryos and decreased expression in etsrp deficient embryos. Additional functional analysis of two newly discovered genes, hapln1b and sh3gl3, demonstrates their importance in embryonic vascular development. The results described here identify a group of genes downstream of etsrp likely to be critical for vascular and/or myeloid development.

  5. Genome-wide discovery of Pax7 target genes during development.

    Science.gov (United States)

    White, Robert B; Ziman, Melanie R

    2008-03-14

    Pax7 plays critical roles in development of brain, spinal cord, neural crest, and skeletal muscle. As a sequence-specific DNA-binding transcription factor, any direct functional role played by Pax7 during development is mediated through target gene selection. Thus, we have sought to identify genes targeted by Pax7 during embryonic development using an unbiased chromatin immunoprecipitation (ChIP) cloning assay to isolate cis-regulatory regions bound by Pax7 in vivo. Sequencing and genomic localization of a library of chromatin-DNA fragments bound by Pax7 has identified 34 candidate Pax7 target genes, with occupancy of a selection confirmed with independent chromatin enrichment tests (ChIP-PCR). To assess the capacity of Pax7 to regulate transcription from these loci, we have cloned alternate transcripts of Pax7 (differing significantly in their DNA binding domain) into expression vectors and transfected cultured cells with these constructs, then analyzed target gene expression levels using RT-PCR. We show that Pax7 directly occupies sites within genes encoding transcription factors Gbx1 and Eya4, the neurogenic cytokine receptor ciliary neurotrophic factor receptor, the neuronal potassium channel Kcnk2, and the signal transduction kinase Camk1d in vivo and regulates the transcriptional state of these genes in cultured cells. This analysis gives us greater insight into the direct functional role played by Pax7 during embryonic development.

  6. Natural and man-made V-gene repertoires for antibody discovery.

    Science.gov (United States)

    Finlay, William J J; Almagro, Juan C

    2012-01-01

    Antibodies are the fastest-growing segment of the biologics market. The success of antibody-based drugs resides in their exquisite specificity, high potency, stability, solubility, safety, and relatively inexpensive manufacturing process in comparison with other biologics. We outline here the structural studies and fundamental principles that define how antibodies interact with diverse targets. We also describe the antibody repertoires and affinity maturation mechanisms of humans, mice, and chickens, plus the use of novel single-domain antibodies in camelids and sharks. These species all utilize diverse evolutionary solutions to generate specific and high affinity antibodies and illustrate the plasticity of natural antibody repertoires. In addition, we discuss the multiple variations of man-made antibody repertoires designed and validated in the last two decades, which have served as tools to explore how the size, diversity, and composition of a repertoire impact the antibody discovery process.

  7. An Integrated Metabolomic and Genomic Mining Workflow to Uncover the Biosynthetic Potential of Bacteria

    DEFF Research Database (Denmark)

    Månsson, Maria; Vynne, Nikolaj Grønnegaard; Klitgaard, Andreas

    2016-01-01

    considerable diversity: only 2% of the chemical features and 7% of the biosynthetic genes were common to all strains, while 30% of all features and 24% of the genes were unique to single strains. The list of chemical features was reduced to 50 discriminating features using a genetic algorithm and support...... vector machines. Features were dereplicated by tandem mass spectrometry (MS/MS) networking to identify molecular families of the same biosynthetic origin, and the associated pathways were probed using comparative genomics. Most of the discriminating features were related to antibacterial compounds...

  8. Transcriptome analysis and discovery of genes involved in immune pathways from hepatopancreas of microbial challenged mitten crab Eriocheir sinensis.

    Directory of Open Access Journals (Sweden)

    Xihong Li

    Full Text Available BACKGROUND: The Chinese mitten crab Eriocheir sinensis is an important economic crustacean and has been seriously attacked by various diseases, which requires more and more information for immune relevant genes on genome background. Recently, high-throughput RNA sequencing (RNA-seq technology provides a powerful and efficient method for transcript analysis and immune gene discovery. METHODS/PRINCIPAL FINDINGS: A cDNA library from hepatopancreas of E. sinensis challenged by a mixture of three pathogen strains (Gram-positive bacteria Micrococcus luteus, Gram-negative bacteria Vibrio alginolyticus and fungi Pichia pastoris; 10(8 cfu·mL(-1 was constructed and randomly sequenced using Illumina technique. Totally 39.76 million clean reads were assembled to 70,300 unigenes. After ruling out short-length and low-quality sequences, 52,074 non-redundant unigenes were compared to public databases for homology searching and 17,617 of them showed high similarity to sequences in NCBI non-redundant protein (Nr database. For function classification and pathway assignment, 18,734 (36.00% unigenes were categorized to three Gene Ontology (GO categories, 12,243 (23.51% were classified to 25 Clusters of Orthologous Groups (COG, and 8,983 (17.25% were assigned to six Kyoto Encyclopedia of Genes and Genomes (KEGG pathways. Potentially, 24, 14, 47 and 132 unigenes were characterized to be involved in Toll, IMD, JAK-STAT and MAPK pathways, respectively. CONCLUSIONS/SIGNIFICANCE: This is the first systematical transcriptome analysis of components relating to innate immune pathways in E. sinensis. Functional genes and putative pathways identified here will contribute to better understand immune system and prevent various diseases in crab.

  9. A new essential protein discovery method based on the integration of protein-protein interaction and gene expression data

    Directory of Open Access Journals (Sweden)

    Li Min

    2012-03-01

    Full Text Available Abstract Background Identification of essential proteins is always a challenging task since it requires experimental approaches that are time-consuming and laborious. With the advances in high throughput technologies, a large number of protein-protein interactions are available, which have produced unprecedented opportunities for detecting proteins' essentialities from the network level. There have been a series of computational approaches proposed for predicting essential proteins based on network topologies. However, the network topology-based centrality measures are very sensitive to the robustness of network. Therefore, a new robust essential protein discovery method would be of great value. Results In this paper, we propose a new centrality measure, named PeC, based on the integration of protein-protein interaction and gene expression data. The performance of PeC is validated based on the protein-protein interaction network of Saccharomyces cerevisiae. The experimental results show that the predicted precision of PeC clearly exceeds that of the other fifteen previously proposed centrality measures: Degree Centrality (DC, Betweenness Centrality (BC, Closeness Centrality (CC, Subgraph Centrality (SC, Eigenvector Centrality (EC, Information Centrality (IC, Bottle Neck (BN, Density of Maximum Neighborhood Component (DMNC, Local Average Connectivity-based method (LAC, Sum of ECC (SoECC, Range-Limited Centrality (RL, L-index (LI, Leader Rank (LR, Normalized α-Centrality (NC, and Moduland-Centrality (MC. Especially, the improvement of PeC over the classic centrality measures (BC, CC, SC, EC, and BN is more than 50% when predicting no more than 500 proteins. Conclusions We demonstrate that the integration of protein-protein interaction network and gene expression data can help improve the precision of predicting essential proteins. The new centrality measure, PeC, is an effective essential protein discovery method.

  10. Discovery of Phytophthora infestans genes expressed in planta through mining of cDNA libraries.

    Directory of Open Access Journals (Sweden)

    Roberto Sierra

    Full Text Available BACKGROUND: Phytophthora infestans (Mont. de Bary causes late blight of potato and tomato, and has a broad host range within the Solanaceae family. Most studies of the Phytophthora--Solanum pathosystem have focused on gene expression in the host and have not analyzed pathogen gene expression in planta. METHODOLOGY/PRINCIPAL FINDINGS: We describe in detail an in silico approach to mine ESTs from inoculated host plants deposited in a database in order to identify particular pathogen sequences associated with disease. We identified candidate effector genes through mining of 22,795 ESTs corresponding to P. infestans cDNA libraries in compatible and incompatible interactions with hosts from the Solanaceae family. CONCLUSIONS/SIGNIFICANCE: We annotated genes of P. infestans expressed in planta associated with late blight using different approaches and assigned putative functions to 373 out of the 501 sequences found in the P. infestans genome draft, including putative secreted proteins, domains associated with pathogenicity and poorly characterized proteins ideal for further experimental studies. Our study provides a methodology for analyzing cDNA libraries and provides an understanding of the plant--oomycete pathosystems that is independent of the host, condition, or type of sample by identifying genes of the pathogen expressed in planta.

  11. An ensemble method for gene discovery based on DNA microarray data

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    The advent of DNA microarray technology has offered the promise of casting new insights onto deciphering secrets of life by monitoring activities of thousands of genes simultaneously.Current analyses of microarray data focus on precise classification of biological types,for example,tumor versus normal tissues.A further scientific challenging task is to extract disease-relevant genes from the bewildering amounts of raw data,which is one of the most critical themes in the post-genomic era,but it is generally ignored due to lack of an efficient approach.In this paper,we present a novel ensemble method for gene extraction that can be tailored to fulfill multiple biological tasks including(i)precise classification of biological types;(ii)disease gene mining; and(iii)target-driven gene networking.We also give a numerical application for(i)and(ii)using a public microarrary data set and set aside a separate paper to address(iii).

  12. Diversity in biosynthetic pathways of galactolipids in the light of endosymbiotic origin of chloroplasts

    Directory of Open Access Journals (Sweden)

    Naoki eSato

    2016-02-01

    Full Text Available Cyanobacteria and chloroplasts perform oxygenic photosynthesis, and share a common origin. Galactolipids are present in the photosynthetic membranes of both cyanobacteria and chloroplasts, but the biosynthetic pathways of the galactolipids are significantly different in the two systems. In this minireview, we explain the history of the discovery of the cyanobacterial pathway, and present a probable scenario of the evolution of the two pathways.

  13. Plant gravitropic signal transduction: A network analysis leads to gene discovery

    Science.gov (United States)

    Wyatt, Sarah

    Gravity plays a fundamental role in plant growth and development. Although a significant body of research has helped define the events of gravity perception, the role of the plant growth regulator auxin, and the mechanisms resulting in the gravity response, the events of signal transduction, those that link the biophysical action of perception to a biochemical signal that results in auxin redistribution, those that regulate the gravitropic effects on plant growth, remain, for the most part, a “black box.” Using a cold affect, dubbed the gravity persistent signal (GPS) response, we developed a mutant screen to specifically identify components of the signal transduction pathway. Cloning of the GPS genes have identified new proteins involved in gravitropic signaling. We have further exploited the GPS response using a multi-faceted approach including gene expression microarrays, proteomics analysis, and bioinformatics analysis and continued mutant analysis to identified additional genes, physiological and biochemical processes. Gene expression data provided the foundation of a regulatory network for gravitropic signaling. Based on these gene expression data and related data sets/information from the literature/repositories, we constructed a gravitropic signaling network for Arabidopsis inflorescence stems. To generate the network, both a dynamic Bayesian network approach and a time-lagged correlation coefficient approach were used. The dynamic Bayesian network added existing information of protein-protein interaction while the time-lagged correlation coefficient allowed incorporation of temporal regulation and thus could incorporate the time-course metric from the data set. Thus the methods complemented each other and provided us with a more comprehensive evaluation of connections. Each method generated a list of possible interactions associated with a statistical significance value. The two networks were then overlaid to generate a more rigorous, intersected

  14. Discovery and identification of candidate genes from the chitinase gene family for Verticillium dahliae resistance in cotton.

    Science.gov (United States)

    Xu, Jun; Xu, Xiaoyang; Tian, Liangliang; Wang, Guilin; Zhang, Xueying; Wang, Xinyu; Guo, Wangzhen

    2016-06-29

    Verticillium dahliae, a destructive and soil-borne fungal pathogen, causes massive losses in cotton yields. However, the resistance mechanism to V. dahilae in cotton is still poorly understood. Accumulating evidence indicates that chitinases are crucial hydrolytic enzymes, which attack fungal pathogens by catalyzing the fungal cell wall degradation. As a large gene family, to date, the chitinase genes (Chis) have not been systematically analyzed and effectively utilized in cotton. Here, we identified 47, 49, 92, and 116 Chis from four sequenced cotton species, diploid Gossypium raimondii (D5), G. arboreum (A2), tetraploid G. hirsutum acc. TM-1 (AD1), and G. barbadense acc. 3-79 (AD2), respectively. The orthologous genes were not one-to-one correspondence in the diploid and tetraploid cotton species, implying changes in the number of Chis in different cotton species during the evolution of Gossypium. Phylogenetic classification indicated that these Chis could be classified into six groups, with distinguishable structural characteristics. The expression patterns of Chis indicated their various expressions in different organs and tissues, and in the V. dahliae response. Silencing of Chi23, Chi32, or Chi47 in cotton significantly impaired the resistance to V. dahliae, suggesting these genes might act as positive regulators in disease resistance to V. dahliae.

  15. Using Osteoclast Differentiation as a Model for Gene Discovery in an Undergraduate Cell Biology Laboratory

    Science.gov (United States)

    Birnbaum, Mark J.; Picco, Jenna; Clements, Meghan; Witwicka, Hanna; Yang, Meiheng; Hoey, Margaret T.; Odgren, Paul R.

    2010-01-01

    A key goal of molecular/cell biology/biotechnology is to identify essential genes in virtually every physiological process to uncover basic mechanisms of cell function and to establish potential targets of drug therapy combating human disease. This article describes a semester-long, project-oriented molecular/cellular/biotechnology laboratory…

  16. Discovery of genes involved with learning and memory: an experimental synthesis of Hirschian and Benzerian perspectives.

    Science.gov (United States)

    Tully, T

    1996-11-26

    The biological bases of learning and memory are being revealed today with a wide array of molecular approaches, most of which entail the analysis of dysfunction produced by gene disruptions. This perspective derives both from early "genetic dissections" of learning in mutant Drosophila by Seymour Benzer and colleagues and from earlier behavior-genetic analyses of learning and in Diptera by Jerry Hirsh and coworkers. Three quantitative-genetic insights derived from these latter studies serve as guiding principles for the former. First, interacting polygenes underlie complex traits. Consequently, learning/memory defects associated with single-gene mutants can be quantified accurately only in equilibrated, heterogeneous genetic backgrounds. Second, complex behavioral responses will be composed of genetically distinct functional components. Thus, genetic dissection of complex traits into specific biobehavioral properties is likely. Finally, disruptions of genes involved with learning/memory are likely to have pleiotropic effects. As a result, task-relevant sensorimotor responses required for normal learning must be assessed carefully to interpret performance in learning/memory experiments. In addition, more specific conclusions will be obtained from reverse-genetic experiments, in which gene disruptions are restricted in time and/or space.

  17. Human transporter database: comprehensive knowledge and discovery tools in the human transporter genes.

    Directory of Open Access Journals (Sweden)

    Adam Y Ye

    Full Text Available Transporters are essential in homeostatic exchange of endogenous and exogenous substances at the systematic, organic, cellular, and subcellular levels. Gene mutations of transporters are often related to pharmacogenetics traits. Recent developments in high throughput technologies on genomics, transcriptomics and proteomics allow in depth studies of transporter genes in normal cellular processes and diverse disease conditions. The flood of high throughput data have resulted in urgent need for an updated knowledgebase with curated, organized, and annotated human transporters in an easily accessible way. Using a pipeline with the combination of automated keywords query, sequence similarity search and manual curation on transporters, we collected 1,555 human non-redundant transporter genes to develop the Human Transporter Database (HTD (http://htd.cbi.pku.edu.cn. Based on the extensive annotations, global properties of the transporter genes were illustrated, such as expression patterns and polymorphisms in relationships with their ligands. We noted that the human transporters were enriched in many fundamental biological processes such as oxidative phosphorylation and cardiac muscle contraction, and significantly associated with Mendelian and complex diseases such as epilepsy and sudden infant death syndrome. Overall, HTD provides a well-organized interface to facilitate research communities to search detailed molecular and genetic information of transporters for development of personalized medicine.

  18. Transcriptome Analysis and Discovery of Genes Relevant to Development in Bradysia odoriphaga at Three Developmental Stages.

    Directory of Open Access Journals (Sweden)

    Huanhuan Gao

    Full Text Available Bradysia odoriphaga (Diptera: Sciaridae is the most important pest of Chinese chive (Allium tuberosum in Asia; however, the molecular genetics are poorly understood. To explore the molecular biological mechanism of development, Illumina sequencing and de novo assembly were performed in the third-instar, fourth-instar, and pupal B. odoriphaga. The study resulted in 16.2 Gb of clean data and 47,578 unigenes (≥125 bp contained in 7,632,430 contigs, 46.21% of which were annotated from non-redundant protein (NR, Gene Ontology (GO, Clusters of Orthologous Groups (COG, Eukaryotic Orthologous Groups (KOG, and Kyoto Encyclopedia of Genes and Genomes (KEGG databases. It was found that 19.67% of unigenes matched the homologous species mainly, including Aedes aegypti, Culex quinquefasciatus, Ceratitis capitata, and Anopheles gambiae. According to differentially expressed gene (DEG analysis, 143, 490, and 309 DEGs were annotated as involved in the developmental process in the GO database respectively, in the comparisons of third-instar and fourth-instar larvae, third-instar larvae and pupae, and fourth-instar larvae and pupae. Twenty-five genes were closely related to these processes, including developmental process, reproduction process, and reproductive organs development and programmed cell death (PCD. The information of unigenes assembled in B. odoriphaga through transcriptome and DEG analyses could provide a detailed genetic basis and regulated information for elaborating the developmental mechanism from the larval, pre-pupal to pupal stages of B. odoriphaga.

  19. Human transporter database: comprehensive knowledge and discovery tools in the human transporter genes.

    Science.gov (United States)

    Ye, Adam Y; Liu, Qing-Rong; Li, Chuan-Yun; Zhao, Min; Qu, Hong

    2014-01-01

    Transporters are essential in homeostatic exchange of endogenous and exogenous substances at the systematic, organic, cellular, and subcellular levels. Gene mutations of transporters are often related to pharmacogenetics traits. Recent developments in high throughput technologies on genomics, transcriptomics and proteomics allow in depth studies of transporter genes in normal cellular processes and diverse disease conditions. The flood of high throughput data have resulted in urgent need for an updated knowledgebase with curated, organized, and annotated human transporters in an easily accessible way. Using a pipeline with the combination of automated keywords query, sequence similarity search and manual curation on transporters, we collected 1,555 human non-redundant transporter genes to develop the Human Transporter Database (HTD) (http://htd.cbi.pku.edu.cn). Based on the extensive annotations, global properties of the transporter genes were illustrated, such as expression patterns and polymorphisms in relationships with their ligands. We noted that the human transporters were enriched in many fundamental biological processes such as oxidative phosphorylation and cardiac muscle contraction, and significantly associated with Mendelian and complex diseases such as epilepsy and sudden infant death syndrome. Overall, HTD provides a well-organized interface to facilitate research communities to search detailed molecular and genetic information of transporters for development of personalized medicine.

  20. A Sorghum Mutant Resource as an Efficient Platform for Gene Discovery in Grasses.

    Science.gov (United States)

    Jiao, Yinping; Burke, John; Chopra, Ratan; Burow, Gloria; Chen, Junping; Wang, Bo; Hayes, Chad; Emendack, Yves; Ware, Doreen; Xin, Zhanguo

    2016-07-01

    Sorghum (Sorghum bicolor) is a versatile C4 crop and a model for research in family Poaceae. High-quality genome sequence is available for the elite inbred line BTx623, but functional validation of genes remains challenging due to the limited genomic and germplasm resources available for comprehensive analysis of induced mutations. In this study, we generated 6400 pedigreed M4 mutant pools from EMS-mutagenized BTx623 seeds through single-seed descent. Whole-genome sequencing of 256 phenotyped mutant lines revealed >1.8 million canonical EMS-induced mutations, affecting >95% of genes in the sorghum genome. The vast majority (97.5%) of the induced mutations were distinct from natural variations. To demonstrate the utility of the sequenced sorghum mutant resource, we performed reverse genetics to identify eight genes potentially affecting drought tolerance, three of which had allelic mutations and two of which exhibited exact cosegregation with the phenotype of interest. Our results establish that a large-scale resource of sequenced pedigreed mutants provides an efficient platform for functional validation of genes in sorghum, thereby accelerating sorghum breeding. Moreover, findings made in sorghum could be readily translated to other members of the Poaceae via integrated genomics approaches.

  1. Discovery and functional prioritization of Parkinson's disease candidate genes from large-scale whole exome sequencing

    NARCIS (Netherlands)

    I. Jansen (Iris); Ye, H. (Hui); Heetveld, S. (Sasja); Lechler, M.C. (Marie C.); Michels, H. (Helen); Seinstra, R.I. (Renée I.); Lubbe, S.J. (Steven J.); Drouet, V. (Valérie); S. Lesage (Suzanne); E. Majounie (Elisa); Gibbs, J.R. (J.Raphael); M.A. Nalls (Michael); M. Ryten (Mina); Botia, J.A. (Juan A.); J. Vandrovcova (Jana); J. Simón-Sánchez (Javier); Castillo-Lizardo, M. (Melissa); P. Rizzu (Patrizia); Blauwendraat, C. (Cornelis); Chouhan, A.K. (Amit K.); Li, Y. (Yarong); Yogi, P. (Puja); N. Amin (Najaf); C.M. van Duijn (Cock); Morris, H.R. (Huw R.); Brice, A. (Alexis); A. Singleton (Andrew); David, D.C. (Della C.); Nollen, E.A. (Ellen A.); A. Jain (Ashok); J.M. Shulman; P. Heutink (Peter); D.G. Hernandez (Dena); S. Arepalli (Sampath); J. Brooks (Janet); Price, R. (Ryan); Nicolas, A. (Aude); S. Chong (Sean); M.R. Cookson (Mark); A. Dillman (Allissa); M. Moore (Matt); B.J. Traynor (Bryan); A. Singleton (Andrew); V. Plagnol (Vincent); Nicholas W Wood,; U.-M. Sheerin (Una-Marie); Jose M Bras,; K. Charlesworth (Kate); M. Gardner (Mac); R. Guerreiro (Rita); D. Trabzuni (Danyah); Hardy, J. (John); M. Sharma; M. Saad (Mohamad); Javier Simón-Sánchez,; C. Schulte (Claudia); J.C. Corvol (Jean-Christophe); Dürr, A. (Alexandra); M. Vidailhet (M.); S. Sveinbjörnsdóttir (Sigurlaug); R.A. Barker (Roger); Caroline H Williams-Gray,; Y. Ben-Shlomo; H.W. Berendse (Henk W.); K.D. van Dijk (Karin); D. Berg (Daniela); K. Brockmann; K.D. Wurster (Kathrin); Mätzler, W. (Walter); Gasser, T. (Thomas); M. Martinez (Maria); R.M.A. de Bie (Rob); A. Biffi (Alessandro); D. Velseboer (Daan); B.R. Bloem (Bastiaan); B. Post (Bart); M. Wickremaratchi (Mirdhu); B. van de Warrenburg (Bart); Z. Bochdanovits (Zoltan); M. von Bonin (Malte); H. Pétursson (Hjörvar); O. Riess (Olaf); D.J. Burn (David); Lubbe, S. (Steven); Cooper, J.M. (J Mark); N.H. McNeill (Nathan); Schapira, A. (Anthony); Lungu, C. (Codrin); Chen, H. (Honglei); Dong, J. (Jing); Chinnery, P.F. (Patrick F.); G. Hudson (Gavin); Clarke, C.E. (Carl E.); C. Moorby (Catriona); C. Counsell (Carl); P. Damier (Philippe); J.-F. Dartigues; P. Deloukas (Panagiotis); E. Gray (Emma); T. Edkins (Ted); Hunt, S.E. (Sarah E.); S.C. Potter (Simon); A. Tashakkori-Ghanbaria (Avazeh); G. Deuschl (Günther); D. Lorenz (Delia); D.T. Dexter (David); F. Durif (Frank); J. Evans (Jonathan Mark); Langford, C. (Cordelia); T. Foltynie (Thomas); A.M. Goate (Alison); C. Harris (Clare); J.J. van Hilten (Jacobus); A. Hofman (Albert); J.R. Hollenbeck (John R.); J.L. Holton (Janice); Hu, M. (Michele); X. Huang (Xiaohong); Illig, T. (Thomas); P.V. Jónsson (Pálmi); J.-C. Lambert; S.S. O'Sullivan (Sean); T. Revesz (Tamas); K. Shaw (Karen); A.J. Lees (Andrew); P. Lichtner (Peter); P. Limousin (Patricia); G. Lopez; Escott-Price, V. (Valentina); J. Pearson (Justin); N. Williams (Nigel); E. Mudanohwo (Ese); J.S. Perlmutter (Joel); Pollak, P. (Pierre); F. Rivadeneira Ramirez (Fernando); A.G. Uitterlinden (André); S.J. Sawcer (Stephen); H. Scheffer (Hans); I. Shoulson (Ira); L. Shulman (Lee); Smith, C. (Colin); R. Walker (Robert); C.C.A. Spencer (Chris C.); A. Strange (Amy); H. Stefansson (Hreinn); F. Bettella (Francesco); J-A. Zwart (John-Anker); Stockton, J.D. (Joanna D.); D. Talbot; C.M. Tanner (Carlie); F. Tison (François); S. Winder-Rhodes (Sophie); K.P. Bhatia (Kailash)

    2017-01-01

    textabstractBackground: Whole-exome sequencing (WES) has been successful in identifying genes that cause familial Parkinson's disease (PD). However, until now this approach has not been deployed to study large cohorts of unrelated participants. To discover rare PD susceptibility variants, we perform

  2. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists

    Directory of Open Access Journals (Sweden)

    Steinfeld Israel

    2009-02-01

    Full Text Available Abstract Background Since the inception of the GO annotation project, a variety of tools have been developed that support exploring and searching the GO database. In particular, a variety of tools that perform GO enrichment analysis are currently available. Most of these tools require as input a target set of genes and a background set and seek enrichment in the target set compared to the background set. A few tools also exist that support analyzing ranked lists. The latter typically rely on simulations or on union-bound correction for assigning statistical significance to the results. Results GOrilla is a web-based application that identifies enriched GO terms in ranked lists of genes, without requiring the user to provide explicit target and background sets. This is particularly useful in many typical cases where genomic data may be naturally represented as a ranked list of genes (e.g. by level of expression or of differential expression. GOrilla employs a flexible threshold statistical approach to discover GO terms that are significantly enriched at the top of a ranked gene list. Building on a complete theoretical characterization of the underlying distribution, called mHG, GOrilla computes an exact p-value for the observed enrichment, taking threshold multiple testing into account without the need for simulations. This enables rigorous statistical analysis of thousand of genes and thousands of GO terms in order of seconds. The output of the enrichment analysis is visualized as a hierarchical structure, providing a clear view of the relations between enriched GO terms. Conclusion GOrilla is an efficient GO analysis tool with unique features that make a useful addition to the existing repertoire of GO enrichment tools. GOrilla's unique features and advantages over other threshold free enrichment tools include rigorous statistics, fast running time and an effective graphical representation. GOrilla is publicly available at: http://cbl-gorilla.cs.technion.ac.il

  3. Gene discovery in the threatened elkhorn coral: 454 sequencing of the Acropora palmata transcriptome.

    Directory of Open Access Journals (Sweden)

    Nicholas R Polato

    Full Text Available BACKGROUND: Cnidarians, including corals and anemones, offer unique insights into metazoan evolution because they harbor genetic similarities with vertebrates beyond that found in model invertebrates and retain genes known only from non-metazoans. Cataloging genes expressed in Acropora palmata, a foundation-species of reefs in the Caribbean and western Atlantic, will advance our understanding of the genetic basis of ecologically important traits in corals and comes at a time when sequencing efforts in other cnidarians allow for multi-species comparisons. RESULTS: A cDNA library from a sample enriched for symbiont free larval tissue was sequenced on the 454 GS-FLX platform. Over 960,000 reads were obtained and assembled into 42,630 contigs. Annotation data was acquired for 57% of the assembled sequences. Analysis of the assembled sequences indicated that 83-100% of all A. palmata transcripts were tagged, and provided a rough estimate of the total number genes expressed in our samples (~18,000-20,000. The coral annotation data contained many of the same molecular components as in the Bilateria, particularly in pathways associated with oxidative stress and DNA damage repair, and provided evidence that homologs of p53, a key player in DNA repair pathways, has experienced selection along the branch separating Cnidaria and Bilateria. Transcriptome wide screens of paralog groups and transition/transversion ratios highlighted genes including: green fluorescent proteins, carbonic anhydrase, and oxidative stress proteins; and functional groups involved in protein and nucleic acid metabolism, and the formation of structural molecules. These results provide a starting point for study of adaptive evolution in corals. CONCLUSIONS: Currently available transcriptome data now make comparative studies of the mechanisms underlying coral's evolutionary success possible. Here we identified candidate genes that enable corals to maintain genomic integrity despite

  4. Gene expression and epigenetic discovery screen reveal methylation of SFRP2 in prostate cancer.

    LENUS (Irish Health Repository)

    Perry, Antoinette S

    2013-04-15

    Aberrant activation of Wnts is common in human cancers, including prostate. Hypermethylation associated transcriptional silencing of Wnt antagonist genes SFRPs (Secreted Frizzled-Related Proteins) is a frequent oncogenic event. The significance of this is not known in prostate cancer. The objectives of our study were to (i) profile Wnt signaling related gene expression and (ii) investigate methylation of Wnt antagonist genes in prostate cancer. Using TaqMan Low Density Arrays, we identified 15 Wnt signaling related genes with significantly altered expression in prostate cancer; the majority of which were upregulated in tumors. Notably, histologically benign tissue from men with prostate cancer appeared more similar to tumor (r = 0.76) than to benign prostatic hyperplasia (BPH; r = 0.57, p < 0.001). Overall, the expression profile was highly similar between tumors of high (≥ 7) and low (≤ 6) Gleason scores. Pharmacological demethylation of PC-3 cells with 5-Aza-CdR reactivated 39 genes (≥ 2-fold); 40% of which inhibit Wnt signaling. Methylation frequencies in prostate cancer were 10% (2\\/20) (SFRP1), 64.86% (48\\/74) (SFRP2), 0% (0\\/20) (SFRP4) and 60% (12\\/20) (SFRP5). SFRP2 methylation was detected at significantly lower frequencies in high-grade prostatic intraepithelial neoplasia (HGPIN; 30%, (6\\/20), p = 0.0096), tumor adjacent benign areas (8.82%, (7\\/69), p < 0.0001) and BPH (11.43% (4\\/35), p < 0.0001). The quantitative level of SFRP2 methylation (normalized index of methylation) was also significantly higher in tumors (116) than in the other samples (HGPIN = 7.45, HB = 0.47, and BPH = 0.12). We show that SFRP2 hypermethylation is a common event in prostate cancer. SFRP2 methylation in combination with other epigenetic markers may be a useful biomarker of prostate cancer.

  5. Leveraging a Sturge-Weber Gene Discovery: An Agenda for Future Research.

    Science.gov (United States)

    Comi, Anne M; Sahin, Mustafa; Hammill, Adrienne; Kaplan, Emma H; Juhász, Csaba; North, Paula; Ball, Karen L; Levin, Alex V; Cohen, Bernard; Morris, Jill; Lo, Warren; Roach, E Steve

    2016-05-01

    Sturge-Weber syndrome (SWS) is a vascular neurocutaneous disorder that results from a somatic mosaic mutation in GNAQ, which is also responsible for isolated port-wine birthmarks. Infants with SWS are born with a cutaneous capillary malformation (port-wine birthmark) of the forehead or upper eyelid which can signal an increased risk of brain and/or eye involvement prior to the onset of specific symptoms. This symptom-free interval represents a time when a targeted intervention could help to minimize the neurological and ophthalmologic manifestations of the disorder. This paper summarizes a 2015 SWS workshop in Bethesda, Maryland that was sponsored by the National Institutes of Health. Meeting attendees included a diverse group of clinical and translational researchers with a goal of establishing research priorities for the next few years. The initial portion of the meeting included a thorough review of the recent genetic discovery and what is known of the pathogenesis of SWS. Breakout sessions related to neurology, dermatology, and ophthalmology aimed to establish SWS research priorities in each field. Key priorities for future development include the need for clinical consensus guidelines, further work to develop a clinical trial network, improvement of tissue banking for research purposes, and the need for multiple animal and cell culture models of SWS.

  6. Discovery of Nuclear-Encoded Genes for the Neurotoxin Saxitoxin in Dinoflagellates

    OpenAIRE

    Anke Stüken; Orr, Russell J. S.; Ralf Kellmann; Murray, Shauna A.; Neilan, Brett A.; Kjetill S Jakobsen

    2011-01-01

    Saxitoxin is a potent neurotoxin that occurs in aquatic environments worldwide. Ingestion of vector species can lead to paralytic shellfish poisoning, a severe human illness that may lead to paralysis and death. In freshwaters, the toxin is produced by prokaryotic cyanobacteria; in marine waters, it is associated with eukaryotic dinoflagellates. However, several studies suggest that saxitoxin is not produced by dinoflagellates themselves, but by co-cultured bacteria. Here, we show that genes ...

  7. Discovery and functional assessment of gene variants in the vascular endothelial growth factor pathway

    OpenAIRE

    Paré-Brunet, Laia; Glubb, Dylan; Evans, Patrick; Berenguer-Llergo, Antoni; Etheridge, Amy S.; Skol, Andrew D.; Di Rienzo, Anna; Duan, Shiwei; Gamazon, Eric R.; Innocenti, Federico

    2013-01-01

    Angiogenesis is a host-mediated mechanism in disease pathophysiology. The vascular endothelial growth factor (VEGF) pathway is a major determinant of angiogenesis, and a comprehensive annotation of the functional variation in this pathway is essential to understand the genetic basis of angiogenesis-related diseases. We assessed the allelic heterogeneity of gene expression, population specificity of cis expression quantitative trait loci (eQTLs), and eQTL function in luciferase assays in CEU a...

  8. Use of eQTL Analysis for the Discovery of Target Genes Identified by GWAS

    Science.gov (United States)

    2014-04-01

    candidate genes for existing prostate cancer (PC) risk-single nucleotide polymorphisms (SNPs) that could then be followed up in future studies. To accomplish...a radical prostatectomy at Mayo Clinic and were available to investigators through the Prostate Cancer SPORE. Typically, one to three pieces of...916 cases re-examined, 93 cases met the criteria above, but also contained Benign Prostatic Hyperplasia (BPH), seminal vesicle, urethra , or adjacent

  9. Discovery of nuclear-encoded genes for the neurotoxin saxitoxin in dinoflagellates.

    Science.gov (United States)

    Stüken, Anke; Orr, Russell J S; Kellmann, Ralf; Murray, Shauna A; Neilan, Brett A; Jakobsen, Kjetill S

    2011-01-01

    Saxitoxin is a potent neurotoxin that occurs in aquatic environments worldwide. Ingestion of vector species can lead to paralytic shellfish poisoning, a severe human illness that may lead to paralysis and death. In freshwaters, the toxin is produced by prokaryotic cyanobacteria; in marine waters, it is associated with eukaryotic dinoflagellates. However, several studies suggest that saxitoxin is not produced by dinoflagellates themselves, but by co-cultured bacteria. Here, we show that genes required for saxitoxin synthesis are encoded in the nuclear genomes of dinoflagellates. We sequenced >1.2×10(6) mRNA transcripts from the two saxitoxin-producing dinoflagellate strains Alexandrium fundyense CCMP1719 and A. minutum CCMP113 using high-throughput sequencing technology. In addition, we used in silico transcriptome analyses, RACE, qPCR and conventional PCR coupled with Sanger sequencing. These approaches successfully identified genes required for saxitoxin-synthesis in the two transcriptomes. We focused on sxtA, the unique starting gene of saxitoxin synthesis, and show that the dinoflagellate transcripts of sxtA have the same domain structure as the cyanobacterial sxtA genes. But, in contrast to the bacterial homologs, the dinoflagellate transcripts are monocistronic, have a higher GC content, occur in multiple copies, contain typical dinoflagellate spliced-leader sequences and eukaryotic polyA-tails. Further, we investigated 28 saxitoxin-producing and non-producing dinoflagellate strains from six different genera for the presence of genomic sxtA homologs. Our results show very good agreement between the presence of sxtA and saxitoxin-synthesis, except in three strains of A. tamarense, for which we amplified sxtA, but did not detect the toxin. Our work opens for possibilities to develop molecular tools to detect saxitoxin-producing dinoflagellates in the environment.

  10. Discovery of inhibitors of aberrant gene transcription from Libraries of DNA binding molecules: inhibition of LEF-1-mediated gene transcription and oncogenic transformation.

    Science.gov (United States)

    Stover, James S; Shi, Jin; Jin, Wei; Vogt, Peter K; Boger, Dale L

    2009-03-11

    The screening of a >9000 compound library of synthetic DNA binding molecules for selective binding to the consensus sequence of the transcription factor LEF-1 followed by assessment of the candidate compounds in a series of assays that characterized functional activity (disruption of DNA-LEF-1 binding) at the intended target and site (inhibition of intracellular LEF-1-mediated gene transcription) resulting in a desired phenotypic cellular change (inhibit LEF-1-driven cell transformation) provided two lead compounds: lefmycin-1 and lefmycin-2. The sequence of screens defining the approach assures that activity in the final functional assay may be directly related to the inhibition of gene transcription and DNA binding properties of the identified molecules. Central to the implementation of this generalized approach to the discovery of DNA binding small molecule inhibitors of gene transcription was (1) the use of a technically nondemanding fluorescent intercalator displacement (FID) assay for initial assessment of the DNA binding affinity and selectivity of a library of compounds for any sequence of interest, and (2) the technology used to prepare a sufficiently large library of DNA binding compounds.

  11. An Isogenic Human ESC Platform for Functional Evaluation of Genome-wide-Association-Study-Identified Diabetes Genes and Drug Discovery.

    Science.gov (United States)

    Zeng, Hui; Guo, Min; Zhou, Ting; Tan, Lei; Chong, Chi Nok; Zhang, Tuo; Dong, Xue; Xiang, Jenny Zhaoying; Yu, Albert S; Yue, Lixia; Qi, Qibin; Evans, Todd; Graumann, Johannes; Chen, Shuibing

    2016-09-01

    Genome-wide association studies (GWASs) have increased our knowledge of loci associated with a range of human diseases. However, applying such findings to elucidate pathophysiology and promote drug discovery remains challenging. Here, we created isogenic human ESCs (hESCs) with mutations in GWAS-identified susceptibility genes for type 2 diabetes. In pancreatic beta-like cells differentiated from these lines, we found that mutations in CDKAL1, KCNQ1, and KCNJ11 led to impaired glucose secretion in vitro and in vivo, coinciding with defective glucose homeostasis. CDKAL1 mutant insulin+ cells were also hypersensitive to glucolipotoxicity. A high-content chemical screen identified a candidate drug that rescued CDKAL1-specific defects in vitro and in vivo by inhibiting the FOS/JUN pathway. Our approach of a proof-of-principle platform, which uses isogenic hESCs for functional evaluation of GWAS-identified loci and identification of a drug candidate that rescues gene-specific defects, paves the way for precision therapy of metabolic diseases.

  12. Functional Analysis and Discovery of Microbial Genes Transforming Metallic and Organic Pollutants: Database and Experimental Tools

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence P. Wackett; Lynda B.M. Ellis

    2004-12-09

    Microbial functional genomics is faced with a burgeoning list of genes which are denoted as unknown or hypothetical for lack of any knowledge about their function. The majority of microbial genes encode enzymes. Enzymes are the catalysts of metabolism; catabolism, anabolism, stress responses, and many other cell functions. A major problem facing microbial functional genomics is proposed here to derive from the breadth of microbial metabolism, much of which remains undiscovered. The breadth of microbial metabolism has been surveyed by the PIs and represented according to reaction types on the University of Minnesota Biocatalysis/Biodegradation Database (UM-BBD): http://umbbd.ahc.umn.edu/search/FuncGrps.html The database depicts metabolism of 49 chemical functional groups, representing most of current knowledge. Twice that number of chemical groups are proposed here to be metabolized by microbes. Thus, at least 50% of the unique biochemical reactions catalyzed by microbes remain undiscovered. This further suggests that many unknown and hypothetical genes encode functions yet undiscovered. This gap will be partly filled by the current proposal. The UM-BBD will be greatly expanded as a resource for microbial functional genomics. Computational methods will be developed to predict microbial metabolism which is not yet discovered. Moreover, a concentrated effort to discover new microbial metabolism will be conducted. The research will focus on metabolism of direct interest to DOE, dealing with the transformation of metals, metalloids, organometallics and toxic organics. This is precisely the type of metabolism which has been characterized most poorly to date. Moreover, these studies will directly impact functional genomic analysis of DOE-relevant genomes.

  13. Transcriptomics Analysis of Crassostrea hongkongensis for the Discovery of Reproduction-Related Genes.

    Directory of Open Access Journals (Sweden)

    Ying Tong

    Full Text Available The reproductive mechanisms of mollusk species have been interesting targets in biological research because of the diverse reproductive strategies observed in this phylum. These species have also been studied for the development of fishery technologies in molluscan aquaculture. Although the molecular mechanisms underlying the reproductive process have been well studied in animal models, the relevant information from mollusks remains limited, particularly in species of great commercial interest. Crassostrea hongkongensis is the dominant oyster species that is distributed along the coast of the South China Sea and little genomic information on this species is available. Currently, high-throughput sequencing techniques have been widely used for investigating the basis of physiological processes and facilitating the establishment of adequate genetic selection programs.The C.hongkongensis transcriptome included a total of 1,595,855 reads, which were generated by 454 sequencing and were assembled into 41,472 contigs using de novo methods. Contigs were clustered into 33,920 isotigs and further grouped into 22,829 isogroups. Approximately 77.6% of the isogroups were successfully annotated by the Nr database. More than 1,910 genes were identified as being related to reproduction. Some key genes involved in germline development, sex determination and differentiation were identified for the first time in C.hongkongensis (nanos, piwi, ATRX, FoxL2, β-catenin, etc.. Gene expression analysis indicated that vasa, nanos, piwi, ATRX, FoxL2, β-catenin and SRD5A1 were highly or specifically expressed in C.hongkongensis gonads. Additionally, 94,056 single nucleotide polymorphisms (SNPs and 1,699 simple sequence repeats (SSRs were compiled.Our study significantly increased C.hongkongensis genomic information based on transcriptomics analysis. The group of reproduction-related genes identified in the present study constitutes a new tool for research on bivalve

  14. Activating the expression of bacterial cryptic genes by rpoB mutations in RNA polymerase or by rare earth elements.

    Science.gov (United States)

    Ochi, Kozo; Tanaka, Yukinori; Tojo, Shigeo

    2014-02-01

    Since bacteria were found to contain genes encoding enzymes that synthesize a plethora of potential secondary metabolites, interest has grown in the activation of these cryptic pathways. Homologous and heterologous expression of these cryptic secondary metabolite-biosynthetic genes, often "silent" under ordinary laboratory fermentation conditions, may lead to the discovery of novel secondary metabolites. We review current progress on this topic, describing concepts for activating silent genes. We especially focus on genetic manipulation of transcription and translation, as well as the utilization of rare earth elements as a novel method to activate the silent genes. The possible roles of silent genes in bacterial physiology are also discussed.

  15. Gene discovery and molecular marker development, based on high-throughput transcript sequencing of Paspalum dilatatum Poir.

    Directory of Open Access Journals (Sweden)

    Andrea Giordano

    Full Text Available BACKGROUND: Paspalum dilatatum Poir. (common name dallisgrass is a native grass species of South America, with special relevance to dairy and red meat production. P. dilatatum exhibits higher forage quality than other C4 forage grasses and is tolerant to frost and water stress. This species is predominantly cultivated in an apomictic monoculture, with an inherent high risk that biotic and abiotic stresses could potentially devastate productivity. Therefore, advanced breeding strategies that characterise and use available genetic diversity, or assess germplasm collections effectively are required to deliver advanced cultivars for production systems. However, there are limited genomic resources available for this forage grass species. RESULTS: Transcriptome sequencing using second-generation sequencing platforms has been employed using pooled RNA from different tissues (stems, roots, leaves and inflorescences at the final reproductive stage of P. dilatatum cultivar Primo. A total of 324,695 sequence reads were obtained, corresponding to c. 102 Mbp. The sequences were assembled, generating 20,169 contigs of a combined length of 9,336,138 nucleotides. The contigs were BLAST analysed against the fully sequenced grass species of Oryza sativa subsp. japonica, Brachypodium distachyon, the closely related Sorghum bicolor and foxtail millet (Setaria italica genomes as well as against the UniRef 90 protein database allowing a comprehensive gene ontology analysis to be performed. The contigs generated from the transcript sequencing were also analysed for the presence of simple sequence repeats (SSRs. A total of 2,339 SSR motifs were identified within 1,989 contigs and corresponding primer pairs were designed. Empirical validation of a cohort of 96 SSRs was performed, with 34% being polymorphic between sexual and apomictic biotypes. CONCLUSIONS: The development of genetic and genomic resources for P. dilatatum will contribute to gene discovery and expression

  16. Gene discovery in the Antarctic fur seal (Arctocephalus gazella) skin transcriptome.

    Science.gov (United States)

    Hoffman, Joseph I

    2011-07-01

    Next-generation sequencing provides a powerful new approach for developing functional genomic tools for nonmodel species, helping to narrow the gap between studies of model organisms and those of natural populations. Consequently, massively parallel 454 sequencing was used to characterize a normalized cDNA library derived from skin biopsy samples of twelve Antarctic fur seal (Arctocephalus gazella) individuals. Over 412 Mb of sequence data were generated, comprising 1.4 million reads of average length 286 bp. De novo assembly using Newbler 2.3 yielded 156 contigs plus 22 869 isotigs, which in turn clustered into 18,576 isogroups. Almost half of the assembled transcript sequences showed significant similarity to the nr database, revealing a functionally diverse array of genes. Moreover, 97.9% of these mapped to the dog (Canis lupis familiaris) genome, with a strong positive relationship between the number of sequences locating to a given chromosome and the length of that chromosome in the dog indicating a broad genomic distribution. Average depth of coverage was also almost 20-fold, sufficient to detect several thousand putative microsatellite loci and single nucleotide polymorphisms. This study constitutes an important step towards developing genomic resources with which to address consequential questions in pinniped ecology and evolution. It also supports an earlier but smaller study showing that skin tissue can be a rich source of expressed genes, with important implications for studying the genomics not only of marine mammals, but also more generally of species that cannot be destructively sampled.

  17. Discovery of phosphonic acid natural products by mining the genomes of 10,000 actinomycetes.

    Science.gov (United States)

    Ju, Kou-San; Gao, Jiangtao; Doroghazi, James R; Wang, Kwo-Kwang A; Thibodeaux, Christopher J; Li, Steven; Metzger, Emily; Fudala, John; Su, Joleen; Zhang, Jun Kai; Lee, Jaeheon; Cioni, Joel P; Evans, Bradley S; Hirota, Ryuichi; Labeda, David P; van der Donk, Wilfred A; Metcalf, William W

    2015-09-29

    Although natural products have been a particularly rich source of human medicines, activity-based screening results in a very high rate of rediscovery of known molecules. Based on the large number of natural product biosynthetic genes in microbial genomes, many have proposed "genome mining" as an alternative approach for discovery efforts; however, this idea has yet to be performed experimentally on a large scale. Here, we demonstrate the feasibility of large-scale, high-throughput genome mining by screening a collection of over 10,000 actinomycetes for the genetic potential to make phosphonic acids, a class of natural products with diverse and useful bioactivities. Genome sequencing identified a diverse collection of phosphonate biosynthetic gene clusters within 278 strains. These clusters were classified into 64 distinct groups, of which 55 are likely to direct the synthesis of unknown compounds. Characterization of strains within five of these groups resulted in the discovery of a new archetypical pathway for phosphonate biosynthesis, the first (to our knowledge) dedicated pathway for H-phosphinates, and 11 previously undescribed phosphonic acid natural products. Among these compounds are argolaphos, a broad-spectrum antibacterial phosphonopeptide composed of aminomethylphosphonate in peptide linkage to a rare amino acid N(5)-hydroxyarginine; valinophos, an N-acetyl l-Val ester of 2,3-dihydroxypropylphosphonate; and phosphonocystoximate, an unusual thiohydroximate-containing molecule representing a new chemotype of sulfur-containing phosphonate natural products. Analysis of the genome sequences from the remaining strains suggests that the majority of the phosphonate biosynthetic repertoire of Actinobacteria has been captured at the gene level. This dereplicated strain collection now provides a reservoir of numerous, as yet undiscovered, phosphonate natural products.

  18. Gene discovery and transcript analyses in the corn smut pathogen Ustilago maydis: expressed sequence tag and genome sequence comparison

    Directory of Open Access Journals (Sweden)

    Saville Barry J

    2007-09-01

    Full Text Available Abstract Background Ustilago maydis is the basidiomycete fungus responsible for common smut of corn and is a model organism for the study of fungal phytopathogenesis. To aid in the annotation of the genome sequence of this organism, several expressed sequence tag (EST libraries were generated from a variety of U. maydis cell types. In addition to utility in the context of gene identification and structure annotation, the ESTs were analyzed to identify differentially abundant transcripts and to detect evidence of alternative splicing and anti-sense transcription. Results Four cDNA libraries were constructed using RNA isolated from U. maydis diploid teliospores (U. maydis strains 518 × 521 and haploid cells of strain 521 grown under nutrient rich, carbon starved, and nitrogen starved conditions. Using the genome sequence as a scaffold, the 15,901 ESTs were assembled into 6,101 contiguous expressed sequences (contigs; among these, 5,482 corresponded to predicted genes in the MUMDB (MIPS Ustilago maydis database, while 619 aligned to regions of the genome not yet designated as genes in MUMDB. A comparison of EST abundance identified numerous genes that may be regulated in a cell type or starvation-specific manner. The transcriptional response to nitrogen starvation was assessed using RT-qPCR. The results of this suggest that there may be cross-talk between the nitrogen and carbon signalling pathways in U. maydis. Bioinformatic analysis identified numerous examples of alternative splicing and anti-sense transcription. While intron retention was the predominant form of alternative splicing in U. maydis, other varieties were also evident (e.g. exon skipping. Selected instances of both alternative splicing and anti-sense transcription were independently confirmed using RT-PCR. Conclusion Through this work: 1 substantial sequence information has been provided for U. maydis genome annotation; 2 new genes were identified through the discovery of 619

  19. Discovery and characterization of a novel CCND1/MRCK gene fusion in mantle cell lymphoma

    Directory of Open Access Journals (Sweden)

    Chioniso Patience Masamha

    2016-03-01

    Full Text Available Abstract The t(11;14 translocation resulting in constitutive cyclin D1 expression is an early event in mantle cell lymphoma (MCL transformation. Patients with a highly proliferative phenotype produce cyclin D1 transcripts with truncated 3′UTRs that evade miRNA regulation. Here, we report the recurrence of a novel gene fusion in MCL cell lines and MCL patient isolates that consists of the full protein coding region of cyclin D1 (CCND1 and a 3′UTR consisting of sequences from both the CCND1 3′UTR and myotonic dystrophy kinase-related Cdc42-binding kinase's (MRCK intron one. The resulting CCND1/MRCK mRNA is resistant to CCND1-targeted miRNA regulation, and targeting the MRCK region of the chimeric 3′UTR with siRNA results in decreased CCND1 levels.

  20. Discovery and characterization of the first genuine avian leptin gene in the rock dove (Columba livia).

    Science.gov (United States)

    Friedman-Einat, Miriam; Cogburn, Larry A; Yosefi, Sara; Hen, Gideon; Shinder, Dmitry; Shirak, Andrey; Seroussi, Eyal

    2014-09-01

    Leptin, the key regulator of mammalian energy balance, has been at the center of a great controversy in avian biology for the last 15 years since initial reports of a putative leptin gene (LEP) in chickens. Here, we characterize a novel LEP in rock dove (Columba livia) with low similarity of the predicted protein sequence (30% identity, 47% similarity) to the human ortholog. Searching the Sequence-Read-Archive database revealed leptin transcripts, in the dove's liver, with 2 noncoding exons preceding 2 coding exons. This unusual 4-exon structure was validated by sequencing of a GC-rich product (76% GC, 721 bp) amplified from liver RNA by RT-PCR. Sequence alignment of the dove leptin with orthologous leptins indicated that it consists of a leader peptide (21 amino acids; aa) followed by the mature protein (160 aa), which has a putative structure typical of 4-helical-bundle cytokines except that it is 12 aa longer than human leptin. Extra residues (10 aa) were located within the loop between 2 5'-helices, interrupting the amino acid motif that is conserved in tetrapods and considered essential for activation of leptin receptor (LEPR) but not for receptor binding per se. Quantitative RT-PCR of 11 tissues showed highest (P < .05) expression of LEP in the dove's liver, whereas the dove LEPR peaked (P < .01) in the pituitary. Both genes were prominently expressed in the gonads and at lower levels in tissues involved in mammalian leptin signaling (adipose; hypothalamus). A bioassay based on activation of the chicken LEPR in vitro showed leptin activity in the dove's circulation, suggesting that dove LEP encodes an active protein, despite the interrupted loop motif. Providing tools to study energy-balance control at an evolutionary perspective, our original demonstration of leptin signaling in dove predicts a more ancient role of leptin in growth and reproduction in birds, rather than appetite control.

  1. Identification and Validation of HCC-specific Gene Transcriptional Signature for Tumor Antigen Discovery.

    Science.gov (United States)

    Petrizzo, Annacarmen; Caruso, Francesca Pia; Tagliamonte, Maria; Tornesello, Maria Lina; Ceccarelli, Michele; Costa, Valerio; Aprile, Marianna; Esposito, Roberta; Ciliberto, Gennaro; Buonaguro, Franco M; Buonaguro, Luigi

    2016-07-08

    A novel two-step bioinformatics strategy was applied for identification of signatures with therapeutic implications in hepatitis-associated HCC. Transcriptional profiles from HBV- and HCV-associated HCC samples were compared with non-tumor liver controls. Resulting HCC modulated genes were subsequently compared with different non-tumor tissue samples. Two related signatures were identified, namely "HCC-associated" and "HCC-specific". Expression data were validated by RNA-Seq analysis carried out on unrelated HCC samples and protein expression was confirmed according to The Human Protein Atlas" (http://proteinatlas.org/), a public repository of immunohistochemistry data. Among all, aldo-keto reductase family 1 member B10, and IGF2 mRNA-binding protein 3 were found strictly HCC-specific with no expression in 18/20 normal tissues. Target peptides for vaccine design were predicted for both proteins associated with the most prevalent HLA-class I and II alleles. The described novel strategy showed to be feasible for identification of HCC-specific proteins as highly potential target for HCC immunotherapy.

  2. Discovery of molecular associations among aging, stem cells, and cancer based on gene expression profiling

    Institute of Scientific and Technical Information of China (English)

    Xiaosheng Wang

    2013-01-01

    The emergence of a huge volume of "omics" data enables a computational approach to the investigation of the biology of cancer.The cancer informatics approach is a useful supplement to the traditional experimental approach.I reviewed several reports that used a bioinformatics approach to analyze the associations among aging,stem cells,and cancer by microarray gene expression profiling.The high expression of aging-or human embryonic stem cell-related molecules in cancer suggests that certain important mechanisms are commonly underlying aging,stem cells,and cancer.These mechanisms are involved in cell cycle regulation,metabolic process,DNA damage response,apoptosis,p53 signaling pathway,immune/inflammatory response,and other processes,suggesting that cancer is a developmental and evolutional disease that is strongly related to aging.Moreover,these mechanisms demonstrate that the initiation,proliferation,and metastasis of cancer are associated with the deregulation of stem cells.These findings provide insights into the biology of cancer.Certainly,the findings that are obtained by the informatics approach should be justified by experimental validation.This review also noted that next-generation sequencing data provide enriched sources for cancer informatics study.

  3. Discovery of molecular associations among aging, stem cells, and cancer based on gene expression profiling.

    Science.gov (United States)

    Wang, Xiaosheng

    2013-04-01

    The emergence of a huge volume of "omics" data enables a computational approach to the investigation of the biology of cancer. The cancer informatics approach is a useful supplement to the traditional experimental approach. I reviewed several reports that used a bioinformatics approach to analyze the associations among aging, stem cells, and cancer by microarray gene expression profiling. The high expression of aging- or human embryonic stem cell-related molecules in cancer suggests that certain important mechanisms are commonly underlying aging, stem cells, and cancer. These mechanisms are involved in cell cycle regulation, metabolic process, DNA damage response, apoptosis, p53 signaling pathway, immune/inflammatory response, and other processes, suggesting that cancer is a developmental and evolutional disease that is strongly related to aging. Moreover, these mechanisms demonstrate that the initiation, proliferation, and metastasis of cancer are associated with the deregulation of stem cells. These findings provide insights into the biology of cancer. Certainly, the findings that are obtained by the informatics approach should be justified by experimental validation. This review also noted that next-generation sequencing data provide enriched sources for cancer informatics study.

  4. The first set of EST resource for gene discovery and marker development in pigeonpea (Cajanus cajan L.

    Directory of Open Access Journals (Sweden)

    Byregowda Munishamappa

    2010-03-01

    .8% in molecular function. Further, 19 genes were identified differentially expressed between FW- responsive genotypes and 20 between SMD- responsive genotypes. Generated ESTs were compiled together with 908 ESTs available in public domain, at the time of analysis, and a set of 5,085 unigenes were defined that were used for identification of molecular markers in pigeonpea. For instance, 3,583 simple sequence repeat (SSR motifs were identified in 1,365 unigenes and 383 primer pairs were designed. Assessment of a set of 84 primer pairs on 40 elite pigeonpea lines showed polymorphism with 15 (28.8% markers with an average of four alleles per marker and an average polymorphic information content (PIC value of 0.40. Similarly, in silico mining of 133 contigs with ≥ 5 sequences detected 102 single nucleotide polymorphisms (SNPs in 37 contigs. As an example, a set of 10 contigs were used for confirming in silico predicted SNPs in a set of four genotypes using wet lab experiments. Occurrence of SNPs were confirmed for all the 6 contigs for which scorable and sequenceable amplicons were generated. PCR amplicons were not obtained in case of 4 contigs. Recognition sites for restriction enzymes were identified for 102 SNPs in 37 contigs that indicates possibility of assaying SNPs in 37 genes using cleaved amplified polymorphic sequences (CAPS assay. Conclusion The pigeonpea EST dataset generated here provides a transcriptomic resource for gene discovery and development of functional markers associated with biotic stress resistance. Sequence analyses of this dataset have showed conservation of a considerable number of pigeonpea transcripts across legume and model plant species analysed as well as some putative pigeonpea specific genes. Validation of identified biotic stress responsive genes should provide candidate genes for allele mining as well as candidate markers for molecular breeding.

  5. The fragile x mental retardation syndrome 20 years after the FMR1 gene discovery: an expanding universe of knowledge.

    Science.gov (United States)

    Rousseau, François; Labelle, Yves; Bussières, Johanne; Lindsay, Carmen

    2011-08-01

    The fragile X mental retardation (FXMR) syndrome is one of the most frequent causes of mental retardation. Affected individuals display a wide range of additional characteristic features including behavioural and physical phenotypes, and the extent to which individuals are affected is highly variable. For these reasons, elucidation of the pathophysiology of this disease has been an important challenge to the scientific community. 1991 marks the year of the discovery of both the FMR1 gene mutations involved in this disease, and of their dynamic nature. Although a mouse model for the disease has been available for 16 years and extensive research has been performed on the FMR1 protein (FMRP), we still understand little about how the disease develops, and no treatment has yet been shown to be effective. In this review, we summarise current knowledge on FXMR with an emphasis on the technical challenges of molecular diagnostics, on its prevalence and dynamics among populations, and on the potential of screening for FMR1 mutations.

  6. De Novo Regulatory Motif Discovery Identifies Significant Motifs in Promoters of Five Classes of Plant Dehydrin Genes.

    Science.gov (United States)

    Zolotarov, Yevgen; Strömvik, Martina

    2015-01-01

    Plants accumulate dehydrins in response to osmotic stresses. Dehydrins are divided into five different classes, which are thought to be regulated in different manners. To better understand differences in transcriptional regulation of the five dehydrin classes, de novo motif discovery was performed on 350 dehydrin promoter sequences from a total of 51 plant genomes. Overrepresented motifs were identified in the promoters of five dehydrin classes. The Kn dehydrin promoters contain motifs linked with meristem specific expression, as well as motifs linked with cold/dehydration and abscisic acid response. KS dehydrin promoters contain a motif with a GATA core. SKn and YnSKn dehydrin promoters contain motifs that match elements connected with cold/dehydration, abscisic acid and light response. YnKn dehydrin promoters contain motifs that match abscisic acid and light response elements, but not cold/dehydration response elements. Conserved promoter motifs are present in the dehydrin classes and across different plant lineages, indicating that dehydrin gene regulation is likely also conserved.

  7. Overexpression of the riboflavin biosynthetic pathway in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Mattanovich Diethard

    2008-07-01

    Full Text Available Abstract Background High cell density cultures of Pichia pastoris grown on methanol tend to develop yellow colored supernatants, attributed to the release of free flavins. The potential of P. pastoris for flavin overproduction is therefore given, but not pronounced when the yeast is grown on glucose. The aim of this study is to characterize the relative regulatory impact of each riboflavin synthesis gene. Deeper insight into pathway control and the potential of deregulation is established by overexpression of the single genes as well as a combined deregulation of up to all six riboflavin synthesis genes. Results Overexpression of the first gene of the riboflavin biosynthetic pathway (RIB1 is already sufficient to obtain yellow colonies and the accumulation of riboflavin in the supernatant of shake flask cultures growing on glucose. Sequential deregulation of all the genes, by exchange of their native promoter with the strong and constitutive glyceraldehyde-3-phosphate dehydrogenase promoter (PGAP increases the riboflavin accumulation significantly. Conclusion The regulation of the pathway is distributed over more than one gene. High cell density cultivations of a P. pastoris strain overexpressing all six RIB genes allow the accumulation of 175 mg/L riboflavin in the supernatant. The basis for rational engineering of riboflavin production in P. pastoris has thus been established.

  8. Identification and expression analysis of chitin synthase and related enzymes in the chitin biosynthetic pathway genes of Cnaphalocrocis medinalis%稻纵卷叶螟几丁质合成酶及合成通路相关酶基因的鉴定及表达分析

    Institute of Scientific and Technical Information of China (English)

    余海中; 黄克慧; 汪婉玲; 刘明辉; 杨鑫; 张彦; 徐家萍

    2015-01-01

    [Objectives] The rice leaf folder, Cnaphalocrocis medinalis (Guenee), is one of four rice pest insects that cause serious crop damage. In recent years, chitin synthesis and metabolism has become a focus of pest control research. Cloning and spatio-temporal expression of two chitin synthases, and other two key enzymes in the chitin biosynthetic pathway encoding genes in C. medinalis, were conducted to reveal the function of these genes. [Methods] Based on transcriptome data, we used the PCR and RACE techniques to clone the full length cDNA sequences of 4 key enzymes in the chitin biosynthetic pathway. Prediction of the structure, sequence alignment and phylogenetic analysis of the products of these 4 genes were performed using different bioinformatics software. The relative expression levels of the 4 genes in different developmental stages and larval tissues of C. medinalis were determined with quantitative Real-time PCR. [Results] Two full-length cDNA sequences encoding chitin synthase, and two full-length cDNA sequences encoding other two key enzymes related to the chitin biosynthetic pathway, were obtained. These were; Chitin Synthase A (CHSA), Chitin Synthase B (CHSB), Phosphoacetylglucosamine Mutase (PGM) and UDP-N-acetylglucosamine pyrophosphorylase (UAP) (hereafter CmCHSA, CmCHSB, CmPGM and CmUAP, respectively). Sequence analysis shows that the full length of the CmCHSA gene is 4 868 bp, which encodes a polypeptide of 1 564 amino acids, the full length of the CmCHSB gene is 4 651 bp, which encodes a polypeptide of 1 525 amino acids, the full length of CmPGM gene is 1 934 bp, which encodes a polypeptide of 548 amino acids, and the full length of CmUAP gene is 1 837 bp, which encodes a polypeptide of 487 amino acids. The results of RT-qPCR indicate that CmUAP and CmPGM had higher expression in hemolymph, whereas CmCHSA was more highly expressed in the head and integument than the midgut and CmCHSB was more highly expressed in the midgut than in other tissues

  9. Biosynthetic Pathway for the Epipolythiodioxopiperazine Acetylaranotin in Aspergillus terreus Revealed by Genome-based Deletion Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Chun-Jun; Yeh, Hsu-Hua; Chiang, Yi Ming; Sanchez, James F.; Chang, ShuLin; Bruno, Kenneth S.; Wang, Clay C.

    2013-04-15

    Abstract Epipolythiodioxopiperazines (ETPs) are a class of fungal secondary metabolites derived from cyclic peptides. Acetylaranotin belongs to one structural subgroup of ETPs characterized by the presence of a seven-membered dihydrooxepine ring. Defining the genes involved in acetylaranotin biosynthesis should provide a means to increase production of these compounds and facilitate the engineering of second-generation molecules. The filamentous fungus Aspergillus terreus produces acetylaranotin and related natural products. Using targeted gene deletions, we have identified a cluster of 9 genes including one nonribosomal peptide synthase gene, ataP, that is required for acetylaranotin biosynthesis. Chemical analysis of the wild type and mutant strains enabled us to isolate seventeen natural products that are either intermediates in the normal biosynthetic pathway or shunt products that are produced when the pathway is interrupted through mutation. Nine of the compounds identified in this study are novel natural products. Our data allow us to propose a complete biosynthetic pathway for acetylaranotin and related natural products.

  10. New natural products isolated from Metarhizium robertsii ARSEF 23 by chemical screening and identification of the gene cluster through engineered biosynthesis in Aspergillus nidulans A1145.

    Science.gov (United States)

    Kato, Hiroki; Tsunematsu, Yuta; Yamamoto, Tsuyoshi; Namiki, Takuya; Kishimoto, Shinji; Noguchi, Hiroshi; Watanabe, Kenji

    2016-07-01

    To rapidly identify novel natural products and their associated biosynthetic genes from underutilized and genetically difficult-to-manipulate microbes, we developed a method that uses (1) chemical screening to isolate novel microbial secondary metabolites, (2) bioinformatic analyses to identify a potential biosynthetic gene cluster and (3) heterologous expression of the genes in a convenient host to confirm the identity of the gene cluster and the proposed biosynthetic mechanism. The chemical screen was achieved by searching known natural product databases with data from liquid chromatographic and high-resolution mass spectrometric analyses collected on the extract from a target microbe culture. Using this method, we were able to isolate two new meroterpenes, subglutinols C (1) and D (2), from an entomopathogenic filamentous fungus Metarhizium robertsii ARSEF 23. Bioinformatics analysis of the genome allowed us to identify a gene cluster likely to be responsible for the formation of subglutinols. Heterologous expression of three genes from the gene cluster encoding a polyketide synthase, a prenyltransferase and a geranylgeranyl pyrophosphate synthase in Aspergillus nidulans A1145 afforded an α-pyrone-fused uncyclized diterpene, the expected intermediate of the subglutinol biosynthesis, thereby confirming the gene cluster to be responsible for the subglutinol biosynthesis. These results indicate the usefulness of our methodology in isolating new natural products and identifying their associated biosynthetic gene cluster from microbes that are not amenable to genetic manipulation. Our method should facilitate the natural product discovery efforts by expediting the identification of new secondary metabolites and their associated biosynthetic genes from a wider source of microbes.

  11. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae (on linr)

    NARCIS (Netherlands)

    Wang, Kui-Lin; Bolitho, Karen; Grafton, Karryn; Kortstee, A.J.; Karunairetnam, Sakuntala; McGhie, T.K.; Espley, R.V.; Hellens, R.P.; Allan, A.C.

    2010-01-01

    Background - The control of plant anthocyanin accumulation is via transcriptional regulation of the genes encoding the biosynthetic enzymes. A key activator appears to be an R2R3 MYB transcription factor. In apple fruit, skin anthocyanin levels are controlled by a gene called MYBA or MYB1, while the

  12. Designing universal primers for the isolation of DNA sequences encoding Proanthocyanidins biosynthetic enzymes in Crataegus aronia

    Directory of Open Access Journals (Sweden)

    Zuiter Afnan

    2012-08-01

    Full Text Available Abstract Background Hawthorn is the common name of all plant species in the genus Crataegus, which belongs to the Rosaceae family. Crataegus are considered useful medicinal plants because of their high content of proanthocyanidins (PAs and other related compounds. To improve PAs production in Crataegus tissues, the sequences of genes encoding PAs biosynthetic enzymes are required. Findings Different bioinformatics tools, including BLAST, multiple sequence alignment and alignment PCR analysis were used to design primers suitable for the amplification of DNA fragments from 10 candidate genes encoding enzymes involved in PAs biosynthesis in C. aronia. DNA sequencing results proved the utility of the designed primers. The primers were used successfully to amplify DNA fragments of different PAs biosynthesis genes in different Rosaceae plants. Conclusion To the best of our knowledge, this is the first use of the alignment PCR approach to isolate DNA sequences encoding PAs biosynthetic enzymes in Rosaceae plants.

  13. Interestingness measures and strategies for mining multi-ontology multi-level association rules from gene ontology annotations for the discovery of new GO relationships.

    Science.gov (United States)

    Manda, Prashanti; McCarthy, Fiona; Bridges, Susan M

    2013-10-01

    The Gene Ontology (GO), a set of three sub-ontologies, is one of the most popular bio-ontologies used for describing gene product characteristics. GO annotation data containing terms from multiple sub-ontologies and at different levels in the ontologies is an important source of implicit relationships between terms from the three sub-ontologies. Data mining techniques such as association rule mining that are tailored to mine from multiple ontologies at multiple levels of abstraction are required for effective knowledge discovery from GO annotation data. We present a data mining approach, Multi-ontology data mining at All Levels (MOAL) that uses the structure and relationships of the GO to mine multi-ontology multi-level association rules. We introduce two interestingness measures: Multi-ontology Support (MOSupport) and Multi-ontology Confidence (MOConfidence) customized to evaluate multi-ontology multi-level association rules. We also describe a variety of post-processing strategies for pruning uninteresting rules. We use publicly available GO annotation data to demonstrate our methods with respect to two applications (1) the discovery of co-annotation suggestions and (2) the discovery of new cross-ontology relationships.

  14. Accelerating Gene Discovery by Phenotyping Whole-Genome Sequenced Multi-mutation Strains and Using the Sequence Kernel Association Test (SKAT.

    Directory of Open Access Journals (Sweden)

    Tiffany A Timbers

    2016-08-01

    Full Text Available Forward genetic screens represent powerful, unbiased approaches to uncover novel components in any biological process. Such screens suffer from a major bottleneck, however, namely the cloning of corresponding genes causing the phenotypic variation. Reverse genetic screens have been employed as a way to circumvent this issue, but can often be limited in scope. Here we demonstrate an innovative approach to gene discovery. Using C. elegans as a model system, we used a whole-genome sequenced multi-mutation library, from the Million Mutation Project, together with the Sequence Kernel Association Test (SKAT, to rapidly screen for and identify genes associated with a phenotype of interest, namely defects in dye-filling of ciliated sensory neurons. Such anomalies in dye-filling are often associated with the disruption of cilia, organelles which in humans are implicated in sensory physiology (including vision, smell and hearing, development and disease. Beyond identifying several well characterised dye-filling genes, our approach uncovered three genes not previously linked to ciliated sensory neuron development or function. From these putative novel dye-filling genes, we confirmed the involvement of BGNT-1.1 in ciliated sensory neuron function and morphogenesis. BGNT-1.1 functions at the trans-Golgi network of sheath cells (glia to influence dye-filling and cilium length, in a cell non-autonomous manner. Notably, BGNT-1.1 is the orthologue of human B3GNT1/B4GAT1, a glycosyltransferase associated with Walker-Warburg syndrome (WWS. WWS is a multigenic disorder characterised by muscular dystrophy as well as brain and eye anomalies. Together, our work unveils an effective and innovative approach to gene discovery, and provides the first evidence that B3GNT1-associated Walker-Warburg syndrome may be considered a ciliopathy.

  15. Emergent biosynthetic capacity in simple microbial communities.

    Directory of Open Access Journals (Sweden)

    Hsuan-Chao Chiu

    2014-07-01

    Full Text Available Microbes have an astonishing capacity to transform their environments. Yet, the metabolic capacity of a single species is limited and the vast majority of microorganisms form complex communities and join forces to exhibit capabilities far exceeding those achieved by any single species. Such enhanced metabolic capacities represent a promising route to many medical, environmental, and industrial applications and call for the development of a predictive, systems-level understanding of synergistic microbial capacity. Here we present a comprehensive computational framework, integrating high-quality metabolic models of multiple species, temporal dynamics, and flux variability analysis, to study the metabolic capacity and dynamics of simple two-species microbial ecosystems. We specifically focus on detecting emergent biosynthetic capacity--instances in which a community growing on some medium produces and secretes metabolites that are not secreted by any member species when growing in isolation on that same medium. Using this framework to model a large collection of two-species communities on multiple media, we demonstrate that emergent biosynthetic capacity is highly prevalent. We identify commonly observed emergent metabolites and metabolic reprogramming patterns, characterizing typical mechanisms of emergent capacity. We further find that emergent secretion tends to occur in two waves, the first as soon as the two organisms are introduced, and the second when the medium is depleted and nutrients become limited. Finally, aiming to identify global community determinants of emergent capacity, we find a marked association between the level of emergent biosynthetic capacity and the functional/phylogenetic distance between community members. Specifically, we demonstrate a "Goldilocks" principle, where high levels of emergent capacity are observed when the species comprising the community are functionally neither too close, nor too distant. Taken together

  16. Widespread occurrence and lateral transfer of the cyanobactin biosynthesis gene cluster in cyanobacteria.

    Science.gov (United States)

    Leikoski, Niina; Fewer, David P; Sivonen, Kaarina

    2009-02-01

    Cyanobactins are small cyclic peptides produced by cyanobacteria. Here we demonstrate the widespread but sporadic occurrence of the cyanobactin biosynthetic pathway. We detected a cyanobactin biosynthetic gene in 48 of the 132 strains included in this study. Our results suggest that cyanobactin biosynthetic genes have a complex evolutionary history in cyanobacteria punctuated by a series of ancient horizontal gene transfer events.

  17. Widespread Occurrence and Lateral Transfer of the Cyanobactin Biosynthesis Gene Cluster in Cyanobacteria ▿ †

    OpenAIRE

    Leikoski, Niina; Fewer, David P.; Sivonen, Kaarina

    2008-01-01

    Cyanobactins are small cyclic peptides produced by cyanobacteria. Here we demonstrate the widespread but sporadic occurrence of the cyanobactin biosynthetic pathway. We detected a cyanobactin biosynthetic gene in 48 of the 132 strains included in this study. Our results suggest that cyanobactin biosynthetic genes have a complex evolutionary history in cyanobacteria punctuated by a series of ancient horizontal gene transfer events.

  18. Guided Discoveries.

    Science.gov (United States)

    Ehrlich, Amos

    1991-01-01

    Presented are four mathematical discoveries made by students on an arithmetical function using the Fibonacci sequence. Discussed is the nature of the role of the teacher in directing the students' discovery activities. (KR)

  19. Enhancement of cordyceps polysaccharide production via biosynthetic pathway analysis in Hirsutella sinensis.

    Science.gov (United States)

    Lin, Shan; Liu, Zhi-Qiang; Baker, Peter James; Yi, Ming; Wu, Hui; Xu, Feng; Teng, Yi; Zheng, Yu-Guo

    2016-11-01

    The addition of various sulfates for enhanced cordyceps polysaccharide (CP) production in submerged cultivation of H. sinensis was investigated, and manganese sulfate was found the most effective. 2mM of manganese sulfate on 0day (d) was investigated as the optimal adding condition, and the CP production reached optimum with 5.33%, increasing by 93.3% compared with the control. Furthermore, the consumption of three main precursors of CP was studied over cultivation under two conditions. Intracellular mannose content decreased by 43.1% throughout 6days cultivation, which corresponded to CP accumulation rate sharply increased from 0 d to 6 d, and mannose was considered as the most preferred precursor for generating CP. Subsequently, mannose biosynthetic pathway was constructed and verified for the first time in H. sinensis, which constituted the important part of CP biosynthesis, and transcriptional levels of the biosynthetic genes were studied. Transcriptional level of gene cpsA was significantly up-regulated 5.35-fold and it was a key gene involved both in mannose and CP biosynthesis. This study demonstrated that manganese sulfate addition is an efficient and simple way to improve CP production. Transcriptional analysis based on biosynthetic pathway was helpful to find key genes and better understand CP biosynthesis.

  20. Volatility Discovery

    DEFF Research Database (Denmark)

    Dias, Gustavo Fruet; Scherrer, Cristina; Papailias, Fotis

    The price discovery literature investigates how homogenous securities traded on different markets incorporate information into prices. We take this literature one step further and investigate how these markets contribute to stochastic volatility (volatility discovery). We formally show...... that the realized measures from homogenous securities share a fractional stochastic trend, which is a combination of the price and volatility discovery measures. Furthermore, we show that volatility discovery is associated with the way that market participants process information arrival (market sensitivity...

  1. Gene discovery in EST sequences from the wheat leaf rust fungus Puccinia triticina sexual spores, asexual spores and haustoria, compared to other rust and corn smut fungi

    Directory of Open Access Journals (Sweden)

    Wynhoven Brian

    2011-03-01

    Full Text Available Abstract Background Rust fungi are biotrophic basidiomycete plant pathogens that cause major diseases on plants and trees world-wide, affecting agriculture and forestry. Their biotrophic nature precludes many established molecular genetic manipulations and lines of research. The generation of genomic resources for these microbes is leading to novel insights into biology such as interactions with the hosts and guiding directions for breakthrough research in plant pathology. Results To support gene discovery and gene model verification in the genome of the wheat leaf rust fungus, Puccinia triticina (Pt, we have generated Expressed Sequence Tags (ESTs by sampling several life cycle stages. We focused on several spore stages and isolated haustorial structures from infected wheat, generating 17,684 ESTs. We produced sequences from both the sexual (pycniospores, aeciospores and teliospores and asexual (germinated urediniospores stages of the life cycle. From pycniospores and aeciospores, produced by infecting the alternate host, meadow rue (Thalictrum speciosissimum, 4,869 and 1,292 reads were generated, respectively. We generated 3,703 ESTs from teliospores produced on the senescent primary wheat host. Finally, we generated 6,817 reads from haustoria isolated from infected wheat as well as 1,003 sequences from germinated urediniospores. Along with 25,558 previously generated ESTs, we compiled a database of 13,328 non-redundant sequences (4,506 singlets and 8,822 contigs. Fungal genes were predicted using the EST version of the self-training GeneMarkS algorithm. To refine the EST database, we compared EST sequences by BLASTN to a set of 454 pyrosequencing-generated contigs and Sanger BAC-end sequences derived both from the Pt genome, and to ESTs and genome reads from wheat. A collection of 6,308 fungal genes was identified and compared to sequences of the cereal rusts, Puccinia graminis f. sp. tritici (Pgt and stripe rust, P. striiformis f. sp

  2. A novel approach to the discovery of survival biomarkers in glioblastoma using a joint analysis of DNA methylation and gene expression.

    Science.gov (United States)

    Smith, Ashley A; Huang, Yen-Tsung; Eliot, Melissa; Houseman, E Andres; Marsit, Carmen J; Wiencke, John K; Kelsey, Karl T

    2014-06-01

    Glioblastoma multiforme (GBM) is the most aggressive of all brain tumors, with a median survival of less than 1.5 years. Recently, epigenetic alterations were found to play key roles in both glioma genesis and clinical outcome, demonstrating the need to integrate genetic and epigenetic data in predictive models. To enhance current models through discovery of novel predictive biomarkers, we employed a genome-wide, agnostic strategy to specifically capture both methylation-directed changes in gene expression and alternative associations of DNA methylation with disease survival in glioma. Human GBM-associated DNA methylation, gene expression, IDH1 mutation status, and survival data were obtained from The Cancer Genome Atlas. DNA methylation loci and expression probes were paired by gene, and their subsequent association with survival was determined by applying an accelerated failure time model to previously published alternative and expression-based association equations. Significant associations were seen in 27 unique methylation/expression pairs with expression-based, alternative, and combinatorial associations observed (10, 13, and 4 pairs, respectively). The majority of the predictive DNA methylation loci were located within CpG islands, and all but three of the locus pairs were negatively correlated with survival. This finding suggests that for most loci, methylation/expression pairs are inversely related, consistent with methylation-associated gene regulatory action. Our results indicate that changes in DNA methylation are associated with altered survival outcome through both coordinated changes in gene expression and alternative mechanisms. Furthermore, our approach offers an alternative method of biomarker discovery using a priori gene pairing and precise targeting to identify novel sites for locus-specific therapeutic intervention.

  3. DNA assembler: a synthetic biology tool for characterizing and engineering natural product gene clusters.

    Science.gov (United States)

    Shao, Zengyi; Zhao, Huimin

    2012-01-01

    The majority of existing antibacterial and anticancer drugs are natural products or their derivatives. However, the characterization and engineering of these compounds are often hampered by limited ability to manipulate the corresponding biosynthetic pathways. Recently, we developed a genomics-driven, synthetic biology-based method, DNA assembler, for discovery, characterization, and engineering of natural product biosynthetic pathways (Shao, Luo, & Zhao, 2011). By taking advantage of the highly efficient yeast in vivo homologous recombination mechanism, this method synthesizes the entire expression vector containing the target biosynthetic pathway and the genetic elements needed for DNA maintenance and replication in individual hosts in a single-step manner. In this chapter, we describe the general guidelines for construct design. By using two distinct biosynthetic pathways, we demonstrate that DNA assembler can perform multiple tasks, including heterologous expression, introduction of single or multiple point mutations, scar-less gene deletion, generation of product derivatives, and creation of artificial gene clusters. As such, this method offers unprecedented flexibility and versatility in pathway manipulations.

  4. A biosynthetic pathway for hexanoic acid production in Kluyveromyces marxianus.

    Science.gov (United States)

    Cheon, Yuna; Kim, Jun-Seob; Park, Jun-Bum; Heo, Paul; Lim, Jae Hyung; Jung, Gyoo Yeol; Seo, Jin-Ho; Park, Jin Hwan; Koo, Hyun Min; Cho, Kwang Myung; Park, Jin-Byung; Ha, Suk-Jin; Kweon, Dae-Hyuk

    2014-07-20

    Hexanoic acid can be used for diverse industrial applications and is a precursor for fine chemistry. Although some natural microorganisms have been screened and evolved to produce hexanoic acid, the construction of an engineered biosynthetic pathway for producing hexanoic acid in yeast has not been reported. Here we constructed hexanoic acid pathways in Kluyveromyces marxianus by integrating 5 combinations of seven genes (AtoB, BktB, Crt, Hbd, MCT1, Ter, and TES1), by which random chromosomal sites of the strain are overwritten by the new genes from bacteria and yeast. One recombinant strain, H4A, which contained AtoB, BktB, Crt, Hbd, and Ter, produced 154mg/L of hexanoic acid from galactose as the sole substrate. However, the hexanoic acid produced by the H4A strain was re-assimilated during the fermentation due to the reverse activity of AtoB, which condenses two acetyl-CoAs into a single acetoacetyl-CoA. This product instability could be overcome by the replacement of AtoB with a malonyl CoA-acyl carrier protein transacylase (MCT1) from Saccharomyces cerevisiae. Our results suggest that Mct1 provides a slow but stable acetyl-CoA chain elongation pathway, whereas the AtoB-mediated route is fast but unstable. In conclusion, hexanoic acid was produced for the first time in yeast by the construction of chain elongation pathways comprising 5-7 genes in K. marxianus.

  5. Polymerase chain reaction (PCR)-based methods for detection/identification of mycotoxigenic fungi targeting fumonisin biosynthetic genes: Use of variation in FUM cluster location to distinguish between and quantify

    Science.gov (United States)

    The fungus Fusarium is an agricultural problem because it can cause disease on most crop plants and can contaminate crops with mycotoxins. There is considerable variation in the presence/absence and genomic location of gene clusters responsible for synthesis of mycotoxins and other secondary metabol...

  6. The Genetics of Obsessive-Compulsive Disorder and Tourette Syndrome: An Epidemiological and Pathway-Based Approach for Gene Discovery

    Science.gov (United States)

    Grados, Marco A.

    2010-01-01

    Objective: To provide a contemporary perspective on genetic discovery methods applied to obsessive-compulsive disorder (OCD) and Tourette syndrome (TS). Method: A review of research trends in genetics research in OCD and TS is conducted, with emphasis on novel approaches. Results: Genome-wide association studies (GWAS) are now in progress in OCD…

  7. An integrative data analysis platform for gene set analysis and knowledge discovery in a data warehouse framework.

    Science.gov (United States)

    Chen, Yi-An; Tripathi, Lokesh P; Mizuguchi, Kenji

    2016-01-01

    Data analysis is one of the most critical and challenging steps in drug discovery and disease biology. A user-friendly resource to visualize and analyse high-throughput data provides a powerful medium for both experimental and computational biologists to understand vastly different biological data types and obtain a concise, simplified and meaningful output for better knowledge discovery. We have previously developed TargetMine, an integrated data warehouse optimized for target prioritization. Here we describe how upgraded and newly modelled data types in TargetMine can now survey the wider biological and chemical data space, relevant to drug discovery and development. To enhance the scope of TargetMine from target prioritization to broad-based knowledge discovery, we have also developed a new auxiliary toolkit to assist with data analysis and visualization in TargetMine. This toolkit features interactive data analysis tools to query and analyse the biological data compiled within the TargetMine data warehouse. The enhanced system enables users to discover new hypotheses interactively by performing complicated searches with no programming and obtaining the results in an easy to comprehend output format. Database URL: http://targetmine.mizuguchilab.org.

  8. ABA-Mediated Inhibition of Germination Is Related to the Inhibition of Genes Encoding Cell-Wall Biosynthetic and Architecture:Modifying Enzymes and Structural Proteins in Medicago truncatula Embryo Axis

    Institute of Scientific and Technical Information of China (English)

    Christine Gimeno-Gilles; Eric Lelièvre; Laure Viau; Mustafa Malik-Ghulam; Claudie Ricoult; Andreas Niebel; Nathalie Leduc; Anis M. Limami

    2009-01-01

    Radicle emergence and reserves mobilization are two distinct programmes that are thought to control germination. Both programs are influenced by abscissic acid (ABA) but how this hormone controls seed germination is still poorly known. Phenotypic and microscopic observations of the embryo axis of Medicago truncatula during germination in mitotic inhibition condition triggered by 10 μM oryzalin showed that cell division was not required to allow radicle emergence. A suppressive subtractive hybridization showed that more than 10% of up-regulated genes in the embryo axis encoded proteins related to cell-wall biosynthesis. The expression of α-expansins, pectin-esterase, xylogucan-endotransglycosidase, cellulose synthase, and extensins was monitored in the embryo axis of seeds germinated on water, constant and transitory ABA. These genes were overexpressed before completion of germination in the control and strongly inhibited by ABA. The expression was re-established in the ABA transitory-treatment after the seeds were transferred back on water and proceeded to germination. This proves these genes as contributors to the completion of germination and strengthen the idea that cell-wall loosening and remodeling in relation to cell expansion in the embryo axis is a determinant feature in germination. Our results also showed that ABA controls germination through the control of radicle emergence, namely by inhibiting cell-wall loosening and expansion.

  9. Fast induction of biosynthetic polysaccharide genes lpxA, lpxE, and rkpI of Rhizobium sp. strain PRF 81 by common bean seed exudates is indicative of a key role in symbiosis.

    Science.gov (United States)

    Oliveira, Luciana Ruano; Rodrigues, Elisete Pains; Marcelino-Guimarães, Francismar Corrêa; Oliveira, André Luiz Martinez; Hungria, Mariangela

    2013-06-01

    Rhizobial surface polysaccharides (SPS) are, together with nodulation (Nod) factors, recognized as key molecules for establishment of rhizobia-legume symbiosis. In Rhizobium tropici, an important nitrogen-fixing symbiont of common bean (Phaseolus vulgaris L.), molecular structures and symbiotic roles of the SPS are poorly understood. In this study, Rhizobium sp. strain PRF 81 genes, belonging to the R. tropici group, were investigated: lpxA and lpxE, involved in biosynthesis and modification of the lipid-A anchor of lipopolysaccharide (LPS), and rkpI, involved in synthesis of a lipid carrier required for production of capsular polysaccharides (KPS). Reverse transcription quantitative PCR (RT-qPCR) analysis revealed, for the first time, that inducers released from common bean seeds strongly stimulated expression of all three SPS genes. When PRF 81 cells were grown for 48 h in the presence of seed exudates, twofold increases (p Rhizobium radiobacter and were more related to R. etli and Rhizobium leguminosarum, while rkpI was closer to the Sinorhizobium sp. group. Upregulation of lpxE, lpxA, and rkpI genes suggests that seed exudates can modulate production of SPS of Rhizobium sp. PRF81, leading to cell wall changes necessary for symbiosis establishment.

  10. Discovery of a 29-gene panel in peripheral blood mononuclear cells for the detection of colorectal cancer and adenomas using high throughput real-time PCR.

    Science.gov (United States)

    Ciarloni, Laura; Hosseinian, Sahar; Monnier-Benoit, Sylvain; Imaizumi, Natsuko; Dorta, Gian; Ruegg, Curzio

    2015-01-01

    Colorectal cancer (CRC) is the second leading cause of cancer-related death in developed countries. Early detection of CRC leads to decreased CRC mortality. A blood-based CRC screening test is highly desirable due to limited invasiveness and high acceptance rate among patients compared to currently used fecal occult blood testing and colonoscopy. Here we describe the discovery and validation of a 29-gene panel in peripheral blood mononuclear cells (PBMC) for the detection of CRC and adenomatous polyps (AP). Blood samples were prospectively collected from a multicenter, case-control clinical study. First, we profiled 93 samples with 667 candidate and 3 reference genes by high throughput real-time PCR (OpenArray system). After analysis, 160 genes were retained and tested again on 51 additional samples. Low expressed and unstable genes were discarded resulting in a final dataset of 144 samples profiled with 140 genes. To define which genes, alone or in combinations had the highest potential to discriminate AP and/or CRC from controls, data were analyzed by a combination of univariate and multivariate methods. A list of 29 potentially discriminant genes was compiled and evaluated for its predictive accuracy by penalized logistic regression and bootstrap. This method discriminated AP >1cm and CRC from controls with a sensitivity of 59% and 75%, respectively, with 91% specificity. The behavior of the 29-gene panel was validated with a LightCycler 480 real-time PCR platform, commonly adopted by clinical laboratories. In this work we identified a 29-gene panel expressed in PBMC that can be used for developing a novel minimally-invasive test for accurate detection of AP and CRC using a standard real-time PCR platform.

  11. Bioinformatic analysis of an unusual gene-enzyme relationship in the arginine biosynthetic pathway among marine gamma proteobacteria: implications concerning the formation of N-acetylated intermediates in prokaryotes

    Directory of Open Access Journals (Sweden)

    Labedan Bernard

    2006-01-01

    Full Text Available Abstract Background The N-acetylation of L-glutamate is regarded as a universal metabolic strategy to commit glutamate towards arginine biosynthesis. Until recently, this reaction was thought to be catalyzed by either of two enzymes: (i the classical N-acetylglutamate synthase (NAGS, gene argA first characterized in Escherichia coli and Pseudomonas aeruginosa several decades ago and also present in vertebrates, or (ii the bifunctional version of ornithine acetyltransferase (OAT, gene argJ present in Bacteria, Archaea and many Eukaryotes. This paper focuses on a new and surprising aspect of glutamate acetylation. We recently showed that in Moritella abyssi and M. profunda, two marine gamma proteobacteria, the gene for the last enzyme in arginine biosynthesis (argH is fused to a short sequence that corresponds to the C-terminal, N-acetyltransferase-encoding domain of NAGS and is able to complement an argA mutant of E. coli. Very recently, other authors identified in Mycobacterium tuberculosis an independent gene corresponding to this short C-terminal domain and coding for a new type of NAGS. We have investigated the two prokaryotic Domains for patterns of gene-enzyme relationships in the first committed step of arginine biosynthesis. Results The argH-A fusion, designated argH(A, and discovered in Moritella was found to be present in (and confined to marine gamma proteobacteria of the Alteromonas- and Vibrio-like group. Most of them have a classical NAGS with the exception of Idiomarina loihiensis and Pseudoalteromonas haloplanktis which nevertheless can grow in the absence of arginine and therefore appear to rely on the arg(A sequence for arginine biosynthesis. Screening prokaryotic genomes for virtual argH-X 'fusions' where X stands for a homologue of arg(A, we retrieved a large number of Bacteria and several Archaea, all of them devoid of a classical NAGS. In the case of Thermus thermophilus and Deinococcus radiodurans, the arg(A-like sequence

  12. ThioFinder: a web-based tool for the identification of thiopeptide gene clusters in DNA sequences.

    Directory of Open Access Journals (Sweden)

    Jing Li

    Full Text Available Thiopeptides are a growing class of sulfur-rich, highly modified heterocyclic peptides that are mainly active against Gram-positive bacteria including various drug-resistant pathogens. Recent studies also reveal that many thiopeptides inhibit the proliferation of human cancer cells, further expanding their application potentials for clinical use. Thiopeptide biosynthesis shares a common paradigm, featuring a ribosomally synthesized precursor peptide and conserved posttranslational modifications, to afford a characteristic core system, but differs in tailoring to furnish individual members. Identification of new thiopeptide gene clusters, by taking advantage of increasing information of DNA sequences from bacteria, may facilitate new thiopeptide discovery and enrichment of the unique biosynthetic elements to produce novel drug leads by applying the principle of combinatorial biosynthesis. In this study, we have developed a web-based tool ThioFinder to rapidly identify thiopeptide biosynthetic gene cluster from DNA sequence using a profile Hidden Markov Model approach. Fifty-four new putative thiopeptide biosynthetic gene clusters were found in the sequenced bacterial genomes of previously unknown producing microorganisms. ThioFinder is fully supported by an open-access database ThioBase, which contains the sufficient information of the 99 known thiopeptides regarding the chemical structure, biological activity, producing organism, and biosynthetic gene (cluster along with the associated genome if available. The ThioFinder website offers researchers a unique resource and great flexibility for sequence analysis of thiopeptide biosynthetic gene clusters. ThioFinder is freely available at http://db-mml.sjtu.edu.cn/ThioFinder/.

  13. Multiplexed metagenome mining using short DNA sequence tags facilitates targeted discovery of epoxyketone proteasome inhibitors.

    Science.gov (United States)

    Owen, Jeremy G; Charlop-Powers, Zachary; Smith, Alexandra G; Ternei, Melinda A; Calle, Paula Y; Reddy, Boojala Vijay B; Montiel, Daniel; Brady, Sean F

    2015-04-07

    In molecular evolutionary analyses, short DNA sequences are used to infer phylogenetic relationships among species. Here we apply this principle to the study of bacterial biosynthesis, enabling the targeted isolation of previously unidentified natural products directly from complex metagenomes. Our approach uses short natural product sequence tags derived from conserved biosynthetic motifs to profile biosynthetic diversity in the environment and then guide the recovery of gene clusters from metagenomic libraries. The methodology is conceptually simple, requires only a small investment in sequencing, and is not computationally demanding. To demonstrate the power of this approach to natural product discovery we conducted a computational search for epoxyketone proteasome inhibitors within 185 globally distributed soil metagenomes. This led to the identification of 99 unique epoxyketone sequence tags, falling into 6 phylogenetically distinct clades. Complete gene clusters associated with nine unique tags were recovered from four saturating soil metagenomic libraries. Using heterologous expression methodologies, seven potent epoxyketone proteasome inhibitors (clarepoxcins A-E and landepoxcins A and B) were produced from these pathways, including compounds with different warhead structures and a naturally occurring halohydrin prodrug. This study provides a template for the targeted expansion of bacterially derived natural products using the global metagenome.

  14. Discovery and identification of candidate sex-related genes based on transcriptome sequencing of Russian sturgeon (Acipenser gueldenstaedtii) gonads.

    Science.gov (United States)

    Chen, Yadong; Xia, Yongtao; Shao, Changwei; Han, Lei; Chen, Xuejie; Yu, Mengjun; Sha, Zhenxia

    2016-07-01

    As the Russian sturgeon (Acipenser gueldenstaedtii) is an important food and is the main source of caviar, it is necessary to discover the genes associated with its sex differentiation. However, the complicated life and maturity cycles of the Russian sturgeon restrict the accurate identification of sex in early development. To generate a first look at specific sex-related genes, we sequenced the transcriptome of gonads in different development stages (1, 2, and 5 yr old stages) with next-generation RNA sequencing. We generated >60 million raw reads, and the filtered reads were assembled into 263,341 contigs, which produced 38,505 unigenes. Genes involved in signal transduction mechanisms were the most abundant, suggesting that development of sturgeon gonads is under control of signal transduction mechanisms. Differentially expressed gene analysis suggests that more genes for protein synthesis, cytochrome c oxidase subunits, and ribosomal proteins were expressed in female gonads than in male. Meanwhile, male gonads expressed more transposable element transposase, reverse transcriptase, and transposase-related genes than female. In total, 342, 782, and 7,845 genes were detected in intersex, male, and female transcriptomes, respectively. The female gonad expressed more genes than the male gonad, and more genes were involved in female gonadal development. Genes (sox9, foxl2) are differentially expressed in different sexes and may be important sex-related genes in Russian sturgeon. Sox9 genes are responsible for the development of male gonads and foxl2 for female gonads.

  15. The Analysis of Multiple Genome Comparisons in Genus Escherichia and Its Application to the Discovery of Uncharacterised Metabolic Genes in Uropathogenic Escherichia coli CFT073

    Directory of Open Access Journals (Sweden)

    William A. Bryant

    2009-01-01

    Full Text Available A survey of a complete gene synteny comparison has been carried out between twenty fully sequenced strains from the genus Escherichia with the aim of finding yet uncharacterised genes implicated in the metabolism of uropathogenic strains of E. coli (UPEC. Several sets of adjacent colinear genes have been identified which are present in all four UPEC included in this study (CFT073, F11, UTI89, and 536, annotated with putative metabolic functions, but are not found in any other strains considered. An operon closely homologous to that encoding the L-sorbose degradation pathway in Klebsiella pneumoniae has been identified in E. coli CFT073; this operon is present in all of the UPEC considered, but only in 7 of the other 16 strains. The operon's function has been confirmed by cloning the genes into E. coli DH5α and testing for growth on L-sorbose. The functional genomic approach combining in silico and in vitro work presented here can be used as a basis for the discovery of other uncharacterised genes contributing to bacterial survival in specific environments.

  16. Neurosteroid biosynthetic pathways changes in prefrontal cortex in Alzheimer's disease.

    Science.gov (United States)

    Luchetti, Sabina; Bossers, Koen; Van de Bilt, Saskia; Agrapart, Vincent; Morales, Rafael Ramirez; Frajese, Giovanni Vanni; Swaab, Dick F

    2011-11-01

    Expression of the genes for enzymes involved in neurosteroid biosynthesis was studied in human prefrontal cortex (PFC) in the course of Alzheimer's disease (AD) (n=49). Quantitative RT-PCR (qPCR) revealed that mRNA levels of diazepam binding inhibitor (DBI), which is involved in the first step of steroidogenesis and in GABAergic transmission, were increased, as were mRNA levels for several neurosteroid biosynthetic enzymes. Aromatase, 17β-hydroxysteroid dehydrogenase type 1 (HSD17B1) and aldo-keto reductase 1C2 (AKR1C2), were all increased in the late stages of AD. Several GABA-A subunits were significantly reduced in AD. Increased expression of aromatase in the PFC was confirmed by immunohistochemistry and was found to be localized predominantly in astrocytes. These data suggest a role for estrogens and allopregnanolone produced by astrocytes in the PFC in AD, possibly as part of a rescue program. The reduced gene expression of some synaptic and extra-synaptic GABA-A subunits may indicate a deficit of modulation of GABA-A receptors by neuroactive steroids, which may contribute to the neuropsychiatric characteristics of this disease.

  17. TOXICOGENOMICS DRUG DISCOVERY AND THE PATHOLOGIST

    Science.gov (United States)

    Toxicogenomics, drug discovery, and pathologist.The field of toxicogenomics, which currently focuses on the application of large-scale differential gene expression (DGE) data to toxicology, is starting to influence drug discovery and development in the pharmaceutical indu...

  18. NAA和ABA处理对‘京优’葡萄花色苷生物合成相关基因表达的影响%Effects of NAA and ABA treatments on the expression of anthocyanin biosynthetic genes in 'Jing You' grape berry skin

    Institute of Scientific and Technical Information of China (English)

    周莉; 王军

    2011-01-01

    为人工调控花色苷合成,以‘京优’葡萄为实验材料,应用液相色谱-质谱(HPLC-MS)技术和荧光定量PCR,研究了萘乙酸(NAA)和脱落酸(ABA)处理对葡萄果皮花色苷积累及其生物合成相关基因表达的影响。结果表明:在‘京优’葡萄果皮中,可检测到16种花色苷;ABA处理的花色苷含量高于对照,NAA处理低于对照,并且ABA处理的果皮比对照和NAA多出3种花色苷;葡萄果实发育进入转色期,花色苷合成过程中类黄酮途径的结构基因上调表达,完熟后下调表达;ABA处理的果皮花色苷结构基因相对表达量高于对照,而NAA则低于对%In order to control anthocyanin synthesis of 'Jingyou' grape,we applied high performance liquid chromatography-mass spectrometry(HPLC-MS) and real time reverse transcription-polymerase chain reaction(RT-PCR) for studying the effects of naphthaleneacetic aicd(NAA) and abscisic acid(ABA) treatments on the accumulation of anthocyanins,as well as the expression of anthocyanin biosynthetic correlative genes.The results showed that there were 16 sorts of anthocyanins in 'Jing You' berry skin.The anthocyanin contents of ABA treatment were higher but NAA treatment lower than that of control.And there were three extra anthocyanins in ABA treatment of berry skin.The structural genes in flavonoid pathway of anthocyanin synthesis were up-regulated at veraison,but down-regulated after complete maturity.The expression of anthocyanin structural genes was higher in ABA treatment than control,but lower for NAA treatment than control.The accumulation of anthocyanin and the correlative genes of anthocyanin synthesis were promoted by exogenous ABA.And NAA treatment had the opposite impacts.

  19. In-depth cDNA Library Sequencing Provides Quantitative Gene Expression Profiling in Cancer Biomarker Discovery

    Institute of Scientific and Technical Information of China (English)

    Wanling Yang; Dingge Ying; Yu-Lung Lau

    2009-01-01

    procedures may allow detection of many expres-sion features for less abundant gene variants. With the reduction of sequencing cost and the emerging of new generation sequencing technology, in-depth sequencing of cDNA pools or libraries may represent a better and powerful tool in gene expression profiling and cancer biomarker detection. We also propose using sequence-specific subtraction to remove hundreds of the most abundant housekeeping genes to in-crease sequencing depth without affecting relative expression ratio of other genes, as transcripts from as few as 300 most abundantly expressed genes constitute about 20% of the total transcriptome. In-depth sequencing also represents a unique ad-vantage of detecting unknown forms of transcripts, such as alternative splicing variants, fusion genes, and regulatory RNAs, as well as detecting mutations and polymorphisms that may play important roles in disease pathogenesis.

  20. Discovery and evaluation of candidate sex-determining genes and xenobiotics in the gonads of lake sturgeon (Acipenser fulvescens).

    Science.gov (United States)

    Hale, Matthew C; Jackson, James R; Dewoody, J Andrew

    2010-07-01

    Modern pyrosequencing has the potential to uncover many interesting aspects of genome evolution, even in lineages where genomic resources are scarce. In particular, 454 pyrosequencing of nonmodel species has been used to characterize expressed sequence tags, xenobiotics, gene ontologies, and relative levels of gene expression. Herein, we use pyrosequencing to study the evolution of genes expressed in the gonads of a polyploid fish, the lake sturgeon (Acipenser fulvescens). Using 454 pyrosequencing of transcribed genes, we produced more than 125 MB of sequence data from 473,577 high-quality sequencing reads. Sequences that passed stringent quality control thresholds were assembled into 12,791 male contigs and 32,629 female contigs. Average depth of coverage was 4.2 x for the male assembly and 5.5x for the female assembly. Analytical rarefaction indicates that our assemblies include most of the genes expressed in lake sturgeon gonads. Over 86,700 sequencing reads were assigned gene ontologies, many to general housekeeping genes like protein, RNA, and ion binding genes. We searched specifically for sex determining genes and documented significant sex differences in the expression of two genes involved in animal sex determination, DMRT1 and TRA-1. DMRT1 is the master sex determining gene in birds and in medaka (Oryzias latipes) whereas TRA-1 helps direct sexual differentiation in nematodes. We also searched the lake sturgeon assembly for evidence of xenobiotic organisms that may exist as endosymbionts. Our results suggest that exogenous parasites (trematodes) and pathogens (protozoans) apparently have infected lake sturgeon gonads, and the trematodes have horizontally transferred some genes to the lake sturgeon genome.

  1. Knockout of crtB or crtI gene blocks the carotenoid biosynthetic pathway in Deinococcus radiodurans R1 and influences its resistance to oxidative DNA-damaging agents due to change of free radicals scavenging ability.

    Science.gov (United States)

    Zhang, Lei; Yang, Qiao; Luo, Xuesong; Fang, Chengxiang; Zhang, Qiuju; Tang, Yali

    2007-10-01

    Deinococcus radiodurans R1, a red-pigmented strain of the extremely radioresistant genus Deinococcus, contains a major carotenoid namely deinoxanthin. The high resistance of this organism against the lethal actions of DNA-damaging agents including ionizing radiation and ultraviolet light (UV) has been widely reported. However, the possible antioxidant role of carotenoids in this strain has not been completely elucidated. In this study, we constructed two colorless mutants by knockout of crtB and crtI genes, respectively. Comparative analysis of the two colorless mutants and the wild type showed that the two colorless mutants were more sensitive to ionizing radiation, UV, and hydrogen peroxide, but not to mitomycin-C (MMC). With electron spin resonance (ESR) and spin trapping techniques, we observed that hydroxyl radical signals occurred in the suspensions of UV irradiated Deinococcus radiodurans cells and the intensity of signals was influenced by carotenoids levels. We further showed that the carotenoid extract from the wild type could obviously scavenge superoxide anions generated by the irradiated riboflavin/EDTA system. These results suggest that carotenoids in D. radiodurans R1 function as free radical scavengers to protect this organism against the deleterious effects of oxidative DNA-damaging agents.

  2. Coupled Transcriptome and Proteome Analysis of Human Lymphotropic Tumor Viruses: Insights on the Detection and Discovery of Viral Genes

    Energy Technology Data Exchange (ETDEWEB)

    Dresang, Lindsay R.; Teuton, Jeremy R.; Feng, Huichen; Jacobs, Jon M.; Camp, David G.; Purvine, Samuel O.; Gritsenko, Marina A.; Li, Zhihua; Smith, Richard D.; Sugden, Bill; Moore, Patrick S.; Chang, Yuan

    2011-12-20

    Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) are related human tumor viruses that cause primary effusion lymphomas (PEL) and Burkitt's lymphomas (BL), respectively. Viral genes expressed in naturally-infected cancer cells contribute to disease pathogenesis; knowing which viral genes are expressed is critical in understanding how these viruses cause cancer. To evaluate the expression of viral genes, we used high-resolution separation and mass spectrometry coupled with custom tiling arrays to align the viral proteomes and transcriptomes of three PEL and two BL cell lines under latent and lytic culture conditions. Results The majority of viral genes were efficiently detected at the transcript and/or protein level on manipulating the viral life cycle. Overall the correlation of expressed viral proteins and transcripts was highly complementary in both validating and providing orthogonal data with latent/lytic viral gene expression. Our approach also identified novel viral genes in both KSHV and EBV, and extends viral genome annotation. Several previously uncharacterized genes were validated at both transcript and protein levels. Conclusions This systems biology approach coupling proteome and transcriptome measurements provides a comprehensive view of viral gene expression that could not have been attained using each methodology independently. Detection of viral proteins in combination with viral transcripts is a potentially powerful method for establishing virus-disease relationships.

  3. Coupled transcriptome and proteome analysis of human lymphotropic tumor viruses: insights on the detection and discovery of viral genes

    Directory of Open Access Journals (Sweden)

    Dresang Lindsay R

    2011-12-01

    Full Text Available Abstract Background Kaposi's sarcoma-associated herpesvirus (KSHV and Epstein-Barr virus (EBV are related human tumor viruses that cause primary effusion lymphomas (PEL and Burkitt's lymphomas (BL, respectively. Viral genes expressed in naturally-infected cancer cells contribute to disease pathogenesis; knowing which viral genes are expressed is critical in understanding how these viruses cause cancer. To evaluate the expression of viral genes, we used high-resolution separation and mass spectrometry coupled with custom tiling arrays to align the viral proteomes and transcriptomes of three PEL and two BL cell lines under latent and lytic culture conditions. Results The majority of viral genes were efficiently detected at the transcript and/or protein level on manipulating the viral life cycle. Overall the correlation of expressed viral proteins and transcripts was highly complementary in both validating and providing orthogonal data with latent/lytic viral gene expression. Our approach also identified novel viral genes in both KSHV and EBV, and extends viral genome annotation. Several previously uncharacterized genes were validated at both transcript and protein levels. Conclusions This systems biology approach coupling proteome and transcriptome measurements provides a comprehensive view of viral gene expression that could not have been attained using each methodology independently. Detection of viral proteins in combination with viral transcripts is a potentially powerful method for establishing virus-disease relationships.

  4. Combining SNP discovery from next-generation sequencing data with bulked segregant analysis (BSA to fine-map genes in polyploid wheat

    Directory of Open Access Journals (Sweden)

    Trick Martin

    2012-01-01

    Full Text Available Abstract Background Next generation sequencing (NGS technologies are providing new ways to accelerate fine-mapping and gene isolation in many species. To date, the majority of these efforts have focused on diploid organisms with readily available whole genome sequence information. In this study, as a proof of concept, we tested the use of NGS for SNP discovery in tetraploid wheat lines differing for the previously cloned grain protein content (GPC gene GPC-B1. Bulked segregant analysis (BSA was used to define a subset of putative SNPs within the candidate gene region, which were then used to fine-map GPC-B1. Results We used Illumina paired end technology to sequence mRNA (RNAseq from near isogenic lines differing across a ~30-cM interval including the GPC-B1 locus. After discriminating for SNPs between the two homoeologous wheat genomes and additional quality filtering, we identified inter-varietal SNPs in wheat unigenes between the parental lines. The relative frequency of these SNPs was examined by RNAseq in two bulked samples made up of homozygous recombinant lines differing for their GPC phenotype. SNPs that were enriched at least 3-fold in the corresponding pool (6.5% of all SNPs were further evaluated. Marker assays were designed for a subset of the enriched SNPs and mapped using DNA from individuals of each bulk. Thirty nine new SNP markers, corresponding to 67% of the validated SNPs, mapped across a 12.2-cM interval including GPC-B1. This translated to 1 SNP marker per 0.31 cM defining the GPC-B1 gene to within 13-18 genes in syntenic cereal genomes and to a 0.4 cM interval in wheat. Conclusions This study exemplifies the use of RNAseq for SNP discovery in polyploid species and supports the use of BSA as an effective way to target SNPs to specific genetic intervals to fine-map genes in unsequenced genomes.

  5. Review on biosynthetic pathway of secondary metabolites and the related genes in Monascus spp.%红曲菌次生代谢产物生物合成途径及相关基因的研究进展

    Institute of Scientific and Technical Information of China (English)

    李利; 陈莎; 陈福生; 高梦祥

    2013-01-01

    Monascus spp., one of the important microbial resources both for food and medicine in China, can produce kinds of useful secondary metabolites, such as the natural food additive Monascus pigments, the cholesterol-lowering substance monacolin K and so on.Meanwhile, this genus also has the ability to secrete the mycotoxin citrinin, causing a safety risk to Monascus-related products.Therefore, how to promote the production of the useful metabolites and eliminate the production of citrinin has become a hot topic.Over the past decade, with the development and application of molecular biological approaches in Monascus spp., great efforts have been made to explore the basical knowledge about biosynthesis of secondary metabolites, and many genes involved in biosynthesis of Monascus pigments, monacolin K and citrinin have been identified and characterized.The latest achievements were summarized in this paper, in the purpose of providing potential approaches to manipulate and improve industrial Monascus strains efficiently.%红曲菌(Monascus spp.)是我国重要的药食两用微生物资源之一,能够产生天然食品添加剂红曲色素、降血酯活性物质Monacolin K等有益次生代谢产物,但也能分泌真菌毒素桔霉素(Citrinin),红曲菌及其相关产品的安全性由此受到质疑.因此,如何促进红曲菌有益代谢产物的产生,减少或抑制桔霉素的产生成为广大科研工作者研究的重点方向.近年来,红曲菌的分子生物学研究有了较快的发展,红曲菌次生代谢产物生物合成及其调控的研究是热点.本文重点介绍红曲色素、Monacolin K和桔霉素生物合成途径及相关基因的研究进展,以期为有效调控红曲菌次生代谢产物的产生、提高红曲产品的安全性提供参考和借鉴.

  6. Discovery of genes related to witches broom disease in Paulownia tomentosa × Paulownia fortunei by a De Novo assembled transcriptome.

    Science.gov (United States)

    Liu, Rongning; Dong, Yanpeng; Fan, Guoqiang; Zhao, Zhenli; Deng, Minjie; Cao, Xibing; Niu, Suyan

    2013-01-01

    In spite of its economic importance, very little molecular genetics and genomic research has been targeted at the family Paulownia spp. The little genetic information on this plant is a big obstacle to studying the mechanisms of its ability to resist Paulownia Witches' Broom (PaWB) disease. Analysis of the Paulownia transcriptome and its expression profile data are essential to extending the genetic resources on this species, thus will greatly improves our studies on Paulownia. In the current study, we performed the de novo assembly of a transcriptome on P. tomentosa × P. fortunei using the short-read sequencing technology (Illumina). 203,664 unigenes with a mean length of 1,328 bp was obtained. Of these unigenes, 32,976 (30% of all unigenes) containing complete structures were chosen. Eukaryotic clusters of orthologous groups, gene orthology, and the Kyoto Encyclopedia of Genes and Genomes annotations were performed of these unigenes. Genes related to PaWB disease resistance were analyzed in detail. To our knowledge, this is the first study to elucidate the genetic makeup of Paulownia. This transcriptome provides a quick way to understanding Paulownia, increases the number of gene sequences available for further functional genomics studies and provides clues to the identification of potential PaWB disease resistance genes. This study has provided a comprehensive insight into gene expression profiles at different states, which facilitates the study of each gene's roles in the developmental process and in PaWB disease resistance.

  7. Discovery of genes related to witches broom disease in Paulownia tomentosa × Paulownia fortunei by a De Novo assembled transcriptome.

    Directory of Open Access Journals (Sweden)

    Rongning Liu

    Full Text Available In spite of its economic importance, very little molecular genetics and genomic research has been targeted at the family Paulownia spp. The little genetic information on this plant is a big obstacle to studying the mechanisms of its ability to resist Paulownia Witches' Broom (PaWB disease. Analysis of the Paulownia transcriptome and its expression profile data are essential to extending the genetic resources on this species, thus will greatly improves our studies on Paulownia. In the current study, we performed the de novo assembly of a transcriptome on P. tomentosa × P. fortunei using the short-read sequencing technology (Illumina. 203,664 unigenes with a mean length of 1,328 bp was obtained. Of these unigenes, 32,976 (30% of all unigenes containing complete structures were chosen. Eukaryotic clusters of orthologous groups, gene orthology, and the Kyoto Encyclopedia of Genes and Genomes annotations were performed of these unigenes. Genes related to PaWB disease resistance were analyzed in detail. To our knowledge, this is the first study to elucidate the genetic makeup of Paulownia. This transcriptome provides a quick way to understanding Paulownia, increases the number of gene sequences available for further functional genomics studies and provides clues to the identification of potential PaWB disease resistance genes. This study has provided a comprehensive insight into gene expression profiles at different states, which facilitates the study of each gene's roles in the developmental process and in PaWB disease resistance.

  8. Pigmentation in sand pear (Pyrus pyrifolia) fruit: biochemical characterization, gene discovery and expression analysis with exocarp pigmentation mutant.

    Science.gov (United States)

    Wang, Yue-zhi; Zhang, Shujun; Dai, Mei-song; Shi, Ze-bin

    2014-05-01

    Exocarp color of sand pear is an important trait for the fruit production and has caused our concern for a long time. Our previous study explored the different expression genes between the two genotypes contrasting for exocarp color, which indicated the different suberin, cutin, wax and lignin biosynthesis between the russet- and green-exocarp. In this study, we carried out microscopic observation and Fourier transform infrared spectroscopy analysis to detect the differences of tissue structure and biochemical composition between the russet- and green-exocarp of sand pear. The green exocarp was covered with epidermis and cuticle which was replaced by a cork layer on the surface of russet exocarp, and the chemicals of the russet exocarp were characterized by lignin, cellulose and hemicellulose. We explored differential gene expression between the russet exocarp of 'Niitaka' and its green exocarp mutant cv. 'Suisho' using Illumina RNA-sequencing. A total of 559 unigenes showed different expression between the two types of exocarp, and 123 of them were common to the previous study. The quantitative real time-PCR analysis supports the RNA-seq-derived gene with different expression between the two types of exocarp and revealed the preferential expression of these genes in exocarp than in mesocarp and fruit core. Gene ontology enrichment analysis revealed divorced expression of lipid metabolic process genes, transport genes, stress responsive genes and other biological process genes in the two types of exocarp. Expression changes in lignin metabolism-related genes were consistent with the different pigmentation of russet and green exocarp. Increased transcripts of putative genes involved the suberin, cutin and wax biosynthesis in 'Suisho' exocarp could facilitate deposition of the chemicals and take a role in the mutant trait responsible for the green exocarp. In addition, the divorced expression of ATP-binding cassette transporters involved in the trans

  9. Structures of Bacterial Biosynthetic Arginine Decarboxylases

    Energy Technology Data Exchange (ETDEWEB)

    F Forouhar; S Lew; J Seetharaman; R Xiao; T Acton; G Montelione; L Tong

    2011-12-31

    Biosynthetic arginine decarboxylase (ADC; also known as SpeA) plays an important role in the biosynthesis of polyamines from arginine in bacteria and plants. SpeA is a pyridoxal-5'-phosphate (PLP)-dependent enzyme and shares weak sequence homology with several other PLP-dependent decarboxylases. Here, the crystal structure of PLP-bound SpeA from Campylobacter jejuni is reported at 3.0 {angstrom} resolution and that of Escherichia coli SpeA in complex with a sulfate ion is reported at 3.1 {angstrom} resolution. The structure of the SpeA monomer contains two large domains, an N-terminal TIM-barrel domain followed by a {beta}-sandwich domain, as well as two smaller helical domains. The TIM-barrel and {beta}-sandwich domains share structural homology with several other PLP-dependent decarboxylases, even though the sequence conservation among these enzymes is less than 25%. A similar tetramer is observed for both C. jejuni and E. coli SpeA, composed of two dimers of tightly associated monomers. The active site of SpeA is located at the interface of this dimer and is formed by residues from the TIM-barrel domain of one monomer and a highly conserved loop in the {beta}-sandwich domain of the other monomer. The PLP cofactor is recognized by hydrogen-bonding, {pi}-stacking and van der Waals interactions.

  10. Pyrimidine biosynthetic pathway of Baccillus subtilis.

    Science.gov (United States)

    Potvin, B W; Kelleher, R J; Gooder, H

    1975-08-01

    Biochemical and genetic data were obtained from a series of 51 Pyr- strains of Bacillus subtilis. The observed enzymatic deficiencies allowed the mutants to be placed into 12 clases, some of which represent defects in more than one of the six known pyrimidine biosynthetic enzymes. Mapping analysis by transformation has shown that all the Pyr- mutations are located in a single small area of the B. subtilis genome. A correlation of the biochemical defects and the genetic data has been made. Those mutations conferring similar enzymatic deficiencies were found to be contiguous on the B. subtilis map. Regulatory aspects of the pyrimidine pathway have also been investigated and are compared to previously reported results from other organisms. Evidence is presented which bears upon the possible physical association of the first three enzymes and the association of at least some of the enzymes of this pathway with particulate elements of the cell. A model for the organization of the enzymes is presented with dihydroorotate dehydrogenase as the central enzyme in a proposed aggregate.

  11. De novo assembly, gene annotation, and marker discovery in stored-product pest Liposcelis entomophila (Enderlein using transcriptome sequences.

    Directory of Open Access Journals (Sweden)

    Dan-Dan Wei

    Full Text Available BACKGROUND: As a major stored-product pest insect, Liposcelis entomophila has developed high levels of resistance to various insecticides in grain storage systems. However, the molecular mechanisms underlying resistance and environmental stress have not been characterized. To date, there is a lack of genomic information for this species. Therefore, studies aimed at profiling the L. entomophila transcriptome would provide a better understanding of the biological functions at the molecular levels. METHODOLOGY/PRINCIPAL FINDINGS: We applied Illumina sequencing technology to sequence the transcriptome of L. entomophila. A total of 54,406,328 clean reads were obtained and that de novo assembled into 54,220 unigenes, with an average length of 571 bp. Through a similarity search, 33,404 (61.61% unigenes were matched to known proteins in the NCBI non-redundant (Nr protein database. These unigenes were further functionally annotated with gene ontology (GO, cluster of orthologous groups of proteins (COG, and Kyoto Encyclopedia of Genes and Genomes (KEGG databases. A large number of genes potentially involved in insecticide resistance were manually curated, including 68 putative cytochrome P450 genes, 37 putative glutathione S-transferase (GST genes, 19 putative carboxyl/cholinesterase (CCE genes, and other 126 transcripts to contain target site sequences or encoding detoxification genes representing eight types of resistance enzymes. Furthermore, to gain insight into the molecular basis of the L. entomophila toward thermal stresses, 25 heat shock protein (Hsp genes were identified. In addition, 1,100 SSRs and 57,757 SNPs were detected and 231 pairs of SSR primes were designed for investigating the genetic diversity in future. CONCLUSIONS/SIGNIFICANCE: We developed a comprehensive transcriptomic database for L. entomophila. These sequences and putative molecular markers would further promote our understanding of the molecular mechanisms underlying

  12. De novo assembly and discovery of genes that are involved in drought tolerance in Tibetan Sophora moorcroftiana.

    Directory of Open Access Journals (Sweden)

    Huie Li

    Full Text Available Sophora moorcroftiana, a Leguminosae shrub species that is restricted to the arid and semi-arid regions of the Qinghai-Tibet Plateau, is an ecologically important foundation species and exhibits substantial drought tolerance in the Plateau. There are no functional genomics resources in public databases for understanding the molecular mechanism underlying the drought tolerance of S. moorcroftiana. Therefore, we performed a large-scale transcriptome sequencing of this species under drought stress using the Illumina sequencing technology. A total of 62,348,602 clean reads were obtained. The assembly of the clean reads resulted in 146,943 transcripts, including 66,026 unigenes. In the assembled sequences, 1534 transcription factors were identified and classified into 23 different common families, and 9040 SSR loci, from di- to hexa-nucleotides, whose repeat number is greater than five, were presented. In addition, we performed a gene expression profiling analysis upon dehydration treatment. The results indicated significant differences in the gene expression profiles among the control, mild stress and severe stress. In total, 4687, 5648 and 5735 genes were identified from the comparison of mild versus control, severe versus control and severe versus mild stress, respectively. Based on the differentially expressed genes, a Gene Ontology annotation analysis indicated many dehydration-relevant categories, including 'response to water 'stimulus' and 'response to water deprivation'. Meanwhile, the Kyoto Encyclopedia of Genes and Genomes pathway analysis uncovered some important pathways, such as 'metabolic pathways' and 'plant hormone signal transduction'. In addition, the expression patterns of 25 putative genes that are involved in drought tolerance resulting from quantitative real-time PCR were consistent with their transcript abundance changes as identified by RNA-seq. The globally sequenced genes covered a considerable proportion of the S

  13. De novo assembly and discovery of genes that are involved in drought tolerance in Tibetan Sophora moorcroftiana.

    Science.gov (United States)

    Li, Huie; Yao, Weijie; Fu, Yaru; Li, Shaoke; Guo, Qiqiang

    2015-01-01

    Sophora moorcroftiana, a Leguminosae shrub species that is restricted to the arid and semi-arid regions of the Qinghai-Tibet Plateau, is an ecologically important foundation species and exhibits substantial drought tolerance in the Plateau. There are no functional genomics resources in public databases for understanding the molecular mechanism underlying the drought tolerance of S. moorcroftiana. Therefore, we performed a large-scale transcriptome sequencing of this species under drought stress using the Illumina sequencing technology. A total of 62,348,602 clean reads were obtained. The assembly of the clean reads resulted in 146,943 transcripts, including 66,026 unigenes. In the assembled sequences, 1534 transcription factors were identified and classified into 23 different common families, and 9040 SSR loci, from di- to hexa-nucleotides, whose repeat number is greater than five, were presented. In addition, we performed a gene expression profiling analysis upon dehydration treatment. The results indicated significant differences in the gene expression profiles among the control, mild stress and severe stress. In total, 4687, 5648 and 5735 genes were identified from the comparison of mild versus control, severe versus control and severe versus mild stress, respectively. Based on the differentially expressed genes, a Gene Ontology annotation analysis indicated many dehydration-relevant categories, including 'response to water 'stimulus' and 'response to water deprivation'. Meanwhile, the Kyoto Encyclopedia of Genes and Genomes pathway analysis uncovered some important pathways, such as 'metabolic pathways' and 'plant hormone signal transduction'. In addition, the expression patterns of 25 putative genes that are involved in drought tolerance resulting from quantitative real-time PCR were consistent with their transcript abundance changes as identified by RNA-seq. The globally sequenced genes covered a considerable proportion of the S. moorcroftiana transcriptome

  14. Discovery of genes related to insecticide resistance in Bactrocera dorsalis by functional genomic analysis of a de novo assembled transcriptome.

    Directory of Open Access Journals (Sweden)

    Ju-Chun Hsu

    Full Text Available Insecticide resistance has recently become a critical concern for control of many insect pest species. Genome sequencing and global quantization of gene expression through analysis of the transcriptome can provide useful information relevant to this challenging problem. The oriental fruit fly, Bactrocera dorsalis, is one of the world's most destructive agricultural pests, and recently it has been used as a target for studies of genetic mechanisms related to insecticide resistance. However, prior to this study, the molecular data available for this species was largely limited to genes identified through homology. To provide a broader pool of gene sequences of potential interest with regard to insecticide resistance, this study uses whole transcriptome analysis developed through de novo assembly of short reads generated by next-generation sequencing (NGS. The transcriptome of B. dorsalis was initially constructed using Illumina's Solexa sequencing technology. Qualified reads were assembled into contigs and potential splicing variants (isotigs. A total of 29,067 isotigs have putative homologues in the non-redundant (nr protein database from NCBI, and 11,073 of these correspond to distinct D. melanogaster proteins in the RefSeq database. Approximately 5,546 isotigs contain coding sequences that are at least 80% complete and appear to represent B. dorsalis genes. We observed a strong correlation between the completeness of the assembled sequences and the expression intensity of the transcripts. The assembled sequences were also used to identify large numbers of genes potentially belonging to families related to insecticide resistance. A total of 90 P450-, 42 GST-and 37 COE-related genes, representing three major enzyme families involved in insecticide metabolism and resistance, were identified. In addition, 36 isotigs were discovered to contain target site sequences related to four classes of resistance genes. Identified sequence motifs were also

  15. Accelerating Novel Candidate Gene Discovery in Neurogenetic Disorders via Whole-Exome Sequencing of Prescreened Multiplex Consanguineous Families

    Directory of Open Access Journals (Sweden)

    Anas M. Alazami

    2015-01-01

    Full Text Available Our knowledge of disease genes in neurological disorders is incomplete. With the aim of closing this gap, we performed whole-exome sequencing on 143 multiplex consanguineous families in whom known disease genes had been excluded by autozygosity mapping and candidate gene analysis. This prescreening step led to the identification of 69 recessive genes not previously associated with disease, of which 33 are here described (SPDL1, TUBA3E, INO80, NID1, TSEN15, DMBX1, CLHC1, C12orf4, WDR93, ST7, MATN4, SEC24D, PCDHB4, PTPN23, TAF6, TBCK, FAM177A1, KIAA1109, MTSS1L, XIRP1, KCTD3, CHAF1B, ARV1, ISCA2, PTRH2, GEMIN4, MYOCD, PDPR, DPH1, NUP107, TMEM92, EPB41L4A, and FAM120AOS. We also encountered instances in which the phenotype departed significantly from the established clinical presentation of a known disease gene. Overall, a likely causal mutation was identified in >73% of our cases. This study contributes to the global effort toward a full compendium of disease genes affecting brain function.

  16. Accelerating novel candidate gene discovery in neurogenetic disorders via whole-exome sequencing of prescreened multiplex consanguineous families.

    Science.gov (United States)

    Alazami, Anas M; Patel, Nisha; Shamseldin, Hanan E; Anazi, Shamsa; Al-Dosari, Mohammed S; Alzahrani, Fatema; Hijazi, Hadia; Alshammari, Muneera; Aldahmesh, Mohammed A; Salih, Mustafa A; Faqeih, Eissa; Alhashem, Amal; Bashiri, Fahad A; Al-Owain, Mohammed; Kentab, Amal Y; Sogaty, Sameera; Al Tala, Saeed; Temsah, Mohamad-Hani; Tulbah, Maha; Aljelaify, Rasha F; Alshahwan, Saad A; Seidahmed, Mohammed Zain; Alhadid, Adnan A; Aldhalaan, Hesham; AlQallaf, Fatema; Kurdi, Wesam; Alfadhel, Majid; Babay, Zainab; Alsogheer, Mohammad; Kaya, Namik; Al-Hassnan, Zuhair N; Abdel-Salam, Ghada M H; Al-Sannaa, Nouriya; Al Mutairi, Fuad; El Khashab, Heba Y; Bohlega, Saeed; Jia, Xiaofei; Nguyen, Henry C; Hammami, Rakad; Adly, Nouran; Mohamed, Jawahir Y; Abdulwahab, Firdous; Ibrahim, Niema; Naim, Ewa A; Al-Younes, Banan; Meyer, Brian F; Hashem, Mais; Shaheen, Ranad; Xiong, Yong; Abouelhoda, Mohamed; Aldeeri, Abdulrahman A; Monies, Dorota M; Alkuraya, Fowzan S

    2015-01-13

    Our knowledge of disease genes in neurological disorders is incomplete. With the aim of closing this gap, we performed whole-exome sequencing on 143 multiplex consanguineous families in whom known disease genes had been excluded by autozygosity mapping and candidate gene analysis. This prescreening step led to the identification of 69 recessive genes not previously associated with disease, of which 33 are here described (SPDL1, TUBA3E, INO80, NID1, TSEN15, DMBX1, CLHC1, C12orf4, WDR93, ST7, MATN4, SEC24D, PCDHB4, PTPN23, TAF6, TBCK, FAM177A1, KIAA1109, MTSS1L, XIRP1, KCTD3, CHAF1B, ARV1, ISCA2, PTRH2, GEMIN4, MYOCD, PDPR, DPH1, NUP107, TMEM92, EPB41L4A, and FAM120AOS). We also encountered instances in which the phenotype departed significantly from the established clinical presentation of a known disease gene. Overall, a likely causal mutation was identified in >73% of our cases. This study contributes to the global effort toward a full compendium of disease genes affecting brain function.

  17. Sleeping Beauty Transposon Mutagenesis as a Tool for Gene Discovery in the NOD Mouse Model of Type 1 Diabetes

    Science.gov (United States)

    Elso, Colleen M.; Chu, Edward P. F.; Alsayb, May A.; Mackin, Leanne; Ivory, Sean T.; Ashton, Michelle P.; Bröer, Stefan; Silveira, Pablo A.; Brodnicki, Thomas C.

    2015-01-01

    A number of different strategies have been used to identify genes for which genetic variation contributes to type 1 diabetes (T1D) pathogenesis. Genetic studies in humans have identified >40 loci that affect the risk for developing T1D, but the underlying causative alleles are often difficult to pinpoint or have subtle biological effects. A complementary strategy to identifying “natural” alleles in the human population is to engineer “artificial” alleles within inbred mouse strains and determine their effect on T1D incidence. We describe the use of the Sleeping Beauty (SB) transposon mutagenesis system in the nonobese diabetic (NOD) mouse strain, which harbors a genetic background predisposed to developing T1D. Mutagenesis in this system is random, but a green fluorescent protein (GFP)-polyA gene trap within the SB transposon enables early detection of mice harboring transposon-disrupted genes. The SB transposon also acts as a molecular tag to, without additional breeding, efficiently identify mutated genes and prioritize mutant mice for further characterization. We show here that the SB transposon is functional in NOD mice and can produce a null allele in a novel candidate gene that increases diabetes incidence. We propose that SB transposon mutagenesis could be used as a complementary strategy to traditional methods to help identify genes that, when disrupted, affect T1D pathogenesis. PMID:26438296

  18. Gene discovery from Jatropha curcas by sequencing of ESTs from normalized and full-length enriched cDNA library from developing seeds

    Directory of Open Access Journals (Sweden)

    Sugantham Priyanka Annabel

    2010-10-01

    Full Text Available Abstract Background Jatropha curcas L. is promoted as an important non-edible biodiesel crop worldwide. Jatropha oil, which is a triacylglycerol, can be directly blended with petro-diesel or transesterified with methanol and used as biodiesel. Genetic improvement in jatropha is needed to increase the seed yield, oil content, drought and pest resistance, and to modify oil composition so that it becomes a technically and economically preferred source for biodiesel production. However, genetic improvement efforts in jatropha could not take advantage of genetic engineering methods due to lack of cloned genes from this species. To overcome this hurdle, the current gene discovery project was initiated with an objective of isolating as many functional genes as possible from J. curcas by large scale sequencing of expressed sequence tags (ESTs. Results A normalized and full-length enriched cDNA library was constructed from developing seeds of J. curcas. The cDNA library contained about 1 × 106 clones and average insert size of the clones was 2.1 kb. Totally 12,084 ESTs were sequenced to average high quality read length of 576 bp. Contig analysis revealed 2258 contigs and 4751 singletons. Contig size ranged from 2-23 and there were 7333 ESTs in the contigs. This resulted in 7009 unigenes which were annotated by BLASTX. It showed 3982 unigenes with significant similarity to known genes and 2836 unigenes with significant similarity to genes of unknown, hypothetical and putative proteins. The remaining 191 unigenes which did not show similarity with any genes in the public database may encode for unique genes. Functional classification revealed unigenes related to broad range of cellular, molecular and biological functions. Among the 7009 unigenes, 6233 unigenes were identified to be potential full-length genes. Conclusions The high quality normalized cDNA library was constructed from developing seeds of J. curcas for the first time and 7009 unigenes coding

  19. Discovery of gene-gene interactions across multiple independent data sets of late onset Alzheimer disease from the Alzheimer Disease Genetics Consortium.

    Science.gov (United States)

    Hohman, Timothy J; Bush, William S; Jiang, Lan; Brown-Gentry, Kristin D; Torstenson, Eric S; Dudek, Scott M; Mukherjee, Shubhabrata; Naj, Adam; Kunkle, Brian W; Ritchie, Marylyn D; Martin, Eden R; Schellenberg, Gerard D; Mayeux, Richard; Farrer, Lindsay A; Pericak-Vance, Margaret A; Haines, Jonathan L; Thornton-Wells, Tricia A

    2016-02-01

    Late-onset Alzheimer disease (AD) has a complex genetic etiology, involving locus heterogeneity, polygenic inheritance, and gene-gene interactions; however, the investigation of interactions in recent genome-wide association studies has been limited. We used a biological knowledge-driven approach to evaluate gene-gene interactions for consistency across 13 data sets from the Alzheimer Disease Genetics Consortium. Fifteen single nucleotide polymorphism (SNP)-SNP pairs within 3 gene-gene combinations were identified: SIRT1 × ABCB1, PSAP × PEBP4, and GRIN2B × ADRA1A. In addition, we extend a previously identified interaction from an endophenotype analysis between RYR3 × CACNA1C. Finally, post hoc gene expression analyses of the implicated SNPs further implicate SIRT1 and ABCB1, and implicate CDH23 which was most recently identified as an AD risk locus in an epigenetic analysis of AD. The observed interactions in this article highlight ways in which genotypic variation related to disease may depend on the genetic context in which it occurs. Further, our results highlight the utility of evaluating genetic interactions to explain additional variance in AD risk and identify novel molecular mechanisms of AD pathogenesis.

  20. A population of deletion mutants and an integrated mapping and Exome-seq pipeline for gene discovery in maize

    Science.gov (United States)

    To better understand maize endosperm filling and maturation, we developed a novel functional genomics platform that combined Bulked Segregant RNA and Exome sequencing (BSREx-seq) to map causative mutations and identify candidate genes within mapping intervals. Using gamma-irradiation of B73 maize to...

  1. Large-scale gene discovery in the oomycete Phytophthora infestans reveals likely components of phytopathogenicity shared with true fungi

    NARCIS (Netherlands)

    Randall, T.A.; Dwyer, R.A.; Huitema, E.; Beyer, K.; Cvitanich, C.; Kelkar, H.; Ah Fong, A.M.V.; Gates, K.; Roberts, S.; Yatzkan, E.; Gaffney, T.; Law, M.; Testa, A.; Torto-Alalibo, T.; Zhang Meng,; Zheng Li,; Mueller, E.; Windass, J.; Binder, A.; Birch, P.R.J.; Gisi, U.; Govers, F.; Gow, N.A.; Mauch, F.; West, van P.; Waugh, M.E.; Yu Jun,; Boller, T.; Kamoun, S.; Lam, S.T.; Judelson, H.S.

    2005-01-01

    o overview the gene content of the important pathogen Phytophthora infestans, large-scale cDNA and genomic sequencing was performed. A set of 75,757 high-quality expressed sequence tags (ESTs) from P. infestans was obtained from 20 cDNA libraries representing a broad range of growth conditions, stre

  2. Transcriptome analysis of the white body of the squid Euprymna tasmanica with emphasis on immune and hematopoietic gene discovery.

    Directory of Open Access Journals (Sweden)

    Karla A Salazar

    Full Text Available In the mutualistic relationship between the squid Euprymna tasmanica and the bioluminescent bacterium Vibrio fischeri, several host factors, including immune-related proteins, are known to interact and respond specifically and exclusively to the presence of the symbiont. In squid and octopus, the white body is considered to be an immune organ mainly due to the fact that blood cells, or hemocytes, are known to be present in high numbers and in different developmental stages. Hence, the white body has been described as the site of hematopoiesis in cephalopods. However, to our knowledge, there are no studies showing any molecular evidence of such functions. In this study, we performed a transcriptomic analysis of white body tissue of the Southern dumpling squid, E. tasmanica. Our primary goal was to gain insights into the functions of this tissue and to test for the presence of gene transcripts associated with hematopoietic and immune processes. Several hematopoiesis genes including CPSF1, GATA 2, TFIID, and FGFR2 were found to be expressed in the white body. In addition, transcripts associated with immune-related signal transduction pathways, such as the toll-like receptor/NF-κβ, and MAPK pathways were also found, as well as other immune genes previously identified in E. tasmanica's sister species, E. scolopes. This study is the first to analyze an immune organ within cephalopods, and to provide gene expression data supporting the white body as a hematopoietic tissue.

  3. Characterization of virginiamycin S biosynthetic genes from Streptomyces virginiae.

    Science.gov (United States)

    Namwat, Wises; Kamioka, Yuji; Kinoshita, Hiroshi; Yamada, Yasuhiro; Nihira, Takuya

    2002-03-20

    Streptomyces virginiae produces -butyrolactone autoregulators (virginiae butanolide, VB), which control the biosynthesis of virginiamycin M1 and S. A 6.3-kb region downstream of the virginiamycin S (VS)-resistance operon in S. virginiae was sequenced, and four plausible open reading frames (ORFs) (visA, 1,260 bp; visB, 1,656 bp; visC, 888 bp; visD, 1209 bp) were identified. Homology analysis revealed significant similarities with enzymes involved in the biosynthesis of cyclopeptolide antibiotics: VisA (53% identity, 65% similarity) to -lysine 2-aminotransferase (NikC) of nikkomycin D biosynthesis, VisB (66% identity, 72% similarity) to 3-hydroxypicolinic acid:AMP ligase of pristinamycin I biosynthesis, VisC (48% identity, 59% similarity) to lysine cyclodeaminase of ascomycin biosynthesis, and VisD (43% identity, 56% similarity) to erythromycin C-22 hydroxylase of erythromycin biosynthesis. Northern blotting as well as high-resolution S1 analysis of the ORFs revealed that they were transcribed as two bicistronic transcripts, namely 3.0-kb visB-visA and another 2.7-kb visC-visD transcript, with promoters locating upstream of visB and visC, respectively. Transcription of the two operons was observed only 1 h after the VB production, which was 2 h before the virginiamycin production. Furthermore, prompt induction of the transcription was observed as a result of external VB addition, suggesting that the expression of the two operons was under the control of VB.

  4. Transcriptome profiling of the testis reveals genes involved in spermatogenesis and marker discovery in the oriental fruit fly, Bactrocera dorsalis.

    Science.gov (United States)

    Wei, D; Li, H-M; Yang, W-J; Wei, D-D; Dou, W; Huang, Y; Wang, J-J

    2015-02-01

    The testis is a highly specialized tissue that plays a vital role in ensuring fertility by producing spermatozoa, which are transferred to the female during mating. Spermatogenesis is a complex process, resulting in the production of mature sperm, and involves significant structural and biochemical changes in the seminiferous epithelium of the adult testis. The identification of genes involved in spermatogenesis of Bactrocera dorsalis (Hendel) is critical for a better understanding of its reproductive development. In this study, we constructed a cDNA library of testes from male B. dorsalis adults at different ages, and performed de novo transcriptome sequencing to produce a comprehensive transcript data set, using Illumina sequencing technology. The analysis yielded 52 016 732 clean reads, including a total of 4.65 Gb of nucleotides. These reads were assembled into 47 677 contigs (average 443 bp) and then clustered into 30 516 unigenes (average 756 bp). Based on BLAST hits with known proteins in different databases, 20 921 unigenes were annotated with a cut-off E-value of 10(-5). The transcriptome sequences were further annotated using the Clusters of Orthologous Groups, Gene Orthology and the Kyoto Encyclopedia of Genes and Genomes databases. Functional genes involved in spermatogenesis were analysed, including cell cycle proteins, metalloproteins, actin, and ubiquitin and antihyperthermia proteins. Several testis-specific genes were also identified. The transcripts database will help us to understand the molecular mechanisms underlying spermatogenesis in B. dorsalis. Furthermore, 2913 simple sequence repeats and 151 431 single nucleotide polymorphisms were identified, which will be useful for investigating the genetic diversity of B. dorsalis in the future.

  5. Metabolic engineering of the carotenoid biosynthetic pathway in the yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma).

    Science.gov (United States)

    Verdoes, Jan C; Sandmann, Gerhard; Visser, Hans; Diaz, Maria; van Mossel, Minca; van Ooyen, Albert J J

    2003-07-01

    The crtYB locus was used as an integrative platform for the construction of specific carotenoid biosynthetic mutants in the astaxanthin-producing yeast Xanthophyllomyces dendrorhous. The crtYB gene of X. dendrorhous, encoding a chimeric carotenoid biosynthetic enzyme, could be inactivated by both single and double crossover events, resulting in non-carotenoid-producing transformants. In addition, the crtYB gene, linked to either its homologous or a glyceraldehyde-3-phosphate dehydrogenase promoter, was overexpressed in the wild type and a beta-carotene-accumulating mutant of X. dendrorhous. In several transformants containing multiple copies of the crtYB gene, the total carotenoid content was higher than in the control strain. This increase was mainly due to an increase of the beta-carotene and echinone content, whereas the total content of astaxanthin was unaffected or even lower. Overexpression of the phytoene synthase-encoding gene (crtI) had a large impact on the ratio between mono- and bicyclic carotenoids. Furthermore, we showed that in metabolic engineered X. dendrorhous strains, the competition between the enzymes phytoene desaturase and lycopene cyclase for lycopene governs the metabolic flux either via beta-carotene to astaxanthin or via 3,4-didehydrolycopene to 3-hydroxy-3'-4'-didehydro-beta-psi-caroten-4-one (HDCO). The monocylic carotenoid torulene and HDCO, normally produced as minority carotenoids, were the main carotenoids produced in these strains.

  6. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens

    Science.gov (United States)

    Kiryluk, Krzysztof; Li, Yifu; Scolari, Francesco; Sanna-Cherchi, Simone; Choi, Murim; Verbitsky, Miguel; Fasel, David; Lata, Sneh; Prakash, Sindhuri; Shapiro, Samantha; Fischman, Clara; Snyder, Holly J.; Appel, Gerald; Izzi, Claudia; Viola, Battista Fabio; Dallera, Nadia; Vecchio, Lucia Del; Barlassina, Cristina; Salvi, Erika; Bertinetto, Francesca Eleonora; Amoroso, Antonio; Savoldi, Silvana; Rocchietti, Marcella; Amore, Alessandro; Peruzzi, Licia; Coppo, Rosanna; Salvadori, Maurizio; Ravani, Pietro; Magistroni, Riccardo; Ghiggeri, Gian Marco; Caridi, Gianluca; Bodria, Monica; Lugani, Francesca; Allegri, Landino; Delsante, Marco; Maiorana, Mariarosa; Magnano, Andrea; Frasca, Giovanni; Boer, Emanuela; Boscutti, Giuliano; Ponticelli, Claudio; Mignani, Renzo; Marcantoni, Carmelita; Di Landro, Domenico; Santoro, Domenico; Pani, Antonello; Polci, Rosaria; Feriozzi, Sandro; Chicca, Silvana; Galliani, Marco; Gigante, Maddalena; Gesualdo, Loreto; Zamboli, Pasquale; Maixnerová, Dita; Tesar, Vladimir; Eitner, Frank; Rauen, Thomas; Floege, Jürgen; Kovacs, Tibor; Nagy, Judit; Mucha, Krzysztof; Pączek, Leszek; Zaniew, Marcin; Mizerska-Wasiak, Małgorzata; Roszkowska-Blaim, Maria; Pawlaczyk, Krzysztof; Gale, Daniel; Barratt, Jonathan; Thibaudin, Lise; Berthoux, Francois; Canaud, Guillaume; Boland, Anne; Metzger, Marie; Panzer, Ulf; Suzuki, Hitoshi; Goto, Shin; Narita, Ichiei; Caliskan, Yasar; Xie, Jingyuan; Hou, Ping; Chen, Nan; Zhang, Hong; Wyatt, Robert J.; Novak, Jan; Julian, Bruce A.; Feehally, John; Stengel, Benedicte; Cusi, Daniele; Lifton, Richard P.; Gharavi, Ali G.

    2014-01-01

    We performed a genome-wide association study (GWAS) of IgA nephropathy (IgAN), the most common form of glomerulonephritis, with discovery and follow-up in 20,612 individuals of European and East Asian ancestry. We identified six novel genome-wide significant associations, four in ITGAM-ITGAX, VAV3 and CARD9 and two new independent signals at HLA-DQB1 and DEFA. We replicated the nine previously reported signals, including known SNPs in the HLA-DQB1 and DEFA loci. The cumulative burden of risk alleles is strongly associated with age at disease onset. Most loci are either directly associated with risk of inflammatory bowel disease (IBD) or maintenance of the intestinal epithelial barrier and response to mucosal pathogens. The geo-spatial distribution of risk alleles is highly suggestive of multi-locus adaptation and the genetic risk correlates strongly with variation in local pathogens, particularly helminth diversity, suggesting a possible role for host-intestinal pathogen interactions in shaping the genetic landscape of IgAN. PMID:25305756

  7. An integration of genome-wide association study and gene expression profiling to prioritize the discovery of novel susceptibility Loci for osteoporosis-related traits.

    Science.gov (United States)

    Hsu, Yi-Hsiang; Zillikens, M Carola; Wilson, Scott G; Farber, Charles R; Demissie, Serkalem; Soranzo, Nicole; Bianchi, Estelle N; Grundberg, Elin; Liang, Liming; Richards, J Brent; Estrada, Karol; Zhou, Yanhua; van Nas, Atila; Moffatt, Miriam F; Zhai, Guangju; Hofman, Albert; van Meurs, Joyce B; Pols, Huibert A P; Price, Roger I; Nilsson, Olle; Pastinen, Tomi; Cupples, L Adrienne; Lusis, Aldons J; Schadt, Eric E; Ferrari, Serge; Uitterlinden, André G; Rivadeneira, Fernando; Spector, Timothy D; Karasik, David; Kiel, Douglas P

    2010-06-10

    Osteoporosis is a complex disorder and commonly leads to fractures in elderly persons. Genome-wide association studies (GWAS) have become an unbiased approach to identify variations in the genome that potentially affect health. However, the genetic variants identified so far only explain a small proportion of the heritability for complex traits. Due to the modest genetic effect size and inadequate power, true association signals may not be revealed based on a stringent genome-wide significance threshold. Here, we take advantage of SNP and transcript arrays and integrate GWAS and expression signature profiling relevant to the skeletal system in cellular and animal models to prioritize the discovery of novel candidate genes for osteoporosis-related traits, including bone mineral density (BMD) at the lumbar spine (LS) and femoral neck (FN), as well as geometric indices of the hip (femoral neck-shaft angle, NSA; femoral neck length, NL; and narrow-neck width, NW). A two-stage meta-analysis of GWAS from 7,633 Caucasian women and 3,657 men, revealed three novel loci associated with osteoporosis-related traits, including chromosome 1p13.2 (RAP1A, p = 3.6x10(-8)), 2q11.2 (TBC1D8), and 18q11.2 (OSBPL1A), and confirmed a previously reported region near TNFRSF11B/OPG gene. We also prioritized 16 suggestive genome-wide significant candidate genes based on their potential involvement in skeletal metabolism. Among them, 3 candidate genes were associated with BMD in women. Notably, 2 out of these 3 genes (GPR177, p = 2.6x10(-13); SOX6, p = 6.4x10(-10)) associated with BMD in women have been successfully replicated in a large-scale meta-analysis of BMD, but none of the non-prioritized candidates (associated with BMD) did. Our results support the concept of our prioritization strategy. In the absence of direct biological support for identified genes, we highlighted the efficiency of subsequent functional characterization using publicly available expression profiling relevant to the

  8. An integration of genome-wide association study and gene expression profiling to prioritize the discovery of novel susceptibility Loci for osteoporosis-related traits.

    Directory of Open Access Journals (Sweden)

    Yi-Hsiang Hsu

    2010-06-01

    Full Text Available Osteoporosis is a complex disorder and commonly leads to fractures in elderly persons. Genome-wide association studies (GWAS have become an unbiased approach to identify variations in the genome that potentially affect health. However, the genetic variants identified so far only explain a small proportion of the heritability for complex traits. Due to the modest genetic effect size and inadequate power, true association signals may not be revealed based on a stringent genome-wide significance threshold. Here, we take advantage of SNP and transcript arrays and integrate GWAS and expression signature profiling relevant to the skeletal system in cellular and animal models to prioritize the discovery of novel candidate genes for osteoporosis-related traits, including bone mineral density (BMD at the lumbar spine (LS and femoral neck (FN, as well as geometric indices of the hip (femoral neck-shaft angle, NSA; femoral neck length, NL; and narrow-neck width, NW. A two-stage meta-analysis of GWAS from 7,633 Caucasian women and 3,657 men, revealed three novel loci associated with osteoporosis-related traits, including chromosome 1p13.2 (RAP1A, p = 3.6x10(-8, 2q11.2 (TBC1D8, and 18q11.2 (OSBPL1A, and confirmed a previously reported region near TNFRSF11B/OPG gene. We also prioritized 16 suggestive genome-wide significant candidate genes based on their potential involvement in skeletal metabolism. Among them, 3 candidate genes were associated with BMD in women. Notably, 2 out of these 3 genes (GPR177, p = 2.6x10(-13; SOX6, p = 6.4x10(-10 associated with BMD in women have been successfully replicated in a large-scale meta-analysis of BMD, but none of the non-prioritized candidates (associated with BMD did. Our results support the concept of our prioritization strategy. In the absence of direct biological support for identified genes, we highlighted the efficiency of subsequent functional characterization using publicly available expression profiling relevant

  9. The Complete Genome Sequence of Plodia Interpunctella Granulovirus: Evidence for Horizontal Gene Transfer and Discovery of an Unusual Inhibitor-of-Apoptosis Gene.

    Science.gov (United States)

    Harrison, Robert L; Rowley, Daniel L; Funk, C Joel

    2016-01-01

    The Indianmeal moth, Plodia interpunctella (Lepidoptera: Pyralidae), is a common pest of stored goods with a worldwide distribution. The complete genome sequence for a larval pathogen of this moth, the baculovirus Plodia interpunctella granulovirus (PiGV), was determined by next-generation sequencing. The PiGV genome was found to be 112, 536 bp in length with a 44.2% G+C nucleotide distribution. A total of 123 open reading frames (ORFs) and seven homologous regions (hrs) were identified and annotated. Phylogenetic inference using concatenated alignments of 36 baculovirus core genes placed PiGV in the "b" clade of viruses from genus Betabaculovirus with a branch length suggesting that PiGV represents a distinct betabaculovirus species. In addition to the baculovirus core genes and orthologues of other genes found in other betabaculovirus genomes, the PiGV genome sequence contained orthologues of the bidensovirus NS3 gene, as well as ORFs that occur in alphabaculoviruses but not betabaculoviruses. While PiGV contained an orthologue of inhibitor of apoptosis-5 (iap-5), an orthologue of inhibitor of apoptosis-3 (iap-3) was not present. Instead, the PiGV sequence contained an ORF (PiGV ORF81) encoding an IAP homologue with sequence similarity to insect cellular IAPs, but not to viral IAPs. Phylogenetic analysis of baculovirus and insect IAP amino acid sequences suggested that the baculovirus IAP-3 genes and the PiGV ORF81 IAP homologue represent different lineages arising from more than one acquisition event. The presence of genes from other sources in the PiGV genome highlights the extent to which baculovirus gene content is shaped by horizontal gene transfer.

  10. De novo transcriptomic analysis of an oleaginous microalga: pathway description and gene discovery for production of next-generation biofuels.

    Directory of Open Access Journals (Sweden)

    LingLin Wan

    Full Text Available BACKGROUND: Eustigmatos cf. polyphem is a yellow-green unicellular soil microalga belonging to the eustimatophyte with high biomass and considerable production of triacylglycerols (TAGs for biofuels, which is thus referred to as an oleaginous microalga. The paucity of microalgae genome sequences, however, limits development of gene-based biofuel feedstock optimization studies. Here we describe the sequencing and de novo transcriptome assembly for a non-model microalgae species, E. cf. polyphem, and identify pathways and genes of importance related to biofuel production. RESULTS: We performed the de novo assembly of E. cf. polyp