WorldWideScience

Sample records for biosynthesis jh titer

  1. Juvenile hormone biosynthesis gene expression in the corpora allata of honey bee (Apis mellifera L.) female castes.

    Science.gov (United States)

    Bomtorin, Ana Durvalina; Mackert, Aline; Rosa, Gustavo Conrado Couto; Moda, Livia Maria; Martins, Juliana Ramos; Bitondi, Márcia Maria Gentile; Hartfelder, Klaus; Simões, Zilá Luz Paulino

    2014-01-01

    Juvenile hormone (JH) controls key events in the honey bee life cycle, viz. caste development and age polyethism. We quantified transcript abundance of 24 genes involved in the JH biosynthetic pathway in the corpora allata-corpora cardiaca (CA-CC) complex. The expression of six of these genes showing relatively high transcript abundance was contrasted with CA size, hemolymph JH titer, as well as JH degradation rates and JH esterase (jhe) transcript levels. Gene expression did not match the contrasting JH titers in queen and worker fourth instar larvae, but jhe transcript abundance and JH degradation rates were significantly lower in queen larvae. Consequently, transcriptional control of JHE is of importance in regulating larval JH titers and caste development. In contrast, the same analyses applied to adult worker bees allowed us inferring that the high JH levels in foragers are due to increased JH synthesis. Upon RNAi-mediated silencing of the methyl farnesoate epoxidase gene (mfe) encoding the enzyme that catalyzes methyl farnesoate-to-JH conversion, the JH titer was decreased, thus corroborating that JH titer regulation in adult honey bees depends on this final JH biosynthesis step. The molecular pathway differences underlying JH titer regulation in larval caste development versus adult age polyethism lead us to propose that mfe and jhe genes be assayed when addressing questions on the role(s) of JH in social evolution.

  2. Ovaries and regulation of juvenile hormone titer in Acheta domesticus L. (Orthoptera).

    Science.gov (United States)

    Renucci, M; Strambi, C; Strambi, A; Augier, R; Charpin, P

    1990-04-01

    A study was performed on females Acheta domesticus to examine the effects of various experimental conditions on the ovarian physiology. Using a radioimmunoassay to determine juvenile hormone (JH) titers as well as in vitro JH biosynthesis, we observed that retention of mature follicles in egg-retaining females, i.e., virgins or mated females not provided an egg-laying substrate, inhibits JH production and consequently oocyte development. Mating in intact as well as ovariectomized females does not affect corpora allata activity. It is only when mating is associated with egg laying that JH biosynthesis and hemolymph titers increased and oocyte development and fecundity are stimulated. Despite lower JH biosynthesis, ovariectomized females present enlarged corpora allata and the levels of JH observed in their hemolymph were intermediate between those of intact egg-laying and virgin females. In intact females, the hemolymph JH titers as well as the JH esterase activities were related to ovarian development. JH esterase activity was very high in ovariectomized animals. Several factors involved in ovarian development of A. domesticus are discussed.

  3. [Effect of olive leaves (Olea europea) feeding on the in vitro JH III biosynthesis by the corpora allata in Schistocerca gregaria during vitellogenesis].

    Science.gov (United States)

    Barbouche, N; Couillaud, F; Girardie, J; Ammar, M; Ben Hammouda, M H

    1996-01-01

    Per os administration of olive leaves (Olea europea) to females of Schistocerca gregaria results in stopping vitellogenesis. These vitellogenins are not synthesised by the fat body in the heamolymph. The vitellogenin inhibition is induced by the stopping of juvenile hormone JH III by the corpora allata. These corpora allata (Medicago sp.) Synthesise 10 times less JH III than those of alfalfa fed females.

  4. High-titer biosynthesis of hyaluronic acid by recombinant Corynebacterium glutamicum.

    Science.gov (United States)

    Cheng, Fangyu; Gong, Qianying; Yu, Huimin; Stephanopoulos, Gregory

    2016-03-01

    Hyaluronic acid (HA) plays important roles in human tissue system, thus it is highly desirable for various applications, such as in medical, clinic and cosmetic fields. The wild microbial producer of HA, streptococcus, was restricted by its potential pathogens, hence different recombinant hosts are being explored. In this work, we engineered Corynebacterium glutamicum, a GRAS (Generally Recognized as Safe) organism free of exotoxins and endotoxins to produce HA with high titer and satisfied Mw . The ssehasA gene encoding hyaluronan synthase (HasA) was artificially synthesized with codon preference of C. glutamicum. Other genes involved in the HA synthetic pathway were directly cloned from the C. glutamicum genome. The operon structures and constitutive or inducible promoters were particularly compared and the preferred environmental conditions were also optimized. Using glucose and corn syrup powder as carbon and nitrogen sources, batch cultures of the engineered C.glutamicum with operon ssehasA-hasB driven by Ptac promoter were performed in a 5 L fermentor. The maximal HA titer, productivity and yield reached 8.3 g/L, 0.24 g/L/h and 0.22 gHA/gGlucose, respectively; meanwhile the maximal Mw was 1.30 MDa. This work provides a safe and efficient novel producer of HA with huge industrial prospects. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. verification by joint hydraulic factor (JH)

    Indian Academy of Sciences (India)

    based on the data collected from Seyahoo dam site located in the east of Iran to provide the permeability prediction ... define 'zones', primarily focusing on fault zones. .... on technical data. The uniqueness of the follow- ing study lies in the connection between structural observations linked with joint hydraulic factor (JH).

  6. Biblical Spirituality and J.H. Eaton

    Directory of Open Access Journals (Sweden)

    Christo Lombaard

    2012-02-01

    Full Text Available In this contribution, the nature of �Biblical Spirituality� as an academic discipline is reviewed from a methodological perspective. Two core aspects are indicated: the importance of ancient expressions of faith (spiritualities in the Bible, and the importance of modern expressions of faith (spiritualities as they draw on the Bible. Based on this framework, as a first application of such a nature within the field of Biblical Spirituality, the relevant publications of an Old Testament scholar are evaluated; in this case, those of J.H. Eaton. Such an analysis opens an arena for discussion on whether this model of Biblical Spirituality holds promise for wider application.

  7. Antistreptolysin O titer

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003522.htm Antistreptolysin O titer To use the sharing features on this page, please enable JavaScript. Antistreptolysin O (ASO) titer is a blood test to measure ...

  8. Juvenile hormone titers, ovarian status and epicuticular hydrocarbons in gynes and workers of the paper wasp Belonogaster longitarsus.

    Science.gov (United States)

    Kelstrup, Hans C; Hartfelder, Klaus; Esterhuizen, Nanike; Wossler, Theresa C

    2017-04-01

    The prevailing paradigm for social wasp endocrinology is that of juvenile hormone (JH) functioning pleiotropically in potential and actual queens, where it fuels dominance behaviors, stimulates ovarian growth and/or affects the production of status-linked cuticular compounds. In colonies with annual cycles (e.g., temperate-zone species), female adults produced at the end of the summer (called gynes) are physiologically primed to hibernate. Despite the absence of egg-laying in the pre-overwintering phase, gynes engage in dominance interactions that may affect reproductive potential following hibernation. JH levels have long been inferred to be low in gynes but this has never been tested. In what is the first study to measure JH in gyne-containing colonies of a temperate paper wasp, and the first to incorporate hormone assays in Belonogaster, our results show that the JH titer positively correlates with gyne-specific traits (including oocyte length and a low frequency of foraging trips) in B. longitarsus, a South African paper wasp. Measures of dominance correlated with oocyte length, but not all dominant females possessed activated ovaries. The cuticular hydrocarbon profiles of gynes and workers were distinct, with oocyte length and JH titer showing a positive association with longer-chain methyl-branched alkanes. Nonetheless, evidence for a role of JH in dominance was inconclusive. Finally, the range of JH titers among gynes, and the positive association of JH titers with ovarian status and prospective fertility signals, makes it unlikely that the gyne phenotype is maintained by low JH levels. Copyright © 2016. Published by Elsevier Ltd.

  9. Determination of juvenile hormone titers by means of LC-MS/MS/MS and a juvenile hormone-responsive Gal4/UAS system in Aedes aegypti mosquitoes.

    Science.gov (United States)

    Zhao, Bo; Hou, Yuan; Wang, Jianjun; Kokoza, Vladimir A; Saha, Tusar T; Wang, Xue-Li; Lin, Ling; Zou, Zhen; Raikhel, Alexander S

    2016-10-01

    In anautogenous mosquitoes, juvenile hormone III (JH) plays an essential role in female post-eclosion (PE) development, preparing them for subsequent blood feeding and egg growth. We re-examined the JH titer during the reproductive cycle of female Aedes aegypti mosquitoes. Using liquid chromatography coupled with triple tandem mass spectrometry (LC-MS/MS/MS), we have shown that it reaches its peak at 48-54 h PE in the female hemolymph and at 72 h PE in whole body extracts. This method represents an effective assay for determination of JH titers. The 2.1-kb 5' promoter region of the Early Trypsin (ET) gene, which is specifically expressed in the female midgut under the control of JH during the PE phase, was utilized to genetically engineer the Ae. aegypti mosquito line with the ET-Gal4 activator. We then established the ET-GAL4>UAS-enhanced green fluorescent protein (EGFP) system in Ae. aegypti. In ET-Gal4>UAS-EGFP female mosquitoes, the intensity of the midgut-specific EGFP signal was observed to correspond to the ET gene transcript level and follow the JH titer during the PE phase. The EGFP signal and the EGFP transcript level were significantly diminished in midguts of transgenic female mosquitoes after RNA interference depletion of the JH receptor Methoprene-tolerant (Met), providing evidence of the control of ET gene expression by Met. Topical JH application caused premature enhancement of the EGFP signal and the EGFP transcript level in midguts of newly eclosed ET-Gal4>UAS-EGFP female mosquitoes, in which endogenous JH titer is still low. Hence, this novel ET-Gal4>UAS system permits JH-dependent gene overexpression in the midgut of Ae. aegypti female mosquitoes prior to a blood meal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Molecular cloning and biochemical characterization of a novel erythrose reductase from Candida magnoliae JH110

    Directory of Open Access Journals (Sweden)

    Ryu Yeon-Woo

    2010-06-01

    Full Text Available Abstract Background Erythrose reductase (ER catalyzes the final step of erythritol production, which is reducing erythrose to erythritol using NAD(PH as a cofactor. ER has gained interest because of its importance in the production of erythritol, which has extremely low digestibility and approved safety for diabetics. Although ERs were purified and characterized from microbial sources, the entire primary structure and the corresponding DNA for ER still remain unknown in most of erythritol-producing yeasts. Candida magnoliae JH110 isolated from honeycombs produces a significant amount of erythritol, suggesting the presence of erythrose metabolizing enzymes. Here we provide the genetic sequence and functional characteristics of a novel NADPH-dependent ER from C. magnoliae JH110. Results The gene encoding a novel ER was isolated from an osmophilic yeast C. magnoliae JH110. The ER gene composed of 849 nucleotides encodes a polypeptide with a calculated molecular mass of 31.4 kDa. The deduced amino acid sequence of ER showed a high degree of similarity to other members of the aldo-keto reductase superfamily including three ER isozymes from Trichosporonoides megachiliensis SNG-42. The intact coding region of ER from C. magnoliae JH110 was cloned, functionally expressed in Escherichia coli using a combined approach of gene fusion and molecular chaperone co-expression, and subsequently purified to homogeneity. The enzyme displayed a temperature and pH optimum at 42°C and 5.5, respectively. Among various aldoses, the C. magnoliae JH110 ER showed high specific activity for reduction of erythrose to the corresponding alcohol, erythritol. To explore the molecular basis of the catalysis of erythrose reduction with NADPH, homology structural modeling was performed. The result suggested that NADPH binding partners are completely conserved in the C. magnoliae JH110 ER. Furthermore, NADPH interacts with the side chains Lys252, Thr255, and Arg258, which could

  11. A novel mutation in the JH4 domain of JAK3 causing severe combined immunodeficiency complicated by vertebral osteomyelitis.

    Science.gov (United States)

    Qamar, Farah; Junejo, Samina; Qureshi, Sonia; Seleman, Michael; Bainter, Wayne; Massaad, Michel; Chou, Janet; Geha, Raif S

    2017-10-01

    JAK3 is a tyrosine kinase essential for signaling downstream of the common gamma chain subunit shared by multiple cytokine receptors. JAK3 deficiency results in T - B + NK - severe combined immune deficiency (SCID). We report a patient with SCID due to a novel mutation in the JAK3 JH4 domain. The function of the JH4 domain remains unknown. This is the first report of a missense mutation in the JAK3 JH4 domain, thereby demonstrating the importance of the JH4 domain of JAK3 in host immunity. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Maternal titers after adequate syphilotherapy during pregnancy.

    Science.gov (United States)

    Rac, Martha W F; Bryant, Stefanie N; Cantey, Joseph B; McIntire, Donald D; Wendel, George D; Sheffield, Jeanne S

    2015-03-01

    We aimed to construct a timeline for nontreponemal titer decline specific to pregnancy and evaluate factors associated with inadequate decline by delivery. This was a retrospective medical records review from September 1984 to June 2011 of women diagnosed with syphilis after 18 weeks of gestation. Women were treated according to stage of syphilis per Centers for Disease Control and Prevention guidelines. Patients with both pretreatment and delivery titers were included for data analysis. Demographics, stage of syphilis, maternal titers, delivery, and infant outcomes were recorded. Standard statistical analyses were performed for categorical and continuous data. The titer decline was analyzed using mixed-effects regression modeling. A total of 166 patients met inclusion criteria. Mean gestational age at treatment was 29.1 ± 5 weeks, and 93 (56%) women were diagnosed with early-stage syphilis. For all stages of syphilis, maternal titers declined after syphilotherapy. Pretreatment titers were higher and declined more rapidly in primary and secondary disease than in latent-stage disease and syphilis of unknown duration. Sixty-three (38%) patients achieved a 4-fold decline by delivery. Patients without a 4-fold decline by delivery were older (24.6 vs 21.5 years; P syphilis or syphilis of unknown duration, and had less time from treatment to delivery (7.8 vs 11.1 weeks; P < .001). Maternal serologic response during pregnancy after adequate syphilotherapy varied by stage of disease. Failure to achieve a 4-fold decline in titers by delivery is more a reflection of treatment timing than of treatment failure. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. RNAi-mediated knockdown of SPOOK reduces ecdysteroid titers and causes precocious metamorphosis in the desert locust Schistocerca gregaria.

    Science.gov (United States)

    Sugahara, Ryohei; Tanaka, Seiji; Shiotsuki, Takahiro

    2017-09-01

    The Halloween gene SPOOK (SPO) is involved in the production of the active metabolite of ecdysteroid, 20-hydroxyecdysone (20E), in insects. A previous study showed that RNAi-mediated knockdown of SPO in Schistocerca gregaria last instar nymphs markedly reduced the hemolymph 20E titer, but did not affect metamorphosis. In the present study, the effects of SPO interference on development were re-examined in this locust. Injections of SPO double-stranded RNA (dsSPO) into nymphs at mid and late instars significantly delayed nymphal development and interfered with molting. The 20E levels of dsSPO-treated nymphs were generally low, with a delayed, small peak, suggesting that disturbance of the 20E levels caused the above developmental abnormalities. A small proportion of the dsSPO-injected nymphs metamorphosed precociously, producing adults and adultoids. Precocious adults were characterized by small body size, short wings with abbreviated venation, and normal reproductive activity. Fourth instar nymphs that precociously metamorphosed at the following instar exhibited temporal expression patterns of ecdysone-induced protein 93F and the juvenile hormone (JH) early-inducible gene Krüppel homolog 1 similar to those observed at the last instar in normal nymphs. Adultoids displayed mating behavior and adultoid females developed eggs, but never laid eggs. JH injection around the expected time of the 20E peak in the dsSPO-injected nymphs completely inhibited the appearance of adultoids, suggesting that appearance of adultoids might be due to a reduced titer of JH rather than of 20E. These results suggest that SPO plays an important role in controlling morphogenesis, metamorphosis, and reproduction in S. gregaria. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Protein A chromatography at high titers.

    Science.gov (United States)

    Natarajan, Venkatesh; Zydney, Andrew L

    2013-09-01

    The large increase in antibody titers over the past two decades has created significant challenges for downstream processes; however, there have been no quantitative studies of the effect of feed concentration on the dynamic binding capacity in Protein A chromatography. Small scale experiments were performed using pre-packed ProSep® Ultra Plus columns over a range of feed flow rates and antibody concentrations. The data clearly demonstrate that the dynamic binding capacity decreases with increasing concentration of the monoclonal antibody at short residence times. This reduction in DBC is due to non-equilibrium mass transfer effects in the porous resin, with the experimental results consistent with predictions of a simple mathematical model based on a linear driving force with solid phase diffusion. These results provide important insights into the behavior of Protein A chromatography and provide a framework for the proper design of Protein A capture steps for high titer products. Copyright © 2013 Wiley Periodicals, Inc.

  15. Nucleoside antibiotics: biosynthesis, regulation, and biotechnology.

    Science.gov (United States)

    Niu, Guoqing; Tan, Huarong

    2015-02-01

    The alarming rise in antibiotic-resistant pathogens has coincided with a decline in the supply of new antibiotics. It is therefore of great importance to find and create new antibiotics. Nucleoside antibiotics are a large family of natural products with diverse biological functions. Their biosynthesis is a complex process through multistep enzymatic reactions and is subject to hierarchical regulation. Genetic and biochemical studies of the biosynthetic machinery have provided the basis for pathway engineering and combinatorial biosynthesis to create new or hybrid nucleoside antibiotics. Dissection of regulatory mechanisms is leading to strategies to increase the titer of bioactive nucleoside antibiotics. Copyright © 2014. Published by Elsevier Ltd.

  16. Rapid Simultaneous Amplification and Detection of the MBR/JH Chromosomal Translocation by Fluorescence Melting Curve Analysis

    Science.gov (United States)

    Bohling, Sandra D.; King, Thomas C.; Wittwer, Carl T.; Elenitoba-Johnson, Kojo S. J.

    1999-01-01

    Polymerase chain reaction (PCR) amplification and product analysis for the detection of chromosomal translocations, such as the t(14;18), has traditionally been a two-step process. PCR product detection has generally entailed gel electrophoresis and/or hybridization or sequencing for confirmation of assay specificity. Using a microvolume fluorimeter integrated with a thermal cycler and a PCR-compatible double-stranded DNA (dsDNA) binding fluorescent dye (SYBR Green I), we investigated the feasibility of simultaneous thermal amplification and detection of MBR/JH translocation products by fluorescence melting curve analysis. We analyzed DNA from 30 cases of lymphoproliferative disorders comprising 19 cases of previously documented MBR/JH-positive follicle center lymphoma and 11 reactive lymphadenopathies. The samples were coded and analyzed blindly for the presence of MBR/JH translocations by fluorescence melting curve analysis. We also performed dilutional assays using the MBR/JH-positive cell line SUDHL-6. Multiplex PCR for MBR/JH and β-globin was used to simultaneously assess sample adequacy. All (100%) of the 19 cases previously determined to be MBR/JH positive by conventional PCR analysis showed a characteristic sharp decrease in fluorescence at ∼90°C by melting curve analysis after amplification. Fluorescence melting peaks obtained by plotting the negative derivative of fluorescence over temperature (−dF/dT) versus temperature (T) showed melting temperatures (Tm) at 88.85 ± 1.15°C. In addition, multiplex assays using both MBR/JH and β-globin primers yielded easily distinguishable fluorescence melting peaks at ∼90°C and 81.2°C, respectively. Dilutional assays revealed that fluorescence melting curve analysis was more sensitive than conventional PCR and agarose gel electrophoresis with ultraviolet transillumination by as much as 100-fold. Simultaneous amplification and fluorescence melting curve analysis is a simple, reliable, and sensitive method

  17. Modeling the flux of metabolites in the juvenile hormone biosynthesis pathway using generalized additive models and ordinary differential equations.

    Directory of Open Access Journals (Sweden)

    Raúl O Martínez-Rincón

    Full Text Available Juvenile hormone (JH regulates development and reproductive maturation in insects. The corpora allata (CA from female adult mosquitoes synthesize fluctuating levels of JH, which have been linked to the ovarian development and are influenced by nutritional signals. The rate of JH biosynthesis is controlled by the rate of flux of isoprenoids in the pathway, which is the outcome of a complex interplay of changes in precursor pools and enzyme levels. A comprehensive study of the changes in enzymatic activities and precursor pool sizes have been previously reported for the mosquito Aedes aegypti JH biosynthesis pathway. In the present studies, we used two different quantitative approaches to describe and predict how changes in the individual metabolic reactions in the pathway affect JH synthesis. First, we constructed generalized additive models (GAMs that described the association between changes in specific metabolite concentrations with changes in enzymatic activities and substrate concentrations. Changes in substrate concentrations explained 50% or more of the model deviances in 7 of the 13 metabolic steps analyzed. Addition of information on enzymatic activities almost always improved the fitness of GAMs built solely based on substrate concentrations. GAMs were validated using experimental data that were not included when the model was built. In addition, a system of ordinary differential equations (ODE was developed to describe the instantaneous changes in metabolites as a function of the levels of enzymatic catalytic activities. The results demonstrated the ability of the models to predict changes in the flux of metabolites in the JH pathway, and can be used in the future to design and validate experimental manipulations of JH synthesis.

  18. Effect of centrifugation and microagglutination techniques on Brucella agglutinin titers.

    OpenAIRE

    Klein, G C; Behan, K A; Brown, S L; Couch, E E

    1982-01-01

    The microagglutination technique without centrifugation was more effective than centrifugation of the standard tube test for increasing Brucella agglutinin titers of specimens with a titer greater than or equal to 160 but was less effective than centrifugation of the standard tube test for specimens with a titer less than 160.

  19. Modulation of calcium carbonate precipitation by exopolysaccharide in Bacillus sp. JH7.

    Science.gov (United States)

    Kim, Hyun Jung; Shin, Bora; Lee, Yun Suk; Park, Woojun

    2017-08-01

    Extracellular polymeric substance (EPS) is proposed to facilitate calcium ion supersaturation through its nucleation effect during the microbially induced calcium carbonate precipitation (MICP) process. However, the supersaturation effect of Ca 2+ via EPS in MICP has not been clearly demonstrated. Enhanced exopolysaccharide production of the alkali- and halotolerant MICP-capable bacteria, Bacillus sp. JH7, was achieved through glycerol addition. This was demonstrated by measuring cellular precipitation and Congo red binding. Interestingly, field emission scanning electron microscopy and energy-dispersive X-ray spectrometry analysis demonstrated that there was no MICP under glycerol-amended conditions. Although glycerol promoted exopolysaccharide capture of Ca 2+ ions, Ca 2+ embedded onto EPS did not participate in MICP formation. The pH was reduced in glycerol-added media, which led us to analyze high acetate production under our test conditions. Purified glycerol-induced exopolysaccharide showed a higher capacity of Ca 2+ capture than the control. Quantitative RT-PCR analysis showed that three genes involved in exopolysaccharide production were highly upregulated by glycerol. The amounts of three detected monosaccharides (arabinose, glucose, and mannose) were altered by glycerol. Cell hydrophobicity measurements indicated that glycerol could confer more hydrophilic characteristics to cells, which might enhance Ca 2+ binding onto EPS. Unexpectedly, our data demonstrated, for the first time, that glycerol could promote exopolysaccharide and acetate production under our test condition, which could inhibit MICP by reducing the availability of free Ca 2+ .

  20. Identification and characterization of phenol hydroxylase from phenol-degrading Candida tropicalis strain JH8.

    Science.gov (United States)

    Long, Yan; Yang, Sheng; Xie, Zhixiong; Cheng, Li

    2014-09-01

    The gene phhY encoding phenol hydroxylase from Candida tropicalis JH8 was cloned, sequenced, and expressed in Escherichia coli. The gene phhY contained an open reading frame of 2130 bp encoding a polypeptide of 709 amino acid residues. From its sequence analysis, it is a member of a family of flavin-containing aromatic hydroxylases and shares 41% amino acid identity with phenol hydroxylase from Trichosporon cutaneum. The recombinant phenol hydroxylase exists as a homotetramer structure with a native molecular mass of 320 kDa. Recombinant phenol hydroxylase was insensitive to pH treatment; its optimum pH was at 7.6. The optimum temperature for the enzyme was 30 °C, and its activity was rapidly lost at temperatures above 60 °C. Under the optimal conditions with phenol as substrate, the K(m) and V(max) of recombinant phenol hydroxylase were 0.21 mmol·L(-1) and 0.077 μmol·L(-1)·min(-1), respectively. This is the first paper presenting the cloning and expression in E. coli of the phenol hydroxylase gene from C. tropicalis and the characterization of the recombinant phenol hydroxylase.

  1. The impact of host diet on Wolbachia titer in Drosophila.

    Directory of Open Access Journals (Sweden)

    Laura R Serbus

    2015-03-01

    Full Text Available While a number of studies have identified host factors that influence endosymbiont titer, little is known concerning environmental influences on titer. Here we examined nutrient impact on maternally transmitted Wolbachia endosymbionts in Drosophila. We demonstrate that Drosophila reared on sucrose- and yeast-enriched diets exhibit increased and reduced Wolbachia titers in oogenesis, respectively. The yeast-induced Wolbachia depletion is mediated in large part by the somatic TOR and insulin signaling pathways. Disrupting TORC1 with the small molecule rapamycin dramatically increases oocyte Wolbachia titer, whereas hyper-activating somatic TORC1 suppresses oocyte titer. Furthermore, genetic ablation of insulin-producing cells located in the Drosophila brain abolished the yeast impact on oocyte titer. Exposure to yeast-enriched diets altered Wolbachia nucleoid morphology in oogenesis. Furthermore, dietary yeast increased somatic Wolbachia titer overall, though not in the central nervous system. These findings highlight the interactions between Wolbachia and germline cells as strongly nutrient-sensitive, and implicate conserved host signaling pathways by which nutrients influence Wolbachia titer.

  2. Arabinogalactan biosynthesis

    DEFF Research Database (Denmark)

    Poulsen, Christian Peter; Dilokpimol, Adiphol; Geshi, Naomi

    2015-01-01

    Arabinogalactan proteins are abundant cell surface proteoglycans in plants and are implicated to act as developmental markers during plant growth. We previously reported that AtGALT31A, AtGALT29A, and AtGLCAT14A-C, which are involved in the biosynthesis of arabinogalactan proteins, localize......GALT29A. Therefore, the electrostatic status of Y144, which is regulated by an unknown kinase/phosphatase system, may regulate AtGALT29A enzyme activity. Moreover, we have identified additional proteins, apyrase 3 (APY3; At1g14240) and UDPglucuronate epimerases 1 and 6 (GAE1, At4g30440; GAE6, At3g23820...

  3. Disruption of a red giant star by a supermassive black hole and the case of PS1-10jh

    International Nuclear Information System (INIS)

    Bogdanović, Tamara; Cheng, Roseanne M.; Amaro-Seoane, Pau

    2014-01-01

    The development of a new generation of theoretical models for tidal disruptions is timely, as increasingly diverse events are being captured in surveys of the transient sky. Recently, Gezari et al. reported a discovery of a new class of tidal disruption events: the disruption of a helium-rich stellar core, thought to be a remnant of a red giant (RG) star. Motivated by this discovery and in anticipation of others, we consider tidal interaction of an RG star with a supermassive black hole (SMBH) which leads to the stripping of the stellar envelope and subsequent inspiral of the compact core toward the black hole. Once the stellar envelope is removed the inspiral of the core is driven by tidal heating as well as the emission of gravitational radiation until the core either falls into the SMBH or is tidally disrupted. In the case of the tidal disruption candidate PS1-10jh, we find that there is a set of orbital solutions at high eccentricities in which the tidally stripped hydrogen envelope is accreted by the SMBH before the helium core is disrupted. This places the RG core in a portion of parameter space where strong tidal heating can lift the degeneracy of the compact remnant and disrupt it before it reaches the tidal radius. We consider how this sequence of events explains the puzzling absence of the hydrogen emission lines from the spectrum of PS1-10jh and gives rise to its other observational features.

  4. PS1-10jh CONTINUES TO FOLLOW THE FALLBACK ACCRETION RATE OF A TIDALLY DISRUPTED STAR

    Energy Technology Data Exchange (ETDEWEB)

    Gezari, S. [Department of Astronomy, University of Maryland, Stadium Drive, College Park, MD 20742-2421 (United States); Chornock, R. [Astrophysical Institute, Department of Physics and Astronomy, 251B Clippinger Lab, Ohio University Athens, OH 45701 (United States); Lawrence, A. [Institute for Astronomy, University of Edinburgh Scottish Universities Physics Alliance, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Rest, A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Jones, D. O. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Berger, E.; Challis, P. M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Narayan, G., E-mail: suvi@astro.umd.edu [NOAO, 950 North Cherry Avenue, Tucson, AZ 85719 (United States)

    2015-12-10

    We present late-time observations of the tidal disruption event candidate PS1-10jh. UV and optical imaging with Hubble Space Telescope/WFC3 localize the transient to be coincident with the host galaxy nucleus to an accuracy of 0.023 arcsec, corresponding to 66 pc. The UV flux in the F225W filter, measured 3.35 rest-frame years after the peak of the nuclear flare, is consistent with a decline that continues to follow a t{sup −5/3} power-law with no spectral evolution. Late epochs of optical spectroscopy obtained with MMT ∼ 2 and 4 years after the peak, enable a clean subtraction of the host galaxy from the early spectra, revealing broad helium emission lines on top of a hot continuum, and placing stringent upper limits on the presence of hydrogen line emission. We do not measure Balmer Hδ absorption in the host galaxy that is strong enough to be indicative of a rare, post-starburst “E+A” galaxy as reported by Arcavi et al. The light curve of PS1-10jh over a baseline of 3.5 years is best modeled by fallback accretion of a tidally disrupted star. Its strong broad helium emission relative to hydrogen (He iiλ4686/Hα > 5) could be indicative of either the hydrogen-poor chemical composition of the disrupted star, or certain conditions in the tidal debris of a solar-composition star in the presence of an optically thick, extended reprocessing envelope.

  5. Helicobacter pylori Antibody Titer and Gastric Cancer Screening

    Directory of Open Access Journals (Sweden)

    Hiroshi Kishikawa

    2015-01-01

    Full Text Available The “ABC method” is a serum gastric cancer screening method, and the subjects were divided based on H. pylori serology and atrophic gastritis as detected by serum pepsinogen (PG: Group A [H. pylori (− PG (−], Group B [H. pylori (+ PG (−], Group C [H. pylori (+ PG (+], and Group D [H. pylori (− PG (+]. The risk of gastric cancer is highest in Group D, followed by Groups C, B, and A. Groups B, C, and D are advised to undergo endoscopy, and the recommended surveillance is every three years, every two years, and annually, respectively. In this report, the reported results with respect to further risk stratification by anti-H. pylori antibody titer in each subgroup are reviewed: (1 high-negative antibody titer subjects in Group A, representing posteradicated individuals with high risk for intestinal-type cancer; (2 high-positive antibody titer subjects in Group B, representing active inflammation with high risk for diffuse-type cancer; and (3 low-positive antibody titer subjects in Group C, representing advanced atrophy with increased risk for intestinal-type cancer. In these subjects, careful follow-up with intervals of surveillance of every three years in (1, every two years in (2, and annually in (3 should be considered.

  6. Correlation between alanine aminotransferase level, HCV-RNA titer ...

    African Journals Online (AJOL)

    Reham Al Swaff

    2012-04-04

    Apr 4, 2012 ... Abstract The relationship of serum alanine aminotransferase (ALT) level and viral replication to liver damage in chronic hepatitis C virus (HCV) patients remains unclear. The aim of the present study was to determine whether the stage of fibrosis correlates with HCV-. RNA titer and/or serum ALT level in ...

  7. An improved plating assay for determination of phage titer

    African Journals Online (AJOL)

    RACHEL

    antibiotics to control bacterial infections in swine (Thacker,. 2014). Phage therapy is re-valued by researchers to combat the growing menace of antibiotic-resistant infections (Torres-Barceló and Hochberg, 2016). Determination of phage titer in a sample is a key step in the study of the phage involved. It is very important to.

  8. Pseudomonas fluorescens JH 70-4 promotes pb stabilization and early seedling growth of sudan grass in contaminated mining site soil.

    Science.gov (United States)

    Shim, Jaehong; Babu, A Giridhar; Velmurugan, Palanivel; Shea, Patrick J; Oh, Byung-Taek

    2014-01-01

    A bacterial strain (JH 70-4) exhibiting plant growth promoting characteristics (indoleacetic acid production and 1-aminocyclopropane-1-carboxylate deaminase activity), as well as heavy metal(loid) (HM) tolerance and Pb precipitation, was isolated from HM-contaminated soil at an abandoned mine site. The bacterium was identified as Pseudomonas fluorescens based on 16S rDNA sequencing. The JH 70-4 strain induced precipitation of Pb as PbS nanoparticles, confirmed by X-ray diffraction. Solution pH, incubation time, and Pb concentration influenced removal and PbS formation. Inoculating contaminated soil with JH 70-4 decreased Pb availability; exchangeable Pb decreased while organic- and sulphide-bound Pb increased. The toxicity characteristic leaching procedure showed a 65% decrease in Pb in leachate 60 d after inoculating soil with JH 70-4. Shoot and root lengths of Sudan grass grown in the inoculated soil were greater than in the uninoculated soil. Findings suggest that microbial Pb fixation is a viable strategy for remediating soil and promoting plant growth for phytostabilization of contaminated sites.

  9. E.coli and investigation of antibody titer in rats

    Directory of Open Access Journals (Sweden)

    masoud abdollahi

    2017-03-01

    Full Text Available Introduction: Plant ribosome inactivating proteins act as N-glycosidase enzyme and produce by several family of Caryophyllaceae such as Saponaria Officinalis. Different Isoforms of RIPs expressed by Saponaria Officinalis. SO6 isoform depurinate Adenine 4324 in the conserved GAGA loop of 28SrRNA and disrupts protein synthesis. The aim of this study was expression of SO6 isoform in E.coli and investigation of antibody titer in rats. Methods: In this experimental study, SO6 synthetic gene was excised from recombinant pUC57- SO6 plasmid with BamHI and SalI restriction enzymes and subcloned into pET28a (+ expression vector. The expression of recombinant protein was induced by IPTG. Recombinant SO6 was purified by nickel affinity chromatography. Western blotting was performed to confirm the recombinant protein. Rats were immunized intraperitoneal with purified protein and IgG serum titer was assayed by ELISA. Results: PCR reaction and enzyme digestion confirmed subcloning of SO6 gene into pET28a (+ expression vector. A 29.5kDa protein band on SDS-PAGE showed a high level of recombinant protein expression. Polyclonal antibodies recognized SO6. ELISA confirmed significant antibody titer after injection of protein in test group compared with the control group. Conclusion: The recombinant purified SO6 antigen can be used for anti-cancer and vaccine candidate research.

  10. Fibrinogen titer and glycemic status in women using contraceptives

    International Nuclear Information System (INIS)

    Syed, S.; Qureshi, M.A.

    2002-01-01

    Objective: To assess the coagulation and glycemic status in Pakistani women using contraceptives. Design: The study was conducted prospectively on 70 women and compared with 10 age-matched controls. Place and Duration of Study: The study was conducted at Karachi. Period of study was 18 month. Subjects and Methods: Eighty women aged between 20-45 years selected from low socioeconomic class and poor family background were categorized in control (n=10) and oral and injectable contraceptive users (n = 70). The contraceptives used were tablet Lofemenal, injection Norigest and Norplant implant. Their blood was tested for fibrinogen titer and random blood glucose. Results: There was no appreciable difference either in fibrinogen titer or plasma glucose levels in injectable users as compared to controls, but increased incidence of high fibrinogen titer and borderline blood glucose was observed in oral contraceptive users 25% and 20 % respectively. Conclusion: It was concluded that long-term use of oral contraceptives (> 3 years) might increase the thrombotic tendency and elevate the plasma glucose levels especially in women above 30 years of age. (author)

  11. A system for improved production titers in fermentations

    DEFF Research Database (Denmark)

    2017-01-01

    The invention provides a genetically modified micro-organism for intracellular biosynthesis of a cellular metabolite, comprising a synthetic error correction system having a penalty gene, whose expression leads to arrested growth or cell death (e.g. a toxin gene) in combination with a survival gene...

  12. In vivo inhibition of polyamine biosynthesis and growth in tobacco ovary tissues

    Science.gov (United States)

    Slocum, R. D.; Galston, A. W.

    1985-01-01

    Post fertilization growth of tobacco ovary tissues treated with inhibitors of polyamine (PA) biosynthesis was examined in relation to endogenous PA titers and the activities of arginine decarboxylase (ADC, EC 4.1.1.19) and ornithine decarboxylase (ODC, EC 4.1.1.17). DL-alpha-Difluoromethylornithine (DFMO) and DL-alpha-difluoromethylarginine (DFMA), specific, irreversible ("suicide") inhibitors of ODC and ADC in vitro, were used to modulate PA biosynthesis in excised flowers. ODC represented >99% of the total decarboxylase activity in tobacco ovaries. In vivo inhibition of ODC with DFMO resulted in a significant decrease in PA titers, ovary fresh weight and protein content. Simultaneous inhibition of both decarboxylases by DFMO and DFMA produced only a marginally greater depression in growth and PA titers, indicating that ODC activity is rate-limiting for PA biosynthesis in these tissues. Paradoxically, DFMA alone inhibited PA biosynthesis, not as a result of a specific inhibition of ADC, but primarily through the inactivation of ODC. In vivo inhibition of ODC by DFMA appears to result from arginase-mediated hydrolysis of this inhibitor to urea and DFMO, the suicide substrate for ODC. Putrescine conjugates in tobacco appear to function as a storage form of this amine which, upon hydrolysis, may contribute to Put homeostasis during growth.

  13. Low Titer Pneumocystis jirovecii Infections: More than Just Colonization?

    Directory of Open Access Journals (Sweden)

    Alexander Prickartz

    2016-05-01

    Full Text Available Non-pneumonia Pneumocystis jirovecii colonization is thought to occur frequently in immunocompetent individuals. The aim was to analyze if P. jirovecii low-titer detections have more impact than just colonization. From our total cohort of patients for which P. jirovecii testing by qPCR was requested, we selected exclusively those that were fully immunocompetent. Patients were defined as fully immunocompetent if they did not receive immunosuppressive therapy, displayed regular antibody titers, and did not suffer from acquired, inherited or autoimmune diseases. Only those patients with complete medical records available were included. A retrospective analysis identified patients with P. jirovecii colonization and successful antibiotic therapy in response to laboratory pathogen detection. We identified 30 fully immunocompetent patients with P. jirovecii colonization suspected to suffer from infection with the pathogen, but with milder symptoms than pneumonia. All patients were successfully treated with cotrimoxazole against P. jirovecii and resolved from chronic cough and recurrent pulmonary infections. The fact that all patients displayed recovery from their clinical symptoms gives raise to the hypothesis that P. jirovecii infections may also occur in immunocompetent patients but with milder symptoms.

  14. Deregulation of S-adenosylmethionine biosynthesis and regeneration improves methylation in the E. coli de novo vanillin biosynthesis pathway.

    Science.gov (United States)

    Kunjapur, Aditya M; Hyun, Jason C; Prather, Kristala L J

    2016-04-11

    Vanillin is an industrially valuable molecule that can be produced from simple carbon sources in engineered microorganisms such as Saccharomyces cerevisiae and Escherichia coli. In E. coli, de novo production of vanillin was demonstrated previously as a proof of concept. In this study, a series of data-driven experiments were performed in order to better understand limitations associated with biosynthesis of vanillate, which is the immediate precursor to vanillin. Time-course experiments monitoring production of heterologous metabolites in the E. coli de novo vanillin pathway revealed a bottleneck in conversion of protocatechuate to vanillate. Perturbations in central metabolism intended to increase flux into the heterologous pathway increased average vanillate titers from 132 to 205 mg/L, but protocatechuate remained the dominant heterologous product on a molar basis. SDS-PAGE, in vitro activity measurements, and L-methionine supplementation experiments suggested that the decline in conversion rate was influenced more by limited availability of the co-substrate S-adenosyl-L-methionine (AdoMet or SAM) than by loss of activity of the heterologous O-methyltransferase. The combination of metJ deletion and overexpression of feedback-resistant variants of metA and cysE, which encode enzymes involved in SAM biosynthesis, increased average de novo vanillate titers by an additional 33% (from 205 to 272 mg/L). An orthogonal strategy intended to improve SAM regeneration through overexpression of native mtn and luxS genes resulted in a 25% increase in average de novo vanillate titers (from 205 to 256 mg/L). Vanillate production improved further upon supplementation with methionine (as high as 419 ± 58 mg/L), suggesting potential for additional enhancement by increasing SAM availability. Results from this study demonstrate context dependency of engineered pathways and highlight the limited methylation capacity of E. coli. Unlike in previous efforts to improve SAM or

  15. Using titer and titer normalized to confluence are complementary strategies for obtaining Chinese hamster ovary cell lines with high volumetric productivity of etanercept

    DEFF Research Database (Denmark)

    Pristovšek, Nuša; Hansen, Henning Gram; Sergeeva, Daria

    2018-01-01

    The selection of clonally-derived Chinese hamster ovary (CHO) cell lines with the highest production rate of recombinant glycoproteins remains a big challenge during early stages of cell line development. Different strategies using either product titer or product titer normalized to cell number...

  16. Biosynthesis of tylophora alkaloids

    International Nuclear Information System (INIS)

    Mulchandani, N.B.; Iyer, S.S.; Badheka, L.P.

    1974-01-01

    Using labelled precursors, biosynthesis of the tylophora alkaloids, tylophorine, tylophorinidine and tylophorinide has been investigated in Tylophora asthmatica plants. The radioactive precursors, phenylalanine-2- 14 C, benzoic acid-1- 14 C, benzoic acid-ring 14 C, acetate-2- 14 C, ornithine-5- 14 C, acetate-2- 14 C, ornithine-5- 14 C and cinnamic acid-2- 14 C were administered to the plants individually by wick technique. Tylophorine was isolated in each case and assayed for its radioactivity to find out the incorporation of the label into it. The results indicate that: (1) phenylalanine via cinnamic acid is an important precursor in the biosynthesis of tylophorine (2) orinithine participates in tylophorine biosynthesis via pyrroline and (3) tylophorinidine may be a direct precursor of tylophorine. (M.G.B.)

  17. Aflatoxin biosynthesis: current frontiers.

    Science.gov (United States)

    Roze, Ludmila V; Hong, Sung-Yong; Linz, John E

    2013-01-01

    Aflatoxins are among the principal mycotoxins that contaminate economically important food and feed crops. Aflatoxin B1 is the most potent naturally occurring carcinogen known and is also an immunosuppressant. Occurrence of aflatoxins in crops has vast economic and human health impacts worldwide. Thus, the study of aflatoxin biosynthesis has become a focal point in attempts to reduce human exposure to aflatoxins. This review highlights recent advances in the field of aflatoxin biosynthesis and explores the functional connection between aflatoxin biosynthesis, endomembrane trafficking, and response to oxidative stress. Dissection of the regulatory mechanisms involves a complete comprehension of the aflatoxin biosynthetic process and the dynamic network of transcription factors that orchestrates coordinated expression of the target genes. Despite advancements in the field, development of a safe and effective multifaceted approach to solve the aflatoxin food contamination problem is still required.

  18. Recent advances in combinatorial biosynthesis for drug discovery

    Directory of Open Access Journals (Sweden)

    Sun H

    2015-02-01

    Full Text Available Huihua Sun,1,* Zihe Liu,1,* Huimin Zhao,1,2 Ee Lui Ang1 1Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, Singapore; 2Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA *These authors contributed equally to this work Abstract: Because of extraordinary structural diversity and broad biological activities, natural products have played a significant role in drug discovery. These therapeutically important secondary metabolites are assembled and modified by dedicated biosynthetic pathways in their host living organisms. Traditionally, chemists have attempted to synthesize natural product analogs that are important sources of new drugs. However, the extraordinary structural complexity of natural products sometimes makes it challenging for traditional chemical synthesis, which usually involves multiple steps, harsh conditions, toxic organic solvents, and byproduct wastes. In contrast, combinatorial biosynthesis exploits substrate promiscuity and employs engineered enzymes and pathways to produce novel “unnatural” natural products, substantially expanding the structural diversity of natural products with potential pharmaceutical value. Thus, combinatorial biosynthesis provides an environmentally friendly way to produce natural product analogs. Efficient expression of the combinatorial biosynthetic pathway in genetically tractable heterologous hosts can increase the titer of the compound, eventually resulting in less expensive drugs. In this review, we will discuss three major strategies for combinatorial biosynthesis: 1 precursor-directed biosynthesis; 2 enzyme-level modification, which includes swapping of the entire domains, modules and subunits, site-specific mutagenesis, and directed evolution; 3 pathway-level recombination. Recent examples of combinatorial biosynthesis employing these

  19. Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae.

    Science.gov (United States)

    Duan, Lijin; Ding, Wentao; Liu, Xiaonan; Cheng, Xiaozhi; Cai, Jing; Hua, Erbing; Jiang, Huifeng

    2017-09-26

    Kaempferol is a flavonol with broad bioactivity of anti-oxidant, anti-cancer, anti-diabetic, anti-microbial, cardio-protective and anti-asthma. Microbial synthesis of kaempferol is a promising strategy because of the low content in primary plant source. In this study, the biosynthesis pathway of kaempferol was constructed in the budding yeast Saccharomyces cerevisiae to produce kaempferol de novo, and several biological measures were taken for high production. Firstly, a high efficient flavonol synthases (FLS) from Populus deltoides was introduced into the biosynthetic pathway of kaempferol. Secondly, a S. cerevisiae recombinant was constructed for de novo synthesis of kaempferol, which generated about 6.97 mg/L kaempferol from glucose. To further promote kaempferol production, the acetyl-CoA biosynthetic pathway was overexpressed and p-coumarate was supplied as substrate, which improved kaempferol titer by about 23 and 120%, respectively. Finally, a fed-batch process was developed for better kaempferol fermentation performance, and the production reached 66.29 mg/L in 40 h. The titer of kaempferol in our engineered yeast is 2.5 times of the highest reported titer. Our study provides a possible strategy to produce kaempferol using microbial cell factory.

  20. Association of Tissue Transglutaminase Antibody Titer with Duodenal Histological Changes in Children with Celiac Disease

    Directory of Open Access Journals (Sweden)

    Hasan Hawamdeh

    2016-01-01

    Full Text Available Celiac disease is usually diagnosed by demonstrating gluten enteropathy in small bowel biopsy. Celiac specific antibodies are used as an initial screening test. The goal of this study is to test the relationship of the anti-tTG titer and severity of histological changes in Jordanian children with celiac disease. Method. The medical records of 81 children who had elevated anti-tTG titer and had duodenal biopsies available were retrospectively reviewed. Result. Assessing the association of anti-tTG titer with duodenal histopathological changes, 94% of those with high anti-tTG titer (≥180 U/mL had histological evidence of celiac disease. There was statistically significant positive association between high anti-tTG titer and Marsh grading as 82% of patients with Marsh III had high anti-tTG titer (Chi2 18.5; P value 0.00; Odds Ratio 8.5. The fraction of patients with Marsh III who were correctly identified as positive by anti-tTG titer ≥ 180 U/mL was high (sensitivity = 81.6. Moreover, the fraction of patients with anti-tTG titer ≥ 180 U/mL who had Marsh III was also high (positive predictive value = 78.4. Conclusion. Anti-tTG titer ≥ 180 U/mL had significant positive association with Marsh III histopathological changes of celiac disease.

  1. Long term impact of high titer Edmonston-Zagreb measles vaccine on T lymphocyte subsets

    DEFF Research Database (Denmark)

    Lisse, I M; Aaby, P; Knudsen, K

    1994-01-01

    Several trials of high titer measles vaccine (> 10(4.7) plaque-forming unit) have found female recipients of Edmonston-Zagreb (EZ) vaccine to have lower survival than female recipients of standard measles vaccine. Two trials with medium and high titer EZ vaccine from the age of 4 months were...... unlikely to explain the reduced survival which has been associated with high titer EZ measles vaccination. In the 2 years after the investigation of T cell subsets, there was no increased mortality for recipients of EZ vaccine. Hence it is unlikely that high titer vaccine has an persistent adverse effect...

  2. Antistreptolysin O titer in health and disease: levels and significance

    Directory of Open Access Journals (Sweden)

    Alyaa Amal Kotby

    2012-02-01

    Full Text Available Over diagnosis of acute rheumatic fever (ARF based on a raised antistreptolysin O titer (ASOT is not uncommon in endemic areas. In this study, 660 children (aged 9.2 ±1.7 years were recruited consecutively and classified as: G1 (control group, n=200 healthy children, G2 (n=20 with ARF 1st attack, G3 (n=40 with recurrent ARF, G4 (n=100 with rheumatic heart disease (RHD on long acting penicillin (LAP, G5 (n=100 with acute follicular tonsillitis, and G6 (n=200 healthy children with history of repeated follicular tonsillitis more than three times a year. Serum ASOT was measured by latex agglutination. Upper limit of normal (ULN ASOT (80th percentile was 400 IU in G1, 200 IU in G4, and 1600 IU in G6. Significantly high levels were seen in ARF 1st attack when compared to groups 1 and 5 (P<0.001 and P<0.05, respectively. ASOT was significantly high in children over ten years of age, during winter and in those with acute rheumatic carditis. ASOT showed significant direct correlation with the number of attacks of tonsillitis (P<0.05. Egyptian children have high ULN ASOT reaching 400 IU. This has to be taken into consideration when interpreting its values in suspected ARF. A rise in ASOT is less prominent in recurrent ARF compared to 1st attack, and acute and recurrent tonsillitis. Basal levels of ASOT increase with age but the pattern of increase during infection is not age dependent

  3. Low titer lentiviral transgenesis in rodents with simian immundeficiency virus vector.

    Science.gov (United States)

    Bender, Balázs; Hoffmann, Orsolya Ivett; Negre, Didier; Kvell, Krisztián; Bősze, Zsuzsanna; Hiripi, László

    2013-09-01

    Efficient production of transgenic animals using low-titer lentiviral constructs remains challenging. Here we demonstrate that microinjection of simian immundeficiency virus-derived lentiviral constructs can produce transgenic mice and rats with high efficiency even when using low-titer virus preparations.

  4. Long term impact of high titer Edmonston-Zagreb measles vaccine on T lymphocyte subsets

    DEFF Research Database (Denmark)

    Lisse, I M; Aaby, P; Knudsen, K

    1994-01-01

    conducted in Guinea-Bissau. To test for possible long term impact on the immune system, an investigation of T cell subsets was conducted among all children still residing in the community at 3 to 5 years of age. No differences were found between recipients of medium titer vaccine and controls. In the second......Several trials of high titer measles vaccine (> 10(4.7) plaque-forming unit) have found female recipients of Edmonston-Zagreb (EZ) vaccine to have lower survival than female recipients of standard measles vaccine. Two trials with medium and high titer EZ vaccine from the age of 4 months were...... unlikely to explain the reduced survival which has been associated with high titer EZ measles vaccination. In the 2 years after the investigation of T cell subsets, there was no increased mortality for recipients of EZ vaccine. Hence it is unlikely that high titer vaccine has an persistent adverse effect...

  5. [Optimization of oxytetracycline biosynthesis].

    Science.gov (United States)

    Maksimova, E A; Falkov, N N; Izmaĭlov, N N; Romanchuk, N N

    1988-06-01

    It was shown that rising of temperature up to 30 degrees C at the stage of the oxytetracycline-producing organism growth promoted acceleration of the culture growth rate and increasing of the antibiotic concentration by the 114th hour of the biosynthetic process. For the apparatus used in the study optimal aeration and agitation conditions were developed. To provide optimal parameters during biosynthesis of oxytetracycline, it was recommended to use the aeration rate of 1 v/v.min and the specific mechanical power for mixing of not less than 1 kW/m3.

  6. Biosynthesis of Rishirilide B

    Directory of Open Access Journals (Sweden)

    Philipp Schwarzer

    2018-03-01

    Full Text Available Rishirilide B was isolated from Streptomyces rishiriensis and Streptomyces bottropensis on the basis of its inhibitory activity towards alpha-2-macroglobulin. The biosynthesis of rishirilide B was investigated by feeding experiments with different 13C labelled precursors using the heterologous host Streptomyces albus J1074::cos4 containing a cosmid encoding of the gene cluster responsible for rishirilide B production. NMR spectroscopic analysis of labelled compounds demonstrate that the tricyclic backbone of rishirilide B is a polyketide synthesized from nine acetate units. One of the acetate units is decarboxylated to give a methyl group. The origin of the starter unit was determined to be isobutyrate.

  7. (+)-Germacrene A Biosynthesis

    Science.gov (United States)

    de Kraker, Jan-Willem; Franssen, Maurice C.R.; de Groot, Aede; König, Wilfried A.; Bouwmeester, Harro J.

    1998-01-01

    The leaves and especially the roots of chicory (Cichorium intybus L.) contain high concentrations of bitter sesquiterpene lactones such as the guianolides lactupicrin, lactucin, and 8-deoxylactucin. Eudesmanolides and germacranolides are present in smaller amounts. Their postulated biosynthesis through the mevalonate-farnesyl diphosphate-germacradiene pathway has now been confirmed by the isolation of a (+)-germacrene A synthase from chicory roots. This sesquiterpene cyclase was purified 200-fold using a combination of anion-exchange and dye-ligand chromatography. It has a Km value of 6.6 μm, an estimated molecular mass of 54 kD, and a (broad) pH optimum around 6.7. Germacrene A, the enzymatic product, proved to be much more stable than reported in literature. Its heat-induced Cope rearrangement into (−)-β-elemene was utilized to determine its absolute configuration on an enantioselective gas chromatography column. To our knowledge, until now in sesquiterpene biosynthesis, germacrene A has only been reported as an (postulated) enzyme-bound intermediate, which, instead of being released, is subjected to additional cyclization(s) by the same enzyme that generated it from farnesyl diphosphate. However, in chicory germacrene A is released from the sesquiterpene cyclase. Apparently, subsequent oxidations and/or glucosylation of the germacrane skeleton, together with a germacrene cyclase, determine whether guaiane- or eudesmane-type sesquiterpene lactones are produced. PMID:9701594

  8. Engineered biosynthesis of bacterial aromatic polyketides in Escherichia coli.

    Science.gov (United States)

    Zhang, Wenjun; Li, Yanran; Tang, Yi

    2008-12-30

    Bacterial aromatic polyketides are important therapeutic compounds including front line antibiotics and anticancer drugs. It is one of the last remaining major classes of natural products of which the biosynthesis has not been reconstituted in the genetically superior host Escherichia coli. Here, we demonstrate the engineered biosynthesis of bacterial aromatic polyketides in E. coli by using a dissected and reassembled fungal polyketide synthase (PKS). The minimal PKS of the megasynthase PKS4 from Gibberella fujikuroi was extracted by using two approaches. The first approach yielded a stand-alone Ketosynthase (KS)_malonyl-CoA:ACP transferase (MAT) didomain and an acyl-carrier protein (ACP) domain, whereas the second approach yielded a compact PKS (PKS_WJ) that consists of KS, MAT, and ACP on a single polypeptide. Both minimal PKSs produced nonfungal polyketides cyclized via different regioselectivity, whereas the fungal-specific C2-C7 cyclization mode was not observed. The kinetic properties of the two minimal PKSs were characterized to confirm both PKSs can synthesize polyketides with similar efficiency as the parent PKS4 megasynthase. Both minimal PKSs interacted effectively with exogenous polyketide cyclases as demonstrated by the synthesis of predominantly PK8 3 or NonaSEK4 6 in the presence of a C9-C14 or a C7-C12 cyclase, respectively. When PKS_WJ and downstream tailoring enzymes were expressed in E. coli, the expected nonaketide anthraquinone SEK26 was recovered in good titer. High-cell density fermentation was performed to demonstrate the scale-up potential of the in vivo platform for the biosynthesis of bacterial polyketides. Using engineered fungal PKSs can therefore be a general approach toward the heterologous biosynthesis of bacterial aromatic polyketides in E. coli.

  9. Correlation between ovarian growth, vitellogenin titer, and yolk polypeptide pattern in the haemolymph of Calliphora vicina

    DEFF Research Database (Denmark)

    Sørensen, Ilona Kryspin; Jensen, P. V.

    1982-01-01

    During the first egg maturation cycle ofCalliphora vicina changes in the vitellogenin titer and yolk polypeptide pattern of the haemolymph are correlated with the intensity of follicular growth, and the rate of yolk deposition.......During the first egg maturation cycle ofCalliphora vicina changes in the vitellogenin titer and yolk polypeptide pattern of the haemolymph are correlated with the intensity of follicular growth, and the rate of yolk deposition....

  10. Prevalence and titers of yellow fever virus neutralizing antibodies in previously vaccinated adults

    Science.gov (United States)

    Miyaji, Karina Takesaki; Avelino-Silva, Vivian Iida; Simões, Marisol; Freire, Marcos da Silva; de Medeiros, Carlos Roberto; Braga, Patrícia Emilia; Neves, Maria Angélica Acalá; Lopes, Marta Heloisa; Kallas, Esper Georges; Sartori, Ana Marli Christovam

    2017-01-01

    ABSTRACT Introduction: The World Health Organization (WHO) recommends one single dose of the Yellow Fever (YF) vaccine based on studies of antibody persistency in healthy adults. We assessed the prevalence and titers of YF virus neutralizing antibodies in previously vaccinated persons aged ≥ 60 years, in comparison to younger adults. We also evaluated the correlation between antibody titers and the time since vaccination among participants who received one vaccine dose, and the seropositivity among participants vaccinated prior to or within the past 10 years. Methods: previously vaccinated healthy persons aged ≥ 18 years were included. YF virus neutralizing antibody titers were determined by means of the 50% Plaque Reduction Neutralization Test. Results: 46 persons aged ≥ 60 years and 48 persons aged 18 to 59 years were enrolled. There was no significant difference in the prevalence of YF virus neutralizing antibodies between the two groups (p = 0.263). However, titers were significantly lower in the elderly (p = 0.022). There was no correlation between YF virus neutralizing antibody titers and the time since vaccination. There was no significant difference in seropositivity among participants vaccinated prior to or within the past 10 years. Conclusions: the clinical relevance of the observed difference in YF virus neutralizing antibody titers between the two groups is not clear. PMID:28380113

  11. Prevalence and titers of yellow fever virus neutralizing antibodies in previously vaccinated adults.

    Science.gov (United States)

    Miyaji, Karina Takesaki; Avelino-Silva, Vivian Iida; Simões, Marisol; Freire, Marcos da Silva; Medeiros, Carlos Roberto de; Braga, Patrícia Emilia; Neves, Maria Angélica Acalá; Lopes, Marta Heloisa; Kallas, Esper Georges; Sartori, Ana Marli Christovam

    2017-04-03

    The World Health Organization (WHO) recommends one single dose of the Yellow Fever (YF) vaccine based on studies of antibody persistency in healthy adults. We assessed the prevalence and titers of YF virus neutralizing antibodies in previously vaccinated persons aged  60 years, in comparison to younger adults. We also evaluated the correlation between antibody titers and the time since vaccination among participants who received one vaccine dose, and the seropositivity among participants vaccinated prior to or within the past 10 years. previously vaccinated healthy persons aged  18 years were included. YF virus neutralizing antibody titers were determined by means of the 50% Plaque Reduction Neutralization Test. 46 persons aged  60 years and 48 persons aged 18 to 59 years were enrolled. There was no significant difference in the prevalence of YF virus neutralizing antibodies between the two groups (p = 0.263). However, titers were significantly lower in the elderly (p = 0.022). There was no correlation between YF virus neutralizing antibody titers and the time since vaccination. There was no significant difference in seropositivity among participants vaccinated prior to or within the past 10 years. the clinical relevance of the observed difference in YF virus neutralizing antibody titers between the two groups is not clear.

  12. Identification and regulation of the juvenile hormone esterase gene in the Colorado potato beetle

    NARCIS (Netherlands)

    Vermunt, A.M.W.

    1999-01-01

    A number of important physiological processes in insects is controlled by the titer of juvenile hormone (JH). The juvenile (larval) stage is maintained at a high JH titer, whereas the onset of metamorphosis is induced by a low JH titer. Reproduction by adults requires often a high JH titer.

  13. Serine biosynthesis and transport defects.

    Science.gov (United States)

    El-Hattab, Ayman W

    2016-07-01

    l-serine is a non-essential amino acid that is biosynthesized via the enzymes phosphoglycerate dehydrogenase (PGDH), phosphoserine aminotransferase (PSAT), and phosphoserine phosphatase (PSP). Besides its role in protein synthesis, l-serine is a potent neurotrophic factor and a precursor of a number of essential compounds including phosphatidylserine, sphingomyelin, glycine, and d-serine. Serine biosynthesis defects result from impairments of PGDH, PSAT, or PSP leading to systemic serine deficiency. Serine biosynthesis defects present in a broad phenotypic spectrum that includes, at the severe end, Neu-Laxova syndrome, a lethal multiple congenital anomaly disease, intermediately, infantile serine biosynthesis defects with severe neurological manifestations and growth deficiency, and at the mild end, the childhood disease with intellectual disability. A serine transport defect resulting from deficiency of the ASCT1, the main transporter for serine in the central nervous system, has been recently described in children with neurological manifestations that overlap with those observed in serine biosynthesis defects. l-serine therapy may be beneficial in preventing or ameliorating symptoms in serine biosynthesis and transport defects, if started before neurological damage occurs. Herein, we review serine metabolism and transport, the clinical, biochemical, and molecular aspects of serine biosynthesis and transport defects, the mechanisms of these diseases, and the potential role of serine therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Carotenoid Biosynthesis in Fusarium

    Directory of Open Access Journals (Sweden)

    Javier Avalos

    2017-07-01

    Full Text Available Many fungi of the genus Fusarium stand out for the complexity of their secondary metabolism. Individual species may differ in their metabolic capacities, but they usually share the ability to synthesize carotenoids, a family of hydrophobic terpenoid pigments widely distributed in nature. Early studies on carotenoid biosynthesis in Fusarium aquaeductuum have been recently extended in Fusarium fujikuroi and Fusarium oxysporum, well-known biotechnological and phytopathogenic models, respectively. The major Fusarium carotenoid is neurosporaxanthin, a carboxylic xanthophyll synthesized from geranylgeranyl pyrophosphate through the activity of four enzymes, encoded by the genes carRA, carB, carT and carD. These fungi produce also minor amounts of β-carotene, which may be cleaved by the CarX oxygenase to produce retinal, the rhodopsin’s chromophore. The genes needed to produce retinal are organized in a gene cluster with a rhodopsin gene, while other carotenoid genes are not linked. In the investigated Fusarium species, the synthesis of carotenoids is induced by light through the transcriptional induction of the structural genes. In some species, deep-pigmented mutants with up-regulated expression of these genes are affected in the regulatory gene carS. The molecular mechanisms underlying the control by light and by the CarS protein are currently under investigation.

  15. Biosynthesis of Tetrahydroisoquinoline Antibiotics.

    Science.gov (United States)

    Tang, Gong-Li; Tang, Man-Cheng; Song, Li-Qiang; Zhang, Yue

    2016-01-01

    The tetrahydroisoquinoline (THIQ) alkaloids are naturally occurring antibiotics isolated from a variety of microorganisms and marine invertebrates. This family of natural products exhibit broad spectrum antimicrobial and strong antitumor activities, and the potency of clinical application has been validated by the marketing of ecteinascidin 743 (ET-743) as anticancer drug. In the past 20 years, the biosynthetic gene cluster of six THIQ antibiotics has been characterized including saframycin Mx1 from Myxococcus xanthus, safracin-B from Pseudomonas fluorescens, saframycin A, naphthyridinomycin, and quinocarcin from Streptomyces, as well as ET-743 from Ecteinascidia turbinata. This review gives a brief summary of the current status in understanding the molecular logic for the biosynthesis of these natural products, which provides new insights on the biosynthetic machinery involved in the nonribosomal peptide synthetase system. The proposal of the THIQ biosynthetic pathway not only shows nature's route to generate such complex molecules, but also set the stage to develop a different process for production of ET-743 by synthetic biology.

  16. Stereoselectivity in Polyphenol Biosynthesis

    Science.gov (United States)

    Lewis, Norman G.; Davin, Laurence B.

    1992-01-01

    Stereoselectivity plays an important role in the late stages of phenyl-propanoid metabolism, affording lignins, lignans, and neolignans. Stereoselectivity is manifested during monolignol (glucoside) synthesis, e.g., where the geometry (E or Z) of the pendant double bond affects the specificity of UDPG:coniferyl alcohol glucosyltransferases in different species. Such findings are viewed to have important ramifications in monolignol transport and storage processes, with roles for both E- and Z-monolignols and their glucosides in lignin/lignan biosynthesis being envisaged. Stereoselectivity is also of great importance in enantiose-lective enzymatic processes affording optically active lignans. Thus, cell-free extracts from Forsythia species were demonstrated to synthesize the enantiomerically pure lignans, (-)-secoisolariciresinol, and (-)-pinoresinol, when NAD(P)H, H2O2 and E-coniferyl alcohol were added. Progress toward elucidating the enzymatic steps involved in such highly stereoselective processes is discussed. Also described are preliminary studies aimed at developing methodologies to determine the subcellular location of late-stage phenylpropanoid metabolites (e.g., coniferyl alcohol) and key enzymes thereof, in intact tissue or cells. This knowledge is essential if questions regarding lignin and lignan tissue specificity and regulation of these processes are to be deciphered.

  17. Glycolipid biosynthesis in cyanobacteria

    International Nuclear Information System (INIS)

    Van Dusen, W.J.; Jaworski, J.G.

    1987-01-01

    The biosynthesis of monogalactosyldiacyl-glycerol (MGDG) was studied in five different cyanobacteria. Previous work has shown Anabaena variabilis to synthesize both MGDG and monoglucosyl-diacylglycerol (MG1cDG) with MG1cDG being the precursor of MGDG. They have examined four other cyanobacteria to determine if a similar relationship exists. The cyanobacteria studied were Anabaena variabilis, Chlorogloeopsis sp., Schizothrix calcicola, Anacystis nidulans, and Anacystis marina. Each were grown in liquid culture and lipids were labeled with 14 C]CO 2 for 20 min., 1.0 hr, 1.0 hr + 10 hr chase. Glycolipids were analyzed by initial separation of MGDG and MG1cDG by TLC followed by further analysis by HPLC. Complete separation of molecular species was obtained isocratically on an ODS column. All of the cyanobacteria labeled 16-C and 18-C fatty acids except for A. marina which labeled only 14-C and 16-C fatty acids. Desaturation of the fatty acids could be observed in the 1.0 hr and chase experiments. All were capable of labeling both MG1cDG and MGDG with the precursor-product relationship being observed. There does not appear to be a direct relationship between the epimerization of the sugar moiety and fatty acid desaturation

  18. Biosynthesis of silver nanoparticles.

    Science.gov (United States)

    Poulose, Subin; Panda, Tapobrata; Nair, Praseetha P; Théodore, Thomas

    2014-02-01

    Metal nanoparticles have unique optical, electronic, and catalytic properties. There exist well-defined physical and chemical processes for their preparation. Those processes often yield small quantities of nanoparticles having undesired morphology, and involve high temperatures for the reaction and the use of hazardous chemicals. Relatively, the older technique of bioremediation of metals uses either microorganisms or their components for the production of nanoparticles. The nanoparticles obtained from bacteria, fungi, algae, plants and their components, etc. appear environment-friendly, as toxic chemicals are not used in the processes. In addition to this, the formation of nanoparticles takes place at almost normal temperature and pressure. Control of the shape and size of the nanoparticles is possible by appropriate selection of the pH and temperature. Three important steps are the bioconversion of Ag+ ions, conversion of desired crystals to nanoparticles, and nanoparticle stability. Generally, nanoparticles are characterized by the UV-visible spectroscopy and use of the electron microscope. Silver nanoparticles are used as antimicrobial agents and they possess antifungal, anti-inflammatory, and anti-angiogenic properties. This review highlights the biosynthesis of silver nanoparticles by various organisms, possible mechanisms of their synthesis, their characterization, and applications of silver nanoparticles.

  19. ABO-Incompatible Renal Transplantation with High Antibody Titer: A Case Report.

    Science.gov (United States)

    Ray, Deepak Shankar; Thukral, Sharmila

    2017-10-06

    BACKGROUND Even though renal transplantation across blood groups is not uncommonly practiced nowadays, there is still hesitation regarding ABO-incompatible transplantation with very high baseline antibody titer. In this case report, the outcome of an ABO-incompatible kidney transplant recipient with a high baseline isoagglutinin titer is reported. CASE REPORT The patient was a non-diabetic, 33-year-old man with end-stage renal disease secondary to chronic glomerulonephritis. The only kidney donor available was his mother, who was blood-group incompatible. The patient's blood group was O positive, whereas his mother was B positive. We evaluated him for an ABO-incompatible renal transplant. The baseline anti-B isoagglutinin titer was >1:8196.  With a desensitization protocol of low-dose Rituximab, plasmapheresis, and IVIG, this titer was brought down to 1:32 before transplantation. He successfully underwent renal transplantation across the ABO barrier, and maintains good graft function after 1 year of follow-up.  CONCLUSIONS In the present era, a high baseline isoagglutinin titer is no longer a contraindication for successful kidney transplantation in ABO-incompatible recipient-donor pairs.

  20. Hashimoto encephalopathy in pediatric patients: Homogeneity in clinical presentation and heterogeneity in antibody titers.

    Science.gov (United States)

    Lee, Jiwon; Yu, Hee Joon; Lee, Jeehun

    2018-01-01

    Hashimoto encephalopathy is an autoimmune encephalopathy characterized by elevated antithyroid antibodies and a favorable response to corticosteroid. This study delineated the clinical characteristics of pediatric Hashimoto encephalopathy and the significance of low antithyroid antibody titers in diagnosis and treatment. Clinical manifestations, antibody titers, and treatment responses were retrospectively reviewed in six consecutive children diagnosed with Hashimoto encephalopathy between August 2008 and July 2016. Age at diagnosis was 10-17years. Presenting symptoms were seizures, altered consciousness, behavioral changes, psychosis, tremor, and dystonia. Thyroid function was normal in five patients, and one had hypothyroidism prior to the encephalopathy. Antithyroid antibody titer was increased at presentation in five patients and one week later in the other. Antibody levels were extremely varied (anti-thyroglobulin, 20.5-2318.0U/ml; anti-thyroid peroxidase, 12.5-2231.0U/ml; reference range, Hashimoto encephalopathy were similar, irrespective of antithyroid antibody titer. Because the initial antithyroid antibody titers can be normal or mildly-elevated, follow-up testing of antithyroid antibodies is required in patients who are clinically suspect for Hashimoto encephalopathy. Copyright © 2017 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  1. The Impact of Chemotherapy on Hepatitis B Antibody Titer in Patients with Hematological Malignancies

    Directory of Open Access Journals (Sweden)

    Münci Yağcı

    2015-09-01

    Full Text Available Objective: To investigate the influence of chemotherapy (CT on HBsAb titer in patients receiving CT due to hematological malignancy. Materials and Methods: The data of 75 patients who received CT with the diagnosis of various hematological malignancies and who had serum HBsAb levels measured prior to and after the cessation of CT were evaluated retrospectively. Results: The median age of the patients was 52 years (range: 16-78 with 49 (65% males and 26 (35% females. Median HBsAb titer decreased significantly after CT compared to the pre-CT median HBsAb titer [68 (range: 0-1000 vs. 100 (range: 6.2-1000] (p=0.001. In subgroup analysis, median HBsAb titer decreased significantly after CT in acute leukemia patients [110 (range: 6.2-1000 vs. 67.8 (range: 0-1000] (p=0.003 and in patients receiving intensive CT [97.2 (range: 6.2-1000 vs. 71 (range: 0-1000] (p=0.036. The decrease in median HBsAb titer was significant in male patients (p<0.001. HBsAb became negative after CT in 9 patients who were HBcAb-negative and had lower pre-CT HBsAb levels. Conclusion: HBsAb decreased after CT, especially in acute leukemia and male patients, and in patients receiving intensive CT.

  2. A flow cytometric protocol for titering recombinant adenoviral vectors containing the green fluorescent protein.

    Science.gov (United States)

    Hitt, D C; Booth, J L; Dandapani, V; Pennington, L R; Gimble, J M; Metcalf, J

    2000-03-01

    As the use of adenoviral vectors in gene therapy protocols increases, there is a corresponding need for rapid, accurate, and reproducible titer methods. Multiple methods currently exist for determining titers of recombinant adenoviral vector, including optical absorbance, electron microscopy, fluorescent focus assay, and the "gold standard" plaque assay. This paper introduces a novel flow cytometric method for direct titer determination that relies on the expression of the green fluorescent protein (GFP), a tracking marker incorporated into several adenoviral vectors. This approach was compared to the plaque assay using 10(-4)- to 10(-6)-fold dilutions of a cesium-chloride-purified, GFP expressing adenovirus (AdEasy + GFP + GAL). The two approaches yielded similar titers: 3.25 +/- 1.85 x 10(9) PFU/mL versus 3.46 +/- 0.76 x 10(9) green fluorescent units/(gfu/mL). The flow cytometric method is complete within 24 h in contrast to the 7 x 10 days required by the plaque assay. These results indicate that the GFU/mL is an alternative functional titer method for fluorescent-tagged adenoviral vectors.

  3. Pheromone biosynthesis in bark beetles.

    Science.gov (United States)

    Tittiger, Claus; Blomquist, Gary J

    2017-12-01

    Pine bark beetles rely on aggregation pheromones to coordinate mass attacks and thus reproduce in host trees. The structural similarity between many pheromone components and those of defensive tree resin led to early suggestions that pheromone components are metabolic derivatives of ingested precursors. This model has given way to our current understanding that most pheromone components are synthesized de novo. Their synthesis involves enzymes that modify products from endogenous metabolic pathways; some of these enzymes have been identified and characterized. Pheromone production is regulated in a complex way involving multiple signals, including JH III. This brief review summarizes progress in our understanding of this highly specialized metabolic process. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Application of the polymerase chain reaction in determination of recombinant retrovirus titers as fifty percent endpoints

    DEFF Research Database (Denmark)

    Husemoen, L L; Gram, G J; Hansen, J E

    2000-01-01

    -based protocols that would significantly simplify and shorten this procedure. Using PCR and primers specific for the Neoregion of the MLV-derived vector LeGSN, we determined 1. the proviral integration in target cells, and 2. the viral nucleic acid (RNA or DNA) content of the vector stock. Results were compared......, determination of virus titer involves the testing of culture medium from individual packaging cell lines for the ability to transfer drug resistance to susceptible cells - a process that can easily take up to 14 days. It is generally agreed that this method is cumbersome. We sought to develop PCR...... with those using the conventional method. We found that these specific PCR-based procedures were indeed useful for rapid determination of viral titers as well as for quick screening for high-titer vector-producing cell clones and successful transduction of target cells....

  5. High-titer production of monomeric hydroxyvalerates from levulinic acid in Pseudomonas putida.

    Science.gov (United States)

    Martin, Collin H; Prather, Kristala L Jones

    2009-01-01

    Hydroxyacids represent an important class of compounds that see application in the production of polyesters, biodegradable plastics and antibiotics, and that serve as useful chiral synthetic building blocks for other fine chemicals and pharmaceuticals. An economical, high-titer method for the production of 4-hydroxyvalerate (4HV) and 3-hydroxyvalerate (3HV) from the inexpensive and renewable carbon source levulinic acid was developed. These hydroxyvalerates were produced by periodically feeding levulinate to Pseudomonas putida KT2440 expressing a recombinant thioesterase II (tesB) gene from Escherichia coli K12. The titer of 4HV in shake flask culture reached 13.9+/-1.2 g L(-1) from P. putida tesB(+) cultured at 32 degrees C in LB medium periodically supplemented with glucose and levulinate. The highest 3HV titer obtained was 5.3+/-0.1 g L(-1) in M9 minimal medium supplemented with glucose and levulinate.

  6. Efficacy of a parainfluenza virus 5 (PIV5-based H7N9 vaccine in mice and guinea pigs: antibody titer towards HA was not a good indicator for protection.

    Directory of Open Access Journals (Sweden)

    Zhuo Li

    Full Text Available H7N9 has caused fatal infections in humans. A safe and effective vaccine is the best way to prevent large-scale outbreaks in the human population. Parainfluenza virus 5 (PIV5, an avirulent paramyxovirus, is a promising vaccine vector. In this work, we generated a recombinant PIV5 expressing the HA gene of H7N9 (PIV5-H7 and tested its efficacy against infection with influenza virus A/Anhui/1/2013 (H7N9 in mice and guinea pigs. PIV5-H7 protected the mice against lethal H7N9 challenge. Interestingly, the protection did not require antibody since PIV5-H7 protected JhD mice that do not produce antibody against lethal H7N9 challenge. Furthermore, transfer of anti-H7 serum did not protect mice against H7N9 challenge. PIV5-H7 generated high HAI titers in guinea pigs, however it did not protect against H7N9 infection or transmission. Intriguingly, immunization of guinea pigs with PIV5-H7 and PIV5 expressing NP of influenza A virus H5N1 (PIV5-NP conferred protection against H7N9 infection and transmission. Thus, we have obtained a H7N9 vaccine that protected both mice and guinea pigs against lethal H7N9 challenge and infection respectively.

  7. TSH-receptor-autoantibody-titers in untreated toxic diffuse goitres - an early indicator of relapse

    International Nuclear Information System (INIS)

    Becker, W.; Reiners, C.; Boerner, W.

    1984-01-01

    TSH-receptor-auto antibodies were determined in follow-up of 30 patients with relapse of toxic diffuse goitres, i.e. patients with Graves' disease and toxic disseminated autonomy, and in 13 patients with spontaneous remission after antithyroid drug therapy by use of a commercially available TSH-radioreceptorassay (TRAK-assay). All the patients with very high receptor-autoantibody-titers in untreated thyrotoxicosis (F > 20%) had one or more periods of hyperthyroidism or a very severe course of disease. None of these patients showed a spontaneous remission of disease. They all could be identified as Graves' patients. Patients with TRAK-titers 3% [de

  8. Dual Roles of Glutathione in Ecdysone Biosynthesis and Antioxidant Function During Larval Development in Drosophila.

    Science.gov (United States)

    Enya, Sora; Yamamoto, Chikana; Mizuno, Hajime; Esaki, Tsuyoshi; Lin, Hsin-Kuang; Iga, Masatoshi; Morohashi, Kana; Hirano, Yota; Kataoka, Hiroshi; Masujima, Tsutomu; Shimada-Niwa, Yuko; Niwa, Ryusuke

    2017-12-01

    Ecdysteroids, including the biologically active hormone 20-hydroxyecdysone (20E), play essential roles in controlling many developmental and physiological events in insects. Ecdysteroid biosynthesis is achieved by a series of specialized enzymes encoded by the Halloween genes. Recently, a new class of Halloween gene, noppera-bo ( nobo ), encoding a glutathione S -transferase (GST) in dipteran and lepidopteran species, has been identified and characterized. GSTs are well known to conjugate substrates with the reduced form of glutathione (GSH), a bioactive tripeptide composed of glutamate, cysteine, and glycine. We hypothesized that GSH itself is required for ecdysteroid biosynthesis. However, the role of GSH in steroid hormone biosynthesis has not been examined in any organisms. Here, we report phenotypic analysis of a complete loss-of-function mutant in the γ -glutamylcysteine synthetase catalytic subunit ( Gclc ) gene in the fruit fly Drosophila melanogaster Gclc encodes the evolutionarily conserved catalytic component of the enzyme that conjugates glutamate and cysteine in the GSH biosynthesis pathway. Complete Gclc loss-of-function leads to drastic GSH deficiency in the larval body fluid. Gclc mutant animals show a larval-arrest phenotype. Ecdysteroid titer in Gclc mutant larvae decreases, and the larval-arrest phenotype is rescued by oral administration of 20E or cholesterol. Moreover, Gclc mutant animals exhibit abnormal lipid deposition in the prothoracic gland, a steroidogenic organ during larval development. All of these phenotypes are reminiscent to nobo loss-of-function animals. On the other hand, Gclc mutant larvae also exhibit a significant reduction in antioxidant capacity. Consistent with this phenotype, Gclc mutant larvae are more sensitive to oxidative stress response as compared to wild-type. Nevertheless, the ecdysteroid biosynthesis defect in Gclc mutant animals is not associated with loss of antioxidant function. Our data raise the unexpected

  9. Auxin biosynthesis and storage forms

    Science.gov (United States)

    Strader, Lucia C.

    2013-01-01

    The plant hormone auxin drives plant growth and morphogenesis. The levels and distribution of the active auxin indole-3-acetic acid (IAA) are tightly controlled through synthesis, inactivation, and transport. Many auxin precursors and modified auxin forms, used to regulate auxin homeostasis, have been identified; however, very little is known about the integration of multiple auxin biosynthesis and inactivation pathways. This review discusses the many ways auxin levels are regulated through biosynthesis, storage forms, and inactivation, and the potential roles modified auxins play in regulating the bioactive pool of auxin to affect plant growth and development. PMID:23580748

  10. Hypericin: chemical synthesis and biosynthesis.

    Science.gov (United States)

    Huang, Lin-Fang; Wang, Zeng-Hui; Chen, Shi-Lin

    2014-02-01

    Hypericin is one of the most important phenanthoperylene quinones extracted mainly from plants of the genus Hypericum belonging to the sections Euhypericum and Campylosporus of Keller's classification. Widespread attention to the antiviral and anti-tumor properties of hypericin has spurred investigations of the chemical synthesis and biosynthesis of this unique compound. However, the synthetic strategies are challenging for organic and biological chemists. In this review, specific significant advances in total synthesis, semi-synthesis, and biosynthesis in the past decades are summarized. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  11. Aphid performance changes with plant defense mediated by Cucumber mosaic virus titer.

    Science.gov (United States)

    Shi, Xiaobin; Gao, Yang; Yan, Shuo; Tang, Xin; Zhou, Xuguo; Zhang, Deyong; Liu, Yong

    2016-04-22

    Cucumber mosaic virus (CMV) causes appreciable losses in vegetables, ornamentals and agricultural crops. The green peach aphid, Myzus persicae Sulzer (Aphididae) is one of the most efficient vectors for CMV. The transmission ecology of aphid-vectored CMV has been well investigated. However, the detailed description of the dynamic change in the plant-CMV-aphid interaction associated with plant defense and virus epidemics is not well known. In this report, we investigated the relationship of virus titer with plant defense of salicylic acid (SA) and jasmonic acid (JA) during the different infection time and their interaction with aphids in CMV-infected tobacco plants. Our results showed that aphid performance changed with virus titer and plant defense on CMV-inoculated plants. At first, plant defense was low and aphid number increased gradually. The plant defense of SA signaling pathway was induced when virus titer was at a high level, and aphid performance was correspondingly reduced. Additionally, the winged aphids were increased. Our results showed that aphid performance was reduced due to the induced plant defense mediated by Cucumber mosaic virus titer. Additionally, some wingless aphids became to winged aphids. In this way CMV could be transmitted with the migration of winged aphids. We should take measures to prevent aphids in the early stage of their occurrence in the field to prevent virus outbreak.

  12. Application of the polymerase chain reaction in determination of recombinant retrovirus titers as fifty percent endpoints

    DEFF Research Database (Denmark)

    Husemoen, L L; Gram, G J; Hansen, J E

    2000-01-01

    Retroviral vectors constitute the most efficient system to deliver and integrate foreign genes into mammalian cells. One of the most laborious routine assays in the application of retroviral-mediated gene transfer is the determination of viral titers of vector producer cell lines. Traditionally, ...

  13. Genetic parameters for natural antibody isotype titers in milk of Dutch Holstein-Friesians

    NARCIS (Netherlands)

    Wijga, S.; Bovenhuis, H.; Bastiaansen, J.W.M.; Arendonk, van J.A.M.; Ploegaert, T.C.W.; Tijhaar, E.; Poel, van der J.J.

    2013-01-01

    The objective of the present study was to estimate genetic parameters for natural antibody isotypes immunoglobulin (Ig) A, IgG1 and IgM titers binding the bacterial antigens lipopolysaccharide, peptidoglycan and the model antigen keyhole limpet hemocyanin in Dutch Holstein-Friesian cows (n = 1695).

  14. Toxoplasmosis Titers and past Suicide Attempts Among Older Adolescents Initiating SSRI Treatment.

    Science.gov (United States)

    Coryell, William; Yolken, Robert; Butcher, Brandon; Burns, Trudy; Dindo, Lilian; Schlechte, Janet; Calarge, Chadi

    2016-01-01

    Latent infection with toxoplasmosis is a prevalent condition that has been linked in animal studies to high-risk behaviors, and in humans, to suicide and suicide attempts. This analysis investigated a relationship between suicide attempt history and toxoplasmosis titers in a group of older adolescents who had recently begun treatment with an SSRI. Of 108 participants, 17 (15.7 %) had a lifetime history of at least one suicide attempt. All were given structured and unstructured diagnostic interviews and provided blood samples. Two individuals (11.9%) with a past suicide attempt, and two (2.1%) without this history, had toxoplasmosis titers ≥ 10 IU/ml (p = 0.166). Those with a past suicide attempt had mean toxoplasmosis titers that were significantly different (p = 0.018) from those of patients who lacked this history. An ROC analysis suggested a lower optimal threshold for distinguishing patients with and without suicide attempts (3.6 IU/ml) than that customarily used to identify seropositivity. Toxoplasmosis titers may quantify a proneness to suicidal behavior in younger individuals being treated with antidepressants.

  15. Mechanism of reduction in titers from lentivirus vectors carrying large inserts in the 3'LTR.

    Science.gov (United States)

    Urbinati, Fabrizia; Arumugam, Paritha; Higashimoto, Tomoyasu; Perumbeti, Anil; Mitts, Kyle; Xia, Ping; Malik, Punam

    2009-09-01

    Self-inactivating (SIN) lentiviruses flanked by the 1.2-kb chicken hypersensitive site-4 (cHS4) insulator element provide consistent, improved expression of transgenes, but have significantly lower titers. The mechanism by which this occurs is unknown. Lengthening the lentiviral (LV) vector transgene cassette by an additional 1.2 kb by an internal cassette caused no further reduction in titers. However, when cHS4 sequences or inert DNA spacers of increasing size were placed in the 3'-long terminal repeat (LTR), infectious titers decreased proportional to the length of the insert. The stage of vector life cycle affected by vectors carrying the large cHS4 3'LTR insert was compared to a control vector: there was no increase in read-through transcription with insertion of the 1.2-kb cHS4 in the 3'LTR. Equal amount of full-length viral mRNA was produced in packaging cells and viral assembly/packaging was unaffected, resulting in comparable amounts of intact vector particles produced by either vectors. However, LV vectors carrying cHS4 in the 3'LTR were inefficiently processed following target-cell entry, with reduced reverse transcription and integration efficiency, and hence lower transduction titers. Therefore, vectors with large insertions in the 3'LTR are transcribed and packaged efficiently, but the LTR insert hinders viral-RNA (vRNA) processing and transduction of target cells. These studies have important implications in design of integrating vectors.

  16. Emotional Disclosure through Writing or Speaking Modulates Latent Epstein-Barr Virus Antibody Titers.

    Science.gov (United States)

    Esterling, Brian A.; And Others

    1994-01-01

    Healthy Epstein-Barr virus (EBV) seropositive undergraduates (n=57) completed personality inventory, provided blood samples, and were randomly assigned to write/talk about stressful events, or to write about trivial events. Those assigned to verbal/stressful condition had significantly lower EBV antibody titers (suggesting better cellular immune…

  17. Definition and dynamic control of a continuous chromatography process independent of cell culture titer and impurities.

    Science.gov (United States)

    Chmielowski, Rebecca A; Mathiasson, Linda; Blom, Hans; Go, Daniel; Ehring, Hanno; Khan, Heera; Li, Hong; Cutler, Collette; Lacki, Karol; Tugcu, Nihal; Roush, David

    2017-12-01

    Advances in cell culture technology have enabled the production of antibody titers upwards of 30g/L. These highly productive cell culture systems can potentially lead to productivity bottlenecks in downstream purification due to lower column loadings, especially in the primary capture chromatography step. Alternative chromatography solutions to help remedy this bottleneck include the utilization of continuous processing systems such as periodic counter-current chromatography (PCC). Recent studies have provided methods to optimize and improve the design of PCC for cell culture titers up to about 3g/L. This paper defines a continuous loading strategy for PCC that is independent of cell culture background and encompasses cell culture titers up to about 31g/L. Initial experimentation showed a challenge with determining a difference in change in UV280nm signal (ie. ΔUV) between cell culture feed and monoclonal antibody (mAb) concentration. Further investigation revealed UV280nm absorbance of the cell culture feedstock without antibody was outside of the linear range of detection for a given cell pathlength. Additional experimentation showed the difference in ΔUV for various cell culture feeds can be either theoretically predicted by Beer's Law given a known absorbance of the media background and impurities or experimentally determined using various UV280nm cell pathlengths. Based on these results, a 0.35mm pathlength at UV280nm was chosen for dynamic control to overcome the background signal. The pore diffusion model showed good agreement with the experimental frontal analysis data, which resulted in definition of a ΔUV setpoint range between 20 and 70% for 3C-PCC experiments. Product quality of the elution pools was acceptable between various cell culture feeds and titers up to about 41g/L. Results indicated the following ΔUV setpoints to achieve robust dynamic control and maintain 3C-PCC yield: ∼20-45% for titers greater than 10g/L depending on UV absorbance of

  18. Association between Gastric Cancer Risk and Serum Helicobacter pylori Antibody Titers

    Directory of Open Access Journals (Sweden)

    Mitsutaka Shuto

    2017-01-01

    Full Text Available Background/Aims. It is difficult to confirm the accurate cutoff value to diagnose Helicobacter pylori (Hp infection using commercial serology kits. It is reported that there were many cases with present/past infection that even the serum Hp-IgG antibody (HpAb titers were below the cutoff value (e.g., 10 U/mL for E-Plate®, suggesting that we might overlook many gastric cancer (GC. We investigated an association between gastric cancer risk and serum Helicobacter pylori antibody titers. Methods. We conducted a primary screening between 2014 and 2015. We performed gastroendoscopy if HpAb titers were ≥3.0 U/mL (i.e., more than measurable limit, E-Plate. These patients were divided into two groups: HpAb = 3.0–9.9 U/mL (“negative-high” group and HpAb ≥ 10 U/mL; cutoff value (“over-10 U/mL” group. Hp infection status was investigated, and the number of GC patients was counted. Results. Among the 3321 subjects in the primary screening, 56.9% (1891/3321 showed HpAb titers ≥3.0 U/mL; 1314 patients underwent gastroendoscopy. Ten were GC. 421 patients were “negative-high” group; two were GC. After evaluating 381 patients for Hp infection, 22.6%/60.6% was with present/past infection among the “negative-high” group. Conclusion. We also found a correlation between HpAb titers and Hp infection status. “Negative-high” group has a risk of GC.

  19. [Analysis of Correlation between IgG Titer of Pregnant Women and Neonatal Hemolytic Complications of Different Blood Groups].

    Science.gov (United States)

    Ye, Hai-Hui; Huang, Hong-Hai; Wang, Xiao-Lin; Pi, You-Jun

    2017-10-01

    To study the relationship between IgG titer of pregnant women and hemolytic disease of newborn(HDN) with different blood groups. Four hundred pregnant women, including pregnant women with type O blood, were selected from May 2014 to January 2015 in our hospital for inspection and a couple of different blood groups, the IgG titer of pregnant women were detected in the inspection process. According to neonatal HDN, newborns were divided into 2 groups: HDN group(85 cases) and non-HDN group(315 cases). The incidence of postpartum neonatal hemolytic disease was tracked and the correlation of IgG titers with HDN were systematically analyzed. In the production and inspection process, the IgG titer in pregnant women was divided into groups. the comparison of HDN incidence rate in 4 groups of IgG titer >64 and IgG titer group showed that the prevalence of ABO hemolytic disease of newborn were 96.9%, 79.6%, 63, 7% and 28.8%, there was a certain correlation of pregnant women IgG titers with ABO hemolytic disease of the newborn, that is, with the increase of IgG titer, the incidence of hemolytic disease of newborns increased in certain degree (r=0.8832), the risk in 4 groups of neonatal HDN was higher than that in IgG titer 64 HDN group. There is a certain corelation between prevalence of ABO-HDN and IgG titer of pregnant women. For these pregnant women, the control of the pregnant women IgG titer has a positive clinical significance to reduce the incidence of hemolytic disease of the newborn.

  20. (vitamin B1) biosynthesis genes

    African Journals Online (AJOL)

    In this study, the gene transcripts of first two enzymes in thiamine biosynthesis pathway, THIC and THI1/THI4 were identified and amplified from oil palm tissues. Primers were designed based on sequence comparison of the genes from Arabidopsis thaliana, Zea mays, Oryza sativa and Alnus glutinosa. Oil palm's responses ...

  1. Cloning and sequence analysis of cDNA encoding a putative juvenile hormone esterase from the Colorado potato beetle.

    NARCIS (Netherlands)

    Vermunt, A.M.W.; Koopmanschap, A.B.; Vlak, J.M.; Kort, de C.A.D.

    1998-01-01

    In the Colorado potato beetle, Leptinotarsa decemlineata, reproduction and diapause are mediated by the juvenile hormone (JH) titer in the hemolymph. This titer is controlled by JH synthesis in the corpora allata and by JH degradation. The main pathway of JH degradation is by JH esterase in the

  2. Ekstrak Pegagan Meningkatkan Titer Antibodi Mencit Setelah Diinfeksi Salmonella typhi (CENTELLA ASIATICA EXTRACT INCREASE ANTIBODY TITER IN MICE AFTER SALMONELLA TYPHI INFECTION

    Directory of Open Access Journals (Sweden)

    I Nengah Kerta Besung

    2013-09-01

    Full Text Available A study was conducted to find out the ability of Centella asiatica (C. asiatica in enhancing antibodyresponse of C. asiatica treated mice following Salmonella typhi (S. typhi infections. It is therefore expectedthat herbal drug such as  C. asiatica  can be used as an alternative medicine to prevent and to curesalmonellosis both in animals and human. Experimental laboratory studies were conducted usingCompletely Factorial Randomized Design. Mice were divided into four groups and they were treatedrespectively with destilated water (negative control, 125, 250, and 500 mg/kg BW/day of  C. asiaticaextract. The treatment was conducted daily for two weeks  and the mice were inoculated with 105 cells/mlof  S. typhi. The antibody response were examined by indirect enzyme-linked immunosorbent assay (ELISAon first day, second week and fourth week  after S. typhi infections.  The result showed that treatment ofmice with C. asiatica extract significantly (p<0,05 enhanced antibody titer of Balb/c mice after S. typhiinfections. The highest antibody titer was observed at four weeks after S. typhi infections with 500 mg/kgBW/day (94,0370 ± 1,69 IU.

  3. Host and Pathway Engineering for Enhanced Lycopene Biosynthesis in Yarrowia lipolytica

    Directory of Open Access Journals (Sweden)

    Cory Schwartz

    2017-11-01

    Full Text Available Carotenoids are a class of molecules with commercial value as food and feed additives with nutraceutical properties. Shifting carotenoid synthesis from petrochemical-based precursors to bioproduction from sugars and other biorenewable carbon sources promises to improve process sustainability and economics. In this work, we engineered the oleaginous yeast Yarrowia lipolytica to produce the carotenoid lycopene. To enhance lycopene production, we tested a series of strategies to modify host cell physiology and metabolism, the most successful of which were mevalonate pathway overexpression and alleviating auxotrophies previously engineered into the PO1f strain of Y. lipolytica. The beneficial engineering strategies were combined into a single strain, which was then cultured in a 1-L bioreactor to produce 21.1 mg/g DCW. The optimized strain overexpressed a total of eight genes including two copies of HMG1, two copies of CrtI, and single copies of MVD1, EGR8, CrtB, and CrtE. Recovering leucine and uracil biosynthetic capacity also produced significant enhancement in lycopene titer. The successful engineering strategies characterized in this work represent a significant increase in understanding carotenoid biosynthesis in Y. lipolytica, not only increasing lycopene titer but also informing future studies on carotenoid biosynthesis.

  4. (-)-Menthol biosynthesis and molecular genetics

    Science.gov (United States)

    Croteau, Rodney B.; Davis, Edward M.; Ringer, Kerry L.; Wildung, Mark R.

    2005-12-01

    (-)-Menthol is the most familiar of the monoterpenes as both a pure natural product and as the principal and characteristic constituent of the essential oil of peppermint ( Mentha x piperita). In this paper, we review the biosynthesis and molecular genetics of (-)-menthol production in peppermint. In Mentha species, essential oil biosynthesis and storage is restricted to the peltate glandular trichomes (oil glands) on the aerial surfaces of the plant. A mechanical method for the isolation of metabolically functional oil glands, has provided a system for precursor feeding studies to elucidate pathway steps, as well as a highly enriched source of the relevant biosynthetic enzymes and of their corresponding transcripts with which cDNA libraries have been constructed to permit cloning and characterization of key structural genes. The biosynthesis of (-)-menthol from primary metabolism requires eight enzymatic steps, and involves the formation and subsequent cyclization of the universal monoterpene precursor geranyl diphosphate to the parent olefin (-)-(4 S)-limonene as the first committed reaction of the sequence. Following hydroxylation at C3, a series of four redox transformations and an isomerization occur in a general “allylic oxidation-conjugate reduction” scheme that installs three chiral centers on the substituted cyclohexanoid ring to yield (-)-(1 R, 3 R, 4 S)-menthol. The properties of each enzyme and gene of menthol biosynthesis are described, as are their probable evolutionary origins in primary metabolism. The organization of menthol biosynthesis is complex in involving four subcellular compartments, and regulation of the pathway appears to reside largely at the level of gene expression. Genetic engineering to up-regulate a flux-limiting step and down-regulate a side route reaction has led to improvement in the composition and yield of peppermint oil.

  5. CRISPR-Cas9-enabled genetic disruptions for understanding ethanol and ethyl acetate biosynthesis in Kluyveromyces marxianus.

    Science.gov (United States)

    Löbs, Ann-Kathrin; Engel, Ronja; Schwartz, Cory; Flores, Andrew; Wheeldon, Ian

    2017-01-01

    The thermotolerant yeast Kluyveromyces marxianus shows promise as an industrial host for the biochemical production of fuels and chemicals. Wild-type strains are known to ferment high titers of ethanol and can effectively convert a wide range of C 5 , C 6 , and C 12 sugars into the volatile short-chain ester ethyl acetate. Strain engineering, however, has been limited due to a lack of advanced genome-editing tools and an incomplete understanding of ester and ethanol biosynthesis. Enabled by the design of hybrid RNA polymerase III promoters, this work adapts the CRISPR-Cas9 system from Streptococcus pyogenes for use in K. marxianus . The system was used to rapidly create functional disruptions to alcohol dehydrogenase (ADH) and alcohol- O -acetyltransferase (ATF) genes with putative function in ethyl acetate and ethanol biosynthesis. Screening of the Km ATF disrupted strain revealed that Atf activity contributes to ethyl acetate biosynthesis, but the knockout reduced ethyl acetate titers by only ~15%. Overexpression experiments revealed that Km Adh7 can catalyze the oxidation of hemiacetal to ethyl acetate. Finally, analysis of the Km ADH2 disrupted strain showed that the knockout almost completely eliminated ethanol production and resulted in the accumulation of acetaldehyde. Newly designed RNA polymerase III promoters for sgRNA expression in K. marxianus enable a CRISPR-Cas9 genome-editing system for the thermotolerant yeast. This system was used to disrupt genes involved in ethyl acetate biosynthesis, specifically Km ADH1-7 and Km ATF. Km Adh2 was found to be critical for aerobic and anaerobic ethanol production. Aerobically produced ethanol supplies the biosynthesis of ethyl acetate catalyzed by Km Atf. Km Adh7 was found to exhibit activity toward the oxidation of hemiacetal, a possible alternative route for the synthesis of ethyl acetate.

  6. Prognosis of periodontitis recurrence after intensive periodontal treatment using examination of serum IgG antibody titer against periodontal bacteria.

    Science.gov (United States)

    Sugi, Noriko; Naruishi, Koji; Kudo, Chieko; Hisaeda-Kako, Aya; Kono, Takayuki; Maeda, Hiroshi; Takashiba, Shogo

    2011-01-01

    Chronic periodontitis is associated with systemic diseases such as atherosclerosis. In this study, we evaluated the efficacy of serum IgG antibody titer to periodontal bacteria for prognosis of periodontitis recurrence during supportive periodontal therapy (SPT) phase. The 139 patients during SPT phase were selected and divided to two groups as follows: "Stable" and "Recurrence" group at SPT phase for case-control study: "High IgG titer" and "Normal IgG titer" group before transition to SPT phase for cohort study. We examined whether clinical findings or serum IgG antibody titers to periodontal bacteria are risk factors for the development of periodontitis recurrence. Case-control study showed that there were significant differences between the stable and recurrence groups in age and number of teeth. The serum IgG antibody titer to Eikenella corrodens FDC1073, Porphyromonas gingivalis SU63, and Campylobacter rectus ATCC33238 was significantly higher in the recurrence group. Next, we found, that the recurrence ratio in the high IgG titer group to Gram-negative obligate anaerobe, Prevotella intermedia, Treponema denticola, and C. rectus was significantly higher than that of the normal IgG titer group. Taken together, serum IgG antibody titer test is useful in the prognosis of periodontitis recurrence during the SPT phase. © 2011 Wiley-Liss, Inc.

  7. Case study on human α1-antitrypsin: Recombinant protein titers obtained by commercial ELISA kits are inaccurate

    DEFF Research Database (Denmark)

    Hansen, Henning Gram; Kildegaard, Helene Faustrup; Min Lee, Gyun

    2016-01-01

    Accurate titer determination of recombinant proteins is crucial for evaluating protein production cell lines and processes. Even though enzyme-linked immunosorbent assay (ELISA) is the most widely used assay for determining protein titer, little is known about the accuracy of commercially availab...

  8. Antibody titers for canine parvovirus type-2, canine distemper virus, and canine adenovirus type-1 in adult household dogs.

    Science.gov (United States)

    Taguchi, Masayuki; Namikawa, Kazuhiko; Maruo, Takuya; Orito, Kensuke; Lynch, Jonathan; Sahara, Hiroeki

    2011-09-01

    Serum antibody titers for canine parvovirus type-2 (CPV-2), canine distemper virus (CDV) and canine adenovirus type-1 (CAV-1) were investigated in 1031 healthy adult household dogs (2 to 18 years old) given an annual inoculation in the previous 11 to 13 months. The number of dogs retaining significant titers of antibodies against CPV-2, CDV, and CAV-1 were 888 (86%), 744 (72%), and 732 (71%), respectively. There were no differences between males and females in antibody titers against the 3 viruses. Antibody titer for CPV-2 was significantly higher in younger dogs than in older dogs, CDV antibody was significantly higher in older dogs than in younger dogs, and CAV titer was not associated with age.

  9. Transplantation of ABO A2 kidneys into O recipients: do IgM anti-A1 titers matter?

    Science.gov (United States)

    Tierney, Joshua; Shaffer, David

    2015-04-01

    The ABO blood subgroup A2 expresses lower levels of A antigen on the cell surface and is less immunogenic toward anti-A immunoglobulin present in blood type O or B recipients. Previous studies have shown successful kidney transplantation from A2 donors into O or B recipients with low pre-transplant anti-A titers. Previous studies suggest good results with recipient IgG titers A1 IgM titers on early outcomes following A2 to O or B kidney transplantation. We performed a single center, retrospective review of all A2 to O living donor kidney transplants. All recipients had pre-transplant anti-A IgG titers <1:8. IgM titers were measured in all recipients and were reported but not used to determine eligibility for transplant. From 2001 to 2013, we performed seven consecutive A2 to O living donor kidney transplants. Early allograft dysfunction, acute rejection or thrombotic microangiopathy, occurred in four patients and were associated with high IgM titers despite low IgG titers. Our data show a high incidence of early acute rejection or thrombotic microangiopathy in A2 to O kidney transplants with high recipient anti-A IgM titers despite low IgG titers. Steps to lower anti-IgM pre-transplant may reduce the risk of early allograft dysfunction in A2 to O or B kidney transplants. Attention should be paid to IgM titers in establishing individual center selection criteria for A2 to B kidney transplants under the new UNOS kidney allocation system. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. The associations of viral and mycoplasmal antibody titers with respiratory disease and weight gain in feedlot calves.

    Science.gov (United States)

    Martin, S W; Nagy, E; Armstrong, D; Rosendal, S

    1999-08-01

    Blood samples from 32 groups of calves (n = 700) were taken on arrival and after 28-35 days at the feedlot. Eleven groups were housed in feedlots in Ontario, and 21 groups in feedlots in Alberta. Serum antibody titers to bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus (BRSV), parainfluenza virus type 3 (PIV-3), infectious bovine rhinotracheitis virus (IBRV), Mycoplasma dispar and M. bovis, plus data on bovine corona virus (BCV) from a previous study were investigated for their association with the risk of bovine respiratory disease (BRD), and with 28-day weight change, both before and after controlling for titers to Pasteurella haemolytica and Haemophilus somnus. Exposure to IBRV and M. bovis was infrequent, and although exposure to PIV-3 was more common, none of these agents had important associations with BRD. Higher titers to BVDV, BRSV, and BCV on arrival were associated with reduced risks of BRD and increased weight gains. However, there was some variation in these relationships and higher arrival titers to BVDV and BRSV in a subset of the calves were associated with increased risks of BRD. Titer increases to BVDV were associated with a higher risk of BRD and lower weight gains. Titer increases to BRSV were not usually associated with the occurrence of BRD, but titer increases to BRSV in a subset of calves that were vaccinated against BRSV, on arrival, were associated with an elevated risk of BRD. Of all the agents studied, BVDV had the most consistent associations with elevated risk of BRD and lower weight gains. Higher BRSV arrival titers were related to lower risk of BRD and higher weight gains; in some instances titer increases to BRSV were associated with higher BRD risk. Higher titers to BCV on arrival were related to reduced risks of BRD. Practical ways of adequately preventing the negative effects of these agents are still needed.

  11. An improved method for estimating antibody titers in microneutralization assay using green fluorescent protein.

    Science.gov (United States)

    Yang, Hongmei; Baker, Steven F; González, Mario E; Topham, David J; Martínez-Sobrido, Luis; Zand, Martin; Holden-Wiltse, Jeanne; Wu, Hulin

    2016-01-01

    Viruses that express reporter genes upon infection have been recently used to evaluate neutralizing antibody responses, where a lack of reporter expression indicates specific virus inhibition. The traditional model-based methods using standard outcome of percent neutralization could be applied to the data from the assays to estimate antibody titers. However, the data produced are sometimes irregular, which can yield meaningless outcomes of percent neutralization that do not fit the typical curves for immunoassays, making automated or semi-high throughput antibody titer estimation unreliable. We developed a type of new outcomes model, which is biologically meaningful and fits typical immunoassay curves well. Our simulation study indicates that the new response approach outperforms the traditional response approach regardless of the data variability. The proposed new response approach can be used in similar assays for other disease models.

  12. Prevalence of antibody titers to leptospira spp. in Minnesota white-tailed deer

    Science.gov (United States)

    Goyal, S.M.; Mech, L.D.; Nelson, M.E.

    1992-01-01

    Serum samples (n = 204) from 124 white-tailed deer (Odocoileus virginianus) in northeastern Minnesota (USA) were collected from 1984 through 1989 and tested for antibodies to six serovars of Leptospira interrogans (bratislava, canicola, grippotyphosa, hardjo, icterohemorrhagiae, and pomona) using a microtiter agglutination test. Eighty-eight (43%) sera were positive at greater than or equal to 1:100 for antibodies against serovars pomona and/or bratislava; none was positive for any of the other four serovars. None of the 31 sera collected in 1984-85 was positive, whereas all 54 sera collected from 1986 through 1988 had titers of greater than or equal to 1:100. During 1989, only 34 (29%) of 119 sera had titers of greater than or equal to 1:100. Based on these results, we believe there to be wide variability in exposure of Minnesota deer to Leptospira interrogans.

  13. EFFECT OF A PREPREGNANCY PERTUSSIS BOOSTER DOSE ON MATERNAL ANTIBODY TITERS IN YOUNG INFANTS

    OpenAIRE

    Leuridan, Elke; HENS, Niel; Peeters, Natasja; de Witte, Liene; Van der Meeren, Olivier; Van Damme, Pierre

    2011-01-01

    To examine the influence of a pertussis booster vaccination on the transfer of maternal antibodies, 24 nonpregnant women received a tetanus, diphtheria, acellular pertussis booster vaccine between 2 consecutive pregnancies. Blood was drawn from mothers and off-spring. Efficient transplacental antibody transfer and significantly higher antibody titers against 3 pertussis antigens were observed in cord blood and in blood of 1-month-old infants born after a maternal booster vaccination compared ...

  14. Randomized Trials Comparing Inactivated Vaccine after Medium- or High-titer Measles Vaccine with Standard Titer Measles Vaccine after Inactivated Vaccine

    DEFF Research Database (Denmark)

    Aaby, Peter; Ravn, Henrik; Benn, Christine S.

    2016-01-01

    Background: Observational studies have suggested that girls have higher mortality if their most recent immunization is an inactivated vaccine rather than a live vaccine. We therefore reanalyzed 5 randomized trials of early measles vaccine (MV) in which it was possible to compare an inactivated......) compared with a standard titer MV (after inactivated vaccine). Girls had a MRR of 1.89 (1.27-2.80), whereas there was no effect for boys, the sex-differential effect being significant (P = 0.02). Excluding measles cases did not alter these conclusions, the MRR after inactivated vaccines (after MTMV or HTMV......) being 1.40 (1.06-1.86) higher overall and 1.92 (1.29-2.86) for girls. Control for variations in national immunization schedules for other vaccines did not modify these results. Conclusions: After 9 months of age, all children had been immunized against measles, and mortality in girls was higher when...

  15. Activity, specificity, and titer of naturally occurring canine anti-DEA 7 antibodies.

    Science.gov (United States)

    Spada, Eva; Proverbio, Daniela; Baggiani, Luciana; Canzi, Ilaria; Perego, Roberta

    2016-11-01

    The reported prevalence of naturally occurring anti-dog erythrocyte antigen (DEA) 7 antibodies in DEA 7-negative dogs is as high as 50%. Characterization of these antibodies may better define their importance in canine transfusion medicine. We determined in vitro activity, specificity, and titer of anti-DEA 7 antibodies in DEA 7-negative dogs. Plasma samples from 317 DEA 7-negative dogs were cross-matched with DEA 7-positive red blood cells (RBCs) using gel column technology. Agglutination occurred with DEA 7-positive RBCs but not with DEA 7-negative RBCs in 73 samples (23%), which were hence classified as containing anti-DEA 7 antibodies. These samples were evaluated for hemolytic and agglutinating activity, strength of agglutination, and antibody specificity and titers. All samples showed agglutination but none showed hemolysis. Gel agglutination was graded as 1+ for 20 samples (27%), 2+ for 49 samples (67%), 3+ for 4 samples (6%); no samples were graded 4+. The agglutination titer was DEA 7 antibodies were found in 23% of DEA 7-negative dogs. The presence of naturally occurring anti-DEA 7 antibodies suggests that cross-matching of canine blood recipients is advisable, even at first transfusion, to minimize delayed transfusion reactions. © 2016 The Author(s).

  16. Interference of daratumumab with pretransfusion testing, mimicking a high-titer, low avidity like antibody

    Directory of Open Access Journals (Sweden)

    Mei-Hwa Lin

    2017-01-01

    Full Text Available Daratumumab is a monoclonal immunoglobulin against CD38 and has been approved for treating patients with refractory multiple myeloma. The presence of daratumumab in the sera can interfere with pretransfusion testing due to the weakly expression of CD38 on red cells. The reactivity could be mistaken as autoantibody (if autocontrol is positive or alloantibody (if autocontrol is negative. We present a case that demonstrates daratumumab could mimic a high titer low avidity (HTLA alloantibody. A 34-year-old male patient of refractory myeloma was recruited in phase three clinical trial involving daratumumab. Samples were sent to the blood bank for pretransfusion testing. Without knowledge of patient having used daratumumab, we mistook the reactivity in the patient's sera as an HTLA antibody due to the results of negative autocontrol and high titers of antibody activity. Antibody screen showed a panreactive pattern and the reactivity against screening cells was up to a titer of 1: 1240. The reactivity was weaker against cord cells than adult cells, became weaker against ZZAP-treated cells and became negative against DDT-treated cells. A discussion with attending physician finally revealed the reactivity was due to the interference caused by daratumumab. The case demonstrates good communication is essential in performing pretransfusion testing for patients receiving daratumumab and other new biological regimens that can interfere with compatibility test.

  17. Interference of daratumumab with pretransfusion testing, mimicking a high-titer, low avidity like antibody.

    Science.gov (United States)

    Lin, Mei-Hwa; Liu, Fei-Yun; Wang, Hsiu-Mien; Cho, Hsin-Ching; Lo, Shyh-Chyi

    2017-01-01

    Daratumumab is a monoclonal immunoglobulin against CD38 and has been approved for treating patients with refractory multiple myeloma. The presence of daratumumab in the sera can interfere with pretransfusion testing due to the weakly expression of CD38 on red cells. The reactivity could be mistaken as autoantibody (if autocontrol is positive) or alloantibody (if autocontrol is negative). We present a case that demonstrates daratumumab could mimic a high titer low avidity (HTLA) alloantibody. A 34-year-old male patient of refractory myeloma was recruited in phase three clinical trial involving daratumumab. Samples were sent to the blood bank for pretransfusion testing. Without knowledge of patient having used daratumumab, we mistook the reactivity in the patient's sera as an HTLA antibody due to the results of negative autocontrol and high titers of antibody activity. Antibody screen showed a panreactive pattern and the reactivity against screening cells was up to a titer of 1: 1240. The reactivity was weaker against cord cells than adult cells, became weaker against ZZAP-treated cells and became negative against DDT-treated cells. A discussion with attending physician finally revealed the reactivity was due to the interference caused by daratumumab. The case demonstrates good communication is essential in performing pretransfusion testing for patients receiving daratumumab and other new biological regimens that can interfere with compatibility test.

  18. Incidence of serum antibody titers against herpes simplex virus in Japanese patients.

    Science.gov (United States)

    Miyachi, Motoko; Imafuku, Shinichi

    2017-01-01

    Herpes simplex virus (HSV) establishes latency in the sensory neuronal ganglia after primary infection, and occasionally causes recurrent infection, mainly on the lips or genitalia. Previous reports revealed an age-related increase in HSV-immunoglobulin G seropositive subjects in a hospital-based study and the general population in Japan. In this report, we retrospectively analyzed the results of serological tests against HSV, in which subjects were diagnosed with or suspected as having HSV infection. A total of 1216 subjects with at least one complement fixation (CF) result were included. Of these, 771 subjects (63.4%) were positive at first visit. When stratified by age, incidence of positive patients linearly increased with age from teenagers (44.9%) to those in their 80s (88.9%). Positivity in women was higher than in men overall; significantly higher incidence was observed in women aged in their 30s, 40s and 60s. When observing changing HSV-CF titers over time in 81 initially negative patients, 18 (22%) seroconverted during the 2121-day observation period. In this study, we clearly show that distribution of HSV-CF titers is similar to previous HSV-immunoglobulin G results. This correlation is probably caused by the continual subclinical proliferation of HSV, thus maintaining CF titers. Our observations provide current data on the incidence of HSV, reconfirming that serological examination is unreliable in diagnosing recurrent herpes, and the majority of infected subjects are asymptomatic. © 2016 Japanese Dermatological Association.

  19. Combining CRISPR and CRISPRi Systems for Metabolic Engineering of E. coli and 1,4-BDO Biosynthesis.

    Science.gov (United States)

    Wu, Meng-Ying; Sung, Li-Yu; Li, Hung; Huang, Chun-Hung; Hu, Yu-Chen

    2017-12-15

    Biosynthesis of 1,4-butanediol (1,4-BDO) in E. coli requires an artificial pathway that involves six genes and time-consuming, iterative genome engineering. CRISPR is an effective gene editing tool, while CRISPR interference (CRISPRi) is repurposed for programmable gene suppression. This study aimed to combine both CRISPR and CRISPRi for metabolic engineering of E. coli and 1,4-BDO production. We first exploited CRISPR to perform point mutation of gltA, replacement of native lpdA with heterologous lpdA, knockout of sad and knock-in of two large (6.0 and 6.3 kb in length) gene cassettes encoding the six genes (cat1, sucD, 4hbd, cat2, bld, bdh) in the 1,4-BDO biosynthesis pathway. The successive E. coli engineering enabled production of 1,4-BDO to a titer of 0.9 g/L in 48 h. By combining the CRISPRi system to simultaneously suppress competing genes that divert the flux from the 1,4-BDO biosynthesis pathway (gabD, ybgC and tesB) for >85%, we further enhanced the 1,4-BDO titer for 100% to 1.8 g/L while reducing the titers of byproducts gamma-butyrolactone and succinate for 55% and 83%, respectively. These data demonstrate the potential of combining CRISPR and CRISPRi for genome engineering and metabolic flux regulation in microorganisms such as E. coli and production of chemicals (e.g., 1,4-BDO).

  20. Design of a titering assay for lentiviral vectors utilizing direct extraction of DNA from transduced cells in microtiter plates

    Directory of Open Access Journals (Sweden)

    Michele E Murphy

    2016-01-01

    Full Text Available Using lentiviral vector products in clinical applications requires an accurate method for measuring transduction titer. For vectors lacking a marker gene, quantitative polymerase chain reaction is used to evaluate the number of vector DNA copies in transduced target cells, from which a transduction titer is calculated. Immune Design previously described an integration-deficient lentiviral vector pseudotyped with a modified Sindbis virus envelope for use in cancer immunotherapy (VP02, of the ZVex platform. Standard protocols for titering integration-competent lentiviral vectors employ commercial spin columns to purify vector DNA from transduced cells, but such columns are not optimized for isolation of extrachromosomal (nonintegrated DNA. Here, we describe a 96-well transduction titer assay in which DNA extraction is performed in situ in the transduction plate, yielding quantitative recovery of extrachromosomal DNA. Vector titers measured by this method were higher than when commercial spin columns were used for DNA isolation. Evaluation of the method's specificity, linear range, and precision demonstrate that it is suitable for use as a lot release assay to support clinical trials with VP02. Finally, the method is compatible with titering both integrating and nonintegrating lentiviral vectors, suggesting that it may be used to evaluate the transduction titer for any lentiviral vector.

  1. Direct biosynthesis of adipic acid from a synthetic pathway in recombinant Escherichia coli.

    Science.gov (United States)

    Yu, Jia-Le; Xia, Xiao-Xia; Zhong, Jian-Jiang; Qian, Zhi-Gang

    2014-12-01

    The C6 dicarboxylic acid, adipic acid, is an important platform chemical in industry. Biobased production of adipic acid is a promising alternative to the current petrochemical route. Here, we report biosynthesis of adipic acid using an artificial pathway inspired by the reversal of beta-oxidation of dicarboxylic acids. The biosynthetic pathway comprises condensation of acetyl-CoA and succinyl-CoA to form the C6 backbone and subsequent reduction, dehydration, hydrogenation, and release of adipic acid from its thioester. The pathway was first tested in vitro with reconstituted pathway enzymes and then functionally introduced into Escherichia coli for the biosynthesis and excretion of adipic acid into the culture medium. The production titer was increased by approximately 20-fold through the combination of recruiting enzymes that were more suitable to catalyze the synthetic reactions and increasing availability of the condensation substrates. This work demonstrates direct biosynthesis of adipic acid via non-natural synthetic pathway, which may enable its renewable production. © 2014 Wiley Periodicals, Inc.

  2. Multiple miRNAs jointly regulate the biosynthesis of ecdysteroid in the holometabolous insects, Chilo suppressalis.

    Science.gov (United States)

    He, Kang; Sun, Yang; Xiao, Huamei; Ge, Chang; Li, Fei; Han, Zhaojun

    2017-12-01

    The accurate rise and fall of active hormones is important for insect development. The ecdysteroids must be cleared in a timely manner. However, the mechanism of suppressing the ecdysteroid biosynthesis at the right time remains unclear. Here, we sequenced a small RNA library of Chilo suppressalis and identified 300 miRNAs in this notorious rice insect pest. Microarray analysis yielded 54 differentially expressed miRNAs during metamorphosis development. Target prediction and in vitro dual-luciferase assays confirmed that seven miRNAs (two conserved and five novel miRNAs) jointly targeted three Halloween genes in the ecdysteroid biosynthesis pathway. Overexpression of these seven miRNAs reduced the titer of 20-hydroxyecdysone (20E), induced mortality, and retarded development, which could be rescued by treatment with 20E. Comparative analysis indicated that the miRNA regulation of metamorphosis development is a conserved process but that the miRNAs involved are highly divergent. In all, we present evidence that both conserved and lineage-specific miRNAs have crucial roles in regulating development in insects by controlling ecdysteroid biosynthesis, which is important for ensuring developmental convergence and evolutionary diversity. © 2017 He et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  3. Aqueous Extracts of Hibiscus sabdariffa Calyces Decrease Hepatitis A Virus and Human Norovirus Surrogate Titers.

    Science.gov (United States)

    Joshi, Snehal S; Dice, Lezlee; D'Souza, Doris H

    2015-12-01

    Hibiscus sabdariffa extract is known to have antioxidant, anti-diabetic, and antimicrobial properties. However, their effects against foodborne viruses are currently unknown. The objective of this study was to determine the antiviral effects of aqueous extracts of H. sabdariffa against human norovirus surrogates (feline calicivirus (FCV-F9) and murine norovirus (MNV-1)) and hepatitis A virus (HAV) at 37 °C over 24 h. Individual viruses (~5 log PFU/ml) were incubated with 40 or 100 mg/ml of aqueous hibiscus extract (HE; pH 3.6), protocatechuic acid (PCA; 3 or 6 mg/ml, pH 3.6), ferulic acid (FA; 0.5 or 1 mg/ml; pH 4.0), malic acid (10 mM; pH 3.0), or phosphate buffered saline (pH 7.2 as control) at 37 °C over 24 h. Each treatment was replicated thrice and plaque assayed in duplicate. FCV-F9 titers were reduced to undetectable levels after 15 min with both 40 and 100 mg/ml HE. MNV-1 was reduced by 1.77 ± 0.10 and 1.88 ± 0.12 log PFU/ml after 6 h with 40 and 100 mg/ml HE, respectively, and to undetectable levels after 24 h by both concentrations. HAV was reduced to undetectable levels by both HE concentrations after 24 h. PCA at 3 mg/ml reduced FCV-F9 titers to undetectable levels after 6 h, MNV-1 by 0.53 ± 0.01 log PFU/ml after 6 h, and caused no significant change in HAV titers. FA reduced FCV-F9 to undetectable levels after 3 h and MNV-1 and HAV after 24 h. Transmission electron microscopy showed no conclusive results. The findings suggest that H. sabdariffa extracts have potential to prevent foodborne viral transmission.

  4. THE PERSISTENCE OF LEPTOSPIRAL AGGLUTININS TITERS IN HUMAN SERA DIAGNOSED BY THE MICROSCOPIC AGGLUTINATION TEST

    Directory of Open Access Journals (Sweden)

    Eliete C. ROMERO

    1998-05-01

    Full Text Available The persistence of agglutinins detected by MAT has created some problems to the interpretation of the results. The aim of this study was to examine the data of serology from 70 patients with serologically confirmed diagnosis of leptospirosis by during 3-13 months after being affected with leptospires in order to elucidate the interpretation of the persistence of agglutinins detected by MAT. Sixty-one patients sera (87.14% had titers equal or greater than 800. Of these, two individuals maintained titers of 800 thirteen months after the onset. This study showed that only one sample of sera with high titers is not reliable to determine the time at which infection occurred.Persistência de títulos de aglutininas anti-leptospiras em soros humanos diagnosticados pelo teste de aglutinação microscópica A persistência de aglutininas detectadas por MAT tem criado problemas na interpretação dos resultados. O objetivo deste trabalho foi examinar os resultados da sorologia de 70 pacientes com confirmação sorológica de leptospirose durante 3-13 meses após terem sido infectados para se poder elucidar a interpretação da persistência de aglutininas detectadas por MAT. Sessenta e um soros de pacientes (87,14% apresentaram títulos iguais, ou maiores, que 800. Destes, 2 indivíduos mantiveram títulos de 800 treze meses após terem sido infectados. Este estudo mostra que apenas uma amostra de soro, mesmo com alto título de aglutininas, não pode ser considerada para determinar a fase da doença.

  5. CANINE DISTEMPER VIRUS ANTIBODY TITERS IN DOMESTIC CATS AFTER DELIVERY OF A LIVE ATTENUATED VIRUS VACCINE.

    Science.gov (United States)

    Ramsay, Edward; Sadler, Ryan; Rush, Robert; Seimon, Tracie; Tomaszewicz, Ania; Fleetwood, Ellen A; McAloose, Denise; Wilkes, Rebecca P

    2016-06-01

    Three methods for delivering a live attenuated canine distemper virus (CDV) vaccine to domestic cats ( Felis catus ) were investigated, as models for developing vaccination protocols for tigers (Panthera tigris). Twenty domestic cats were randomly divided into four treatment groups: saline injection (negative controls); and oral, intranasal, and subcutaneous vaccinates. Cats were injected with saline or a CDV vaccine (Nobivac DP, Merck) at wk 0 and 4. Blood and nasal swabs were collected at wk 0 (prior to the initial vaccination) and weekly thereafter for 9 wk. Urine samples were collected on wk 1 to 9 after initial vaccination. Forty-nine weeks following the initial vaccination series, three cats from the subcutaneous group and three cats from the intranasal group were revaccinated. Blood was collected immediately prior, and 7 and 21 days subsequent to revaccination. Nasal swabs and urine samples were collected from each cat prior to wk 49 revaccination and daily for 7 days thereafter. Nasal swabs and urine were analyzed by quantitative PCR for vaccine virus presence. Sera were tested for CDV antibodies by virus neutralization. All cats were sero-negative for CDV antibodies at the beginning of the study, and saline-injected cats remained sero-negative throughout the study. A dramatic anamnestic response was seen following wk 4 subcutaneous vaccinations, with titers peaking at wk 6 (geometric mean = 2,435.5). Following wk 49 revaccination, subcutaneous vaccinates again mounted impressive titers (wk 52 geometric mean = 2,048). Revaccination of the intranasal group cats at wk 49 produced a small increase in titers (wk 52 geometric mean = 203). CDV viral RNA was detected in six nasal swabs but no urine samples, demonstrating low viral shedding postvaccination. The strong antibody response to subcutaneous vaccination and the lack of adverse effects suggest this vaccine is safe and potentially protective against CDV infection in domestic cats.

  6. Desensitization protocol in highly HLA-sensitized and ABO-incompatible high titer kidney transplantation.

    Science.gov (United States)

    Uchida, J; Machida, Y; Iwai, T; Naganuma, T; Kitamoto, K; Iguchi, T; Maeda, S; Kamada, Y; Kuwabara, N; Kim, T; Nakatani, T

    2010-12-01

    A positive crossmatch indicates the presence of donor-specific alloantibodies and is associated with a graft loss rate of >80%; anti-ABO blood group antibodies develop in response to exposure to foreign blood groups, resulting in immediate graft loss. However, a desensitization protocol for highly HLA-sensitized and ABO-incompatible high-titer kidney transplantation has not yet been established. We treated 6 patients with high (≥1:512) anti-A/B antibody titers and 2 highly HLA-sensitized patients. Our immunosuppression protocol was initiated 1 month before surgery and included mycophenolate mofetil (1 g/d) and/or low-dose steroid (methylprednisolone 8 mg/d). Two doses of the anti-CD20 antibody rituximab (150 mg/m(2)) were administered 2 weeks before and on the day of transplantation. We performed antibody removal with 6-12 sessions of plasmapheresis (plasma exchange or double-filtration plasmapheresis) before transplantation. Splenectomy was also performed on the day of transplantation. Postoperative immunosuppression followed the same regimen as ABO-compatible cases, in which calcineurin inhibitors were initiated 3 days before transplantation, combined with 2 doses of basiliximab. Of the 8 patients, 7 subsequently underwent successful living-donor kidney transplantation. Follow-up of our recipients showed that the patient and graft survival rates were 100%. Acute cellular rejection and antibody-mediated rejection episodes occurred in 1 of the 7 recipients. These findings suggest that our immunosuppression regimen consisting of rituximab infusions, splenectomy, plasmapheresis, and pharmacologic immunosuppression may prove to be effective as a desensitization protocol for highly HLA-sensitized and ABO-incompatible high-titer kidney transplantation. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Engineered biosynthesis of biodegradable polymers.

    Science.gov (United States)

    Jambunathan, Pooja; Zhang, Kechun

    2016-08-01

    Advances in science and technology have resulted in the rapid development of biobased plastics and the major drivers for this expansion are rising environmental concerns of plastic pollution and the depletion of fossil-fuels. This paper presents a broad view on the recent developments of three promising biobased plastics, polylactic acid (PLA), polyhydroxyalkanoate (PHA) and polybutylene succinate (PBS), well known for their biodegradability. The article discusses the natural and recombinant host organisms used for fermentative production of monomers, alternative carbon feedstocks that have been used to lower production cost, different metabolic engineering strategies used to improve product titers, various fermentation technologies employed to increase productivities and finally, the different downstream processes used for recovery and purification of the monomers and polymers.

  8. Proposed method for agglutinating antibody titer analysis and its use as indicator of acquired immunity in pacu, Piaractus mesopotamicus

    Directory of Open Access Journals (Sweden)

    JD Biller-Takahashi

    Full Text Available Antibody can be assessed by agglutinating antibody titer which is a quantitative measure of circulating antibodies in serum from fish previously immunized. The antibody evaluation has been performed with different fish species, and is considered a reliable method that can be applied to confirm several hypothesis regarding acquired immunity, even in conjunction with precise methods to describe immune mechanisms. In order to provide appropriate analytical methods for future studies on the specific immune system of native fish, the present study standardized on assay to measure the serum agglutinating antibody titer produced after immunization with inactivated A. hydrophila and levamisole administration in pacu. It was possible to determine the agglutinating antibodies titer in a satisfactorily way in pacu immunized with inactive A. hydrophila, and the highest titers were observed on fish fed with levamisole.

  9. Generation of high-titer viral preparations by concentration using successive rounds of ultracentrifugation

    Directory of Open Access Journals (Sweden)

    Ichim Christine V

    2011-08-01

    Full Text Available Abstract Background Viral vectors provide a method of stably introducing exogenous DNA into cells that are not easily transfectable allowing for the ectopic expression or silencing of genes for therapeutic or experimental purposes. However, some cell types, in particular bone marrow cells, dendritic cells and neurons are difficult to transduce with viral vectors. Successful transduction of such cells requires preparation of highly concentrated viral stocks, which permit a high virus concentration and multiplicity of infection (MOI during transduction. Pseudotyping with the vesicular stomatitis virus G (VSV-G envelope protein is common practice for both lentiviral and retroviral vectors. The VSV-G glycoprotein adds physical stability to retroviral particles, allowing concentration of virus by high-speed ultracentrifugation. Here we describe a method report for concentration of virus from large volumes of culture supernatant by means of successive rounds of ultracentrifugation into the same ultracentrifuge tube. Method Stable retrovirus producer cell lines were generated and large volumes of virus-containing supernatant were produced. We then tested the transduction ability of virus following varying rounds of concentration by ultra-centrifugation. In a second series of experiments lentivirus-containing supernatant was produced by transient transfection of 297T/17 cells and again we tested the transduction ability of virus following multiple rounds of ultra-centrifugation. Results We report being able to centrifuge VSV-G coated retrovirus for as many as four rounds of ultracentrifugation while observing an additive increase in viral titer. Even after four rounds of ultracentrifugation we did not reach a plateau in viral titer relative to viral supernatant concentrated to indicate that we had reached the maximum tolerated centrifugation time, implying that it may be possible to centrifuge VSV-G coated retrovirus even further should it be necessary

  10. Vitamin B biosynthesis in plants.

    Science.gov (United States)

    Roje, Sanja

    2007-07-01

    The vitamin B complex comprises water-soluble enzyme cofactors and their derivatives that are essential contributors to diverse metabolic processes in plants as well as in animals and microorganisms. Seven vitamins form this complex: B1 (thiamin (1)), B2 (riboflavin (2)), B3 (niacin (3)), B5 (pantothenic acid (4)), B6 (pyridoxine, pyridoxal (5), and pyridoxamine), B8 (biotin (6)), and B9 (folate (7)). All seven B vitamins are required in the human diet for proper nutrition because humans lack enzymes to synthesize these compounds de novo. This review aims to summarize the present knowledge of vitamin B biosynthesis in plants.

  11. Study of the titers of Anti-Epstein-Barr virus antibodies in the sera of atomic bomb survivors

    International Nuclear Information System (INIS)

    Akiyama, Mitoshi; Kusunoki, Yoichiro; Kyoizumi, Seishi; Ozaki, Kyoko; Mizuno, Shoichi; Cologne, J.B.

    1993-01-01

    Antibody titers to Epstein-Barr virus antigens were determined in the sera of 372 atomic bomb survivors to evaluate the effect of the previous radiation exposure on immune competence against the latent infection of the virus. The proportion of persons with high titers (≥ 1:40) of IgG antibodies to the early antigen was significantly elevated in the exposed survivors. Furthermore, the distribution of IgM titers against the viral capsid antigen was significantly affected by radiation dose with an increased occurrence of titers of 1:5 and 1:10 in the exposed persons, although the dose effect was only marginally suggestive when persons with rheumatoid factor were eliminated from the analysis. These results suggest that reactivation of Epstein-Barr virus in the latent stage occurs more frequently in the survivors, even though this might not be affected by the radiation dose. Otherwise, there was neither an increased trend in the prevalence of high titers (≥ 1:640) of IgG antibodies to the viral capsid antigen among the exposed people nor a correlation between the radiation exposure and distributions of titers of IgA antibodies to the viral capsid antigen or antibodies to the anti-Epstein-Barr virus-associated nuclear antigen. (author)

  12. Biosynthesis of bacterial aromatic polyketides.

    Science.gov (United States)

    Zhan, Jixun

    2009-01-01

    Aromatic polyketides represent important members of the family of polyketides, which have displayed a wide assortment of bioactive properties, such as antibacterial, antitumor, and antiviral activities. Bacterial aromatic polyketides are mainly synthesized by type II polyketide synthases (PKSs). Whereas malonyl-CoA is exclusively used as the extender unit, starter units can vary in different aromatic polyketide biosynthetic pathways, leading to a variety of polyketide backbones. Once the polyketide chains are elongated by the minimal PKSs to the full length, the immediate tailoring enzymes including ketoreductases, oxygenases and cyclases will work on the nascent chains to form aromatic structures, which will be further decorated by those late tailoring enzymes such as methyltransferases and glycosyltransferases. The mechanistic studies on the biosynthetic pathways of aromatic polyketides such as oxytetracycline and pradimicin A have been extensively carried out in recent years. Engineered biosynthesis of novel "unnatural" polyketides has been achieved in heterologous hosts such as Streptomyces coelicolor and Escherichia coli. This review covers the most recent advances in aromatic polyketide biosynthesis, which provide new enzymes or methods for building novel polyketide biosynthetic machinery.

  13. Fatty acid biosynthesis in actinomycetes

    Science.gov (United States)

    Gago, Gabriela; Diacovich, Lautaro; Arabolaza, Ana; Tsai, Shiou-Chuan; Gramajo, Hugo

    2011-01-01

    All organisms that produce fatty acids do so via a repeated cycle of reactions. In mammals and other animals, these reactions are catalyzed by a type I fatty acid synthase (FAS), a large multifunctional protein to which the growing chain is covalently attached. In contrast, most bacteria (and plants) contain a type II system in which each reaction is catalyzed by a discrete protein. The pathway of fatty acid biosynthesis in Escherichia coli is well established and has provided a foundation for elucidating the type II FAS pathways in other bacteria (White et al., 2005). However, fatty acid biosynthesis is more diverse in the phylum Actinobacteria: Mycobacterium, possess both FAS systems while Streptomyces species have only the multi-enzyme FAS II system and Corynebacterium species exclusively FAS I. In this review we present an overview of the genome organization, biochemical properties and physiological relevance of the two FAS systems in the three genera of actinomycetes mentioned above. We also address in detail the biochemical and structural properties of the acyl-CoA carboxylases (ACCases) that catalyzes the first committed step of fatty acid synthesis in actinomycetes, and discuss the molecular bases of their substrate specificity and the structure-based identification of new ACCase inhibitors with anti-mycobacterial properties. PMID:21204864

  14. A Novel Redoxin in the Thylakoid Membrane Regulates the Titer of Photosystem I.

    Science.gov (United States)

    Zhu, Yuehui; Liberton, Michelle; Pakrasi, Himadri B

    2016-09-02

    In photosynthetic organisms like cyanobacteria and plants, the main engines of oxygenic photosynthesis are the pigment-protein complexes photosystem I (PSI) and photosystem II (PSII) located in the thylakoid membrane. In the cyanobacterium Synechocystis sp. PCC 6803, the slr1796 gene encodes a single cysteine thioredoxin-like protein, orthologs of which are found in multiple cyanobacterial strains as well as chloroplasts of higher plants. Targeted inactivation of slr1796 in Synechocystis 6803 resulted in compromised photoautotrophic growth. The mutant displayed decreased chlorophyll a content. These changes correlated with a decrease in the PSI titer of the mutant cells, whereas the PSII content was unaffected. In the mutant, the transcript levels of genes for PSI structural and accessory proteins remained unaffected, whereas the levels of PSI structural proteins were severely diminished, indicating that Slr1796 acts at a posttranscriptional level. Biochemical analysis indicated that Slr1796 is an integral thylakoid membrane protein. We conclude that Slr1796 is a novel regulatory factor that modulates PSI titer. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. High titer ethanol and lignosulfonate production from SPORL pretreated poplar at pilot-scale

    Directory of Open Access Journals (Sweden)

    Junyong (J.Y. eZhu

    2015-04-01

    Full Text Available Poplar NE222 (Populus deltoides Bartr. ex Marsh × P. nigra L. wood chips were pretreated in a 390 L pilot-scale rotating wood-pulping digester using a dilute sulfite solution of approximately pH  1.8 at 160°C for 40 min for bioconversion to ethanol and lignosulfonate (LS. An estimated combined hydrolysis factor (CHF of 3.3 was used to scale the pretreatment temperature and time from laboratory bench scale experiments, which balanced sugar yield and inhibitor formation to facilitate high titer ethanol production through fermentation using S. cerevisiae YRH400 without detoxification. A terminal ethanol titer of 43.6 g L-1 with a yield of 247 L tonne wood-1 was achieved at total solids loading of 20%. The relatively low ethanol yield compared with yield from SPORL-pretreated softwoods was due to inefficient utilization of xylose. The LS from SPORL has a substantially higher phenolic group (Ph-OH content although it is less sulfonated and has a lower molecular weight than a purified commercial softwood LS, and therefore has potential for certain commercial markets and future novel applications through further processing.

  16. Toxigenic Corynebacterium ulcerans isolated from a hunting dog and its diphtheria toxin antibody titer.

    Science.gov (United States)

    Katsukawa, Chihiro; Komiya, Takako; Umeda, Kaoru; Goto, Minami; Yanai, Tokuma; Takahashi, Motohide; Yamamoto, Akihiko; Iwaki, Masaaki

    2016-03-01

    Toxigenic Corynebacterium ulcerans is a zoonotic pathogen that produces diphtheria toxin and causes a diphtheria-like illness in humans. The organism is known to infect and circulate among dogs, which can then transmit it to humans. Furthermore, previous studies have found that C. ulcerans is carried by wild animals, including game animals. In the present study, we tested hunting and companion dogs for the presence of toxigenic C. ulcerans and succeeded in isolating the bacterium from a hunting dog. Moreover, several hunting dogs had serum diphtheria antitoxin titers that were higher than the titers required for protection in humans, suggesting a history of exposure to toxigenic Corynebacterium strains. Notably, ribotyping, pulsed-field gel electrophoresis and tox gene sequencing demonstrated that the isolate from the hunting dog clustered with previously characterized C. ulcerans strains isolated from wild animals, as opposed to groups of isolates from humans and companion dogs. Interestingly, the wild animal cluster also contains an isolate from an outdoor breeding dog, which could have formed a bridge between isolates from wild animals and those from companion dogs. The results presented herein provide insight into the mechanism by which the zoonotic pathogen C. ulcerans circulates among wild animals, hunting and companion dogs, and humans. © 2016 The Societies and John Wiley & Sons Australia, Ltd.

  17. Component Analysis of Sweet BV and Clinical Trial on Antibody Titer and Allergic Reactions

    Directory of Open Access Journals (Sweden)

    Ki Rok, Kwon

    2006-06-01

    Full Text Available Objectives : The aim of this study was to observe prevention of allergic reactions of Sweet Bee Venom (removing enzyme components from Bee Venom. Methods : Content analysis of Sweet Bee Venom and Bee Venom was rendered using HPLC method and characterization of Anti-Sweet Bee Venom in Rabbit Serum. Clinical observation was conducted for inducement of allergic responses to Sweet BV. Results : 1. Analyzing melittin content using HPLC, Sweet BV contained 34.9% more melittin than Bee venom pharmacopuncture at same concentration. 2. Observing chromatogram of HPLC, removal of the enzyme was successfully rendered on Sweet BV. 3. The anti-serum of Sweet BV showed high titers against melittin and bee venom and relatively low titer against phospholipase A2. 4. After conducting approximately 3,000 cases of Sweet BV administration, not a single case of generalized anaphylatic reaction occurred in clinical observation. 5. Mild compared to the bee venom pharmacopuncture, Sweet BV showed some acute hypersensitive reactions of edema, itchiness, and aching locally. 6. Sweet BV was administered on six patients with previous history of suffering from generalized acute hypersensitive reactions with the bee venom. None of the patients showed allergic reactions with Sweet BV, suggesting it can effectively prevent anaphylatic shock which may occur after the bee venom pharmacopuncture procedure. Conclusion : Summarizing above results, Sweet Bee Venom appears to be an effective measurement against allergic reactions from the bee venom pharmacopuncture especially against anaphylatic shock.

  18. High Titer Ethanol and Lignosulfonate Production from SPORL Pretreated Poplar at Pilot Scale

    International Nuclear Information System (INIS)

    Zhou, Haifeng; Zhu, J. Y.; Gleisner, Roland; Qiu, Xueqing; Horn, Eric

    2015-01-01

    Poplar NE222 (Populus deltoides Bartr. ex Marsh × P. nigra L.) wood chips were pretreated in a 390 L pilot-scale rotating wood-pulping digester using a dilute sulfite solution of approximately pH 1.8 at 160°C for 40 min for bioconversion to ethanol and lignosulfonate (LS). An estimated combined hydrolysis factor (CHF) of 3.3 was used to scale the sulfite pretreatment temperature and time from laboratory bench scale experiments, which balanced sugar yield and inhibitor formation to facilitate high titer ethanol production through fermentation using S. cerevisiae YRH400 without detoxification. A terminal ethanol titer of 43.6 g L -1 with a yield of 247 L tonne wood -1 was achieved at total solids loading of 20%. The relatively low ethanol yield compared with yield from Sulfite pretreatment to overcome the recalcitrance of lignocelluloses (SPORL)-pretreated softwoods was due to inefficient utilization of xylose. The LS from SPORL has a substantially higher phenolic group (Ph-OH) content, though it was less sulfonated and had a lower molecular weight than a purified commercial softwood LS, and therefore has potential for certain commercial markets and future novel applications through further processing. The conversion efficiency achieved through process integration and simplification, demonstrated here, has significant importance to the entire supply chain of biofuel production from woody biomass.

  19. Identification and expression profile of Halloween genes involved in ecdysteroid biosynthesis in Spodoptera littoralis.

    Science.gov (United States)

    Iga, Masatoshi; Smagghe, Guy

    2010-03-01

    20-Hydroxyecdyone (20E), an active form of ecdysteroid, is the key hormone in insect growth and development. The biosynthesis of ecdysteroid is triggered and under the control of the neuropeptide, prothoracicotropic hormone (PTTH). To date, five cytochrome P450 enzymes, namely Spook (Spo), Phantom (Phm), Disembodied (Dib), Shadow (Sad) and Shade (Shd) related to ecdysteroid biosynthesis, are identified and the character of last four enzymes is well studied in Drosophila melanogaster, Bombyx mori and Manduca sexta. These genes are called Halloween genes and mediate the biosynthesis of 20E from cholesterol. In this study, we extended these works to a major pest insect in agriculture, the cotton leafworm Spodoptera littoralis (Lepidoptera: Noctuidae). We identified the sequence of five Halloween genes, and the converted amino acid sequences were compared with those of other insects. The phylogenetic analysis clearly showed separated clusters of each gene and the evolutional conservation in insects with a high similarity in Lepidoptera. Spo, phm, dib and sad were predominantly expressed in prothoracic glands, and shd was expressed in fat body and Malpighian tubules at the last instar larvae. Spo expression was kept high level between day 2 and day 4 after ecdysis. The expression of phm and dib peaked at day 2, and sad and shd expressions peaked at day 2 and day 4 after ecdysis. In addition, the hemolymph ecdysteroid titer showed a small peak at day 2 and a large peak at day 4 after ecdysis. These results suggest the importance of Halloween genes in ecdysone biosynthesis by prothoracic glands and conversion of ecdysone into 20E by fat body in larval-pupal metamorphosis. (c) 2009 Elsevier Inc. All rights reserved.

  20. SURVEI TITER ANTI BODI ANAK SEKOLAH USIA 6--17 TAHUN DI DAERAH KLB DIFTERI DAN NON KLB DI INDONESIA

    Directory of Open Access Journals (Sweden)

    Noer Endah Pracoyo

    2014-02-01

    Full Text Available AbstractDiphtheriae  is an  reemerging infectious disease  widespread in the world. Bacterial infection of Corynebacterium diphtheria usually not invasive, but the bacteria can produce toxins that cause pathological effects on the heart muscle and other organs, and a 10-17% death-risk was occurred.  Diphtheriae can be prevented by immunization.  Immunizations are given to infants at the age of 0-11 months and procead to booster for pupils at Elementary School. The imunization program at school is a routinely cunducted. Such program held annualy on certain month that called as “BIAS pupils immunization month” . To examine antibody  titer of diphtheriae, research for sero  survey titer antibody titer of diphtheriae was conducted on pupils between 6 and 17 years old at outbreak areas and non outbreak area.The research started in May 2010 and finished in Desember 2010. The aim of the research was to measure the antibody titer in area of outbreak and non outbreak of school children. Design was case control study. Sera of the respondens were axamined by Elisa for detecting antibody titers against diphtheriae. The study awarded ethical clearence from Research Ethics Committee of the National Institute of Health Research and Developmnent. Number of sample cases were 225 samples and 225 control. Analysis of the data by using the soft ware (SPSS 16.00. The result of this research were respondens who lived in the outbreak area with risk of dipthteriae infection of 2,3 times than respondens who lived in the non outbreak area. The immunization of diphthteriae more important for antibody titers.Keywords: Antibody titer diphtheriae, outbreak areaAbstrakDifteria adalah  penyakit infeksi Reemerging tersebar luas di dunia. Infeksi kuman Corynebacterium diphtheria  biasanya tidak invasif, tetapi kuman dapat memproduksi toksin yang dapat menimbulkan efek patologis pada otot jantung dan organ lain, dan berisiko terjadi kematian (10-17%. Difteri dapat

  1. Manipulation of regulatory genes reveals complexity and fidelity in hormaomycin biosynthesis.

    Science.gov (United States)

    Cai, Xiaofeng; Teta, Roberta; Kohlhaas, Christoph; Crüsemann, Max; Ueoka, Reiko; Mangoni, Alfonso; Freeman, Michael F; Piel, Jörn

    2013-06-20

    Hormaomycin (HRM) is a structurally remarkable peptide produced by Streptomyces griseoflavus W-384 that acts as a Streptomyces signaling metabolite and exhibits potent antibiotic activity against coryneform actinomycetes. HRM biosynthetic studies have been hampered by inconsistent and low production. To enhance fermentation titers, the role of its cluster-encoded regulatory genes was investigated. Extra copies of the putative regulators hrmA and hrmB were introduced into the wild-type strain, resulting in an increase of HRM production and its analogs up to 135-fold. For the HrmB overproducer, six bioactive analogs were isolated and characterized. This study demonstrates that HrmA and HrmB are positive regulators in HRM biosynthesis. A third gene, hrmH, was identified as encoding a protein capable of shifting the metabolic profile of HRM and its derivatives. Its manipulation resulted in the generation of an additional HRM analog. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Regulatory variability of camalexin biosynthesis.

    Science.gov (United States)

    Schuhegger, Regina; Rauhut, Thomas; Glawischnig, Erich

    2007-05-01

    The anthranilate synthase ASA1, CYP79B2 and CYP71B15 (PAD3) are biosynthetic genes of the Arabidopsis phytoalexin camalexin, which are induced after pathogen infection and abiotic treatments like silver nitrate spraying. The natural variation of camalexin biosynthesis in response to Pseudomonas syringae infection was determined in several ecotypes, and differential CYP71B15 regulation as a potential basis for this variation was investigated. The expression of camalexin biosynthetic genes was restricted to the tissue undergoing cell death. After droplet infection with Alternaria alternata, a potent camalexin inducer in the Col-0 ecotype, camalexin formation and the induction of ASA1, CYP79B2 and CYP71B15 were strictly co-localized with the infection site.

  3. Enhanced Biosynthesis of Hyaluronic Acid Using Engineered Corynebacterium glutamicum Via Metabolic Pathway Regulation.

    Science.gov (United States)

    Cheng, Fangyu; Luozhong, Sijin; Guo, Zhigang; Yu, Huimin; Stephanopoulos, Gregory

    2017-10-01

    Hyaluronic acid (HA) is a polysaccharide used in many industries such as medicine, surgery, cosmetics, and food. To avoid potential pathogenicity caused by its native producer, Streptococcus, efforts have been made to create a recombinant host for HA production. In this work, a GRAS (generally recognized as safe) strain, Corynebacterium glutamicum, is engineered for enhanced biosynthesis of HA via metabolic pathway regulation. Five enzymes (HasA-HasE) involved in the HA biosynthetic pathway are highlighted, and eight diverse operon combinations, including HasA, HasAB, HasAC, HasAD, HasAE, HasABC, HasABD, and HasABE, are compared. HasAB and HasABC are found to be optimal for HA biosynthesis in C. glutamicum. To meet the energy demand for HA synthesis, the metabolic pathway that produces lactate is blocked by knocking out the lactate dehydrogenase (LDH) gene using single crossover homologous recombination. Engineered C. glutamicum/Δldh-AB is superior and had a significantly higher HA titer than C. glutamicum/Δldh-ABC. Batch and fed-batch cultures of C. glutamicum/Δldh-AB are performed in a 5-L fermenter. Using glucose feeding, the maximum HA titer reached 21.6 g L -1 , more than threefolds of that of the wild-type Streptococcus. This work provides an efficient, safe, and novel recombinant HA producer, C. glutamicum/Δldh-AB, via metabolic pathway regulation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Significance of prenatal joint detection of ABO antibody titers and irregular antibodies in pregnant women with type O blood.

    Science.gov (United States)

    Zhu, W Y; Li, H X; Liang, Y

    2014-01-01

    To investigate the effects of blood transfusion and number of pregnancies on ABO antibody titers and irregular antibodies in pregnant women with type O blood. The study included 4,200 pregnant women with type O blood (their husbands were with non-O type blood) that were divided into transfusion group and non-transfusion group, according to whether they had a history of blood transfusion. The both groups were respectively divided into three subgroups (the number of pregnancies was one, two, and > or = three). The ABO antibody titers and irregular antibodies were detected at the same time. The effects ofABO antibody titers and irregular antibodies on hemolytic disease of the newborn (HDN) were discussed. There was no consistency of ABO antibody titers and existence of irregular antibody. The positive rates of irregular antibody of transfusion group and of the subgroup (number of pregnancies > or = three) were far higher than that of non-transfusion group and of the subgroups (number of pregnancies pregnant women with positive irregular antibody in non-transfusion group were with HDN. For pregnant women with number of pregnancies > or = three or with history of blood transfusion, the prenatal joint detection of ABO antibody titers and irregular antibodies is helpful for accurately reflecting the in vivo antibody type and level.

  5. Early low-titer neutralizing antibodies impede HIV-1 replication and select for virus escape.

    Directory of Open Access Journals (Sweden)

    Katharine J Bar

    Full Text Available Single genome sequencing of early HIV-1 genomes provides a sensitive, dynamic assessment of virus evolution and insight into the earliest anti-viral immune responses in vivo. By using this approach, together with deep sequencing, site-directed mutagenesis, antibody adsorptions and virus-entry assays, we found evidence in three subjects of neutralizing antibody (Nab responses as early as 2 weeks post-seroconversion, with Nab titers as low as 1∶20 to 1∶50 (IC(50 selecting for virus escape. In each of the subjects, Nabs targeted different regions of the HIV-1 envelope (Env in a strain-specific, conformationally sensitive manner. In subject CH40, virus escape was first mediated by mutations in the V1 region of the Env, followed by V3. HIV-1 specific monoclonal antibodies from this subject mapped to an immunodominant region at the base of V3 and exhibited neutralizing patterns indistinguishable from polyclonal antibody responses, indicating V1-V3 interactions within the Env trimer. In subject CH77, escape mutations mapped to the V2 region of Env, several of which selected for alterations of glycosylation. And in subject CH58, escape mutations mapped to the Env outer domain. In all three subjects, initial Nab recognition was followed by sequential rounds of virus escape and Nab elicitation, with Nab escape variants exhibiting variable costs to replication fitness. Although delayed in comparison with autologous CD8 T-cell responses, our findings show that Nabs appear earlier in HIV-1 infection than previously recognized, target diverse sites on HIV-1 Env, and impede virus replication at surprisingly low titers. The unexpected in vivo sensitivity of early transmitted/founder virus to Nabs raises the possibility that similarly low concentrations of vaccine-induced Nabs could impair virus acquisition in natural HIV-1 transmission, where the risk of infection is low and the number of viruses responsible for transmission and productive clinical

  6. An unusual presentation of brucellosis, involving multiple organ systems, with low agglutinating titers: a case report

    Directory of Open Access Journals (Sweden)

    Khorvash Farzin

    2007-07-01

    Full Text Available Abstract Background Brucellosis is a multi-system disease that may present with a broad spectrum of clinical manifestations. While hepatic involvement in brucellosis is not rare, it may rarely involve the kidney or display with cardiac manifestations. Central nervous system involvement in brucellosis sometimes can cause demyelinating syndromes. Here we present a case of brucella hepatitis, myocarditis, acute disseminated encephalomyelitis, and renal failure. Case presentation A 26-year-old man presented with fever, ataxia, and dysarthria. He was a shepherd and gave a history of low grade fever, chilly sensation, cold sweating, loss of appetite, arthralgia and 10 Kg weight loss during the previous 3 months. He had a body temperature of 39°C at the time of admission. On laboratory tests he had elevated level of liver enzymes, blood urea nitrogen, Creatinine, Creatine phosphokinase (MB, and moderate proteinuria. He also had abnormal echocardiography and brain MRI. Enzyme-linked immunosorbent assay for IgG and IgM was negative. Standard tube agglutination test (STAT and 2-mercaptoethanol (2-ME titers were 1:80 and 1:40 respectively. Finally he was diagnosed with brucellosis by positive blood culture and the polymerase chain reaction for Brucella mellitensis. Conclusion In endemic areas clinicians should consider brucellosis in any unusual presentation involving multiple organ systems, even if serology is inconclusive. In endemic areas low STAT and 2-ME titers should be considered as an indication of brucellosis and in these cases additional testing is recommended to rule out brucellosis.

  7. Expanding Upon Styrene Biosynthesis to Engineer a Novel Route to 2-Phenylethanol.

    Science.gov (United States)

    Machas, Michael S; McKenna, Rebekah; Nielsen, David R

    2017-10-01

    2-Phenylethanol (2PE) is a key molecule used in the fragrance and food industries, as well as a potential biofuel. In contrast to its extraction from plant biomass and/or more common chemical synthesis, microbial 2PE production has been demonstrated via both native and heterologous expression of the yeast Ehrlich pathway. Here, a novel alternative to this established pathway is systematically engineered in Escherichia coli and evaluated as a more robust and efficient route. This novel pathway is constructed via the modular extension of a previously engineered styrene biosynthesis pathway, proceeding from endogenous l-phenylalanine in five steps and involving four heterologous enzymes. This "styrene-derived" pathway boasts nearly a 10-fold greater thermodynamic driving force than the Ehrlich pathway, and enables reduced accumulation of acetate byproduct. When directly compared using a host strain engineered for l-phenylalanine over-production, preservation of phosphoenolpyruvate, and reduced formation of byproduct 2-phenylacetic acid, final 2PE titers via the styrene-derived and Ehrlich pathways reached 1817 and 1164 mg L -1 , respectively, at yields of 60.6 and 38.8 mg g -1 . Following optimization of induction timing and initial glucose loading, 2PE titers by the styrene-derived pathway approached 2 g L -1 - nearly a two-fold twofold increase over prior reports for 2PE production by E. coli employing the Ehrlich pathway. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Maternal IgG Anti-A and Anti-B Titer Levels Screening in Predicting ABO Hemolytic Disease of the Newborn: A Meta-Analysis.

    Science.gov (United States)

    Li, Ping; Pang, Li-Hong; Liang, Hai-Feng; Chen, Hong-Yan; Fan, Xiao-Jing

    2015-01-01

    Maternal IgG anti-A/B titers have been considered as a susceptible factor to the risk of ABO hemolytic disease in newborn (ABO-HDN). However, the results remain controversial. This meta-analysis aimed to estimate the association between maternal IgG anti-A/B titers and the risk of ABO-HDN. Trials on the relationship between maternal IgG anti-A/B titers and the risk of ABO-HDN were collected by searching Embase, PubMed, and Cochrane Central Register of Controlled Trials (CENTRAL) electronic databases. The inclusion criteria were maternal IgG anti-A/B titers screening and the evaluation of clinical outcomes in relation to ABO-HDN. Stata 12.0 was used to analyze the data. A total of 23 trials were eligible for inclusion, of which four trials with 5,246 participants were suitable for this meta-analysis. Meta-analysis results suggested that maternal IgG anti-A/B titers were significantly associated with the risk of ABO-HDN [OR = 2.86, 95% CI = 2.50-3.28; OR = 4.67, 95% CI = 3.92-5.55; OR = 1.61, 95% CI = 1.36-1.91 in titers (128 to 256) vs. titers (64 or lower), titers (512 or higher) vs. titers (64 or lower), and titers (512 or higher) vs. titers (128-256), respectively]. Our meta-analysis suggests that maternal IgG anti-A/B titers are significantly associated with the risk of ABO-HDN. They contribute to the prediction of risk of ABO-HDN, in addition to the need for invasive treatment for antibody titers ≥512.

  9. The association of titers to Haemophilus somnus, and other putative pathogens, with the occurrence of bovine respiratory disease and weight gain in feedlot calves.

    Science.gov (United States)

    Martin, S W; Harland, R J; Bateman, K G; Nagy, E

    1998-10-01

    Serum samples were obtained from 602 calves (from 19 groups in four feedlots: three in Ontario, and one in Alberta) upon arrival at the feedlot and 28 d later. Of these calves, 202 developed bovine respiratory disease (BRD) and 400 did not develop BRD. Based on high antibody titers noted upon arrival, we infer that most calves were exposed to Haemophilus somnus prior to arrival at the feedlot. Within a group, calves with high titers on arrival had a reduced risk of developing BRD later. Most calves did not experience titer increases after arrival; however, calves that had stable or increasing titers had a relatively low risk of contracting BRD. The calves at greatest risk of BRD were those with titers on arrival of less than 6.8 units and subsequent titer decreases of more than 1 unit. The effects of both the titer on arrival and the titer change after arrival were stable when the serologic effects of a number of viruses and Mycoplasma agents were considered. Neither antibody titer on arrival nor titer change was related to weight gain differences among calves. Calves with BRD or calves with lower weight on arrival had decreased weight gains in the first 28-day feeding period. The high titers on arrival may have protected most calves against further infection with H. somnus. However, since the calves that developed BRD had large titer increases to a number of viruses and to Pasteurella haemolytica, while having decreased antibody titers to H. somnus, we infer that the existing antibodies were "used up" in combatting the agents, including H. somnus, which may have "caused" the BRD. Calves which were able to increase their antibody levels to H. somnus tended to have a reduced risk of BRD.

  10. Relationship between an increase of juvenile hormone titer in early instars and the induction of diapause in fully grown larvae of Sesamia nonagrioides

    Czech Academy of Sciences Publication Activity Database

    Eizaguirre, M.; Schafellner, Ch.; López, C.; Sehnal, František

    2005-01-01

    Roč. 51, - (2005), s. 1127-1134 ISSN 0022-1910 R&D Projects: GA AV ČR(CZ) KJB6007304 Grant - others:CICYT(ES) AGI 2002-00204 Institutional research plan: CEZ:AV0Z50070508 Keywords : diapause * JH * juvenoid Subject RIV: ED - Physiology Impact factor: 2.040, year: 2005

  11. Variation in Tomato spotted wilt virus titer in Frankliniella occidentalis and its association with frequency of transmission.

    Science.gov (United States)

    Rotenberg, Dorith; Krishna Kumar, Nallur K; Ullman, Diane E; Montero-Astúa, Mauricio; Willis, David K; German, Thomas L; Whitfield, Anna E

    2009-04-01

    Tomato spotted wilt virus (TSWV) is transmitted in a persistent propagative manner by Frankliniella occidentalis, the western flower thrips. While it is well established that vector competence depends on TSWV acquisition by young larvae and virus replication within the insect, the biological factors associated with frequency of transmission have not been well characterized. We hypothesized that the number of transmission events by a single adult thrips is determined, in part, by the amount of virus harbored (titer) by the insect. Transmission time-course experiments were conducted using a leaf disk assay to determine the efficiency and frequency of TSWV transmission following 2-day inoculation access periods (IAPs). Virus titer in individual adult thrips was determined by real-time quantitative reverse transcriptase-PCR (qRT-PCR) at the end of the experiments. On average, 59% of adults transmitted the virus during the first IAP (2 to 3 days post adult-eclosion). Male thrips were more efficient at transmitting TSWV multiple times compared with female thrips of the same cohort. However, females harbored two to three times more copies of TSWV-N RNA per insect, indicating that factors other than absolute virus titer in the insect contribute to a successful transmission event. Examination of virus titer in individual insects at the end of the third IAP (7 days post adult-eclosion) revealed significant and consistent positive associations between frequency of transmission and virus titer. Our data support the hypothesis that a viruliferous thrips is more likely to transmit multiple times if it harbors a high titer of virus. This quantitative relationship provides new insights into the biological parameters that may influence the spread of TSWV by thrips.

  12. Monoterpene biosynthesis potential of plant subcellular compartments

    NARCIS (Netherlands)

    Dong, L.; Jongedijk, E.J.; Bouwmeester, H.J.; Krol, van der A.R.

    2016-01-01

    Subcellular monoterpene biosynthesis capacity based on local geranyl diphosphate (GDP) availability or locally boosted GDP production was determined for plastids, cytosol and mitochondria. A geraniol synthase (GES) was targeted to plastids, cytosol, or mitochondria. Transient expression in Nicotiana

  13. Antibacterial Targets in Fatty Acid Biosynthesis

    Science.gov (United States)

    Wright, H. Tonie; Reynolds, Kevin A.

    2008-01-01

    Summary The fatty acid biosynthesis pathway is an attractive but still largely unexploited target for development of new anti-bacterial agents. The extended use of the anti-tuberculosis drug isoniazid and the antiseptic triclosan, which are inhibitors of fatty acid biosynthesis, validates this pathway as a target for anti-bacterial development. Differences in subcellular organization of the bacterial and eukaryotic multi-enzyme fatty acid synthase systems offer the prospect of inhibitors with host vs. target specificity. Platensimycin, platencin, and phomallenic acids, newly discovered natural product inhibitors of the condensation steps in fatty acid biosynthesis, represent new classes of compounds with antibiotic potential. An almost complete catalogue of crystal structures for the enzymes of the type II fatty acid biosynthesis pathway can now be exploited in the rational design of new inhibitors, as well as the recently published crystal structures of type I FAS complexes. PMID:17707686

  14. Lincomycin, cultivation of producing strains and biosynthesis

    Czech Academy of Sciences Publication Activity Database

    Spížek, Jaroslav; Řezanka, Tomáš

    2004-01-01

    Roč. 63, - (2004), s. 510-519 ISSN 0175-7598 Institutional research plan: CEZ:AV0Z5020903 Keywords : lincomycin * cultivation * biosynthesis Subject RIV: EE - Microbiology, Virology Impact factor: 2.358, year: 2004

  15. Mechanism of Reduction in Titers From Lentivirus Vectors Carrying Large Inserts in the 3′LTR

    OpenAIRE

    Urbinati, Fabrizia; Arumugam, Paritha; Higashimoto, Tomoyasu; Perumbeti, Anil; Mitts, Kyle; Xia, Ping; Malik, Punam

    2009-01-01

    Self-inactivating (SIN) lentiviruses flanked by the 1.2-kb chicken hypersensitive site-4 (cHS4) insulator element provide consistent, improved expression of transgenes, but have significantly lower titers. The mechanism by which this occurs is unknown. Lengthening the lentiviral (LV) vector transgene cassette by an additional 1.2 kb by an internal cassette caused no further reduction in titers. However, when cHS4 sequences or inert DNA spacers of increasing size were placed in the 3′-long ter...

  16. Control of tylosin biosynthesis in Streptomyces fradiae.

    Science.gov (United States)

    Cundliffe, Eric

    2008-09-01

    Tylosin biosynthesis is controlled in cascade fashion by multiple transcriptional regulators, acting positively or negatively, in conjunction with a signalling ligand that acts as a classical inducer. The roles of regulatory gene products have been characterized by a combination of gene expression analysis and fermentation studies, using engineered strains of S. fradiae in which specific genes were inactivated or overexpressed. Among various novel features of the regulatory model, involvement of the signalling ligand is not essential for tylosin biosynthesis.

  17. Biosynthesis of antibiotic chuangxinmycin from Actinoplanes tsinanensis

    Directory of Open Access Journals (Sweden)

    Yuanyuan Shi

    2018-03-01

    Full Text Available Chuangxinmycin is an antibiotic isolated from Actinoplanes tsinanensis CPCC 200056 in the 1970s with a novel indole-dihydrothiopyran heterocyclic skeleton. Chuangxinmycin showed in vitro antibacterial activity and in vivo efficacy in mouse infection models as well as preliminary clinical trials. But the biosynthetic pathway of chuangxinmycin has been obscure since its discovery. Herein, we report the identification of a stretch of DNA from the genome of A. tsinanensis CPCC 200056 that encodes genes for biosynthesis of chuangxinmycin by bioinformatics analysis. The designated cxn cluster was then confirmed to be responsible for chuangxinmycin biosynthesis by direct cloning and heterologous expressing in Streptomyces coelicolor M1146. The cytochrome P450 CxnD was verified to be involved in the dihydrothiopyran ring closure reaction by the identification of seco-chuangxinmycin in S. coelicolor M1146 harboring the cxn gene cluster with an inactivated cxnD. Based on these results, a plausible biosynthetic pathway for chuangxinmycin biosynthesis was proposed, by hijacking the primary sulfur transfer system for sulfur incorporation. The identification of the biosynthetic gene cluster of chuangxinmycin paves the way for elucidating the detail biochemical machinery for chuangxinmycin biosynthesis, and provides the basis for the generation of novel chuangxinmycin derivatives by means of combinatorial biosynthesis and synthetic biology. KEY WORDS: Chuangxinmycin, Actinoplanes tsinanensis, Biosynthesis gene cluster, Heterologous expression, Cytochrome P450, Seco-chuangxinmycin, C–S bond formation, Sulfur incorporation

  18. Complete Biosynthesis of Anthocyanins Using E. coli Polycultures.

    Science.gov (United States)

    Jones, J Andrew; Vernacchio, Victoria R; Collins, Shannon M; Shirke, Abhijit N; Xiu, Yu; Englaender, Jacob A; Cress, Brady F; McCutcheon, Catherine C; Linhardt, Robert J; Gross, Richard A; Koffas, Mattheos A G

    2017-06-06

    Fermentation-based chemical production strategies provide a feasible route for the rapid, safe, and sustainable production of a wide variety of important chemical products, ranging from fuels to pharmaceuticals. These strategies have yet to find wide industrial utilization due to their inability to economically compete with traditional extraction and chemical production methods. Here, we engineer for the first time the complex microbial biosynthesis of an anthocyanin plant natural product, starting from sugar. This was accomplished through the development of a synthetic, 4-strain Escherichia coli polyculture collectively expressing 15 exogenous or modified pathway enzymes from diverse plants and other microbes. This synthetic consortium-based approach enables the functional expression and connection of lengthy pathways while effectively managing the accompanying metabolic burden. The de novo production of specific anthocyanin molecules, such as calistephin, has been an elusive metabolic engineering target for over a decade. The utilization of our polyculture strategy affords milligram-per-liter production titers. This study also lays the groundwork for significant advances in strain and process design toward the development of cost-competitive biochemical production hosts through nontraditional methodologies. IMPORTANCE To efficiently express active extensive recombinant pathways with high flux in microbial hosts requires careful balance and allocation of metabolic resources such as ATP, reducing equivalents, and malonyl coenzyme A (malonyl-CoA), as well as various other pathway-dependent cofactors and precursors. To address this issue, we report the design, characterization, and implementation of the first synthetic 4-strain polyculture. Division of the overexpression of 15 enzymes and transcription factors over 4 independent strain modules allowed for the division of metabolic burden and for independent strain optimization for module-specific metabolite needs

  19. Antiphospholipid Antibody Titers and Clinical Outcomes in Patients with Recurrent Miscarriage and Antiphospholipid Antibody Syndrome: A Prospective Study

    Directory of Open Access Journals (Sweden)

    Yu Song

    2017-01-01

    Conclusions: Anti-β2-GP1 IgM was the predominant form of antibody in patients with RM and APS. The decreases in antiphospholipid antibody titers correlated with better pregnancy outcomes. The shorter treatment regimen was effective and economical.

  20. Batch fermentation options for high titer bioethanol production from a SPORL pretreated Douglas-Fir forest residue without detoxification

    Science.gov (United States)

    Mingyan Yang; Hairui Ji; Junyong Zhu

    2016-01-01

    This study evaluated batch fermentation modes, namely, separate hydrolysis and fermentation (SHF), quasi-simultaneous saccharification and fermentation (Q-SSF), and simultaneous saccharification and fermentation (SSF), and fermentation conditions, i.e., enzyme and yeast loadings, nutrient supplementation and sterilization, on high titer bioethanol production from SPORL...

  1. Baseline correlation and comparative kinetics of cerebrospinal fluid colony-forming unit counts and antigen titers in cryptococcal meningitis.

    NARCIS (Netherlands)

    Brouwer, A.E.; Teparrukkul, P.; Pinpraphaporn, S.; Larsen, R.A.; Chierakul, W.; Peacock, S.; Day, N.; White, N.J.; Harrison, T.S.

    2005-01-01

    Cerebrospinal fluid (CSF) cryptococcal colony-forming unit counts and CSF cryptococcal antigen titers serve as alternative measures of organism load in cryptococcal meningitis. For these measures, we correlated baseline values and rates of decline during the first 2 weeks of therapy in 68 human

  2. Development of OMP based indirect ELISA to gauge the antibody titers in bovines against Pasteurella multocida

    Science.gov (United States)

    Dogra, V; Verma, S; Singh, G; Wani, A. H; Chahota, R; Dhar, P; Verma, L; Sharma, M

    2015-01-01

    Pasteurella multocida (P. multocida) is an important pathogen of various domestic animals. The outer membrane proteins (OMPs) play a major role in pathogenesis and immunogenicity of P. multocida. The aim of the study was to develop indirect enzyme linked immuno sorbant assay (ELISA) based on OMPs to ascertain the antibody titers in animals post-infection or to gauge the potency of vaccine. The OMPs were extracted and purified from P. multocida P:52 (vaccine strain) and P. multocida B:2 isolated from natural outbreak of Haemorrhagic septicaemia (HS) and analyzed on SDS PAGE and through western blot. The OMPs profile of the vaccine strain and the isolate from the natural outbreak of HS were found to be similar. Optimization of various components viz. coating antigens, anti-species conjugate, etc. were carried out against both anti-P. multocida hyper immune and pre immune serum. Validation of OMP based indirect ELISA assay to measure immune response against P. multocida in bovine revealed 91% diagnostic sensitivity (DSN) and about 100% diagnostic specificity (DSP) at 25% cut off. OMP based indirect ELISA was found to be more specific, but less sensitive as compared to WCL based assay. PMID:27175202

  3. H9N2 avian influenza virus antibody titers in human population in fars province, Iran

    Directory of Open Access Journals (Sweden)

    MM Hadipour

    2010-09-01

    Full Text Available Among the avian influenza A virus subtypes, H5N1 and H9N2 viruses have the potential to cause an influenza pandemic because they are widely prevalent in avian species in Asia and have demonstrated the ability to infect humans. This study was carried out to determined the seroprevalence of H9N2 avian influenza virus in different human populations in Fars province, which is situated in the south of Iran. Antibodies against H9N2 avian influenza virus were measured using hemagglutination-inhibition (HI test in sera from 300 individuals in five different population in Fars province, including poultry-farm workers, slaughter-house workers, veterinarians, patients with clinical signs of respiratory disease, and clinically normal individuals, who were not or rarely in contact with poultry. Mean antibody titers of 7.3, 6.8, 6.1, 4.5, and 2.9 and seroprevalences of 87%, 76.2%, 72.5%, 35.6%, and 23% were determined in those groups, respectively. Higher prevalences were detected in poultry-farm workers, slaughter-house workers, and veterinarians, possibly due to their close and frequent contact with poultry.

  4. Recombinant influenza H7 hemagglutinins induce lower neutralizing antibody titers in mice than do seasonal hemagglutinins.

    Science.gov (United States)

    Blanchfield, Kristy; Kamal, Ram P; Tzeng, Wen-Pin; Music, Nedzad; Wilson, Jason R; Stevens, James; Lipatov, Aleksander S; Katz, Jacqueline M; York, Ian A

    2014-11-01

    Vaccines against avian influenza viruses often require high hemagglutinin (HA) doses or adjuvants to achieve serological titers associated with protection against disease. In particular, viruses of the H7 subtype frequently do not induce strong antibody responses following immunization. To evaluate whether poor immunogenicity of H7 viruses is an intrinsic property of the H7 hemagglutinin. We compared the immunogenicity, in naïve mice, of purified recombinant HA from two H7 viruses [A/Netherlands/219/2003(H7N7) and A/New York/107/2003(H7N2)] to that of HA from human pandemic [A/California/07/2009(H1N1pdm09)] and seasonal [A/Perth16/2009(H3N2)] viruses. After two intramuscular injections with purified hemagglutinin, mice produced antibodies to all HAs, but the response to the human virus HAs was greater than to H7 HAs. The difference was relatively minor when measured by ELISA, greater when measured by hemagglutination inhibition assays, and more marked still by microneutralization assays. H7 HAs induced little or no neutralizing antibody response in mice at either dose tested. Antibodies induced by H7 were of significantly lower avidity than for H3 or H1N1pdm09. We conclude that H7 HAs may be intrinsically less immunogenic than HA from seasonal human influenza viruses. © 2014 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  5. The Effects of Pesticides on Queen Rearing and Virus Titers in Honey Bees (Apis mellifera L.

    Directory of Open Access Journals (Sweden)

    Gloria DeGrandi-Hoffman

    2013-01-01

    Full Text Available The effects of sublethal pesticide exposure on queen emergence and virus titers were examined. Queen rearing colonies were fed pollen with chlorpyrifos (CPF alone (pollen-1 and with CPF and the fungicide Pristine® (pollen-2. Fewer queens emerged when larvae from open foraging (i.e., outside colonies were reared in colonies fed pollen-1 or 2 compared with when those larvae were reared in outside colonies. Larvae grafted from and reared in colonies fed pollen-2 had lower rates of queen emergence than pollen-1 or outside colonies. Deformed wing virus (DWV and black queen cell virus were found in nurse bees from colonies fed pollen-1 or 2 and in outside colonies. The viruses also were detected in queen larvae. However, we did not detect virus in emerged queens grafted from and reared in outside colonies. In contrast, DWV was found in all emerged queens grafted from colonies fed pollen-1 or 2 either reared in outside hives or those fed pollen-1 or 2. The results suggest that sublethal exposure of CPF alone but especially when Pristine® is added reduces queen emergence possibly due to compromised immunity in developing queens.

  6. Simultaneous saccharification and aerobic fermentation of high titer cellulosic citric acid by filamentous fungus Aspergillus niger.

    Science.gov (United States)

    Hou, Weiliang; Bao, Jie

    2018-04-01

    Simultaneous saccharification and fermentation (SSF) is the most efficient operation in biorefining conversion, but aerobic SSF under high solids loading significantly faces the serious oxygen transfer limitation. This study took the first insight into an aerobic SSF by high oxygen demanding filamentous fungi in highly viscous lignocellulose hydrolysate. The results show that oxygen requirement in the aerobic SSF by Aspergillus niger was well satisfied for production of cellulosic citric acid. The record high citric acid titer of 136.3 g/L and the overall conversion yield of 74.9% of cellulose were obtained by the aerobic SSF. The advantage of SSF to the separate hydrolysis and fermentation (SHF) on citric acid fermentation was compared based on the rigorous Aspen Plus modeling. The techno-economic analysis indicates that the minimum citric acid selling price (MCSP) of $0.603 per kilogram by SSF was highly competitive with the commercial citric acid from starch feedstock. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. 22nd September 2010 - Korean Minister of Education, Science and Technology J.-H. Lee signing the guest book and exchanging gifts with CERN Director-General R. Heuer and Head of International Relations F. Pauss; visiting ALICE exhibition with Collaboration Spokesperson J. Schukraft; accompanied throughout by Adviser R. Voss.

    CERN Multimedia

    Teams : M. Brice ; JC Gadmer

    2010-01-01

    22nd September 2010 - Korean Minister of Education, Science and Technology J.-H. Lee signing the guest book and exchanging gifts with CERN Director-General R. Heuer and Head of International Relations F. Pauss; visiting ALICE exhibition with Collaboration Spokesperson J. Schukraft; accompanied throughout by Adviser R. Voss.

  8. Utility of clinical assessment, imaging, and cryptococcal antigen titer to predict AIDS-related complicated forms of cryptococcal meningitis

    Directory of Open Access Journals (Sweden)

    Kandel Sean

    2010-08-01

    Full Text Available Abstract Background This study aimed to evaluate the prevalence and predictors of AIDS-related complicated cryptococcal meningitis. The outcome was complicated cryptococcal meningitis: prolonged (≥ 14 days altered mental status, persistent (≥ 14 days focal neurologic findings, cerebrospinal fluid (CSF shunt placement or death. Predictor variable operating characteristics were estimated using receiver operating characteristic curve (ROC analysis. Multivariate analysis identified independent predictors of the outcome. Results From 1990-2009, 82 patients with first episode of cryptococcal meningitis were identified. Of these, 14 (17% met criteria for complicated forms of cryptococcal meningitis (prolonged altered mental status 6, persistent focal neurologic findings 7, CSF surgical shunt placement 8, and death 5. Patients with complicated cryptococcal meningitis had higher frequency of baseline focal neurological findings, head computed tomography (CT abnormalities, mean CSF opening pressure, and cryptococcal antigen (CRAG titers in serum and CSF. ROC area of log2 serum and CSF CRAG titers to predict complicated forms of cryptococcal meningitis were comparable, 0.78 (95%CI: 0.66 to 0.90 vs. 0.78 (95% CI: 0.67 to 0.89, respectively (χ2, p = 0.95. The ROC areas to predict the outcomes were similar for CSF pressure and CSF CRAG titers. In a multiple logistic regression model, the following were significant predictors of the outcome: baseline focal neurologic findings, head CT abnormalities and log2 CSF CRAG titer. Conclusions During initial clinical evaluation, a focal neurologic exam, abnormal head CT and large cryptococcal burden measured by CRAG titer are associated with the outcome of complicated cryptococcal meningitis following 2 weeks from antifungal therapy initiation.

  9. Utility of clinical assessment, imaging, and cryptococcal antigen titer to predict AIDS-related complicated forms of cryptococcal meningitis.

    Science.gov (United States)

    Cachay, Edward R; Caperna, Joseph; Sitapati, Amy M; Jafari, Hamta; Kandel, Sean; Mathews, William C

    2010-08-03

    This study aimed to evaluate the prevalence and predictors of AIDS-related complicated cryptococcal meningitis. The outcome was complicated cryptococcal meningitis: prolonged (>/= 14 days) altered mental status, persistent (>/= 14 days) focal neurologic findings, cerebrospinal fluid (CSF) shunt placement or death. Predictor variable operating characteristics were estimated using receiver operating characteristic curve (ROC) analysis. Multivariate analysis identified independent predictors of the outcome. From 1990-2009, 82 patients with first episode of cryptococcal meningitis were identified. Of these, 14 (17%) met criteria for complicated forms of cryptococcal meningitis (prolonged altered mental status 6, persistent focal neurologic findings 7, CSF surgical shunt placement 8, and death 5). Patients with complicated cryptococcal meningitis had higher frequency of baseline focal neurological findings, head computed tomography (CT) abnormalities, mean CSF opening pressure, and cryptococcal antigen (CRAG) titers in serum and CSF. ROC area of log2 serum and CSF CRAG titers to predict complicated forms of cryptococcal meningitis were comparable, 0.78 (95%CI: 0.66 to 0.90) vs. 0.78 (95% CI: 0.67 to 0.89), respectively (chi2, p = 0.95). The ROC areas to predict the outcomes were similar for CSF pressure and CSF CRAG titers. In a multiple logistic regression model, the following were significant predictors of the outcome: baseline focal neurologic findings, head CT abnormalities and log2 CSF CRAG titer. During initial clinical evaluation, a focal neurologic exam, abnormal head CT and large cryptococcal burden measured by CRAG titer are associated with the outcome of complicated cryptococcal meningitis following 2 weeks from antifungal therapy initiation.

  10. Titer plate formatted continuous flow thermal reactors for high throughput applications: fabrication and testing

    International Nuclear Information System (INIS)

    Park, Daniel Sang-Won; Chen, Pin-Chuan; You, Byoung Hee; Kim, Namwon; Park, Taehyun; Lee, Tae Yoon; Soper, Steven A; Nikitopoulos, Dimitris E; Murphy, Michael C; Datta, Proyag; Desta, Yohannes

    2010-01-01

    A high throughput, multi-well (96) polymerase chain reaction (PCR) platform, based on a continuous flow (CF) mode of operation, was developed. Each CFPCR device was confined to a footprint of 8 × 8 mm 2 , matching the footprint of a well on a standard micro-titer plate. While several CFPCR devices have been demonstrated, this is the first example of a high-throughput multi-well continuous flow thermal reactor configuration. Verification of the feasibility of the multi-well CFPCR device was carried out at each stage of development from manufacturing to demonstrating sample amplification. The multi-well CFPCR devices were fabricated by micro-replication in polymers, polycarbonate to accommodate the peak temperatures during thermal cycling in this case, using double-sided hot embossing. One side of the substrate contained the thermal reactors and the opposite side was patterned with structures to enhance thermal isolation of the closely packed constant temperature zones. A 99 bp target from a λ-DNA template was successfully amplified in a prototype multi-well CFPCR device with a total reaction time as low as ∼5 min at a flow velocity of 3 mm s −1 (15.3 s cycle −1 ) and a relatively low amplification efficiency compared to a bench-top thermal cycler for a 20-cycle device; reducing the flow velocity to 1 mm s −1 (46.2 s cycle −1 ) gave a seven-fold improvement in amplification efficiency. Amplification efficiencies increased at all flow velocities for 25-cycle devices with the same configuration.

  11. Crustacean hyperglycemic hormone (CHH) neuropeptidesfamily: Functions, titer, and binding to target tissues.

    Science.gov (United States)

    Chung, J Sook; Zmora, N; Katayama, H; Tsutsui, N

    2010-05-01

    The removal of the eyestalk (s) induces molting and reproduction promoted the presence of regulatory substances in the eyestalk (ES), particularly medulla terminalis X-organ and the sinus gland (MTXO-SG). The PCR-based cloning strategies have allowed for isolating a great number of cDNAs sequences of crustacean hyperglycemic hormone (CHH) neuropeptides family from the eyestalk and non-eyestalk tissues, e.g., pericardial organs and fore- and hindguts. However, the translated corresponding neuropeptides in these tissues, their circulating concentrations, the mode of actions, and specific physiological functions have not been well described. The profiles of CHH neuropeptides present in the MTXO-SG may differ among decapod crustacean species, but they can be largely divided into two sub-groups on the basis of structural homology: (1) CHH and (2) molt-inhibiting hormone (MIH)/mandibular organ-inhibiting hormone (MOIH)/vitellogenesis/gonad-inhibiting hormone (V/GIH). CHH typically elevating the level of circulating glucose from animals under stressful conditions (hyper- and hypothermia, hypoxia, and low salinity) has multiple target tissues and functions such as ecdysteroidogenesis, osmoregulation, and vitellogenesis. Recently, MIH, known for exclusively suppressing ecdysteroidogenesis in Y-organs, is also reported to have an additional role in vitellogenesis of adult female crustacean species, suggesting that some CHH neuropeptides may acquire an extra regulatory role in reproduction at adult stage. This paper reviews the regulatory roles of CHH and MIH at the levels of specific functions, temporal and spatial expression, titers, their binding sites on the target tissues, and second messengers from two crab species: the blue crab, Callinectes sapidus, and the European green crab, Carcinus maenas. It further discusses the diverse regulatory roles of these neuropeptides and the functional plasticity of these neuropeptides in regard to life stage and species

  12. An evaluation of selected oral health indicators and cariogenic bacteria titer in patients with Helicobacter pylori.

    Science.gov (United States)

    Urban, Jakub; Koszowski, Rafał; Płachetka, Anna; Wiczkowski, Andrzej

    2017-01-01

    Studies based on polymerase chain reaction (PCR) techniques indicate that Helicobacter pylori can be constantly or temporarily present in the oral cavity in virulent or non-virulent form. Streptococcus mutans exerts a strong inhibitory effect on H. pylori. The aim of the present study was to investigate the prevalence and virulence of H. pylori in the oral cavity and the correlation of these factors with oral health and cariogenic bacteria titer. The study involved 108 adults who were positive in urease tests for H. pylori presence in the gastric mucosa. Group I consisted of 50 patients with positive saliva tests using PCR for the presence of H. pylori DNA, while group II comprised 58 patients with negative tests. The research material consisted of saliva and dental plaque. To determine the density of S. mutans and Lactobacillus, commercially available S. mutans and LB sets were used. H. pylori DNA was found in the oral cavities of 46% of the patients who had tested positive in urease tests for the presence of these bacteria in the stomach. Among those who tested positive for the presence of H. pylori in the oral cavity, virulent strains were identified in 16% of the patients. Approximal plaque index (API) and bleeding on probing (BOP) were found to be significantly higher in patients with confirmed H. pylori in the oral cavity. This group also had a smaller number of S. mutans colonies. H. pylori is found more often in patients with poor oral hygiene. Oral sanitation and hygiene instructions should be considered relevant as a complement to eradication therapy.

  13. The Spatial Organization of Glucosinolate Biosynthesis

    DEFF Research Database (Denmark)

    Nintemann, Sebastian

    between the individual classes of glucosinolates under constitutive and induced conditions and identified the source tissues of these defense compounds. Protein-protein interaction studies were carried out to investigate the subcellular organization of glucosinolate biosynthesis. We identified a family...... resistance and nutritional value and many plant specialized metabolites are of high value due to their health promoting characteristics. Glucosinolates are defense compounds found in many crops from the Brassicaceae family and are of high interest because of their nutritional and antinutritional properties...... cells is an open question. Likewise, it is not known how glucosinolate biosynthesis is orchestrated at the subcellular level. These open questions were addressed with several approaches in this project, with the aim of shedding light on the spatial organization of glucosinolate biosynthesis from...

  14. Functional and Evolutionary Relationship between Arginine Biosynthesis and Prokaryotic Lysine Biosynthesis through α-Aminoadipate

    Science.gov (United States)

    Miyazaki, Junichi; Kobashi, Nobuyuki; Nishiyama, Makoto; Yamane, Hisakazu

    2001-01-01

    Our previous studies revealed that lysine is synthesized through α-aminoadipate in an extremely thermophilic bacterium, Thermus thermophilus HB27. Sequence analysis of a gene cluster involved in the lysine biosynthesis of this microorganism suggested that the conversion from α-aminoadipate to lysine proceeds in a way similar to that of arginine biosynthesis. In the present study, we cloned an argD homolog of T. thermophilus HB27 which was not included in the previously cloned lysine biosynthetic gene cluster and determined the nucleotide sequence. A knockout of the argD-like gene, now termed lysJ, in T. thermophilus HB27 showed that this gene is essential for lysine biosynthesis in this bacterium. The lysJ gene was cloned into a plasmid and overexpressed in Escherichia coli, and the LysJ protein was purified to homogeneity. When the catalytic activity of LysJ was analyzed in a reverse reaction in the putative pathway, LysJ was found to transfer the ɛ-amino group of N2-acetyllysine, a putative intermediate in lysine biosynthesis, to 2-oxoglutarate. When N2-acetylornithine, a substrate for arginine biosynthesis, was used as the substrate for the reaction, LysJ transferred the δ-amino group of N2-acetylornithine to 2-oxoglutarate 16 times more efficiently than when N2-acetyllysine was the amino donor. All these results suggest that lysine biosynthesis in T. thermophilus HB27 is functionally and evolutionarily related to arginine biosynthesis. PMID:11489859

  15. High throughput, colorimetric screening of microbial ester biosynthesis reveals high ethyl acetate production from Kluyveromyces marxianus on C5, C6, and C12 carbon sources.

    Science.gov (United States)

    Löbs, Ann-Kathrin; Lin, Jyun-Liang; Cook, Megan; Wheeldon, Ian

    2016-10-01

    Advances in genome and metabolic pathway engineering have enabled large combinatorial libraries of mutant microbial hosts for chemical biosynthesis. Despite these advances, strain development is often limited by the lack of high throughput functional assays for effective library screening. Recent synthetic biology efforts have engineered microbes that synthesize acetyl and acyl esters and many yeasts naturally produce esters to significant titers. Short and medium chain volatile esters have value as fragrance and flavor compounds, while long chain acyl esters are potential replacements for diesel fuel. Here, we developed a biotechnology method for the rapid screening of microbial ester biosynthesis. Using a colorimetric reaction scheme, esters extracted from fermentation broth were quantitatively converted to a ferric hydroxamate complex with strong absorbance at 520 nm. The assay was validated for ethyl acetate, ethyl butyrate, isoamyl acetate, ethyl hexanoate, and ethyl octanoate, and achieved a z-factor of 0.77. Screening of ethyl acetate production from a combinatorial library of four Kluyveromyces marxianus strains on seven carbon sources revealed ethyl acetate biosynthesis from C5, C6, and C12 sugars. This newly adapted method rapidly identified novel properties of K. marxianus metabolism and promises to advance high throughput microbial strain engineering for ester biosynthesis. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Triterpenoid biosynthesis in Euphorbia lathyris latex

    International Nuclear Information System (INIS)

    Hawkins, D.R.

    1987-11-01

    The structures of triterpenols, not previously been known, from Euphorbia lathyris latex are reported. A method for quantifying very small amounts of these compounds was developed. Concerning the biochemistry of the latex, no exogenous cofactors were required for the biosynthesis and the addition of compounds such as NADPAH and ATP do not stimulate the biosynthesis. The addition of DTE or a similar anti-oxidant was found to help reduce the oxidation of the latex, thus increasing the length of time that the latex remains active. The requirement of a divalent cation and the preference for Mn in the pellet was observed. The effect of several inhibitors on the biosynthesis of the triterpenoids was examined. Mevinolin was found to inhibit the biosynthesis of the triterpenoids from acetate, but not mevalonate. A dixon plot of the inhibition of acetate incorporation showed an I 50 concentration of 3.2 μM. Fenpropimorph was found to have little or no effect on the biosynthesis. Tridemorph was found to inhibit the biosynthesis of all of the triterpenoids with an I 50 of 4 μM. It was also observed that the cyclopropyl containing triterpenols, cycloartenol and 24-methylenecycloartenol were inhibited much more strongly than those containing an 8-9 double bond, lanosterol and 24-methylenelanosterol. The evidence indicates, but does not definetely prove, that lanosterol and 24-methylenelanosterol are not made from cycloartenol and 24-methylenecycloartenol via a ring-opening enzyme such as cycloeucalenol-obtusifoliol isomerase. The possibilty that cycloartenol is made via lanosterol was investigated by synthesizing 4-R-4- 3 H-mevalonic acid and incubating latex with a mixture of this and 14 C-mevalonic acid. From the 3 H/ 14 C ratio it was shown that cycloartenol and 24-methylenecycloartenol are not made via an intermediate containing as 8-9 double bond. 88 refs., 15 figs., 30 tabs

  17. High antibody titer against apical membrane antigen-1 is required to protect against malaria in the Aotus model.

    Directory of Open Access Journals (Sweden)

    Sheetij Dutta

    Full Text Available A Plasmodium falciparum 3D7 strain Apical Membrane Antigen-1 (AMA1 vaccine, formulated with AS02(A adjuvant, slowed parasite growth in a recent Phase 1/2a trial, however sterile protection was not observed. We tested this AS02(A, and a Montanide ISA720 (ISA formulation of 3D7 AMA1 in Aotus monkeys. The 3D7 parasite does not invade Aotus erythrocytes, hence two heterologous strains, FCH/4 and FVO, were used for challenge, FCH/4 AMA1 being more homologous to 3D7 than FVO AMA1. Following three vaccinations, the monkeys were challenged with 50,000 FCH/4 or 10,000 FVO parasites. Three of the six animals in the AMA+ISA group were protected against FCH/4 challenge. One monkey did not become parasitemic, another showed only a short period of low level parasitemia that self-cured, and a third animal showed a delay before exhibiting its parasitemic phase. This is the first protection shown in primates with a recombinant P. falciparum AMA1 without formulation in Freund's complete adjuvant. No animals in the AMA+AS02(A group were protected, but this group exhibited a trend towards reduced growth rate. A second group of monkeys vaccinated with AMA+ISA vaccine was not protected against FVO challenge, suggesting strain-specificity of AMA1-based protection. Protection against FCH/4 strain correlated with the quantity of induced antibodies, as the protected animals were the only ones to have in vitro parasite growth inhibitory activity of >70% at 1:10 serum dilution; immuno-fluorescence titers >8,000; ELISA titers against full-length AMA1 >300,000 and ELISA titer against AMA1 domains1+2 >100,000. A negative correlation between log ELISA titer and day 11 cumulative parasitemia (Spearman rank r = -0.780, p value = 0.0001, further confirmed the relationship between antibody titer and protection. High titers of cross-strain inhibitory antibodies against AMA1 are therefore critical to confer solid protection, and the Aotus model can be used to down-select future AMA1

  18. [Rabies virus antibody titers in dogs in Campo Grande, Mato Grosso do Sul State, during the anti-rabies campaign, 2003].

    Science.gov (United States)

    Rigo, Leonardo; Honer, Michael Robin

    2006-01-01

    To assess the immune response in dogs attended during the 2003 anti-rabies animal vaccination campaign, 333 serum samples collected at different vaccination posts were analyzed. It was found that 51.1% of the animals did not have protective titers. No correlation was found between vaccine application or multiple vaccinations and higher immune titers.

  19. Combinatorial Biosynthesis of Polyketides – A Perspective

    Science.gov (United States)

    Wong, Fong T.; Khosla, Chaitan

    2012-01-01

    Since their discovery, polyketide synthases have been attractive targets of biosynthetic engineering to make “unnatural” natural products. Although combinatorial biosynthesis has made encouraging advances over the past two decades, the field remains in its infancy. In this enzyme-centric perspective, we discuss the scientific and technological challenges that could accelerate the adoption of combinatorial biosynthesis as a method of choice for the preparation of encoded libraries of bioactive small molecules. Borrowing a page from the protein structure prediction community, we propose a periodic challenge program to vet the most promising methods in the field, and to foster the collective development of useful tools and algorithms. PMID:22342766

  20. Method for determining heterologous biosynthesis pathways

    KAUST Repository

    Gao, Xin

    2017-08-10

    The present invention relates to a method and system for dynamically analyzing, determining, predicting and displaying ranked suitable heterologous biosynthesis pathways for a specified host. The present invention addresses the problem of finding suitable pathways for the endogenous metabolism of a host organism because the efficacy of heterologous biosynthesis is affected by competing endogenous pathways. The present invention is called MRE (Metabolic Route Explorer), and it was conceived and developed to systematically and dynamically search for, determine, analyze, and display promising heterologous pathways while considering competing endogenous reactions in a given host organism.

  1. Convergent Evolution of Ergothioneine Biosynthesis in Cyanobacteria.

    Science.gov (United States)

    Liao, Cangsong; Seebeck, Florian P

    2017-11-02

    Biosynthesis of N-α-trimethyl-2-thiohistidine (ergothioneine) is a frequent trait in cyanobacteria. This sulfur compound may provide essential relief from oxidative stress related to oxygenic photosynthesis. The central steps in ergothioneine biosynthesis are catalyzed by a histidine methyltransferase and an iron-dependent sulfoxide synthase. In this report, we present evidence that some cyanobacteria recruited and adapted a sulfoxide synthase from a different biosynthetic pathway to make ergothioneine. The discovery of a second origin of ergothioneine production underscores the physiological importance of this metabolite and highlights the evolutionary malleability of the thiohistidine biosynthetic machinery. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Mevalonate-Farnesal Biosynthesis in Ticks: Comparative Synganglion Transcriptomics and a New Perspective.

    Directory of Open Access Journals (Sweden)

    Jiwei Zhu

    Full Text Available Juvenile hormone (JH controls the growth, development, metamorphosis, and reproduction of insects. For many years, the general assumption has been that JH regulates tick and other acarine development and reproduction the same as in insects. Although researchers have not been able to find the common insect JHs in hard and soft tick species and JH applications appear to have no effect on tick development, it is difficult to prove the negative or to determine whether precursors to JH are made in ticks. The tick synganglion contains regions which are homologous to the corpora allata, the biosynthetic source for JH in insects. Next-gen sequencing of the tick synganglion transcriptome was conducted separately in adults of the American dog tick, Dermacentor variabilis, the deer tick, Ixodes scapularis, and the relapsing fever tick, Ornithodoros turicata as a new approach to determine whether ticks can make JH or a JH precursor. All of the enzymes that make up the mevalonate pathway from acetyl-CoA to farnesyl diphosphate (acetoacetyl-CoA thiolase, HMG-S, HMG-R, mevalonate kinase, phosphomevalonate kinase, diphosphomevalonate decarboxylase, and farnesyl diphosphate synthase were found in at least one of the ticks studied but most were found in all three species. Sequence analysis of the last enzyme in the mevalonate pathway, farnesyl diphosphate synthase, demonstrated conservation of the seven prenyltransferase regions and the aspartate rich motifs within those regions typical of this enzyme. In the JH branch from farnesyl diphosphate to JH III, we found a putative farnesol oxidase used for the conversion of farnesol to farnesal in the synganglion transcriptome of I. scapularis and D. variabilis. Methyltransferases (MTs that add a methyl group to farnesoic acid to make methyl farnesoate were present in all of the ticks studied with similarities as high as 36% at the amino acid level to insect JH acid methyltransferase (JHAMT. However, when the tick MTs

  3. Biosynthesis of silver nanoparticles by Aspergillus niger , Fusarium ...

    African Journals Online (AJOL)

    ... scanning electron microscope (SEM). Results indicate the synthesis of silver nanoparticles in the reaction mixture. The synthesis of nanoparticles would be suitable for developing a microbial nanotechnology biosynthesis process for mass scale production. Keywords: Silver nanoparticles, biosynthesis, fungi, Aspergillus.

  4. Delta inulin-derived adjuvants that elicit Th1 phenotype following vaccination reduces respiratory syncytial virus lung titers without a reduction in lung immunopathology.

    Science.gov (United States)

    Wong, Terianne M; Petrovsky, Nikolai; Bissel, Stephanie J; Wiley, Clayton A; Ross, Ted M

    2016-08-02

    Respiratory syncytial virus (RSV) is a significant cause of lower respiratory tract infections resulting in bronchiolitis and even mortality in the elderly and young children/infants. Despite the impact of this virus on human health, no licensed vaccine exists. Unlike many other viral infections, RSV infection or vaccination does not induce durable protective antibodies in humans. In order to elicit high titer, neutralizing antibodies against RSV, we investigated the use of the adjuvant Advax™, a novel polysaccharide adjuvant based on delta inulin microparticles, to enhance antibody titers following vaccination. BALB/c mice were vaccinated intramuscularly with live RSV as a vaccine antigen in combination with one of two formulations of Advax™. Advax-1 was comprised of the standard delta inulin adjuvant and Advax-2 was formulated delta inulin plus CpG oligodendronucleotides (ODNs). An additional group of mice were either mock vaccinated, immunized with vaccine only, or administered vaccine plus Imject Alum. Following 3 vaccinations, mice had neutralizing antibody titers that correlated with reduction in viral titers in the lungs. Advax-1 significantly enhanced serum RSV-specific IgG1 levels at week 6 indicative of a Th2 response, similar to titers in mice administered vaccine plus Imject Alum. In contrast, mice vaccinated with vaccine plus Advax-2 had predominately IgG2a titers indicative of a Th1 response that was maintained during the entire study. Interestingly, regardless of which Advax TM adjuvant was used, the neutralizing titers were similar between groups, but the viral lung titers were significantly lower (∼10E+3pfu/g) in mice administered vaccine with either Advax TM adjuvant compared to mice administered adjuvants only. The lung pathology in vaccinated mice with Advax TM was similar to Imject Alum. Overall, RSV vaccine formulated with Advax TM had high neutralizing antibody titers with low lung viral titers, but exacerbated lung pathology compared

  5. Australian Aboriginal Children with Otitis Media Have Reduced Antibody Titers to Specific Nontypeable Haemophilus influenzae Vaccine Antigens.

    Science.gov (United States)

    Thornton, Ruth B; Kirkham, Lea-Ann S; Corscadden, Karli J; Wiertsema, Selma P; Fuery, Angela; Jones, B Jan; Coates, Harvey L; Vijayasekaran, Shyan; Zhang, Guicheng; Keil, Anthony; Richmond, Peter C

    2017-04-01

    Indigenous populations experience high rates of otitis media (OM), with increased chronicity and severity, compared to those experienced by their nonindigenous counterparts. Data on immune responses to otopathogenic bacteria in these high-risk populations are lacking. Nontypeable Haemophilus influenzae (NTHi) is the predominant otopathogen in Australia. No vaccines are currently licensed to target NTHi; however, protein D (PD) from NTHi is included as a carrier protein in the 10-valent pneumococcal polysaccharide conjugate vaccine (PHiD10-CV), and other promising protein vaccine candidates exist, including outer membrane protein 4 (P4) and protein 6 (P6). We measured the levels of serum and salivary IgA and IgG against PD, P4, and P6 in Aboriginal and non-Aboriginal children with chronic OM who were undergoing surgery and compared the levels with those in healthy non-Aboriginal children (controls). We found that Aboriginal cases had lower serum IgG titers to all NTHi proteins assessed, particularly PD. In contrast, serum IgA and salivary IgA and IgG titers to each of these 3 proteins were equivalent to or higher than those in both non-Aboriginal cases and healthy controls. While serum antibody levels increased with age in healthy controls, no changes in titers were observed with age in non-Aboriginal cases, and a trend toward decreasing titers with age was observed in Aboriginal cases. This suggests that decreased serum IgG responses to NTHi outer membrane proteins may contribute to the development of chronic and severe OM in Australian Aboriginal children and other indigenous populations. These data are important for understanding the potential benefits of PHiD10-CV implementation and the development of NTHi protein-based vaccines for indigenous populations. Copyright © 2017 Thornton et al.

  6. High Cryptococcal Antigen Titers in Blood Are Predictive of Subclinical Cryptococcal Meningitis Among Human Immunodeficiency Virus-Infected Patients.

    Science.gov (United States)

    Wake, Rachel M; Britz, Erika; Sriruttan, Charlotte; Rukasha, Ivy; Omar, Tanvier; Spencer, David C; Nel, Jeremy S; Mashamaite, Sello; Adelekan, Adeboye; Chiller, Tom M; Jarvis, Joseph N; Harrison, Thomas S; Govender, Nelesh P

    2018-02-10

    High mortality rates among asymptomatic cryptococcal antigen (CrAg)-positive patients identified through CrAg screening, despite preemptive fluconazole treatment, may be due to undiagnosed cryptococcal meningitis. Symptoms were reviewed in CrAg-positive patients identified by screening 19233 individuals with human immunodeficiency virus infection and CD4 cell counts cryptococcal meningitis, considered present if Cryptococcus was identified by means of India ink microscopy, culture, or CrAg test. CrAg titers were determined with stored blood samples from 62 of these patients. The associations between blood CrAg titer, concurrent cryptococcal meningitis, and mortality rate were assessed. Cryptococcal meningitis was confirmed in 34% (95% confidence interval, 25%-43%; 31 of 90) of asymptomatic CrAg-positive patients and 90% (81%-96%; 70 of 78) with headache only. Blood CrAg titer was significantly associated with concurrent cryptococcal meningitis in asymptomatic patients (P cryptococcal meningitis was >160 (sensitivity, 88.2%; specificity, 82.1%); the odds ratio for concurrent cryptococcal meningitis was 34.5 (95% confidence interval, 8.3-143.1; P cryptococcal meningitis. More effective clinical assessment strategies and antifungal regimens are required for CrAg-positive patients, including investigation for cryptococcal meningitis irrespective of symptoms. Where it is not possible to perform lumbar punctures in all CrAg-positive patients, blood CrAg titers should be used to target those most at risk of cryptococcal meningitis. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  7. Reduction of Influenza Virus Titer and Protection against Influenza Virus Infection in Infant Mice Fed Lactobacillus casei Shirota

    OpenAIRE

    Yasui, Hisako; Kiyoshima, Junko; Hori, Tetsuji

    2004-01-01

    We investigated whether oral administration of Lactobacillus casei strain Shirota to neonatal and infant mice ameliorates influenza virus (IFV) infection in the upper respiratory tract and protects against influenza infection. In a model of upper respiratory IFV infection, the titer of virus in the nasal washings of infant mice administered L. casei Shirota (L. casei Shirota group) was significantly (P < 0.05) lower than that in infant mice administered saline (control group) (102.48 ± 100.31...

  8. Australian Aboriginal Children with Otitis Media Have Reduced Antibody Titers to Specific Nontypeable Haemophilus influenzae Vaccine Antigens

    Science.gov (United States)

    Kirkham, Lea-Ann S.; Corscadden, Karli J.; Wiertsema, Selma P.; Fuery, Angela; Jones, B. Jan; Coates, Harvey L.; Vijayasekaran, Shyan; Zhang, Guicheng; Keil, Anthony; Richmond, Peter C.

    2017-01-01

    ABSTRACT Indigenous populations experience high rates of otitis media (OM), with increased chronicity and severity, compared to those experienced by their nonindigenous counterparts. Data on immune responses to otopathogenic bacteria in these high-risk populations are lacking. Nontypeable Haemophilus influenzae (NTHi) is the predominant otopathogen in Australia. No vaccines are currently licensed to target NTHi; however, protein D (PD) from NTHi is included as a carrier protein in the 10-valent pneumococcal polysaccharide conjugate vaccine (PHiD10-CV), and other promising protein vaccine candidates exist, including outer membrane protein 4 (P4) and protein 6 (P6). We measured the levels of serum and salivary IgA and IgG against PD, P4, and P6 in Aboriginal and non-Aboriginal children with chronic OM who were undergoing surgery and compared the levels with those in healthy non-Aboriginal children (controls). We found that Aboriginal cases had lower serum IgG titers to all NTHi proteins assessed, particularly PD. In contrast, serum IgA and salivary IgA and IgG titers to each of these 3 proteins were equivalent to or higher than those in both non-Aboriginal cases and healthy controls. While serum antibody levels increased with age in healthy controls, no changes in titers were observed with age in non-Aboriginal cases, and a trend toward decreasing titers with age was observed in Aboriginal cases. This suggests that decreased serum IgG responses to NTHi outer membrane proteins may contribute to the development of chronic and severe OM in Australian Aboriginal children and other indigenous populations. These data are important for understanding the potential benefits of PHiD10-CV implementation and the development of NTHi protein-based vaccines for indigenous populations. PMID:28151410

  9. Association between antinuclear antibody titers and connective tissue diseases in a Rheumatology Department.

    Science.gov (United States)

    Menor Almagro, Raúl; Rodríguez Gutiérrez, Juan Francisco; Martín-Martínez, María Auxiliadora; Rodríguez Valls, María José; Aranda Valera, Concepción; de la Iglesia Salgado, José Luís

    To determine the dilution titles at antinuclear antibodies (ANA) by indirect immunofluorescence observed in cell substrate HEp-2 and its association with the diagnosis of systemic connective tissue disease in ANA test requested by a Rheumatology Unit. Samples of patients attended for the first time in the rheumatology unit, without prior ANA test, between January 2010 and December 2012 were selected. The dilution titers, immunofluorescence patterns and antigen specificity were recorded. In January 2015 the diagnosis of the patients were evaluated and classified in systemic disease connective tissue (systemic lupus erythematosus, Sjögren's syndrome, systemic sclerosis, undifferentiated connective, antiphospholipid syndrome, mixed connective tissue and inflammatory myophaty) or not systemic disease connective tissue. A total of 1282 ANA tests requested by the Rheumatology Unit in subjects without previous study, 293 were positive, predominance of women (81.9%). Patients with systemic connective tissue disease were recorded 105, and 188 without systemic connective tissue disease. For 1/640 dilutions the positive predictive value in the connective was 73.3% compared to 26.6% of non-connective, and for values ≥1/1,280 85% versus 15% respectively. When performing the multivariate analysis we observed a positive association between 1/320 dilution OR 3.069 (95% CI: 1.237-7.614; P=.016), 1/640 OR 12.570 (95% CI: 3.659-43.187; P=.000) and ≥1/1,280 OR 42.136 (95% CI: 8.604-206.345; P=.000). These results show association titles dilution ≥1/320 in ANA's first test requested by a Rheumatology Unit with patients with systemic connective tissue disease. The VPP in these patients was higher than previous studies requested by other medical specialties. This may indicate the importance of application of the test in a targeted way. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.

  10. Strategies to generate high-titer, high-potency recombinant AAV3 serotype vectors

    Directory of Open Access Journals (Sweden)

    Chen Ling

    2016-01-01

    Full Text Available Although recombinant adeno-associated virus serotype 3 (AAV3 vectors were largely ignored previously, owing to their poor transduction efficiency in most cells and tissues examined, our initial observation of the selective tropism of AAV3 serotype vectors for human liver cancer cell lines and primary human hepatocytes has led to renewed interest in this serotype. AAV3 vectors and their variants have recently proven to be extremely efficient in targeting human and nonhuman primate hepatocytes in vitro as well as in vivo. In the present studies, we wished to evaluate the relative contributions of the cis-acting inverted terminal repeats (ITRs from AAV3 (ITR3, as well as the trans-acting Rep proteins from AAV3 (Rep3 in the AAV3 vector production and transduction. To this end, we utilized two helper plasmids: pAAVr2c3, which carries rep2 and cap3 genes, and pAAVr3c3, which carries rep3 and cap3 genes. The combined use of AAV3 ITRs, AAV3 Rep proteins, and AAV3 capsids led to the production of recombinant vectors, AAV3-Rep3/ITR3, with up to approximately two to fourfold higher titers than AAV3-Rep2/ITR2 vectors produced using AAV2 ITRs, AAV2 Rep proteins, and AAV3 capsids. We also observed that the transduction efficiency of Rep3/ITR3 AAV3 vectors was approximately fourfold higher than that of Rep2/ITR2 AAV3 vectors in human hepatocellular carcinoma cell lines in vitro. The transduction efficiency of Rep3/ITR3 vectors was increased by ∼10-fold, when AAV3 capsids containing mutations in two surface-exposed residues (serine 663 and threonine 492 were used to generate a S663V+T492V double-mutant AAV3 vector. The Rep3/ITR3 AAV3 vectors also transduced human liver tumors in vivo approximately twofold more efficiently than those generated with Rep2/ITR2. Our data suggest that the transduction efficiency of AAV3 vectors can be significantly improved both using homologous Rep proteins and ITRs as well as by capsid optimization. Thus, the combined use of

  11. Main: 1JH6 [RPSD[Archive

    Lifescience Database Archive (English)

    Full Text Available ineered: Yes Hydrolase 3.1.4.- (Cyclic Phosphodiesterase) A.Hofmann, M.Grella, I.Bo...Orderedlocusnames=At4g18930; Orfnames=F13c5.100, F13c5_100; Arabidopsis Thaliana Molecule: Cyclic Phosphodiesterase; Chain: A, B; Eng

  12. Effective vitamin B12 treatment can reduce serum antigastric parietal cell antibody titer in patients with oral mucosal disease.

    Science.gov (United States)

    Sun, Andy; Chang, Julia Yu-Fong; Wang, Yi-Ping; Cheng, Shih-Jung; Chen, Hsin-Ming; Chiang, Chun-Pin

    2016-10-01

    Patients with serum antigastric parietal cell antibody (GPCA) positivity may have vitamin B12 deficiency and some oral symptoms. This study assessed the changes of serum GPCA titer in GPCA-positive patients after effective vitamin B12 treatment. Two hundred and ten GPCA-positive oral mucosal disease patients became oral symptom free (complete response) after 1.0-67.1 months of treatment with regular and continuous intramuscular injection of vitamin B12 once per week. The changes of serum GPCA titers after treatment were evaluated in these 210 patients. We found a significant drop of the GPCA positive rate from 100% to 42.9% in our 210 complete response patients after effective vitamin B12 treatment (p vitamin BC capsules (containing 10 μg of vitamin B12) plus deficient hematinic supplements per day after a follow-up period of 2.7-27 months. A maintenance vitamin B12 treatment once a month could retain the GPCA-negative status in 87% of treated-to GPCA-negative patients compared with those (10%) without further maintenance vitamin B12 treatment. Regular and continuous effective vitamin B12 treatment can reduce the relatively higher serum GPCA titers to significantly lower or undetectable levels in GPCA-positive patients. Copyright © 2016. Published by Elsevier B.V.

  13. Comparative evaluation of antibody positive titer by ELISA and IFA in Theileria annulata vaccinated cattle in Iran

    Directory of Open Access Journals (Sweden)

    Hashemi-Fesharki R.

    2006-03-01

    Full Text Available An enzyme linked immunosorbent assay (ELISA was used to evaluate antibody positive titer in vaccinated and non-vaccinated cattle using schizont infected myeloid cells as an antigen. The result was compared with indirect fluorescent antibody level in the same animals. For this study 116 milking cows, 95 vaccinated and 21 non-vaccinated, were bleeded in order to prepare sera. They were tested with both ELISA and IFA tests. 94 sera had positive antibody titer and 22 sera were negative through ELISA test but, with IFA test, only 89 sera showed positive antibody titer and 27 were negative. Thereby, it was concluded that the sensitivity and specificity of ELISA test in comparison with IFA test was 95.5 % and 66.6 % respectively. This study generally indicated that ELISA could be an effective test for seroepidemiological investigations of bovine tropical theileriosis, and it is considered to be valid as an additional test to distinguish the vaccinated from the non vaccinated cattle in order to schedule vaccination programs.

  14. High titers of transmissible spongiform encephalopathy infectivity associated with extremely low levels of PrPSc in vivo.

    Science.gov (United States)

    Barron, Rona M; Campbell, Susan L; King, Declan; Bellon, Anne; Chapman, Karen E; Williamson, R Anthony; Manson, Jean C

    2007-12-07

    Diagnosis of transmissible spongiform encephalopathy (TSE) disease in humans and ruminants relies on the detection in post-mortem brain tissue of the protease-resistant form of the host glycoprotein PrP. The presence of this abnormal isoform (PrP(Sc)) in tissues is taken as indicative of the presence of TSE infectivity. Here we demonstrate conclusively that high titers of TSE infectivity can be present in brain tissue of animals that show clinical and vacuolar signs of TSE disease but contain low or undetectable levels of PrP(Sc). This work questions the correlation between PrP(Sc) level and the titer of infectivity and shows that tissues containing little or no proteinase K-resistant PrP can be infectious and harbor high titers of TSE infectivity. Reliance on protease-resistant PrP(Sc) as a sole measure of infectivity may therefore in some instances significantly underestimate biological properties of diagnostic samples, thereby undermining efforts to contain and eradicate TSEs.

  15. Development of a Coxsackievirus A16 neutralization assay based on pseudoviruses for measurement of neutralizing antibody titer in human serum.

    Science.gov (United States)

    Jin, Jun; Ma, Hongxia; Xu, Lin; An, Dong; Sun, Shiyang; Huang, Xueyong; Kong, Wei; Jiang, Chunlai

    2013-02-01

    Serum neutralizing antibody titers are indicative of protective immunity against Coxsackievirus A16 (CV-A16) and Enterovirus 71 (EV71), the two main etiological agents of hand, foot and mouth disease (HFMD), and provide the basis for evaluating vaccine efficacy. The current CV-A16 neutralization assay based on inhibition of cytopathic effects requires manual microscopic examination, which is time-consuming and labor-intensive. In this study, a high-throughput neutralization assay was developed by employing CV-A16 pseudoviruses expressing luciferase for detecting infectivity in rhabdomyosarcoma (RD) cells and measuring serum viral neutralizing antibodies. Without the need to use infectious CV-A16 strains, the neutralizing antibody titer against CV-A16 could be determined within 15h by measuring luciferase signals by this assay. The pseudovirus CV-A16 neutralization assay (pCNA) was validated by comparison with a conventional CV-A16 neutralization assay (cCNA) in testing 174 human serum samples collected from children (age <5 years). The neutralizing antibody titers determined by these two assays were well correlated (R(2)=0.7689). These results suggest that the pCNA can serve as a rapid and objective procedure for the measurement of neutralizing antibodies against CV-A16. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Biosynthesis and metabolic pathways of pivalic acid

    Czech Academy of Sciences Publication Activity Database

    Řezanka, Tomáš; Kolouchová, I.; Čejková, A.; Sigler, Karel

    2012-01-01

    Roč. 95, č. 6 (2012), s. 1371-1376 ISSN 0175-7598 R&D Projects: GA ČR(CZ) GAP503/11/0215 Institutional support: RVO:61388971 Keywords : Pivalic acid * Isooctane * Biosynthesis Subject RIV: EE - Microbiology, Virology Impact factor: 3.689, year: 2012

  17. Combinatorial biosynthesis of medicinal plant secondary metabolites

    NARCIS (Netherlands)

    Julsing, Mattijs K.; Koulman, Albert; Woerdenbag, Herman J.; Quax, Wim J.; Kayser, Oliver

    2006-01-01

    Combinatorial biosynthesis is a new tool in the generation of novel natural products and for the production of rare and expensive natural products. The basic concept is combining metabolic pathways in different organisms on a genetic level. As a consequence heterologous organisms provide precursors

  18. Biosynthesis of silver nanoparticles synthesized by Aspergillus

    Indian Academy of Sciences (India)

    In the present study, biosynthesis of silver nanoparticles and its antioxidant, antimicrobial and cytotoxic activities were investigated. Silver nanoparticles were extracellularly synthesized using Aspergillus flavus and the formation of nanoparticles was observed after 72 h of incubation. The results recorded from colour ...

  19. Bile acid biosynthesis and its regulation

    Directory of Open Access Journals (Sweden)

    Areta Hebanowska

    2010-10-01

    Full Text Available Bile acid biosynthesis is the main pathway of cholesterol catabolism. Bile acids are more soluble than cholesterol so are easier to excrete. As amphipathic molecules they participate in lipid digestion and absorption in the intestine and they help to excrete free cholesterol with bile. They are also ligands for nuclear receptors regulating the expression of genes involved in cholesterol metabolism. Interconversion of cholesterol into bile acids is an important point of its homeostasis. Seventeen enzymes are engaged in this process and many of them are cytochromes P450. Bile acid synthesis initiation may proceed with the “classical” pathway (starting with cholesterol hydroxylation at the C7α position or the “alternative” pathway (starting with cholesterol hydroxylation at the C27 position. Two additional pathways are possible, though their quantitative significance is small (initiated with cholesterol hydroxylations of C24 and C25 positions. Oxysterols produced are not only intermediates of bile acid biosynthesis but also important regulators of metabolism. Bile acid biosynthesis takes place in the liver, but some enzymes are also present in other organs, where they participate in regulation of cholesterol metabolism. Those enzymes are potential targets for new drugs against cholesterol metabolism disturbances. This article is a brief description of the bile acid biosynthesis pathway and participating enzymes.

  20. Biosynthesis of polyhydroxyalkanotes in wildtype yeasts | Desuoky ...

    African Journals Online (AJOL)

    Biosynthesis of the biodegradable polymers polyhydroxyalkanotes (PHAs) are studied extensively in wild type and genetically modified prokaryotic cells, however the content and structure of PHA in wild type yeasts are not well documented. The purpose of this study was to screen forty yeast isolates collected from different ...

  1. Unedoside derivatives in Nuxia and their biosynthesis

    DEFF Research Database (Denmark)

    Jensen, Søren Rosendal; Ravnkilde, Lene; Schripsema, Jan

    1998-01-01

    isolated, while from N. oppositifolia 2 "-acetyl-3 "-benzoyl-nuxioside was obtained. Both plants contained verbascoside. The biosynthesis of unedoside in N. floribunda was investigated and deoxyloganic acid was found to be a precursor, similar to wh;lt was found for the eight-carbon iridoids in Thunbergia...

  2. Biosynthesis of furanochromones in Pimpinella monoica

    Indian Academy of Sciences (India)

    polyketide origin of their aromatic and pyrone rings while the furan ring originates via an acetate-mevalonate pathway. The plant also utilises glycine and leucine as substrate via acetate. Biotransformation of 3-H-visnagin to (6) but not to (2) was also observed. Keywords. Biosynthesis; furochromones; polyketide origin; ...

  3. Biosynthesis of silver nanoparticles synthesized by Aspergillus ...

    Indian Academy of Sciences (India)

    In the present study, biosynthesis of silver nanoparticles and its antioxidant, antimicrobial and cytotoxic activities were investigated. Silver nanoparticles were extracellularly synthesized using Aspergillus flavus and the formation of nanoparticles was observed after 72 h of incubation. The results recorded from colour ...

  4. Artificial biosynthesis of phenylpropanoic acids in a tyrosine overproducing Escherichia coli strain

    Directory of Open Access Journals (Sweden)

    Kang Sun-Young

    2012-12-01

    Full Text Available Abstract Background The phenylpropanoid metabolites are an extremely diverse group of natural products biosynthesized by plants, fungi, and bacteria. Although these compounds are widely used in human health care and nutrition services, their availability is limited by regional variations, and isolation of single compounds from plants is often difficult. Recent advances in synthetic biology and metabolic engineering have enabled artificial production of plant secondary metabolites in microorganisms. Results We develop an Escherichia coli system containing an artificial biosynthetic pathway that yields phenylpropanoic acids, such as 4-coumaric acid, caffeic acid, and ferulic acid, from simple carbon sources. These artificial biosynthetic pathways contained a codon-optimized tal gene that improved the productivity of 4-coumaric acid and ferulic acid, but not caffeic acid in a minimal salt medium. These heterologous pathways extended in E. coli that had biosynthesis machinery overproducing tyrosine. Finally, the titers of 4-coumaric acid, caffeic acid, and ferulic acid reached 974 mg/L, 150 mg/L, and 196 mg/L, respectively, in shake flasks after 36-hour cultivation. Conclusions We achieved one gram per liter scale production of 4-coumaric acid. In addition, maximum titers of 150 mg/L of caffeic acid and 196 mg/L of ferulic acid were achieved. Phenylpropanoic acids, such as 4-coumaric acid, caffeic acid, and ferulic acid, have a great potential for pharmaceutical applications and food ingredients. This work forms a basis for further improvement in production and opens the possibility of microbial synthesis of more complex plant secondary metabolites derived from phenylpropanoic acids.

  5. Plasmapheresis as preconditioning protocol in an extremely high titer ABO incompatible renal transplant (ABOiRTx) case: A new prospect for chronic kidney disease patients in India.

    Science.gov (United States)

    Pandey, Prashant; Tiwari, Aseem Kumar; Sharma, Jyoti; Dixit, Surbhi; Raina, Vimarsh

    2013-08-01

    The biggest hurdle in renal transplantation is the ABO blood group system. But recently ABO incompatible renal transplants have been performed using plasmapheresis (PP) as a part of the preconditioning protocol. In the present study, the objective of PP along with immunosuppression was to bring down the antibody titer of the patient to ≤ 16 during the transplant and keep it low, around 32, until post-operative 4-14 weeks. The patient (O Negative) had his mother (B Positive) as the ABO non-identical donor. The PP was performed with an apheresis equipment Com.Tec (Fresenius Kabi, Germany) to lower the anti-B antibody titer in the recipient. An Antihuman globulin (AHG) titer was performed for anti-B antibody following the departmental standard operating procedure. A total of 11 plasmapheresis procedures was performed preoperatively and four procedures were performed post-operatively to maintain the titer of the anti-B antibody at or below the desired level. The baseline anti-B antibody titer in the recipient was 512. The baseline titer came down to 8 after the end of the 11th procedure. Post-operatively we performed four plasmapheresis procedures to keep the titer at 32. During the post-operative follow up the titer has been maintained at 32 and the serum creatinine level has been maintained at approximately 1.0mg/dl and other parameters relevant to graft function were within normal limits. Our case could be the first reported case from India in which we used a plasmapheresis procedure as a part of preconditioning protocol instead of using an immunoadsorption column. Furthermore, it could be one of the few ABOiRTx cases, which has been performed at an isoagglutinin titer of 512 using plasma exchange as part of a preconditioning regime. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Effects of stress temperatures of germination on polyamine titers of soybean seeds

    Science.gov (United States)

    Pineda-Mejia, Renan

    High and low stress temperatures during seed germination and seedling development limit total germination and the rate of germination and growth. Changes in polyamine (PA) concentrations in seeds of different species have been associated with germination, growth and environmental stresses such as temperature, drought, oxygen, chilling injury and osmotic conditions. Two studies were conducted to determine the effect of stress temperatures during germination and seedling development on polyamine titers in soybean seeds. Three germination temperatures, 25, 30, and 36°C were used in the first study to evaluate their influence on changes in polyamine concentrations in soybean seeds germinated at 76 and 90 hours. The polyamines (PAs), cadaverine (Cad), putrescine (Put), spermidine (Spd), agmatine (Agm), and spermine (Spin) were quantified by HPLC using a cation exchange column and an electrochemical detector. Cad, Put, Agm, and Spd declined as the germination temperatures increased from 25 to 36°C. Conversely, Spin increased considerably with an increase in temperature. Total germination was reduced from 97.2 to 92.5% as germination temperatures increased from 25 to 36°C. Germination time did not affect Cad, Agm and Spm, and total germination, however, the interaction between temperature and germination time for Put and Spd concentrations was significant. In the second study, changes in PA concentrations, seedling growth, germination time (t50), fresh and dry weight, and moisture content were measured in the embryonic axis and cotyledons of soybean seeds germinated at 10 and 25°C through six stages of germination dry seed (DS), testa split (TS), radicle at 10 mm (Ra-10), root hairs visible (RHV), secondary root primordia (SRP), and complete seedling (CS). The concentrations of Cad and Put in the embryonic axis, were significantly higher in seeds germinated under low temperature than in seeds at 25°C (approximately 10 and 3 fold respectively). However, this

  7. Combinatorial Biosynthesis – Potential and Problems

    Science.gov (United States)

    Floss, Heinz G.

    2007-01-01

    Because of their ecological functions, natural products have been optimized in evolution for interaction with biological systems and receptors. However, they have not necessarily been optimized for other desirable drug properties and thus can often be improved by structural modification. Using examples from the literature, this paper reviews the opportunities for increasing structural diversity among natural products by combinatorial biosynthesis, i.e., the genetic manipulation of biosynthetic pathways. It distinguishes between combinatorial biosynthesis in a narrower sense to generate libraries of modified structures, and metabolic engineering for the targeted formation of specific structural analogs. Some of the problems and limitations encountered with these approaches are also discussed. Work from the author’s laboratory on ansamycin antibiotics is presented which illustrates some of the opportunities and limitations. PMID:16414140

  8. Combinatorial biosynthesis of polyketides--a perspective.

    Science.gov (United States)

    Wong, Fong T; Khosla, Chaitan

    2012-04-01

    Since their discovery, polyketide synthases have been attractive targets of biosynthetic engineering to make 'unnatural' natural products. Although combinatorial biosynthesis has made encouraging advances over the past two decades, the field remains in its infancy. In this enzyme-centric perspective, we discuss the scientific and technological challenges that could accelerate the adoption of combinatorial biosynthesis as a method of choice for the preparation of encoded libraries of bioactive small molecules. Borrowing a page from the protein structure prediction community, we propose a periodic challenge program to vet the most promising methods in the field, and to foster the collective development of useful tools and algorithms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Structural basis for phosphatidylinositol-phosphate biosynthesis

    Science.gov (United States)

    Clarke, Oliver B.; Tomasek, David; Jorge, Carla D.; Dufrisne, Meagan Belcher; Kim, Minah; Banerjee, Surajit; Rajashankar, Kanagalaghatta R.; Shapiro, Lawrence; Hendrickson, Wayne A.; Santos, Helena; Mancia, Filippo

    2015-10-01

    Phosphatidylinositol is critical for intracellular signalling and anchoring of carbohydrates and proteins to outer cellular membranes. The defining step in phosphatidylinositol biosynthesis is catalysed by CDP-alcohol phosphotransferases, transmembrane enzymes that use CDP-diacylglycerol as donor substrate for this reaction, and either inositol in eukaryotes or inositol phosphate in prokaryotes as the acceptor alcohol. Here we report the structures of a related enzyme, the phosphatidylinositol-phosphate synthase from Renibacterium salmoninarum, with and without bound CDP-diacylglycerol to 3.6 and 2.5 Å resolution, respectively. These structures reveal the location of the acceptor site, and the molecular determinants of substrate specificity and catalysis. Functional characterization of the 40%-identical ortholog from Mycobacterium tuberculosis, a potential target for the development of novel anti-tuberculosis drugs, supports the proposed mechanism of substrate binding and catalysis. This work therefore provides a structural and functional framework to understand the mechanism of phosphatidylinositol-phosphate biosynthesis.

  10. Occurrence and biosynthesis of carotenoids in phytoplankton.

    Science.gov (United States)

    Huang, Jim Junhui; Lin, Shaoling; Xu, Wenwen; Cheung, Peter Chi Keung

    2017-09-01

    Naturally occurring carotenoids are important sources of antioxidants, anti-cancer compounds and anti-inflammatory agents and there is thus considerable market demand for their pharmaceutical applications. Carotenoids are widely distributed in marine and freshwater organisms including microalgae, phytoplankton, crustaceans and fish, as well as in terrestrial plants and birds. Recently, phytoplankton-derived carotenoids have received much attention due to their abundance, rapid rate of biosynthesis and unique composition. The carotenoids that accumulate in particular phytoplankton phyla are synthesized by specific enzymes and play unique physiological roles. This review focuses on studies related to the occurrence of carotenoids in different phytoplankton phyla and the molecular aspects of their biosynthesis. Recent biotechnological advances in the isolation and characterization of some representative carotenoid synthases in phytoplankton are also discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Chemical genetics to examine cellulose biosynthesis

    Directory of Open Access Journals (Sweden)

    Seth eDebolt

    2013-01-01

    Full Text Available Long-term efforts to decode plant cellulose biosynthesis via molecular genetics and biochemical strategies are being enhanced by the ever-expanding scale of omics technologies. An alternative approach to consider are the prospects for inducing change in plant metabolism using exogenously supplied chemical ligands. Cellulose biosynthesis inhibitors (CBI have been identified among known herbicides, during diverse combinatorial chemical libraries screens, and natural chemical screens from microbial agents. In this review, we summarize the current knowledge of the inhibitory effects of CBIs and further group them by how they influence fluorescently tagged cellulose synthase A (CESA proteins. Additional attention is paid to the continuing development of the CBI toolbox to explore the cell biology and genetic mechanisms underpinning effector molecule activity.

  12. Microbial biosynthesis of nontoxic gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Swarup, E-mail: swaruproy@klyuniv.ac.in [Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal (India); Das, Tapan Kumar [Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal (India); Maiti, Guru Prasad [Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, West Bengal (India); Department of Anesthesiology, Texas Tech University Health science Center, 3601 4th Street, Lubbock, TX 79430 (United States); Basu, Utpal [Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, West Bengal (India)

    2016-01-15

    Graphical abstract: The manuscript deals with the fungus mediated optimized biologically synthesized GNPs using Aspergillus foetidus and characterization of biosynthesized GNPs using various physico-chemical methods. The fairly stable synthesized nanoparticles have size in the range of 10–40 nm. Cytotoxicity study of biosynthesized GNPs on Human lung cancer cell line A549 showed no significant toxicity of GNPs. - Highlights: • A novel biosynthesis process of GNPs using Aspergillus foetidus. • Biosynthesized GNPs are in the range of 10–40 nm as observed from TEM. • This process of synthesis is an optimized biosynthesis process of GNPs. • Biosynthesized GNPs are noncytotoxic against A549 cell line. - Abstract: We study the extracellular biosynthesis of gold nanoparticles (GNPs) using the fungal species Aspergillus foetidus. The formation of GNPs were initially monitored by visual observation and then characterized with the help of various characterization techniques. X-ray diffraction (XRD) results revealed distinctive formation of face centered cubic crystalline GNPs. From field emission scanning electron microscopy (FESEM) the morphology of the nanoparticles were found to be roughly spherical and within the size range of 30–50 nm. The spherical and polydispersed GNPs in the range of 10–40 nm were observed by transmission electron microscopy (TEM) analysis. It was established that alkaline pH, 1 mM gold salt concentration and 75 °C temperature were the respective optimum parameter for biosynthesis of GNPs. Cell cytotoxicity of GNP was compared with that of normal gold salt solution on A549 cell. The A549 cell growth in presence of GNPs was found to be comparatively less toxic than the gold ion.

  13. Microbial biosynthesis of nontoxic gold nanoparticles

    International Nuclear Information System (INIS)

    Roy, Swarup; Das, Tapan Kumar; Maiti, Guru Prasad; Basu, Utpal

    2016-01-01

    Graphical abstract: The manuscript deals with the fungus mediated optimized biologically synthesized GNPs using Aspergillus foetidus and characterization of biosynthesized GNPs using various physico-chemical methods. The fairly stable synthesized nanoparticles have size in the range of 10–40 nm. Cytotoxicity study of biosynthesized GNPs on Human lung cancer cell line A549 showed no significant toxicity of GNPs. - Highlights: • A novel biosynthesis process of GNPs using Aspergillus foetidus. • Biosynthesized GNPs are in the range of 10–40 nm as observed from TEM. • This process of synthesis is an optimized biosynthesis process of GNPs. • Biosynthesized GNPs are noncytotoxic against A549 cell line. - Abstract: We study the extracellular biosynthesis of gold nanoparticles (GNPs) using the fungal species Aspergillus foetidus. The formation of GNPs were initially monitored by visual observation and then characterized with the help of various characterization techniques. X-ray diffraction (XRD) results revealed distinctive formation of face centered cubic crystalline GNPs. From field emission scanning electron microscopy (FESEM) the morphology of the nanoparticles were found to be roughly spherical and within the size range of 30–50 nm. The spherical and polydispersed GNPs in the range of 10–40 nm were observed by transmission electron microscopy (TEM) analysis. It was established that alkaline pH, 1 mM gold salt concentration and 75 °C temperature were the respective optimum parameter for biosynthesis of GNPs. Cell cytotoxicity of GNP was compared with that of normal gold salt solution on A549 cell. The A549 cell growth in presence of GNPs was found to be comparatively less toxic than the gold ion.

  14. Statistics-based model for prediction of chemical biosynthesis yield from Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Leonard Effendi

    2011-06-01

    Full Text Available Abstract Background The robustness of Saccharomyces cerevisiae in facilitating industrial-scale production of ethanol extends its utilization as a platform to synthesize other metabolites. Metabolic engineering strategies, typically via pathway overexpression and deletion, continue to play a key role for optimizing the conversion efficiency of substrates into the desired products. However, chemical production titer or yield remains difficult to predict based on reaction stoichiometry and mass balance. We sampled a large space of data of chemical production from S. cerevisiae, and developed a statistics-based model to calculate production yield using input variables that represent the number of enzymatic steps in the key biosynthetic pathway of interest, metabolic modifications, cultivation modes, nutrition and oxygen availability. Results Based on the production data of about 40 chemicals produced from S. cerevisiae, metabolic engineering methods, nutrient supplementation, and fermentation conditions described therein, we generated mathematical models with numerical and categorical variables to predict production yield. Statistically, the models showed that: 1. Chemical production from central metabolic precursors decreased exponentially with increasing number of enzymatic steps for biosynthesis (>30% loss of yield per enzymatic step, P-value = 0; 2. Categorical variables of gene overexpression and knockout improved product yield by 2~4 folds (P-value Saccharomyces cerevisiae has historically evolved for robust alcohol fermentation. Conclusions We generated simple mathematical models for first-order approximation of chemical production yield from S. cerevisiae. These linear models provide empirical insights to the effects of strain engineering and cultivation conditions toward biosynthetic efficiency. These models may not only provide guidelines for metabolic engineers to synthesize desired products, but also be useful to compare the

  15. Antiphospholipid Antibody Titers and Clinical Outcomes in Patients with Recurrent Miscarriage and Antiphospholipid Antibody Syndrome: A Prospective Study

    Science.gov (United States)

    Song, Yu; Wang, Hai-Yan; Qiao, Jie; Liu, Ping; Chi, Hong-Bin

    2017-01-01

    Background: The management of patients with recurrent miscarriage (RM) and antiphospholipid antibody syndrome (APS) includes prolonged treatment with heparin and aspirin, starting from the confirmation of pregnancy and continuing until 6 weeks after birth. This study was conducted to determine the relationship between changes in antiphospholipid antibody titers and clinical outcomes. The effect of a shortened treatment regimen was also evaluated. Methods: A prospective study of 123 patients with RM and APS between March 2012 and May 2014 was conducted. Patients were pretreated with a low dose of prednisone plus aspirin before pregnancy, and heparin was added after conception. The levels of antiphospholipid antibodies and pregnancy outcomes were evaluated. Results: All patients were positive for anti-β2-glycoprotein 1 (anti-β2-GP1) IgM. After prepregnancy treatment with low-dose prednisone plus aspirin, 99 of 123 patients became pregnant, and 87 of those pregnancies resulted in successful live births, while 12 resulted in miscarriage, showing a success rate of 87.9%. In the live birth group, levels of anti-β2-GP1 were 56.8 ± 49.0 RU/ml before the pretreatment regimen, 32.1 ± 26.0 RU/ml after 2 months of pretreatment, and 24.1 ± 23.1 RU/ml during early pregnancy (P antiphospholipid antibody titers were 52.8 ± 30.7 RU/ml before pretreatment, 38.5 ± 34.2 RU/ml after pretreatment, and 33.9 ± 24.7 RU/ml during early pregnancy; the decrease in antiphospholipid antibodies was lower in the miscarriage group than in the live birth group (P antiphospholipid antibody titers correlated with better pregnancy outcomes. The shorter treatment regimen was effective and economical. PMID:28139508

  16. Prevalence of serum antibody titers against canine distemper virus and canine parvovirus in dogs hospitalized in an intensive care unit.

    Science.gov (United States)

    Mahon, Jennifer L; Rozanski, Elizabeth A; Paul, April L

    2017-06-15

    OBJECTIVE To determine the prevalence of dogs hospitalized in an intensive care unit (ICU) with serum antibody titers against canine distemper virus (CDV) and canine parvovirus (CPV). DESIGN Prospective observational study. ANIMALS 80 dogs. PROCEDURES Dogs hospitalized in an ICU for > 12 hours between February 1 and June 1, 2015, that had at least 0.25 mL of serum left over from diagnostic testing were eligible for study inclusion. Dogs with serum antibody titers > 1:32 (as determined by serum neutralization) and > 1:80 (as determined by hemagglutination inhibition) were considered seropositive for CDV and CPV, respectively. The date of last vaccination was obtained from the medical record of each dog. RESULTS Of the 80 dogs, 40 (50%) and 65 (81%) dogs were seropositive for CDV and CPV, respectively. Of the 40 dogs that were seronegative for CDV, 27 had been vaccinated against CDV within 3 years prior to testing. Of the 15 dogs that were seronegative for CPV, 3 had been vaccinated against CPV within 3 years prior to testing. Ten dogs were seronegative for both CDV and CPV. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated the prevalence of dogs hospitalized in an ICU that were seropositive for CDV and CPV was lower than expected given the high vaccination rate reported for dogs. Although the antibody titer necessary to prevent disease caused by CDV or CPV in critically ill dogs is unknown, adherence to infectious disease control guidelines is warranted when CDV- or CPV-infected dogs are treated in an ICU.

  17. Developmental ecdysteroid titers and DNA puffs in larvae of two sciarid species, Rhynchosciara americana and Rhynchosciara milleri (Diptera: Sciaridae).

    Science.gov (United States)

    Soares, M A M; Hartfelder, K; Tesserolli de Souza, J M; Stocker, A J

    2015-10-01

    Ecdysteroid titers, developmental landmarks and the presence of prominent amplifying regions (DNA puffs) have been compared during late larval to pupal development in four groups of Rhynchosciara americana larvae and in R. americana and Rhynchosciara milleri. Three prominent DNA puffs (B2, C3 and C8) expand and regress sequentially on the rising phase of the 20-hydroxyecdysone (20E) titer in R. americana as a firm, cellular cocoon is being constructed. A sharp rise in 20E coincides with the regression of these puffs. The shape of the 20E curve is similar in R. milleri, a species that does not construct a massive cocoon, but the behavior of certain DNA puffs and their temporal relationship to the curve differs. Regions corresponding to B2 and C3 can be identified in R. milleri by banding pattern similarity with R. americana chromosomes and, in the case of B2, by hybridization to an R. americana probe. A B2 puff appears in R. milleri as the 20E titer rises but remains small in all gland regions. A puff similar to the R. americana C3 puff occurs in posterior gland cells of R. milleri (C3(Rm)) after the B2 puff, but this site did not hybridize to R. americana C3 probes. C3(Rm) incorporated (3)H-thymidine above background, but showed less post-puff DNA accumulation than C3 of R. americana. R. americana C8 probes hybridized to a more distal region of the R. milleri C chromosome that did not appear to amplify or form a large puff. These differences can be related to developmental differences, in particular differences in cocoon construction between the two species.

  18. Tetrahydrobiopterin biosynthesis, utilization and pharmacological effects.

    Science.gov (United States)

    Werner-Felmayer, G; Golderer, G; Werner, E R

    2002-04-01

    Tetrahydrobiopterin (H4-biopterin) is an essential cofactor of a set of enzymes that are of central metabolic importance, i.e. the hydroxylases of the three aromatic amino acids phenylalanine, tyrosine, and tryptophan, of ether lipid oxidase, and of the three nitric oxide synthase (NOS) isoenzymes. As a consequence, H4-biopterin plays a key role in a vast number of biological processes and pathological states associated with neurotransmitter formation, vasorelaxation, and immune response. In mammals, its biosynthesis is controlled by hormones, cytokines and certain immune stimuli. This review aims to summarize recent developments concerning regulation of H4-biopterin biosynthetic and regulatory enzymes and pharmacological effects of H4-biopterin in various conditions, e.g. endothelial dysfunction or apoptosis of neuronal cells. Also, approaches towards gene therapy of diseases like the different forms of phenylketonuria or of Parkinson's disease are reviewed. Additional emphasis is given to H4-biopterin biosynthesis and function in non-mammalian species such as fruit fly, zebra fish, fungi, slime molds, the bacterium Nocardia as well as to the parasitic protozoan genus of Leishmania that is not capable of pteridine biosynthesis but has evolved a sophisticated salvage network for scavenging various pteridine compounds, notably folate and biopterin.

  19. Exopolysaccharide biosynthesis by Lactobacillus helveticus ATCC 15807.

    Science.gov (United States)

    Torino, M I; Mozzi, F; Font de Valdez, G

    2005-08-01

    Exopolysaccharide (EPS) production and the activities of the enzymes involved in sugar nucleotide biosynthesis in Lactobacillus helveticus ATCC 15807 under controlled pH conditions were investigated. Batch fermentations using lactose as energy source showed higher EPS synthesis by L. helveticus ATCC 15807 at pH 4.5 with respect to pH 6.2, the enzyme alpha-phosphoglucomutase (alpha-PGM) being correlated with both total and specific EPS production. When glucose was used as carbon source instead of lactose, the lower EPS synthesis obtained was linked to a decrease in alpha-PGM and galactose 1-phosphate-uridyltransferase (GalT) activities, the reduction of the latter being more pronounced. Higher EPS production by L. helveticus ATCC 15807 at the acidic constant pH of 4.5 requires that both alpha-PGM and GalT activities are high. These enzymes are needed to synthesize UDP-glucose and UDP-galactose for supplying the corresponding monomers for EPS biosynthesis. Although differences are observed in EPS production by this strain regarding the energy source (lactose or glucose), the monomeric composition of the polymers produced is independent of the carbohydrate used. The obtained results contribute to a better understanding of the physiological factors that affect EPS biosynthesis by lactobacilli, which could help in the correct handling of the fermentation parameters within the fermented dairy industry.

  20. Lipopolysaccharide Structure and Biosynthesis in Helicobacter pylori.

    Science.gov (United States)

    Li, Hong; Liao, Tingting; Debowski, Aleksandra W; Tang, Hong; Nilsson, Hans-Olof; Stubbs, Keith A; Marshall, Barry J; Benghezal, Mohammed

    2016-12-01

    This review covers the current knowledge and gaps in Helicobacter pylori lipopolysaccharide (LPS) structure and biosynthesis. H. pylori is a Gram-negative bacterium which colonizes the luminal surface of the human gastric epithelium. Both a constitutive alteration of the lipid A preventing TLR4 elicitation and host mimicry of the Lewis antigen decorated O-antigen of H. pylori LPS promote immune escape and chronic infection. To date, the complete structure of H. pylori LPS is not available, and the proposed model is a linear arrangement composed of the inner core defined as the hexa-saccharide (Kdo-LD-Hep-LD-Hep-DD-Hep-Gal-Glc), the outer core composed of a conserved trisaccharide (-GlcNAc-Fuc-DD-Hep-) linked to the third heptose of the inner core, the glucan, the heptan and a variable O-antigen, generally consisting of a poly-LacNAc decorated with Lewis antigens. Although the glycosyltransferases (GTs) responsible for the biosynthesis of the H. pylori O-antigen chains have been identified and characterized, there are many gaps in regard to the biosynthesis of the core LPS. These limitations warrant additional mutagenesis and structural studies to obtain the complete LPS structure and corresponding biosynthetic pathway of this important gastric bacterium. © 2016 John Wiley & Sons Ltd.

  1. First Indian initiative for preparation of low-titer group “O” single-donor platelets with platelet additive solution

    Directory of Open Access Journals (Sweden)

    Puneet Jain

    2018-01-01

    Conclusion: O group SDPs can be prepared with PAS and the beneficial effects were significant with respect to antibody titers. Quality parameters were well maintained. Availability of PAS units has benefitted patients.

  2. Durability of immunity by hepatitis B vaccine in Japanese health care workers depends on primary response titers and durations.

    Directory of Open Access Journals (Sweden)

    Nori Yoshioka

    Full Text Available Health care workers (HCWs are frequently exposed to hepatitis B virus (HBV infection. The efficacy and safety of immunization with the hepatitis B (HB vaccine are well recognized, but the durability of immunity and need for booster doses in those with secondary vaccine response failure remains controversial.This was a retrospective cohort study performed at Osaka University Hospital, Japan. We examined antibodies against HB surface antigen (anti-HBs titers annually after immunization for previously non-immunized HCWs. Primary responders were categorized by their sero-positive durations as short responders (those whose anti-HBs titers declined to negative range within 3 years, and long responders (those who retained positive anti-HBs levels for 3 years and more. We re-immunized short responders with either single or 3-dose boosters, the long responders with a single booster when their titers dropped below protective levels, and examined their sero-protection rates over time thereafter.From 2001 to 2012, data of 264 HCWs with a median age of 25.3 were collected. The rate of anti-HBs positivity after primary vaccination were 93.0% after three doses (n = 229, 54.5% after two doses (n = 11, and 4.2% after a single dose (n = 24. Of 213 primary responders, the anti-HBs levels of 95 participants (44.6% fell below the protective levels, including 46 short responders and 49 long responders. HCWs with higher initial anti-HBs titers after primary vaccination had significantly longer durations of sero-positivity. For short responders, 3-dose booster vaccination induced a longer duration of anti-HBs positivity compared to a single-dose booster, whereas for long responders, a single-dose booster alone could induce prolonged anti-HBs positivity.Our preliminary data suggested that it may be useful to differentiate HB vaccine responders based on their primary response durations to maintain protective levels of anti-HBs efficiently. A randomized, prospective

  3. Apolipoprotein E-knockout mice show increased titers of serum anti-nuclear and anti-dsDNA antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuehai [Cardiovascular Department, Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian 362000 (China); Huang, Ziyang, E-mail: huangziyang666@126.com [Cardiovascular Department, Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian 362000 (China); Lu, Huixia [Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan, Shandong 250012 (China); Lin, Huili; Wang, Zhenhua [Cardiovascular Department, Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian 362000 (China); Chen, Xiaoqing [Department of Rheumatism and Immunology, Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian 362000 (China); Ouyang, Qiufang [Cardiovascular Department, Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian 362000 (China); Tang, Mengxiong; Hao, Panpan [Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan, Shandong 250012 (China); Ni, Jingqin [Cardiovascular Department, Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian 362000 (China); Xu, Dongming [Department of Rheumatism and Immunology, Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian 362000 (China); Zhang, Mingxiang; Zhang, Qunye [Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan, Shandong 250012 (China); Lin, Ling [Department of Rheumatism and Immunology, Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian 362000 (China); and others

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer Titers of ANA and anti-dsDNA antibodies were higher in ApoE{sup -/-} than C57B6/L mice. Black-Right-Pointing-Pointer Spleen was greater and splenocyte apoptosis lower in ApoE{sup -/-} than B6 mice. Black-Right-Pointing-Pointer Level of TLR4 was lower in spleen tissue of ApoE{sup -/-} than B6 mice. Black-Right-Pointing-Pointer The TLR4 pathway may participate in maintaining the balance of splenocyte apoptosis. Black-Right-Pointing-Pointer The TLR4 pathway may participate in antibody production in spleen tissue. -- Abstract: Apolipoprotein E-knockout (ApoE{sup -/-}) mice, atherosclerosis-prone mice, show an autoimmune response, but the pathogenesis is not fully understood. We investigated the pathogenesis in female and male ApoE{sup -/-} mice. The spleens of all ApoE{sup -/-} and C57BL/6 (B6) mice were weighed. The serum IgG level and titers of anti-nuclear antibody (ANA) and anti-double-stranded DNA (anti-dsDNA) antibody were assayed by ELISA. Apoptosis of spleen tissue was evaluated by TUNEL. TLR4 level in spleen tissue was tested by immunohistochemistry and Western blot analysis. Levels of MyD88, p38, phosphorylated p38 (pp38), interferon regulatory factor 3 (IRF3) and Bcl-2-associated X protein (Bax) in spleen tissue were detected by Western blot analysis. We also survey the changes of serum autoantibodies, spleen weight, splenocyte apoptosis and the expressions of TLR4, MyD88, pp38, IRF3 and Bax in spleen tissue in male ApoE{sup -/-} mice after 4 weeks of lipopolysaccharide (LPS), Toll-like receptor 4 ligand, administration. ApoE{sup -/-} mice showed splenomegaly and significantly increased serum level of IgG and titers of ANA and anti-dsDNA antibody as compared with B6 mice. Splenocyte apoptosis and the expression of TLR4, MyD88, pp38, IRF3 and Bax in spleen tissue were significantly lower in ApoE{sup -/-} than B6 mice. The expression of TLR4, MyD88, IRF3, pp38, and Bax differed by sex in ApoE{sup -/-} spleen tissue. The

  4. Serum anti-Helicobacter pylori immunoglobulin G titer correlates with grade of histological gastritis, mucosal bacterial density, and levels of serum biomarkers.

    Science.gov (United States)

    Tu, Huakang; Sun, Liping; Dong, Xiao; Gong, Yuehua; Xu, Qian; Jing, Jingjing; Yuan, Yuan

    2014-03-01

    OBJECTIVE. Clinical implications of serum anti-Helicobacter pylori immunoglobulin G (IgG) titer were unclear. This study investigated the associations of serum anti-H. pylori IgG titer with grade of histological gastritis, mucosal bacterial density and levels of serum biomarkers, including pepsinogen (PG) I, PGII, PGI/II ratio and gastrin-17. MATERIAL AND METHODS. Study participants were from a screening program in northern China. Serum anti-H. pylori IgG measurements were available for 5922 patients with superficial gastritis. Serum anti-H. pylori IgG titer and serum biomarkers were measured using ELISA, and gastric biopsies were evaluated using standardized criteria. RESULTS. In patients with mild, moderate or severe superficial gastritis, the mean serum anti-H. pylori IgG titers were 17.3, 33.4 and 54.4 EIU (p for trend pylori density score increased from 0 to 3, the mean serum anti-H. pylori IgG titers also increased from 24.7 to 44.8 EIU (p for trend pylori IgG titer was associated positively with serum PGI, PGII and gastrin-17 concentrations and negatively with PGI/II ratio, and the association was the strongest for PGII. The mean PGII concentration of the patients in the highest quartile of IgG titer was twice the mean concentration of the patients in the lowest quartile (17.2 vs. 8.6 EIU, p pylori IgG titer was associated positively with grade of histological gastritis, mucosal bacterial density and concentrations of serum PGI, PGII and gastrin-17, and negatively with PGI/II ratio.

  5. [Comparative Study for Anti-Hepatitis B Surface Antigen Titers Based on Two Measurement Methods: Using Monoclonal Antibodies Isolated from Hepatitis B Vaccinated Recipients].

    Science.gov (United States)

    Oone, Kumiko; Kani, Satomi; Oohashi, Minoru; Shinkai, Noboru; Inoue, Takako; Wakimoto, Yukio; Tanaka, Yasuhito

    2015-08-01

    As anti-hepatitis B surface antigen (anti-HBs) titers vary depending on the measurement methods, we compared two different methods to measure anti-HBs titers in sera and HBs monoclonal antibodies. The sera from 182 HB virus-resolved patients who were negative for HBsAg but positive for antiHB core protein (HBc) and/or anti-HBs were obtained. The measurement of anti-HBs was compared using either Lumipulse G1200 or Architect i2000SR. Six different monoclonal antibody (mAbs) clones isolated from healthy individuals inoculated with hepatitis B vaccine Bimmugen (genotype C) were used. A statistically significant correlation in anti-HBs titers was found between the two methods tested (Y = 0.951X + 100.7, R = 0.813, p Lumipulse and 12 (6.6%) were opposite results. Measuring 2 mAbs with HBV neutralizing activity, the titers of the 116 antibody (1.0 μg/mL) were comparable (689.3 mIU/mL by Lumipulse and 440.7 mIU/mL by Architect), whereas those of the 478 antibody (1.0 μg/mL) were much lower by Architect than by Lumipulse (42.6 vs. 818.6 mIU/mL, respectively). Of four other mAbs without HBV neutralizing activity, equal titers were observed for one; two mAbs had less anti-HB titers by Architect; and one was below the cut-off index (Lumipulse, and the potential ability to detect the 478 antibody with neutralizing activity is low, indicating that Architect might underestimate anti-HBs titers. Future studies should standardize the anti-HBs titer measurement system.

  6. Comparison of antibody titer against the infectious bursal disease virus following the disease with that obtained from live intermediate vaccines using indirect hemagglutination (IHA test in broiler chicks

    Directory of Open Access Journals (Sweden)

    A Feizi

    2009-02-01

    Full Text Available In this study, antibody titer obtained from the outbreak of the infection bursal disease (IBD was compared with the titer obtained from live intermediate vaccines by indirect haemagglutination (IHA test in broiler chicks. A total of 450 one day old Cobb chicks were divided into 3 groups each containing 150 chicks and were kept for 42 days in the same rearing conditions. Chicks in groups 1 and 2 received Bursin-2 and D-78 vaccines respectively via drinking water n days 14 and 21. The rest of the chicks were kept as the controls (group 4 and did not receive any vaccine against the IBD. Serum samples were collected from all birds 2 weeks after the second IBD vaccination. Additional 150 serum samples were also collected from 3 broiler flocks that were affected by IBD and had a history of vaccination by the previously mentioned method, two weeks after the last clinical sings were observed (group 3. Antibody titer of the samples against the IBD virus were determined by the IHA test and the results were evaluated using ANOVA and SPSS software. The mean antibody titer obtained from Bursin-2 and D-78 vaccines were 3.19 and 3.21 respectively which is less than the titer of 6 needed for protection against the disease. The antibody titer in affected flocks was 7.19. comparison of the mean titer of the two vaccines did not show any significant difference but there was significant difference between the titer obtained from each vaccine and that of the effected flock (p

  7. Biosynthesis and biotransformation of bile acids

    Directory of Open Access Journals (Sweden)

    Šarenac Tanja M.

    2017-01-01

    Full Text Available Bile acids are steroidal compounds, which contain 24 carbon atoms. They can be classified into two major groups: primary and secondary. The most abundant bile acids: The primary bile acids include cholic acid and chenodeoxycholic acid, while the major secondary bile acids are deoxycholic acid and litocholic acid. Bile acids are important physiological agents for intestinal absorption of nutrients and are used for biliary lipid secretion, toxic metabolites and xenobiotics. The aim of this paper is to analyze biosynthesis and biotransformation of bile acids, as preparation for practical usage in laboratory and clinical conditions. Topic: Biosynthesis and biotransformation of bile acids: The biosynthesis of bile acids is the dominant metabolic pathway for catabolism of cholesterol in humans. The classical route of biosynthesis of bile acids is embarking on the conversion of cholesterol into 7α-hydroxycholesterol using enzyme 7α-cholesterol hydroxylase (CYP7A1. This enzyme is one of the microsomal cytochrome P450 enzyme is localized exclusively in the liver. Classical road is the main road in the biosynthesis of bile acids, and its total contribution amounts to 90% for people, and 75% in mice. CYP 7A1 enzyme is considered to be sensitive to the inhibition of carbon monoxide, and the condition for the effect of NADPH, the oxygen, lecithin, and the NADPH-cytochrome P450 reductase. Bile acids are important signaling molecules and metabolic controls which activate the nuclear receptor and the G protein-coupled receptors (GPCR, a signaling lipid regulation of the liver, glucose and energy homeostasis. Also, bile acids maintain metabolic homeostasis. Biotransformation of bile acids: The conversion of cholesterol into bile acids just important for maintenance of cholesterol homeostasis, but also to prevent the accumulation of cholesterol, triglycerides and toxic metabolites as well as violations of the liver and other organs. Enterohepatic circulation of

  8. Effects of body weight on antibody titers against canine parvovirus type 2, canine distemper virus, and canine adenovirus type 1 in vaccinated domestic adult dogs.

    Science.gov (United States)

    Taguchi, Masayuki; Namikawa, Kazuhiko; Maruo, Takuya; Saito, Miyoko; Lynch, Jonathan; Sahara, Hiroeki

    2012-10-01

    The objective of this study was to determine whether post-vaccination antibody titers vary according to body weight in adult dogs. Antibody titers against canine parvovirus type 2 (CPV-2), canine distemper virus (CDV), and canine adenovirus type 1 (CAdV-1) were measured for 978 domestic adult dogs from 2 to 6 y of age. The dogs had been vaccinated approximately 12 mo earlier with a commercial combination vaccine. The dogs were divided into groups according to their weight. It was found that mean antibody titers in all weight groups were sufficient to prevent infection. Intergroup comparison, however, revealed that CPV-2 antibody titers were significantly higher in the Super Light ( 20 kg) groups and were also significantly higher in the Light (5 to 9.9 kg) group than in the Heavy group. Antibody titers against CDV were significantly higher in the Super Light, Light, and Medium groups than in the Heavy group. There were no significant differences among the groups for the CAdV-1 antibody titers.

  9. A systematic review of anti-rotavirus serum IgA antibody titer as a potential correlate of rotavirus vaccine efficacy.

    Science.gov (United States)

    Patel, Manish; Glass, Roger I; Jiang, Baoming; Santosham, Mathuram; Lopman, Ben; Parashar, Umesh

    2013-07-15

    Identifying an immunological correlate of protection for rotavirus vaccines (Rotarix [RV1] and RotaTeq [RV5]) would substantially facilitate testing of interventions for improving efficacy in developing countries and evaluating additional candidate rotavirus vaccines. We accessed PubMed and ClinicalTrials.gov to identify immunogenicity and efficacy trials for RV1 and RV5 to correlate anti-rotavirus serum immunoglobulin A (IgA) antibody titers vs efficacy in regions stratified by all-cause under-5 mortality rates (u5MR). We established a cutoff point for IgA geometric mean concentration or titer (GMC) that predicted lower efficacy and calculated pooled vaccine efficacy among countries with high vs low IgA titers. We observed an inverse correlation between u5MR and IgA titers for RV1 (r(2) = 0.72; P rotavirus IgA GMC 90 (85%; 95% CI, 82-88). We observed a significant correlation between IgA titers and rotavirus vaccine efficacy and hypothesize that a critical level of IgA antibody titer is associated with a sufficient level of sustained protection after rotavirus vaccination.

  10. Effects of Hypericum perforatum extract on IgG titer, leukocytes subset and spleen index in rats

    Directory of Open Access Journals (Sweden)

    Tahereh Aghili

    2014-11-01

    Full Text Available Objectives: Hypericum perforatum L. is a medicinal plant containing many polyphenolic compounds, ‎including flavonoids and phenolic acids with antidepressant and anti-inflammatory properties. ‎This study was investigated the effects of Hypericum perforatum extract (HPE on immunity, ‎body weight (BW, and spleen index (SI in rats.‎ Materials and Methods: A total of 24 Wistar male rats were randomly received 4 different doses (6 rats each of HPE ‎‎(0, 100, 200 and 400 mg/kg BW intraperitoneally for 14 days using a completely ‎randomized design. On days 1 and 7, rats were received 0.5 ml SRBC (10% injection. Blood ‎samples were collected on day 14 to evaluate IgG titer and leukocyte count. On days 1, 7 and ‎‎14, the BW and on day 14 spleen were weighted for SI. ‎ Results: The IgG titer increased with higher doses of HPE. The HPE increased number of ‎lymphocytes at 200 mg but decreased at 400 mg, number of neutrophils decreased at 200 mg ‎but increased at 400 mg, and number of monocytes increased at 100 mg and 200 mg but ‎decreased at 400 mg (p

  11. Influenza and dengue virus co-infection impairs monocyte recruitment to the lung, increases dengue virus titers, and exacerbates pneumonia.

    Science.gov (United States)

    Schmid, Michael A; González, Karla N; Shah, Sanjana; Peña, José; Mack, Matthias; Talarico, Laura B; Polack, Fernando P; Harris, Eva

    2017-03-01

    Co-infections of influenza virus and bacteria are known to cause severe disease, but little information exists on co-infections with other acute viruses. Seasonal influenza and dengue viruses (DENV) regularly co-circulate in tropical regions. The pandemic spread of influenza virus H1N1 (hereafter H1N1) in 2009 led to additional severe disease cases that were co-infected with DENV. Here, we investigated the impact of co-infection on immune responses and pathogenesis in a new mouse model. Co-infection of otherwise sublethal doses of a Nicaraguan clinical H1N1 isolate and two days later with a virulent DENV2 strain increased systemic DENV titers and caused 90% lethality. Lungs of co-infected mice carried both viruses, developed severe pneumonia, and expressed a unique pattern of host mRNAs, resembling only partial responses against infection with either virus alone. A large number of monocytes were recruited to DENV-infected but not to co-infected lungs, and depletion and adoptive transfer experiments revealed a beneficial role of monocytes. Our study shows that co-infection with influenza and DENV impairs host responses, which fail to control DENV titers and instead, induce severe lung damage. Further, our findings identify key inflammatory pathways and monocyte function as targets for future therapies that may limit immunopathology in co-infected patients. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. High Titers of Mucosal and Systemic anti-PrP Antibodies Abrogates Oral Prion Infection in Mucosal Vaccinated Mice

    Science.gov (United States)

    Goñi, Fernando; Chabalgoity, Jose A.; Prelli, Frances; Schreiber, Fernanda; Scholtzova, Henrieta; Chung, Erika; Kascsak, Richard; Kascsak, Regina; Brown, David R.; Sigurdsson, Einar M.; Wisniewski, Thomas

    2008-01-01

    Significant outbreaks of prion disease linked to oral exposure of the prion agent have occurred in animal and human populations. These disorders are associated with a conformational change of a normal protein, PrPC, to a toxic and infectious form, PrPSc. None of the prionoses currently have an effective treatment. Some forms of prion disease are thought to be spread by oral ingestion of PrPSc, such as chronic wasting disease and variant Creutzfeldt-Jakob disease. Attempts to obtain an active immunization in wild-type animals have been hampered by auto-tolerance to PrP and potential toxicity. Previously, we demonstrated that it is possible to overcome tolerance and obtain a specific anti-PrP antibody response by oral inoculation of the PrP protein expressed in an attenuated Salmonella vector. This past study showed that 30% of vaccinated animals were free of disease more than 350 days post-challenge. In the current study we have both optimized the vaccination protocol and divided the vaccinated mice into low and high immune responder groups prior to oral challenge with PrPSc scrapie strain 139A. These methodological refinements lead to a significantly improved therapeutic response. 100% of mice with a high mucosal anti-PrP titer IgA and a high systemic IgG titer, prior to challenge, remained without symptoms of PrP infection at 400 days (long-rank test poral route PMID:18407424

  13. Proteomics approach to understand reduced clearance of mycobacteria and high viral titers during HIV-mycobacteria co-infection.

    Science.gov (United States)

    Ganji, Rakesh; Dhali, Snigdha; Rizvi, Arshad; Sankati, Swetha; Vemula, Mani Harika; Mahajan, Gaurang; Rapole, Srikanth; Banerjee, Sharmistha

    2016-03-01

    Environmental mycobacteria, highly prevalent in natural and artificial (including chlorinated municipal water) niches, are emerging as new threat to human health, especially to HIV-infected population. These seemingly harmless non-pathogenic mycobacteria, which are otherwise cleared, establish as opportunistic infections adding to HIV-associated complications. Although immune-evading strategies of pathogenic mycobacteria are known, the mechanisms underlying the early events by which opportunistic mycobacteria establish infection in macrophages and influencing HIV infection are unclear. Proteomics of phagosome-enriched fractions from Mycobacterium bovis Bacillus Calmette-Guérin (BCG) mono-infected and HIV-M. bovis BCG co-infected THP-1 cells by LC-MALDI-MS/MS revealed differential distribution of 260 proteins. Validation of the proteomics data showed that HIV co-infection helped the survival of non-pathogenic mycobacteria by obstructing phagosome maturation, promoting lipid biogenesis and increasing intracellular ATP equivalents. In turn, mycobacterial co-infection up-regulated purinergic receptors in macrophages that are known to support HIV entry, explaining increased viral titers during co-infection. The mutualism was reconfirmed using clinically relevant opportunistic mycobacteria, Mycobacterium avium, Mycobacterium kansasii and Mycobacterium phlei that exhibited increased survival during co-infection, together with increase in HIV titers. Additionally, the catalogued proteins in the study provide new leads that will significantly add to the understanding of the biology of opportunistic mycobacteria and HIV coalition. © 2015 John Wiley & Sons Ltd.

  14. Oral immunization with rotavirus VP7 expressed in transgenic potatoes induced high titers of mucosal neutralizing IgA

    International Nuclear Information System (INIS)

    Wu Yuzhang; Li Jintao; Mou Zhirong; Fei Lei; Ni Bing; Geng Miao; Jia Zhengcai; Zhou Wei; Zou Liyun; Tang Yan

    2003-01-01

    Rotaviruses (RV) are a common cause of severe diarrhea in young children, resulting in nearly one million deaths worldwide annually. Rotavirus VP7 was the rotavirus neutralizing protein. Previous study reported that VP7 DNA vaccine can induce high levels of IgG in mice but cannot protect mice against challenge (Choi, A.H., Basu, M., Rae, M.N., McNeal, M.M., Ward, R.L., 1998. Virology 250, 230-240). We found that rotavirus VP7 could maintain its neutralizing immunity when it was transformed into the potato genome. Mice immunized with the transformed tubers successfully elicited serum IgG and mucosal IgA specific for VP7. The mucosal IgA titer was as high as 1000, while serum IgG titer was only 600. Neutralizing assays indicated that IgA could neutralize rotavirus. These results indicate the potential usefulness of plants for production and delivery of edible rotavirus vaccines

  15. Are children's vitamin D levels and BMI associated with antibody titers produced in response to 2014-2015 influenza vaccine?

    Science.gov (United States)

    Lin, Chyongchiou J; Martin, Judith M; Cole, Kelly Stefano; Zimmerman, Richard K; Susick, Michael; Moehling, Krissy K; Levine, Min Z; Spencer, Sarah; Flannery, Brendan; Nowalk, Mary Patricia

    2017-07-03

    Vitamin D is an immunomodulating hormone, which has been associated with susceptibility to infectious diseases. Serum vitamin D levels in 135 children ages 3-17 y were measured at baseline and hemagglutinin influenza antibody titers were measured pre- and 21 d post influenza vaccination with live attenuated influenza vaccine (LAIV) or inactivated influenza vaccine (IIV). Height and weight were derived from the electronic medical record and were used to calculate body mass index (BMI). Thirty-nine percent of children were ages 3-8 years; 75% were black, 34% were obese (BMI ≥ 95 th percentile); vitamin D levels were >20 ng/ml in 55%. In linear regression analyses, post vaccination antibody titers for LAIV B lineages (B Brisbane and B Massachusetts) were significantly higher among those with lower vitamin D levels and among younger participants (P vitamin D levels and responses to LAIV A strains (A/H1N1 and A/H3N2) or to any IIV strains or lineages were found. Low vitamin D levels were associated with higher response to LAIV B lineages in the 2014-2015 LAIV, but not related to LAIV A or any IIV strains.

  16. Decreased vaccine antibody titers following exposure to multiple metals and metalloids in e-waste-exposed preschool children.

    Science.gov (United States)

    Lin, Xinjiang; Xu, Xijin; Zeng, Xiang; Xu, Long; Zeng, Zhijun; Huo, Xia

    2017-01-01

    We explored acquired immunity resulting from vaccination in 3 to 7-year-old children, chronically exposed to multiple heavy metals and metalloids, in an e-waste recycling area (Guiyu, China). Child blood levels of ten heavy metals and metalloids, including lead (Pb), arsenic (As), mercury (Hg), chromium (Cr), cadmium (Cd), manganese (Mn), nickel (Ni), copper (Cu), zinc (Zn) and selenium (Se), and seven vaccine antibodies (diphtheria, pertussis, tetanus, hepatitis B, Japanese encephalitis, polio, measles) were measured. The exposed group had higher levels of blood Pb, Mn, Cu, Zn and Cr compared to the reference group (P vaccine antibodies in the exposed group were significantly lower than in the reference group (P vaccine antibodies negatively correlated with blood concentrations of Cu, Zn and Pb, based on spearman rank correlation analysis. Multiple logistic regression and univariate analyses identified the location of residence (Guiyu), high blood Pb (>10 μg/dL) and high blood Cu and Zn (upper median value of each group) to be inversely associated with seven antibody titers. Antibody titers increased with age, BMI, high blood Mn (>15 μg/L), and high blood Cd and Ni (upper median value of each group). Results suggest multiple heavy metal and metalloid exposure, especially to Pb, Zn and Cu, may be a risk factor inhibiting the development of child immunity, resulting in decreased child antibody levels against vaccines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. FoxO mediates the timing of pupation through regulating ecdysteroid biosynthesis in the red flour beetle, Tribolium castaneum.

    Science.gov (United States)

    Lin, Xianyu; Yu, Na; Smagghe, Guy

    2018-03-01

    The steroid hormone 20-hydroxyecdysone (20E), the major developmental hormone in insects, controls all the developmental transitions including ecdysis and metamorphosis. In our study with last larval stages of the red flour beetle, Tribolium castaneum, dsRNA-mediated gene silencing of Forkhead box protein O (FoxO) resulted in reduced food intake and larval mass and this agreed with a reduction in the expression of insulin signaling-related genes (insulin-like peptides 2, 3, 4, and chico). Interestingly, we also observed a significant delay in the moment of the pupation and these FoxO-silenced larvae then turned brown at the middle pupal stage followed by death. The observed delay of pupation concurred with a significant delay in 20E titer in dsFoxO-injected larvae and this in turn agreed with a significant delay in expression of prothoracicotropic hormone (ptth) that is a gene stimulating ecdysteroid biosynthesis, and of spook (spo) that is one of the early Halloween genes involved in ecdysteroid biosynthesis. In addition, there was also a delayed expression of the ecdysteroid response gene hormone receptor 3 (HR3). In an attempt to rescue the effects by dsFoxO, injection of 20E into T. castaneum larvae stimulated the expression of HR3 and induced one extra larval-larval molt, confirming the responsiveness for ecdysteroid signaling in dsFoxO-injected larvae. The observations of this project suggest that FoxO is a player in the timing of pupation via the regulating of ecdysteroid biosynthesis, together with the regulation of both insulin signaling and nutrition. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. De novo Biosynthesis of Biodiesel by Escherichia coli in Optimized Fed-Batch Cultivation

    Science.gov (United States)

    Cai, Ke; Tan, Xiaoming; Lu, Xuefeng

    2011-01-01

    Biodiesel is a renewable alternative to petroleum diesel fuel that can contribute to carbon dioxide emission reduction and energy supply. Biodiesel is composed of fatty acid alkyl esters, including fatty acid methyl esters (FAMEs) and fatty acid ethyl esters (FAEEs), and is currently produced through the transesterification reaction of methanol (or ethanol) and triacylglycerols (TAGs). TAGs are mainly obtained from oilseed plants and microalgae. A sustainable supply of TAGs is a major bottleneck for current biodiesel production. Here we report the de novo biosynthesis of FAEEs from glucose, which can be derived from lignocellulosic biomass, in genetically engineered Escherichia coli by introduction of the ethanol-producing pathway from Zymomonas mobilis, genetic manipulation to increase the pool of fatty acyl-CoA, and heterologous expression of acyl-coenzyme A: diacylglycerol acyltransferase from Acinetobacter baylyi. An optimized fed-batch microbial fermentation of the modified E. coli strain yielded a titer of 922 mg L−1 FAEEs that consisted primarily of ethyl palmitate, -oleate, -myristate and -palmitoleate. PMID:21629774

  19. De novo biosynthesis of biodiesel by Escherichia coli in optimized fed-batch cultivation.

    Science.gov (United States)

    Duan, Yangkai; Zhu, Zhi; Cai, Ke; Tan, Xiaoming; Lu, Xuefeng

    2011-01-01

    Biodiesel is a renewable alternative to petroleum diesel fuel that can contribute to carbon dioxide emission reduction and energy supply. Biodiesel is composed of fatty acid alkyl esters, including fatty acid methyl esters (FAMEs) and fatty acid ethyl esters (FAEEs), and is currently produced through the transesterification reaction of methanol (or ethanol) and triacylglycerols (TAGs). TAGs are mainly obtained from oilseed plants and microalgae. A sustainable supply of TAGs is a major bottleneck for current biodiesel production. Here we report the de novo biosynthesis of FAEEs from glucose, which can be derived from lignocellulosic biomass, in genetically engineered Escherichia coli by introduction of the ethanol-producing pathway from Zymomonas mobilis, genetic manipulation to increase the pool of fatty acyl-CoA, and heterologous expression of acyl-coenzyme A: diacylglycerol acyltransferase from Acinetobacter baylyi. An optimized fed-batch microbial fermentation of the modified E. coli strain yielded a titer of 922 mg L(-1) FAEEs that consisted primarily of ethyl palmitate, -oleate, -myristate and -palmitoleate.

  20. Biosynthesis of ilamycins featuring unusual building blocks and engineered production of enhanced anti-tuberculosis agents.

    Science.gov (United States)

    Ma, Junying; Huang, Hongbo; Xie, Yunchang; Liu, Zhiyong; Zhao, Jin; Zhang, Chunyan; Jia, Yanxi; Zhang, Yun; Zhang, Hua; Zhang, Tianyu; Ju, Jianhua

    2017-08-30

    Tuberculosis remains one of the world's deadliest communicable diseases, novel anti-tuberculosis agents are urgently needed due to severe drug resistance and the co-epidemic of tuberculosis/human immunodeficiency virus. Here, we show the isolation of six anti-mycobacterial ilamycin congeners (1-6) bearing rare L-3-nitro-tyrosine and L-2-amino-4-hexenoic acid structural units from the deep sea-derived Streptomyces atratus SCSIO ZH16. The biosynthesis of the rare L-3-nitrotyrosine and L-2-amino-4-hexenoic acid units as well as three pre-tailoring and two post-tailoring steps are probed in the ilamycin biosynthetic machinery through a series of gene inactivation, precursor chemical complementation, isotope-labeled precursor feeding experiments, as well as structural elucidation of three intermediates (6-8) from the respective mutants. Most impressively, ilamycins E 1 /E 2 , which are produced in high titers by a genetically engineered mutant strain, show very potent anti-tuberculosis activity with an minimum inhibitory concentration value ≈9.8 nM to Mycobacterium tuberculosis H37Rv constituting extremely potent and exciting anti-tuberculosis drug leads.Tuberculosis (TB) remains one of the world's deadliest communicable diseases, novel anti-TB agents are urgently needed due to severe drug resistance and the co-epidemic of TB/HIV. Here, the authors show that anti-mycobacterial ilamycin congeners bearing unusual structural units possess extremely potent anti-tuberculosis activities.

  1. Improving Engineered Escherichia coli strains for High-level Biosynthesis of Isobutyrate

    Directory of Open Access Journals (Sweden)

    Mingyong Xiong

    2015-05-01

    Full Text Available Isobutyrate is an important platform chemical with various industrial applications. Previously, a synthetic metabolic pathway was constructed in E. coli to produce isobutyrate from glucose. However, isobutanol was found to be a major byproduct. Herein, gene knockouts and enzyme overexpressions were performed to optimize further the engineered E. coli strain. Besides yqhD, the knockouts of three genes eutG, yiaY and ygjB increased isobutyrate production in shake flasks. Furthermore, the introduction of an additional padA on a medium copy number plasmid under the constitutive promoter significantly reduced isobutanol formation. The IBA15-2C strain (BW25113, DyqhD, DygjB; carrying two copies of padA produced 39.2% more isobutyrate (0.39 g/glucose yield, 80% of the theoretical maximum yield than IBA1-1C strain (BW25113, DyqhD; carrying one copy of padA. A scale-up process was also investigated for IBA15-2C strain to optimize the conditions for the production of isobutyrate in the fermentor. With Ca(OH2 as the base for pH control and 10% dissolved oxygen level, IBA15-2C strain produced 90 g/L isobutyrate after 144 h. This study has engineered E. coli to achieve biosynthesis of a nonnative compound with the highest titer and opened up the possibility of the industrial production of isobutyrate.

  2. De novo biosynthesis of biodiesel by Escherichia coli in optimized fed-batch cultivation.

    Directory of Open Access Journals (Sweden)

    Yangkai Duan

    Full Text Available Biodiesel is a renewable alternative to petroleum diesel fuel that can contribute to carbon dioxide emission reduction and energy supply. Biodiesel is composed of fatty acid alkyl esters, including fatty acid methyl esters (FAMEs and fatty acid ethyl esters (FAEEs, and is currently produced through the transesterification reaction of methanol (or ethanol and triacylglycerols (TAGs. TAGs are mainly obtained from oilseed plants and microalgae. A sustainable supply of TAGs is a major bottleneck for current biodiesel production. Here we report the de novo biosynthesis of FAEEs from glucose, which can be derived from lignocellulosic biomass, in genetically engineered Escherichia coli by introduction of the ethanol-producing pathway from Zymomonas mobilis, genetic manipulation to increase the pool of fatty acyl-CoA, and heterologous expression of acyl-coenzyme A: diacylglycerol acyltransferase from Acinetobacter baylyi. An optimized fed-batch microbial fermentation of the modified E. coli strain yielded a titer of 922 mg L(-1 FAEEs that consisted primarily of ethyl palmitate, -oleate, -myristate and -palmitoleate.

  3. The Biosynthesis of Capuramycin-type Antibiotics

    Science.gov (United States)

    Cai, Wenlong; Goswami, Anwesha; Yang, Zhaoyong; Liu, Xiaodong; Green, Keith D.; Barnard-Britson, Sandra; Baba, Satoshi; Funabashi, Masanori; Nonaka, Koichi; Sunkara, Manjula; Morris, Andrew J.; Spork, Anatol P.; Ducho, Christian; Garneau-Tsodikova, Sylvie; Thorson, Jon S.; Van Lanen, Steven G.

    2015-01-01

    A-500359s, A-503083s, and A-102395 are capuramycin-type nucleoside antibiotics that were discovered using a screen to identify inhibitors of bacterial translocase I, an essential enzyme in peptidoglycan cell wall biosynthesis. Like the parent capuramycin, A-500359s and A-503083s consist of three structural components: a uridine-5′-carboxamide (CarU), a rare unsaturated hexuronic acid, and an aminocaprolactam, the last of which is substituted by an unusual arylamine-containing polyamide in A-102395. The biosynthetic gene clusters for A-500359s and A-503083s have been reported, and two genes encoding a putative non-heme Fe(II)-dependent α-ketoglutarate:UMP dioxygenase and an l-Thr:uridine-5′-aldehyde transaldolase were uncovered, suggesting that C–C bond formation during assembly of the high carbon (C6) sugar backbone of CarU proceeds from the precursors UMP and l-Thr to form 5′-C-glycyluridine (C7) as a biosynthetic intermediate. Here, isotopic enrichment studies with the producer of A-503083s were used to indeed establish l-Thr as the direct source of the carboxamide of CarU. With this knowledge, the A-102395 gene cluster was subsequently cloned and characterized. A genetic system in the A-102395-producing strain was developed, permitting the inactivation of several genes, including those encoding the dioxygenase (cpr19) and transaldolase (cpr25), which abolished the production of A-102395, thus confirming their role in biosynthesis. Heterologous production of recombinant Cpr19 and CapK, the transaldolase homolog involved in A-503083 biosynthesis, confirmed their expected function. Finally, a phosphotransferase (Cpr17) conferring self-resistance was functionally characterized. The results provide the opportunity to use comparative genomics along with in vivo and in vitro approaches to probe the biosynthetic mechanism of these intriguing structures. PMID:25855790

  4. Heme biosynthesis and its regulation : Toward understanding and improvement of heme biosynthesis in filamentous fungi.

    NARCIS (Netherlands)

    S. de Weert; P.J. Punt; Christien Lokman; C.A. van den Hondel; A.C. Franken; A.F. Ram

    2011-01-01

    Heme biosynthesis in fungal host strains has acquired considerable interest in relation to the production of secreted heme-containing peroxidases. Class II peroxidase enzymes have been suggested as eco-friendly replacements of polluting chemical processes in industry. These peroxidases are naturally

  5. Heme biosynthesis and its regulation: Towards understanding and improvement of heme biosynthesis in filamentous fungi

    NARCIS (Netherlands)

    Franken, A.C.W.; Lokman, B.C.; Ram, A.F.J.; Punt, P.J.; Hondel, C.A.M.J.J. van den; Weert, S. de

    2011-01-01

    Heme biosynthesis in fungal host strains has acquired considerable interest in relation to the production of secreted heme-containing peroxidases. Class II peroxidase enzymes have been suggested as eco-friendly replacements of polluting chemical processes in industry. These peroxidases are naturally

  6. Improving titer while maintaining quality of final formulated drug substance via optimization of CHO cell culture conditions in low-iron chemically defined media.

    Science.gov (United States)

    Xu, Jianlin; Rehmann, Matthew S; Xu, Xuankuo; Huang, Chao; Tian, Jun; Qian, Nan-Xin; Li, Zheng Jian

    2018-04-01

    During biopharmaceutical process development, it is important to improve titer to reduce drug manufacturing costs and to deliver comparable quality attributes of therapeutic proteins, which helps to ensure patient safety and efficacy. We previously reported that relative high-iron concentrations in media increased titer, but caused unacceptable coloration of a fusion protein during early-phase process development. Ultimately, the fusion protein with acceptable color was manufactured using low-iron media, but the titer decreased significantly in the low-iron process. Here, long-term passaging in low-iron media is shown to significantly improve titer while maintaining acceptable coloration during late-phase process development. However, the long-term passaging also caused a change in the protein charge variant profile by significantly increasing basic variants. Thus, we systematically studied the effect of media components, seed culture conditions, and downstream processing on productivity and quality attributes. We found that removing β-glycerol phosphate (BGP) from basal media reduced basic variants without affecting titer. Our goals for late-phase process development, improving titer and matching quality attributes to the early-phase process, were thus achieved by prolonging seed culture age and removing BGP. This process was also successfully scaled up in 500-L bioreactors. In addition, we demonstrated that higher concentrations of reactive oxygen species were present in the high-iron Chinese hamster ovary cell cultures compared to that in the low-iron cultures, suggesting a possible mechanism for the drug substance coloration caused by high-iron media. Finally, hypotheses for the mechanisms of titer improvement by both high-iron and long-term culture are discussed.

  7. Prevalence of elevated serum anti-N-methyl-D-aspartate receptor antibody titers in patients presenting exclusively with psychiatric symptoms: a comparative follow-up study.

    Science.gov (United States)

    Ando, Yoshihito; Shimazaki, Haruo; Shiota, Katsutoshi; Tetsuka, Syuichi; Nakao, Koichi; Shimada, Tatsuhiro; Kurata, Kazumi; Kuroda, Jinichi; Yamashita, Akihiro; Sato, Hayato; Sato, Mamoru; Eto, Shinkichi; Onishi, Yasunori; Tanaka, Keiko; Kato, Satoshi

    2016-07-08

    Increasing numbers of patients with elevated anti-N-methyl-D-aspartate (NMDA) receptor antibody titers presenting exclusively with psychiatric symptoms have been reported. The aim of the present study was to clarify the prevalence of elevated serum anti-NMDA receptor antibody titers in patients with new-onset or acute exacerbations of psychiatric symptoms. In addition, the present study aimed to investigate the association between elevated anti-NMDA receptor titers and psychiatric symptoms. The present collaborative study included 59 inpatients (23 male, 36 female) presenting with new-onset or exacerbations of schizophrenia-like symptoms at involved institutions from June 2012 to March 2014. Patient information was collected using questionnaires. Anti-NMDA receptor antibody titers were measured using NMDAR NR1 and NR2B co-transfected human embryonic kidney (HEK) 293 cells as an antigen (cell-based assay). Statistical analyses were performed for each questionnaire item. The mean age of participants was 42.0 ± 13.7 years. Six cases had elevated serum anti-NMDA antibody titers (10.2 %), four cases were first onset, and two cases with disease duration >10 years presented with third and fifth recurrences. No statistically significant difference in vital signs or major symptoms was observed between antibody-positive and antibody-negative groups. However, a trend toward an increased frequency of schizophrenia-like symptoms was observed in the antibody-positive group. Serum anti-NMDA receptor antibody titers may be associated with psychiatric conditions. However, an association with specific psychiatric symptoms was not observed in the present study. Further studies are required to validate the utility of serum anti-NMDA receptor antibody titer measurements at the time of symptom onset.

  8. Unedoside derivatives in Nuxia and their biosynthesis

    DEFF Research Database (Denmark)

    Jensen, Søren Rosendal; Ravnkilde, Lene; Schripsema, Jan

    1998-01-01

    An investigation of two species of Nuxia showed that this genus is characterized by the presence of the eight-carbon iridoid glucoside unedoside and/or its derivatives. From N. floribunda unedoside, nuxioside (6-O-alpha-L-rhamnopyranosyl-unedoside) and 2 "-acetyl-3 "-cinnamoyl-nuxioside were...... isolated, while from N. oppositifolia 2 "-acetyl-3 "-benzoyl-nuxioside was obtained. Both plants contained verbascoside. The biosynthesis of unedoside in N. floribunda was investigated and deoxyloganic acid was found to be a precursor, similar to wh;lt was found for the eight-carbon iridoids in Thunbergia...

  9. Biosynthesis of Gold Nanoparticles Using Pseudomonas Aeruginosa

    International Nuclear Information System (INIS)

    Abd El-Aziz, M.; Badr, Y.; Mahmoud, M. A.

    2007-01-01

    Pseudomonas aeruginosa were used for extracellular biosynthesis of gold nanoparticles (Au NPs). Consequently, Au NPs were formed due to reduction of gold ion by bacterial cell supernatant of P. aeruginos ATCC 90271, P. aeruginos (2) and P. aeruginos (1). The UV-Vis. and fluorescence spectra of the bacterial as well as chemical prepared Au NPs were recorded. Transmission electron microscopy (TEM) micrograph showed the formation of well-dispersed gold nanoparticles in the range of 15-30 nm. The process of reduction being extracellular and may lead to the development of an easy bioprocess for synthesis of Au NPs

  10. Developing New Antibiotics with Combinatorial Biosynthesis

    Science.gov (United States)

    Pohl, Nicola L.

    2000-11-01

    Polyketide synthases (PKSs), a class of enzymes found in soil bacteria that produce antibiotics such as erythromycin, string together acetate units using basic organic reactions. The manipulation of the sequence of these reactions at the genetic level has resulted in an alteration of the corresponding chemical structure of the antibiotic produced by the bacteria. This process, called combinatorial biosynthesis, allows the generation of many presently unknown complex structures that can be tested for antibacterial activity, thereby contributing to the race against antibiotic-resistant infectious bacteria.

  11. Biosynthesis of silver nanoparticles using Saccharomyces cerevisiae.

    Science.gov (United States)

    Korbekandi, Hassan; Mohseni, Soudabeh; Mardani Jouneghani, Rasoul; Pourhossein, Meraj; Iravani, Siavash

    2016-01-01

    The objectives of this study were the biosynthesis of silver nanoparticles (NPs) by biotransformations using Saccharomyces cerevisiae and analysis of the sizes and shapes of the NPs produced. Dried and freshly cultured S. cerevisiae were used as the biocatalyst. Dried yeast synthesized few NPs, but freshly cultured yeast produced a large amount of them. Silver NPs were spherical, 2-20 nm in diameter, and the NPs with the size of 5.4 nm were the most frequent ones. NPs were seen inside the cells, within the cell membrane, attached to the cell membrane during the exocytosis, and outside of the cells.

  12. Anti-heat shock protein 27 titers and oxidative stress levels are elevated in patients with valvular heart disease.

    Science.gov (United States)

    Rahsepar, Amir Ali; Mirzaee, Asadollah; Moodi, Fatemeh; Moohebati, Mohsen; Tavallaie, Shima; Eshraghi, Ali; Alavi, Maryam-Sadat; Zarrabi, Laya; Pourghadamyari, Hossein; Paydar, Roghayeh; Khojasteh, Roshanak; Mousavi, Somayeh; Kia, Nadia; Amini, Maral; Ghayour-Mobarhan, Majid; Ferns, Gordon A A

    2012-11-01

    We studied the immune responses to heat shock protein (Hsp)-27 and pro-oxidant-antioxidant balance (PAB) values in patients with valvular heart disease, but free of angiographically evident coronary artery disease (CAD). Patients who were candidates for valvuloplasty surgery and 30 healthy matched controls were recruited. The anti-Hsp-27 antibody titers were 0.35 ± 0.04 absorbency units (AU) in the valvuloplasty group, being significantly higher than for the controls (0.11 ± 0.02 AU; P .05). Based on the echocardiographic findings, the patients had no evident heart failure, but the high levels of anti-Hsp-27 and PAB values in patients with valvular heart disease may indicate that these variables can be used as markers of heart failure. However, a longitudinal study is required to confirm this hypothesis.

  13. Reduction of influenza virus titer and protection against influenza virus infection in infant mice fed Lactobacillus casei Shirota.

    Science.gov (United States)

    Yasui, Hisako; Kiyoshima, Junko; Hori, Tetsuji

    2004-07-01

    We investigated whether oral administration of Lactobacillus casei strain Shirota to neonatal and infant mice ameliorates influenza virus (IFV) infection in the upper respiratory tract and protects against influenza infection. In a model of upper respiratory IFV infection, the titer of virus in the nasal washings of infant mice administered L. casei Shirota (L. casei Shirota group) was significantly (P survival rate of the L. casei Shirota group was significantly (P L. casei Shirota group were significantly greater than those of mice in the control group. These findings suggest that oral administration of L. casei Shirota activates the immature immune system of neonatal and infant mice and protects against IFV infection. Therefore, oral administration of L. casei Shirota may accelerate the innate immune response of the respiratory tract and protect against various respiratory infections in neonates, infants, and children, a high risk group for viral and bacterial infections.

  14. Short report: Changes in West Nile virus seroprevalence and antibody titers among Wisconsin mesopredators 2003-2006

    Science.gov (United States)

    Docherty, D.E.; Samuel, M.D.; Egstad, K.F.; Griffin, K.M.; Nolden, C.A.; Karwal, L.; Ip, Hon S.

    2009-01-01

    After the 2001 occurrence of West Nile virus (WNV) in Wisconsin (WI), we collected sera, during 2003-2006, from south-central WI mesopredators. We tested these sera to determine WNV antibody prevalence and geometric mean antibody titer (GMAT). Four-fold higher antibody prevalence and 2-fold higher GMAT in 2003-2004 indicated greater exposure of mesopredators to WNV during the apparent epizootic phase. The period 2005-2006 was likely the enzootic phase because WNV antibody prevalence fell to a level similar to other flaviviruses. Our results suggest that, in mesopredators, vector-borne transmission is the primary route of infection and WNV antibodies persist for complement dead crow surveillance by providing additional data for the timing of public health interventions. Research is needed to clarify the dynamics of WNV infection in these mammals and their role as potential WNV amplifiers. Copyright ?? 2009 by The American Society of Tropical Medicine and Hygiene.

  15. Isoprenoid Biosynthesis Inhibitors Targeting Bacterial Cell Growth.

    Science.gov (United States)

    Desai, Janish; Wang, Yang; Wang, Ke; Malwal, Satish R; Oldfield, Eric

    2016-10-06

    We synthesized potential inhibitors of farnesyl diphosphate synthase (FPPS), undecaprenyl diphosphate synthase (UPPS), or undecaprenyl diphosphate phosphatase (UPPP), and tested them in bacterial cell growth and enzyme inhibition assays. The most active compounds were found to be bisphosphonates with electron-withdrawing aryl-alkyl side chains which inhibited the growth of Gram-negative bacteria (Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa) at ∼1-4 μg mL -1 levels. They were found to be potent inhibitors of FPPS; cell growth was partially "rescued" by the addition of farnesol or overexpression of FPPS, and there was synergistic activity with known isoprenoid biosynthesis pathway inhibitors. Lipophilic hydroxyalkyl phosphonic acids inhibited UPPS and UPPP at micromolar levels; they were active (∼2-6 μg mL -1 ) against Gram-positive but not Gram-negative organisms, and again exhibited synergistic activity with cell wall biosynthesis inhibitors, but only indifferent effects with other inhibitors. The results are of interest because they describe novel inhibitors of FPPS, UPPS, and UPPP with cell growth inhibitory activities as low as ∼1-2 μg mL -1 . © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. BIOSYNTHESIS AND PROPERTIES OF ANTIBIOTIC BATUMIN

    Directory of Open Access Journals (Sweden)

    V. V. Klochko

    2014-12-01

    Full Text Available Biosynthesis of antistaphylococcal antibiotic batumin under periodic conditions of Pseudomonas batumici growth has been studied. Antibiotic synthesis in fermenter occurred across the culture growth and achieved its maximal value after 50–55 hours. The active oxygen utilization by the producing strain was observed during 20–55 hours of fermentation with maximum after 40–45 hours. Antibiotic yield was 175–180 mg/l and depended on intensity of aeration. contrast to «freshly isolated» antibiotic after fermentation the long-term kept batumin has shown two identical by molecular mass peaks according to the chromato-mass spectrometric analysis. Taking into account of batumin molecule structure the conclusion has been made that the most probable isomerization type is keto-enolic tautomerism. At the same time batumin is diastereoisomer of kalimantacin A which has the same chemical structure. The optic rotation angle is [α]d25 = +56.3° for kalimantacin and [α]d25 = –13.5° for batumin. The simultaneous P. batumici growth and antibiotic biosynthesis and the ability of this molecule to optical isomerisation and keto-enolic forms formation allow us to suppose that batumin plays a certain role in metabolism of the producing strain.

  17. Essences in Metabolic Engineering of Lignan Biosynthesis

    Directory of Open Access Journals (Sweden)

    Honoo Satake

    2015-05-01

    Full Text Available Lignans are structurally and functionally diverse phytochemicals biosynthesized in diverse plant species and have received wide attentions as leading compounds of novel drugs for tumor treatment and healthy diets to reduce of the risks of lifestyle-related non-communicable diseases. However, the lineage-specific distribution and the low-amount of production in natural plants, some of which are endangered species, hinder the efficient and stable production of beneficial lignans. Accordingly, the development of new procedures for lignan production is of keen interest. Recent marked advances in the molecular and functional characterization of lignan biosynthetic enzymes and endogenous and exogenous factors for lignan biosynthesis have suggested new methods for the metabolic engineering of lignan biosynthesis cascades leading to the efficient, sustainable, and stable lignan production in plants, including plant cell/organ cultures. Optimization of light conditions, utilization of a wide range of elicitor treatments, and construction of transiently gene-transfected or transgenic lignan-biosynthesizing plants are mainly being attempted. This review will present the basic and latest knowledge regarding metabolic engineering of lignans based on their biosynthetic pathways and biological activities, and the perspectives in lignan production via metabolic engineering.

  18. Fatty acid biosynthesis in pea root plastids

    International Nuclear Information System (INIS)

    Stahl, R.J.; Sparace, S.A.

    1989-01-01

    Fatty acid biosynthesis from [1- 14 C]acetate was optimized in plastids isolated from primary root tips of 7-day-old germinating pea seeds. Fatty acid synthesis was maximum at approximately 80 nmoles/hr/mg protein in the presence of 200 μM acetate, 0.5 mM each of NADH, NADPH and CoA, 6 mM each of ATP and MgCl 2 , 1 mM each of the MnCl 2 and glycerol-3-phosphate, 15 mM KHCO 3 , and 0.1M Bis-tris-propane, pH 8.0 incubated at 35C. At the standard incubation temperature of 25C, fatty acid synthesis was linear from up to 6 hours with 80 to 100 μg/mL plastid protein. ATP and CoA were absolute requirements, whereas KHCO 3 , divalent cations and reduced nucleotides all improved activity by 80 to 85%. Mg 2+ and NADH were the preferred cation and nucleotide, respectively. Dithiothreitol and detergents were generally inhibitory. The radioactive products of fatty acid biosynthesis were approximately 33% 16:0, 10% 18:0 and 56% 18:1 and generally did not vary with increasing concentrations of each cofactor

  19. Benzylisoquinoline alkaloid biosynthesis in opium poppy.

    Science.gov (United States)

    Beaudoin, Guillaume A W; Facchini, Peter J

    2014-07-01

    Opium poppy (Papaver somniferum) is one of the world's oldest medicinal plants and remains the only commercial source for the narcotic analgesics morphine, codeine and semi-synthetic derivatives such as oxycodone and naltrexone. The plant also produces several other benzylisoquinoline alkaloids with potent pharmacological properties including the vasodilator papaverine, the cough suppressant and potential anticancer drug noscapine and the antimicrobial agent sanguinarine. Opium poppy has served as a model system to investigate the biosynthesis of benzylisoquinoline alkaloids in plants. The application of biochemical and functional genomics has resulted in a recent surge in the discovery of biosynthetic genes involved in the formation of major benzylisoquinoline alkaloids in opium poppy. The availability of extensive biochemical genetic tools and information pertaining to benzylisoquinoline alkaloid metabolism is facilitating the study of a wide range of phenomena including the structural biology of novel catalysts, the genomic organization of biosynthetic genes, the cellular and sub-cellular localization of biosynthetic enzymes and a variety of biotechnological applications. In this review, we highlight recent developments and summarize the frontiers of knowledge regarding the biochemistry, cellular biology and biotechnology of benzylisoquinoline alkaloid biosynthesis in opium poppy.

  20. Molecular Regulation of Antibiotic Biosynthesis in Streptomyces

    Science.gov (United States)

    Liu, Gang; Chandra, Govind; Niu, Guoqing

    2013-01-01

    SUMMARY Streptomycetes are the most abundant source of antibiotics. Typically, each species produces several antibiotics, with the profile being species specific. Streptomyces coelicolor, the model species, produces at least five different antibiotics. We review the regulation of antibiotic biosynthesis in S. coelicolor and other, nonmodel streptomycetes in the light of recent studies. The biosynthesis of each antibiotic is specified by a large gene cluster, usually including regulatory genes (cluster-situated regulators [CSRs]). These are the main point of connection with a plethora of generally conserved regulatory systems that monitor the organism's physiology, developmental state, population density, and environment to determine the onset and level of production of each antibiotic. Some CSRs may also be sensitive to the levels of different kinds of ligands, including products of the pathway itself, products of other antibiotic pathways in the same organism, and specialized regulatory small molecules such as gamma-butyrolactones. These interactions can result in self-reinforcing feed-forward circuitry and complex cross talk between pathways. The physiological signals and regulatory mechanisms may be of practical importance for the activation of the many cryptic secondary metabolic gene cluster pathways revealed by recent sequencing of numerous Streptomyces genomes. PMID:23471619

  1. Biosynthesis of nanoparticles using microbes- a review.

    Science.gov (United States)

    Hulkoti, Nasreen I; Taranath, T C

    2014-09-01

    The biosynthesis of nanoparticles by microorganism is a green and eco-friendly technology. This review focuses on the use of consortium of diverse microorganisms belonging to both prokaryotes and eukaryotes for the synthesis of metallic nanoparticles viz. silver, gold, platinum, zirconium, palladium, iron, cadmium and metal oxides such as titanium oxide, zinc oxide, etc. These microorganisms include bacteria, actinomycetes, fungi and algae. The synthesis of nanoparticles may be intracellular or extracellular. The several workers have reported that NADH dependent nitrate reductase enzyme plays a vital role in the conversion of metallic ions to nanoparticles. The FTIR study reveals that diverse biomolecules viz. carboxyl group, primary and secondary amines, amide I, II, and III bands etc serve as a tool for bioreduction and capping agents there by offering stability to particles by preventing agglomeration and growth. The size and shape of the nanoparticles vary with the organism employed and conditions employed during the synthesis which included pH, temperature and substrate concentration. The microorganisms provide diverse environment for biosynthesis of nanoparticles. These particles are safe and eco-friendly with a lot of applications in medicine, agriculture, cosmetic industry, drug delivery and biochemical sensors. The challenges for redressal include optimal production and minimal time to obtain desired size and shape, to enhance the stability of nanoparticles and optimization of specific microorganisms for specific application. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. CORRELATION OF PEMPHIGUS VULGARIS ANTIBODY TITERS BY INDIRECT IMMUNOFLUORESCENCE WITH ACTIVITY OF DISEASE BASED ON PEMPHIGUS AREA AND ACTIVITY SCORE (PAAS

    Directory of Open Access Journals (Sweden)

    H. Mortazavi

    2008-06-01

    Full Text Available Indirect immunofluorescence (IIF has been used to identify and measure autoantibody levels in pemphigus vulgaris but data about relationship between clinical severity of disease and antibody titers by IIF have been conflicting. We conducted this cross-sectional study to correlate the severity of oral and/or cutaneous involvement in patients with pemphigus vulgaris based on Pemphigus Area and Activity Score with IIF titers. Sixty-one new pemphigus vulgaris patients were included in this study. Human prepuce was used as substrate for IIF and assessment of disease severity was based on Pemphigus Area and Activity Score. The mean±SD age was 44.04±30.46 years, with a range of 18 to 79 years. IIF was positive in 56 (91.8% patients. There was a significant relationship between total disease score and IIF titers ((P<0.001. Also a significant relationship was found between skin score (P=0.04 and mucosal score (P=0.04 with IIF titers. Our results show that there is a significant relationship between disease activity based on Pemphigus Area and Activity Score and antibody titers by IIF. Further studies are recommended to determine the usefulness of this technique for monitoring disease.

  3. Short duration of neutralizing antibody titers after pre-exposure rabies vaccination with suckling mouse brain vaccine

    Directory of Open Access Journals (Sweden)

    Zanetti C.R.

    1998-01-01

    Full Text Available The human anti-rabies pre-exposure treatment currently used in Brazil, employing a 1-ml dose of suckling mouse brain vaccine (SMBV administered on days 0, 2, 4 and 28, was compared to an alternative treatment with two 1 ml-doses on day 0, and one 1 ml-dose injected on days 7 and 21. The latter induced higher virus-neutralizing antibody (VNA titers on day 21. Both Brazilian rabies vaccines produced with PV or CVS rabies virus strains were tested. Two additional volunteer vaccinee groups, receiving the pre-exposure and the abbreviated post-exposure schedules recommended by the WHO using cell-culture vaccine (CCV produced with PM rabies virus strain, were included as reference. The VNA were measured against both PV and CVS strains on days 21, 42 and 180 by the cell-culture neutralization microtest. The PV-SMBV elicited higher seroconversion rates and VNA by day 21 than the CVS-SMBV. Both, however, failed to induce a long-term immunity, since VNA titers were <0.5 IU/ml on day 180, regardless of the schedule used. Cell-culture vaccine always elicited very high VNA on all days of collection. When serum samples from people receiving mouse brain tissue were titrated against the PV and CVS strains, the VNA obtained were similar, regardless of the vaccinal strain and the virus used in the neutralization test. These results contrast with those obtained with sera from people receiving PM-CCV, whose VNA were significantly higher when tested against the CVS strain.

  4. Differential Influence of Anticancer Treatments and Angiogenesis on the Seric Titer of Autoantibody Used as Tumor and Metastasis Biomarker

    Directory of Open Access Journals (Sweden)

    Florence Defresne

    2010-07-01

    Full Text Available Early detection of tumor-specific autoantibodies (auto-Abs has the potential to be used for cancer screening and diagnosis. Whether auto-Ab may be useful to track metastatic progression or response to treatment is, however, largely unknown. To address these issues, the serological proteome was analyzed in an invasive but treatmentresponsive mouse tumor model. Among 40 serum-reactive proteins identified by multiplex analysis, we chose to focus on glucose-regulated protein 78 (GRP78, a chaperone protein involved in the endoplasmic reticulum stress response. We first validated GRP78 as a protein overexpressed and mislocalized in tumor cells. We then documented that an increase in GRP78 auto-Ab titer preceded the detection of a palpable tumor mass, correlated with metastatic progression, and was influenced by the onset of tumor neovascularization. We also found that chemotherapy and radiotherapy, both leading to inhibition of tumor growth, oppositely influenced the anti-GRP78 immune response. Whereas radiation increased the concentration of GRP78 auto-Ab by three-fold, the auto-Ab titer was reduced in response to bolus or metronomic administration of cyclophosphamide. Finally, we established a decrease in auto-Ab-producing B lymphocytes in response to chemotherapy and the overexpression of GRP78 together with a strong immunoglobulin response in irradiated tumors. In conclusion, we identified GRP78 auto-Ab as an early marker of tumor and metastatic progressions. However, the multiple influences of anticancer treatments on the humoral immune system calls for caution when exploiting such auto-Ab as markers of the tumor response.

  5. Low titers of measles antibody in mothers whose infants suffered from measles before eligible age for measles vaccination

    Directory of Open Access Journals (Sweden)

    Wu Qiaozhen

    2010-05-01

    Full Text Available Abstract Background Resurgence or outbreak of measles recently occurred in both developed and developing countries despite long-standing widespread use of measles vaccine. Measles incidence in China has increased since 2002, particularly in infants and in persons ≥ 15 years of age. It is speculated that infants may acquire fewer measles IgG from their mothers, resulting in the reduced duration of protection during their early months of life. This study aimed to clarify the reason of increased susceptibility to measles in young infants in China. Measles IgG in 24 measles infants ≤ 9 months of age and their vaccinated mothers was quantitatively measured. The mean measles neutralizing titer in the vaccinated mothers and in 13 age-match women with the histories of clinical measles were compared. Results All the mothers were confirmed to be vaccinated successfully by the presence of measles IgG. Six vaccinated mothers were positive for measles IgM and had high concentrations of measles IgG and the neutralizing antibody, indicating underwent natural boosting. The mean measles neutralizing titer in 18 vaccinated mothers without natural boosting were significantly lower than that in 13 age-match women with the histories of clinical measles (1:37 vs 1:182, P Conclusions Our results suggest that infants born to mothers who acquired immunity to measles by vaccination may get a relatively small amount of measles antibody, resulting in loss of the immunity to measles before the vaccination age. Measures to improve the immunity in young infants not eligible for measles vaccination would be critical to interrupt the measles transmission in China.

  6. Rare cause of post-squalene disorder of cholesterol biosynthesis ...

    African Journals Online (AJOL)

    Errors of cholesterol biosynthesis represent a heterogeneous group of metabolic disorders. The aim of the authors of this article is to present a case of a patient with typical symptoms of a rare post-squalene disorder of cholesterol biosynthesis, its diagnostics and progress in neonatal period. The differential diagnosis of a ...

  7. Rapid biosynthesis of cadmium sulfide (CdS) nanoparticles using ...

    African Journals Online (AJOL)

    Rapid biosynthesis of cadmium sulfide (CdS) nanoparticles using culture supernatants of Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633 and Lactobacillus ... The process of extracellular and fast biosynthesis may help in the development of an easy and eco-friendly route for the synthesis of CdS nanoparticles.

  8. Ant trail pheromone biosynthesis is triggered by a neuropeptide hormone.

    Directory of Open Access Journals (Sweden)

    Man-Yeon Choi

    Full Text Available Our understanding of insect chemical communication including pheromone identification, synthesis, and their role in behavior has advanced tremendously over the last half-century. However, endocrine regulation of pheromone biosynthesis has progressed slowly due to the complexity of direct and/or indirect hormonal activation of the biosynthetic cascades resulting in insect pheromones. Over 20 years ago, a neurohormone, pheromone biosynthesis activating neuropeptide (PBAN was identified that stimulated sex pheromone biosynthesis in a lepidopteran moth. Since then, the physiological role, target site, and signal transduction of PBAN has become well understood for sex pheromone biosynthesis in moths. Despite that PBAN-like peptides (∼200 have been identified from various insect Orders, their role in pheromone regulation had not expanded to the other insect groups except for Lepidoptera. Here, we report that trail pheromone biosynthesis in the Dufour's gland (DG of the fire ant, Solenopsis invicta, is regulated by PBAN. RNAi knock down of PBAN gene (in subesophageal ganglia or PBAN receptor gene (in DG expression inhibited trail pheromone biosynthesis. Reduced trail pheromone was documented analytically and through a behavioral bioassay. Extension of PBAN's role in pheromone biosynthesis to a new target insect, mode of action, and behavioral function will renew research efforts on the involvement of PBAN in pheromone biosynthesis in Insecta.

  9. Development of a nasal adenovirus-based vaccine: Effect of concentration and formulation on adenovirus stability and infectious titer during actuation from two delivery devices.

    Science.gov (United States)

    Renteria, Sandra S; Clemens, Courtney C; Croyle, Maria A

    2010-02-25

    A nasal adenovirus-based vaccine is under development. To determine if aggregation occurs during vaccination, infectious titer (limiting dilution) and capsid integrity (dynamic light scattering) were assessed after extrusion of a model vector from two intranasal delivery devices. Preparations of 2.5x10(12) and 1.25x10(11) virus particles (vp)/ml were studied. Virus aggregated ( approximately 10%) in the multi-dose vessel. Virus titer dropped by one log. Virus in the unit-dose device aggregated ( approximately 1%). Titer remained unchanged. Aggregation was concentration dependent. Formulations prevented aggregation during actuation, freeze-thaw and long-term storage. The device, formulation and dose may significantly influence aggregation and potency of any nasal adenovirus 5-based vaccine. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. Cysteine Biosynthesis Controls Serratia marcescens Phospholipase Activity.

    Science.gov (United States)

    Anderson, Mark T; Mitchell, Lindsay A; Mobley, Harry L T

    2017-08-15

    Serratia marcescens causes health care-associated opportunistic infections that can be difficult to treat due to a high incidence of antibiotic resistance. One of the many secreted proteins of S. marcescens is the PhlA phospholipase enzyme. Genes involved in the production and secretion of PhlA were identified by screening a transposon insertion library for phospholipase-deficient mutants on phosphatidylcholine-containing medium. Mutations were identified in four genes ( cyaA , crp , fliJ , and fliP ) that are involved in the flagellum-dependent PhlA secretion pathway. An additional phospholipase-deficient isolate harbored a transposon insertion in the cysE gene encoding a predicted serine O -acetyltransferase required for cysteine biosynthesis. The cysE requirement for extracellular phospholipase activity was confirmed using a fluorogenic phospholipase substrate. Phospholipase activity was restored to the cysE mutant by the addition of exogenous l-cysteine or O -acetylserine to the culture medium and by genetic complementation. Additionally, phlA transcript levels were decreased 6-fold in bacteria lacking cysE and were restored with added cysteine, indicating a role for cysteine-dependent transcriptional regulation of S. marcescens phospholipase activity. S. marcescens cysE mutants also exhibited a defect in swarming motility that was correlated with reduced levels of flhD and fliA flagellar regulator gene transcription. Together, these findings suggest a model in which cysteine is required for the regulation of both extracellular phospholipase activity and surface motility in S. marcescens IMPORTANCE Serratia marcescens is known to secrete multiple extracellular enzymes, but PhlA is unusual in that this protein is thought to be exported by the flagellar transport apparatus. In this study, we demonstrate that both extracellular phospholipase activity and flagellar function are dependent on the cysteine biosynthesis pathway. Furthermore, a disruption of cysteine

  11. Detection of antibody responses by using haemagglutination inhibiton test and the protection titer of avian influenza virus H5N1 subtype

    Directory of Open Access Journals (Sweden)

    Risa Indriani

    2004-10-01

    Full Text Available Study on the detection of antibody responses using haemagglutination inhibition (HI test and the protection titer to Avian influenza (AI virus H5N1 subtype local isolate has been conducted at the Research Institute for Veterinary Science (RIVS. A total number of 50 village chicken (10 chicken served as un-injected controls and 30 quail were injected intramuscularly with inactivated virus of AI H5N1 subtype local isolate. Serum samples were collected 3 weeks after injection and were tested using haemagglutination inhibition tests. The correlation between antibody titer and its protection to AI virus H5N1 local isolate were measured by challenging the birds with AI virus H5N1 local isolate The HI test was then used to determine field serum samples. A total number of 48 village chicken from three (3 Districts (Bekasi, Tangerang and Bogor and 96 quails from two (2 farms in District of Sukabumi which were all vaccinated with commercial AI adjuvant vaccine were sampled. The study revealed that village chicken and quails showed antibody responses after 3 weeks vaccination and that titer of ≥ 3 log 2 was able to protect chicken and quails when they were challenged with local isolate virus. Based on this result, village chicken field samples from Districts of Tangerang, Bekasi and Bogor showed antibody titer which will protect 50, 100 and 85% of the flocks respectively. While quail field samples from Farm I and Farm II in District of Sukabumi showed antibody titer which will protect 60-100% and 0-80% of the flocks respectively. It is concluded that the study has successfully measured antibody titer to AI virus H5N1 subtype which protect village chicken and quails from local isolate virus challenge so that the results will be used to analyze field serum samples after vaccination program to eradicate AI from Indonesia.

  12. Successful reduction of high-sustained anti-idursulfase antibody titers by immune modulation therapy in a patient with severe mucopolysaccharidosis type II

    Directory of Open Access Journals (Sweden)

    Katherine H. Kim

    2015-03-01

    Full Text Available We report on a 6 year old boy with severe MPS II undergoing immune modulation therapy due to high IgG antibody titers to IV idursulfase and no significant decline in urinary GAG levels since initiating enzyme replacement therapy. He has complete deficiency of iduronate-2-sulfatase activity due to a submicroscopic deletion of the X chromosome involving the entire I2S gene but not including in the fragile X locus. At 19 months of age, IV idursulfase therapy at the recommended dose of 0.5 mg/kg/week was initiated and then increased to 1.0 mg/kg/week after no observed clinical improvement and no decline in urine GAG level. After one year of ERT at the increased dose, he had no significant decline in urinary GAG excretion and increase of anti-idursulfase IgG antibody titers to 102,000 with complete neutralizing antibodies. In light of the evidence of lack of efficacy of idursulfase therapy, the patient was started on an immune modulation regimen consisting of ofatumumab, bortezomib, methotrexate and IVIG for a 12 week period. Only a slight decrease in IgG titers and urine GAG levels was observed, leading to increased intensity of bortezomib administration and addition of dexamethasone to the regimen, while continuing with the current schedule ofatumumab, IVIG and methotrexate. Over 18 month period of immune modulation therapy, we observed a significant reduction in anti-idursulfase IgG titers and a moderate reduction in urine GAG levels compared to baseline. Modest clinical improvements were observed. Our experience suggests that future MPS II patients with a complete gene deletion may be likely to develop persistent anti-idursulfase antibody titers and may benefit from immune modulation therapy prior to the development of high titer levels.

  13. Age-dependent decrease of anti-HBs titers and effect of booster doses using 2 different vaccines in Palestinian children vaccinated in early childhood

    Science.gov (United States)

    Qawasmi, Mohammad; Samuh, Monjed; Glebe, Dieter; Gerlich, Wolfram H; Azzeh, Maysa

    2015-01-01

    Immunization against hepatitis B virus (HBV) has proven to be highly effective and led to significant reduction of new infections worldwide. However, protective immunity measured by anti-HBs titers may decrease to critical levels in the years after basal immunization, particularly in case of exposure to HBV variants different from the vaccine strain. We tested 400 Palestinian children between one and 19 years of age for their anti-HBs titer, challenged the immune memory of those with low or absent anti-HBs with 2 types of hepatitis B vaccines and determined thereafter the anti-HBs titer. At the age of one, 92.2% of the children presented with protective anti-HBs titers (≥10 mIU/ml) with the majority having ≥100 mIU/ml. Protective immunity was still high at ages 2 (87.5%) and 4 (95%), declining by age 5 and 6 (from 69.2% to 66.7%) and down to an average of 39.8% between the ages of 7 and 19. 160 children with a nonprotective or low immune response challenged with either the yeast-derived Engerix-B or the mammalian cell-derived preS1-containing Sci-B-Vac vaccine showed an anamnestic immune response. 92.4% and 85.9% of the children challenged with one dose Sci-B-Vac and Engerix-B presented with anti-HBs titers >100 mIU/ml respectively. Our results reveal that vaccine-induced protective anti-HBs titers against HBV decrease rapidly beyond the age of 6 in Palestinian children, but can be strongly enhanced with a single booster vaccine dose, independent of brand and antigen composition. Our data suggest that a booster vaccine dose against HBV during school years may be useful. PMID:25996579

  14. Optimization of Palmitic Acid Composition in Crude Oleic Acid to Provide Specifications of Titer and Cloud Point of Distillate Oleic Acid using a Flash Distiller

    Directory of Open Access Journals (Sweden)

    Muhammad Yusuf Ritonga

    2010-11-01

    Full Text Available Titer and cloud point of Distilled Oleic Acid is higher than is the standard on feed composition palmitic acid (C15H31COOH or C16 11.2 %. Feed composition C16, top temperature precut and bottom main distiller column were optimized to produce DOA. A factorial design with 3 independent variables, 3 X 2 X 3, repeated twice as much, is applied to observe effects of feed composition C16 to quality parameters. In the optimum C16, feed composition at 5.20 % produced DOA with titer 6.8 oC, cloud point 5.0 oC (inside its specification.

  15. Optimization of Palmitic Acid Composition in Crude Oleic Acid to Provide Specifications of Titer and Cloud Point of Distillate Oleic Acid using a Flash Distiller

    OpenAIRE

    Muhammad Yusuf Ritonga

    2010-01-01

    Titer and cloud point Distilled Oleic Acid’s higher than standard on feed composition palmitic acid (C15H31COOH) or C16 11.2 %. Feed composition C16, top temperature precut and bottom main distiller column were optimized to produce DOA. A factorial design 3 independent variables 3 X 2 X 3, twice repeating’s applied to observe effects of feed composition C16 to quality parameters. On the optimum C16 feed composition at 5.20 % was produced DOA with titer 6.8 oC, cloud point 5.0 oC (inside it...

  16. Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis

    DEFF Research Database (Denmark)

    Rodriguez Prado, Edith Angelica; Kildegaard, Kanchana Rueksomtawin; Li, Mingji

    2015-01-01

    Aromatic amino acids are precursors of numerous plant secondary metabolites with diverse biological functions. Many of these secondary metabolites are already being used as active pharmaceutical or nutraceutical ingredients, and there are numerous exploratory studies of other compounds...... with promising applications. p-Coumaric acid is derived from aromatic amino acids and, besides being a valuable chemical building block, it serves as precursor for biosynthesis of many secondary metabolites, such as polyphenols, flavonoids, and some polyketides. Here we developed a p-coumaric acid...... as another important flux-controlling step in the aromatic amino acid pathway by overexpressing enzymes from Escherichia coli, homologous to the pentafunctional enzyme Aro1p and to the bifunctional chorismate synthase-flavin reductase Aro2p. The highest titer of p-coumaric acid of 1.93±0.26 g L−1...

  17. Three Principles of Diversity-Generating Biosynthesis.

    Science.gov (United States)

    Gu, Wenjia; Schmidt, Eric W

    2017-10-17

    Natural products are significant therapeutic agents and valuable drug leads. This is likely owing to their three-dimensional structural complexity, which enables them to form complex interactions with biological targets. Enzymes from natural product biosynthetic pathways show great potential to generate natural product-like compounds and libraries. Many challenges still remain in biosynthesis, such as how to rationally synthesize small molecules with novel structures and how to generate maximum chemical diversity. In this Account, we describe recent advances from our laboratory in the synthesis of natural product-like libraries using natural biosynthetic machinery. Our work has focused on the pat and tru biosynthetic pathways to patellamides, trunkamide, and related compounds from cyanobacterial symbionts in marine tunicates. These belong to the cyanobactin class of natural products, which are part of the larger group of ribosomally synthesized and post-translationally modified peptides (RiPPs). These results have enabled the synthesis of rationally designed small molecules and libraries covering more than 1 million estimated derivatives. Because the RiPPs are translated on the ribosome and then enzymatically modified, they are highly compatible with recombinant technologies. This is important because it means that the resulting natural products, their derivatives, and wholly new compounds can be synthesized using the tools of genetic engineering. The RiPPs also represent possibly the most widespread group of bioactive natural products, although this is in part because of the broad definition of what constitutes a RiPP. In addition, the underlying ideas may form the basis for broad-substrate biosynthetic pathways beyond the RiPPs. For example, some of the ideas about kinetic ordering of broad substrate pathways may apply to polyketide or nonribosomal peptide biosynthesis as well. While making these products, we have sought to understand what makes biosynthetic

  18. Polyamine biosynthesis during germination of yeast ascospores.

    Science.gov (United States)

    Brawley, J V; Ferro, A J

    1979-01-01

    The role of the diamine putrescine during germination and outgrowth of ascospores of Saccharomyces cerevisiae was examined. Ornithine decarboxylase activity increased and declined rapidly during germination and outgrowth; peak activity was attained after the cells had proceeded through the G1 interval of the cell cycle, whereas minimal activity was present at the completion of the first cell division. alpha-Methylornithine inhibited both ornithine decarboxylase activity and the in vivo accumulation of putrescine. In the presence of alpha-methylornithireak dormancy and proceed through one cell division. Subsequent cellular growth, however, was retarded but not completely inhibited. The supplementation of Methylglyoxal bis(guanylhydrazone) to sporulation medium greatly inhibited this sexual process. These data suggest that the synthesis of putrescine is not required for the breaking of spore dormancy, but that polyamine biosynthesis may be essential for meiosis and sporulation. PMID:387744

  19. Biosynthesis and function of plant lipids

    International Nuclear Information System (INIS)

    Thomson, W.W.; Mudd, J.B.; Gibbs, M.

    1983-01-01

    The Sixth Annual Symposium in Botany and Plant Physiology was held January 13-15, 1983, at the University of California, Riverside. This volume comprises the papers that were presented. Subjects discussed at the symposium covered a wide range in the field of plant lipids. Biosynthesis of lipids occupied an important fraction of the presentations at the symposium. Subjects included detailed studies of the enzymes of fatty acid synthesis, several discussions of the incorporation of fatty acids into glycerolipids and the further modification of the fatty acids, and the synthesis of glycerolipids and desaturation of fatty acids in both maturing oilseeds and chloroplasts. The physicochemical studies of glycerolipids and sterols in artificial membranes have led to distinct conclusions about their behaviour which must be relevant in the biological membrane. Results on the functional consequences of modifying the galactolipid composition in the chloroplast were an encouraging sign of progress in the attempts to relate membrane lipid composition to physiological function

  20. Biosurfactant Mediated Biosynthesis of Selected Metallic Nanoparticles

    Science.gov (United States)

    Płaza, Grażyna A.; Chojniak, Joanna; Banat, Ibrahim M.

    2014-01-01

    Developing a reliable experimental protocol for the synthesis of nanomaterials is one of the challenging topics in current nanotechnology particularly in the context of the recent drive to promote green technologies in their synthesis. The increasing need to develop clean, nontoxic and environmentally safe production processes for nanoparticles to reduce environmental impact, minimize waste and increase energy efficiency has become essential in this field. Consequently, recent studies on the use of microorganisms in the synthesis of selected nanoparticles are gaining increased interest as they represent an exciting area of research with considerable development potential. Microorganisms are known to be capable of synthesizing inorganic molecules that are deposited either intra- or extracellularly. This review presents a brief overview of current research on the use of biosurfactants in the biosynthesis of selected metallic nanoparticles and their potential importance. PMID:25110864

  1. Terpenoids and Their Biosynthesis in Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Bagmi Pattanaik

    2015-01-01

    Full Text Available Terpenoids, or isoprenoids, are a family of compounds with great structural diversity which are essential for all living organisms. In cyanobacteria, they are synthesized from the methylerythritol-phosphate (MEP pathway, using glyceraldehyde 3-phosphate and pyruvate produced by photosynthesis as substrates. The products of the MEP pathway are the isomeric five-carbon compounds isopentenyl diphosphate and dimethylallyl diphosphate, which in turn form the basic building blocks for formation of all terpenoids. Many terpenoid compounds have useful properties and are of interest in the fields of pharmaceuticals and nutrition, and even potentially as future biofuels. The MEP pathway, its function and regulation, and the subsequent formation of terpenoids have not been fully elucidated in cyanobacteria, despite its relevance for biotechnological applications. In this review, we summarize the present knowledge about cyanobacterial terpenoid biosynthesis, both regarding the native metabolism and regarding metabolic engineering of cyanobacteria for heterologous production of non-native terpenoids.

  2. Terpenoids and Their Biosynthesis in Cyanobacteria

    Science.gov (United States)

    Pattanaik, Bagmi; Lindberg, Pia

    2015-01-01

    Terpenoids, or isoprenoids, are a family of compounds with great structural diversity which are essential for all living organisms. In cyanobacteria, they are synthesized from the methylerythritol-phosphate (MEP) pathway, using glyceraldehyde 3-phosphate and pyruvate produced by photosynthesis as substrates. The products of the MEP pathway are the isomeric five-carbon compounds isopentenyl diphosphate and dimethylallyl diphosphate, which in turn form the basic building blocks for formation of all terpenoids. Many terpenoid compounds have useful properties and are of interest in the fields of pharmaceuticals and nutrition, and even potentially as future biofuels. The MEP pathway, its function and regulation, and the subsequent formation of terpenoids have not been fully elucidated in cyanobacteria, despite its relevance for biotechnological applications. In this review, we summarize the present knowledge about cyanobacterial terpenoid biosynthesis, both regarding the native metabolism and regarding metabolic engineering of cyanobacteria for heterologous production of non-native terpenoids. PMID:25615610

  3. A Molecular Description of Cellulose Biosynthesis

    Science.gov (United States)

    McNamara, Joshua T.; Morgan, Jacob L.W.; Zimmer, Jochen

    2016-01-01

    Cellulose is the most abundant biopolymer on Earth, and certain organisms from bacteria to plants and animals synthesize cellulose as an extracellular polymer for various biological functions. Humans have used cellulose for millennia as a material and an energy source, and the advent of a lignocellulosic fuel industry will elevate it to the primary carbon source for the burgeoning renewable energy sector. Despite the biological and societal importance of cellulose, the molecular mechanism by which it is synthesized is now only beginning to emerge. On the basis of recent advances in structural and molecular biology on bacterial cellulose synthases, we review emerging concepts of how the enzymes polymerize glucose molecules, how the nascent polymer is transported across the plasma membrane, and how bacterial cellulose biosynthesis is regulated during biofilm formation. Additionally, we review evolutionary commonalities and differences between cellulose synthases that modulate the nature of the cellulose product formed. PMID:26034894

  4. Biosurfactant Mediated Biosynthesis of Selected Metallic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Grażyna A. Płaza

    2014-08-01

    Full Text Available Developing a reliable experimental protocol for the synthesis of nanomaterials is one of the challenging topics in current nanotechnology particularly in the context of the recent drive to promote green technologies in their synthesis. The increasing need to develop clean, nontoxic and environmentally safe production processes for nanoparticles to reduce environmental impact, minimize waste and increase energy efficiency has become essential in this field. Consequently, recent studies on the use of microorganisms in the synthesis of selected nanoparticles are gaining increased interest as they represent an exciting area of research with considerable development potential. Microorganisms are known to be capable of synthesizing inorganic molecules that are deposited either intra- or extracellularly. This review presents a brief overview of current research on the use of biosurfactants in the biosynthesis of selected metallic nanoparticles and their potential importance.

  5. Acylphloroglucinol Biosynthesis in Strawberry Fruit1

    Science.gov (United States)

    Song, Chuankui; Ring, Ludwig; Hoffmann, Thomas; Huang, Fong-Chin; Slovin, Janet; Schwab, Wilfried

    2015-01-01

    Phenolics have health-promoting properties and are a major group of metabolites in fruit crops. Through reverse genetic analysis of the functions of four ripening-related genes in the octoploid strawberry (Fragaria × ananassa), we discovered four acylphloroglucinol (APG)-glucosides as native Fragaria spp. fruit metabolites whose levels were differently regulated in the transgenic fruits. The biosynthesis of the APG aglycones was investigated by examination of the enzymatic properties of three recombinant Fragaria vesca chalcone synthase (FvCHS) proteins. CHS is involved in anthocyanin biosynthesis during ripening. The F. vesca enzymes readily catalyzed the condensation of two intermediates in branched-chain amino acid metabolism, isovaleryl-Coenzyme A (CoA) and isobutyryl-CoA, with three molecules of malonyl-CoA to form phlorisovalerophenone and phlorisobutyrophenone, respectively, and formed naringenin chalcone when 4-coumaroyl-CoA was used as starter molecule. Isovaleryl-CoA was the preferred starter substrate of FvCHS2-1. Suppression of CHS activity in both transient and stable CHS-silenced fruit resulted in a substantial decrease of APG glucosides and anthocyanins and enhanced levels of volatiles derived from branched-chain amino acids. The proposed APG pathway was confirmed by feeding isotopically labeled amino acids. Thus, Fragaria spp. plants have the capacity to synthesize pharmaceutically important APGs using dual functional CHS/(phloriso)valerophenone synthases that are expressed during fruit ripening. Duplication and adaptive evolution of CHS is the most probable scenario and might be generally applicable to other plants. The results highlight that important promiscuous gene function may be missed when annotation relies solely on in silico analysis. PMID:26169681

  6. Using sulfite chemistry for robust bioconversion of Douglas-fir forest residue to bioethanol at high titer and lignosulfonate: A pilot-scale evaluation

    Science.gov (United States)

    J.Y. Zhu; M. Subhosh Chandra; Feng Gu; Roland Gleisner; J.Y. Zhu; John Sessions; Gevan Marrs; Johnway Gao; Dwight Anderson

    2015-01-01

    This study demonstrated at the pilot-scale (50 kg) use of Douglas-fir forest harvest residue, an underutilized forest biomass, for the production of high titer and high yield bioethanol using sulfite chemistry without solid–liquor separation and detoxification. Sulfite Pretreatment to Overcome the Recalcitrance of Lignocelluloses (SPORL) was directly applied to the...

  7. Development of mixed-type autoimmune hemolytic anemia and Evans' syndrome following chicken pox infection in a case of low-titer cold agglutinin disease.

    Science.gov (United States)

    Tanaka, Yumi; Masuya, Masahiro; Katayama, Naoyuki; Miyata, Eri; Sugimoto, Yuka; Shibasaki, Tetsunori; Yamamura, Kentaro; Ohishi, Kohshi; Minami, Nobuyuki; Shiku, Hiroshi; Nobori, Tsutomu

    2006-10-01

    We describe a patient with low-titer cold agglutinin disease (CAD) who developed mixed-type autoimmune hemolytic anemia (AIHA) and idiopathic thrombocytopenia following chicken pox infection. At least 1 year before admission to hospital, the patient had mild hemolytic anemia associated with low-titer cold agglutinins. A severe hemolytic crisis and thrombocytopenia (Evans' syndrome) occurred several days after infection with chicken pox, and the patient was referred to our hospital. Serological findings revealed the presence of both cold agglutinins and warm-reactive autoantibodies against erythrocytes, and the diagnosis was mixed-type AIHA. Following steroid therapy, the hemoglobin (Hb) level and platelet count improved. The patient was closely followed over a 10-year period with recurrent documented hemolysis after viral or bacterial infections. Warm-reactive autoantibodies have not been detected in the last 2 years, and only the immunoglobulin M anti-I cold agglutinins with a low titer and wide thermal amplitude have remained unchanged. Therefore, the patient has received at least 10 mg prednisolone daily to maintain a Hb level of 10 g/dL. To the best of our knowledge, no adult case of low-titer CAD that has evolved into mixed-type AIHA and Evans' syndrome after chicken pox infection has been previously reported in the literature.

  8. The importance of tumor marker titers for the indication of immunoscintigraphy with monoclonal antibodies anti-CEA and anti-CA 19.9

    International Nuclear Information System (INIS)

    Bouvier, J.F.; Charrie, A.; Fleury-Goyon, M.C.; Chauvot, P. et; Lahneche, B.E.

    1986-01-01

    In 18 patients operated for malignant tumors 20 immunoscintigraphies were done with a monoclonal antibody cocktail (anti-CEA F(ab') 2 and anti-CA 19.9 F(ab') 2 ). Immediately before scintigraphy tumor marker titers in plasma were determined in all cases. Tumor marker levels corresponding to positive or doubtful scintigraphies are analysed. (Author)

  9. Production and characterization of high-titer serum-free cell culture grown hepatitis C virus particles of genotype 1-6

    DEFF Research Database (Denmark)

    Mathiesen, Christian K; Jensen, Tanja B; Prentoe, Jannick

    2014-01-01

    .5 hepatoma cells cultured in adenovirus expression medium. Compared to HCVcc, sf-HCVcc showed 0.6-2.1 log10 higher infectivity titers (4.7-6.2 log10 Focus Forming Units/mL), possibly due to increased release and specific infectivity of sf-HCVcc. In contrast to HCVcc, sf-HCVcc had a homogeneous single...

  10. Asymmetries in Chickens from Lines Selected and Relaxed for High or Low Antibody Titers to Sheep Red Blood Cells

    Directory of Open Access Journals (Sweden)

    Yunjie Tu

    2015-03-01

    Full Text Available Wattle length, width, and area were measured to classify bilateral asymmetries in four lines of chickens. The lines were the S26 generation of White Leghorns selected for high (HAS or low (LAS response to sheep red blood cells and sublines in which selection had been relaxed for three generations (high antibody relaxed [HAR] and low antibody relaxed [LAR]. Antibody titers (AB were greater for HAS than for HAR with both greater than for LAS and LAR which while different for males did not differ for females. The low antibody lines were heavier and reached sexual maturity at younger age than the high antibody lines. In general, wattle length, width, and area were greater in the low than high antibody lines. In 24 comparisons for bilaterality 18 exhibited fluctuating asymmetry and 6 exhibited directional asymmetry with 5 of the 6 being for wattle length. There was not a clear pattern for changes in degree of asymmetry when selection was relaxed for 3 generations. For females, the relative asymmetry (RA of wattle area was larger (p≤0.05 for HAR than for LAR and not different from the selected lines and relaxed lines. There were no differences among lines for RA of wattle length and width of females and wattle length, width, and area of males.

  11. Structural basis for immunization with postfusion respiratory syncytial virus fusion F glycoprotein (RSV F) to elicit high neutralizing antibody titers

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, Kurt A.; Settembre, Ethan C.; Shaw, Christine A.; Dey, Antu K.; Rappuoli, Rino; Mandl, Christian W.; Dormitzer, Philip R.; Carfi, Andrea (Novartis)

    2012-02-07

    Respiratory syncytial virus (RSV), the main cause of infant bronchiolitis, remains a major unmet vaccine need despite more than 40 years of vaccine research. Vaccine candidates based on a chief RSV neutralization antigen, the fusion (F) glycoprotein, have foundered due to problems with stability, purity, reproducibility, and potency. Crystal structures of related parainfluenza F glycoproteins have revealed a large conformational change between the prefusion and postfusion states, suggesting that postfusion F antigens might not efficiently elicit neutralizing antibodies. We have generated a homogeneous, stable, and reproducible postfusion RSV F immunogen that elicits high titers of neutralizing antibodies in immunized animals. The 3.2-{angstrom} X-ray crystal structure of this substantially complete RSV F reveals important differences from homology-based structural models. Specifically, the RSV F crystal structure demonstrates the exposure of key neutralizing antibody binding sites on the surface of the postfusion RSV F trimer. This unanticipated structural feature explains the engineered RSV F antigen's efficiency as an immunogen. This work illustrates how structural-based antigen design can guide the rational optimization of candidate vaccine antigens.

  12. High titer ethanol production from SPORL-pretreated lodgepole pine by simultaneous enzymatic saccharification and combined fermentation.

    Science.gov (United States)

    Lan, T Q; Gleisner, Roland; Zhu, J Y; Dien, Bruce S; Hector, Ronald E

    2013-01-01

    Lodgepole wood chips were pretreated by sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL) at 25% solids loading and 180 °C for 20 min with sulfuric acid and sodium bisulfite charges of 2.2 and 8 wt/wt% on an oven-dry wood basis, respectively. The pretreated wood chips were disk-milled with pretreatment spent liquor and water, and the solid fraction was separated from the liquor stream. The liquor was neutralized and concentrated through vacuum evaporation. Quasi-simultaneous enzymatic saccharification of the cellulosic solids and combined fermentation with the concentrated liquor was conducted at up to 20% total solids loading. Fed-batching of the solids facilitated liquefaction and saccharification, as well as managing instantaneous inhibitor concentrations. At a commercial cellulase (CTec2) loading of only 9 FPU or 0.06 mL/g untreated wood, a maximum ethanol titer of 47.4 g/L was achieved, resulting in a calculated yield of 285 L/tonne of wood using Saccharomyces cerevisiae YRH400 at 35 °C and pH 5.5. Published by Elsevier Ltd.

  13. ASO: Antistreptolysin O titer

    Science.gov (United States)

    ... Culture Blood Gases Blood Ketones Blood Smear Blood Typing Blood Urea Nitrogen (BUN) BNP and NT-proBNP ... Luteinizing Hormone (LH) Lyme Disease Tests Magnesium Maternal Serum Screening, Second Trimester Measles and Mumps Tests Mercury ...

  14. Enhancement of medium-chain-length polyhydroxyalkanoates biosynthesis from glucose by metabolic engineering in Pseudomonas mendocina.

    Science.gov (United States)

    Wang, Yuanyuan; Zhao, Fengjie; Fan, Xu; Wang, Shufang; Song, Cunjiang

    2016-02-01

    To enhance the biosynthesis of medium-chain-length polyhydroxyalkanoates (PHAMCL) from glucose in Pseudomonas mendocina NK-01, metabolic engineering strategies were used to block or enhance related pathways. Pseudomonas mendocina NK-01 produces PHAMCL from glucose. Besides the alginate oligosaccharide biosynthetic pathway proved by our previous study, UDP-D-glucose and dTDP-L-rhamnose biosynthetic pathways were identified. These might compete for glucose with the PHAMCL biosynthesis. First, the alg operon, galU and rmlC gene were deleted one by one, resulting in NK-U-1(∆alg), NK-U-2 (∆alg∆galU), NK-U-3(alg∆galU∆rmlC). After fermentation for 36 h, the cell dry weight (CDW) and PHAMCL production of these strains were determined. Compared with NK-U: 1) NK-U-1 produced elevated CDW (from 3.19 ± 0.16 to 3.5 ± 0.11 g/l) and equal PHAMCL (from 0.78 ± 0.06 to 0.79 ± 0.07 g/l); 2) NK-U-2 produced more CDW (from 3.19 ± 0.16 to 3.55 ± 0.23 g/l) and PHAMCL (from 0.78 ± 0.06 to 1.05 ± 0.07 g/l); 3) CDW and PHAMCL dramatically decreased in NK-U-3 (1.53 ± 0.21 and 0.41 ± 0.09 g/l, respectively). Additionally, the phaG gene was overexpressed in strain NK-U-2. Although CDW of NK-U-2/phaG decreased to 1.29 ± 0.2 g/l, PHA titer (%CDW) significantly increased from 24.5 % up to 51.2 %. The PHAMCL biosynthetic pathway was enhanced by blocking branched metabolic pathways in combination with overexpressing phaG gene.

  15. Biosynthesis of caffeic acid in Escherichia coli using its endogenous hydroxylase complex

    Science.gov (United States)

    2012-01-01

    Background Caffeic acid (3,4-dihydroxycinnamic acid) is a natural phenolic compound derived from the plant phenylpropanoid pathway. Caffeic acid and its phenethyl ester (CAPE) have attracted increasing attention for their various pharmaceutical properties and health-promoting effects. Nowadays, large-scale production of drugs or drug precursors via microbial approaches provides a promising alternative to chemical synthesis and extraction from plant sources. Results We first identified that an Escherichia coli native hydroxylase complex previously characterized as the 4-hydroxyphenylacetate 3-hydroxylase (4HPA3H) was able to convert p-coumaric acid to caffeic acid efficiently. This critical enzymatic step catalyzed in plants by a membrane-associated cytochrome P450 enzyme, p-coumarate 3-hydroxylase (C3H), is difficult to be functionally expressed in prokaryotic systems. Moreover, the performances of two tyrosine ammonia lyases (TALs) from Rhodobacter species were compared after overexpression in E. coli. The results indicated that the TAL from R. capsulatus (Rc) possesses higher activity towards both tyrosine and L-dopa. Based on these findings, we further designed a dual pathway leading from tyrosine to caffeic acid consisting of the enzymes 4HPA3H and RcTAL. This heterologous pathway extended E. coli native tyrosine biosynthesis machinery and was able to produce caffeic acid (12.1 mg/L) in minimal salt medium. Further improvement in production was accomplished by boosting tyrosine biosynthesis in E. coli, which involved the alleviation of tyrosine-induced feedback inhibition and carbon flux redirection. Finally, the titer of caffeic acid reached 50.2 mg/L in shake flasks after 48-hour cultivation. Conclusion We have successfully established a novel pathway and constructed an E. coli strain for the production of caffeic acid. This work forms a basis for further improvement in production, as well as opens the possibility of microbial synthesis of more complex plant

  16. Biosynthesis of caffeic acid in Escherichia coli using its endogenous hydroxylase complex

    Directory of Open Access Journals (Sweden)

    Lin Yuheng

    2012-04-01

    Full Text Available Abstract Background Caffeic acid (3,4-dihydroxycinnamic acid is a natural phenolic compound derived from the plant phenylpropanoid pathway. Caffeic acid and its phenethyl ester (CAPE have attracted increasing attention for their various pharmaceutical properties and health-promoting effects. Nowadays, large-scale production of drugs or drug precursors via microbial approaches provides a promising alternative to chemical synthesis and extraction from plant sources. Results We first identified that an Escherichia coli native hydroxylase complex previously characterized as the 4-hydroxyphenylacetate 3-hydroxylase (4HPA3H was able to convert p-coumaric acid to caffeic acid efficiently. This critical enzymatic step catalyzed in plants by a membrane-associated cytochrome P450 enzyme, p-coumarate 3-hydroxylase (C3H, is difficult to be functionally expressed in prokaryotic systems. Moreover, the performances of two tyrosine ammonia lyases (TALs from Rhodobacter species were compared after overexpression in E. coli. The results indicated that the TAL from R. capsulatus (Rc possesses higher activity towards both tyrosine and L-dopa. Based on these findings, we further designed a dual pathway leading from tyrosine to caffeic acid consisting of the enzymes 4HPA3H and RcTAL. This heterologous pathway extended E. coli native tyrosine biosynthesis machinery and was able to produce caffeic acid (12.1 mg/L in minimal salt medium. Further improvement in production was accomplished by boosting tyrosine biosynthesis in E. coli, which involved the alleviation of tyrosine-induced feedback inhibition and carbon flux redirection. Finally, the titer of caffeic acid reached 50.2 mg/L in shake flasks after 48-hour cultivation. Conclusion We have successfully established a novel pathway and constructed an E. coli strain for the production of caffeic acid. This work forms a basis for further improvement in production, as well as opens the possibility of microbial synthesis

  17. MeaA, a putative coenzyme B12-dependent mutase, provides methylmalonyl coenzyme A for monensin biosynthesis in Streptomyces cinnamonensis.

    Science.gov (United States)

    Zhang, W; Reynolds, K A

    2001-03-01

    The ratio of the major monensin analogs produced by Streptomyces cinnamonensis is dependent upon the relative levels of the biosynthetic precursors methylmalonyl-coenzyme A (CoA) (monensin A and monensin B) and ethylmalonyl-CoA (monensin A). The meaA gene of this organism was cloned and sequenced and was shown to encode a putative 74-kDa protein with significant amino acid sequence identity to methylmalonyl-CoA mutase (MCM) (40%) and isobutyryl-CoA mutase (ICM) large subunit (36%) and small subunit (52%) from the same organism. The predicted C terminus of MeaA contains structural features highly conserved in all coenzyme B12-dependent mutases. Plasmid-based expression of meaA from the ermE* promoter in the S. cinnamonensis C730.1 strain resulted in a decreased ratio of monensin A to monensin B, from 1:1 to 1:3. Conversely, this ratio increased to 4:1 in a meaA mutant, S. cinnamonensis WM2 (generated from the C730.1 strain by insertional inactivation of meaA by using the erythromycin resistance gene). In both of these experiments, the overall monensin titers were not significantly affected. Monensin titers, however, did decrease over 90% in an S. cinnamonensis WD2 strain (an icm meaA mutant). Monensin titers in the WD2 strain were restored to at least wild-type levels by plasmid-based expression of the meaA gene or the Amycolatopsis mediterranei mutAB genes (encoding MCM). In contrast, growth of the WD2 strain in the presence of 0.8 M valine led only to a partial restoration (meaA gene product is significantly involved in methylmalonyl-CoA production in S. cinnamonensis and that under the tested conditions the presence of both MeaA and ICM is crucial for monensin production in the WD2 strain. These results also indicate that valine degradation, implicated in providing methylmalonyl-CoA precursors for many polyketide biosynthetic processes, does not do so to a significant degree for monensin biosynthesis in the WD2 mutant.

  18. Engineering E. coli for caffeic acid biosynthesis from renewable sugars.

    Science.gov (United States)

    Zhang, Haoran; Stephanopoulos, Gregory

    2013-04-01

    Caffeic acid is a valuable aromatic compound that possesses many important pharmacological activities. In structure, caffeic acid belongs to the hydroxycinnamic acid family and can be biosynthesized from the aromatic amino acid tyrosine. In the present paper, the caffeic acid biosynthesis pathway was reconstituted in engineered Escherichia coli to produce caffeic acid from simple biomass sugar glucose and xylose. Different engineering approaches were utilized to optimize the production. Specifically, two parallel biosynthesis routes leading from tyrosine to caffeic acid were studied. The copy number of the intermediate biosynthesis genes was varied to find appropriate gene doses for caffeic acid biosynthesis. Three different media, including a MOPS medium, a synthetic medium, and a rich medium, were also examined to improve the production. The highest specific caffeic acid production achieved was 38 mg/L/OD. Lastly, cultivation of engineered E. coli in a bioreactor resulted in a production of 106 mg/L caffeic acid after 4 days.

  19. Stimulation of artemisinin biosynthesis in Artemisia annua hairy ...

    African Journals Online (AJOL)

    , the OGA-induced reactive oxygen species (ROS) were involved in stimulating the artemisinin biosynthesis in the hairy roots. This is the first report on the stimulation of artemisinin production in hairy roots by an oligogalacturonide elicitor.

  20. Biosynthesis, regulation and biological role of strigolactones in rice

    NARCIS (Netherlands)

    Moura Luis Cardoso, De C.S.

    2014-01-01

    In her thesis Catarina Cardoso studied strigolactone biosynthesis in rice. Strigolactones are multifunctional compounds produced by plants. They are plant hormones that regulate plant architecture, but in addition plants release strigolactones into the soil to communicate and initiate beneficial

  1. NAD+ biosynthesis, aging, and disease [version 1; referees: 2 approved

    OpenAIRE

    Sean Johnson; Shin–ichiro Imai

    2018-01-01

    Nicotinamide adenine dinucleotide (NAD+) biosynthesis and its regulation have recently been attracting markedly increasing interest. Aging is marked by a systemic decrease in NAD+ across multiple tissues. The dysfunction of NAD+ biosynthesis plays a critical role in the pathophysiologies of multiple diseases, including age-associated metabolic disorders, neurodegenerative diseases, and mental disorders. As downstream effectors, NAD+-dependent enzymes, such as sirtuins, are involved in the pro...

  2. Effects of the biosynthesis and signaling pathway of ecdysterone on silkworm (Bombyx mori) following exposure to titanium dioxide nanoparticles.

    Science.gov (United States)

    Li, Fanchi; Gu, Zhiya; Wang, Binbin; Xie, Yi; Ma, Lie; Xu, Kaizun; Ni, Min; Zhang, Hua; Shen, Weide; Li, Bing

    2014-08-01

    Silkworm (Bombyx mori), a model Lepidoptera insect, is economically important. Its growth and development are regulated by endogenous hormones. During the process of transition from larvae to pupae, 20-hydroxyecdysone (20E) plays an important role. The recent surge in consumer products and applications using metallic nanoparticles has increased the possibility of human or ecosystem exposure due to their unintentional release into the environment. We investigated the effects of exposure to titanium dioxide nanoparticles (TiO2 NPs) on the action of 20E in B. mori. Titanium dioxide nanoparticle treatment shortened the molting duration by 8 hr and prolonged the molting peak period by 10 %. Solexa sequencing profiled the changes in gene expression in the brain of fifth-instar B. mori in response to TiO2NPS exposure for 72 hr, to address the effects on hormone metabolism and regulation. Thirty one genes were differentially expressed. The transcriptional levels of pi3k and P70S6K, which are involved in the target of the rapamycin (TOR) signaling pathway, were up-regulated. Transcriptional levels of four cytochrome P450 genes, which are involved in 20E biosynthesis, at different developmental stages (48, 96, 144, and 192 hr) at 5th instars of all displayed trends of increasing expression. Simultaneously, the ecdysterone receptors, also displayed increasing trends. The 20E titers at four developmental stages during the 5th instar were 1.26, 1.23, 1.72, and 2.16 fold higher, respectively, than the control group. These results indicate that feeding B. mori with TiO2 NPs stimulates 20E biosynthesis, shortens the developmental progression, and reduces the duration of molting. Thus, application of TiO2 NPs is of high significance for saving the labor force in sericulture, and our research provides a reference for the ecological problems in the field of Lepidoptera exposured to titanium dioxide nanoparticles.

  3. Fenarimol, a Pyrimidine-Type Fungicide, Inhibits Brassinosteroid Biosynthesis

    Directory of Open Access Journals (Sweden)

    Keimei Oh

    2015-07-01

    Full Text Available The plant steroid hormone brassinosteroids (BRs are important signal mediators that regulate broad aspects of plant growth and development. With the discovery of brassinoazole (Brz, the first specific inhibitor of BR biosynthesis, several triazole-type BR biosynthesis inhibitors have been developed. In this article, we report that fenarimol (FM, a pyrimidine-type fungicide, exhibits potent inhibitory activity against BR biosynthesis. FM induces dwarfism and the open cotyledon phenotype of Arabidopsis seedlings in the dark. The IC50 value for FM to inhibit stem elongation of Arabidopsis seedlings grown in the dark was approximately 1.8 ± 0.2 μM. FM-induced dwarfism of Arabidopsis seedlings could be restored by brassinolide (BL but not by gibberellin (GA. Assessment of the target site of FM in BR biosynthesis by feeding BR biosynthesis intermediates indicated that FM interferes with the side chain hydroxylation of BR biosynthesis from campestanol to teasterone. Determination of the binding affinity of FM to purified recombinant CYP90D1 indicated that FM induced a typical type II binding spectrum with a Kd value of approximately 0.79 μM. Quantitative real-time PCR analysis of the expression level of the BR responsive gene in Arabidopsis seedlings indicated that FM induces the BR deficiency in Arabidopsis.

  4. Promoter library-based module combination (PLMC) technology for optimization of threonine biosynthesis in Corynebacterium glutamicum.

    Science.gov (United States)

    Wei, Liang; Xu, Ning; Wang, Yiran; Zhou, Wei; Han, Guoqiang; Ma, Yanhe; Liu, Jun

    2018-03-21

    Due to the lack of efficient control elements and tools, the fine-tuning of gene expression in the multi-gene metabolic pathways is still a great challenge for engineering microbial cell factories, especially for the important industrial microorganism Corynebacterium glutamicum. In this study, the promoter library-based module combination (PLMC) technology was developed to efficiently optimize the expression of genes in C. glutamicum. A random promoter library was designed to contain the putative - 10 (NNTANANT) and - 35 (NNGNCN) consensus motifs, and refined through a three-step screening procedure to achieve numerous genetic control elements with different strength levels, including fluorescence-activated cell sorting (FACS) screening, agar plate screening, and 96-well plate screening. Multiple conventional strategies were employed for further precise characterizations of the promoter library, such as real-time quantitative PCR, sodium dodecyl sulfate polyacrylamide gel electrophoresis, FACS analysis, and the lacZ reporter system. These results suggested that the established promoter elements effectively regulated gene expression and showed varying strengths over a wide range. Subsequently, a multi-module combination technology was created based on the efficient promoter elements for combination and optimization of modules in the multi-gene pathways. Using this technology, the threonine biosynthesis pathway was reconstructed and optimized by predictable tuning expression of five modules in C. glutamicum. The threonine titer of the optimized strain was significantly improved to 12.8 g/L, an approximate 6.1-fold higher than that of the control strain. Overall, the PLMC technology presented in this study provides a rapid and effective method for combination and optimization of multi-gene pathways in C. glutamicum.

  5. Efficient biosynthesis of polysaccharides chondroitin and heparosan by metabolically engineered Bacillus subtilis.

    Science.gov (United States)

    Jin, Peng; Zhang, Linpei; Yuan, Panhong; Kang, Zhen; Du, Guocheng; Chen, Jian

    2016-04-20

    Chondroitin and heparosan, important polysaccharides and key precursors of chondroitin sulfate and heparin/heparan sulfate, have drawn much attention due to their wide applications in many aspects. In this study, we designed two independent synthetic pathways of chondroitin and heparosan in food-grade Bacillus subtilis, integrating critical synthases genes derived from Escherichia coli into B. subtilis genome. By RT-PCR analysis, we confirmed that synthases genes transcripted an integral mRNA chain, suggesting co-expression. In shaken flask, chondroitin and heparosan were produced at a level of 1.83gL(-1) and 1.71gL(-1), respectively. Since B. subtilis endogenous tuaD gene encodes the limiting factor of biosynthesis, overexpressing tuaD resulted in enhanced chondroitin and heparosan titers, namely 2.54gL(-1) and 2.65gL(-1). Moreover, production reached the highest peaks of 5.22gL(-1) and 5.82gL(-1) in 3-L fed-batch fermentation, respectively, allowed to double the production that in shaken flask. The weight-average molecular weight of chondroitin and heparosan from B. subtilis E168C/pP43-D and E168H/pP43-D were 114.07 and 67.70kDa, respectively. This work provided alternative safer synthetic pathways for metabolic engineering of chondroitin and heparosan in B. subtilis and a useful approach for enhancing production, which can be optimized for further improvement. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Preliminary studies of the biosynthesis of Austin

    International Nuclear Information System (INIS)

    Wicnienski, N.A.

    1979-01-01

    Aspergillus ustus is one of the most prevalent fungi in the soil. There are now two reports of the occurrence of toxin-producing strains of this fungus on stored foodstuffs. In addition, strains of A. ustus have been isolated along with Penicillium species from samples of South African cheeses. All A. ustus isolates tested were judged to be highly toxic to ducklings when grown on maize meal, however, the toxins involved were not isolated. Austin is the trivial name of one of the toxins made by the fungus found on stored food. Preliminary work to studying the biosynthesis of this compound using 13 C-labeled sodium acetate is reported here. The feasibility of the biosynthetic study was determined by feeding [1- 14 C]-sodium acetate to A. ustus cultures. The assignments made in the 13 C-nmr spectrum of Austin are shown. The lowest dilution factor obtained in [1- 14 C]-sodium acetate feeding experiments was 14. This dilution factor is sufficiently low to allow a successful feeding of [1,2- 13 C 2 ]-sodium acetate. A new metabolite of A. ustus, deacetylaustin, was isolated and identified. An alkaloid of unknown structure was also isolated from the fungus

  7. Biosynthesis of secondary metabolites in sugarcane

    Directory of Open Access Journals (Sweden)

    S.C. França

    2001-12-01

    Full Text Available A set of genes related to secondary metabolism was extracted from the sugarcane expressed sequence tag (SUCEST database and was used to investigate both the gene expression pattern of key enzymes regulating the main biosynthetic secondary metabolism pathways and the major classes of metabolites involved in the response of sugarcane to environmental and developmental cues. The SUCEST database was constructed with tissues in different physiological conditions which had been collected under varied situation of environmental stress. This database allows researchers to identify and characterize the expressed genes of a wide range of putative enzymes able to catalyze steps in the phenylpropanoid, isoprenoid and other pathways of the special metabolic mechanisms involved in the response of sugarcane to environmental changes. Our results show that sugarcane cDNAs encoded putative ultra-violet induced sesquiterpene cyclases (SC; chalcone synthase (CHS, the first enzyme in the pathway branch for flavonoid biosynthesis; isoflavone synthase (IFS, involved in plant defense and root nodulation; isoflavone reductase (IFR, a key enzyme in phenylpropanoid phytoalexin biosynthesis; and caffeic acid-O-methyltransferase, a key enzyme in the biosynthesis of lignin cell wall precursors. High levels of CHS transcripts from plantlets infected with Herbaspirillum rubri or Gluconacetobacter diazotroficans suggests that agents of biotic stress can elicit flavonoid biosynthesis in sugarcane. From this data we have predicted the profile of isoprenoid and phenylpropanoid metabolism in sugarcane and pointed the branches of secondary metabolism activated during tissue-specific stages of development and the adaptive response of sugarcane to agents of biotic and abiotic stress, although our assignment of enzyme function should be confirmed by careful biochemical and genetic supporting evidence.Este trabalho foi realizado com os objetivos de gerar uma coleção de genes

  8. Tyrosine biosynthesis, metabolism, and catabolism in plants.

    Science.gov (United States)

    Schenck, Craig A; Maeda, Hiroshi A

    2018-05-01

    L-Tyrosine (Tyr) is an aromatic amino acid (AAA) required for protein synthesis in all organisms, but synthesized de novo only in plants and microorganisms. In plants, Tyr also serves as a precursor of numerous specialized metabolites that have diverse physiological roles as electron carriers, antioxidants, attractants, and defense compounds. Some of these Tyr-derived plant natural products are also used in human medicine and nutrition (e.g. morphine and vitamin E). While the Tyr biosynthesis and catabolic pathways have been extensively studied in microbes and animals, respectively, those of plants have received much less attention until recently. Accumulating evidence suggest that the Tyr biosynthetic pathways differ between microbes and plants and even within the plant kingdom, likely to support the production of lineage-specific plant specialized metabolites derived from Tyr. The interspecies variations of plant Tyr pathway enzymes can now be used to enhance the production of Tyr and Tyr-derived compounds in plants and other synthetic biology platforms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Engineering bacteria for enhanced polyhydroxyalkanoates (PHA biosynthesis

    Directory of Open Access Journals (Sweden)

    Guo-Qiang Chen

    2017-09-01

    Full Text Available Polyhydroxyalkanoates (PHA have been produced by some bacteria as bioplastics for many years. Yet their commercialization is still on the way. A few issues are related to the difficulty of PHA commercialization: namely, high cost and instabilities on molecular weights (Mw and structures, thus instability on thermo-mechanical properties. The high cost is the result of complicated bioprocessing associated with sterilization, low conversion of carbon substrates to PHA products, and slow growth of microorganisms as well as difficulty of downstream separation. Future engineering on PHA producing microorganisms should be focused on contamination resistant bacteria especially extremophiles, developments of engineering approaches for the extremophiles, increase on carbon substrates to PHA conversion and controlling Mw of PHA. The concept proof studies could still be conducted on E. coli or Pseudomonas spp. that are easily used for molecular manipulations. In this review, we will use E. coli and halophiles as examples to show how to engineer bacteria for enhanced PHA biosynthesis and for increasing PHA competitiveness.

  10. Engineering bacteria for enhanced polyhydroxyalkanoates (PHA) biosynthesis.

    Science.gov (United States)

    Chen, Guo-Qiang; Jiang, Xiao-Ran

    2017-09-01

    Polyhydroxyalkanoates (PHA) have been produced by some bacteria as bioplastics for many years. Yet their commercialization is still on the way. A few issues are related to the difficulty of PHA commercialization: namely, high cost and instabilities on molecular weights (Mw) and structures, thus instability on thermo-mechanical properties. The high cost is the result of complicated bioprocessing associated with sterilization, low conversion of carbon substrates to PHA products, and slow growth of microorganisms as well as difficulty of downstream separation. Future engineering on PHA producing microorganisms should be focused on contamination resistant bacteria especially extremophiles, developments of engineering approaches for the extremophiles, increase on carbon substrates to PHA conversion and controlling Mw of PHA. The concept proof studies could still be conducted on E. coli or Pseudomonas spp. that are easily used for molecular manipulations. In this review, we will use E. coli and halophiles as examples to show how to engineer bacteria for enhanced PHA biosynthesis and for increasing PHA competitiveness.

  11. Biosynthesis of myristic acid in luminescent bacteria

    International Nuclear Information System (INIS)

    Byers, D.M.

    1987-01-01

    In vivo pulse-label studies have demonstrated that luminescent bacteria can provide myritic acid (14:0) required for the synthesis of the luciferase substrate myristyl aldehyde. Luminescent wild type Vibrio harveyi incubated with [ 14 C] acetate in a nutrient-depleted medium accumulated substantial tree [ 14 C]fatty acid (up to 20% of the total lipid label). Radio-gas chromatography revealed that > 75% of the labeled fatty acid is 14:0. No free fatty acid was detected in wild type cells labeled prior to the development of bioluminescence in the exponential growth phase, or in a dark mutant of V. harveyi (mutant M17) that requires exogenous 14:0 for light emission. The preferential accumulation of 14:0 was not observed when wild type cells were labeled with [ 14 C]acetate in regular growth medium. Moreover, all V. harveyi strains exhibited similar fatty acid mass compositions regardless of the state of bioluminescence. Since earlier work has shown that a luminescence-related acyltransferase (defective in the M17 mutant) can catalyze the deacylation of fatty acyl-acyl carrier protein in vitro, the present results are consistent with a model in which this enzyme diverts 14:0 to the luminescence system during fatty acid biosynthesis. Under normal conditions, the supply of 14:0 by this pathway is tightly regulated such that bioluminescence development does not significantly alter the total fatty acid composition

  12. Control of triacylglycerol biosynthesis in plants

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-31

    Seeds of most species of the Umbelliferae (Apiaciae), Araliaceae, and Garryaceae families are characterized by their high content of the unusual C[sub 18] monounsaturated fatty acid petroselinic acid (18:l[Delta][sup 6cis]). Prior to a recent report of this lab, little was known of the biosynthetic origin of the cis[Delta][sup 6] double bond of petroselinic acid. Such knowledge may be of both biochemical and biotechnological significance. Because petroselinic acid is potentially the product of a novel desaturase, information regarding its synthesis may contribute to an understanding of fatty acid desaturation mechanisms in plants. Through chemical cleavage at its double bond, petroselinic acid can be used as a precursor of lauric acid (12:0), a component of detergents and surfactants, and adipic acid (6:0 dicarboxylic), the monomeric component of nylon 6,6. Therefore, the development of an agronomic source of an oil rich in petroselinic acid is of biotechnological interest. As such, studies of petroselinic acid biosynthesis may provide basic information required for any attempt to genetically engineer the production and accumulation of this fatty acid in an existing oilseed.

  13. A Biotin Biosynthesis Gene Restricted to Helicobacter

    Science.gov (United States)

    Bi, Hongkai; Zhu, Lei; Jia, Jia; Cronan, John E.

    2016-01-01

    In most bacteria the last step in synthesis of the pimelate moiety of biotin is cleavage of the ester bond of pimeloyl-acyl carrier protein (ACP) methyl ester. The paradigm cleavage enzyme is Escherichia coli BioH which together with the BioC methyltransferase allows synthesis of the pimelate moiety by a modified fatty acid biosynthetic pathway. Analyses of the extant bacterial genomes showed that bioH is absent from many bioC-containing bacteria and is replaced by other genes. Helicobacter pylori lacks a gene encoding a homologue of the known pimeloyl-ACP methyl ester cleavage enzymes suggesting that it encodes a novel enzyme that cleaves this intermediate. We isolated the H. pylori gene encoding this enzyme, bioV, by complementation of an E. coli bioH deletion strain. Purified BioV cleaved the physiological substrate, pimeloyl-ACP methyl ester to pimeloyl-ACP by use of a catalytic triad, each member of which was essential for activity. The role of BioV in biotin biosynthesis was demonstrated using a reconstituted in vitro desthiobiotin synthesis system. BioV homologues seem the sole pimeloyl-ACP methyl ester esterase present in the Helicobacter species and their occurrence only in H. pylori and close relatives provide a target for development of drugs to specifically treat Helicobacter infections. PMID:26868423

  14. The regulation and biosynthesis of antimycins

    Directory of Open Access Journals (Sweden)

    Ryan F. Seipke

    2013-11-01

    Full Text Available Antimycins (>40 members were discovered nearly 65 years ago but the discovery of the gene cluster encoding antimycin biosynthesis in 2011 has facilitated rapid progress in understanding the unusual biosynthetic pathway. Antimycin A is widely used as a piscicide in the catfish farming industry and also has potent killing activity against insects, nematodes and fungi. The mode of action of antimycins is to inhibit cytochrome c reductase in the electron transport chain and halt respiration. However, more recently, antimycin A has attracted attention as a potent and selective inhibitor of the mitochondrial anti-apoptotic proteins Bcl-2 and Bcl-xL. Remarkably, this inhibition is independent of the main mode of action of antimycins such that an artificial derivative named 2-methoxyantimycin A inhibits Bcl-xL but does not inhibit respiration. The Bcl-2/Bcl-xL family of proteins are over-produced in cancer cells that are resistant to apoptosis-inducing chemotherapy agents, so antimycins have great potential as anticancer drugs used in combination with existing chemotherapeutics. Here we review what is known about antimycins, the regulation of the ant gene cluster and the unusual biosynthetic pathway.

  15. Estrogen biosynthesis in human uterine adenomyosis

    International Nuclear Information System (INIS)

    Urabe, Mamoru; Yamamoto, Takara; Kitawaki, Jo; Honjo, Hideo; Okada, Hiroji

    1989-01-01

    Estrogen biosynthesis (aromatiase activity) was investigated in human adenomyosis tissue and compared with that of the normal myometrium, endometrium, and endometrical cancer tissues. Homogenates were incubated with [1,2,6,7- 3 H]androstenedione and NADPH at 37 deg. C for 1 h. After stopping the enzymatic reaction with ethyl acetate, [4- 14 C]estrone and [4- 14 C]estradiol-17β were added to the incubated sample. Estrone and estradiol were purified and identified by Bio-Rad AG1-X2 column chromatography, thin-layer chromatography and co-crystallization. Estrogen formed in the incubated sample was calculated from the 3 H/ 14 C ratio of the final crystal. The value for estrone formed from androstenedione was 52-132 fmol . h -1. g -1 wet weight. Aromatase activity in the adenomyosis tissues was higher than that in normal endometrial or myometrial tissues, but lower than that found in myometrial or endometrial tumour tissue. Furthermore, we investigated the effect of danazol, progresterone, and medroxyprogesterone acetate on adenomyosis cells in primary cultures. Aromatase activity in adenomyosis was blocked by danazol, but stimulated by progesterone and MPA. These results indicate that aromatase activity in adenomyosis may contribute to the growth of the ectopic endometrial tissue which occurs in this disease. (author)

  16. Glycoprotein biosynthesis by human normal platelets

    International Nuclear Information System (INIS)

    Rodriguez, P.; Bello, O.; Apitz-Castro, R.

    1987-01-01

    Incorporation of radioactive Man, Gal, Fuc, Glc-N, and NANA into washed human normal platelets and endogenous glycoproteins has been found. Both parameters were time dependent. Analysis of hydrolyzed labeled glycoproteins by paper chromatography revealed that the radioactive monosaccharide incubated with the platelets had not been converted into other sugars. Acid hydrolysis demonstrates the presence of a glycosidic linkage. All the effort directed to the demonstration of the existence of a lipid-sugar intermediate in intact human platelets yielded negative results for Man and Glc-N used as precursors. The incorporation of these sugars into glycoproteins is insensitive to bacitracin, suggesting no involvement of lipid-linked saccharides in the synthesis of glycoproteins in human blood platelets. The absence of inhibition of the glycosylation process in the presence of cycloheximide suggests that the sugars are added to proteins present in the intact platelets. These results support the contention that glycoprotein biosynthesis in human blood platelets observed under our experimental conditions is effected through direct sugar nucleotide glycosylation

  17. Biosynthesis and metabolism of steroids in molluscs.

    Science.gov (United States)

    Fernandes, Denise; Loi, Barbara; Porte, Cinta

    2011-11-01

    Molluscs are the second most diverse animal group, they are ecologically important and they are considered excellent indicators of ecosystem health. Some species have been widely used in pollution biomonitoring programs; however, their endocrinology is still poorly known. Despite some studies reporting the presence of (vertebrate-type) steroids in molluscs, information regarding enzymatic pathways involved in steroid synthesis and further catabolism of those steroids is still fragmentary. Regarding steroidogenesis, a number of excellent studies were performed in the 70s using different radio-labelled steroid precursors and detecting the formation of different metabolites. But, since then a long gap of research exist until the late 90s when the 'endocrine disruption' issue raised the need of a better knowledge of mollusc (and invertebrate) endocrinology in order to assess alterations caused by pollutants. Here we summarize past and recent studies dealing with steroid biosynthesis and metabolism in different mollusc species. Most of these studies suggest the involvement of steroids in mollusc reproduction. However, the knowledge is still fragmentary and many questions remain to be answered. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Transcriptional analysis of apple fruit proanthocyanidin biosynthesis

    Science.gov (United States)

    Henry-Kirk, Rebecca A.

    2012-01-01

    Proanthocyanidins (PAs) are products of the flavonoid pathway, which also leads to the production of anthocyanins and flavonols. Many flavonoids have antioxidant properties and may have beneficial effects for human health. PAs are found in the seeds and fruits of many plants. In apple fruit (Malus × domestica Borkh.), the flavonoid biosynthetic pathway is most active in the skin, with the flavan-3-ols, catechin, and epicatechin acting as the initiating units for the synthesis of PA polymers. This study examined the genes involved in the production of PAs in three apple cultivars: two heritage apple cultivars, Hetlina and Devonshire Quarrenden, and a commercial cultivar, Royal Gala. HPLC analysis shows that tree-ripe fruit from Hetlina and Devonshire Quarrenden had a higher phenolic content than Royal Gala. Epicatechin and catechin biosynthesis is under the control of the biosynthetic enzymes anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR1), respectively. Counter-intuitively, real-time quantitative PCR analysis showed that the expression levels of Royal Gala LAR1 and ANR were significantly higher than those of both Devonshire Quarrenden and Hetlina. This suggests that a compensatory feedback mechanism may be active, whereby low concentrations of PAs may induce higher expression of gene transcripts. Further investigation is required into the regulation of these key enzymes in apple. Abbreviations:ANOVAanalysis of varianceANRanthocyanidin reductaseDADdiode array detectorDAFBdays after full bloomDFRdihydroflavonol reductaseLARleucoanthocyanidin reductaseLC-MSliquid chromatography/mass spectrometryPAproanthocyanidinqPCRreal-time quantitative PCR PMID:22859681

  19. Explorations into the biosynthesis of bioscorine

    Energy Technology Data Exchange (ETDEWEB)

    Michelson, R.H.

    1988-01-01

    The biosynthesis of dioscorine in Dioscorea hispida has been studied by the feeding of putative precursors labelled at specific positions with {sup 2}H, {sup 3}H, and {sup 14}C. Administration of (3-{sup 14}C)3-hydroxy-3-methylglutaric acid to D. hispida by the wick method afforded dioscorine labelled preferentially at the C{sub 10} position implying that the biosynthetic pathway to the acetate-derived half of the dioscorine skeleton is going through this compound. Administration of ethyl (6-{sup 14}C)orsellinate to D. hispida by the wick method failed to give an appreciable incorporation into dioscroine thereby disproving an alternative mechanism describing the formation of the acetate-derived half of the dioscorine skeleton. Two attempts to simulate the alternative mechanism by oxidatively cleaving ethyl orsellinate also failed, further disfavoring this mechanism. Administration of (2,3){sup 13}C{sub 2}, {sup 14}C{sub 2}succinic acid, (3-{sup 14}C)aspartic acid and (7a-{sup 14}C)tryptophan by the leaf painting method gave very low incorporations into dioscorine making determination of the source of the nicotinic acid half of the dioscorine skeleton inconclusive. Administration of (6-{sup 2}H, {sup 3}H)nicotinic acid to D. hispida by the wick method afforded dioscorine exhibiting complete retention of {sup 3}H thereby disfavoring a mechanism involving a 3,6-dihydropyridine intermediate in the formation of the dioscorine skeleton.

  20. Absence of hemolytic disease of fetus and newborn despite maternal high-titer IgG anti-Ku.

    Science.gov (United States)

    Kakaiya, R M; Whaley, A; Howard-Menk, C; Rami, J; Papari, M; Campbell-Lee, S; Malecki, Z

    2010-01-01

    Anti-Ku seen in K(o) (Kell-null) individuals has previously been shown to cause severe hemolytic transfusion reactions. Maternal anti-Ku can cause none or moderate to severe hemolytic disease of the fetus and newborn (HDFN). In two of four previously described HDFN cases, intrauterine transfusions were required because of severe anemia. We report a case in which maternal anti-Ku did not cause HDFN. Standard serologic methods were used for RBC antibody screening and identification, adsorption and elution of RBC antibodies, and antigen typing. A gravida 3, para 3 (G3P3) woman was first evaluated in 2006 and was found to have an IgG RBC antibody that reacted against all panel RBCs in the anti-human globulin phase. A panel of RBCs treated with DTT did not react with the antibody. The antibody failed to react with one example of K(o) RBCs. The patient’s RBCs typed negative for the following Kell blood group antigens: KEL1, KEL2, KEL3, KEL4, KEL6, KEL7, KEL11, KEL13, and KEL18. These results established the presence of anti-Ku in maternal serum. The newborn was group A, D+ and required phototherapy for hyperbilirubinemia, but did not require transfusion. The woman was seen again in January 2010 during the third trimester (G4P3). At this time, anti-Ku titer was 256. She delivered a healthy group O, D+ baby boy at 37 weeks' gestation. Cord RBCs were 4+ for IgG by DAT. An eluate reacted with all RBCs tested, but did not react when tested against a panel of DTT-treated RBCs. K(o) phenotype is rare to begin with, and the maternal anti-Ku formation may require more than one pregnancy. Therefore, cases that can be evaluated for anti-Ku–related HDFN are rare. Our case contributes to serologic and clinical aspects of such rare cases.

  1. Associations among tooth loss, systemic inflammation and antibody titers to periodontal pathogens in Japanese patients with cardiovascular disease.

    Science.gov (United States)

    Aoyama, N; Suzuki, J-I; Kobayashi, N; Hanatani, T; Ashigaki, N; Yoshida, A; Shiheido, Y; Sato, H; Minabe, M; Izumi, Y; Isobe, M

    2018-02-01

    It is well known that there is a strong relationship between periodontitis and cardiovascular disease (CVD). Tooth loss reflects an end-stage condition of oral diseases, such as periodontitis. Infection with specific periodontal pathogens is known as a possible factor that influences development of CVD. The aim of this study was to assess the relationship between the number of residual teeth and systemic inflammatory conditions in patients with CVD. We divided 364 patients with CVD into four groups, according to the number of residual teeth: (i) ≥20 teeth; (ii) 10-19 teeth; (iii) 1-9 teeth; and (iv) edentulous. We recorded medical history, blood data and periodontal conditions. Serum samples were obtained and their IgG titers against three major periodontal pathogens were measured. Smoking rate and the prevalence of diabetes mellitus were higher in edentulous patients and in subjects with a few teeth compared with patients with many teeth. The levels of C-reactive protein were higher in patients with 1-9 teeth than in those with 10-19 teeth and with ≥20 teeth. The level of Porphyromonas gingivalis IgG in the group with 10-19 teeth was statistically higher than that in the group with ≥20 teeth. The level of P. gingivalis IgG in the edentulous group tended to be lower than that in the other groups. The patients with 1-9 teeth had the highest level of C-reactive protein among the four groups, and the patients with 10-19 teeth had the highest level of IgG to periodontal bacteria. We conclude that the number of remaining teeth may be used to estimate the severity of systemic inflammation in patients with CVD. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Successful isolation of infectious and high titer human monocyte-derived HIV-1 from two subjects with discontinued therapy.

    Science.gov (United States)

    Wang, Tong; Xu, Younong; Zhu, Haiying; Andrus, Thomas; Ivanov, Sergei B; Pan, Charlotte; Dolores, Jazel; Dann, Gregory C; Zhou, Michael; Forte, Dominic; Yang, Zihuan; Holte, Sarah; Corey, Lawrence; Zhu, Tuofu

    2013-01-01

    HIV-1 DNA in blood monocytes is considered a viral source of various HIV-1 infected tissue macrophages, which is also known as "Trojan horse" hypothesis. However, whether these DNA can produce virions has been an open question for years, due to the inability of isolating high titer and infectious HIV-1 directly from monocytes. In this study, we demonstrated successful isolation of two strains of M-HIV-1 (1690 M and 1175 M) from two out of four study subjects, together with their in vivo controls, HIV-1 isolated from CD4+ T-cells (T-HIV-1), 1690 T and 1175 T. All M- and T- HIV-1 isolates were detected CCR5-tropic. Both M- HIV-1 exhibited higher levels of replication in monocyte-derived macrophages (MDM) than the two T- HIV-1. Consistent with our previous reports on the subject 1175 with late infection, compartmentalized env C2-V3-C3 sequences were identified between 1175 M and 1175 T. In contrast, 1690 M and 1690 T, which were isolated from subject 1690 with relatively earlier infection, showed homogenous env C2-V3-C3 sequences. However, multiple reverse transcriptase (RT) inhibitor resistance-associated variations were detected in the Gag-Pol region of 1690 M, but not of 1690 T. By further measuring HIV DNA intracellular copy numbers post-MDM infection, 1690 M was found to have significantly higher DNA synthesis efficiency than 1690 T in macrophages, indicating a higher RT activity, which was confirmed by AZT inhibitory assays. These results suggested that the M- and T- HIV-1 are compartmentalized in the two study subjects, respectively. Therefore, we demonstrated that under in vitro conditions, HIV-1 infected human monocytes can productively release live viruses while differentiating into macrophages.

  3. Mimotopes selected by biopanning with high-titer HIV-neutralizing antibodies in plasma from Chinese slow progressors

    Directory of Open Access Journals (Sweden)

    Xiaoli Zhang

    Full Text Available OBJECTIVE: One approach to identifying HIV-1 vaccine candidates is to dissect the natural antiviral immune response in treatment-naïve individuals infected for over ten years, considered slow progressor patients (SPs. It is suspected that SP plasma has strongly neutralizing antibodies (NAb targeting specific HIV viral epitopes. METHODS: NAbs levels of 11 HIV-1-infected SPs were detected by PBMC-based neutralization assays. To investigate SP NAb epitope, this study used a biopanning approach to obtain mimotopes of HIV-1 that were recognized by SP plasma NAbs. IgG was purified from hightiter NAb SP plasma, and used as the ligand for three rounds of biopanning to select HIV-specific mimotopes from a phage-displayed random peptide library. Double-antibody sandwich ELISA, competitive inhibition assays, and peptide sequence analysis were used to evaluate the characteristics of phage-borne mimotopes. RESULTS: SPs had significantly more plasma neutralizing activity than typical progressors (TPs (p = 0.04. P2 and P9 plasma, which have highest-titer HIV-NAb, were selected as ligands for biopanning. After three rounds of biopanning, 48 phage clones were obtained, of which 22 clones were consistent with requirement, binding with HIV-1 positive plasma and unbinding with HIV-1 negative plasma. Compared with linear HIV-1 protein sequence and HIV-1 protein structure files, only 12 clones were possible linear mimotopes of NAbs. In addition, the C40 clone located in gp41 CHR was found to be a neutralizing epitope, which could inhibit pooled HIV-1 positive plasma reaction. CONCLUSION: Biopanning of serum IgG can yield mimotopes of HIV-1-related antigen epitopes. This methodology provides a basis for exploration into HIV-1-related antigen-antibody interactions and furthers NAb immunotherapy and vaccine design.

  4. Resolving the titer of murine cytomegalovirus by plaque assay using the M2-10B4 cell line and a low viscosity overlay

    Science.gov (United States)

    2014-01-01

    Background Murine cytomegalovirus (MCMV) is increasingly used as an infectious model to investigate host-pathogen interactions in mice. Detailed methods have been published for using primary murine embryonic fibroblasts (MEFs) for preparing stocks and determining viral titers of MCMV. For determining the titer of MCMV by plaque assay, these methods rely on a high viscosity media that restricts viral spreading through the supernatant of the culture, but is also usually too viscous to pipet. Moreover, MEFs must be repeatedly generated and can vary widely from batch-to-batch in purity, proliferation rates, and the development of senescence. In contrast, the M2-10B4 bone marrow stromal cell line (ATCC # CRL-1972), which is also permissive for MCMV, has been reported to produce high-titer stocks of MCMV and has the considerable advantages of growing rapidly and consistently. However, detailed methods using these cells have not been published. Methods We modified existing protocols to use M2-10B4 cells for measuring MCMV titers by plaque assay. Results We found that MCMV plaques could be easily resolved on monolayers of M2-10B4 cells. Moreover, plaques formed normally even when cultures of M2-10B4 cells were less than 50% confluent on the day of infection, as long as we also used a reduced viscosity overlay. Conclusions Overall, our protocol enabled us to use a consistent cell line to assess viral titers, rather than repeatedly producing primary MEFs. It also allowed us to start the assay with 4-fold fewer cells than would be required to generate a confluent monolayer, reducing the lead-time prior to the start of the assay. Finally, the reduced viscosity CMC could be handled by pipet and did not need to be pre-mixed with media, thus increasing its shelf-life and ease-of-use. We describe our results here, along with detailed protocols for the use of the M2-10B4 cell lines to determine the titer and grow stocks of MCMV. PMID:24742045

  5. Dithiolopyrrolone Natural Products: Isolation, Synthesis and Biosynthesis

    Science.gov (United States)

    Qin, Zhiwei; Huang, Sheng; Yu, Yi; Deng, Hai

    2013-01-01

    Dithiolopyrrolones are a class of antibiotics that possess the unique pyrrolinonodithiole (4H-[1,2] dithiolo [4,3-b] pyrrol-5-one) skeleton linked to two variable acyl groups. To date, there are approximately 30 naturally occurring dithiolopyrrolone compounds, including holomycin, thiolutin, and aureothricin, and more recently thiomarinols, a unique class of hybrid marine bacterial natural products containing a dithiolopyrrolone framework linked by an amide bridge with an 8-hydroxyoctanoyl chain linked to a monic acid. Generally, dithiolopyrrolone antibiotics have broad-spectrum antibacterial activity against various microorganisms, including Gram-positive and Gram-negative bacteria, and even parasites. Holomycin appeared to be active against rifamycin-resistant bacteria and also inhibit the growth of the clinical pathogen methicillin-resistant Staphylococcus aureus N315. Its mode of action is believed to inhibit RNA synthesis although the exact mechanism has yet to be established in vitro. A recent work demonstrated that the fish pathogen Yersinia ruckeri employs an RNA methyltransferase for self-resistance during the holomycin production. Moreover, some dithiolopyrrolone derivatives have demonstrated promising antitumor activities. The biosynthetic gene clusters of holomycin have recently been identified in S. clavuligerus and characterized biochemically and genetically. The biosynthetic gene cluster of thiomarinol was also identified from the marine bacterium Pseudoalteromonas sp. SANK 73390, which was uniquely encoded by two independent pathways for pseudomonic acid and pyrrothine in a novel plasmid. The aim of this review is to give an overview about the isolations, characterizations, synthesis, biosynthesis, bioactivities and mode of action of this unique family of dithiolopyrrolone natural products, focusing on the period from 1940s until now. PMID:24141227

  6. Biosynthesis of 2'-deoxycoformycin by Streptomyces antibioticus

    International Nuclear Information System (INIS)

    Hanvey, J.C.

    1986-01-01

    The biosynthesis of 2'-deoxycoformycin by Streptomyces antibioticus has been investigated. Previous studies indicated that a purine nycleoside is the precursor for ten of the eleven carbons of deoxycoformycin. It was proposed that carbon-7 of the seven-membered, 1,3-diazepine-ring of deoxycoformycin is not derived from the purine ring but by an insertion of a one-carbon unit between N-1 and C-6 of the purine ring. Carbon-1 of D-ribose has now been identified as the precursor for carbon 7 (and 1') of deoxycoformycin. Although the tetrahydrofolate/one-carbon pool contributes one carbon units to carbons-2 and 8 of the purine ring, which become carbons-5 and 2 of deoxycoformycin, it is not involved in the formation of carbon-7. The retention of the tritium on carbon-2 of [2,8- 3 H]-adenosine in deoxycoformycin indicates that guanosine is not the nucleoside precursor of deoxycoformycin. The failure to detect the incorporation of 18 O from [6- 18 O]-inosine in deoxycoformycin suggests that inosine is not the purine nucleoside precursor of deoxycoformycin. Therefore, it is proposed that adenosine and carbon-1 and d-ribose are the carbon-nitrogen precursors of deoxycoformycin. A mechanism for the insertion of carbon-1 of d-ribose into the pyrimidine portion of the purine ring has been proposed. Using cell-free extracts of S. antibioticus, 8-ketodeoxycoformycin and 8-ketocoformycin can be converted to deoxycoformycin and coformycin, respectively. The enzyme which reduces the 8-keto groups has been characterized and partially purified

  7. Study on ecdysteroid levels and gene expression of enzymes related to ecdysteroid biosynthesis in the larval testis of Spodoptera littoralis.

    Science.gov (United States)

    Iga, Masatoshi; Blais, Catherine; Smagghe, Guy

    2013-01-01

    We investigated here the ecdysteroid titers and the expression of six genes coding for known enzymes of the ecdysteroid biosynthesis in the testes of last instar larvae of the pest cotton leafworm, Spodoptera littoralis. We showed that the timing of the ecdysteroid profile was the same in testes and in hemolymph, with a small peak at day 2 and a large one at day 4 after ecdysis. Ecdysone and 20-hydroxyecdysone (20E) were detected in both tissues. 20E was the major ecdysteroid in testes and in hemolymph from day 4. Interestingly, the gene expression of the steroidogenetic enzymes, Neverland, and the five cytochrome P450 enzymes encoded by the Halloween genes was confirmed in the testes, and varied during the instar. However, from the data obtained so far, we cannot conclude that the measured ecdysteroids in the testes result from the activity of the genes under study. Indeed, it is suggested that the ecdysone produced centrally in the prothoracic glands, could have been transformed into 20E in the testes, where Sl-shade is well expressed. © 2012 Wiley Periodicals, Inc.

  8. Abnormal Ergosterol Biosynthesis Activates Transcriptional Responses to Antifungal Azoles.

    Science.gov (United States)

    Hu, Chengcheng; Zhou, Mi; Wang, Wenzhao; Sun, Xianyun; Yarden, Oded; Li, Shaojie

    2018-01-01

    Fungi transcriptionally upregulate expression of azole efflux pumps and ergosterol biosynthesis pathway genes when exposed to antifungal agents that target ergosterol biosynthesis. To date, these transcriptional responses have been shown to be dependent on the presence of the azoles and/or depletion of ergosterol. Using an inducible promoter to regulate Neurospora crassa erg11 , which encodes the major azole target, sterol 14α-demethylase, we were able to demonstrate that the CDR4 azole efflux pump can be transcriptionally activated by ergosterol biosynthesis inhibition even in the absence of azoles. By analyzing ergosterol deficient mutants, we demonstrate that the transcriptional responses by cdr4 and, unexpectedly, genes encoding ergosterol biosynthesis enzymes ( erg genes) that are responsive to azoles, are not dependent on ergosterol depletion. Nonetheless, deletion of erg2 , which encodes C-8 sterol isomerase, also induced expression of cdr4 . Deletion of erg2 also induced the expression of erg24 , the gene encoding C-14 sterol reductase, but not other tested erg genes which were responsive to erg11 inactivation. This indicates that inhibition of specific steps of ergosterol biosynthesis can result in different transcriptional responses, which is further supported by our results obtained using different ergosterol biosynthesis inhibitors. Together with the sterol profiles, these results suggest that the transcriptional responses by cdr4 and erg genes are associated with accumulation of specific sterol intermediate(s). This was further supported by the fact that when the erg2 mutant was treated with ketoconazole, upstream inhibition overrode the effects by downstream inhibition on ergosterol biosynthesis pathway. Even though cdr4 expression is associated with the accumulation of sterol intermediates, intra- and extracellular sterol analysis by HPLC-MS indicated that the transcriptional induction of cdr4 did not result in efflux of the accumulated intermediate

  9. The effects of wet cupping on serum high-sensitivity C-reactive protein and heat shock protein 27 antibody titers in patients with metabolic syndrome.

    Science.gov (United States)

    Farahmand, Seyed Kazem; Gang, Li Zhi; Saghebi, Seyed Ahmad; Mohammadi, Maryam; Mohammadi, Shabnam; Mohammadi, Ghazaleh; Ferns, Gordan A; Ghanbarzadeh, Majid; Razmgah, Gholamreza Ghayour; Ramazani, Zahra; Ghayour-Mobarhan, Majid; Esmaily, Habibollah; Bahrami Taghanaki, Hamidreza; Azizi, Hoda

    2014-08-01

    It has previously been reported that increased level of serum heat shock proteins (Hsps) antibody in patients with metabolic syndrome. It is possible that the expression of Hsp and inflammatory markers can be affected by cupping and traditional Chinese medicine. There is a little data investigating the effects of cupping on markers of inflammation and Hsp proteins, hence, the objective of this study was evaluation of the effects of wet cupping on serum high-sensitivity C-reactive protein (hs-CRP) and Hsp27 antibody titers in patients with metabolic syndrome. Serum Hs-CRP and Hsp27 antibody titers were assessed in samples from 126 patients with metabolic syndrome (18-65 years of age) at baseline, and after 6 and 12 weeks after treatment. One hundred and twenty-six patients were randomly divided into the experimental group treated with wet cupping combined with dietary advice, and the control group treated with dietary advice alone using a random number table. Eight patients in case group and five subjects in control groups were excluded from the study. Data were analyzed using SPSS 15.0 software and a repeated measure ANCOVA. Serum hs-CRP titers did not change significantly between groups (p>0.05) and times (p=0.27). The same result was found for Hsp27 titers (p>0.05). Wet-cupping on the interscapular region has no effect on serum hs-CRP and Hsp27 patients with metabolic syndrome. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. High Titers of IgE Antibody to Dust Mite Allergen and the Risk for Wheezing Among Asthmatic Children Infected with Rhinovirus

    Science.gov (United States)

    Soto-Quiros, Manuel; Avila, Lydiana; Platts-Mills, Thomas AE; Hunt, John F.; Erdman, Dean D.; Carper, Holliday; Murphy, Deborah D.; Odio, Silvia; James, Hayley R.; Patrie, James T.; Hunt, William; O’Rourke, Ashli K.; Davis, Michael D.; Steinke, John W.; Lu, Xiaoyan; Kennedy, Joshua; Heymann, Peter W.

    2013-01-01

    Background The relevance of allergic sensitization, judged by titers of serum IgE antibodies, to the risk of an asthma exacerbation caused by rhinovirus is unclear. Objective To examine the prevalence of rhinovirus infections in relation to the atopic status of children treated for wheezing in Costa Rica, a country with an increased asthma burden. Methods The children enrolled (n=287) were 7 through 12 years old. They included 96 with acute wheezing, 65 with stable asthma, and 126 non-asthmatic controls. PCR methods, including gene sequencing to identify rhinovirus strains, were used to identify viral pathogens in nasal washes. Results were examined in relation to wheezing, total IgE, allergen-specific IgE antibody, and levels of expired nitric oxide (FENO). Results Sixty-four percent of wheezing children compared to 13% of children with stable asthma and 17% of the non-asthmatic controls tested positive for rhinovirus (p<0.001 for both comparisons). Among wheezing subjects, 75% of the rhinoviruses detected were Group C strains. High titers of IgE antibodies to dust mite allergen (especially Dermatophagoides sp) were common and correlated significantly with levels of total IgE and FENO. The greatest risk for wheezing was observed among children with titers of IgE antibodies to dust mite ≥17.5 IU/ml who tested positive for rhinovirus (odds ratio for wheezing: 31.5; 95% CI 8.3–108, p<0.001). Conclusions High titers of IgE antibody to dust mite allergen were common and significantly increased the risk for acute wheezing provoked by rhinovirus among asthmatic children. PMID:22560151

  11. High titers of IgE antibody to dust mite allergen and risk for wheezing among asthmatic children infected with rhinovirus.

    Science.gov (United States)

    Soto-Quiros, Manuel; Avila, Lydiana; Platts-Mills, Thomas A E; Hunt, John F; Erdman, Dean D; Carper, Holliday; Murphy, Deborah D; Odio, Silvia; James, Hayley R; Patrie, James T; Hunt, William; O'Rourke, Ashli K; Davis, Michael D; Steinke, John W; Lu, Xiaoyan; Kennedy, Joshua; Heymann, Peter W

    2012-06-01

    The relevance of allergic sensitization, as judged by titers of serum IgE antibodies, to the risk of an asthma exacerbation caused by rhinovirus is unclear. We sought to examine the prevalence of rhinovirus infections in relation to the atopic status of children treated for wheezing in Costa Rica, a country with an increased asthma burden. The children enrolled (n= 287) were 7 through 12 years old. They included 96 with acute wheezing, 65 with stable asthma, and 126 nonasthmatic control subjects. PCR methods, including gene sequencing to identify rhinovirus strains, were used to identify viral pathogens in nasal washes. Results were examined in relation to wheezing, IgE, allergen-specific IgE antibody, and fraction of exhaled nitric oxide levels. Sixty-four percent of wheezing children compared with 13% of children with stable asthma and 13% of nonasthmatic control subjects had positive test results for rhinovirus (P< .001 for both comparisons). Among wheezing subjects, 75% of the rhinoviruses detected were group C strains. High titers of IgE antibodies to dust mite allergen (especially Dermatophagoides species) were common and correlated significantly with total IgE and fraction of exhaled nitric oxide levels. The greatest risk for wheezing was observed among children with titers of IgE antibodies to dust mite of 17.5 IU/mL or greater who tested positive for rhinovirus (odds ratio for wheezing, 31.5; 95% CI, 8.3-108; P< .001). High titers of IgE antibody to dust mite allergen were common and significantly increased the risk for acute wheezing provoked by rhinovirus among asthmatic children. Published by Mosby, Inc.

  12. Individuals with selective IgA deficiency resolve rotavirus disease and develop higher antibody titers (IgG, IgG1) than IgA competent individuals.

    Science.gov (United States)

    Istrate, Claudia; Hinkula, Jorma; Hammarström, Lennart; Svensson, Lennart

    2008-03-01

    While IgA is proposed to be essential to control rotavirus disease, no information is available how IgA deficient individuals modulate rotavirus disease and immune responses. In this study it was shown that patients (n = 62) with selective IgA deficiency (IgA-D) (IgA proficient individuals (n = 62) (geometric mean titer, GMT) 18,101 vs. 4,000 (P IgA is not essential for resolving rotavirus disease in humans.

  13. PEMBUATAN DAN STANDARISASI ANTIGEN AI H5N1 KOMERSIAL UNTUK MONITORING TITER ANTIBODI HASIL VAKSINASI AI DI INDUSTRI PETERNAKAN AYAM

    Directory of Open Access Journals (Sweden)

    Retno D. Soejoedono

    2012-04-01

    Full Text Available Vaccination is one of the chosen strategy for controling AI H5N1 in Indonesia. Vaccination able to induce protective antibodies against AI but unable to inhibit viral infection. Determination of antibody titers in the serum from bird vaccinated with AI-H5N1 vaccine consisting of 2 or 3 different AI virus isolates difficult to be meassured if the antigen for HI test is uncalibrated yet. Furthermore, the determination of a minimum protective antibody titer against the challenge of AI virus circulating in the field at this time needs to be done. This study aims to determine the H5N1 AI virus antigen for standart HI test and the minimum titre of antibodies that able neutralize virus infection. As much as 55 chickens were divided into 11 groups, 10 groups vaccinated with commercial AI vaccine and AI H5N1 field isolat antigen. Four types of commercial vaccines were veccinated to one group and seven other groups vaccinated with the antigen AI Legok 2004, Nagrak Ag 2009, Ag Lawang 2010, as well as polyvalent Ag combination of these three types of antigen. After third vaccinations, the presence of antibodieswere meassured by HI test. Serum with a titer test 26-28 were tested for the capability of virus neutralizationin using virus neutralization test against three different H5N1 AI virus field isolates. The test results showed that the H5N1 subtype AI virus antigen representative as standart antigen for HI test is antigen Legok 2004 and the minimum titer which able neutralize H5N1 AI virus field isolates 28

  14. Determination of low tetanus or diphtheria antitoxin titers in sera by a toxin neutralization assay and a modified toxin-binding inhibition test

    Directory of Open Access Journals (Sweden)

    M.H. Sonobe

    2007-01-01

    Full Text Available A method for the screening of tetanus and diphtheria antibodies in serum using anatoxin (inactivated toxin instead of toxin was developed as an alternative to the in vivo toxin neutralization assay based on the toxin-binding inhibition test (TOBI test. In this study, the serum titers (values between 1.0 and 19.5 IU measured by a modified TOBI test (Modi-TOBI test and toxin neutralization assays were correlated (P < 0.0001. Titers of tetanus or diphtheria antibodies were evaluated in serum samples from guinea pigs immunized with tetanus toxoid, diphtheria-tetanus or triple vaccine. For the Modi-TOBI test, after blocking the microtiter plates, standard tetanus or diphtheria antitoxin and different concentrations of guinea pig sera were incubated with the respective anatoxin. Twelve hours later, these samples were transferred to a plate previously coated with tetanus or diphtheria antitoxin to bind the remaining anatoxin. The anatoxin was then detected using a peroxidase-labeled tetanus or diphtheria antitoxin. Serum titers were calculated using a linear regression plot of the results for the corresponding standard antitoxin. For the toxin neutralization assay, L+/10/50 doses of either toxin combined with different concentrations of serum samples were inoculated into mice for anti-tetanus detection, or in guinea pigs for anti-diphtheria detection. Both assays were suitable for determining wide ranges of antitoxin levels. The linear regression plots showed high correlation coefficients for tetanus (r² = 0.95, P < 0.0001 and for diphtheria (r² = 0.93, P < 0.0001 between the in vitro and the in vivo assays. The standardized method is appropriate for evaluating titers of neutralizing antibodies, thus permitting the in vitro control of serum antitoxin levels.

  15. HIV-1 specific antibody titers and neutralization among chronically infected patients on long-term suppressive antiretroviral therapy (ART: a cross-sectional study.

    Directory of Open Access Journals (Sweden)

    Johannes S Gach

    Full Text Available The majority of potent and broadly neutralizing antibodies against HIV-1 have been isolated from untreated patients with acute or chronic infection. To assess the extent of HIV-1 specific antibody response and neutralization after many years of virologic suppression from potent combination ART, we examined antibody binding titers and neutralization of 51 patients with chronic HIV-1 infection on suppressive ART for at least three years. In this cross-sectional analysis, we found high antibody titers against gp120, gp41, and the membrane proximal external region (MPER in 59%, 43%, and 27% of patients, respectively. We observed significantly higher endpoint binding titers for gp120 and gp41 for patients with >10 compared to ≤ 10 years of detectable HIV RNA. Additionally, we observed higher median gp120 and gp41 antibody titers in patients with HIV RNA 10 years of detectable HIV RNA (8/20 [40.0%] versus 3/31 [9.7%] for ≤ 10 years, p = 0.02 and a trend toward greater neutralization in patients with ≤ 5 years of HIV RNA 5 years, p = 0.08. All patients with neutralizing activity mediated successful phagocytosis of VLPs by THP-1 cells after antibody opsonization. Our findings of highly specific antibodies to several structural epitopes of HIV-1 with antibody effector functions and neutralizing activity after long-term suppressive ART, suggest continuous antigenic stimulation and evolution of HIV-specific antibody response occurs before and after suppression with ART. These patients, particularly those with slower HIV progression and more time with detectable viremia prior to initiation of suppressive ART, are a promising population to identify and further study functional antibodies against HIV-1.

  16. Antibody titers to vaccination are not predictive of level of protection against a BVDV type 1b challenge in Bos indicus - Bos taurus steers.

    Science.gov (United States)

    Downey-Slinker, E D; Ridpath, J F; Sawyer, J E; Skow, L C; Herring, A D

    2016-09-30

    Subclinical illness associated with infection is thought to reduce performance and increase production costs in feedlot cattle, but underlying components remain largely unidentified. Vaccination is frequently used in feedlot settings but producers lack metrics that evaluate the effectiveness of vaccination programs. The goal of this study was to determine if levels of serum neutralizing antibody titers were predictive of levels of vaccine protection in a commercial setting. During this four-year study, Angus-Nellore steers housed in a production feedlot setting were assigned to 1 of 3 vaccine treatments: killed vaccine (kV), modified live virus (MLV) vaccine, or no vaccine (control), and were challenged with a noncytopathic 1b field strain of bovine viral diarrhea virus. Rectal temperature and levels of circulating lymphocytes and platelets were monitored following challenge. While no animals were diagnosed as clinically ill with respiratory disease, indicators of disease (pyrexia, lymphopenia, and thrombocytopenia) were observed. The MLV treatment elicited higher antibody titers to the vaccination than the kV, and calves in the MLV treatment had higher mean titers at challenge. The year that elicited the highest antibody response to the vaccination and the year with the lowest frequency of phenotypic responses to the challenge were not concurrent. The MLV treatment had the highest proportion, 34.68%, of animals that were protected against the challenge regardless of the pre-challenge antibody titer and had the fewest number of lymphopenia cases in response to the challenge. Both vaccine treatments mitigated thrombocytopenia when compared to the control treatment, and the MLV treatment reduced lymphopenia; however, these symptoms were not completely eliminated in vaccinated animals. Pyrexia was present in 40.11% of the animals, but no difference in the frequency of cases between treatments was observed. Pre-challenge vaccination response was not indicative of the

  17. Effect of revaccination using different schemes among adults with low or undetectable anti-HBs titers after hepatitis B virus vaccination.

    Science.gov (United States)

    Lin, Chao-Shuang; Xie, Shi-Bin; Liu, Jing; Zhao, Zhi-Xin; Chong, Yu-Tian; Gao, Zhi-Liang

    2010-10-01

    Our objective was to investigate the effect of various reimmunization schemes for hepatitis B in adults with low or undetectable anti-HBs titers. Over 2 years, 10 μg of Saccharomyces cerevisiae-recombinant hepatitis B virus (HBV) vaccine (synthesized in China) was used in at least one standardized scheme to immunize 2,310 healthy male and nonpregnant female adults. Of these, 240 subjects tested negative for hepatitis B markers. These 240 subjects were equally divided into 4 groups. The first group, designated Engerix-40, was revaccinated with 40 μg Engerix-B; the second, Engerix-20, was revaccinated with 20 μg Engerix-B; the third, Chinese-20, was revaccinated with 20 μg Chinese-made yeast-recombinant vaccine; and the last group, Chinese-10, was revaccinated with 10 μg Chinese-made yeast-recombinant vaccine. Blood samples were collected before and 1, 2, 8, and 12 months after the first injection. The anti-HBs-positive conversion rates of the Engerix-40, Engerix-20, and Chinese-20 groups were higher than that of the Chinese-10 group (P anti-HBs conversion rate increased in all groups, but values were significantly different from those for the other groups only in the Chinese-10 group (P anti-HBs geometric mean titers (GMTs) of the Engerix-40, Engerix-20, and Chinese-20 groups were higher than in the Chinese-10 group (P anti-HBs titers in subjects with low or undetectable titers after HBV vaccination.

  18. Host plant pubescence: Effect on silverleaf whitefly, Bemisia argentifolii, fourth instar and pharate adult dimensions and ecdysteroid titer fluctuations

    Directory of Open Access Journals (Sweden)

    Dale B. Gelman

    2003-08-01

    Full Text Available The ability to generate physiologically synchronous groups of insects is vital to the performance of investigations designed to test insect responses to intrinsic and extrinsic stimuli. During a given instar, the silverleaf whitefly, Bemisia argentifolii, increase in depth but not in length or width. A staging system to identify physiologically synchronous 4th instar and pharate adult silverleaf whiteflies based on increasing body depth and the development of the adult eye has been described previously. This study determined the effect of host plant identity on ecdysteroid fluctuations during the 4th instar and pharate adult stages, and on the depth, length and width dimensions of 4th instar/pharate adult whiteflies. When grown on the pubescent-leafed green bean, tomato and poinsettia plants, these stages were significantly shorter and narrower, but attained greater depth than when grown on the glabrous-leafed cotton, collard and sweet potato plants. Thus, leaf pubescence is associated with reduced length and width dimensions, but increased depth dimensions in 4th instars and pharate adults. For all host plants, nymphal ecdysteroid titers peaked just prior to the initiation of adult development. However, when reared on pubescent-leafed plants, the initiation of adult development typically occurred in nymphs that had attained a depth of 0.2 to 0.25 mm (Stage 3 - 4. When reared on glabrous-leafed plants, the initiation of adult development typically occurred earlier, in nymphs that had attained a depth of only 0.15-0.18 mm (Stage 2 Old - early 3. Therefore, based on ecdysteroid concentration, it appears that Stage-2, -3 and -4/5 nymphs reared on pubescent-leafed plants are physiologically equivalent to Stage-1, -2 Young and -2 Old/3, respectively, nymphs reared on glabrous-leafed plants. The host plant affected the width but not the height of the nymphal-adult premolt ecdysteroid peak. However, leaf pubescence was not the determining factor. Thus

  19. Intake of specific fatty acids and fat alters growth, health, and titers following vaccination in dairy calves.

    Science.gov (United States)

    Esselburn, K M; O'Diam, K M; Hill, T M; Bateman, H G; Aldrich, J M; Schlotterbeck, R L; Daniels, K M

    2013-09-01

    Typical fatty acid profiles of milk and milk replacer (MR) differ. Calf MR in the United States are made from animal fat, which are low in short- and medium-chain fatty acids and linolenic acid. Two 56-d trials compared a control MR containing 27% crude protein and formulated with 3 fat and fatty acid compositions. The 3 MR treatments were (1) only animal fat totaling 17% fat (CON), (2) animal fat supplemented with butyrate, medium-chain fatty acids, and linolenic acid using a commercial product (1.25% NeoTec4 MR; Provimi North America, Brookville, OH) totaling 17% fat (fatty acid-supplemented; FA-S), and (3) milk fat totaling 33% fat (MF). The MR were fed at 660 g of dry matter from d 0 to 42 and weaned. Starter (20% crude protein) and water were fed ad libitum for 56 d. Trial 1 utilized Holstein calves (24 female, 24 male) during summer months and trial 2 utilized Holstein calves (48 male) during fall months. Calves (41±1 kg of initial body weight; 2 to 3d of age) were sourced from a single farm and housed in a naturally ventilated nursery without added heat. Calves were in individual pens with straw bedding. Calf was the experimental unit. Data for each trial were analyzed as a completely randomized design with a 3 (MR treatment) × 2 (sex) factorial arrangement of treatments in trial 1 with repeated measures and as a completely randomized design with 3 MR treatments in trial 2 with repeated measures. Preplanned contrast statements of treatments CON versus FA-S and CON versus MF were used to separate means. We found no interactions of MR treatment by sex. Calf average daily gain, hip width change, and feed efficiency differed (CONFA-S). Titers to bovine respiratory parainfluenza-3 and bovine virus diarrhea type 1 (vaccinations to these pathogens were on d 7 and 28) in serum samples taken on d 49 and 56 differed (CONFA-S; CONFA-S; CON>MF). Calves fed FA-S and MF had improved growth and feed efficiency compared with calves fed CON, whereas calves fed FA-S also

  20. Effect of oral administration of Propionibacterium acnes on growth performance, DTH response and anti-OVA titers in goat kids

    Directory of Open Access Journals (Sweden)

    Luis Miguel Ferrer

    2013-01-01

    Full Text Available Immunostimulants are susbstances that stimuli the response of effector cells to activate the immune response such as antigen uptake, cytokine release or antibody response. These substances can increase resistence to infection by different types of microorganisms, reducing dependence of antibiotics used in livestock animals. Recent reports have demonstrated the positive effect of Propionibacterium acnes (P. acnes to control animal diseases. In this study, we evaluated the effect of the non-specific immunostimulant P. acnes on immunological functions and growth performance in goat kids. Twenty five goat kids served as control group (A and another 25 animals received P. acnes being the experimental group (B. Kids were challenged with ovalbumin (OVA to assess humoral immunity. To assess in vivo cell immunity, delayed type hypersensitivity (DTH test with phytohemagglutinin (PHA was used, clinical signs and body weight were recorded each week until 9 weeks of age when the experiment ended. Blood samples were obtained to analyze serum proteins fractions and anti-OVA specific antibodies. No clinical signs of disease and no differences (p>0.05 on body weight between groups were recorded (7.32±0.81 kg in group A, 7.13±0.65 kg in group B. Goat kids from group B had more total protein (59.8±5g/l and albumin levels (32.8±3.3g/l than goat kids from group A (56.6±5.7 g/l, 29.6±3.9 g/l respectively (p<0.05. DTH response in goat kids from group B on day 42 was higher (p<0.05 than group A. At day 63, goat kids from group receiving P. acnes had higher percentage (85.4 of anti-OVA IgM titers (p<0.05 than control group (57.7. In conclusion, the results showed that oral administration of P. acnes to goat kids improved some aspects of the immune system of the animals and it could be used to control goat diseases.

  1. Jasmonate-induced biosynthesis of andrographolide in Andrographis paniculata.

    Science.gov (United States)

    Sharma, Shiv Narayan; Jha, Zenu; Sinha, Rakesh Kumar; Geda, Arvind Kumar

    2015-02-01

    Andrographolide is a prominent secondary metabolite found in Andrographis paniculata that exhibits enormous pharmacological effects. In spite of immense value, the normal biosynthesis of andrographolide results in low amount of the metabolite. To induce the biosynthesis of andrographolide, we attempted elicitor-induced activation of andrographolide biosynthesis in cell cultures of A. paniculata. This was carried out by using methyl jasmonate (MeJA) as an elicitor. Among the various concentrations of MeJA tested at different time periods, 5 µM MeJA yielded 5.25 times more andrographolide content after 24 h of treatment. The accumulation of andrographolide was correlated with the expression level of known regulatory genes (hmgs, hmgr, dxs, dxr, isph and ggps) of mevalonic acid (MVA) and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways. These results established the involvement of MeJA in andrographolide biosynthesis by inducing the transcription of its biosynthetic pathways genes. The coordination of isph, ggps and hmgs expression highly influenced the andrographolide biosynthesis. © 2014 Scandinavian Plant Physiology Society.

  2. Biosynthesis and functions of sulfur modifications in tRNA

    Directory of Open Access Journals (Sweden)

    Naoki eShigi

    2014-04-01

    Full Text Available Sulfur is an essential element for a variety of cellular constituents in all living organisms. In tRNA molecules, there are many sulfur-containing nucleosides, such as the derivatives of 2‑thiouridine (s2U, 4-thiouridine (s4U, 2-thiocytidine (s2C, and 2-methylthioadenosine (ms2A. Earlier studies established the functions of these modifications for accurate and efficient translation, including proper recognition of the codons in mRNA or stabilization of tRNA structure. In many cases, the biosynthesis of these sulfur modifications starts with cysteine desulfurases, which catalyze the generation of persulfide (an activated form of sulfur from cysteine. Many sulfur-carrier proteins are responsible for delivering this activated sulfur to each biosynthesis pathway. Finally, specific modification enzymes activate target tRNAs and then incorporate sulfur atoms. Intriguingly, the biosynthesis of 2-thiouridine in all domains of life is functionally and evolutionarily related to the ubiquitin-like post-translational modification system of cellular proteins in eukaryotes. This review summarizes the recent characterization of the biosynthesis of sulfur modifications in tRNA and the novel roles of this modification in cellular functions in various model organisms, with a special emphasis on 2-thiouridine derivatives. Each biosynthesis pathway of sulfur-containing molecules is mutually modulated via sulfur trafficking, and 2-thiouridine and codon usage bias have been proposed to control the translation of specific genes.

  3. Detection of high titers of antibody against Helicobacter cysteine-rich proteins A, B, C, and E in Helicobacter pylori-infected individuals.

    Science.gov (United States)

    Mittl, Peer R E; Lüthy, Lucas; Reinhardt, Christoph; Joller, Hellen

    2003-07-01

    The family of Helicobacter cysteine-rich proteins (Hcp) constitutes one of the largest protein families that are specific for proteobacteria from the delta/epsilon subgroup. Most of the proteins belonging to this family have so far only been recognized on the genome level. To investigate the expression of Hcp proteins in vivo we analyzed titers of antibody against HcpA (HP0211), HcpB (HP0336), HcpC (HP1098), and HcpE (HP0235) in sera from 30 Helicobacter pylori-positive individuals and in a control group of six H. pylori-negative individuals. Significantly higher titers of antibody were observed for H. pylori-positive individuals (P HcpE immunoglobulin G titers in H. pylori-positive individuals (correlation > 0.7), but there is only a weak correlation for HcpB (correlation HcpE are present in the genomes of strains 26695 and J99, whereas HcpB is absent from most strains. Since Hcp proteins are specific for H. pylori, immunological assays including Hcp proteins might be of value to detect H. pylori infection and perhaps to distinguish among different groups of H. pylori-positive patients.

  4. Changes in the mycovirus (LeV) titer and viral effect on the vegetative growth of the edible mushroom Lentinula edodes.

    Science.gov (United States)

    Kim, Jung-Mi; Song, Ha-Yeon; Choi, Hyo-Jin; Yun, Suk-Hyun; So, Kum-Kang; Ko, Han-Kyu; Kim, Dae-Hyuk

    2015-02-02

    This study attempted to cure the edible mushroom Lentinula edodes strain FMRI0339 of the L. edodes mycovirus (LeV) in order to obtain an isogenic virus-free fungal strain as well as a virus-infected strain for comparison. Mycelial fragmentation, followed by being spread on a plate with serial dilutions resulted in a virus-free colony. Viral absence was confirmed with gel electrophoresis after dsRNA-specific virus purification, Northern blot analysis, and PCR using reverse transcriptase (RT-PCR). Once cured, all of fungal cultures remained virus-free over the next two years. Interestingly, the viral titer of LeV varied depending on the culture condition. The titer from the plate culture showed at least a 20-fold higher concentration than that grown in the liquid culture. However, the reduced virus titer in the liquid culture was recovered by transferring the mycelia to a plate containing the same medium. In addition, oxygen-depleted culture conditions resulted in a significant decrease of viral concentration, but not to the extent seen in the submerged liquid culture. Although no discernable phenotypic changes in colony morphology were observed, virus-cured strains showed significantly higher growth rates and mycelial mass than virus-infected strains. These results indicate that LeV infection has a deleterious effect on mycelial growth. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Regulation of anthocyanin biosynthesis in peach fruits.

    Science.gov (United States)

    Rahim, Md Abdur; Busatto, Nicola; Trainotti, Livio

    2014-11-01

    MYB10.1 and MYB10.3, with bHLH3, are the likely regulators of anthocyanin biosynthesis in peach fruit. MYB10.1/2/3 forms a cluster on the same genomic fragment where the Anther color ( Ag ) trait is located. Anthocyanins are bioactive compounds responsible for the pigmentation of many plant parts such as leaves, flowers, fruits and roots, and have potential benefits to human health. In peach [Prunus persica (L.) Batsch], peel color is a key determinant for fruit quality and is regulated by flavonoids including anthocyanins. The R2R3 MYB transcription factors (TFs) control the expression of anthocyanin biosynthetic genes with the help of co-activators belonging to the basic-helix-loop-helix (bHLH) and WD40 repeat families. In the peach genome six MYB10-like and three bHLH-like TFs were identified as candidates to be the regulators of the anthocyanin accumulation, which, in yellow flesh fruits, is highest in the peel, abundant in the part of the mesocarp surrounding the stone and lowest in the mesocarp. The expression of MYB10.1 and MYB10.3 correlates with anthocyanin levels of different peach parts. They also have positive correlation with the expression of key structural genes of the anthocyanin pathway, such as CHS, F3H, and UFGT. Functions of peach MYB10s were tested in tobacco and shown to activate key genes in the anthocyanin pathway when bHLHs were co-expressed as partners. Overexpression of MYB10.1/bHLH3 and MYB10.3/bHLH3 activated anthocyanin production by up-regulating NtCHS, NtDFR and NtUFGT while other combinations were not, or much less, effective. As three MYB10 genes are localized in a genomic region where the Ag trait, responsible for anther pigmentation, is localized, it is proposed they are key determinant to introduce new peach cultivars with higher antioxidant level and pigmented fruit.

  6. Purine Biosynthesis Metabolically Constrains Intracellular Survival of Uropathogenic Escherichia coli

    Science.gov (United States)

    Shaffer, Carrie L.; Zhang, Ellisa W.; Dudley, Anne G.; Dixon, Beverly R. E. A.; Guckes, Kirsten R.; Breland, Erin J.; Floyd, Kyle A.; Casella, Daniel P.; Algood, Holly M. Scott; Clayton, Douglass B.

    2016-01-01

    ABSTRACT The ability to de novo synthesize purines has been associated with the intracellular survival of multiple bacterial pathogens. Uropathogenic Escherichia coli (UPEC), the predominant cause of urinary tract infections, undergoes a transient intracellular lifestyle during which bacteria clonally expand into multicellular bacterial communities within the cytoplasm of bladder epithelial cells. Here, we characterized the contribution of the conserved de novo purine biosynthesis-associated locus cvpA-purF to UPEC pathogenesis. Deletion of cvpA-purF, or of purF alone, abolished de novo purine biosynthesis but did not impact bacterial adherence properties in vitro or in the bladder lumen. However, upon internalization by bladder epithelial cells, UPEC deficient in de novo purine biosynthesis was unable to expand into intracytoplasmic bacterial communities over time, unless it was extrachromosomally complemented. These findings indicate that UPEC is deprived of purine nucleotides within the intracellular niche and relies on de novo purine synthesis to meet this metabolic requirement. PMID:27795353

  7. NAD+ biosynthesis, aging, and disease [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Sean Johnson

    2018-02-01

    Full Text Available Nicotinamide adenine dinucleotide (NAD+ biosynthesis and its regulation have recently been attracting markedly increasing interest. Aging is marked by a systemic decrease in NAD+ across multiple tissues. The dysfunction of NAD+ biosynthesis plays a critical role in the pathophysiologies of multiple diseases, including age-associated metabolic disorders, neurodegenerative diseases, and mental disorders. As downstream effectors, NAD+-dependent enzymes, such as sirtuins, are involved in the progression of such disorders. These recent studies implicate NAD+ biosynthesis as a potential target for preventing and treating age-associated diseases. Indeed, new studies have demonstrated the therapeutic potential of supplementing NAD+ intermediates, such as nicotinamide mononucleotide and nicotinamide riboside, providing a proof of concept for the development of an effective anti-aging intervention.

  8. Zincophorin – biosynthesis in Streptomyces griseus and antibiotic properties

    Directory of Open Access Journals (Sweden)

    Walther, Elisabeth

    2016-11-01

    Full Text Available Zincophorin is a polyketide antibiotic that possesses potent activity against Gram-positive bacteria, including human pathogens. While a number of total syntheses of this highly functionalized natural product were reported since its initial discovery, the genetic basis for the biosynthesis of zincophorin has remained unclear. In this study, the co-linearity inherent to polyketide pathways was used to identify the zincophorin biosynthesis gene cluster in the genome of the natural producer HKI 0741. Interestingly, the same locus is fully conserved in the streptomycin-producing actinomycete IFO 13350, suggesting that the latter bacterium is also capable of zincophorin biosynthesis. Biological profiling of zincophorin revealed a dose-dependent inhibition of the Gram-positive bacterium . The antibacterial effect, however, is accompanied by cytotoxicity. Antibiotic and cytotoxic activities were completely abolished upon esterification of the carboxylic acid group in zincophorin.

  9. Genes Involved in the Biosynthesis and Transport of Acinetobactin in

    Directory of Open Access Journals (Sweden)

    Tarik Hasan

    2015-03-01

    Full Text Available Pathogenic bacteria survive in iron-limited host environments by using several iron acquisition mechanisms. Acinetobacter baumannii, causing serious infections in compromised patients, produces an iron-chelating molecule, called acinetobactin, which is composed of equimolar quantities of 2,3-dihydroxybenzoic acid (DHBA, L-threonine, and N-hydroxyhistamine, to compete with host cells for iron. Genes that are involved in the production and transport of acinetobactin are clustered within the genome of A. baumannii. A recent study showed that entA, located outside of the acinetobactin gene cluster, plays important roles in the biosynthesis of the acinetobactin precursor DHBA and in bacterial pathogenesis. Therefore, understanding the genes that are associated with the biosynthesis and transport of acinetobactin in the bacterial genome is required. This review is intended to provide a general overview of the genes in the genome of A. baumannii that are required for acinetobactin biosynthesis and transport.

  10. Inhibitors of amino acids biosynthesis as antifungal agents.

    Science.gov (United States)

    Jastrzębowska, Kamila; Gabriel, Iwona

    2015-02-01

    Fungal microorganisms, including the human pathogenic yeast and filamentous fungi, are able to synthesize all proteinogenic amino acids, including nine that are essential for humans. A number of enzymes catalyzing particular steps of human-essential amino acid biosynthesis are fungi specific. Numerous studies have shown that auxotrophic mutants of human pathogenic fungi impaired in biosynthesis of particular amino acids exhibit growth defect or at least reduced virulence under in vivo conditions. Several chemical compounds inhibiting activity of one of these enzymes exhibit good antifungal in vitro activity in minimal growth media, which is not always confirmed under in vivo conditions. This article provides a comprehensive overview of the present knowledge on pathways of amino acids biosynthesis in fungi, with a special emphasis put on enzymes catalyzing particular steps of these pathways as potential targets for antifungal chemotherapy.

  11. Some aspects of genetic control of antibiotic biosynthesis in Streptomyces

    Directory of Open Access Journals (Sweden)

    М. P. Teplitskaya

    2005-12-01

    Full Text Available These work contain a review of basic hypotheses and experimental information in relation to the problem of antibiotic synthesis regulation by the bacteria of the Streptomyces family. Data on cluster organization of antibiotics biosynthesis genes in these microorganisms were generalized. The examples of the positive and negative specific control of antibiotic production genes were resulted. Except for it, proofs that confirm participation of a few genes of more high level in the process of initiation and expression of antibiotics biosynthesis genes also were found. In this connection А-factor role in the mechanism of cascade-organized process of streptomycin biosynthesis control, some other antibiotics and spore determinations is discussed in detail.

  12. Final Report on Regulation of Guaiacyl and Syringyl Monolignol Biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Vincent L. Chiang

    2006-03-09

    The focus of this research is to understand syringyl monolignol biosynthesis that leads to the formation of syringyl lignin, a type of lignin that can be easily removed during biomass conversion. We have achieved the three originally proposed goals for this project. (1) SAD and CAD genes (enzyme catalytic and kinetic properties) and their functional relevance to CAld5H/AldOMT pathway, (2) spatiotemporal expression patterns of Cald5H, AldOMT, SAD and CAD genes, and (3) functions of CAld5H, AldOMT, and SAD genes in vivo using transgenic aspen. Furthermore, we also found that microRNA might be involved in the upstream regulatory network of lignin biosynthesis and wood formation. The achievements are as below. (1) Based on biochemical and molecular studies, we discovered a novel syringyl-specific alcohol dehydrogenase (SAD) involved in monolignol biosynthesis in angiosperm trees. Through CAld5H/OMT/SAD mediation, syringyl monolignol biosynthesis branches out from guaiacyl pathway at coniferaldehyde; (2) The function of CAld5H gene in this syringyl monolignol biosynthesis pathway also was confirmed in vivo in transgenic Populus; (3) The proposed major monolignol biosynthesis pathways were further supported by the involving biochemical functions of CCR based on a detailed kinetic study; (4) Gene promoter activity analysis also supported the cell-type specific expression of SAD and CAD genes in xylem tissue, consistent with the cell-specific locations of SAD and CAD proteins and with the proposed pathways; (5) We have developed a novel small interfering RNA (siRNA)-mediated stable gene-silencing system in transgenic plants; (6) Using the siRNA and P. trichocarpa transformation/regeneration systems we are currently producing transgenic P. trichocarpa to investigate the interactive functions of CAD and SAD in regulating guaiacyl and syringyl lignin biosynthesis; (7) We have cloned for the first time from a tree species, P. trichocarpa, small regulatory RNAs termed micro

  13. Biosynthesis of oxygen and nitrogen-containing heterocycles in polyketides

    Directory of Open Access Journals (Sweden)

    Franziska Hemmerling

    2016-07-01

    Full Text Available This review highlights the biosynthesis of heterocycles in polyketide natural products with a focus on oxygen and nitrogen-containing heterocycles with ring sizes between 3 and 6 atoms. Heterocycles are abundant structural elements of natural products from all classes and they often contribute significantly to their biological activity. Progress in recent years has led to a much better understanding of their biosynthesis. In this context, plenty of novel enzymology has been discovered, suggesting that these pathways are an attractive target for future studies.

  14. Topical problems in the biosynthesis of red blood pigment

    International Nuclear Information System (INIS)

    Franck, B.

    1982-01-01

    Uroporphyrinogen III plays a key role in the biosynthesis of heme, the red pigment of blood. In vivo studies with specifically 14 C- and 3 H-labeled precursors have revealed that the formation of uroporphyrinogen III in the organism follows several primary and subsidiary pathways. Model experiments on the pattern of biosynthesis have led to simple and effective methods of synthesizing uroporphyrin analogs and have shwon that their production is strongly favored thermodynamically, The biologically important porphyrins thus available permit a mechanistic explanantion of the light-induced dermatoses in porphyria diseases and suggest promising medical applications in diagnosis and therapy. (orig.)

  15. Carbon extension in peptidylnucleoside biosynthesis by radical-SAM enzymes

    Science.gov (United States)

    Lilla, Edward A.; Yokoyama, Kenichi

    2016-01-01

    Nikkomycins and polyoxins are antifungal peptidylnucleoside (PN) antibiotics active against human and plant pathogens. Here, we report that during PN biosynthesis in Streptomyces cacaoi and Streptomyces tendae, the C5′-extension of the nucleoside essential for downstream structural diversification is catalyzed by a conserved radical S-adenosyl-L-methionine (SAM) enzyme, PolH or NikJ. This is distinct from the nucleophilic mechanism reported for antibacterial nucleosides and represents a novel mechanism of nucleoside natural product biosynthesis. PMID:27642865

  16. Phosphoribosyl Diphosphate (PRPP): Biosynthesis, Enzymology, Utilization, and Metabolic Significance

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Andersen, Kasper R; Kilstrup, Mogens

    2017-01-01

    . PRPP is utilized in the biosynthesis of purine and pyrimidine nucleotides, the amino acids histidine and tryptophan, the cofactors NAD and tetrahydromethanopterin, arabinosyl monophosphodecaprenol, and certain aminoglycoside antibiotics. The participation of PRPP in each of these metabolic pathways...... analysis. PRPP, furthermore, is an effector molecule of purine and pyrimidine nucleotide biosynthesis, either by binding to PurR or PyrR regulatory proteins or as an allosteric activator of carbamoylphosphate synthetase. Genetic analyses have disclosed a number of mutants altered in the PRPP synthase...

  17. [Biosynthesis of benzoisochromanequinones antibiotics from streptomycetes--a review].

    Science.gov (United States)

    Wang, Wei; Wang, Huili; Li, Aiying

    2012-05-04

    Benzoisochromanequinones antibiotics, a group of bioactive polyketide compounds with aromatic polyketide skeletal cores, are accumulated in streptomycetes. The biosynthesis of benzoisochromanequinones antibiotics has triggered great interest because they not only represent model biosynthetic mechanisms of aromatic polyketide skeletal structures, but also possess a variety of tailoring modifications rendering them highly structural and bioactive diversity. Here we reviewed important advances in biosynthesis of benzoisochromanequinones antibiotics in recent 25 years with focusing on the modification mechanisms of these compounds and on the prospects of the metabolic engineering and pharmaceutical discovery of benzoisochromanequinones antibiotics.

  18. Structure, Biosynthesis, and Occurrence of Bacterial Pyrrolizidine Alkaloids.

    Science.gov (United States)

    Schimming, Olivia; Challinor, Victoria L; Tobias, Nicholas J; Adihou, Hélène; Grün, Peter; Pöschel, Laura; Richter, Christian; Schwalbe, Harald; Bode, Helge B

    2015-10-19

    Pyrrolizidine alkaloids (PAs) are widespread plant natural products with potent toxicity and bioactivity. Herein, the identification of bacterial PAs from entomopathogenic bacteria using differential analysis by 2D NMR spectroscopy (DANS) and mass spectrometry is described. Their biosynthesis was elucidated to involve a non-ribosomal peptide synthetase. The occurrence of these biosynthesis gene clusters in Gram-negative and Gram-positive bacteria indicates an important biological function in bacteria. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Biosynthesis of allene oxides in Physcomitrella patens

    Directory of Open Access Journals (Sweden)

    Scholz Julia

    2012-11-01

    Full Text Available Abstract Background The moss Physcomitrella patens contains C18- as well as C20-polyunsaturated fatty acids that can be metabolized by different enzymes to form oxylipins such as the cyclopentenone cis(+-12-oxo phytodienoic acid. Mutants defective in the biosynthesis of cyclopentenones showed reduced fertility, aberrant sporophyte morphology and interrupted sporogenesis. The initial step in this biosynthetic route is the conversion of a fatty acid hydroperoxide to an allene oxide. This reaction is catalyzed by allene oxide synthase (AOS belonging as hydroperoxide lyase (HPL to the cytochrome P450 family Cyp74. In this study we characterized two AOS from P. patens, PpAOS1 and PpAOS2. Results Our results show that PpAOS1 is highly active with both C18 and C20-hydroperoxy-fatty acid substrates, whereas PpAOS2 is fully active only with C20-substrates, exhibiting trace activity (~1000-fold lower kcat/KM with C18 substrates. Analysis of products of PpAOS1 and PpHPL further demonstrated that both enzymes have an inherent side activity mirroring the close inter-connection of AOS and HPL catalysis. By employing site directed mutagenesis we provide evidence that single amino acid residues in the active site are also determining the catalytic activity of a 9-/13-AOS – a finding that previously has only been reported for substrate specific 13-AOS. However, PpHPL cannot be converted into an AOS by exchanging the same determinant. Localization studies using YFP-labeled AOS showed that PpAOS2 is localized in the plastid while PpAOS1 may be found in the cytosol. Analysis of the wound-induced cis(+-12-oxo phytodienoic acid accumulation in PpAOS1 and PpAOS2 single knock-out mutants showed that disruption of PpAOS1, in contrast to PpAOS2, results in a significantly decreased cis(+-12-oxo phytodienoic acid formation. However, the knock-out mutants of neither PpAOS1 nor PpAOS2 showed reduced fertility, aberrant sporophyte morphology or interrupted sporogenesis

  20. [Advances and prospects of taxol biosynthesis by endophytic fungi].

    Science.gov (United States)

    Zhao, Kai; Yu, Lu; Jin, Yuyan; Ma, Xueling; Liu, Dan; Wang, Xiaohua; Wang, Xin

    2016-08-25

    Taxol is one of the most important chemotherapeutic drugs against cancer. Taxol has been mainly extracted from the bark of yews for a long time. However, methods for the extraction of taxol from the bark of Taxus species were inefficient and environmentally costly. As a result of the high ecological toll exacted on trees with the potential for Pacific yew extinction, investigators began to look for other methods of taxol production. Recently, increasing efforts have been made to develop alternative means of taxol production, such as using complete chemical synthesis, semi-synthesis, Taxus spp. plant cell culture and microbe fermentation. Using microbe fermentation in the production of taxol would be a very prospective method for obtaining a large amount of taxol. Therefore, it is necessary to understand the molecular basis and genetic regulation mechanisms of taxol biosynthesis by endophytic fungi, which may be helpful to construct the genetic engineering strain with high taxol output. In this paper, the taxol biosynthesis pathway from Taxus cells and the advantages of taxol biosynthesis by endophytic fungi were discussed. The study on the isolation and biodiversity of taxol-producing endophytic fungi and the taxol biosynthesis related genes are also discussed.

  1. Regulation of Isoprenoid Pheromone Biosynthesis in Bumblebee Males

    Czech Academy of Sciences Publication Activity Database

    Prchalová, Darina; Buček, Aleš; Brabcová, Jana; Žáček, Petr; Kindl, Jiří; Valterová, Irena; Pichová, Iva

    2016-01-01

    Roč. 17, č. 3 (2016), s. 260-267 ISSN 1439-4227 R&D Projects: GA MŠk LO1302; GA ČR GA15-06569S Institutional support: RVO:61388963 Keywords : biosynthesis * Bombus spp. * gene expression * isoprenoids * pheromones * transcriptional regulation Subject RIV: CE - Biochemistry Impact factor: 2.847, year: 2016

  2. Biosynthesis of the red antibiotic, prodigiosin, in Serratia

    DEFF Research Database (Denmark)

    Williamson, Neil R; Simonsen, Henrik Toft; Ahmed, Raef A A

    2005-01-01

    from Serratia sp. ATCC 39006. The biosynthetic intermediates accumulating in each mutant have been analysed by LC-MS, cross-feeding and genetic complementation studies. Based on these results we assign specific roles in the biosynthesis of MBC to the following Pig proteins: PigI, PigG, PigA, PigJ, Pig...

  3. Biosynthesis of lipophilic compounds in tomato fruit | Angaman ...

    African Journals Online (AJOL)

    A study performed with chromoplasts to know the origin of the precursors for carotenoids biosynthesis using a variety of 14C-labelled precursors showed that the most important incorporation was found in lipids. This study aims to understand the biochemical and metabolic processes operating during tomato fruit ripening.

  4. Temporal expression of genes involved in the biosynthesis of ...

    African Journals Online (AJOL)

    Jane

    2011-10-10

    Oct 10, 2011 ... Gibberellins (GAs) are a large family of endogenous plant growth regulators. Bioactive GAs influence nearly all processes during plant growth and development. In the present study, we cloned and identified 10 unique genes that are potentially involved in the biosynthesis of GAs, including one. BpGGDP ...

  5. Biosynthesis of silver nanoparticles and its antibacterial activity ...

    African Journals Online (AJOL)

    In the present research work, biosynthesis of silver nanoparticles and its activity on bacterial pathogens were investigated. Silver nanoparticles were rapidly synthesized using Urospora sp. and the formation of nanoparticles was observed within 30 min. The results recorded from UV–vis spectrum, Fourier Transform Infrared ...

  6. The magnesium chelation step in chlorophyll biosynthesis. Progress report 1993

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, J.D.

    1993-12-31

    Progress is reported on the identification and fractionation of Magnesium chealatase, an enzyme involved in addition of Mg to chlorophyll during the later`s biosynthesis. Progress is documented as a series of synopsis of published and unpublished papers by the author.

  7. Molecular and biochemical studies of fragrance biosynthesis in rose

    NARCIS (Netherlands)

    Sun, P.

    2017-01-01

    Roses are one of the most popular ornamental plants, whose floral volatiles are not only involved in environmental interactions but also widely used by industries. The biosynthesis of many of these volatiles in roses is not well understood. This thesis describes alternative pathways for the

  8. Biosynthesis of polyketides by trans-AT polyketide synthases.

    OpenAIRE

    Helfrich Eric J N; Piel Jörn

    2016-01-01

    This review discusses the biosynthesis of natural products that are generated by trans AT polyketide synthases a family of catalytically versatile enzymes that represents one of the major group of proteins involved in the production of bioactive polyketides. The article includes 609 references and covers the literature from 2009 through June 2015.

  9. Biosynthesis of polyketides by trans-AT polyketide synthases.

    Science.gov (United States)

    Helfrich, Eric J N; Piel, Jörn

    2016-02-01

    This review discusses the biosynthesis of natural products that are generated by trans-AT polyketide synthases, a family of catalytically versatile enzymes that represents one of the major group of proteins involved in the production of bioactive polyketides. The article includes 609 references and covers the literature from 2009 through June 2015.

  10. Biosynthesis of cellulolytic enzymes by Tricothecium roseum with ...

    African Journals Online (AJOL)

    Among various soluble carbon and complex nitrogen sources tested in this study, carboxymethylcellulose and peptone supported maximum production of both cellulolytic enzymes. Under all suitable growth conditions, the enzyme biosynthesis was remarkably increased when the inducer citric acid was added to the PDYE ...

  11. Anthocyanin biosynthesis in fruit tree crops: Genes and their regulation

    African Journals Online (AJOL)

    The anthocyanin biosynthesis pathway is a little complex with branches responsible for the synthesis of a variety of metabolites. In fruit tree crops, during the past decade, many structural genes encoding enzymes in the anthocyanin biosynthetic pathway and various regulatory genes encoding transcription factors that ...

  12. Temporal expression of genes involved in the biosynthesis of ...

    African Journals Online (AJOL)

    Gibberellins (GAs) are a large family of endogenous plant growth regulators. Bioactive GAs influence nearly all processes during plant growth and development. In the present study, we cloned and identified 10 unique genes that are potentially involved in the biosynthesis of GAs, including one BpGGDP gene, two BpCPS ...

  13. Expression profiles of genes involved in tanshinone biosynthesis of ...

    Indian Academy of Sciences (India)

    Expression profiles of genes involved in tanshinone biosynthesis of two. Salvia miltiorrhiza genotypes with different tanshinone contents. Zhenqiao Song, Jianhua Wang and Xingfeng Li. J. Genet. 95, 433–439. Table 1. S. miltiorrhiza genes and primer pairs used for qRT-PCR. Gene. GenBank accession. Primer name.

  14. Biosynthesis of silver nanoparticles by Leishmania tropica | Rahi ...

    African Journals Online (AJOL)

    A novel biosynthesis route for Silver Nanoparticles (Ag-NPs) was attempted in the present study using Leishmania tropica the causative agent of cutaneous leishmaniasis in different countries, particularly in Mediterranean region in Iraq. Silver nanoparticles were successfully synthesized from AgNO3 by reduction of ...

  15. Biosynthesis and Characterization of Silver Nanoparticles by Aspergillus Species

    Directory of Open Access Journals (Sweden)

    Kamiar Zomorodian

    2016-01-01

    Full Text Available Currently, researchers turn to natural processes such as using biological microorganisms in order to develop reliable and ecofriendly methods for the synthesis of metallic nanoparticles. In this study, we have investigated extracellular biosynthesis of silver nanoparticles using four Aspergillus species including A. fumigatus, A. clavatus, A. niger, and A. flavus. We have also analyzed nitrate reductase activity in the studied species in order to determine the probable role of this enzyme in the biosynthesis of silver nanoparticles. The formation of silver nanoparticles in the cell filtrates was confirmed by the passage of laser light, change in the color of cell filtrates, absorption peak at 430 nm in UV-Vis spectra, and atomic force microscopy (AFM. There was a logical relationship between the efficiencies of studied Aspergillus species in the production of silver nanoparticles and their nitrate reductase activity. A. fumigatus as the most efficient species showed the highest nitrate reductase activity among the studied species while A. flavus exhibited the lowest capacity in the biosynthesis of silver nanoparticles which was in accord with its low nitrate reductase activity. The present study showed that Aspergillus species had potential for the biosynthesis of silver nanoparticles depending on their nitrate reductase activity.

  16. Biosynthesis and Characterization of Silver Nanoparticles by Aspergillus Species

    Science.gov (United States)

    Pourshahid, Seyedmohammad; Mehryar, Pouyan; Pakshir, Keyvan; Rahimi, Mohammad Javad; Arabi Monfared, Ali

    2016-01-01

    Currently, researchers turn to natural processes such as using biological microorganisms in order to develop reliable and ecofriendly methods for the synthesis of metallic nanoparticles. In this study, we have investigated extracellular biosynthesis of silver nanoparticles using four Aspergillus species including A. fumigatus, A. clavatus, A. niger, and A. flavus. We have also analyzed nitrate reductase activity in the studied species in order to determine the probable role of this enzyme in the biosynthesis of silver nanoparticles. The formation of silver nanoparticles in the cell filtrates was confirmed by the passage of laser light, change in the color of cell filtrates, absorption peak at 430 nm in UV-Vis spectra, and atomic force microscopy (AFM). There was a logical relationship between the efficiencies of studied Aspergillus species in the production of silver nanoparticles and their nitrate reductase activity. A. fumigatus as the most efficient species showed the highest nitrate reductase activity among the studied species while A. flavus exhibited the lowest capacity in the biosynthesis of silver nanoparticles which was in accord with its low nitrate reductase activity. The present study showed that Aspergillus species had potential for the biosynthesis of silver nanoparticles depending on their nitrate reductase activity. PMID:27652264

  17. Hacking an Algal Transcription Factor for Lipid Biosynthesis.

    Science.gov (United States)

    Chen, Xiulai; Hu, Guipeng; Liu, Liming

    2018-03-01

    Transcriptional engineering is a viable means for engineering microalgae to produce lipid, but it often results in a trade-off between production and growth. A recent study shows that engineering a single transcriptional regulator enables efficient carbon partitioning to lipid biosynthesis with high biomass productivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Arogenate Dehydratase Isoforms Differentially Regulate Anthocyanin Biosynthesis in Arabidopsis thaliana.

    Science.gov (United States)

    Chen, Qingbo; Man, Cong; Li, Danning; Tan, Huijuan; Xie, Ye; Huang, Jirong

    2016-12-05

    Anthocyanins, a group of L-phenylalanine (Phe)-derived flavonoids, have been demonstrated to play important roles in plant stress resistance and interactions between plants and insects. Although the anthocyanin biosynthetic pathway and its regulatory mechanisms have been extensively studied, it remains unclear whether the level of Phe supply affects anthocyanin biosynthesis. Here, we investigated the roles of arogenate dehydratases (ADTs), the key enzymes that catalyze the conversion of arogenate into Phe, in sucrose-induced anthocyanin biosynthesis in Arabidopsis. Genetic analysis showed that all six ADT isoforms function redundantly in anthocyanin biosynthesis but have differential contributions. ADT2 contributes the most to anthocyanin accumulation, followed by ADT1 and ADT3, and ADT4-ADT6. We found that anthocyanin content is positively correlated with the levels of Phe and sucrose-induced ADT transcripts in seedlings. Consistently, addition of Phe to the medium could dramatically increase anthocyanin content in the wild-type plants and rescue the phenotype of the adt1 adt3 double mutant regarding the anthocyanin accumulation. Moreover, transgenic plants overexpressing ADT4, which appears to be less sensitive to Phe than overexpression of ADT2, hyperaccumulate Phe and produce elevated level of anthocyanins. Taken together, our results suggest that the level of Phe is an important regulatory factor for sustaining anthocyanin biosynthesis. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  19. The pyrroloquinoline quinone biosynthesis pathway revisited: A structural approach

    Directory of Open Access Journals (Sweden)

    Schwarzenbacher Robert

    2008-03-01

    Full Text Available Abstract Background The biosynthesis pathway of Pyrroloquinoline quinone, a bacterial redox active cofactor for numerous alcohol and aldose dehydrogenases, is largely unknown, but it is proven that at least six genes in Klebsiella pneumoniae (PqqA-F are required, all of which are located in the PQQ-operon. Results New structural data of some PQQ biosynthesis proteins and their homologues provide new insights and functional assignments of the proteins in the pathway. Based on sequence analysis and homology models we propose the role and catalytic function for each enzyme involved in this intriguing biosynthesis pathway. Conclusion PQQ is derived from the two amino acids glutamate and tyrosine encoded in the precursor peptide PqqA. Five reactions are necessary to form this quinone cofactor. The PqqA peptide is recognised by PqqE, which links the C9 and C9a, afterwards it is accepted by PqqF which cuts out the linked amino acids. The next reaction (Schiff base is spontaneous, the following dioxygenation is catalysed by an unknown enzyme. The last cyclization and oxidation steps are catalysed by PqqC. Taken together the known facts of the different proteins we assign a putative function to all six proteins in PQQ biosynthesis pathway.

  20. Lincosamides: Chemical structure, biosynthesis, mechanism of action, resistance, and applications

    Czech Academy of Sciences Publication Activity Database

    Spížek, Jaroslav; Řezanka, Tomáš

    2017-01-01

    Roč. 133, June 1 SI (2017), s. 20-28 ISSN 0006-2952 Institutional support: RVO:61388971 Keywords : Lincosamides * Chemical structure * Biosynthesis and mechanism of action Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 4.581, year: 2016

  1. Biosynthesis and Characterization of Silver Nanoparticles by Aspergillus Species.

    Science.gov (United States)

    Zomorodian, Kamiar; Pourshahid, Seyedmohammad; Sadatsharifi, Arman; Mehryar, Pouyan; Pakshir, Keyvan; Rahimi, Mohammad Javad; Arabi Monfared, Ali

    2016-01-01

    Currently, researchers turn to natural processes such as using biological microorganisms in order to develop reliable and ecofriendly methods for the synthesis of metallic nanoparticles. In this study, we have investigated extracellular biosynthesis of silver nanoparticles using four Aspergillus species including A. fumigatus, A. clavatus, A. niger, and A. flavus. We have also analyzed nitrate reductase activity in the studied species in order to determine the probable role of this enzyme in the biosynthesis of silver nanoparticles. The formation of silver nanoparticles in the cell filtrates was confirmed by the passage of laser light, change in the color of cell filtrates, absorption peak at 430 nm in UV-Vis spectra, and atomic force microscopy (AFM). There was a logical relationship between the efficiencies of studied Aspergillus species in the production of silver nanoparticles and their nitrate reductase activity. A. fumigatus as the most efficient species showed the highest nitrate reductase activity among the studied species while A. flavus exhibited the lowest capacity in the biosynthesis of silver nanoparticles which was in accord with its low nitrate reductase activity. The present study showed that Aspergillus species had potential for the biosynthesis of silver nanoparticles depending on their nitrate reductase activity.

  2. Stimulation of reserpine biosynthesis in the callus of Rauvolfia ...

    African Journals Online (AJOL)

    So enhancing this alkaloid in the already available system is a beneficial approach. Tryptophan is the starting material in the biosynthesis of reserpine. Callus was induced from leaf explants of Rauvolfia tetraphylla L. on MS medium supplemented with the combination of 9 μM 2,4-D and 25, 50, 75 and 100 mg/l tryptophan.

  3. Cancer development based on chronic active gastritis and resulting gastric atrophy as assessed by serum levels of pepsinogen and Helicobacter pylori antibody titer.

    Science.gov (United States)

    Yoshida, Takeichi; Kato, Jun; Inoue, Izumi; Yoshimura, Noriko; Deguchi, Hisanobu; Mukoubayashi, Chizu; Oka, Masashi; Watanabe, Mika; Enomoto, Shotaro; Niwa, Toru; Maekita, Takao; Iguchi, Mikitaka; Tamai, Hideyuki; Utsunomiya, Hirotoshi; Yamamichi, Nobutake; Fujishiro, Mitsuhiro; Iwane, Masataka; Takeshita, Tatsuya; Ushijima, Toshikazu; Ichinose, Masao

    2014-03-15

    Our study investigated the relationship between gastric cancer development and activity of Helicobacter pylori-associated chronic gastritis or the resulting chronic atrophic gastritis (CAG). A cohort of 4,655 healthy asymptomatic subjects, in whom serum pepsinogen (PG) and H. pylori antibody titer had been measured to assess the activity and stage of H. pylori-associated chronic gastritis, was followed for up to 16 years, and cancer development was investigated. In subjects with a serologically diagnosed healthy stomach (H. pylori-negative/CAG-negative), cancer incidence rate was low, at 16/100,000 person-years. With the establishment of H. pylori infection and progression of chronic gastritis, significant stepwise cancer risk elevations were seen from CAG-free subjects (H. pylori-positive/CAG-negative) [hazard ratio (HR) = 8.9, 95% confidence interval (CI) = 2.7-54.7] to subjects with CAG (H. pylori-positive/CAG-positive) (HR = 17.7, 95% CI = 5.4-108.6) and finally to subjects with metaplastic gastritis (H. pylori-negative/CAG-positive) (HR = 69.7, 95% CI = 13.6-502.9). In H. pylori-infected CAG-free subjects, significantly elevated cancer risk was observed in the subgroup with active inflammation-based high PG II level or potent immune response-based high H. pylori antibody titer; the former was associated with a particularly high risk of diffuse-type cancer, and both subgroups showed high cancer incidence rates of around 250/100,000 person-years, comparable to that in subjects with CAG. No such risk elevation was observed in H. pylori-infected subjects with CAG. These results clearly indicate that gastric cancer develops mainly from the gastritis-atrophy-metaplasia-cancer sequence and partly from active inflammation-based direct carcinogenesis, and that serum levels of PG and H. pylori antibody titer provide indices of cancer development in H. pylori-infected subjects. © 2013 UICC.

  4. A Raman-spectroscopy-based approach for detection and discrimination of Streptococcus thermophilus and Lactobacillus bulgaricus phages at low titer in raw milk.

    Science.gov (United States)

    Tayyarcan, Emine Kübra; Acar Soykut, Esra; Boyaci, Ismail Hakki

    2018-04-11

    In this study, a method combining Raman spectroscopy with chemometric analysis was developed for detection of phage presence in raw milk and discrimination of Streptococcus thermophilus and Lactobacillus bulgaricus phages which are among the main phages causing problems in dairy industry. For this purpose, S. thermophilus and L. bulgaricus phages were added into raw milk separately, and then some pretreatments such as fat separation, removal of casein, and filtration were applied to the raw milk samples. Raman spectra of the samples were collected and then analyzed using principal component analysis in order to discriminate these phages in raw milk. In the next step, dilutions of S. thermophilus phages in pretreated raw milk were prepared, and Raman spectra were collected. These spectra were analyzed by using partial least squares method to quantify phages in low titer. Consequently, it has been demonstrated that S. thermophilus and L. bulgaricus phages, which have titers sufficient to fail the fermentation (~ 10 7  pfu/mL) and have lower titers (10 2 -10 3  pfu/mL), could be discriminated from antibiotic and each other. Additionally, low concentrations of S. thermophilus phages (10 2  pfu/mL) could be detected through Raman spectroscopy with a short analysis time (60 min) and high coefficient of determination (R 2 ) values for both calibration (0.985) and validation (0.906) with a root mean square error of calibration of 70.54 and root mean square error of prediction of 165.47. However, a lower success was achieved with L. bulgaricus phages and the obtained coefficient of determination values were not sufficiently high (0.649).

  5. Growth Performance, Carcass Characteristics, Antibody Titer and Blood Parameters in Broiler Chickens Fed Dietary Myrtle (Myrtus communis Essential Oil as an Alternative to Antibiotic Growth Promoter

    Directory of Open Access Journals (Sweden)

    Mahmoodi Bardzardi M

    2014-03-01

    Full Text Available This experiment was conducted to determine the effects of Myrtle Essential Oil (MEO on growth performance, carcass characteristics, antibody titer and blood parameters of broiler chickens. A total of 200 Ross 308 broiler chickens were allocated to five dietary treatments with four replicates of 10 birds each. Dietary treatments were prepared by formulating a corn-soybean meal-based diet free of antibiotics (Control and supplementing the basal diet with three levels of MEO at 100, 200, 300 mg/Kg or antibiotic Flavophospholipol (FPL at 600 mg/Kg. The results showed that diets supplemented with MEO and FPL increased the feed intake, body weight gain and improved the feed conversion ratio compared to the control treatment (P. The relative carcass weight was significantly increased, whereas the weight of gastrointestinal tract and liver were decreased in broilers fed MEO (P. Supplementing the basal diet with MEO increased the antibody titers against Avian Influenza Virus (AIV and Newcastle disease Virus (NDV, although supplementing diet with 200 mg/Kg of MEO was more effective (P. Broilers fed MEO diets especially at the level of 300 mg/Kg had a lower white blood cells count and heterophil, heterophil to lymphocyte ratio, mean corpuscular volume and mean corpuscular hemoglobin, but a higher lymphocyte and red blood cells count (P. In conclusion, data showed that diet supplemented with MEO improved the growth performance and increased antibody titers against AIV and NDV, especially at the level of 200 mg/Kg, in broiler chickens and could be an adequate alternative to antibiotics.

  6. Relevance of specific IgE antibody titer to the prevalence, severity, and persistence of asthma among 19-year-olds in northern Sweden.

    Science.gov (United States)

    Perzanowski, Matthew S; Ronmark, Eva; James, Hayley R; Hedman, Linnea; Schuyler, Alexander J; Bjerg, Anders; Lundback, Bo; Platts-Mills, Thomas A E

    2016-12-01

    Although sensitization to indoor allergens is strongly associated with asthma, there are questions as to how this relates to asthma symptoms. We sought to study the relevance of IgE antibodies to cat and dog allergens in an area in which (1) the climate discourages cockroach, fungal, and mite growth and (2) dander allergens are known to be present in schools and houses without animals. IgE to 8 allergens was tested in 963 sera from a population-based study on 19-year-olds, and associations with asthma symptoms, diagnosis, and treatment were examined. In positive sera IgE to specific cat and dog allergens was also assayed. IgE specific for animal dander had the highest prevalence and strongest relationship to asthma diagnosis. Furthermore, asthma severity, as judged by the frequency of symptoms and use of treatment, was directly associated with the titer of IgE antibodies to animal dander. Among the 103 subjects who had current asthma at age 19 years, 50 had asthma before age 12 years. Among those 50, the odds ratios for asthma related to any IgE antibodies to animal dander or high-titer IgE antibodies (≥17.5 IU/mL) were 9.2 (95% CI, 4.9-17) and 13 (95% CI, 6.9-25), respectively. In multivariable analysis IgE antibodies to Fel d 1 and Can f 5 were each associated with current asthma. High-titer IgE antibodies to cat and dog allergens were strongly associated with the diagnosis, severity, and persistence of asthma; however, a large proportion of patients with current asthma did not live in a house with a cat or dog. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  7. Lack of correlation between serum rotavirus antibody titers and protection following vaccination with reassortant RRV vaccines. US Rotavirus Vaccine Efficacy Group.

    Science.gov (United States)

    Ward, R L; Bernstein, D I

    1995-09-01

    In a large placebo-controlled efficacy trial of the rhesus tetravalent (RRV-TV) and serotype 1 monovalent (RRV-S1) rotavirus vaccines in multiple sites throughout the United States, protection against rotavirus disease over a 2-year period was found to be 57 and 40%, respectively (Bernstein et al., J. Am. Med. Assoc., 1995, 273, 1191-1196). Sera collected from a subset of subjects during this trial were used to determine possible correlations between rotavirus antibody responses after vaccination and protection. Between 82% (RRV-S1) and 92% (RRV-TV) of the vaccinees seroconverted by at least one of the six antibody assays performed (i.e. rotavirus IgA and neutralizing antibody to RRV and serotype 1-4 human rotaviruses). Rises in neutralizing antibody were due primarily to RRV. The seroconversion rate was only 18-22% to each of the four human rotavirus serotypes following RRV-TV vaccination and was only 43% to serotype 1 human rotavirus after RRV-S1 administration. Furthermore, no correlate of immunity against rotavirus infection or disease was identifiable based on seroconversion to any of the antibodies measured. Likewise, no consistent relationship was found between the titers of any of these six antibodies following vaccination and protection against rotavirus, thus suggesting that serum antibody titers will not be useful markers of protection with these reassortant RRV vaccines. In addition, vaccinated subjects did not develop higher titers of neutralizing antibody to human rotaviruses following a subsequent natural rotavirus illness, a further indication that only weak immune responses to human rotaviruses were stimulated by vaccination with the RRV reassortants.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Poor Long-Term Efficacy of Prevnar-13 in Sickle Cell Disease Mice Is Associated with an Inability to Sustain Pneumococcal-Specific Antibody Titers.

    Directory of Open Access Journals (Sweden)

    Steven M Szczepanek

    Full Text Available One of the most common causes of morbidity and mortality in children with sickle cell disease (SCD is infection with the pneumococcal bacterium (Streptococcus pneumoniae. Unfortunately, the polysaccharide-conjugate vaccine appears to be less effective in individuals with SCD when compared to the general population. We sought to better understand the relative efficacy of pneumococcal vaccination in a SCD mouse challenge model.Transgenic control and SCD mice were monitored for mortality after intranasal pneumococcal infection or pneumococcal vaccination with Prevnar-13 and type-matched challenge. Anti-pneumococcal antibody titers were measured by ELISA and opsonophagocytosis was measured in vitro.Mortality after pneumococcal infection was similar between control and SCD mice. However, after three intramuscular polysaccharide-conjugate vaccinations, all control mice were protected following high-dose intranasal infection, whereas 60% of SCD mice died. Anti-pneumococcal antibody titers showed initial IgG and IgM responses in both groups, but waning titers were observed in the SCD group, even after boosting. When functionally assayed in vitro, serum from SCD mice 13 weeks after a second booster shot maintained little to no ability to opsonize pneumococci, while serum from control mice sustained a significantly higher capacity opsonization. Thus, it appears that SCD mice do not maintain antibody responses to pneumococcal polysaccharides after Prevnar-13 vaccination, thereby leaving them susceptible to mortality after type-matched infection.Our results emphasize the need to better understand the correlates of immune protection in SCD so that pneumococcal vaccines can be improved and mortality reduced in this susceptible population.

  9. YCZ-18 Is a New Brassinosteroid Biosynthesis Inhibitor

    Science.gov (United States)

    Oh, Keimei; Matsumoto, Tadashi; Yamagami, Ayumi; Ogawa, Atushi; Yamada, Kazuhiro; Suzuki, Ryuichiro; Sawada, Takayuki; Fujioka, Shozo; Yoshizawa, Yuko; Nakano, Takeshi

    2015-01-01

    Plant hormone brassinosteroids (BRs) are a group of polyhydroxylated steroids that play critical roles in regulating broad aspects of plant growth and development. The structural diversity of BRs is generated by the action of several groups of P450s. Brassinazole is a specific inhibitor of C-22 hydroxylase (CYP90B1) in BR biosynthesis, and the application use of brassinazole has emerged as an effective way of complementing BR-deficient mutants to elucidate the functions of BRs. In this article, we report a new triazole-type BR biosynthesis inhibitor, YCZ-18. Quantitative analysis the endogenous levels of BRs in Arabidopsis indicated that YCZ-18 significantly decreased the BR contents in plant tissues. Assessment of the binding affinity of YCZ-18to purified recombinant CYP90D1 indicated that YCZ-18 induced a typical type II binding spectrum with a Kd value of approximately 0.79 μM. Analysis of the mechanisms underlying the dwarf phenotype associated with YCZ-18 treatment of Arabidopsis indicated that the chemically induced dwarf phenotype was caused by a failure of cell elongation. Moreover, dissecting the effect of YCZ-18 on the induction or down regulation of genes responsive to BRs indicated that YCZ-18 regulated the expression of genes responsible for BRs deficiency in Arabidopsis. These findings indicate that YCZ-18 is a potent BR biosynthesis inhibitor and has a new target site, C23-hydroxylation in BR biosynthesis. Application of YCZ-18 will be a good starting point for further elucidation of the detailed mechanism of BR biosynthesis and its regulation. PMID:25793645

  10. Intranasal vaccination of dogs with liver avirulent Bordetella bronchiseptica: correlation of serum agglutination titer and the formation of secretory IgA with protection against experimentally induced infectious tracheobronchitis.

    Science.gov (United States)

    Bey, R F; Shade, F J; Goodnow, R A; Johnson, R C

    1981-07-01

    Dogs inoculated intranasally with a live avirulent Bordetella bronchiseptica vaccine were monitored for the development of resistance to experimentally induced infectious tracheobronchitis (canine cough). Dogs were challenge exposed with a virulent strains of B bronchiseptica at various times after they were vaccinated. Clinical protection was detectable as early as 48 hours. At postvaccination days 4, 5, and 14, 56%, 83%, and 95% protection was observed. Humoral immunoglobulin (Ig) titers ranged from 1:8.6 on day 0 to 1:147 on postvaccination day 21. In the monitoring of B bronchiseptica-specific secretory IgA by indirect immunofluorescence, titers appeared as early as day 4 after vaccination. The IgA titers ranged from 1:16 on day 4 to 1: 1,024 on day 21. The appearance of IgA titers correlated with the development of resistance to clinical infection.

  11. Detection of High Titers of Antibody against Helicobacter Cysteine-Rich Proteins A, B, C, and E in Helicobacter pylori-Infected Individuals

    OpenAIRE

    Mittl, Peer R. E.; Lüthy, Lucas; Reinhardt, Christoph; Joller, Hellen

    2003-01-01

    The family of Helicobacter cysteine-rich proteins (Hcp) constitutes one of the largest protein families that are specific for proteobacteria from the delta/epsilon subgroup. Most of the proteins belonging to this family have so far only been recognized on the genome level. To investigate the expression of Hcp proteins in vivo we analyzed titers of antibody against HcpA (HP0211), HcpB (HP0336), HcpC (HP1098), and HcpE (HP0235) in sera from 30 Helicobacter pylori-positive individuals and in a c...

  12. ICAM-1-based rabies virus vaccine shows increased infection and activation of primary murine B cells in vitro and enhanced antibody titers in-vivo.

    Science.gov (United States)

    Norton, James E; Lytle, Andrew G; Shen, Shixue; Tzvetkov, Evgeni P; Dorfmeier, Corin L; McGettigan, James P

    2014-01-01

    We have previously shown that live-attenuated rabies virus (RABV)-based vaccines infect and directly activate murine and human primary B cells in-vitro, which we propose can be exploited to help develop a single-dose RABV-based vaccine. Here we report on a novel approach to utilize the binding of Intracellular Adhesion Molecule-1 (ICAM-1) to its binding partner, Lymphocyte Function-associated Antigen-1 (LFA-1), on B cells to enhance B cell activation and RABV-specific antibody responses. We used a reverse genetics approach to clone, recover, and characterize a live-attenuated recombinant RABV-based vaccine expressing the murine Icam1 gene (rRABV-mICAM-1). We show that the murine ICAM-1 gene product is incorporated into virus particles, potentially exposing ICAM-1 to extracellular binding partners. While rRABV-mICAM-1 showed 10-100-fold decrease in viral titers on baby hamster kidney cells compared to the parental virus (rRABV), rRABV-mICAM-1 infected and activated primary murine B cells in-vitro more efficiently than rRABV, as indicated by significant upregulation of CD69, CD40, and MHCII on the surface of infected B cells. ICAM-1 expression on the virus surface was responsible for enhanced B cell infection since pre-treating rRABV-mICAM-1 with a neutralizing anti-ICAM-1 antibody reduced B cell infection to levels observed with rRABV alone. Furthermore, 100-fold less rRABV-mICAM-1 was needed to induce antibody titers in immunized mice equivalent to antibody titers observed in rRABV-immunized mice. Of note, only 10(3) focus forming units (ffu)/mouse of rRABV-mICAM-1 was needed to induce significant anti-RABV antibody titers as early as five days post-immunization. As both speed and potency of antibody responses are important in controlling human RABV infection in a post-exposure setting, these data show that expression of Icam1 from the RABV genome, which is then incorporated into the virus particle, is a promising strategy for the development of a single-dose RABV

  13. Psychological stress and its influence on salivary flow rate, total protein concentration and IgA, IgG and IgM titers.

    Science.gov (United States)

    Matos-Gomes, Nathália; Katsurayama, Marilise; Makimoto, Fabiano Hiromichi; Santana, Linda Luciana Oliveira; Paredes-Garcia, Edijane; Becker, Maria Alice d'Avila; Dos-Santos, Maria Cristina

    2010-01-01

    The hypothalamic-pituitary-adrenal and sympathetic-adrenomedullary axes are the main systems activated in response to stress. Alterations in salivary components and flow rate have been associated with oral health problems and psychological stress. The aim of the present study was to investigate the influence of psychological stress on salivary flow, total protein concentration and IgG, IgM and IgA concentrations. Thirty-eight medical students, average age of 21.4 +/- 2.1 years and enrolled in the 2nd to 5th years of their course, took part voluntarily in the study which involved two different periods: the first after vacations and the second during the final exams (a gap of 4 months). An Oral Health Questionnaire and the Lipp Inventory of Stress Symptoms for Adults (ISSL) were applied during both these periods. The flow rate, total protein concentration and immunoglobulin titers of saliva samples, collected after stimulation and stored in a container with protease inhibitor, were measured. Analysis of the ISSL showed that 42.1% (n = 16) of the students had stress during the post-vacation period, and 44.7% (n = 17) during the final exams. The students' salivary flow rate was significantly lower during the latter period than during the post-vacation period (p stress as measured by the ISSL. There was a reduction in salivary flow rate and a consequent reduction in total protein concentration during the exam period (p = 0.0058). However, during both periods of the study there was no significant difference in total salivary protein concentration between the groups of students with or without psychological stress according to the ISSL (p > 0.05). IgG predominated over IgA and IgM (p stress. The study period and the presence of stress influenced the secretion of salivary immunoglobulins. IgM titers during the post-vacation period (p = 0.0044), and IgA (p = 0.028), IgG (p = 0.022) and IgM (p = 0.0075) titers during the final exams were higher in students with symptoms of

  14. ICAM-1-based rabies virus vaccine shows increased infection and activation of primary murine B cells in vitro and enhanced antibody titers in-vivo.

    Directory of Open Access Journals (Sweden)

    James E Norton

    Full Text Available We have previously shown that live-attenuated rabies virus (RABV-based vaccines infect and directly activate murine and human primary B cells in-vitro, which we propose can be exploited to help develop a single-dose RABV-based vaccine. Here we report on a novel approach to utilize the binding of Intracellular Adhesion Molecule-1 (ICAM-1 to its binding partner, Lymphocyte Function-associated Antigen-1 (LFA-1, on B cells to enhance B cell activation and RABV-specific antibody responses. We used a reverse genetics approach to clone, recover, and characterize a live-attenuated recombinant RABV-based vaccine expressing the murine Icam1 gene (rRABV-mICAM-1. We show that the murine ICAM-1 gene product is incorporated into virus particles, potentially exposing ICAM-1 to extracellular binding partners. While rRABV-mICAM-1 showed 10-100-fold decrease in viral titers on baby hamster kidney cells compared to the parental virus (rRABV, rRABV-mICAM-1 infected and activated primary murine B cells in-vitro more efficiently than rRABV, as indicated by significant upregulation of CD69, CD40, and MHCII on the surface of infected B cells. ICAM-1 expression on the virus surface was responsible for enhanced B cell infection since pre-treating rRABV-mICAM-1 with a neutralizing anti-ICAM-1 antibody reduced B cell infection to levels observed with rRABV alone. Furthermore, 100-fold less rRABV-mICAM-1 was needed to induce antibody titers in immunized mice equivalent to antibody titers observed in rRABV-immunized mice. Of note, only 10(3 focus forming units (ffu/mouse of rRABV-mICAM-1 was needed to induce significant anti-RABV antibody titers as early as five days post-immunization. As both speed and potency of antibody responses are important in controlling human RABV infection in a post-exposure setting, these data show that expression of Icam1 from the RABV genome, which is then incorporated into the virus particle, is a promising strategy for the development of a

  15. Biosynthesis of oligosaccharides and fructans in Agave vera cruz : Part III - Biosynthesis of fructans

    International Nuclear Information System (INIS)

    Satyanarayana, M.N.

    1976-01-01

    Evidence has been obtained for the biosynthesis of 'fructans' in Agave vera cruz. A hydrolase-free enzyme preparation from the stem juice with U- 14 C sucrose as substrate and the native fructan as primer leads to incorporation of 14 C fructose into a polymer like compound. This inference is based on criteria such as the chromatographic mobility of the product and the elution volume from a Sephadex G-25 column. Two optimum pHs 4.9 and 6.1 and optimum temperature 377degC are observed for the reaction. The activity is dependent on primer, enzyme, substrate concentration and duration of incubation. The ratio of substrate to primer appears to be a special factor; higher ratios retard synthesis (S:P 5:1, 1.14%, S:P 100:1, 0.36% incorporation), while lower ones enhance (reaching a maximum of 11.35% at an S:P ratio of 1.75 in hr). Inulin in place of the native fructan is less efficient as primer. Each of the higher homologues of sucrose, tri to hexasaccharides (tested so far), leads to fructan formation with elution volumes from a Sephadex G-25 column close to that of the primer. U- 14 C fructose or glucose in place of U- 14 C sucrose or absence of enzyme leads to no incorporation. Sucrose seems to have a key role both in the initiation and lengthening of the fructan chain. (author)

  16. Recent advances in the elucidation of enzymatic function in natural product biosynthesis.

    Science.gov (United States)

    Tan, Gao-Yi; Deng, Zixin; Liu, Tiangang

    2015-01-01

    With the successful production of artemisinic acid in yeast, the promising potential of synthetic biology for natural product biosynthesis is now being realized. The recent total biosynthesis of opioids in microbes is considered to be another landmark in this field. The importance and significance of enzymes in natural product biosynthetic pathways have been re-emphasized by these advancements. Therefore, the characterization and elucidation of enzymatic function in natural product biosynthesis are undoubtedly fundamental for the development of new drugs and the heterologous biosynthesis of active natural products. Here, discoveries regarding enzymatic function in natural product biosynthesis over the past year are briefly reviewed.

  17. The association between serological titers in infectious bovine rhinotracheitis virus, bovine virus diarrhea virus, parainfluenza-3 virus, respiratory syncytial virus and treatment for respiratory disease in Ontario feedlot calves.

    OpenAIRE

    Martin, S W; Bohac, J G

    1986-01-01

    A seroepidemiological study of the association between antibody titers to infectious bovine rhinotracheitis, parainfluenza-3, bovine virus diarrhea and bovine respiratory syncytial viruses, and treatment for bovine respiratory disease was conducted. A total of 322 calves from five different groups were bled on arrival, then one month later all cases (cattle treated for bovine respiratory disease) were rebled together with an equal number of controls (cattle not treated for any disease). Titer...

  18. A case-control study developing a model for predicting risk factors for high SeM-specific antibody titers after natural outbreaks of Streptococcus equi subsp equi infection in horses.

    Science.gov (United States)

    Boyle, Ashley G; Smith, Meagan A; Boston, Raymond C; Stefanovski, Darko

    2017-06-15

    OBJECTIVE To develop a risk prediction model for factors associated with an SeM-specific antibody titer ≥ 3,200 in horses after naturally occurring outbreaks of Streptococcus equi subsp equi infection and to validate this model. DESIGN Case-control study. ANIMALS 245 horses: 57 horses involved in strangles outbreaks (case horses) and 188 healthy horses (control horses). PROCEDURES Serum samples were obtained from the 57 cases over a 27.5-month period after the start of outbreaks; serum samples were obtained once from the 188 controls. A Bayesian mixed-effects logistic regression model was used to assess potential risk factors associated with an antibody titer ≥ 3,200 in the case horses. A cutoff probability for an SeM-specific titer ≥ 3,200 was determined, and the model was externally validated in the control horses. Only variables with a 95% credibility interval that did not overlap with a value of 1 were considered significant. RESULTS 9 of 57 (6%) case horses had at least 1 titer ≥ 3,200, and 7 of 188 (3.7%) of control horses had a titer ≥ 3,200. The following variables were found to be significantly associated with a titer ≥ 3,200 in cases: farm size > 20 horses (OR, 0.11), history of clinically evident disease (OR, 7.92), and male sex (OR, 0.11). The model had 100% sensitivity but only 24% specificity when applied to the 188 control horses (area under the receiver operating characteristic curve = 0.62.) CONCLUSIONS AND CLINICAL RELEVANCE Although the Bayesian mixed-effects logistic regression model developed in this study did not perform well, it may prove useful as an initial screening tool prior to vaccination. We suggest that SeM-specific antibody titer be measured prior to vaccination when our model predicts a titer ≥ 3,200.

  19. Regulatory cross-talks and cascades in rice hormone biosynthesis pathways contribute to stress signaling

    Directory of Open Access Journals (Sweden)

    Arindam Deb

    2016-08-01

    Full Text Available Crosstalk among different hormone signaling pathways play an important role in modulating plant response to both biotic and abiotic stress. Hormone activity is controlled by its bio-availability, which is again influenced by its biosynthesis. Thus independent hormone biosynthesis pathways must be regulated and co-ordinated to mount an integrated response. One of the possibilities is to use cis-regulatory elements to orchestrate expression of hormone biosynthesis genes. Analysis of CREs, associated with differentially expressed hormone biosynthesis related genes in rice leaf under Magnaporthe oryzae attack and drought stress enabled us to obtain insights about cross-talk among hormone biosynthesis pathways at the transcriptional level. We identified some master transcription regulators that co-ordinate different hormone biosynthesis pathways under stress. We found that Abscisic acid and Brassinosteroid regulate Cytokinin conjugation; conversely Brassinosteroid biosynthesis is affected by both Abscisic acid and Cytokinin. Jasmonic acid and Ethylene biosynthesis may be modulated by Abscisic acid through DREB transcription factors. Jasmonic acid or Salicylic acid biosynthesis pathways are co-regulated but they are unlikely to influence each other’s production directly. Thus multiple hormones may modulate hormone biosynthesis pathways through a complex regulatory network, where biosynthesis of one hormone is affected by several other contributing hormones.

  20. Gamma-aminobutyric acid mediates nicotine biosynthesis in tobacco under flooding stress

    Directory of Open Access Journals (Sweden)

    Xiaoming Zhang

    2016-02-01

    Full Text Available Gamma-aminobutyric acid (GABA is a four-carbon non-protein amino acid conserved from bacteria to plants and vertebrates. Increasing evidence supports a regulatory role for GABA in plant development and the plant's response to environmental stress. The biosynthesis of nicotine, the main economically important metabolite in tobacco, is tightly regulated. GABA has not hitherto been reported to function in nicotine biosynthesis. Here we report that water flooding treatment (hypoxia markedly induced the accumulation of GABA and stimulated nicotine biosynthesis. Suppressing GABA accumulation by treatment with glutamate decarboxylase inhibitor impaired flooding-induced nicotine biosynthesis, while exogenous GABA application directly induced nicotine biosynthesis. Based on these results, we propose that GABA triggers nicotine biosynthesis in tobacco seedlings subjected to flooding. Our results provide insight into the molecular mechanism of nicotine biosynthesis in tobacco plants exposed to environmental stress.

  1. O perfil da antiestreptolisina O no diagnóstico da febre reumática aguda Antistreptolysin O titer profile in acute rheumatic fever diagnosis

    Directory of Open Access Journals (Sweden)

    Claudia Saad Magalhães Machado

    2001-04-01

    Full Text Available OBJETIVO: estabelecer o perfil dos títulos de ASO, mediante o diagnóstico diferencial da FRA com outras afecções que também cursam com níveis elevados de ASO. MÉTODOS: foram estudados 78 casos de FRA na apresentação e seguimento, 22 de coréia isolada, 45 de infecções orofaringeanas recorrentes (IOR e 23 de artrites idiopáticas juvenis (AIJ, com início ou reativação recente. A determinação seqüencial de ASO (UI/ml foi realizada por ensaio nefelométrico automatizado (Behring®-Germany nos períodos de 0-7 dias, 1-2 semanas, 2-4 semanas, 1-2 meses, 2-4 meses, 4-6 meses, 6-12 meses, 1-2 anos, 2-3 anos, 3-4 anos e 4-5 anos após o diagnóstico. RESULTADOS: os títulos de ASO na fase aguda da FRA apresentaram elevação significante até o intervalo de 2- 4 meses (p 960 UI/ml. CONCLUSÃO: esta reavaliação do perfil da ASO indicou uma resposta exuberante na fase aguda da febre reumática indicou ainda que os seus níveis séricos podem diferenciá-la de outras afecções que também cursam com níveis elevados de ASO, como as infecções orofaringeanas recorrentes ou as artrites idiopáticas juvenis em atividade.OBJECTIVE: to determine ASO titer profile by establishing ARF differential diagnoses of other diseases with high levels of ASO antibodies. METHODS: we investigated 78 patients with ARF at onset and follow-up, 22 with isolated chorea at onset, 45 with recurrent oropharyngeal tonsillitis, and 23 with recent flare of juvenile idiopathic arthritis. We tested ASO with automated particle-enhanced immunonephelometric assay (Behring®-Germany. The ASO (IU/ml titers were assessed at the following time intervals: 0-7 days, 1-2 weeks, 2-4 weeks, 1-2 months, 2-4 months, 4-6 months, 6-12 months, 1-2 years, 2-3 years, 3-4 years, and 4-5 years after onset of ARF. RESULTS: ASO titers in patients diagnosed with ARF had a significant increase up to the 2-4-month time interval (P < 0.0001. Baseline levels were observed afterwards in patients

  2. In Vivo Roles of Fatty Acid Biosynthesis Enzymes in Biosynthesis of Biotin and α-Lipoic Acid in Corynebacterium glutamicum.

    Science.gov (United States)

    Ikeda, Masato; Nagashima, Takashi; Nakamura, Eri; Kato, Ryosuke; Ohshita, Masakazu; Hayashi, Mikiro; Takeno, Seiki

    2017-10-01

    For fatty acid biosynthesis, Corynebacterium glutamicum uses two type I fatty acid synthases (FAS-I), FasA and FasB, in addition to acetyl-coenzyme A (CoA) carboxylase (ACC) consisting of AccBC, AccD1, and AccE. The in vivo roles of the enzymes in supplying precursors for biotin and α-lipoic acid remain unclear. Here, we report genetic evidence demonstrating that the biosynthesis of these cofactors is linked to fatty acid biosynthesis through the FAS-I pathway. For this study, we used wild-type C. glutamicum and its derived biotin vitamer producer BFI-5, which was engineered to express Escherichia coli bioBF and Bacillus subtilis bioI Disruption of either fasA or fasB in strain BFI-5 led to decreased production of biotin vitamers, whereas its amplification contributed to increased production, with a larger impact of fasA in both cases. Double disruptions of fasA and fasB resulted in no biotin vitamer production. The acc genes showed a positive effect on production when amplified simultaneously. Augmented fatty acid biosynthesis was also reflected in pimelic acid production when carbon flow was blocked at the BioF reaction. These results indicate that carbon flow down the FAS-I pathway is destined for channeling into the biotin biosynthesis pathway, and that FasA in particular has a significant impact on precursor supply. In contrast, fasB disruption resulted in auxotrophy for lipoic acid or its precursor octanoic acid in both wild-type and BFI-5 strains. The phenotypes were fully complemented by plasmid-mediated expression of fasB but not fasA These results reveal that FasB plays a specific physiological role in lipoic acid biosynthesis in C. glutamicum IMPORTANCE For the de novo biosynthesis of fatty acids, C. glutamicum exceptionally uses a eukaryotic multifunctional type I fatty acid synthase (FAS-I) system comprising FasA and FasB, in contrast to most bacteria, such as E. coli and B. subtilis , which use an individual nonaggregating type II fatty acid synthase

  3. Biosynthesis of glycosylated derivatives of tylosin in Streptomyces venezuelae.

    Science.gov (United States)

    Han, Ah Reum; Park, Sung Ryeol; Park, Je Won; Lee, Eun Yeol; Kim, Dong-Myung; Kim, Byung-Gee; Yoon, Yeo Joon

    2011-06-01

    Streptomyces venezuelae YJ028, bearing a deletion of the entire biosynthetic gene cluster encoding the pikromycin polyketide synthases and desosamine biosynthetic enzymes, was used as a bioconversion system for combinatorial biosynthesis of glycosylated derivatives of tylosin. Two engineered deoxysugar biosynthetic pathways for the biosynthesis of TDP-3-O-demethyl-D-chalcose or TDP-Lrhamnose in conjunction with the glycosyltransferaseauxiliary protein pair DesVII/DesVIII were expressed in a S. venezuelae YJ028 mutant strain. Supplementation of each mutant strain capable of producing TDP-3-O-demethyl- D-chalcose or TDP-L-rhamnose with tylosin aglycone tylactone resulted in the production of the 3-O-demethyl- D-chalcose, D-quinovose, or L-rhamnose-glycosylated tylactone.

  4. Biosynthesis of Anthocyanins and Their Regulation in Colored Grapes

    Directory of Open Access Journals (Sweden)

    Guo-Liang Yan

    2010-12-01

    Full Text Available Anthocyanins, synthesized via the flavonoid pathway, are a class of crucial phenolic compounds which are fundamentally responsible for the red color of grapes and wines. As the most important natural colorants in grapes and their products, anthocyanins are also widely studied for their numerous beneficial effects on human health. In recent years, the biosynthetic pathway of anthocyanins in grapes has been thoroughly investigated. Their intracellular transportation and accumulation have also been further clarified. Additionally, the genetic mechanism regulating their biosynthesis and the phytohormone influences on them are better understood. Furthermore, due to their importance in the quality of wine grapes, the effects of the environmental factors and viticulture practices on anthocyanin accumulation are being investigated increasingly. The present paper summarizes both the basic information and the most recent advances in the study of the anthocyanin biosynthesis in red grapes, emphasizing their gene structure, the transcriptional factors and the diverse exterior regulation factors.

  5. Cholesterol biosynthesis in polychlorinated biphenyl-treated rats

    International Nuclear Information System (INIS)

    Kling, D.; Gamble, W.

    1982-01-01

    After administration of polychlorinated biphenly (PCB) at 0.055 (w/w) of the diet to Wistar rats for 30 days, followed by intraperitioneal injection of tritiated water, [ 14 C]mevalonate, and [ 14 C]acetate, there was a decrease in cholesterol biosynthesis in rat liver. No significant change in cholesterol formation was observed when PCB was administered at 0.01% (w/w) of the diet. In vitro inhibition of cholesterol synthesis by rat liver microsomes was observed with PCB. Squalene 2,3-oxidocyclase activity of rat liver microsomes was not significantly altered. Desmosterol delta 24 reductase activity was inhibited only at relatively high concentrations of PCB. There was increased incorporation of radioactivity into squalene and lanosterol, in vitro, in the presence of PCB. The primary inhibition of cholesterol biosynthesis appears to be at the demethylation and rearrangement reactions between lanosterol and cholesterol in the biosynthetic pathway

  6. Biosynthesis of collagen by fibroblasts kept in culture

    International Nuclear Information System (INIS)

    Machado-Santelli, G.M.

    1978-01-01

    The sinthesis of collagen is studied in fibroblasts of different origins with the purpose of obtaining an appropriate system for the study of its biosynthesis and processing. The percentage of collagen synthesis vary according to the fibroblast origin. Experiences are performed with fibroblasts kept in culture from: chicken - and guinea pig embryos, carragheenin - induced granulomas in adult guinea pig and from human skin. The collagen pattern synthesized after acetic acid - or saline extractions in the presence of inhibitors is also determined. This pattern is then assayed by poliacrilamide - 5% - SDS gel electrophoresis accompanied by fluorography. The importance of the cell culture system in the elucidation of collagen biosynthesis is pointed out. (M.A.) [pt

  7. Ovarian ecdysteroid biosynthesis and female germline stem cells.

    Science.gov (United States)

    Ameku, Tomotsune; Yoshinari, Yuto; Fukuda, Ruriko; Niwa, Ryusuke

    2017-07-03

    The germline stem cells (GSCs) are critical for gametogenesis throughout the adult life. Stem cell identity is maintained by local signals from a specialized microenvironment called the niche. However, it is unclear how systemic signals regulate stem cell activity in response to environmental cues. In our previous article, we reported that mating stimulates GSC proliferation in female Drosophila. The mating-induced GSC proliferation is mediated by ovarian ecdysteroids, whose biosynthesis is positively controlled by Sex peptide signaling. Here, we characterized the post-eclosion and post-mating expression pattern of the genes encoding the ecdysteroidogenic enzymes in the ovary. We further investigated the biosynthetic functions of the ovarian ecdysteroid in GSC maintenance in the mated females. We also briefly discuss the regulation of the ecdysteroidogenic enzyme-encoding genes and the subsequent ecdysteroid biosynthesis in the ovary of the adult Drosophila.

  8. A protein interaction map of the kalimantacin biosynthesis assembly line

    Directory of Open Access Journals (Sweden)

    Birgit Uytterhoeven

    2016-11-01

    Full Text Available The antimicrobial secondary metabolite kalimantacin is produced by a hybrid polyketide/ non-ribosomal peptide system in Pseudomonas fluorescens BCCM_ID9359. In this study, the kalimantacin biosynthesis gene cluster is analyzed by yeast two-hybrid analysis, creating a protein-protein interaction map of the entire assembly line. In total, 28 potential interactions were identified, of which 13 could be confirmed further. These interactions include the dimerization of ketosynthase domains, a link between assembly line modules 9 and 10, and a specific interaction between the trans-acting enoyl reductase BatK and the carrier proteins of modules 8 and 10. These interactions reveal fundamental insight into the biosynthesis of secondary metabolites.This study is the first to reveal interactions in a complete biosynthetic pathway. Similar future studies could build a strong basis for engineering strategies in such clusters.

  9. Enzymatic Reductive Dehalogenation Controls the Biosynthesis of Marine Bacterial Pyrroles.

    Science.gov (United States)

    El Gamal, Abrahim; Agarwal, Vinayak; Rahman, Imran; Moore, Bradley S

    2016-10-12

    Enzymes capable of performing dehalogenating reactions have attracted tremendous contemporary attention due to their potential application in the bioremediation of anthropogenic polyhalogenated persistent organic pollutants. Nature, in particular the marine environment, is also a prolific source of polyhalogenated organic natural products. The study of the biosynthesis of these natural products has furnished a diverse array of halogenation biocatalysts, but thus far no examples of dehalogenating enzymes have been reported from a secondary metabolic pathway. Here we show that the penultimate step in the biosynthesis of the highly brominated marine bacterial product pentabromopseudilin is catalyzed by an unusual debrominase Bmp8 that utilizes a redox thiol mechanism to remove the C-2 bromine atom of 2,3,4,5-tetrabromopyrrole to facilitate oxidative coupling to 2,4-dibromophenol. To the best of our knowledge, Bmp8 is first example of a dehalogenating enzyme from the established genetic and biochemical context of a natural product biosynthetic pathway.

  10. Biosynthesis and chemical synthesis of presilphiperfolanol natural products.

    Science.gov (United States)

    Hong, Allen Y; Stoltz, Brian M

    2014-05-19

    Presilphiperfolanols constitute a family of biosynthetically important sesquiterpenes which can rearrange to diverse sesquiterpenoid skeletons. While the origin of these natural products can be traced to simple linear terpene precursors, the details of the enzymatic cyclization mechanism that forms the stereochemically dense tricyclic skeleton has required extensive biochemical, computational, and synthetic investigation. Parallel efforts to prepare the unique and intriguing structures of these compounds by total synthesis have also inspired novel strategies, thus resulting in four synthetic approaches and two completed syntheses. While the biosynthesis and chemical synthesis studies performed to date have provided much insight into the role and properties of these molecules, emerging questions regarding the biosynthesis of newer members of the family and subtle details of rearrangement mechanisms have yet to be explored. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Engineering fatty acid biosynthesis in microalgae for sustainable biodiesel.

    Science.gov (United States)

    Blatti, Jillian L; Michaud, Jennifer; Burkart, Michael D

    2013-06-01

    Microalgae are a promising feedstock for biodiesel and other liquid fuels due to their fast growth rate, high lipid yields, and ability to grow in a broad range of environments. However, many microalgae achieve maximal lipid yields only under stress conditions hindering growth and providing compositions not ideal for biofuel applications. Metabolic engineering of algal fatty acid biosynthesis promises to create strains capable of economically producing fungible and sustainable biofuels. The algal fatty acid biosynthetic pathway has been deduced by homology to bacterial and plant systems, and much of our understanding is gleaned from basic studies in these systems. However, successful engineering of lipid metabolism in algae will necessitate a thorough characterization of the algal fatty acid synthase (FAS) including protein-protein interactions and regulation. This review describes recent efforts to engineer fatty acid biosynthesis toward optimizing microalgae as a biodiesel feedstock. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Biosynthesis of Titanium Dioxide Nanoparticles and Their Antibacterial Property

    OpenAIRE

    Prachi Singh

    2016-01-01

    This paper presents a low-cost, eco-friendly and reproducible microbe mediated biosynthesis of TiO2 nanoparticles. TiO2 nanoparticles synthesized using the bacterium, Bacillus subtilis, from titanium as a precursor, were confirmed by TEM analysis. The morphological characteristics state spherical shape, with the size of individual or aggregate nanoparticles, around 30-40 nm. Microbial resistance represents a challenge for the scientific community to develop new bioactive compounds. Here, the ...

  13. Oxylipin Pathway in the Biosynthesis of Fresh Tomato Volatiles

    OpenAIRE

    YILMAZ, Emin

    2001-01-01

    Fresh tomato volatiles are formed in intact fruit during ripening and upon tissue disruption. There are different pathways involved in the biosynthesis of these volatiles. The oxylipin pathway uses free unsaturated fatty acids with the sequential action of lipoxygenase, hydroperoxide lyase and alcohol dehydrogenase to produce volatile aldehyde and alcohol compounds. Oxylipin volatiles are the most important components in fresh tomato aroma. In order to genetically improve the quality of tomat...

  14. Biosynthesis and Application of Silver and Gold Nanoparticles

    OpenAIRE

    Sadowski, Zygmunt

    2010-01-01

    A green chemistry synthetic route has been used for both silver and gold nanoparticles synthesis. The reaction occurred at ambient temperature. Among the nanoparticles biological organism, some microorganisms such as bacteria, fungi, and yeast have been exploited for nanoparticles synthesis. Several plant biomass or plant extracts have been successfully used for extracellular biosynthesis of silver and gold nanoparticles. Analytical techniques, such as ultraviolet-visible spectroscopy (UV-vis...

  15. Biosynthesis of sterols and ecdysteroids in Ajuga hairy roots.

    Science.gov (United States)

    Fujimoto, Y; Ohyama, K; Nomura, K; Hyodo, R; Takahashi, K; Yamada, J; Morisaki, M

    2000-03-01

    Hairy roots of Ajuga reptans var. atropurpurea produce clerosterol, 22-dehydroclerosterol, and cholesterol as sterol constituents, and 20-hydroxyecdysone, cyasterone, isocyasterone, and 29-norcyasterone as ecdysteroid constituents. To better understand the biosynthesis of these steroidal compounds, we carried out feeding studies of variously 2H- and 13C-labeled sterol substrates with Ajuga hairy roots. In this article, we review our studies in this field. Feeding of labeled desmosterols, 24-methylenecholesterol, and 13C2-acetate established the mechanism of the biosynthesis of the two C29-sterols and a newly accumulated codisterol, including the metabolic correlation of C-26 and C-27 methyl groups. In Ajuga hairy roots, 3alpha-, 4alpha-, and 4beta-hydrogens of cholesterol were all retained at their original positions after conversion into 20-hydroxyecdysone, in contrast to the observations in a fern and an insect. Furthermore, the origin of 5beta-H of 20-hydroxyecdysone was found to be C-6 hydrogen of cholesterol exclusively, which is inconsistent with the results in the fern and the insect. These data strongly support the intermediacy of 7-dehydrocholesterol 5alpha,6alpha-epoxide. Moreover, 7-dehydrocholesterol, 3beta-hydroxy-5beta-cholest-7-en-6-one (5beta-ketol), and 3beta,14alpha-dihydroxy-5beta-cholest-7-en-6-one (5beta-ketodiol) were converted into 20-hydroxyecdysone. Thus, the pathway cholesterol-->7-dehydrocholesterol-->7-dehydrocholesterol 5alpha,6alpha-epoxide-->5beta-ketol-->5beta-k etodiol is proposed for the early stages of 20-hydroxyecdysone biosynthesis. 3beta-Hydroxy-5beta-cholestan-6-one was also incorporated into 20-hydroxyecdysone, suggesting that the introduction of a 7-ene function is not necessarily next to cholesterol. C-25 Hydroxylation during 20-hydroxyecdysone biosynthesis was found to proceed with ca. 70% retention and 30% inversion. Finally, clerosterol was shown to be a precursor of cyasterone and isocyasterone.

  16. Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae

    OpenAIRE

    Duan, Lijin; Ding, Wentao; Liu, Xiaonan; Cheng, Xiaozhi; Cai, Jing; Hua, Erbing; Jiang, Huifeng

    2017-01-01

    Background Kaempferol is a flavonol with broad bioactivity of anti-oxidant, anti-cancer, anti-diabetic, anti-microbial, cardio-protective and anti-asthma. Microbial synthesis of kaempferol is a promising strategy because of the low content in primary plant source. Methods In this study, the biosynthesis pathway of kaempferol was constructed in the budding yeast Saccharomyces cerevisiae to produce kaempferol de novo, and several biological measures were taken for high production. Results First...

  17. Sex differences in prostaglandin biosynthesis in neutrophils during acute inflammation

    OpenAIRE

    Pace, Simona; Rossi, Antonietta; Krauth, Verena; Dehm, Friederike; Troisi, Fabiana; Bilancia, Rossella; Weinigel, Christina; Rummler, Silke; Werz, Oliver; Sautebin, Lidia

    2017-01-01

    The severity and course of inflammatory processes differ between women and men, but the biochemical mechanisms underlying these sex differences are elusive. Prostaglandins (PG) and leukotrienes (LT) are lipid mediators linked to inflammation. We demonstrated superior LT biosynthesis in human neutrophils and monocytes, and in mouse macrophages from females, and we confirmed these sex differences in vivo where female mice produced more LTs during zymosan-induced peritonitis versus males. Here, ...

  18. Biosynthesis and regulation of cyclic lipopeptides in Pseudomonas fluorescens

    OpenAIRE

    Bruijn, de, I.

    2009-01-01

    Cyclic lipopeptides (CLPs) are surfactant and antibiotic metabolites produced by a variety of bacterial genera. For the genus Pseudomonas, many structurally different CLPs have been identified. CLPs play an important role in surface motility of Pseudomonas strains, but also in virulence and attachment/detachment to and from surfaces. In this Ph.D. thesis project, two new CLP biosynthesis clusters were identified in Pseudomonas fluorescens and fully sequenced. In P. fluorescens strain SBW2...

  19. Engineered polyketide biosynthesis and biocatalysis in Escherichia coli

    OpenAIRE

    Gao, Xue; Wang, Peng; Tang, Yi

    2010-01-01

    Polyketides are important bioactive natural products biosynthesized by bacteria, fungi, and plants. The enzymes that synthesize polyketides are collectively referred to as polyketide synthases (PKSs). Because many of the natural hosts that produce polyketides are difficult to culture or manipulate, establishing a universal heterologous host that is genetically tractable has become an important goal toward the engineered biosynthesis of polyketides and analogues. Here, we summarize the recent ...

  20. A new strategy for aromatic ring alkylation in cylindrocyclophane biosynthesis.

    Science.gov (United States)

    Nakamura, Hitomi; Schultz, Erica E; Balskus, Emily P

    2017-08-01

    Alkylation of aromatic rings with alkyl halides is an important transformation in organic synthesis, yet an enzymatic equivalent is unknown. Here, we report that cylindrocyclophane biosynthesis in Cylindrospermum licheniforme ATCC 29412 involves chlorination of an unactivated carbon center by a novel halogenase, followed by a previously uncharacterized enzymatic dimerization reaction featuring sequential, stereospecific alkylations of resorcinol aromatic rings. Discovery of the enzymatic machinery underlying this unique biosynthetic carbon-carbon bond formation has implications for biocatalysis and metabolic engineering.

  1. Regulation of Neurosteroid Biosynthesis by Neurotransmitters and Neuropeptides

    OpenAIRE

    Do Rego, Jean Luc; Seong, Jae Young; Burel, Delphine; Leprince, Jerôme; Vaudry, David; Luu-The, Van; Tonon, Marie-Christine; Tsutsui, Kazuyoshi; Pelletier, Georges; Vaudry, Hubert

    2012-01-01

    The enzymatic pathways leading to the synthesis of bioactive steroids in the brain are now almost completely elucidated in various groups of vertebrates and, during the last decade, the neuronal mechanisms involved in the regulation of neurosteroid production have received increasing attention. This report reviews the current knowledge concerning the effects of neurotransmitters, peptide hormones, and neuropeptides on the biosynthesis of neurosteroids. Anatomical studies have been carried out...

  2. Regulation of neurosteroid biosynthesis by neurotransmitters and neuropeptides

    Directory of Open Access Journals (Sweden)

    Jean-Luc eDo-Rego

    2012-01-01

    Full Text Available The enzymatic pathways leading to the synthesis of bioactive steroids in the brain are now almost completely elucidated in various groups of vertebrates and, during the last decade, the neuronal mechanisms involved in the regulation of neurosteroid production have received increasing attention. This report reviews the current knowledge concerning the effects of neurotransmitters, peptide hormones and neuropeptides on the biosynthesis of neurosteroids. Anatomical studies have been carried out to visualize the neurotransmitter- or neuropeptide-containing fibers contacting steroid-synthesizing neurons as well as the neurotransmitter, peptide hormones or neuropeptide receptors expressed in these neurons. Biochemical experiments have been conducted to investigate the effects of neurotransmitters, peptide hormones or neuropeptides on neurosteroid biosynthesis, and to characterize the type of receptors involved. Thus, it has been found that glutamate, acting through kainate and/or AMPA receptors, rapidly inactivates P450arom, and that melatonin produced by the pineal gland and eye inhibits the biosynthesis of 7-hydroxypregnenolone (7-OH-5P, while prolactin produced by the adenohypophysis enhances the formation of 7-OH-5P. It has also been demonstrated that the biosynthesis of neurosteroids is inhibited by GABA, acting through GABAA receptors, and neuropeptide Y, acting through Y1 receptors. In contrast, it has been shown that the octadecaneuropetide ODN, acting through central-type benzodiazepine receptors, the triakontatetraneuropeptide TTN, acting though peripheral-type benzodiazepine receptors, and vasotocine, acting through V1a-like receptors, stimulate the production of neurosteroids. Since neurosteroids are implicated in the control of various neurophysiological and behavioral processes, these data suggest that some of the neurophysiological effects exerted by neurotransmitters and neuropeptides may be mediated via the regulation

  3. ENDOCANNABINOIDS AND EICOSAMOIDS: BIOSYNTHESIS AND INTERACTIONS WITH IMMUNE RESPONSE

    Directory of Open Access Journals (Sweden)

    Yu. K. Karaman

    2013-01-01

    Full Text Available The review is dedicated to modern concepts of arachidonic acid metabolites, i.e., endocannabinoids and eicosanoids, their biosynthetic pathways, cross-talk mechanisms and participation in immune response. New information from literature and own results include data concerning overlapping enzymatic pathways controlling biosynthesis of endocannabinoids and eicosanoids. Impact of synthetic cannabinoid receptor ligands upon production rates of proinflammatory cytokines and eicosanoids is discussed, as like as relationships among immune system reactivity and expression levels of cannabinoid receptors.

  4. A Comparison between Chemical Synthesis Magnetite Nanoparticles and Biosynthesis Magnetite

    OpenAIRE

    Seyed Abolghasem Kahani; Zahra Yagini

    2014-01-01

    The preparation of Fe3O4 from ferrous salt by air in alkaline aqueous solution at various temperatures was proposed. The synthetic magnetites have different particle size distributions. We studied the properties of the magnetite prepared by chemical methods compared with magnetotactic bacterial nanoparticles. The results show that crystallite size, morphology, and particle size distribution of chemically prepared magnetite at 293 K are similar to biosynthesis of magnetite. The new preparation...

  5. Protein biosynthesis in isolated human scalp hair follicles.

    Science.gov (United States)

    Vermorken, A J; Weterings, P J; Bloemendal, H

    1979-02-15

    The present study demonstrates that protein biosynthesis can be studied in single isolated human scalp hair follicles. The matrix and the sheath are the main regions where amino acids are built in. Incorporation is linear for at least five hours. The newly synthesized proteins can be separated into a water-soluble, a urea-soluble and a urea-insoluble fraction. Product analysis has been performed on the first two fractions, revealing different protein patterns.

  6. Biosynthesis and Characterization of Silver Nanoparticles by Aspergillus Species

    OpenAIRE

    Zomorodian, Kamiar; Pourshahid, Seyedmohammad; Sadatsharifi, Arman; Mehryar, Pouyan; Pakshir, Keyvan; Rahimi, Mohammad Javad; Arabi Monfared, Ali

    2016-01-01

    Currently, researchers turn to natural processes such as using biological microorganisms in order to develop reliable and ecofriendly methods for the synthesis of metallic nanoparticles. In this study, we have investigated extracellular biosynthesis of silver nanoparticles using four Aspergillus species including A. fumigatus, A. clavatus, A. niger, and A. flavus. We have also analyzed nitrate reductase activity in the studied species in order to determine the probable role of this enzyme in ...

  7. Microbial Biosynthesis of Silver Nanoparticles in Different Culture Media.

    Science.gov (United States)

    Luo, Ke; Jung, Samuel; Park, Kyu-Hwan; Kim, Young-Rok

    2018-01-31

    Microbial biosynthesis of metal nanoparticles has been extensively studied for the applications in biomedical sciences and engineering. However, the mechanism for their synthesis through microorganism is not completely understood. In this study, several culture media were investigated for their roles in the microbial biosynthesis of silver nanoparticles (AgNPs). The size and morphology of the synthesized AgNPs were analyzed by UV-vis spectroscopy, Fourier-transform-infrared (FT-IR), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The results demonstrated that nutrient broth (NB) and Mueller-Hinton broth (MHB) among tested media effectively reduced silver ions to form AgNPs with different particle size and shape. Although the involved microorganism enhanced the reduction of silver ions, the size and shape of the particles were shown to mainly depend on the culture media. Our findings suggest that the growth media of bacterial culture play an important role in the synthesis of metallic nanoparticles with regard to their size and shape. We believe our findings would provide useful information for further exploration of microbial biosynthesis of AgNPs and their biomedical applications.

  8. Feed-forward regulation of microbisporicin biosynthesis in Microbispora corallina.

    Science.gov (United States)

    Foulston, Lucy; Bibb, Mervyn

    2011-06-01

    Lantibiotics are ribosomally synthesized, posttranslationally modified peptide antibiotics. Microbisporicin is a potent lantibiotic produced by the actinomycete Microbispora corallina and contains unique chlorinated tryptophan and dihydroxyproline residues. The biosynthetic gene cluster for microbisporicin encodes several putative regulatory proteins, including, uniquely, an extracytoplasmic function (ECF) σ factor, σ(MibX), a likely cognate anti-σ factor, MibW, and a potential helix-turn-helix DNA binding protein, MibR. Here we examine the roles of these proteins in regulating microbisporicin biosynthesis. S1 nuclease protection assays were used to determine transcriptional start sites in the microbisporicin gene cluster and confirmed the presence of the likely ECF sigma factor -10 and -35 sequences in five out of six promoters. In contrast, the promoter of mibA, encoding the microbisporicin prepropeptide, has a typical Streptomyces vegetative sigma factor consensus sequence. The ECF sigma factor σ(MibX) was shown to interact with the putative anti-sigma factor MibW in Escherichia coli using bacterial two-hybrid analysis. σ(MibX) autoregulates its own expression but does not directly regulate expression of mibA. On the basis of quantitative reverse transcriptase PCR (qRT-PCR) data, we propose a model for the biosynthesis of microbisporicin in which MibR functions as an essential master regulator and the ECF sigma factor/anti-sigma factor pair, σ(MibX)/MibW, induces feed-forward biosynthesis of microbisporicin and producer immunity.

  9. Genome of wild olive and the evolution of oil biosynthesis.

    Science.gov (United States)

    Unver, Turgay; Wu, Zhangyan; Sterck, Lieven; Turktas, Mine; Lohaus, Rolf; Li, Zhen; Yang, Ming; He, Lijuan; Deng, Tianquan; Escalante, Francisco Javier; Llorens, Carlos; Roig, Francisco J; Parmaksiz, Iskender; Dundar, Ekrem; Xie, Fuliang; Zhang, Baohong; Ipek, Arif; Uranbey, Serkan; Erayman, Mustafa; Ilhan, Emre; Badad, Oussama; Ghazal, Hassan; Lightfoot, David A; Kasarla, Pavan; Colantonio, Vincent; Tombuloglu, Huseyin; Hernandez, Pilar; Mete, Nurengin; Cetin, Oznur; Van Montagu, Marc; Yang, Huanming; Gao, Qiang; Dorado, Gabriel; Van de Peer, Yves

    2017-10-31

    Here we present the genome sequence and annotation of the wild olive tree ( Olea europaea var. sylvestris ), called oleaster, which is considered an ancestor of cultivated olive trees. More than 50,000 protein-coding genes were predicted, a majority of which could be anchored to 23 pseudochromosomes obtained through a newly constructed genetic map. The oleaster genome contains signatures of two Oleaceae lineage-specific paleopolyploidy events, dated at ∼28 and ∼59 Mya. These events contributed to the expansion and neofunctionalization of genes and gene families that play important roles in oil biosynthesis. The functional divergence of oil biosynthesis pathway genes, such as FAD2 , SACPD, EAR , and ACPTE , following duplication, has been responsible for the differential accumulation of oleic and linoleic acids produced in olive compared with sesame, a closely related oil crop. Duplicated oleaster FAD2 genes are regulated by an siRNA derived from a transposable element-rich region, leading to suppressed levels of FAD2 gene expression. Additionally, neofunctionalization of members of the SACPD gene family has led to increased expression of SACPD2 , 3 , 5 , and 7 , consequently resulting in an increased desaturation of steric acid. Taken together, decreased FAD2 expression and increased SACPD expression likely explain the accumulation of exceptionally high levels of oleic acid in olive. The oleaster genome thus provides important insights into the evolution of oil biosynthesis and will be a valuable resource for oil crop genomics.

  10. Dual diaminopimelate biosynthesis pathways in Bacteroides fragilis and Clostridium thermocellum.

    Science.gov (United States)

    Hudson, André O; Klartag, Ayelet; Gilvarg, Charles; Dobson, Renwick C J; Marques, Felipe Garbelini; Leustek, Thomas

    2011-09-01

    Bacteroides fragilis and Clostridium thermocellum were recently found to synthesize diaminopimelate (DAP) by way of LL-DAP aminotransferase. Both species also contain an ortholog of meso-diaminopimelate dehydrogenase (Ddh), suggesting that they may have redundant pathways for DAP biosynthesis. The B. fragilis Ddh ortholog shows low homology with other examples of Ddh and this species belongs to a phylum, the Bacteriodetes, not previously known to contain this enzyme. By contrast, the C. thermocellum ortholog is well conserved with known examples of Ddh. Using in vitro and in vivo assays both the B. fragilis and C. thermocellum enzymes were found to be authentic examples of Ddh, displaying kinetic properties typical of this enzyme. The result indicates that B. fragilis contains a sequence diverged form of Ddh. Phylogenomic analysis of the microbial genome database revealed that 77% of species with a Ddh ortholog also contain a second pathway for DAP biosynthesis suggesting that Ddh evolved as an ancillary mechanism for DAP biosynthesis. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. The Stereochemistry of Complex Polyketide Biosynthesis by Modular Polyketide Synthases

    Directory of Open Access Journals (Sweden)

    David H. Kwan

    2011-07-01

    Full Text Available Polyketides are a diverse class of medically important natural products whose biosynthesis is catalysed by polyketide synthases (PKSs, in a fashion highly analogous to fatty acid biosynthesis. In modular PKSs, the polyketide chain is assembled by the successive condensation of activated carboxylic acid-derived units, where chain extension occurs with the intermediates remaining covalently bound to the enzyme, with the growing polyketide tethered to an acyl carrier domain (ACP. Carboxylated acyl-CoA precursors serve as activated donors that are selected by the acyltransferase domain (AT providing extender units that are added to the growing chain by condensation catalysed by the ketosynthase domain (KS. The action of ketoreductase (KR, dehydratase (DH, and enoylreductase (ER activities can result in unreduced, partially reduced, or fully reduced centres within the polyketide chain depending on which of these enzymes are present and active. The PKS-catalysed assembly process generates stereochemical diversity, because carbon–carbon double bonds may have either cis- or trans- geometry, and because of the chirality of centres bearing hydroxyl groups (where they are retained and branching methyl groups (the latter arising from use of propionate extender units. This review shall cover the studies that have determined the stereochemistry in many of the reactions involved in polyketide biosynthesis by modular PKSs.

  12. Purine Biosynthesis Metabolically Constrains Intracellular Survival of Uropathogenic Escherichia coli.

    Science.gov (United States)

    Shaffer, Carrie L; Zhang, Ellisa W; Dudley, Anne G; Dixon, Beverly R E A; Guckes, Kirsten R; Breland, Erin J; Floyd, Kyle A; Casella, Daniel P; Algood, Holly M Scott; Clayton, Douglass B; Hadjifrangiskou, Maria

    2017-01-01

    The ability to de novo synthesize purines has been associated with the intracellular survival of multiple bacterial pathogens. Uropathogenic Escherichia coli (UPEC), the predominant cause of urinary tract infections, undergoes a transient intracellular lifestyle during which bacteria clonally expand into multicellular bacterial communities within the cytoplasm of bladder epithelial cells. Here, we characterized the contribution of the conserved de novo purine biosynthesis-associated locus cvpA-purF to UPEC pathogenesis. Deletion of cvpA-purF, or of purF alone, abolished de novo purine biosynthesis but did not impact bacterial adherence properties in vitro or in the bladder lumen. However, upon internalization by bladder epithelial cells, UPEC deficient in de novo purine biosynthesis was unable to expand into intracytoplasmic bacterial communities over time, unless it was extrachromosomally complemented. These findings indicate that UPEC is deprived of purine nucleotides within the intracellular niche and relies on de novo purine synthesis to meet this metabolic requirement. Copyright © 2016 American Society for Microbiology.

  13. Peroxisomes contribute to biosynthesis of extracellular glycolipids in fungi.

    Science.gov (United States)

    Freitag, Johannes; Ast, Julia; Linne, Uwe; Stehlik, Thorsten; Martorana, Domenica; Bölker, Michael; Sandrock, Björn

    2014-07-01

    Many microorganisms secrete surface-active glycolipids. The basidiomycetous fungus Ustilago maydis produces two different classes of glycolipids, mannosylerythritol lipids (MEL) and ustilagic acids (UAs). Here we report that biosynthesis of MELs is partially localized in peroxisomes and coupled to peroxisomal fatty acid degradation. The acyltransferases, Mac1 and Mac2, which acylate mannosylerythritol with fatty acids of different length, contain a type 1 peroxisomal targeting signal (PTS1). We demonstrate that Mac1 and Mac2 are targeted to peroxisomes, while other enzymes involved in MEL production reside in different compartments. Mis-targeting of Mac1 and Mac2 to the cytosol did not block MEL synthesis but promoted production of MEL species with altered acylation pattern. This is in contrast to peroxisome deficient mutants that produced MELs similar to the wild type. We could show that cytosolic targeting of Mac1 and Mac2 reduces the amount of UA presumably due to competition for overlapping substrates. Interestingly, hydroxylated fatty acids characteristic for UAs appear in MELs corroborating cross-talk between both biosynthesis pathways. Therefore, peroxisomal localization of MEL biosynthesis is not only prerequisite for generation of the natural spectrum of MELs, but also facilitates simultaneous assembly of different glycolipids in a single cell. © 2014 John Wiley & Sons Ltd.

  14. Essential oil biosynthesis and regulation in the genus Cymbopogon.

    Science.gov (United States)

    Ganjewala, Deepak; Luthra, Rajesh

    2010-01-01

    Essential oils distilled from Cymbopogon species are of immense commercial value as flavors and fragrances in the perfumery, cosmetics, soaps, and detergents and in pharmaceutical industries. Two major constituents of the essential oil, geraniol and citral, due to their specific rose and lemon like aromas are widely used as flavors, fragrances and cosmetics. Citral is also used for the synthesis of vitamin A and ionones (for example, beta-ionone, methyl ionone). Moreover, Cymbopogon essential oils and constituents possess many useful biological activities including cytotoxic, anti-inflammatory and antioxidant. Despite the immense commercial and biological significance of the Cymbopogon essential oils, little is known about their biosynthesis and regulatory mechanisms. So far it is known that essential oils are biosynthesized via the classical acetate-MVA route and existence of a newly discovered MEP pathway in Cymbopogon remains as a topic for investigation. The aim of the present review is to discuss the biosynthesis and regulation of essential oils in the genus Cymbopogon with given emphasis to two elite members, lemongrass (C. flexuosus Nees ex Steud) and palmarosa (C. martinii Roxb.). This article highlights the work done so far towards understanding of essential oil biosynthesis and regulation in the genus Cymbopogon. Also, based on our experiences with Cymbopogon species, we would like to propose C. flexuosus as a model system for the study of essential oil metabolism beyond the much studied plant family Lamiaceae.

  15. Evaluation of Biosynthetic Pathway and Engineered Biosynthesis of Alkaloids

    Directory of Open Access Journals (Sweden)

    Shinji Kishimoto

    2016-08-01

    Full Text Available Varieties of alkaloids are known to be produced by various organisms, including bacteria, fungi and plants, as secondary metabolites that exhibit useful bioactivities. However, understanding of how those metabolites are biosynthesized still remains limited, because most of these compounds are isolated from plants and at a trace level of production. In this review, we focus on recent efforts in identifying the genes responsible for the biosynthesis of those nitrogen-containing natural products and elucidating the mechanisms involved in the biosynthetic processes. The alkaloids discussed in this review are ditryptophenaline (dimeric diketopiperazine alkaloid, saframycin (tetrahydroisoquinoline alkaloid, strictosidine (monoterpene indole alkaloid, ergotamine (ergot alkaloid and opiates (benzylisoquinoline and morphinan alkaloid. This review also discusses the engineered biosynthesis of these compounds, primarily through heterologous reconstitution of target biosynthetic pathways in suitable hosts, such as Escherichia coli, Saccharomyces cerevisiae and Aspergillus nidulans. Those heterologous biosynthetic systems can be used to confirm the functions of the isolated genes, economically scale up the production of the alkaloids for commercial distributions and engineer the biosynthetic pathways to produce valuable analogs of the alkaloids. In particular, extensive involvement of oxidation reactions catalyzed by oxidoreductases, such as cytochrome P450s, during the secondary metabolite biosynthesis is discussed in details.

  16. Lipophagy Contributes to Testosterone Biosynthesis in Male Rat Leydig Cells.

    Science.gov (United States)

    Ma, Yi; Zhou, Yan; Zhu, Yin-Ci; Wang, Si-Qi; Ping, Ping; Chen, Xiang-Feng

    2018-02-01

    In recent years, autophagy was found to regulate lipid metabolism through a process termed lipophagy. Lipophagy modulates the degradation of cholesteryl esters to free cholesterol (FC), which is the substrate of testosterone biosynthesis. However, the role of lipophagy in testosterone production is unknown. To investigate this, primary rat Leydig cells and varicocele rat models were administered to inhibit or promote autophagy, and testosterone, lipid droplets (LDs), total cholesterol (TC), and FC were evaluated. The results demonstrated that inhibiting autophagy in primary rat Leydig cells reduced testosterone production. Further studies demonstrated that inhibiting autophagy increased the number and size of LDs and the level of TC, but decreased the level of FC. Furthermore, hypoxia promoted autophagy in Leydig cells. We found that short-term hypoxia stimulated testosterone secretion; however, the inhibition of autophagy abolished stimulated testosterone release. Hypoxia decreased the number and size of LDs in Leydig cells, but the changes could be largely rescued by blocking autophagy. In experimental varicocele rat models, the administration of autophagy inhibitors substantially reduced serum testosterone. These data demonstrate that autophagy contributes to testosterone biosynthesis at least partially through degrading intracellular LDs/TC. Our observations might reveal an autophagic regulatory mode regarding testosterone biosynthesis. Copyright © 2018 Endocrine Society.

  17. Bacterial cellulose biosynthesis: diversity of operons, subunits, products and functions

    Science.gov (United States)

    Römling, Ute; Galperin, Michael Y.

    2015-01-01

    Summary Recent studies of bacterial cellulose biosynthesis, including structural characterization of a functional cellulose synthase complex, provided the first mechanistic insight into this fascinating process. In most studied bacteria, just two subunits, BcsA and BcsB, are necessary and sufficient for the formation of the polysaccharide chain in vitro. Other subunits – which differ among various taxa – affect the enzymatic activity and product yield in vivo by modulating expression of biosynthesis apparatus, export of the nascent β-D-glucan polymer to the cell surface, and the organization of cellulose fibers into a higher-order structure. These auxiliary subunits play key roles in determining the quantity and structure of the resulting biofilm, which is particularly important for interactions of bacteria with higher organisms that lead to rhizosphere colonization and modulate virulence of cellulose-producing bacterial pathogens inside and outside of host cells. Here we review the organization of four principal types of cellulose synthase operons found in various bacterial genomes, identify additional bcs genes that encode likely components of the cellulose biosynthesis and secretion machinery, and propose a unified nomenclature for these genes and subunits. We also discuss the role of cellulose as a key component of biofilms formed by a variety of free-living and pathogenic bacteria and, for the latter, in the choice between acute infection and persistence in the host. PMID:26077867

  18. Metabolic routes affecting rubber biosynthesis in Hevea brasiliensis latex

    Science.gov (United States)

    Chow, Keng-See; Mat-Isa, Mohd.-Noor; Bahari, Azlina; Ghazali, Ahmad-Kamal; Alias, Halimah; Mohd.-Zainuddin, Zainorlina; Hoh, Chee-Choong; Wan, Kiew-Lian

    2012-01-01

    The cytosolic mevalonate (MVA) pathway in Hevea brasiliensis latex is the conventionally accepted pathway which provides isopentenyl diphosphate (IPP) for cis-polyisoprene (rubber) biosynthesis. However, the plastidic 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway may be an alternative source of IPP since its more recent discovery in plants. Quantitative RT-PCR (qRT-PCR) expression profiles of genes from both pathways in latex showed that subcellular compartmentalization of IPP for cis-polyisoprene synthesis is related to the degree of plastidic carotenoid synthesis. From this, the occurrence of two schemes of IPP partitioning and utilization within one species is proposed whereby the supply of IPP for cis-polyisoprene from the MEP pathway is related to carotenoid production in latex. Subsequently, a set of latex unique gene transcripts was sequenced and assembled and they were then mapped to IPP-requiring pathways. Up to eight such pathways, including cis-polyisoprene biosynthesis, were identified. Our findings on pre- and post-IPP metabolic routes form an important aspect of a pathway knowledge-driven approach to enhancing cis-polyisoprene biosynthesis in transgenic rubber trees. PMID:22162870

  19. ODORANT1 Regulates Fragrance Biosynthesis in Petunia FlowersW⃞

    Science.gov (United States)

    Verdonk, Julian C.; Haring, Michel A.; van Tunen, Arjen J.; Schuurink, Robert C.

    2005-01-01

    Floral scent is important to plant reproduction because it attracts pollinators to the sexual organs. Therefore, volatile emission is usually tuned to the foraging activity of the pollinators. In Petunia hybrida, volatile benzenoids determine the floral aroma. Although the pathways for benzenoid biosynthesis have been characterized, the enzymes involved are less well understood. How production and emission are regulated is unknown. By targeted transcriptome analyses, we identified ODORANT1 (ODO1), a member of the R2R3-type MYB family, as a candidate for the regulation of volatile benzenoids in Petunia hybrida cv W115 (Mitchell) flowers. These flowers are only fragrant in the evening and at night. Transcript levels of ODO1 increased before the onset of volatile emission and decreased when volatile emission declined. Downregulation of ODO1 in transgenic P. hybrida Mitchell plants strongly reduced volatile benzenoid levels through decreased synthesis of precursors from the shikimate pathway. The transcript levels of several genes in this pathway were reduced by suppression of ODO1 expression. Moreover, ODO1 could activate the promoter of the 5-enol-pyruvylshikimate-3-phosphate synthase gene. Flower pigmentation, which is furnished from the same shikimate precursors, was not influenced because color and scent biosynthesis occur at different developmental stages. Our studies identify ODO1 as a key regulator of floral scent biosynthesis. PMID:15805488

  20. Deconvoluting heme biosynthesis to target blood-stage malaria parasites

    Science.gov (United States)

    Sigala, Paul A; Crowley, Jan R; Henderson, Jeffrey P; Goldberg, Daniel E

    2015-01-01

    Heme metabolism is central to blood-stage infection by the malaria parasite Plasmodium falciparum. Parasites retain a heme biosynthesis pathway but do not require its activity during infection of heme-rich erythrocytes, where they can scavenge host heme to meet metabolic needs. Nevertheless, heme biosynthesis in parasite-infected erythrocytes can be potently stimulated by exogenous 5-aminolevulinic acid (ALA), resulting in accumulation of the phototoxic intermediate protoporphyrin IX (PPIX). Here we use photodynamic imaging, mass spectrometry, parasite gene disruption, and chemical probes to reveal that vestigial host enzymes in the cytoplasm of Plasmodium-infected erythrocytes contribute to ALA-stimulated heme biosynthesis and that ALA uptake depends on parasite-established permeability pathways. We show that PPIX accumulation in infected erythrocytes can be harnessed for antimalarial chemotherapy using luminol-based chemiluminescence and combinatorial stimulation by low-dose artemisinin to photoactivate PPIX to produce cytotoxic reactive oxygen. This photodynamic strategy has the advantage of exploiting host enzymes refractory to resistance-conferring mutations. DOI: http://dx.doi.org/10.7554/eLife.09143.001 PMID:26173178

  1. Plant-like biosynthesis of isoquinoline alkaloids in Aspergillus fumigatus.

    Science.gov (United States)

    Baccile, Joshua A; Spraker, Joseph E; Le, Henry H; Brandenburger, Eileen; Gomez, Christian; Bok, Jin Woo; Macheleidt, Juliane; Brakhage, Axel A; Hoffmeister, Dirk; Keller, Nancy P; Schroeder, Frank C

    2016-06-01

    Natural product discovery efforts have focused primarily on microbial biosynthetic gene clusters (BGCs) containing large multimodular polyketide synthases and nonribosomal peptide synthetases; however, sequencing of fungal genomes has revealed a vast number of BGCs containing smaller NRPS-like genes of unknown biosynthetic function. Using comparative metabolomics, we show that a BGC in the human pathogen Aspergillus fumigatus named fsq, which contains an NRPS-like gene lacking a condensation domain, produces several new isoquinoline alkaloids known as the fumisoquins. These compounds derive from carbon-carbon bond formation between two amino acid-derived moieties followed by a sequence that is directly analogous to isoquinoline alkaloid biosynthesis in plants. Fumisoquin biosynthesis requires the N-methyltransferase FsqC and the FAD-dependent oxidase FsqB, which represent functional analogs of coclaurine N-methyltransferase and berberine bridge enzyme in plants. Our results show that BGCs containing incomplete NRPS modules may reveal new biosynthetic paradigms and suggest that plant-like isoquinoline biosynthesis occurs in diverse fungi.

  2. A comparison of titers of anti-Brucella antibodies of naturally infected and healthy vaccinated cattle by standard tube agglutination test, microtiter plate agglutination test, indirect hemagglutination assay, and indirect enzyme-linked immunosorbent assay

    Directory of Open Access Journals (Sweden)

    Anju Mohan

    2016-07-01

    Full Text Available Aim: We determined the antibody response in cattle naturally infected with brucellosis and normal healthy adult cattle vaccinated during calf hood with strain 19. Materials and Methods: The antibody titers were measured by standard tube agglutination test (STAT, microtiter plate agglutination test (MAT, indirect hemagglutination assay (IHA, and indirect enzyme-linked immunosorbent assay (iELISA as per standard protocols. Results: The mean STAT titers were 1.963±0.345 in infected cattle and 1.200±0.155 in healthy vaccinated cattle. The difference was extremely significant (p<0.0001. The mean MAT titers were 2.244±0.727 in infected cattle and 1.200±0.155 in healthy vaccinated cattle. The difference was very significant (p<0.005. The mean IHA titers in infected cattle were 2.284±0.574, and those in healthy vaccinated cattle were 1.200±0.155. The difference was extremely significant (p=0.0002. However, the difference in mean iELISA titers of infected cattle (1.3678±0.014 and healthy vaccinated cattle (1.367±0.014 was non-significant. The infected animals showed very high titers of agglutinating antibodies compared to the vaccinated animals. However, it cannot be ascertained whether these antibodies are due to vaccine or response to infection. Since the infected animals had been vaccinated earlier, the current infection may suggest that vaccination was unable to induce protective levels of antibody. The heightened antibody response after infection may also indicate a secondary immune response to the antigens common to the vaccine strain and wild Brucella organisms. Conclusion: The brucellosis infected animals showed very high titers of agglutinating antibodies compared to the vaccinated animals.

  3. Influence of Bakuchiol, a JH analogue from Bemchi ( Psoralea ...

    African Journals Online (AJOL)

    The influence of a juvenile hormone analogue (JHA), bakuchiol on the silk yield of silkworm, Bombyx mori L. was studied involving two popular commercial hybrids, KA x NB4D2 (bivoltine x bivoltine) and PM x NB4D2 (multivoltine x bivoltine). The compound was administered topically to 5th instars at 24, 48, 72 and 96 h as ...

  4. II, Het Nieuwe Testament. JH Kok NV, Kampen 1957.

    African Journals Online (AJOL)

    Test

    duivel „in een slang gevaren” tot die mens gekom het. Dis moontlik, maar 'n mens kan dit moeilik 'n „feit uit die Bybel” noem. So ook berus die Messiaanse interpretasie van Gen. 3:15 en 9:26 nie regstreeks op die woorde van d'e HeUige Skrif nie, maar op 'n bepaalde teologiese uitleg daarvan, 'n Ander voorbeeld van die ...

  5. Effect of low temperature on highly unsaturated fatty acid biosynthesis in activated sludge.

    Science.gov (United States)

    He, Su; Ding, Li-Li; Xu, Ke; Geng, Jin-Ju; Ren, Hong-Qiang

    2016-07-01

    Low temperature is a limiting factor for the microbial activity of activated sludge for sewage treatment plant in winter. Highly unsaturated fatty acid (UFA) biosynthesis, phospholipid fatty acid (PLFA) constituents and microbial structure in activated sludge at low temperature were investigated. Over 12 gigabases of metagenomic sequence data were generated with the Illumina HiSeq 2000 platform. The result showed 43.11% of phospholipid fatty acid (PLFA) in the activated sludge participated in UFA biosynthesis, and γ-Linolenic could be converted to Arachidonic acid at low temperature. The highly UFA biosynthesis in activated sludge was n-6 highly UFA biosynthesis, rather than n-3 highly UFA biosynthesis. The microbial community structures of activated sludge were analyzed by PLFA and high-throughput sequencing (HiSeq) simultaneously. Acidovorax, Pseudomonas, Flavobacterium and Polaromonas occupied higher percentage at 5°C, and genetic changes of highly UFA biosynthesis derived from microbial community structures change. Copyright © 2016. Published by Elsevier Ltd.

  6. Evolution of anti-Trypanosoma cruzi antibody production in patients with chronic Chagas disease: Correlation between antibody titers and development of cardiac disease severity.

    Directory of Open Access Journals (Sweden)

    Ingebourg Georg

    2017-07-01

    Full Text Available Chagas disease is one of the most important endemic infections in Latin America affecting around 6-7 million people. About 30-50% of patients develop the cardiac form of the disease, which can lead to severe cardiac dysfunction and death. In this scenario, the identification of immunological markers of disease progression would be a valuable tool for early treatment and reduction of death rates. In this observational study, the production of anti-Trypanosoma cruzi antibodies through a retrospective longitudinal follow-up in chronic Chagas disease patients´ cohort and its correlation with disease progression and heart commitment was evaluated. Strong inverse correlation (ρ = -0.6375, p = 0.0005 between anti-T. cruzi IgG1 titers and left ventricular ejection fraction (LVEF in chronic Chagas cardiomyopathy (CCC patients were observed after disease progression. Elevated levels of anti-T. cruzi IgG3 titers were detected in all T. cruzi-infected patients, indicating a lack of correlation of this IgG isotype with disease progression. Furthermore, low levels of anti-T. cruzi IgG2, IgG4, and IgA were detected in all patients through the follow-up. Although without statistical significance anti-T. cruzi IgE tends to be more reactive in patients with the indeterminate form (IND of the disease (p = 0.0637. As this study was conducted in patients with many years of chronic disease no anti-T. cruzi IgM was detected. Taken together, these results indicate that the levels of anti-T. cruzi IgG1 could be considered to seek for promising biomarkers to predict the severity of chronic Chagas disease cardiomyopathy.

  7. Production of high-titer human influenza A virus with adherent and suspension MDCK cells cultured in a single-use hollow fiber bioreactor.

    Science.gov (United States)

    Tapia, Felipe; Vogel, Thomas; Genzel, Yvonne; Behrendt, Ilona; Hirschel, Mark; Gangemi, J David; Reichl, Udo

    2014-02-12

    Hollow fiber bioreactors (HFBRs) have been widely described as capable of supporting the production of highly concentrated monoclonal antibodies and recombinant proteins. Only recently HFBRs have been proposed as new single-use platforms for production of high-titer influenza A virus. These bioreactors contain multiple hollow fiber capillary tubes that separate the bioreactor in an intra- and an extra-capillary space. Cells are usually cultured in the extra-capillary space and can grow to a very high cell concentration. This work describes the evaluation of the single-use hollow fiber bioreactor PRIMER HF (Biovest International Inc., USA) for production of influenza A virus. The process was setup, characterized and optimized by running a total of 15 cultivations. The HFBRs were seeded with either adherent or suspension MDCK cells, and infected with influenza virus A/PR/8/34 (H1N1), and the pandemic strain A/Mexico/4108/2009 (H1N1). High HA titers and TCID₅₀ of up to 3.87 log₁₀(HA units/100 μL) and 1.8 × 10(10)virions/mL, respectively, were obtained for A/PR/8/34 influenza strain. Influenza virus was collected by performing multiple harvests of the extra-capillary space during a virus production time of up to 12 days. Cell-specific virus yields between 2,000 and 8,000 virions/cell were estimated for adherent MDCK cells, and between 11,000 and 19,000 virions/cell for suspension MDCK.SUS2 cells. These results do not only coincide with the cell-specific virus yields obtained with cultivations in stirred tank bioreactors and other high cell density systems, but also demonstrate that HFBRs are promising and competitive single-use platforms that can be considered for commercial production of influenza virus. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Balancing the carbon flux distributions between the TCA cycle and glyoxylate shunt to produce glycolate at high yield and titer in Escherichia coli.

    Science.gov (United States)

    Deng, Yu; Ma, Ning; Zhu, Kangjia; Mao, Yin; Wei, Xuetuan; Zhao, Yunying

    2018-03-01

    The glyoxylate shunt is a branch of the tricarboxylic acid (TCA) cycle which directly determines the synthesis of glycolate, and the balance between the glyoxylate shunt and TCA cycle is very important for the growth of Escherichia coli. In order to accumulate glycolate at high yield and titer, strategies for over-expressing glycolate pathway enzymes including isocitrate lyase (AceA), isocitrate dehydrogenase kinase/phosphatase (AceK) and glyoxylate reductase (YcdW) were analyzed. The genes encoding these three enzymes were transcribed under the control of promoter pTrc on pTrc99A, to form pJNU-3, which was harbored by strain Mgly1, resulting in strain Mgly13. Strain Mgly13 produced glycolate with 0.385 g/g-glucose yield (45.2% of the theoretical yield). Citrate synthase (GltA) converted excess acetyl-CoA and oxaloacetate to citrate and was over-expressed by pJNU-4 (pCDFDuet-1 backbone). Thus, the resulting strain Mgly134 produced glycolate with a 0.504 g/g-glucose yield (59.3% of the theoretical yield). We then eliminated the pathways involved in the degradation of glycolate, resulting in strain Mgly434, which produced glycolate with 92.9% of the theoretical yield. Following optimization of fermentation, the maximum glycolate titer from strain Mgly434 was 65.5 g/L. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  9. Antibody titers in animal bite victims after post exposure vaccination with intradermally administered purified vero cell rabies vaccine using modified thai red cross regimen

    International Nuclear Information System (INIS)

    Hafeez, S.; Tahir, Z.

    2014-01-01

    To determine the seroconversion following rabies vaccination by intradermal route in cases of animal bite attending Anti rabies center, Lahore for post exposure prophylaxis. Study Design: Cross sectional descriptive study. Place and Duration: Antirabies center, Birdwood road Lahore, Microbiology laboratory, office of Bacteriologist, Government of Punjab, Lahore. Patients and Methods: Victims of all ages and both sexes having exposure with suspected rabid animal within 24 - 72 hours were included, fulfilling inclusion and exclusion criteria, over 3 months period from February to April 20. Patients of Category II and III wounds were included. Purified vero cell vaccine (PVR V) with antigenic content> 2.5 ml was used for intradermal vaccination according to modified Thai Red Cross regimen (2-2-2-0-2). Each victim received 0.1 ml intradermal dose on each deltoid on day 0, 3, 7 and 28th day of bite. Blood samples from victims were taken on day 0, 14 and 35. Antibody titers were estimated by ELISA kit. Results: Fifty cases were studied including 20 children. Male female ratio was 4:1. Optimum serocon version (> 0.5 IU/ml) was achieved in all cases by day 14. Antibody levels increased further (> 4 IV/ml) in 92% cases on day 35. Geometric mean titers were 3.2 IU/ml and 6.2 IU/ml on day 14 and 35 respectively. Conclusion: Intradermal route for cell culture rabies vaccine for postexposure prophylaxis in animal bite victims was efficacious and safe. The smaller dosage of vaccine was economically affordable by patients in referral centers. (author)

  10. Increased TRAb and/or low anti-TPO titers at diagnosis of graves' disease are associated with an increased risk of developing ophthalmopathy after onset.

    Science.gov (United States)

    Lantz, M; Planck, T; Asman, P; Hallengren, B

    2014-02-01

    Patients with low thyroid peroxidase antibodies (anti-TPO) and increased TSH-receptor antibodies (TRAb) at diagnosis of Graves' disease (GD) have been suggested to have an increased risk to develop Graves' ophthalmopathy (GO). The aim was to evaluate if GO development can be predicted.This is an observational study with registration of possible GD and GO risk factors.399 patients with GD were registered 2003-2008 in Malmö, Sweden and out of these 310 were retrospectively followed up to 6 years. The main outcome measures were anti-TPO titer, TRAb titer, smoking habits, radioiodine treatment and GO development.TRAb was assessed with a third generation assay at GD diagnosis in 231 patients. The proportion of patients with GO increased above the median 6.3 IU/L both at diagnosis of GD (p=0.001) and at follow-up (p=0.0001).The distribution of GO patients anti-TPO above or below 20 kIU/L at diagnosis of GD was similar between groups (p=0.239). However at follow-up anti-TPOTPO>20 kIU/L (p=0.018).87% of patients who developed GO after GD diagnosis had TRAb above 6.3 IU/L and/or anti-TPO below 20 kIU/L. The proportion of GO was doubled in GD patients treated with radioiodine but could not explain the described findingsAnti-TPO6.3 IE/L at the time of GD diagnosis were associated with an increased risk to develop GO after diagnosis of GD. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.

  11. Evolution of anti-Trypanosoma cruzi antibody production in patients with chronic Chagas disease: Correlation between antibody titers and development of cardiac disease severity

    Science.gov (United States)

    Georg, Ingebourg; Hasslocher-Moreno, Alejandro Marcel; Xavier, Sergio Salles; de Holanda, Marcelo Teixeira; Bonecini-Almeida, Maria da Gloria

    2017-01-01

    Chagas disease is one of the most important endemic infections in Latin America affecting around 6–7 million people. About 30–50% of patients develop the cardiac form of the disease, which can lead to severe cardiac dysfunction and death. In this scenario, the identification of immunological markers of disease progression would be a valuable tool for early treatment and reduction of death rates. In this observational study, the production of anti-Trypanosoma cruzi antibodies through a retrospective longitudinal follow-up in chronic Chagas disease patients´ cohort and its correlation with disease progression and heart commitment was evaluated. Strong inverse correlation (ρ = -0.6375, p = 0.0005) between anti-T. cruzi IgG1 titers and left ventricular ejection fraction (LVEF) in chronic Chagas cardiomyopathy (CCC) patients were observed after disease progression. Elevated levels of anti-T. cruzi IgG3 titers were detected in all T. cruzi-infected patients, indicating a lack of correlation of this IgG isotype with disease progression. Furthermore, low levels of anti-T. cruzi IgG2, IgG4, and IgA were detected in all patients through the follow-up. Although without statistical significance anti-T. cruzi IgE tends to be more reactive in patients with the indeterminate form (IND) of the disease (p = 0.0637). As this study was conducted in patients with many years of chronic disease no anti-T. cruzi IgM was detected. Taken together, these results indicate that the levels of anti-T. cruzi IgG1 could be considered to seek for promising biomarkers to predict the severity of chronic Chagas disease cardiomyopathy. PMID:28723905

  12. ANTIBODY TITER AGAINST HBSAGIN CHILDREN ENTERING ELEMENTARY SCHOOL WHO WERE VACCINATED AGAINST HEPATITIS B AT BIRTH: SBAHR.E.KORD CITY

    Directory of Open Access Journals (Sweden)

    K MOSTAFAVIZADEH

    2001-09-01

    Full Text Available Introduction. Regarding the fact that hepatitis B and its complications is a serious problem routine vaccination against it is recommended at birth. Fortunately, since 1991 all infants in our country are vaccinated against the disease. This study was designed to evaluate hepatitis B vaccine induced immunity 5-6 years after vaccination. If antibody titer is below the protective level booster dose should be considered. Methods. This study is a cross-sectional one which 394 cases selected randomly. After filling up questionnaires sampling was performed and sample sera were checked out for anti HBsAg antibody by ELISA method.Results were announced as positive and negative. Some variables Such as age, gender, growth and development and time of vaccination also were evaluated. Results. From the total number of 394 cases, 142 (36 percent had antibody title less than (10 MIU which is not protective. Rate of negative response was 32.2 percent for girls and 39 percent for boys. The same rate for children of 2-2.5, 2.5-3.5and over 3 kg weight at birth was 44 percent 36.percent and 34.8 percent respectively. Regarding the time, 16 cases had delayed vaccination with 44 percent negative response. Rate of negative response in children who received regular vaccination was 35.7 percent. Negative response rate for 25 cases above the acceptable level of growth was 8 percent and for 6 cases below the level was 17 percent. In rural and urban population negative response rate was 35.4 percent and 36.7 percent respectively. Discussion. Cases with negative response are suscoptible to infection so it is recommended to 1: Carryout investigations to determine causes of decline in antibody titer. 2: Carryout investigations in other parts of country to recheck the results of this study. 3: administer booster dose to high-risk cases with negative response.

  13. Comparison of mcl-Poly(3-hydroxyalkanoates) synthesis by different Pseudomonas putida strains from crude glycerol: citrate accumulates at high titer under PHA-producing conditions.

    Science.gov (United States)

    Poblete-Castro, Ignacio; Binger, Danielle; Oehlert, Rene; Rohde, Manfred

    2014-12-23

    Achieving a sustainable society requires, among other things, the use of renewable feedstocks to replace chemicals obtained from petroleum-derived compounds. Crude glycerol synthesized inexpensively as a byproduct of biodiesel production is currently considered a waste product, which can potentially be converted into value-added compounds by bacterial fermentation. This study aimed at evaluating several characterized P. putida strains to produce medium-chain-length poly(3-hydroxyalkanoates) (mcl-PHA) using raw glycerol as the only carbon/energy source. Among all tested strains, P. putida KT2440 most efficiently synthesized mcl-PHA under nitrogen-limiting conditions, amassing more than 34% of its cell dry weight as PHA. Disruption of the PHA depolymerase gene (phaZ) in P. putida KT2440 enhanced the biopolymer titer up to 47% PHA (%wt/wt). The low biomass and PHA titer found in the mutant strain and the wild-type strain KT2440 seems to be triggered by the high production of the side-product citrate during the fermentation process which shows a high yield of 0.6 g/g. Overall, this work demonstrates the importance of choosing an appropriate microbe for the synthesis of mcl-PHA from waste materials, and a close inspection of the cell metabolism in order to identify undesired compounds that diminish the availability of precursors in the synthesis of biopolymers such as polyhydroxyalkanoates. Future metabolic engineering works should focus on reducing the production of citrate in order to modulate resource allocation in the cell's metabolism of P. putida, and finally increase the biopolymer production.

  14. Effects of different replicons in conjugative plasmids on transformation efficiency, plasmid stability, gene expression and n-butanol biosynthesis in Clostridium tyrobutyricum

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Mingrui; Du, Yinming; Jiang, Wenyan; Chang, Wei-Lun; Yang, Shang-Tian [Ohio State Univ., Columbus, OH (United States). William G. Lowrie Dept. of Chemical and Biomolecular Engineering; Tang, I-Ching [Bioprocessing Innovative Company, Dublin, OH (United States)

    2012-01-15

    Clostridium tyrobutyricum ATCC 25755 can produce butyric acid, acetic acid, and hydrogen as the main products from various carbon sources. In this study, C. tyrobutyricum was used as a host to produce n-butanol by expressing adhE2 gene under the control of a native thiolase promoter using four different conjugative plasmids (pMTL82151, 83151, 84151, and 85151) each with a different replicon (pBP1 from C. botulinum NCTC2916, pCB102 from C. butyricum, pCD6 from Clostridium difficile, and pIM13 from Bacillus subtilis). The effects of different replicons on transformation efficiency, plasmid stability, adhE2 expression and aldehyde/alcohol dehydrogenase activities, and butanol production by different mutants of C. tyrobutyricum were investigated. Among the four plasmids and replicons studied, pMTL82151 with pBP1 gave the highest transformation efficiency, plasmid stability, gene expression, and butanol biosynthesis. Butanol production from various substrates, including glucose, xylose, mannose, and mannitol were then investigated with the best mutant strain harboring adhE2 in pMTL82151. A high butanol titer of 20.5 g/L with 0.33 g/g yield and 0.32 g/L h productivity was obtained with mannitol as the substrate in batch fermentation with pH controlled at {proportional_to}6.0. (orig.)

  15. Two Cycloartenol Synthases for Phytosterol Biosynthesis in Polygala tenuifolia Willd

    Directory of Open Access Journals (Sweden)

    Mei Lan Jin

    2017-11-01

    Full Text Available Oxidosqualene cyclases (OSCs are enzymes that play a key role in control of the biosynthesis of phytosterols and triterpene saponins. In order to uncover OSC genes from Polygala tenuifolia seedlings induced by methyl jasmonate (MeJA, RNA-sequencing analysis was performed using the Illumina sequencing platform. A total of 148,488,632 high-quality reads from two samples (control and the MeJA treated were generated. We screened genes related to phytosterol and triterpene saponin biosynthesis and analyzed the transcriptional changes of differentially expressed unigene (DEUG values calculated by fragments per kilobase million (FPKM. In our datasets, two full-length cDNAs of putative OSC genes, PtCAS1, and PtCAS2, were found, in addition to the PtBS (β-amyrin synthase gene reported in our previous studies and the two cycloartenol synthase genes of P. tenuifolia. All genes were isolated and characterized in yeast cells. The functional expression of the two PtCAS genes in yeast cells showed that the genes all produce a cycloartenol as the sole product. When qRT-PCR analysis from different tissues was performed, the expressions of PtCAS1 and PtCAS2 were highest in flowers and roots, respectively. After MeJA treatment, the transcripts of PtCAS1 and PtCAS2 genes increased by 1.5- and 2-fold, respectively. Given these results, we discuss the potential roles of the two PtCAS genes in relation to triterpenoid biosynthesis.

  16. Terpenoid biosynthesis in Euphorbia lathyris and Copaifera spp

    Energy Technology Data Exchange (ETDEWEB)

    Skrukrud, C.L.

    1987-07-01

    Biosynthesis of triterpenoids by isolated latex of Euphorbia lathyris was investigated. The rate of in vitro incorporation of mevalonic acid into triterpenoids was thirty times greater than acetate incorporation indicating that the rate-limiting step in the pathway occurs prior to mevalonate. Both HMG-CoA reductase (EC 1.1.1.34) and HMG-CoA lyase (EC 4.1.3.4) activities were detected in isolated latex. HMG-CoA reductase was localized to a membrane-bound fraction of a 5000g pellet of latex. The rate of conversion of HMG-CoA to mevalonate by this enzyme is comparable to the overall rate of acetate incorporation into the triterpenoids suggesting that this enzyme is rate-determining in the biosynthesis of triterpenoids in E. lathyris latex. HMG-CoA reductase of E. lathyris vegetative tissue was localized to the membrane-bound portion of a particulate fraction (18,000g), and was solubilized by treatment with 2% polyoxyethylene ether W-1. Differences in the optimal pH for activity of HMG-CoA reductase from the latex and vegetative tissue suggest that isozymes of the enzyme may be present in the two tissue types. Studies of the incorporation of various precursors into leaf discs and cuttings taken from Copaifera spp. show differences in the rate of incorporation into Copaifera sesquiterpenes suggesting that the site of sesquiterpene biosynthesis may differ in its accessibility to the different substrates and/or reflecting the metabolic controls on carbon allocation to the terpenes. Mevalonate incorporation by Copaifera langsdorfii cuttings into sesquiterpenes was a hundred-fold greater than either acetate or glucose incorporation, however, its incorporation into squalene and triterpenoids was also a hundred-fold greater than the incorporation into sesquiterpenes. 119 refs., 58 figs., 16 tabs.

  17. Biosynthesis of human sialophorins and analysis of the polypeptide core

    International Nuclear Information System (INIS)

    Remold-O'Donnell, E.; Kenney, D.; Rosen, F.S.

    1987-01-01

    Biosynthesis was examined of sialophorin (formerly called gpL115) which is altered in the inherited immunodeficiency Wiskott-Aldrich syndrome. Sialophorin is greater than 50% carbohydrate, primarily O-linked units of sialic acid, galactose, and galactosamine. Pulse-labeling with [ 35 S]methionine and chase incubation established that sialophorin is synthesized in CEM lymphoblastoid cells as an Mr 62,000 precursor which is converted within 45 min to mature glycosylated sialophorin, a long-lived molecule. Experiments with tunicamycin and endoglycosidase H demonstrated that sialophorin contains N-linked carbohydrate (approximately two units per molecule) and is therefore an N,O-glycoprotein. Pulse-labeling of tunicamycin-treated CEM cells together with immunoprecipitation provided the means to isolate the [ 35 S]-methionine-labeled polypeptide core of sialophorin and determine its molecular weight (58,000). This datum allowed us to express the previously established composition on a per molecule basis and determine that sialophorin molecules contain approximately 520 amino acid residues and greater than or equal to 100 O-linked carbohydrate units. A recent study showed that various blood cells express sialophorin and that there are two molecular forms: lymphocyte/monocyte sialophorin and platelet/neutrophil sialophorin. Biosynthesis of the two forms was compared by using sialophorin of CEM cells and sialophorin of MOLT-4 cells (another lymphoblastoid line) as models for lymphocyte/monocyte sialophorin and platelet/neutrophil sialophorin, respectively. The time course of biosynthesis and the content of N units were found to be identical for the two sialophorin species. [ 35 S]Methionine-labeled polypeptide cores of CEM sialophorin and MOLT sialophorin were isolated and compared by electrophoresis, isoelectrofocusing, and a newly developed peptide mapping technique

  18. Terpenoid biosynthesis in Euphorbia lathyris and Copaifera spp

    International Nuclear Information System (INIS)

    Skrukrud, C.L.

    1987-07-01

    Biosynthesis of triterpenoids by isolated latex of Euphorbia lathyris was investigated. The rate of in vitro incorporation of mevalonic acid into triterpenoids was thirty times greater than acetate incorporation indicating that the rate-limiting step in the pathway occurs prior to mevalonate. Both HMG-CoA reductase (EC 1.1.1.34) and HMG-CoA lyase (EC 4.1.3.4) activities were detected in isolated latex. HMG-CoA reductase was localized to a membrane-bound fraction of a 5000g pellet of latex. The rate of conversion of HMG-CoA to mevalonate by this enzyme is comparable to the overall rate of acetate incorporation into the triterpenoids suggesting that this enzyme is rate-determining in the biosynthesis of triterpenoids in E. lathyris latex. HMG-CoA reductase of E. lathyris vegetative tissue was localized to the membrane-bound portion of a particulate fraction (18,000g), and was solubilized by treatment with 2% polyoxyethylene ether W-1. Differences in the optimal pH for activity of HMG-CoA reductase from the latex and vegetative tissue suggest that isozymes of the enzyme may be present in the two tissue types. Studies of the incorporation of various precursors into leaf discs and cuttings taken from Copaifera spp. show differences in the rate of incorporation into Copaifera sesquiterpenes suggesting that the site of sesquiterpene biosynthesis may differ in its accessibility to the different substrates and/or reflecting the metabolic controls on carbon allocation to the terpenes. Mevalonate incorporation by Copaifera langsdorfii cuttings into sesquiterpenes was a hundred-fold greater than either acetate or glucose incorporation, however, its incorporation into squalene and triterpenoids was also a hundred-fold greater than the incorporation into sesquiterpenes. 119 refs., 58 figs., 16 tabs

  19. Asparagine Biosynthesis in Alfalfa (Medicago sativa L.) Root Nodules.

    Science.gov (United States)

    Snapp, S S; Vance, C P

    1986-10-01

    Rapid direct conversion of exogenously supplied [(14)C]aspartate to [(14)C] asparagine and to tricarboxylic cycle acids was observed in alfalfa (Medicago sativa L.) nodules. Aspartate aminotransferase activity readily converted carbon from exogenously applied [(14)C]aspartate into the tricarboxylic acid cycle with subsequent conversion to the organic acids malate, succinate, and fumarate. Aminooxyacetate, an inhibitor of aminotransferase activity, reduced the flow of carbon from [(14)C]aspartate into tricarboxylic cycle acids and decreased (14)CO(2) evolution by 99%. Concurrently, maximum conversion of aspartate to asparagine was observed in aminooxyacetate treated nodules (30 nanomoles asparagine per gram fresh weight per hour. Metabolism of [(14)C]aspartate and distribution of nodulefixed (14)CO(2) suggest that two pools of aspartate occur in alfalfa nodules: (a) one involved in asparagine biosynthesis, and (b) another supplying a malate/aspartate shuttle. Conversion of [(14)C]aspartate to [(14)C]asparagine was not inhibited by methionine sulfoximine, a glutamine synthetase inhibitor, or azaserine, a glutmate synthetase, inhibitor. The data did not indicate that asparagine biosynthesis in alfalfa nodules has an absolute requirement for glutamine. Radioactivity in the xylem sap, derived from nodule (14)CO(2) fixation, was markedly decreased by treating nodulated roots with aminooxyacetate, methionine sulfoximine, and azaserine. Inhibitors decreased the [(14)C]aspartate and [(14)]asparagine content of xylem sap by greater than 80% and reduced the total amino nitrogen content of xylem sap (including nonradiolabeled amino acids) by 50 to 80%. Asparagine biosynthesis in alfalfa nodules and transport in xylem sap are dependent upon continued aminotransferase activity and an uninterrupted assimilation of ammonia via the glutamine synthetase/glutamate synthase pathway. Continued assimilation of ammonia apparently appears crucial to continued root nodule CO(2) fixation in

  20. Biosynthesis of Silver Nanoparticles Using Extracts of Mexican Medicinal Plants

    Science.gov (United States)

    López, J. L.; Baltazar, C.; Torres, M.; Ruız, A.; Esparza, R.; Rosas, G.

    The biosynthesis of silver nanoparticles using an aqueous extract of Agastache mexicana and Tecoma stans was carried out. The AgNO3 concentration and extract concentration was varied to evaluate their influence on the nanoparticles characteristics such as size and shape. Several characterization techniques were employed. UV-Vis spectroscopy revealed the surface plasmon resonance in the range of 400-500 nm. The X-Ray diffraction results showed that the nanoparticles have a face-centered cubic structure. SEM results confirmed the formation of silver nanoparticles with spherical morphologies. Finally, the antibacterial activity of silver nanoparticles was evaluated against Escherichia coli bacteria.

  1. Explorations of fungal biosynthesis of reduced polyketides - a personal viewpoint.

    Science.gov (United States)

    Vederas, John C

    2014-10-01

    This viewpoint on biosynthesis of reduced polyketides in fungi traces evolution of the research area over more than 4 decades. It is a companion to the related articles by two personal and scientific friends with whom there has been free exchange of ideas for over 30 years. Beginning with very rudimentary knowledge about assembly of such natural products, developments using stable isotope labelling and subsequently identification of biosynthetic genes, led to understanding of the processive nature of polyketide formation. Recent expression and isolation of fungal iterative polyketide synthase enzymes has enabled more detailed exploration of the mechanisms of these fascinating molecular machines.

  2. Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles.

    Science.gov (United States)

    Bansal, Vipul; Poddar, Pankaj; Ahmad, Absar; Sastry, Murali

    2006-09-13

    The syntheses of inorganic materials by biological systems is characterized by processes that occur close to ambient temperatures, pressures, and neutral pH, as is exemplified by biosilicification and biomineralization processes in nature. Conversely, laboratory-based syntheses of oxide materials often require extremes of temperature and pressure. We have shown here the extracellular, room-temperature biosynthesis of 4-5 nm ternary oxide nanoparticles such as barium titanate (BT) using a fungus-mediated approach. The tetragonality as well as a lowered Curie transition temperature in sub-10 nm particles was established, and the ferroelectricity in these particles was shown using Kelvin probe microscopy.

  3. Biosynthesis and composition of bacterial poly(hydroxyalkanoates).

    Science.gov (United States)

    Anderson, A J; Haywood, G W; Dawes, E A

    1990-04-01

    It is well established that Alcaligenes eutrophus can accumulate a copolymer containing 3-hydroxybutyrate and 3-hydroxyvalerate, but longer 3-hydroxyacid monomers have not been reported to occur in this organism. The properties of the enzymes of poly(hydroxyalkanoate) (PHA) biosynthesis are discussed and it is proposed that the substrate specificity of the polymerizing enzyme restricts the range of monomer units incorporated into PHA. Various other bacteria produce similar copolymers from propionic acid and/or valeric acid. A number of Pseudomonas species accumulate PHAs containing longer-chain monomer units from linear alkanoic acids, alkanes and alcohols.

  4. Localization and biosynthesis of polyamines in insulin-producing cells

    DEFF Research Database (Denmark)

    Hougaard, D M; Larsson, L I; Nielsen, Jens Høiriis

    1986-01-01

    determinations carried out on isolated rat and mouse pancreatic islets revealed large amounts of polyamines. Compared with extracts of whole pancreas, the islets contained very high concentrations of spermine relative to spermidine. Biosynthesis of polyamines from [3H]ornithine or from [3H]putrescine in isolated...... islets was significantly stimulated at high glucose concentrations. Moreover, significant incorporation of label from [3H]putrescine was also detected in gamma-aminobutyric acid. This incorporation, however, was not stimulated by high glucose. Possible roles for polyamines associated with the secretory...

  5. Biosynthesis of the food and cosmetic plant pigment bixin (annatto).

    Science.gov (United States)

    Bouvier, Florence; Dogbo, Odette; Camara, Bilal

    2003-06-27

    Bixin, also known as annatto, is a seed-specific pigment widely used in foods and cosmetics since pre-Columbian times. We show that three genes from Bixa orellana, native to tropical America, govern bixin biosynthesis. These genes code for lycopene cleavage dioxygenase, bixin aldehyde dehydrogenase, and norbixin carboxyl methyltransferase, which catalyze the sequential conversion of lycopene into bixin. Introduction of these three genes in Escherichia coli engineered to produce lycopene induced bixin synthesis, thus expanding the supply of this economically important plant product.

  6. Biosynthesis of macrocyclic diterpenoids in Euphorbia lathyris L

    DEFF Research Database (Denmark)

    Luo, Dan

    documents the investigation of the biosynthetic pathways of macrocyclic diterpenoids known as Euphorbia factors in Euphorbia lathyris L. (caper spurge). These macrocyclic diterpenoids are the current industrial source of ingenol mebutate, which is approved for the treatment of actinic keratosis......, a precancerous skin condition. Metabolite profiling of various tissues of E. lathyris L. revealed that the mature seeds constituted a highly specialized tissue for the biosynthesis of lathyrane and ingenane diterpenoids. RNA–seq and transcriptome analysis of E. lathyris L. mature seeds followed by functional...

  7. Natural and engineered biosynthesis of nucleoside antibiotics in Actinomycetes.

    Science.gov (United States)

    Chen, Wenqing; Qi, Jianzhao; Wu, Pan; Wan, Dan; Liu, Jin; Feng, Xuan; Deng, Zixin

    2016-03-01

    Nucleoside antibiotics constitute an important family of microbial natural products bearing diverse bioactivities and unusual structural features. Their biosynthetic logics are unique with involvement of complex multi-enzymatic reactions leading to the intricate molecules from simple building blocks. Understanding how nature builds this family of antibiotics in post-genomic era sets the stage for rational enhancement of their production, and also paves the way for targeted persuasion of the cell factories to make artificial designer nucleoside drugs and leads via synthetic biology approaches. In this review, we discuss the recent progress and perspectives on the natural and engineered biosynthesis of nucleoside antibiotics.

  8. Genetic Dissection of Tropodithietic Acid Biosynthesis by Marine Roseobacters

    DEFF Research Database (Denmark)

    Geng, Haifeng; Bruhn, Jesper Bartholin; Nielsen, Kristian Fog

    2008-01-01

    formation is coincident with the production of an antibiotic and a yellow-brown pigment. In this report, we demonstrate that the antibiotic is a sulfur-containing compound, tropodithietic acid (TDA). Using random transposon insertion mutagenesis, 12 genes were identified as critical for TDA biosynthesis...... by the bacteria, and mutation in any one of these results in a loss of antibiotic activity (Tda(-)) and pigment production. Unexpectedly, six of the genes, referred to as tdaA-F, could not be found on the annotated TM1040 genome and were instead located on a previously unidentified plasmid (ca. 130 kb; pSTM3...

  9. Paralytic shellfish toxin biosynthesis in cyanobacteria and dinoflagellates: A molecular overview.

    Science.gov (United States)

    Wang, Da-Zhi; Zhang, Shu-Fei; Zhang, Yong; Lin, Lin

    2016-03-01

    Paralytic shellfish toxins (PSTs) are a group of water soluble neurotoxic alkaloids produced by two different kingdoms of life, prokaryotic cyanobacteria and eukaryotic dinoflagellates. Owing to the wide distribution of these organisms, these toxic secondary metabolites account for paralytic shellfish poisonings around the world. On the other hand, their specific binding to voltage-gated sodium channels makes these toxins potentially useful in pharmacological and toxicological applications. Much effort has been devoted to the biosynthetic mechanism of PSTs, and gene clusters encoding 26 proteins involved in PST biosynthesis have been unveiled in several cyanobacterial species. Functional analysis of toxin genes indicates that PST biosynthesis in cyanobacteria is a complex process including biosynthesis, regulation, modification and export. However, less is known about the toxin biosynthesis in dinoflagellates owing to our poor understanding of the massive genome and unique chromosomal characteristics [1]. So far, few genes involved in PST biosynthesis have been identified from dinoflagellates. Moreover, the proteins involved in PST production are far from being totally explored. Thus, the origin and evolution of PST biosynthesis in these two kingdoms are still controversial. In this review, we summarize the recent progress on the characterization of genes and proteins involved in PST biosynthesis in cyanobacteria and dinoflagellates, and discuss the standing evolutionary hypotheses concerning the origin of toxin biosynthesis as well as future perspectives in PST biosynthesis. Paralytic shellfish toxins (PSTs) are a group of potent neurotoxins which specifically block voltage-gated sodium channels in excitable cells and result in paralytic shellfish poisonings (PSPs) around the world. Two different kingdoms of life, cyanobacteria and dinoflagellates are able to produce PSTs. However, in contrast with cyanobacteria, our understanding of PST biosynthesis in

  10. Structure and Biosynthesis of Branched Wax Compounds on Wild Type and Wax Biosynthesis Mutants of Arabidopsis thaliana.

    Science.gov (United States)

    Busta, Lucas; Jetter, Reinhard

    2017-06-01

    The cuticle is a waxy composite that protects the aerial organs of land plans from non-stomatal water loss. The chemical make-up of the cuticular wax mixture plays a central role in defining the water barrier, but structure-function relationships have not been established so far, in part due to gaps in our understanding of wax structures and biosynthesis. While wax compounds with saturated, linear hydrocarbon tails have been investigated in detail, very little is known about compounds with modified aliphatic tails, which comprise substantial portions of some plant wax mixtures. This study aimed to investigate the structures, abundances and biosynthesis of branched compounds on the species for which wax biosynthesis is best understood: Arabidopsis thaliana. Microscale derivatization, mass spectral interpretation and organic synthesis identified homologous series of iso-alkanes and iso-alcohols on flowers and leaves, respectively. These comprised approximately 10-15% of wild type wax mixtures. The abundances of both branched wax constituents and accompanying unbranched compounds were reduced on the cer6, cer3 and cer1 mutants but not cer4, indicating that branched compounds are in part synthesized by the same machinery as unbranched compounds. In contrast, the abundances of unbranched, but not branched, wax constituents were reduced on the cer2 and cer26 mutants, suggesting that the pathways to both types of compounds deviate in later steps of chain elongation. Finally, the abundances of branched, but not unbranched, wax compounds were reduced on the cer16 mutant, and the (uncharacterized) CER16 protein may therefore be controlling the relative abundances of iso-alkanes and iso-alcohols on Arabidopsis surfaces. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Sites and regulation of auxin biosynthesis in Arabidopsis roots.

    Science.gov (United States)

    Ljung, Karin; Hull, Anna K; Celenza, John; Yamada, Masashi; Estelle, Mark; Normanly, Jennifer; Sandberg, Göran

    2005-04-01

    Auxin has been shown to be important for many aspects of root development, including initiation and emergence of lateral roots, patterning of the root apical meristem, gravitropism, and root elongation. Auxin biosynthesis occurs in both aerial portions of the plant and in roots; thus, the auxin required for root development could come from either source, or both. To monitor putative internal sites of auxin synthesis in the root, a method for measuring indole-3-acetic acid (IAA) biosynthesis with tissue resolution was developed. We monitored IAA synthesis in 0.5- to 2-mm sections of Arabidopsis thaliana roots and were able to identify an important auxin source in the meristematic region of the primary root tip as well as in the tips of emerged lateral roots. Lower but significant synthesis capacity was observed in tissues upward from the tip, showing that the root contains multiple auxin sources. Root-localized IAA synthesis was diminished in a cyp79B2 cyp79B3 double knockout, suggesting an important role for Trp-dependent IAA synthesis pathways in the root. We present a model for how the primary root is supplied with auxin during early seedling development.

  12. Biosynthesis of vanillin by the fungus Pycnoporus sanguineus MIP 95001

    Directory of Open Access Journals (Sweden)

    Sabrina Moro Villela Pacheco

    2013-09-01

    Full Text Available Vanillin (a substance popularly known as vanilla flavor is one of the most widely used compounds, mainly by food and pharmaceutical industries. This substance can be obtained from the orchid Vanilla planifolia, but this is costly and time consuming. Thus, other methods for obtaining vanillin have been studied. Within this context, the aim of this work was to study the biosynthesis of vanillin by three strains of Pycnoporus sanguineus through the use of vanillic acid as a precursor. The strains were cultured in Petri dishes with a potato dextrose agar medium. Fragments of the media with the fungus were then inoculated in Erlenmeyer flasks with a liquid medium of potato broth and 0.3 g.L-1 of vanillic acid. The flasks remained in a shaker for eight days at 28°C and 120 rpm. Samples were withdrawn once a day (0.8 mL.day-1 for analysis of vanillin, glucose, total phenols, total proteins, and laccase. The results showed that only the MIP 95001 strain promoted the biosynthesis of vanillin. The highest concentration of vanillin was detected on the fourth day of cultivation (8.75 mg.dL-1. The results illustrate the ability to biosynthesize vanillin using Pycnoporus sanguineus (MIP 95001, which suggests a possible route for the biotechnological production of this flavor.

  13. GROWTH RETARDANTS: Effects on Gibberellin Biosynthesis and Other Metabolic Pathways.

    Science.gov (United States)

    Rademacher, Wilhelm

    2000-06-01

    Plant growth retardants are applied in agronomic and horticultural crops to reduce unwanted longitudinal shoot growth without lowering plant productivity. Most growth retardants act by inhibiting gibberellin (GA) biosynthesis. To date, four different types of such inhibitors are known: (a) Onium compounds, such as chlormequat chloride, mepiquat chloride, chlorphonium, and AMO-1618, which block the cyclases copalyl-diphosphate synthase and ent-kaurene synthase involved in the early steps of GA metabolism. (b) Compounds with an N-containing heterocycle, e.g. ancymidol, flurprimidol, tetcyclacis, paclobutrazol, uniconazole-P, and inabenfide. These retardants block cytochrome P450-dependent monooxygenases, thereby inhibiting oxidation of ent-kaurene into ent-kaurenoic acid. (c) Structural mimics of 2-oxoglutaric acid, which is the co-substrate of dioxygenases that catalyze late steps of GA formation. Acylcyclohexanediones, e.g. prohexadione-Ca and trinexapac-ethyl and daminozide, block particularly 3ss-hydroxylation, thereby inhibiting the formation of highly active GAs from inactive precursors, and (d) 16,17-Dihydro-GA5 and related structures act most likely by mimicking the GA precursor substrate of the same dioxygenases. Enzymes, similar to the ones involved in GA biosynthesis, are also of importance in the formation of abscisic acid, ethylene, sterols, flavonoids, and other plant constituents. Changes in the levels of these compounds found after treatment with growth retardants can mostly be explained by side activities on such enzymes.

  14. Role of glutathione biosynthesis in endothelial dysfunction and fibrosis

    Directory of Open Access Journals (Sweden)

    Cristina Espinosa-Díez

    2018-04-01

    Full Text Available Glutathione (GSH biosynthesis is essential for cellular redox homeostasis and antioxidant defense. The rate-limiting step requires glutamate-cysteine ligase (GCL, which is composed of the catalytic (GCLc and the modulatory (GCLm subunits. To evaluate the contribution of GCLc to endothelial function we generated an endothelial-specific Gclc haplo-insufficient mouse model (Gclc e/+ mice. In murine lung endothelial cells (MLEC derived from these mice we observed a 50% reduction in GCLc levels compared to lung fibroblasts from the same mice. MLEC obtained from haplo-insufficient mice showed significant reduction in GSH levels as well as increased basal and stimulated ROS levels, reduced phosphorylation of eNOS (Ser 1177 and increased eNOS S-glutathionylation, compared to MLEC from wild type (WT mice. Studies in mesenteric arteries demonstrated impaired endothelium-dependent vasodilation in Gclc(e/+ male mice, which was corrected by pre-incubation with GSH-ethyl-ester and BH4. To study the contribution of endothelial GSH synthesis to renal fibrosis we employed the unilateral ureteral obstruction model in WT and Gclc(e/+ mice. We observed that obstructed kidneys from Gclc(e/+ mice exhibited increased deposition of fibrotic markers and reduced Nrf2 levels. We conclude that the preservation of endothelial GSH biosynthesis is not only critical for endothelial function but also in anti-fibrotic responses. Keywords: Glutamate-cysteine ligase, ROS, Glutathione, Endothelial dysfunction, Kidney Fibrosis

  15. Stereochemical diversity in lignan biosynthesis of Arctium lappa L.

    Science.gov (United States)

    Suzuki, Shiro; Umezawa, Toshiaki; Shimada, Mikio

    2002-06-01

    The stereochemistry of lignan biosynthesis in Arctium lappa L. is regulated organ-specifically. (+)-Secoisolariciresinol [81% enantiomeric excess (e.e.)] was isolated from A. lappa petioles. In sharp contrast, lignans whose predominant enantiomers have the opposite absolute configuration to that of (+)-secoisolariciresinol [i.e., (-)-matairesinol (>99% e.e.), (-)-arctigenin (>99% e.e.), and (-)-secoisolariciresinol (65% e.e.)] were isolated from seeds of the species. The stereochemical diversity of secoisolariciresinol was demonstrated with enzyme preparations from A. lappa petioles and seeds. Thus, a petiole enzyme preparation catalyzed the formation of (+)-pinoresinol (33% e.e.), (+)-lariciresinol (30% e.e.), and (+)-secoisolariciresinol (20% e.e.) from achiral coniferyl alcohol in the presence of NADPH and H202, whereas that from ripening seeds catalyzed the formation of (-)-pinoresinol (22% e.e.), (-)-lariciresinol (>99% e.e.), and (-)-secoisolariciresinol (38% e.e.) under the same conditions. In addition, the ripening seed enzyme preparation mediated the selective formation of the optically pure (>99% e.e.) (-)-enantiomer of matairesinol from racemic (+/-)-secoisolariciresinols in the presence of NADP. These results indicate that the stereochemical mechanism for lignan biosynthesis in A. lappa varies with organs, suggesting that multiple lignan-synthesizing isozymes are involved in the stereochemical control of lignan formation in A. lappa.

  16. Aspartate aminotransferase and tylosin biosynthesis in Streptomyces fradiae.

    Science.gov (United States)

    Lee, S H; Lee, K J

    1993-01-01

    Aspartate aminotransferase as well as valine dehydrogenase and threonine dehydratase was required for the biosynthesis of tylosin in Streptomyces fradiae NRRL 2702. The biosynthesis of these enzymes and tylosin production were repressed by high concentrations of ammonium ions. The change in specific tylosin production rates in batch cultures with different initial concentrations of ammonium ions showed patterns similar to those of the specific production rates of aspartate aminotransferase, valine dehydrogenase, and threonine dehydratase. Aspartate aminotransferase has been purified by acetone precipitation, DEAE-cellulose, hydroxyapatite, and preparative electrophoresis chromatographies. The purified enzyme (120 kDa) consisted of two subunits identical in molecular mass (54 kDa) and showed homogeneity, giving one band with a pI of 4.2 upon preparative isoelectric focusing. The enzyme was specific for L-aspartate in the forward reaction; the Km values were determined to be 2.7 mM for L-aspartate, 0.7 mM for 2-oxyglutarate, 12.8 mM for L-glutamate, and 0.15 mM for oxaloacetate. The enzyme was somewhat thermostable, having a maximum activity at 55 degrees C, and had a broad pH optimum that ranged from 5.5 to 8.0. The mode of action was a ping-pong-bi-bi mechanism. Images PMID:8481008

  17. Anthocyanin Biosynthesis and Degradation Mechanisms in Solanaceous Vegetables: A Review

    Science.gov (United States)

    Liu, Ying; Tikunov, Yury; Schouten, Rob E.; Marcelis, Leo F. M.; Visser, Richard G. F.; Bovy, Arnaud

    2018-01-01

    Anthocyanins are a group of polyphenolic pigments that are ubiquitously found in the plant kingdom. In plants, anthocyanins play a role not only in reproduction, by attracting pollinators and seed dispersers, but also in protection against various abiotic and biotic stresses. There is accumulating evidence that anthocyanins have health-promoting properties, which makes anthocyanin metabolism an interesting target for breeders and researchers. In this review, the state of the art knowledge concerning anthocyanins in the Solanaceous vegetables, i.e., pepper, tomato, eggplant, and potato, is discussed, including biochemistry and biological function of anthocyanins, as well as their genetic and environmental regulation. Anthocyanin accumulation is determined by the balance between biosynthesis and degradation. Although the anthocyanin biosynthetic pathway has been well-studied in Solanaceous vegetables, more research is needed on the inhibition of biosynthesis and, in particular, the anthocyanin degradation mechanisms if we want to control anthocyanin content of Solanaceous vegetables. In addition, anthocyanin metabolism is distinctly affected by environmental conditions, but the molecular regulation of these effects is poorly understood. Existing knowledge is summarized and current gaps in our understanding are highlighted and discussed, to create opportunities for the development of anthocyanin-rich crops through breeding and environmental management. PMID:29594099

  18. Adenosine diphosphate sugar pyrophosphatase prevents glycogen biosynthesis in Escherichia coli

    Science.gov (United States)

    Moreno-Bruna, Beatriz; Baroja-Fernández, Edurne; Muñoz, Francisco José; Bastarrica-Berasategui, Ainara; Zandueta-Criado, Aitor; Rodríguez-López, Milagros; Lasa, Iñigo; Akazawa, Takashi; Pozueta-Romero, Javier

    2001-01-01

    An adenosine diphosphate sugar pyrophosphatase (ASPPase, EC 3.6.1.21) has been characterized by using Escherichia coli. This enzyme, whose activities in the cell are inversely correlated with the intracellular glycogen content and the glucose concentration in the culture medium, hydrolyzes ADP-glucose, the precursor molecule of glycogen biosynthesis. ASPPase was purified to apparent homogeneity (over 3,000-fold), and sequence analyses revealed that it is a member of the ubiquitously distributed group of nucleotide pyrophosphatases designated as “nudix” hydrolases. Insertional mutagenesis experiments leading to the inactivation of the ASPPase encoding gene, aspP, produced cells with marginally low enzymatic activities and higher glycogen content than wild-type bacteria. aspP was cloned into an expression vector and introduced into E. coli. Transformed cells were shown to contain a dramatically reduced amount of glycogen, as compared with the untransformed bacteria. No pleiotropic changes in the bacterial growth occurred in both the aspP-overexpressing and aspP-deficient strains. The overall results pinpoint the reaction catalyzed by ASPPase as a potential step of regulating glycogen biosynthesis in E. coli. PMID:11416161

  19. Genetics of Dothistromin Biosynthesis in the Peanut Pathogen Passalora arachidicola

    Directory of Open Access Journals (Sweden)

    Rosie E. Bradshaw

    2010-11-01

    Full Text Available The peanut leaf spot pathogen Passalora arachidicola (Mycosphaerella arachidis is known to produce dothistromin, a mycotoxin related to aflatoxin. This is a feature shared with the pine needle pathogen Dothistroma septosporum (Mycosphaerella pini. Dothistromin biosynthesis in D. septosporum commences at an unusually early stage of growth in culture compared to most other fungal secondary metabolites, and the biosynthetic genes are arranged in fragmented groups, in contrast to aflatoxin gene clusters. Dothistromin biosynthetic genes were identified and studied in P. arachidicola to determine if the attributes described in D. septosporum are shared by another dothistromin-producing species within the Class Dothideomycetes. It was shown that dothistromin biosynthesis is very similar in the two species with regard to gene sequence and gene synteny. Functional complementation of D. septosporum mutants with P. arachidicola dothistromin genes was also possible. These similarities support a vertical mode of dothistromin gene transmission. P. arachidicola also produced dothistromin at an early growth stage in culture, suggesting that this type of regulation pattern may be relevant to the biological role of dothistromin.

  20. Xanthine Alkaloids: Occurrence, Biosynthesis, and Function in Plants.

    Science.gov (United States)

    Ashihara, Hiroshi; Mizuno, Kouichi; Yokota, Takao; Crozier, Alan

    Caffeine is a xanthine alkaloid found in non-alcoholic beverages such as tea, coffee, and cocoa. It was discovered in tea and coffee in the 1820s, but it was not until 2000 that details of molecular events associated with caffeine biosynthesis began to be unraveled. Reviewed are the occurrence of xanthine alkaloids in the plant kingdom and the elucidation of the caffeine biosynthesis pathway, providing details of the N-methyltransferases, belonging to the motif B' methyltransferase family, which catalyze three steps in the four-step pathway leading from xanthosine to caffeine. Pathways for the metabolism and degradation of xanthine alkaloids are discussed, although as yet the genes and enzymes involved have not been isolated. This chapter also considers the in planta role of caffeine in chemical defense that has been demonstrated using transgenic caffeine-forming tobacco and chrysanthemum plants, which are resistant to attack by pathogens and herbivores. Finally, future research is considered that might lead to the production of naturally decaffeinated beverages and agricultural crops that contain elevated levels of "natural" pesticides.

  1. Widespread occurrence of secondary lipid biosynthesis potential in microbial lineages.

    Directory of Open Access Journals (Sweden)

    Christine N Shulse

    Full Text Available Bacterial production of long-chain omega-3 polyunsaturated fatty acids (PUFAs, such as eicosapentaenoic acid (EPA, 20:5n-3 and docosahexaenoic acid (DHA, 22:6n-3, is constrained to a narrow subset of marine γ-proteobacteria. The genes responsible for de novo bacterial PUFA biosynthesis, designated pfaEABCD, encode large, multi-domain protein complexes akin to type I iterative fatty acid and polyketide synthases, herein referred to as "Pfa synthases". In addition to the archetypal Pfa synthase gene products from marine bacteria, we have identified homologous type I FAS/PKS gene clusters in diverse microbial lineages spanning 45 genera representing 10 phyla, presumed to be involved in long-chain fatty acid biosynthesis. In total, 20 distinct types of gene clusters were identified. Collectively, we propose the designation of "secondary lipids" to describe these biosynthetic pathways and products, a proposition consistent with the "secondary metabolite" vernacular. Phylogenomic analysis reveals a high degree of functional conservation within distinct biosynthetic pathways. Incongruence between secondary lipid synthase functional clades and taxonomic group membership combined with the lack of orthologous gene clusters in closely related strains suggests horizontal gene transfer has contributed to the dissemination of specialized lipid biosynthetic activities across disparate microbial lineages.

  2. Starch Biosynthesis in the Developing Endosperms of Grasses and Cereals

    Directory of Open Access Journals (Sweden)

    Ian J. Tetlow

    2017-12-01

    Full Text Available The starch-rich endosperms of the Poaceae, which includes wild grasses and their domesticated descendents the cereals, have provided humankind and their livestock with the bulk of their daily calories since the dawn of civilization up to the present day. There are currently unprecedented pressures on global food supplies, largely resulting from population growth, loss of agricultural land that is linked to increased urbanization, and climate change. Since cereal yields essentially underpin world food and feed supply, it is critical that we understand the biological factors contributing to crop yields. In particular, it is important to understand the biochemical pathway that is involved in starch biosynthesis, since this pathway is the major yield determinant in the seeds of six out of the top seven crops grown worldwide. This review outlines the critical stages of growth and development of the endosperm tissue in the Poaceae, including discussion of carbon provision to the growing sink tissue. The main body of the review presents a current view of our understanding of storage starch biosynthesis, which occurs inside the amyloplasts of developing endosperms.

  3. Gangliosides in the Nervous System: Biosynthesis and Degradation

    Science.gov (United States)

    Yu, Robert K.; Ariga, Toshio; Yanagisawa, Makoto; Zeng, Guichao

    Gangliosides, abundant in the nervous system, are known to play crucial modulatory roles in cellular recognition, interaction, adhesion, and signal transduction, particularly during early developmental stages. The expression of gangliosides in the nervous system is developmentally regulated and is closely related to the differentiation state of the cell. Ganglioside biosynthesis occurs in intracellular organelles, from which gangliosides are transported to the plasma membrane. During brain development, the ganglioside composition of the nervous system undergoes remarkable changes and is strictly regulated by the activities of glycosyltransferases, which can occur at different levels of control, including glycosyltransferase gene transcription and posttranslational modification. Genes for glycosyltransferase involved in ganglioside biosynthesis have been cloned and classified into families of glycosyltransferases based on their amino acid sequence similarities. The donor and acceptor substrate specificities are determined by enzymatic analysis of the glycosyltransferase gene products. Cell-type specific regulation of these genes has also been studied. Gangliosides are degraded by lysosomal exoglycosidases. The action of these enzymes occurs frequently in cooperation with activator proteins. Several human diseases are caused by defects of degradative enzymes, resulting in massive accumulation of certain glycolipids, including gangliosides in the lysosomal compartment and other organelles in the brain and visceral organs. Some of the representative lysosomal storage diseases (LSDs) caused by the accumulation of lipids in late endosomes and lysosomes will be discussed.

  4. Curcumin improves alcoholic fatty liver by inhibiting fatty acid biosynthesis.

    Science.gov (United States)

    Guo, Chang; Ma, Jingfan; Zhong, Qionghong; Zhao, Mengyuan; Hu, Tianxing; Chen, Tong; Qiu, Longxin; Wen, Longping

    2017-08-01

    Alcoholic fatty liver is a threat to human health. It has been long known that abstinence from alcohol is the most effective therapy, other effective therapies are not available for the treatment in humans. Curcumin has a great potential for anti-oxidation and anti-inflammation, but the effect on metabolic reconstruction remains little known. Here we performed metabolomic analysis by gas chromatography/mass spectrometry and explored ethanol pathogenic insight as well as curcumin action pattern. We identified seventy-one metabolites in mouse liver. Carbohydrates and lipids were characteristic categories. Pathway analysis results revealed that ethanol-induced pathways including biosynthesis of unsaturated fatty acids, fatty acid biosynthesis and pentose and glucuronate interconversions were suppressed by curcumin. Additionally, ethanol enhanced galactose metabolism and pentose phosphate pathway. Glyoxylate and dicarboxylate metabolism and pyruvate metabolism were inhibited in mice fed ethanol diet plus curcumin. Stearic acid, oleic acid and linoleic acid were disease biomarkers and therapical biomarkers. These results reflect the landscape of hepatic metabolism regulation. Our findings illustrate ethanol pathological pathway and metabolic mechanism of curcumin therapy. Copyright © 2017. Published by Elsevier Inc.

  5. Plant amino acid-derived vitamins: biosynthesis and function.

    Science.gov (United States)

    Miret, Javier A; Munné-Bosch, Sergi

    2014-04-01

    Vitamins are essential organic compounds for humans, having lost the ability to de novo synthesize them. Hence, they represent dietary requirements, which are covered by plants as the main dietary source of most vitamins (through food or livestock's feed). Most vitamins synthesized by plants present amino acids as precursors (B1, B2, B3, B5, B7, B9 and E) and are therefore linked to plant nitrogen metabolism. Amino acids play different roles in their biosynthesis and metabolism, either incorporated into the backbone of the vitamin or as amino, sulfur or one-carbon group donors. There is a high natural variation in vitamin contents in crops and its exploitation through breeding, metabolic engineering and agronomic practices can enhance their nutritional quality. While the underlying biochemical roles of vitamins as cosubstrates or cofactors are usually common for most eukaryotes, the impact of vitamins B and E in metabolism and physiology can be quite different on plants and animals. Here, we first aim at giving an overview of the biosynthesis of amino acid-derived vitamins in plants, with a particular focus on how this knowledge can be exploited to increase vitamin contents in crops. Second, we will focus on the functions of these vitamins in both plants and animals (and humans in particular), to unravel common and specific roles for vitamins in evolutionary distant organisms, in which these amino acid-derived vitamins play, however, an essential role.

  6. Ontogenetic taurine biosynthesis ability in rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Wang, Xuan; He, Gen; Mai, Kangsen; Xu, Wei; Zhou, Huihui

    2015-07-01

    Taurine (2-aminoethane sulfonic acid) plays important roles in multiple physiological processes including osmoregulation, bile salt conjugation and membrane protection. It is known that taurine biosynthesis varies in different fish species. However, its ontogenetic regulation has not been clear. In the present study, we found that the hepatic concentrations of taurine increased marginally with rainbow trout growth. The mRNA expression, protein levels and enzyme activities of key enzymes involved in taurine biosynthesis, cysteine dioxygenase (CDO) and cysteine sulfinate decarboxylase (CSD), were analyzed. Our results showed that the mRNA levels and protein abundances of CSD increased dramatically with the development of rainbow trout stages while the enzyme activities showed a slight improvement. However, the expression and activities of CDO decreased with rainbow trout growth. These results provide valuable information on defining the exact supplementation of taurine in diets for different stages of rainbow trout and give new insights into elucidating the regulation of taurine metabolism in rainbow trout. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Anthocyanin Biosynthesis and Degradation Mechanisms in Solanaceous Vegetables: A Review

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2018-03-01

    Full Text Available Anthocyanins are a group of polyphenolic pigments that are ubiquitously found in the plant kingdom. In plants, anthocyanins play a role not only in reproduction, by attracting pollinators and seed dispersers, but also in protection against various abiotic and biotic stresses. There is accumulating evidence that anthocyanins have health-promoting properties, which makes anthocyanin metabolism an interesting target for breeders and researchers. In this review, the state of the art knowledge concerning anthocyanins in the Solanaceous vegetables, i.e., pepper, tomato, eggplant, and potato, is discussed, including biochemistry and biological function of anthocyanins, as well as their genetic and environmental regulation. Anthocyanin accumulation is determined by the balance between biosynthesis and degradation. Although the anthocyanin biosynthetic pathway has been well-studied in Solanaceous vegetables, more research is needed on the inhibition of biosynthesis and, in particular, the anthocyanin degradation mechanisms if we want to control anthocyanin content of Solanaceous vegetables. In addition, anthocyanin metabolism is distinctly affected by environmental conditions, but the molecular regulation of these effects is poorly understood. Existing knowledge is summarized and current gaps in our understanding are highlighted and discussed, to create opportunities for the development of anthocyanin-rich crops through breeding and environmental management.

  8. High-titer preparation of Bombyx mori nucleopolyhedrovirus (BmNPV displaying recombinant protein in silkworm larvae by size exclusion chromatography and its characterization

    Directory of Open Access Journals (Sweden)

    Tanaka Shigeyasu

    2009-06-01

    Full Text Available Abstract Background Budded baculoviruses are utilized for vaccine, the production of antibody and functional analysis of transmembrane proteins. In this study, we tried to produce and purify the recombinant Bombyx mori nucleopolyhedrovirus (rBmNPV-hPRR that displayed human (prorenin receptor (hPRR connected with FLAG peptide sequence on its own surface. These particles were used for further binding analysis of hPRR to human prorenin. The rBmNPV-hPRR was produced in silkworm larvae and purified from its hemolymph using size exclusion chromatography (SEC. Results A rapid method of BmNPV titer determination in hemolymph was performed using quantitative real-time PCR (Q-PCR. A correlation coefficient of BmNPV determination between end-point dilution and Q-PCR methods was found to be 0.99. rBmNPV-hPRR bacmid-injected silkworm larvae produced recombinant baculovirus of 1.31 × 108 plaque forming unit (pfu in hemolymph, which was 2.8 × 104 times higher than transfection solution in Bm5 cells. Its purification yield by Sephacryl S-1000 SF column chromatography was 264 fold from larval hemolymph at 4 days post-injection (p.i., but 35 or 39 fold at 4.5 or 5 days p.i., respectively. Protein patterns of rBmNPV-hPRR purified at 4 and 5 days were the same and ratio of envelope proteins (76, 45 and 35 kDa to VP39, one of nucleocapsid proteins, increased at 5 days p.i. hPRR was detected in only purified rBmNPV-hPRR at 5 days p.i.. Conclusion The successful purification of rBmNPV-hPRR indicates that baculovirus production using silkworm larvae and its purification from hemolymph by Sephacryl S-1000 SF column chromatography can provide an economical approach in obtaining the purified BmNPV stocks with high titer for large-scale production of hPRR. Also, it can be utilized for further binding analysis and screening of inhibitors of hPRR.

  9. Hepatitis B surface antigen titer is a good indicator of durable viral response after entecavir off-treatment for chronic hepatitis B.

    Science.gov (United States)

    Lee, Han Ah; Seo, Yeon Seok; Park, Seung Woon; Park, Sang Jung; Kim, Tae Hyung; Suh, Sang Jun; Jung, Young Kul; Kim, Ji Hoon; An, Hyunggin; Yim, Hyung Joon; Yeon, Jong Eun; Byun, Kwan Soo; Um, Soon Ho

    2016-09-01

    Clear indicators for stopping antiviral therapy in chronic hepatitis B (CHB) patients are not yet available. Since the level of hepatitis B surface antigen (HBsAg) is correlated with covalently closed circular DNA, the HBsAg titer might be a good indicator of the off-treatment response. This study aimed to determine the relationship between the HBsAg titer and the entecavir (ETV) off-treatment response. This study analyzed 44 consecutive CHB patients (age, 44.6±11.4 years, mean±SD; men, 63.6%; positive hepatitis B envelope antigen (HBeAg) at baseline, 56.8%; HBV DNA level, 6.8±1.3 log 10 IU/mL) treated with ETV for a sufficient duration and in whom treatment was discontinued after HBsAg levels were measured. A virological relapse was defined as an increase in serum HBV DNA level of >2000 IU/mL, and a clinical relapse was defined as a virological relapse with a biochemical flare, defined as an increase in the serum alanine aminotransferase level of >2 × upper limit of normal. After stopping ETV, virological relapse and clinical relapse were observed in 32 and 24 patients, respectively, during 20.8±19.9 months of follow-up. The cumulative incidence rates of virological relapse were 36.2% and 66.2%, respectively, at 6 and 12 months, and those of clinical relapse were 14.3% and 42.3%. The off-treatment HBsAg level was an independent factor associated with clinical relapse (hazard ratio, 2.251; 95% confidence interval, 1.076-4.706; P =0.031). When patients were grouped according to off-treatment HBsAg levels, clinical relapse did not occur in patients with an off-treatment HBsAg level of ≤2 log 10 IU/mL (n=5), while the incidence rates of clinical relapse at 12 months after off-treatment were 28.4% and 55.7% in patients with off-treatment HBsAg levels of >2 and ≤3 log 10 IU/mL (n=11) and >3 log 10 IU/mL (n=28), respectively. The off-treatment HBsAg level is closely related to clinical relapse after treatment cessation. A serum HBsAg level of response in CHB

  10. Hepatitis B surface antigen titer is a good indicator of durable viral response after entecavir off-treatment for chronic hepatitis B

    Directory of Open Access Journals (Sweden)

    Han Ah Lee

    2016-09-01

    Full Text Available Background/Aims Clear indicators for stopping antiviral therapy in chronic hepatitis B (CHB patients are not yet available. Since the level of hepatitis B surface antigen (HBsAg is correlated with covalently closed circular DNA, the HBsAg titer might be a good indicator of the off-treatment response. This study aimed to determine the relationship between the HBsAg titer and the entecavir (ETV off-treatment response. Methods This study analyzed 44 consecutive CHB patients (age, 44.6±11.4 years, mean±SD; men, 63.6%; positive hepatitis B envelope antigen (HBeAg at baseline, 56.8%; HBV DNA level, 6.8±1.3 log10 IU/mL treated with ETV for a sufficient duration and in whom treatment was discontinued after HBsAg levels were measured. A virological relapse was defined as an increase in serum HBV DNA level of >2000 IU/mL, and a clinical relapse was defined as a virological relapse with a biochemical flare, defined as an increase in the serum alanine aminotransferase level of >2 × upper limit of normal. Results After stopping ETV, virological relapse and clinical relapse were observed in 32 and 24 patients, respectively, during 20.8±19.9 months of follow-up. The cumulative incidence rates of virological relapse were 36.2% and 66.2%, respectively, at 6 and 12 months, and those of clinical relapse were 14.3% and 42.3%. The off-treatment HBsAg level was an independent factor associated with clinical relapse (hazard ratio, 2.251; 95% confidence interval, 1.076–4.706; P=0.031. When patients were grouped according to off-treatment HBsAg levels, clinical relapse did not occur in patients with an off-treatment HBsAg level of ≤2 log10 IU/mL (n=5, while the incidence rates of clinical relapse at 12 months after off-treatment were 28.4% and 55.7% in patients with off-treatment HBsAg levels of >2 and ≤3 log10 IU/mL (n=11 and >3 log10 IU/mL (n=28, respectively. Conclusion The off-treatment HBsAg level is closely related to clinical relapse after treatment

  11. Active immunization against gonadotrophin-releasing hormone in Chinese male pigs: effects of dose on antibody titer, hormone levels and sexual development.

    Science.gov (United States)

    Zeng, Xian Y; Turkstra, Johan A; Meloen, Rob H; Liu, Xian Y; Chen, Fa Q; Schaaper, Wim M M; Oonk, H B; Guo, Da Z; van de Wiel, Dick F M

    2002-04-15

    The objective of this study was to determine the optimal dose of a GnRH vaccine for immunocastration of Chinese male pigs, based on immune, endocrine and testicular responses. Forty-two crossbred (Chinese Yanan x Large White) male pigs were randomly assigned to one of the five treatments as follows: (I) 0 microg (control, n=8); (II) 10 microg (n=8); (III) 62.5 microg (n=8); (IV) 125 microg (n=8); (V) 250 microg (n=10), D-Lys6-GnRH tandem dimer (TDK) peptide equivalent of conjugate (TDK-OVA), using Specol as the adjuvant. Pigs were immunized at 13 and 21 weeks of age and were slaughtered at 31 weeks of age. Blood samples for antibody titer and hormone assays were collected at 13, 21, 24 and 31 weeks of age. At these time-points, testis size was also measured. At slaughter, testis weight was recorded and fat samples were collected for androstenone assay. Four animals, one out of each immunized group, responded poorly to the immunization (non-responders). At slaughter, serum testosterone and LH levels, fat androstenone levels and testis size/weight of these non-responders were similar to those in control animals. Antibody titers of non-responders were substantially lower (Pimmunized pigs. For the animals that responded well to the immunization (immunocastrated pigs), serum testosterone and LH levels, fat androstenone levels and testis size or weight were reduced (Ppigs in treatments II-V was reduced to 55, 21, 33 and 25%, respectively, whereas testis weight was reduced to 39, 12, 18 and 14%, respectively. Reduction of testis size and/or weight is important for visual assessment of castration at the slaughterline, therefore, it is concluded that a dose of 10 microg peptide is not suitable. We conclude that, within the dose-range studied, the 62.5 microg dose is optimal for future GnRH immunization studies or future practical use in immunocastration of Chinese male pigs.

  12. Biosynthesis of human colonic mucin: Muc2 is the prominent secretory mucin

    NARCIS (Netherlands)

    Tytgat, K. M.; Büller, H. A.; Opdam, F. J.; Kim, Y. S.; Einerhand, A. W.; Dekker, J.

    1994-01-01

    Human colonic epithelium produces large amounts of mucin. The aim of this study was to examine mucin biosynthesis in the human colon. Human colonic mucin was isolated using CsCl density gradients, and polyclonal antiserum was raised. Biosynthesis of colonic mucins was studied by labeling colonic

  13. Biosynthesis of flavonoids in bilberry and blueberry - possibilities of the gene level information for the future

    OpenAIRE

    Jaakola, Laura

    2007-01-01

    We have studied the biosynthesis of flavonoids in various tissues of naturally growing European blueberry (bilberry) and the blueberry cultivar 'Northblue'. Focus has also been on the biosynthesis of flavonoids in developing bilberry fruits as well as on the control genes regulating fruit development.

  14. Microbial starch-binding domains as a tool for targeting proteins to granules during starch biosynthesis

    NARCIS (Netherlands)

    Ji, Q.; Vincken, J.P.; Suurs, L.C.J.M.; Visser, R.G.F.

    2003-01-01

    Modification of starch biosynthesis pathways holds an enormous potential for tailoring granules or polymers with new functionalities. In this study, we explored the possibility of engineering artificial granule-bound proteins, which can be incorporated in the granule during biosynthesis. The

  15. Thioridazine affects transcription of genes involved in cell wall biosynthesis in methicillin-resistant Staphylococcus aureus

    DEFF Research Database (Denmark)

    Bonde, Mette; Højland, Dorte Heidi; Kolmos, Hans Jørn

    2011-01-01

    have previously shown that the expression of some resistance genes is abolished after treatment with thioridazine and oxacillin. To further understand the mechanism underlying the reversal of resistance, we tested the expression of genes involved in antibiotic resistance and cell wall biosynthesis...... reversal of resistance by thioridazine relies on decreased expression of specific genes involved in cell wall biosynthesis....

  16. Macromolecule biosynthesis assay and fluorescence spectroscopy methods to explore antimicrobial peptide mode(s) of action

    DEFF Research Database (Denmark)

    Jana, Bimal; Baker, Kristin Renee; Guardabassi, Luca

    2017-01-01

    the biosynthesis rate of macromolecules (e.g., DNA, RNA, protein, and cell wall) and the cytoplasmic membrane proton motive force (PMF) energy can help to unravel the diverse modes of action of AMPs. Here, we present an overview of macromolecule biosynthesis rate measurement and fluorescence spectroscopy methods...

  17. Protein acetylation involved in streptomycin biosynthesis in Streptomyces griseus.

    Science.gov (United States)

    Ishigaki, Yuji; Akanuma, Genki; Yoshida, Minoru; Horinouchi, Sueharu; Kosono, Saori; Ohnishi, Yasuo

    2017-02-23

    Protein acetylation, the reversible addition of an acetyl group to lysine residues, is a protein post-translational modification ubiquitous in living cells. Although the involvement of protein acetylation in the regulation of primary metabolism has been revealed, the function of protein acetylation is largely unknown in secondary metabolism. Here, we characterized protein acetylation in Streptomyces griseus, a streptomycin producer. Protein acetylation was induced in the stationary and sporulation phases in liquid and solid cultures, respectively, in S. griseus. By comprehensive acetylome analysis, we identified 134 acetylated proteins with 162 specific acetylated sites. Acetylation was found in proteins related to primary metabolism and translation, as in other bacteria. However, StrM, a deoxysugar epimerase involved in streptomycin biosynthesis, was identified as a highly acetylated protein by 2-DE-based proteomic analysis. The Lys70 residue, which is critical for the enzymatic activity of StrM, was the major acetylation site. Thus, acetylation of Lys70 was presumed to abolish enzymatic activity of StrM. In accordance with this notion, an S. griseus mutant producing the acetylation-mimic K70Q StrM hardly produced streptomycin, though the K70Q mutation apparently decreased the stability of StrM. A putative lysine acetyltransferase (KAT) SGR1683 in S. griseus, as well as the Escherichia coli KAT YfiQ, acetylated Lys70 of StrM in vitro. Furthermore, absolute quantification analysis estimated that 13% of StrM molecules were acetylated in mycelium grown in solid culture for 3days. These results indicate that StrM acetylation is of biological significance. We propose that StrM acetylation functions as a limiter of streptomycin biosynthesis in S. griseus. Protein acetylation has been extensively studied not only in eukaryotes, but also in prokaryotes. The acetylome has been analyzed in more than 14 bacterial species. Here, by comprehensive acetylome analysis, we showed

  18. [Determination of hemagglutination inhibiting antibodies against influenza virus A/Port Chalmers/1/73 in samples from the Roman population (1962-1974). Relation of antibody titers to those obtained against previous influenza A strains].

    Science.gov (United States)

    Castagnari, L; Delia, S; Russo, V; Sebastiani, A

    1975-01-01

    The h.i.a. titer has been determined against the strain of the A/Port Chalmers/1/73 influenza virus in 805 serum samples obtained in Rome from as many adults during six distinct periods between spring 1962 and summer-autumn 1974.

  19. One Injection of DsRed Followed by Bites from Transgenic Mosquitoes Producing DsRed in the Saliva Elicits a High Titer of Antibody in Mice.

    Science.gov (United States)

    Matsuoka, Hiroyuki; Sano, Gen-Ichiro; Hattori, Ryuta; Tomita, Hiroyuki; Yamamoto, Daisuke S; Hirai, Makoto

    2012-06-01

    It has been proposed that transgenic mosquitoes can be used as a "flying syringe" for infectious disease control. We succeeded in generating a transgenic (TG) mosquito, Anopheles stephensi, excreting and discharging DsRed in saliva. DsRed was deposited on the membrane where the TG mosquito probed with its proboscis. Repeated feeding by the TG mosquitoes induced anti-DeRed as well as anti-SG antibodies in mice. This indicates that the TG mosquitoes can immunize the animal. Moreover, in this report, we employed a pre-immunization method before exposing mice to the TG mosquitoes. We injected DsRed to mice to prepare memory B cells and exposed the mice to bites by the TG mosquitoes excreting DsRed. The mice produced a higher titer of antibody to DsRed, suggesting that the bites from TG mosquitoes act as a booster and that primary immunization with a vaccine protein and exposure to TG mosquitoes excreting the vaccine protein in the saliva produces a synergistic effect.

  20. RI-002, an intravenous immunoglobulin containing high titer neutralizing antibody to RSV and other respiratory viruses for use in primary immunodeficiency disease and other immune compromised populations.

    Science.gov (United States)

    Wasserman, Richard L; Greener, Benjamin N; Mond, James

    2017-12-01

    Novel immune globulin (IG) products (RI-002, RI-001) have been designed to provide protection against respiratory syncytial virus (RSV) mediated respiratory illness while at the same time meeting the manufacturing requirements established by FDA for antibody supplementation in immunocompromised subjects. Areas covered: This review covers the manufacture and development of both RI-001 and RI-002, including the selection of plasma donors for IG preparation with high-titers of anti-RSV antibody, in vitro, and preclinical data in the cotton rat model S. hispidus, and clinical trials including Phase II and compassionate use studies of RI-001 and a multi-center, pivotal Phase III study of RI-002 in PIDD patients. Expert commentary: The data demonstrate that RI-002 is efficacious in the prevention and treatment of RSV in preclinical normal and immune suppressed animal models and is safe and efficacious in the treatment of patients with various forms of primary immunodeficiency disease (PIDD). This product offers potential advantages over other available IG's for prophylaxis in immunocompromised patients requiring polyclonal immunoglobulin supplementation because of its unique antibody composition. In addition to its enhanced neutralizing anti-RSV activity and its polyclonal IG composition, there is preclinical data to support the use of RI-002 for humoral protection against other respiratory pathogens.

  1. Factors associated with post-seasonal serological titer and risk factors for infection with the pandemic A/H1N1 virus in the French general population.

    Directory of Open Access Journals (Sweden)

    Nathanael Lapidus

    Full Text Available The CoPanFlu-France cohort of households was set up in 2009 to study the risk factors for infection by the pandemic influenza virus (H1N1pdm in the French general population. The authors developed an integrative data-driven approach to identify individual, collective and environmental factors associated with the post-seasonal serological H1N1pdm geometric mean titer, and derived a nested case-control analysis to identify risk factors for infection during the first season. This analysis included 1377 subjects (601 households. The GMT for the general population was 47.1 (95% confidence interval (CI: 45.1, 49.2. According to a multivariable analysis, pandemic vaccination, seasonal vaccination in 2009, recent history of influenza-like illness, asthma, chronic obstructive pulmonary disease, social contacts at school and use of public transports by the local population were associated with a higher GMT, whereas history of smoking was associated with a lower GMT. Additionally, young age at inclusion and risk perception of exposure to the virus at work were identified as possible risk factors, whereas presence of an air humidifier in the living room was a possible protective factor. These findings will be interpreted in light of the longitudinal analyses of this ongoing cohort.

  2. Engineering wild-type robust Pediococcus acidilactici strain for high titer L- and D-lactic acid production from corn stover feedstock.

    Science.gov (United States)

    Yi, Xia; Zhang, Peng; Sun, Jiaoe; Tu, Yi; Gao, Qiuqiang; Zhang, Jian; Bao, Jie

    2016-01-10

    Pediococcus acidilactici TY112 producing L-lactic acid and P. acidilactici ZP26 producing D-lactic acid, were engineered from the wild-type P. acidilactici DQ2 by ldhD or ldh gene disruption, and the robustness of the wild-type strain to the inhibitors derived from lignocellulose pretreatment was maintained well. In simultaneous saccharification and fermentation (SSF), 77.66 g L(-1) of L-lactic acid and 76.76 g L(-1) of D-lactic acid were obtained at 25% (w/w) solids content of dry dilute acid pretreated and biodetoxified corn stover feedstock. L- and D-Lactic acid yield and productivity were highly dependent on the inhibitor removal extent due to the significant down-regulation on the expressions of ldh and ldhD encoding lactate dehydrogenase by inhibitor, especially syringaldehyde and vanillin at the low concentrations. This study provided a prototype of industrial process for high titer L- and D-lactic acid production from lignocellulose feedstock. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Review for the generalist: The antinuclear antibody test in children - When to use it and what to do with a positive titer

    Directory of Open Access Journals (Sweden)

    Sailer-Hoeck Michaela

    2010-10-01

    Full Text Available Abstract The antinuclear antibody test (ANA is a much overused test in pediatrics. The ANA does have a role in serologic testing but it should be a very limited one. It is often ordered as a screening test for rheumatic illnesses in a primary care setting. However, since it has low specificity and sensitivity for most rheumatic and musculoskeletal illnesses in children, it should not be ordered as a screening test for non-specific complaints such as musculoskeletal pain. It should only be used as a diagnostic test for children with probable Systemic Lupus Erythematosus (SLE or Mixed Connective Tissue Disease, (MCTD and other possible overlap-like illnesses. Such children should have developed definite signs and symptoms of a disease before the ANA is ordered. This review presents data supporting these conclusions and a review of the ANA literature in adults and children. By limiting ANA testing, primary care providers can avoid needless venipuncture pain, unnecessary referrals, extra medical expenses, and most importantly, significant parental anxieties. It is best not to do the ANA test in most children but if it ordered and is positive in a low titer (

  4. Comparison of serum bactericidal and antibody titers induced by two Haemophilus influenzae type b conjugate vaccines: A phase III randomized double-blind study.

    Science.gov (United States)

    Akeda, Yukihiro; Koizumi, Yuka; Takanami, Yohei; Sumino, Shuji; Hattori, Yumi; Sugizaki, Kayoko; Mitsuya, Nodoka; Oishi, Kazunori

    2018-03-14

    Haemophilus influenzae type b (Hib) conjugate vaccines have drastically reduced disease incidence worldwide. Protection against Hib infection has relied on the serum bactericidal activity (SBA) of antibodies to the Hib capsular polysaccharide (polyribosylribitol phosphate). However, licensure usually relies on measuring induction of antibodies to PRP as a surrogate for SBA. In a phase III clinical trial we compared a PRP-conjugate vaccine using the nontoxic diphtheria toxin mutant, CRM 197 , as carrier protein with the licensed tetanus toxoid conjugate when administered subcutaneously as a three dose primary series in Japanese infants. As an addition to the phase III study, we have now evaluated SBA and show PRP-CRM 197 induces higher levels of SBA than PRP-T four weeks after the primary series, with a statistically significant correlation with anti-PRP titers. This data confirms the superior immunogenicity of PRP-CRM 197 compared with PRP-T assessed as SBA following a three-dose primary series by subcutaneous administration. Clinical trial registry: Registered on ClinicalTrials.gov (NCT01379846). Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Purine biosynthesis in archaea: variations on a theme

    Directory of Open Access Journals (Sweden)

    Brown Anne M

    2011-12-01

    Full Text Available Abstract Background The ability to perform de novo biosynthesis of purines is present in organisms in all three domains of life, reflecting the essentiality of these molecules to life. Although the pathway is quite similar in eukaryotes and bacteria, the archaeal pathway is more variable. A careful manual curation of genes in this pathway demonstrates the value of manual curation in archaea, even in pathways that have been well-studied in other domains. Results We searched the Integrated Microbial Genome system (IMG for the 17 distinct genes involved in the 11 steps of de novo purine biosynthesis in 65 sequenced archaea, finding 738 predicted proteins with sequence similarity to known purine biosynthesis enzymes. Each sequence was manually inspected for the presence of active site residues and other residues known or suspected to be required for function. Many apparently purine-biosynthesizing archaea lack evidence for a single enzyme, either glycinamide ribonucleotide formyltransferase or inosine monophosphate cyclohydrolase, suggesting that there are at least two more gene variants in the purine biosynthetic pathway to discover. Variations in domain arrangement of formylglycinamidine ribonucleotide synthetase and substantial problems in aminoimidazole carboxamide ribonucleotide formyltransferase and inosine monophosphate cyclohydrolase assignments were also identified. Manual curation revealed some overly specific annotations in the IMG gene product name, with predicted proteins without essential active site residues assigned product names implying enzymatic activity (21 proteins, 2.8% of proteins inspected or Enzyme Commission (E. C. numbers (57 proteins, 7.7%. There were also 57 proteins (7.7% assigned overly generic names and 78 proteins (10.6% without E.C. numbers as part of the assigned name when a specific enzyme name and E. C. number were well-justified. Conclusions The patchy distribution of purine biosynthetic genes in archaea is

  6. Effect of ambient temperature on viral replication and serum antibody titers following administration of a commercial intranasal modified-live infectious bovine rhinotracheitis-parainfluenza-3 virus vaccine to beef cattle housed in high- and moderate-ambient temperature environments.

    Science.gov (United States)

    Grissett, Gretchen P; White, Brad J; Anderson, David E; Larson, Robert E; Miesner, Matt D

    2014-12-01

    To evaluate the effect of ambient temperature on viral replication and serum antibody titers following administration of an intranasal modified-live infectious bovine rhinotracheitis (IBR)-parainfluenza-3 (PI3) virus vaccine to beef calves housed in high- (> 32°C) and moderate- (21°C) ambient temperature environments. 28 calves (mean weight, 206.8 kg). Calves were randomly allocated to 4 treatment groups (housed outdoors during high ambient temperature with [HAT; n = 10] or without [HAC; 4] vaccination or housed indoors in a moderate ambient temperature with [MAT; 10] or without [MAC; 4] vaccination). Rectal and nasal mucosal temperatures were recorded every 2 hours from 8 AM to 8 PM on days 0 (vaccination) and 1. Nasal swab specimens were obtained on days 0 through 7 for virus isolation. Serum samples were collected on days 0, 7, 14, and 28 for determination of antibody titers. Mean rectal temperature did not differ among the treatment groups. Mean nasal temperature for the HAT group was significantly higher than that for the MAT group at 6, 24, 30, 32, and 38 hours after vaccination. Viable IBR virus was isolated from all vaccinated calves on days 1 through 6. Two weeks after vaccination, vaccinated calves had anti-IBR antibody titers that were significantly greater than those for unvaccinated calves. Mean anti-IBR antibody titers did not differ significantly between the HAT and MAT groups. Results indicated that, following vaccination with an intranasal modified-live IBR-PI3 virus vaccine, IBR viral replication and serum antibody titers did not differ significantly between calves housed in high- and moderate-ambient temperature environments.

  7. [Biosynthesis of enniatin by washed cells of Fusarium sambucinum].

    Science.gov (United States)

    Minasian, A E; Chermenskĭ, D N; Bezborodov, A M

    1979-01-01

    Biosynthesis of the depsipeptide membrane ionophore--enniatin B by the washed mycelium Fusarium sambucinum Fuck 52 377 was studied. Metabolic precursors of enniatin B, alpha-ketovaleric acid, 14C-L-valine, and 14CH3-methionine, were added to the system after starvation. The amino acid content in the metabolic pool increased 1.5 times after addition of alpha-ketovaleric acid, 2.2 times after that of valine, and 2.5 times after addition of methionine. 14C-L-valine and 14CH3-methionine were incorporated into the molecule of enniatin B. Valine methylation in the molecule occurred at the level of synthesized depsipeptide. Amino acids of the metabolic pool performed the regulatory function in the synthesis.

  8. Characterization of an Anthracene Intermediate in Dynemicin Biosynthesis.

    Science.gov (United States)

    Cohen, Douglas R; Townsend, Craig A

    2018-03-07

    Despite the identification of a β-hydroxyhexaene produced by the enediyne polyketide synthases (PKSs), the post-PKS biosynthetic steps to the individual members of this antitumor antibiotic family remain largely unknown. The massive biosynthetic gene clusters (BGCs) that direct the formation of each product caution that many steps could be required. It was recently demonstrated that the enediyne PKS in the dynemicin A BGC from Micromonospora chersina gives rise to both the anthraquinone and enediyne "halves" of the molecule. We now present the first evidence of a mid-pathway intermediate in dynemicin A biosynthesis, an iodoanthracene bearing a fused thiolactone, which was shown to incorporate selectively into the final product. This unusual precursor reflects just how little is understood about these biosynthetic pathways, yet constrains the mechanisms that can act to achieve the key heterodimerization to the anthraquinone-containing subclass of enediynes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Genetics of Dothistromin Biosynthesis of Dothistroma septosporum: An Update

    Directory of Open Access Journals (Sweden)

    Rosie E. Bradshaw

    2010-11-01

    Full Text Available Dothistroma needle blight is one of the most devastating fungal pine diseases worldwide. The disease is characterized by accumulation in pine needles of a red toxin, dothistromin, that is chemically related to aflatoxin (AF and sterigmatocystin (ST. This review updates current knowledge of the genetics of dothistromin biosynthesis by the Dothistroma septosporum pathogen and highlights differences in gene organization and regulation that have been discovered between the dothistromin and AF/ST systems. Some previously reported genes are promoted or demoted as ‘dothistromin genes’ based on recent research. A new dothistromin gene, norB, is reported, and evidence of dothistromin gene homologs in other Dothideomycete fungi is presented. A hypothesis for the biological role of dothistromin is outlined. Finally, the impact that the availability of the D. septosporum genome sequence will have on dothistromin research is discussed.

  10. Biosynthesis of rare hexoses using microorganisms and related enzymes

    Directory of Open Access Journals (Sweden)

    Zijie Li

    2013-11-01

    Full Text Available Rare sugars, referred to as monosaccharides and their derivatives that rarely exist in nature, can be applied in many areas ranging from foodstuffs to pharmaceutical and nutrition industry, or as starting materials for various natural products and drug candidates. Unfortunately, an important factor restricting the utilization of rare sugars is their limited availability, resulting from limited synthetic methods. Nowadays, microbial and enzymatic transformations have become a very powerful tool in this field. This article reviews the biosynthesis and enzymatic production of rare ketohexoses, aldohexoses and sugar alcohols (hexitols, including D-tagatose, D-psicose, D-sorbose, L-tagatose, L-fructose, 1-deoxy-L-fructose, D-allose, L-glucose, L-talose, D-gulose, L-galactose, L-fucose, allitol, D-talitol, and L-sorbitol. New systems and robust catalysts resulting from advancements in genomics and bioengineering are also discussed.

  11. Biosynthesis of rare hexoses using microorganisms and related enzymes

    Science.gov (United States)

    Li, Zijie; Gao, Yahui; Nakanishi, Hideki

    2013-01-01

    Summary Rare sugars, referred to as monosaccharides and their derivatives that rarely exist in nature, can be applied in many areas ranging from foodstuffs to pharmaceutical and nutrition industry, or as starting materials for various natural products and drug candidates. Unfortunately, an important factor restricting the utilization of rare sugars is their limited availability, resulting from limited synthetic methods. Nowadays, microbial and enzymatic transformations have become a very powerful tool in this field. This article reviews the biosynthesis and enzymatic production of rare ketohexoses, aldohexoses and sugar alcohols (hexitols), including D-tagatose, D-psicose, D-sorbose, L-tagatose, L-fructose, 1-deoxy-L-fructose, D-allose, L-glucose, L-talose, D-gulose, L-galactose, L-fucose, allitol, D-talitol, and L-sorbitol. New systems and robust catalysts resulting from advancements in genomics and bioengineering are also discussed. PMID:24367410

  12. Biosynthesis of the spiroacetal suite in Bactrocera tryoni.

    Science.gov (United States)

    Booth, Yvonne K; Kitching, William; De Voss, James J

    2011-01-03

    In pursuit of a more environmentally benign method of controlling the highly pestiferous Queensland fruit fly, Bactrocera tryoni, the biosynthesis of the minor components in the suite of spiroacetals released by females has been investigated. This follows on the biosynthetic definition of the pathway to the major component, (E,E)-1. The origins of the C(12) and C(13) spiroacetals (E,E)-2 and (E,E)-3, respectively, have been investigated by the administration of over 30 deuterated potential precursors. Analysis of the relative incorporation levels and identification of some of the exceptionally minor spiroacetals that were biosynthesised established that B. tryoni processes fatty acids to 2,6-dioxygenated precursors by a modified β-oxidation pathway, with a suite of putative cytochromes P450 employed in the crucial oxidative steps, prior to cyclisation of the proposed ketodiol.

  13. Substances that disrupt thyroid hormone biosynthesis (in Romanian

    Directory of Open Access Journals (Sweden)

    Pap, Andreea

    2015-06-01

    Full Text Available Endocrine disrupters are natural or synthetic chemical substances that have the possibility to alter the endocrine functions leading to serious metabolic changes especially in newborns. The accumulation and persistence over long periods of time became a priority in terms of health and environment. The mechanism of action is represented by blocking, mimicking or modifying the effects of thyroid hormones. In this review, the main purpose was to determine what effects have the endocrine disruptors on the thyroid gland, especially on the thyroid hormone biosynthesis and setting the stage involved by it. We focused on the action of perchlorates, phthalates, BPC, PDPEs, soy, isoflavones, nitrates, thiocyanates, bisphenol A and triclorsan and came to the conclusion that their intervention can result in either hyperthyroidism or hypothyroidism.

  14. Microbial biosynthesis of secondary metabolites involved in biocontrol

    DEFF Research Database (Denmark)

    Hennessy, Rosanna Catherine; Michelsen, Charlotte Frydenlund; Olsson, Stefan

    secondary metabolite biosynthesis gene clusters. A combination of random and targeted mutagenesis, together with MALDI-TOF imaging mass spectrometry, linked two non-ribosomal peptides (NRPs) designated nunapeptin and nunamycin respectively, to antifungal activity against Rhizoctonia solani, Pythium...... aphanidermatum and Fusarium graminearum1, 2. In order to unravel the complex genetic regulation of these large NRP synthetase gene clusters, antisense RNAs (asRNAs) and CRISPR/Cas9 based systems are being tested and developed as tools to target transcripts of interest and elucidate gene function3, 4....... To investigate the effect of purified nunamycin and nunapeptin at the omics level against pathogenic fungi, an NRP production platform is being developed which, could additionally provide a source of antifungal compounds for industrial applications (e.g. food production, pharmaceutical, personal care). Methods...

  15. High-temperature injury and auxin biosynthesis in microsporogenesis.

    Directory of Open Access Journals (Sweden)

    Atsushi eHigashitani

    2013-03-01

    Full Text Available Plant reproductive development is more sensitive than vegetative growth to many environmental stresses. With global warming, in particular, plant high temperature injury is becoming an increasingly serious problem. In wheat, barley, and various other commercially important crops, the early phase of anther development is especially susceptible to high temperatures. We recently demonstrated that high temperature causes cell-proliferation arrest and represses auxin signaling in a tissue-specific manner of the anther cells of barley and Arabidopsis. These phenomena were accompanied by comprehensive alterations in transcription including repression of cell-proliferation related genes and YUCCA auxin biosynthesis genes. Moreover, application of auxin completely improved the transcriptional alterations, the production of normal pollen grains, and seed setting rate under increasing temperatures. These denote that auxin, which has been used widely as potent and selective herbicides, is useful for the promotion of plant fertility and maintenance of crop yields under the global warming conditions.

  16. Biosynthesis and regulation of cyanogenic glycoside production in forage plants.

    Science.gov (United States)

    Sun, Zhanmin; Zhang, Kaixuan; Chen, Cheng; Wu, Yanmin; Tang, Yixiong; Georgiev, Milen I; Zhang, Xinquan; Lin, Min; Zhou, Meiliang

    2018-01-01

    The natural products cyanogenic glycosides (CNglcs) are present in various forage plant species including Sorghum spp., Trifolium spp., and Lotus spp. The release of toxic hydrogen cyanide (HCN) from endogenous CNglcs, which is known as cyanogenesis, leads to a serious problem for animal consumption while as defensive secondary metabolites, CNglcs play multiple roles in plant development and responses to adverse environment. Therefore, it is highly important to fully uncover the molecular mechanisms of CNglc biosynthesis and regulation to manipulate the contents of CNglcs in forage plants for fine-tuning the balance between defensive responses and food safety. This review summarizes recent studies on the production, function, polymorphism, and regulation of CNglcs in forage plants, aiming to provide updated knowledge on the ways to manipulate CNglcs for further beneficial economic effects.

  17. Surfactin – A Review on Biosynthesis, Fermentation, Purification and Applications

    Directory of Open Access Journals (Sweden)

    Nikhil S. Shaligram

    2010-01-01

    Full Text Available Surfactin, a bacterial cyclic lipopeptide, is produced by various strains of Bacillus subtilis and is primarily recognized as one of the most effective biosurfactants. It has the ability to reduce surface tension of water from 72 to 27 mN/m at a concentration as low as 0.005 %. The structure of surfactin consists of seven amino acids bonded to the carboxyl and hydroxyl groups of a 14-carbon fatty acid. Surfactin possesses a number of biological activities such as the ability to lyse erythrocytes, inhibit clot formation, lyse bacterial spheroplasts and protoplasts, and inhibit cyclic 3',5-monophosphate diesterase. The high cost of production and low yields have limited its use in various commercial applications. Both submerged and solid-state fermentation have been investigated with the mutational approach to improve the productivity. In this review, current state of knowledge on biosynthesis of surfactin, its fermentative production, purification, analytical methods and biomedical applications is presented.

  18. Balanced macromolecular biosynthesis in "protoplasts" of Streptococcus faecalis.

    Science.gov (United States)

    Roth, G S; Shockman, G D; Daneo-Moore, L

    1971-03-01

    Osmotically fragile forms of Streptococcus faecalis 9790 were grown in 0.5 m sucrose- or 0.5 m NH(4)Cl-stabilized medium. The "protoplast" cultures exhibit an average growth rate constant of 0.66 to 0.94 mass doublings/hr. In a variety of experiments, turbidity and the net content of protein, ribonucleic acid (RNA) and deoxyribonucleic acid increase at the same rate, indicating balanced macromolecular biosynthesis. A total of two to three mass doublings was obtained, with no evidence of cell division. After osmotic shock, "protoplast" cultures released 93 to 94% of their RNA content in a form not sedimentable at 12,800 x g for 15 min, in contrast to streptococci, which released 7% of their RNA content after the same treatment.

  19. Characterization of the Ornithine Hydroxylation Step in Albachelin Biosynthesis

    Directory of Open Access Journals (Sweden)

    Kendra Bufkin

    2017-10-01

    Full Text Available N-Hydroxylating monooxygenases (NMOs are involved in siderophore biosynthesis. Siderophores are high affinity iron chelators composed of catechol and hydroxamate functional groups that are synthesized and secreted by microorganisms and plants. Recently, a new siderophore named albachelin was isolated from a culture of Amycolatopsis alba growing under iron-limiting conditions. This work focuses on the expression, purification, and characterization of the NMO, abachelin monooxygenase (AMO from A. alba. This enzyme was purified and characterized in its holo (FAD-bound and apo (FAD-free forms. The apo-AMO could be reconstituted by addition of free FAD. The two forms of AMO hydroxylate ornithine, while lysine increases oxidase activity but is not hydroxylated and display low affinity for NADPH.

  20. Biosynthesis, Turnover, and Functions of Chitin in Insects.

    Science.gov (United States)

    Zhu, Kun Yan; Merzendorfer, Hans; Zhang, Wenqing; Zhang, Jianzhen; Muthukrishnan, Subbaratnam

    2016-01-01

    Chitin is a major component of the exoskeleton and the peritrophic matrix of insects. It forms complex structures in association with different assortments of cuticle and peritrophic matrix proteins to yield biocomposites with a wide range of physicochemical and mechanical properties. The growth and development of insects are intimately coupled with the biosynthesis, turnover, and modification of chitin. The genes encoding numerous enzymes of chitin metabolism and proteins that associate with and organize chitin have been uncovered by bioinformatics analyses. Many of these proteins are encoded by sets of large gene families. There is specialization among members within each family, which function in particular tissues or developmental stages. Chitin-containing matrices are dynamically modified at every developmental stage and are under developmental and/or physiological control. A thorough understanding of the diverse processes associated with the assembly and turnover of these chitinous matrices offers many strategies to achieve selective pest control.