WorldWideScience

Sample records for biosynthetic gene cluster

  1. Minimum Information about a Biosynthetic Gene cluster

    NARCIS (Netherlands)

    Medema, M.H.; Kottmann, Renzo; Yilmaz, Pelin; Cummings, Matthew; Biggins, J.B.; Blin, Kai; Bruijn, De Irene; Chooi, Yit Heng; Claesen, Jan; Coates, R.C.; Cruz-Morales, Pablo; Duddela, Srikanth; Düsterhus, Stephanie; Edwards, Daniel J.; Fewer, David P.; Garg, Neha; Geiger, Christoph; Gomez-Escribano, Juan Pablo; Greule, Anja; Hadjithomas, Michalis; Haines, Anthony S.; Helfrich, Eric J.N.; Hillwig, Matthew L.; Ishida, Keishi; Jones, Adam C.; Jones, Carla S.; Jungmann, Katrin; Kegler, Carsten; Kim, Hyun Uk; Kötter, Peter; Krug, Daniel; Masschelein, Joleen; Melnik, Alexey V.; Mantovani, Simone M.; Monroe, Emily A.; Moore, Marcus; Moss, Nathan; Nützmann, Hans Wilhelm; Pan, Guohui; Pati, Amrita; Petras, Daniel; Reen, F.J.; Rosconi, Federico; Rui, Zhe; Tian, Zhenhua; Tobias, Nicholas J.; Tsunematsu, Yuta; Wiemann, Philipp; Wyckoff, Elizabeth; Yan, Xiaohui; Yim, Grace; Yu, Fengan; Xie, Yunchang; Aigle, Bertrand; Apel, Alexander K.; Balibar, Carl J.; Balskus, Emily P.; Barona-Gómez, Francisco; Bechthold, Andreas; Bode, Helge B.; Borriss, Rainer; Brady, Sean F.; Brakhage, Axel A.; Caffrey, Patrick; Cheng, Yi Qiang; Clardy, Jon; Cox, Russell J.; Mot, De René; Donadio, Stefano; Donia, Mohamed S.; Donk, Van Der Wilfred A.; Dorrestein, Pieter C.; Doyle, Sean; Driessen, Arnold J.M.; Ehling-Schulz, Monika; Entian, Karl Dieter; Fischbach, Michael A.; Gerwick, Lena; Gerwick, William H.; Gross, Harald; Gust, Bertolt; Hertweck, Christian; Höfte, Monica; Jensen, Susan E.; Ju, Jianhua; Katz, Leonard; Kaysser, Leonard; Klassen, Jonathan L.; Keller, Nancy P.; Kormanec, Jan; Kuipers, Oscar P.; Kuzuyama, Tomohisa; Kyrpides, Nikos C.; Kwon, Hyung Jin; Lautru, Sylvie; Lavigne, Rob; Lee, Chia Y.; Linquan, Bai; Liu, Xinyu; Liu, Wen; Luzhetskyy, Andriy; Mahmud, Taifo; Mast, Yvonne; Méndez, Carmen; Metsä-Ketelä, Mikko; Micklefield, Jason; Mitchell, Douglas A.; Moore, Bradley S.; Moreira, Leonilde M.; Müller, Rolf; Neilan, Brett A.; Nett, Markus; Nielsen, Jens; O'Gara, Fergal; Oikawa, Hideaki; Osbourn, Anne; Osburne, Marcia S.; Ostash, Bohdan; Payne, Shelley M.; Pernodet, Jean Luc; Petricek, Miroslav; Piel, Jörn; Ploux, Olivier; Raaijmakers, Jos M.; Salas, José A.; Schmitt, Esther K.; Scott, Barry; Seipke, Ryan F.; Shen, Ben; Sherman, David H.; Sivonen, Kaarina; Smanski, Michael J.; Sosio, Margherita; Stegmann, Evi; Süssmuth, Roderich D.; Tahlan, Kapil; Thomas, Christopher M.; Tang, Yi; Truman, Andrew W.; Viaud, Muriel; Walton, Jonathan D.; Walsh, Christopher T.; Weber, Tilmann; Wezel, Van Gilles P.; Wilkinson, Barrie; Willey, Joanne M.; Wohlleben, Wolfgang; Wright, Gerard D.; Ziemert, Nadine; Zhang, Changsheng; Zotchev, Sergey B.; Breitling, Rainer; Takano, Eriko; Glöckner, Frank Oliver

    2015-01-01

    A wide variety of enzymatic pathways that produce specialized metabolites in bacteria, fungi and plants are known to be encoded in biosynthetic gene clusters. Information about these clusters, pathways and metabolites is currently dispersed throughout the literature, making it difficult to exploi

  2. Minimum Information about a Biosynthetic Gene cluster : commentary

    NARCIS (Netherlands)

    Medema, Marnix H; Kottmann, Renzo; Yilmaz, Pelin; Cummings, Matthew; Biggins, John B; Blin, Kai; de Bruijn, Irene; Chooi, Yit Heng; Claesen, Jan; Coates, R Cameron; Cruz-Morales, Pablo; Duddela, Srikanth; Dusterhus, Stephanie; Edwards, Daniel J; Fewer, David P; Garg, Neha; Geiger, Christoph; Gomez-Escribano, Juan Pablo; Greule, Anja; Hadjithomas, Michalis; Haines, Anthony S; Helfrich, Eric J N; Hillwig, Matthew L; Ishida, Keishi; Jones, Adam C; Jones, Carla S; Jungmann, Katrin; Kegler, Carsten; Kim, Hyun Uk; Kotter, Peter; Krug, Daniel; Masschelein, Joleen; Melnik, Alexey V; Mantovani, Simone M; Monroe, Emily A; Moore, Marcus; Moss, Nathan; Nutzmann, Hans-Wilhelm; Pan, Guohui; Pati, Amrita; Petras, Daniel; Reen, F Jerry; Rosconi, Federico; Rui, Zhe; Tian, Zhenhua; Tobias, Nicholas J; Tsunematsu, Yuta; Wiemann, Philipp; Wyckoff, Elizabeth; Yan, Xiaohui; Yim, Grace; Yu, Fengan; Xie, Yunchang; Aigle, Bertrand; Apel, Alexander K; Balibar, Carl J; Balskus, Emily P; Barona-Gomez, Francisco; Bechthold, Andreas; Bode, Helge B; Borriss, Rainer; Brady, Sean F; Brakhage, Axel A; Caffrey, Patrick; Cheng, Yi-Qiang; Clardy, Jon; Cox, Russell J; De Mot, Rene; Donadio, Stefano; Donia, Mohamed S; van der Donk, Wilfred A; Dorrestein, Pieter C; Doyle, Sean; Driessen, Arnold J M; Ehling-Schulz, Monika; Entian, Karl-Dieter; Fischbach, Michael A; Gerwick, Lena; Gerwick, William H; Gross, Harald; Gust, Bertolt; Hertweck, Christian; Hofte, Monica; Jensen, Susan E; Ju, Jianhua; Katz, Leonard; Kaysser, Leonard; Klassen, Jonathan L; Keller, Nancy P; Kormanec, Jan; Kuipers, Oscar P; Kuzuyama, Tomohisa; Kyrpides, Nikos C; Kwon, Hyung-Jin; Lautru, Sylvie; Lavigne, Rob; Lee, Chia Y; Linquan, Bai; Liu, Xinyu; Liu, Wen; Luzhetskyy, Andriy; Mahmud, Taifo; Mast, Yvonne; Mendez, Carmen; Metsa-Ketela, Mikko; Micklefield, Jason; Mitchell, Douglas A; Moore, Bradley S; Moreira, Leonilde M; Muller, Rolf; Neilan, Brett A; Nett, Markus; Nielsen, Jens; O'Gara, Fergal; Oikawa, Hideaki; Osbourn, Anne; Osburne, Marcia S; Ostash, Bohdan; Payne, Shelley M; Pernodet, Jean-Luc; Petricek, Miroslav; Piel, Jorn; Ploux, Olivier; Raaijmakers, Jos M; Salas, Jose A; Schmitt, Esther K; Scott, Barry; Seipke, Ryan F; Shen, Ben; Sherman, David H; Sivonen, Kaarina; Smanski, Michael J; Sosio, Margherita; Stegmann, Evi; Sussmuth, Roderich D; Tahlan, Kapil; Thomas, Christopher M; Tang, Yi; Truman, Andrew W; Viaud, Muriel; Walton, Jonathan D; Walsh, Christopher T; Weber, Tilmann; van Wezel, Gilles P; Wilkinson, Barrie; Willey, Joanne M; Wohlleben, Wolfgang; Wright, Gerard D; Ziemert, Nadine; Zhang, Changsheng; Zotchev, Sergey B; Breitling, Rainer; Takano, Eriko; Glockner, Frank Oliver

    2015-01-01

    A wide variety of enzymatic pathways that produce specialized metabolites in bacteria, fungi and plants are known to be encoded in biosynthetic gene clusters. Information about these clusters, pathways and metabolites is currently dispersed throughout the literature, making it difficult to exploit.

  3. Identification of the Scopularide Biosynthetic Gene Cluster in Scopulariopsis brevicaulis.

    Science.gov (United States)

    Lukassen, Mie Bech; Saei, Wagma; Sondergaard, Teis Esben; Tamminen, Anu; Kumar, Abhishek; Kempken, Frank; Wiebe, Marilyn G; Sørensen, Jens Laurids

    2015-07-01

    Scopularide A is a promising potent anticancer lipopeptide isolated from a marine derived Scopulariopsis brevicaulis strain. The compound consists of a reduced carbon chain (3-hydroxy-methyldecanoyl) attached to five amino acids (glycine, l-valine, d-leucine, l-alanine, and l-phenylalanine). Using the newly sequenced S. brevicaulis genome we were able to identify the putative biosynthetic gene cluster using genetic information from the structurally related emericellamide A from Aspergillus nidulans and W493-B from Fusarium pseudograminearum. The scopularide A gene cluster includes a nonribosomal peptide synthetase (NRPS1), a polyketide synthase (PKS2), a CoA ligase, an acyltransferase, and a transcription factor. Homologous recombination was low in S. brevicaulis so the local transcription factor was integrated randomly under a constitutive promoter, which led to a three to four-fold increase in scopularide A production. This indirectly verifies the identity of the proposed biosynthetic gene cluster. PMID:26184239

  4. Identification of the Scopularide Biosynthetic Gene Cluster in Scopulariopsis brevicaulis

    Directory of Open Access Journals (Sweden)

    Mie Bech Lukassen

    2015-07-01

    Full Text Available Scopularide A is a promising potent anticancer lipopeptide isolated from a marine derived Scopulariopsis brevicaulis strain. The compound consists of a reduced carbon chain (3-hydroxy-methyldecanoyl attached to five amino acids (glycine, l-valine, d-leucine, l-alanine, and l-phenylalanine. Using the newly sequenced S. brevicaulis genome we were able to identify the putative biosynthetic gene cluster using genetic information from the structurally related emericellamide A from Aspergillus nidulans and W493-B from Fusarium pseudograminearum. The scopularide A gene cluster includes a nonribosomal peptide synthetase (NRPS1, a polyketide synthase (PKS2, a CoA ligase, an acyltransferase, and a transcription factor. Homologous recombination was low in S. brevicaulis so the local transcription factor was integrated randomly under a constitutive promoter, which led to a three to four-fold increase in scopularide A production. This indirectly verifies the identity of the proposed biosynthetic gene cluster.

  5. Identification of the Scopularide Biosynthetic Gene Cluster in Scopulariopsis brevicaulis

    Science.gov (United States)

    Lukassen, Mie Bech; Saei, Wagma; Sondergaard, Teis Esben; Tamminen, Anu; Kumar, Abhishek; Kempken, Frank; Wiebe, Marilyn G.; Sørensen, Jens Laurids

    2015-01-01

    Scopularide A is a promising potent anticancer lipopeptide isolated from a marine derived Scopulariopsis brevicaulis strain. The compound consists of a reduced carbon chain (3-hydroxy-methyldecanoyl) attached to five amino acids (glycine, l-valine, d-leucine, l-alanine, and l-phenylalanine). Using the newly sequenced S. brevicaulis genome we were able to identify the putative biosynthetic gene cluster using genetic information from the structurally related emericellamide A from Aspergillus nidulans and W493-B from Fusarium pseudograminearum. The scopularide A gene cluster includes a nonribosomal peptide synthetase (NRPS1), a polyketide synthase (PKS2), a CoA ligase, an acyltransferase, and a transcription factor. Homologous recombination was low in S. brevicaulis so the local transcription factor was integrated randomly under a constitutive promoter, which led to a three to four-fold increase in scopularide A production. This indirectly verifies the identity of the proposed biosynthetic gene cluster. PMID:26184239

  6. Identification of the Scopularide Biosynthetic Gene Cluster in Scopulariopsis brevicaulis

    OpenAIRE

    Mie Bech Lukassen; Wagma Saei; Teis Esben Sondergaard; Anu Tamminen; Abhishek Kumar; Frank Kempken; Wiebe, Marilyn G.; Jens Laurids Sørensen

    2015-01-01

    Scopularide A is a promising potent anticancer lipopeptide isolated from a marine derived Scopulariopsis brevicaulis strain. The compound consists of a reduced carbon chain (3-hydroxy-methyldecanoyl) attached to five amino acids (glycine, l-valine, d-leucine, l-alanine, and l-phenylalanine). Using the newly sequenced S. brevicaulis genome we were able to identify the putative biosynthetic gene cluster using genetic information from the structurally related emericellamide A from Aspergillus n...

  7. Variation in the Trichothecene Mycotoxin Biosynthetic Gene Cluster in Fusarium

    Science.gov (United States)

    Trichothecene mycotoxins are produced by some plant pathogenic species of the fungus Fusarium and can contribute to its virulence on some plants. In Fusarium graminearum and F. sporotrichioides trichothecene biosynthetic enzymes are encoded at three loci: the single-gene TRI101 locus; the two-gene ...

  8. Nonlinear Biosynthetic Gene Cluster Dose Effect on Penicillin Production by Penicillium chrysogenum

    NARCIS (Netherlands)

    Nijland, Jeroen G.; Ebbendorf, Bjorg; Woszczynska, Marta; Boer, Remon; Bovenberg, Roel A. L.; Driessen, Arnold J. M.

    2010-01-01

    Industrial penicillin production levels by the filamentous fungus Penicillium chrysogenum increased dramatically by classical strain improvement. High-yielding strains contain multiple copies of the penicillin biosynthetic gene cluster that encodes three key enzymes of the beta-lactam biosynthetic p

  9. Precise cloning and tandem integration of large polyketide biosynthetic gene cluster using Streptomyces artificial chromosome system

    OpenAIRE

    Nah, Hee-Ju; Woo, Min-Woo; Choi, Si-Sun; Kim, Eung-Soo

    2015-01-01

    Background Direct cloning combined with heterologous expression of a secondary metabolite biosynthetic gene cluster has become a useful strategy for production improvement and pathway modification of potentially valuable natural products present at minute quantities in original isolates of actinomycetes. However, precise cloning and efficient overexpression of an entire biosynthetic gene cluster remains challenging due to the ineffectiveness of current genetic systems in manipulating large-si...

  10. Alanylclavam Biosynthetic Genes Are Clustered Together with One Group of Clavulanic Acid Biosynthetic Genes in Streptomyces clavuligerus▿ §

    Science.gov (United States)

    Zelyas, Nathan J.; Cai, Hui; Kwong, Thomas; Jensen, Susan E.

    2008-01-01

    Streptomyces clavuligerus produces at least five different clavam metabolites, including clavulanic acid and the methionine antimetabolite, alanylclavam. In vitro transposon mutagenesis was used to analyze a 13-kb region upstream of the known paralogue gene cluster. The paralogue cluster includes one group of clavulanic acid biosynthetic genes in S. clavuligerus. Twelve open reading frames (ORFs) were found in this area, and mutants were generated in each using either in vitro transposon or PCR-targeted mutagenesis. Mutants with defects in any of the genes orfA, orfB, orfC, or orfD were unable to produce alanylclavam but could produce all of the other clavams, including clavulanic acid. orfA encodes a predicted hydroxymethyltransferase, orfB encodes a YjgF/YER057c/UK114-family regulatory protein, orfC encodes an aminotransferase, and orfD encodes a dehydratase. All of these types of proteins are normally involved in amino acid metabolism. Mutants in orfC or orfD also accumulated a novel clavam metabolite instead of alanylclavam, and a complemented orfC mutant was able to produce trace amounts of alanylclavam while still producing the novel clavam. Mass spectrometric analyses, together with consideration of the enzymes involved in its production, led to tentative identification of the novel clavam as 8-OH-alanylclavam, an intermediate in the proposed alanylclavam biosynthetic pathway. PMID:18931110

  11. Design-based re-engineering of biosynthetic gene clusters: plug-and-play in practice

    OpenAIRE

    Frasch, Hans-Jörg; Medema, Marnix H.; Takano, Eriko; Breitling, Rainer; Gago, Federico; Parayil, Ajikumar

    2013-01-01

    Synthetic biology is revolutionizing the way in which the biosphere is explored for natural products. Through computational genome mining, thousands of biosynthetic gene clusters are being identified in microbial genomes, which constitute a rich source of potential novel pharmaceuticals. New methods are currently being devised to prioritize these gene clusters in terms of their potential for yielding biochemical novelty. High-potential gene clusters from any biological source can then be acti...

  12. Variability in mycotoxin biosynthetic genes and gene clusters in Fusarium and its implications for mycotoxin contamination of crops

    Science.gov (United States)

    The Fusarium metabolites fumonisins and trichothecenes are among the mycotoxins of greatest concern to food and feed safety worldwide. As with other fungal secondary metabolites, mycotoxin biosynthetic genes are often located adjacent to one another in gene clusters. Thus, fumonisin biosynthetic gen...

  13. Complete Genome Sequence of the Filamentous Fungus Aspergillus westerdijkiae Reveals the Putative Biosynthetic Gene Cluster of Ochratoxin A.

    Science.gov (United States)

    Chakrabortti, Alolika; Li, Jinming; Liang, Zhao-Xun

    2016-01-01

    Ochratoxin A (OTA) is a common mycotoxin that contaminates food and agricultural products. Sequencing of the complete genome of Aspergillus westerdijkiae, a major producer of OTA, reveals more than 50 biosynthetic gene clusters, including a putative OTA biosynthetic gene cluster that encodes a dozen of enzymes, transporters, and regulatory proteins. PMID:27635003

  14. Comparative Analysis of the Biosynthetic Gene Clusters and Pathways for Three Structurally Related Antitumor Antibiotics Bleomycin, Tallysomycin and Zorbamycin†

    OpenAIRE

    Galm, Ute; Wendt-Pienkowski, Evelyn; Wang, Liyan; Huang, Sheng-Xiong; Unsin, Claudia; Tao, Meifeng; Coughlin, Jane M.; Shen, Ben

    2011-01-01

    The biosynthetic gene clusters for the glycopeptide antitumor antibiotics bleomycin (BLM), tallysomycin (TLM), and zorbamycin (ZBM) have been recently cloned and characterized from Streptomyces verticillus ATCC15003, Streptoalloteichus hindustanus E465-94 ATCC31158, and Streptomyces flavoviridis ATCC21892, respectively. The striking similarities and differences among the biosynthetic gene clusters for the three structurally related glycopeptide antitumor antibiotics prompted us to compare and...

  15. Complete Genome Sequence of the Filamentous Fungus Aspergillus westerdijkiae Reveals the Putative Biosynthetic Gene Cluster of Ochratoxin A

    Science.gov (United States)

    Chakrabortti, Alolika; Li, Jinming

    2016-01-01

    Ochratoxin A (OTA) is a common mycotoxin that contaminates food and agricultural products. Sequencing of the complete genome of Aspergillus westerdijkiae, a major producer of OTA, reveals more than 50 biosynthetic gene clusters, including a putative OTA biosynthetic gene cluster that encodes a dozen of enzymes, transporters, and regulatory proteins. PMID:27635003

  16. Design-based re-engineering of biosynthetic gene clusters : plug-and-play in practice

    NARCIS (Netherlands)

    Frasch, Hans-Jörg; Medema, Marnix H.; Takano, Eriko; Breitling, Rainer; Gago, Federico; Parayil, Ajikumar

    2013-01-01

    Synthetic biology is revolutionizing the way in which the biosphere is explored for natural products. Through computational genome mining, thousands of biosynthetic gene clusters are being identified in microbial genomes, which constitute a rich source of potential novel pharmaceuticals. New methods

  17. A genomics based discovery of secondary metabolite biosynthetic gene clusters in Aspergillus ustus.

    Directory of Open Access Journals (Sweden)

    Borui Pi

    Full Text Available Secondary metabolites (SMs produced by Aspergillus have been extensively studied for their crucial roles in human health, medicine and industrial production. However, the resulting information is almost exclusively derived from a few model organisms, including A. nidulans and A. fumigatus, but little is known about rare pathogens. In this study, we performed a genomics based discovery of SM biosynthetic gene clusters in Aspergillus ustus, a rare human pathogen. A total of 52 gene clusters were identified in the draft genome of A. ustus 3.3904, such as the sterigmatocystin biosynthesis pathway that was commonly found in Aspergillus species. In addition, several SM biosynthetic gene clusters were firstly identified in Aspergillus that were possibly acquired by horizontal gene transfer, including the vrt cluster that is responsible for viridicatumtoxin production. Comparative genomics revealed that A. ustus shared the largest number of SM biosynthetic gene clusters with A. nidulans, but much fewer with other Aspergilli like A. niger and A. oryzae. These findings would help to understand the diversity and evolution of SM biosynthesis pathways in genus Aspergillus, and we hope they will also promote the development of fungal identification methodology in clinic.

  18. Cloning and characterization of the goadsporin biosynthetic gene cluster from Streptomyces sp. TP-A0584.

    Science.gov (United States)

    Onaka, Hiroyasu; Nakaho, Mizuho; Hayashi, Keiko; Igarashi, Yasuhiro; Furumai, Tamotsu

    2005-12-01

    The biosynthetic gene cluster of goadsporin, a polypeptide antibiotic containing thiazole and oxazole rings, was cloned from Streptomyces sp. TP-A0584. The cluster contains a structural gene, godA, and nine god (goadsporin) genes involved in post-translational modification, immunity and transcriptional regulation. Although the gene organization is similar to typical bacteriocin biosynthetic gene clusters, each goadsporin biosynthetic gene shows low homology to these genes. Goadsporin biosynthesis is initiated by the translation of godA, and the subsequent cyclization, dehydration and acetylation are probably catalysed by godD, godE, godF, godG and godH gene products. godI shows high similarity to the 54 kDa subunit of the signal recognition particle and plays an important role in goadsporin immunity. Furthermore, four goadsporin analogues were produced by site-directed mutagenesis of godA, suggesting that this biosynthesis machinery is used for the heterocyclization of peptides. PMID:16339937

  19. Identification and analysis of the paulomycin biosynthetic gene cluster and titer improvement of the paulomycins in Streptomyces paulus NRRL 8115.

    Directory of Open Access Journals (Sweden)

    Jine Li

    Full Text Available The paulomycins are a group of glycosylated compounds featuring a unique paulic acid moiety. To locate their biosynthetic gene clusters, the genomes of two paulomycin producers, Streptomyces paulus NRRL 8115 and Streptomyces sp. YN86, were sequenced. The paulomycin biosynthetic gene clusters were defined by comparative analyses of the two genomes together with the genome of the third paulomycin producer Streptomyces albus J1074. Subsequently, the identity of the paulomycin biosynthetic gene cluster was confirmed by inactivation of two genes involved in biosynthesis of the paulomycose branched chain (pau11 and the ring A moiety (pau18 in Streptomyces paulus NRRL 8115. After determining the gene cluster boundaries, a convergent biosynthetic model was proposed for paulomycin based on the deduced functions of the pau genes. Finally, a paulomycin high-producing strain was constructed by expressing an activator-encoding gene (pau13 in S. paulus, setting the stage for future investigations.

  20. Identification of a new diterpene biosynthetic gene cluster that produces O-methylkolavelool in Herpetosiphon aurantiacus.

    Science.gov (United States)

    Nakano, Chiaki; Oshima, Misaki; Kurashima, Nodoka; Hoshino, Tsutomu

    2015-03-23

    Diterpenoids are usually found in plants and fungi, but are rare in bacteria. We have previously reported new diterpenes, named tuberculosinol and isotuberculosinol, which are generated from the Mycobacterium tuberculosis gene products Rv3377c and Rv3378c. No homologous gene was found at that time, but we recently found highly homologous proteins in the Herpetosiphon aurantiacus ATCC 23779 genome. Haur_2145 was a class II diterpene cyclase responsible for the conversion of geranylgeranyl diphosphate into kolavenyl diphosphate. Haur_2146, homologous to Rv3378c, synthesized (+)-kolavelool through the nucleophilic addition of a water molecule to the incipient cation formed after the diphosphate moiety was released. Haur_2147 afforded (+)-O-methylkolavelool from (+)-kolavelool, so this enzyme was an O-methyltransferase. This new diterpene was indeed detected in H. aurantiacus cells. This is the first report of the identification of a (+)-O-methylkolavelool biosynthetic gene cluster.

  1. Structural Diversification of Lyngbyatoxin A by Host-Dependent Heterologous Expression of the tleABC Biosynthetic Gene Cluster.

    Science.gov (United States)

    Zhang, Lihan; Hoshino, Shotaro; Awakawa, Takayoshi; Wakimoto, Toshiyuki; Abe, Ikuro

    2016-08-01

    Natural products have enormous structural diversity, yet little is known about how such diversity is achieved in nature. Here we report the structural diversification of a cyanotoxin-lyngbyatoxin A-and its biosynthetic intermediates by heterologous expression of the Streptomyces-derived tleABC biosynthetic gene cluster in three different Streptomyces hosts: S. lividans, S. albus, and S. avermitilis. Notably, the isolated lyngbyatoxin derivatives, including four new natural products, were biosynthesized by crosstalk between the heterologous tleABC gene cluster and the endogenous host enzymes. The simple strategy described here has expanded the structural diversity of lyngbyatoxin A and its biosynthetic intermediates, and provides opportunities for investigation of the currently underestimated hidden biosynthetic crosstalk.

  2. antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters

    DEFF Research Database (Denmark)

    Weber, Tilmann; Blin, Kai; Duddela, Srikanth;

    2015-01-01

    Microbial secondary metabolism constitutes a rich source of antibiotics, chemotherapeutics, insecticides and other high-value chemicals. Genome mining of gene clusters that encode the biosynthetic pathways for these metabolites has become a key methodology for novel compound discovery. In 2011, we...... of the recently published ClusterFinder algorithm now allows using this probabilistic algorithm to detect putative gene clusters of unknown types. Also, a new dereplication variant of the ClusterBlast module now identifies similarities of identified clusters to any of 1172 clusters with known end products...

  3. Sequencing, physical organization and kinetic expression of the patulin biosynthetic gene cluster from Penicillium expansum

    International Nuclear Information System (INIS)

    Patulin is a polyketide-derived mycotoxin produced by numerous filamentous fungi. Among them, Penicillium expansum is by far the most problematic species. This fungus is a destructive phytopathogen capable of growing on fruit, provoking the blue mold decay of apples and producing significant amounts of patulin. The biosynthetic pathway of this mycotoxin is chemically well-characterized, but its genetic bases remain largely unknown with only few characterized genes in less economic relevant species. The present study consisted of the identification and positional organization of the patulin gene cluster in P. expansum strain NRRL 35695. Several amplification reactions were performed with degenerative primers that were designed based on sequences from the orthologous genes available in other species. An improved genome Walking approach was used in order to sequence the remaining adjacent genes of the cluster. RACE-PCR was also carried out from mRNAs to determine the start and stop codons of the coding sequences. The patulin gene cluster in P. expansum consists of 15 genes in the following order: patH, patG, patF, patE, patD, patC, patB, patA, patM, patN, patO, patL, patI, patJ, and patK. These genes share 60–70% of identity with orthologous genes grouped differently, within a putative patulin cluster described in a non-producing strain of Aspergillus clavatus. The kinetics of patulin cluster genes expression was studied under patulin-permissive conditions (natural apple-based medium) and patulin-restrictive conditions (Eagle's minimal essential medium), and demonstrated a significant association between gene expression and patulin production. In conclusion, the sequence of the patulin cluster in P. expansum constitutes a key step for a better understanding of themechanisms leading to patulin production in this fungus. It will allow the role of each gene to be elucidated, and help to define strategies to reduce patulin production in apple-based products

  4. antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters.

    Science.gov (United States)

    Weber, Tilmann; Blin, Kai; Duddela, Srikanth; Krug, Daniel; Kim, Hyun Uk; Bruccoleri, Robert; Lee, Sang Yup; Fischbach, Michael A; Müller, Rolf; Wohlleben, Wolfgang; Breitling, Rainer; Takano, Eriko; Medema, Marnix H

    2015-07-01

    Microbial secondary metabolism constitutes a rich source of antibiotics, chemotherapeutics, insecticides and other high-value chemicals. Genome mining of gene clusters that encode the biosynthetic pathways for these metabolites has become a key methodology for novel compound discovery. In 2011, we introduced antiSMASH, a web server and stand-alone tool for the automatic genomic identification and analysis of biosynthetic gene clusters, available at http://antismash.secondarymetabolites.org. Here, we present version 3.0 of antiSMASH, which has undergone major improvements. A full integration of the recently published ClusterFinder algorithm now allows using this probabilistic algorithm to detect putative gene clusters of unknown types. Also, a new dereplication variant of the ClusterBlast module now identifies similarities of identified clusters to any of 1172 clusters with known end products. At the enzyme level, active sites of key biosynthetic enzymes are now pinpointed through a curated pattern-matching procedure and Enzyme Commission numbers are assigned to functionally classify all enzyme-coding genes. Additionally, chemical structure prediction has been improved by incorporating polyketide reduction states. Finally, in order for users to be able to organize and analyze multiple antiSMASH outputs in a private setting, a new XML output module allows offline editing of antiSMASH annotations within the Geneious software.

  5. Yeast homologous recombination-based promoter engineering for the activation of silent natural product biosynthetic gene clusters.

    Science.gov (United States)

    Montiel, Daniel; Kang, Hahk-Soo; Chang, Fang-Yuan; Charlop-Powers, Zachary; Brady, Sean F

    2015-07-21

    Large-scale sequencing of prokaryotic (meta)genomic DNA suggests that most bacterial natural product gene clusters are not expressed under common laboratory culture conditions. Silent gene clusters represent a promising resource for natural product discovery and the development of a new generation of therapeutics. Unfortunately, the characterization of molecules encoded by these clusters is hampered owing to our inability to express these gene clusters in the laboratory. To address this bottleneck, we have developed a promoter-engineering platform to transcriptionally activate silent gene clusters in a model heterologous host. Our approach uses yeast homologous recombination, an auxotrophy complementation-based yeast selection system and sequence orthogonal promoter cassettes to exchange all native promoters in silent gene clusters with constitutively active promoters. As part of this platform, we constructed and validated a set of bidirectional promoter cassettes consisting of orthogonal promoter sequences, Streptomyces ribosome binding sites, and yeast selectable marker genes. Using these tools we demonstrate the ability to simultaneously insert multiple promoter cassettes into a gene cluster, thereby expediting the reengineering process. We apply this method to model active and silent gene clusters (rebeccamycin and tetarimycin) and to the silent, cryptic pseudogene-containing, environmental DNA-derived Lzr gene cluster. Complete promoter refactoring and targeted gene exchange in this "dead" cluster led to the discovery of potent indolotryptoline antiproliferative agents, lazarimides A and B. This potentially scalable and cost-effective promoter reengineering platform should streamline the discovery of natural products from silent natural product biosynthetic gene clusters.

  6. Genome mining of the hitachimycin biosynthetic gene cluster: involvement of a phenylalanine-2,3-aminomutase in biosynthesis.

    Science.gov (United States)

    Kudo, Fumitaka; Kawamura, Koichi; Uchino, Asuka; Miyanaga, Akimasa; Numakura, Mario; Takayanagi, Ryuichi; Eguchi, Tadashi

    2015-04-13

    Hitachimycin is a macrolactam antibiotic with (S)-β-phenylalanine (β-Phe) at the starter position of its polyketide skeleton. To understand the incorporation mechanism of β-Phe and the modification mechanism of the unique polyketide skeleton, the biosynthetic gene cluster for hitachimycin in Streptomyces scabrisporus was identified by genome mining. The identified gene cluster contains a putative phenylalanine-2,3-aminomutase (PAM), five polyketide synthases, four β-amino-acid-carrying enzymes, and a characteristic amidohydrolase. A hitA knockout mutant showed no hitachimycin production, but antibiotic production was restored by feeding with (S)-β-Phe. We also confirmed the enzymatic activity of the HitA PAM. The results suggest that the identified gene cluster is responsible for the biosynthesis of hitachimycin. A plausible biosynthetic pathway for hitachimycin, including a unique polyketide skeletal transformation mechanism, is proposed.

  7. Biosynthetic gene clusters for relevant secondary metabolites produced by Penicillium roqueforti in blue cheeses.

    Science.gov (United States)

    García-Estrada, Carlos; Martín, Juan-Francisco

    2016-10-01

    Ripening of blue-veined cheeses, such as the French Bleu and Roquefort, the Italian Gorgonzola, the English Stilton, the Danish Danablu or the Spanish Cabrales, Picón Bejes-Tresviso, and Valdeón, requires the growth and enzymatic activity of the mold Penicillium roqueforti, which is responsible for the characteristic texture, blue-green spots, and aroma of these types of cheeses. This filamentous fungus is able to synthesize different secondary metabolites, including andrastins, mycophenolic acid, and several mycotoxins, such as roquefortines C and D, PR-toxin and eremofortins, isofumigaclavines A and B, and festuclavine. This review provides a detailed description of the main secondary metabolites produced by P. roqueforti in blue cheese, giving a special emphasis to roquefortine, PR-toxin and mycophenolic acid, and their biosynthetic gene clusters and pathways. The knowledge of these clusters and secondary metabolism pathways, together with the ability of P. roqueforti to produce beneficial secondary metabolites, is of interest for commercial purposes. PMID:27554495

  8. Cloning, sequencing, and functional analysis of the biosynthetic gene cluster of macrolactam antibiotic vicenistatin in Streptomyces halstedii.

    Science.gov (United States)

    Ogasawara, Yasushi; Katayama, Kinya; Minami, Atsushi; Otsuka, Miyuki; Eguchi, Tadashi; Kakinuma, Katsumi

    2004-01-01

    Vicenistatin, an antitumor antibiotic isolated from Streptomyces halstedii, is a unique 20-membered macrocyclic lactam with a novel aminosugar vicenisamine. The vicenistatin biosynthetic gene cluster (vin) spanning approximately 64 kbp was cloned and sequenced. The cluster contains putative genes for the aglycon biosynthesis including four modular polyketide synthases (PKSs), glutamate mutase, acyl CoA-ligase, and AMP-ligase. Also found in the cluster are genes of NDP-hexose 4,6-dehydratase and aminotransferase for vicenisamine biosynthesis. For the functional confirmation of the cluster, a putative glycosyltransferase gene product, VinC, was heterologously expressed, and the vicenisamine transfer reaction to the aglycon was chemically proved. A unique feature of the vicenistatin PKS is that the loading module contains only an acyl carrier protein domain, in contrast to other known PKS-loading modules containing certain activation domains. Activation of the starter acyl group by separate polypeptides is postulated as well. PMID:15112997

  9. IMG-ABC: An Atlas of Biosynthetic Gene Clusters to Fuel the Discovery of Novel Secondary Metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Chen, I-Min; Chu, Ken; Ratner, Anna; Palaniappan, Krishna; Huang, Jinghua; Reddy, T. B.K.; Cimermancic, Peter; Fischbach, Michael; Ivanova, Natalia; Markowitz, Victor; Kyrpides, Nikos; Pati, Amrita

    2014-10-28

    In the discovery of secondary metabolites (SMs), large-scale analysis of sequence data is a promising exploration path that remains largely underutilized due to the lack of relevant computational resources. We present IMG-ABC (https://img.jgi.doe.gov/abc/) -- An Atlas of Biosynthetic gene Clusters within the Integrated Microbial Genomes (IMG) system1. IMG-ABC is a rich repository of both validated and predicted biosynthetic clusters (BCs) in cultured isolates, single-cells and metagenomes linked with the SM chemicals they produce and enhanced with focused analysis tools within IMG. The underlying scalable framework enables traversal of phylogenetic dark matter and chemical structure space -- serving as a doorway to a new era in the discovery of novel molecules.

  10. Cloning, Characterization and Heterologous Expression of the Indolocarbazole Biosynthetic Gene Cluster from Marine-Derived Streptomyces sanyensis FMA

    Directory of Open Access Journals (Sweden)

    Wenli Li

    2013-02-01

    Full Text Available The indolocarbazole (ICZ alkaloids have attracted much attention due to their unique structures and potential therapeutic applications. A series of ICZs were recently isolated and identified from a marine-derived actinomycete strain, Streptomyces sanyensis FMA. To elucidate the biosynthetic machinery associated with ICZs production in S. sanyensis FMA, PCR using degenerate primers was carried out to clone the FAD-dependent monooxygenase gene fragment for ICZ ring formation, which was used as a probe to isolate the 34.6-kb DNA region containing the spc gene cluster. Sequence analysis revealed genes for ICZ ring formation (spcO, D, P, C, sugar unit formation (spcA, B, E, K, J, I, glycosylation (spcN, G, methylation (spcMA, MB, as well as regulation (spcR. Their involvement in ICZ biosynthesis was confirmed by gene inactivation and heterologous expression in Streptomyces coelicolor M1152. This work represents the first cloning and characterization of an ICZ gene cluster isolated from a marine-derived actinomycete strain and would be helpful for thoroughly understanding the biosynthetic mechanism of ICZ glycosides.

  11. Cloning, reassembling and integration of the entire nikkomycin biosynthetic gene cluster into Streptomyces ansochromogenes lead to an improved nikkomycin production

    Directory of Open Access Journals (Sweden)

    Yang Haihua

    2010-01-01

    Full Text Available Abstract Background Nikkomycins are a group of peptidyl nucleoside antibiotics produced by Streptomyces ansochromogenes. They are competitive inhibitors of chitin synthase and show potent fungicidal, insecticidal, and acaricidal activities. Nikkomycin X and Z are the main components produced by S. ansochromogenes. Generation of a high-producing strain is crucial to scale up nikkomycins production for further clinical trials. Results To increase the yields of nikkomycins, an additional copy of nikkomycin biosynthetic gene cluster (35 kb was introduced into nikkomycin producing strain, S. ansochromogenes 7100. The gene cluster was first reassembled into an integrative plasmid by Red/ET technology combining with classic cloning methods and then the resulting plasmid(pNIKwas introduced into S. ansochromogenes by conjugal transfer. Introduction of pNIK led to enhanced production of nikkomycins (880 mg L-1, 4 -fold nikkomycin X and 210 mg L-1, 1.8-fold nikkomycin Z in the resulting exconjugants comparing with the parent strain (220 mg L-1 nikkomycin X and 120 mg L-1 nikkomycin Z. The exconjugants are genetically stable in the absence of antibiotic resistance selection pressure. Conclusion A high nikkomycins producing strain (1100 mg L-1 nikkomycins was obtained by introduction of an extra nikkomycin biosynthetic gene cluster into the genome of S. ansochromogenes. The strategies presented here could be applicable to other bacteria to improve the yields of secondary metabolites.

  12. Increased glycopeptide production after overexpression of shikimate pathway genes being part of the balhimycin biosynthetic gene cluster

    DEFF Research Database (Denmark)

    Thykær, Jette; Nielsen, Jens; Wohlleben, W.;

    2010-01-01

    Amycolatopsis balhimycina produces the vancomycin-analogue balhimycin. The strain therefore serves as a model strain for glycopeptide antibiotic production. Previous characterisation of the balhimycin biosynthetic cluster had shown that the border sequences contained both, a putative 3-deoxy-d-ar...

  13. Insights into the evolution of macrolactam biosynthesis through cloning and comparative analysis of the biosynthetic gene cluster for a novel macrocyclic lactam, ML-449.

    Science.gov (United States)

    Jørgensen, Hanne; Degnes, Kristin F; Dikiy, Alexander; Fjaervik, Espen; Klinkenberg, Geir; Zotchev, Sergey B

    2010-01-01

    A new compound, designated ML-449, structurally similar to the known 20-membered macrolactam BE-14106, was isolated from a marine sediment-derived Streptomyces sp. Cloning and sequencing of the 83-kb ML-449 biosynthetic gene cluster revealed its high level of similarity to the BE-14106 gene cluster. Comparison of the respective biosynthetic pathways indicated that the difference in the compounds' structures stems from the incorporation of one extra acetate unit during the synthesis of the acyl side chain. A phylogenetic analysis of the beta-ketosynthase (KS) domains from polyketide synthases involved in the biosynthesis of macrolactams pointed to a common ancestry for the two clusters. Furthermore, the analysis demonstrated the formation of a macrolactam-specific subclade for the majority of the KS domains from several macrolactam-biosynthetic gene clusters, indicating a closer relationship between macrolactam clusters than with the macrolactone clusters included in the analysis. Some KS domains from the ML-449, BE-14106, and salinilactam gene clusters did, however, show a closer relationship with KS domains from the polyene macrolide clusters, suggesting potential acquisition rather than duplication of certain PKS genes. Comparison of the ML-449, BE-14106, vicenistatin, and salinilactam biosynthetic gene clusters indicated an evolutionary relationship between them and provided new insights into the processes governing the evolution of small-ring macrolactam biosynthesis. PMID:19854930

  14. Insights into the Evolution of Macrolactam Biosynthesis through Cloning and Comparative Analysis of the Biosynthetic Gene Cluster for a Novel Macrocyclic Lactam, ML-449 ▿ †

    Science.gov (United States)

    Jørgensen, Hanne; Degnes, Kristin F.; Dikiy, Alexander; Fjærvik, Espen; Klinkenberg, Geir; Zotchev, Sergey B.

    2010-01-01

    A new compound, designated ML-449, structurally similar to the known 20-membered macrolactam BE-14106, was isolated from a marine sediment-derived Streptomyces sp. Cloning and sequencing of the 83-kb ML-449 biosynthetic gene cluster revealed its high level of similarity to the BE-14106 gene cluster. Comparison of the respective biosynthetic pathways indicated that the difference in the compounds' structures stems from the incorporation of one extra acetate unit during the synthesis of the acyl side chain. A phylogenetic analysis of the β-ketosynthase (KS) domains from polyketide synthases involved in the biosynthesis of macrolactams pointed to a common ancestry for the two clusters. Furthermore, the analysis demonstrated the formation of a macrolactam-specific subclade for the majority of the KS domains from several macrolactam-biosynthetic gene clusters, indicating a closer relationship between macrolactam clusters than with the macrolactone clusters included in the analysis. Some KS domains from the ML-449, BE-14106, and salinilactam gene clusters did, however, show a closer relationship with KS domains from the polyene macrolide clusters, suggesting potential acquisition rather than duplication of certain PKS genes. Comparison of the ML-449, BE-14106, vicenistatin, and salinilactam biosynthetic gene clusters indicated an evolutionary relationship between them and provided new insights into the processes governing the evolution of small-ring macrolactam biosynthesis. PMID:19854930

  15. Clustered array of ochratoxin A biosynthetic genes in Aspergillus steynii and their expression patterns in permissive conditions.

    Science.gov (United States)

    Gil-Serna, Jessica; Vázquez, Covadonga; González-Jaén, María Teresa; Patiño, Belén

    2015-12-01

    Aspergillus steynii is probably the most relevant species of section Circumdati producing ochratoxin A (OTA). This mycotoxin contaminates a wide number of commodities and it is highly toxic for humans and animals. Little is known on the biosynthetic genes and their regulation in Aspergillus species. In this work, we identified and analysed three contiguous genes in A. steynii using 5'-RACE and genome walking approaches which predicted a cytochrome P450 monooxygenase (p450ste), a non-ribosomal peptide synthetase (nrpsste) and a polyketide synthase (pksste). These three genes were contiguous within a 20742 bp long genomic DNA fragment. Their corresponding cDNA were sequenced and their expression was analysed in three A. steynii strains using real time RT-PCR specific assays in permissive conditions in in vitro cultures. OTA was also analysed in these cultures. Comparative analyses of predicted genomic, cDNA and amino acid sequences were performed with sequences of similar gene functions. All the results obtained in these analyses were consistent and point out the involvement of these three genes in OTA biosynthesis by A. steynii and showed a co-ordinated expression pattern. This is the first time that a clustered organization OTA biosynthetic genes has been reported in Aspergillus genus. The results also suggested that this situation might be common in Aspergillus OTA-producing species and distinct to the one described for Penicillium species.

  16. Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis

    OpenAIRE

    Ikeda, Haruo; Nonomiya, Tomoko; Usami, Masayo; Ohta, Toshio; Ōmura, Satoshi

    1999-01-01

    Analysis of the gene cluster from Streptomyces avermitilis that governs the biosynthesis of the polyketide anthelmintic avermectin revealed that it contains four large ORFs encoding giant multifunctional polypeptides of the avermectin polyketide synthase (AVES 1, AVES 2, AVES 3, and AVES 4). These clustered polyketide synthase genes responsible for avermectin biosynthesis together encode 12 homologous sets of enzyme activities (modules), each catalyzing a specific round of polyketide chain el...

  17. The genome of tolypocladium inflatum: evolution, organization, and expression of the cyclosporin biosynthetic gene cluster.

    Directory of Open Access Journals (Sweden)

    Kathryn E Bushley

    2013-06-01

    Full Text Available The ascomycete fungus Tolypocladium inflatum, a pathogen of beetle larvae, is best known as the producer of the immunosuppressant drug cyclosporin. The draft genome of T. inflatum strain NRRL 8044 (ATCC 34921, the isolate from which cyclosporin was first isolated, is presented along with comparative analyses of the biosynthesis of cyclosporin and other secondary metabolites in T. inflatum and related taxa. Phylogenomic analyses reveal previously undetected and complex patterns of homology between the nonribosomal peptide synthetase (NRPS that encodes for cyclosporin synthetase (simA and those of other secondary metabolites with activities against insects (e.g., beauvericin, destruxins, etc., and demonstrate the roles of module duplication and gene fusion in diversification of NRPSs. The secondary metabolite gene cluster responsible for cyclosporin biosynthesis is described. In addition to genes necessary for cyclosporin biosynthesis, it harbors a gene for a cyclophilin, which is a member of a family of immunophilins known to bind cyclosporin. Comparative analyses support a lineage specific origin of the cyclosporin gene cluster rather than horizontal gene transfer from bacteria or other fungi. RNA-Seq transcriptome analyses in a cyclosporin-inducing medium delineate the boundaries of the cyclosporin cluster and reveal high levels of expression of the gene cluster cyclophilin. In medium containing insect hemolymph, weaker but significant upregulation of several genes within the cyclosporin cluster, including the highly expressed cyclophilin gene, was observed. T. inflatum also represents the first reference draft genome of Ophiocordycipitaceae, a third family of insect pathogenic fungi within the fungal order Hypocreales, and supports parallel and qualitatively distinct radiations of insect pathogens. The T. inflatum genome provides additional insight into the evolution and biosynthesis of cyclosporin and lays a foundation for further

  18. Next-generation sequencing approach for connecting secondary metabolites to biosynthetic gene clusters in fungi

    Directory of Open Access Journals (Sweden)

    Ralph A Cacho

    2015-01-01

    Full Text Available Genomics has revolutionized the research on fungal secondary metabolite biosynthesis. To elucidate the molecular and enzymatic mechanisms underlying the biosynthesis of a specific secondary metabolite compound, the important first step is often to find the genes that responsible for its synthesis. The accessibility to fungal genome sequences allows the bypass of the cumbersome traditional library construction and screening approach. The advance in next-generation sequencing (NGS technologies have further improved the speed and reduced the cost of microbial genome sequencing in the past few years, which has accelerated the research in this field. Here, we will present an example work flow for identifying the gene cluster encoding the biosynthesis of secondary metabolites of interest using an NGS approach. We will also review the different strategies that can be employed to pinpoint the targeted gene clusters rapidly by giving several examples stemming from our work.

  19. Phylogenomic Analysis of Natural Products Biosynthetic Gene Clusters Allows Discovery of Arseno-Organic Metabolites in Model Streptomycetes.

    Science.gov (United States)

    Cruz-Morales, Pablo; Kopp, Johannes Florian; Martínez-Guerrero, Christian; Yáñez-Guerra, Luis Alfonso; Selem-Mojica, Nelly; Ramos-Aboites, Hilda; Feldmann, Jörg; Barona-Gómez, Francisco

    2016-01-01

    Natural products from microbes have provided humans with beneficial antibiotics for millennia. However, a decline in the pace of antibiotic discovery exerts pressure on human health as antibiotic resistance spreads, a challenge that may better faced by unveiling chemical diversity produced by microbes. Current microbial genome mining approaches have revitalized research into antibiotics, but the empirical nature of these methods limits the chemical space that is explored.Here, we address the problem of finding novel pathways by incorporating evolutionary principles into genome mining. We recapitulated the evolutionary history of twenty-three enzyme families previously uninvestigated in the context of natural product biosynthesis in Actinobacteria, the most proficient producers of natural products. Our genome evolutionary analyses where based on the assumption that expanded-repurposed enzyme families-from central metabolism, occur frequently and thus have the potential to catalyze new conversions in the context of natural products biosynthesis. Our analyses led to the discovery of biosynthetic gene clusters coding for hidden chemical diversity, as validated by comparing our predictions with those from state-of-the-art genome mining tools; as well as experimentally demonstrating the existence of a biosynthetic pathway for arseno-organic metabolites in Streptomyces coelicolor and Streptomyces lividans, Using a gene knockout and metabolite profile combined strategy.As our approach does not rely solely on sequence similarity searches of previously identified biosynthetic enzymes, these results establish the basis for the development of an evolutionary-driven genome mining tool termed EvoMining that complements current platforms. We anticipate that by doing so real 'chemical dark matter' will be unveiled. PMID:27289100

  20. Phylogenomic Analysis of Natural Products Biosynthetic Gene Clusters Allows Discovery of Arseno-Organic Metabolites in Model Streptomycetes

    Science.gov (United States)

    Cruz-Morales, Pablo; Kopp, Johannes Florian; Martínez-Guerrero, Christian; Yáñez-Guerra, Luis Alfonso; Selem-Mojica, Nelly; Ramos-Aboites, Hilda; Feldmann, Jörg; Barona-Gómez, Francisco

    2016-01-01

    Natural products from microbes have provided humans with beneficial antibiotics for millennia. However, a decline in the pace of antibiotic discovery exerts pressure on human health as antibiotic resistance spreads, a challenge that may better faced by unveiling chemical diversity produced by microbes. Current microbial genome mining approaches have revitalized research into antibiotics, but the empirical nature of these methods limits the chemical space that is explored. Here, we address the problem of finding novel pathways by incorporating evolutionary principles into genome mining. We recapitulated the evolutionary history of twenty-three enzyme families previously uninvestigated in the context of natural product biosynthesis in Actinobacteria, the most proficient producers of natural products. Our genome evolutionary analyses where based on the assumption that expanded—repurposed enzyme families—from central metabolism, occur frequently and thus have the potential to catalyze new conversions in the context of natural products biosynthesis. Our analyses led to the discovery of biosynthetic gene clusters coding for hidden chemical diversity, as validated by comparing our predictions with those from state-of-the-art genome mining tools; as well as experimentally demonstrating the existence of a biosynthetic pathway for arseno-organic metabolites in Streptomyces coelicolor and Streptomyces lividans, Using a gene knockout and metabolite profile combined strategy. As our approach does not rely solely on sequence similarity searches of previously identified biosynthetic enzymes, these results establish the basis for the development of an evolutionary-driven genome mining tool termed EvoMining that complements current platforms. We anticipate that by doing so real ‘chemical dark matter’ will be unveiled. PMID:27289100

  1. Phylogenomic Analysis of Natural Products Biosynthetic Gene Clusters Allows Discovery of Arseno-Organic Metabolites in Model Streptomycetes.

    Science.gov (United States)

    Cruz-Morales, Pablo; Kopp, Johannes Florian; Martínez-Guerrero, Christian; Yáñez-Guerra, Luis Alfonso; Selem-Mojica, Nelly; Ramos-Aboites, Hilda; Feldmann, Jörg; Barona-Gómez, Francisco

    2016-01-01

    Natural products from microbes have provided humans with beneficial antibiotics for millennia. However, a decline in the pace of antibiotic discovery exerts pressure on human health as antibiotic resistance spreads, a challenge that may better faced by unveiling chemical diversity produced by microbes. Current microbial genome mining approaches have revitalized research into antibiotics, but the empirical nature of these methods limits the chemical space that is explored.Here, we address the problem of finding novel pathways by incorporating evolutionary principles into genome mining. We recapitulated the evolutionary history of twenty-three enzyme families previously uninvestigated in the context of natural product biosynthesis in Actinobacteria, the most proficient producers of natural products. Our genome evolutionary analyses where based on the assumption that expanded-repurposed enzyme families-from central metabolism, occur frequently and thus have the potential to catalyze new conversions in the context of natural products biosynthesis. Our analyses led to the discovery of biosynthetic gene clusters coding for hidden chemical diversity, as validated by comparing our predictions with those from state-of-the-art genome mining tools; as well as experimentally demonstrating the existence of a biosynthetic pathway for arseno-organic metabolites in Streptomyces coelicolor and Streptomyces lividans, Using a gene knockout and metabolite profile combined strategy.As our approach does not rely solely on sequence similarity searches of previously identified biosynthetic enzymes, these results establish the basis for the development of an evolutionary-driven genome mining tool termed EvoMining that complements current platforms. We anticipate that by doing so real 'chemical dark matter' will be unveiled.

  2. New lessons for combinatorial biosynthesis from myxobacteria. The myxothiazol biosynthetic gene cluster of Stigmatella aurantiaca DW4/3-1.

    Science.gov (United States)

    Silakowski, B; Schairer, H U; Ehret, H; Kunze, B; Weinig, S; Nordsiek, G; Brandt, P; Blöcker, H; Höfle, G; Beyer, S; Müller, R

    1999-12-24

    The biosynthetic mta gene cluster responsible for myxothiazol formation from the fruiting body forming myxobacterium Stigmatella aurantiaca DW4/3-1 was sequenced and analyzed. Myxothiazol, an inhibitor of the electron transport via the bc(1)-complex of the respiratory chain, is biosynthesized by a unique combination of several polyketide synthases (PKS) and nonribosomal peptide synthetases (NRPS), which are activated by the 4'-phosphopantetheinyl transferase MtaA. Genomic replacement of a fragment of mtaB and insertion of a kanamycin resistance gene into mtaA both impaired myxothiazol synthesis. Genes mtaC and mtaD encode the enzymes for bis-thiazol(ine) formation and chain extension on one pure NRPS (MtaC) and on a unique combination of PKS and NRPS (MtaD). The genes mtaE and mtaF encode PKSs including peptide fragments with homology to methyltransferases. These methyltransferase modules are assumed to be necessary for the formation of the proposed methoxy- and beta-methoxy-acrylate intermediates of myxothiazol biosynthesis. The last gene of the cluster, mtaG, again resembles a NRPS and provides insight into the mechanism of the formation of the terminal amide of myxothiazol. The carbon backbone of an amino acid added to the myxothiazol-acid is assumed to be removed via an unprecedented module with homology to monooxygenases within MtaG. PMID:10601310

  3. Exploration of geosmin synthase from Streptomyces peucetius ATCC 27952 by deletion of doxorubicin biosynthetic gene cluster.

    Science.gov (United States)

    Singh, Bijay; Oh, Tae-Jin; Sohng, Jae Kyung

    2009-10-01

    Thorough investigation of Streptomyces peucetius ATCC 27952 genome revealed a sesquiterpene synthase, named spterp13, which encodes a putative protein of 732 amino acids with significant similarity to S. avermitilis MA-4680 (SAV2163, GeoA) and S. coelicolor A3(2) (SCO6073). The proteins encoded by SAV2163 and SCO6073 produce geosmin in the respective strains. However, the spterp13 gene seemed to be silent in S. peucetius. Deletion of the doxorubicin gene cluster from S. peucetius resulted in increased cell growth rate along with detectable production of geosmin. When we over expressed the spterp13 gene in S. peucetius DM07 under the control of an ermE* promoter, 2.4 +/- 0.4-fold enhanced production of geosmin was observed.

  4. Characterization of the Biosynthetic Gene Cluster for Benzoxazole Antibiotics A33853 Reveals Unusual Assembly Logic.

    Science.gov (United States)

    Lv, Meinan; Zhao, Junfeng; Deng, Zixin; Yu, Yi

    2015-10-22

    A33853, which shows excellent bioactivity against Leishmania, is a benzoxazole-family compound formed from two moieties of 3-hydroxyanthranilic acid and one 3-hydroxypicolinic acid. In this study, we have identified the gene cluster responsible for the biosynthesis of A33853 in Streptomyces sp. NRRL12068 through genome mining and heterologous expression. Bioinformatics analysis and functional characterization of the orfs contained in the gene cluster revealed that the biosynthesis of A33853 is directed by a group of unusual enzymes. In particular, BomK, annotated as a ketosynthase, was found to catalyze the amide bond formation between 3-hydroxypicolinic and 3-hydroxyanthranilic acid during the assembly of A33853. BomJ, a putative ATP-dependent coenzyme A ligase, and BomN, a putative amidohydrolase, were further proposed to be involved in the benzoxazole formation in A33853 according to gene deletion experiments. Finally, we have successfully utilized mutasynthesis to generate two analogs of A33853, which were reported previously to possess excellent anti-leishmanial activity.

  5. Genome mining of the sordarin biosynthetic gene cluster from Sordaria araneosa Cain ATCC 36386: characterization of cycloaraneosene synthase and GDP-6-deoxyaltrose transferase.

    Science.gov (United States)

    Kudo, Fumitaka; Matsuura, Yasunori; Hayashi, Takaaki; Fukushima, Masayuki; Eguchi, Tadashi

    2016-07-01

    Sordarin is a glycoside antibiotic with a unique tetracyclic diterpene aglycone structure called sordaricin. To understand its intriguing biosynthetic pathway that may include a Diels-Alder-type [4+2]cycloaddition, genome mining of the gene cluster from the draft genome sequence of the producer strain, Sordaria araneosa Cain ATCC 36386, was carried out. A contiguous 67 kb gene cluster consisting of 20 open reading frames encoding a putative diterpene cyclase, a glycosyltransferase, a type I polyketide synthase, and six cytochrome P450 monooxygenases were identified. In vitro enzymatic analysis of the putative diterpene cyclase SdnA showed that it catalyzes the transformation of geranylgeranyl diphosphate to cycloaraneosene, a known biosynthetic intermediate of sordarin. Furthermore, a putative glycosyltransferase SdnJ was found to catalyze the glycosylation of sordaricin in the presence of GDP-6-deoxy-d-altrose to give 4'-O-demethylsordarin. These results suggest that the identified sdn gene cluster is responsible for the biosynthesis of sordarin. Based on the isolated potential biosynthetic intermediates and bioinformatics analysis, a plausible biosynthetic pathway for sordarin is proposed. PMID:27072286

  6. Genome mining of the sordarin biosynthetic gene cluster from Sordaria araneosa Cain ATCC 36386: characterization of cycloaraneosene synthase and GDP-6-deoxyaltrose transferase.

    Science.gov (United States)

    Kudo, Fumitaka; Matsuura, Yasunori; Hayashi, Takaaki; Fukushima, Masayuki; Eguchi, Tadashi

    2016-07-01

    Sordarin is a glycoside antibiotic with a unique tetracyclic diterpene aglycone structure called sordaricin. To understand its intriguing biosynthetic pathway that may include a Diels-Alder-type [4+2]cycloaddition, genome mining of the gene cluster from the draft genome sequence of the producer strain, Sordaria araneosa Cain ATCC 36386, was carried out. A contiguous 67 kb gene cluster consisting of 20 open reading frames encoding a putative diterpene cyclase, a glycosyltransferase, a type I polyketide synthase, and six cytochrome P450 monooxygenases were identified. In vitro enzymatic analysis of the putative diterpene cyclase SdnA showed that it catalyzes the transformation of geranylgeranyl diphosphate to cycloaraneosene, a known biosynthetic intermediate of sordarin. Furthermore, a putative glycosyltransferase SdnJ was found to catalyze the glycosylation of sordaricin in the presence of GDP-6-deoxy-d-altrose to give 4'-O-demethylsordarin. These results suggest that the identified sdn gene cluster is responsible for the biosynthesis of sordarin. Based on the isolated potential biosynthetic intermediates and bioinformatics analysis, a plausible biosynthetic pathway for sordarin is proposed.

  7. Development of a gene cloning system in a fast-growing and moderately thermophilic Streptomyces species and heterologous expression of Streptomyces antibiotic biosynthetic gene clusters

    Directory of Open Access Journals (Sweden)

    Qin Zhongjun

    2011-10-01

    Full Text Available Abstract Background Streptomyces species are a major source of antibiotics. They usually grow slowly at their optimal temperature and fermentation of industrial strains in a large scale often takes a long time, consuming more energy and materials than some other bacterial industrial strains (e.g., E. coli and Bacillus. Most thermophilic Streptomyces species grow fast, but no gene cloning systems have been developed in such strains. Results We report here the isolation of 41 fast-growing (about twice the rate of S. coelicolor, moderately thermophilic (growing at both 30°C and 50°C Streptomyces strains, detection of one linear and three circular plasmids in them, and sequencing of a 6996-bp plasmid, pTSC1, from one of them. pTSC1-derived pCWH1 could replicate in both thermophilic and mesophilic Streptomyces strains. On the other hand, several Streptomyces replicons function in thermophilic Streptomyces species. By examining ten well-sporulating strains, we found two promising cloning hosts, 2C and 4F. A gene cloning system was established by using the two strains. The actinorhodin and anthramycin biosynthetic gene clusters from mesophilic S. coelicolor A3(2 and thermophilic S. refuineus were heterologously expressed in one of the hosts. Conclusions We have developed a gene cloning and expression system in a fast-growing and moderately thermophilic Streptomyces species. Although just a few plasmids and one antibiotic biosynthetic gene cluster from mesophilic Streptomyces were successfully expressed in thermophilic Streptomyces species, we expect that by utilizing thermophilic Streptomyces-specific promoters, more genes and especially antibiotic genes clusters of mesophilic Streptomyces should be heterologously expressed.

  8. Organization and characterization of a biosynthetic gene cluster for bafilomycin from Streptomyces griseus DSM 2608

    OpenAIRE

    Hwang, Jae Yoon; Kim, Hyo Sun; Kim, Soo Hee; Oh, Hye Ryeung; Nam, Doo Hyun

    2013-01-01

    Streptomyces griseus DSM 2608 produces bafilomycin, an antifungal plecomacrolide antibiotic. We cloned and sequenced an 87.4-kb region, including a polyketide synthase (PKS) region, methoxymalonate genes, flavensomycinate genes, and other putative regulatory genes. The 58.5kb of PKS region consisting 12 PKS modules arranged in five different PKS genes, was assumed to be responsible for the biosynthesis of plecomacrolide backbone including 16-membered macrocyclic lactone. All the modules showe...

  9. Characterization of algG encoding C5-epimerase in the alginate biosynthetic gene cluster of Pseudomonas fluorescens.

    Science.gov (United States)

    Morea, A; Mathee, K; Franklin, M J; Giacomini, A; O'Regan, M; Ohman, D E

    2001-10-31

    The organization of the alginate gene cluster in Pseudomonas fluorescens was characterized. A bank of genomic DNA from P. fluorescens was mobilized to a strain of Pseudomonas aeruginosa with a transposon insertion (algJ::Tn501) in the alginate biosynthetic operon that rendered it non-mucoid. Phenotypic complementation in this heterologous host was observed, and a complementing clone containing 32 kb of P. fluorescens DNA was obtained. Southern hybridization studies showed that genes involved in alginate biosynthesis (e.g. algD, algG, and algA) were approximately in the same order and position as in P. aeruginosa. When the clone was mobilized to a P. aeruginosa algG mutant that produced alginate as polymannuronate due to its C5-epimerase defect, complementation was observed and the alginate from the recombinant strain contained L-guluronate as determined by proton nuclear magnetic resonance spectroscopy. A sequence analysis of the P. fluorescens DNA containing algG revealed sequences similar to P. aeruginosa algG that were also flanked by algE- and algX-like sequences. The predicted AlgG amino acid sequence of P. fluorescens was 67% identical (80% similar) to P. aeruginosa AlgG and 60% identical (76% similar) to Azotobacter vinelandii AlgG. As in P. aeruginosa, AlgG from P. fluorescens appeared to have a signal sequence that would localize it to the periplasm where AlgG presumably acts as a C5-epimerase at the polymer level. Non-polar algG knockout mutants of P. fluorescens were defective in alginate production, suggesting a potential role for this protein in polymer formation.

  10. Next-generation sequencing approach for connecting secondary metabolites to biosynthetic gene clusters in fungi

    OpenAIRE

    Cacho, Ralph A.; Yi eTang; Yit-Heng eChooi

    2015-01-01

    Genomics has revolutionized the research on fungal secondary metabolite biosynthesis. To elucidate the molecular and enzymatic mechanisms underlying the biosynthesis of a specific secondary metabolite compound, the important first step is often to find the genes that responsible for its synthesis. The accessibility to fungal genome sequences allows the bypass of the cumbersome traditional library construction and screening approach. The advance in next-generation sequencing (NGS) technologies...

  11. Next-generation sequencing approach for connecting secondary metabolites to biosynthetic gene clusters in fungi

    OpenAIRE

    Cacho, Ralph A.; Tang, Yi; Chooi, Yit-Heng

    2015-01-01

    Genomics has revolutionized the research on fungal secondary metabolite (SM) biosynthesis. To elucidate the molecular and enzymatic mechanisms underlying the biosynthesis of a specific SM compound, the important first step is often to find the genes that responsible for its synthesis. The accessibility to fungal genome sequences allows the bypass of the cumbersome traditional library construction and screening approach. The advance in next-generation sequencing (NGS) technologies have further...

  12. Cloning, Characterization and Heterologous Expression of the Indolocarbazole Biosynthetic Gene Cluster from Marine-Derived Streptomyces sanyensis FMA

    OpenAIRE

    Wenli Li; Kui Hong; Weiming Zhu; Jingtao Zhang; Qiu Cui; Yuanyuan Du; Tong Li

    2013-01-01

    The indolocarbazole (ICZ) alkaloids have attracted much attention due to their unique structures and potential therapeutic applications. A series of ICZs were recently isolated and identified from a marine-derived actinomycete strain, Streptomyces sanyensis FMA. To elucidate the biosynthetic machinery associated with ICZs production in S. sanyensis FMA, PCR using degenerate primers was carried out to clone the FAD-dependent monooxygenase gene fragment for ICZ ring formation, which was used as...

  13. Biosynthetic Investigations of Lactonamycin and Lactonamycin Z: Cloning of the Biosynthetic Gene Clusters and Discovery of an Unusual Starter Unit▿ †

    OpenAIRE

    ZHANG, XIUJUN; Lawrence B. Alemany; Fiedler, Hans-Peter; Goodfellow, Michael; Parry, Ronald J.

    2007-01-01

    The antibiotics lactonamycin and lactonamycin Z provide attractive leads for antibacterial drug development. Both antibiotics contain a novel aglycone core called lactonamycinone. To gain insight into lactonamycinone biosynthesis, cloning and precursor incorporation experiments were undertaken. The lactonamycin gene cluster was initially cloned from Streptomyces rishiriensis. Sequencing of ca. 61 kb of S. rishiriensis DNA revealed the presence of 57 open reading frames. These included genes c...

  14. CYP99A3: Functional identification of a diterpene oxidase from the momilactone biosynthetic gene cluster in rice

    Science.gov (United States)

    Wang, Qiang; Hillwig, Matthew L.; Peters, Reuben J.

    2013-01-01

    SUMMARY Rice (Oryza sativa) produces momilactone diterpenoids as both phytoalexins and allelochemicals. Strikingly, the rice genome contains a biosynthetic gene cluster for momilactone production, located on rice chromosome 4, which contains two cytochromes P450 mono-oxygenases, CYP99A2 and CYP99A3, with undefined roles; although it has been previously shown that RNAi double knock-down of this pair of closely related CYP reduced momilactone accumulation. Here we attempted biochemical characterization of CYP99A2 and CYP99A3, which ultimately was achieved by complete gene recoding, enabling functional recombinant expression in bacteria. With these synthetic gene constructs it was possible to demonstrate that, while CYP99A2 does not exhibit significant activity with diterpene substrates, CYP99A3 catalyzes consecutive oxidations of the C19 methyl group of the momilactone precursor syn-pimara-7,15-diene to form, sequentially, syn-pimaradien-19-ol, syn-pimaradien-19-al and syn-pimaradien-19-oic acid. These are presumably intermediates in momilactone biosynthesis, as a C19 carboxylic acid moiety is required for formation of the core 19,6-γ-lactone ring structure. We further were able to detect syn-pimaradien-19-oic acid in rice plants, which indicates physiological relevance for the observed activity of CYP99A3. In addition, we found that CYP99A3 also oxidized syn-stemod-13(17)-ene at C19 to produce, sequentially, syn-stemoden-19-ol, syn-stemoden-19-al and syn-stemoden-19-oic acid, albeit with lower catalytic efficiency than with syn-pimaradiene. Although the CYP99A3 syn-stemodene derived products were not detected in planta, these results nevertheless provide a hint at the currently unknown metabolic fate of this diterpene in rice. Regardless of any wider role, our results strongly indicate that CYP99A3 acts as a multifunctional diterpene oxidase in momilactone biosynthesis. PMID:21175892

  15. The Biosynthesis of Capuramycin-type Antibiotics: IDENTIFICATION OF THE A-102395 BIOSYNTHETIC GENE CLUSTER, MECHANISM OF SELF-RESISTANCE, AND FORMATION OF URIDINE-5'-CARBOXAMIDE.

    Science.gov (United States)

    Cai, Wenlong; Goswami, Anwesha; Yang, Zhaoyong; Liu, Xiaodong; Green, Keith D; Barnard-Britson, Sandra; Baba, Satoshi; Funabashi, Masanori; Nonaka, Koichi; Sunkara, Manjula; Morris, Andrew J; Spork, Anatol P; Ducho, Christian; Garneau-Tsodikova, Sylvie; Thorson, Jon S; Van Lanen, Steven G

    2015-05-29

    A-500359s, A-503083s, and A-102395 are capuramycin-type nucleoside antibiotics that were discovered using a screen to identify inhibitors of bacterial translocase I, an essential enzyme in peptidoglycan cell wall biosynthesis. Like the parent capuramycin, A-500359s and A-503083s consist of three structural components: a uridine-5'-carboxamide (CarU), a rare unsaturated hexuronic acid, and an aminocaprolactam, the last of which is substituted by an unusual arylamine-containing polyamide in A-102395. The biosynthetic gene clusters for A-500359s and A-503083s have been reported, and two genes encoding a putative non-heme Fe(II)-dependent α-ketoglutarate:UMP dioxygenase and an l-Thr:uridine-5'-aldehyde transaldolase were uncovered, suggesting that C-C bond formation during assembly of the high carbon (C6) sugar backbone of CarU proceeds from the precursors UMP and l-Thr to form 5'-C-glycyluridine (C7) as a biosynthetic intermediate. Here, isotopic enrichment studies with the producer of A-503083s were used to indeed establish l-Thr as the direct source of the carboxamide of CarU. With this knowledge, the A-102395 gene cluster was subsequently cloned and characterized. A genetic system in the A-102395-producing strain was developed, permitting the inactivation of several genes, including those encoding the dioxygenase (cpr19) and transaldolase (cpr25), which abolished the production of A-102395, thus confirming their role in biosynthesis. Heterologous production of recombinant Cpr19 and CapK, the transaldolase homolog involved in A-503083 biosynthesis, confirmed their expected function. Finally, a phosphotransferase (Cpr17) conferring self-resistance was functionally characterized. The results provide the opportunity to use comparative genomics along with in vivo and in vitro approaches to probe the biosynthetic mechanism of these intriguing structures.

  16. Identification and activation of novel biosynthetic gene clusters by genome mining in the kirromycin producer Streptomyces collinus Tü 365

    DEFF Research Database (Denmark)

    Iftime, Dumitrita; Kulik, Andreas; Härtner, Thomas;

    2016-01-01

    metabolisms predicted for S. collinus Tü 365 includes PKS, NRPS, PKS-NRPS hybrids, a lanthipeptide, terpenes and siderophores. While some of these gene clusters were found to contain genes related to known secondary metabolites, which also could be detected in HPLC–MS analyses, most of the uncharacterized...

  17. Identification of anrF gene, a homology of admM of andrimid biosynthetic gene cluster related to the antagonistic activity of Enterobacter cloacae B8

    Institute of Scientific and Technical Information of China (English)

    Xu-Ping Yu; Jun-Li Zhu; Xue-Ping Yao; Shi-Cheng He; Hai-Ning Huang; Wei-Liang Chen; Yong-Hao Hu; De-Bao Li

    2005-01-01

    AIM: To identify the gene (s) related to the antagonistic activity of Enterobacter cloacae B8 and to elucidate its antagonistic mechanism.METHODS: Transposon-mediated mutagenesis and tagging method and cassette PCR-based chromosomal walking method were adopted to isolate the mutant strain(s) of B8 that lost the antagonistic activity and to clone DNA fragments around Tn5 insertion site. Sequence compiling and open reading frame (ORF) finding were done with DNAStar program and homologous sequence and conserved domain searches were performed with BlastN or BlastP programs at www. ncbi.nlm.nih.gov. To verify the gene involved in the antagonistic activity, complementation of a full-length clone of the anrFgene to the mutant B8F strain was used.RESULTS: A 3 321 bp contig around the Tn5 insertion site was obtained and an ORF of 2 634 bp in length designated as anrFgene encoding for a 877 aa polyketide synthase-like protein was identified. It had a homology of 83% at the nucleotide level and 79% ID/87% SIM at the protein level, to the admM gene of Pantoea agglornerans andrimid biosynthetic gene cluster (AY192157). The Tn5was inserted at 2 420 bp of the gene corresponding to the COG3319 (the thioesterase domain of type Ⅰ polyketide synthase) coding region on B8F. The antagonistic activity against Xanthomonas oryzae pv. oryzae was resumed with complementation of the full-length anrFgene to the mutant B8F.CONCLUSION: The anrFgene obtained is related to the antagonistic activity of B8, and the antagonistic substances produced by B8 are andrimid and/or its analogs.

  18. De Novo Assembly and Genome Analyses of the Marine-Derived Scopulariopsis brevicaulis Strain LF580 Unravels Life-Style Traits and Anticancerous Scopularide Biosynthetic Gene Cluster

    Science.gov (United States)

    Kumar, Abhishek; Henrissat, Bernard; Arvas, Mikko; Syed, Muhammad Fahad; Thieme, Nils; Benz, J. Philipp; Sørensen, Jens Laurids; Record, Eric; Pöggeler, Stefanie; Kempken, Frank

    2015-01-01

    The marine-derived Scopulariopsis brevicaulis strain LF580 produces scopularides A and B, which have anticancerous properties. We carried out genome sequencing using three next-generation DNA sequencing methods. De novo hybrid assembly yielded 621 scaffolds with a total size of 32.2 Mb and 16298 putative gene models. We identified a large non-ribosomal peptide synthetase gene (nrps1) and supporting pks2 gene in the same biosynthetic gene cluster. This cluster and the genes within the cluster are functionally active as confirmed by RNA-Seq. Characterization of carbohydrate-active enzymes and major facilitator superfamily (MFS)-type transporters lead to postulate S. brevicaulis originated from a soil fungus, which came into contact with the marine sponge Tethya aurantium. This marine sponge seems to provide shelter to this fungus and micro-environment suitable for its survival in the ocean. This study also builds the platform for further investigations of the role of life-style and secondary metabolites from S. brevicaulis. PMID:26505484

  19. Identification and characterization of a new erythromycin biosynthetic gene cluster in Actinopolyspora erythraea YIM90600, a novel erythronolide-producing halophilic actinomycete isolated from salt field.

    Directory of Open Access Journals (Sweden)

    Dandan Chen

    Full Text Available Erythromycins (Ers are clinically potent macrolide antibiotics in treating pathogenic bacterial infections. Microorganisms capable of producing Ers, represented by Saccharopolyspora erythraea, are mainly soil-dwelling actinomycetes. So far, Actinopolyspora erythraea YIM90600, a halophilic actinomycete isolated from Baicheng salt field, is the only known Er-producing extremophile. In this study, we have reported the draft genome sequence of Ac. erythraea YIM90600, genome mining of which has revealed a new Er biosynthetic gene cluster encoding several novel Er metabolites. This Er gene cluster shares high identity and similarity with the one of Sa. erythraea NRRL2338, except for two absent genes, eryBI and eryG. By correlating genotype and chemotype, the biosynthetic pathways of 3'-demethyl-erythromycin C, erythronolide H (EH and erythronolide I have been proposed. The formation of EH is supposed to be sequentially biosynthesized via C-6/C-18 epoxidation and C-14 hydroxylation from 6-deoxyerythronolide B. Although an in vitro enzymatic activity assay has provided limited evidence for the involvement of the cytochrome P450 oxidase EryFAc (derived from Ac. erythraea YIM90600 in the catalysis of a two-step oxidation, resulting in an epoxy moiety, the attempt to construct an EH-producing Sa. erythraea mutant via gene complementation was not successful. Characterization of EryKAc (derived from Ac. erythraea YIM90600 in vitro has confirmed its unique role as a C-12 hydroxylase, rather than a C-14 hydroxylase of the erythronolide. Genomic characterization of the halophile Ac. erythraea YIM90600 will assist us to explore the great potential of extremophiles, and promote the understanding of EH formation, which will shed new insights into the biosynthesis of Er metabolites.

  20. Cloning and sequencing of the kedarcidin biosynthetic gene cluster from Streptoalloteichus sp. ATCC 53650 revealing new insights into biosynthesis of the enediyne family of antitumor antibiotics†

    Science.gov (United States)

    Lohman, Jeremy R.; Huang, Sheng-Xiong; Horsman, Geoffrey P.; Dilfer, Paul E.; Huang, Tingting; Chen, Yihua; Wendt-Pienkowski, Evelyn; Shen, Ben

    2013-01-01

    Enediyne natural product biosynthesis is characterized by a convergence of multiple pathways, generating unique peripheral moieties that are appended onto the distinctive enediyne core. Kedarcidin (KED) possesses two unique peripheral moieties, a (R)-2-aza-3-chloro-β-tyrosine and an iso-propoxy-bearing 2-naphthonate moiety, as well as two deoxysugars. The appendage pattern of these peripheral moieties to the enediyne core in KED differs from the other enediynes studied to date with respect to stereochemical configuration. To investigate the biosynthesis of these moieties and expand our understanding of enediyne core formation, the biosynthetic gene cluster for KED was cloned from Streptoalloteichus sp. ATCC 53650 and sequenced. Bioinformatics analysis of the ked cluster revealed the presence of the conserved genes encoding for enediyne core biosynthesis, type I and type II polyketide synthase loci likely responsible for 2-aza-L-tyrosine and 3,6,8-trihydroxy-2-naphthonate formation, and enzymes known for deoxysugar biosynthesis. Genes homologous to those responsible for the biosynthesis, activation, and coupling of the L-tyrosine-derived moieties from C-1027 and maduropeptin and of the naphthonate moiety from neocarzinostatin are present in the ked cluster, supporting 2-aza-L-tyrosine and 3,6,8-trihydroxy-2-naphthoic acid as precursors, respectively, for the (R)-2-aza-3-chloro-β-tyrosine and the 2-naphthonate moieties in KED biosynthesis. PMID:23360970

  1. Cloning and sequencing of the kedarcidin biosynthetic gene cluster from Streptoalloteichus sp. ATCC 53650 revealing new insights into biosynthesis of the enediyne family of antitumor antibiotics.

    Science.gov (United States)

    Lohman, Jeremy R; Huang, Sheng-Xiong; Horsman, Geoffrey P; Dilfer, Paul E; Huang, Tingting; Chen, Yihua; Wendt-Pienkowski, Evelyn; Shen, Ben

    2013-03-01

    Enediyne natural product biosynthesis is characterized by a convergence of multiple pathways, generating unique peripheral moieties that are appended onto the distinctive enediyne core. Kedarcidin (KED) possesses two unique peripheral moieties, a (R)-2-aza-3-chloro-β-tyrosine and an iso-propoxy-bearing 2-naphthonate moiety, as well as two deoxysugars. The appendage pattern of these peripheral moieties to the enediyne core in KED differs from the other enediynes studied to date with respect to stereochemical configuration. To investigate the biosynthesis of these moieties and expand our understanding of enediyne core formation, the biosynthetic gene cluster for KED was cloned from Streptoalloteichus sp. ATCC 53650 and sequenced. Bioinformatics analysis of the ked cluster revealed the presence of the conserved genes encoding for enediyne core biosynthesis, type I and type II polyketide synthase loci likely responsible for 2-aza-l-tyrosine and 3,6,8-trihydroxy-2-naphthonate formation, and enzymes known for deoxysugar biosynthesis. Genes homologous to those responsible for the biosynthesis, activation, and coupling of the l-tyrosine-derived moieties from C-1027 and maduropeptin and of the naphthonate moiety from neocarzinostatin are present in the ked cluster, supporting 2-aza-l-tyrosine and 3,6,8-trihydroxy-2-naphthoic acid as precursors, respectively, for the (R)-2-aza-3-chloro-β-tyrosine and the 2-naphthonate moieties in KED biosynthesis. PMID:23360970

  2. Organization, Evolution, and Expression Analysis of the Biosynthetic Gene Cluster for Scytonemin, a Cyanobacterial UV-Absorbing Pigment▿ †

    OpenAIRE

    Sorrels, Carla M.; Proteau, Philip J.; Gerwick, William H.

    2009-01-01

    Cyanobacteria are photosynthetic prokaryotes capable of protecting themselves from UV radiation through the biosynthesis of UV-absorbing secondary metabolites, such as the mycosporines and scytonemin. Scytonemin, a novel indolic-phenolic pigment, is found sequestered in the sheath, where it provides protection to the subtending cells during exposure to UV radiation. The biosynthesis of scytonemin is encoded by a previously identified gene cluster that is present in six cyanobacterial species ...

  3. Biosynthetic Gene Cluster of Cetoniacytone A, an Unusual Aminocyclitol from the Endosymbiotic Bacterium Actinomyces sp. Lu 9419

    OpenAIRE

    Wu, Xiumei; Flatt, Patricia M.; Xu, Hui; Mahmud, Taifo

    2009-01-01

    A gene cluster responsible for the biosynthesis of the antitumor agent cetoniacytone A was identified in Actinomyces sp. strain Lu 9419, an endosymbiotic bacteria isolated from the intestines of the rose chafer beetle (Cetonia aurata). The nucleotide sequence analysis of the 46 kb DNA region revealed the presence of 31 complete ORFs, including genes predicted to encode a 2-epi-5-epi-valiolone synthase (CetA), a glyoxalase/bleomycin resistance protein (CetB), an acyltransferase (CetD), an FAD-...

  4. Structures and comparative characterization of biosynthetic gene clusters for cyanosporasides, enediyne-derived natural products from marine actinomycetes

    OpenAIRE

    Lane, Amy L.; Nam, Sang Jip; Fukuda, Takashi; Yamanaka, Kazuya; Kauffman, Christopher A.; Jensen, Paul R; Fenical, William; Moore, Bradley S.

    2013-01-01

    Cyanosporasides are marine bacterial natural products containing a chlorinated cyclopenta[a]indene core of suspected enediyne polyketide biosynthetic origin. Herein, we report the isolation and characterization of novel cyanosporasides C–F (3–6) from the marine actinomycetes “Salinispora pacifica” CNS-143 and Streptomyces sp. CNT-179, highlighted by the unprecedented C-2' N-acetylcysteamine functionalized hexose group of 6. Cloning, sequencing, and mutagenesis of homologous ~50 kb cyanosporas...

  5. Variability in mycotoxin biosynthetic genes in Fusarium and its effect on mycotoxin contamination of crops

    Science.gov (United States)

    The Fusarium metabolites fumonisins and trichothecenes are among the mycotoxins of greatest concern to food and feed safety worldwide. As is the case for other fungal secondary metabolite biosynthetic genes, mycotoxin biosynthetic genes are often located adjacent to one another in gene clusters. Thu...

  6. Anthocyanin biosynthetic genes in Brassica rapa

    OpenAIRE

    Guo, Ning; Cheng, Feng; Wu, Jian; Liu, Bo; Zheng, Shuning; Liang, Jianli; Wang, Xiaowu

    2014-01-01

    Background Anthocyanins are a group of flavonoid compounds. As a group of important secondary metabolites, they perform several key biological functions in plants. Anthocyanins also play beneficial health roles as potentially protective factors against cancer and heart disease. To elucidate the anthocyanin biosynthetic pathway in Brassica rapa, we conducted comparative genomic analyses between Arabidopsis thaliana and B. rapa on a genome-wide level. Results In total, we identified 73 genes in...

  7. Activation of the cryptic secondary metabolite biosynthetic gene clusters (CSMGs) in Streptomyces%链霉菌隐性次级代谢产物生物合成基因簇的激活

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    链霉菌基因组中存在许多隐性次级代谢产物生物合成基因簇(cryptic secondary metabolite biosynthetic gene cluster,CSMG),在实验室条件下,它们多数处于沉默状态或者很低的表达水平.但在一定条件下这些CSMG可以被激活合成次级代谢产物,这为寻找新的活性天然产物提供新来源.本文总结了目前激活链霉菌CSMG所使用的方法,包括改变发酵条件、核糖体工程、共培养、异源表达、CSR(cluster-situated regulator)基因的遗传改造等.

  8. Origin of saxitoxin biosynthetic genes in cyanobacteria.

    Directory of Open Access Journals (Sweden)

    Ahmed Moustafa

    Full Text Available BACKGROUND: Paralytic shellfish poisoning (PSP is a potentially fatal syndrome associated with the consumption of shellfish that have accumulated saxitoxin (STX. STX is produced by microscopic marine dinoflagellate algae. Little is known about the origin and spread of saxitoxin genes in these under-studied eukaryotes. Fortuitously, some freshwater cyanobacteria also produce STX, providing an ideal model for studying its biosynthesis. Here we focus on saxitoxin-producing cyanobacteria and their non-toxic sisters to elucidate the origin of genes involved in the putative STX biosynthetic pathway. METHODOLOGY/PRINCIPAL FINDINGS: We generated a draft genome assembly of the saxitoxin-producing (STX+ cyanobacterium Anabaena circinalis ACBU02 and searched for 26 candidate saxitoxin-genes (named sxtA to sxtZ that were recently identified in the toxic strain Cylindrospermopsis raciborskii T3. We also generated a draft assembly of the non-toxic (STX- sister Anabaena circinalis ACFR02 to aid the identification of saxitoxin-specific genes. Comparative phylogenomic analyses revealed that nine putative STX genes were horizontally transferred from non-cyanobacterial sources, whereas one key gene (sxtA originated in STX+ cyanobacteria via two independent horizontal transfers followed by fusion. In total, of the 26 candidate saxitoxin-genes, 13 are of cyanobacterial provenance and are monophyletic among the STX+ taxa, four are shared amongst STX+ and STX-cyanobacteria, and the remaining nine genes are specific to STX+ cyanobacteria. CONCLUSIONS/SIGNIFICANCE: Our results provide evidence that the assembly of STX genes in ACBU02 involved multiple HGT events from different sources followed presumably by coordination of the expression of foreign and native genes in the common ancestor of STX+ cyanobacteria. The ability to produce saxitoxin was subsequently lost multiple independent times resulting in a nested relationship of STX+ and STX- strains among Anabaena

  9. Identification of the Biosynthetic Gene Clusters for the Lipopeptides Fusaristatin A and W493 B in Fusarium graminearum and F. pseudograminearum

    DEFF Research Database (Denmark)

    Sørensen, Jens Laurids; Sondergaard, Teis Esben; Covarelli, Lorenzo;

    2014-01-01

    The closely related species Fusarium graminearum and Fusarium pseudograminearum differ in that each contains a gene cluster with a polyketide synthase (PKS) and a nonribosomal peptide synthetase (NRPS) that is not present in the other species. To identify their products, we deleted PKS6 and NRPS7...

  10. The neomycin biosynthetic gene cluster of Streptomyces fradiae NCIMB 8233: genetic and biochemical evidence for the roles of two glycosyltransferases and a deacetylase.

    Science.gov (United States)

    Fan, Qingzhi; Huang, Fanglu; Leadlay, Peter F; Spencer, Jonathan B

    2008-09-21

    An efficient protocol has been developed for the genetic manipulation of Streptomyces fradiae NCIMB 8233, which produces the 2-deoxystreptamine (2-DOS)-containing aminoglycoside antibiotic neomycin. This has allowed the in vivo analysis of the respective roles of the glycosyltransferases Neo8 and Neo15, and of the deacetylase Neo16 in neomycin biosynthesis. Specific deletion of each of the neo8, neo15 and neo16 genes confirmed that they are all essential for neomycin biosynthesis. The pattern of metabolites produced by feeding putative pathway intermediates to these mutants provided unambiguous support for a scheme in which Neo8 and Neo15, whose three-dimensional structures are predicted to be highly similar, have distinct roles: Neo8 catalyses transfer of N-acetylglucosamine to 2-DOS early in the pathway, while Neo15 catalyses transfer of the same aminosugar to ribostamycin later in the pathway. The in vitro substrate specificity of Neo15, purified from recombinant Escherichia coli, was fully consistent with these findings. The in vitro activity of Neo16, the only deacetylase so far recognised in the neo gene cluster, showed that it is capable of acting in tandem with both Neo8 and Neo15 as previously proposed. However, the deacetylation of N-acetylglucosaminylribostamycin was still observed in a strain deleted of the neo16 gene and fed with suitable pathway precursors, providing evidence for the existence of a second enzyme in S. fradiae with this activity.

  11. 武夷菌素部分生物合成基因簇的克隆和分析%Cloning and Analysis of Wuyiencin Partial Biosynthetic Gene Cluster of Streptomyces ahygroscopicus var. wuyiensis CK-15

    Institute of Scientific and Technical Information of China (English)

    葛蓓孛; 杨振娟; 檀贝贝; 刘彦彦; 刘艳; 孙蕾; 张克诚

    2014-01-01

    不吸水链霉菌武夷变种Streptomyces ahygroscopicus var. wuyiensis CK-15是从福建省武夷山土样中分离得到的一株链霉菌,其代谢产物武夷菌素对果蔬真菌病害具有良好的防治效果,但是因其产量低的缺点限制了武夷菌素工业化生产和农业生产中的应用。为了实现利用基因工程培育高产新菌株的目标,首先要获得武夷菌素的生物合成基因。根据大环内酯类抗生素聚酮合成酶基因设计引物筛选菌株CK-15的基因组文库,共获得9个阳性克隆。克隆和测序获得3个较长scaffold片段,序列总长度达53.291 kb,其中包含了14个可能阅读框,通过同源比对证实该序列与S. noursei ATCC 11455的制霉素生物合成基因有很高的同源性。本研究为进一步研究武夷菌素生物合成基因的功能,并通过基因工程培育高产新菌株奠定了基础。%A wuyiencin producing strain Streptomyces ahygroscopicus var. wuyiensis CK-15 was isolated and purified from Wuyi mountain soil in Fujian province. Wuyiencin as secondary metabolites has good control effect on fruit and vegetable fungal diseases whereas which is limited on its low production disadvantage in industrial production and agricultural application. In order to achieve the aim of breeding high yield strain by genetic engineering, an attempt to obtain the biosynthetic gene cluster of wuyiencin generated strain was made. In this study, primers were designed according to a sequence of macrolide antibiotic polyketone synthetase gene, which was used for screening CK-15 genomic library. Nine positive clones were identified from the Streptomyces ahygroscopicus var. wuyiensis CK-15 fosmid genomic library. The positive clones were sequenced. There were three large scaffolds with approximately 53.291 kb of gene sequence. This sequence contains 14 possible ORFs and show high homology with nystatin biosynthetic gene of S. noursei ATCC 11455. The research will

  12. YUCCA auxin biosynthetic genes are required for Arabidopsis shade avoidance

    Science.gov (United States)

    Müller-Moulé, Patricia; Nozue, Kazunari; Pytlak, Melissa L.; Palmer, Christine M.; Covington, Michael F.; Wallace, Andreah D.; Harmer, Stacey L.

    2016-01-01

    Plants respond to neighbor shade by increasing stem and petiole elongation. Shade, sensed by phytochrome photoreceptors, causes stabilization of PHYTOCHROME INTERACTING FACTOR proteins and subsequent induction of YUCCA auxin biosynthetic genes. To investigate the role of YUCCA genes in phytochrome-mediated elongation, we examined auxin signaling kinetics after an end-of-day far-red (EOD-FR) light treatment, and found that an auxin responsive reporter is rapidly induced within 2 hours of far-red exposure. YUCCA2, 5, 8, and 9 are all induced with similar kinetics suggesting that they could act redundantly to control shade-mediated elongation. To test this hypothesis we constructed a yucca2, 5, 8, 9 quadruple mutant and found that the hypocotyl and petiole EOD-FR and shade avoidance responses are completely disrupted. This work shows that YUCCA auxin biosynthetic genes are essential for detectable shade avoidance and that YUCCA genes are important for petiole shade avoidance. PMID:27761349

  13. Didemnin Biosynthetic Gene Cluster In Tistrella Mobilis

    KAUST Repository

    Qian, Pei-Yuan

    2014-10-02

    A novel Tistrella mobilis strain having Accession Deposit Number NRRL B-50531 is provided. A method of producing a didemnin precursor, didemnin or didemnin derivative by using the Tistrella mobilis strain, and the therapeutic composition comprising at least one didemnin or didemnin derivative produced from the strain or modified strain thereof are also provided.

  14. Ancient horizontal gene transfer from bacteria enhances biosynthetic capabilities of fungi.

    Directory of Open Access Journals (Sweden)

    Imke Schmitt

    Full Text Available BACKGROUND: Polyketides are natural products with a wide range of biological functions and pharmaceutical applications. Discovery and utilization of polyketides can be facilitated by understanding the evolutionary processes that gave rise to the biosynthetic machinery and the natural product potential of extant organisms. Gene duplication and subfunctionalization, as well as horizontal gene transfer are proposed mechanisms in the evolution of biosynthetic gene clusters. To explain the amount of homology in some polyketide synthases in unrelated organisms such as bacteria and fungi, interkingdom horizontal gene transfer has been evoked as the most likely evolutionary scenario. However, the origin of the genes and the direction of the transfer remained elusive. METHODOLOGY/PRINCIPAL FINDINGS: We used comparative phylogenetics to infer the ancestor of a group of polyketide synthase genes involved in antibiotic and mycotoxin production. We aligned keto synthase domain sequences of all available fungal 6-methylsalicylic acid (6-MSA-type PKSs and their closest bacterial relatives. To assess the role of symbiotic fungi in the evolution of this gene we generated 24 6-MSA synthase sequence tags from lichen-forming fungi. Our results support an ancient horizontal gene transfer event from an actinobacterial source into ascomycete fungi, followed by gene duplication. CONCLUSIONS/SIGNIFICANCE: Given that actinobacteria are unrivaled producers of biologically active compounds, such as antibiotics, it appears particularly promising to study biosynthetic genes of actinobacterial origin in fungi. The large number of 6-MSA-type PKS sequences found in lichen-forming fungi leads us hypothesize that the evolution of typical lichen compounds, such as orsellinic acid derivatives, was facilitated by the gain of this bacterial polyketide synthase.

  15. Carotenoid biosynthetic genes in Brassica rapa: comparative genomic analysis, phylogenetic analysis, and expression profiling

    OpenAIRE

    Li, Peirong; Zhang, Shujiang; Zhang, Shifan; Li, Fei; Zhang, Hui; Cheng, Feng; Wu, Jian; Wang, Xiaowu; Sun, Rifei

    2015-01-01

    Background Carotenoids are isoprenoid compounds synthesized by all photosynthetic organisms. Despite much research on carotenoid biosynthesis in the model plant Arabidopsis thaliana, there is a lack of information on the carotenoid pathway in Brassica rapa. To better understand its carotenoid biosynthetic pathway, we performed a systematic analysis of carotenoid biosynthetic genes at the genome level in B. rapa. Results We identified 67 carotenoid biosynthetic genes in B. rapa, which were ort...

  16. Polymerase chain reaction (PCR)-based methods for detection/identification of mycotoxigenic fungi targeting fumonisin biosynthetic genes: Use of variation in FUM cluster location to distinguish between and quantify

    Science.gov (United States)

    The fungus Fusarium is an agricultural problem because it can cause disease on most crop plants and can contaminate crops with mycotoxins. There is considerable variation in the presence/absence and genomic location of gene clusters responsible for synthesis of mycotoxins and other secondary metabol...

  17. Coordinated regulation of biosynthetic and regulatory genes coincides with anthocyanin accumulation in developing eggplant fruit

    Science.gov (United States)

    Violet to black pigmentation of eggplant (Solanum melongena) fruit is attributed to anthocyanin accumulation. Model systems support the interaction of biosynthetic and regulatory genes for anthocyanin biosynthesis. Anthocyanin structural gene transcription requires the expression of at least one m...

  18. Depth-related distribution of a key gene of the tetraether lipid biosynthetic pathway in marine Thaumarchaeota

    OpenAIRE

    Villanueva, L.; Schouten, S; Sinninghe Damsté, J.S.

    2015-01-01

    The distribution of isoprenoid glycerol dialkyl glycerol tetraethers (GDGT) lipids synthesized by Thaumarchaeota has been shown to be temperature-dependent in world oceans. Depth-related differences in the ammonia monooxygenase (amoA) of Thaumarchaeota have led to the classification of ‘shallow’ and ‘deep water’ clusters, potentially affecting GDGT distributions. Here, we investigate if this classification is also reflected in a key gene of the thaumarchaeotal lipid biosynthetic pathway codin...

  19. Diversity of Culturable Thermophilic Actinobacteria in Hot Springs in Tengchong, China and Studies of their Biosynthetic Gene Profiles.

    Science.gov (United States)

    Liu, Lan; Salam, Nimaichand; Jiao, Jian-Yu; Jiang, Hong-Chen; Zhou, En-Min; Yin, Yi-Rui; Ming, Hong; Li, Wen-Jun

    2016-07-01

    The class Actinobacteria has been a goldmine for the discovery of antibiotics and has attracted interest from both academics and industries. However, an absence of novel approaches during the last few decades has limited the discovery of new microbial natural products useful for industries. Scientists are now focusing on the ecological aspects of diverse environments including unexplored or underexplored habitats and extreme environments in the search for new metabolites. This paper reports on the diversity of culturable actinobacteria associated with hot springs located in Tengchong County, Yunnan Province, southwestern China. A total of 58 thermophilic actinobacterial strains were isolated from the samples collected from ten hot springs distributed over three geothermal fields (e.g., Hehua, Rehai, and Ruidian). Phylogenetic positions and their biosynthetic profiles were analyzed by sequencing 16S rRNA gene and three biosynthetic gene clusters (KS domain of PKS-I, KSα domain of PKS-II and A domain of NRPS). On the basis of 16S rRNA gene phylogenetic analysis, the 58 strains were affiliated with 12 actinobacterial genera: Actinomadura Micromonospora, Microbispora, Micrococcus, Nocardiopsis, Nonomuraea, Promicromonospora, Pseudonocardia, Streptomyces, Thermoactinospora, Thermocatellispora, and Verrucosispora, of which the two novel genera Thermoactinospora and Thermocatellisopora were recently described from among these strains. Considering the biosynthetic potential of these actinobacterial strains, 22 were positive for PCR amplification of at least one of the three biosynthetic gene clusters (PKS-I, PKS-II, and NRPS). These actinobacteria were further subjected to antimicrobial assay against five opportunistic human pathogens (Acinetobacter baumannii, Escherichia coli, Micrococcus luteus, Staphylococcus aureus and Streptococcus faecalis). All of the 22 strains that were positive for PCR amplification of at least one of the biosynthetic gene domains exhibited

  20. Diversity of Culturable Thermophilic Actinobacteria in Hot Springs in Tengchong, China and Studies of their Biosynthetic Gene Profiles.

    Science.gov (United States)

    Liu, Lan; Salam, Nimaichand; Jiao, Jian-Yu; Jiang, Hong-Chen; Zhou, En-Min; Yin, Yi-Rui; Ming, Hong; Li, Wen-Jun

    2016-07-01

    The class Actinobacteria has been a goldmine for the discovery of antibiotics and has attracted interest from both academics and industries. However, an absence of novel approaches during the last few decades has limited the discovery of new microbial natural products useful for industries. Scientists are now focusing on the ecological aspects of diverse environments including unexplored or underexplored habitats and extreme environments in the search for new metabolites. This paper reports on the diversity of culturable actinobacteria associated with hot springs located in Tengchong County, Yunnan Province, southwestern China. A total of 58 thermophilic actinobacterial strains were isolated from the samples collected from ten hot springs distributed over three geothermal fields (e.g., Hehua, Rehai, and Ruidian). Phylogenetic positions and their biosynthetic profiles were analyzed by sequencing 16S rRNA gene and three biosynthetic gene clusters (KS domain of PKS-I, KSα domain of PKS-II and A domain of NRPS). On the basis of 16S rRNA gene phylogenetic analysis, the 58 strains were affiliated with 12 actinobacterial genera: Actinomadura Micromonospora, Microbispora, Micrococcus, Nocardiopsis, Nonomuraea, Promicromonospora, Pseudonocardia, Streptomyces, Thermoactinospora, Thermocatellispora, and Verrucosispora, of which the two novel genera Thermoactinospora and Thermocatellisopora were recently described from among these strains. Considering the biosynthetic potential of these actinobacterial strains, 22 were positive for PCR amplification of at least one of the three biosynthetic gene clusters (PKS-I, PKS-II, and NRPS). These actinobacteria were further subjected to antimicrobial assay against five opportunistic human pathogens (Acinetobacter baumannii, Escherichia coli, Micrococcus luteus, Staphylococcus aureus and Streptococcus faecalis). All of the 22 strains that were positive for PCR amplification of at least one of the biosynthetic gene domains exhibited

  1. Accurate prediction of secondary metabolite gene clusters in filamentous fungi

    DEFF Research Database (Denmark)

    Andersen, Mikael Rørdam; Nielsen, Jakob Blæsbjerg; Klitgaard, Andreas;

    2013-01-01

    Biosynthetic pathways of secondary metabolites from fungi are currently subject to an intense effort to elucidate the genetic basis for these compounds due to their large potential within pharmaceutics and synthetic biochemistry. The preferred method is methodical gene deletions to identify...... supporting enzymes for key synthases one cluster at a time. In this study, we design and apply a DNA expression array for Aspergillus nidulans in combination with legacy data to form a comprehensive gene expression compendium. We apply a guilt-by-association-based analysis to predict the extent...... of the biosynthetic clusters for the 58 synthases active in our set of experimental conditions. A comparison with legacy data shows the method to be accurate in 13 of 16 known clusters and nearly accurate for the remaining 3 clusters. Furthermore, we apply a data clustering approach, which identifies cross...

  2. Identification and characterization of GDP-d-mannose 4,6-dehydratase and GDP-l-fucose snthetase in a GDP-l-fucose biosynthetic gene cluster from Helicobacter pylori.

    Science.gov (United States)

    Wu, B; Zhang, Y; Wang, P G

    2001-07-13

    In this study two open reading frames, namely HP0044 and HP0045 from H. pylori, were cloned and overexpressed in E. coli. The two recombinant proteins were demonstrated to have GDP-d-mannose 4,6-dehydratase (GMD) and GDP-l-fucose synthetase (GFS) activities, respectively. The recombinant GMD was a tetramer and had an optimum pH of 6.5. Exogenous NADP(+) was essential for its activity. The K(m) and K(cat) for GDP-d-mannose were 117.3 microM and 0.27 s(-1), respectively. The recombinant GFS was a homodimer with an optimum pH of 8.0. The K(m) and K(cat) for GDP-4-keto-6-deoxy-d-mannose were 64.08 microM and 0.75 s(-1), respectively. It can use both NADPH and NADH, but less efficient with the latter. Amino acid sequence alignment and phylogenetic analysis showed that H. pylori GFS was highly homologous to the GFS of E. coli O111 and both of them were located on a separate phylogenetic branch from other GFS. The unique clustering and origin of the two genes were also discussed. PMID:11444851

  3. Dothistroma pini, a Forest Pathogen, Contains Homologs of Aflatoxin Biosynthetic Pathway Genes

    OpenAIRE

    Bradshaw, Rosie E.; Bhatnagar, Deepak; Ganley, Rebecca J.; Gillman, Carmel J.; Brendon J. Monahan; Seconi, Janet M.

    2002-01-01

    Homologs of aflatoxin biosynthetic genes have been identified in the pine needle pathogen Dothistroma pini. D. pini produces dothistromin, a difuranoanthraquinone toxin with structural similarity to the aflatoxin precursor versicolorin B. Previous studies with purified dothistromin suggest a possible role for this toxin in pathogenicity. By using an aflatoxin gene as a hybridization probe, a genomic D. pini clone was identified that contained four dot genes with similarity to genes in aflatox...

  4. Identification and characterization of a novel diterpene gene cluster in Aspergillus nidulans.

    Directory of Open Access Journals (Sweden)

    Kirsi Bromann

    Full Text Available Fungal secondary metabolites are a rich source of medically useful compounds due to their pharmaceutical and toxic properties. Sequencing of fungal genomes has revealed numerous secondary metabolite gene clusters, yet products of many of these biosynthetic pathways are unknown since the expression of the clustered genes usually remains silent in normal laboratory conditions. Therefore, to discover new metabolites, it is important to find ways to induce the expression of genes in these otherwise silent biosynthetic clusters. We discovered a novel secondary metabolite in Aspergillus nidulans by predicting a biosynthetic gene cluster with genomic mining. A Zn(II(2Cys(6-type transcription factor, PbcR, was identified, and its role as a pathway-specific activator for the predicted gene cluster was demonstrated. Overexpression of pbcR upregulated the transcription of seven genes in the identified cluster and led to the production of a diterpene compound, which was characterized with GC/MS as ent-pimara-8(14,15-diene. A change in morphology was also observed in the strains overexpressing pbcR. The activation of a cryptic gene cluster by overexpression of its putative Zn(II(2Cys(6-type transcription factor led to discovery of a novel secondary metabolite in Aspergillus nidulans. Quantitative real-time PCR and DNA array analysis allowed us to predict the borders of the biosynthetic gene cluster. Furthermore, we identified a novel fungal pimaradiene cyclase gene as well as genes encoding 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA reductase and a geranylgeranyl pyrophosphate (GGPP synthase. None of these genes have been previously implicated in the biosynthesis of terpenes in Aspergillus nidulans. These results identify the first Aspergillus nidulans diterpene gene cluster and suggest a biosynthetic pathway for ent-pimara-8(14,15-diene.

  5. Identification and Characterization of a Novel Diterpene Gene Cluster in Aspergillus nidulans

    Science.gov (United States)

    Bromann, Kirsi; Toivari, Mervi; Viljanen, Kaarina; Vuoristo, Anu; Ruohonen, Laura; Nakari-Setälä, Tiina

    2012-01-01

    Fungal secondary metabolites are a rich source of medically useful compounds due to their pharmaceutical and toxic properties. Sequencing of fungal genomes has revealed numerous secondary metabolite gene clusters, yet products of many of these biosynthetic pathways are unknown since the expression of the clustered genes usually remains silent in normal laboratory conditions. Therefore, to discover new metabolites, it is important to find ways to induce the expression of genes in these otherwise silent biosynthetic clusters. We discovered a novel secondary metabolite in Aspergillus nidulans by predicting a biosynthetic gene cluster with genomic mining. A Zn(II)2Cys6–type transcription factor, PbcR, was identified, and its role as a pathway-specific activator for the predicted gene cluster was demonstrated. Overexpression of pbcR upregulated the transcription of seven genes in the identified cluster and led to the production of a diterpene compound, which was characterized with GC/MS as ent-pimara-8(14),15-diene. A change in morphology was also observed in the strains overexpressing pbcR. The activation of a cryptic gene cluster by overexpression of its putative Zn(II)2Cys6–type transcription factor led to discovery of a novel secondary metabolite in Aspergillus nidulans. Quantitative real-time PCR and DNA array analysis allowed us to predict the borders of the biosynthetic gene cluster. Furthermore, we identified a novel fungal pimaradiene cyclase gene as well as genes encoding 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase and a geranylgeranyl pyrophosphate (GGPP) synthase. None of these genes have been previously implicated in the biosynthesis of terpenes in Aspergillus nidulans. These results identify the first Aspergillus nidulans diterpene gene cluster and suggest a biosynthetic pathway for ent-pimara-8(14),15-diene. PMID:22506079

  6. Accumulation of Rutin and Betulinic Acid and Expression of Phenylpropanoid and Triterpenoid Biosynthetic Genes in Mulberry (Morus alba L.).

    Science.gov (United States)

    Zhao, Shicheng; Park, Chang Ha; Li, Xiaohua; Kim, Yeon Bok; Yang, Jingli; Sung, Gyoo Byung; Park, Nam Il; Kim, Soonok; Park, Sang Un

    2015-09-30

    Mulberry (Morus alba L.) is used in traditional Chinese medicine and is the sole food source of the silkworm. Here, 21 cDNAs encoding phenylpropanoid biosynthetic genes and 21 cDNAs encoding triterpene biosynthetic genes were isolated from mulberry. The expression levels of genes involved in these biosynthetic pathways and the accumulation of rutin, betulin, and betulinic acid, important secondary metabolites, were investigated in different plant organs. Most phenylpropanoid and triterpene biosynthetic genes were highly expressed in leaves and/or fruit, and most genes were downregulated during fruit ripening. The accumulation of rutin was more than fivefold higher in leaves than in other organs, and higher levels of betulin and betulinic acid were found in roots and leaves than in fruit. By comparing the contents of these compounds with gene expression levels, we speculate that MaUGT78D1 and MaLUS play important regulatory roles in the rutin and betulin biosynthetic pathways.

  7. Heterologous stable expression of terpenoid biosynthetic genes using the moss Physcomitrella patens.

    Science.gov (United States)

    Bach, Søren Spanner; King, Brian Christopher; Zhan, Xin; Simonsen, Henrik Toft; Hamberger, Björn

    2014-01-01

    Heterologous and stable expression of genes encoding terpenoid biosynthetic enzymes in planta is an important tool for functional characterization and is an attractive alternative to expression in microbial hosts for biotechnological production. Despite improvements to the procedure, such as streamlining of large scale Agrobacterium infiltration and upregulation of the upstream pathways, transient in planta heterologous expression quickly reaches limitations when used for production of terpenoids. Stable integration of transgenes into the nuclear genome of the moss Physcomitrella patens has already been widely recognized as a viable alternative for industrial-scale production of biopharmaceuticals. For expression of terpenoid biosynthetic genes, and reconstruction of heterologous pathways, Physcomitrella has unique attributes that makes it a very promising biotechnological host. These features include a high native tolerance to terpenoids, a simple endogenous terpenoid profile, convenient genome editing using homologous recombination, and cultivation techniques that allow up-scaling from single cells in microtiter plates to industrial photo-bioreactors. Beyond its use for functional characterization of terpenoid biosynthetic genes, engineered Physcomitrella can be a green biotechnological platform for production of terpenoids. Here, we describe two complementary and simple procedures for stable nuclear transformation of Physcomitrella with terpenoid biosynthetic genes, selection and cultivation of transgenic lines, and metabolite analysis of terpenoids produced in transgenic moss lines. We also provide tools for metabolic engineering through genome editing using homologous recombination. PMID:24777804

  8. Characterization of the Promoter Region of Biosynthetic Enzyme Genes Involved in Berberine Biosynthesis in Coptis japonica

    Science.gov (United States)

    Yamada, Yasuyuki; Yoshimoto, Tadashi; Yoshida, Sayumi T.; Sato, Fumihiko

    2016-01-01

    The presence of alkaloids is rather specific to certain plant species. However, berberine, an isoquinoline alkaloid, is relatively broadly distributed in the plant kingdom. Thus, berberine biosynthesis has been intensively investigated, especially using Coptis japonica cell cultures. Almost all biosynthetic enzyme genes have already been characterized at the molecular level. Particularly, two transcription factors (TFs), a plant-specific WRKY-type TF, CjWRKY1, and a basic helix-loop-helix TF, CjbHLH1, were shown to comprehensively regulate berberine biosynthesis in C. japonica cells. In this study, we characterized the promoter region of some biosynthetic enzyme genes and associated cis-acting elements involved in the transcriptional regulation via two TFs. The promoter regions of three berberine biosynthetic enzyme genes (CYP80B2, 4′OMT and CYP719A1) were isolated, and their promoter activities were dissected by a transient assay involving the sequentially truncated promoter::luciferase (LUC) reporter constructs. Furthermore, transactivation activities of CjWRKY1 were determined using the truncated promoter::LUC reporter constructs or constructs with mutated cis-elements. These results suggest the involvement of a putative W-box in the regulation of biosynthetic enzyme genes. Direct binding of CjWRKY1 to the W-box DNA sequence was also confirmed by an electrophoresis mobility shift assay and by a chromatin immunoprecipitation assay. In addition, CjbHLH1 also activated transcription from truncated 4′OMT and CYP719A1 promoters independently of CjWRKY1, suggesting the involvement of a putative E-box. Unexpected transcriptional activation of biosynthetic enzyme genes via a non-W-box sequence and by CjWRKY1 as well as the possible involvement of a GCC-box in berberine biosynthesis in C. japonica are discussed. PMID:27642289

  9. Characterization of the Promoter Region of Biosynthetic Enzyme Genes Involved in Berberine Biosynthesis in Coptis japonica.

    Science.gov (United States)

    Yamada, Yasuyuki; Yoshimoto, Tadashi; Yoshida, Sayumi T; Sato, Fumihiko

    2016-01-01

    The presence of alkaloids is rather specific to certain plant species. However, berberine, an isoquinoline alkaloid, is relatively broadly distributed in the plant kingdom. Thus, berberine biosynthesis has been intensively investigated, especially using Coptis japonica cell cultures. Almost all biosynthetic enzyme genes have already been characterized at the molecular level. Particularly, two transcription factors (TFs), a plant-specific WRKY-type TF, CjWRKY1, and a basic helix-loop-helix TF, CjbHLH1, were shown to comprehensively regulate berberine biosynthesis in C. japonica cells. In this study, we characterized the promoter region of some biosynthetic enzyme genes and associated cis-acting elements involved in the transcriptional regulation via two TFs. The promoter regions of three berberine biosynthetic enzyme genes (CYP80B2, 4'OMT and CYP719A1) were isolated, and their promoter activities were dissected by a transient assay involving the sequentially truncated promoter::luciferase (LUC) reporter constructs. Furthermore, transactivation activities of CjWRKY1 were determined using the truncated promoter::LUC reporter constructs or constructs with mutated cis-elements. These results suggest the involvement of a putative W-box in the regulation of biosynthetic enzyme genes. Direct binding of CjWRKY1 to the W-box DNA sequence was also confirmed by an electrophoresis mobility shift assay and by a chromatin immunoprecipitation assay. In addition, CjbHLH1 also activated transcription from truncated 4'OMT and CYP719A1 promoters independently of CjWRKY1, suggesting the involvement of a putative E-box. Unexpected transcriptional activation of biosynthetic enzyme genes via a non-W-box sequence and by CjWRKY1 as well as the possible involvement of a GCC-box in berberine biosynthesis in C. japonica are discussed. PMID:27642289

  10. Pseudomonas corrugata crpCDE is part of the cyclic lipopeptide corpeptin biosynthetic gene cluster and is involved in bacterial virulence in tomato and in hypersensitive response in Nicotiana benthamiana

    NARCIS (Netherlands)

    Strano, C.P.; Bella, P.; Licciardello, G.; Fiore, A.; Piero, Lo A.R.; Fogliano, V.; Fogliano, V.; Catara, V.

    2015-01-01

    Pseudomonas corrugata CFBP 5454 produces two kinds of cyclic lipopeptides (CLPs), cormycin A and corpeptins, both of which possess surfactant, antimicrobial and phytotoxic activities. In this study, we identified genes coding for a putative non-ribosomal peptide synthetase and an ABC-type transport

  11. Expression of fatty acid and lipid biosynthetic genes in developing endosperm of Jatropha curcas

    Directory of Open Access Journals (Sweden)

    Gu Keyu

    2012-07-01

    Full Text Available Abstract Background Temporal and spatial expression of fatty acid and lipid biosynthetic genes are associated with the accumulation of storage lipids in the seeds of oil plants. In jatropha (Jatropha curcas L., a potential biofuel plant, the storage lipids are mainly synthesized and accumulated in the endosperm of seeds. Although the fatty acid and lipid biosynthetic genes in jatropha have been identified, the expression of these genes at different developing stages of endosperm has not been systemically investigated. Results Transmission electron microscopy study revealed that the oil body formation in developing endosperm of jatropha seeds initially appeared at 28 days after fertilization (DAF, was actively developed at 42 DAF and reached to the maximum number and size at 56 DAF. Sixty-eight genes that encode enzymes, proteins or their subunits involved in fatty acid and lipid biosynthesis were identified from a normalized cDNA library of jatropha developing endosperm. Gene expression with quantitative reverse-transcription polymerase chain reaction analysis demonstrated that the 68 genes could be collectively grouped into five categories based on the patterns of relative expression of the genes during endosperm development. Category I has 47 genes and they displayed a bell-shaped expression pattern with the peak expression at 28 or 42 DAF, but low expression at 14 and 56 DAF. Category II contains 8 genes and expression of the 8 genes was constantly increased from 14 to 56 DAF. Category III comprises of 2 genes and both genes were constitutively expressed throughout endosperm development. Category IV has 9 genes and they showed a high expression at 14 and 28 DAF, but a decreased expression from 42 to 56 DAF. Category V consists of 2 genes and both genes showed a medium expression at 14 DAF, the lowest expression at 28 or 42 DAF, and the highest expression at 56 DAF. In addition, genes encoding enzymes or proteins with similar function were

  12. Cloning large natural product gene clusters from the environment: Piecing environmental DNA gene clusters back together with TAR

    OpenAIRE

    Kim, Jeffrey H.; Feng, Zhiyang; Bauer, John D.; Kallifidas, Dimitris; Calle, Paula Y.; Brady, Sean F

    2010-01-01

    A single gram of soil can contain thousands of unique bacterial species, of which only a small fraction is regularly cultured in the laboratory. Although the fermentation of cultured microorganisms has provided access to numerous bioactive secondary metabolites, with these same methods it is not possible to characterize the natural products encoded by the uncultured majority. The heterologous expression of biosynthetic gene clusters cloned from DNA extracted directly from environmental sample...

  13. CrBPF1 overexpression alters transcript levels of terpenoid indole alkaloid biosynthetic and regulatory genes.

    Science.gov (United States)

    Li, Chun Yao; Leopold, Alex L; Sander, Guy W; Shanks, Jacqueline V; Zhao, Le; Gibson, Susan I

    2015-01-01

    Terpenoid indole alkaloid (TIA) biosynthesis in Catharanthus roseus is a complex and highly regulated process. Understanding the biochemistry and regulation of the TIA pathway is of particular interest as it may allow the engineering of plants to accumulate higher levels of pharmaceutically important alkaloids. Toward this end, we generated a transgenic C. roseus hairy root line that overexpresses the CrBPF1 transcriptional activator under the control of a β-estradiol inducible promoter. CrBPF1 is a MYB-like protein that was previously postulated to help regulate the expression of the TIA biosynthetic gene STR. However, the role of CrBPF1 in regulation of the TIA and related pathways had not been previously characterized. In this study, transcriptional profiling revealed that overexpression of CrBPF1 results in increased transcript levels for genes from both the indole and terpenoid biosynthetic pathways that provide precursors for TIA biosynthesis, as well as for genes in the TIA biosynthetic pathway. In addition, overexpression of CrBPF1 causes increases in the transcript levels for 11 out of 13 genes postulated to act as transcriptional regulators of genes from the TIA and TIA feeder pathways. Interestingly, overexpression of CrBPF1 causes increased transcript levels for both TIA transcriptional activators and repressors. Despite the fact that CrBPF1 overexpression affects transcript levels of a large percentage of TIA biosynthetic and regulatory genes, CrBPF1 overexpression has only very modest effects on the levels of the TIA metabolites analyzed. This finding may be due, at least in part, to the up-regulation of both transcriptional activators and repressors in response to CrBPF1 overexpression, suggesting that CrBPF1 may serve as a "fine-tune" regulator for TIA biosynthesis, acting to help regulate the timing and amplitude of TIA gene expression. PMID:26483828

  14. CrBPF1 overexpression alters transcript levels of terpenoid indole alkaloid biosynthetic and regulatory genes

    Directory of Open Access Journals (Sweden)

    Chun Yao eLi

    2015-10-01

    Full Text Available Terpenoid indole alkaloid (TIA biosynthesis in Catharanthus roseus is a complex and highly regulated process. Understanding the biochemistry and regulation of the TIA pathway is of particular interest as it may allow the engineering of plants to accumulate higher levels of pharmaceutically important alkaloids. Towards this end, we generated a transgenic C. roseus hairy root line that overexpresses the CrBPF1 transcriptional activator under the control of a β-estradiol inducible promoter. CrBPF1 is a MYB-like protein that was previously postulated to help regulate the expression of the TIA biosynthetic gene STR. However, the role of CrBPF1 in regulation of the TIA and related pathways had not been previously characterized. In this study, transcriptional profiling revealed that overexpression of CrBPF1 results in increased transcript levels for genes from both the indole and terpenoid biosynthetic pathways that provide precursors for TIA biosynthesis, as well as for genes in the TIA biosynthetic pathway. In addition, overexpression of CrBPF1 causes increases in the transcript levels for 11 out of 13 genes postulated to act as transcriptional regulators of genes from the TIA and TIA feeder pathways. Interestingly, overexpression of CrBPF1 causes increased transcript levels for both TIA transcriptional activators and repressors. Despite the fact that CrBPF1 overexpression affects transcript levels of a large percentage of TIA biosynthetic and regulatory genes, CrBPF1 overexpression has only very modest effects on the levels of the TIA metabolites analyzed. This finding may be due, at least in part, to the up-regulation of both transcriptional activators and repressors in response to CrBPF1 overexpression, suggesting that CrBPF1 may serve as a fine-tune regulator for TIA biosynthesis, acting to help regulate the timing and amplitude of TIA gene expression.

  15. FunGeneClusterS

    DEFF Research Database (Denmark)

    Vesth, Tammi Camilla; Brandl, Julian; Andersen, Mikael Rørdam

    2016-01-01

    Secondary metabolites of fungi are receiving an increasing amount of interest due to their prolific bioactivities and the fact that fungal biosynthesis of secondary metabolites often occurs from co-regulated and co-located gene clusters. This makes the gene clusters attractive for synthetic biology...

  16. Global regulation of nucleotide biosynthetic genes by c-Myc.

    Directory of Open Access Journals (Sweden)

    Yen-Chun Liu

    Full Text Available BACKGROUND: The c-Myc transcription factor is a master regulator and integrates cell proliferation, cell growth and metabolism through activating thousands of target genes. Our identification of direct c-Myc target genes by chromatin immunoprecipitation (ChIP coupled with pair-end ditag sequencing analysis (ChIP-PET revealed that nucleotide metabolic genes are enriched among c-Myc targets, but the role of Myc in regulating nucleotide metabolic genes has not been comprehensively delineated. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report that the majority of genes in human purine and pyrimidine biosynthesis pathway were induced and directly bound by c-Myc in the P493-6 human Burkitt's lymphoma model cell line. The majority of these genes were also responsive to the ligand-activated Myc-estrogen receptor fusion protein, Myc-ER, in a Myc null rat fibroblast cell line, HO.15 MYC-ER. Furthermore, these targets are also responsive to Myc activation in transgenic mouse livers in vivo. To determine the functional significance of c-Myc regulation of nucleotide metabolism, we sought to determine the effect of loss of function of direct Myc targets inosine monophosphate dehydrogenases (IMPDH1 and IMPDH2 on c-Myc-induced cell growth and proliferation. In this regard, we used a specific IMPDH inhibitor mycophenolic acid (MPA and found that MPA dramatically inhibits c-Myc-induced P493-6 cell proliferation through S-phase arrest and apoptosis. CONCLUSIONS/SIGNIFICANCE: Taken together, these results demonstrate the direct induction of nucleotide metabolic genes by c-Myc in multiple systems. Our finding of an S-phase arrest in cells with diminished IMPDH activity suggests that nucleotide pool balance is essential for c-Myc's orchestration of DNA replication, such that uncoupling of these two processes create DNA replication stress and apoptosis.

  17. Cloning, mutagenesis, and nucleotide sequence of a siderophore biosynthetic gene (amoA) from Aeromonas hydrophila.

    OpenAIRE

    Barghouthi, S; Payne, S M; Arceneaux, J E; Byers, B R

    1991-01-01

    Many isolates of the Aeromonas species produce amonabactin, a phenolate siderophore containing 2,3-dihydroxybenzoic acid (2,3-DHB). An amonabactin biosynthetic gene (amoA) was identified (in a Sau3A1 gene library of Aeromonas hydrophila 495A2 chromosomal DNA) by its complementation of the requirement of Escherichia coli SAB11 for exogenous 2,3-DHB to support siderophore (enterobactin) synthesis. The gene amoA was subcloned as a SalI-HindIII 3.4-kb DNA fragment into pSUP202, and the complete n...

  18. Effect of phenolic compounds and osmotic stress on the expression of penicillin biosynthetic genes from Penicillium chrysogenum var. halophenolicum strain

    Directory of Open Access Journals (Sweden)

    Sumaya Ferreira Guedes

    2012-01-01

    Full Text Available Phenol and phenolic compounds are aromatic pollutants that inhibit biological treatment of wastewaters. Penicillium chrysogenum var. halophenolicum is a halotolerant fungus that previously showed the ability to degrade phenol and resorcinol in high salinity conditions. The presence of the penicillin biosynthetic cluster in P. chrysogenum var. halophenolicum was recently described. In this article, we examined the expression of pcbAB, pcbC and penDE, genes responsible for δ-(L-α-aminoadipyl-L-cysteinyl-D-valine synthetase, isopenicillin N synthase and isopenicillin N acyltransferase activities, respectively, in P. chrysogenum var. halophenolicum. A quantitative PCR (qPCR approach was used to determine how these genes were expressed in media with 2% and 5.9% NaCl supplemented with phenol, catechol, hydroquinone and resorcinol as the sole carbon source. The effect of salt on the capability of P. chrysogenum var. halophenolicum to degrade aromatic compounds was measured using HPLC. qPCR analysis of RNA extracted from P. chrysogenum var. halophenolicum indicated that the expression levels of pcbAB, pcbC and penDE decreased in high saline concentrations compared to the levels expressed in media with glucose. High concentrations of salt significantly repress the expression of pcbAB and penDE. The pcbC gene was expressed differentially in catechol containing medium. There was no evident relationship between the expression levels of penicillin biosynthetic genes and yields of penicillin. Meanwhile, the presence of phenol and phenolic compounds seems to positively influence the antibiotic production; high concentrations of salt stimulated penicillin production. These results support the hypothesis that phenol, phenolic compounds and high concentrations of salt could act like a stress factor for P. chrysogenum var. halophenolicum resulting in higher yields of β-lactam antibiotic production.

  19. Products of the iron-molybdenum cofactor-specific biosynthetic genes, nifE and nifN, are structurally homologous to the products of the nitrogenase molybdenum-iron protein genes, nifD and nifK.

    OpenAIRE

    Brigle, K E; Weiss, M C; Newton, W E; Dean, D R

    1987-01-01

    The genes from Azotobacter vinelandii, which are homologous to the iron-molybdenum cofactor biosynthetic genes, nifE and nifN, from Klebsiella pneumoniae, have been cloned and sequenced. These genes comprise a single transcription unit and are located immediately downstream from the nitrogenase structural gene cluster (nifHDK). DNA sequence analysis has revealed that the products of the nifE and nifN genes contain considerable homology when compared with the nifD (MoFe protein alpha subunit) ...

  20. Ethylene biosynthetic genes are differentially expressed during carnation (Dianthus caryophyllus L.) flower senescence.

    Science.gov (United States)

    ten Have, A; Woltering, E J

    1997-05-01

    Ethylene production and expression patterns of an 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (CARAO1) and of two ACC synthase (EC 4.4.1.14) genes (CARACC3 and CARAS1) were studied in floral organs of cut carnation flowers (Dianthus caryophyllus L.) cv. White Sim. During the vase life and after treatment of fresh flowers with ethylene, production of ethylene and expression of ethylene biosynthetic genes first started in the ovary followed by the styles and the petals. ACC oxidase was expressed in all the floral organs whereas, during the vase life, tissue-specific expression of the two ACC synthase genes was observed. After treatment with a high ethylene concentration, tissue specificity of the two ACC synthase genes was lost and only a temporal difference in expression remained. In styles, poor correlation between ethylene production and ACC synthase (CARAS1) gene expression was observed suggesting that either activity is regulated at the translational level or that the CARAS1 gene product requires an additional factor for activity. Isolated petals showed no increase in ethylene production and expression of ethylene biosynthetic genes when excised from the flower before the increase in petal ethylene production (before day 7); showed rapid cessation of ethylene production and gene expression when excised during the early phase of petal ethylene production (day 7) and showed a pattern of ethylene production and gene expression similar to the pattern observed in the attached petals when isolated at day 8. The interorgan regulation of gene expression and ethylene as a signal molecule in flower senescence are discussed.

  1. Evolutionary Conservation of Xylan Biosynthetic Genes in Selaginella moellendorffii and Physcomitrella patens.

    Science.gov (United States)

    Haghighat, Marziyeh; Teng, Quincy; Zhong, Ruiqin; Ye, Zheng-Hua

    2016-08-01

    Xylan is a major cross-linking hemicellulose in secondary walls of vascular tissues, and the recruitment of xylan as a secondary wall component was suggested to be a pivotal event for the evolution of vascular tissues. To decipher the evolution of xylan structure and xylan biosynthetic genes, we analyzed xylan substitution patterns and characterized genes mediating methylation of glucuronic acid (GlcA) side chains in xylan of the model seedless vascular plant, Selaginella moellendorffii, and investigated GT43 genes from S. moellendorffii and the model non-vascular plant, Physcomitrella patens, for their roles in xylan biosynthesis. Using nuclear magentic resonance spectroscopy, we have demonstrated that S. moellendorffii xylan consists of β-1,4-linked xylosyl residues subsituted solely with methylated GlcA residues and that xylans from both S. moellendorffii and P. patens are acetylated at O-2 and O-3. To investigate genes responsible for GlcA methylation of xylan, we identified two DUF579 genes in the S. moellendorffii genome and showed that one of them, SmGXM, encodes a glucuronoxylan methyltransferase capable of adding the methyl group onto the GlcA side chain of xylooligomers. Furthermore, we revealed that the two GT43 genes in S. moellendorffii, SmGT43A and SmGT43B, are functional orthologs of the Arabidopsis xylan backbone biosynthetic genes IRX9 and IRX14, respectively, indicating the evolutionary conservation of the involvement of two functionally non-redundant groups of GT43 genes in xylan backbone biosynthesis between seedless and seed vascular plants. Among the five GT43 genes in P. patens, PpGT43A was found to be a functional ortholog of Arabidopsis IRX9, suggesting that the recruitment of GT43 genes in xylan backbone biosynthesis occurred when non-vascular plants appeared on land. PMID:27345025

  2. Treadmill exercise does not change gene expression of adrenal catecholamine biosynthetic enzymes in chronically stressed rats

    Directory of Open Access Journals (Sweden)

    LJUBICA GAVRILOVIC

    2013-09-01

    Full Text Available ABSTRACT Chronic isolation of adult animals represents a form of psychological stress that produces sympatho-adrenomedullar activation. Exercise training acts as an important modulator of sympatho-adrenomedullary system. This study aimed to investigate physical exercise-related changes in gene expression of catecholamine biosynthetic enzymes (tyrosine hydroxylase, dopamine-ß-hydroxylase and phenylethanolamine N-methyltransferase and cyclic adenosine monophosphate response element-binding (CREB in the adrenal medulla, concentrations of catecholamines and corticosterone (CORT in the plasma and the weight of adrenal glands of chronically psychosocially stressed adult rats exposed daily to 20 min treadmill running for 12 weeks. Also, we examined how additional acute immobilization stress changes the mentioned parameters. Treadmill running did not result in modulation of gene expression of catecholamine synthesizing enzymes and it decreased the level of CREB mRNA in the adrenal medulla of chronically psychosocially stressed adult rats. The potentially negative physiological adaptations after treadmill running were recorded as increased concentrations of catecholamines and decreased morning CORT concentration in the plasma, as well as the adrenal gland hypertrophy of chronically psychosocially stressed rats. The additional acute immobilization stress increases gene expression of catecholamine biosynthetic enzymes in the adrenal medulla, as well as catecholamines and CORT levels in the plasma. Treadmill exercise does not change the activity of sympatho-adrenomedullary system of chronically psychosocially stressed rats.

  3. ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Lindemose, Søren; De Masi, Federico;

    2013-01-01

    ATAF1, an Arabidopsis thaliana NAC transcription factor, plays important roles in plant adaptation to environmental stress and development. To search for ATAF1 target genes, we used protein binding microarrays and chromatin-immunoprecipitation (ChIP). This identified T[A,C,G]CGT[A,G] and TT......[A,C,G]CGT as ATAF1 consensus binding sequences. Co-expression analysis across publicly available microarray experiments identified 25 genes co-expressed with ATAF1. The promoter regions of ATAF1 co-expressors were significantly enriched for ATAF1 binding sites, and TTGCGTA was identified in the promoter of the key...... abscisic acid (ABA) phytohormone biosynthetic gene NCED3. ChIP-qPCR and expression analysis showed that ATAF1 binding to the NCED3 promoter correlated with increased NCED3 expression and ABA hormone levels. These results indicate that ATAF1 regulates ABA biosynthesis....

  4. Depth-related distribution of a key gene of the tetraether lipid biosynthetic pathway in marine Thaumarchaeota.

    Science.gov (United States)

    Villanueva, Laura; Schouten, Stefan; Sinninghe Damsté, Jaap S

    2015-10-01

    The distribution of isoprenoid glycerol dialkyl glycerol tetraethers (GDGT) lipids synthesized by Thaumarchaeota has been shown to be temperature-dependent in world oceans. Depth-related differences in the ammonia monooxygenase (amoA) of Thaumarchaeota have led to the classification of 'shallow' and 'deep water' clusters, potentially affecting GDGT distributions. Here, we investigate if this classification is also reflected in a key gene of the thaumarchaeotal lipid biosynthetic pathway coding for geranylgeranylglyceryl phosphate (GGGP) synthase. We investigated metagenomic databases, suspended particulate matter and surface sediment of the Arabian Sea oxygen minimum zone. These revealed significant differences in amoA and GGGP synthase between 'shallow' and 'deep water' Thaumarchaeota. Intriguingly, amoA and GGGP synthase sequences of benthic Thaumarchaeota clustered with the 'shallow water' rather than with 'deep water' Thaumarchaeota. This suggests that pressure and temperature are unlikely factors that drive the differentiation, and suggests an important role of ammonia concentration that is higher in benthic and 'shallow water' niches. Analysis of the relative abundance of GDGTs in the Arabian Sea and in globally distributed surface sediments showed differences in GDGT distributions from subsurface to deep waters that may be explained by differences in the GGGP synthase, suggesting a genetic control on GDGT distributions. PMID:24813867

  5. Bacterial Long-Chain Polyunsaturated Fatty Acids: Their Biosynthetic Genes, Functions, and Practical Use

    Directory of Open Access Journals (Sweden)

    Kiyohito Yoshida

    2016-05-01

    Full Text Available The nutritional and pharmaceutical values of long-chain polyunsaturated fatty acids (LC-PUFAs such as arachidonic, eicosapentaenoic and docosahexaenoic acids have been well recognized. These LC-PUFAs are physiologically important compounds in bacteria and eukaryotes. Although little is known about the biosynthetic mechanisms and functions of LC-PUFAs in bacteria compared to those in higher organisms, a combination of genetic, bioinformatic, and molecular biological approaches to LC-PUFA-producing bacteria and some eukaryotes have revealed the notably diverse organization of the pfa genes encoding a polyunsaturated fatty acid synthase complex (PUFA synthase, the LC-PUFA biosynthetic processes, and tertiary structures of the domains of this enzyme. In bacteria, LC-PUFAs appear to take part in specific functions facilitating individual membrane proteins rather than in the adjustment of the physical fluidity of the whole cell membrane. Very long chain polyunsaturated hydrocarbons (LC-HCs such as hentriacontanonaene are considered to be closely related to LC-PUFAs in their biosynthesis and function. The possible role of LC-HCs in strictly anaerobic bacteria under aerobic and anaerobic environments and the evolutionary relationships of anaerobic and aerobic bacteria carrying pfa-like genes are also discussed.

  6. Transcriptome and Metabolite analysis reveal candidate genes of the cardiac glycoside biosynthetic pathway from Calotropis procera

    Science.gov (United States)

    Pandey, Akansha; Swarnkar, Vishakha; Pandey, Tushar; Srivastava, Piush; Kanojiya, Sanjeev; Mishra, Dipak Kumar; Tripathi, Vineeta

    2016-01-01

    Calotropis procera is a medicinal plant of immense importance due to its pharmaceutical active components, especially cardiac glycosides (CG). As genomic resources for this plant are limited, the genes involved in CG biosynthetic pathway remain largely unknown till date. Our study on stage and tissue specific metabolite accumulation showed that CG’s were maximally accumulated in stems of 3 month old seedlings. De novo transcriptome sequencing of same was done using high throughput Illumina HiSeq platform generating 44074 unigenes with average mean length of 1785 base pair. Around 66.6% of unigenes were annotated by using various public databases and 5324 unigenes showed significant match in the KEGG database involved in 133 different pathways of plant metabolism. Further KEGG analysis resulted in identification of 336 unigenes involved in cardenolide biosynthesis. Tissue specific expression analysis of 30 putative transcripts involved in terpenoid, steroid and cardenolide pathways showed a positive correlation between metabolite and transcript accumulation. Wound stress elevated CG levels as well the levels of the putative transcripts involved in its biosynthetic pathways. This result further validated the involvement of identified transcripts in CGs biosynthesis. The identified transcripts will lay a substantial foundation for further research on metabolic engineering and regulation of cardiac glycosides biosynthesis pathway genes. PMID:27703261

  7. Expression of Terpenoid Biosynthetic Genes and Accumulation of Chemical Constituents in Valeriana fauriei

    Directory of Open Access Journals (Sweden)

    Yun Ji Park

    2016-05-01

    Full Text Available Valeriana fauriei (V. fauriei, which emits a characteristic and unpleasant odor, is important in traditional medicine. In this study, the expression of terpenoid biosynthetic genes was investigated in different organs that were also screened for volatile compounds including valerenic acid and its derivatives. Specific expression patterns from different parts of V. fauriei were observed using quantitative real-time PCR (qRT-PCR. The highest transcript levels of biosynthetic genes involved in mevalonic acid (MVA and methylerythritol phosphate (MEP production were found in the stem. Although the amounts of volatile compounds were varied by organ, most of the volatile terpenoids were accumulated in the root. Gas chromatography mass spectrometry (GC-MS analysis identified 128 volatile compounds, which represented 65.33% to 95.66% of total volatiles. Certain compounds were only found in specific organs. For example, isovalerenic acid and valerenic acid and its derivatives were restricted to the root. Organs with high transcript levels did not necessarily have high levels of the corresponding chemical constituents. According to these results, we hypothesize that translocation may occur between different organs in V. fauriei.

  8. Overexpressions of Lambda Phage Lysis Genes and Biosynthetic Genes of Poly-β-hydroxybutyrate in Recombinant E.coli

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    A plasmid (pTU9) containing the lambda (λ) phage lysis genes S(-)RRz and the biosynthetic genes phbCAB of poly-β-hydroxybutyrate (PHB) was constructed and transformed into E.coli JM109. Cultured in Luria-Bertani (LB) medium with 20 g/L glucose, E.coli JM109 (pTU9) could accumulate PHB in cells up to 40% (g PHB per g dry cells). A chelating agent EDTA was applied to induce a complete cell lysis and PHB granules were released. This method has a potential application in PHB separation.

  9. Evolution of the Structure and Chromosomal Distribution of Histidine Biosynthetic Genes

    Science.gov (United States)

    Fani, Renato; Mori, Elena; Tamburini, Elena; Lazcano, Antonio

    1998-10-01

    A database of more than 100 histidine biosynthetic genes from different organisms belonging to the three primary domains has been analyzed, including those found in the now completely sequenced genomes of Haemophilus influenzae, Mycoplasma genitalium, Synechocystis sp., Methanococcus jannaschii, and Saccharomyces cerevisiae. The ubiquity of his genes suggests that it is a highly conserved pathway that was probably already present in the last common ancestor of all extant life. The chromosomal distribution of the his genes shows that the enterobacterial histidine operon structure is not the only possible organization, and that there is a diversity of gene arrays for the his pathway. Analysis of the available sequences shows that gene fusions (like those involved in the origin of the Escherichia coli and Salmonella typhimurium hisIE and hisB gene structures) are not universal. In contrast, the elongation event that led to the extant hisA gene from two homologous ancestral modules, as well as the subsequent paralogous duplication that originated hisF, appear to be irreversible and are conserved in all known organisms. The available evidence supports the hypothesis that histidine biosynthesis was assembled by a gene recruitment process.

  10. Variation in Fumonisin and Ochratoxin Production Associated with Differences in Biosynthetic Gene Content in Aspergillus niger and A. welwitschiae Isolates from Multiple Crop and Geographic Origins.

    Science.gov (United States)

    Susca, Antonia; Proctor, Robert H; Morelli, Massimiliano; Haidukowski, Miriam; Gallo, Antonia; Logrieco, Antonio F; Moretti, Antonio

    2016-01-01

    The fungi Aspergillus niger and A. welwitschiae are morphologically indistinguishable species used for industrial fermentation and for food and beverage production. The fungi also occur widely on food crops. Concerns about their safety have arisen with the discovery that some isolates of both species produce fumonisin (FB) and ochratoxin A (OTA) mycotoxins. Here, we examined FB and OTA production as well as the presence of genes responsible for synthesis of the mycotoxins in a collection of 92 A. niger/A. welwitschiae isolates from multiple crop and geographic origins. The results indicate that (i) isolates of both species differed in ability to produce the mycotoxins; (ii) FB-nonproducing isolates of A. niger had an intact fumonisin biosynthetic gene (fum) cluster; (iii) FB-nonproducing isolates of A. welwitschiae exhibited multiple patterns of fum gene deletion; and (iv) OTA-nonproducing isolates of both species lacked the ochratoxin A biosynthetic gene (ota) cluster. Analysis of genome sequence data revealed a single pattern of ota gene deletion in the two species. Phylogenetic analysis suggest that the simplest explanation for this is that ota cluster deletion occurred in a common ancestor of A. niger and A. welwitschiae, and subsequently both the intact and deleted cluster were retained as alternate alleles during divergence of the ancestor into descendent species. Finally, comparison of results from this and previous studies indicate that a majority of A. niger isolates and a minority of A. welwitschiae isolates can produce FBs, whereas, a minority of isolates of both species produce OTA. The comparison also suggested that the relative abundance of each species and frequency of FB/OTA-producing isolates can vary with crop and/or geographic origin. PMID:27667988

  11. Variation in Fumonisin and Ochratoxin Production Associated with Differences in Biosynthetic Gene Content in Aspergillus niger and A. welwitschiae Isolates from Multiple Crop and Geographic Origins

    Science.gov (United States)

    Susca, Antonia; Proctor, Robert H.; Morelli, Massimiliano; Haidukowski, Miriam; Gallo, Antonia; Logrieco, Antonio F.; Moretti, Antonio

    2016-01-01

    The fungi Aspergillus niger and A. welwitschiae are morphologically indistinguishable species used for industrial fermentation and for food and beverage production. The fungi also occur widely on food crops. Concerns about their safety have arisen with the discovery that some isolates of both species produce fumonisin (FB) and ochratoxin A (OTA) mycotoxins. Here, we examined FB and OTA production as well as the presence of genes responsible for synthesis of the mycotoxins in a collection of 92 A. niger/A. welwitschiae isolates from multiple crop and geographic origins. The results indicate that (i) isolates of both species differed in ability to produce the mycotoxins; (ii) FB-nonproducing isolates of A. niger had an intact fumonisin biosynthetic gene (fum) cluster; (iii) FB-nonproducing isolates of A. welwitschiae exhibited multiple patterns of fum gene deletion; and (iv) OTA-nonproducing isolates of both species lacked the ochratoxin A biosynthetic gene (ota) cluster. Analysis of genome sequence data revealed a single pattern of ota gene deletion in the two species. Phylogenetic analysis suggest that the simplest explanation for this is that ota cluster deletion occurred in a common ancestor of A. niger and A. welwitschiae, and subsequently both the intact and deleted cluster were retained as alternate alleles during divergence of the ancestor into descendent species. Finally, comparison of results from this and previous studies indicate that a majority of A. niger isolates and a minority of A. welwitschiae isolates can produce FBs, whereas, a minority of isolates of both species produce OTA. The comparison also suggested that the relative abundance of each species and frequency of FB/OTA-producing isolates can vary with crop and/or geographic origin. PMID:27667988

  12. Effects of Cerium on Accumulation of Anthocyanins and Expression of Anthocyanin Biosynthetic Genes in Potato Cell Tissue Cultures

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The effects of Ce (Ⅳ) on callus growth, anthocyanin content, and expression of anthocyanin biosynthetic genes in callus suspension cultures of Solanum tuberosum cv. Chieftain were studied by the measurement of fresh weight, spectrophotometric assays, and semiquantitative RT-PCR. The results indicate that 0.1 mmol·L-1 Ce (Ⅳ) can promote callus growth, increase the accumulation of anthocyanins, and enhance the expression of five anthocyanin biosynthetic genes (CHS, F3H, F3′5′H, DFR, and 3GT) most efficiently. At high concentrations of 1 mmol·L-1, Ce (Ⅳ) partially inhibits callus growth and at 2 mmol·L-1 eventually lends to cell death. The results show that Ce(Ⅳ) can induce the expression of anthocyanin biosynthetic genes to produce and accumulate anthocyanins and increase the yield of anthocyanins.

  13. Horizontal gene transfer and redundancy of tryptophan biosynthetic enzymes in dinotoms.

    Science.gov (United States)

    Imanian, Behzad; Keeling, Patrick J

    2014-02-01

    A tertiary endosymbiosis between a dinoflagellate host and diatom endosymbiont gave rise to "dinotoms," cells with a unique nuclear and mitochondrial redundancy derived from two evolutionarily distinct eukaryotic lineages. To examine how this unique redundancy might have affected the evolution of metabolic systems, we investigated the transcription of genes involved in biosynthesis of the amino acid tryptophan in three species, Durinskia baltica, Kryptoperidinium foliaceum, and Glenodinium foliaceum. From transcriptome sequence data, we recovered two distinct sets of protein-coding transcripts covering the entire tryptophan biosynthetic pathway. Phylogenetic analyses suggest a diatom origin for one set of the proteins, which we infer to be expressed in the endosymbiont, and that the other arose from multiple horizontal gene transfer events to the dinoflagellate ancestor of the host lineage. This is the first indication that these cells retain redundant sets of transcripts and likely metabolic pathways for the biosynthesis of small molecules and extend their redundancy to their two distinct nuclear genomes. PMID:24448981

  14. Stress and developmental responses of terpenoid biosynthetic genes in Cistus creticus subsp. creticus.

    Science.gov (United States)

    Pateraki, Irene; Kanellis, Angelos K

    2010-06-01

    Plants, and specially species adapted in non-friendly environments, produce secondary metabolites that help them to cope with biotic or abiotic stresses. These metabolites could be of great pharmaceutical interest because several of those show cytotoxic, antibacterial or antioxidant activities. Leaves' trichomes of Cistus creticus ssp. creticus, a Mediterranean xerophytic shrub, excrete a resin rich in several labdane-type diterpenes with verified in vitro and in vivo cytotoxic and cytostatic activity against human cancer cell lines. Bearing in mind the properties and possible future exploitation of these natural products, it seemed interesting to study their biosynthesis and its regulation, initially at the molecular level. For this purpose, genes encoding enzymes participating in the early steps of the terpenoids biosynthetic pathways were isolated and their gene expression patterns were investigated in different organs and in response to various stresses and defence signals. The genes studied were the CcHMGR from the mevalonate pathway, CcDXS and CcDXR from the methylerythritol 4-phosphate pathway and the two geranylgeranyl diphosphate synthases (CcGGDPS1 and 2) previously characterized from this species. The present work indicates that the leaf trichomes are very active biosynthetically as far as it concerns terpenoids biosynthesis, and the terpenoid production from this tissue seems to be transcriptionally regulated. Moreover, the CcHMGR and CcDXS genes (the rate-limiting steps of the isoprenoids' pathways) showed an increase during mechanical wounding and application of defence signals (like meJA and SA), which is possible to reflect an increased need of the plant tissues for the corresponding metabolites. PMID:20364257

  15. Phenylpropanoids accumulation in eggplant fruit: characterization of biosynthetic genes and regulation by a MYB transcription factor

    Directory of Open Access Journals (Sweden)

    Teresa eDocimo

    2016-01-01

    Full Text Available Phenylpropanoids are major secondary metabolites in eggplant (Solanum melongena fruits. Chlorogenic acid (CGA accounts for 70 to 90% of total phenolics in flesh tissues, while anthocyanins are mainly present in the fruit skin. As a contribution to the understanding of the peculiar accumulation of these health-promoting metabolites in eggplant, we report on metabolite abundance, regulation of CGA and anthocyanin biosynthesis, and characterization of candidate CGA biosynthetic genes in S. melongena.Higher contents of CGA, Delphinidin 3-rutinoside and rutin were found in eggplant fruits compared to other tissues, associated to an elevated transcript abundance of structural genes such as PAL, HQT, DFR and ANS, suggesting that active in situ biosynthesis contributes to anthocyanin and CGA accumulation in fruit tissues. Putative orthologs of the two CGA biosynthetic genes PAL and HQT, as well as a variant of a MYB1 transcription factor showing identity with group 6 MYBs, were isolated from an Occidental S. melongena traditional variety and demonstrated to differ from published sequences from Asiatic varieties.In silico analysis of the isolated SmPAL1, SmHQT1, SmANS, and SmMyb1 promoters revealed the presence of several Myb regulatory elements for the biosynthetic genes and unique elements for the TF, suggesting its involvement in other physiological roles beside phenylpropanoid biosynthesis regulation.Transient overexpression in Nicotiana benthamiana leaves of SmMyb1 and of a C-terminal SmMyb1 truncated form (SmMyb1Δ9 resulted in anthocyanin accumulation only of SmMyb1 agro-infiltrated leaves. A yeast two-hybrid assay confirmed the interaction of both SmMyb1 and SmMyb1Δ9 with an anthocyanin-related potato bHLH1 TF. Interestingly, a doubled amount of CGA was detected in both SmMyb1 and SmMyb1Δ9 agro-infiltrated leaves, thus suggesting that the N-terminal region of SmMyb1 is sufficient to activate its synthesis. These data suggest that a deletion of

  16. Saponin determination, expression analysis and functional characterization of saponin biosynthetic genes in Chenopodium quinoa leaves.

    Science.gov (United States)

    Fiallos-Jurado, Jennifer; Pollier, Jacob; Moses, Tessa; Arendt, Philipp; Barriga-Medina, Noelia; Morillo, Eduardo; Arahana, Venancio; de Lourdes Torres, Maria; Goossens, Alain; Leon-Reyes, Antonio

    2016-09-01

    Quinoa (Chenopodium quinoa Willd.) is a highly nutritious pseudocereal with an outstanding protein, vitamin, mineral and nutraceutical content. The leaves, flowers and seed coat of quinoa contain triterpenoid saponins, which impart bitterness to the grain and make them unpalatable without postharvest removal of the saponins. In this study, we quantified saponin content in quinoa leaves from Ecuadorian sweet and bitter genotypes and assessed the expression of saponin biosynthetic genes in leaf samples elicited with methyl jasmonate. We found saponin accumulation in leaves after MeJA treatment in both ecotypes tested. As no reference genes were available to perform qPCR in quinoa, we mined publicly available RNA-Seq data for orthologs of 22 genes known to be stably expressed in Arabidopsis thaliana using geNorm, NormFinder and BestKeeper algorithms. The quinoa ortholog of At2g28390 (Monensin Sensitivity 1, MON1) was stably expressed and chosen as a suitable reference gene for qPCR analysis. Candidate saponin biosynthesis genes were screened in the quinoa RNA-Seq data and subsequent functional characterization in yeast led to the identification of CqbAS1, CqCYP716A78 and CqCYP716A79. These genes were found to be induced by MeJA, suggesting this phytohormone might also modulate saponin biosynthesis in quinoa leaves. Knowledge of the saponin biosynthesis and its regulation in quinoa may aid the further development of sweet cultivars that do not require postharvest processing. PMID:27457995

  17. Identification of the Fucose Synthetase Gene in the Colanic Acid Gene Cluster of Escherichia coli K-12

    OpenAIRE

    Andrianopoulos, Kanella; WANG Lei; Reeves, Peter R.

    1998-01-01

    GDP–l-fucose, the substrate for fucosyltransferases for addition of fucose to polysaccharides or glycoproteins in both procaryotes and eucaryotes, is made from GDP–d-mannose. l-Fucose is a component of bacterial surface antigens, including the extracellular polysaccharide colanic acid produced by most Escherichia coli strains. We previously sequenced the E. coli colanic acid gene cluster and identified one of the GDP–l-fucose biosynthetic pathway genes, gmd. We report here the identification ...

  18. Identification of novel mureidomycin analogues via rational activation of a cryptic gene cluster in Streptomyces roseosporus NRRL 15998.

    Science.gov (United States)

    Jiang, Lingjuan; Wang, Lu; Zhang, Jihui; Liu, Hao; Hong, Bin; Tan, Huarong; Niu, Guoqing

    2015-01-01

    Antimicrobial agents are urgently needed to tackle the growing threat of antibiotic-resistant pathogens. An important source of new antimicrobials is the large repertoire of cryptic gene clusters embedded in microbial genomes. Genome mining revealed a napsamycin/mureidomycin biosynthetic gene cluster in the chromosome of Streptomyces roseosporus NRRL 15998. The cryptic gene cluster was activated by constitutive expression of a foreign activator gene ssaA from sansanmycin biosynthetic gene cluster of Streptomyces sp. strain SS. Expression of the gene cluster was verified by RT-PCR analysis of key biosynthetic genes. The activated metabolites demonstrated potent inhibitory activity against the highly refractory pathogen Pseudomonas aeruginosa, and characterization of the metabolites led to the discovery of eight acetylated mureidomycin analogues. To our surprise, constitutive expression of the native activator gene SSGG_02995, a ssaA homologue in S. roseosporus NRRL 15998, has no beneficial effect on mureidomycin stimulation. This study provides a new way to activate cryptic gene cluster for the acquisition of novel antibiotics and will accelerate the exploitation of prodigious natural products in Streptomyces. PMID:26370924

  19. A putative gene cluster from a Lyngbya wollei bloom that encodes paralytic shellfish toxin biosynthesis.

    Directory of Open Access Journals (Sweden)

    Troco K Mihali

    Full Text Available Saxitoxin and its analogs cause the paralytic shellfish-poisoning syndrome, adversely affecting human health and coastal shellfish industries worldwide. Here we report the isolation, sequencing, annotation, and predicted pathway of the saxitoxin biosynthetic gene cluster in the cyanobacterium Lyngbya wollei. The gene cluster spans 36 kb and encodes enzymes for the biosynthesis and export of the toxins. The Lyngbya wollei saxitoxin gene cluster differs from previously identified saxitoxin clusters as it contains genes that are unique to this cluster, whereby the carbamoyltransferase is truncated and replaced by an acyltransferase, explaining the unique toxin profile presented by Lyngbya wollei. These findings will enable the creation of toxin probes, for water monitoring purposes, as well as proof-of-concept for the combinatorial biosynthesis of these natural occurring alkaloids for the production of novel, biologically active compounds.

  20. Discovery of putative capsaicin biosynthetic genes by RNA-Seq and digital gene expression analysis of pepper

    Science.gov (United States)

    Zhang, Zi-Xin; Zhao, Shu-Niu; Liu, Gao-Feng; Huang, Zu-Mei; Cao, Zhen-Mu; Cheng, Shan-Han; Lin, Shi-Sen

    2016-01-01

    The Indian pepper ‘Guijiangwang’ (Capsicum frutescens L.), one of the world’s hottest chili peppers, is rich in capsaicinoids. The accumulation of the alkaloid capsaicin and its analogs in the epidermal cells of the placenta contribute to the pungency of Capsicum fruits. To identify putative genes involved in capsaicin biosynthesis, RNA-Seq was used to analyze the pepper’s expression profiles over five developmental stages. Five cDNA libraries were constructed from the total RNA of placental tissue and sequenced using an Illumina HiSeq 2000. More than 19 million clean reads were obtained from each library, and greater than 50% of the reads were assignable to reference genes. Digital gene expression (DGE) profile analysis using Solexa sequencing was performed at five fruit developmental stages and resulted in the identification of 135 genes of known function; their expression patterns were compared to the capsaicin accumulation pattern. Ten genes of known function were identified as most likely to be involved in regulating capsaicin synthesis. Additionally, 20 new candidate genes were identified related to capsaicin synthesis. We use a combination of RNA-Seq and DGE analyses to contribute to the understanding of the biosynthetic regulatory mechanism(s) of secondary metabolites in a nonmodel plant and to identify candidate enzyme-encoding genes. PMID:27756914

  1. Comparative SNP diversity among four Eucalyptus species for genes from secondary metabolite biosynthetic pathways

    OpenAIRE

    Foley William J; Maintz Jens; Hui Yeoh Suat; Külheim Carsten; Moran Gavin F

    2009-01-01

    Abstract Background There is little information about the DNA sequence variation within and between closely related plant species. The combination of re-sequencing technologies, large-scale DNA pools and availability of reference gene sequences allowed the extensive characterisation of single nucleotide polymorphisms (SNPs) in genes of four biosynthetic pathways leading to the formation of ecologically relevant secondary metabolites in Eucalyptus. With this approach the occurrence and pattern...

  2. Effective Clustering Algorithms for Gene Expression Data

    CERN Document Server

    Chandrasekhar, T; Elayaraja, E

    2012-01-01

    Microarrays are made it possible to simultaneously monitor the expression profiles of thousands of genes under various experimental conditions. Identification of co-expressed genes and coherent patterns is the central goal in microarray or gene expression data analysis and is an important task in Bioinformatics research. In this paper, K-Means algorithm hybridised with Cluster Centre Initialization Algorithm (CCIA) is proposed Gene Expression Data. The proposed algorithm overcomes the drawbacks of specifying the number of clusters in the K-Means methods. Experimental analysis shows that the proposed method performs well on gene Expression Data when compare with the traditional K- Means clustering and Silhouette Coefficients cluster measure.

  3. Accumulation of Kaempferitrin and Expression of Phenyl-Propanoid Biosynthetic Genes in Kenaf (Hibiscus cannabinus

    Directory of Open Access Journals (Sweden)

    Shicheng Zhao

    2014-10-01

    Full Text Available Kenaf (Hibiscus cannabinus is cultivated worldwide for its fiber; however, the medicinal properties of this plant are currently attracting increasing attention. In this study, we investigated the expression levels of genes involved in the biosynthesis of kaempferitrin, a compound with many biological functions, in different kenaf organs. We found that phenylalanine ammonia lyase (HcPAL was more highly expressed in stems than in other organs. Expression levels of cinnamate 4-hydroxylase (HcC4H and 4-coumarate-CoA ligase (Hc4CL were highest in mature leaves, followed by stems and young leaves, and lowest in roots and mature flowers. The expression of chalcone synthase (HcCHS, chalcone isomerase (HcCHI, and flavone 3-hydroxylase (HcF3H was highest in young flowers, whereas that of flavone synthase (HcFLS was highest in leaves. An analysis of kaempferitrin accumulation in the different organs of kenaf revealed that the accumulation of this compound was considerably higher (>10-fold in leaves than in other organs. On the basis of a comparison of kaempferitrin contents with the expression levels of different genes in different organs, we speculate that HcFLS plays an important regulatory role in the kaempferitrin biosynthetic pathway in kenaf.

  4. Diurnal Regulation of the Brassinosteroid-Biosynthetic CPD Gene in Arabidopsis1[W

    Science.gov (United States)

    Bancos, Simona; Szatmári, Anna-Mária; Castle, Julie; Kozma-Bognár, László; Shibata, Kyomi; Yokota, Takao; Bishop, Gerard J.; Nagy, Ferenc; Szekeres, Miklós

    2006-01-01

    Plant steroid hormones, brassinosteroids (BRs), are essential for normal photomorphogenesis. However, the mechanism by which light controls physiological functions via BRs is not well understood. Using transgenic plants carrying promoter-luciferase reporter gene fusions, we show that in Arabidopsis (Arabidopsis thaliana) the BR-biosynthetic CPD and CYP85A2 genes are under diurnal regulation. The complex diurnal expression profile of CPD is determined by dual, light-dependent, and circadian control. The severely decreased expression level of CPD in phytochrome-deficient background and the red light-specific induction in wild-type plants suggest that light regulation of CPD is primarily mediated by phytochrome signaling. The diurnal rhythmicity of CPD expression is maintained in brassinosteroid insensitive 1 transgenic seedlings, indicating that its transcriptional control is independent of hormonal feedback regulation. Diurnal changes in the expression of CPD and CYP85A2 are accompanied by changes of the endogenous BR content during the day, leading to brassinolide accumulation at the middle of the light phase. We also show that CPD expression is repressed in extended darkness in a BR feedback-dependent manner. In the dark the level of the bioactive hormone did not increase; therefore, our data strongly suggest that light also influences the sensitivity of plants to BRs. PMID:16531479

  5. Diurnal regulation of the brassinosteroid-biosynthetic CPD gene in Arabidopsis.

    Science.gov (United States)

    Bancos, Simona; Szatmári, Anna-Mária; Castle, Julie; Kozma-Bognár, László; Shibata, Kyomi; Yokota, Takao; Bishop, Gerard J; Nagy, Ferenc; Szekeres, Miklós

    2006-05-01

    Plant steroid hormones, brassinosteroids (BRs), are essential for normal photomorphogenesis. However, the mechanism by which light controls physiological functions via BRs is not well understood. Using transgenic plants carrying promoter-luciferase reporter gene fusions, we show that in Arabidopsis (Arabidopsis thaliana) the BR-biosynthetic CPD and CYP85A2 genes are under diurnal regulation. The complex diurnal expression profile of CPD is determined by dual, light-dependent, and circadian control. The severely decreased expression level of CPD in phytochrome-deficient background and the red light-specific induction in wild-type plants suggest that light regulation of CPD is primarily mediated by phytochrome signaling. The diurnal rhythmicity of CPD expression is maintained in brassinosteroid insensitive 1 transgenic seedlings, indicating that its transcriptional control is independent of hormonal feedback regulation. Diurnal changes in the expression of CPD and CYP85A2 are accompanied by changes of the endogenous BR content during the day, leading to brassinolide accumulation at the middle of the light phase. We also show that CPD expression is repressed in extended darkness in a BR feedback-dependent manner. In the dark the level of the bioactive hormone did not increase; therefore, our data strongly suggest that light also influences the sensitivity of plants to BRs.

  6. Multiple GCD genes required for repression of GCN4, a transcriptional activator of amino acid biosynthetic genes in Saccharomyces cerevisiae.

    Science.gov (United States)

    Harashima, S; Hinnebusch, A G

    1986-11-01

    GCN4 encodes a positive regulator of multiple unlinked genes encoding amino acid biosynthetic enzymes in Saccharomyces cerevisiae. Expression of GCN4 is coupled to amino acid availability by a control mechanism involving GCD1 as a negative effector and GCN1, GCN2, and GCN3 as positive effectors of GCN4 expression. We used reversion of a gcn2 gcn3 double mutation to isolate new alleles of GCD1 and mutations in four additional GCD genes which we designate GCD10, GCD11, GCD12, and GCD13. All of the mutations lead to constitutive derepression of HIS4 transcription in the absence of the GCN2+ and GCN3+ alleles. By contrast, the gcd mutations require the wild-type GCN4 allele for their derepressing effect, suggesting that each acts by influencing the level of GCN4 activity in the cell. Consistent with this interpretation, mutations in each GCD gene lead to constitutive derepression of a GCN4::lacZ gene fusion. Thus, at least five gene products are required to maintain the normal repressed level of GCN4 expression in nonstarvation conditions. Interestingly, the gcd mutations are pleiotropic and also affect growth rate in nonstarvation conditions. In addition, certain alleles lead to a loss of M double-stranded RNA required for the killer phenotype. This pleiotropy suggests that the GCD gene products contribute to an essential cellular function, in addition to, or in conjunction with, their role in GCN4 regulation.

  7. Differential expression of carotenoid biosynthetic pathway genes in two contrasting tomato genotypes for lycopene content

    Indian Academy of Sciences (India)

    Shilpa Pandurangaiah; Kundapura V Ravishankar; Kodthalu S Shivashankar; Avverahally T Sadashiva; Kavitha Pillakenchappa; Sunil Kumar Narayanan

    2016-06-01

    Tomato (Solanum lycopersicum L.) is one of the model plants to study the carotenoid biosynthesis. In the present study, the fruit carotenoid content were quantified at different developmental stages for two contrasting genotypes viz. IIHR-249-1and IIHR-2866 by UPLC. Lycopene content was high in IIHR-249-1(19.45 mg/100g fresh weight) compared to IIHR-2866 ((1.88 mg/100g fresh weight) at the ripe stage. qPCR was performed for genes that are involved in the carotenoid biosynthetic pathway to study the difference in lycopene content in fruits of both the genotypes. The expression of Phytoene Synthase (PSY) increased by 36 fold and Phytoene desaturase (PDS) increased by 14fold from immature green stage to ripe stage in IIHR-249-1. The expression of Chloroplast lycopene β cyclase (LCY-B) and Chromoplast lycopene β cyclase (CYC-B) decreased gradually from the initial stage to the ripe stage in IIHR-249-1. IIHR 249-1 showed 3 and 1.8 fold decrease in gene expression for Chloroplast lycopene β cyclase ((LCY-B) and Chromoplast lycopene β cyclase (CYC-B) .The F2 hybrids derived from IIHR-249-1 and IIHR-2866 were analyzed at the ripe stage for lycopene content. The gene expression of Chloroplast lycopene β cyclase (LCY-B) and Chromoplast lycopene β cyclase (CYC-B) in high and low lycopene lines from F2 progenies also showed the decrease in transcript levels of both the genes in high lycopene F2 lines. We wish to suggest that the differential expression of Lycopene β -cyclases can be used in marker assisted breeding.

  8. Variation suggestive of horizontal gene transfer at a lipopolysaccharide (lps biosynthetic locus in Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen of rice

    Directory of Open Access Journals (Sweden)

    Sonti Ramesh V

    2004-10-01

    Full Text Available Abstract Background In animal pathogenic bacteria, horizontal gene transfer events (HGT have been frequently observed in genomic regions that encode functions involved in biosynthesis of the outer membrane located lipopolysaccharide (LPS. As a result, different strains of the same pathogen can have substantially different lps biosynthetic gene clusters. Since LPS is highly antigenic, the variation at lps loci is attributed to be of advantage in evading the host immune system. Although LPS has been suggested as a potentiator of plant defense responses, interstrain variation at lps biosynthetic gene clusters has not been reported for any plant pathogenic bacterium. Results We report here the complete sequence of a 12.2 kb virulence locus of Xanthomonas oryzae pv. oryzae (Xoo encoding six genes whose products are homologous to functions involved in LPS biosynthesis and transport. All six open reading frames (ORFs have atypical G+C content and altered codon usage, which are the hallmarks of genomic islands that are acquired by horizontal gene transfer. The lps locus is flanked by highly conserved genes, metB and etfA, respectively encoding cystathionine gamma lyase and electron transport flavoprotein. Interestingly, two different sets of lps genes are present at this locus in the plant pathogens, Xanthomonas campestris pv. campestris (Xcc and Xanthomonas axonopodis pv. citri (Xac. The genomic island is present in a number of Xoo strains from India and other Asian countries but is not present in two strains, one from India (BXO8 and another from Nepal (Nepal624 as well as the closely related rice pathogen, Xanthomonas oryzae pv. oryzicola (Xoor. TAIL-PCR analysis indicates that sequences related to Xac are present at the lps locus in both BXO8 and Nepal624. The Xoor strain has a hybrid lps gene cluster, with sequences at the metB and etfA ends, being most closely related to sequences from Xac and the tomato pathogen, Pseudomonas syringae pv. tomato

  9. Hydroxycinnamic acid functional ingredients and their biosynthetic genes in tubers of Solanum tuberosum Group Phureja

    Directory of Open Access Journals (Sweden)

    Liyao Ji

    2016-12-01

    Full Text Available Potato is an ideal candidate for the delivery of functional ingredients due to its high worldwide consumption. The metabolites in cooked tubers of eight diploid potato genotypes from Colombia were explored. Potato tubers were harvested, cooked,lyophilized, and then stored at −80°C. Metabolites were extracted from flesh samples and analyzed using liquid chromatography and high-resolution mass spectrometry. A total of 294 metabolites were putatively identified, of which 87 metabolites were associated with health-benefiting roles for humans, such as anticancer and anti-inflammatory properties. Two metabolites, chlorogenic acid and N-Feruloyltyramine were detected in high abundance and were mapped on to the potato metabolic pathways to predict the related biosynthetic enzymes: hydroxycinnamoyl-CoA quinate transferase (HQT and tyramine hydroxycinnamoyl transferase (THT, respectively. The coding genes of these enzymes identified nonsynonymous single-nucleotide polymorphisms (nsSNPs in AC09, AC64, and Russet Burbank, with the highest enzyme stability found in AC09. This is consistent with the highest presence of hydroxycinnamic acids in the AC09 genotype. The metabolites detected at high fold change, their functional ingredient properties, and their enhancement through breeding to improve health of the indigenous communities’ of Colombia are discussed.

  10. Purine biosynthetic genes are required for cadmium tolerance in Schizosaccharomyces pombe

    Energy Technology Data Exchange (ETDEWEB)

    Speiser, D.M.; Ortiz, D.F.; Kreppel, L.; Scheel, G.; McDonald, G.; Ow, D.W. (Dept. of Agriculture, Albany, CA (United States) Univ. of California, Berkeley (United States))

    1992-12-01

    Phytochelatins (PCs) are metal-chelating peptides produced in plants and some fungi in response to heavy metal exposure. A Cd-sensitive mutant of the fission yeast Schizosaccharomyces pombe, defective in production of a PC-Cd-sulfide complex essential for metal tolerance, was found to harbor mutations in specific genes of the purine biosynthetic pathway. Genetic analysis of the link between metal complex accumulation and purine biosynthesis enzymes revealed that genetic lesions blocking two segments of the pathway, before and after the IMP branchpoint, are required to produce the Cd-sensitive phenotype. The biochemical functions of these two segments of the pathway are similar, and a model based on the alternate use of a sulfur analog substrate is presented. The novel participation of purine biosynthesis enzymes in the conversion of the PC-Cd complex to the PC-Cd-sulfide complex in the fission yeast raises an intriguing possibility that these same enzymes might have a role in sulfur metabolism in the fission yeast S. pombe, and perhaps in other biological systems. 41 refs., 8 figs., 2 tabs.

  11. Comparative SNP diversity among four Eucalyptus species for genes from secondary metabolite biosynthetic pathways

    Directory of Open Access Journals (Sweden)

    Foley William J

    2009-09-01

    Full Text Available Abstract Background There is little information about the DNA sequence variation within and between closely related plant species. The combination of re-sequencing technologies, large-scale DNA pools and availability of reference gene sequences allowed the extensive characterisation of single nucleotide polymorphisms (SNPs in genes of four biosynthetic pathways leading to the formation of ecologically relevant secondary metabolites in Eucalyptus. With this approach the occurrence and patterns of SNP variation for a set of genes can be compared across different species from the same genus. Results In a single GS-FLX run, we sequenced over 103 Mbp and assembled them to approximately 50 kbp of reference sequences. An average sequencing depth of 315 reads per nucleotide site was achieved for all four eucalypt species, Eucalyptus globulus, E. nitens, E. camaldulensis and E. loxophleba. We sequenced 23 genes from 1,764 individuals and discovered 8,631 SNPs across the species, with about 1.5 times as many SNPs per kbp in the introns compared to exons. The exons of the two closely related species (E. globulus and E. nitens had similar numbers of SNPs at synonymous and non-synonymous sites. These species also had similar levels of SNP diversity, whereas E. camaldulensis and E. loxophleba had much higher SNP diversity. Neither the pathway nor the position in the pathway influenced gene diversity. The four species share between 20 and 43% of the SNPs in these genes. Conclusion By using conservative statistical detection methods, we were confident about the validity of each SNP. With numerous individuals sampled over the geographical range of each species, we discovered one SNP in every 33 bp for E. nitens and one in every 31 bp in E. globulus. In contrast, the more distantly related species contained more SNPs: one in every 16 bp for E. camaldulensis and one in 17 bp for E. loxophleba, which is, to the best of our knowledge, the highest frequency of SNPs

  12. Biosynthesis of Akaeolide and Lorneic Acids and Annotation of Type I Polyketide Synthase Gene Clusters in the Genome of Streptomyces sp. NPS554

    Directory of Open Access Journals (Sweden)

    Tao Zhou

    2015-01-01

    Full Text Available The incorporation pattern of biosynthetic precursors into two structurally unique polyketides, akaeolide and lorneic acid A, was elucidated by feeding experiments with 13C-labeled precursors. In addition, the draft genome sequence of the producer, Streptomyces sp. NPS554, was performed and the biosynthetic gene clusters for these polyketides were identified. The putative gene clusters contain all the polyketide synthase (PKS domains necessary for assembly of the carbon skeletons. Combined with the 13C-labeling results, gene function prediction enabled us to propose biosynthetic pathways involving unusual carbon-carbon bond formation reactions. Genome analysis also indicated the presence of at least ten orphan type I PKS gene clusters that might be responsible for the production of new polyketides.

  13. Fructan Biosynthetic and Breakdown Enzymes in Dicots Evolved From Different Invertases. Expression of Fructan Genes Throughout Chicory Development

    OpenAIRE

    Wim Van den Ende; An Michiels; Joke De Roover; Andrea Van Laere

    2002-01-01

    Fructans are fructose-based oligo- and polymers that serve as reserve carbohydrates in many plant species. The biochemistry of fructan biosynthesis in dicots has been resolved, and the respective cDNAs have been cloned. Recent progress has now succeeded in elucidating the biochemistry and molecular biology of fructan biodegradation in chicory, an economically important species used for commercial inulin extraction. Unlike fructan biosynthetic genes that originated from vacuolar-type invertase...

  14. Organization of an echinoderm Hox gene cluster

    OpenAIRE

    Martinez, Pedro; Rast, Jonathan P.; Arenas-Mena, César; Davidson, Eric H.

    1999-01-01

    The Strongylocentrotus purpuratus genome contains a single ten-gene Hox complex >0.5 megabase in length. This complex was isolated on overlapping bacterial artificial chromosome and P1 artificial chromosome genomic recombinants by using probes for individual genes and by genomic walking. Echinoderm Hox genes of Paralog Groups (PG) 1 and 2 are reported. The cluster includes genes representing all paralog groups of vertebrate Hox clusters, except that there is a sing...

  15. New Insight into the Ochratoxin A Biosynthetic Pathway through Deletion of a Nonribosomal Peptide Synthetase Gene in Aspergillus carbonarius

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, A.; Bruno, K. S.; Solfrizzo, M.; Perrone, G.; Mule, G.; Visconti, A.; Baker, S. E.

    2012-09-14

    Ochratoxin A (OTA), a mycotoxin produced by Aspergillus and Penicillium species, is composed of a dihydroisocoumarin ring linked to phenylalanine and its biosynthetic pathway has not yet been completely elucidated. Most of the knowledge regarding the genetic and enzymatic aspects of OTA biosynthesis has been obtained in Penicillium species. In Aspergillus species only pks genes involved in the initial steps of the pathway have been partially characterized. In our study, the inactivation of a gene encoding a nonribosomal peptide synthetase in OTA producing A. carbonarius ITEM 5010 has removed the ability of the fungus to produce OTA. This is the first report on the involvement of an nrps gene product in OTA biosynthetic pathway in Aspergillus species. The absence of OTA and ochratoxin α-the isocoumaric derivative of OTA, and the concomitant increase of ochratoxin β- the dechloro analog of ochratoxin α- were observed in the liquid culture of transformed strain. The data provide the first evidence that the enzymatic step adding phenylalanine to polyketide dihydroisocoumarin precedes the chlorination step to form OTA in A. carbonarius, and that ochratoxin α is a product of hydrolysis of OTA, giving an interesting new insight in the biosynthetic pathway of the toxin.

  16. SCS3 and YFT2 link transcription of phospholipid biosynthetic genes to ER stress and the UPR.

    Directory of Open Access Journals (Sweden)

    Robyn D Moir

    2012-08-01

    Full Text Available The ability to store nutrients in lipid droplets (LDs is an ancient function that provides the primary source of metabolic energy during periods of nutrient insufficiency and between meals. The Fat storage-Inducing Transmembrane (FIT proteins are conserved ER-resident proteins that facilitate fat storage by partitioning energy-rich triglycerides into LDs. FIT2, the ancient ortholog of the FIT gene family first identified in mammals has two homologs in Saccharomyces cerevisiae (SCS3 and YFT2 and other fungi of the Saccharomycotina lineage. Despite the coevolution of these genes for more than 170 million years and their divergence from higher eukaryotes, SCS3, YFT2, and the human FIT2 gene retain some common functions: expression of the yeast genes in a human embryonic kidney cell line promotes LD formation, and expression of human FIT2 in yeast rescues the inositol auxotrophy and chemical and genetic phenotypes of strains lacking SCS3. To better understand the function of SCS3 and YFT2, we investigated the chemical sensitivities of strains deleted for either or both genes and identified synthetic genetic interactions against the viable yeast gene-deletion collection. We show that SCS3 and YFT2 have shared and unique functions that connect major biosynthetic processes critical for cell growth. These include lipid metabolism, vesicular trafficking, transcription of phospholipid biosynthetic genes, and protein synthesis. The genetic data indicate that optimal strain fitness requires a balance between phospholipid synthesis and protein synthesis and that deletion of SCS3 and YFT2 impacts a regulatory mechanism that coordinates these processes. Part of this mechanism involves a role for SCS3 in communicating changes in the ER (e.g. due to low inositol to Opi1-regulated transcription of phospholipid biosynthetic genes. We conclude that SCS3 and YFT2 are required for normal ER membrane biosynthesis in response to perturbations in lipid metabolism and ER

  17. Functions of some capsular polysaccharide biosynthetic genes in Klebsiella pneumoniae NTUH K-2044.

    Directory of Open Access Journals (Sweden)

    Jin-Yuan Ho

    Full Text Available The growing number of Klebsiella pneumoniae infections, commonly acquired in hospitals, has drawn great concern. It has been shown that the K1 and K2 capsular serotypes are the most detrimental strains, particularly to those with diabetes. The K1 cps (capsular polysaccharide locus in the NTUH-2044 strain of the pyogenic liver abscess (PLA K. pneumoniae has been identified recently, but little is known about the functions of the genes therein. Here we report characterization of a group of cps genes and their roles in the pathogenesis of K1 K. pneumoniae. By sequential gene deletion, the cps gene cluster was first re-delimited between genes galF and ugd, which serve as up- and down-stream ends, respectively. Eight gene products were characterized in vitro and in vivo to be involved in the syntheses of UDP-glucose, UDP-glucuronic acid and GDP-fucose building units. Twelve genes were identified as virulence factors based on the observation that their deletion mutants became avirulent or lost K1 antigenicity. Furthermore, deletion of kp3706, kp3709 or kp3712 (ΔwcaI, ΔwcaG or Δatf, respectively, which are all involved in fucose biosynthesis, led to a broad range of transcriptional suppression for 52 upstream genes. The genes suppressed include those coding for unknown regulatory membrane proteins and six multidrug efflux system proteins, as well as proteins required for the K1 CPS biosynthesis. In support of the suppression of multidrug efflux genes, we showed that these three mutants became more sensitive to antibiotics. Taken together, the results suggest that kp3706, kp3709 or kp3712 genes are strongly related to the pathogenesis of K. pneumoniae K1.

  18. Molecular Characterization of Carotenoid Biosynthetic Genes and Carotenoid Accumulation in Lycium chinense

    Directory of Open Access Journals (Sweden)

    Shicheng Zhao

    2014-07-01

    Full Text Available Lycium chinense is a shrub that has health benefits and is used as a source of medicines in Asia. In this study, a full-length cDNA clone encoding β-ring carotene hydroxylase (LcCHXB and partial-length cDNA clones encoding phytoene synthase (LcPSY, phytoene desaturase (LcPDS, ξ-carotene desaturase (LcZDS, lycopene β-cyclase (LcLCYB, lycopene ε-cyclase (LcLCYE, ε-ring carotene hydroxylase (LcCHXE, zeaxanthin epoxidase (LcZEP, carotenoid cleavage dioxygenase (LcCCD1, and 9-cis epoxycarotenoid dioxygenase (LcNCED were identified in L. chinense. The transcripts were constitutively expressed at high levels in leaves, flowers and red fruits, where the carotenoids are mostly distributed. In contrast, most of the carotenoid biosynthetic genes were weakly expressed in the roots and stems, which contained only small amounts of carotenoids. The level of LcLCYE transcripts was very high in leaves and correlated with the abundance of lutein in this plant tissue. During maturation, the levels of lutein and zeaxanthin in L. chinense fruits dramatically increased, concomitant with a rise in the level of β-cryptoxanthin. LcPSY, LcPDS, LcZDS, LcLCYB, and LcCHXE were highly expressed in red fruits, leading to their substantially higher total carotenoid content compared to that in green fruits. Total carotenoid content was high in both the leaves and red fruits of L. chinense. Our findings on the biosynthesis of carotenoids in L. chinense provide insights into the molecular mechanisms involved in carotenoid biosynthesis and may facilitate the optimization of carotenoid production in L. chinense.

  19. Indole-Diterpene Biosynthetic Capability of Epichloë Endophytes as Predicted by ltm Gene Analysis▿

    Science.gov (United States)

    Young, Carolyn A.; Tapper, Brian A.; May, Kimberley; Moon, Christina D.; Schardl, Christopher L.; Scott, Barry

    2009-01-01

    Bioprotective alkaloids produced by Epichloë and closely related asexual Neotyphodium fungal endophytes protect their grass hosts from insect and mammalian herbivory. One class of these compounds, known for antimammalian toxicity, is the indole-diterpenes. The LTM locus of Neotyphodium lolii (Lp19) and Epichloë festuce (Fl1), required for the biosynthesis of the indole-diterpene lolitrem, consists of 10 ltm genes. We have used PCR and Southern analysis to screen a broad taxonomic range of 44 endophyte isolates to determine why indole-diterpenes are present in so few endophyte-grass associations in comparison to that of the other bioprotective alkaloids, which are more widespread among the endophtyes. All 10 ltm genes were present in only three epichloë endophytes. A predominance of the asexual Neotyphodium spp. examined contained 8 of the 10 ltm genes, with only one N. lolii containing the entire LTM locus and the ability to produce lolitrems. Liquid chromatography-tandem mass spectrometry profiles of indole-diterpenes from a subset of endophyte-infected perennial ryegrass showed that endophytes that contained functional genes present in ltm clusters 1 and 2 were capable of producing simple indole-diterpenes such as paspaline, 13-desoxypaxilline, and terpendoles, compounds predicted to be precursors of lolitrem B. Analysis of toxin biosynthesis genes by PCR now enables a diagnostic method to screen endophytes for both beneficial and detrimental alkaloids and can be used as a resource for screening isolates required for forage improvement. PMID:19181837

  20. Carotenoid Biosynthetic and Catabolic Pathways: Gene Expression and Carotenoid Content in Grains of Maize Landraces

    Directory of Open Access Journals (Sweden)

    Rafael da Silva Messias

    2014-01-01

    Full Text Available Plant carotenoids have been implicated in preventing several age-related diseases, and they also provide vitamin A precursors; therefore, increasing the content of carotenoids in maize grains is of great interest. It is not well understood, however, how the carotenoid biosynthetic pathway is regulated. Fortunately, the maize germplasm exhibits a high degree of genetic diversity that can be exploited for this purpose. Here, the accumulation of carotenoids and the expression of genes from carotenoid metabolic and catabolic pathways were investigated in several maize landraces. The carotenoid content in grains varied from 10.03, in the white variety MC5, to 61.50 μg·g−1, in the yellow-to-orange variety MC3, and the major carotenoids detected were lutein and zeaxanthin. PSY1 (phythoene synthase expression showed a positive correlation with the total carotenoid content. Additionally, the PSY1 and HYD3 (ferredoxin-dependent di-iron monooxygenase expression levels were positively correlated with β-cryptoxanthin and zeaxanthin, while CYP97C (cytochrome P450-type monooxygenase expression did not correlate with any of the carotenoids. In contrast, ZmCCD1 (carotenoid dioxygenase was more highly expressed at the beginning of grain development, as well as in the white variety, and its expression was inversely correlated with the accumulation of several carotenoids, suggesting that CCD1 is also an important enzyme to be considered when attempting to improve the carotenoid content in maize. The MC27 and MC1 varieties showed the highest HYD3/CYP97C ratios, suggesting that they are promising candidates for increasing the zeaxanthin content; in contrast, MC14 and MC7 showed low HYD3/CYP97C, suggesting that they may be useful in biofortification efforts aimed at promoting the accumulation of provitamin A. The results of this study demonstrate the use of maize germplasm to provide insight into the regulation of genes involved in the carotenoid pathway, which

  1. Characterisation of the paralytic shellfish toxin biosynthesis gene clusters in Anabaena circinalis AWQC131C and Aphanizomenon sp. NH-5

    Directory of Open Access Journals (Sweden)

    Neilan Brett A

    2009-03-01

    Full Text Available Abstract Background Saxitoxin and its analogues collectively known as the paralytic shellfish toxins (PSTs are neurotoxic alkaloids and are the cause of the syndrome named paralytic shellfish poisoning. PSTs are produced by a unique biosynthetic pathway, which involves reactions that are rare in microbial metabolic pathways. Nevertheless, distantly related organisms such as dinoflagellates and cyanobacteria appear to produce these toxins using the same pathway. Hypothesised explanations for such an unusual phylogenetic distribution of this shared uncommon metabolic pathway, include a polyphyletic origin, an involvement of symbiotic bacteria, and horizontal gene transfer. Results We describe the identification, annotation and bioinformatic characterisation of the putative paralytic shellfish toxin biosynthesis clusters in an Australian isolate of Anabaena circinalis and an American isolate of Aphanizomenon sp., both members of the Nostocales. These putative PST gene clusters span approximately 28 kb and contain genes coding for the biosynthesis and export of the toxin. A putative insertion/excision site in the Australian Anabaena circinalis AWQC131C was identified, and the organization and evolution of the gene clusters are discussed. A biosynthetic pathway leading to the formation of saxitoxin and its analogues in these organisms is proposed. Conclusion The PST biosynthesis gene cluster presents a mosaic structure, whereby genes have apparently transposed in segments of varying size, resulting in different gene arrangements in all three sxt clusters sequenced so far. The gene cluster organizational structure and sequence similarity seems to reflect the phylogeny of the producer organisms, indicating that the gene clusters have an ancient origin, or that their lateral transfer was also an ancient event. The knowledge we gain from the characterisation of the PST biosynthesis gene clusters, including the identity and sequence of the genes involved

  2. Evolution of orthologous tandemly arrayed gene clusters

    Directory of Open Access Journals (Sweden)

    Bertrand Denis

    2011-10-01

    Full Text Available Abstract Background Tandemly Arrayed Gene (TAG clusters are groups of paralogous genes that are found adjacent on a chromosome. TAGs represent an important repertoire of genes in eukaryotes. In addition to tandem duplication events, TAG clusters are affected during their evolution by other mechanisms, such as inversion and deletion events, that affect the order and orientation of genes. The DILTAG algorithm developed in 1 makes it possible to infer a set of optimal evolutionary histories explaining the evolution of a single TAG cluster, from an ancestral single gene, through tandem duplications (simple or multiple, direct or inverted, deletions and inversion events. Results We present a general methodology, which is an extension of DILTAG, for the study of the evolutionary history of a set of orthologous TAG clusters in multiple species. In addition to the speciation events reflected by the phylogenetic tree of the considered species, the evolutionary events that are taken into account are simple or multiple tandem duplications, direct or inverted, simple or multiple deletions, and inversions. We analysed the performance of our algorithm on simulated data sets and we applied it to the protocadherin gene clusters of human, chimpanzee, mouse and rat. Conclusions Our results obtained on simulated data sets showed a good performance in inferring the total number and size distribution of duplication events. A limitation of the algorithm is however in dealing with multiple gene deletions, as the algorithm is highly exponential in this case, and becomes quickly intractable.

  3. Natural Product Biosynthetic Diversity and Comparative Genomics of the Cyanobacteria.

    Science.gov (United States)

    Dittmann, Elke; Gugger, Muriel; Sivonen, Kaarina; Fewer, David P

    2015-10-01

    Cyanobacteria are an ancient lineage of slow-growing photosynthetic bacteria and a prolific source of natural products with intricate chemical structures and potent biological activities. The bulk of these natural products are known from just a handful of genera. Recent efforts have elucidated the mechanisms underpinning the biosynthesis of a diverse array of natural products from cyanobacteria. Many of the biosynthetic mechanisms are unique to cyanobacteria or rarely described from other organisms. Advances in genome sequence technology have precipitated a deluge of genome sequences for cyanobacteria. This makes it possible to link known natural products to biosynthetic gene clusters but also accelerates the discovery of new natural products through genome mining. These studies demonstrate that cyanobacteria encode a huge variety of cryptic gene clusters for the production of natural products, and the known chemical diversity is likely to be just a fraction of the true biosynthetic capabilities of this fascinating and ancient group of organisms.

  4. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis

    Science.gov (United States)

    Li, Yongxin; Li, Zhongrui; Yamanaka, Kazuya; Xu, Ying; Zhang, Weipeng; Vlamakis, Hera; Kolter, Roberto; Moore, Bradley S.; Qian, Pei-Yuan

    2015-03-01

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning ``plug-and-play'' approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus.

  5. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis

    KAUST Repository

    Li, Yongxin

    2015-03-24

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning plug-and-playa approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus.

  6. Diverse arrangement of photosynthetic gene clusters in aerobic anoxygenic phototrophic bacteria.

    Directory of Open Access Journals (Sweden)

    Qiang Zheng

    Full Text Available BACKGROUND: Aerobic anoxygenic photototrophic (AAP bacteria represent an important group of marine microorganisms inhabiting the euphotic zone of the ocean. They harvest light using bacteriochlorophyll (BChl a and are thought to be important players in carbon cycling in the ocean. METHODOLOGY/PRINCIPAL FINDINGS: Aerobic anoxygenic phototrophic (AAP bacteria represent an important part of marine microbial communities. Their photosynthetic apparatus is encoded by a number of genes organized in a so-called photosynthetic gene cluster (PGC. In this study, the organization of PGCs was analyzed in ten AAP species belonging to the orders Rhodobacterales, Sphingomonadales and the NOR5/OM60 clade. Sphingomonadales contained comparatively smaller PGCs with an approximately size of 39 kb whereas the average size of PGCs in Rhodobacterales and NOR5/OM60 clade was about 45 kb. The distribution of four arrangements, based on the permutation and combination of the two conserved regions bchFNBHLM-LhaA-puhABC and crtF-bchCXYZ, does not correspond to the phylogenetic affiliation of individual AAP bacterial species. While PGCs of all analyzed species contained the same set of genes for bacteriochlorophyll synthesis and assembly of photosynthetic centers, they differed largely in the carotenoid biosynthetic genes. Spheroidenone, spirilloxanthin, and zeaxanthin biosynthetic pathways were found in each clade respectively. All of the carotenoid biosynthetic genes were found in the PGCs of Rhodobacterales, however Sphingomonadales and NOR5/OM60 strains contained some of the carotenoid biosynthetic pathway genes outside of the PGC. CONCLUSIONS/SIGNIFICANCE: Our investigations shed light on the evolution and functional implications in PGCs of marine aerobic anoxygenic phototrophs, and support the notion that AAP are a heterogenous physiological group phylogenetically scattered among Proteobacteria.

  7. Gene transcript profiles of the TIA biosynthetic pathway in response to ethylene and copper reveal their interactive role in modulating TIA biosynthesis in Catharanthus roseus.

    Science.gov (United States)

    Pan, Ya-Jie; Liu, Jia; Guo, Xiao-Rui; Zu, Yuan-Gang; Tang, Zhong-Hua

    2015-05-01

    Research on transcriptional regulation of terpenoid indole alkaloid (TIA) biosynthesis of the medicinal plant, Catharanthus roseus, has largely been focused on gene function and not clustering analysis of multiple genes at the transcript level. Here, more than ten key genes encoding key enzyme of alkaloid synthesis in TIA biosynthetic pathways were chosen to investigate the integrative responses to exogenous elicitor ethylene and copper (Cu) at both transcriptional and metabolic levels. The ethylene-induced gene transcripts in leaves and roots, respectively, were subjected to principal component analysis (PCA) and the results showed the overall expression of TIA pathway genes indicated as the Q value followed a standard normal distribution after ethylene treatments. Peak gene expression was at 15-30 μM of ethephon, and the pre-mature leaf had a higher Q value than the immature or mature leaf and root. Treatment with elicitor Cu found that Cu up-regulated overall TIA gene expression more in roots than in leaves. The combined effects of Cu and ethephon on TIA gene expression were stronger than their separate effects. It has been documented that TIA gene expression is tightly regulated by the transcriptional factor (TF) ethylene responsive factor (ERF) and mitogen-activated protein kinase (MAPK) cascade. The loading plot combination with correlation analysis for the genes of C. roseus showed that expression of the MPK gene correlated with strictosidine synthase (STR) and strictosidine b-D-glucosidase(SGD). In addition, ERF expression correlated with expression of secologanin synthase (SLS) and tryptophan decarboxylase (TDC), specifically in roots, whereas MPK and myelocytomatosis oncogene (MYC) correlated with STR and SGD genes. In conclusion, the ERF regulates the upstream pathway genes in response to heavy metal Cu mainly in C. roseus roots, while the MPK mainly participates in regulating the STR gene in response to ethylene in pre-mature leaf. Interestingly, the

  8. Filtering Genes for Cluster and Network Analysis

    Directory of Open Access Journals (Sweden)

    Parkhomenko Elena

    2009-06-01

    Full Text Available Abstract Background Prior to cluster analysis or genetic network analysis it is customary to filter, or remove genes considered to be irrelevant from the set of genes to be analyzed. Often genes whose variation across samples is less than an arbitrary threshold value are deleted. This can improve interpretability and reduce bias. Results This paper introduces modular models for representing network structure in order to study the relative effects of different filtering methods. We show that cluster analysis and principal components are strongly affected by filtering. Filtering methods intended specifically for cluster and network analysis are introduced and compared by simulating modular networks with known statistical properties. To study more realistic situations, we analyze simulated "real" data based on well-characterized E. coli and S. cerevisiae regulatory networks. Conclusion The methods introduced apply very generally, to any similarity matrix describing gene expression. One of the proposed methods, SUMCOV, performed well for all models simulated.

  9. Regulation of the tryptophan biosynthetic genes in Bacillus halodurans: common elements but different strategies than those used by Bacillus subtilis.

    Science.gov (United States)

    Szigeti, Reka; Milescu, Mirela; Gollnick, Paul

    2004-02-01

    In Bacillus subtilis, an RNA binding protein called TRAP regulates both transcription and translation of the tryptophan biosynthetic genes. Bacillus halodurans is an alkaliphilic Bacillus species that grows at high pHs. Previous studies of this bacterium have focused on mechanisms of adaptation for growth in alkaline environments. We have characterized the regulation of the tryptophan biosynthetic genes in B. halodurans and compared it to that in B. subtilis. B. halodurans encodes a TRAP protein with 71% sequence identity to the B. subtilis protein. Expression of anthranilate synthetase, the first enzyme in the pathway to tryptophan, is regulated significantly less in B. halodurans than in B. subtilis. Examination of the control of the B. halodurans trpEDCFBA operon both in vivo and in vitro shows that only transcription is regulated, whereas in B. subtilis both transcription of the operon and translation of trpE are controlled. The attenuation mechanism that controls transcription in B. halodurans is similar to that in B. subtilis, but there are some differences in the predicted RNA secondary structures in the B. halodurans trp leader region, including the presence of a potential anti-antiterminator structure. Translation of trpG, which is within the folate operon in both bacilli, is regulated similarly in the two species. PMID:14729709

  10. Fructan Biosynthetic and Breakdown Enzymes in Dicots Evolved From Different Invertases. Expression of Fructan Genes Throughout Chicory Development

    Directory of Open Access Journals (Sweden)

    Wim Van den Ende

    2002-01-01

    Full Text Available Fructans are fructose-based oligo- and polymers that serve as reserve carbohydrates in many plant species. The biochemistry of fructan biosynthesis in dicots has been resolved, and the respective cDNAs have been cloned. Recent progress has now succeeded in elucidating the biochemistry and molecular biology of fructan biodegradation in chicory, an economically important species used for commercial inulin extraction. Unlike fructan biosynthetic genes that originated from vacuolar-type invertase, fructan exohydrolases (FEHs seem to have evolved from a cell-wall invertase ancestor gene that later obtained a low iso-electric point and a vacuolar targeting signal. Expression analysis reveals that fructan enzymes are controlled mainly at the transcriptional level. Using chicory as a model system, northern analysis was consistent with enzymatic activity measurements and observed carbohydrate changes throughout its development.

  11. Cloning and Expression Analysis of a Brassinosteroid Biosynthetic Enzyme Gene, GhDWF1, from Cotton (Gossypium hirsuturm L.)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Brassinosteroids (BRs) are an important class of plant steroidal hormones that are essential in a wide variety of physiological processes. To determine the effects of BRs on the development of cotton fibers, through screening cotton fiber EST database and contigging the candidate ESTs, a key gene (GhDWF1) involved in the upstream biosynthetic pathway of BRs was cloned from developing fibers of upland cotton (Gossypium hirsutum L.) cv. Xuzhou 142. The full length of the cloned cDNA is 1 849 bp, including a 37 bp 5'-untranslated region, an ORF of 1692 bp, and a 120 bp 3'-untranslated region.The cDNA encodes a polypeptide of 563 amino acid residues with a predicted molecular mass of 65 kD. The deduced amino acid sequence has high homology with the BR biosynthetic enzyme, DWARF1/DIMINUTO, from rice, maize, pea,tomato, and Arabidopsis. Furthermore, the typical conserved structures, such as the transmembrane domain, the FAD-dependent oxidase domain, and the FAD-binding site, are present in the GhDWF1 protein. The Southern blot indicated that the GhDWF1 gene is a single copy in upland cotton genome. RT-PCR analysis revealed that the highest level of GhDWF1 expression was detected in 0 DPA (day post anthesis) ovule (with fibers) while the lowest level was observed in cotyledon. The GhDWF1 gene presents high expression levels in root, young stem, and fiber, especially, at the fiber developmental stage of secondary cell wall accumulation. Moreover, the expression level was higher in ovules (with fibers) of wildtype (Xuzhou 142) than in ovules of fuzzless-lintless mutant at the same developmental stages (0 and 4 DPA). The results suggest that the GhDWF1 gene plays a crucial role in fiber development.

  12. Common biosynthetic origins for polycyclic tetramate macrolactams from phylogenetically diverse bacteria.

    Science.gov (United States)

    Blodgett, Joshua A V; Oh, Dong-Chan; Cao, Shugeng; Currie, Cameron R; Kolter, Roberto; Clardy, Jon

    2010-06-29

    A combination of small molecule chemistry, biosynthetic analysis, and genome mining has revealed the unexpected conservation of polycyclic tetramate macrolactam biosynthetic loci in diverse bacteria. Initially our chemical analysis of a Streptomyces strain associated with the southern pine beetle led to the discovery of frontalamides A and B, two previously undescribed members of this antibiotic family. Genome analyses and genetic manipulation of the producing organism led to the identification of the frontalamide biosynthetic gene cluster and several biosynthetic intermediates. The biosynthetic locus for the frontalamides' mixed polyketide/amino acid structure encodes a hybrid polyketide synthase nonribosomal peptide synthetase (PKS-NRPS), which resembles iterative enzymes known in fungi. No such mixed iterative PKS-NRPS enzymes have been characterized in bacteria. Genome-mining efforts revealed strikingly conserved frontalamide-like biosynthetic clusters in the genomes of phylogenetically diverse bacteria ranging from proteobacteria to actinomycetes. Screens for environmental actinomycete isolates carrying frontalamide-like biosynthetic loci led to the isolation of a number of positive strains, the majority of which produced candidate frontalamide-like compounds under suitable growth conditions. These results establish the prevalence of frontalamide-like gene clusters in diverse bacterial types, with medicinally important Streptomyces species being particularly enriched. PMID:20547882

  13. Biosynthetic Functional Gene Analysis of Bis-Indole Metabolites from 25D7, a Clone Derived from a Deep-Sea Sediment Metagenomic Library

    Science.gov (United States)

    Yan, Xia; Tang, Xi-Xiang; Qin, Dan; Yi, Zhi-Wei; Fang, Mei-Juan; Wu, Zhen; Qiu, Ying-Kun

    2016-01-01

    This work investigated the metabolites and their biosynthetic functional hydroxylase genes of the deep-sea sediment metagenomic clone 25D7. 5-Bromoindole was added to the 25D7 clone derived Escherichia coli fermentation broth. The new-generated metabolites and their biosynthetic byproducts were located through LC-MS, in which the isotope peaks of brominated products emerged. Two new brominated bis-indole metabolites, 5-bromometagenediindole B (1), and 5-bromometagenediindole C (2) were separated under the guidance of LC-MS. Their structures were elucidated on the basis of 1D and 2D NMR spectra (COSY, HSQC, and HMBC). The biosynthetic functional genes of the two new compounds were revealed through LC-MS and transposon mutagenesis analysis. 5-Bromometagenediindole B (1) also demonstrated moderately cytotoxic activity against MCF7, B16, CNE2, Bel7402, and HT1080 tumor cell lines in vitro. PMID:27258289

  14. A genome-wide analysis of nonribosomal peptide synthetase gene clusters and their peptides in a Planktothrix rubescens strain

    Directory of Open Access Journals (Sweden)

    Nederbragt Alexander J

    2009-08-01

    Full Text Available Abstract Background Cyanobacteria often produce several different oligopeptides, with unknown biological functions, by nonribosomal peptide synthetases (NRPS. Although some cyanobacterial NRPS gene cluster types are well described, the entire NRPS genomic content within a single cyanobacterial strain has never been investigated. Here we have combined a genome-wide analysis using massive parallel pyrosequencing ("454" and mass spectrometry screening of oligopeptides produced in the strain Planktothrix rubescens NIVA CYA 98 in order to identify all putative gene clusters for oligopeptides. Results Thirteen types of oligopeptides were uncovered by mass spectrometry (MS analyses. Microcystin, cyanopeptolin and aeruginosin synthetases, highly similar to already characterized NRPS, were present in the genome. Two novel NRPS gene clusters were associated with production of anabaenopeptins and microginins, respectively. Sequence-depth of the genome and real-time PCR data revealed three copies of the microginin gene cluster. Since NRPS gene cluster candidates for microviridin and oscillatorin synthesis could not be found, putative (gene encoded precursor peptide sequences to microviridin and oscillatorin were found in the genes mdnA and oscA, respectively. The genes flanking the microviridin and oscillatorin precursor genes encode putative modifying enzymes of the precursor oligopeptides. We therefore propose ribosomal pathways involving modifications and cyclisation for microviridin and oscillatorin. The microviridin, anabaenopeptin and cyanopeptolin gene clusters are situated in close proximity to each other, constituting an oligopeptide island. Conclusion Altogether seven nonribosomal peptide synthetase (NRPS gene clusters and two gene clusters putatively encoding ribosomal oligopeptide biosynthetic pathways were revealed. Our results demonstrate that whole genome shotgun sequencing combined with MS-directed determination of oligopeptides successfully

  15. VIGS approach reveals the modulation of anthocyanin biosynthetic genes by CaMYB in chili pepper leaves.

    Science.gov (United States)

    Zhang, Zhen; Li, Da-Wei; Jin, Jing-Hao; Yin, Yan-Xu; Zhang, Huai-Xia; Chai, Wei-Guo; Gong, Zhen-Hui

    2015-01-01

    The purple coloration of pepper leaves arises from the accumulation of anthocyanin. Three regulatory and 12 structural genes have been characterized for their involvement in the anthocyanin biosynthesis. Examination of the abundance of these genes in leaves showed that the majority of them differed between anthocyanin pigmented line Z1 and non-pigmented line A3. Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation. Moreover, the expression of multiple genes was altered in the silenced leaves. The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern. Most structural genes including CHS, CHI, F3H, F3'5'H, DFR, ANS, UFGT, ANP, and GST were repressed in CaMYB-silenced foliage with the exception of PAL, C4H, and 4CL. These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes. Besides CaMYB silenced leaves rendered more sporulation of Phytophthora capsici Leonian indicating that CaMYB might be involved in the defense response to pathogens. PMID:26217354

  16. VIGS approach reveals the modulation of anthocyanin biosynthetic genes by CaMYB in Chili pepper leaves

    Directory of Open Access Journals (Sweden)

    zhen ezhang

    2015-07-01

    Full Text Available The purple coloration of pepper leaves arises from the accumulation of anthocyanin. Three regulatory and 12 structural genes have been characterized for their involvement in the anthocyanin biosynthesis. Examination of the abundance of these genes in leaves showed that the majority of them differed between anthocyanin pigmented line Z1 and non-pigmented line A3. Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation. Moreover, the expression of multiple genes was altered in the silenced leaves. The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern. Most structural genes including CHS, CHI, F3H, F3’5’H, DFR, ANS, UFGT, ANP and GST were repressed in CaMYB-silenced foliage with the exception of PAL, C4H and 4CL. These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes. Besides CaMYB silenced leaves rendered more sporulation of Phytophthora capsici Leonian indicating that CaMYB might be involved in the defense response to pathogens.

  17. A gene cluster for the biosynthesis of moenomycin family antibiotics in the genome of teicoplanin producer Actinoplanes teichomyceticus.

    Science.gov (United States)

    Horbal, Liliya; Ostash, Bohdan; Luzhetskyy, Andriy; Walker, Suzanne; Kalinowski, Jorn; Fedorenko, Victor

    2016-09-01

    Moenomycins are phosphoglycolipid antibiotics notable for their extreme potency, unique mode of action, and proven record of use in animal nutrition without selection for resistant microflora. There is a keen interest in manipulation of structures of moenomycins in order to better understand their structure-activity relationships and to generate improved analogs. Only two almost identical moenomycin biosynthetic gene clusters are known, limiting our knowledge of the evolution of moenomycin pathways and our ability to genetically diversify them. Here, we report a novel gene cluster (tchm) that directs production of the phosphoglycolipid teichomycin in Actinoplanes teichomyceticus. Its overall genetic architecture is significantly different from that of the moenomycin biosynthesis (moe) gene clusters of Streptomyces ghanaensis and Streptomyces clavuligerus, featuring multiple gene rearrangements and two novel structural genes. Involvement of the tchm cluster in teichomycin biosynthesis was confirmed via heterologous co-expression of amidotransferase tchmH5 and moe genes. Our work sets the background for further engineering of moenomycins and for deeper inquiries into the evolution of this fascinating biosynthetic pathway. PMID:27344593

  18. Cloning of artemisinin biosynthetic cDNAs and novel ESTs and quantification of low temperature-induced gene overexpression

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To isolate and verify novel genes from qinghao (Artemisia annua) based on the development-specific and environment-induced transcriptomics, leaves have been harvested from the flowering A. annua plants and exposed to low temperature for isolation of total RNAs and cloning of full-length cDNAs and cDNA fragments, or expressed sequence tags (ESTs). After being sequenced and browsed for homol- ogy, these sequences have been submitted to GenBank. Among the accessed 75 sequences, 4 full-length cDNAs are highly homologous to the known A. annua genes, but 71 ESTs are absent in the sequence records of A. annua genes, in which 34 sequences are homologous to other plant genes, including 24 identified protein-coding sequences and 10 unidentified protein-coding sequences, while other 37 sequences are not present in the sequence records of any plant genes, representing the first cloned plant genes. In order to investigate the responsive patterns of A. annua genes to extreme envi- ronmental stresses, especially low temperature, the expression levels of 3 critical qinhaosu (artemisi- nin) biosynthetic genes, ADS, CYP71AV1 and CPR, have been measured in pre- and post-chilling A. annua seedlings cultured in vitro by semi-quantitative PCR (SQ-PCR). Consequently, ADS and CYP71AV1 genes are strongly induced by chilling, but CPR gene is not significantly affected by such treatment. Furthermore, induction of these genes by chilling can be potently suppressed by Ca2+ channel inhibitor LaCl3 or Ca2+ chelator EGTA, suggesting a putative involvement of Ca2+-CaM signal transduction pathway in chilling-induced overexpression of ADS and CYP71AV1 genes. The real-time fluorescent quantitative PCR (RFQ-PCR) assay of A. annua seedlings exposed to chilling has shown that the expression level of CaM gene is up-regulated for more than 2.5 folds, thereby confirming our above inference on the relevance of Ca2+-CaM-mediated signal transduction to chilling-induced gene overexpression. Finally, 7 newly

  19. Cloning of artemisinin biosynthetic cDNAs and novel ESTs and quantification of low temperature-induced gene overexpression

    Institute of Scientific and Technical Information of China (English)

    ZENG QingPing; ZHAO Chang; YIN LuLu; YANG RuiYi; ZENG XiaoMei; HUANG Ying; FENG LiLing; YANG XueQin

    2008-01-01

    To isolate and verify novel genes from qinghao (Artemisia annua) based on the development-specific and environment-induced transcriptomics, leaves have been harvested from the flowering A. annua plants and exposed to low temperature for isolation of total RNAs and cloning of full-length cDNAs and cDNA fragments, or expressed sequence tags (ESTs). After being sequenced and browsed for homology, these sequences have been submitted to GenBank. Among the accessed 75 sequences, 4 full-length cDNAs are highly homologous to the known A. annua genes, but 71 ESTs are absent in the sequence records of A. annua genes, in which 34 sequences are homologous to other plant genes,including 24 identified protein-coding sequences and 10 unidentified protein-coding sequences, while other 37 sequences are not present in the sequence records of any plant genes, representing the first cloned plant genes. In order to investigate the responsive patterns of A. annua genes to extreme environmental stresses, especially low temperature, the expression levels of 3 critical qinhaosu (artemisinin) biosynthetic genes, ADS, CYP71AV1 and CPR, have been measured in pre- and post-chilling A.annua seedlings cultured in vitro by semi-quantitative PCR (SQ-PCR). Consequently, ADS and CYP71AV1 genes are strongly induced by chilling, but CPR gene is not significantly affected by such treatment. Furthermore, induction of these genes by chilling can be potently suppressed by Ca2+channel inhibitor LaCl3 or Ca2+ chelator EGTA, suggesting a putative involvement of Ca2+-CaM signal transduction pathway in chilling-induced overexpression of ADS and CYP71AV1 genes. The real-time fluorescent quantitative PCR (RFQ-PCR) assay of A. annua seedlings exposed to chilling has shown that the expression level of CaM gene is up-regulated for more than 2.5 folds, thereby confirming our above inference on the relevance of Ca2+-CaM-mediated signal transduction to chilling-induced gene overexpression. Finally, 7 newly isolated A

  20. Clustering Genes of Common Evolutionary History.

    Science.gov (United States)

    Gori, Kevin; Suchan, Tomasz; Alvarez, Nadir; Goldman, Nick; Dessimoz, Christophe

    2016-06-01

    Phylogenetic inference can potentially result in a more accurate tree using data from multiple loci. However, if the loci are incongruent-due to events such as incomplete lineage sorting or horizontal gene transfer-it can be misleading to infer a single tree. To address this, many previous contributions have taken a mechanistic approach, by modeling specific processes. Alternatively, one can cluster loci without assuming how these incongruencies might arise. Such "process-agnostic" approaches typically infer a tree for each locus and cluster these. There are, however, many possible combinations of tree distance and clustering methods; their comparative performance in the context of tree incongruence is largely unknown. Furthermore, because standard model selection criteria such as AIC cannot be applied to problems with a variable number of topologies, the issue of inferring the optimal number of clusters is poorly understood. Here, we perform a large-scale simulation study of phylogenetic distances and clustering methods to infer loci of common evolutionary history. We observe that the best-performing combinations are distances accounting for branch lengths followed by spectral clustering or Ward's method. We also introduce two statistical tests to infer the optimal number of clusters and show that they strongly outperform the silhouette criterion, a general-purpose heuristic. We illustrate the usefulness of the approach by 1) identifying errors in a previous phylogenetic analysis of yeast species and 2) identifying topological incongruence among newly sequenced loci of the globeflower fly genus Chiastocheta We release treeCl, a new program to cluster genes of common evolutionary history (http://git.io/treeCl). PMID:26893301

  1. Cluster Analysis of Gene Expression Data

    CERN Document Server

    Domany, E

    2002-01-01

    The expression levels of many thousands of genes can be measured simultaneously by DNA microarrays (chips). This novel experimental tool has revolutionized research in molecular biology and generated considerable excitement. A typical experiment uses a few tens of such chips, each dedicated to a single sample - such as tissue extracted from a particular tumor. The results of such an experiment contain several hundred thousand numbers, that come in the form of a table, of several thousand rows (one for each gene) and 50 - 100 columns (one for each sample). We developed a clustering methodology to mine such data. In this review I provide a very basic introduction to the subject, aimed at a physics audience with no prior knowledge of either gene expression or clustering methods. I explain what genes are, what is gene expression and how it is measured by DNA chips. Next I explain what is meant by "clustering" and how we analyze the massive amounts of data from such experiments, and present results obtained from a...

  2. Exploring the Transcriptome Landscape of Pomegranate Fruit Peel for Natural Product Biosynthetic Gene and SSR Marker Discovery

    Institute of Scientific and Technical Information of China (English)

    Nadia Nicole Ono; Monica Therese Britton; Joseph Nathaniel Fass; Charles Meyer Nicolet; Dawei Lin; Li Tian

    2011-01-01

    Pomegranate fruit peel is rich in bioactive plant natural products,such as hydrolyzable tannins and anthocyanins.Despite their documented roles in human nutrition and fruit quality,genes involved in natural product biosynthesis have not been cloned from pomegranate and very little sequence information is available on pomegranate in the public domain.Shotgun transcriptome sequencing of pomegranate fruit peel cDNA was performed using RNA-Seq on the Illumina Genome Analyzer platform.Over 100 million raw sequence reads were obtained and assembled into 9,839 transcriptome assemblies (TAs) (>200 bp).Candidate genes for hydrolyzable tannin,anthocyanin,flavonoid,terpenoid and fatty acid biosynthesis and/or regulation were identified.Three lipid transfer proteins were obtained that may contribute to the previously reported IgE reactivity of pomegranate fruit extracts.In addition,115 SSR markers were identified from the pomegranate fruit peel transcriptome and primers were designed for 77 SSR markers.The pomegranate fruit peel transcriptome set provides a valuable platform for natural product biosynthetic gene and SSR marker discovery in pomegranate.This work also demonstrates that next-generation transcriptome sequencing is an economical and effective approach for investigating natural product biosynthesis,identifying genes controlling important agronomic traits,and discovering molecular markers in non-model specialty crop species.

  3. Targeted Gene Disruption of the Cyclo (L-Phe, L-Pro Biosynthetic Pathway in Streptomyces sp. US24 Strain

    Directory of Open Access Journals (Sweden)

    Samiha Sioud

    2007-01-01

    Full Text Available We have previously isolated a new actinomycete strain from Tunisian soil called Streptomyces sp. US24, and have shown that it produces two bioactive molecules including a Cyclo (L-Phe, L-Pro diketopiperazine (DKP. To identify the structural genes responsible for the synthesis of this DKP derivative, a PCR amplification (696 bp was carried out using the Streptomyces sp. US24 genomic DNA as template and two degenerate oligonucleotides designed by analogy with genes encoding peptide synthetases (NRPS. The detection of DKP derivative biosynthetic pathway of the Streptomyces sp. US24 strain was then achieved by gene disruption via homologous recombination using a suicide vector derived from the conjugative plasmid pSET152 and containing the PCR product. Chromatography analysis, biological tests and spectroscopic studies of supernatant cultures of the wild-type Streptomyces sp. US24 strain and three mutants obtained by this gene targeting disruption approach showed that the amplified DNA fragment is required for Cyclo (L-Phe, L-Pro biosynthesis in Streptomyces sp. US24 strain. This DKP derivative seems to be produced either directly via a nonribosomal pathway or as a side product in the course of nonribosomal synthesis of a longer peptide.

  4. Expression of genes associated with the biosynthetic pathways of abscisic acid, gibberellin, and ethylene during the germination of lettuce seeds.

    Science.gov (United States)

    Clemente, A C S; Guimarães, R M; Martins, D C; Gomes, L A A; Caixeta, F; Reis, R G E; Rosa, S D V F

    2015-01-01

    Seed germination and dormancy are complex phenomena that are controlled by many genes and environmental factors. Such genes are indicated by phytohormones that interact with each other, and may cause dormancy or promote seed germination. The objective of this study was to investigate gene expression associated with the biosynthetic pathways of abscisic acid (ABA), gibberellic acid (GA), and ethylene (ET) in dormant and germinated lettuce seeds. The expressions of LsNCED, LsGA3ox1, and ACO-B were evaluated in germinating and dormant seeds from the cultivars Everglades, Babá de Verão, Verônica, Salinas, Colorado, and Regina 71. The expressions of LsNCED, LsGA3ox1, and ACO-B were related to the biosynthesis of ABA, GA, and ET, respectively; therefore, the presence of these substances depends on genotype. LsNCED expression only occurred in dormant seeds, and was connected to dormancy. LsGA3ox1expression only occurred in germinated seeds, and was connected to germination. The ACO-B gene was involved in ET biosynthesis, and was expressed differently in germinated and dormant seeds, depending on the genotype, indicating different functions for different characteristics. Furthermore, sensitivity to phytohormones appeared to be more important than the expression levels of LsNCED, LsGA3ox1, or ACO-B.

  5. Finding gene clusters for a replicated time course study

    OpenAIRE

    Qin, Li-Xuan; Breeden, Linda; Self, Steven G.

    2014-01-01

    Background Finding genes that share similar expression patterns across samples is an important question that is frequently asked in high-throughput microarray studies. Traditional clustering algorithms such as K-means clustering and hierarchical clustering base gene clustering directly on the observed measurements and do not take into account the specific experimental design under which the microarray data were collected. A new model-based clustering method, the clustering of regression model...

  6. Identification and functional characterization of genes encoding omega-3 polyunsaturated fatty acid biosynthetic activities from unicellular microalgae.

    Science.gov (United States)

    Vaezi, Royah; Napier, Johnathan A; Sayanova, Olga

    2013-12-01

    In order to identify novel genes encoding enzymes involved in the biosynthesis of nutritionally important omega-3 long chain polyunsaturated fatty acids, a database search was carried out in the genomes of the unicellular photoautotrophic green alga Ostreococcus RCC809 and cold-water diatom Fragilariopsis cylindrus. The search led to the identification of two putative "front-end" desaturases (Δ6 and Δ4) from Ostreococcus RCC809 and one Δ6-elongase from F. cylindrus. Heterologous expression of putative open reading frames (ORFs) in yeast revealed that the encoded enzyme activities efficiently convert their respective substrates: 54.1% conversion of α-linolenic acid for Δ6-desaturase, 15.1% conversion of 22:5n-3 for Δ4-desaturase and 38.1% conversion of γ-linolenic acid for Δ6-elongase. The Δ6-desaturase from Ostreococcus RCC809 displays a very strong substrate preference resulting in the predominant synthesis of stearidonic acid (C18:4Δ6,9,12,15). These data confirm the functional characterization of omega-3 long chain polyunsaturated fatty acid biosynthetic genes from these two species which have until now not been investigated for such activities. The identification of these new genes will also serve to expand the repertoire of activities available for metabolically engineering the omega-3 trait in heterologous hosts as well as providing better insights into the synthesis of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in marine microalgae. PMID:24351909

  7. Identification and Functional Characterization of Genes Encoding Omega-3 Polyunsaturated Fatty Acid Biosynthetic Activities from Unicellular Microalgae

    Directory of Open Access Journals (Sweden)

    Royah Vaezi

    2013-12-01

    Full Text Available In order to identify novel genes encoding enzymes involved in the biosynthesis of nutritionally important omega-3 long chain polyunsaturated fatty acids, a database search was carried out in the genomes of the unicellular photoautotrophic green alga Ostreococcus RCC809 and cold-water diatom Fragilariopsis cylindrus. The search led to the identification of two putative “front-end” desaturases (Δ6 and Δ4 from Ostreococcus RCC809 and one Δ6-elongase from F. cylindrus. Heterologous expression of putative open reading frames (ORFs in yeast revealed that the encoded enzyme activities efficiently convert their respective substrates: 54.1% conversion of α-linolenic acid for Δ6-desaturase, 15.1% conversion of 22:5n-3 for Δ4-desaturase and 38.1% conversion of γ-linolenic acid for Δ6-elongase. The Δ6-desaturase from Ostreococcus RCC809 displays a very strong substrate preference resulting in the predominant synthesis of stearidonic acid (C18:4Δ6,9,12,15. These data confirm the functional characterization of omega-3 long chain polyunsaturated fatty acid biosynthetic genes from these two species which have until now not been investigated for such activities. The identification of these new genes will also serve to expand the repertoire of activities available for metabolically engineering the omega-3 trait in heterologous hosts as well as providing better insights into the synthesis of eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA in marine microalgae.

  8. Cloning and characterization of the gene encoding β-amyrin synthase in the glycyrrhizic acid biosynthetic pathway in Glycyrrhiza uralensis

    Directory of Open Access Journals (Sweden)

    Honghao Chen

    2013-12-01

    Full Text Available Glycyrrhiza uralensis is considered to be one of the most important herbs in traditional Chinese medicine due to its numerous pharmacological effects particularly its ability to relieve cough and act as a mucolytic. Based on previous research, these effects are mediated by a number of active ingredients, especially glycyrrhizic acid (GA. In the present study, a gene encoding β-amyrin synthase (β-AS involved in GA biosynthesis in G. uralensis has been cloned and expressed in Saccharomyces cerevisiae. The cloned enzyme showed similar activity to native enzymes isolated from other Glycyrrhiza species to catalyze the conversion of 2,3-oxidosqualene into β-amyrin. In fact the β-AS gene is particularly important in the GA biosynthetic pathway in G. uralensis. The complete sequence of the enzyme was determined and a phylogenetic tree based on the β-AS gene of G. uralensis and 20 other species was created. This showed that Glycyrrhiza glabra had the closest kinship with G. uralensis. The results of this work will be useful in determining how to improve the efficacy of G. uralensis by improving its GA content and in exploring the biosynthesis of GA in vitro.

  9. Environmental cues induce changes of steviol glycosides contents and transcription of corresponding biosynthetic genes in Stevia rebaudiana.

    Science.gov (United States)

    Yang, Yongheng; Huang, Suzhen; Han, Yulin; Yuan, Haiyan; Gu, Chunsun; Wang, Zhongwei

    2015-01-01

    Plant growth and secondary metabolism are commonly regulated by external cues such as light, temperature and water availability. In this study, the influences of low and high temperatures, dehydration, photoperiods, and different growing stages on the changes of steviol glycosides (SGs) contents and transcription levels of fifteen genes involved in SGs biosynthesis of Stevia rebaudiana Bertoni were examined using HPLC and RT-PCR. The observations showed that the transcript levels of all the fifteen genes were maximum under 25 °C treatment, and the transcription of SrDXS, SrDXR, SrMCT, SrCMK, SrMDS, SrHDS, SrHDR, SrIDI, SrGGDPS, SrCPPS1, SrUGT85C2 and SrUGT76G1 were restrained both in low temperature (15 °C) and high temperature (35 °C). Most genes in SGs biosynthesis pathway exhibited down-regulation in dehydration. To elucidate the effect of photoperiods, the plants were treated by different simulated photoperiods (8 L/16 D, 1 0L/14 D, 14 L/10 D and 16 L/8 D), but no significant transcription changes were observed. In the study of growing stages, there were evident changes of SGs contents, and the transcript levels of all the fifteen genes were minimal in fast growing period, and exhibited evident increase both in flower-bud appearing stage and flowering stage. The obtained results strongly suggest that the effect of environmental cues on steviol glycosides contents and transcription of corresponding biosynthetic genes in S. rebaudiana is significant. It is worth to study deeply. PMID:25500454

  10. Environmental cues induce changes of steviol glycosides contents and transcription of corresponding biosynthetic genes in Stevia rebaudiana.

    Science.gov (United States)

    Yang, Yongheng; Huang, Suzhen; Han, Yulin; Yuan, Haiyan; Gu, Chunsun; Wang, Zhongwei

    2015-01-01

    Plant growth and secondary metabolism are commonly regulated by external cues such as light, temperature and water availability. In this study, the influences of low and high temperatures, dehydration, photoperiods, and different growing stages on the changes of steviol glycosides (SGs) contents and transcription levels of fifteen genes involved in SGs biosynthesis of Stevia rebaudiana Bertoni were examined using HPLC and RT-PCR. The observations showed that the transcript levels of all the fifteen genes were maximum under 25 °C treatment, and the transcription of SrDXS, SrDXR, SrMCT, SrCMK, SrMDS, SrHDS, SrHDR, SrIDI, SrGGDPS, SrCPPS1, SrUGT85C2 and SrUGT76G1 were restrained both in low temperature (15 °C) and high temperature (35 °C). Most genes in SGs biosynthesis pathway exhibited down-regulation in dehydration. To elucidate the effect of photoperiods, the plants were treated by different simulated photoperiods (8 L/16 D, 1 0L/14 D, 14 L/10 D and 16 L/8 D), but no significant transcription changes were observed. In the study of growing stages, there were evident changes of SGs contents, and the transcript levels of all the fifteen genes were minimal in fast growing period, and exhibited evident increase both in flower-bud appearing stage and flowering stage. The obtained results strongly suggest that the effect of environmental cues on steviol glycosides contents and transcription of corresponding biosynthetic genes in S. rebaudiana is significant. It is worth to study deeply.

  11. Involvement of the Octadecanoid Pathway and Protein Phosphorylation in Fungal Elicitor-Induced Expression of Terpenoid Indole Alkaloid Biosynthetic Genes in Catharanthus roseus

    Science.gov (United States)

    Menke, Frank L.H.; Parchmann, Stefanie; Mueller, Martin J.; Kijne, Jan W.; Memelink, Johan

    1999-01-01

    Two key genes in terpenoid indole alkaloid biosynthesis, Tdc and Str, encoding tryptophan decarboxylase and strictosidine synthase, respectively, are coordinately induced by fungal elicitors in suspension-cultured Catharanthus roseus cells. We have studied the roles of the jasmonate biosynthetic pathway and of protein phosphorylation in signal transduction initiated by a partially purified elicitor from yeast extract. In addition to activating Tdc and Str gene expression, the elicitor also induced the biosynthesis of jasmonic acid. The jasmonate precursor α-linolenic acid or methyl jasmonate (MeJA) itself induced Tdc and Str gene expression when added exogenously . Diethyldithiocarbamic acid, an inhibitor of jasmonate biosynthesis, blocked both the elicitor-induced formation of jasmonic acid and the activation of terpenoid indole alkaloid biosynthetic genes. The protein kinase inhibitor K-252a abolished both elicitor-induced jasmonate biosynthesis and MeJA-induced Tdc and Str gene expression. Analysis of the expression of Str promoter/gusA fusions in transgenic C. roseus cells showed that the elicitor and MeJA act at the transcriptional level. These results demonstrate that the jasmonate biosynthetic pathway is an integral part of the elicitor-triggered signal transduction pathway that results in the coordinate expression of the Tdc and Str genes and that protein kinases act both upstream and downstream of jasmonates. PMID:10198087

  12. Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance.

    Science.gov (United States)

    Sahni, Sangita; Prasad, Bishun D; Liu, Qing; Grbic, Vojislava; Sharpe, Andrew; Singh, Surinder P; Krishna, Priti

    2016-01-01

    As a resource allocation strategy, plant growth and defense responses are generally mutually antagonistic. Brassinosteroid (BR) regulates many aspects of plant development and stress responses, however, genetic evidence of its integrated effects on plant growth and stress tolerance is lacking. We overexpressed the Arabidopsis BR biosynthetic gene AtDWF4 in the oilseed plant Brassica napus and scored growth and stress response phenotypes. The transgenic B. napus plants, in comparison to wild type, displayed increased seed yield leading to increased overall oil content per plant, higher root biomass and root length, significantly better tolerance to dehydration and heat stress, and enhanced resistance to necrotrophic fungal pathogens Leptosphaeria maculans and Sclerotinia sclerotiorum. Transcriptome analysis supported the integrated effects of BR on growth and stress responses; in addition to BR responses associated with growth, a predominant plant defense signature, likely mediated by BES1/BZR1, was evident in the transgenic plants. These results establish that BR can interactively and simultaneously enhance abiotic and biotic stress tolerance and plant productivity. The ability to confer pleiotropic beneficial effects that are associated with different agronomic traits suggests that BR-related genes may be important targets for simultaneously increasing plant productivity and performance under stress conditions. PMID:27324083

  13. Ultraviolet Radiation-Elicited Enhancement of Isoflavonoid Accumulation, Biosynthetic Gene Expression, and Antioxidant Activity in Astragalus membranaceus Hairy Root Cultures.

    Science.gov (United States)

    Jiao, Jiao; Gai, Qing-Yan; Wang, Wei; Luo, Meng; Gu, Cheng-Bo; Fu, Yu-Jie; Ma, Wei

    2015-09-23

    In this work, Astragalus membranaceus hairy root cultures (AMHRCs) were exposed to ultraviolet radiation (UV-A, UV-B, and UV-C) for promoting isoflavonoid accumulation. The optimum enhancement for isoflavonoid production was achieved in 34-day-old AMHRCs elicited by 86.4 kJ/m(2) of UV-B. The resulting isoflavonoid yield was 533.54 ± 13.61 μg/g dry weight (DW), which was 2.29-fold higher relative to control (232.93 ± 3.08 μg/g DW). UV-B up-regulated the transcriptional expressions of all investigated genes involved in isoflavonoid biosynthetic pathway. PAL and C4H were found to be two potential key genes that controlled isoflavonoid biosynthesis. Moreover, a significant increase was noted in antioxidant activity of extracts from UV-B-elicited AMHRCs (IC50 values = 0.85 and 1.08 mg/mL) in comparison with control (1.38 and 1.71 mg/mL). Overall, this study offered a feasible elicitation strategy to enhance isoflavonoid accumulation in AMHRCs and also provided a basis for metabolic engineering of isoflavonoid biosynthesis in the future.

  14. Identification and functional analysis of gene cluster involvement in biosynthesis of the cyclic lipopeptide antibiotic pelgipeptin produced by Paenibacillus elgii

    Directory of Open Access Journals (Sweden)

    Qian Chao-Dong

    2012-09-01

    Full Text Available Abstract Background Pelgipeptin, a potent antibacterial and antifungal agent, is a non-ribosomally synthesised lipopeptide antibiotic. This compound consists of a β-hydroxy fatty acid and nine amino acids. To date, there is no information about its biosynthetic pathway. Results A potential pelgipeptin synthetase gene cluster (plp was identified from Paenibacillus elgii B69 through genome analysis. The gene cluster spans 40.8 kb with eight open reading frames. Among the genes in this cluster, three large genes, plpD, plpE, and plpF, were shown to encode non-ribosomal peptide synthetases (NRPSs, with one, seven, and one module(s, respectively. Bioinformatic analysis of the substrate specificity of all nine adenylation domains indicated that the sequence of the NRPS modules is well collinear with the order of amino acids in pelgipeptin. Additional biochemical analysis of four recombinant adenylation domains (PlpD A1, PlpE A1, PlpE A3, and PlpF A1 provided further evidence that the plp gene cluster involved in pelgipeptin biosynthesis. Conclusions In this study, a gene cluster (plp responsible for the biosynthesis of pelgipeptin was identified from the genome sequence of Paenibacillus elgii B69. The identification of the plp gene cluster provides an opportunity to develop novel lipopeptide antibiotics by genetic engineering.

  15. Disruption of Transporters Affiliated with Enantio-Pyochelin Biosynthesis Gene Cluster of Pseudomonas protegens Pf-5 Has Pleiotropic Effects

    Science.gov (United States)

    Lim, Chee Kent; Penesyan, Anahit; Hassan, Karl A.; Loper, Joyce E.; Paulsen, Ian T.

    2016-01-01

    Pseudomonas protegens Pf-5 (formerly Pseudomonas fluorescens) is a biocontrol bacterium that produces the siderophore enantio-pyochelin under conditions of iron starvation in a process that is often accompanied by the secretion of its biosynthesis intermediates, salicylic acid and dihydroaeruginoic acid. In this study, we investigated whether several transporters that are encoded by genes within or adjacent to the enantio-pyochelin biosynthetic cluster, serve as efflux systems for enantio-pyochelin and/or its intermediates. In addition, we determined whether these transporters have broad substrates range specificity using a Phenotype Microarray system. Intriguingly, knockouts of the pchH and fetF transporter genes resulted in mutant strains that secrete higher levels of enantio-pyochelin as well as its intermediates salicylic acid and dihydroaeruginoic acid. Analyses of these mutants did not indicate significant change in transcription of biosynthetic genes involved in enantio-pyochelin production. In contrast, the deletion mutant of PFL_3504 resulted in reduced transcription of the biosynthetic genes as well as decreased dihydroaeruginoic acid concentrations in the culture supernatant, which could either point to regulation of gene expression by the transporter or its role in dihydroaeruginoic acid transport. Disruption of each of the transporters resulted in altered stress and/or chemical resistance profile of Pf-5, which may reflect that these transporters could have specificity for rather a broad range of substrates. PMID:27442435

  16. Gene Expression Data Knowledge Discovery using Global and Local Clustering

    CERN Document Server

    H, Swathi

    2010-01-01

    To understand complex biological systems, the research community has produced huge corpus of gene expression data. A large number of clustering approaches have been proposed for the analysis of gene expression data. However, extracting important biological knowledge is still harder. To address this task, clustering techniques are used. In this paper, hybrid Hierarchical k-Means algorithm is used for clustering and biclustering gene expression data is used. To discover both local and global clustering structure biclustering and clustering algorithms are utilized. A validation technique, Figure of Merit is used to determine the quality of clustering results. Appropriate knowledge is mined from the clusters by embedding a BLAST similarity search program into the clustering and biclustering process. To discover both local and global clustering structure biclustering and clustering algorithms are utilized. To determine the quality of clustering results, a validation technique, Figure of Merit is used. Appropriate ...

  17. Inhibitory Effect of Cinnamaldehyde, Citral, and Eugenol on Aflatoxin Biosynthetic Gene Expression and Aflatoxin B1 Biosynthesis in Aspergillus flavus.

    Science.gov (United States)

    Liang, Dandan; Xing, Fuguo; Selvaraj, Jonathan Nimal; Liu, Xiao; Wang, Limin; Hua, Huijuan; Zhou, Lu; Zhao, Yueju; Wang, Yan; Liu, Yang

    2015-12-01

    In order to reveal the inhibitory effects of cinnamaldehyde, citral, and eugenol on aflatoxin biosynthesis, the expression levels of 5 key aflatoxin biosynthetic genes were evaluated by real-time PCR. Aspergillus flavus growth and AFB1 production were completely inhibited by 0.80 mmol/L of cinnamaldehyde and 2.80 mmol/L of citral. However, at lower concentration, cinnamaldehyde (0.40 mmol/L), eugenol (0.80 mmol/L), and citral (0.56 mmol/L) significantly reduced AFB1 production with inhibition rate of 68.9%, 95.4%, and 41.8%, respectively, while no effect on fungal growth. Real-time PCR showed that the expressions of aflR, aflT, aflD, aflM, and aflP were down-regulated by cinnamaldehyde (0.40 mmol/L), eugenol (0.80 mmol/L), and citral (0.56 mmol/L). In the presence of cinnamaldehyde, AflM was highly down-regulated (average of 5963 folds), followed by aflP, aflR, aflD, and aflT with the average folds of 55, 18, 6.5, and 5.8, respectively. With 0.80 mmol/L of eugenol, aflP was highly down-regulated (average of 2061-folds), followed by aflM, aflR, aflD, and aflT with average of 138-, 15-, 5.2-, and 4.8-folds reduction, respectively. With 0.56 mmol/L of citral, aflT was completely inhibited, followed by aflM, aflP, aflR, and aflD with average of 257-, 29-, 3.5-, and 2.5-folds reduction, respectively. These results suggest that the reduction in AFB1 production by cinnamaldehyde, eugenol, and citral at low concentration may be due to the down-regulations of the transcription level of aflatoxin biosynthetic genes. Cinnamaldehyde and eugenol may be employed successfully as a good candidate in controlling of toxigenic fungi and subsequently contamination with aflatoxins in practice.

  18. Discovery of diversity in xylan biosynthetic genes by transcriptional profiling of a heteroxylan containing mucilaginous tissue

    Directory of Open Access Journals (Sweden)

    Jacob Kruger Jensen

    2013-06-01

    Full Text Available The exact biochemical steps of xylan backbone synthesis remain elusive. In Arabidopsis, three non-redundant genes from two glycosyltransferase (GT families, IRX9 and IRX14 from GT43 and IRX10 from GT47, are candidates for forming the xylan backbone. In other plants, evidence exists that different tissues express these three genes at widely different levels, which suggests that diversity in the makeup of the xylan synthase complex exists. Recently we have profiled the transcripts present in the developing mucilaginous tissue of psyllium (Plantago ovata Forsk. This tissue was found to have high expression levels of an IRX10 homolog, but very low levels of the two GT43 family members. This contrasts with recent wheat endosperm tissue profiling that found a relatively high abundance of the GT43 family members. We have performed an in-depth analysis of all GTs genes expressed in four developmental stages of the psyllium mucilagenous layer and in a single stage of the psyllium stem using RNA-Seq. This analysis revealed several IRX10 homologs, an expansion in GT61 (homologs of At3g18170/At3g18180, and several GTs from other GT families that are highly abundant and specifically expressed in the mucilaginous tissue. Our current hypothesis is that the four IRX10 genes present in the mucilagenous tissues have evolved to function without the GT43 genes. These four genes represent some of the most divergent IRX10 genes identified to date. Conversely, those present in the psyllium stem are very similar to those in other eudicots. This suggests these genes are under selective pressure, likely due to the synthesis of the various xylan structures present in mucilage that has a different biochemical role than that present in secondary walls. The numerous GT61 family members also show a wide sequence diversity and may be responsible for the larger number of side chain structures present in the psyllium mucilage.

  19. Effect of immobilization stress on gene expression of catecholamine biosynthetic enzymes in heart auricles of socially isolated rats

    Directory of Open Access Journals (Sweden)

    L. Gavrilovic

    2009-12-01

    Full Text Available Chronic stress is associated with the development of cardiovascular diseases. The sympathoneural system plays an important role in the regulation of cardiac function both in health and disease. In the present study, the changes in gene expression of the catecholamine biosynthetic enzymes tyrosine hydroxylase (TH, dopamine-β-hydroxylase (DBH and phenylethanolamine N-methyltransferase (PNMT and protein levels in the right and left heart auricles of naive control and long-term (12 weeks socially isolated rats were investigated by Taqman RT-PCR and Western blot analysis. The response of these animals to additional immobilization stress (2 h was also examined. Long-term social isolation produced a decrease in TH mRNA level in left auricles (about 70% compared to the corresponding control. Expression of the DBH gene was markedly decreased both in the right (about 62% and left (about 81% auricles compared to the corresponding control, group-maintained rats, whereas PNMT mRNA levels remained unchanged. Exposure of group-housed rats to acute immobilization for 2 h led to a significant increase of mRNA levels of TH (about 267%, DBH (about 37% and PNMT (about 60% only in the right auricles. Additional 2-h immobilization of individually housed rats did not affect gene expression of these enzymes in either the right or left auricle. Protein levels of TH, DBH and PNMT in left and right heart auricles were unchanged either in both individually housed and immobilized rats. The unchanged mRNA levels of the enzymes examined after short-term immobilization suggest that the catecholaminergic system of the heart auricles of animals previously exposed to chronic psychosocial stress was adapted to maintain appropriate cardiovascular homeostasis.

  20. Genetic control of lithium sensitivity and regulation of inositol biosynthetic genes.

    Directory of Open Access Journals (Sweden)

    Jason King

    Full Text Available Lithium (Li(+ is a common treatment for bipolar mood disorder, a major psychiatric illness with a lifetime prevalence of more than 1%. Risk of bipolar disorder is heavily influenced by genetic predisposition, but is a complex genetic trait and, to date, genetic studies have provided little insight into its molecular origins. An alternative approach is to investigate the genetics of Li(+ sensitivity. Using the social amoeba Dictyostelium, we previously identified prolyl oligopeptidase (PO as a modulator of Li(+ sensitivity. In a link to the clinic, PO enzyme activity is altered in bipolar disorder patients. Further studies demonstrated that PO is a negative regulator of inositol(1,4,5trisphosphate (IP(3 synthesis, a Li(+ sensitive intracellular signal. However, it was unclear how PO could influence either Li(+ sensitivity or risk of bipolar disorder. Here we show that in both Dictyostelium and cultured human cells PO acts via Multiple Inositol Polyphosphate Phosphatase (Mipp1 to control gene expression. This reveals a novel, gene regulatory network that modulates inositol metabolism and Li(+ sensitivity. Among its targets is the inositol monophosphatase gene IMPA2, which has also been associated with risk of bipolar disorder in some family studies, and our observations offer a cellular signalling pathway in which PO activity and IMPA2 gene expression converge.

  1. Diversity and distribution of a key sulpholipid biosynthetic gene in marine microbial assemblages

    NARCIS (Netherlands)

    Villanueva, L.; Hopmans, E.C.; Bale, N.; Schouten, S.; Sinninghe Damsté, J.S.

    2014-01-01

    Sulphoquinovosyldiacylglycerols (SQDG) are polar sulphur-containing membrane lipids, whose presence has been related to a microbial strategy to adapt to phosphate deprivation. In this study, we have targeted the sqdB gene coding the uridine 5-diphosphate-sulphoquinovose (UDP-SQ) synthase involved in

  2. Triterpenoid Saponin Biosynthetic Pathway Profiling and Candidate Gene Mining of the Ilex asprella Root Using RNA-Seq

    Directory of Open Access Journals (Sweden)

    Xiasheng Zheng

    2014-04-01

    Full Text Available Ilex asprella, which contains abundant α-amyrin type triterpenoid saponins, is an anti-influenza herbal drug widely used in south China. In this work, we first analysed the transcriptome of the I. asprella root using RNA-Seq, which provided a dataset for functional gene mining. mRNA was isolated from the total RNA of the I. asprella root and reverse-transcribed into cDNA. Then, the cDNA library was sequenced using an Illumina HiSeq™ 2000, which generated 55,028,452 clean reads. De novo assembly of these reads generated 51,865 unigenes, in which 39,269 unigenes were annotated (75.71% yield. According to the structures of the triterpenoid saponins of I. asprella, a putative biosynthetic pathway downstream of 2,3-oxidosqualene was proposed and candidate unigenes in the transcriptome data that were potentially involved in the pathway were screened using homology-based BLAST and phylogenetic analysis. Further amplification and functional analysis of these putative unigenes will provide insight into the biosynthesis of Ilex triterpenoid saponins.

  3. Gene ordering in partitive clustering using microarray expressions

    Indian Academy of Sciences (India)

    Shubhra Sankar Ray; Sanghamitra Bandyopadhyay; Sankar K Pal

    2007-08-01

    A central step in the analysis of gene expression data is the identification of groups of genes that exhibit similar expression patterns. Clustering and ordering the genes using gene expression data into homogeneous groups was shown to be useful in functional annotation, tissue classification, regulatory motif identification, and other applications. Although there is a rich literature on gene ordering in hierarchical clustering framework for gene expression analysis, there is no work addressing and evaluating the importance of gene ordering in partitive clustering framework, to the best knowledge of the authors. Outside the framework of hierarchical clustering, different gene ordering algorithms are applied on the whole data set, and the domain of partitive clustering is still unexplored with gene ordering approaches. A new hybrid method is proposed for ordering genes in each of the clusters obtained from partitive clustering solution, using microarray gene expressions. Two existing algorithms for optimally ordering cities in travelling salesman problem (TSP), namely, FRAG_GALK and Concorde, are hybridized individually with self organizing MAP to show the importance of gene ordering in partitive clustering framework. We validated our hybrid approach using yeast and fibroblast data and showed that our approach improves the result quality of partitive clustering solution, by identifying subclusters within big clusters, grouping functionally correlated genes within clusters, minimization of summation of gene expression distances, and the maximization of biological gene ordering using MIPS categorization. Moreover, the new hybrid approach, finds comparable or sometimes superior biological gene order in less computation time than those obtained by optimal leaf ordering in hierarchical clustering solution.

  4. Differential gene expression in liver and small intestine from lactating rats compared to age-matched virgin controls detects increased mRNA of cholesterol biosynthetic genes

    Directory of Open Access Journals (Sweden)

    Jungsuwadee Paiboon

    2011-02-01

    Full Text Available Abstract Background Lactation increases energy demands four- to five-fold, leading to a two- to three-fold increase in food consumption, requiring a proportional adjustment in the ability of the lactating dam to absorb nutrients and to synthesize critical biomolecules, such as cholesterol, to meet the dietary needs of both the offspring and the dam. The size and hydrophobicity of the bile acid pool increases during lactation, implying an increased absorption and disposition of lipids, sterols, nutrients, and xenobiotics. In order to investigate changes at the transcriptomics level, we utilized an exon array and calculated expression levels to investigate changes in gene expression in the liver, duodenum, jejunum, and ileum of lactating dams when compared against age-matched virgin controls. Results A two-way mixed models ANOVA was applied to detect differentially expressed genes. Significance calls were defined as a p Cyp7a1, which catalyzes the rate limiting step in the bile acid biosynthetic pathway, was also significantly increased in liver. In addition, decreased levels of mRNA associated with T-cell signaling were found in the jejunum and ileum. Several members of the Solute Carrier (SLC and Adenosine Triphosphate Binding Cassette (ABC superfamilies of membrane transporters were found to be differentially expressed; these genes may play a role in differences in nutrient and xenobiotic absorption and disposition. mRNA expression of SLC39a4_predicted, a zinc transporter, was increased in all tissues, suggesting that it is involved in increased zinc uptake during lactation. Microarray data are available through GEO under GSE19175. Conclusions We detected differential expression of mRNA from several pathways in lactating dams, including upregulation of the cholesterol biosynthetic pathway in liver and intestine, consistent with Srebp activation. Differential T-Cell signaling in the two most distal regions of the small intestine (ileum and

  5. Effects of white, blue, and red light-emitting diodes on carotenoid biosynthetic gene expression levels and carotenoid accumulation in sprouts of tartary buckwheat (Fagopyrum tataricum Gaertn.).

    Science.gov (United States)

    Tuan, Pham Anh; Thwe, Aye Aye; Kim, Yeon Bok; Kim, Jae Kwang; Kim, Sun-Ju; Lee, Sanghyun; Chung, Sun-Ok; Park, Sang Un

    2013-12-18

    In this study, the optimum wavelengths of light required for carotenoid biosynthesis were determined by investigating the expression levels of carotenoid biosynthetic genes and carotenoid accumulation in sprouts of tartary buckwheat (Fagopyrum tataricum Gaertn.) exposed to white, blue, and red light-emitting diodes (LEDs). Most carotenoid biosynthetic genes showed higher expression in sprouts irradiated with white light at 8 days after sowing than in those irradiated with blue and red lights. The dominant carotenoids in tartary buckwheat sprouts were lutein and β-carotene. The richest accumulation of total carotenoids was observed in sprouts grown under white light (1282.63 μg g(-1) dry weight), which was relatively higher than that in sprouts grown under blue and red lights (940.86 and 985.54 μg g(-1), respectively). This study might establish an effective strategy for maximizing the production of carotenoids and other important secondary metabolites in tartary buckwheat sprouts by using LED technology.

  6. Heterogeneous transcription of an indoleacetic acid biosynthetic gene in Erwinia herbicola on plant surfaces

    OpenAIRE

    Brandl, M. T.; Quiñones, B.; Lindow, S E

    2001-01-01

    We investigated the spatial pattern of expression of ipdC, a plant inducible gene involved in indoleacetic acid biosynthesis in Erwinia herbicola, among individual cells on plants to gain a better understanding of the role of this phenotype in the epiphytic ecology of bacteria and the factors involved in the regulation of ipdC. Nonpathogenic E. herbicola strain 299R harboring a transcriptional fusion of ipdC to gfp was inoculated onto bean plants, recovered fro...

  7. Biosynthetic Analysis of the Petrobactin Siderophore Pathway from Bacillus anthracis▿

    OpenAIRE

    Lee, Jung Yeop; Janes, Brian K.; Passalacqua, Karla D; Pfleger, Brian F.; Bergman, Nicholas H; Liu, Haichuan; Håkansson, Kristina; Somu, Ravindranadh V.; Aldrich, Courtney C.; Cendrowski, Stephen; Hanna, Philip C.; Sherman, David H.

    2006-01-01

    The asbABCDEF gene cluster from Bacillus anthracis is responsible for biosynthesis of petrobactin, a catecholate siderophore that functions in both iron acquisition and virulence in a murine model of anthrax. We initiated studies to determine the biosynthetic details of petrobactin assembly based on mutational analysis of the asb operon, identification of accumulated intermediates, and addition of exogenous siderophores to asb mutant strains. As a starting point, in-frame deletions of each of...

  8. Expansion of the Clavulanic Acid Gene Cluster: Identification and In Vivo Functional Analysis of Three New Genes Required for Biosynthesis of Clavulanic Acid by Streptomyces clavuligerus

    Science.gov (United States)

    Li, Rongfeng; Khaleeli, Nusrat; Townsend, Craig A.

    2000-01-01

    Clavulanic acid is a potent inhibitor of β-lactamase enzymes and is of demonstrated value in the treatment of infections by β-lactam-resistant bacteria. Previously, it was thought that eight contiguous genes within the genome of the producing strain Streptomyces clavuligerus were sufficient for clavulanic acid biosynthesis, because they allowed production of the antibiotic in a heterologous host (K. A. Aidoo, A. S. Paradkar, D. C. Alexander, and S. E. Jensen, p. 219–236, In V. P. Gullo et al., ed., Development in industrial microbiology series, 1993). In contrast, we report the identification of three new genes, orf10 (cyp), orf11 (fd), and orf12, that are required for clavulanic acid biosynthesis as indicated by gene replacement and trans-complementation analysis in S. clavuligerus. These genes are contained within a 3.4-kb DNA fragment located directly downstream of orf9 (cad) in the clavulanic acid cluster. While the orf10 (cyp) and orf11 (fd) proteins show homologies to other known CYP-150 cytochrome P-450 and [3Fe-4S] ferredoxin enzymes and may be responsible for an oxidative reaction late in the pathway, the protein encoded by orf12 shows no significant similarity to any known protein. The results of this study extend the biosynthetic gene cluster for clavulanic acid and attest to the importance of analyzing biosynthetic genes in the context of their natural host. Potential functional roles for these proteins are proposed. PMID:10869089

  9. The rise of operon-like gene clusters in plants.

    Science.gov (United States)

    Boycheva, Svetlana; Daviet, Laurent; Wolfender, Jean-Luc; Fitzpatrick, Teresa B

    2014-07-01

    Gene clusters are common features of prokaryotic genomes also present in eukaryotes. Most clustered genes known are involved in the biosynthesis of secondary metabolites. Although horizontal gene transfer is a primary source of prokaryotic gene cluster (operon) formation and has been reported to occur in eukaryotes, the predominant source of cluster formation in eukaryotes appears to arise de novo or through gene duplication followed by neo- and sub-functionalization or translocation. Here we aim to provide an overview of the current knowledge and open questions related to plant gene cluster functioning, assembly, and regulation. We also present potential research approaches and point out the benefits of a better understanding of gene clusters in plants for both fundamental and applied plant science.

  10. Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers

    Directory of Open Access Journals (Sweden)

    Luo Hongmei

    2011-12-01

    Full Text Available Abstract Background Panax notoginseng (Burk F.H. Chen is important medicinal plant of the Araliacease family. Triterpene saponins are the bioactive constituents in P. notoginseng. However, available genomic information regarding this plant is limited. Moreover, details of triterpene saponin biosynthesis in the Panax species are largely unknown. Results Using the 454 pyrosequencing technology, a one-quarter GS FLX titanium run resulted in 188,185 reads with an average length of 410 bases for P. notoginseng root. These reads were processed and assembled by 454 GS De Novo Assembler software into 30,852 unique sequences. A total of 70.2% of unique sequences were annotated by Basic Local Alignment Search Tool (BLAST similarity searches against public sequence databases. The Kyoto Encyclopedia of Genes and Genomes (KEGG assignment discovered 41 unique sequences representing 11 genes involved in triterpene saponin backbone biosynthesis in the 454-EST dataset. In particular, the transcript encoding dammarenediol synthase (DS, which is the first committed enzyme in the biosynthetic pathway of major triterpene saponins, is highly expressed in the root of four-year-old P. notoginseng. It is worth emphasizing that the candidate cytochrome P450 (Pn02132 and Pn00158 and UDP-glycosyltransferase (Pn00082 gene most likely to be involved in hydroxylation or glycosylation of aglycones for triterpene saponin biosynthesis were discovered from 174 cytochrome P450s and 242 glycosyltransferases by phylogenetic analysis, respectively. Putative transcription factors were detected in 906 unique sequences, including Myb, homeobox, WRKY, basic helix-loop-helix (bHLH, and other family proteins. Additionally, a total of 2,772 simple sequence repeat (SSR were identified from 2,361 unique sequences, of which, di-nucleotide motifs were the most abundant motif. Conclusion This study is the first to present a large-scale EST dataset for P. notoginseng root acquired by next

  11. Cyclic Lipopeptide Biosynthetic Genes and Products, and Inhibitory Activity of Plant-Associated Bacillus against Phytopathogenic Bacteria.

    Directory of Open Access Journals (Sweden)

    Isabel Mora

    Full Text Available The antibacterial activity against bacterial plant pathogens and its relationships with the presence of the cyclic lipopeptide (cLP biosynthetic genes ituC (iturin, bmyB (bacillomycin, fenD (fengycin and srfAA (surfactin, and their corresponding antimicrobial peptide products have been studied in a collection of 64 strains of Bacillus spp. isolated from plant environments. The most frequent antimicrobial peptide (AMP genes were bmyB, srfAA and fenD (34-50% of isolates. Most isolates (98.4% produced surfactin isoforms, 90.6% iturins and 79.7% fengycins. The antibacterial activity was very frequent and generally intense among the collection of strains because 75% of the isolates were active against at least 6 of the 8 bacterial plant pathogens tested. Hierarchical and correspondence analysis confirmed the presence of two clearly differentiated groups. One group consisted of Bacillus strains that showed a strong antibacterial activity, presented several cLPs genes and produced several isoforms of cLPs simultaneously, mainly composed of B. subtilis and B. amyloliquefaciens, although the last one was exclusive to this group. Another group was characterized by strains with very low or none antibacterial activity, that showed one or none of the cLP genes and produced a few or none of the corresponding cLPs, and was the most heterogenous group including B. subtilis, B. licheniformis, B. megaterium, B. pumilus, B. cereus and B. thuringiensis, although the last two were exclusive to this group. This work demonstrated that the antagonistic capacity of plant-associated Bacillus against plant pathogenic bacteria is related to the presence of cLP genes and to the production of the corresponding cLPs, and it is mainly associated to the species B. subtilis and B. amyloliquefaciens. Our findings would help to increase the yield and efficiency of screening methods to obtain candidate strains to biocontrol agents with a mechanism of action relaying on the

  12. Cyclic Lipopeptide Biosynthetic Genes and Products, and Inhibitory Activity of Plant-Associated Bacillus against Phytopathogenic Bacteria.

    Science.gov (United States)

    Mora, Isabel; Cabrefiga, Jordi; Montesinos, Emilio

    2015-01-01

    The antibacterial activity against bacterial plant pathogens and its relationships with the presence of the cyclic lipopeptide (cLP) biosynthetic genes ituC (iturin), bmyB (bacillomycin), fenD (fengycin) and srfAA (surfactin), and their corresponding antimicrobial peptide products have been studied in a collection of 64 strains of Bacillus spp. isolated from plant environments. The most frequent antimicrobial peptide (AMP) genes were bmyB, srfAA and fenD (34-50% of isolates). Most isolates (98.4%) produced surfactin isoforms, 90.6% iturins and 79.7% fengycins. The antibacterial activity was very frequent and generally intense among the collection of strains because 75% of the isolates were active against at least 6 of the 8 bacterial plant pathogens tested. Hierarchical and correspondence analysis confirmed the presence of two clearly differentiated groups. One group consisted of Bacillus strains that showed a strong antibacterial activity, presented several cLPs genes and produced several isoforms of cLPs simultaneously, mainly composed of B. subtilis and B. amyloliquefaciens, although the last one was exclusive to this group. Another group was characterized by strains with very low or none antibacterial activity, that showed one or none of the cLP genes and produced a few or none of the corresponding cLPs, and was the most heterogenous group including B. subtilis, B. licheniformis, B. megaterium, B. pumilus, B. cereus and B. thuringiensis, although the last two were exclusive to this group. This work demonstrated that the antagonistic capacity of plant-associated Bacillus against plant pathogenic bacteria is related to the presence of cLP genes and to the production of the corresponding cLPs, and it is mainly associated to the species B. subtilis and B. amyloliquefaciens. Our findings would help to increase the yield and efficiency of screening methods to obtain candidate strains to biocontrol agents with a mechanism of action relaying on the production of

  13. Water-deficit inducible expression of a cytokinin biosynthetic gene IPT improves drought tolerance in cotton.

    Directory of Open Access Journals (Sweden)

    Sundaram Kuppu

    Full Text Available Water-deficit stress is a major environmental factor that limits agricultural productivity worldwide. Recent episodes of extreme drought have severely affected cotton production in the Southwestern USA. There is a pressing need to develop cotton varieties with improved tolerance to water-deficit stress for sustainable production in water-limited regions. One approach to engineer drought tolerance is by delaying drought-induced senescence via up-regulation of cytokinin biosynthesis. The isopentenyltransferase gene (IPT that encodes a rate limiting enzyme in cytokinin biosynthesis, under the control of a water-deficit responsive and maturation specific promoter P(SARK was introduced into cotton and the performance of the P(SARK::IPT transgenic cotton plants was analyzed in the greenhouse and growth chamber conditions. The data indicate that P(SARK::IPT-transgenic cotton plants displayed delayed senescence under water deficit conditions in the greenhouse. These plants produced more root and shoot biomass, dropped fewer flowers, maintained higher chlorophyll content, and higher photosynthetic rates under reduced irrigation conditions in comparison to wild-type and segregated non-transgenic lines. Furthermore, P(SARK::IPT-transgenic cotton plants grown in growth chamber condition also displayed greater drought tolerance. These results indicate that water-deficit induced expression of an isopentenyltransferase gene in cotton could significantly improve drought tolerance.

  14. T-box-mediated control of the anabolic proline biosynthetic genes of Bacillus subtilis.

    Science.gov (United States)

    Brill, Jeanette; Hoffmann, Tamara; Putzer, Harald; Bremer, Erhard

    2011-04-01

    Bacillus subtilis possesses interlinked routes for the synthesis of proline. The ProJ-ProA-ProH route is responsible for the production of proline as an osmoprotectant, and the ProB-ProA-ProI route provides proline for protein synthesis. We show here that the transcription of the anabolic proBA and proI genes is controlled in response to proline limitation via a T-box-mediated termination/antitermination regulatory mechanism, a tRNA-responsive riboswitch. Primer extension analysis revealed mRNA leader transcripts of 270 and 269 nt for the proBA and proI genes, respectively, both of which are synthesized from SigA-type promoters. These leader transcripts are predicted to fold into two mutually exclusive secondary mRNA structures, forming either a terminator or an antiterminator configuration. Northern blot analysis allowed the detection of both the leader and the full-length proBA and proI transcripts. Assessment of the level of the proBA transcripts revealed that the amount of the full-length mRNA species strongly increased in proline-starved cultures. Genetic studies with a proB-treA operon fusion reporter strain demonstrated that proBA transcription is sensitively tied to proline availability and is derepressed as soon as cellular starvation for proline sets in. Both the proBA and the proI leader sequences contain a CCU proline-specific specifier codon prone to interact with the corresponding uncharged proline-specific tRNA. By replacing the CCU proline specifier codon in the proBA T-box leader with UUC, a codon recognized by a Phe-specific tRNA, we were able to synthetically re-engineer the proline-specific control of proBA transcription to a control that was responsive to starvation for phenylalanine. PMID:21233158

  15. Cloning and reconstitution of rhamose and forosamine biosynthetic gene of Saccharopolyspora spinosa NRRL18395%刺糖多孢菌鼠李糖和福乐糖胺合成基因的克隆和组装

    Institute of Scientific and Technical Information of China (English)

    郭航; 白亭丽; 陶美凤

    2012-01-01

    Rhamnose and forosamine are two essential deoxysugars components of spinosad. Four genes involved in the biosynthesis of rhamnose and forosamine, I. E. Gtt (encoding NDP-glucose syn-thase) ,gdh (encoding NDP-glucose dehydratase), epi (encoding epimerase) and kre (encoding 4 -ke-toreductase),are not located together with the spinosad biosynthetic gene cluster, but distributed in 3 scattered loci in the chromosome of Saccharopolyspora spinosa NRRL18395. To get an integral spinosad biosynthetic pathway, the four genes were cloned by constructing a genomic library and PCR amplifying from S. Spinosa NRRL18395. The 4 genes were successively assembled into an integrative vector to construct an expression vector for biosynthesis of rhamnose and forosamine in heterologous hosts.%鼠李糖和福乐糖胺是多杀菌素生物合成必需的2个脱氧糖结构单元,负责其合成的4种酶的基因(gtt、epi、gdh、kre)与多杀菌素生物合成基因簇并不在一起,而是分散分布在染色体的3个位点上.为克隆到完整的多杀菌素生物合成基因簇,采用构建基因组文库、PCR扩增等手段从刺糖多孢菌NRRL18395染色体分别克隆gtt、epi、gdh和kre基因,并将其克隆组装在同一整合型载体上,以便于构建用于表达多杀菌素糖单元合成基因的表达载体.

  16. The genome of tolypocladium inflatum: evolution, organization, and expression of the cyclosporin biosynthetic gene cluster.

    OpenAIRE

    Bushley, Kathryn E; Rajani Raja; Pankaj Jaiswal; Cumbie, Jason S.; Mariko Nonogaki; Boyd, Alexander E.; C Alisha Owensby; Knaus, Brian J; Justin Elser; Daniel Miller; Yanming Di; McPhail, Kerry L.; Spatafora, Joseph W.

    2013-01-01

    The ascomycete fungus Tolypocladium inflatum, a pathogen of beetle larvae, is best known as the producer of the immunosuppressant drug cyclosporin. The draft genome of T. inflatum strain NRRL 8044 (ATCC 34921), the isolate from which cyclosporin was first isolated, is presented along with comparative analyses of the biosynthesis of cyclosporin and other secondary metabolites in T. inflatum and related taxa. Phylogenomic analyses reveal previously undetected and complex patterns of homology be...

  17. Gene Expression Data Knowledge Discovery using Global and Local Clustering

    OpenAIRE

    H, Swathi.

    2010-01-01

    To understand complex biological systems, the research community has produced huge corpus of gene expression data. A large number of clustering approaches have been proposed for the analysis of gene expression data. However, extracting important biological knowledge is still harder. To address this task, clustering techniques are used. In this paper, hybrid Hierarchical k-Means algorithm is used for clustering and biclustering gene expression data is used. To discover both local and global cl...

  18. Variation in siderophore biosynthetic gene distribution and production across environmental and faecal populations of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Laura J Searle

    Full Text Available Iron is essential for Escherichia coli growth and survival in the host and the external environment, but its availability is generally low due to the poor solubility of its ferric form in aqueous environments and the presence of iron-withholding proteins in the host. Most E. coli can increase access to iron by excreting siderophores such as enterobactin, which have a very strong affinity for Fe3+. A smaller proportion of isolates can generate up to 3 additional siderophores linked with pathogenesis; aerobactin, salmochelin, and yersiniabactin. However, non-pathogenic E. coli are also able to synthesise these virulence-associated siderophores. This raises questions about their role in the ecology of E. coli, beyond virulence, and whether specific siderophores might be linked with persistence in the external environment. Under the assumption that selection favours phenotypes that confer a fitness advantage, we compared siderophore production and gene distribution in E. coli isolated either from agricultural plants or the faeces of healthy mammals. This population-level comparison has revealed that under iron limiting growth conditions plant-associated isolates produced lower amounts of siderophores than faecal isolates. Additionally, multiplex PCR showed that environmental isolates were less likely to contain loci associated with aerobactin and yersiniabactin synthesis. Although aerobactin was linked with strong siderophore excretion, a significant difference in production was still observed between plant and faecal isolates when the analysis was restricted to strains only able to synthesise enterobactin. This finding suggests that the regulatory response to iron limitation may be an important trait associated with adaptation to the non-host environment. Our findings are consistent with the hypothesis that the ability to produce multiple siderophores facilitates E. coli gut colonisation and plays an important role in E. coli commensalism.

  19. Heterogeneous transcription of an indoleacetic acid biosynthetic gene in Erwinia herbicola on plant surfaces.

    Science.gov (United States)

    Brandl, M T; Quiñones, B; Lindow, S E

    2001-03-13

    We investigated the spatial pattern of expression of ipdC, a plant inducible gene involved in indoleacetic acid biosynthesis in Erwinia herbicola, among individual cells on plants to gain a better understanding of the role of this phenotype in the epiphytic ecology of bacteria and the factors involved in the regulation of ipdC. Nonpathogenic E. herbicola strain 299R harboring a transcriptional fusion of ipdC to gfp was inoculated onto bean plants, recovered from individual leaves 48 h after inoculation, and subjected to fluorescence in situ hybridization using a 16S rRNA oligonucleotide probe specific to strain 299R. Epifluorescence images captured through a rhodamine filter were used to distinguish the 5carboxytetramethylrhodamine-labeled cells of strain 299R from other leaf microflora. Quantification of the green fluorescence intensity of individual cells by analysis of digital images revealed that about 65% of the 299R cells recovered from bean leaves had higher ipdC expression than in culture. Additionally, 10% of the cells exhibited much higher levels of green fluorescence than the median fluorescence intensity, indicating that they are more heterogeneous with respect to ipdC expression on plants than in culture. Examination of 299R cells in situ on leaf surfaces by confocal laser scanning microscopy after fluorescence in situ hybridization of cells on leaf samples showed that even cells that were in close proximity exhibited dramatically different green fluorescence intensities, and thus, were in a physical or chemical microenvironment that induced differential expression of ipdC. PMID:11248099

  20. Dispersal of NK homeobox gene clusters in amphioxus and humans

    OpenAIRE

    Luke, Graham N.; L Filipe C Castro; McLay, Kirsten; Bird, Christine; Coulson, Alan; Holland, Peter W. H.

    2003-01-01

    The Drosophila melanogaster genome has six physically clustered NK-related homeobox genes in just 180 kb. Here we show that the NK homeobox gene cluster was an ancient feature of bilaterian animal genomes, but has been secondarily split in chordate ancestry. The NK homeobox gene clusters of amphioxus and vertebrates are each split and dispersed at two equivalent intergenic positions. From the ancestral NK gene cluster, only the Tlx–Lbx and NK3–NK4 linkages have been retained in chordates. Thi...

  1. Genetic characteristics of vancomycin resistance gene cluster in Enterococcus spp.

    Science.gov (United States)

    Chunhui, Chen; Xiaogang, Xu

    2015-05-01

    Vancomycin resistant enterococci has become an important nosocomial pathogen since it is discovered in late 1980s. The products, encoded by vancomycin resistant gene cluster in enterococci, catalyze the synthesis of peptidoglycan precursors with low affinity with glycopeptide antibiotics including vancomycin and teicoplanin and lead to resistance. These vancomycin resistant gene clusters are classified into nine types according to their gene sequences and organization, or D-Ala:D-Lac (VanA, VanB, VanD and VanM) and D-Ala:D-Ser (VanC, VanE, VanG, VanL and VanN) ligase gene clusters based on the differences of their encoded ligases. Moreover, these gene clusters are characterized by their different resistance levels and infection models. In this review, we summarize the classification, gene organization and infection model of vancomycin resistant gene cluster in Enterococcus spp.

  2. Characterization of indigoidine biosynthetic genes in Erwinia chrysanthemi and role of this blue pigment in pathogenicity.

    Science.gov (United States)

    Reverchon, Sylvie; Rouanet, Carine; Expert, Dominique; Nasser, William

    2002-02-01

    In the plant-pathogenic bacterium Erwinia chrysanthemi production of pectate lyases, the main virulence determinant, is modulated by a complex network involving several regulatory proteins. One of these regulators, PecS, also controls the synthesis of a blue pigment identified as indigoidine. Since production of this pigment is cryptic in the wild-type strain, E. chrysanthemi ind mutants deficient in indigoidine synthesis were isolated by screening a library of Tn5-B21 insertions in a pecS mutant. These ind mutations were localized close to the regulatory pecS-pecM locus, immediately downstream of pecM. Sequence analysis of this DNA region revealed three open reading frames, indA, indB, and indC, involved in indigoidine biosynthesis. No specific function could be assigned to IndA. In contrast, IndB displays similarity to various phosphatases involved in antibiotic synthesis and IndC reveals significant homology with many nonribosomal peptide synthetases (NRPS). The IndC product contains an adenylation domain showing the signature sequence DAWCFGLI for glutamine recognition and an oxidation domain similar to that found in various thiazole-forming NRPS. These data suggest that glutamine is the precursor of indigoidine. We assume that indigoidine results from the condensation of two glutamine molecules that have been previously cyclized by intramolecular amide bond formation and then dehydrogenated. Expression of ind genes is strongly derepressed in the pecS background, indicating that PecS is the main regulator of this secondary metabolite synthesis. DNA band shift assays support a model whereby the PecS protein represses indA and indC expression by binding to indA and indC promoter regions. The regulatory link, via pecS, between indigoidine and virulence factor production led us to explore a potential role of indigoidine in E. chrysanthemi pathogenicity. Mutants impaired in indigoidine production were unable to cause systemic invasion of potted Saintpaulia ionantha

  3. Diversity and evolution of MicroRNA gene clusters

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    microRNA(miRNA) gene clusters are a group of miRNA genes clustered within a proximal distance on a chromosome.Although a large number of miRNA clusters have been uncovered in animal and plant genomes,the functional consequences of this arrangement are still poorly understood.Located in a polycistron,the coexpressed miRNA clusters are pivotal in coordinately regulating multiple processes,including embryonic development,cell cycles and cell differentiation.In this review,based on recent progress,we discuss the genomic diversity of miRNA gene clusters,the coordination of expression and function of the clustered miRNAs,and the evolutionarily adaptive processes with gain and loss of the clustering miRNA genes mediated by duplication and transposition events.

  4. Diversity and evolution of MicroRNA gene clusters

    Institute of Scientific and Technical Information of China (English)

    ZHANG YanFeng; ZHANG Rui; SU Bing

    2009-01-01

    microRNA (miRNA) gene clusters are a group of miRNA genes clustered within a proximal distance on a chromosome. Although a large number of miRNA clusters have been uncovered in animal and plant genomes, the functional consequences of this arrangement are still poorly understood. Located in a polycistron, the coexpressed miRNA clusters are pivotal in coordinately regulating multiple processes, including embryonic development, cell cycles and cell differentiation. In this review, based on recent progress, we discuss the genomic diversity of miRNA gene clusters, the coordination of expression and function of the clustered miRNAs, and the evolutionarily adaptive processes with gain and loss of the clustering miRNA genes mediated by duplication and transposition events.

  5. Detecting Sequence Homology at the Gene Cluster Level with MultiGeneBlast

    NARCIS (Netherlands)

    Medema, Marnix H.; Takano, Eriko; Breitling, Rainer; Nowick, Katja

    2013-01-01

    The genes encoding many biomolecular systems and pathways are genomically organized in operons or gene clusters. With MultiGeneBlast, we provide a user-friendly and effective tool to perform homology searches with operons or gene clusters as basic units, instead of single genes. The contextualizatio

  6. Application of an Efficient Gene Targeting System Linking Secondary Metabolites to their Biosynthetic Genes in Aspergillus terreus

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Chun-Jun; Knox, Benjamin P.; Sanchez, James F.; Chiang, Yi-Ming; Bruno, Kenneth S.; Wang, Clay C.

    2013-07-19

    Nonribosomal peptides (NRPs) are natural products biosynthesized by NRP synthetases. A kusA-, pyrG- mutant strain of Aspergillusterreus NIH 2624 was developed that greatly facilitated the gene targeting efficiency in this organism. Application of this tool allowed us to link four major types of NRP related secondary metabolites to their responsible genes in A. terreus. In addition, an NRP related melanin synthetase was also identified in this species.

  7. Performance Analysis of Enhanced Clustering Algorithm for Gene Expression Data

    CERN Document Server

    Chandrasekhar, T; Elayaraja, E

    2011-01-01

    Microarrays are made it possible to simultaneously monitor the expression profiles of thousands of genes under various experimental conditions. It is used to identify the co-expressed genes in specific cells or tissues that are actively used to make proteins. This method is used to analysis the gene expression, an important task in bioinformatics research. Cluster analysis of gene expression data has proved to be a useful tool for identifying co-expressed genes, biologically relevant groupings of genes and samples. In this paper we applied K-Means with Automatic Generations of Merge Factor for ISODATA- AGMFI. Though AGMFI has been applied for clustering of Gene Expression Data, this proposed Enhanced Automatic Generations of Merge Factor for ISODATA- EAGMFI Algorithms overcome the drawbacks of AGMFI in terms of specifying the optimal number of clusters and initialization of good cluster centroids. Experimental results on Gene Expression Data show that the proposed EAGMFI algorithms could identify compact clus...

  8. Identification and Functional Analysis of the Mycophenolic Acid Gene Cluster of Penicillium roqueforti.

    Directory of Open Access Journals (Sweden)

    Abdiel Del-Cid

    Full Text Available The filamentous fungus Penicillium roqueforti is widely known as the ripening agent of blue-veined cheeses. Additionally, this fungus is able to produce several secondary metabolites, including the meroterpenoid compound mycophenolic acid (MPA. Cheeses ripened with P. roqueforti are usually contaminated with MPA. On the other hand, MPA is a commercially valuable immunosuppressant. However, to date the molecular basis of the production of MPA by P. roqueforti is still unknown. Using a bioinformatic approach, we have identified a genomic region of approximately 24.4 kbp containing a seven-gene cluster that may be involved in the MPA biosynthesis in P. roqueforti. Gene silencing of each of these seven genes (named mpaA, mpaB, mpaC, mpaDE, mpaF, mpaG and mpaH resulted in dramatic reductions in MPA production, confirming that all of these genes are involved in the biosynthesis of the compound. Interestingly, the mpaF gene, originally described in P. brevicompactum as a MPA self-resistance gene, also exerts the same function in P. roqueforti, suggesting that this gene has a dual function in MPA metabolism. The knowledge of the biosynthetic pathway of MPA in P. roqueforti will be important for the future control of MPA contamination in cheeses and the improvement of MPA production for commercial purposes.

  9. Identification and Functional Analysis of the Mycophenolic Acid Gene Cluster of Penicillium roqueforti.

    Science.gov (United States)

    Del-Cid, Abdiel; Gil-Durán, Carlos; Vaca, Inmaculada; Rojas-Aedo, Juan F; García-Rico, Ramón O; Levicán, Gloria; Chávez, Renato

    2016-01-01

    The filamentous fungus Penicillium roqueforti is widely known as the ripening agent of blue-veined cheeses. Additionally, this fungus is able to produce several secondary metabolites, including the meroterpenoid compound mycophenolic acid (MPA). Cheeses ripened with P. roqueforti are usually contaminated with MPA. On the other hand, MPA is a commercially valuable immunosuppressant. However, to date the molecular basis of the production of MPA by P. roqueforti is still unknown. Using a bioinformatic approach, we have identified a genomic region of approximately 24.4 kbp containing a seven-gene cluster that may be involved in the MPA biosynthesis in P. roqueforti. Gene silencing of each of these seven genes (named mpaA, mpaB, mpaC, mpaDE, mpaF, mpaG and mpaH) resulted in dramatic reductions in MPA production, confirming that all of these genes are involved in the biosynthesis of the compound. Interestingly, the mpaF gene, originally described in P. brevicompactum as a MPA self-resistance gene, also exerts the same function in P. roqueforti, suggesting that this gene has a dual function in MPA metabolism. The knowledge of the biosynthetic pathway of MPA in P. roqueforti will be important for the future control of MPA contamination in cheeses and the improvement of MPA production for commercial purposes. PMID:26751579

  10. A Nomadic Subtelomeric Disease Resistance Gene Cluster in Common Bean

    Science.gov (United States)

    The B4 resistance (R)-gene cluster, located in subtelomeric region of chromosome 4, is one of the largest clusters known in common bean (Phaseolus vulgaris, Pv). We sequenced 650 kb spanning this locus and annotated 97 genes, 26 of which correspond to Coiled-coil-Nucleotide-Binding-Site-Leucine-Rich...

  11. Simultaneous clustering of multiple gene expression and physical interaction datasets.

    Directory of Open Access Journals (Sweden)

    Manikandan Narayanan

    2010-04-01

    Full Text Available Many genome-wide datasets are routinely generated to study different aspects of biological systems, but integrating them to obtain a coherent view of the underlying biology remains a challenge. We propose simultaneous clustering of multiple networks as a framework to integrate large-scale datasets on the interactions among and activities of cellular components. Specifically, we develop an algorithm JointCluster that finds sets of genes that cluster well in multiple networks of interest, such as coexpression networks summarizing correlations among the expression profiles of genes and physical networks describing protein-protein and protein-DNA interactions among genes or gene-products. Our algorithm provides an efficient solution to a well-defined problem of jointly clustering networks, using techniques that permit certain theoretical guarantees on the quality of the detected clustering relative to the optimal clustering. These guarantees coupled with an effective scaling heuristic and the flexibility to handle multiple heterogeneous networks make our method JointCluster an advance over earlier approaches. Simulation results showed JointCluster to be more robust than alternate methods in recovering clusters implanted in networks with high false positive rates. In systematic evaluation of JointCluster and some earlier approaches for combined analysis of the yeast physical network and two gene expression datasets under glucose and ethanol growth conditions, JointCluster discovers clusters that are more consistently enriched for various reference classes capturing different aspects of yeast biology or yield better coverage of the analysed genes. These robust clusters, which are supported across multiple genomic datasets and diverse reference classes, agree with known biology of yeast under these growth conditions, elucidate the genetic control of coordinated transcription, and enable functional predictions for a number of uncharacterized genes.

  12. Estimating the number of clusters via system evolution for cluster analysis of gene expression data.

    Science.gov (United States)

    Wang, Kaijun; Zheng, Jie; Zhang, Junying; Dong, Jiyang

    2009-09-01

    The estimation of the number of clusters (NC) is one of crucial problems in the cluster analysis of gene expression data. Most approaches available give their answers without the intuitive information about separable degrees between clusters. However, this information is useful for understanding cluster structures. To provide this information, we propose system evolution (SE) method to estimate NC based on partitioning around medoids (PAM) clustering algorithm. SE analyzes cluster structures of a dataset from the viewpoint of a pseudothermodynamics system. The system will go to its stable equilibrium state, at which the optimal NC is found, via its partitioning process and merging process. The experimental results on simulated and real gene expression data demonstrate that the SE works well on the data with well-separated clusters and the one with slightly overlapping clusters. PMID:19527960

  13. Super-paramagnetic clustering of yeast gene expression profiles

    CERN Document Server

    Getz, G; Domany, E; Zhang, M Q

    2000-01-01

    High-density DNA arrays, used to monitor gene expression at a genomic scale, have produced vast amounts of information which require the development of efficient computational methods to analyze them. The important first step is to extract the fundamental patterns of gene expression inherent in the data. This paper describes the application of a novel clustering algorithm, Super-Paramagnetic Clustering (SPC) to analysis of gene expression profiles that were generated recently during a study of the yeast cell cycle. SPC was used to organize genes into biologically relevant clusters that are suggestive for their co-regulation. Some of the advantages of SPC are its robustness against noise and initialization, a clear signature of cluster formation and splitting, and an unsupervised self-organized determination of the number of clusters at each resolution. Our analysis revealed interesting correlated behavior of several groups of genes which has not been previously identified.

  14. Gene expression data clustering using a multiobjective symmetry based clustering technique.

    Science.gov (United States)

    Saha, Sriparna; Ekbal, Asif; Gupta, Kshitija; Bandyopadhyay, Sanghamitra

    2013-11-01

    The invention of microarrays has rapidly changed the state of biological and biomedical research. Clustering algorithms play an important role in clustering microarray data sets where identifying groups of co-expressed genes are a very difficult task. Here we have posed the problem of clustering the microarray data as a multiobjective clustering problem. A new symmetry based fuzzy clustering technique is developed to solve this problem. The effectiveness of the proposed technique is demonstrated on five publicly available benchmark data sets. Results are compared with some widely used microarray clustering techniques. Statistical and biological significance tests have also been carried out. PMID:24209942

  15. The Epipolythiodiketopiperazine Gene Cluster in Claviceps purpurea: Dysfunctional Cytochrome P450 Enzyme Prevents Formation of the Previously Unknown Clapurines.

    Directory of Open Access Journals (Sweden)

    Julian Dopstadt

    Full Text Available Claviceps purpurea is an important food contaminant and well known for the production of the toxic ergot alkaloids. Apart from that, little is known about its secondary metabolism and not all toxic substances going along with the food contamination with Claviceps are known yet. We explored the metabolite profile of a gene cluster in C. purpurea with a high homology to gene clusters, which are responsible for the formation of epipolythiodiketopiperazine (ETP toxins in other fungi. By overexpressing the transcription factor, we were able to activate the cluster in the standard C. purpurea strain 20.1. Although all necessary genes for the formation of the characteristic disulfide bridge were expressed in the overexpression mutants, the fungus did not produce any ETPs. Isolation of pathway intermediates showed that the common biosynthetic pathway stops after the first steps. Our results demonstrate that hydroxylation of the diketopiperazine backbone is the critical step during the ETP biosynthesis. Due to a dysfunctional enzyme, the fungus is not able to produce toxic ETPs. Instead, the pathway end-products are new unusual metabolites with a unique nitrogen-sulfur bond. By heterologous expression of the Leptosphaeria maculans cytochrome P450 encoding gene sirC, we were able to identify the end-products of the ETP cluster in C. purpurea. The thioclapurines are so far unknown ETPs, which might contribute to the toxicity of other C. purpurea strains with a potentially intact ETP cluster.

  16. The Epipolythiodiketopiperazine Gene Cluster in Claviceps purpurea: Dysfunctional Cytochrome P450 Enzyme Prevents Formation of the Previously Unknown Clapurines

    Science.gov (United States)

    Tudzynski, Paul; Humpf, Hans-Ulrich

    2016-01-01

    Claviceps purpurea is an important food contaminant and well known for the production of the toxic ergot alkaloids. Apart from that, little is known about its secondary metabolism and not all toxic substances going along with the food contamination with Claviceps are known yet. We explored the metabolite profile of a gene cluster in C. purpurea with a high homology to gene clusters, which are responsible for the formation of epipolythiodiketopiperazine (ETP) toxins in other fungi. By overexpressing the transcription factor, we were able to activate the cluster in the standard C. purpurea strain 20.1. Although all necessary genes for the formation of the characteristic disulfide bridge were expressed in the overexpression mutants, the fungus did not produce any ETPs. Isolation of pathway intermediates showed that the common biosynthetic pathway stops after the first steps. Our results demonstrate that hydroxylation of the diketopiperazine backbone is the critical step during the ETP biosynthesis. Due to a dysfunctional enzyme, the fungus is not able to produce toxic ETPs. Instead, the pathway end-products are new unusual metabolites with a unique nitrogen-sulfur bond. By heterologous expression of the Leptosphaeria maculans cytochrome P450 encoding gene sirC, we were able to identify the end-products of the ETP cluster in C. purpurea. The thioclapurines are so far unknown ETPs, which might contribute to the toxicity of other C. purpurea strains with a potentially intact ETP cluster. PMID:27390873

  17. Bioinformatics Prediction of Polyketide Synthase Gene Clusters from Mycosphaerella fijiensis.

    Directory of Open Access Journals (Sweden)

    Roslyn D Noar

    Full Text Available Mycosphaerella fijiensis, causal agent of black Sigatoka disease of banana, is a Dothideomycete fungus closely related to fungi that produce polyketides important for plant pathogenicity. We utilized the M. fijiensis genome sequence to predict PKS genes and their gene clusters and make bioinformatics predictions about the types of compounds produced by these clusters. Eight PKS gene clusters were identified in the M. fijiensis genome, placing M. fijiensis into the 23rd percentile for the number of PKS genes compared to other Dothideomycetes. Analysis of the PKS domains identified three of the PKS enzymes as non-reducing and two as highly reducing. Gene clusters contained types of genes frequently found in PKS clusters including genes encoding transporters, oxidoreductases, methyltransferases, and non-ribosomal peptide synthases. Phylogenetic analysis identified a putative PKS cluster encoding melanin biosynthesis. None of the other clusters were closely aligned with genes encoding known polyketides, however three of the PKS genes fell into clades with clusters encoding alternapyrone, fumonisin, and solanapyrone produced by Alternaria and Fusarium species. A search for homologs among available genomic sequences from 103 Dothideomycetes identified close homologs (>80% similarity for six of the PKS sequences. One of the PKS sequences was not similar (< 60% similarity to sequences in any of the 103 genomes, suggesting that it encodes a unique compound. Comparison of the M. fijiensis PKS sequences with those of two other banana pathogens, M. musicola and M. eumusae, showed that these two species have close homologs to five of the M. fijiensis PKS sequences, but three others were not found in either species. RT-PCR and RNA-Seq analysis showed that the melanin PKS cluster was down-regulated in infected banana as compared to growth in culture. Three other clusters, however were strongly upregulated during disease development in banana, suggesting that

  18. Bioinformatics Prediction of Polyketide Synthase Gene Clusters from Mycosphaerella fijiensis.

    Science.gov (United States)

    Noar, Roslyn D; Daub, Margaret E

    2016-01-01

    Mycosphaerella fijiensis, causal agent of black Sigatoka disease of banana, is a Dothideomycete fungus closely related to fungi that produce polyketides important for plant pathogenicity. We utilized the M. fijiensis genome sequence to predict PKS genes and their gene clusters and make bioinformatics predictions about the types of compounds produced by these clusters. Eight PKS gene clusters were identified in the M. fijiensis genome, placing M. fijiensis into the 23rd percentile for the number of PKS genes compared to other Dothideomycetes. Analysis of the PKS domains identified three of the PKS enzymes as non-reducing and two as highly reducing. Gene clusters contained types of genes frequently found in PKS clusters including genes encoding transporters, oxidoreductases, methyltransferases, and non-ribosomal peptide synthases. Phylogenetic analysis identified a putative PKS cluster encoding melanin biosynthesis. None of the other clusters were closely aligned with genes encoding known polyketides, however three of the PKS genes fell into clades with clusters encoding alternapyrone, fumonisin, and solanapyrone produced by Alternaria and Fusarium species. A search for homologs among available genomic sequences from 103 Dothideomycetes identified close homologs (>80% similarity) for six of the PKS sequences. One of the PKS sequences was not similar (banana pathogens, M. musicola and M. eumusae, showed that these two species have close homologs to five of the M. fijiensis PKS sequences, but three others were not found in either species. RT-PCR and RNA-Seq analysis showed that the melanin PKS cluster was down-regulated in infected banana as compared to growth in culture. Three other clusters, however were strongly upregulated during disease development in banana, suggesting that they may encode polyketides important in pathogenicity. PMID:27388157

  19. Inhibitory effect of eugenol on aflatoxin B1 production in Aspergillus parasiticus by downregulating the expression of major genes in the toxin biosynthetic pathway.

    Science.gov (United States)

    Jahanshiri, Zahra; Shams-Ghahfarokhi, Masoomeh; Allameh, Abdolamir; Razzaghi-Abyaneh, Mehdi

    2015-07-01

    Aflatoxin contamination of grains and agro-products is a serious food safety issue and a significant economic concern worldwide. In the present study, the effects of eugenol on Aspergillus parasiticus growth and aflatoxin production were studied in relation to the expression of some essential genes involved in aflatoxin biosynthetic pathway. The fungus was cultured in presence of serial two-fold concentrations of eugenol (15.62-500 μg mL(-1)) for 3 days at 28 °C. Mycelia dry weight was determined as an index of fungal growth, while aflatoxin production was assessed by high performance liquid chromatography. The expression of aflatoxin biosynthetic genes including ver-1, nor-1, pksA, omtA and aflR were evaluated by real-time PCR. Eugenol strongly inhibited A. parasiticus growth in the range of 19.16-95.83 % in a dose-dependent manner. Aflatoxin B1 production was also inhibited by the compound in the range of 15.07-98.0 %. The expressions of ver-1, nor-1, pksA, omtA and aflR genes were significantly suppressed by eugenol at concentrations of 62.5 and 125 μg mL(-1). These results indicate that eugenol may be considered as a good candidate to control toxigenic fungal growth and the subsequent contamination of food, feed and agricultural commodities by carcinogenic aflatoxins.

  20. Seasonal alteration in amounts of lignans and their glucosides and gene expression of the relevant biosynthetic enzymes in the Forsythia suspense leaf.

    Science.gov (United States)

    Morimoto, Kinuyo; Satake, Honoo

    2013-01-01

    Lignans of Forsythia spp. are essential components of various Chinese medicines and health diets. However, the seasonal alteration in lignan amounts and the gene expression profile of lignan-biosynthetic enzymes has yet to be investigated. In this study, we have assessed seasonal alteration in amounts of major lignans, such as pinoresinol, matairesinol, and arctigenin, and examined the gene expression profile of pinoresinol/lariciresinol reductase (PLR), pinoresinol-glucosylating enzyme (UGT71A18), and secoisolariciresinol dehydrogenase (SIRD) in the leaf of Forsythia suspense from April to November. All of the lignans in the leaf continuously increased from April to June, reached the maximal level in June, and then decreased. Ninety percent of pinoresinol and matairesinol was converted into glucosides, while approximately 50% of arctigenin was aglycone. PLR was stably expressed from April to August, whereas the PLR expression was not detected from September to November. In contrast, the UGT71A18 expression was found from August to November, but not from April to July. The SIRD expression was prominent from April to May, not detected in June to July, and then increased again from September to November. These expression profiles of the lignan-synthetic enzymes are largely compatible with the alteration in lignan contents. Furthermore, such seasonal lignan profiles are in good agreement with the fact that the Forsythia leaves for Chinese medicinal tea are harvested in June. This is the first report on seasonal alteration in lignans and the relevant biosynthetic enzyme genes in the leaf of Forsythia species.

  1. Seasonal alteration in amounts of lignans and their glucosides and gene expression of the relevant biosynthetic enzymes in the Forsythia suspense leaf.

    Science.gov (United States)

    Morimoto, Kinuyo; Satake, Honoo

    2013-01-01

    Lignans of Forsythia spp. are essential components of various Chinese medicines and health diets. However, the seasonal alteration in lignan amounts and the gene expression profile of lignan-biosynthetic enzymes has yet to be investigated. In this study, we have assessed seasonal alteration in amounts of major lignans, such as pinoresinol, matairesinol, and arctigenin, and examined the gene expression profile of pinoresinol/lariciresinol reductase (PLR), pinoresinol-glucosylating enzyme (UGT71A18), and secoisolariciresinol dehydrogenase (SIRD) in the leaf of Forsythia suspense from April to November. All of the lignans in the leaf continuously increased from April to June, reached the maximal level in June, and then decreased. Ninety percent of pinoresinol and matairesinol was converted into glucosides, while approximately 50% of arctigenin was aglycone. PLR was stably expressed from April to August, whereas the PLR expression was not detected from September to November. In contrast, the UGT71A18 expression was found from August to November, but not from April to July. The SIRD expression was prominent from April to May, not detected in June to July, and then increased again from September to November. These expression profiles of the lignan-synthetic enzymes are largely compatible with the alteration in lignan contents. Furthermore, such seasonal lignan profiles are in good agreement with the fact that the Forsythia leaves for Chinese medicinal tea are harvested in June. This is the first report on seasonal alteration in lignans and the relevant biosynthetic enzyme genes in the leaf of Forsythia species. PMID:23832493

  2. An efficient approach to finding Siraitia grosvenorii triterpene biosynthetic genes by RNA-seq and digital gene expression analysis

    Directory of Open Access Journals (Sweden)

    Song Cai

    2011-07-01

    Full Text Available Abstract Background Siraitia grosvenorii (Luohanguo is an herbaceous perennial plant native to southern China and most prevalent in Guilin city. Its fruit contains a sweet, fleshy, edible pulp that is widely used in traditional Chinese medicine. The major bioactive constituents in the fruit extract are the cucurbitane-type triterpene saponins known as mogrosides. Among them, mogroside V is nearly 300 times sweeter than sucrose. However, little is known about mogrosides biosynthesis in S. grosvenorii, especially the late steps of the pathway. Results In this study, a cDNA library generated from of equal amount of RNA taken from S. grosvenorii fruit at 50 days after flowering (DAF and 70 DAF were sequenced using Illumina/Solexa platform. More than 48,755,516 high-quality reads from a cDNA library were generated that was assembled into 43,891 unigenes. De novo assembly and gap-filling generated 43,891 unigenes with an average sequence length of 668 base pairs. A total of 26,308 (59.9% unique sequences were annotated and 11,476 of the unique sequences were assigned to specific metabolic pathways by the Kyoto Encyclopedia of Genes and Genomes. cDNA sequences for all of the known enzymes involved in mogrosides backbone synthesis were identified from our library. Additionally, a total of eighty-five cytochrome P450 (CYP450 and ninety UDP-glucosyltransferase (UDPG unigenes were identified, some of which appear to encode enzymes responsible for the conversion of the mogroside backbone into the various mogrosides. Digital gene expression profile (DGE analysis using Solexa sequencing was performed on three important stages of fruit development, and based on their expression pattern, seven CYP450s and five UDPGs were selected as the candidates most likely to be involved in mogrosides biosynthesis. Conclusion A combination of RNA-seq and DGE analysis based on the next generation sequencing technology was shown to be a powerful method for identifying

  3. Subcloning of the enterobactin biosynthetic gene entB: Expression, purification, characterization, and substrate specificity of isochorismatase

    International Nuclear Information System (INIS)

    The Escherichia coli entB, coding for the enterobactin biosynthetic enzyme isochorismatase, has been subcloned into the multicopy plasmid pKK223-3 under the control of the tac promoter. The resulting recombinant plasmid pFR1 expresses isochorismatase amounting to over 50% of the total cellular protein. The enzyme has been purified to homogeneity and a convenient assay developed. The enzyme has a Km for isochorismate of 14.7 μM and a turnover number of 600 min-1. By use of 1H NMR spectroscopy, the progress of the reaction was followed with the expected formation of 2,3-dihydro-2,3-dihydroxybenzoate product. Several substrate analogues were also utilized by the enzyme including chorismic acid, the immediate precursor to isochorismic acid in the enterobactin biosynthetic pathway

  4. Some statistical properties of gene expression clustering for array data

    DEFF Research Database (Denmark)

    Abreu, G C G; Pinheiro, A; Drummond, R D;

    2010-01-01

    for simulated as well as for two real data sets. We also implement a bootstrap-based pre-processing procedure for SOM, that improves the false discovery ratio of differentially expressed genes. Code in Matlab is freely available, as well as some supplementary material, at the following address: https......DNA arrays have been a rich source of data for the study of genomic expression of a wide variety of biological systems. Gene clustering is one of the paradigms quite used to assess the significance of a gene (or group of genes). However, most of the gene clustering techniques are applied to c......DNA array data without a corresponding statistical error measure. We propose an easy-to-implement and simple-to-use technique that uses bootstrap re-sampling to evaluate the statistical error of the nodes provided by SOM-based clustering. Comparisons between SOM and parametric clustering are presented...

  5. Pyocyanine Biosynthetic Genes in Clinical and Environmental Isolates of Pseudomonas aeruginosa and Detection of Pyocyanine’s Antimicrobial Effects with or without Colloidal Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Afrooz Rashnonejad

    2012-01-01

    Full Text Available Objective: Pyocyanine plays an important role in the pathogenesis of Pseudomonas aeruginosa, (P. aeruginosa and is known to have inhibitory and bactericidal effects. This study has aimed to detect the phenazine biosynthetic operon (phz ABCDEFG and two phenazine modifying genes (phzM and phzS by polymerase chain reaction (PCR and detection of its possible protein bands by sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE. The antimicrobial effects of pyocyanine alone and mixed with colloidal silver nanoparticles were studied.Materials and Methods: In this descriptive study, clinical and environmental species of P. aeruginosa were isolated by thioglycollate medium culture and cetrimide agar, respectively. The existence of a phenazine biosynthetic operon and two phenazine modifying genes as well as their protein products were confirmed by PCR and SDS-PAGE, respectively. Pyocyanine was extracted with chloroform and its antimicrobial effects against bacteria such as; Escherichia coli (E. coli, P. aeruginosaand Staphylococcus aureus (S. aureus bacteria and yeast Candida albicans (C. albicans were tested using well, spot and disk diffusion methods.Results: In this study, 3 out of 48 clinical strains were unable to produce pyocyanine on cetrimide and Mueller Hinton (MH agar. Two strains did not have phenazine modifying gene bands. Another strain did not have the possible protein band of the phzM gene. Pyocyanine had antimicrobial effects against the microbial strains, which increased in the presence of silver nanoparticles.Conclusion: According to the results of the present study, some P. aeruginosa strains are unable to produce pyocyanine due to the absence of the phzM or phzS genes. Therefore, these genes have an important role in pyocyanine production in P. aeruginosa. Pyocyanine shows synergistic antimicrobial effects in the presence of silver nanoparticles against microbial strains.

  6. Performance Analysis of Enhanced Clustering Algorithm for Gene Expression Data

    Directory of Open Access Journals (Sweden)

    T. Chandrasekhar

    2011-11-01

    Full Text Available Microarrays are made it possible to simultaneously monitor the expression profiles of thousands of genes under various experimental conditions. It is used to identify the co-expressed genes in specific cells or tissues that are actively used to make proteins. This method is used to analysis the gene expression, an important task in bioinformatics research. Cluster analysis of gene expression data has proved to be a useful tool for identifying co-expressed genes, biologically relevant groupings of genes and samples. In this paper we applied K-Means with Automatic Generations of Merge Factor for ISODATA- AGMFI. Though AGMFI has been applied for clustering of Gene Expression Data, this proposed Enhanced Automatic Generations of Merge Factor for ISODATA- EAGMFI Algorithms overcome the drawbacks of AGMFI in terms of specifying the optimal number of clusters and initialization of good cluster centroids. Experimental results on Gene Expression Data show that the proposed EAGMFI algorithms could identify compact clusters with perform well in terms of the Silhouette Coefficients cluster measure.

  7. Mining and engineering natural-product biosynthetic pathways.

    Science.gov (United States)

    Wilkinson, Barrie; Micklefield, Jason

    2007-07-01

    Natural products continue to fulfill an important role in the development of therapeutic agents. In addition, with the advent of chemical genetics and high-throughput screening platforms, these molecules have become increasingly valuable as tools for interrogating fundamental aspects of biological systems. To access the vast portion of natural-product structural diversity that remains unexploited for these and other applications, genome mining and microbial metagenomic approaches are proving particularly powerful. When these are coupled with recombineering and related genetic tools, large biosynthetic gene clusters that remain intractable or cryptic in the native host can be more efficiently cloned and expressed in a suitable heterologous system. For lead optimization and the further structural diversification of natural-product libraries, combinatorial biosynthetic engineering has also become indispensable. However, our ability to rationally redesign biosynthetic pathways is often limited by our lack of understanding of the structure, dynamics and interplay between the many enzymes involved in complex biosynthetic pathways. Despite this, recent structures of fatty acid synthases should allow a more accurate prediction of the likely architecture of related polyketide synthase and nonribosomal peptide synthetase multienzymes. PMID:17576425

  8. Genomic Analyses of Bacterial Porin-Cytochrome Gene Clusters

    Directory of Open Access Journals (Sweden)

    Liang eShi

    2014-11-01

    Full Text Available The porin-cytochrome (Pcc protein complex is responsible for trans-outer membrane electron transfer during extracellular reduction of Fe(III by the dissimilatory metal-reducing bacterium Geobacter sulfurreducens PCA. The identified and characterized Pcc complex of G. sulfurreducens PCA consists of a porin-like outer-membrane protein, a periplasmic 8-heme c-type cytochrome (c-Cyt and an outer-membrane 12-heme c-Cyt, and the genes encoding the Pcc proteins are clustered in the same regions of genome (i.e., the pcc gene clusters of G. sulfurreducens PCA. A survey of additionally microbial genomes has identified the pcc gene clusters in all sequenced Geobacter spp. and other bacteria from six different phyla, including Anaeromyxobacter dehalogenans 2CP-1, A. dehalogenans 2CP-C, Anaeromyxobacter sp. K, Candidatus Kuenenia stuttgartiensis, Denitrovibrio acetiphilus DSM 12809, Desulfurispirillum indicum S5, Desulfurivibrio alkaliphilus AHT2, Desulfurobacterium thermolithotrophum DSM 11699, Desulfuromonas acetoxidans DSM 684, Ignavibacterium album JCM 16511, and Thermovibrio ammonificans HB-1. The numbers of genes in the pcc gene clusters vary, ranging from two to nine. Similar to the metal-reducing (Mtr gene clusters of other Fe(III-reducing bacteria, such as Shewanella spp., additional genes that encode putative c-Cyts with predicted cellular localizations at the cytoplasmic membrane, periplasm and outer membrane often associate with the pcc gene clusters. This suggests that the Pcc-associated c-Cyts may be part of the pathways for extracellular electron transfer reactions. The presence of pcc gene clusters in the microorganisms that do not reduce solid-phase Fe(III and Mn(IV oxides, such as D. alkaliphilus AHT2 and I. album JCM 16511, also suggests that some of the pcc gene clusters may be involved in extracellular electron transfer reactions with the substrates other than Fe(III and Mn(IV oxides.

  9. Biologically supervised hierarchical clustering algorithms for gene expression data.

    Science.gov (United States)

    Boratyn, Grzegorz M; Datta, Susmita; Datta, Somnath

    2006-01-01

    Cluster analysis has become a standard part of gene expression analysis. In this paper, we propose a novel semi-supervised approach that offers the same flexibility as that of a hierarchical clustering. Yet it utilizes, along with the experimental gene expression data, common biological information about different genes that is being complied at various public, Web accessible databases. We argue that such an approach is inherently superior than the standard unsupervised approach of grouping genes based on expression data alone. It is shown that our biologically supervised methods produce better clustering results than the corresponding unsupervised methods as judged by the distance from the model temporal profiles. R-codes of the clustering algorithm are available from the authors upon request. PMID:17947147

  10. Hox gene clusters in the Indonesian coelacanth, Latimeria menadoensis.

    Science.gov (United States)

    Koh, Esther G L; Lam, Kevin; Christoffels, Alan; Erdmann, Mark V; Brenner, Sydney; Venkatesh, Byrappa

    2003-02-01

    The Hox genes encode transcription factors that play a key role in specifying body plans of metazoans. They are organized into clusters that contain up to 13 paralogue group members. The complex morphology of vertebrates has been attributed to the duplication of Hox clusters during vertebrate evolution. In contrast to the single Hox cluster in the amphioxus (Branchiostoma floridae), an invertebrate-chordate, mammals have four clusters containing 39 Hox genes. Ray-finned fishes (Actinopterygii) such as zebrafish and fugu possess more than four Hox clusters. The coelacanth occupies a basal phylogenetic position among lobe-finned fishes (Sarcopterygii), which gave rise to the tetrapod lineage. The lobe fins of sarcopterygians are considered to be the evolutionary precursors of tetrapod limbs. Thus, the characterization of Hox genes in the coelacanth should provide insights into the origin of tetrapod limbs. We have cloned the complete second exon of 33 Hox genes from the Indonesian coelacanth, Latimeria menadoensis, by extensive PCR survey and genome walking. Phylogenetic analysis shows that 32 of these genes have orthologs in the four mammalian HOX clusters, including three genes (HoxA6, D1, and D8) that are absent in ray-finned fishes. The remaining coelacanth gene is an ortholog of hoxc1 found in zebrafish but absent in mammals. Our results suggest that coelacanths have four Hox clusters bearing a gene complement more similar to mammals than to ray-finned fishes, but with an additional gene, HoxC1, which has been lost during the evolution of mammals from lobe-finned fishes.

  11. A Rough Set based Gene Expression Clustering Algorithm

    Directory of Open Access Journals (Sweden)

    J. J. Emilyn

    2011-01-01

    Full Text Available Problem statement: Microarray technology helps in monitoring the expression levels of thousands of genes across collections of related samples. Approach: The main goal in the analysis of large and heterogeneous gene expression datasets was to identify groups of genes that get expressed in a set of experimental conditions. Results: Several clustering techniques have been proposed for identifying gene signatures and to understand their role and many of them have been applied to gene expression data, but with partial success. The main aim of this work was to develop a clustering algorithm that would successfully indentify gene patterns. The proposed novel clustering technique (RCGED provides an efficient way of finding the hidden and unique gene expression patterns. It overcomes the restriction of one object being placed in only one cluster. Conclusion/Recommendations: The proposed algorithm is termed intelligent because it automatically determines the optimum number of clusters. The proposed algorithm was experimented with colon cancer dataset and the results were compared with Rough Fuzzy K Means algorithm.

  12. Phylogeny of the Insect Homeobox Gene (Hox) Cluster

    Institute of Scientific and Technical Information of China (English)

    Sangeeta Dhawan; K. P. Gopinathan

    2005-01-01

    The homeobox (Hox) genes form an evolutionarily conserved family encoding transcription factors that play major roles in segmental identity and organ specification across species. The canonical grouping of Hox genes present in the HOM-C cluster of Drosophila or related clusters in other organisms includes eight "typical" genes,which are localized in the order labial (lab), proboscipedia (pb), Deformed (Dfd),Sex combs reduced ( Scr), Antennapedia (Antp), Ultrabithorax (Ubx), abdominalA (abdA), and AbdominalB (AbdB). The members of Hox cluster are expressed in a distinct anterior to posterior order in the embryo. Analysis of the relatedness of different members of the Hox gene cluster to each other in four evolutionarily diverse insect taxa revealed that the loci pb/Dfd and AbdB, which are farthest apart in linkage, had a high degree of evolutionary relatedness, indicating that pb/Dfd type anterior genes and AbdB are closest to the ancestral anterior and posterior Hox genes, respectively. The greater relatedness of other posterior genes Ubx and abdA to the more anterior genes such as Antp and Scr suggested that they arose by gene duplications in the more anterior members rather than the posterior AbdB.

  13. SMART: unique splitting-while-merging framework for gene clustering.

    Directory of Open Access Journals (Sweden)

    Rui Fa

    Full Text Available Successful clustering algorithms are highly dependent on parameter settings. The clustering performance degrades significantly unless parameters are properly set, and yet, it is difficult to set these parameters a priori. To address this issue, in this paper, we propose a unique splitting-while-merging clustering framework, named "splitting merging awareness tactics" (SMART, which does not require any a priori knowledge of either the number of clusters or even the possible range of this number. Unlike existing self-splitting algorithms, which over-cluster the dataset to a large number of clusters and then merge some similar clusters, our framework has the ability to split and merge clusters automatically during the process and produces the the most reliable clustering results, by intrinsically integrating many clustering techniques and tasks. The SMART framework is implemented with two distinct clustering paradigms in two algorithms: competitive learning and finite mixture model. Nevertheless, within the proposed SMART framework, many other algorithms can be derived for different clustering paradigms. The minimum message length algorithm is integrated into the framework as the clustering selection criterion. The usefulness of the SMART framework and its algorithms is tested in demonstration datasets and simulated gene expression datasets. Moreover, two real microarray gene expression datasets are studied using this approach. Based on the performance of many metrics, all numerical results show that SMART is superior to compared existing self-splitting algorithms and traditional algorithms. Three main properties of the proposed SMART framework are summarized as: (1 needing no parameters dependent on the respective dataset or a priori knowledge about the datasets, (2 extendible to many different applications, (3 offering superior performance compared with counterpart algorithms.

  14. SMART: unique splitting-while-merging framework for gene clustering.

    Science.gov (United States)

    Fa, Rui; Roberts, David J; Nandi, Asoke K

    2014-01-01

    Successful clustering algorithms are highly dependent on parameter settings. The clustering performance degrades significantly unless parameters are properly set, and yet, it is difficult to set these parameters a priori. To address this issue, in this paper, we propose a unique splitting-while-merging clustering framework, named "splitting merging awareness tactics" (SMART), which does not require any a priori knowledge of either the number of clusters or even the possible range of this number. Unlike existing self-splitting algorithms, which over-cluster the dataset to a large number of clusters and then merge some similar clusters, our framework has the ability to split and merge clusters automatically during the process and produces the the most reliable clustering results, by intrinsically integrating many clustering techniques and tasks. The SMART framework is implemented with two distinct clustering paradigms in two algorithms: competitive learning and finite mixture model. Nevertheless, within the proposed SMART framework, many other algorithms can be derived for different clustering paradigms. The minimum message length algorithm is integrated into the framework as the clustering selection criterion. The usefulness of the SMART framework and its algorithms is tested in demonstration datasets and simulated gene expression datasets. Moreover, two real microarray gene expression datasets are studied using this approach. Based on the performance of many metrics, all numerical results show that SMART is superior to compared existing self-splitting algorithms and traditional algorithms. Three main properties of the proposed SMART framework are summarized as: (1) needing no parameters dependent on the respective dataset or a priori knowledge about the datasets, (2) extendible to many different applications, (3) offering superior performance compared with counterpart algorithms. PMID:24714159

  15. Characterization of the largest effector gene cluster of Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Thomas Brefort

    2014-07-01

    Full Text Available In the genome of the biotrophic plant pathogen Ustilago maydis, many of the genes coding for secreted protein effectors modulating virulence are arranged in gene clusters. The vast majority of these genes encode novel proteins whose expression is coupled to plant colonization. The largest of these gene clusters, cluster 19A, encodes 24 secreted effectors. Deletion of the entire cluster results in severe attenuation of virulence. Here we present the functional analysis of this genomic region. We show that a 19A deletion mutant behaves like an endophyte, i.e. is still able to colonize plants and complete the infection cycle. However, tumors, the most conspicuous symptoms of maize smut disease, are only rarely formed and fungal biomass in infected tissue is significantly reduced. The generation and analysis of strains carrying sub-deletions identified several genes significantly contributing to tumor formation after seedling infection. Another of the effectors could be linked specifically to anthocyanin induction in the infected tissue. As the individual contributions of these genes to tumor formation were small, we studied the response of maize plants to the whole cluster mutant as well as to several individual mutants by array analysis. This revealed distinct plant responses, demonstrating that the respective effectors have discrete plant targets. We propose that the analysis of plant responses to effector mutant strains that lack a strong virulence phenotype may be a general way to visualize differences in effector function.

  16. Characterization of the largest effector gene cluster of Ustilago maydis.

    Science.gov (United States)

    Brefort, Thomas; Tanaka, Shigeyuki; Neidig, Nina; Doehlemann, Gunther; Vincon, Volker; Kahmann, Regine

    2014-07-01

    In the genome of the biotrophic plant pathogen Ustilago maydis, many of the genes coding for secreted protein effectors modulating virulence are arranged in gene clusters. The vast majority of these genes encode novel proteins whose expression is coupled to plant colonization. The largest of these gene clusters, cluster 19A, encodes 24 secreted effectors. Deletion of the entire cluster results in severe attenuation of virulence. Here we present the functional analysis of this genomic region. We show that a 19A deletion mutant behaves like an endophyte, i.e. is still able to colonize plants and complete the infection cycle. However, tumors, the most conspicuous symptoms of maize smut disease, are only rarely formed and fungal biomass in infected tissue is significantly reduced. The generation and analysis of strains carrying sub-deletions identified several genes significantly contributing to tumor formation after seedling infection. Another of the effectors could be linked specifically to anthocyanin induction in the infected tissue. As the individual contributions of these genes to tumor formation were small, we studied the response of maize plants to the whole cluster mutant as well as to several individual mutants by array analysis. This revealed distinct plant responses, demonstrating that the respective effectors have discrete plant targets. We propose that the analysis of plant responses to effector mutant strains that lack a strong virulence phenotype may be a general way to visualize differences in effector function.

  17. Clustering gene expression data using a diffraction‐inspired framework

    Directory of Open Access Journals (Sweden)

    Dinger Steven C

    2012-11-01

    Full Text Available Abstract Background The recent developments in microarray technology has allowed for the simultaneous measurement of gene expression levels. The large amount of captured data challenges conventional statistical tools for analysing and finding inherent correlations between genes and samples. The unsupervised clustering approach is often used, resulting in the development of a wide variety of algorithms. Typical clustering algorithms require selecting certain parameters to operate, for instance the number of expected clusters, as well as defining a similarity measure to quantify the distance between data points. The diffraction‐based clustering algorithm however is designed to overcome this necessity for user‐defined parameters, as it is able to automatically search the data for any underlying structure. Methods The diffraction‐based clustering algorithm presented in this paper is tested using five well‐known expression datasets pertaining to cancerous tissue samples. The clustering results are then compared to those results obtained from conventional algorithms such as the k‐means, fuzzy c‐means, self‐organising map, hierarchical clustering algorithm, Gaussian mixture model and density‐based spatial clustering of applications with noise (DBSCAN. The performance of each algorithm is measured using an average external criterion and an average validity index. Results The diffraction‐based clustering algorithm is shown to be independent of the number of clusters as the algorithm searches the feature space and requires no form of parameter selection. The results show that the diffraction‐based clustering algorithm performs significantly better on the real biological datasets compared to the other existing algorithms. Conclusion The results of the diffraction‐based clustering algorithm presented in this paper suggest that the method can provide researchers with a new tool for successfully analysing microarray data.

  18. Identification of nitrogen-fixing genes and gene clusters from metagenomic library of acid mine drainage.

    Directory of Open Access Journals (Sweden)

    Zhimin Dai

    Full Text Available Biological nitrogen fixation is an essential function of acid mine drainage (AMD microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community.

  19. Effects of Adding Vindoline and MeJA on Production of Vincristine and Vinblastine, and Transcription of their Biosynthetic Genes in the Cultured CMCs of Catharanthus roseus.

    Science.gov (United States)

    Zhang, Wenjin; Yang, Jiazeng; Zi, Jiachen; Zhu, Jianhua; Song, Liyan; Yu, Rongmin

    2015-12-01

    Vincristine and vinblastine were found by Liquid Chromatography-Mass Spectrometry (LC-MS) in Catharanthus roseuscambial meristem cells (CMCs) jointly treated with 0.25 mM vindoline and methyl jasmonate (MeJA), suggesting that C. roseus CMCs contain a complete set of the enzymes which are in response to convert vindoline into vincristine and vinblastine. Based on the facts that the transcript levels of vindoline-biosynthetic genes (STR, SGD and D4H) were up-regulated instead of being down-regulated by adding itself to the culture, and that the transcriptional factor ORCA3 was up-regulated simultaneously, we further confirmed that the transcription of STR, SGD, D4H was manipulated by ORCA3. PMID:26882673

  20. Genome classification by gene distribution: An overlapping subspace clustering approach

    Directory of Open Access Journals (Sweden)

    Halgamuge Saman K

    2008-04-01

    Full Text Available Abstract Background Genomes of lower organisms have been observed with a large amount of horizontal gene transfers, which cause difficulties in their evolutionary study. Bacteriophage genomes are a typical example. One recent approach that addresses this problem is the unsupervised clustering of genomes based on gene order and genome position, which helps to reveal species relationships that may not be apparent from traditional phylogenetic methods. Results We propose the use of an overlapping subspace clustering algorithm for such genome classification problems. The advantage of subspace clustering over traditional clustering is that it can associate clusters with gene arrangement patterns, preserving genomic information in the clusters produced. Additionally, overlapping capability is desirable for the discovery of multiple conserved patterns within a single genome, such as those acquired from different species via horizontal gene transfers. The proposed method involves a novel strategy to vectorize genomes based on their gene distribution. A number of existing subspace clustering and biclustering algorithms were evaluated to identify the best framework upon which to develop our algorithm; we extended a generic subspace clustering algorithm called HARP to incorporate overlapping capability. The proposed algorithm was assessed and applied on bacteriophage genomes. The phage grouping results are consistent overall with the Phage Proteomic Tree and showed common genomic characteristics among the TP901-like, Sfi21-like and sk1-like phage groups. Among 441 phage genomes, we identified four significantly conserved distribution patterns structured by the terminase, portal, integrase, holin and lysin genes. We also observed a subgroup of Sfi21-like phages comprising a distinctive divergent genome organization and identified nine new phage members to the Sfi21-like genus: Staphylococcus 71, phiPVL108, Listeria A118, 2389, Lactobacillus phi AT3, A2

  1. In silico analysis highlights the frequency and diversity of type 1 lantibiotic gene clusters in genome sequenced bacteria

    LENUS (Irish Health Repository)

    Marsh, Alan J

    2010-11-30

    Abstract Background Lantibiotics are lanthionine-containing, post-translationally modified antimicrobial peptides. These peptides have significant, but largely untapped, potential as preservatives and chemotherapeutic agents. Type 1 lantibiotics are those in which lanthionine residues are introduced into the structural peptide (LanA) through the activity of separate lanthionine dehydratase (LanB) and lanthionine synthetase (LanC) enzymes. Here we take advantage of the conserved nature of LanC enzymes to devise an in silico approach to identify potential lantibiotic-encoding gene clusters in genome sequenced bacteria. Results In total 49 novel type 1 lantibiotic clusters were identified which unexpectedly were associated with species, genera and even phyla of bacteria which have not previously been associated with lantibiotic production. Conclusions Multiple type 1 lantibiotic gene clusters were identified at a frequency that suggests that these antimicrobials are much more widespread than previously thought. These clusters represent a rich repository which can yield a large number of valuable novel antimicrobials and biosynthetic enzymes.

  2. Mining Association Rules among Gene Functions in Clusters of Similar Gene Expression Maps

    OpenAIRE

    An, Li; Obradovic, Zoran; Smith, Desmond; Bodenreider, Olivier; Megalooikonomou, Vasileios

    2009-01-01

    Association rules mining methods have been recently applied to gene expression data analysis to reveal relationships between genes and different conditions and features. However, not much effort has focused on detecting the relation between gene expression maps and related gene functions. Here we describe such an approach to mine association rules among gene functions in clusters of similar gene expression maps on mouse brain. The experimental results show that the detected association rules ...

  3. Unique nucleotide polymorphism of ankyrin gene cluster in Arabidopsis

    Indian Academy of Sciences (India)

    Jianchang Du; Xingna Wang; Mingsheng Zhang; Dacheng Tian; Yong-Hua Yang

    2007-01-01

    The ankyrin (ANK) gene cluster is a part of a multigene family encoding ANK transmembrane proteins in Arabidopsis thaliana, and plays an important role in protein–protein interactions and in signal pathways. In contrast to other regions of a genome, the ANK gene cluster exhibits an extremely high level of DNA polymorphism in an ∼5-kb region, without apparent decay. Phylogenetic analysis detects two clear, deeply differentiated haplotypes (dimorphism). The divergence between haplotypes of accession Col-0 and Ler-0 (Hap-C and Hap-L) is estimated to be 10.7%, approximately equal to the 10.5% average divergence between A. thaliana and A. lyrata. Sequence comparisons for the ANK gene cluster homologues in Col-0 indicate that the members evolve independently, and that the similarity among paralogues is lower than between alleles. Very little intralocus recombination or gene conversion is detected in ANK regions. All these characteristics of the ANK gene cluster are consistent with a tandem gene duplication and birth-and-death process. The possible mechanisms for and implications of this elevated nucleotide variation are also discussed, including the suggestion of balancing selection.

  4. Bi-clustering gene expression data under constraints

    OpenAIRE

    Le, Thanh; Fierro Gutiérrez, Ana Carolina Elisa; Guns, Tias; van Leeuwen, Matthijs; Nijssen, Siegfried; De Raedt, Luc; Marchal, Kathleen

    2013-01-01

    This paper presents a constraint-based approach to mining bi-clusters in gene expression data. Instead of designing an algorithm for each specific task, we propose to use constraint programming to turn the mining problem into a constraint satisfaction and/or optimisation problem. We demonstrate this promising approach on two cases. The first is to mine a single constant-row bi-cluster under noise constraints. The second is to mine a set of generic noisy constant-row bi-clusters under structu...

  5. Biosynthetic Pathway for the Epipolythiodioxopiperazine Acetylaranotin in Aspergillus terreus Revealed by Genome-based Deletion Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Chun-Jun; Yeh, Hsu-Hua; Chiang, Yi Ming; Sanchez, James F.; Chang, ShuLin; Bruno, Kenneth S.; Wang, Clay C.

    2013-04-15

    Abstract Epipolythiodioxopiperazines (ETPs) are a class of fungal secondary metabolites derived from cyclic peptides. Acetylaranotin belongs to one structural subgroup of ETPs characterized by the presence of a seven-membered dihydrooxepine ring. Defining the genes involved in acetylaranotin biosynthesis should provide a means to increase production of these compounds and facilitate the engineering of second-generation molecules. The filamentous fungus Aspergillus terreus produces acetylaranotin and related natural products. Using targeted gene deletions, we have identified a cluster of 9 genes including one nonribosomal peptide synthase gene, ataP, that is required for acetylaranotin biosynthesis. Chemical analysis of the wild type and mutant strains enabled us to isolate seventeen natural products that are either intermediates in the normal biosynthetic pathway or shunt products that are produced when the pathway is interrupted through mutation. Nine of the compounds identified in this study are novel natural products. Our data allow us to propose a complete biosynthetic pathway for acetylaranotin and related natural products.

  6. Reassembled biosynthetic pathway for large-scale carbohydrate synthesis: alpha-Gal epitope producing "superbug".

    Science.gov (United States)

    Chen, Xi; Liu, Ziye; Zhang, Jianbo; Zhang, Wei; Kowal, Przemyslaw; Wang, Peng George

    2002-01-01

    A metabolic pathway engineered Escherichia coli strain (superbug) containing one plasmid harboring an artificial gene cluster encoding all the five enzymes in the biosynthetic pathway of Galalpha l,3Lac through galactose metabolism has been developed. The plasmid contains a lambda promoter, a c1857 repressor gene, an ampicillin resistance gene, and a T7 terminator. Each gene was preceded by a Shine - Dalgarno sequence for ribosome binding. In a reaction catalyzed by the recombinant E. coli strain, Galalpha 1,3Lac trisaccharide accumulated at concentrations of 14.2 mM (7.2 gL(-1)) in a reaction mixture containing galactose, glucose, lactose, and a catalytic amount of uridine 5'-diphosphoglucose. This work demonstrates that large-scale synthesis of complex oligosaccharides can be achieved economically and efficiently through a single, biosynthetic pathway engineered microorganism. PMID:17590953

  7. Yeast Extract and Silver Nitrate Induce the Expression of Phenylpropanoid Biosynthetic Genes and Induce the Accumulation of Rosmarinic Acid in Agastache rugosa Cell Culture.

    Science.gov (United States)

    Park, Woo Tae; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Yeo, Sun Kyung; Jeon, Jin; Park, Jong Seok; Lee, Sook Young; Park, Sang Un

    2016-01-01

    The present study aimed to investigate the role of yeast extract and silver nitrate on the enhancement of phenylpropanoid pathway genes and accumulation of rosmarinic acid in Agastache rugosa cell cultures. The treatment of cell cultures with yeast extract (500 mg/L) and silver nitrate (30 mg/L) for varying times enhanced the expression of genes in the phenylpropanoid pathway and the production of rosmarinic acid. The results indicated that the expression of RAS and HPPR was proportional to the amount of yeast extract and silver nitrate. The transcript levels of HPPR under yeast extract treatment were 1.84-, 1.97-, and 2.86-fold higher than the control treatments after 3, 6, and 12 h, respectively, whereas PAL expression under silver nitrate treatment was 52.31-fold higher than in the non-treated controls after 24 h of elicitation. The concentration of rosmarinic acid was directly proportional to the concentration of the applied elicitors. Yeast extract supplementation documented the highest amount of rosmarinic acid at 4.98 mg/g, whereas silver nitrate addition resulted in a comparatively lower amount of rosmarinic acid at 0.65 mg/g. In conclusion, addition of yeast extract to the cell cultures enhanced the accumulation of rosmarinic acid, which was evidenced by the expression levels of the phenylpropanoid biosynthetic pathway genes in A. rugosa.

  8. Yeast Extract and Silver Nitrate Induce the Expression of Phenylpropanoid Biosynthetic Genes and Induce the Accumulation of Rosmarinic Acid in Agastache rugosa Cell Culture

    Directory of Open Access Journals (Sweden)

    Woo Tae Park

    2016-03-01

    Full Text Available The present study aimed to investigate the role of yeast extract and silver nitrate on the enhancement of phenylpropanoid pathway genes and accumulation of rosmarinic acid in Agastache rugosa cell cultures. The treatment of cell cultures with yeast extract (500 mg/L and silver nitrate (30 mg/L for varying times enhanced the expression of genes in the phenylpropanoid pathway and the production of rosmarinic acid. The results indicated that the expression of RAS and HPPR was proportional to the amount of yeast extract and silver nitrate. The transcript levels of HPPR under yeast extract treatment were 1.84-, 1.97-, and 2.86-fold higher than the control treatments after 3, 6, and 12 h, respectively, whereas PAL expression under silver nitrate treatment was 52.31-fold higher than in the non-treated controls after 24 h of elicitation. The concentration of rosmarinic acid was directly proportional to the concentration of the applied elicitors. Yeast extract supplementation documented the highest amount of rosmarinic acid at 4.98 mg/g, whereas silver nitrate addition resulted in a comparatively lower amount of rosmarinic acid at 0.65 mg/g. In conclusion, addition of yeast extract to the cell cultures enhanced the accumulation of rosmarinic acid, which was evidenced by the expression levels of the phenylpropanoid biosynthetic pathway genes in A. rugosa.

  9. Molecular cloning and promoter analysis of the specific salicylic acid biosynthetic pathway gene phenylalanine ammonia-lyase (AaPAL1) from Artemisia annua.

    Science.gov (United States)

    Zhang, Ying; Fu, Xueqing; Hao, Xiaolong; Zhang, Lida; Wang, Luyao; Qian, Hongmei; Zhao, Jingya

    2016-07-01

    Phenylalanine ammonia-lyase (PAL) is the key enzyme in the biosynthetic pathway of salicylic acid (SA). In this study, a full-length cDNA of PAL gene (named as AaPAL1) was cloned from Artemisia annua. The gene contains an open reading frame of 2,151 bps encoding 716 amino acids. Comparative and bioinformatics analysis revealed that the polypeptide protein of AaPAL1 was highly homologous to PALs from other plant species. Southern blot analysis revealed that it belonged to a gene family with three members. Quantitative RT-PCR analysis of various tissues of A. annua showed that AaPAL1 transcript levels were highest in the young leaves. A 1160-bp promoter region was also isolated resulting in identification of distinct cis-regulatory elements including W-box, TGACG-motif, and TC-rich repeats. Quantitative RT-PCR indicated that AaPAL1 was upregulated by salinity, drought, wounding, and SA stresses, which were corroborated positively with the identified cis-elements within the promoter region. AaPAL1 was successfully expressed in Escherichia. coli and the enzyme activity of the purified AaPAL1 was approximately 287.2 U/mg. These results substantiated the involvement of AaPAL1 in the phenylalanine pathway. PMID:26040426

  10. A Resampling Based Clustering Algorithm for Replicated Gene Expression Data.

    Science.gov (United States)

    Li, Han; Li, Chun; Hu, Jie; Fan, Xiaodan

    2015-01-01

    In gene expression data analysis, clustering is a fruitful exploratory technique to reveal the underlying molecular mechanism by identifying groups of co-expressed genes. To reduce the noise, usually multiple experimental replicates are performed. An integrative analysis of the full replicate data, instead of reducing the data to the mean profile, carries the promise of yielding more precise and robust clusters. In this paper, we propose a novel resampling based clustering algorithm for genes with replicated expression measurements. Assuming those replicates are exchangeable, we formulate the problem in the bootstrap framework, and aim to infer the consensus clustering based on the bootstrap samples of replicates. In our approach, we adopt the mixed effect model to accommodate the heterogeneous variances and implement a quasi-MCMC algorithm to conduct statistical inference. Experiments demonstrate that by taking advantage of the full replicate data, our algorithm produces more reliable clusters and has robust performance in diverse scenarios, especially when the data is subject to multiple sources of variance. PMID:26671802

  11. Comparative genomics of natural killer cell receptor gene clusters.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available Many receptors on natural killer (NK cells recognize major histocompatibility complex class I molecules in order to monitor unhealthy tissues, such as cells infected with viruses, and some tumors. Genes encoding families of NK receptors and related sequences are organized into two main clusters in humans: the natural killer complex on Chromosome 12p13.1, which encodes C-type lectin molecules, and the leukocyte receptor complex on Chromosome 19q13.4, which encodes immunoglobulin superfamily molecules. The composition of these gene clusters differs markedly between closely related species, providing evidence for rapid, lineage-specific expansions or contractions of sets of loci. The choice of NK receptor genes is polarized in the two species most studied, mouse and human. In mouse, the C-type lectin-related Ly49 gene family predominates. Conversely, the single Ly49 sequence is a pseudogene in humans, and the immunoglobulin superfamily KIR gene family is extensive. These different gene sets encode proteins that are comparable in function and genetic diversity, even though they have undergone species-specific expansions. Understanding the biological significance of this curious situation may be aided by studying which NK receptor genes are used in other vertebrates, especially in relation to species-specific differences in genes for major histocompatibility complex class I molecules.

  12. Identification and Expression Analysis of Glucosinolate Biosynthetic Genes and Estimation of Glucosinolate Contents in Edible Organs of Brassica oleracea Subspecies

    Directory of Open Access Journals (Sweden)

    Go-Eun Yi

    2015-07-01

    Full Text Available Glucosinolates are anti-carcinogenic, anti-oxidative biochemical compounds that defend plants from insect and microbial attack. Glucosinolates are abundant in all cruciferous crops, including all vegetable and oilseed Brassica species. Here, we studied the expression of glucosinolate biosynthesis genes and determined glucosinolate contents in the edible organs of a total of 12 genotypes of Brassica oleracea: three genotypes each from cabbage, kale, kohlrabi and cauliflower subspecies. Among the 81 genes analyzed by RT-PCR, 19 are transcription factor-related, two different sets of 25 genes are involved in aliphatic and indolic biosynthesis pathways and the rest are breakdown-related. The expression of glucosinolate-related genes in the stems of kohlrabi was remarkably different compared to leaves of cabbage and kale and florets of cauliflower as only eight genes out of 81 were expressed in the stem tissues of kohlrabi. In the stem tissue of kohlrabi, only one aliphatic transcription factor-related gene, Bol036286 (MYB28 and one indolic transcription factor-related gene, Bol030761 (MYB51, were expressed. The results indicated the expression of all genes is not essential for glucosinolate biosynthesis. Using HPLC analysis, a total of 16 different types of glucosinolates were identified in four subspecies, nine of them were aliphatic, four of them were indolic and one was aromatic. Cauliflower florets measured the highest number of 14 glucosinolates. Among the aliphatic glucosinolates, only gluconapin was found in the florets of cauliflower. Glucoiberverin and glucobrassicanapin contents were the highest in the stems of kohlrabi. The indolic methoxyglucobrassicin and aromatic gluconasturtiin accounted for the highest content in the florets of cauliflower. A further detailed investigation and analyses is required to discern the precise roles of each of the genes for aliphatic and indolic glucosinolate biosynthesis in the edible organs.

  13. Identification and expression analysis of glucosinolate biosynthetic genes and estimation of glucosinolate contents in edible organs of Brassica oleracea subspecies.

    Science.gov (United States)

    Yi, Go-Eun; Robin, Arif Hasan Khan; Yang, Kiwoung; Park, Jong-In; Kang, Jong-Goo; Yang, Tae-Jin; Nou, Ill-Sup

    2015-01-01

    Glucosinolates are anti-carcinogenic, anti-oxidative biochemical compounds that defend plants from insect and microbial attack. Glucosinolates are abundant in all cruciferous crops, including all vegetable and oilseed Brassica species. Here, we studied the expression of glucosinolate biosynthesis genes and determined glucosinolate contents in the edible organs of a total of 12 genotypes of Brassica oleracea: three genotypes each from cabbage, kale, kohlrabi and cauliflower subspecies. Among the 81 genes analyzed by RT-PCR, 19 are transcription factor-related, two different sets of 25 genes are involved in aliphatic and indolic biosynthesis pathways and the rest are breakdown-related. The expression of glucosinolate-related genes in the stems of kohlrabi was remarkably different compared to leaves of cabbage and kale and florets of cauliflower as only eight genes out of 81 were expressed in the stem tissues of kohlrabi. In the stem tissue of kohlrabi, only one aliphatic transcription factor-related gene, Bol036286 (MYB28) and one indolic transcription factor-related gene, Bol030761 (MYB51), were expressed. The results indicated the expression of all genes is not essential for glucosinolate biosynthesis. Using HPLC analysis, a total of 16 different types of glucosinolates were identified in four subspecies, nine of them were aliphatic, four of them were indolic and one was aromatic. Cauliflower florets measured the highest number of 14 glucosinolates. Among the aliphatic glucosinolates, only gluconapin was found in the florets of cauliflower. Glucoiberverin and glucobrassicanapin contents were the highest in the stems of kohlrabi. The indolic methoxyglucobrassicin and aromatic gluconasturtiin accounted for the highest content in the florets of cauliflower. A further detailed investigation and analyses is required to discern the precise roles of each of the genes for aliphatic and indolic glucosinolate biosynthesis in the edible organs. PMID:26205053

  14. Nucleolar Clustering of Dispersed tRNA Genes

    OpenAIRE

    Thompson, Martin; Haeusler, Rebecca A.; Good, Paul D.; Engelke, David R.

    2003-01-01

    Early transfer RNA (tRNA) processing events in Saccharomyces cerevisiae are coordinated in the nucleolus, the site normally associated with ribosome biosynthesis. To test whether spatial organization of the tRNA pathway begins with nucleolar clustering of the genes, we have probed the subnuclear location of five different tRNA gene families. The results show that tRNA genes, though dispersed in the linear genome, colocalize with 5S ribosomal DNA and U14 small nucleolar RNA at the nucleolus. N...

  15. An alanine tRNA gene cluster from Nephila clavipes.

    Science.gov (United States)

    Luciano, E; Candelas, G C

    1996-06-01

    We report the sequence of a 2.3-kb genomic DNA fragment from the orb-web spider, Nephila clavipes (Nc). The fragment contains four regions of high homology to tRNA(Ala). The members of this irregularly spaced cluster of genes are oriented in the same direction and have the same anticodon (GCA), but their sequence differs at several positions. Initiation and termination signals, as well as consensus intragenic promoter sequences characteristic of tRNA genes, have been identified in all genes. tRNA(Ala) are involved in the regulation of the fibroin synthesis in the large ampullate Nc glands.

  16. Coupled Two-Way Clustering Analysis of Gene Microarray Data

    CERN Document Server

    Getz, G; Domany, E

    2000-01-01

    We present a novel coupled two-way clustering approach to gene microarray data analysis. The main idea is to identify subsets of the genes and samples, such that when one of these is used to cluster the other, stable and significant partitions emerge. The search for such subsets is a computationally complex task: we present an algorithm, based on iterative clustering, which performs such a search. This analysis is especially suitable for gene microarray data, where the contributions of a variety of biological mechanisms to the gene expression levels are entangled in a large body of experimental data. The method was applied to two gene microarray data sets, on colon cancer and leukemia. By identifying relevant subsets of the data and focusing on them we were able to discover partitions and correlations that were masked and hidden when the full dataset was used in the analysis. Some of these partitions have clear biological interpretation; others can serve to identify possible directions for future research.

  17. Evolutionary conservation of regulatory elements in vertebrate HOX gene clusters

    Energy Technology Data Exchange (ETDEWEB)

    Santini, Simona; Boore, Jeffrey L.; Meyer, Axel

    2003-12-31

    Due to their high degree of conservation, comparisons of DNA sequences among evolutionarily distantly-related genomes permit to identify functional regions in noncoding DNA. Hox genes are optimal candidate sequences for comparative genome analyses, because they are extremely conserved in vertebrates and occur in clusters. We aligned (Pipmaker) the nucleotide sequences of HoxA clusters of tilapia, pufferfish, striped bass, zebrafish, horn shark, human and mouse (over 500 million years of evolutionary distance). We identified several highly conserved intergenic sequences, likely to be important in gene regulation. Only a few of these putative regulatory elements have been previously described as being involved in the regulation of Hox genes, while several others are new elements that might have regulatory functions. The majority of these newly identified putative regulatory elements contain short fragments that are almost completely conserved and are identical to known binding sites for regulatory proteins (Transfac). The conserved intergenic regions located between the most rostrally expressed genes in the developing embryo are longer and better retained through evolution. We document that presumed regulatory sequences are retained differentially in either A or A clusters resulting from a genome duplication in the fish lineage. This observation supports both the hypothesis that the conserved elements are involved in gene regulation and the Duplication-Deletion-Complementation model.

  18. Polymorphisms in monolignol biosynthetic genes are associated with biomass yield and agronomic traits in European maize (Zea mays L.)

    DEFF Research Database (Denmark)

    Chen, Yongsheng; Zein, Imad; Brenner, Everton A;

    2010-01-01

    Background Reduced lignin content leads to higher cell wall digestibility and, therefore, better forage quality and increased conversion of lignocellulosic biomass into ethanol. However, reduced lignin content might lead to weaker stalks, lodging, and reduced biomass yield. Genes encoding enzymes...

  19. Endocytotic uptake, processing, and retroendocytosis of human biosynthetic proinsulin by rat fibroblasts transfected with the human insulin receptor gene.

    OpenAIRE

    Levy, J R; Ullrich, A; Olefsky, J M

    1988-01-01

    The cellular itinerary and processing of insulin and proinsulin were studied to elucidate possible mechanisms for the observed in vivo differences in the biologic half-lives of these two hormones. A rat fibroblast cell line transfected with a normal human insulin receptor gene was used. Due to gene amplification, the cells express large numbers of receptors and are ideal for studying a ligand, such as proinsulin, that has a low affinity for the insulin receptor. Competitive binding at 4 degre...

  20. Selection for phase variation of LOS biosynthetic genes frequently occurs in progression of non-typeable Haemophilus influenzae infection from the nasopharynx to the middle ear of human patients.

    Directory of Open Access Journals (Sweden)

    Kate L Fox

    Full Text Available Surface structures in Haemophilus influenzae are subject to rapid ON/OFF switching of expression, a process termed phase variation. We analyse tetranucleotide repeats controlling phase variation in lipo-oligosaccharide (LOS genes of H. influenzae in paired isolates from both the nasopharynx and middle ears of paediatric patients with chronic or recurrent otitis media. A change in expression of at least one of the seven phase variable LOS biosynthesis genes was seen in 12 of the 21 strain pairs. Several strains showed switching of expression in multiple LOS genes, consistent with a key role for phase variable LOS biosynthetic genes in human infection.

  1. Expression Profiling of Glucosinolate Biosynthetic Genes in Brassica oleracea L. var. capitata Inbred Lines Reveals Their Association with Glucosinolate Content

    Directory of Open Access Journals (Sweden)

    Arif Hasan Khan Robin

    2016-06-01

    Full Text Available Glucosinolates are the biochemical compounds that provide defense to plants against pathogens and herbivores. In this study, the relative expression level of 48 glucosinolate biosynthesis genes was explored in four morphologically-different cabbage inbred lines by qPCR analysis. The content of aliphatic and indolic glucosinolate molecules present in those cabbage lines was also estimated by HPLC analysis. The possible association between glucosinolate accumulation and related gene expression level was explored by principal component analysis (PCA. The genotype-dependent variation in the relative expression level of different aliphatic and indolic glucosinolate biosynthesis genes is the novel result of this study. A total of eight different types of glucosinolates, including five aliphatic and three indolic glucosinolates, was detected in four cabbage lines. Three inbred lines BN3383, BN4059 and BN4072 had no glucoraphanin, sinigrin and gluconapin detected, but the inbred line BN3273 had these three aliphatic glucosinolate compounds. PCA revealed that a higher expression level of ST5b genes and lower expression of GSL-OH was associated with the accumulation of these three aliphatic glucosinolate compounds. PCA further revealed that comparatively higher accumulation of neoglucobrassicin in the inbred line, BN4072, was associated with a high level of expression of MYB34 (Bol017062 and CYP81F1 genes. The Dof1 and IQD1 genes probably trans-activated the genes related to biosynthesis of glucoerucin and methoxyglucobrassicin for their comparatively higher accumulation in the BN4059 and BN4072 lines compared to the other two lines, BN3273 and BN3383. A comparatively higher progoitrin level in BN3273 was probably associated with the higher expression level of the GSL-OH gene. The cabbage inbred line BN3383 accounted for the significantly higher relative expression level for the 12 genes out of 48, but this line had comparatively lower total

  2. Expression Profiling of Glucosinolate Biosynthetic Genes in Brassica oleracea L. var. capitata Inbred Lines Reveals Their Association with Glucosinolate Content.

    Science.gov (United States)

    Robin, Arif Hasan Khan; Yi, Go-Eun; Laila, Rawnak; Yang, Kiwoung; Park, Jong-In; Kim, Hye Ran; Nou, Ill-Sup

    2016-01-01

    Glucosinolates are the biochemical compounds that provide defense to plants against pathogens and herbivores. In this study, the relative expression level of 48 glucosinolate biosynthesis genes was explored in four morphologically-different cabbage inbred lines by qPCR analysis. The content of aliphatic and indolic glucosinolate molecules present in those cabbage lines was also estimated by HPLC analysis. The possible association between glucosinolate accumulation and related gene expression level was explored by principal component analysis (PCA). The genotype-dependent variation in the relative expression level of different aliphatic and indolic glucosinolate biosynthesis genes is the novel result of this study. A total of eight different types of glucosinolates, including five aliphatic and three indolic glucosinolates, was detected in four cabbage lines. Three inbred lines BN3383, BN4059 and BN4072 had no glucoraphanin, sinigrin and gluconapin detected, but the inbred line BN3273 had these three aliphatic glucosinolate compounds. PCA revealed that a higher expression level of ST5b genes and lower expression of GSL-OH was associated with the accumulation of these three aliphatic glucosinolate compounds. PCA further revealed that comparatively higher accumulation of neoglucobrassicin in the inbred line, BN4072, was associated with a high level of expression of MYB34 (Bol017062) and CYP81F1 genes. The Dof1 and IQD1 genes probably trans-activated the genes related to biosynthesis of glucoerucin and methoxyglucobrassicin for their comparatively higher accumulation in the BN4059 and BN4072 lines compared to the other two lines, BN3273 and BN3383. A comparatively higher progoitrin level in BN3273 was probably associated with the higher expression level of the GSL-OH gene. The cabbage inbred line BN3383 accounted for the significantly higher relative expression level for the 12 genes out of 48, but this line had comparatively lower total glucosinolates detected

  3. Deep Sequencing of the Scutellaria baicalensis Georgi Transcriptome Reveals Flavonoid Biosynthetic Profiling and Organ-Specific Gene Expression.

    Directory of Open Access Journals (Sweden)

    Jinxin Liu

    Full Text Available Scutellaria baicalensis Georgi has long been used in traditional medicine to treat various such widely varying diseases and has been listed in the Chinese Pharmacopeia, the Japanese Pharmacopeia, the Korean Pharmacopoeia and the European Pharmacopoeia. Flavonoids, especially wogonin, wogonoside, baicalin, and baicalein, are its main functional ingredients with various pharmacological activities. Although pharmaological studies for these flavonoid components have been well conducted, the molecular mechanism of their biosynthesis remains unclear in S. baicalensis. In this study, Illumina/Solexa deep sequencing generated more than 91 million paired-end reads and 49,507 unigenes from S. baicalensis roots, stems, leaves and flowers. More than 70% unigenes were annotated in at least one of the five public databases and 13,627 unigenes were assigned to 3,810 KEGG genes involved in 579 different pathways. 54 unigenes that encode 12 key enzymes involved in the pathway of flavonoid biosynthesis were discovered. One baicalinase and three baicalein 7-O-glucuronosyltransferases genes potentially involved in the transformation between baicalin/wogonoside and baicalein/wogonin were identified. Four candidate 6-hydroxylase genes for the formation of baicalin/baicalein and one candidate 8-O-methyltransferase gene for the biosynthesis of wogonoside/wogonin were also recognized. Our results further support the conclusion that, in S. baicalensis, 3,5,7-trihydroxyflavone was the precursor of the four above compounds. Then, the differential expression models and simple sequence repeats associated with these genes were carefully analyzed. All of these results not only enrich the gene resource but also benefit research into the molecular genetics and functional genomics in S. baicalensis.

  4. Identification of Quorum-Sensing Signal Molecules and a Biosynthetic Gene in Alicycliphilus sp. Isolated from Activated Sludge.

    Science.gov (United States)

    Morohoshi, Tomohiro; Okutsu, Noriya; Xie, Xiaonan; Ikeda, Tsukasa

    2016-01-01

    Activated sludge is a complicated mixture of various microorganisms that is used to treat sewage and industrial wastewater. Many bacteria produce N-acylhomoserine lactone (AHL) as a quorum-sensing signal molecule to regulate the expression of the exoenzymes used for wastewater treatment. Here, we isolated an AHL-producing bacteria from an activated sludge sample collected from an electronic component factory, which we named Alicycliphilus sp. B1. Clone library analysis revealed that Alicycliphilus was a subdominant genus in this sample. When we screened the activated sludge sample for AHL-producing strains, 12 of 14 the AHL-producing isolates were assigned to the genus Alicycliphilus. A putative AHL-synthase gene, ALISP_0667, was cloned from the genome of B1 and transformed into Escherichia coli DH5α. The AHLs were extracted from the culture supernatants of the B1 strain and E. coli DH5α cells harboring the ALISP_0667 gene and were identified by liquid chromatography-mass spectrometry as N-(3-hydroxydecanoyl)-l-homoserine lactone and N-(3-hydroxydodecanoyl)-l-homoserine lactone. The results of comparative genomic analysis suggested that the quorum-sensing genes in the B1 strain might have been acquired by horizontal gene transfer within activated sludge. PMID:27490553

  5. Phase variable O antigen biosynthetic genes control expression of the major protective antigen and bacteriophage receptor in Vibrio cholerae O1.

    Directory of Open Access Journals (Sweden)

    Kimberley D Seed

    2012-09-01

    Full Text Available The Vibrio cholerae lipopolysaccharide O1 antigen is a major target of bacteriophages and the human immune system and is of critical importance for vaccine design. We used an O1-specific lytic bacteriophage as a tool to probe the capacity of V. cholerae to alter its O1 antigen and identified a novel mechanism by which this organism can modulate O antigen expression and exhibit intra-strain heterogeneity. We identified two phase variable genes required for O1 antigen biosynthesis, manA and wbeL. manA resides outside of the previously recognized O1 antigen biosynthetic locus, and encodes for a phosphomannose isomerase critical for the initial step in O1 antigen biosynthesis. We determined that manA and wbeL phase variants are attenuated for virulence, providing functional evidence to further support the critical role of the O1 antigen for infectivity. We provide the first report of phase variation modulating O1 antigen expression in V. cholerae, and show that the maintenance of these phase variable loci is an important means by which this facultative pathogen can generate the diverse subpopulations of cells needed for infecting the host intestinal tract and for escaping predation by an O1-specific phage.

  6. Gene duplication, modularity and adaptation in the evolution of the aflatoxin gene cluster

    Directory of Open Access Journals (Sweden)

    Jakobek Judy L

    2007-07-01

    Full Text Available Abstract Background The biosynthesis of aflatoxin (AF involves over 20 enzymatic reactions in a complex polyketide pathway that converts acetate and malonate to the intermediates sterigmatocystin (ST and O-methylsterigmatocystin (OMST, the respective penultimate and ultimate precursors of AF. Although these precursors are chemically and structurally very similar, their accumulation differs at the species level for Aspergilli. Notable examples are A. nidulans that synthesizes only ST, A. flavus that makes predominantly AF, and A. parasiticus that generally produces either AF or OMST. Whether these differences are important in the evolutionary/ecological processes of species adaptation and diversification is unknown. Equally unknown are the specific genomic mechanisms responsible for ordering and clustering of genes in the AF pathway of Aspergillus. Results To elucidate the mechanisms that have driven formation of these clusters, we performed systematic searches of aflatoxin cluster homologs across five Aspergillus genomes. We found a high level of gene duplication and identified seven modules consisting of highly correlated gene pairs (aflA/aflB, aflR/aflS, aflX/aflY, aflF/aflE, aflT/aflQ, aflC/aflW, and aflG/aflL. With the exception of A. nomius, contrasts of mean Ka/Ks values across all cluster genes showed significant differences in selective pressure between section Flavi and non-section Flavi species. A. nomius mean Ka/Ks values were more similar to partial clusters in A. fumigatus and A. terreus. Overall, mean Ka/Ks values were significantly higher for section Flavi than for non-section Flavi species. Conclusion Our results implicate several genomic mechanisms in the evolution of ST, OMST and AF cluster genes. Gene modules may arise from duplications of a single gene, whereby the function of the pre-duplication gene is retained in the copy (aflF/aflE or the copies may partition the ancestral function (aflA/aflB. In some gene modules, the

  7. Identification and Functional Characterization of Genes Encoding Omega-3 Polyunsaturated Fatty Acid Biosynthetic Activities from Unicellular Microalgae

    OpenAIRE

    Royah Vaezi; Napier, Johnathan A.; Olga Sayanova

    2013-01-01

    In order to identify novel genes encoding enzymes involved in the biosynthesis of nutritionally important omega-3 long chain polyunsaturated fatty acids, a database search was carried out in the genomes of the unicellular photoautotrophic green alga Ostreococcus RCC809 and cold-water diatom Fragilariopsis cylindrus. The search led to the identification of two putative “front-end” desaturases (Δ6 and Δ4) from Ostreococcus RCC809 and one Δ6-elongase from F. cylindrus. Heterologous expression of...

  8. Identification and Expression Analysis of Glucosinolate Biosynthetic Genes and Estimation of Glucosinolate Contents in Edible Organs of Brassica oleracea Subspecies

    OpenAIRE

    Go-Eun Yi; Arif Hasan Khan Robin; Kiwoung Yang; Jong-In Park; Jong-Goo Kang; Tae-Jin Yang; Ill-Sup Nou

    2015-01-01

    Glucosinolates are anti-carcinogenic, anti-oxidative biochemical compounds that defend plants from insect and microbial attack. Glucosinolates are abundant in all cruciferous crops, including all vegetable and oilseed Brassica species. Here, we studied the expression of glucosinolate biosynthesis genes and determined glucosinolate contents in the edible organs of a total of 12 genotypes of Brassica oleracea: three genotypes each from cabbage, kale, kohlrabi and cauliflower subspecies. Among t...

  9. Differential Expression of Anthocyanin Biosynthetic Genes in Relation to Anthocyanin Accumulation in the Pericarp of Litchi Chinensis Sonn

    OpenAIRE

    Yong-Zan Wei; Fu-Chu Hu; Gui-Bing Hu; Xiao-Jing Li; Xu-Ming Huang; Hui-Cong Wang

    2011-01-01

    Litchi has diverse fruit color phenotypes, yet no research reflects the biochemical background of this diversity. In this study, we evaluated 12 litchi cultivars for chromatic parameters and pigments, and investigated the effects of abscisic acid, forchlorofenron (CPPU), bagging and debagging treatments on fruit coloration in cv. Feizixiao, an unevenly red cultivar. Six genes encoding chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), dihydroflavonol 4-reductase...

  10. Transcriptional analysis of exopolysaccharides biosynthesis gene clusters in Lactobacillus plantarum.

    Science.gov (United States)

    Vastano, Valeria; Perrone, Filomena; Marasco, Rosangela; Sacco, Margherita; Muscariello, Lidia

    2016-04-01

    Exopolysaccharides (EPS) from lactic acid bacteria contribute to specific rheology and texture of fermented milk products and find applications also in non-dairy foods and in therapeutics. Recently, four clusters of genes (cps) associated with surface polysaccharide production have been identified in Lactobacillus plantarum WCFS1, a probiotic and food-associated lactobacillus. These clusters are involved in cell surface architecture and probably in release and/or exposure of immunomodulating bacterial molecules. Here we show a transcriptional analysis of these clusters. Indeed, RT-PCR experiments revealed that the cps loci are organized in five operons. Moreover, by reverse transcription-qPCR analysis performed on L. plantarum WCFS1 (wild type) and WCFS1-2 (ΔccpA), we demonstrated that expression of three cps clusters is under the control of the global regulator CcpA. These results, together with the identification of putative CcpA target sequences (catabolite responsive element CRE) in the regulatory region of four out of five transcriptional units, strongly suggest for the first time a role of the master regulator CcpA in EPS gene transcription among lactobacilli.

  11. Evaluation of clustering algorithms for gene expression data using gene ontology annotations

    Institute of Scientific and Technical Information of China (English)

    MA Ning; ZHANG Zheng-guo

    2012-01-01

    Background Clustering is a useful exploratory technique for interpreting gene expression data to reveal groups of genes sharing common functional attributes.Biologists frequently face the problem of choosing an appropriate algorithm.We aimed to provide a standalone,easily accessible and biologically oriented criterion for expression data clustering evaluation.Methods An external criterion utilizing annotation based similarities between genes is proposed in this work.Gene ontology information is employed as the annotation source.Comparisons among six widely used clustering algorithms over various types of gene expression data sets were carried out based on the criterion proposed.Results The rank of these algorithms given by the criterion coincides with our common knowledge.Single-linkage has significantly poorer performance,even worse than the random algorithm.Ward's method archives the best performance in most cases.Conclusions The criterion proposed has a strong ability to distinguish among different clustering algorithms with different distance measurements.It is also demonstrated that analyzing main contributors of the criterion may offer some guidelines in finding local compact clusters.As an addition,we suggest using Ward's algorithm for gene expression data analysis.

  12. In silico analysis and expression profiling of miRNAs targeting genes of steviol glycosides biosynthetic pathway and their relationship with steviol glycosides content in different tissues of Stevia rebaudiana.

    Science.gov (United States)

    Saifi, Monica; Nasrullah, Nazima; Ahmad, Malik Mobeen; Ali, Athar; Khan, Jawaid A; Abdin, M Z

    2015-09-01

    miRNAs are emerging as potential regulators of the gene expression. Their proven promising role in regulating biosynthetic pathways related gene networks may hold the key to understand the genetic regulation of these pathways which may assist in selection and manipulation to get high performing plant genotypes with better secondary metabolites yields and increased biomass. miRNAs associated with genes of steviol glycosides biosynthetic pathway, however, have not been identified so far. In this study miRNAs targeting genes of steviol glycosides biosynthetic pathway were identified for the first time whose precursors were potentially generated from ESTs and nucleotide sequences of Stevia rebaudiana. Thereafter, stem-loop coupled real time PCR based expressions of these miRNAs in different tissues of Stevia rebaudiana were investigated and their relationship pattern was analysed with the expression levels of their target mRNAs as well as steviol glycoside contents. All the miRNAs investigated showed differential expressions in all the three tissues studied, viz. leaves, flowers and stems. Out of the eleven miRNAs validated, the expression levels of nine miRNAs (miR319a, miR319b, miR319c, miR319d, miR319e, miR319f, miR319h, miRstv_7, miRstv_9) were found to be inversely related, while expression levels of the two, i.e. miR319g and miRstv_11 on the contrary, showed direct relation with the expression levels of their target mRNAs and steviol glycoside contents in the leaves, flowers and stems. This study provides a platform for better understanding of the steviol glycosides biosynthetic pathway and these miRNAs can further be employed to manipulate the biosynthesis of these metabolites to enhance their contents and yield in S. rebaudiana.

  13. In silico analysis and expression profiling of miRNAs targeting genes of steviol glycosides biosynthetic pathway and their relationship with steviol glycosides content in different tissues of Stevia rebaudiana.

    Science.gov (United States)

    Saifi, Monica; Nasrullah, Nazima; Ahmad, Malik Mobeen; Ali, Athar; Khan, Jawaid A; Abdin, M Z

    2015-09-01

    miRNAs are emerging as potential regulators of the gene expression. Their proven promising role in regulating biosynthetic pathways related gene networks may hold the key to understand the genetic regulation of these pathways which may assist in selection and manipulation to get high performing plant genotypes with better secondary metabolites yields and increased biomass. miRNAs associated with genes of steviol glycosides biosynthetic pathway, however, have not been identified so far. In this study miRNAs targeting genes of steviol glycosides biosynthetic pathway were identified for the first time whose precursors were potentially generated from ESTs and nucleotide sequences of Stevia rebaudiana. Thereafter, stem-loop coupled real time PCR based expressions of these miRNAs in different tissues of Stevia rebaudiana were investigated and their relationship pattern was analysed with the expression levels of their target mRNAs as well as steviol glycoside contents. All the miRNAs investigated showed differential expressions in all the three tissues studied, viz. leaves, flowers and stems. Out of the eleven miRNAs validated, the expression levels of nine miRNAs (miR319a, miR319b, miR319c, miR319d, miR319e, miR319f, miR319h, miRstv_7, miRstv_9) were found to be inversely related, while expression levels of the two, i.e. miR319g and miRstv_11 on the contrary, showed direct relation with the expression levels of their target mRNAs and steviol glycoside contents in the leaves, flowers and stems. This study provides a platform for better understanding of the steviol glycosides biosynthetic pathway and these miRNAs can further be employed to manipulate the biosynthesis of these metabolites to enhance their contents and yield in S. rebaudiana. PMID:26042546

  14. Bi-clustering of Gene Expression Data Using Conditional Entropy

    Science.gov (United States)

    Olomola, Afolabi; Dua, Sumeet

    The inherent sparseness of gene expression data and the rare exhibition of similar expression patterns across a wide range of conditions make traditional clustering techniques unsuitable for gene expression analysis. Biclustering methods currently used to identify correlated gene patterns based on a subset of conditions do not effectively mine constant, coherent, or overlapping biclusters, partially because they perform poorly in the presence of noise. In this paper, we present a new methodology (BiEntropy) that combines information entropy and graph theory techniques to identify co-expressed gene patterns that are relevant to a subset of the sample. Our goal is to discover different types of biclusters in the presence of noise and to demonstrate the superiority of our method over existing methods in terms of discovering functionally enriched biclusters. We demonstrate the effectiveness of our method using both synthetic and real data.

  15. Enhanced production of steviol glycosides in mycorrhizal plants: a concerted effect of arbuscular mycorrhizal symbiosis on transcription of biosynthetic genes.

    Science.gov (United States)

    Mandal, Shantanu; Upadhyay, Shivangi; Singh, Ved Pal; Kapoor, Rupam

    2015-04-01

    Stevia rebaudiana (Bertoni) produces steviol glycosides (SGs)--stevioside (stev) and rebaudioside-A (reb-A) that are valued as low calorie sweeteners. Inoculation with arbuscular mycorrhizal fungi (AMF) augments SGs production, though the effect of this interaction on SGs biosynthesis has not been studied at molecular level. In this study transcription profiles of eleven key genes grouped under three stages of the SGs biosynthesis pathway were compared. The transcript analysis showed upregulation of genes encoding 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway enzymes viz.,1-deoxy-D-xylulose 5-phospate synthase (DXS), 1-deoxy-D-xylulose 5-phospate reductoisomerase (DXR) and 2-C-methyl-D-erytrithol 2,4-cyclodiphosphate synthase (MDS) in mycorrhizal (M) plants. Zn and Mn are imperative for the expression of MDS and their enhanced uptake in M plants could be responsible for the increased transcription of MDS. Furthermore, in the second stage of SGs biosynthesis pathway, mycorrhization enhanced the transcription of copalyl diphosphate synthase (CPPS) and kaurenoic acid hydroxylase (KAH). Their expression is decisive for SGs biosynthesis as CPPS regulates flow of metabolites towards synthesis of kaurenoid precursors and KAH directs these towards steviol synthesis instead of gibberellins. In the third stage glucosylation of steviol to reb-A by four specific uridine diphosphate (UDP)-dependent glycosyltransferases (UGTs) occurs. While higher transcription of all the three characterized UGTs in M plants explains augmented production of SGs; higher transcript levels of UGT76G1, specifically improved reb-A to stev ratio implying increased sweetness. The work signifies that AM symbiosis upregulates the transcription of all eleven SGs biosynthesis genes as a result of improved nutrition and enhanced sugar concentration due to increased photosynthesis in M plants. PMID:25734328

  16. Genome-scale analysis of positional clustering of mouse testis-specific genes

    Directory of Open Access Journals (Sweden)

    Lee Bernett TK

    2005-01-01

    Full Text Available Abstract Background Genes are not randomly distributed on a chromosome as they were thought even after removal of tandem repeats. The positional clustering of co-expressed genes is known in prokaryotes and recently reported in several eukaryotic organisms such as Caenorhabditis elegans, Drosophila melanogaster, and Homo sapiens. In order to further investigate the mode of tissue-specific gene clustering in higher eukaryotes, we have performed a genome-scale analysis of positional clustering of the mouse testis-specific genes. Results Our computational analysis shows that a large proportion of testis-specific genes are clustered in groups of 2 to 5 genes in the mouse genome. The number of clusters is much higher than expected by chance even after removal of tandem repeats. Conclusion Our result suggests that testis-specific genes tend to cluster on the mouse chromosomes. This provides another piece of evidence for the hypothesis that clusters of tissue-specific genes do exist.

  17. Analysis of the transcriptome of Erigeron breviscapus uncovers putative scutellarin and chlorogenic acids biosynthetic genes and genetic markers.

    Directory of Open Access Journals (Sweden)

    Ni-Hao Jiang

    Full Text Available Erigeron breviscapus (Vant. Hand-Mazz. is a famous medicinal plant. Scutellarin and chlorogenic acids are the primary active components in this herb. However, the mechanisms of biosynthesis and regulation for scutellarin and chlorogenic acids in E. breviscapus are considerably unknown. In addition, genomic information of this herb is also unavailable.Using Illumina sequencing on GAIIx platform, a total of 64,605,972 raw sequencing reads were generated and assembled into 73,092 non-redundant unigenes. Among them, 44,855 unigenes (61.37% were annotated in the public databases Nr, Swiss-Prot, KEGG, and COG. The transcripts encoding the known enzymes involved in flavonoids and in chlorogenic acids biosynthesis were discovered in the Illumina dataset. Three candidate cytochrome P450 genes were discovered which might encode flavone 6-hydroase converting apigenin to scutellarein. Furthermore, 4 unigenes encoding the homologues of maize P1 (R2R3-MYB transcription factors were defined, which might regulate the biosynthesis of scutellarin. Additionally, a total of 11,077 simple sequence repeat (SSR were identified from 9,255 unigenes. Of SSRs, tri-nucleotide motifs were the most abundant motif. Thirty-six primer pairs for SSRs were randomly selected for validation of the amplification and polymorphism. The result revealed that 34 (94.40% primer pairs were successfully amplified and 19 (52.78% primer pairs exhibited polymorphisms.Using next generation sequencing (NGS technology, this study firstly provides abundant genomic data for E. breviscapus. The candidate genes involved in the biosynthesis and transcriptional regulation of scutellarin and chlorogenic acids were obtained in this study. Additionally, a plenty of genetic makers were generated by identification of SSRs, which is a powerful tool for molecular breeding and genetics applications in this herb.

  18. Metabolic diversification--independent assembly of operon-like gene clusters in different plants.

    Science.gov (United States)

    Field, Ben; Osbourn, Anne E

    2008-04-25

    Operons are clusters of unrelated genes with related functions that are a feature of prokaryotic genomes. Here, we report on an operon-like gene cluster in the plant Arabidopsis thaliana that is required for triterpene synthesis (the thalianol pathway). The clustered genes are coexpressed, as in bacterial operons. However, despite the resemblance to a bacterial operon, this gene cluster has been assembled from plant genes by gene duplication, neofunctionalization, and genome reorganization, rather than by horizontal gene transfer from bacteria. Furthermore, recent assembly of operon-like gene clusters for triterpene synthesis has occurred independently in divergent plant lineages (Arabidopsis and oat). Thus, selection pressure may act during the formation of certain plant metabolic pathways to drive gene clustering.

  19. Metabolic diversification--independent assembly of operon-like gene clusters in different plants.

    Science.gov (United States)

    Field, Ben; Osbourn, Anne E

    2008-04-25

    Operons are clusters of unrelated genes with related functions that are a feature of prokaryotic genomes. Here, we report on an operon-like gene cluster in the plant Arabidopsis thaliana that is required for triterpene synthesis (the thalianol pathway). The clustered genes are coexpressed, as in bacterial operons. However, despite the resemblance to a bacterial operon, this gene cluster has been assembled from plant genes by gene duplication, neofunctionalization, and genome reorganization, rather than by horizontal gene transfer from bacteria. Furthermore, recent assembly of operon-like gene clusters for triterpene synthesis has occurred independently in divergent plant lineages (Arabidopsis and oat). Thus, selection pressure may act during the formation of certain plant metabolic pathways to drive gene clustering. PMID:18356490

  20. Metabolomic analysis and differential expression of anthocyanin biosynthetic genes in white- and red-flowered buckwheat cultivars (Fagopyrum esculentum).

    Science.gov (United States)

    Kim, Yeon Bok; Park, Soo-Yun; Thwe, Aye Aye; Seo, Jeong Min; Suzuki, Tastsuro; Kim, Sun-Ju; Kim, Jae Kwang; Park, Sang Un

    2013-11-01

    Red-flowered buckwheat ( Fagopyrum esculentum ) is used in the production of tea, juice, and alcohols after the detoxification of fagopyrin. In order to investigate the metabolomics and regulatory of anthocyanin production in red-flowered (Gan-Chao) and white-flowered (Tanno) buckwheat cultivars, quantitative real-time RT-PCR (qRT-PCR), gas chromatography time-of-flight mass spectrometry (GC-TOFMS), and high performance liquid chromatography (HPLC) were conducted. The transcriptions of FePAL, FeC4H, Fe4CL1, FeF3H, FeANS, and FeDFR increased gradually from flowering stage 1 and reached their highest peaks at flowering stage 3 in Gan-Chao flower. In total 44 metabolites, 18 amino acids, 15 organic acids, 7 sugars, 3 sugar alcohols, and 1 amine were detected in Gan-Chao flowers. Two anthocyanins, cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside, were identified in Gan-Chao cultivar. The first component of the partial least-squares to latent structures-discriminate analysis (PLS-DA) indicated that high amounts of phenolic, shikimic, and pyruvic acids were present in Gan-Chao. We suggest that transcriptions of genes involved in anthocyanin biosynthesis, anthocyanin contents, and metabolites have correlation in the red-flowered buckwheat Gan-Chao flowers. Our results may be helpful to understand anthocyanin biosynthesis in red-flowered buckwheat.

  1. Molecular cloning and characterization of three genes encoding dihydroflavonol-4-reductase from Ginkgo biloba in anthocyanin biosynthetic pathway.

    Directory of Open Access Journals (Sweden)

    Cheng Hua

    Full Text Available Dihydroflavonol-4-reductase (DFR, EC1.1.1.219 catalyzes a key step late in the biosynthesis of anthocyanins, condensed tannins (proanthocyanidins, and other flavonoids important to plant survival and human nutrition. Three DFR cDNA clones (designated GbDFRs were isolated from the gymnosperm Ginkgo biloba. The deduced GbDFR proteins showed high identities to other plant DFRs, which form three distinct DFR families. Southern blot analysis showed that the three GbDFRs each belong to a different DFR family. Phylogenetic tree analysis revealed that the GbDFRs share the same ancestor as other DFRs. The expression of the three recombinant GbDFRs in Escherichia coli showed that their actual protein sizes were in agreement with predictions from the cDNA sequences. The recombinant proteins were purified and their activity was analyzed; both GbDFR1 and GbDFR3 could catalyze dihydroquercetin conversion to leucocyanidin, while GbDFR2 catalyzed dihydrokaempferol conversion to leucopelargonidin. qRT-PCR showed that the GbDFRs were expressed in a tissue-specific manner, and transcript accumulation for the three genes was highest in young leaves and stamens. These transcription patterns were in good agreement with the pattern of anthocyanin accumulation in G.biloba. The expression profiles suggested that GbDFR1 and GbDFR2 are mainly involved in responses to plant hormones, environmental stress and damage. During the annual growth cycle, the GbDFRs were significantly correlated with anthocyanin accumulation in leaves. A fitted linear curve showed the best model for relating GbDFR2 and GbDFR3 with anthocyanin accumulation in leaves. GbDFR1 appears to be involved in environmental stress response, while GbDFR3 likely has primary functions in the synthesis of anthocyanins. These data revealed unexpected properties and differences in three DFR proteins from a single species.

  2. The Aspergillus fumigatus siderophore biosynthetic gene sidA, encoding L-ornithine N5-oxygenase, is required for virulence.

    Science.gov (United States)

    Hissen, Anna H T; Wan, Adrian N C; Warwas, Mark L; Pinto, Linda J; Moore, Margo M

    2005-09-01

    Aspergillus fumigatus is the leading cause of invasive mold infection and is a serious problem in immunocompromised populations worldwide. We have previously shown that survival of A. fumigatus in serum may be related to secretion of siderophores. In this study, we identified and characterized the sidA gene of A. fumigatus, which encodes l-ornithine N(5)-oxygenase, the first committed step in hydroxamate siderophore biosynthesis. A. fumigatus sidA codes for a protein of 501 amino acids with significant homology to other fungal l-ornithine N(5)-oxygenases. A stable DeltasidA strain was created by deletion of A. fumigatus sidA. This strain was unable to synthesize the siderophores N',N",N'''-triacetylfusarinine C (TAF) and ferricrocin. Growth of the DeltasidA strain was the same as that of the wild type in rich media; however, the DeltasidA strain was unable to grow in low-iron defined media or media containing 10% human serum unless supplemented with TAF or ferricrocin. No significant differences in ferric reduction activities were observed between the parental strain and the DeltasidA strain, indicating that blocking siderophore secretion did not result in upregulation of this pathway. Unlike the parental strain, the DeltasidA strain was unable to remove iron from human transferrin. A rescued strain (DeltasidA + sidA) was constructed; it produced siderophores and had the same growth as the wild type on iron-limited media. Unlike the wild-type and rescued strains, the DeltasidA strain was avirulent in a mouse model of invasive aspergillosis, indicating that sidA is necessary for A. fumigatus virulence.

  3. Global Analysis of miRNA Gene Clusters and Gene Families Reveals Dynamic and Coordinated Expression

    Directory of Open Access Journals (Sweden)

    Li Guo

    2014-01-01

    Full Text Available To further understand the potential expression relationships of miRNAs in miRNA gene clusters and gene families, a global analysis was performed in 4 paired tumor (breast cancer and adjacent normal tissue samples using deep sequencing datasets. The compositions of miRNA gene clusters and families are not random, and clustered and homologous miRNAs may have close relationships with overlapped miRNA species. Members in the miRNA group always had various expression levels, and even some showed larger expression divergence. Despite the dynamic expression as well as individual difference, these miRNAs always indicated consistent or similar deregulation patterns. The consistent deregulation expression may contribute to dynamic and coordinated interaction between different miRNAs in regulatory network. Further, we found that those clustered or homologous miRNAs that were also identified as sense and antisense miRNAs showed larger expression divergence. miRNA gene clusters and families indicated important biological roles, and the specific distribution and expression further enrich and ensure the flexible and robust regulatory network.

  4. Identification and structural analysis of a novel snoRNA gene cluster from Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A Z2 snoRNA gene cluster,consisting of four antisense snoRNA genes, was identified from Arabidopsis thaliana. The sequence and structural analysis showed that the Z2 snoRNA gene cluster might be transcribed as a polycistronic precursor from an upstream promoter, and the intergenic spacers of the gene cluster encode the 'hairpin' structures similar to the processing recognition signals of yeast Saccharomyces cerevisiae polycistronic snoRNA precursor. The results also revealed that plant snoRNA gene with multiple copies is a characteristic in common, and provides a good system for further revealing the transcription and expression mechanism of plant snoRNA gene cluster.

  5. Data Preprocessing in Cluster Analysis of Gene Expression

    Institute of Scientific and Technical Information of China (English)

    杨春梅; 万柏坤; 高晓峰

    2003-01-01

    Considering that the DNA microarray technology has generated explosive gene expression data and that it is urgent to analyse and to visualize such massive datasets with efficient methods, we investigate the data preprocessing methods used in cluster analysis, normalization or logarithm of the matrix, by using hierarchical clustering, principal component analysis (PCA) and self-organizing maps (SOMs). The results illustrate that when using the Euclidean distance as measuring metrics, logarithm of relative expression level is the best preprocessing method, while data preprocessed by normalization cannot attain the expected results because the data structure is ruined. If there are only a few principal components, the PCA is an effective method to extract the frame structure, while SOMs are more suitable for a specific structure.

  6. Life without Fe-S clusters.

    Science.gov (United States)

    Rocha, Agostinho G; Dancis, Andrew

    2016-03-01

    Fe-S clusters are critically important cofactors implicated in numerous cellular processes, including respiration, amino acid biosynthesis, cofactor biosynthesis, tRNA modification, DNA repair and regulation of gene expression. In the accompanying manuscript, Tanaka et al. show that reengineering of the isoprenoid biosynthetic pathway in E. coli (to bypass the usage of essential Fe-S cluster proteins by inserting the mevalonate pathway) can offset the indispensability of the Fe-S cluster biosynthetic systems. They show that the resulting Δisc Δsuf double mutants supplemented with mevalonate can grow slowly without detectable Fe-S cluster proteins. This result is astounding and raises interesting questions about what is essential and what is dispensable in the compendium of Fe-S cluster protein functions in this cell. PMID:26560645

  7. Coupled Two-Way Clustering Analysis of Breast Cancer and Colon Cancer Gene Expression Data

    CERN Document Server

    Getz, G; Kela, I; Domany, E; Notterman, D A; Getz, Gad; Gal, Hilah; Kela, Itai; Domany, Eytan; Notterman, Dan A.

    2003-01-01

    We present and review Coupled Two Way Clustering, a method designed to mine gene expression data. The method identifies submatrices of the total expression matrix, whose clustering analysis reveals partitions of samples (and genes) into biologically relevant classes. We demonstrate, on data from colon and breast cancer, that we are able to identify partitions that elude standard clustering analysis.

  8. Strategy for Cloning Large Gene Assemblages as Illustrated Using the Phenylacetate and Polyhydroxyalkanoate Gene Clusters

    OpenAIRE

    García, Belén; Olivera, Elías R.; Sandoval, Ángel; Arias-Barrau, Elsa; Arias, Sagrario; Naharro, Germán; Luengo, José M.

    2004-01-01

    We report an easy procedure for isolating chromosome-clustered genes. By following this methodology, the entire set of genes belonging to the phenylacetic acid (PhAc; 18-kb) pathway as well as those required for the synthesis and mobilization of different polyhydroxyalkanoates (PHAs; 6.4 kb) in Pseudomonas putida U were recovered directly from the bacterial chromosome and cloned into a plasmid for the first time. The transformation of different bacteria with these genetic constructions confer...

  9. Sequencing, characterization, and gene expression analysis of the histidine decarboxylase gene cluster of Morganella morganii.

    Science.gov (United States)

    Ferrario, Chiara; Borgo, Francesca; de Las Rivas, Blanca; Muñoz, Rosario; Ricci, Giovanni; Fortina, Maria Grazia

    2014-03-01

    The histidine decarboxylase gene cluster of Morganella morganii DSM30146(T) was sequenced, and four open reading frames, named hdcT1, hdc, hdcT2, and hisRS were identified. Two putative histidine/histamine antiporters (hdcT1 and hdcT2) were located upstream and downstream the hdc gene, codifying a pyridoxal-P dependent histidine decarboxylase, and followed by hisRS gene encoding a histidyl-tRNA synthetase. This organization was comparable with the gene cluster of other known Gram negative bacteria, particularly with that of Klebsiella oxytoca. Recombinant Escherichia coli strains harboring plasmids carrying the M. morganii hdc gene were shown to overproduce histidine decarboxylase, after IPTG induction at 37 °C for 4 h. Quantitative RT-PCR experiments revealed the hdc and hisRS genes were highly induced under acidic and histidine-rich conditions. This work represents the first description and identification of the hdc-related genes in M. morganii. Results support the hypothesis that the histidine decarboxylation reaction in this prolific histamine producing species may play a role in acid survival. The knowledge of the role and the regulation of genes involved in histidine decarboxylation should improve the design of rational strategies to avoid toxic histamine production in foods.

  10. Gravitation field algorithm and its application in gene cluster

    Directory of Open Access Journals (Sweden)

    Zheng Ming

    2010-09-01

    Full Text Available Abstract Background Searching optima is one of the most challenging tasks in clustering genes from available experimental data or given functions. SA, GA, PSO and other similar efficient global optimization methods are used by biotechnologists. All these algorithms are based on the imitation of natural phenomena. Results This paper proposes a novel searching optimization algorithm called Gravitation Field Algorithm (GFA which is derived from the famous astronomy theory Solar Nebular Disk Model (SNDM of planetary formation. GFA simulates the Gravitation field and outperforms GA and SA in some multimodal functions optimization problem. And GFA also can be used in the forms of unimodal functions. GFA clusters the dataset well from the Gene Expression Omnibus. Conclusions The mathematical proof demonstrates that GFA could be convergent in the global optimum by probability 1 in three conditions for one independent variable mass functions. In addition to these results, the fundamental optimization concept in this paper is used to analyze how SA and GA affect the global search and the inherent defects in SA and GA. Some results and source code (in Matlab are publicly available at http://ccst.jlu.edu.cn/CSBG/GFA.

  11. Arrangement of the Clostridium baratii F7 toxin gene cluster with identification of a σ factor that recognizes the botulinum toxin gene cluster promoters.

    Science.gov (United States)

    Dover, Nir; Barash, Jason R; Burke, Julianne N; Hill, Karen K; Detter, John C; Arnon, Stephen S

    2014-01-01

    Botulinum neurotoxin (BoNT) is the most poisonous substances known and its eight toxin types (A to H) are distinguished by the inability of polyclonal antibodies that neutralize one toxin type to neutralize any of the other seven toxin types. Infant botulism, an intestinal toxemia orphan disease, is the most common form of human botulism in the United States. It results from swallowed spores of Clostridium botulinum (or rarely, neurotoxigenic Clostridium butyricum or Clostridium baratii) that germinate and temporarily colonize the lumen of the large intestine, where, as vegetative cells, they produce botulinum toxin. Botulinum neurotoxin is encoded by the bont gene that is part of a toxin gene cluster that includes several accessory genes. We sequenced for the first time the complete botulinum neurotoxin gene cluster of nonproteolytic C. baratii type F7. Like the type E and the nonproteolytic type F6 botulinum toxin gene clusters, the C. baratii type F7 had an orfX toxin gene cluster that lacked the regulatory botR gene which is found in proteolytic C. botulinum strains and codes for an alternative σ factor. In the absence of botR, we identified a putative alternative regulatory gene located upstream of the C. baratii type F7 toxin gene cluster. This putative regulatory gene codes for a predicted σ factor that contains DNA-binding-domain homologues to the DNA-binding domains both of BotR and of other members of the TcdR-related group 5 of the σ70 family that are involved in the regulation of toxin gene expression in clostridia. We showed that this TcdR-related protein in association with RNA polymerase core enzyme specifically binds to the C. baratii type F7 botulinum toxin gene cluster promoters. This TcdR-related protein may therefore be involved in regulating the expression of the genes of the botulinum toxin gene cluster in neurotoxigenic C. baratii.

  12. The major volatile compound 2-phenylethanol from the biocontrol yeast, Pichia anomala, inhibits growth and expression of aflatoxin biosynthetic genes of Aspergillus flavus.

    Science.gov (United States)

    Hua, Sui Sheng T; Beck, John J; Sarreal, Siov Bouy L; Gee, Wai

    2014-05-01

    Aspergillus flavus is a ubiquitous saprophyte that is able to produce the most potent natural carcinogenic compound known as aflatoxin B1 (AFB1). This toxin frequently contaminates crops including corn, cotton, peanuts, and tree nuts causing substantial economic loss worldwide. Consequently, more than 100 countries have strict regulations limiting AFB1 in foodstuffs and feedstuffs. Plants and microbes are able to produce volatile compounds that act as a defense mechanism against other organisms. Pichia anomala strain WRL-076 is a biocontrol yeast currently being tested to reduce AF contamination of tree nuts in California. We used the SPME-GC/MS analysis and identified the major volatile compound produced by this strain to be 2-phenylethanol (2-PE). It inhibited spore germination and AF production of A. flavus. Inhibition of AF formation by 2-PE was correlated with significant down regulation of clustering AF biosynthesis genes as evidenced by several to greater than 10,000-fold decrease in gene expression. In a time-course analysis we found that 2-PE also altered the expression patterns of chromatin modifying genes, MYST1, MYST2, MYST3, gcn5, hdaA and rpdA. The biocontrol capacity of P. anomala can be attributed to the production of 2-PE, which affects spore germination, growth, toxin production, and gene expression in A. flavus. PMID:24504634

  13. Functional expression of the FeMo-cofactor-specific biosynthetic genes nifEN as a NifE-N fusion protein synthesizing unit in Azotobacter vinelandii.

    Science.gov (United States)

    Suh, Man Hee; Pulakat, Lakshmi; Gavini, Nara

    2002-11-29

    The nifEN encodes an E2N2 tetrameric metalloprotein complex that serves as scaffold for assembly of the FeMo cofactor of nitrogenase. In most diazotrophs, the NifE and NifN are translated as separate polypeptides and then assembled into tetrameric E2N2 complex. However, in Anabaena variabilis which has two nif clusters that encode two different NifEN complexes, the NifEN2 is encoded by a single nifE-N like gene, which has high homology to the NifE at amino-terminus and to the NifN at the carboxy-terminus. These observations implied that a metalloprotein like NifEN can accommodate large variations in their amino acid composition and also in the way they are synthesized (as two separate proteins or as a single protein) and yet remain functional. In Azotobacter vinelandii NifE and NifN are synthesized separately. To test whether NifEN could retain its functionality when encoded by a single gene, we generated a translational fusion of the nifE and nifN genes of A. vinelandii that could encode a large NifE-N fusion protein. When expressed in the nifEN-minus strain of A. vinelandii, the nifE-N gene fusion could complement the NifEN function. Western blot analysis by using polyclonal NifEN antibodies revealed that the complementing nifEN product is a large NifE-N fusion protein unit. The fact that the gene fusion of nifE-N specifies a functional NifE-N fusion protein reflects that these metalloproteins can accommodate a wide range of flexibility in their gene organization, structure, and assembly. PMID:12437975

  14. Biosynthetic multitasking facilitates thalassospiramide structural diversity in marine bacteria

    KAUST Repository

    Ross, Avena C.

    2013-01-23

    Thalassospiramides A and B are immunosuppressant cyclic lipopeptides first reported from the marine α-proteobacterium Thalassospira sp. CNJ-328. We describe here the discovery and characterization of an extended family of 14 new analogues from four Tistrella and Thalassospira isolates. These potent calpain 1 protease inhibitors belong to six structure classes in which the length and composition of the acylpeptide side chain varies extensively. Genomic sequence analysis of the thalassospiramide-producing microbes revealed related, genus-specific biosynthetic loci encoding hybrid nonribosomal peptide synthetase/polyketide synthases consistent with thalassospiramide assembly. The bioinformatics analysis of the gene clusters suggests that structural diversity, which ranges from the 803.4 Da thalassospiramide C to the 1291.7 Da thalassospiramide F, results from a complex sequence of reactions involving amino acid substrate channeling and enzymatic multimodule skipping and iteration. Preliminary biochemical analysis of the N-terminal nonribosomal peptide synthetase module from the Thalassospira TtcA megasynthase supports a biosynthetic model in which in cis amino acid activation competes with in trans activation to increase the range of amino acid substrates incorporated at the N terminus. © 2012 American Chemical Society.

  15. Recurrent adenylation domain replacement in the microcystin synthetase gene cluster

    Directory of Open Access Journals (Sweden)

    Laakso Kati

    2007-10-01

    Full Text Available Abstract Background Microcystins are small cyclic heptapeptide toxins produced by a range of distantly related cyanobacteria. Microcystins are synthesized on large NRPS-PKS enzyme complexes. Many structural variants of microcystins are produced simulatenously. A recombination event between the first module of mcyB (mcyB1 and mcyC in the microcystin synthetase gene cluster is linked to the simultaneous production of microcystin variants in strains of the genus Microcystis. Results Here we undertook a phylogenetic study to investigate the order and timing of recombination between the mcyB1 and mcyC genes in a diverse selection of microcystin producing cyanobacteria. Our results provide support for complex evolutionary processes taking place at the mcyB1 and mcyC adenylation domains which recognize and activate the amino acids found at X and Z positions. We find evidence for recent recombination between mcyB1 and mcyC in strains of the genera Anabaena, Microcystis, and Hapalosiphon. We also find clear evidence for independent adenylation domain conversion of mcyB1 by unrelated peptide synthetase modules in strains of the genera Nostoc and Microcystis. The recombination events replace only the adenylation domain in each case and the condensation domains of mcyB1 and mcyC are not transferred together with the adenylation domain. Our findings demonstrate that the mcyB1 and mcyC adenylation domains are recombination hotspots in the microcystin synthetase gene cluster. Conclusion Recombination is thought to be one of the main mechanisms driving the diversification of NRPSs. However, there is very little information on how recombination takes place in nature. This study demonstrates that functional peptide synthetases are created in nature through transfer of adenylation domains without the concomitant transfer of condensation domains.

  16. Time-series clustering of gene expression in irradiated and bystander fibroblasts: an application of FBPA clustering

    Directory of Open Access Journals (Sweden)

    Markatou Marianthi

    2011-01-01

    Full Text Available Abstract Background The radiation bystander effect is an important component of the overall biological response of tissues and organisms to ionizing radiation, but the signaling mechanisms between irradiated and non-irradiated bystander cells are not fully understood. In this study, we measured a time-series of gene expression after α-particle irradiation and applied the Feature Based Partitioning around medoids Algorithm (FBPA, a new clustering method suitable for sparse time series, to identify signaling modules that act in concert in the response to direct irradiation and bystander signaling. We compared our results with those of an alternate clustering method, Short Time series Expression Miner (STEM. Results While computational evaluations of both clustering results were similar, FBPA provided more biological insight. After irradiation, gene clusters were enriched for signal transduction, cell cycle/cell death and inflammation/immunity processes; but only FBPA separated clusters by function. In bystanders, gene clusters were enriched for cell communication/motility, signal transduction and inflammation processes; but biological functions did not separate as clearly with either clustering method as they did in irradiated samples. Network analysis confirmed p53 and NF-κB transcription factor-regulated gene clusters in irradiated and bystander cells and suggested novel regulators, such as KDM5B/JARID1B (lysine (K-specific demethylase 5B and HDACs (histone deacetylases, which could epigenetically coordinate gene expression after irradiation. Conclusions In this study, we have shown that a new time series clustering method, FBPA, can provide new leads to the mechanisms regulating the dynamic cellular response to radiation. The findings implicate epigenetic control of gene expression in addition to transcription factor networks.

  17. A hybrid distance measure for clustering expressed sequence tags originating from the same gene family.

    Directory of Open Access Journals (Sweden)

    Keng-Hoong Ng

    Full Text Available BACKGROUND: Clustering is a key step in the processing of Expressed Sequence Tags (ESTs. The primary goal of clustering is to put ESTs from the same transcript of a single gene into a unique cluster. Recent EST clustering algorithms mostly adopt the alignment-free distance measures, where they tend to yield acceptable clustering accuracies with reasonable computational time. Despite the fact that these clustering methods work satisfactorily on a majority of the EST datasets, they have a common weakness. They are prone to deliver unsatisfactory clustering results when dealing with ESTs from the genes derived from the same family. The root cause is the distance measures applied on them are not sensitive enough to separate these closely related genes. METHODOLOGY/PRINCIPAL FINDINGS: We propose a hybrid distance measure that combines the global and local features extracted from ESTs, with the aim to address the clustering problem faced by ESTs derived from the same gene family. The clustering process is implemented using the DBSCAN algorithm. We test the hybrid distance measure on the ten EST datasets, and the clustering results are compared with the two alignment-free EST clustering tools, i.e. wcd and PEACE. The clustering results indicate that the proposed hybrid distance measure performs relatively better (in terms of clustering accuracy than both EST clustering tools. CONCLUSIONS/SIGNIFICANCE: The clustering results provide support for the effectiveness of the proposed hybrid distance measure in solving the clustering problem for ESTs that originate from the same gene family. The improvement of clustering accuracies on the experimental datasets has supported the claim that the sensitivity of the hybrid distance measure is sufficient to solve the clustering problem.

  18. Overexpression of the Trichoderma brevicompactum tri5 Gene: Effect on the Expression of the Trichodermin Biosynthetic Genes and on Tomato Seedlings

    Directory of Open Access Journals (Sweden)

    Josefina Aleu

    2011-09-01

    Full Text Available Trichoderma brevicompactum IBT 40841 produces trichodermin, a trichothecene-type toxin that shares most of the steps of its biosynthesis with harzianum A, another trichothecene produced by several Trichoderma species. The first specific step in the trichothecene biosynthesis is carried out by a terpene cylcase, trichodiene synthase, that catalyzes the conversion of farnesyl pyrophosphate to trichodiene and that is encoded by the tri5 gene. Overexpression of tri5 resulted in increased levels of trichodermin production, but also in an increase in tyrosol and hydroxytyrosol production, two antioxidant compounds that may play a regulatory role in trichothecene biosynthesis, and also in a higher expression of three trichothecene genes, tri4, tri6 and tri10, and of the erg1 gene, which participates in the synthesis of triterpenes. The effect of tri5 overexpression on tomato seedling disease response was also studied.

  19. Comparisons of Graph-structure Clustering Methods for Gene Expression Data

    Institute of Scientific and Technical Information of China (English)

    Zhuo FANG; Lei LIU; Jiong YANG; Qing-Ming LUO; Yi-Xue LI

    2006-01-01

    Although many numerical clustering algorithms have been applied to gene expression data analysis, the essential step is still biological interpretation by manual inspection. The correlation between genetic co-regulation and affiliation to a common biological process is what biologists expect. Here, we introduce some clustering algorithms that are based on graph structure constituted by biological knowledge. After applying a widely used dataset, we compared the result clusters of two of these algorithms in terms of the homogeneity of clusters and coherence of annotation and matching ratio. The results show that the clusters of knowledge-guided analysis are the kernel parts of the clusters of Gene Ontology (GO)-Cluster software, which contains the genes that are most expression correlative and most consistent with biological functions. Moreover, knowledge-guided analysis seems much more applicable than GO-Cluster in a larger dataset.

  20. Selections of data preprocessing methods and similarity metrics for gene cluster analysis

    Institute of Scientific and Technical Information of China (English)

    YANG Chunmei; WAN Baikun; GAO Xiaofeng

    2006-01-01

    Clustering is one of the major exploratory techniques for gene expression data analysis. Only with suitable similarity metrics and when datasets are properly preprocessed, can results of high quality be obtained in cluster analysis. In this study, gene expression datasets with external evaluation criteria were preprocessed as normalization by line, normalization by column or logarithm transformation by base-2, and were subsequently clustered by hierarchical clustering, k-means clustering and self-organizing maps (SOMs) with Pearson correlation coefficient or Euclidean distance as similarity metric. Finally, the quality of clusters was evaluated by adjusted Rand index. The results illustrate that k-means clustering and SOMs have distinct advantages over hierarchical clustering in gene clustering, and SOMs are a bit better than k-means when randomly initialized. It also shows that hierarchical clustering prefers Pearson correlation coefficient as similarity metric and dataset normalized by line. Meanwhile, k-means clustering and SOMs can produce better clusters with Euclidean distance and logarithm transformed datasets. These results will afford valuable reference to the implementation of gene expression cluster analysis.

  1. Alginate biosynthetic enzymes in mucoid and nonmucoid Pseudomonas aeruginosa: overproduction of phosphomannose isomerase, phosphomannomutase, and GDP-mannose pyrophosphorylase by overexpression of the phosphomannose isomerase (pmi) gene.

    OpenAIRE

    Sá-Correia, I.; Darzins, A; Wang, S K; Berry, A.; Chakrabarty, A M

    1987-01-01

    The specific activities of phosphomannose isomerase (PMI), phosphomannomutase (PMM), GDP-mannose pyrophosphorylase (GMP), and GDP-mannose dehydrogenase (GMD) were compared in a mucoid cystic fibrosis isolate of Pseudomonas aeruginosa and in two spontaneous nonmucoid revertants. In both revertants some or all of the alginate biosynthetic enzymes we examined appeared to be repressed, indicating that the loss of the mucoid phenotype may be a result of decreased formation of sugar-nucleotide prec...

  2. The gsdf gene locus harbors evolutionary conserved and clustered genes preferentially expressed in fish previtellogenic oocytes.

    Science.gov (United States)

    Gautier, Aude; Le Gac, Florence; Lareyre, Jean-Jacques

    2011-02-01

    display a different cellular localization compared to that of the gsdf gene indicating that the later gene is not co-regulated. Interestingly, our study identifies new clustered genes that are specifically expressed in previtellogenic oocytes (nup54, aff1, klhl8, sdad1).

  3. Variations in CCL3L gene cluster sequence and non-specific gene copy numbers

    Directory of Open Access Journals (Sweden)

    Edberg Jeffrey C

    2010-03-01

    Full Text Available Abstract Background Copy number variations (CNVs of the gene CC chemokine ligand 3-like1 (CCL3L1 have been implicated in HIV-1 susceptibility, but the association has been inconsistent. CCL3L1 shares homology with a cluster of genes localized to chromosome 17q12, namely CCL3, CCL3L2, and, CCL3L3. These genes are involved in host defense and inflammatory processes. Several CNV assays have been developed for the CCL3L1 gene. Findings Through pairwise and multiple alignments of these genes, we have shown that the homology between these genes ranges from 50% to 99% in complete gene sequences and from 70-100% in the exonic regions, with CCL3L1 and CCL3L3 being identical. By use of MEGA 4 and BioEdit, we aligned sense primers, anti-sense primers, and probes used in several previously described assays against pre-multiple alignments of all four chemokine genes. Each set of probes and primers aligned and matched with overlapping sequences in at least two of the four genes, indicating that previously utilized RT-PCR based CNV assays are not specific for only CCL3L1. The four available assays measured median copies of 2 and 3-4 in European and African American, respectively. The concordance between the assays ranged from 0.44-0.83 suggesting individual discordant calls and inconsistencies with the assays from the expected gene coverage from the known sequence. Conclusions This indicates that some of the inconsistencies in the association studies could be due to assays that provide heterogenous results. Sequence information to determine CNV of the three genes separately would allow to test whether their association with the pathogenesis of a human disease or phenotype is affected by an individual gene or by a combination of these genes.

  4. 微生物沉默基因簇激活方法的研究进展%Advances of Methods for Activating Silent Gene Clusters in Microorganisms

    Institute of Scientific and Technical Information of China (English)

    齐志; 孙东昌; 裘娟萍

    2016-01-01

    微生物丰富多样的次级代谢产物一直都是天然药物的重要来源.随着微生物基因组学研究的深入,人们发现在现有的培养条件下很多生物合成基因簇未能表达,从而无法生成相应的代谢产物.这些处于沉默状态的基因簇给新型药物的开发带来了新的契机.本文综述了激活这些沉默基因簇的三种主要方法:调控基因改造、强启动子引入及小分子物质添加.激活微生物中沉默基因簇将有望得到结构新颖、活性显著的新活性分子.%The abundant secondary metabolites from microorganisms are always the main source of natural product. The investigation of microbial genomics revealed that many biosynthetic gene clusters could not be expressed under available culture conditions and thus the corresponding metabolites could not be produced. These silent gene clusters brings new opportunities for the development of novel drugs. In this review, we summarized three methods for activating these silent gene clusters:changing regulatory gene, introducing strong promoter and adding the small molecules. We anticipate that new active molecules with novel structure and strong activity will be obtained by activating silent gene clusters in microbes.

  5. Combining Pareto-optimal clusters using supervised learning for identifying co-expressed genes

    Directory of Open Access Journals (Sweden)

    Bandyopadhyay Sanghamitra

    2009-01-01

    Full Text Available Abstract Background The landscape of biological and biomedical research is being changed rapidly with the invention of microarrays which enables simultaneous view on the transcription levels of a huge number of genes across different experimental conditions or time points. Using microarray data sets, clustering algorithms have been actively utilized in order to identify groups of co-expressed genes. This article poses the problem of fuzzy clustering in microarray data as a multiobjective optimization problem which simultaneously optimizes two internal fuzzy cluster validity indices to yield a set of Pareto-optimal clustering solutions. Each of these clustering solutions possesses some amount of information regarding the clustering structure of the input data. Motivated by this fact, a novel fuzzy majority voting approach is proposed to combine the clustering information from all the solutions in the resultant Pareto-optimal set. This approach first identifies the genes which are assigned to some particular cluster with high membership degree by most of the Pareto-optimal solutions. Using this set of genes as the training set, the remaining genes are classified by a supervised learning algorithm. In this work, we have used a Support Vector Machine (SVM classifier for this purpose. Results The performance of the proposed clustering technique has been demonstrated on five publicly available benchmark microarray data sets, viz., Yeast Sporulation, Yeast Cell Cycle, Arabidopsis Thaliana, Human Fibroblasts Serum and Rat Central Nervous System. Comparative studies of the use of different SVM kernels and several widely used microarray clustering techniques are reported. Moreover, statistical significance tests have been carried out to establish the statistical superiority of the proposed clustering approach. Finally, biological significance tests have been carried out using a web based gene annotation tool to show that the proposed method is able to

  6. Challenges in microarray class discovery: a comprehensive examination of normalization, gene selection and clustering

    Directory of Open Access Journals (Sweden)

    Landfors Mattias

    2010-10-01

    Full Text Available Abstract Background Cluster analysis, and in particular hierarchical clustering, is widely used to extract information from gene expression data. The aim is to discover new classes, or sub-classes, of either individuals or genes. Performing a cluster analysis commonly involve decisions on how to; handle missing values, standardize the data and select genes. In addition, pre-processing, involving various types of filtration and normalization procedures, can have an effect on the ability to discover biologically relevant classes. Here we consider cluster analysis in a broad sense and perform a comprehensive evaluation that covers several aspects of cluster analyses, including normalization. Result We evaluated 2780 cluster analysis methods on seven publicly available 2-channel microarray data sets with common reference designs. Each cluster analysis method differed in data normalization (5 normalizations were considered, missing value imputation (2, standardization of data (2, gene selection (19 or clustering method (11. The cluster analyses are evaluated using known classes, such as cancer types, and the adjusted Rand index. The performances of the different analyses vary between the data sets and it is difficult to give general recommendations. However, normalization, gene selection and clustering method are all variables that have a significant impact on the performance. In particular, gene selection is important and it is generally necessary to include a relatively large number of genes in order to get good performance. Selecting genes with high standard deviation or using principal component analysis are shown to be the preferred gene selection methods. Hierarchical clustering using Ward's method, k-means clustering and Mclust are the clustering methods considered in this paper that achieves the highest adjusted Rand. Normalization can have a significant positive impact on the ability to cluster individuals, and there are indications that

  7. Improving detection of differentially expressed gene sets by applying cluster enrichment analysis to Gene Ontology

    Directory of Open Access Journals (Sweden)

    Gu JianLei

    2009-08-01

    Full Text Available Abstract Background Gene set analysis based on Gene Ontology (GO can be a promising method for the analysis of differential expression patterns. However, current studies that focus on individual GO terms have limited analytical power, because the complex structure of GO introduces strong dependencies among the terms, and some genes that are annotated to a GO term cannot be found by statistically significant enrichment. Results We proposed a method for enriching clustered GO terms based on semantic similarity, namely cluster enrichment analysis based on GO (CeaGO, to extend the individual term analysis method. Using an Affymetrix HGU95aV2 chip dataset with simulated gene sets, we illustrated that CeaGO was sensitive enough to detect moderate expression changes. When compared to parent-based individual term analysis methods, the results showed that CeaGO may provide more accurate differentiation of gene expression results. When used with two acute leukemia (ALL and ALL/AML microarray expression datasets, CeaGO correctly identified specifically enriched GO groups that were overlooked by other individual test methods. Conclusion By applying CeaGO to both simulated and real microarray data, we showed that this approach could enhance the interpretation of microarray experiments. CeaGO is currently available at http://chgc.sh.cn/en/software/CeaGO/.

  8. Genetic Characterization of the Klebsiella pneumoniae waa Gene Cluster, Involved in Core Lipopolysaccharide Biosynthesis

    OpenAIRE

    Regué, Miguel; Climent, Núria; Abitiu, Nihal; Coderch, Núria; Merino, Susana; Izquierdo, Luis; Altarriba, Maria; Juan M. Tomás

    2001-01-01

    A recombinant cosmid containing genes involved in Klebsiella pneumoniae C3 core lipopolysaccharide biosynthesis was identified by its ability to confer bacteriocin 28b resistance to Escherichia coli K-12. The recombinant cosmid contains 12 genes, the whole waa gene cluster, flanked by kbl and coaD genes, as was found in E. coli K-12. PCR amplification analysis showed that this cluster is conserved in representative K. pneumoniae strains. Partial nucleotide sequence determination showed that t...

  9. Physical and genetic map of the major nif gene cluster from Azotobacter vinelandii.

    OpenAIRE

    Jacobson, M R; Brigle, K E; Bennett, L T; Setterquist, R. A.; Wilson, M S; Cash, V L; Beynon, J; Newton, W E; Dean, D R

    1989-01-01

    Determination of a 28,793-base-pair DNA sequence of a region from the Azotobacter vinelandii genome that includes and flanks the nitrogenase structural gene region was completed. This information was used to revise the previously proposed organization of the major nif cluster. The major nif cluster from A. vinelandii encodes 15 nif-specific genes whose products bear significant structural identity to the corresponding nif-specific gene products from Klebsiella pneumoniae. These genes include ...

  10. Recursive Cluster Elimination (RCE for classification and feature selection from gene expression data

    Directory of Open Access Journals (Sweden)

    Showe Louise C

    2007-05-01

    Full Text Available Abstract Background Classification studies using gene expression datasets are usually based on small numbers of samples and tens of thousands of genes. The selection of those genes that are important for distinguishing the different sample classes being compared, poses a challenging problem in high dimensional data analysis. We describe a new procedure for selecting significant genes as recursive cluster elimination (RCE rather than recursive feature elimination (RFE. We have tested this algorithm on six datasets and compared its performance with that of two related classification procedures with RFE. Results We have developed a novel method for selecting significant genes in comparative gene expression studies. This method, which we refer to as SVM-RCE, combines K-means, a clustering method, to identify correlated gene clusters, and Support Vector Machines (SVMs, a supervised machine learning classification method, to identify and score (rank those gene clusters for the purpose of classification. K-means is used initially to group genes into clusters. Recursive cluster elimination (RCE is then applied to iteratively remove those clusters of genes that contribute the least to the classification performance. SVM-RCE identifies the clusters of correlated genes that are most significantly differentially expressed between the sample classes. Utilization of gene clusters, rather than individual genes, enhances the supervised classification accuracy of the same data as compared to the accuracy when either SVM or Penalized Discriminant Analysis (PDA with recursive feature elimination (SVM-RFE and PDA-RFE are used to remove genes based on their individual discriminant weights. Conclusion SVM-RCE provides improved classification accuracy with complex microarray data sets when it is compared to the classification accuracy of the same datasets using either SVM-RFE or PDA-RFE. SVM-RCE identifies clusters of correlated genes that when considered together

  11. Characterisation of betalain biosynthesis in Parakeelya flowers identifies the key biosynthetic gene DOD as belonging to an expanded LigB gene family that is conserved in betalain-producing species

    Directory of Open Access Journals (Sweden)

    Hsiao-Hang eChung

    2015-07-01

    Full Text Available Plant betalain pigments are intriguing because they are restricted to the Caryophyllales and are mutually exclusive with the more common anthocyanins. However, betalain biosynthesis is poorly understood compared to that of anthocyanins. In this study, betalain production and betalain-related genes were characterized in Parakeelya mirabilis (Montiaceae. RT-PCR and transcriptomics identified three sequences related to the key biosynthetic enzyme Dopa 4,5-dioxgenase (DOD. In addition to a LigB gene similar to that of non-Caryophyllales species (Class I genes, two other P. mirabilis LigB genes were found (DOD and DOD-like, termed Class II. PmDOD and PmDOD-like had 70% amino acid identity. Only PmDOD was implicated in betalain synthesis based on transient assays of enzyme activity and correlation of transcript abundance to spatio-temporal betalain accumulation. The role of PmDOD-like remains unknown. The striking pigment patterning of the flowers was due to distinct zones of red betacyanin and yellow betaxanthin production. The major betacyanin was the unglycosylated betanidin rather than the commonly found glycosides, an occurrence for which there are a few previous reports. The white petal zones lacked pigment but had DOD activity suggesting alternate regulation of the pathway in this tissue. DOD and DOD-like sequences were also identified in other betalain-producing species but not in examples of anthocyanin-producing Caryophyllales or non-Caryophyllales species. A Class I LigB sequence from the anthocyanin-producing Caryophyllaceae species Dianthus superbus and two DOD-like sequences from the Amaranthaceae species Beta vulgaris and Ptilotus spp. did not show DOD activity in the transient assay. The additional sequences suggests that DOD is part of a larger LigB gene family in betalain-producing Caryophyllales taxa, and the tandem genomic arrangement of two of the three B. vulgaris LigB genes suggests the involvement of duplication in the gene

  12. Dominant control region of the human β- like globin gene cluster

    OpenAIRE

    Blom van Assendelft, Margaretha van

    1989-01-01

    The structure and regulation of the human β -like globin gene cluster has been studied extensively. Genetic disorders connected with this gene cluster are responsible for human diseases associated with high levels of morbidity and mortality, such as β-thalassaemia and sickle cell anaemia. The work described in this thesis is concerned with a novel tissue-specific regulatory element. ... Zie: Summary

  13. The complete coenzyme B12 biosynthesis gene cluster of Lactobacillus reuteri CRL 1098

    NARCIS (Netherlands)

    Santos, dos F.; Vera, J.L.; Heijden, van der R.; Valdez, G.F.; Vos, de W.M.; Sesma, F.; Hugenholtz, J.

    2008-01-01

    The coenzyme B12 production pathway in Lactobacillus reuteri has been deduced using a combination of genetic, biochemical and bioinformatics approaches. The coenzyme B12 gene cluster of Lb. reuteri CRL1098 has the unique feature of clustering together the cbi, cob and hem genes. It consists of 29 OR

  14. The complete coenzyme B12 biosynthesis gene cluster of Lactobacillus reuteri CRL1098

    NARCIS (Netherlands)

    F. Santos; J.L. Vera; R. van der Heijden; G. Valdez; W.M. de Vos; F. Sesma; J. Hugenholtz

    2008-01-01

    The coenzyme B12 production pathway in Lactobacillus reuteri has been deduced using a combination of genetic, biochemical and bioinformatics approaches. The coenzyme B12 gene cluster of Lb. reuteri CRL1098 has the unique feature of clustering together the cbi, cob and hem genes. It consists of 29 OR

  15. Paerucumarin, a new metabolite produced by the pvc gene cluster from Pseudomonas aeruginosa.

    Science.gov (United States)

    Clarke-Pearson, Michael F; Brady, Sean F

    2008-10-01

    The pvc gene cluster from Pseudomonas aeruginosa has been linked to the biosynthesis of both the pyoverdine chromophore and pseudoverdine. Our reinvestigation of the role this gene cluster plays in P. aeruginosa secondary metabolite biosynthesis shows that its major product is actually paerucumarin, a novel isonitrile functionalized cumarin. PMID:18689486

  16. Paerucumarin, a New Metabolite Produced by the pvc Gene Cluster from Pseudomonas aeruginosa▿ †

    Science.gov (United States)

    Clarke-Pearson, Michael F.; Brady, Sean F.

    2008-01-01

    The pvc gene cluster from Pseudomonas aeruginosa has been linked to the biosynthesis of both the pyoverdine chromophore and pseudoverdine. Our reinvestigation of the role this gene cluster plays in P. aeruginosa secondary metabolite biosynthesis shows that its major product is actually paerucumarin, a novel isonitrile functionalized cumarin. PMID:18689486

  17. Paerucumarin, a New Metabolite Produced by the pvc Gene Cluster from Pseudomonas aeruginosa▿ †

    OpenAIRE

    Clarke-Pearson, Michael F.; Brady, Sean F.

    2008-01-01

    The pvc gene cluster from Pseudomonas aeruginosa has been linked to the biosynthesis of both the pyoverdine chromophore and pseudoverdine. Our reinvestigation of the role this gene cluster plays in P. aeruginosa secondary metabolite biosynthesis shows that its major product is actually paerucumarin, a novel isonitrile functionalized cumarin.

  18. A phylogenomic gene cluster resource: The phylogeneticallyinferred groups (PhlGs) database

    Energy Technology Data Exchange (ETDEWEB)

    Dehal, Paramvir S.; Boore, Jeffrey L.

    2005-08-25

    We present here the PhIGs database, a phylogenomic resource for sequenced genomes. Although many methods exist for clustering gene families, very few attempt to create truly orthologous clusters sharing descent from a single ancestral gene across a range of evolutionary depths. Although these non-phylogenetic gene family clusters have been used broadly for gene annotation, errors are known to be introduced by the artifactual association of slowly evolving paralogs and lack of annotation for those more rapidly evolving. A full phylogenetic framework is necessary for accurate inference of function and for many studies that address pattern and mechanism of the evolution of the genome. The automated generation of evolutionary gene clusters, creation of gene trees, determination of orthology and paralogy relationships, and the correlation of this information with gene annotations, expression information, and genomic context is an important resource to the scientific community.

  19. Base J represses genes at the end of polycistronic gene clusters in Leishmania major by promoting RNAP II termination.

    Science.gov (United States)

    Reynolds, David L; Hofmeister, Brigitte T; Cliffe, Laura; Siegel, T Nicolai; Anderson, Britta A; Beverley, Stephen M; Schmitz, Robert J; Sabatini, Robert

    2016-08-01

    The genomes of kinetoplastids are organized into polycistronic gene clusters that are flanked by the modified DNA base J. Previous work has established a role of base J in promoting RNA polymerase II termination in Leishmania spp. where the loss of J leads to termination defects and transcription into adjacent gene clusters. It remains unclear whether these termination defects affect gene expression and whether read through transcription is detrimental to cell growth, thus explaining the essential nature of J. We now demonstrate that reduction of base J at specific sites within polycistronic gene clusters in L. major leads to read through transcription and increased expression of downstream genes in the cluster. Interestingly, subsequent transcription into the opposing polycistronic gene cluster does not lead to downregulation of sense mRNAs. These findings indicate a conserved role for J regulating transcription termination and expression of genes within polycistronic gene clusters in trypanosomatids. In contrast to the expectations often attributed to opposing transcription, the essential nature of J in Leishmania spp. is related to its role in gene repression rather than preventing transcriptional interference resulting from read through and dual strand transcription.

  20. Impact of bacterial biocontrol agents on aflatoxin biosynthetic genes, aflD and aflR expression, and phenotypic aflatoxin B₁ production by Aspergillus flavus under different environmental and nutritional regimes.

    Science.gov (United States)

    Al-Saad, Labeed A; Al-Badran, Adnan I; Al-Jumayli, Sami A; Magan, Naresh; Rodríguez, Alicia

    2016-01-18

    The objectives of this study were to examine the efficacy of four bacterial antagonists against Aspergillus flavus using 50:50 ratio of bacterial cells/conidia for the control of aflatoxin B1 (AFB1) production on two different nutritional matrices, nutrient and maize-based media at different water availabilities (0.98, 0.94 water activity (aw) on nutrient medium; 0.995, 0.98 aw on maize meal agar medium) at 35°C. The indicators of efficacy used were the relative expression of one structural and regulatory gene in the biosynthetic pathway (aflD and aflR respectively) and the production of AFB1. These studies showed that some of the bacterial species could significantly inhibit the relative expression of the aflD and aflR genes at both 0.98 and 0.94 aw on nutrient agar. On maize-based media some of the bacterial antagonists reduced the activity of both genes at 0.94 aw and some at 0.995 aw. However, the results for AFB1 production were not consistent with the effects on gene expression. Some bacterial species stimulated AFB1 production on both nutrient and maize-based media regardless of aw. However, some bacterial treatments did inhibit AFB1 production significantly when compared to the control. Overall, this study suggests that temporal studies are required on the biosynthetic genes under different environmental and nutritional conditions to evaluate the potential of antagonists to control AFB1. PMID:26513252

  1. Trehalose Polyphleates Are Produced by a Glycolipid Biosynthetic Pathway Conserved across Phylogenetically Distant Mycobacteria.

    Science.gov (United States)

    Burbaud, Sophie; Laval, Françoise; Lemassu, Anne; Daffé, Mamadou; Guilhot, Christophe; Chalut, Christian

    2016-02-18

    Mycobacteria synthesize a variety of structurally related glycolipids with major biological functions. Common themes have emerged for the biosynthesis of these glycolipids, including several families of proteins. Genes encoding these proteins are usually clustered on bacterial chromosomal islets dedicated to the synthesis of one glycolipid family. Here, we investigated the function of a cluster of five genes widely distributed across non-tuberculous mycobacteria. Using defined mutant analysis and in-depth structural characterization of glycolipids from wild-type or mutant strains of Mycobacterium smegmatis and Mycobacterium abscessus, we established that they are involved in the formation of trehalose polyphleates (TPP), a family of compounds originally described in Mycobacterium phlei. Comparative genomics and lipid analysis of strains distributed along the mycobacterial phylogenetic tree revealed that TPP is synthesized by a large number of non-tuberculous mycobacteria. This work unravels a novel glycolipid biosynthetic pathway in mycobacteria and extends the spectrum of bacteria that produce TPP. PMID:27028886

  2. An Effective Tri-Clustering Algorithm Combining Expression Data with Gene Regulation Information

    OpenAIRE

    Ao Li; David Tuck

    2009-01-01

    Motivation: Bi-clustering algorithms aim to identify sets of genes sharing similar expression patterns across a subset of conditions. However direct interpretation or prediction of gene regulatory mechanisms may be difficult as only gene expression data is used. Information about gene regulators may also be available, most commonly about which transcription factors may bind to the promoter region and thus control the expression level of a gene. Thus a method to integrate gene expression and g...

  3. Transcriptional organization of the phycocyanin subunit gene clusters of the cyanobacterium Anacystis nidulans UTEX 625.

    OpenAIRE

    Kalla, S R; Lind, L K; Lidholm, J; Gustafsson, P

    1988-01-01

    The phycocyanin subunit gene cluster is duplicated on the chromosome of the cyanobacterium Anacystis nidulans UTEX 625. The two gene clusters cpcB1A1 (left) and cpcB2A2 (right) are separated by about 2,500 base pairs, and in each cluster the beta-subunit gene is located upstream from the alpha-subunit gene. Filter hybridizations with phycocyanin-specific probes to total RNA detected at least two major transcripts that were 1,300 to 1,400 nucleotides long. Besides these major mRNA species, two...

  4. Cloning and genetic organization of the gene cluster encoding F71 fimbriae of a uropathogenic Escherichia coli and comparison with the F72 gene cluster

    NARCIS (Netherlands)

    Die, Irma van; Spierings, Gonnie; Megen, Ingrid van; Zuidweg, Elly; Hoekstra, Wiel; Bergmans, Hans

    1985-01-01

    The gene cluster coding for expression of F71 fimbriae of the uropathogenic Escherichia coli strain AD110 has been cloned by a cosmid-cloning procedure. A positive clone was further subcloned to a plasmid of 17.5 kilobases (kb), pPIL110-75. Analysis of pPIL110-75 showed that at least six genes are p

  5. Identification and structural analysis of a novel snoRNA gene cluster from Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    周惠; 孟清; 屈良鹄

    2000-01-01

    A 22 snoRNA gene cluster, consisting of four antisense snoRNA genes, was identified from Arabidopsis thaliana. The sequence and structural analysis showed that the 22 snoRNA gene cluster might be transcribed as a polycistronic precursor from an upstream promoter, and the in-tergenic spacers of the gene cluster encode the ’hairpin’ structures similar to the processing recognition signals of yeast Saccharomyces cerevisiae polycistronic snoRNA precursor. The results also revealed that plant snoRNA gene with multiple copies is a characteristic in common, and provides a good system for further revealing the transcription and expression mechanism of plant snoRNA gene cluster.

  6. Assembly of iron-sulfur clusters. Identification of an iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii.

    Science.gov (United States)

    Zheng, L; Cash, V L; Flint, D H; Dean, D R

    1998-05-22

    An enzyme having the same L-cysteine desulfurization activity previously described for the NifS protein was purified from a strain of Azotobacter vinelandii deleted for the nifS gene. This protein was designated IscS to indicate its proposed role in iron-sulfur cluster assembly. Like NifS, IscS is a pyridoxal-phosphate containing homodimer. Information gained from microsequencing of oligopeptides obtained by tryptic digestion of purified IscS was used to design a strategy for isolation and DNA sequence analysis of a 7,886-base pair A. vinelandii genomic segment that includes the iscS gene. The iscS gene is contained within a gene cluster that includes homologs to nifU and another gene contained within the major nif cluster of A. vinelandii previously designated orf6. These genes have been designated iscU and iscA, respectively. Information available from complete genome sequences of Escherichia coli and Hemophilus influenzae reveals that they also encode iscSUA gene clusters. A wide conservation of iscSUA genes in nature and evidence that NifU and NifS participate in the mobilization of iron and sulfur for nitrogenase-specific iron-sulfur cluster formation suggest that the products of the iscSUA genes could play a general role in the formation or repair of iron-sulfur clusters. The proposal that IscS is involved in mobilization of sulfur for iron-sulfur cluster formation in A. vinelandii is supported by the presence of a cysE-like homolog in another gene cluster located immediately upstream from the one containing the iscSUA genes. O-Acetylserine synthase is the product of the cysE gene, and it catalyzes the rate-limiting step in cysteine biosynthesis. A similar cysE-like gene is also located within the nif gene cluster of A. vinelandii. The likely role of such cysE-like gene products is to increase the cysteine pool needed for iron-sulfur cluster formation. Another feature of the iscSUA gene cluster region from A. vinelandii is that E. coli genes previously

  7. Biosynthetic pathway for γ-cyclic sarcinaxanthin in Micrococcus luteus: heterologous expression and evidence for diverse and multiple catalytic functions of C(50) carotenoid cyclases.

    Science.gov (United States)

    Netzer, Roman; Stafsnes, Marit H; Andreassen, Trygve; Goksøyr, Audun; Bruheim, Per; Brautaset, Trygve

    2010-11-01

    We report the cloning and characterization of the biosynthetic gene cluster (crtE, crtB, crtI, crtE2, crtYg, crtYh, and crtX) of the γ-cyclic C(50) carotenoid sarcinaxanthin in Micrococcus luteus NCTC2665. Expression of the complete and partial gene cluster in Escherichia coli hosts revealed that sarcinaxanthin biosynthesis from the precursor molecule farnesyl pyrophosphate (FPP) proceeds via C(40) lycopene, C(45) nonaflavuxanthin, C(50) flavuxanthin, and C(50) sarcinaxanthin. Glucosylation of sarcinaxanthin was accomplished by the crtX gene product. This is the first report describing the biosynthetic pathway of a γ-cyclic C(50) carotenoid. Expression of the corresponding genes from the marine M. luteus isolate Otnes7 in a lycopene-producing E. coli host resulted in the production of up to 2.5 mg/g cell dry weight sarcinaxanthin in shake flasks. In an attempt to experimentally understand the specific difference between the biosynthetic pathways of sarcinaxanthin and the structurally related ε-cyclic decaprenoxanthin, we constructed a hybrid gene cluster with the γ-cyclic C(50) carotenoid cyclase genes crtYg and crtYh from M. luteus replaced with the analogous ε-cyclic C(50) carotenoid cyclase genes crtYe and crtYf from the natural decaprenoxanthin producer Corynebacterium glutamicum. Surprisingly, expression of this hybrid gene cluster in an E. coli host resulted in accumulation of not only decaprenoxanthin, but also sarcinaxanthin and the asymmetric ε- and γ-cyclic C(50) carotenoid sarprenoxanthin, described for the first time in this work. Together, these data contributed to new insight into the diverse and multiple functions of bacterial C(50) carotenoid cyclases as key catalysts for the synthesis of structurally different carotenoids. PMID:20802040

  8. Biosynthetic Pathway for γ-Cyclic Sarcinaxanthin in Micrococcus luteus: Heterologous Expression and Evidence for Diverse and Multiple Catalytic Functions of C50 Carotenoid Cyclases▿ †

    Science.gov (United States)

    Netzer, Roman; Stafsnes, Marit H.; Andreassen, Trygve; Goksøyr, Audun; Bruheim, Per; Brautaset, Trygve

    2010-01-01

    We report the cloning and characterization of the biosynthetic gene cluster (crtE, crtB, crtI, crtE2, crtYg, crtYh, and crtX) of the γ-cyclic C50 carotenoid sarcinaxanthin in Micrococcus luteus NCTC2665. Expression of the complete and partial gene cluster in Escherichia coli hosts revealed that sarcinaxanthin biosynthesis from the precursor molecule farnesyl pyrophosphate (FPP) proceeds via C40 lycopene, C45 nonaflavuxanthin, C50 flavuxanthin, and C50 sarcinaxanthin. Glucosylation of sarcinaxanthin was accomplished by the crtX gene product. This is the first report describing the biosynthetic pathway of a γ-cyclic C50 carotenoid. Expression of the corresponding genes from the marine M. luteus isolate Otnes7 in a lycopene-producing E. coli host resulted in the production of up to 2.5 mg/g cell dry weight sarcinaxanthin in shake flasks. In an attempt to experimentally understand the specific difference between the biosynthetic pathways of sarcinaxanthin and the structurally related ɛ-cyclic decaprenoxanthin, we constructed a hybrid gene cluster with the γ-cyclic C50 carotenoid cyclase genes crtYg and crtYh from M. luteus replaced with the analogous ɛ-cyclic C50 carotenoid cyclase genes crtYe and crtYf from the natural decaprenoxanthin producer Corynebacterium glutamicum. Surprisingly, expression of this hybrid gene cluster in an E. coli host resulted in accumulation of not only decaprenoxanthin, but also sarcinaxanthin and the asymmetric ɛ- and γ-cyclic C50 carotenoid sarprenoxanthin, described for the first time in this work. Together, these data contributed to new insight into the diverse and multiple functions of bacterial C50 carotenoid cyclases as key catalysts for the synthesis of structurally different carotenoids. PMID:20802040

  9. Biosynthetic engineering of nonribosomal peptide synthetases.

    Science.gov (United States)

    Kries, Hajo

    2016-09-01

    From the evolutionary melting pot of natural product synthetase genes, microorganisms elicit antibiotics, communication tools, and iron scavengers. Chemical biologists manipulate these genes to recreate similarly diverse and potent biological activities not on evolutionary time scales but within months. Enzyme engineering has progressed considerably in recent years and offers new screening, modelling, and design tools for natural product designers. Here, recent advances in enzyme engineering and their application to nonribosomal peptide synthetases are reviewed. Among the nonribosomal peptides that have been subjected to biosynthetic engineering are the antibiotics daptomycin, calcium-dependent antibiotic, and gramicidin S. With these peptides, incorporation of unnatural building blocks and modulation of bioactivities via various structural modifications have been successfully demonstrated. Natural product engineering on the biosynthetic level is not a reliable method yet. However, progress in the understanding and manipulation of biosynthetic pathways may enable the routine production of optimized peptide drugs in the near future. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. PMID:27465074

  10. Sequencing and comparative analysis of fugu protocadherin clusters reveal diversity of protocadherin genes among teleosts

    Directory of Open Access Journals (Sweden)

    Rajasegaran Vikneswari

    2007-03-01

    Full Text Available Abstract Background The synaptic cell adhesion molecules, protocadherins, are a vertebrate innovation that accompanied the emergence of the neural tube and the elaborate central nervous system. In mammals, the protocadherins are encoded by three closely-linked clusters (α, β and γ of tandem genes and are hypothesized to provide a molecular code for specifying the remarkably-diverse neural connections in the central nervous system. Like mammals, the coelacanth, a lobe-finned fish, contains a single protocadherin locus, also arranged into α, β and γ clusters. Zebrafish, however, possesses two protocadherin loci that contain more than twice the number of genes as the coelacanth, but arranged only into α and γ clusters. To gain further insight into the evolutionary history of protocadherin clusters, we have sequenced and analyzed protocadherin clusters from the compact genome of the pufferfish, Fugu rubripes. Results Fugu contains two unlinked protocadherin loci, Pcdh1 and Pcdh2, that collectively consist of at least 77 genes. The fugu Pcdh1 locus has been subject to extensive degeneration, resulting in the complete loss of Pcdh1γ cluster. The fugu Pcdh genes have undergone lineage-specific regional gene conversion processes that have resulted in a remarkable regional sequence homogenization among paralogs in the same subcluster. Phylogenetic analyses show that most protocadherin genes are orthologous between fugu and zebrafish either individually or as paralog groups. Based on the inferred phylogenetic relationships of fugu and zebrafish genes, we have reconstructed the evolutionary history of protocadherin clusters in the teleost fish lineage. Conclusion Our results demonstrate the exceptional evolutionary dynamism of protocadherin genes in vertebrates in general, and in teleost fishes in particular. Besides the 'fish-specific' whole genome duplication, the evolution of protocadherin genes in teleost fishes is influenced by lineage

  11. Identification of certain cancer-mediating genes using Gaussian fuzzy cluster validity index

    Indian Academy of Sciences (India)

    Anupam Ghosh; Rajat K De

    2015-10-01

    In this article, we have used an index, called Gaussian fuzzy index (GFI), recently developed by the authors, based on the notion of fuzzy set theory, for validating the clusters obtained by a clustering algorithm applied on cancer gene expression data. GFI is then used for the identification of genes that have altered quite significantly from normal state to carcinogenic state with respect to their mRNA expression patterns. The effectiveness of the methodology has been demonstrated on three gene expression cancer datasets dealing with human lung, colon and leukemia. The performance of GFI is compared with 19 exiting cluster validity indices. The results are appropriately validated biologically and statistically. In this context, we have used biochemical pathways, -value statistics of GO attributes, -test and -score for the validation of the results. It has been reported that GFI is capable of identifying high-quality enriched clusters of genes, and thereby is able to select more cancer-mediating genes.

  12. Comparative and genetic analyses of the putative Vibrio cholerae lipopolysaccharide core oligosaccharide biosynthesis (wav) gene cluster.

    Science.gov (United States)

    Nesper, Jutta; Kraiss, Anita; Schild, Stefan; Blass, Julia; Klose, Karl E; Bockemühl, Jochen; Reidl, Joachim

    2002-05-01

    We identified five different putative wav gene cluster types, which are responsible for the synthesis of the core oligosaccharide (OS) region of Vibrio cholerae lipopolysaccharide. Preliminary evidence that the genes encoded by this cluster are involved in core OS biosynthesis came from analysis of the recently released O1 El Tor V. cholerae genome sequence and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of O1 El Tor mutant strains defective in three genes (waaF, waaL, and wavB). Investigations of 38 different V. cholerae strains by Southern blotting, PCR, and sequencing analyses showed that the O1 El Tor wav gene cluster type is prevalent among clinical isolates of different serogroups associated with cholera and environmental O1 strains. In contrast, we found differences in the wav gene contents of 19 unrelated non-O1, non-O139 environmental and human isolates not associated with cholera. These strains contained four new wav gene cluster types that differ from each other in distinct gene loci, providing evidence for horizontal transfer of wav genes and for limited structural diversity of the core OS among V. cholerae isolates. Our results show genetic diversity in the core OS biosynthesis gene cluster and predominance of the type 1 wav gene locus in strains associated with clinical cholera, suggesting that a specific core OS structure could contribute to V. cholerae virulence.

  13. A Gene Cluster for Biosynthesis of Mannosylerythritol Lipids Consisted of 4-O-β-D-Mannopyranosyl-(2R,3S)-Erythritol as the Sugar Moiety in a Basidiomycetous Yeast Pseudozyma tsukubaensis.

    Science.gov (United States)

    Saika, Azusa; Koike, Hideaki; Fukuoka, Tokuma; Yamamoto, Shuhei; Kishimoto, Takahide; Morita, Tomotake

    2016-01-01

    Mannosylerythritol lipids (MELs) belong to the glycolipid biosurfactants and are produced by various fungi. The basidiomycetous yeast Pseudozyma tsukubaensis produces diastereomer type of MEL-B, which contains 4-O-β-D-mannopyranosyl-(2R,3S)-erythritol (R-form) as the sugar moiety. In this respect it differs from conventional type of MELs, which contain 4-O-β-D-mannopyranosyl-(2S,3R)-erythritol (S-form) as the sugar moiety. While the biosynthetic gene cluster for conventional type of MELs has been previously identified in Ustilago maydis and Pseudozyma antarctica, the genetic basis for MEL biosynthesis in P. tsukubaensis is unknown. Here, we identified a gene cluster involved in MEL biosynthesis in P. tsukubaensis. Among these genes, PtEMT1, which encodes erythritol/mannose transferase, had greater than 69% identity with homologs from strains in the genera Ustilago, Melanopsichium, Sporisorium and Pseudozyma. However, phylogenetic analysis placed PtEMT1p in a separate clade from the other proteins. To investigate the function of PtEMT1, we introduced the gene into a P. antarctica mutant strain, ΔPaEMT1, which lacks MEL biosynthesis ability owing to the deletion of PaEMT1. Using NMR spectroscopy, we identified the biosynthetic product as MEL-A with altered sugar conformation. These results indicate that PtEMT1p catalyzes the sugar conformation of MELs. This is the first report of a gene cluster for the biosynthesis of diastereomer type of MEL. PMID:27327162

  14. A Gene Cluster for Biosynthesis of Mannosylerythritol Lipids Consisted of 4-O-β-D-Mannopyranosyl-(2R,3S)-Erythritol as the Sugar Moiety in a Basidiomycetous Yeast Pseudozyma tsukubaensis

    Science.gov (United States)

    Saika, Azusa; Koike, Hideaki; Fukuoka, Tokuma; Yamamoto, Shuhei; Kishimoto, Takahide; Morita, Tomotake

    2016-01-01

    Mannosylerythritol lipids (MELs) belong to the glycolipid biosurfactants and are produced by various fungi. The basidiomycetous yeast Pseudozyma tsukubaensis produces diastereomer type of MEL-B, which contains 4-O-β-D-mannopyranosyl-(2R,3S)-erythritol (R-form) as the sugar moiety. In this respect it differs from conventional type of MELs, which contain 4-O-β-D-mannopyranosyl-(2S,3R)-erythritol (S-form) as the sugar moiety. While the biosynthetic gene cluster for conventional type of MELs has been previously identified in Ustilago maydis and Pseudozyma antarctica, the genetic basis for MEL biosynthesis in P. tsukubaensis is unknown. Here, we identified a gene cluster involved in MEL biosynthesis in P. tsukubaensis. Among these genes, PtEMT1, which encodes erythritol/mannose transferase, had greater than 69% identity with homologs from strains in the genera Ustilago, Melanopsichium, Sporisorium and Pseudozyma. However, phylogenetic analysis placed PtEMT1p in a separate clade from the other proteins. To investigate the function of PtEMT1, we introduced the gene into a P. antarctica mutant strain, ΔPaEMT1, which lacks MEL biosynthesis ability owing to the deletion of PaEMT1. Using NMR spectroscopy, we identified the biosynthetic product as MEL-A with altered sugar conformation. These results indicate that PtEMT1p catalyzes the sugar conformation of MELs. This is the first report of a gene cluster for the biosynthesis of diastereomer type of MEL. PMID:27327162

  15. A Gene Cluster for Biosynthesis of Mannosylerythritol Lipids Consisted of 4-O-β-D-Mannopyranosyl-(2R,3S-Erythritol as the Sugar Moiety in a Basidiomycetous Yeast Pseudozyma tsukubaensis.

    Directory of Open Access Journals (Sweden)

    Azusa Saika

    Full Text Available Mannosylerythritol lipids (MELs belong to the glycolipid biosurfactants and are produced by various fungi. The basidiomycetous yeast Pseudozyma tsukubaensis produces diastereomer type of MEL-B, which contains 4-O-β-D-mannopyranosyl-(2R,3S-erythritol (R-form as the sugar moiety. In this respect it differs from conventional type of MELs, which contain 4-O-β-D-mannopyranosyl-(2S,3R-erythritol (S-form as the sugar moiety. While the biosynthetic gene cluster for conventional type of MELs has been previously identified in Ustilago maydis and Pseudozyma antarctica, the genetic basis for MEL biosynthesis in P. tsukubaensis is unknown. Here, we identified a gene cluster involved in MEL biosynthesis in P. tsukubaensis. Among these genes, PtEMT1, which encodes erythritol/mannose transferase, had greater than 69% identity with homologs from strains in the genera Ustilago, Melanopsichium, Sporisorium and Pseudozyma. However, phylogenetic analysis placed PtEMT1p in a separate clade from the other proteins. To investigate the function of PtEMT1, we introduced the gene into a P. antarctica mutant strain, ΔPaEMT1, which lacks MEL biosynthesis ability owing to the deletion of PaEMT1. Using NMR spectroscopy, we identified the biosynthetic product as MEL-A with altered sugar conformation. These results indicate that PtEMT1p catalyzes the sugar conformation of MELs. This is the first report of a gene cluster for the biosynthesis of diastereomer type of MEL.

  16. An Effective Tri-Clustering Algorithm Combining Expression Data with Gene Regulation Information

    Directory of Open Access Journals (Sweden)

    Ao Li

    2009-04-01

    Full Text Available Motivation: Bi-clustering algorithms aim to identify sets of genes sharing similar expression patterns across a subset of conditions. However direct interpretation or prediction of gene regulatory mechanisms may be difficult as only gene expression data is used. Information about gene regulators may also be available, most commonly about which transcription factors may bind to the promoter region and thus control the expression level of a gene. Thus a method to integrate gene expression and gene regulation information is desirable for clustering and analyzing. Methods: By incorporating gene regulatory information with gene expression data, we define regulated expression values (REV as indicators of how a gene is regulated by a specific factor. Existing bi-clustering methods are extended to a three dimensional data space by developing a heuristic TRI-Clustering algorithm. An additional approach named Automatic Boundary Searching algorithm (ABS is introduced to automatically determine the boundary threshold. Results: Results based on incorporating ChIP-chip data representing transcription factor-gene interactions show that the algorithms are efficient and robust for detecting tri-clusters. Detailed analysis of the tri-cluster extracted from yeast sporulation REV data shows genes in this cluster exhibited significant differences during the middle and late stages. The implicated regulatory network was then reconstructed for further study of defined regulatory mechanisms. Topological and statistical analysis of this network demonstrated evidence of significant changes of TF activities during the different stages of yeast sporulation, and suggests this approach might be a general way to study regulatory networks undergoing transformations.

  17. A rough set based rational clustering framework for determining correlated genes.

    Science.gov (United States)

    Jeyaswamidoss, Jeba Emilyn; Thangaraj, Kesavan; Ramar, Kadarkarai; Chitra, Muthusamy

    2016-06-01

    Cluster analysis plays a foremost role in identifying groups of genes that show similar behavior under a set of experimental conditions. Several clustering algorithms have been proposed for identifying gene behaviors and to understand their significance. The principal aim of this work is to develop an intelligent rough clustering technique, which will efficiently remove the irrelevant dimensions in a high-dimensional space and obtain appropriate meaningful clusters. This paper proposes a novel biclustering technique that is based on rough set theory. The proposed algorithm uses correlation coefficient as a similarity measure to simultaneously cluster both the rows and columns of a gene expression data matrix and mean squared residue to generate the initial biclusters. Furthermore, the biclusters are refined to form the lower and upper boundaries by determining the membership of the genes in the clusters using mean squared residue. The algorithm is illustrated with yeast gene expression data and the experiment proves the effectiveness of the method. The main advantage is that it overcomes the problem of selection of initial clusters and also the restriction of one object belonging to only one cluster by allowing overlapping of biclusters. PMID:27352972

  18. A data structure and function classification based method to evaluate clustering models for gene expression data

    Institute of Scientific and Technical Information of China (English)

    YI Dong; YANG Meng-su; HUANG Ming-hui; LI Hui-zhi; WANG Wen-chang

    2002-01-01

    Objective:To establish a systematic framework for selecting the best clustering algorithm and provide an evaluation method for clustering analyses of gene expression data. Methods: Based on data structure (internal information) and function classification (external information), the evaluation of gene expression data analyses were carried out by using 2 approaches. Firstly, to assess the predictive power of clusteringalgorithms, Entropy was introduced to measure the consistency between the clustering results from different algorithms and the known and validated functional classifications. Secondly, a modified method of figure of merit (adjust-FOM) was used as internal assessment method. In this method, one clustering algorithm was used to analyze all data but one experimental condition, the remaining condition was used to assess the predictive power of the resulting clusters. This method was applied on 3 gene expression data sets (2 from the Lyer's Serum Data Sets, and 1 from the Ferea's Saccharomyces Cerevisiae Data Set). Results: A method based on entropy and figure of merit (FOM) was proposed to explore the results of the 3 data sets obtained by 6 different algorithms, SOM and Fuzzy clustering methods were confirmed to possess the highest ability to cluster. Conclusion: A method based on entropy is firstly brought forward to evaluate clustering analyses.Different results are attained in evaluating same data set due to different function classification. According to the curves of adjust_FOM and Entropy_FOM, SOM and Fuzzy clustering methods show the highest ability to cluster on the 3 data sets.

  19. Functional Analysis of Promoters in the Nisin Gene Cluster of Lactococcus lactis

    NARCIS (Netherlands)

    Ruyter, Pascalle G.G.A. de; Kuipers, Oscar P.; Beerthuyzen, Marke M.; Alen-Boerrigter, Ingrid van; Vos, Willem M. de

    1996-01-01

    The promoters in the nisin gene cluster nisABTCIPRKFEG of Lactococcus lactis were characterized by primer extension and transcriptional fusions to the Escherichia coli promoterless β-glucuronidase gene (gusA). Three promoters preceding the nisA, nisR, and nisF genes, which all give rise to gusA expr

  20. A gene cluster for amylovoran synthesis in Erwinia amylovora: characterization and relationship to cps genes in Erwinia stewartii.

    Science.gov (United States)

    Bernhard, F; Coplin, D L; Geider, K

    1993-05-01

    A large ams gene cluster required for production of the acidic extracellular polysaccharide (EPS) amylovoran by the fire blight pathogen Erwinia amylovora was cloned. Tn5 mutagenesis and gene replacement were used to construct chromosomal ams mutants. Five complementation groups, essential for amylovoran synthesis and virulence in E. amylovora, were identified and designated ams A-E. The ams gene cluster is about 7 kb in size and functionally equivalent to the cps gene cluster involved in EPS synthesis by the related pathogen Erwinia stewartii. Mucoidy and virulence were restored to E. stewartii mutants in four cps complementation groups by the cloned E. amylovora ams genes. Conversely, the E. stewartii cps gene cluster was able to complement mutations in E. amylovora ams genes. Correspondence was found between the amsA-E complementation groups and the cpsB-D region, but the arrangement of the genes appears to be different. EPS production and virulence were also restored to E. amylovora amsE and E. stewartii cpsD mutants by clones containing the Rhizobium meliloti exo A gene.

  1. A cross-species bi-clustering approach to identifying conserved co-regulated genes

    Science.gov (United States)

    Sun, Jiangwen; Jiang, Zongliang; Tian, Xiuchun; Bi, Jinbo

    2016-01-01

    Motivation: A growing number of studies have explored the process of pre-implantation embryonic development of multiple mammalian species. However, the conservation and variation among different species in their developmental programming are poorly defined due to the lack of effective computational methods for detecting co-regularized genes that are conserved across species. The most sophisticated method to date for identifying conserved co-regulated genes is a two-step approach. This approach first identifies gene clusters for each species by a cluster analysis of gene expression data, and subsequently computes the overlaps of clusters identified from different species to reveal common subgroups. This approach is ineffective to deal with the noise in the expression data introduced by the complicated procedures in quantifying gene expression. Furthermore, due to the sequential nature of the approach, the gene clusters identified in the first step may have little overlap among different species in the second step, thus difficult to detect conserved co-regulated genes. Results: We propose a cross-species bi-clustering approach which first denoises the gene expression data of each species into a data matrix. The rows of the data matrices of different species represent the same set of genes that are characterized by their expression patterns over the developmental stages of each species as columns. A novel bi-clustering method is then developed to cluster genes into subgroups by a joint sparse rank-one factorization of all the data matrices. This method decomposes a data matrix into a product of a column vector and a row vector where the column vector is a consistent indicator across the matrices (species) to identify the same gene cluster and the row vector specifies for each species the developmental stages that the clustered genes co-regulate. Efficient optimization algorithm has been developed with convergence analysis. This approach was first validated on

  2. Bayesian History Reconstruction of Complex Human Gene Clusters on a Phylogeny

    CERN Document Server

    Vinař, Tomáš; Song, Giltae; Siepel, Adam

    2009-01-01

    Clusters of genes that have evolved by repeated segmental duplication present difficult challenges throughout genomic analysis, from sequence assembly to functional analysis. Improved understanding of these clusters is of utmost importance, since they have been shown to be the source of evolutionary innovation, and have been linked to multiple diseases, including HIV and a variety of cancers. Previously, Zhang et al. (2008) developed an algorithm for reconstructing parsimonious evolutionary histories of such gene clusters, using only human genomic sequence data. In this paper, we propose a probabilistic model for the evolution of gene clusters on a phylogeny, and an MCMC algorithm for reconstruction of duplication histories from genomic sequences in multiple species. Several projects are underway to obtain high quality BAC-based assemblies of duplicated clusters in multiple species, and we anticipate that our method will be useful in analyzing these valuable new data sets.

  3. MADIBA: A web server toolkit for biological interpretation of Plasmodium and plant gene clusters

    Directory of Open Access Journals (Sweden)

    Louw Abraham I

    2008-02-01

    Full Text Available Abstract Background Microarray technology makes it possible to identify changes in gene expression of an organism, under various conditions. Data mining is thus essential for deducing significant biological information such as the identification of new biological mechanisms or putative drug targets. While many algorithms and software have been developed for analysing gene expression, the extraction of relevant information from experimental data is still a substantial challenge, requiring significant time and skill. Description MADIBA (MicroArray Data Interface for Biological Annotation facilitates the assignment of biological meaning to gene expression clusters by automating the post-processing stage. A relational database has been designed to store the data from gene to pathway for Plasmodium, rice and Arabidopsis. Tools within the web interface allow rapid analyses for the identification of the Gene Ontology terms relevant to each cluster; visualising the metabolic pathways where the genes are implicated, their genomic localisations, putative common transcriptional regulatory elements in the upstream sequences, and an analysis specific to the organism being studied. Conclusion MADIBA is an integrated, online tool that will assist researchers in interpreting their results and understand the meaning of the co-expression of a cluster of genes. Functionality of MADIBA was validated by analysing a number of gene clusters from several published experiments – expression profiling of the Plasmodium life cycle, and salt stress treatments of Arabidopsis and rice. In most of the cases, the same conclusions found by the authors were quickly and easily obtained after analysing the gene clusters with MADIBA.

  4. Probing a Coral Genome for Components of the Photoprotective Scytonemin Biosynthetic Pathway and the 2-Aminoethylphosphonate Pathway

    Directory of Open Access Journals (Sweden)

    Nori Satoh

    2013-02-01

    Full Text Available Genome sequences of the reef-building coral, Acropora digitifera, have been decoded. Acropora inhabits an environment with intense ultraviolet exposure and hosts the photosynthetic endosymbiont, Symbiodinium. Acropora homologs of all four genes necessary for biosynthesis of the photoprotective cyanobacterial compound, shinorine, are present. Among metazoans, these genes are found only in anthozoans. To gain further evolutionary insights into biosynthesis of photoprotective compounds and associated coral proteins, we surveyed the Acropora genome for 18 clustered genes involved in cyanobacterial synthesis of the anti-UV compound, scytonemin, even though it had not previously been detected in corals. We identified candidates for only 6 of the 18 genes, including tyrP, scyA, and scyB. Therefore, it does not appear that Acropora digitifera can synthesize scytonemin independently. On the other hand, molecular phylogenetic analysis showed that one tyrosinase gene is an ortholog of vertebrate tyrosinase genes and that the coral homologs, scyA and scyB, are similar to bacterial metabolic genes, phosphonopyruvate (ppyr decarboxylase and glutamate dehydrogenase (GDH, respectively. Further genomic searches for ppyr gene-related biosynthetic components indicate that the coral possesses a metabolic pathway similar to the bacterial 2-aminoethylphosphonate (AEP biosynthetic pathway. The results suggest that de novo synthesis of carbon-phosphorus compounds is performed in corals.

  5. Neuronal plasticity after spinal cord injury: identification of a gene cluster driving neurite outgrowth.

    Science.gov (United States)

    Di Giovanni, Simone; Faden, Alan I; Yakovlev, Alexander; Duke-Cohan, Jonathan S; Finn, Tom; Thouin, Melissa; Knoblach, Susan; De Biase, Andrea; Bregman, Barbara S; Hoffman, Eric P

    2005-01-01

    Functional recovery after spinal cord injury (SCI) may result in part from axon outgrowth and related plasticity through coordinated changes at the molecular level. We employed microarray analysis to identify a subset of genes the expression patterns of which were temporally coregulated and correlated to functional recovery after SCI. Steady-state mRNA levels of this synchronously regulated gene cluster were depressed in both ventral and dorsal horn neurons within 24 h after injury, followed by strong re-induction during the following 2 wk, which paralleled functional recovery. The identified cluster includes neuritin, attractin, microtubule-associated protein 1a, and myelin oligodendrocyte protein genes. Transcriptional and protein regulation of this novel gene cluster was also evaluated in spinal cord tissue and in single neurons and was shown to play a role in axonal plasticity. Finally, in vitro transfection experiments in primary dorsal root ganglion cells showed that cluster members act synergistically to drive neurite outgrowth. PMID:15522907

  6. Integrating Data Clustering and Visualization for the Analysis of 3D Gene Expression Data

    Energy Technology Data Exchange (ETDEWEB)

    Data Analysis and Visualization (IDAV) and the Department of Computer Science, University of California, Davis, One Shields Avenue, Davis CA 95616, USA,; nternational Research Training Group ``Visualization of Large and Unstructured Data Sets,' ' University of Kaiserslautern, Germany; Computational Research Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA; Genomics Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley CA 94720, USA; Life Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley CA 94720, USA,; Computer Science Division,University of California, Berkeley, CA, USA,; Computer Science Department, University of California, Irvine, CA, USA,; All authors are with the Berkeley Drosophila Transcription Network Project, Lawrence Berkeley National Laboratory,; Rubel, Oliver; Weber, Gunther H.; Huang, Min-Yu; Bethel, E. Wes; Biggin, Mark D.; Fowlkes, Charless C.; Hendriks, Cris L. Luengo; Keranen, Soile V. E.; Eisen, Michael B.; Knowles, David W.; Malik, Jitendra; Hagen, Hans; Hamann, Bernd

    2008-05-12

    The recent development of methods for extracting precise measurements of spatial gene expression patterns from three-dimensional (3D) image data opens the way for new analyses of the complex gene regulatory networks controlling animal development. We present an integrated visualization and analysis framework that supports user-guided data clustering to aid exploration of these new complex datasets. The interplay of data visualization and clustering-based data classification leads to improved visualization and enables a more detailed analysis than previously possible. We discuss (i) integration of data clustering and visualization into one framework; (ii) application of data clustering to 3D gene expression data; (iii) evaluation of the number of clusters k in the context of 3D gene expression clustering; and (iv) improvement of overall analysis quality via dedicated post-processing of clustering results based on visualization. We discuss the use of this framework to objectively define spatial pattern boundaries and temporal profiles of genes and to analyze how mRNA patterns are controlled by their regulatory transcription factors.

  7. The complete coenzyme B12 biosynthesis gene cluster of Lactobacillus reuteri CRL 1098

    OpenAIRE

    Santos, dos, T.C.; Vera, J.L.; Heijden, van der, C.A.M.; G. F. VALDEZ; De Vos; Sesma, F.; Hugenholtz, J

    2008-01-01

    The coenzyme B12 production pathway in Lactobacillus reuteri has been deduced using a combination of genetic, biochemical and bioinformatics approaches. The coenzyme B12 gene cluster of Lb. reuteri CRL1098 has the unique feature of clustering together the cbi, cob and hem genes. It consists of 29 ORFs encoding the complete enzymic machinery necessary for de novo biosynthesis. Transcriptional analysis showed it to be expressed as two tandem transcripts of approximately 22 and 4 kb, carrying co...

  8. Unusual Gene Order and Organization of the Sea Urchin HoxCluster

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, Paul M.; Lucas, Susan; Cameron, R. Andrew; Rowen,Lee; Nesbitt, Ryan; Bloom, Scott; Rast, Jonathan P.; Berney, Kevin; Arenas-Mena, Cesar; Martinez, Pedro; Davidson, Eric H.; Peterson, KevinJ.; Hood, Leroy

    2005-05-10

    The highly consistent gene order and axial colinear expression patterns found in vertebrate hox gene clusters are less well conserved across the rest of bilaterians. We report the first deuterostome instance of an intact hox cluster with a unique gene order where the paralog groups are not expressed in a sequential manner. The finished sequence from BAC clones from the genome of the sea urchin, Strongylocentrotus purpuratus, reveals a gene order wherein the anterior genes (Hox1, Hox2 and Hox3) lie nearest the posterior genes in the cluster such that the most 3' gene is Hox5. (The gene order is : 5'-Hox1,2, 3, 11/13c, 11/13b, '11/13a, 9/10, 8, 7, 6, 5 - 3)'. The finished sequence result is corroborated by restriction mapping evidence and BAC-end scaffold analyses. Comparisons with a putative ancestral deuterostome Hox gene cluster suggest that the rearrangements leading to the sea urchin gene order were many and complex.

  9. Unusual Gene Order and Organization of the Sea Urchin Hox Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, R A; Rowen, L; Nesbitt, R; Bloom, S; Rast, J P; Berney, K; Arenas-Mena, C; Martinez, P; Lucas, S; Richardson, P M; Davidson, E H; Peterson, K J; Hood, L

    2005-10-11

    The highly consistent gene order and axial colinear expression patterns found in vertebrate hox gene clusters are less well conserved across the rest of bilaterians. We report the first deuterostome instance of an intact hox cluster with a unique gene order where the paralog groups are not expressed in a sequential manner. The finished sequence from BAC clones from the genome of the sea urchin, Strongylocentrotus purpuratus, reveals a gene order wherein the anterior genes (Hox1, Hox2 and Hox3) lie nearest the posterior genes in the cluster such that the most 3 gene is Hox5. (The gene order is : 5-Hox1, 2, 3, 11/13c, 11/13b, 11/13a, 9/10, 8, 7, 6, 5 - 3). The finished sequence result is corroborated by restriction mapping evidence and BAC-end scaffold analyses. Comparisons with a putative ancestral deuterostome Hox gene cluster suggest that the rearrangements leading to the sea urchin gene order were many and complex.

  10. Fine genetic mapping localizes cucumber scab resistance gene Ccu into an R gene cluster.

    Science.gov (United States)

    Kang, Houxiang; Weng, Yiqun; Yang, Yuhong; Zhang, Zhonghua; Zhang, Shengping; Mao, Zhenchuan; Cheng, Guohua; Gu, Xingfang; Huang, Sanwen; Xie, Bingyan

    2011-03-01

    Scab, caused by Cladosporium cucumerinum, is an important disease of cucumber, Cucumis sativus. In this study, we conducted fine genetic mapping of the single dominant scab resistance gene, Ccu, with 148 F(9) recombinant inbred lines (RILs) and 1,944 F(2) plants derived from the resistant cucumber inbred line 9110Gt and the susceptible line 9930, whose draft genome sequence is now available. A framework linkage map was first constructed with simple sequence repeat markers placing Ccu into the terminal 670 kb region of cucumber Chromosome 2. The 9110Gt genome was sequenced at 5× genome coverage with the Solexa next-generation sequencing technology. Sequence analysis of the assembled 9110Gt contigs and the Ccu region of the 9930 genome identified three insertion/deletion (Indel) markers, Indel01, Indel02, and Indel03 that were closely linked with the Ccu locus. On the high-resolution map developed with the F(2) population, the two closest flanking markers, Indel01 and Indel02, were 0.14 and 0.15 cM away from the target gene Ccu, respectively, and the physical distance between the two markers was approximately 140 kb. Detailed annotation of the 180 kb region harboring the Ccu locus identified a cluster of six resistance gene analogs (RGAs) that belong to the nucleotide binding site (NBS) type R genes. Four RGAs were in the region delimited by markers Indel01 and Indel02, and thus were possible candidates of Ccu. Comparative DNA analysis of this cucumber Ccu gene region with a melon (C. melo) bacterial artificial chromosome (BAC) clone revealed a high degree of micro-synteny and conservation of the RGA tandem repeats in this region. PMID:21104067

  11. Nanoscale spatial organization of the HoxD gene cluster in distinct transcriptional states.

    Science.gov (United States)

    Fabre, Pierre J; Benke, Alexander; Joye, Elisabeth; Nguyen Huynh, Thi Hanh; Manley, Suliana; Duboule, Denis

    2015-11-10

    Chromatin condensation plays an important role in the regulation of gene expression. Recently, it was shown that the transcriptional activation of Hoxd genes during vertebrate digit development involves modifications in 3D interactions within and around the HoxD gene cluster. This reorganization follows a global transition from one set of regulatory contacts to another, between two topologically associating domains (TADs) located on either side of the HoxD locus. Here, we use 3D DNA FISH to assess the spatial organization of chromatin at and around the HoxD gene cluster and report that although the two TADs are tightly associated, they appear as spatially distinct units. We measured the relative position of genes within the cluster and found that they segregate over long distances, suggesting that a physical elongation of the HoxD cluster can occur. We analyzed this possibility by super-resolution imaging (STORM) and found that tissues with distinct transcriptional activity exhibit differing degrees of elongation. We also observed that the morphological change of the HoxD cluster in developing digits is associated with its position at the boundary between the two TADs. Such variations in the fine-scale architecture of the gene cluster suggest causal links among its spatial configuration, transcriptional activation, and the flanking chromatin context. PMID:26504220

  12. Clustering based gene expression feature selection method: A computational approach to enrich the classifier efficiency of differentially expressed genes

    KAUST Repository

    Abusamra, Heba

    2016-07-20

    The native nature of high dimension low sample size of gene expression data make the classification task more challenging. Therefore, feature (gene) selection become an apparent need. Selecting a meaningful and relevant genes for classifier not only decrease the computational time and cost, but also improve the classification performance. Among different approaches of feature selection methods, however most of them suffer from several problems such as lack of robustness, validation issues etc. Here, we present a new feature selection technique that takes advantage of clustering both samples and genes. Materials and methods We used leukemia gene expression dataset [1]. The effectiveness of the selected features were evaluated by four different classification methods; support vector machines, k-nearest neighbor, random forest, and linear discriminate analysis. The method evaluate the importance and relevance of each gene cluster by summing the expression level for each gene belongs to this cluster. The gene cluster consider important, if it satisfies conditions depend on thresholds and percentage otherwise eliminated. Results Initial analysis identified 7120 differentially expressed genes of leukemia (Fig. 15a), after applying our feature selection methodology we end up with specific 1117 genes discriminating two classes of leukemia (Fig. 15b). Further applying the same method with more stringent higher positive and lower negative threshold condition, number reduced to 58 genes have be tested to evaluate the effectiveness of the method (Fig. 15c). The results of the four classification methods are summarized in Table 11. Conclusions The feature selection method gave good results with minimum classification error. Our heat-map result shows distinct pattern of refines genes discriminating between two classes of leukemia.

  13. The Local Maximum Clustering Method and Its Application in Microarray Gene Expression Data Analysis

    Directory of Open Access Journals (Sweden)

    Chen Yidong

    2004-01-01

    Full Text Available An unsupervised data clustering method, called the local maximum clustering (LMC method, is proposed for identifying clusters in experiment data sets based on research interest. A magnitude property is defined according to research purposes, and data sets are clustered around each local maximum of the magnitude property. By properly defining a magnitude property, this method can overcome many difficulties in microarray data clustering such as reduced projection in similarities, noises, and arbitrary gene distribution. To critically evaluate the performance of this clustering method in comparison with other methods, we designed three model data sets with known cluster distributions and applied the LMC method as well as the hierarchic clustering method, the -mean clustering method, and the self-organized map method to these model data sets. The results show that the LMC method produces the most accurate clustering results. As an example of application, we applied the method to cluster the leukemia samples reported in the microarray study of Golub et al. (1999.

  14. Reducing AsA leads to leaf lesion and defence response in knock-down of the AsA biosynthetic enzyme GDP-D-mannose pyrophosphorylase gene in tomato plant.

    Science.gov (United States)

    Zhang, Chanjuan; Ouyang, Bo; Yang, Changxian; Zhang, Xiaohui; Liu, Hui; Zhang, Yuyang; Zhang, Junhong; Li, Hanxia; Ye, Zhibiao

    2013-01-01

    As a vital antioxidant, L-ascorbic acid (AsA) affects diverse biological processes in higher plants. Lack of AsA in cell impairs plant development. In the present study, we manipulated a gene of GDP-mannose pyrophosphorylase which catalyzes the conversion of D-mannose-1-P to GDP-D-mannose in AsA biosynthetic pathway and found out the phenotype alteration of tomato. In the tomato genome, there are four members of GMP gene family and they constitutively expressed in various tissues in distinct expression patterns. As expected, over-expression of SlGMP3 increased total AsA contents and enhanced the tolerance to oxidative stress in tomato. On the contrary, knock-down of SlGMP3 significantly decreased AsA contents below the threshold level and altered the phenotype of tomato plants with lesions and further senescence. Further analysis indicated the causes for this symptom could result from failing to instantly deplete the reactive oxygen species (ROS) as decline of free radical scavenging activity. More ROS accumulated in the leaves and then triggered expressions of defence-related genes and mimic symptom occurred on the leaves similar to hypersensitive responses against pathogens. Consequently, the photosynthesis of leaves was dramatically fallen. These results suggested the vital roles of AsA as an antioxidant in leaf function and defence response of tomato.

  15. Reducing AsA leads to leaf lesion and defence response in knock-down of the AsA biosynthetic enzyme GDP-D-mannose pyrophosphorylase gene in tomato plant.

    Directory of Open Access Journals (Sweden)

    Chanjuan Zhang

    Full Text Available As a vital antioxidant, L-ascorbic acid (AsA affects diverse biological processes in higher plants. Lack of AsA in cell impairs plant development. In the present study, we manipulated a gene of GDP-mannose pyrophosphorylase which catalyzes the conversion of D-mannose-1-P to GDP-D-mannose in AsA biosynthetic pathway and found out the phenotype alteration of tomato. In the tomato genome, there are four members of GMP gene family and they constitutively expressed in various tissues in distinct expression patterns. As expected, over-expression of SlGMP3 increased total AsA contents and enhanced the tolerance to oxidative stress in tomato. On the contrary, knock-down of SlGMP3 significantly decreased AsA contents below the threshold level and altered the phenotype of tomato plants with lesions and further senescence. Further analysis indicated the causes for this symptom could result from failing to instantly deplete the reactive oxygen species (ROS as decline of free radical scavenging activity. More ROS accumulated in the leaves and then triggered expressions of defence-related genes and mimic symptom occurred on the leaves similar to hypersensitive responses against pathogens. Consequently, the photosynthesis of leaves was dramatically fallen. These results suggested the vital roles of AsA as an antioxidant in leaf function and defence response of tomato.

  16. Shared gene structures and clusters of mutually exclusive spliced exons within the metazoan muscle myosin heavy chain genes.

    Directory of Open Access Journals (Sweden)

    Martin Kollmar

    Full Text Available Multicellular animals possess two to three different types of muscle tissues. Striated muscles have considerable ultrastructural similarity and contain a core set of proteins including the muscle myosin heavy chain (Mhc protein. The ATPase activity of this myosin motor protein largely dictates muscle performance at the molecular level. Two different solutions to adjusting myosin properties to different muscle subtypes have been identified so far: Vertebrates and nematodes contain many independent differentially expressed Mhc genes while arthropods have single Mhc genes with clusters of mutually exclusive spliced exons (MXEs. The availability of hundreds of metazoan genomes now allowed us to study whether the ancient bilateria already contained MXEs, how MXE complexity subsequently evolved, and whether additional scenarios to control contractile properties in different muscles could be proposed, By reconstructing the Mhc genes from 116 metazoans we showed that all intron positions within the motor domain coding regions are conserved in all bilateria analysed. The last common ancestor of the bilateria already contained a cluster of MXEs coding for part of the loop-2 actin-binding sequence. Subsequently the protostomes and later the arthropods gained many further clusters while MXEs got completely lost independently in several branches (vertebrates and nematodes and species (for example the annelid Helobdella robusta and the salmon louse Lepeophtheirus salmonis. Several bilateria have been found to encode multiple Mhc genes that might all or in part contain clusters of MXEs. Notable examples are a cluster of six tandemly arrayed Mhc genes, of which two contain MXEs, in the owl limpet Lottia gigantea and four Mhc genes with three encoding MXEs in the predatory mite Metaseiulus occidentalis. Our analysis showed that similar solutions to provide different myosin isoforms (multiple genes or clusters of MXEs or both have independently been developed

  17. Gene identification and protein classification in microbial metagenomic sequence data via incremental clustering

    Directory of Open Access Journals (Sweden)

    Li Weizhong

    2008-04-01

    Full Text Available Abstract Background The identification and study of proteins from metagenomic datasets can shed light on the roles and interactions of the source organisms in their communities. However, metagenomic datasets are characterized by the presence of organisms with varying GC composition, codon usage biases etc., and consequently gene identification is challenging. The vast amount of sequence data also requires faster protein family classification tools. Results We present a computational improvement to a sequence clustering approach that we developed previously to identify and classify protein coding genes in large microbial metagenomic datasets. The clustering approach can be used to identify protein coding genes in prokaryotes, viruses, and intron-less eukaryotes. The computational improvement is based on an incremental clustering method that does not require the expensive all-against-all compute that was required by the original approach, while still preserving the remote homology detection capabilities. We present evaluations of the clustering approach in protein-coding gene identification and classification, and also present the results of updating the protein clusters from our previous work with recent genomic and metagenomic sequences. The clustering results are available via CAMERA, (http://camera.calit2.net. Conclusion The clustering paradigm is shown to be a very useful tool in the analysis of microbial metagenomic data. The incremental clustering method is shown to be much faster than the original approach in identifying genes, grouping sequences into existing protein families, and also identifying novel families that have multiple members in a metagenomic dataset. These clusters provide a basis for further studies of protein families.

  18. Cloning, sequencing, and characterization of the lipopolysaccharide biosynthetic enzyme heptosyltransferase I gene (waaC) from Campylobacter jejuni and Campylobacter coli.

    Science.gov (United States)

    Klena, J D; Gray, S A; Konkel, M E

    1998-11-19

    Campylobacter jejuni and Campylobacter coli are common causes of gastrointestinal disease and a proportion of C. jejuni infections have been shown to be associated with the Guillain-Barré syndrome. The waaC gene from Campylobacter coli, involved in lipopolysaccharide core biosynthesis, was cloned by complementation of a heptose-deficient strain of Salmonella typhimurium, as judged by novobiocin sensitivity, lipopolysaccharide (LPS)-specific phage sensitivity, and polyacrylamide-resolved lipopolysaccharide profiles. The C. jejuni waaC gene was subsequently cloned using the waaC gene isolated from C. coli as a probe. The C. jejuni and C. coli waaC genes are capable of encoding proteins of 342 amino acids with calculated molecular masses of 39381Da and 39317Da, respectively. Sequence and in-vitro analyses suggested that the C. coli waaC gene may be transcribed from its own promoter. Translation of the C. coli waaC gene in a cell-free system yielded a protein with a Mr of 39000. The waaC gene was detected in every C. jejuni and C. coli isolate tested as judged by dot-blot hybridization analysis. Southern hybridization analysis indicated that both Campylobacter species contain a single copy of the waaC gene. Unlike Escherichia coli and S. typhimurium isolates, the waaC gene in C. jejuni and C. coli isolates does not appear to be linked to the waaF (rfaF) gene.

  19. Molecular population genetics of the -esterase gene cluster of Drosophila melanogaster

    Indian Academy of Sciences (India)

    Evgeniy S. Balakirev; Francisco J. Ayala

    2003-12-01

    We have investigated nucleotide polymorphism at the -esterase gene cluster including the Est-6 gene and Est-6 putative pseudogene in four samples of Drosophila melanogaster derived from natural populations of southern Africa (Zimbabwe), Europe (Spain), North America (USA: California), and South America (Venezuela). A complex haplo-type structure is revealed in both Est-6 and Est-6. Total nucleotide diversity is twice in Est-6 as in Est-6; diversity is higher in the African sample than in the non-African ones. Strong linkage disequilibrium occurs within the -esterase gene cluster in non-African samples, but not in the African one. Intragenic gene conversion events are detected within Est-6 and, to a much greater extent, within Est-6; intergenic gene conversion events are rare. Tests of neutrality with recombination are significant for the -esterase gene cluster in the non-African samples but not significant in the African one. We suggest that the demographic history (bottleneck and admixture of genetically differentiated populations) is the major factor shaping the pattern of nucleotide polymorphism in the -esterase gene cluster. However there are some ‘footprints’ of directional and balancing selection shaping specific distribution of nucleotide polymorphism within the cluster. Intergenic epistatic selection between Est-6 and Est-6 may play an important role in the evolution of the -esterase gene cluster preserving the putative pseudogene from degenerative destruction and reflecting possible functional interaction between the functional gene and the putative pseudogene. Est-6 and Est-6 may represent an indivisible intergenic complex (‘intergene’) in which each single component (Est-6 or Est-6) cannot separately carry out the full functional role.

  20. Degeneration of aflatoxin gene cluster in Aspergillus flavus from Africa and North America

    Science.gov (United States)

    Aspergillus flavus is the primary causal agent of food and feed contamination with the toxic fungal metabolites aflatoxins. Aflatoxin-producing potential of A. flavus is known to vary among isolates. The genes involved in aflatoxin biosynthesis are clustered together and the order of genes within th...

  1. Phage p1-derived artificial chromosomes facilitate heterologous expression of the FK506 gene cluster.

    Directory of Open Access Journals (Sweden)

    Adam C Jones

    Full Text Available We describe a procedure for the conjugative transfer of phage P1-derived Artificial Chromosome (PAC library clones containing large natural product gene clusters (≥70 kilobases to Streptomyces coelicolor strains that have been engineered for improved heterologous production of natural products. This approach is demonstrated using the gene cluster for FK506 (tacrolimus, a clinically important immunosuppressant of high commercial value. The entire 83.5 kb FK506 gene cluster from Streptomyces tsukubaensis NRRL 18488 present in one 130 kb PAC clone was introduced into four different S. coelicolor derivatives and all produced FK506 and smaller amounts of the related compound FK520. FK506 yields were increased by approximately five-fold (from 1.2 mg L(-1 to 5.5 mg L(-1 in S. coelicolor M1146 containing the FK506 PAC upon over-expression of the FK506 LuxR regulatory gene fkbN. The PAC-based gene cluster conjugation methodology described here provides a tractable means to evaluate and manipulate FK506 biosynthesis and is readily applicable to other large gene clusters encoding natural products of interest to medicine, agriculture and biotechnology.

  2. Transcriptional analysis and regulatory signals of the hom-thrB cluster of Brevibacterium lactofermentum.

    OpenAIRE

    Mateos, L M; Pisabarro, A; Pátek, M; Malumbres, M; Guerrero, C.; Eikmanns, B J; Sahm, H; Martín, J F

    1994-01-01

    Two genes, hom (encoding homoserine dehydrogenase) and thrB (encoding homoserine kinase), of the threonine biosynthetic pathway are clustered in the chromosome of Brevibacterium lactofermentum in the order 5' hom-thrB 3', separated by only 10 bp. The Brevibacterium thrB gene is expressed in Escherichia coli, in Brevibacterium lactofermentum, and in Corynebacterium glutamicum and complements auxotrophs of all three organisms deficient in homoserine kinase, whereas the Brevibacterium hom gene d...

  3. Structural variation of the ribosomal gene cluster within the class Insecta

    Energy Technology Data Exchange (ETDEWEB)

    Mukha, D.V.; Sidorenko, A.P.; Lazebnaya, I.V. [Vavilov Institute of General Genetics, Moscow (Russian Federation)] [and others

    1995-09-01

    General estimation of ribosomal DNA variation within the class Insecta is presented. It is shown that, using blot-hybridization, one can detect differences in the structure of the ribosomal gene cluster not only between genera within an order, but also between species within a genera, including sibling species. Structure of the ribosomal gene cluster of the Coccinellidae family (ladybirds) is analyzed. It is shown that cloned highly conservative regions of ribosomal DNA of Tetrahymena pyriformis can be used as probes for analyzing ribosomal genes in insects. 24 refs., 4 figs.

  4. Indole-3-acetic acid (IAA) induced changes in oil content, fatty acid profiles and expression of four fatty acid biosynthetic genes in Chlorella vulgaris at early stationary growth phase.

    Science.gov (United States)

    Jusoh, Malinna; Loh, Saw Hong; Chuah, Tse Seng; Aziz, Ahmad; Cha, Thye San

    2015-03-01

    Microalgae lipids and oils are potential candidates for renewable biodiesel. Many microalgae species accumulate a substantial amount of lipids and oils under environmental stresses. However, low growth rate under these adverse conditions account for the decrease in overall biomass productivity which directly influence the oil yield. This study was undertaken to investigate the effect of exogenously added auxin (indole-3-acetic acid; IAA) on the oil content, fatty acid compositions, and the expression of fatty acid biosynthetic genes in Chlorella vulgaris (UMT-M1). Auxin has been shown to regulate growth and metabolite production of several microalgae. Results showed that oil accumulation was highest on days after treatment (DAT)-2 with enriched levels of palmitic (C16:0) and stearic (C18:0) acids, while the linoleic (C18:2) and α-linolenic (C18:3n3) acids levels were markedly reduced by IAA. The elevated levels of saturated fatty acids (C16:0 and C18:0) were consistent with high expression of the β-ketoacyl ACP synthase I (KAS I) gene, while low expression of omega-6 fatty acid desaturase (ω-6 FAD) gene was consistent with low production of C18:2. However, the increment of stearoyl-ACP desaturase (SAD) gene expression upon IAA induction did not coincide with oleic acid (C18:1) production. The expression of omega-3 fatty acid desaturase (ω-3 FAD) gene showed a positive correlation with the synthesis of PUFA and C18:3n3.

  5. A putative greigite-type magnetosome gene cluster from the candidate phylum Latescibacteria.

    Science.gov (United States)

    Lin, Wei; Pan, Yongxin

    2015-04-01

    The intracellular biomineralization of magnetite and/or greigite magnetosomes in magnetotactic bacteria (MTB) is strictly controlled by a group of conserved genes, termed magnetosome genes, which are organized as clusters (or islands) in MTB genomes. So far, all reported MTB are affiliated within the Proteobacteria phylum, the Nitrospirae phylum and the candidate division OP3. Here, we report the discovery of a putative magnetosome gene cluster structure from the draft genome of an uncultivated bacterium belonging to the candidate phylum Latescibacteria (formerly candidate division WS3) recently recovered by Rinke and colleagues, which contains 10 genes with homology to magnetosome mam genes of magnetotactic Proteobacteria and Nitrospirae. Moreover, these genes are phylogenetically closely related to greigite-type magnetosome genes that were only found from the Deltaproteobacteria MTB before, suggesting that the greigite genes may originate earlier than previously imagined. These findings indicate that some members of Latescibacteria may be capable of forming greigite magnetosomes, and thus may play previously unrecognized roles in environmental iron and sulfur cycles. The conserved genomic structure of magnetosome gene cluster in Latescibacteria phylum supports the hypothesis of horizontal transfer of these genes among distantly related bacterial groups in nature. PMID:25382584

  6. Identification and manipulation of the pleuromutilin gene cluster from Clitopilus passeckerianus for increased rapid antibiotic production

    Science.gov (United States)

    Bailey, Andy M.; Alberti, Fabrizio; Kilaru, Sreedhar; Collins, Catherine M.; de Mattos-Shipley, Kate; Hartley, Amanda J.; Hayes, Patrick; Griffin, Alison; Lazarus, Colin M.; Cox, Russell J.; Willis, Christine L.; O’Dwyer, Karen; Spence, David W.; Foster, Gary D.

    2016-05-01

    Semi-synthetic derivatives of the tricyclic diterpene antibiotic pleuromutilin from the basidiomycete Clitopilus passeckerianus are important in combatting bacterial infections in human and veterinary medicine. These compounds belong to the only new class of antibiotics for human applications, with novel mode of action and lack of cross-resistance, representing a class with great potential. Basidiomycete fungi, being dikaryotic, are not generally amenable to strain improvement. We report identification of the seven-gene pleuromutilin gene cluster and verify that using various targeted approaches aimed at increasing antibiotic production in C. passeckerianus, no improvement in yield was achieved. The seven-gene pleuromutilin cluster was reconstructed within Aspergillus oryzae giving production of pleuromutilin in an ascomycete, with a significant increase (2106%) in production. This is the first gene cluster from a basidiomycete to be successfully expressed in an ascomycete, and paves the way for the exploitation of a metabolically rich but traditionally overlooked group of fungi.

  7. Paradigm of tunable clustering using Binarization of Consensus Partition Matrices (Bi-CoPaM for gene discovery.

    Directory of Open Access Journals (Sweden)

    Basel Abu-Jamous

    Full Text Available Clustering analysis has a growing role in the study of co-expressed genes for gene discovery. Conventional binary and fuzzy clustering do not embrace the biological reality that some genes may be irrelevant for a problem and not be assigned to a cluster, while other genes may participate in several biological functions and should simultaneously belong to multiple clusters. Also, these algorithms cannot generate tight clusters that focus on their cores or wide clusters that overlap and contain all possibly relevant genes. In this paper, a new clustering paradigm is proposed. In this paradigm, all three eventualities of a gene being exclusively assigned to a single cluster, being assigned to multiple clusters, and being not assigned to any cluster are possible. These possibilities are realised through the primary novelty of the introduction of tunable binarization techniques. Results from multiple clustering experiments are aggregated to generate one fuzzy consensus partition matrix (CoPaM, which is then binarized to obtain the final binary partitions. This is referred to as Binarization of Consensus Partition Matrices (Bi-CoPaM. The method has been tested with a set of synthetic datasets and a set of five real yeast cell-cycle datasets. The results demonstrate its validity in generating relevant tight, wide, and complementary clusters that can meet requirements of different gene discovery studies.

  8. Metabolic engineering of the carotenoid biosynthetic pathway in the yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma)

    NARCIS (Netherlands)

    Verdoes, J.C.; Sandmann, G.; Visser, H.; Diaz, M.; Mossel, van M.; Ooyen, van A.J.J.

    2003-01-01

    The crtYB locus was used as an integrative platform for the construction of specific carotenoid biosynthetic mutants in the astaxanthin-producing yeast Xanthophyllomyces dendrorhous. The crtYB gene of X. dendrorhous, encoding a chimeric carotenoid biosynthetic enzyme, could be inactivated by both si

  9. A CLUSTERING OF DJA STOCKS - THE APPLICATION IN FINANCE OF A METHOD FIRST USED IN GENE TRAJECTORY STUDY

    Directory of Open Access Journals (Sweden)

    Silaghi Gheorghe Cosmin

    2009-05-01

    Full Text Available Previously we employed the Gene Trajectory Clustering methodology to search for different associations of the stocks composing the DJA index, with the aim of finding different, logic clusters, supported by economic reasons, preferably different than the

  10. Close linkage of the two keratin gene clusters in the human genome

    Energy Technology Data Exchange (ETDEWEB)

    Milisavljevic, V.; Freedberg, I.M.; Blumenberg, M. [New York Univ. Medical Center, New York, NY (United States)

    1996-05-15

    Mapping studies of functional keratin genes in the human genome have localized most of the acidic keratin genes to chromosome 17q12-q21 and the basic keratin genes to chromosome 12 q11-q13. Within the acidic keratin locus two clusters were identified, one containing the genes for K15 and K19, the other the genes for K14, K16, and K17. The relative positions and the distance between the two clusters have not been determined previously. In this paper we describe our analysis of P1 clones containing multiple acidic keratin genes, which were studied using restriction analysis and Southern blot hybridization with PCR-amplified probes specific for functional human keratin genes 15, 17, and 19. Our results show that the two clusters are very closely linked to each other, within a 55-kb region in the human genome. The genes are organized 5{prime} to 3{prime} in the following order: 5{prime}-K19-K15-K17-K16-K14. Between K15 and K17 at least one additional, unidentified keratin gene is present. 30 refs., 2 figs.

  11. Genome mining demonstrates the widespread occurrence of gene clusters encoding bacteriocins in cyanobacteria.

    Directory of Open Access Journals (Sweden)

    Hao Wang

    Full Text Available Cyanobacteria are a rich source of natural products with interesting biological activities. Many of these are peptides and the end products of a non-ribosomal pathway. However, several cyanobacterial peptide classes were recently shown to be produced through the proteolytic cleavage and post-translational modification of short precursor peptides. A new class of bacteriocins produced through the proteolytic cleavage and heterocyclization of precursor proteins was recently identified from marine cyanobacteria. Here we show the widespread occurrence of bacteriocin gene clusters in cyanobacteria through comparative analysis of 58 cyanobacterial genomes. A total of 145 bacteriocin gene clusters were discovered through genome mining. These clusters encoded 290 putative bacteriocin precursors. They ranged in length from 28 to 164 amino acids with very little sequence conservation of the core peptide. The gene clusters could be classified into seven groups according to their gene organization and domain composition. This classification is supported by phylogenetic analysis, which further indicated independent evolutionary trajectories of gene clusters in different groups. Our data suggests that cyanobacteria are a prolific source of low-molecular weight post-translationally modified peptides.

  12. Trichodiene Production in a Trichoderma harzianum erg1-Silenced Strain Provides Evidence of the Importance of the Sterol Biosynthetic Pathway in Inducing Plant Defense-Related Gene Expression.

    Science.gov (United States)

    Malmierca, M G; McCormick, S P; Cardoza, R E; Monte, E; Alexander, N J; Gutiérrez, S

    2015-11-01

    Trichoderma species are often used as biocontrol agents against plant-pathogenic fungi. A complex molecular interaction occurs among the biocontrol agent, the antagonistic fungus, and the plant. Terpenes and sterols produced by the biocontrol fungus have been found to affect gene expression in both the antagonistic fungus and the plant. The terpene trichodiene (TD) elicits the expression of genes related to tomato defense and to Botrytis virulence. We show here that TD itself is able to induce the expression of Botrytis genes involved in the synthesis of botrydial (BOT) and also induces terpene gene expression in Trichoderma spp. The terpene ergosterol, in addition to its role as a structural component of the fungal cell membranes, acts as an elicitor of defense response in plants. In the present work, using a transformant of T. harzianum, which is silenced in the erg1 gene and accumulates high levels of squalene, we show that this ergosterol precursor also acts as an important elicitor molecule of tomato defense-related genes and induces Botrytis genes involved in BOT biosynthesis, in both cases, in a concentration-dependent manner. Our data emphasize the importance of a balance of squalene and ergosterol in fungal interactions as well as in the biocontrol activity of Trichoderma spp.

  13. Trichodiene Production in a Trichoderma harzianum erg1-Silenced Strain Provides Evidence of the Importance of the Sterol Biosynthetic Pathway in Inducing Plant Defense-Related Gene Expression.

    Science.gov (United States)

    Malmierca, M G; McCormick, S P; Cardoza, R E; Monte, E; Alexander, N J; Gutiérrez, S

    2015-11-01

    Trichoderma species are often used as biocontrol agents against plant-pathogenic fungi. A complex molecular interaction occurs among the biocontrol agent, the antagonistic fungus, and the plant. Terpenes and sterols produced by the biocontrol fungus have been found to affect gene expression in both the antagonistic fungus and the plant. The terpene trichodiene (TD) elicits the expression of genes related to tomato defense and to Botrytis virulence. We show here that TD itself is able to induce the expression of Botrytis genes involved in the synthesis of botrydial (BOT) and also induces terpene gene expression in Trichoderma spp. The terpene ergosterol, in addition to its role as a structural component of the fungal cell membranes, acts as an elicitor of defense response in plants. In the present work, using a transformant of T. harzianum, which is silenced in the erg1 gene and accumulates high levels of squalene, we show that this ergosterol precursor also acts as an important elicitor molecule of tomato defense-related genes and induces Botrytis genes involved in BOT biosynthesis, in both cases, in a concentration-dependent manner. Our data emphasize the importance of a balance of squalene and ergosterol in fungal interactions as well as in the biocontrol activity of Trichoderma spp. PMID:26168138

  14. Cloning and Characterization of Genes Encoded in 187 dTDP-D-mycaminose Biosynthetic Pathway from a Midecamycin-producing Strain,Streptomyces mycarofaciens

    Institute of Scientific and Technical Information of China (English)

    Lina CONG; Wolfgang PIEPERSBERG

    2007-01-01

    Two subclusters from Streptomyces mycarofaciens,a midecamycin producer,were cloned and partially sequenced.One region was located at the 5'end of the mid polyketide synthase (PKS) genes and contained the genes midA,midB and midC.The other region was at the 3'end of the PKS genes and contained midK,midI and midH.Analysis of the nucleotide sequence revealed that these genes encode dTDP-glucose synthase (midA),dTDP-glucose dehydratase(midB),aminotransferase (midC),methyltransferase (midK),glycosyltransferase(midI)and an assistant gene(midH).All of these genes are involved in the biosynthesis of dTDP-D-mycaminose,the first deoxysugar of midecamycin,and in transferring the mycaminose to the midecamycin aglycone in S.mycarofaciens.Similar to gene pairs des VIII/des VII in S.venezuelae and tylMIII/tylMII in S.fradiae,the product of midH probably functions as an auxiliary protein required by the MidI protein for efficient glycosyltransfer in midecamycin biosynthesis.

  15. Identification of a novel sesquiterpene biosynthetic machinery involved in astellolide biosynthesis

    Science.gov (United States)

    Shinohara, Yasutomo; Takahashi, Shunji; Osada, Hiroyuki; Koyama, Yasuji

    2016-01-01

    Esterified drimane-type sesquiterpene lactones such as astellolides display various biological activities and are widely produced by plants and fungi. Given their low homology to known sesquiterpene cyclases, the genes responsible for their biosynthesis have not been uncovered yet. Here, we identified the astellolide gene cluster from Aspergillus oryzae and discovered a novel sesquiterpene biosynthetic machinery consisting of AstC, AstI, and AstK. All these enzymes are annotated as haloacid dehalogenase-like hydrolases, whereas AstC also contains a DxDTT motif conserved in class II diterpene cyclases. Based on enzyme reaction analyses, we found that AstC catalysed the protonation-initiated cyclisation of farnesyl pyrophosphate into drimanyl pyrophosphate. This was successively dephosphorylated by AstI and AstK to produce drim-8-ene-11-ol. Moreover, we also identified and characterised a unique non-ribosomal peptide synthetase, AstA, responsible for esterifying aryl acids to drimane-type sesquiterpene lactones. In this study, we highlight a new biosynthetic route for producing sesquiterpene and its esterified derivative. Our findings shed light on the identification of novel sesquiterpenes via genome mining. PMID:27628599

  16. Regulation of Three Nitrogenase Gene Clusters in the Cyanobacterium Anabaena variabilis ATCC 29413

    Directory of Open Access Journals (Sweden)

    Teresa Thiel

    2014-12-01

    Full Text Available The filamentous cyanobacterium Anabaena variabilis ATCC 29413 fixes nitrogen under aerobic conditions in specialized cells called heterocysts that form in response to an environmental deficiency in combined nitrogen. Nitrogen fixation is mediated by the enzyme nitrogenase, which is very sensitive to oxygen. Heterocysts are microxic cells that allow nitrogenase to function in a filament comprised primarily of vegetative cells that produce oxygen by photosynthesis. A. variabilis is unique among well-characterized cyanobacteria in that it has three nitrogenase gene clusters that encode different nitrogenases, which function under different environmental conditions. The nif1 genes encode a Mo-nitrogenase that functions only in heterocysts, even in filaments grown anaerobically. The nif2 genes encode a different Mo-nitrogenase that functions in vegetative cells, but only in filaments grown under anoxic conditions. An alternative V-nitrogenase is encoded by vnf genes that are expressed only in heterocysts in an environment that is deficient in Mo. Thus, these three nitrogenases are expressed differentially in response to environmental conditions. The entire nif1 gene cluster, comprising at least 15 genes, is primarily under the control of the promoter for the first gene, nifB1. Transcriptional control of many of the downstream nif1 genes occurs by a combination of weak promoters within the coding regions of some downstream genes and by RNA processing, which is associated with increased transcript stability. The vnf genes show a similar pattern of transcriptional and post-transcriptional control of expression suggesting that the complex pattern of regulation of the nif1 cluster is conserved in other cyanobacterial nitrogenase gene clusters.

  17. Clustering

    Directory of Open Access Journals (Sweden)

    Jinfei Liu

    2013-04-01

    Full Text Available DBSCAN is a well-known density-based clustering algorithm which offers advantages for finding clusters of arbitrary shapes compared to partitioning and hierarchical clustering methods. However, there are few papers studying the DBSCAN algorithm under the privacy preserving distributed data mining model, in which the data is distributed between two or more parties, and the parties cooperate to obtain the clustering results without revealing the data at the individual parties. In this paper, we address the problem of two-party privacy preserving DBSCAN clustering. We first propose two protocols for privacy preserving DBSCAN clustering over horizontally and vertically partitioned data respectively and then extend them to arbitrarily partitioned data. We also provide performance analysis and privacy proof of our solution..

  18. Yeast Extract and Silver Nitrate Induce the Expression of Phenylpropanoid Biosynthetic Genes and Induce the Accumulation of Rosmarinic Acid in Agastache rugosa Cell Culture

    OpenAIRE

    Woo Tae Park; Mariadhas Valan Arasu; Naif Abdullah Al-Dhabi; Sun Kyung Yeo; Jin Jeon; Jong Seok Park; Sook Young Lee; Sang Un Park

    2016-01-01

    The present study aimed to investigate the role of yeast extract and silver nitrate on the enhancement of phenylpropanoid pathway genes and accumulation of rosmarinic acid in Agastache rugosa cell cultures. The treatment of cell cultures with yeast extract (500 mg/L) and silver nitrate (30 mg/L) for varying times enhanced the expression of genes in the phenylpropanoid pathway and the production of rosmarinic acid. The results indicated that the expression of RAS and HPPR was proportional to t...

  19. Methods for simultaneously identifying coherent local clusters with smooth global patterns in gene expression profiles

    Directory of Open Access Journals (Sweden)

    Lee Yun-Shien

    2008-03-01

    Full Text Available Abstract Background The hierarchical clustering tree (HCT with a dendrogram 1 and the singular value decomposition (SVD with a dimension-reduced representative map 2 are popular methods for two-way sorting the gene-by-array matrix map employed in gene expression profiling. While HCT dendrograms tend to optimize local coherent clustering patterns, SVD leading eigenvectors usually identify better global grouping and transitional structures. Results This study proposes a flipping mechanism for a conventional agglomerative HCT using a rank-two ellipse (R2E, an improved SVD algorithm for sorting purpose seriation by Chen 3 as an external reference. While HCTs always produce permutations with good local behaviour, the rank-two ellipse seriation gives the best global grouping patterns and smooth transitional trends. The resulting algorithm automatically integrates the desirable properties of each method so that users have access to a clustering and visualization environment for gene expression profiles that preserves coherent local clusters and identifies global grouping trends. Conclusion We demonstrate, through four examples, that the proposed method not only possesses better numerical and statistical properties, it also provides more meaningful biomedical insights than other sorting algorithms. We suggest that sorted proximity matrices for genes and arrays, in addition to the gene-by-array expression matrix, can greatly aid in the search for comprehensive understanding of gene expression structures. Software for the proposed methods can be obtained at http://gap.stat.sinica.edu.tw/Software/GAP.

  20. Functional identification of gene cluster for the aniline metabolic pathway mediated by transposable element

    Institute of Scientific and Technical Information of China (English)

    LIANG Quanfeng; Takeo Masahiro; LIN Min; CHEN Ming; XU Yuquan; ZHANG Wei; PING Shuzhen; LU Wei; SONG Xianlong; WANG Weiwei; GENG Lizhao

    2005-01-01

    A convenient and widely applicable method has been developed to clone aniline metabolic gene cluster in this study. Three positive recombinant plasmids pDA1, pDB2 and pDB11 were cloned from genomic library of aniline degradation strain AD9. The result of aniline dioxygenase (AD) activity and catechol 2,3-oxygenase (C23O) activity assay showed that pDA1 and pDB11 contain aniline dioxygenase genes and catechol 2,3-dioxygenase genes, respectively. The sequence analysis of the total 24.7-kb region revealed that this region contains 25 ORFs, of which 17 genes involve metabolism of aniline. In the gene cluster, the first five genes (tadQTA1A2B) and the subsequent gene (tadR1) were predicted to encode a multi-component aniline dioxygenase and a LysR-type regulator, respectively, while the others (tadD1C1D2C2EFGIJKL) were expected to encode meta- cleavage pathway enzymes for catechol degradation. The gene cluster was surrounded by two IS1071 sequences.

  1. Form gene clustering method about pan-ethnic-group products based on emotional semantic

    Science.gov (United States)

    Chen, Dengkai; Ding, Jingjing; Gao, Minzhuo; Ma, Danping; Liu, Donghui

    2016-09-01

    The use of pan-ethnic-group products form knowledge primarily depends on a designer's subjective experience without user participation. The majority of studies primarily focus on the detection of the perceptual demands of consumers from the target product category. A pan-ethnic-group products form gene clustering method based on emotional semantic is constructed. Consumers' perceptual images of the pan-ethnic-group products are obtained by means of product form gene extraction and coding and computer aided product form clustering technology. A case of form gene clustering about the typical pan-ethnic-group products is investigated which indicates that the method is feasible. This paper opens up a new direction for the future development of product form design which improves the agility of product design process in the era of Industry 4.0.

  2. Evaluation of gene-expression clustering via mutual information distance measure

    Directory of Open Access Journals (Sweden)

    Maimon Oded

    2007-03-01

    Full Text Available Abstract Background The definition of a distance measure plays a key role in the evaluation of different clustering solutions of gene expression profiles. In this empirical study we compare different clustering solutions when using the Mutual Information (MI measure versus the use of the well known Euclidean distance and Pearson correlation coefficient. Results Relying on several public gene expression datasets, we evaluate the homogeneity and separation scores of different clustering solutions. It was found that the use of the MI measure yields a more significant differentiation among erroneous clustering solutions. The proposed measure was also used to analyze the performance of several known clustering algorithms. A comparative study of these algorithms reveals that their "best solutions" are ranked almost oppositely when using different distance measures, despite the found correspondence between these measures when analysing the averaged scores of groups of solutions. Conclusion In view of the results, further attention should be paid to the selection of a proper distance measure for analyzing the clustering of gene expression data.

  3. Physical and genetic map of the major nif gene cluster from Azotobacter vinelandii.

    Science.gov (United States)

    Jacobson, M R; Brigle, K E; Bennett, L T; Setterquist, R A; Wilson, M S; Cash, V L; Beynon, J; Newton, W E; Dean, D R

    1989-02-01

    Determination of a 28,793-base-pair DNA sequence of a region from the Azotobacter vinelandii genome that includes and flanks the nitrogenase structural gene region was completed. This information was used to revise the previously proposed organization of the major nif cluster. The major nif cluster from A. vinelandii encodes 15 nif-specific genes whose products bear significant structural identity to the corresponding nif-specific gene products from Klebsiella pneumoniae. These genes include nifH, nifD, nifK, nifT, nifY, nifE, nifN, nifX, nifU, nifS, nifV, nifW, nifZ, nifM, and nifF. Although there are significant spatial differences, the identified A. vinelandii nif-specific genes have the same sequential arrangement as the corresponding nif-specific genes from K. pneumoniae. Twelve other potential genes whose expression could be subject to nif-specific regulation were also found interspersed among the identified nif-specific genes. These potential genes do not encode products that are structurally related to the identified nif-specific gene products. Eleven potential nif-specific promoters were identified within the major nif cluster, and nine of these are preceded by an appropriate upstream activator sequence. A + T-rich regions were identified between 8 of the 11 proposed nif promoter sequences and their upstream activator sequences. Site-directed deletion-and-insertion mutagenesis was used to establish a genetic map of the major nif cluster.

  4. Physical and genetic map of the major nif gene cluster from Azotobacter vinelandii.

    Science.gov (United States)

    Jacobson, M R; Brigle, K E; Bennett, L T; Setterquist, R A; Wilson, M S; Cash, V L; Beynon, J; Newton, W E; Dean, D R

    1989-02-01

    Determination of a 28,793-base-pair DNA sequence of a region from the Azotobacter vinelandii genome that includes and flanks the nitrogenase structural gene region was completed. This information was used to revise the previously proposed organization of the major nif cluster. The major nif cluster from A. vinelandii encodes 15 nif-specific genes whose products bear significant structural identity to the corresponding nif-specific gene products from Klebsiella pneumoniae. These genes include nifH, nifD, nifK, nifT, nifY, nifE, nifN, nifX, nifU, nifS, nifV, nifW, nifZ, nifM, and nifF. Although there are significant spatial differences, the identified A. vinelandii nif-specific genes have the same sequential arrangement as the corresponding nif-specific genes from K. pneumoniae. Twelve other potential genes whose expression could be subject to nif-specific regulation were also found interspersed among the identified nif-specific genes. These potential genes do not encode products that are structurally related to the identified nif-specific gene products. Eleven potential nif-specific promoters were identified within the major nif cluster, and nine of these are preceded by an appropriate upstream activator sequence. A + T-rich regions were identified between 8 of the 11 proposed nif promoter sequences and their upstream activator sequences. Site-directed deletion-and-insertion mutagenesis was used to establish a genetic map of the major nif cluster. PMID:2644218

  5. Regulation of Gene Expression of Catecholamine Biosynthetic Enzymes in Dopamine-β-Hydroxylase- and CRH-Knockout Mice Exposed to Stress

    OpenAIRE

    Richard, Kvetnansky; Olga, Krizanova; Andrej, Tillinger; Sabban Esther, L.; Thomas Steven, A; Lucia, Kubovcakova

    2008-01-01

    Norepinephrine-deficient mice harbor a disruption of the gene for dopamine-β-hydroxylase (DBH-KO). Corticotropin-releasing hormone knockout mice (CRH-KO) have markedly reduced HPA activity. The aim of the present work was to study how deficiency of DBH and CRH would affect tyrosine hydroxylase (TH), DBH, and phenylethanolamine N-methyltransferase (PNMT) gene expression and protein levels in the adrenal medulla (AM) and stellate ganglia (SG) of control and stressed mice. Both in AM and SG, sin...

  6. Biosynthetic pathway of terpenoid indole alkaloids in Catharanthus roseus.

    Science.gov (United States)

    Zhu, Xiaoxuan; Zeng, Xinyi; Sun, Chao; Chen, Shilin

    2014-09-01

    Catharanthus roseus is one of the most extensively investigated medicinal plants, which can produce more than 130 alkaloids, including the powerful antitumor drugs vinblastine and vincristine. Here we review the recent advances in the biosynthetic pathway of terpenoid indole alkaloids (TIAs) in C. roseus, and the identification and characterization of the corresponding enzymes involved in this pathway. Strictosidine is the central intermediate in the biosynthesis of different TIAs, which is formed by the condensation of secologanin and tryptamine. Secologanin is derived from terpenoid (isoprenoid) biosynthetic pathway, while tryptamine is derived from indole biosynthetic pathway. Then various specific end products are produced by different routes during downstream process. Although many genes and corresponding enzymes have been characterized in this pathway, our knowledge on the whole TIA biosynthetic pathway still remains largely unknown up to date. Full elucidation of TIA biosynthetic pathway is an important prerequisite to understand the regulation of the TIA biosynthesis in the medicinal plant and to produce valuable TIAs by synthetic biological technology. PMID:25159992

  7. Sterol Composition and Biosynthetic Genes of Vitrella brassicaformis, a Recently Discovered Chromerid: Comparison to Chromera velia and Phylogenetic Relationship with Apicomplexan Parasites.

    Science.gov (United States)

    Khadka, Manoj; Salem, Mohamed; Leblond, Jeffrey D

    2015-01-01

    Vitrella brassicaformis is the second discovered species in the Chromerida, and first in the family Vitrellaceae. Chromera velia, the first discovered species, forms an independent photosynthetic lineage with V. brassicaformis, and both are closely related to peridinin-containing dinoflagellates and nonphotosynthetic apicomplexans; both also show phylogenetic closeness with red algal plastids. We have utilized gas chromatography/mass spectrometry to identify two free sterols, 24-ethylcholest-5-en-3β-ol, and a minor unknown sterol which appeared to be a C(28:4) compound. We have also used RNA Seq analysis to identify seven genes found in the nonmevalonate/methylerythritol pathway (MEP) for sterol biosynthesis. Subsequent genome analysis of V. brassicaformis showed the presence of two mevalonate (MVA) pathway genes, though the genes were not observed in the transcriptome analysis. Transcripts from four genes (dxr, ispf, ispd, and idi) were selected and translated into proteins to study the phylogenetic relationship of sterol biosynthesis in V. brassicaformis and C. velia to other groups of algae and apicomplexans. On the basis of our genomic and transcriptomic analyses, we hypothesize that the MEP pathway was the primary pathway that apicomplexans used for sterol biosynthesis before they lost their sterol biosynthesis ability, although contribution of the MVA pathway cannot be discounted.

  8. Trichodiene production in a Trichoderma harzianum erg1-silenced strain provides evidence of the importance of the sterol biosynthetic pathway in inducing plant defense-related gene expression

    Science.gov (United States)

    Trichoderma species are often used as biocontrol agents against plant-pathogenic fungi. A complex molecular interaction occurs among the biocontrol agent, the antagonistic fungus, and the plant. Terpenes and sterols produced by the biocontrol fungus have been found to affect gene expression in both ...

  9. Research Progress on Capsaicinoids Biosynthetic Pathway and Its Related Genes%辣椒素类物质生物合成途径及其相关基因研究进展

    Institute of Scientific and Technical Information of China (English)

    吴智明; 程蛟文; 唐鑫; 胡开林

    2012-01-01

    辣椒素类物质是辣椒果实胎座中产生的特异辣味代谢产物的总称.辣椒素类物质在辣椒果实中的生物合成主要有两条途径:以苯丙氨酸为前体的苯丙烷途径和以缬氨酸或亮氨酸为前体的支链脂肪酸途径.本文综述了近年来国内外学者在辣椒素类物质生物合成过程中的主要酶类基因的克隆、基因表达调控机制研究方面取得的最新进展.%Capsaicinoids are the substances responsible for the pungent sensation that synthesize and accumulate unique in fruits placental tissues of Capsicum species. Capsaicinoids are biosynthesized through 2 pathways: phenylpropanoid and branched-chain fatty acid pathways, which provide the precursors phenylalanine and valine or leucine, respectively. This paper reviewed the new research progress on studying the enzymes and genes participating in the biosynthetic pathway and the regulatory process that accounts for different accumulation levels of capsaicinoids in chili pepper fruits.

  10. A phase synchronization clustering algorithm for identifying interesting groups of genes from cell cycle expression data

    Directory of Open Access Journals (Sweden)

    Tcha Hong

    2008-01-01

    Full Text Available Abstract Background The previous studies of genome-wide expression patterns show that a certain percentage of genes are cell cycle regulated. The expression data has been analyzed in a number of different ways to identify cell cycle dependent genes. In this study, we pose the hypothesis that cell cycle dependent genes are considered as oscillating systems with a rhythm, i.e. systems producing response signals with period and frequency. Therefore, we are motivated to apply the theory of multivariate phase synchronization for clustering cell cycle specific genome-wide expression data. Results We propose the strategy to find groups of genes according to the specific biological process by analyzing cell cycle specific gene expression data. To evaluate the propose method, we use the modified Kuramoto model, which is a phase governing equation that provides the long-term dynamics of globally coupled oscillators. With this equation, we simulate two groups of expression signals, and the simulated signals from each group shares their own common rhythm. Then, the simulated expression data are mixed with randomly generated expression data to be used as input data set to the algorithm. Using these simulated expression data, it is shown that the algorithm is able to identify expression signals that are involved in the same oscillating process. We also evaluate the method with yeast cell cycle expression data. It is shown that the output clusters by the proposed algorithm include genes, which are closely associated with each other by sharing significant Gene Ontology terms of biological process and/or having relatively many known biological interactions. Therefore, the evaluation analysis indicates that the method is able to identify expression signals according to the specific biological process. Our evaluation analysis also indicates that some portion of output by the proposed algorithm is not obtainable by the traditional clustering algorithm with

  11. Organization of the human keratin type II gene cluster at 12q13

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, S.J.; LeBlanc-Straceski, J.; Krauter, K. [Albert Einstein College of Medicine, Bronx, NY (United States)] [and others

    1994-12-01

    Keratin proteins constitute intermediate filaments and are the major differentiation products of mammalian epithelial cells. The epithelial keratins are classified into two groups, type I and type II, and one member of each group is expressed in a given epithelial cell differentiation stage. Mutations in type I and type II keratin genes have now been implicated in three different human genetic disorders, epidermolysis bullosa simplex, epidermolytic hyperkeratosis, and epidermolytic palmoplantar keratoderma. Members of the type I keratins are mapped to human chromosome 17, and the type II keratin genes are mapped to chromosome 12. To understand the organization of the type II keratin genes on chromosome 12, we isolated several yeast artificial chromosomes carrying these keratin genes and examined them in detail. We show that eight already known type II keratin genes are located in a cluster at 12q13, and their relative organization reflects their evolutionary relationship. We also determined that a type I keratin gene, KRT8, is located next to its partner, KRT18, in this cluster. Careful examination of the cluster also revealed that there may be a number of additional keratin genes at this locus that have not been described previously. 41 refs., 3 figs., 1 tab.

  12. Mapping of the {alpha}{sub 4} subunit gene (GABRA4) to human chromosome 4 defines an {alpha}{sub 2}-{alpha}{sub 4}-{beta}{sub 1}-{gamma}{sub 1} gene cluster: Further evidence that modern GABA{sub a} receptor gene clusters are derived from an ancestral cluster

    Energy Technology Data Exchange (ETDEWEB)

    McLean, P.J.; Farb, D.H.; Russek, S.J. [Boston Univ. School of Medicine, MA (United States)] [and others

    1995-04-10

    We demonstrated previously that an {alpha}{sub 1}-{beta}{sub 2}-{gamma}{sub 2} gene cluster of the {gamma}-aminobutyric acid (GABA{sub A}) receptor is located on human chromosome 5q34-q35 and that an ancestral {alpha}-{beta}-{gamma} gene cluster probably spawned clusters on chromosomes 4, 5, and 15. Here, we report that the {alpha}{sub 4} gene (GABRA4) maps to human chromosome 4p14-q12, defining a cluster comprising the {alpha}{sub 2}, {alpha}{sub 4}, {beta}{sub 1}, and {gamma}{sub 1} genes. The existence of an {alpha}{sub 2}-{alpha}{sub 4}-{beta}{sub 1}-{gamma}{sub 2} cluster on chromosome 4 and an {alpha}{sub 1}-{alpha}{sub 6}-{beta}{sub 2}-{gamma}{sub 2} cluster on chromosome 5 provides further evidence that the number of ancestral GABA{sub A} receptor subunit genes has been expanded by duplication within an ancestral gene cluster. Moreover, if duplication of the {alpha} gene occurred before duplication of the ancestral gene cluster, then a heretofore undiscovered subtype of a subunit should be located on human chromosome 15q11-q13 within an {alpha}{sub 5}-{alpha}{sub x}-{beta}{sub 3}-{gamma}{sub 3} gene cluster at the locus for Angelman and Prader-Willi syndromes. 34 refs., 6 figs., 1 tab.

  13. Evolutionary systems biology of amino acid biosynthetic cost in yeast.

    Directory of Open Access Journals (Sweden)

    Michael D Barton

    Full Text Available Every protein has a biosynthetic cost to the cell based on the synthesis of its constituent amino acids. In order to optimise growth and reproduction, natural selection is expected, where possible, to favour the use of proteins whose constituents are cheaper to produce, as reduced biosynthetic cost may confer a fitness advantage to the organism. Quantifying the cost of amino acid biosynthesis presents challenges, since energetic requirements may change across different cellular and environmental conditions. We developed a systems biology approach to estimate the cost of amino acid synthesis based on genome-scale metabolic models and investigated the effects of the cost of amino acid synthesis on Saccharomyces cerevisiae gene expression and protein evolution. First, we used our two new and six previously reported measures of amino acid cost in conjunction with codon usage bias, tRNA gene number and atomic composition to identify which of these factors best predict transcript and protein levels. Second, we compared amino acid cost with rates of amino acid substitution across four species in the genus Saccharomyces. Regardless of which cost measure is used, amino acid biosynthetic cost is weakly associated with transcript and protein levels. In contrast, we find that biosynthetic cost and amino acid substitution rates show a negative correlation, but for only a subset of cost measures. In the economy of the yeast cell, we find that the cost of amino acid synthesis plays a limited role in shaping transcript and protein expression levels compared to that of translational optimisation. Biosynthetic cost does, however, appear to affect rates of amino acid evolution in Saccharomyces, suggesting that expensive amino acids may only be used when they have specific structural or functional roles in protein sequences. However, as there appears to be no single currency to compute the cost of amino acid synthesis across all cellular and environmental

  14. The influence of salt (NaCl) on ochratoxin A biosynthetic genes, growth and ochratoxin A production by three strains of Penicillium nordicum on a dry-cured ham-based medium.

    Science.gov (United States)

    Rodríguez, Alicia; Medina, Ángel; Córdoba, Juan J; Magan, Naresh

    2014-05-16

    Iberian dry-cured ham is colonised by moulds during the ripening process. The environmental conditions occurring during the process including the salt content predisposes the surface to colonisation by Penicillium species, including Penicillium nordicum which can contaminate the curing ham with ochratoxin A (OTA). The objective of this study was to examine the effect of NaCl (10% and 22%=0.94 and 0.87 water activity (aw)) on the activation of two genes involved in the biosynthetic pathway for OTA production, otapksPN and otanpsPN, relative growth and phenotypic OTA production by three strains of P. nordicum (CBS 110.769, FHSCC1 and FHSCC2) on a ham-based medium over a period of 12days at 25°C. Growth of the three strains was faster at 0.87 than 0.94 aw on the ham-based media. However, some intra- and inter-strain differences were observed. Of the three strains, only two (CBS 110.789; FHSCC2) were able to express the two genes involved in the biosynthesis of OTA in the two salt treatments. RT-qPCR showed that the temporal expression of the two genes (otapksPN and otanpsPN) was relatively similar for the wild type strain (FHSCC2) at both 0.94 and 0.87 aw over the 12day period. However, in the type strain (CBS 110.769) expression increased rapidly at 0.94 aw but was significantly lower at 0.87 aw. Expression of these two genes occurred after 3day incubation, while phenotypic OTA production was observed only after 6days in the two toxigenic strains. The other strain did not produce any OTA. The OTA concentrations confirmed the results observed with the molecular tools. This suggests that the RT-qPCR gene expression of these two genes may be a good early indicator of potential contamination of dry-cured ham with OTA during dry-cured ham ripening.

  15. Isolation of Hox cluster genes from insects reveals an accelerated sequence evolution rate.

    Directory of Open Access Journals (Sweden)

    Heike Hadrys

    Full Text Available Among gene families it is the Hox genes and among metazoan animals it is the insects (Hexapoda that have attracted particular attention for studying the evolution of development. Surprisingly though, no Hox genes have been isolated from 26 out of 35 insect orders yet, and the existing sequences derive mainly from only two orders (61% from Hymenoptera and 22% from Diptera. We have designed insect specific primers and isolated 37 new partial homeobox sequences of Hox cluster genes (lab, pb, Hox3, ftz, Antp, Scr, abd-a, Abd-B, Dfd, and Ubx from six insect orders, which are crucial to insect phylogenetics. These new gene sequences provide a first step towards comparative Hox gene studies in insects. Furthermore, comparative distance analyses of homeobox sequences reveal a correlation between gene divergence rate and species radiation success with insects showing the highest rate of homeobox sequence evolution.

  16. Erwinia carotovora ssp. carotovora Infection Induced "Defense Lignin" Accumulation and Lignin Biosynthetic Gene Expression in Chinese Cabbage (Brassica rapa L. ssp. pekinensis)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Erwinia carotovora subsp. carotovora (Ecc) infects and causes soft rot disease in hundreds of crop species including vegetables, flowers and fruits. Lignin biosynthesis has been implicated in defensive reactions to injury and pathogen Infection in plants. In this work, variations of lignin content and gene expression in the molecular interaction between Chinese cabbage and Ecc were investigated. H2O2 accumulation and peroxidase activity were detected by 3, 3'-Dimethoxybenzidine staining at mocked and Ecc-inoculated sites of Chinese cabbage leafstalks. Klason lignin content in inoculated plants increased by about 7.84%, 40.37%, and 43.13% more than that of the mocked site at 12, 24 and 72 h after inoculation, respectively. Gas chromatography detected more p-coumaryl (H) and less coniferyl (G) and sinapyl (S)monolignins in leafstalks of Chinese cabbage. All three monomers increased in Ecc-infected leafstalks, and the Ecc-induced "defense lignin" were composed of more G and H monolignins, and less S monolignin. After searching the expressed sequence tags (EST) data of Chinese cabbage, 12 genes putatively encoding enzymes involved in lignin biosynthesis were selected to study their expression. All of these genes could be Induced by mock inoculation and Ecc infection, while the gene expression lasted for several more hours in the infected samples than in mocked and untreated plants. Our results indicated that "defense lignin" was different from the developmental lignin in composition; G and S monolignins were significantly induced in plants in response to the soft rot Ecc; thus, lignin biosynthesis was differentially regulated and played a role in plant response to the soft rot Ecc.

  17. Expression profile of genes coding for carotenoid biosynthetic pathway during ripening and their association with accumulation of lycopene in tomato fruits.

    Science.gov (United States)

    Smita, Shuchi; Rajwanshi, Ravi; Lenka, Sangram Keshari; Katiyar, Amit; Chinnusamy, Viswanathan; Bansal, Kailash Chander

    2013-12-01

    Fruit ripening process is associated with change in carotenoid profile and accumulation of lycopene in tomato (Solanum lycopersicum L.). In this study, we quantified the beta-carotene and lycopene content at green, breaker and red-ripe stages of fruit ripening in eight tomato genotypes by using high-performance liquid chromatography. Among the genotypes, lycopene content was found highest in Pusa Rohini and lowest in VRT-32-1. To gain further insight into the regulation of lycopene biosynthesis and accumulation during fruit ripening, expression analysis of nine carotenoid pathway-related genes was carried out in the fruits of high lycopene genotype-Pusa Rohini. We found that expression of phytoene synthase and beta-carotene hydroxylase-1 was four and thirty-fold higher, respectively, at breaker stage as compared to red-ripe stage of fruit ripening. Changes in the expression level of these genes were associated with a 40% increase in lycopene content at red-ripe stage as compared with breaker stage. Thus, the results from our study suggest the role of specific carotenoid pathway-related genes in accumulation of high lycopene during the fruit ripening processes.

  18. Expression profile of genes coding for carotenoid biosynthetic pathway during ripening and their association with accumulation of lycopene in tomato fruits

    Indian Academy of Sciences (India)

    Shuchi Smita; Ravi Rajwanshi; Sangram Keshari Lenka; Amit Katiyar; Viswanathan Chinnusamy; Kailash Chander Bansal

    2013-12-01

    Fruit ripening process is associated with change in carotenoid profile and accumulation of lycopene in tomato (Solanum lycopersicum L.). In this study, we quantified the -carotene and lycopene content at green, breaker and red-ripe stages of fruit ripening in eight tomato genotypes by using high-performance liquid chromatography. Among the genotypes, lycopene content was found highest in Pusa Rohini and lowest in VRT-32-1. To gain further insight into the regulation of lycopene biosynthesis and accumulation during fruit ripening, expression analysis of nine carotenoid pathway-related genes was carried out in the fruits of high lycopene genotype—Pusa Rohini. We found that expression of phytoene synthase and -carotene hydroxylase-1 was four and thirty-fold higher, respectively, at breaker stage as compared to red-ripe stage of fruit ripening. Changes in the expression level of these genes were associated with a 40% increase in lycopene content at red-ripe stage as compared with breaker stage. Thus, the results from our study suggest the role of specific carotenoid pathway-related genes in accumulation of high lycopene during the fruit ripening processes.

  19. Biclustering for the comprehensive search of correlated gene expression patterns using clustered seed expansion

    OpenAIRE

    Yun, Taegyun; Yi, Gwan-Su

    2013-01-01

    Background In a functional analysis of gene expression data, biclustering method can give crucial information by showing correlated gene expression patterns under a subset of conditions. However, conventional biclustering algorithms still have some limitations to show comprehensive and stable outputs. Results We propose a novel biclustering approach called “BIclustering by Correlated and Large number of Individual Clustered seeds (BICLIC)” to find comprehensive sets of correlated expression p...

  20. The Serratia gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species- and strain-dependent genome context variation

    DEFF Research Database (Denmark)

    Harris, Abigail K P; Williamson, Neil R; Slater, Holly;

    2004-01-01

    The prodigiosin biosynthesis gene cluster (pig cluster) from two strains of Serratia (S. marcescens ATCC 274 and Serratia sp. ATCC 39006) has been cloned, sequenced and expressed in heterologous hosts. Sequence analysis of the respective pig clusters revealed 14 ORFs in S. marcescens ATCC 274 and...

  1. The Magea gene cluster regulates male germ cell apoptosis without affecting the fertility in mice

    Science.gov (United States)

    Hou, Siyuan; Xian, Li; Shi, Peiliang; Li, Chaojun; Lin, Zhaoyu; Gao, Xiang

    2016-01-01

    While apoptosis is essential for male germ cell development, improper activation of apoptosis in the testis can affect spermatogenesis and cause reproduction defects. Members of the MAGE-A (melanoma antigen family A) gene family are frequently clustered in mammalian genomes and are exclusively expressed in the testes of normal animals but abnormally activated in a wide variety of cancers. We investigated the potential roles of these genes in spermatogenesis by generating a mouse model with a 210-kb genomic deletion encompassing six members of the Magea gene cluster (Magea1, Magea2, Magea3, Magea5, Magea6 and Magea8). Male mice carrying the deletion displayed smaller testes from 2 months old with a marked increase in apoptotic germ cells in the first wave of spermatogenesis. Furthermore, we found that Magea genes prevented stress-induced spermatogenic apoptosis after N-ethyl-N-nitrosourea (ENU) treatment during the adult stage. Mechanistically, deletion of the Magea gene cluster resulted in a dramatic increase in apoptotic germ cells, predominantly spermatocytes, with activation of p53 and induction of Bax in the testes. These observations demonstrate that the Magea genes are crucial in maintaining normal testicular size and protecting germ cells from excessive apoptosis under genotoxic stress. PMID:27226137

  2. The Magea gene cluster regulates male germ cell apoptosis without affecting the fertility in mice.

    Science.gov (United States)

    Hou, Siyuan; Xian, Li; Shi, Peiliang; Li, Chaojun; Lin, Zhaoyu; Gao, Xiang

    2016-01-01

    While apoptosis is essential for male germ cell development, improper activation of apoptosis in the testis can affect spermatogenesis and cause reproduction defects. Members of the MAGE-A (melanoma antigen family A) gene family are frequently clustered in mammalian genomes and are exclusively expressed in the testes of normal animals but abnormally activated in a wide variety of cancers. We investigated the potential roles of these genes in spermatogenesis by generating a mouse model with a 210-kb genomic deletion encompassing six members of the Magea gene cluster (Magea1, Magea2, Magea3, Magea5, Magea6 and Magea8). Male mice carrying the deletion displayed smaller testes from 2 months old with a marked increase in apoptotic germ cells in the first wave of spermatogenesis. Furthermore, we found that Magea genes prevented stress-induced spermatogenic apoptosis after N-ethyl-N-nitrosourea (ENU) treatment during the adult stage. Mechanistically, deletion of the Magea gene cluster resulted in a dramatic increase in apoptotic germ cells, predominantly spermatocytes, with activation of p53 and induction of Bax in the testes. These observations demonstrate that the Magea genes are crucial in maintaining normal testicular size and protecting germ cells from excessive apoptosis under genotoxic stress. PMID:27226137

  3. Reconstitution of Biosynthetic Machinery for the Synthesis of the Highly Elaborated Indole Diterpene Penitrem

    DEFF Research Database (Denmark)

    Liu, Chengwei; Tagami, Koichi; Minami, Atsushi;

    2015-01-01

    KULNJ). Importantly, without conventional gene disruption, reconstitution of the biosynthetic machinery provided sufficient data to determine the pathway. It was thus demonstrated that the Aspergillus oryzae reconstitution system is a powerful method for studying the biosynthesis of complex natural products....

  4. Characterization and biological role of the O-polysaccharide gene cluster of Yersinia enterocolitica serotype O : 9

    DEFF Research Database (Denmark)

    Skurnik, Mikael; Biedzka-Sarek, Marta; Lubeck, Peter S.;

    2007-01-01

    an attachment site for both the outer core (OC) hexasaccharide and the O-polysaccharide (OPS; a homopolymer of N-formylperosamine). In this work, we cloned the OPS gene cluster of O:9 and identified 12 genes organized into four operons upstream of the gnd gene. Ten genes were predicted to encode...... glycosyltransferases, the ATP-binding cassette polysaccharide translocators, or enzymes required for the biosynthesis of GDP-N-formylperosamine. The two remaining genes within the OPS gene cluster, galF and galU, were not ascribed a clear function in OPS biosynthesis; however, the latter gene appeared to be essential...

  5. Characterization of denitrification gene clusters of soil bacteria via a metagenomic approach

    OpenAIRE

    Demanèche, Sandrine; Philippot, Laurent; David, Maude M.; Navarro, Elisabeth; Vogel, Timothy,; Simonet, Pascal

    2009-01-01

    We characterized operons encoding enzymes involved in denitrification, a nitrogen-cycling process involved in nitrogen losses and greenhouse gas emission, using a metagenomic approach which combines molecular screening and pyrosequencing. Screening of 77,000 clones from a soil metagenomic library led to the identification and the subsequent characterization of nine denitrification gene clusters.

  6. Regulation of purine biosynthetic genes expression in Salmonella typhimurium Ⅳ O~c mutation site of purG and its function analysis

    Institute of Scientific and Technical Information of China (English)

    刘奔; 黄谊; 王敖全

    1997-01-01

    Salmonella typhimurium 5 phosphoribosylformylglycinamide (FGAR) amidotransferase encoded by purG gene catalyzes the conversion of FGAR to formylglycinamide ribonucleotide (FGAM) in the presence of glu-tamine and ATP for the de novo purine nucleotide biosynthesis. purG gene is negatively regulated by a repressor-oper-ator system. The O+ purG and OC purG were cloned respectively in vivo. Restriction enzymes analysis of preliminary clones pLBG-1 (O + ) and pLBG-2 (OC) were carried out. The hybrid plasmids pLB1933 (O+ ) and pLB1927 (OC) containing 5 control region of purG were constructed and the DNA sequences were determined respectively. DNA se-quences data showed that Oc mutation of purG occurred at the 3rd position of 16 bp PUR box in the 5’ control region ( G→A). Gel retardation experiment indicated that the repressor bound well with O+ PUR box, but not with Oc PUR box. The result strongly supported the idea that PUR box is the binding region of represser protein and the 3rd posi-tion base G of PUR bo

  7. Structure determination and interception of biosynthetic intermediates for the plantazolicin class of highly discriminating antibiotics.

    Science.gov (United States)

    Molohon, Katie J; Melby, Joel O; Lee, Jaeheon; Evans, Bradley S; Dunbar, Kyle L; Bumpus, Stefanie B; Kelleher, Neil L; Mitchell, Douglas A

    2011-12-16

    The soil-dwelling, plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42 is a prolific producer of complex natural products. Recently, a new FZB42 metabolite, plantazolicin (PZN), has been described as a member of the growing thiazole/oxazole-modified microcin (TOMM) family. TOMMs are biosynthesized from inactive, ribosomal peptides and undergo a series of cyclodehydrations, dehydrogenations, and other modifications to become bioactive natural products. Using high-resolution mass spectrometry, chemoselective modification, genetic interruptions, and other spectroscopic tools, we have determined the molecular structure of PZN. In addition to two conjugated polyazole moieties, the amino-terminus of PZN has been modified to N(α),N(α)-dimethylarginine. PZN exhibited a highly selective antibiotic activity toward Bacillus anthracis, but no other tested human pathogen. By altering oxygenation levels during fermentation, PZN analogues were produced that bear variability in their heterocycle content, which yielded insight into the order of biosynthetic events. Lastly, genome-mining has revealed the existence of four additional PZN-like biosynthetic gene clusters. Given their structural uniqueness and intriguing antimicrobial specificity, the PZN class of antibiotics may hold pharmacological value. PMID:21950656

  8. The impact of polyploidy on the evolution of a complex NB-LRR resistance gene cluster in soybean

    Science.gov (United States)

    A comparative genomics approach was used to investigate the evolution of a complex NB-LRR gene cluster found in soybean (Glycine max), common bean (Phaseolus vulgaris), and other legumes. In soybean, the cluster is associated with several disease resistance (R) genes of known function including Rpg1...

  9. Genes in a 220-kb region spanning the TNF cluster in human MHC

    Energy Technology Data Exchange (ETDEWEB)

    Nalabolu, S.R.; Nallur, G.; Weissman, S.M. [Yale Univ. School of Medicine, New Haven, CT (United States)] [and others

    1996-01-15

    A search for new genes was performed in a 220-kb region around the tumor necrosis factor gene cluster in the human central major histocompatibility complex region using a cDNA hybridization and selection method. In addition to the seven known genes in this region, we identified a new gene that is preferentially expressed in spleen. We also identified two pseudogenes that have high degrees of homology to cytokeratin and cyclophillin, respectively. Expressed sequences for a human homologue of the mouse B144 gene were also found in the current analysis. RT-PCR analysis showed that B144 is expressed in spleen, in thymus, and prominently in the macrophage cell line, U937. We also independently identified the BAT1 gene to be the well-conserved homologue of a previously described rat liver nuclear protein. 53 refs., 6 figs., 1 tab.

  10. A Gene Selection Approach based on Clustering for Classification Tasks in Colon Cancer

    Directory of Open Access Journals (Sweden)

    José Antonio CASTELLANOS GARZÓN

    2016-06-01

    Full Text Available Gene selection (GS is an important research area in the analysis of DNA-microarray data, since it involves gene discovery meaningful for a particular target annotation or able to discriminate expression profiles of samples coming from different populations. In this context, a wide number of filter methods have been proposed in the literature to identify subsets of relevant genes in accordance with prefixed targets. Despite the fact that there is a wide number of proposals, the complexity imposed by this problem (GS remains a challenge. Hence, this paper proposes a novel approach for gene selection by using cluster techniques and filter methods on the found groupings to achieve informative gene subsets. As a result of applying our methodology to Colon cancer data, we have identified the best informative gene subset between several one subsets. According to the above, the reached results have proven the reliability of the approach given in this paper.

  11. Evaluation of Biosynthetic Pathway and Engineered Biosynthesis of Alkaloids.

    Science.gov (United States)

    Kishimoto, Shinji; Sato, Michio; Tsunematsu, Yuta; Watanabe, Kenji

    2016-01-01

    Varieties of alkaloids are known to be produced by various organisms, including bacteria, fungi and plants, as secondary metabolites that exhibit useful bioactivities. However, understanding of how those metabolites are biosynthesized still remains limited, because most of these compounds are isolated from plants and at a trace level of production. In this review, we focus on recent efforts in identifying the genes responsible for the biosynthesis of those nitrogen-containing natural products and elucidating the mechanisms involved in the biosynthetic processes. The alkaloids discussed in this review are ditryptophenaline (dimeric diketopiperazine alkaloid), saframycin (tetrahydroisoquinoline alkaloid), strictosidine (monoterpene indole alkaloid), ergotamine (ergot alkaloid) and opiates (benzylisoquinoline and morphinan alkaloid). This review also discusses the engineered biosynthesis of these compounds, primarily through heterologous reconstitution of target biosynthetic pathways in suitable hosts, such as Escherichia coli, Saccharomyces cerevisiae and Aspergillus nidulans. Those heterologous biosynthetic systems can be used to confirm the functions of the isolated genes, economically scale up the production of the alkaloids for commercial distributions and engineer the biosynthetic pathways to produce valuable analogs of the alkaloids. In particular, extensive involvement of oxidation reactions catalyzed by oxidoreductases, such as cytochrome P450s, during the secondary metabolite biosynthesis is discussed in details. PMID:27548127

  12. Evaluation of Biosynthetic Pathway and Engineered Biosynthesis of Alkaloids

    Directory of Open Access Journals (Sweden)

    Shinji Kishimoto

    2016-08-01

    Full Text Available Varieties of alkaloids are known to be produced by various organisms, including bacteria, fungi and plants, as secondary metabolites that exhibit useful bioactivities. However, understanding of how those metabolites are biosynthesized still remains limited, because most of these compounds are isolated from plants and at a trace level of production. In this review, we focus on recent efforts in identifying the genes responsible for the biosynthesis of those nitrogen-containing natural products and elucidating the mechanisms involved in the biosynthetic processes. The alkaloids discussed in this review are ditryptophenaline (dimeric diketopiperazine alkaloid, saframycin (tetrahydroisoquinoline alkaloid, strictosidine (monoterpene indole alkaloid, ergotamine (ergot alkaloid and opiates (benzylisoquinoline and morphinan alkaloid. This review also discusses the engineered biosynthesis of these compounds, primarily through heterologous reconstitution of target biosynthetic pathways in suitable hosts, such as Escherichia coli, Saccharomyces cerevisiae and Aspergillus nidulans. Those heterologous biosynthetic systems can be used to confirm the functions of the isolated genes, economically scale up the production of the alkaloids for commercial distributions and engineer the biosynthetic pathways to produce valuable analogs of the alkaloids. In particular, extensive involvement of oxidation reactions catalyzed by oxidoreductases, such as cytochrome P450s, during the secondary metabolite biosynthesis is discussed in details.

  13. Identification and characterization of the inlGHE gene cluster of Listeria monocytogenes

    OpenAIRE

    Raffelsbauer, Diana

    2002-01-01

    In the present study, a new gene cluster of Listeria monocytogenes EGD containing three internalin genes was identified and characterized. These genes, termed inlG, inlH and inlE, encode proteins of 490, 548 and 499 amino acids, respectively, which belong to the class of large, surface-bound internalins. Each of these proteins contains a signal peptide, two regions of repeats (Leucine-rich repeats and B repeats), an inter-repeat region and a putative cell wall anchor sequence containing the s...

  14. Polymorphisms and linkage analysis for ICAM-1 and the selectin gene cluster

    Energy Technology Data Exchange (ETDEWEB)

    Vora, D.K.; Rosenbloom, C.L.; Cottingham, R.W. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1994-06-01

    Genetic polymorphisms in leukocyte and endothelial cell adhesion molecules may be important variables with regard to susceptibility to multifactorial disease processes that include an inflammatory component. For this reason, polymorphisms were sought for intercellular adhesion molecule-1 (ICAM-1; gene symbol ICAM1) and for the three genes in the selectin cluster, P-selectin, L-selectin, and E-selectin (gene symbols SELP, SELL, and SELE, respectively). Two amino acid polymorphisms were identified for ICAM-1; Gly or Arg at codon 241 and Lys or Glu at codon 469. Dinucleotide repeat polymorphisms were identified in the 3{prime}-untranslated region for ICAM-1 and in intron 9 for P-selectin. Restriction fragment length polymorphisms were found using cDNAs for each of the three selectin genes as probes; E-selectin with BglII, P-selectin with ScaI, and L-selectin with HincII. Linkage analysis was performed for the selectin gene cluster and for ICAM-1 using the CEPH families; ICAM-1 is very tightly linked to the LDL receptor on chromosome 19, and the selectin cluster is linked to markers at chromosome 1q23. 41 refs., 2 tabs.

  15. A scan statistic to extract causal gene clusters from case-control genome-wide rare CNV data

    Directory of Open Access Journals (Sweden)

    Scherer Stephen W

    2011-05-01

    Full Text Available Abstract Background Several statistical tests have been developed for analyzing genome-wide association data by incorporating gene pathway information in terms of gene sets. Using these methods, hundreds of gene sets are typically tested, and the tested gene sets often overlap. This overlapping greatly increases the probability of generating false positives, and the results obtained are difficult to interpret, particularly when many gene sets show statistical significance. Results We propose a flexible statistical framework to circumvent these problems. Inspired by spatial scan statistics for detecting clustering of disease occurrence in the field of epidemiology, we developed a scan statistic to extract disease-associated gene clusters from a whole gene pathway. Extracting one or a few significant gene clusters from a global pathway limits the overall false positive probability, which results in increased statistical power, and facilitates the interpretation of test results. In the present study, we applied our method to genome-wide association data for rare copy-number variations, which have been strongly implicated in common diseases. Application of our method to a simulated dataset demonstrated the high accuracy of this method in detecting disease-associated gene clusters in a whole gene pathway. Conclusions The scan statistic approach proposed here shows a high level of accuracy in detecting gene clusters in a whole gene pathway. This study has provided a sound statistical framework for analyzing genome-wide rare CNV data by incorporating topological information on the gene pathway.

  16. Soluble Methane Monooxygenase Gene Clusters from Trichloroethylene-Degrading Methylomonas sp. Strains and Detection of Methanotrophs during In Situ Bioremediation

    OpenAIRE

    Shigematsu, Toru; Hanada, Satoshi; Eguchi, Masahiro; Kamagata, Yoichi; Kanagawa, Takahiro; Kurane, Ryuichiro

    1999-01-01

    The soluble MMO (sMMO) gene clusters from group I methanotrophs were characterized. An 8.1-kb KpnI fragment from Methylomonas sp. strain KSWIII and a 7.5-kb SalI fragment from Methylomonas sp. strain KSPIII which contained the sMMO gene clusters were cloned and sequenced. The sequences of these two fragments were almost identical. The sMMO gene clusters in the fragment consisted of six open reading frames which were 52 to 79% similar to the corresponding genes of previously described sMMO gen...

  17. Structure, function, and regulation of the aldouronate utilization gene cluster from Paenibacillus sp. strain JDR-2.

    Science.gov (United States)

    Chow, Virginia; Nong, Guang; Preston, James F

    2007-12-01

    Direct bacterial conversion of the hemicellulose fraction of hardwoods and crop residues to biobased products depends upon extracellular depolymerization of methylglucuronoxylan (MeGAX(n)), followed by assimilation and intracellular conversion of aldouronates and xylooligosaccharides to fermentable xylose. Paenibacillus sp. strain JDR-2, an aggressively xylanolytic bacterium, secretes a multimodular cell-associated GH10 endoxylanase (XynA1) that catalyzes depolymerization of MeGAX(n) and rapidly assimilates the principal products, beta-1,4-xylobiose, beta-1,4-xylotriose, and MeGAX(3), the aldotetrauronate 4-O-methylglucuronosyl-alpha-1,2-xylotriose. Genomic libraries derived from this bacterium have now allowed cloning and sequencing of a unique aldouronate utilization gene cluster comprised of genes encoding signal transduction regulatory proteins, ABC transporter proteins, and the enzymes AguA (GH67 alpha-glucuronidase), XynA2 (GH10 endoxylanase), and XynB (GH43 beta-xylosidase/alpha-arabinofuranosidase). Expression of these genes, as well as xynA1 encoding the secreted GH10 endoxylanase, is induced by growth on MeGAX(n) and repressed by glucose. Sequences in the yesN, lplA, and xynA2 genes within the cluster and in the distal xynA1 gene show significant similarity to catabolite responsive element (cre) defined in Bacillus subtilis for recognition of the catabolite control protein (CcpA) and consequential repression of catabolic regulons. The aldouronate utilization gene cluster in Paenibacillus sp. strain JDR-2 operates as a regulon, coregulated with the expression of xynA1, conferring the ability for efficient assimilation and catabolism of the aldouronate product generated by a multimodular cell surface-anchored GH10 endoxylanase. This cluster offers a desirable metabolic potential for bacterial conversion of hemicellulose fractions of hardwood and crop residues to biobased products. PMID:17921311

  18. Nitrate assimilation gene cluster from the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120.

    Science.gov (United States)

    Frías, J E; Flores, E; Herrero, A

    1997-01-01

    A region of the genome of the filamentous, nitrogen-fixing, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 that contains a cluster of genes involved in nitrate assimilation has been identified. The genes nir, encoding nitrite reductase, and nrtABC, encoding elements of a nitrate permease, have been cloned. Insertion of a gene cassette into the nir-nrtA region impaired expression of narB, the nitrate reductase structural gene which together with nrtD is found downstream from nrtC in the gene cluster. This indicates that the nir-nrtABCD-narB genes are cotranscribed, thus constituting an operon. Expression of the nir operon in strain PCC 7120 is subjected to ammonium-promoted repression and takes place from an NtcA-activated promoter located 460 bp upstream from the start of the nir gene. In the absence of ammonium, cellular levels of the products of the nir operon are higher in the presence of nitrate than in the absence of combined nitrogen.

  19. Biosynthetic porphyrins and the origin of photosynthesis

    Science.gov (United States)

    Mauzerall, D.; Ley, A.; Mercer-Smith, J. A.

    1986-01-01

    Since the prebiotic atmosphere was anaerobic, if not reducing, a useful function of primordial photosynthesis would have been to photooxidize reduced substrates such as Fe(+2), S(-2) or reduced organic molecules and to emit hydrogen. Experiments have shown that the early biogenic pigments uroporphyrin and coproporphyrin do photooxidize organic compounds and emit hydrogen in the presence of a platinum catalyst. These experiments were carried out in dilute aqueous solution near neutral pH under anaerobic atmosphere, and quantum yields near 10-2 were obtained. Thus relevant prebiotic conditions were maintained. Rather then to further optimize conditions, attempts were made to replace the platinum catalyst by a more prebiotically suitable catalyst. Trials with an Fe4S4(SR)4 cluster, in analogy to the present hydrogenase and nitrogenase, were not successful. However, experiments using cobalt complexes to catalyze the formation of hydrogen are promising. In analogy with biological photosynthetic systems which group pigments, electron transfer molecules and enzymes in clusters for efficiency, it was found that binding the biogenic porphyrins to the polyvinyl alcohol used to support the platinum catalyst did increase the quantum yield of the reaction. It was also found that ultraviolet light can serve to photo-oxidize porphyrinogens to porphyrins under anaerobic conditions. Thus the formation of the colorless porphyriogens by the extraordinarily simple biosynthetic pathway would not be a problem because of the prevalence of UV light in the prebiotic, anoxic atmosphere.

  20. Characterization of a novel phenazine antibiotic gene cluster in Erwinia herbicola Eh1087.

    Science.gov (United States)

    Giddens, Stephen R; Feng, Yunjiang; Mahanty, H Khris

    2002-08-01

    Erwinia herbicola strain Eh1087 produces the broad-spectrum phenazine antibiotic D-alanylgriseoluteic acid (AGA). In this report, a cluster of 16 ehp (Erwinia herbicola phenazine) plasmid genes required for the production of AGA by Eh1087 is described. The extent of the gene cluster was revealed by the isolation of 82 different Eh1087 AGA- mutants, all found to possess single mini-Tn5lacZ2 insertions within a 14 kbp DNA region. Additional transposon insertions that did not affect antibiotic production by Eh1087 were created to define the boundaries of the gene cluster. The size and location of genes between these boundaries were derived from a combination of DNA sequence analyses, minicell protein analyses and the correlation between mutation position and the production of coloured AGA intermediates by many ehp mutants. Precursor-feeding and complementation experiments resulted in 15 ehp genes being assigned to one of four functional groups according to their role in the synthesis of AGA. Group 1 is required for the synthesis of the phenazine nucleus in the form of antibiotic precursor one (AP1, phenazine-1,6-dicarboxylic acid). Group 2 is responsible for conversion of AP1 to AP2, which is subsequently modified to AP3 (griseoluteic acid) and exported by the group 3 gene products. Group 4 catalyses the addition of D-alanine to AP3 to create AGA, independently of groups 1, 2 and 3. A gene that is divergently transcribed from the 15 AGA synthesis ehp genes confers resistance to AGA. PMID:12139622

  1. Visualizing the HoxD Gene Cluster at the Nanoscale Level.

    Science.gov (United States)

    Fabre, Pierre J; Benke, Alexander; Manley, Suliana; Duboule, Denis

    2015-01-01

    Transcription of HoxD cluster genes in limbs is coordinated by two topologically associating domains (TADs), neighboring the cluster and containing various enhancers. Here, we use a combination of microscopy approaches and chromosome conformation capture to assess the structural changes occurring in this global architecture in various functional states. We observed that despite their spatial juxtaposition, the TADs are consistently kept as distinct three-dimensional units. Hox genes located at their boundary can show significant spatial segregation over long distances, suggesting that physical elongation of the HoxD cluster occurs. The use of superresolution imaging (STORM [stochastic optical reconstruction microscopy]) revealed that the gene cluster can be in an either compact or elongated shape. The latter configuration is observed in transcriptionally active tissue and in embryonic stem cells, consistent with chromosome conformation capture results. Such morphological changes at HoxD in developing digits seem to be associated with its position at the boundary between two TADs and support the idea that chromatin dynamics is important in the establishment of transcriptional activity. PMID:26767994

  2. Genetic variations and haplotype diversity of the UGT1 gene cluster in the Chinese population.

    Directory of Open Access Journals (Sweden)

    Jing Yang

    Full Text Available Vertebrates require tremendous molecular diversity to defend against numerous small hydrophobic chemicals. UDP-glucuronosyltransferases (UGTs are a large family of detoxification enzymes that glucuronidate xenobiotics and endobiotics, facilitating their excretion from the body. The UGT1 gene cluster contains a tandem array of variable first exons, each preceded by a specific promoter, and a common set of downstream constant exons, similar to the genomic organization of the protocadherin (Pcdh, immunoglobulin, and T-cell receptor gene clusters. To assist pharmacogenomics studies in Chinese, we sequenced nine first exons, promoter and intronic regions, and five common exons of the UGT1 gene cluster in a population sample of 253 unrelated Chinese individuals. We identified 101 polymorphisms and found 15 novel SNPs. We then computed allele frequencies for each polymorphism and reconstructed their linkage disequilibrium (LD map. The UGT1 cluster can be divided into five linkage blocks: Block 9 (UGT1A9, Block 9/7/6 (UGT1A9, UGT1A7, and UGT1A6, Block 5 (UGT1A5, Block 4/3 (UGT1A4 and UGT1A3, and Block 3' UTR. Furthermore, we inferred haplotypes and selected their tagSNPs. Finally, comparing our data with those of three other populations of the HapMap project revealed ethnic specificity of the UGT1 genetic diversity in Chinese. These findings have important implications for future molecular genetic studies of the UGT1 gene cluster as well as for personalized medical therapies in Chinese.

  3. Bacillus sp.CDB3 isolated from cattle dip-sites possesses two ars gene clusters

    Institute of Scientific and Technical Information of China (English)

    Somanath Bhat; Xi Luo; Zhiqiang Xu; Lixia Liu; Ren Zhang

    2011-01-01

    Contamination of soil and water by arsenic is a global problem.In Australia, the dipping of cattle in arsenic-containing solution to control cattle ticks in last centenary has left many sites heavily contaminated with arsenic and other toxicants.We had previously isolated five soil bacterial strains (CDB1-5) highly resistant to arsenic.To understand the resistance mechanism, molecular studies have been carried out.Two chromosome-encoded arsenic resistance (ars) gene clusters have been cloned from CDB3 (Bacillus sp.).They both function in Escherichia coli and cluster 1 exerts a much higher resistance to the toxic metalloid.Cluster 2 is smaller possessing four open reading frames (ORFs) arsRorf2BC, similar to that identified in Bacillus subtilis Skin element.Among the eight ORFs in cluster 1 five are analogs of common ars genes found in other bacteria, however, organized in a unique order arsRBCDA instead of arsRDABC.Three other putative genes are located directly downstream and designated as arsTIP based on the homologies of their theoretical translation sequences respectively to thioredoxin reductases, iron-sulphur cluster proteins and protein phosphatases.The latter two are novel of any known ars operons.The arsD gene from Bacillus species was cloned for the first time and the predict protein differs from the well studied E.coli ArsD by lacking two pairs of C-terrninal cysteine residues.Its functional involvement in arsenic resistance has been confirmed by a deletion experiment.There exists also an inverted repeat in the intergenic region between arsC and arsD implying some unknown transcription regulation.

  4. Role of Permutations in Significance Analysis of Microarray and Clustering of Significant Microarray Gene list

    Directory of Open Access Journals (Sweden)

    Tejashree Damle

    2012-03-01

    Full Text Available Microarray is the gene expression data that represent gene in different biological states. Methods are needed to determine the significance of these changes while accounting for the enormous number of genes. Significance analysis of microarrays (SAM is a statistical technique for determining whether changes in gene expression are statistically significant. During the SAM procedure permutation of microarray data is considered to observe the changes in the overall expression level of data. With increasing number of permutations false discovery rate for gene set varies. In our work we took microarray data of Normal Glucose Tolerance (NGT, and Diabetes Mellitus (DM Type II. In this paper we proposed the result of permutations during execution of SAM algorithm. The hierarchical clustering is applied for observing expression levels of significant data and visualize it with heat map.

  5. Identification of a Signal That Mediates the Crosstalk Between Biosynthetic Gene Clusters for the Antibiotics 2,4-diacetylphloroglucinol and Pyoluteorin in Pseudomonas protegens Pf-5

    Science.gov (United States)

    Pseudomonas protegens Pf-5 produces a broad spectrum of secondary metabolites with anti-microbial activity. The production of two of these metabolites, 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin, is coordinately regulated. Our previous study indicated that phloroglucinol, an intermediate in t...

  6. Cloning and sequencing of the kedarcidin biosynthetic gene cluster from Streptoalloteichus sp. ATCC 53650 revealing new insights into biosynthesis of the enediyne family of antitumor antibiotics†

    OpenAIRE

    Lohman, Jeremy R.; Huang, Sheng-Xiong; Horsman, Geoffrey P.; Dilfer, Paul E.; Huang, Tingting; Chen, Yihua; Wendt-Pienkowski, Evelyn; Shen, Ben

    2013-01-01

    Enediyne natural product biosynthesis is characterized by a convergence of multiple pathways, generating unique peripheral moieties that are appended onto the distinctive enediyne core. Kedarcidin (KED) possesses two unique peripheral moieties, a (R)-2-aza-3-chloro-β-tyrosine and an iso-propoxy-bearing 2-naphthonate moiety, as well as two deoxysugars. The appendage pattern of these peripheral moieties to the enediyne core in KED differs from the other enediynes studied to date with respect to...

  7. The efflux pump MlcE from the Penicillium solitum compactin biosynthetic gene cluster increases Saccharomyces cerevisiae resistance to natural statins

    DEFF Research Database (Denmark)

    Ley, Ana; Frandsen, Rasmus John Normand

    The use of statins as cholesterol-lowering drugs is based on their ability to inhibit 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), the key enzyme in the mevalonate pathway, which is responsible for the production of ergosterol in fungi and cholesterol in human. Industrial scale...... production of natural statins (i.e. compactin and lovastatin) and their semi-synthetic derivatives (i.e. pravastatin and simvastatin) is based on fermentation of statin-producing filamentous fungi, such as Aspergillus terreus and Penicillium solitum, however, the unique physiology and morphology make...

  8. Identification of a signal that mediates the crosstalk between biosynthetic gene clusters for the antibiotics 2,4-diacetylphloroglucinol and pyoluteorin in Pseudomonas protegens Pf-5

    Science.gov (United States)

    Pseudomonas protegens Pf-5 produces at least seven secondary metabolites with anti-microbial activity. The production of two of these metabolites, 2,4-diacetylphloroglucinol (2,4-DAPG) and pyoluteorin, is coordinately regulated. Each of the two metabolites functions as an intercellular signal, ind...

  9. Genomic organization and gene expression of the multiple globins in Atlantic cod: conservation of globin-flanking genes in chordates infers the origin of the vertebrate globin clusters

    OpenAIRE

    Jakobsen Kjetill S; Wilson Robert C; Nederbragt Alexander J; Wetten Ola F; Edvardsen Rolf B; Andersen Øivind

    2010-01-01

    Abstract Background The vertebrate globin genes encoding the α- and β-subunits of the tetrameric hemoglobins are clustered at two unlinked loci. The highly conserved linear order of the genes flanking the hemoglobins provides a strong anchor for inferring common ancestry of the globin clusters. In fish, the number of α-β-linked globin genes varies considerably between different sublineages and seems to be related to prevailing physico-chemical conditions. Draft sequences of the Atlantic cod g...

  10. Cloning of a copper resistance gene cluster from the cyanobacterium Synechocystis sp. PCC 6803 by recombineering recovery

    OpenAIRE

    Gittins, John R.

    2015-01-01

    A copper resistance gene cluster (6 genes, ?8.2?kb) was isolated from the cyanobacterium Synechocystis sp. PCC 6803 by recombineering recovery (RR). Following integration of a narrow-host-range plasmid vector adjacent to the target region in the Synechocystis genome (pSYSX), DNA was isolated from transformed cells and the plasmid plus flanking sequence circularized by recombineering to precisely clone the gene cluster. Complementation of a copper-sensitive Escherichia coli mutant demonstrated...

  11. Clustering Gene Expression Data Based on Predicted Differential Effects of G V Interaction

    Institute of Scientific and Technical Information of China (English)

    Hai-Yan Pan; Jun Zhu; Dan-Fu Han

    2005-01-01

    Microarray has become a popular biotechnology in biological and medical research.However, systematic and stochastic variabilities in microarray data are expected and unavoidable, resulting in the problem that the raw measurements have inherent "noise" within microarray experiments. Currently, logarithmic ratios are usually analyzed by various clustering methods directly, which may introduce bias interpretation in identifying groups of genes or samples. In this paper, a statistical method based on mixed model approaches was proposed for microarray data cluster analysis. The underlying rationale of this method is to partition the observed total gene expression level into various variations caused by different factors using an ANOVA model, and to predict the differential effects of G V (gene by variety)interaction using the adjusted unbiased prediction (AUP) method. The predicted G V interaction effects can then be used as the inputs of cluster analysis. We illustrated the application of our method with a gene expression dataset and elucidated the utility of our approach using an external validation.

  12. Structure and gene cluster of the o-antigen of Escherichia coli o96.

    Science.gov (United States)

    Guo, Xi; Senchenkova, Sof'ya N; Shashkov, Alexander S; Perepelov, Andrei V; Liu, Bin; Knirel, Yuriy A

    2016-02-01

    Mild acid degradation of the lipopolysaccharide of Escherichia coli O96 afforded a mixture of two polysaccharides. The following structure of the pentasaccharide repeating unit of the major polymer was established by sugar analysis, Smith degradation, and (1)H and (13)C NMR spectroscopy: [Formula: see text]. The O-antigen gene cluster of E. coli O96 between conserved galF and gnd genes was found to be consistent with this structure, and hence, the major polysaccharide represents the O96-antigen. The O96-antigen structure and gene cluster are similar to those of E. coli O170, and two proteins encoded in the gene clusters of both bacteria were putatively assigned a function of galactofuranosyltransferases. The minor polymer has the same structure as a peptidoglycan-related polysaccharide reported earlier in Providencia alcalifeciens O45 and several other O-serogoups of this species (Ovchinnikova OG, Liu B, Kocharova NA, Shashkov AS, Kondakova AN, Siwinska M, Feng L, Rozalski A, Wang L, Knirel YA. Biochemistry (Moscow) 2012;77:609-15) → 4)-β-D-GlcpNAc-(1 → 4)-β-D-GlcpNAc3(Rlac-lAla)-(1 → where Rlac-lAla indicates (R)-1-[(S)-1-carboxyethylaminocarbonyl]ethyl.

  13. Molecular analysis of SCARECROW genes expressed in white lupin cluster roots.

    Science.gov (United States)

    Sbabou, Laila; Bucciarelli, Bruna; Miller, Susan; Liu, Junqi; Berhada, Fatiha; Filali-Maltouf, Abdelkarim; Allan, Deborah; Vance, Carroll

    2010-03-01

    The Scarecrow (SCR) transcription factor plays a crucial role in root cell radial patterning and is required for maintenance of the quiescent centre and differentiation of the endodermis. In response to phosphorus (P) deficiency, white lupin (Lupinus albus L.) root surface area increases some 50-fold to 70-fold due to the development of cluster (proteoid) roots. Previously it was reported that SCR-like expressed sequence tags (ESTs) were expressed during early cluster root development. Here the cloning of two white lupin SCR genes, LaSCR1 and LaSCR2, is reported. The predicted amino acid sequences of both LaSCR gene products are highly similar to AtSCR and contain C-terminal conserved GRAS family domains. LaSCR1 and LaSCR2 transcript accumulation localized to the endodermis of both normal and cluster roots as shown by in situ hybridization and gene promoter::reporter staining. Transcript analysis as evaluated by quantitative real-time-PCR (qRT-PCR) and RNA gel hybridization indicated that the two LaSCR genes are expressed predominantly in roots. Expression of LaSCR genes was not directly responsive to the P status of the plant but was a function of cluster root development. Suppression of LaSCR1 in transformed roots of lupin and Medicago via RNAi (RNA interference) delivered through Agrobacterium rhizogenes resulted in decreased root numbers, reflecting the potential role of LaSCR1 in maintaining root growth in these species. The results suggest that the functional orthologues of AtSCR have been characterized.

  14. Novel LanT associated lantibiotic clusters identified by genome database mining.

    Directory of Open Access Journals (Sweden)

    Mangal Singh

    Full Text Available BACKGROUND: Frequent use of antibiotics has led to the emergence of antibiotic resistance in bacteria. Lantibiotic compounds are ribosomally synthesized antimicrobial peptides against which bacteria are not able to produce resistance, hence making them a good alternative to antibiotics. Nisin is the oldest and the most widely used lantibiotic, in food preservation, without having developed any significant resistance against it. Having their antimicrobial potential and a limited number, there is a need to identify novel lantibiotics. METHODOLOGY/FINDINGS: Identification of novel lantibiotic biosynthetic clusters from an ever increasing database of bacterial genomes, can provide a major lead in this direction. In order to achieve this, a strategy was adopted to identify novel lantibiotic biosynthetic clusters by screening the sequenced genomes for LanT homolog, which is a conserved lantibiotic transporter specific to type IB clusters. This strategy resulted in identification of 54 bacterial strains containing the LanT homologs, which are not the known lantibiotic producers. Of these, 24 strains were subjected to a detailed bioinformatic analysis to identify genes encoding for precursor peptides, modification enzyme, immunity and quorum sensing proteins. Eight clusters having two LanM determinants, similar to haloduracin and lichenicidin were identified, along with 13 clusters having a single LanM determinant as in mersacidin biosynthetic cluster. Besides these, orphan LanT homologs were also identified which might be associated with novel bacteriocins, encoded somewhere else in the genome. Three identified gene clusters had a C39 domain containing LanT transporter, associated with the LanBC proteins and double glycine type precursor peptides, the only known example of such a cluster is that of salivaricin. CONCLUSION: This study led to the identification of 8 novel putative two-component lantibiotic clusters along with 13 having a single LanM and

  15. QServer: a biclustering server for prediction and assessment of co-expressed gene clusters.

    Directory of Open Access Journals (Sweden)

    Fengfeng Zhou

    Full Text Available BACKGROUND: Biclustering is a powerful technique for identification of co-expressed gene groups under any (unspecified substantial subset of given experimental conditions, which can be used for elucidation of transcriptionally co-regulated genes. RESULTS: We have previously developed a biclustering algorithm, QUBIC, which can solve more general biclustering problems than previous biclustering algorithms. To fully utilize the analysis power the algorithm provides, we have developed a web server, QServer, for prediction, computational validation and analyses of co-expressed gene clusters. Specifically, the QServer has the following capabilities in addition to biclustering by QUBIC: (i prediction and assessment of conserved cis regulatory motifs in promoter sequences of the predicted co-expressed genes; (ii functional enrichment analyses of the predicted co-expressed gene clusters using Gene Ontology (GO terms, and (iii visualization capabilities in support of interactive biclustering analyses. QServer supports the biclustering and functional analysis for a wide range of organisms, including human, mouse, Arabidopsis, bacteria and archaea, whose underlying genome database will be continuously updated. CONCLUSION: We believe that QServer provides an easy-to-use and highly effective platform useful for hypothesis formulation and testing related to transcription co-regulation.

  16. Genomic organization, tissue distribution and functional characterization of the rat Pate gene cluster.

    Directory of Open Access Journals (Sweden)

    Angireddy Rajesh

    Full Text Available The cysteine rich prostate and testis expressed (Pate proteins identified till date are thought to resemble the three fingered protein/urokinase-type plasminogen activator receptor proteins. In this study, for the first time, we report the identification, cloning and characterization of rat Pate gene cluster and also determine the expression pattern. The rat Pate genes are clustered on chromosome 8 and their predicted proteins retained the ten cysteine signature characteristic to TFP/Ly-6 protein family. PATE and PATE-F three dimensional protein structure was found to be similar to that of the toxin bucandin. Though Pate gene expression is thought to be prostate and testis specific, we observed that rat Pate genes are also expressed in seminal vesicle and epididymis and in tissues beyond the male reproductive tract. In the developing rats (20-60 day old, expression of Pate genes seem to be androgen dependent in the epididymis and testis. In the adult rat, androgen ablation resulted in down regulation of the majority of Pate genes in the epididymides. PATE and PATE-F proteins were found to be expressed abundantly in the male reproductive tract of rats and on the sperm. Recombinant PATE protein exhibited potent antibacterial activity, whereas PATE-F did not exhibit any antibacterial activity. Pate expression was induced in the epididymides when challenged with LPS. Based on our results, we conclude that rat PATE proteins may contribute to the reproductive and defense functions.

  17. Versatile Cosmid Vectors for the Isolation, Expression, and Rescue of Gene Sequences: Studies with the Human α -globin Gene Cluster

    Science.gov (United States)

    Lau, Yun-Fai; Kan, Yuet Wai

    1983-09-01

    We have developed a series of cosmids that can be used as vectors for genomic recombinant DNA library preparations, as expression vectors in mammalian cells for both transient and stable transformations, and as shuttle vectors between bacteria and mammalian cells. These cosmids were constructed by inserting one of the SV2-derived selectable gene markers-SV2-gpt, SV2-DHFR, and SV2-neo-in cosmid pJB8. High efficiency of genomic cloning was obtained with these cosmids and the size of the inserts was 30-42 kilobases. We isolated recombinant cosmids containing the human α -globin gene cluster from these genomic libraries. The simian virus 40 DNA in these selectable gene markers provides the origin of replication and enhancer sequences necessary for replication in permissive cells such as COS 7 cells and thereby allows transient expression of α -globin genes in these cells. These cosmids and their recombinants could also be stably transformed into mammalian cells by using the respective selection systems. Both of the adult α -globin genes were more actively expressed than the embryonic zeta -globin genes in these transformed cell lines. Because of the presence of the cohesive ends of the Charon 4A phage in the cosmids, the transforming DNA sequences could readily be rescued from these stably transformed cells into bacteria by in vitro packaging of total cellular DNA. Thus, these cosmid vectors are potentially useful for direct isolation of structural genes.

  18. Onto-CC: a web server for identifying Gene Ontology conceptual clusters

    Science.gov (United States)

    Romero-Zaliz, R.; del Val, C.; Cobb, J. P.; Zwir, I.

    2008-01-01

    The Gene Ontology (GO) vocabulary has been extensively explored to analyze the functions of coexpressed genes. However, despite its extended use in Biology and Medical Sciences, there are still high levels of uncertainty about which ontology (i.e. Molecular Process, Cellular Component or Molecular Function) should be used, and at which level of specificity. Moreover, the GO database can contain incomplete information resulting from human annotations, or highly influenced by the available knowledge about a specific branch in an ontology. In spite of these drawbacks, there is a trend to ignore these problems and even use GO terms to conduct searches of gene expression profiles (i.e. expression + GO) instead of more cautious approaches that just consider them as an independent source of validation (i.e. expression versus GO). Consequently, propagating the uncertainty and producing biased analysis of the required gene grouping hypotheses. We proposed a web tool, Onto-CC, as an automatic method specially suited for independent explanation/validation of gene grouping hypotheses (e.g. coexpressed genes) based on GO clusters (i.e. expression versus GO). Onto-CC approach reduces the uncertainty of the queries by identifying optimal conceptual clusters that combine terms from different ontologies simultaneously, as well as terms defined at different levels of specificity in the GO hierarchy. To do so, we implemented the EMO-CC methodology to find clusters in structural databases [GO Directed acyclic Graph (DAG) tree], inspired on Conceptual Clustering algorithms. This approach allows the management of optimal cluster sets as potential parallel hypotheses, guided by multiobjective/multimodal optimization techniques. Therefore, we can generate alternative and, still, optimal explanations of queries that can provide new insights for a given problem. Onto-CC has been successfully used to test different medical and biological hypotheses including the explanation and prediction of

  19. Comparison of Expression of Secondary Metabolite Biosynthesis Cluster Genes in Aspergillus flavus, A. parasiticus, and A. oryzae

    Directory of Open Access Journals (Sweden)

    Kenneth C. Ehrlich

    2014-06-01

    Full Text Available Fifty six secondary metabolite biosynthesis gene clusters are predicted to be in the Aspergillus flavus genome. In spite of this, the biosyntheses of only seven metabolites, including the aflatoxins, kojic acid, cyclopiazonic acid and aflatrem, have been assigned to a particular gene cluster. We used RNA-seq to compare expression of secondary metabolite genes in gene clusters for the closely related fungi A. parasiticus, A. oryzae, and A. flavus S and L sclerotial morphotypes. The data help to refine the identification of probable functional gene clusters within these species. Our results suggest that A. flavus, a prevalent contaminant of maize, cottonseed, peanuts and tree nuts, is capable of producing metabolites which, besides aflatoxin, could be an underappreciated contributor to its toxicity.

  20. Comparison of expression of secondary metabolite biosynthesis cluster genes in Aspergillus flavus, A. parasiticus, and A. oryzae.

    Science.gov (United States)

    Ehrlich, Kenneth C; Mack, Brian M

    2014-06-23

    Fifty six secondary metabolite biosynthesis gene clusters are predicted to be in the Aspergillus flavus genome. In spite of this, the biosyntheses of only seven metabolites, including the aflatoxins, kojic acid, cyclopiazonic acid and aflatrem, have been assigned to a particular gene cluster. We used RNA-seq to compare expression of secondary metabolite genes in gene clusters for the closely related fungi A. parasiticus, A. oryzae, and A. flavus S and L sclerotial morphotypes. The data help to refine the identification of probable functional gene clusters within these species. Our results suggest that A. flavus, a prevalent contaminant of maize, cottonseed, peanuts and tree nuts, is capable of producing metabolites which, besides aflatoxin, could be an underappreciated contributor to its toxicity.

  1. Hierarchical clustering of breast cancer methylomes revealed differentially methylated and expressed breast cancer genes.

    Directory of Open Access Journals (Sweden)

    I-Hsuan Lin

    Full Text Available Oncogenic transformation of normal cells often involves epigenetic alterations, including histone modification and DNA methylation. We conducted whole-genome bisulfite sequencing to determine the DNA methylomes of normal breast, fibroadenoma, invasive ductal carcinomas and MCF7. The emergence, disappearance, expansion and contraction of kilobase-sized hypomethylated regions (HMRs and the hypomethylation of the megabase-sized partially methylated domains (PMDs are the major forms of methylation changes observed in breast tumor samples. Hierarchical clustering of HMR revealed tumor-specific hypermethylated clusters and differential methylated enhancers specific to normal or breast cancer cell lines. Joint analysis of gene expression and DNA methylation data of normal breast and breast cancer cells identified differentially methylated and expressed genes associated with breast and/or ovarian cancers in cancer-specific HMR clusters. Furthermore, aberrant patterns of X-chromosome inactivation (XCI was found in breast cancer cell lines as well as breast tumor samples in the TCGA BRCA (breast invasive carcinoma dataset. They were characterized with differentially hypermethylated XIST promoter, reduced expression of XIST, and over-expression of hypomethylated X-linked genes. High expressions of these genes were significantly associated with lower survival rates in breast cancer patients. Comprehensive analysis of the normal and breast tumor methylomes suggests selective targeting of DNA methylation changes during breast cancer progression. The weak causal relationship between DNA methylation and gene expression observed in this study is evident of more complex role of DNA methylation in the regulation of gene expression in human epigenetics that deserves further investigation.

  2. Gene cluster analysis for the biosynthesis of elgicins, novel lantibiotics produced by paenibacillus elgii B69

    Directory of Open Access Journals (Sweden)

    Teng Yi

    2012-03-01

    Full Text Available Abstract Background The recent increase in bacterial resistance to antibiotics has promoted the exploration of novel antibacterial materials. As a result, many researchers are undertaking work to identify new lantibiotics because of their potent antimicrobial activities. The objective of this study was to provide details of a lantibiotic-like gene cluster in Paenibacillus elgii B69 and to produce the antibacterial substances coded by this gene cluster based on culture screening. Results Analysis of the P. elgii B69 genome sequence revealed the presence of a lantibiotic-like gene cluster composed of five open reading frames (elgT1, elgC, elgT2, elgB, and elgA. Screening of culture extracts for active substances possessing the predicted properties of the encoded product led to the isolation of four novel peptides (elgicins AI, AII, B, and C with a broad inhibitory spectrum. The molecular weights of these peptides were 4536, 4593, 4706, and 4820 Da, respectively. The N-terminal sequence of elgicin B was Leu-Gly-Asp-Tyr, which corresponded to the partial sequence of the peptide ElgA encoded by elgA. Edman degradation suggested that the product elgicin B is derived from ElgA. By correlating the results of electrospray ionization-mass spectrometry analyses of elgicins AI, AII, and C, these peptides are deduced to have originated from the same precursor, ElgA. Conclusions A novel lantibiotic-like gene cluster was shown to be present in P. elgii B69. Four new lantibiotics with a broad inhibitory spectrum were isolated, and these appear to be promising antibacterial agents.

  3. Evolutionary History of the phl Gene Cluster in the Plant-Associated Bacterium Pseudomonas fluorescens▿ †

    OpenAIRE

    Moynihan, J.A.; Morrissey, J P; Coppoolse, E.; Stiekema, W. J.; O'Gara, F.; Boyd, E F

    2009-01-01

    Pseudomonas fluorescens is of agricultural and economic importance as a biological control agent largely because of its plant-association and production of secondary metabolites, in particular 2, 4-diacetylphloroglucinol (2, 4-DAPG). This polyketide, which is encoded by the eight gene phl cluster, has antimicrobial effects on phytopathogens, promotes amino acid exudation from plant roots, and induces systemic resistance in plants. Despite its importance, 2, 4-DAPG production is limited to a s...

  4. Genetic clusters and sex-biased gene flow in a unicolonial Formica ant

    Directory of Open Access Journals (Sweden)

    Chapuisat Michel

    2009-03-01

    Full Text Available Abstract Background Animal societies are diverse, ranging from small family-based groups to extraordinarily large social networks in which many unrelated individuals interact. At the extreme of this continuum, some ant species form unicolonial populations in which workers and queens can move among multiple interconnected nests without eliciting aggression. Although unicoloniality has been mostly studied in invasive ants, it also occurs in some native non-invasive species. Unicoloniality is commonly associated with very high queen number, which may result in levels of relatedness among nestmates being so low as to raise the question of the maintenance of altruism by kin selection in such systems. However, the actual relatedness among cooperating individuals critically depends on effective dispersal and the ensuing pattern of genetic structuring. In order to better understand the evolution of unicoloniality in native non-invasive ants, we investigated the fine-scale population genetic structure and gene flow in three unicolonial populations of the wood ant F. paralugubris. Results The analysis of geo-referenced microsatellite genotypes and mitochondrial haplotypes revealed the presence of cryptic clusters of genetically-differentiated nests in the three populations of F. paralugubris. Because of this spatial genetic heterogeneity, members of the same clusters were moderately but significantly related. The comparison of nuclear (microsatellite and mitochondrial differentiation indicated that effective gene flow was male-biased in all populations. Conclusion The three unicolonial populations exhibited male-biased and mostly local gene flow. The high number of queens per nest, exchanges among neighbouring nests and restricted long-distance gene flow resulted in large clusters of genetically similar nests. The positive relatedness among clustermates suggests that kin selection may still contribute to the maintenance of altruism in unicolonial

  5. MAGNUM OPUS: CLUSTERED REGULARLY INTERSPACED SHORT PALINDROMIC REPEATS BIOLOGY AND PROKARYOTIC GENE SILENCING

    Directory of Open Access Journals (Sweden)

    Prem Saran Tirumalai

    2013-01-01

    Full Text Available Gene Silencing was a technology that was established in eukaryotic system a decade ago and is being used as a research tool widely. However, prokaryotic gene silencing was not workable, till recently a team of researchers from the University of Georgia have proved it possible. Where they have shown that short motif sequences determines the targets of the prokaryotic Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR defence system is regulated by RNA guided Cas protein complex. Thus role of CRISPR system in microbial defense against foreign genetic material (Plasmid or Phages is an important milestone in the field of microbial molecular biology/biotechnology. These findings will make it easier to understand the significance of a gene, metabolically or physiologically. The revelation by this novel finding by core group of researcher is indeed, Mangum opus. This article is a commentary, to bring to light, prokaryotic gene silencing as one of the latest advances in prokaryotic science.

  6. Gene Clusters for Insecticidal Loline Alkaloids in the Grass-Endophytic Fungus Neotyphodium uncinatum

    OpenAIRE

    Spiering, Martin J.; Moon, Christina D; Wilkinson, Heather H.; Schardl, Christopher L

    2005-01-01

    Loline alkaloids are produced by mutualistic fungi symbiotic with grasses, and they protect the host plants from insects. Here we identify in the fungal symbiont, Neotyphodium uncinatum, two homologous gene clusters (LOL-1 and LOL-2) associated with loline-alkaloid production. Nine genes were identified in a 25-kb region of LOL-1 and designated (in order) lolF-1, lolC-1, lolD-1, lolO-1, lolA-1, lolU-1, lolP-1, lolT-1, and lolE-1. LOL-2 contained the homologs lolC-2 through lolE-2 in the same ...

  7. Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids

    Directory of Open Access Journals (Sweden)

    Woods Donald E

    2009-12-01

    Full Text Available Abstract Background Rhamnolipids are surface active molecules composed of rhamnose and β-hydroxydecanoic acid. These biosurfactants are produced mainly by Pseudomonas aeruginosa and have been thoroughly investigated since their early discovery. Recently, they have attracted renewed attention because of their involvement in various multicellular behaviors. Despite this high interest, only very few studies have focused on the production of rhamnolipids by Burkholderia species. Results Orthologs of rhlA, rhlB and rhlC, which are responsible for the biosynthesis of rhamnolipids in P. aeruginosa, have been found in the non-infectious Burkholderia thailandensis, as well as in the genetically similar important pathogen B. pseudomallei. In contrast to P. aeruginosa, both Burkholderia species contain these three genes necessary for rhamnolipid production within a single gene cluster. Furthermore, two identical, paralogous copies of this gene cluster are found on the second chromosome of these bacteria. Both Burkholderia spp. produce rhamnolipids containing 3-hydroxy fatty acid moieties with longer side chains than those described for P. aeruginosa. Additionally, the rhamnolipids produced by B. thailandensis contain a much larger proportion of dirhamnolipids versus monorhamnolipids when compared to P. aeruginosa. The rhamnolipids produced by B. thailandensis reduce the surface tension of water to 42 mN/m while displaying a critical micelle concentration value of 225 mg/L. Separate mutations in both rhlA alleles, which are responsible for the synthesis of the rhamnolipid precursor 3-(3-hydroxyalkanoyloxyalkanoic acid, prove that both copies of the rhl gene cluster are functional, but one contributes more to the total production than the other. Finally, a double ΔrhlA mutant that is completely devoid of rhamnolipid production is incapable of swarming motility, showing that both gene clusters contribute to this phenotype. Conclusions Collectively, these

  8. Functional dissection of HOXD cluster genes in regulation of neuroblastoma cell proliferation and differentiation.

    Directory of Open Access Journals (Sweden)

    Yunhong Zha

    Full Text Available Retinoic acid (RA can induce growth arrest and neuronal differentiation of neuroblastoma cells and has been used in clinic for treatment of neuroblastoma. It has been reported that RA induces the expression of several HOXD genes in human neuroblastoma cell lines, but their roles in RA action are largely unknown. The HOXD cluster contains nine genes (HOXD1, HOXD3, HOXD4, and HOXD8-13 that are positioned sequentially from 3' to 5', with HOXD1 at the 3' end and HOXD13 the 5' end. Here we show that all HOXD genes are induced by RA in the human neuroblastoma BE(2-C cells, with the genes located at the 3' end being activated generally earlier than those positioned more 5' within the cluster. Individual induction of HOXD8, HOXD9, HOXD10 or HOXD12 is sufficient to induce both growth arrest and neuronal differentiation, which is associated with downregulation of cell cycle-promoting genes and upregulation of neuronal differentiation genes. However, induction of other HOXD genes either has no effect (HOXD1 or has partial effects (HOXD3, HOXD4, HOXD11 and HOXD13 on BE(2-C cell proliferation or differentiation. We further show that knockdown of HOXD8 expression, but not that of HOXD9 expression, significantly inhibits the differentiation-inducing activity of RA. HOXD8 directly activates the transcription of HOXC9, a key effector of RA action in neuroblastoma cells. These findings highlight the distinct functions of HOXD genes in RA induction of neuroblastoma cell differentiation.

  9. Co-regulation of the nitrogen-assimilatory gene cluster in Clostridium saccharobutylicum.

    Science.gov (United States)

    Stutz, Helen E; Quixley, Keith W M; McMaster, Lynn D; Reid, Sharon J

    2007-09-01

    Nitrogen assimilation is important during solvent production by Clostridium saccharobutylicum NCP262, as acetone and butanol yields are significantly affected by the nitrogen source supplied. Growth of this bacterium was dependent on the concentration of organic nitrogen supplied and the expression of the assimilatory enzymes, glutamine synthetase (GS) and glutamate synthase (GOGAT), was shown to be induced in nitrogen-limiting conditions. The regions flanking the gene encoding GS, glnA, were isolated from C. saccharobutylicum genomic DNA, and DNA sequencing revealed that the structural genes encoding the GS (glnA) and GOGAT (gltA and gltB) enzymes were clustered together with the nitR gene in the order glnA-nitR-gltAB. RNA analysis showed that the glnA-nitR and the gltAB genes were co-transcribed on 2.3 and 6.2 kb RNA transcripts respectively, and that all four genes were induced under the same nitrogen-limiting conditions. Complementation of an Escherichia coli gltD mutant, lacking a GOGAT small subunit, was achieved only when both the C. saccharobutylicum gltA and gltB genes were expressed together under anaerobic conditions. This is believed to be the first functional analysis of a gene cluster encoding the key enzymes of nitrogen assimilation, GS and GOGAT. A similar gene arrangement is seen in Clostridium beijerinckii NCIMB 8052, and based on the common regulatory features of the promoter regions upstream of the glnA operons in both species, we suggest a model for their co-ordinated regulation by an antitermination mechanism as well as antisense RNA. PMID:17768251

  10. Chromatin boundary elements organize genomic architecture and developmental gene regulation in Drosophila Hox clusters

    Science.gov (United States)

    Ma, Zhibo; Li, Mo; Roy, Sharmila; Liu, Kevin J; Romine, Matthew L; Lane, Derrick C; Patel, Sapna K; Cai, Haini N

    2016-01-01

    The three-dimensional (3D) organization of the eukaryotic genome is critical for its proper function. Evidence suggests that extensive chromatin loops form the building blocks of the genomic architecture, separating genes and gene clusters into distinct functional domains. These loops are anchored in part by a special type of DNA elements called chromatin boundary elements (CBEs). CBEs were originally found to insulate neighboring genes by blocking influences of transcriptional enhancers or the spread of silent chromatin. However, recent results show that chromatin loops can also play a positive role in gene regulation by looping out intervening DNA and “delivering” remote enhancers to gene promoters. In addition, studies from human and model organisms indicate that the configuration of chromatin loops, many of which are tethered by CBEs, is dynamically regulated during cell differentiation. In particular, a recent work by Li et al has shown that the SF1 boundary, located in the Drosophila Hox cluster, regulates local genes by tethering different subsets of chromatin loops: One subset enclose a neighboring gene ftz, limiting its access by the surrounding Scr enhancers and restrict the spread of repressive histones during early embryogenesis; and the other loops subdivide the Scr regulatory region into independent domains of enhancer accessibility. The enhancer-blocking activity of these CBE elements varies greatly in strength and tissue distribution. Further, tandem pairing of SF1 and SF2 facilitate the bypass of distal enhancers in transgenic flies, providing a mechanism for endogenous enhancers to circumvent genomic interruptions resulting from chromosomal rearrangement. This study demonstrates how a network of chromatin boundaries, centrally organized by SF1, can remodel the 3D genome to facilitate gene regulation during development.

  11. Chromatin boundary elements organize genomic architecture and developmental gene regulation in Drosophila Hox clusters.

    Science.gov (United States)

    Ma, Zhibo; Li, Mo; Roy, Sharmila; Liu, Kevin J; Romine, Matthew L; Lane, Derrick C; Patel, Sapna K; Cai, Haini N

    2016-08-26

    The three-dimensional (3D) organization of the eukaryotic genome is critical for its proper function. Evidence suggests that extensive chromatin loops form the building blocks of the genomic architecture, separating genes and gene clusters into distinct functional domains. These loops are anchored in part by a special type of DNA elements called chromatin boundary elements (CBEs). CBEs were originally found to insulate neighboring genes by blocking influences of transcriptional enhancers or the spread of silent chromatin. However, recent results show that chromatin loops can also play a positive role in gene regulation by looping out intervening DNA and "delivering" remote enhancers to gene promoters. In addition, studies from human and model organisms indicate that the configuration of chromatin loops, many of which are tethered by CBEs, is dynamically regulated during cell differentiation. In particular, a recent work by Li et al has shown that the SF1 boundary, located in the Drosophila Hox cluster, regulates local genes by tethering different subsets of chromatin loops: One subset enclose a neighboring gene ftz, limiting its access by the surrounding Scr enhancers and restrict the spread of repressive histones during early embryogenesis; and the other loops subdivide the Scr regulatory region into independent domains of enhancer accessibility. The enhancer-blocking activity of these CBE elements varies greatly in strength and tissue distribution. Further, tandem pairing of SF1 and SF2 facilitate the bypass of distal enhancers in transgenic flies, providing a mechanism for endogenous enhancers to circumvent genomic interruptions resulting from chromosomal rearrangement. This study demonstrates how a network of chromatin boundaries, centrally organized by SF1, can remodel the 3D genome to facilitate gene regulation during development. PMID:27621770

  12. Interplay between pathway-specific and global regulation of the fumonisin gene cluster in the rice pathogen Fusarium fujikuroi.

    Science.gov (United States)

    Rösler, Sarah M; Sieber, Christian M K; Humpf, Hans-Ulrich; Tudzynski, Bettina

    2016-07-01

    The rice pathogenic fungus Fusarium fujikuroi is known to produce a large variety of secondary metabolites. Besides the gibberellins, causing the bakanae effect in infected rice seedlings, the fungus produces several mycotoxins and pigments. Among the 47 putative secondary metabolite gene clusters identified in the genome of F. fujikuroi, the fumonisin gene cluster (FUM) shows very high homology to the FUM cluster of the main fumonisin producer Fusarium verticillioides, a pathogen of maize. Despite the high level of cluster gene conservation, total fumonisin FB1 and FB2 levels (FBx) produced by F. fujikuroi were only 1-10 % compared to F. verticillioides under inducing conditions. Nitrogen repression was found to be relevant for wild-type strains of both species. However, addition of germinated maize kernels activated the FBx production only in F. verticillioides, reflecting the different host specificity of both wild-type strains. Over-expression of the pathway-specific transcription factor Fum21 in F. fujikuroi strongly activated the FUM cluster genes leading to 1000-fold elevated FBx levels. To gain further insights into the nitrogen metabolite repression of FBx biosynthesis, we studied the impact of the global nitrogen regulators AreA and AreB and demonstrated that both GATA-type transcription factors are essential for full activation of the FUM gene cluster. Loss of one of them obstructs the pathway-specific transcription factor Fum21 to fully activate expression of FUM cluster genes. PMID:26966024

  13. Effect of floral cluster pruning on anthocyanin levels and anthocyanain-related gene expression in 'Houman' grape.

    Science.gov (United States)

    Zhang, Lei; Xu, Yan-Shuai; Jia, Yue; Wang, Ji-Yuan; Yuan, Yue; Yu, Yang; Tao, Jian-Min

    2016-01-01

    Lateral floral clusters were removed from the main axis of the floral clusters of 'Houman' grape plants, leaving only 3-5-cm-long region of flowers at the end of the central axis. The floral clusters were pruned at 7 days prior to flowering. The effect of the pruning on fruit quality was assessed by determining the composition and levels of anthocyanins in the fruit and anthocyanin-related gene expression. Results indicated that floral cluster pruning significantly improved the quality of the fruit by increasing berry size, fruit weight and the total content of soluble solids. Floral cluster pruning also decreased the level of titratable acidity. Sixteen different anthocyanins were detected in fruit of the pruned clusters, while only 15 were detected in fruit from unpruned clusters. The level of anthocyanins was also significantly higher in fruit of the pruned clusters than in the unpruned clusters. Anthocyanin-related gene expression was also significantly upregulated to a higher level in fruit from pruned floral clusters as compared with unpruned clusters. The upregulation was closely associated with increases in anthocyanin biosynthesis. PMID:27555920

  14. Effect of floral cluster pruning on anthocyanin levels and anthocyanain-related gene expression in ‘Houman’ grape

    Science.gov (United States)

    Zhang, Lei; Xu, Yan-shuai; Jia, Yue; Wang, Ji-yuan; Yuan, Yue; Yu, Yang; Tao, Jian-min

    2016-01-01

    Lateral floral clusters were removed from the main axis of the floral clusters of ‘Houman’ grape plants, leaving only 3–5-cm-long region of flowers at the end of the central axis. The floral clusters were pruned at 7 days prior to flowering. The effect of the pruning on fruit quality was assessed by determining the composition and levels of anthocyanins in the fruit and anthocyanin-related gene expression. Results indicated that floral cluster pruning significantly improved the quality of the fruit by increasing berry size, fruit weight and the total content of soluble solids. Floral cluster pruning also decreased the level of titratable acidity. Sixteen different anthocyanins were detected in fruit of the pruned clusters, while only 15 were detected in fruit from unpruned clusters. The level of anthocyanins was also significantly higher in fruit of the pruned clusters than in the unpruned clusters. Anthocyanin-related gene expression was also significantly upregulated to a higher level in fruit from pruned floral clusters as compared with unpruned clusters. The upregulation was closely associated with increases in anthocyanin biosynthesis. PMID:27555920

  15. Construction of the astaxanthin biosynthetic pathway in a methanotrophic bacterium Methylomonas sp. strain 16a.

    Science.gov (United States)

    Ye, Rick W; Yao, Henry; Stead, Kristen; Wang, Tao; Tao, Luan; Cheng, Qiong; Sharpe, Pamela L; Suh, Wonchul; Nagel, Eva; Arcilla, Dennis; Dragotta, Dominic; Miller, Edward S

    2007-04-01

    Methylomonas sp. strain 16a is an obligate methanotrophic bacterium that uses methane or methanol as the sole carbon source. An effort was made to engineer this organism for astaxanthin production. Upon expressing the canthaxanthin gene cluster under the control of the native hps promoter in the chromosome, canthaxanthin was produced as the main carotenoid. Further conversion to astaxanthin was carried out by expressing different combinations of crtW and crtZ genes encoding the beta-carotenoid ketolase and hydroxylase. The carotenoid intermediate profile was influenced by the copy number of these two genes under the control of the hps promoter. Expression of two copies of crtZ and one copy of crtW led to the accumulation of a large amount of the mono-ketolated product adonixanthin. On the other hand, expression of two copies of crtW and one copy of crtZ resulted in the presence of non-hydroxylated carotenoid canthaxanthin and the mono-hydroxylated adonirubin. Production of astaxanthin as the predominant carotenoid was obtained in a strain containing two complete sets of carotenoid biosynthetic genes. This strain had an astaxanthin titer ranging from 1 to 2.4 mg g(-1) of dry cell biomass depending on the growth conditions. More than 90% of the total carotenoid was astaxanthin, of which the majority was in the form of E-isomer. This result indicates that it is possible to produce astaxanthin with desirable properties in methanotrophs through genetic engineering.

  16. The lineage-specific evolution of aquaporin gene clusters facilitated tetrapod terrestrial adaptation.

    Directory of Open Access Journals (Sweden)

    Roderick Nigel Finn

    Full Text Available A major physiological barrier for aquatic organisms adapting to terrestrial life is dessication in the aerial environment. This barrier was nevertheless overcome by the Devonian ancestors of extant Tetrapoda, but the origin of specific molecular mechanisms that solved this water problem remains largely unknown. Here we show that an ancient aquaporin gene cluster evolved specifically in the sarcopterygian lineage, and subsequently diverged into paralogous forms of AQP2, -5, or -6 to mediate water conservation in extant Tetrapoda. To determine the origin of these apomorphic genomic traits, we combined aquaporin sequencing from jawless and jawed vertebrates with broad taxon assembly of >2,000 transcripts amongst 131 deuterostome genomes and developed a model based upon Bayesian inference that traces their convergent roots to stem subfamilies in basal Metazoa and Prokaryota. This approach uncovered an unexpected diversity of aquaporins in every lineage investigated, and revealed that the vertebrate superfamily consists of 17 classes of aquaporins (Aqp0 - Aqp16. The oldest orthologs associated with water conservation in modern Tetrapoda are traced to a cluster of three aqp2-like genes in Actinistia that likely arose >500 Ma through duplication of an aqp0-like gene present in a jawless ancestor. In sea lamprey, we show that aqp0 first arose in a protocluster comprised of a novel aqp14 paralog and a fused aqp01 gene. To corroborate these findings, we conducted phylogenetic analyses of five syntenic nuclear receptor subfamilies, which, together with observations of extensive genome rearrangements, support the coincident loss of ancestral aqp2-like orthologs in Actinopterygii. We thus conclude that the divergence of sarcopterygian-specific aquaporin gene clusters was permissive for the evolution of water conservation mechanisms that facilitated tetrapod terrestrial adaptation.

  17. Forest soil metagenome gene cluster involved in antifungal activity expression in Escherichia coli.

    Science.gov (United States)

    Chung, Eu Jin; Lim, He Kyoung; Kim, Jin-Cheol; Choi, Gyung Ja; Park, Eun Jin; Lee, Myung Hwan; Chung, Young Ryun; Lee, Seon-Woo

    2008-02-01

    Using two forest soils, we previously constructed two fosmid libraries containing 113,700 members in total. The libraries were screened to select active antifungal clones using Saccharomyces cerevisiae as a target fungus. One clone from the Yuseong pine tree rhizosphere soil library, pEAF66, showed S. cerevisiae growth inhibition. Despite an intensive effort, active chemicals were not isolated. DNA sequence analysis and transposon mutagenesis of pEAF66 revealed 39 open reading frames (ORFs) and indicated that eight ORFs, probably in one transcriptional unit, might be directly involved in the expression of antifungal activity in Escherichia coli. The deduced amino acid sequences of eight ORFs were similar to those of the core genes encoding type II family polyketide synthases, such as the acyl carrier protein (ACP), ACP synthases, aminotransferase, and ACP reductase. The gene cluster involved in antifungal activity was similar in organization to the putative antibiotic production locus of Pseudomonas putida KT2440, although we could not select a similar active clone from the KT2440 genomic DNA library in E. coli. ORFs encoding ATP binding cassette transporters and membrane proteins were located at both ends of the antifungal gene cluster. Upstream ORFs encoding an IclR family response regulator and a LysR family response regulator were involved in the positive regulation of antifungal gene expression. Our results suggested the metagenomic approach as an alternative to search for novel antifungal antibiotics from unculturable soil bacteria. This is the first report of an antifungal gene cluster obtained from a soil metagenome using S. cerevisiae as a target fungus. PMID:18065615

  18. Functional categories associated with clusters of genes that are co-expressed across the NCI-60 cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Barry R Zeeberg

    Full Text Available BACKGROUND: The NCI-60 is a panel of 60 diverse human cancer cell lines used by the U.S. National Cancer Institute to screen compounds for anticancer activity. In the current study, gene expression levels from five platforms were integrated to yield a single composite transcriptome profile. The comprehensive and reliable nature of that dataset allows us to study gene co-expression across cancer cell lines. METHODOLOGY/PRINCIPAL FINDINGS: Hierarchical clustering revealed numerous clusters of genes in which the genes co-vary across the NCI-60. To determine functional categorization associated with each cluster, we used the Gene Ontology (GO Consortium database and the GoMiner tool. GO maps genes to hierarchically-organized biological process categories. GoMiner can leverage GO to perform ontological analyses of gene expression studies, generating a list of significant functional categories. CONCLUSIONS/SIGNIFICANCE: GoMiner analysis revealed many clusters of coregulated genes that are associated with functional groupings of GO biological process categories. Notably, those categories arising from coherent co-expression groupings reflect cancer-related themes such as adhesion, cell migration, RNA splicing, immune response and signal transduction. Thus, these clusters demonstrate transcriptional coregulation of functionally-related genes.

  19. NifX and NifEN exchange NifB cofactor and the VK-cluster, a newly isolated intermediate of the iron-molybdenum cofactor biosynthetic pathway.

    Science.gov (United States)

    Hernandez, Jose A; Igarashi, Robert Y; Soboh, Basem; Curatti, Leonardo; Dean, Dennis R; Ludden, Paul W; Rubio, Luis M

    2007-01-01

    The iron-molybdenum cofactor of nitrogenase (FeMo-co) is synthesized in a multistep process catalysed by several Nif proteins and is finally inserted into a pre-synthesized apo-dinitrogenase to generate mature dinitrogenase protein. The NifEN complex serves as scaffold for some steps of this synthesis, while NifX belongs to a family of small proteins that bind either FeMo-co precursors or FeMo-co during cofactor synthesis. In this work, the binding of FeMo-co precursors and their transfer between purified Azotobacter vinelandii NifX and NifEN proteins was studied to shed light on the role of NifX on FeMo-co synthesis. Purified NifX binds NifB cofactor (NifB-co), a precursor to FeMo-co, with high affinity and is able to transfer it to the NifEN complex. In addition, NifEN and NifX exchange another [Fe-S] cluster that serves as a FeMo-co precursor, and we have designated it as the VK-cluster. In contrast to NifB-co, the VK-cluster is electronic paramagnetic resonance (EPR)-active in the reduced and the oxidized states. The NifX/VK-cluster complex is unable to support in vitro FeMo-co synthesis in the absence of NifEN because further processing of the VK-cluster into FeMo-co requires the simultaneous activities of NifEN and NifH. Our in vitro studies suggest that the role of NifX in vivo is to serve as transient reservoir of FeMo-co precursors and thus help control their flux during FeMo-co synthesis. PMID:17163967

  20. Clustering of two genes putatively involved in cyanate detoxification evolved recently and independently in multiple fungal lineages.

    Science.gov (United States)

    Elmore, M Holly; McGary, Kriston L; Wisecaver, Jennifer H; Slot, Jason C; Geiser, David M; Sink, Stacy; O'Donnell, Kerry; Rokas, Antonis

    2015-03-01

    Fungi that have the enzymes cyanase and carbonic anhydrase show a limited capacity to detoxify cyanate, a fungicide employed by both plants and humans. Here, we describe a novel two-gene cluster that comprises duplicated cyanase and carbonic anhydrase copies, which we name the CCA gene cluster, trace its evolution across Ascomycetes, and examine the evolutionary dynamics of its spread among lineages of the Fusarium oxysporum species complex (hereafter referred to as the FOSC), a cosmopolitan clade of purportedly clonal vascular wilt plant pathogens. Phylogenetic analysis of fungal cyanase and carbonic anhydrase genes reveals that the CCA gene cluster arose independently at least twice and is now present in three lineages, namely Cochliobolus lunatus, Oidiodendron maius, and the FOSC. Genome-wide surveys within the FOSC indicate that the CCA gene cluster varies in copy number across isolates, is always located on accessory chromosomes, and is absent in FOSC's closest relatives. Phylogenetic reconstruction of the CCA gene cluster in 163 FOSC strains from a wide variety of hosts suggests a recent history of rampant transfers between isolates. We hypothesize that the independent formation of the CCA gene cluster in different fungal lineages and its spread across FOSC strains may be associated with resistance to plant-produced cyanates or to use of cyanate fungicides in agriculture.

  1. A conserved cluster of three PRD-class homeobox genes (homeobrain, rx and orthopedia in the Cnidaria and Protostomia

    Directory of Open Access Journals (Sweden)

    Mazza Maureen E

    2010-07-01

    Full Text Available Abstract Background Homeobox genes are a superclass of transcription factors with diverse developmental regulatory functions, which are found in plants, fungi and animals. In animals, several Antennapedia (ANTP-class homeobox genes reside in extremely ancient gene clusters (for example, the Hox, ParaHox, and NKL clusters and the evolution of these clusters has been implicated in the morphological diversification of animal bodyplans. By contrast, similarly ancient gene clusters have not been reported among the other classes of homeobox genes (that is, the LIM, POU, PRD and SIX classes. Results Using a combination of in silico queries and phylogenetic analyses, we found that a cluster of three PRD-class homeobox genes (Homeobrain (hbn, Rax (rx and Orthopedia (otp is present in cnidarians, insects and mollusks (a partial cluster comprising hbn and rx is present in the placozoan Trichoplax adhaerens. We failed to identify this 'HRO' cluster in deuterostomes; in fact, the Homeobrain gene appears to be missing from the chordate genomes we examined, although it is present in hemichordates and echinoderms. To illuminate the ancestral organization and function of this ancient cluster, we mapped the constituent genes against the assembled genome of a model cnidarian, the sea anemone Nematostella vectensis, and characterized their spatiotemporal expression using in situ hybridization. In N. vectensis, these genes reside in a span of 33 kb with the same gene order as previously reported in insects. Comparisons of genomic sequences and expressed sequence tags revealed the presence of alternative transcripts of Nv-otp and two highly unusual protein-coding polymorphisms in the terminal helix of the Nv-rx homeodomain. A population genetic survey revealed the Rx polymorphisms to be widespread in natural populations. During larval development, all three genes are expressed in the ectoderm, in non-overlapping territories along the oral-aboral axis, with distinct

  2. Localization and physical mapping of a plasmid-borne 23-kb nif gene cluster from Enterobacter agglomerans showing homology to the entire nif gene cluster of Klebsiella pneumoniae M5a1.

    Science.gov (United States)

    Singh, M; Kreutzer, R; Acker, G; Klingmüller, W

    1988-01-01

    A physical and genetical map of the plasmid pEA3 indigenous to Enterobacter agglomerans is presented. pEA3 is a 111-kb large plasmid containing a 23-kb large cluster of nif genes which shows extensive homology (Southern hybridization and heteroduplex analysis) to the entire nif gene cluster of Klebsiella pneumoniae (Kp) M5a1. All the nif genes on pEA3 are organized in the same manner as in K. pneumoniae, except nifJ, which is located on the left end of pEA3 nif gene cluster (near nifQB). A BamHI restriction map of pEA3 and a detailed restriction map of the 23-kb nif region on pEA3 is also presented. The nif genes of pEA3 showed a low level of acetylene reduction in Escherichia coli, demonstrating that these genes are functional and contain the whole genetic information required to fix nitrogen. The origin of vegetative replication (OriV) of pEA3 was localized about 5.5 kb from the right end of the nif gene cluster. In addition to pEA3, large plasmids from four other strains of E. agglomerans showed homology to all the Kp nif genes tested, indicating that in diazotrophic strains of E. agglomerans nif genes are usually located on plasmids. In contrast, in most of the free-living, nitrogen-fixing bacteria the nif genes are on chromosome.

  3. Gene expression patterns in primary neuronal clusters of the Drosophila embryonic brain

    Science.gov (United States)

    Sprecher, Simon G.; Reichert, Heinrich; Hartenstein, Volker

    2014-01-01

    The brain of Drosophila is formed by approximately 100 lineages, each lineage being derived from a stem cell-like neuroblast that segregates from the procephalic neurectoderm of the early embryo. A neuroblast map has been established in great detail for the early embryo, and a suite of molecular markers has been defined for all neuroblasts included in this map (Urbach and Technau, 2003a). However, the expression of these markers was not followed into later embryonic or larval stages, mainly due to the fact that anatomical landmarks to which expression patterns could be related had not been defined. Such markers, in the form of stereotyped clusters of neurons whose axons project along cohesive bundles (“primary axon bundles” or “PABs”) are now available (Younossi-Hartenstein et al., 2006). In the present study we have mapped the expression of molecular markers in relationship to primary neuronal clusters and their PABs. The markers we analyzed include many of the genes involved in patterning of the brain along the anteroposterior axis (cephalic gap genes, segment polarity genes) and dorso-ventral axis (columnar patterning genes), as well as genes expressed in the dorsal protocerebrum and visual system (early eye genes). Our analysis represents an important step along the way to identify neuronal lineages of the mature brain with genes expressed in the early embryo in discrete neuroblasts. Furthermore, the analysis helped us to reconstruct the morphogenetic movements that transform the two-dimensional neuroblast layer of the early embryo into the three-dimensional larval brain and provides the basis for deeper understanding of how the embryonic brain develops. PMID:17300994

  4. Acquisition and evolution of plant pathogenesis-associated gene clusters and candidate determinants of tissue-specificity in xanthomonas.

    Directory of Open Access Journals (Sweden)

    Hong Lu

    Full Text Available BACKGROUND: Xanthomonas is a large genus of plant-associated and plant-pathogenic bacteria. Collectively, members cause diseases on over 392 plant species. Individually, they exhibit marked host- and tissue-specificity. The determinants of this specificity are unknown. METHODOLOGY/PRINCIPAL FINDINGS: To assess potential contributions to host- and tissue-specificity, pathogenesis-associated gene clusters were compared across genomes of eight Xanthomonas strains representing vascular or non-vascular pathogens of rice, brassicas, pepper and tomato, and citrus. The gum cluster for extracellular polysaccharide is conserved except for gumN and sequences downstream. The xcs and xps clusters for type II secretion are conserved, except in the rice pathogens, in which xcs is missing. In the otherwise conserved hrp cluster, sequences flanking the core genes for type III secretion vary with respect to insertion sequence element and putative effector gene content. Variation at the rpf (regulation of pathogenicity factors cluster is more pronounced, though genes with established functional relevance are conserved. A cluster for synthesis of lipopolysaccharide varies highly, suggesting multiple horizontal gene transfers and reassortments, but this variation does not correlate with host- or tissue-specificity. Phylogenetic trees based on amino acid alignments of gum, xps, xcs, hrp, and rpf cluster products generally reflect strain phylogeny. However, amino acid residues at four positions correlate with tissue specificity, revealing hpaA and xpsD as candidate determinants. Examination of genome sequences of xanthomonads Xylella fastidiosa and Stenotrophomonas maltophilia revealed that the hrp, gum, and xcs clusters are recent acquisitions in the Xanthomonas lineage. CONCLUSIONS/SIGNIFICANCE: Our results provide insight into the ancestral Xanthomonas genome and indicate that differentiation with respect to host- and tissue-specificity involved not major

  5. Gene Sequence Based Clustering Assists in Dereplication of Pseudoalteromonas luteoviolacea Strains with Identical Inhibitory Activity and Antibiotic Production

    DEFF Research Database (Denmark)

    Vynne, Nikolaj Grønnegaard; Månsson, Maria; Gram, Lone

    2012-01-01

    Some microbial species are chemically homogenous, and the same secondary metabolites are found in all strains. In contrast, we previously found that five strains of P. luteoviolacea were closely related by 16S rRNA gene sequence but produced two different antibiotic profiles. The purpose...... antibacterial profiles based on inhibition assays against Vibrio anguillarum and Staphylococcus aureus. To determine whether chemotype and inhibition profile are reflected by phylogenetic clustering we sequenced 16S rRNA, gyrB and recA genes. Clustering based on 16S rRNA gene sequences alone showed little...... correlation to chemotypes and inhibition profiles, while clustering based on concatenated 16S rRNA, gyrB, and recA gene sequences resulted in three clusters, two of which uniformly consisted of strains of identical chemotype and inhibition profile. A major time sink in natural products discovery is the effort...

  6. Inactivation of human α-globin gene expression by a de novo deletion located upstream of the α-globin gene cluster

    International Nuclear Information System (INIS)

    Synthesis of normal human hemoglobin A, α2β2, is based upon balanced expression of genes in the α-globin gene cluster on chromosome 15 and the β-globin gene cluster on chromosome 11. Full levels of erythroid-specific activation of the β-globin cluster depend on sequences located at a considerable distance 5' to the β-globin gene, referred to as the locus-activating or dominant control region. The existence of an analogous element(s) upstream of the α-globin cluster has been suggested from observations on naturally occurring deletions and experimental studies. The authors have identified an individual with α-thalassemia in whom structurally normal α-globin genes have been inactivated in cis by a discrete de novo 35-kilobase deletion located ∼30 kilobases 5' from the α-globin gene cluster. They conclude that this deletion inactivates expression of the α-globin genes by removing one or more of the previously identified upstream regulatory sequences that are critical to expression of the α-globin genes

  7. An ensemble method for identifying regulatory circuits with special reference to the qa gene cluster of Neurospora crassa

    Science.gov (United States)

    Battogtokh, D.; Asch, D. K.; Case, M. E.; Arnold, J.; Schüttler, H.-B.

    2002-01-01

    A chemical reaction network for the regulation of the quinic acid (qa) gene cluster of Neurospora crassa is proposed. An efficient Monte Carlo method for walking through the parameter space of possible chemical reaction networks is developed to identify an ensemble of deterministic kinetics models with rate constants consistent with RNA and protein profiling data. This method was successful in identifying a model ensemble fitting available RNA profiling data on the qa gene cluster. PMID:12477937

  8. Characterization of the ars Gene Cluster from Extremely Arsenic-Resistant Microbacterium sp. Strain A33▿ †

    Science.gov (United States)

    Achour-Rokbani, Asma; Cordi, Audrey; Poupin, Pascal; Bauda, Pascale; Billard, Patrick

    2010-01-01

    The arsenic resistance gene cluster of Microbacterium sp. A33 contains a novel pair of genes (arsTX) encoding a thioredoxin system that are cotranscribed with an unusual arsRC2 fusion gene, ACR3, and arsC1 in an operon divergent from arsC3. The whole ars gene cluster is required to complement an Escherichia coli ars mutant. ArsRC2 negatively regulates the expression of the pentacistronic operon. ArsC1 and ArsC3 are related to thioredoxin-dependent arsenate reductases; however, ArsC3 lacks the two distal catalytic cysteine residues of this class of enzymes. PMID:19966021

  9. Transcriptional regulation of gene expression clusters in motor neurons following spinal cord injury

    DEFF Research Database (Denmark)

    Ryge, J.; Winther, Ole; Wienecke, J.;

    2010-01-01

    expression profiles. Analysis of these gene clusters identifies early immunological/inflammatory and late developmental responses as well as a regulation of genes relating to neuron excitability that support the development of motor neuron hyper-excitability and the reappearance of plateau potentials...... of modulatory inputs from the brain correlates with the development of spasticity. Results: Here we examine the dynamic transcriptional response of motor neurons to spinal cord injury as it evolves over time to unravel common gene expression patterns and their underlying regulatory mechanisms. For this we use......Background: Spinal cord injury leads to neurological dysfunctions affecting the motor, sensory as well as the autonomic systems. Increased excitability of motor neurons has been implicated in injury-induced spasticity, where the reappearance of self-sustained plateau potentials in the absence...

  10. Hard selective sweep and ectopic gene conversion in a gene cluster affording environmental adaptation.

    Directory of Open Access Journals (Sweden)

    Marc Hanikenne

    Full Text Available Among the rare colonizers of heavy-metal rich toxic soils, Arabidopsis halleri is a compelling model extremophile, physiologically distinct from its sister species A. lyrata, and A. thaliana. Naturally selected metal hypertolerance and extraordinarily high leaf metal accumulation in A. halleri both require Heavy Metal ATPase4 (HMA4 encoding a PIB-type ATPase that pumps Zn(2+ and Cd(2+ out of specific cell types. Strongly enhanced HMA4 expression results from a combination of gene copy number expansion and cis-regulatory modifications, when compared to A. thaliana. These findings were based on a single accession of A. halleri. Few studies have addressed nucleotide sequence polymorphism at loci known to govern adaptations. We thus sequenced 13 DNA segments across the HMA4 genomic region of multiple A. halleri individuals from diverse habitats. Compared to control loci flanking the three tandem HMA4 gene copies, a gradual depletion of nucleotide sequence diversity and an excess of low-frequency polymorphisms are hallmarks of positive selection in HMA4 promoter regions, culminating at HMA4-3. The accompanying hard selective sweep is segmentally eclipsed as a consequence of recurrent ectopic gene conversion among HMA4 protein-coding sequences, resulting in their concerted evolution. Thus, HMA4 coding sequences exhibit a network-like genealogy and locally enhanced nucleotide sequence diversity within each copy, accompanied by lowered sequence divergence between paralogs in any given individual. Quantitative PCR corroborated that, across A. halleri, three genomic HMA4 copies generate overall 20- to 130-fold higher transcript levels than in A. thaliana. Together, our observations constitute an unexpectedly complex profile of polymorphism resulting from natural selection for increased gene product dosage. We propose that these findings are paradigmatic of a category of multi-copy genes from a broad range of organisms. Our results emphasize that enhanced

  11. The 32-kilobase exp gene cluster of Rhizobium meliloti directing the biosynthesis of galactoglucan: genetic organization and properties of the encoded gene products.

    OpenAIRE

    Becker, A.; Rüberg, S; Küster, H.; Roxlau, A A; Keller, M; Ivashina, T; H.P. Cheng; Walker, G C; Pühler, A

    1997-01-01

    Proteins directing the biosynthesis of galactoglucan (exopolysaccharide II) in Rhizobium meliloti Rm2011 are encoded by the exp genes. Sequence analysis of a 32-kb DNA fragment of megaplasmid 2 containing the exp gene cluster identified previously (J. Glazebrook and G. C. Walker, Cell 56:661-672, 1989) revealed the presence of 25 open reading frames. Homologies of the deduced exp gene products to proteins of known function suggested that the exp genes encoded four proteins involved in the bio...

  12. Diplotype Trend Regression Analysis of the ADH Gene Cluster and the ALDH2 Gene: Multiple Significant Associations with Alcohol Dependence

    Science.gov (United States)

    Luo, Xingguang; Kranzler, Henry R.; Zuo, Lingjun; Wang, Shuang; Schork, Nicholas J.; Gelernter, Joel

    2006-01-01

    The set of alcohol-metabolizing enzymes has considerable genetic and functional complexity. The relationships between some alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) genes and alcohol dependence (AD) have long been studied in many populations, but not comprehensively. In the present study, we genotyped 16 markers within the ADH gene cluster (including the ADH1A, ADH1B, ADH1C, ADH5, ADH6, and ADH7 genes), 4 markers within the ALDH2 gene, and 38 unlinked ancestry-informative markers in a case-control sample of 801 individuals. Associations between markers and disease were analyzed by a Hardy-Weinberg equilibrium (HWE) test, a conventional case-control comparison, a structured association analysis, and a novel diplotype trend regression (DTR) analysis. Finally, the disease alleles were fine mapped by a Hardy-Weinberg disequilibrium (HWD) measure (J). All markers were found to be in HWE in controls, but some markers showed HWD in cases. Genotypes of many markers were associated with AD. DTR analysis showed that ADH5 genotypes and diplotypes of ADH1A, ADH1B, ADH7, and ALDH2 were associated with AD in European Americans and/or African Americans. The risk-influencing alleles were fine mapped from among the markers studied and were found to coincide with some well-known functional variants. We demonstrated that DTR was more powerful than many other conventional association methods. We also found that several ADH genes and the ALDH2 gene were susceptibility loci for AD, and the associations were best explained by several independent risk genes. PMID:16685648

  13. Fast induction of biosynthetic polysaccharide genes lpxA, lpxE, and rkpI of Rhizobium sp. strain PRF 81 by common bean seed exudates is indicative of a key role in symbiosis.

    Science.gov (United States)

    Oliveira, Luciana Ruano; Rodrigues, Elisete Pains; Marcelino-Guimarães, Francismar Corrêa; Oliveira, André Luiz Martinez; Hungria, Mariangela

    2013-06-01

    Rhizobial surface polysaccharides (SPS) are, together with nodulation (Nod) factors, recognized as key molecules for establishment of rhizobia-legume symbiosis. In Rhizobium tropici, an important nitrogen-fixing symbiont of common bean (Phaseolus vulgaris L.), molecular structures and symbiotic roles of the SPS are poorly understood. In this study, Rhizobium sp. strain PRF 81 genes, belonging to the R. tropici group, were investigated: lpxA and lpxE, involved in biosynthesis and modification of the lipid-A anchor of lipopolysaccharide (LPS), and rkpI, involved in synthesis of a lipid carrier required for production of capsular polysaccharides (KPS). Reverse transcription quantitative PCR (RT-qPCR) analysis revealed, for the first time, that inducers released from common bean seeds strongly stimulated expression of all three SPS genes. When PRF 81 cells were grown for 48 h in the presence of seed exudates, twofold increases (p PRF81 and of the type strain of R. tropici CIAT899(T)clustered with orthologous Rhizobium radiobacter and were more related to R. etli and Rhizobium leguminosarum, while rkpI was closer to the Sinorhizobium sp. group. Upregulation of lpxE, lpxA, and rkpI genes suggests that seed exudates can modulate production of SPS of Rhizobium sp. PRF81, leading to cell wall changes necessary for symbiosis establishment.

  14. Functional analysis of alcS, a gene of the alc cluster in Aspergillus nidulans.

    Science.gov (United States)

    Flipphi, Michel; Robellet, Xavier; Dequier, Emmanuel; Leschelle, Xavier; Felenbok, Béatrice; Vélot, Christian

    2006-04-01

    The ethanol utilization pathway (alc system) of Aspergillus nidulans requires two structural genes, alcA and aldA, which encode the two enzymes (alcohol dehydrogenase and aldehyde dehydrogenase, respectively) allowing conversion of ethanol into acetate via acetyldehyde, and a regulatory gene, alcR, encoding the pathway-specific autoregulated transcriptional activator. The alcR and alcA genes are clustered with three other genes that are also positively regulated by alcR, although they are dispensable for growth on ethanol. In this study, we characterized alcS, the most abundantly transcribed of these three genes. alcS is strictly co-regulated with alcA, and encodes a 262-amino acid protein. Sequence comparison with protein databases detected a putative conserved domain that is characteristic of the novel GPR1/FUN34/YaaH membrane protein family. It was shown that the AlcS protein is located in the plasma membrane. Deletion or overexpression of alcS did not result in any obvious phenotype. In particular, AlcS does not appear to be essential for the transport of ethanol, acetaldehyde or acetate. Basic Local Alignment Search Tool analysis against the A. nidulans genome led to the identification of two novel ethanol- and ethylacetate-induced genes encoding other members of the GPR1/FUN34/YaaH family, AN5226 and AN8390.

  15. eMBI: Boosting Gene Expression-based Clustering for Cancer Subtypes.

    Science.gov (United States)

    Chang, Zheng; Wang, Zhenjia; Ashby, Cody; Zhou, Chuan; Li, Guojun; Zhang, Shuzhong; Huang, Xiuzhen

    2014-01-01

    Identifying clinically relevant subtypes of a cancer using gene expression data is a challenging and important problem in medicine, and is a necessary premise to provide specific and efficient treatments for patients of different subtypes. Matrix factorization provides a solution by finding checker-board patterns in the matrices of gene expression data. In the context of gene expression profiles of cancer patients, these chec