WorldWideScience

Sample records for biosynthesis genetic biochemical

  1. Biochemical and genetic diagnosis of Smith-Lemli- Opitz syndrome ...

    African Journals Online (AJOL)

    The clinical spectrum of manifestations is broad, ... delay as well as selfinjurious behaviour and autism are reported. ... recessive disorder that is more common than other defects in cholesterol biosynthesis. ... To perform biochemical and genetic workups in four South African families of European ancestry with suspected ...

  2. Biochemical and Genetic Insights into Asukamycin Biosynthesis

    Czech Academy of Sciences Publication Activity Database

    Rui, Z.; Petříčková, Kateřina; Škanta, František; Pospíšil, Stanislav; Yang, Y.; Chen, Ch.-Y.; Tsai, S.-F.; Floss, H. G.; Petříček, Miroslav; Yu, T.-W.

    2010-01-01

    Roč. 285, č. 32 (2010), s. 24915-24924 ISSN 0021-9258 R&D Projects: GA MŠk 2B06154 Institutional research plan: CEZ:AV0Z50200510 Keywords : NODOSUS SUBSP ASUKAENSIS * FATTY-ACID SYNTHASE * CRYSTAL-STRUCTURE Subject RIV: EE - Microbiology, Virology Impact factor: 5.328, year: 2010

  3. Molecular and biochemical studies of fragrance biosynthesis in rose

    NARCIS (Netherlands)

    Sun, P.

    2017-01-01

    Roses are one of the most popular ornamental plants, whose floral volatiles are not only involved in environmental interactions but also widely used by industries. The biosynthesis of many of these volatiles in roses is not well understood. This thesis describes alternative pathways for the

  4. Pheochromocytoma-paraganglioma: Biochemical and genetic diagnosis.

    Science.gov (United States)

    Cano Megías, Marta; Rodriguez Puyol, Diego; Fernández Rodríguez, Loreto; Sención Martinez, Gloria Lisette; Martínez Miguel, Patricia

    Pheochromocytomas and paragangliomas are tumours derived from neural crest cells, which can be diagnosed by biochemical measurement of metanephrine and methoxytyramine. Advances in genetic research have identified many genes involved in the pathogenesis of these tumours, suggesting that up to 35-45% may have an underlying germline mutation. These genes have a singular transcriptional signature and can be grouped into 2 clusters (or groups): cluster 1 (VHL and SHDx), involved in angiogenesis and hypoxia pathways; and cluster 2 (MEN2 and NF1), linked to the kinase signalling pathway. In turn, these genes are associated with a characteristic biochemical phenotype (noradrenergic and adrenergic), and clinical features (location, biological behaviour, age of presentation, etc.) in a large number of cases. Early diagnosis of these tumours, accompanied by a correct genetic diagnosis, should eventually become a priority to enable better treatment, early detection of complications, proper screening of family members and related tumours, as well as an improvement in the overall prognosis of these patients. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  5. Biochemical and genetic improvement of Zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Ingram, L O; Carey, V C; Dombek, K M; Holt, A S; Holt, W A; Osman, Y A; Walia, S K

    1984-01-01

    Zymomonas mobilis offers many advantages for alcohol production including three- to five-fold higher rates of substrate conversion. Current progress and approaches are discussed for the biochemical and genetic improvement of this organism. These include the isolation of salt-resistant mutants and low pH-tolerant mutants. Gene banks of Lactobacillus heterohiochi are being screened for genes encoding alcohol resistance which can be subsequently introduced into Zymomonas mobilis. In addition, an enteric lactose operon has been inserted into Zymomonas mobilis and is expressed. These new strains are being further modified to increase the substrate range of Zymomonas mobilis to include lactose. This lactose operon serves as a model system to investigate the expression of foreign genes in Zymomonas mobilis. 25 references.

  6. Genetic manipulation of carotenoid biosynthesis and photoprotection.

    Science.gov (United States)

    Pogson, B J; Rissler, H M

    2000-10-29

    There are multiple complementary and redundant mechanisms to provide protection against photo-oxidative damage, including non-photochemical quenching (NPQ). NPQ dissipates excess excitation energy as heat by using xanthophylls in combination with changes to the light-harvesting complex (LHC) antenna. The xanthophylls are oxygenated carotenoids that in addition to contributing to NPQ can quench singlet or triplet chlorophyll and are necessary for the assembly and stability of the antenna. We have genetically manipulated the expression of the epsilon-cyclase and beta-carotene hydroxylase carotenoid biosynthetic enzymes in Arabidopsis thaliana. The epsilon-cyclase overexpression confirmed that lut2 (lutein deficient) is a mutation in the epsilon-cyclase gene and demonstrated that lutein content can be altered at the level of mRNA abundance with levels ranging from 0 to 180% of wild-type. Also, it is clear that lutein affects the induction and extent of NPQ. The deleterious effects of lutein deficiency on NPQ in Arabidopsis and Chlamydomonas are additive, no matter what the genetic background, whether npq1 (zeaxanthin deficient), aba1 or antisense beta-hydroxylase (xanthophyll cycle pool decreased). Additionally, increasing lutein content causes a marginal, but significant, increase in the rate of induction of NPQ despite a reduction in the xanthophyll cycle pool size.

  7. GENETIC ANALYSIS OF ABSCISIC ACID BIOSYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    MCCARTY D R

    2012-01-10

    The carotenoid cleavage dioxygenases (CCD) catalyze synthesis of a variety of apo-carotenoid secondary metabolites in plants, animals and bacteria. In plants, the reaction catalyzed by the 11, 12, 9-cis-epoxy carotenoid dioxygenase (NCED) is the first committed and key regulated step in synthesis of the plant hormone, abscisic acid (ABA). ABA is a key regulator of plant stress responses and has critical functions in normal root and seed development. The molecular mechanisms responsible for developmental control of ABA synthesis in plant tissues are poorly understood. Five of the nine CCD genes present in the Arabidopsis genome encode NCED's involved in control of ABA synthesis in the plant. This project is focused on functional analysis of these five AtNCED genes as a key to understanding developmental regulation of ABA synthesis and dissecting the role of ABA in plant development. For this purpose, the project developed a comprehensive set of gene knockouts in the AtNCED genes that facilitate genetic dissection of ABA synthesis. These mutants were used in combination with key molecular tools to address the following specific objectives: (1) the role of ABA synthesis in root development; (2) developmental control of ABA synthesis in seeds; (3) analysis of ATNCED over-expressers; (4) preliminary crystallography of the maize VP14 protein.

  8. Appraisal of biochemical and genetic diversity of mango cultivars ...

    African Journals Online (AJOL)

    Appraisal of biochemical and genetic diversity of mango cultivars using molecular markers. ... Mango (Mangifera indica L.) is one of the oldest fruit crops and is broadly cultivated worldwide. To determine the level of ... HOW TO USE AJOL.

  9. Biochemical genetic variation between four populations of ...

    African Journals Online (AJOL)

    system) to 0.093 in the Spekboom River population (Limpopo River system). The genetic distance, FST and NEM values, as well as pair-wise contingency c2 analyses indicate a lack of gene flow between populations, as expected for isolated fish. Evidence of foreign genetic material in one population was also observed.

  10. Biochemical genetics of some Indian fishes

    Digital Repository Service at National Institute of Oceanography (India)

    Menezes, M.R.; Qasim, S.Z.

    similarities in their protein make up, whereas these taxonomically apart showed striking differences. Thus, the usefulness of employing this method was clearly demonstrated in fish taxonomy. The study of genetic struture of fish populations through the analysis...

  11. Biochemical And Genetic Modification Of Polysaccharides

    Science.gov (United States)

    Kern, Roger G.; Petersen, Gene R.; Richards, Gil F.

    1993-01-01

    Bacteriophages producing endopolysaccharase-type enzymes used to produce, isolate, and purify high yields of modified polysaccharides from polysaccharides produced by, and incorporated into capsules of, certain bacteria. Bacteriophages used in conversion of native polysaccharide materials into polymers of nearly uniform high molecular weight or, alternatively, into highly pure oligosaccharides. Also used in genetic selection of families of polysaccharides structurally related to native polysaccharide materials, but having altered properties. Resulting new polysaccharides and oligosaccharides prove useful in variety of products, including pharmaceutical chemicals, coating materials, biologically active carbohydrates, and drag-reducing additives for fluids.

  12. Genetic and biochemical evidences reveal novel insights into the ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 41; Issue 4. Genetic and biochemical evidences reveal novel insights into the mechanism underlying Saccharomyces cerevisiae Sae2-mediated abrogation of DNA replication stress. INDRAJEET GHODKE K MUNIYAPPA. ARTICLE Volume 41 Issue 4 December 2016 pp ...

  13. Biochemical genetics in marine fisheries management and conservation

    Digital Repository Service at National Institute of Oceanography (India)

    Menezes, M.R.

    - 403004 NBDBlDBTSponsored Training on Taxonomy, GOIdia turd Gme Bturking o/Coastal and Marine Bloresources, CIFE, Mumbal BIOCHEMICAL GENETICS IN MARINE FISHERIES MANAGEMENT AND CONSERVATION Maria R. Menezes Introduction . Species of fish, like most... population structure may have evolved and been maintained in species of fish ofeconomic interest has led to the concept of 'stock'. The stock concept dominates much of marine fisheries management, theory and practice because the identification of discrete...

  14. Genetic determinants of reutericyclin biosynthesis in Lactobacillus reuteri.

    Science.gov (United States)

    Lin, Xiaoxi B; Lohans, Christopher T; Duar, Rebbeca; Zheng, Jinshui; Vederas, John C; Walter, Jens; Gänzle, Michael

    2015-03-01

    Reutericyclin is a unique antimicrobial tetramic acid produced by some strains of Lactobacillus reuteri. This study aimed to identify the genetic determinants of reutericyclin biosynthesis. Comparisons of the genomes of reutericyclin-producing L. reuteri strains with those of non-reutericyclin-producing strains identified a genomic island of 14 open reading frames (ORFs) including genes coding for a nonribosomal peptide synthetase (NRPS), a polyketide synthase (PKS), homologues of PhlA, PhlB, and PhlC, and putative transport and regulatory proteins. The protein encoded by rtcN is composed of a condensation domain, an adenylation domain likely specific for d-leucine, and a thiolation domain. rtcK codes for a PKS that is composed of a ketosynthase domain, an acyl-carrier protein domain, and a thioesterase domain. The products of rtcA, rtcB, and rtcC are homologous to the diacetylphloroglucinol-biosynthetic proteins PhlABC and may acetylate the tetramic acid moiety produced by RtcN and RtcK, forming reutericyclin. Deletion of rtcN or rtcABC in L. reuteri TMW1.656 abrogated reutericyclin production but did not affect resistance to reutericyclin. Genes coding for transport and regulatory proteins could be deleted only in the reutericyclin-negative L. reuteri strain TMW1.656ΔrtcN, and these deletions eliminated reutericyclin resistance. The genomic analyses suggest that the reutericyclin genomic island was horizontally acquired from an unknown source during a unique event. The combination of PhlABC homologues with both an NRPS and a PKS has also been identified in the lactic acid bacteria Streptococcus mutans and Lactobacillus plantarum, suggesting that the genes in these organisms and those in L. reuteri share an evolutionary origin. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Genetic control and regulatory mechanisms of succinoglycan and curdlan biosynthesis in genus Agrobacterium.

    Science.gov (United States)

    Wu, Dan; Li, Ang; Ma, Fang; Yang, Jixian; Xie, Yutong

    2016-07-01

    Agrobacterium is a genus of gram-negative bacteria that can produce several typical exopolysaccharides with commercial uses in the food and pharmaceutical fields. In particular, succinoglycan and curdlan, due to their good quality in high yield, have been employed on an industrial scale comparatively early. Exopolysaccharide biosynthesis is a multiple-step process controlled by different functional genes, and various environmental factors cause changes in exopolysaccharide biosynthesis through regulatory mechanisms. In this mini-review, we focus on the genetic control and regulatory mechanisms of succinoglycan and curdlan produced by Agrobacterium. Some key functional genes and regulatory mechanisms for exopolysaccharide biosynthesis are described, possessing a high potential for application in metabolic engineering to modify exopolysaccharide production and physicochemical properties. This review may contribute to the understanding of exopolysaccharide biosynthesis and exopolysaccharide modification by metabolic engineering methods in Agrobacterium.

  16. Polyphenol Oxidases in Crops: Biochemical, Physiological and Genetic Aspects

    Directory of Open Access Journals (Sweden)

    Francesca Taranto

    2017-02-01

    Full Text Available Enzymatic browning is a colour reaction occurring in plants, including cereals, fruit and horticultural crops, due to oxidation during postharvest processing and storage. This has a negative impact on the colour, flavour, nutritional properties and shelf life of food products. Browning is usually caused by polyphenol oxidases (PPOs, following cell damage caused by senescence, wounding and the attack of pests and pathogens. Several studies indicated that PPOs play a role in plant immunity, and emerging evidence suggested that PPOs might also be involved in other physiological processes. Genomic investigations ultimately led to the isolation of PPO homologs in several crops, which will be possibly characterized at the functional level in the near future. Here, focusing on the botanic families of Poaceae and Solanaceae, we provide an overview on available scientific literature on PPOs, resulting in useful information on biochemical, physiological and genetic aspects.

  17. Mycobacterium tuberculosis phosphoribosylpyrophosphate synthetase: biochemical features of a crucial enzyme for mycobacterial cell wall biosynthesis.

    Directory of Open Access Journals (Sweden)

    Anna P Lucarelli

    Full Text Available The selection and soaring spread of Mycobacterium tuberculosis multidrug-resistant (MDR-TB and extensively drug-resistant strains (XDR-TB is a severe public health problem. Currently, there is an urgent need for new drugs for tuberculosis treatment, with novel mechanisms of action and, moreover, the necessity to identify new drug targets. Mycobacterial phosphoribosylpyrophosphate synthetase (MtbPRPPase is a crucial enzyme involved in the biosynthesis of decaprenylphosphoryl-arabinose, an essential precursor for the mycobacterial cell wall biosynthesis. Moreover, phosphoribosylpyrophosphate, which is the product of the PRPPase catalyzed reaction, is the precursor for the biosynthesis of nucleotides and of some amino acids such as histidine and tryptophan. In this context, the elucidation of the molecular and functional features of MtbPRPPase is mandatory. MtbPRPPase was obtained as a recombinant form, purified to homogeneity and characterized. According to its hexameric form, substrate specificity and requirement of phosphate for activity, the enzyme proved to belong to the class I of PRPPases. Although the sulfate mimicked the phosphate, it was less effective and required higher concentrations for the enzyme activation. MtbPRPPase showed hyperbolic response to ribose 5-phosphate, but sigmoidal behaviour towards Mg-ATP. The enzyme resulted to be allosterically activated by Mg(2+ or Mn(2+ and inhibited by Ca(2+ and Cu(2+ but, differently from other characterized PRPPases, it showed a better affinity for the Mn(2+ and Cu(2+ ions, indicating a different cation binding site geometry. Moreover, the enzyme from M. tuberculosis was allosterically inhibited by ADP, but less sensitive to inhibition by GDP. The characterization of M. tuberculosis PRPPase provides the starting point for the development of inhibitors for antitubercular drug design.

  18. Genetic Dissection of Tropodithietic Acid Biosynthesis by Marine Roseobacters

    DEFF Research Database (Denmark)

    Geng, Haifeng; Bruhn, Jesper Bartholin; Nielsen, Kristian Fog

    2008-01-01

    by the bacteria, and mutation in any one of these results in a loss of antibiotic activity (Tda(-)) and pigment production. Unexpectedly, six of the genes, referred to as tdaA-F, could not be found on the annotated TM1040 genome and were instead located on a previously unidentified plasmid (ca. 130 kb; pSTM3......The symbiotic association between the roseobacter Silicibacter sp. strain TM1040 and the dinoflagellate Pfiesteria piscicida involves bacterial chemotaxis to dinoflagellate-produced dimethylsulfoniopropionate (DMSP), DMSP demethylation, and ultimately a biofilm on the surface of the host. Biofilm...... formation is coincident with the production of an antibiotic and a yellow-brown pigment. In this report, we demonstrate that the antibiotic is a sulfur-containing compound, tropodithietic acid (TDA). Using random transposon insertion mutagenesis, 12 genes were identified as critical for TDA biosynthesis...

  19. Biochemical and molecular genetic studies on some cyanobacterial isolates

    International Nuclear Information System (INIS)

    Kamal, E.A.R.; Ebrahim, S.A.A.

    2011-01-01

    In the present study, the isolation and purification of a set of Cyanobacteria strains belonging to genus Oscillatoria was undertaken, followed by the analyses of phylogenetic relationships using different biochemical and molecular genetic techniques (SOS-PAGE and RAPO-PCR). A total of 45 protein bands were observed within the studied Osci/latoria isolates by SOS-PAGE (only three unique bands, eight monomorphic bands and 37 polymorphic bands). On the other hand, extracted ONA from isolates was used to identify the molecular fingerprints. A sum of 94 polymorphic bands was generated by these primers in the Ocsi/laloria genotypes under study. A total of 20 unique bands were identified out of the polymorphic ones. These unique bands were used to discriminate among the studied Ocsi/latoria isolates. Most isolates of Ocsi/latoria genotypes were discriminated by one or more unique bands. Numerical taxonomic using 45 protein attributes of 19 isolates and RAPO markers on five isolates. Two methods -Clustering (UPGMA) and Principal Component Analysis (PCA) were used for these analyses. The similarities and clusters produced between the studied isolates were discussed.

  20. Biochemical and molecular genetic studies on some cyanobacterial isolates

    Energy Technology Data Exchange (ETDEWEB)

    Kamal, E A.R. [Umm Al-Qura University, Makkah (Saudi Arabia). Dept. of Biology; Ebrahim, S A.A. [Ain Sham University, Cairo (Egypt). Dept. of Cytogenetic

    2011-11-15

    In the present study, the isolation and purification of a set of Cyanobacteria strains belonging to genus Oscillatoria was undertaken, followed by the analyses of phylogenetic relationships using different biochemical and molecular genetic techniques (SOS-PAGE and RAPO-PCR). A total of 45 protein bands were observed within the studied Osci/latoria isolates by SOS-PAGE (only three unique bands, eight monomorphic bands and 37 polymorphic bands). On the other hand, extracted ONA from isolates was used to identify the molecular fingerprints. A sum of 94 polymorphic bands was generated by these primers in the Ocsi/laloria genotypes under study. A total of 20 unique bands were identified out of the polymorphic ones. These unique bands were used to discriminate among the studied Ocsi/latoria isolates. Most isolates of Ocsi/latoria genotypes were discriminated by one or more unique bands. Numerical taxonomic using 45 protein attributes of 19 isolates and RAPO markers on five isolates. Two methods -Clustering (UPGMA) and Principal Component Analysis (PCA) were used for these analyses. The similarities and clusters produced between the studied isolates were discussed.

  1. The clinical, biochemical and genetic features associated with RMND1-related mitochondrial disease

    DEFF Research Database (Denmark)

    Ng, Yi Shiau; Alston, Charlotte L; Diodato, Daria

    2016-01-01

    BACKGROUND: Mutations in the RMND1 (Required for Meiotic Nuclear Division protein 1) gene have recently been linked to infantile onset mitochondrial disease characterised by multiple mitochondrial respiratory chain defects. METHODS: We summarised the clinical, biochemical and molecular genetic in...

  2. A Classical Genetic Solution to Enhance the Biosynthesis of Anticancer Phytochemicals in Andrographis paniculata Nees

    Science.gov (United States)

    Talei, Daryush; Abdul Kadir, Mihdzar; Rafii, Mohd Yusop; Sagineedu, Sreenivasa Rao

    2014-01-01

    Andrographolides, the diterpene lactones, are major bioactive phytochemicals which could be found in different parts of the medicinal herb Andrographis paniculata. A number of such compounds namely andrographolide (AG), neoandrographolide (NAG), and 14-deoxy-11,12-didehydroandrographolide (DDAG) have already attracted a great deal of attention due to their potential therapeutic effects in hard-to-treat diseases such as cancers and HIV. Recently, they have also been considered as substrates for the discovery of novel pharmaceutical compounds. Nevertheless, there is still a huge gap in knowledge on the genetic pattern of the biosynthesis of these bioactive compounds. Hence, the present study aimed to investigate the genetic mechanisms controlling the biosynthesis of these phytochemicals using a diallel analysis. The high performance liquid chromatography analysis of the three andrographolides in 210 F1 progenies confirmed that the biosynthesis of these andrographolides was considerably increased via intraspecific hybridization. The results revealed high, moderate and low heterosis for DDAG, AG and NAG, respectively. Furthermore, the preponderance of non-additive gene actions was affirmed in the enhancement of the three andrographolides contents. The consequence of this type of gene action was the occurrence of high broad-sense and low narrow-sense heritabilities for the above mentioned andrographolides. The prevalence of non-additive gene action suggests the suitability of heterosis breeding and hybrid seed production as a preferred option to produce new plant varieties with higher andrographolide contents using the wild accessions of A. paniculata. Moreover, from an evolutionary point of view, the occurrence of population bottlenecks in the Malaysian accessions of A. paniculata was unveiled by observing a low level of additive genetic variance (VA) for all the andrographolides. PMID:24586262

  3. A classical genetic solution to enhance the biosynthesis of anticancer phytochemicals in Andrographis paniculata Nees.

    Directory of Open Access Journals (Sweden)

    Alireza Valdiani

    Full Text Available Andrographolides, the diterpene lactones, are major bioactive phytochemicals which could be found in different parts of the medicinal herb Andrographis paniculata. A number of such compounds namely andrographolide (AG, neoandrographolide (NAG, and 14-deoxy-11,12-didehydroandrographolide (DDAG have already attracted a great deal of attention due to their potential therapeutic effects in hard-to-treat diseases such as cancers and HIV. Recently, they have also been considered as substrates for the discovery of novel pharmaceutical compounds. Nevertheless, there is still a huge gap in knowledge on the genetic pattern of the biosynthesis of these bioactive compounds. Hence, the present study aimed to investigate the genetic mechanisms controlling the biosynthesis of these phytochemicals using a diallel analysis. The high performance liquid chromatography analysis of the three andrographolides in 210 F1 progenies confirmed that the biosynthesis of these andrographolides was considerably increased via intraspecific hybridization. The results revealed high, moderate and low heterosis for DDAG, AG and NAG, respectively. Furthermore, the preponderance of non-additive gene actions was affirmed in the enhancement of the three andrographolides contents. The consequence of this type of gene action was the occurrence of high broad-sense and low narrow-sense heritabilities for the above mentioned andrographolides. The prevalence of non-additive gene action suggests the suitability of heterosis breeding and hybrid seed production as a preferred option to produce new plant varieties with higher andrographolide contents using the wild accessions of A. paniculata. Moreover, from an evolutionary point of view, the occurrence of population bottlenecks in the Malaysian accessions of A. paniculata was unveiled by observing a low level of additive genetic variance (VA for all the andrographolides.

  4. A classical genetic solution to enhance the biosynthesis of anticancer phytochemicals in Andrographis paniculata Nees.

    Science.gov (United States)

    Valdiani, Alireza; Talei, Daryush; Tan, Soon Guan; Abdul Kadir, Mihdzar; Maziah, Mahmood; Rafii, Mohd Yusop; Sagineedu, Sreenivasa Rao

    2014-01-01

    Andrographolides, the diterpene lactones, are major bioactive phytochemicals which could be found in different parts of the medicinal herb Andrographis paniculata. A number of such compounds namely andrographolide (AG), neoandrographolide (NAG), and 14-deoxy-11,12-didehydroandrographolide (DDAG) have already attracted a great deal of attention due to their potential therapeutic effects in hard-to-treat diseases such as cancers and HIV. Recently, they have also been considered as substrates for the discovery of novel pharmaceutical compounds. Nevertheless, there is still a huge gap in knowledge on the genetic pattern of the biosynthesis of these bioactive compounds. Hence, the present study aimed to investigate the genetic mechanisms controlling the biosynthesis of these phytochemicals using a diallel analysis. The high performance liquid chromatography analysis of the three andrographolides in 210 F1 progenies confirmed that the biosynthesis of these andrographolides was considerably increased via intraspecific hybridization. The results revealed high, moderate and low heterosis for DDAG, AG and NAG, respectively. Furthermore, the preponderance of non-additive gene actions was affirmed in the enhancement of the three andrographolides contents. The consequence of this type of gene action was the occurrence of high broad-sense and low narrow-sense heritabilities for the above mentioned andrographolides. The prevalence of non-additive gene action suggests the suitability of heterosis breeding and hybrid seed production as a preferred option to produce new plant varieties with higher andrographolide contents using the wild accessions of A. paniculata. Moreover, from an evolutionary point of view, the occurrence of population bottlenecks in the Malaysian accessions of A. paniculata was unveiled by observing a low level of additive genetic variance (VA ) for all the andrographolides.

  5. Filling gaps in bacterial amino acid biosynthesis pathways with high-throughput genetics.

    Directory of Open Access Journals (Sweden)

    Morgan N Price

    2018-01-01

    Full Text Available For many bacteria with sequenced genomes, we do not understand how they synthesize some amino acids. This makes it challenging to reconstruct their metabolism, and has led to speculation that bacteria might be cross-feeding amino acids. We studied heterotrophic bacteria from 10 different genera that grow without added amino acids even though an automated tool predicts that the bacteria have gaps in their amino acid synthesis pathways. Across these bacteria, there were 11 gaps in their amino acid biosynthesis pathways that we could not fill using current knowledge. Using genome-wide mutant fitness data, we identified novel enzymes that fill 9 of the 11 gaps and hence explain the biosynthesis of methionine, threonine, serine, or histidine by bacteria from six genera. We also found that the sulfate-reducing bacterium Desulfovibrio vulgaris synthesizes homocysteine (which is a precursor to methionine by using DUF39, NIL/ferredoxin, and COG2122 proteins, and that homoserine is not an intermediate in this pathway. Our results suggest that most free-living bacteria can likely make all 20 amino acids and illustrate how high-throughput genetics can uncover previously-unknown amino acid biosynthesis genes.

  6. Genetic Control of Ascorbic Acid Biosynthesis and Recycling in Horticultural Crops

    Directory of Open Access Journals (Sweden)

    Ifigeneia Mellidou

    2017-07-01

    Full Text Available Ascorbic acid (AsA is an essential compound present in almost all living organisms that has important functions in several aspects of plant growth and development, hormone signaling, as well as stress defense networks. In recent years, the genetic regulation of AsA metabolic pathways has received much attention due to its beneficial role in human diet. Despite the great variability within species, genotypes, tissues and developmental stages, AsA accumulation is considered to be controlled by the fine orchestration of net biosynthesis, recycling, degradation/oxidation, and/or intercellular and intracellular transport. To date, several structural genes from the AsA metabolic pathways and transcription factors are considered to significantly affect AsA in plant tissues, either at the level of activity, transcription or translation via feedback inhibition. Yet, all the emerging studies support the notion that the steps proceeding through GDP-L-galactose phosphorylase and to a lesser extent through GDP-D-mannose-3,5-epimerase are control points in governing AsA pool size in several species. In this mini review, we discuss the current consensus of the genetic regulation of AsA biosynthesis and recycling, with a focus on horticultural crops. The aspects of AsA degradation and transport are not discussed herein. Novel insights of how this multifaceted trait is regulated are critical to prioritize candidate genes for follow-up studies toward improving the nutritional value of fruits and vegetables.

  7. Developing a Genetically Encoded, Cross-Species Biosensor for Detecting Ammonium and Regulating Biosynthesis of Cyanophycin.

    Science.gov (United States)

    Xiao, Yi; Jiang, Wen; Zhang, Fuzhong

    2017-10-20

    Responding to nitrogen status is essential for all living organisms. Bacteria have evolved various complex and exquisite regulatory systems to control nitrogen metabolism. However, natural nitrogen regulatory systems, owing to their complexity, often function only in their original hosts and do not respond properly when transferred to another species. By harnessing the Lactococcus GlnRA system, we developed a genetically encoded, cross-species ammonium biosensor that displays a dynamic range up to 9-fold upon detection of ammonium ion. We demonstrated applications of this ammonium biosensor in three different species (Escherichia coli, Pseudomonas putida, and Synechocystis sp.) to detect different nitrogen sources. This ammonium sensor was further used to regulate the biosynthesis of a nitrogen-rich polymer, cyanophycin, based on ammonium concentration. Given the importance of nitrogen responses, the developed biosensor should be broadly applicable to synthetic biology and bioengineering.

  8. Genetic Investigations Using Immuno-biochemical Markers in a Maramureş Brown Cattle Population

    Directory of Open Access Journals (Sweden)

    Nicoleta Isfan

    2011-05-01

    Full Text Available The study of the genetic markers and identifying new markers involves an increasing number of research projects in the fields of genetics of immunology, biochemical genetics, molecular genetics, quantity genetics and the genetic improvement of animals. Some studies on genes frequency determining the red cells specificity and for whey hemoglobin are approached in the present report. In this way, some blood factors, most of them belonging to B system (the most complex system in cattle have been evidenced. The lowest gene frequency was present in K factor (7%, and highest one in, O1, G’ , W and F1 (100%. In addition to basic importance on knowledge and determination of cattle population genetic structure for studied protein loci, another theme proposed to correlate hemoglobin type with some traits of economical importance: milk yield, fat and protein content, fat and protein yield. Higher performance was recorded by HbA/HbA individuals.

  9. Metabologenomics of Phaeochromocytoma and Paraganglioma: An Integrated Approach for Personalised Biochemical and Genetic Testing.

    Science.gov (United States)

    Eisenhofer, Graeme; Klink, Barbara; Richter, Susan; Lenders, Jacques Wm; Robledo, Mercedes

    2017-04-01

    The tremendous advances over the past two decades in both clinical genetics and biochemical testing of chromaffin cell tumours have led to new considerations about how these aspects of laboratory medicine can be integrated to improve diagnosis and management of affected patients. With germline mutations in 15 genes now identified to be responsible for over a third of all cases of phaeochromocytomas and paragangliomas, these tumours are recognised to have one of the richest hereditary backgrounds among all neoplasms. Depending on the mutation, tumours show distinct differences in metabolic pathways that relate to or even directly impact clinical presentation. At the same time, there has been improved understanding about how catecholamines are synthesised, stored, secreted and metabolised by chromaffin cell tumours. Although the tumours may not always secrete catecholamines it has become clear that almost all continuously produce and metabolise catecholamines. This has not only fuelled changes in laboratory medicine, but has also assisted in recognition of genotype-biochemical phenotype relationships important for diagnostics and clinical care. In particular, differences in catecholamine and energy pathway metabolomes can guide genetic testing, assist with test interpretation and provide predictions about the nature, behaviour and imaging characteristics of the tumours. Conversely, results of genetic testing are important for guiding how routine biochemical testing should be employed and interpreted in surveillance programmes for at-risk patients. In these ways there are emerging needs for modern laboratory medicine to seamlessly integrate biochemical and genetic testing into the diagnosis and management of patients with chromaffin cell tumours.

  10. Sucrose accumulation in watermelon fruits: genetic variation and biochemical analysis.

    Science.gov (United States)

    Yativ, Merav; Harary, Idan; Wolf, Shmuel

    2010-05-15

    Sugar accumulation, the key process determining fruit quality, is controlled by both the translocation of sugars and their metabolism in developing fruits. Sugar composition in watermelon, as in all cucurbit fruits, includes sucrose, fructose and glucose. The proportions of these three sugars are determined primarily by three enzyme families: invertases, sucrose synthases (SuSys) and sucrose phosphate synthases (SPSs). The goal of the present research was to explore the process of sugar metabolism in watermelon fruits. Crosses between the domestic watermelon (Citrullus lanatus) and three wild species provided a wide germplasm to explore genetic variability in sugar composition and metabolism. This survey demonstrated great genetic variability in sugar content and in the proportions of sucrose, glucose and fructose in mature fruits. Genotypes accumulating high and low percentage of sucrose provided an experimental system to study sugar metabolism in developing fruits. Insoluble invertase activity was high and constant throughout fruit development in control lines and in genotypes accumulating low levels of sucrose, while in genotypes accumulating high levels of sucrose, activity declined sharply 4 weeks after pollination. Soluble acid invertase activity was significantly lower in genotypes accumulating high levels of sucrose than in low-sucrose-accumulating genotypes. Conversely, activities of SuSy and SPS were higher in the high-sucrose-accumulating genotypes. The present results establish that, within the genus Citrullus, there are genotypes that accumulate a high percentage of sucrose in the fruit, while others accumulate high percentages of glucose and fructose. The significant negative correlation between insoluble invertase activity and fruit sucrose level suggests that sucrose accumulation is affected by both phloem unloading and sugar metabolism. (c) 2009 Elsevier GmbH. All rights reserved.

  11. Genetic and biochemical analysis reveals linked QTLs determining natural variation for fruit post-harvest water loss in pepper (Capsicum).

    Science.gov (United States)

    Popovsky-Sarid, Sigal; Borovsky, Yelena; Faigenboim, Adi; Parsons, Eugene P; Lohrey, Gregory T; Alkalai-Tuvia, Sharon; Fallik, Elazar; Jenks, Matthew A; Paran, Ilan

    2017-02-01

    Molecular markers linked to QTLs controlling post-harvest fruit water loss in pepper may be utilized to accelerate breeding for improved shelf life and inhibit over-ripening before harvest. Bell pepper (Capsicum annuum L.) is an important vegetable crop world-wide. However, marketing is limited by the relatively short shelf life of the fruit due to water loss and decay that occur during prolonged storage. Towards breeding pepper with reduced fruit post-harvest water loss (PWL), we studied the genetic, physiological and biochemical basis for natural variation of PWL. We performed quantitative trait locus (QTL) mapping of fruit PWL in multiple generations of an interspecific cross of pepper, which resulted in the identification of two linked QTLs on chromosome 10 that control the trait. We further developed near-isogenic lines (NILs) for characterization of the QTL effects. Transcriptome analysis of the NILs allowed the identification of candidate genes associated with fruit PWL-associated traits such as cuticle biosynthesis, cell wall metabolism and fruit ripening. Significant differences in PWL between the NILs in the immature fruit stage, differentially expressed cuticle-associated genes and differences in the content of specific chemical constituents of the fruit cuticle, indicated a likely influence of cuticle composition on the trait. Reduced PWL in the NILs was associated with delayed over-ripening before harvest, low total soluble solids before storage, and reduced fruit softening after storage. Our study enabled a better understanding of the genetic and biological processes controlling natural variation in fruit PWL in pepper. Furthermore, the genetic materials and molecular markers developed in this study may be utilized to breed peppers with improved shelf life and inhibited over-ripening before harvest.

  12. Structural modification of polysaccharides: A biochemical-genetic approach

    Science.gov (United States)

    Kern, Roger G.; Petersen, Gene R.

    1991-01-01

    Polysaccharides have a wide range of industrial and biomedical applications. An industry trend is underway towards the increased use of bacteria to produce polysaccharides. Long term goals of this work are the adaptation and enhancement of saccharide properties for electronic and optic applications. In this report we illustrate the application of enzyme-bearing bacteriophage on strains of the enteric bacterium Klebsiella pneumoniae, which produces a polysaccharide with the relatively rare rheological property of drag-reduction. This has resulted in the production of new polysaccharides with enhanced rheological properties. Our laboratory is developing techniques for processing and structurally modifying bacterial polysaccharides and oligosaccharides which comprise their basic polymeric repeat units. Our research has focused on bacteriophage which produce specific polysaccharide degrading enzymes. This has lead to the development of enzymes generated by bacteriophage as tools for polysaccharide modification and purification. These enzymes were used to efficiently convert the native material to uniform-sized high molecular weight polymers, or alternatively into high-purity oligosaccharides. Enzyme-bearing bacteriophage also serve as genetic selection tools for bacteria that produce new families of polysaccharides with modified structures.

  13. Genetic and biochemical analysis of peptide transport in Escherichia coli

    International Nuclear Information System (INIS)

    Andrews, J.C.

    1986-01-01

    E. coli peptide transport mutants have been isolated based on their resistance to toxic tripeptides. These genetic defects were found to map in two distinct chromosomal locations. The transport systems which require expression of the trp-linked opp genes and the oppE gene(s) for activity were shown to have different substrate preferences. Growth of E. coli in medium containing leucine results in increased entry of exogenously supplied tripeptides into the bacterial cell. This leucine-mediated elevation of peptide transport required expression of the trp-linked opp operon and was accompanied by increased sensitivity to toxic tripeptides, by an enhanced capacity to utilize nutritional peptides, and by an increase in both the velocity and apparent steady-state level of L-(U- 14 C)alanyl-L-alanyl-L-alanine accumulation for E. coli grown in leucine-containing medium relative to these parameters of peptide transport measured with bacteria grown in media lacking leucine. Direct measurement of opp operon expression by pulse-labeling experiments demonstrated that growth of E. coli in the presence of leucine resulted in increased synthesis of the oppA-encoded periplasmic binding protein. The transcriptional regulation of the trp-linked opp operon of E. coli was investigated using λ placMu51-generated lac operon fusions. Synthesis of β-galactosidase by strains harboring oppA-lac, oppB-lac, and oppD-lac fusions occurred at a basal level when the fusion-containing strains were grown in minimal medium

  14. Biotin in microbes, the genes involved in its biosynthesis, its biochemical role and perspectives for biotechnological production.

    Science.gov (United States)

    Streit, W R; Entcheva, P

    2003-03-01

    Biotin (vitamin H) is one of the most fascinating cofactors involved in central pathways in pro- and eukaryotic cell metabolism. Since its original discovery in 1901, research has led to the discovery of the complete biotin biosynthesis pathways in many different microbes and much work has been done on the highly intriguing and complex biochemistry of biotin biosynthesis. While humans and animals require several hundred micrograms of biotin per day, most microbes, plants and fungi appear to be able to synthesize the cofactor themselves. Biotin is added to many food, feed and cosmetic products, creating a world market of 10-30 t/year. However, the majority of the biotin sold is synthesized in a chemical process. Since the chemical synthesis is linked with a high environmental burden, much effort has been put into the development of biotin-overproducing microbes. A summary of biotin biosynthesis and its biological role is presented; and current strategies for the improvement of microbial biotin production using modern biotechnological techniques are discussed.

  15. Morphological, biochemical and genetic influence of mutagen treatments on medicinal plant tissue cultures

    International Nuclear Information System (INIS)

    Onisei, T.; Toth, E.; Tesio, B.; Floria, F.

    1994-01-01

    Gamma rays and/or alkylant agents have been applied on callus tissue, young regenerants and cell suspension in order to establish their effect on morphogenesis, regeneration ability and biosynthetic potential. Growth dynamics, morpho-anatomic variables, secondary metabolite production, cell cytogenetics, enzyme specific activities, isoperoxidase and isoesterase patterns were analyzed in relation to the morphogenetic response of Atropa belladonna, Datura innoxia, Lavandula angustifolia, Chamomilla recutita, Digitalis lanata and Vinca minor tissue cultures. The effects of gamma-ray doses varied from one species to another; 10 to 20 Gy were generally able to stimulate growth and plant regeneration (via organogenesis and somatic embryogenesis), while 10 to 50 Gy enhanced secondary metabolite biosynthesis both in callus and cell suspension culture. Semnificative increase of secondary metabolite production was obtained when treatments with EMS (0.1-0.2%) have been applied to young regenerants. Many differences in biological features and biochemical behaviour were registered 20 days and one year, respectively, after treatment. (author)

  16. Genetic analysis of pathway regulation for enhancing branched-chain amino acid biosynthesis in plants

    KAUST Repository

    Chen, Hao

    2010-08-01

    The branched-chain amino acids (BCAAs) valine, leucine and isoleucine are essential amino acids that play critical roles in animal growth and development. Animals cannot synthesize these amino acids and must obtain them from their diet. Plants are the ultimate source of these essential nutrients, and they synthesize BCAAs through a conserved pathway that is inhibited by its end products. This feedback inhibition has prevented scientists from engineering plants that accumulate high levels of BCAAs by simply over-expressing the respective biosynthetic genes. To identify components critical for this feedback regulation, we performed a genetic screen for Arabidopsis mutants that exhibit enhanced resistance to BCAAs. Multiple dominant allelic mutations in the VALINE-TOLERANT 1 (VAT1) gene were identified that conferred plant resistance to valine inhibition. Map-based cloning revealed that VAT1 encodes a regulatory subunit of acetohydroxy acid synthase (AHAS), the first committed enzyme in the BCAA biosynthesis pathway. The VAT1 gene is highly expressed in young, rapidly growing tissues. When reconstituted with the catalytic subunit in vitro, the vat1 mutant-containing AHAS holoenzyme exhibits increased resistance to valine. Importantly, transgenic plants expressing the mutated vat1 gene exhibit valine tolerance and accumulate higher levels of BCAAs. Our studies not only uncovered regulatory characteristics of plant AHAS, but also identified a method to enhance BCAA accumulation in crop plants that will significantly enhance the nutritional value of food and feed. © 2010 Blackwell Publishing Ltd.

  17. PR Toxin – Biosynthesis, Genetic Regulation, Toxicological Potential, Prevention and Control Measures: Overview and Challenges

    Directory of Open Access Journals (Sweden)

    Manish K. Dubey

    2018-03-01

    Full Text Available Out of the various mycotoxigenic food and feed contaminant, the fungal species belonging to Penicillium genera, particularly Penicillium roqueforti is of great economic importance, and well known for its crucial role in the manufacturing of Roquefort and Gorgonzola cheese. The mycotoxicosis effect of this mold is due to secretion of several metabolites, of which PR toxin is of considerable importance, with regard to food quality and safety challenges issues. The food products and silages enriched with PR toxin could lead into damage to vital internal organs, gastrointestinal perturbations, carcinogenicity, immunotoxicity, necrosis, and enzyme inhibition. Moreover, it also has the significant mutagenic potential to disrupt/alter the crucial processes like DNA replication, transcription, and translation at the molecular level. The high genetic diversities in between the various strains of P. roqueforti persuaded their nominations with Protected Geographical Indication (PGI, accordingly to the cheese type, they have been employed. Recently, the biosynthetic mechanism and toxicogenetic studies unraveled the role of ari1 and prx gene clusters that cross-talk with the synthesis of other metabolites or involve other cross-regulatory pathways to negatively regulate/inhibit the other biosynthetic route targeted for production of a strain-specific metabolites. Interestingly, the chemical conversion that imparts toxic properties to PR toxin is the substitution/oxidation of functional hydroxyl group (-OH to aldehyde group (-CHO. The rapid conversion of PR toxin to the other derivatives such as PR imine, PR amide, and PR acid, based on conditions available reflects their unstability and degradative aspects. Since the PR toxin-induced toxicity could not be eliminated safely, the assessment of dose-response and other pharmacological aspects for its safe consumption is indispensable. The present review describes the natural occurrences, diversity, biosynthesis

  18. PR Toxin - Biosynthesis, Genetic Regulation, Toxicological Potential, Prevention and Control Measures: Overview and Challenges.

    Science.gov (United States)

    Dubey, Manish K; Aamir, Mohd; Kaushik, Manish S; Khare, Saumya; Meena, Mukesh; Singh, Surendra; Upadhyay, Ram S

    2018-01-01

    Out of the various mycotoxigenic food and feed contaminant, the fungal species belonging to Penicillium genera, particularly Penicillium roqueforti is of great economic importance, and well known for its crucial role in the manufacturing of Roquefort and Gorgonzola cheese. The mycotoxicosis effect of this mold is due to secretion of several metabolites, of which PR toxin is of considerable importance, with regard to food quality and safety challenges issues. The food products and silages enriched with PR toxin could lead into damage to vital internal organs, gastrointestinal perturbations, carcinogenicity, immunotoxicity, necrosis, and enzyme inhibition. Moreover, it also has the significant mutagenic potential to disrupt/alter the crucial processes like DNA replication, transcription, and translation at the molecular level. The high genetic diversities in between the various strains of P. roqueforti persuaded their nominations with Protected Geographical Indication (PGI), accordingly to the cheese type, they have been employed. Recently, the biosynthetic mechanism and toxicogenetic studies unraveled the role of ari1 and prx gene clusters that cross-talk with the synthesis of other metabolites or involve other cross-regulatory pathways to negatively regulate/inhibit the other biosynthetic route targeted for production of a strain-specific metabolites. Interestingly, the chemical conversion that imparts toxic properties to PR toxin is the substitution/oxidation of functional hydroxyl group (-OH) to aldehyde group (-CHO). The rapid conversion of PR toxin to the other derivatives such as PR imine, PR amide, and PR acid, based on conditions available reflects their unstability and degradative aspects. Since the PR toxin-induced toxicity could not be eliminated safely, the assessment of dose-response and other pharmacological aspects for its safe consumption is indispensable. The present review describes the natural occurrences, diversity, biosynthesis, genetics

  19. PR Toxin – Biosynthesis, Genetic Regulation, Toxicological Potential, Prevention and Control Measures: Overview and Challenges

    Science.gov (United States)

    Dubey, Manish K.; Aamir, Mohd; Kaushik, Manish S.; Khare, Saumya; Meena, Mukesh; Singh, Surendra; Upadhyay, Ram S.

    2018-01-01

    Out of the various mycotoxigenic food and feed contaminant, the fungal species belonging to Penicillium genera, particularly Penicillium roqueforti is of great economic importance, and well known for its crucial role in the manufacturing of Roquefort and Gorgonzola cheese. The mycotoxicosis effect of this mold is due to secretion of several metabolites, of which PR toxin is of considerable importance, with regard to food quality and safety challenges issues. The food products and silages enriched with PR toxin could lead into damage to vital internal organs, gastrointestinal perturbations, carcinogenicity, immunotoxicity, necrosis, and enzyme inhibition. Moreover, it also has the significant mutagenic potential to disrupt/alter the crucial processes like DNA replication, transcription, and translation at the molecular level. The high genetic diversities in between the various strains of P. roqueforti persuaded their nominations with Protected Geographical Indication (PGI), accordingly to the cheese type, they have been employed. Recently, the biosynthetic mechanism and toxicogenetic studies unraveled the role of ari1 and prx gene clusters that cross-talk with the synthesis of other metabolites or involve other cross-regulatory pathways to negatively regulate/inhibit the other biosynthetic route targeted for production of a strain-specific metabolites. Interestingly, the chemical conversion that imparts toxic properties to PR toxin is the substitution/oxidation of functional hydroxyl group (-OH) to aldehyde group (-CHO). The rapid conversion of PR toxin to the other derivatives such as PR imine, PR amide, and PR acid, based on conditions available reflects their unstability and degradative aspects. Since the PR toxin-induced toxicity could not be eliminated safely, the assessment of dose-response and other pharmacological aspects for its safe consumption is indispensable. The present review describes the natural occurrences, diversity, biosynthesis, genetics

  20. Tramadol Induced Adrenal Insufficiency: Histological, Immunohistochemical, Ultrastructural, and Biochemical Genetic Experimental Study

    OpenAIRE

    Abdelaleem, Shereen Abdelhakim; Hassan, Osama A.; Ahmed, Rasha F.; Zenhom, Nagwa M.; Rifaai, Rehab A.; El-Tahawy, Nashwa F.

    2017-01-01

    Tramadol is a synthetic, centrally acting analgesic. It is the most consumed narcotic drug that is prescribed in the world. Tramadol abuse has dramatically increased in Egypt. Long term use of tramadol can induce endocrinopathy. So, the aim of this study was to analyze the adrenal insufficiency induced by long term use of tramadol in experimental animals and also to assess its withdrawal effects through histopathological and biochemical genetic study. Forty male albino rats were used in this ...

  1. Biochemical and genetic analysis of the Drk SH2/SH3 adaptor protein of Drosophila.

    OpenAIRE

    Raabe, T; Olivier, J P; Dickson, B J; Liu, X; Gish, G D; Pawson, T; Hafen, E

    1995-01-01

    The Drk SH3-SH2-SH3 adaptor protein has been genetically identified in a screen for rate-limiting components acting downstream of the Sevenless (Sev) receptor tyrosine kinase in the developing eye of Drosophila. It provides a link between the activated Sev receptor and Sos, a guanine nucleotide release factor that activates Ras1. We have used a combined biochemical and genetic approach to study the interactions between Sev, Drk and Sos. We show that Tyr2546 in the cytoplasmic tail of Sev is r...

  2. ASSOCIATION OF SOME BIOCHEMICAL-GENETIC MARKERS WITH THE REPRODUCTION PARAMETERS OF THE BOTOSANI KARAKUL EWES

    Directory of Open Access Journals (Sweden)

    GH. HRINCĂ

    2008-10-01

    Full Text Available The paper describes some associative aspects of various biochemical-genetic markers with the reproduction activity in ewes of the Botosani Karakul breed. The two most important reproduction parameters (fecundity and prolificacy were analyzed according to the genotypes or phenotypes of polymorph systems (haemoglobin, transferrin, albumin and blood potassium of females. The relationship between reproduction data and genetic markers in ewes was quantified both for each genotype (phenotype and for each mating couple type made up depending on the genotype (phenotype of the couple partners (homozygous x homozygous, homozygous x heterozygous or heterozygous x heterozygous. All these associative aspects and their results are discussed for each polymorph genetic system. The ewes which are heterozygous at different genetic marker loci are more fertile and more prolific than the ewes which are homozygous at the levels of these loci. The highest conception and lambing rates resulted from the mating couples in which both partners were heterozygous and the least lambs were obtained from the mating couples in which both partners were homozygous; the fertility and prolificacy had intermediate values in heterogeneous mating couples (heterozygotes x homozygotes but they were nearer to the case in which both mating couple partners were heterozygous. The sheep breeding field can benefit by the contribution of biochemical-genetic markers to optimize the selection criteria with a view to increasing the reproduction capacity of this species.

  3. The importance of biochemical and genetic findings in the diagnosis of atypical Norrie disease.

    Science.gov (United States)

    Rodríguez-Muñoz, Ana; García-García, Gema; Menor, Francisco; Millán, José M; Tomás-Vila, Miguel; Jaijo, Teresa

    2018-01-26

    Norrie disease (ND) is a rare X-linked disorder characterized by bilateral congenital blindness. ND is caused by a mutation in the Norrie disease pseudoglioma (NDP) gene, which encodes a 133-amino acid protein called norrin. Intragenic deletions including NDP and adjacent genes have been identified in ND patients with a more severe neurologic phenotype. We report the biochemical, molecular, clinical and radiological features of two unrelated affected males with a deletion including NDP and MAO genes. Biochemical and genetic analyses were performed to understand the atypical phenotype and radiological findings. Biogenic amines in cerebrospinal fluid (CSF) were measured by high-performance liquid chromatography. The coding exons of NDP gene were amplified by polymerase chain reaction. Multiplex ligation-dependent probe amplification and chromosomal microarray were carried out on both affected males. Computed tomography and magnetic resonance imaging were performed on the two patients. In one patient, the serotonin and catecholamine metabolite levels in CSF were virtually undetectable. In both patients, genetic studies revealed microdeletions in the Xp11.3 region, involving the NDP, MAOA and MAOB genes. Radiological examination demonstrated brain and cerebellar atrophy. We suggest that alterations caused by MAO deficit may remain during the first years of life. Clinical phenotype, biochemical findings and neuroimaging can guide the genetic study in patients with atypical ND and help us to a better understanding of this disease.

  4. Nucleoside antibiotics: biosynthesis, regulation, and biotechnology.

    Science.gov (United States)

    Niu, Guoqing; Tan, Huarong

    2015-02-01

    The alarming rise in antibiotic-resistant pathogens has coincided with a decline in the supply of new antibiotics. It is therefore of great importance to find and create new antibiotics. Nucleoside antibiotics are a large family of natural products with diverse biological functions. Their biosynthesis is a complex process through multistep enzymatic reactions and is subject to hierarchical regulation. Genetic and biochemical studies of the biosynthetic machinery have provided the basis for pathway engineering and combinatorial biosynthesis to create new or hybrid nucleoside antibiotics. Dissection of regulatory mechanisms is leading to strategies to increase the titer of bioactive nucleoside antibiotics. Copyright © 2014. Published by Elsevier Ltd.

  5. Good laboratory practices for biochemical genetic testing and newborn screening for inherited metabolic disorders.

    Science.gov (United States)

    2012-04-06

    Biochemical genetic testing and newborn screening are essential laboratory services for the screening, detection, diagnosis, and monitoring of inborn errors of metabolism or inherited metabolic disorders. Under the Clinical Laboratory Improvement Amendments of 1988 (CLIA) regulations, laboratory testing is categorized on the basis of the level of testing complexity as either waived (i.e., from routine regulatory oversight) or nonwaived testing (which includes tests of moderate and high complexity). Laboratories that perform biochemical genetic testing are required by CLIA regulations to meet the general quality systems requirements for nonwaived testing and the personnel requirements for high-complexity testing. Laboratories that perform public health newborn screening are subject to the same CLIA regulations and applicable state requirements. As the number of inherited metabolic diseases that are included in state-based newborn screening programs continues to increase, ensuring the quality of performance and delivery of testing services remains a continuous challenge not only for public health laboratories and other newborn screening facilities but also for biochemical genetic testing laboratories. To help ensure the quality of laboratory testing, CDC collaborated with the Centers for Medicare & Medicaid Services, the Food and Drug Administration, the Health Resources and Services Administration, and the National Institutes of Health to develop guidelines for laboratories to meet CLIA requirements and apply additional quality assurance measures for these areas of genetic testing. This report provides recommendations for good laboratory practices that were developed based on recommendations from the Clinical Laboratory Improvement Advisory Committee, with additional input from the Secretary's Advisory Committee on Genetics, Health, and Society; the Secretary's Advisory Committee on Heritable Disorders in Newborns and Children; and representatives of newborn

  6. Genetic basis of coaggregation receptor polysaccharide biosynthesis in Streptococcus sanguinis and related species.

    Science.gov (United States)

    Yang, J; Yoshida, Y; Cisar, J O

    2014-02-01

    Interbacterial adhesion between streptococci and actinomyces promotes early dental plaque biofilm development. Recognition of coaggregation receptor polysaccharides (RPS) on strains of Streptococcus sanguinis, Streptococcus gordonii and Streptococcus oralis by Actinomyces spp. type 2 fimbriae is the principal mechanism of these interactions. Previous studies of genetic loci for synthesis of RPS (rps) and RPS precursors (rml, galE1 and galE2) in S. gordonii 38 and S. oralis 34 revealed differences between these strains. To determine whether these differences are strain-specific or species-specific, we identified and compared loci for polysaccharide biosynthesis in additional strains of these species and in several strains of the previously unstudied species, S. sanguinis. Genes for synthesis of RPS precursors distinguished the rps loci of different streptococci. Hence, rml genes for synthesis of TDP-L-Rha were in rps loci of S. oralis strains but at other loci in S. gordonii and S. sanguinis. Genes for two distinct galactose epimerases were also distributed differently. Hence, galE1 for epimerization of UDP-Glc and UDP-Gal was in galactose operons of S. gordonii and S. sanguinis strains but surprisingly, this gene was not present in S. oralis. Moreover, galE2 for epimerization of both UDP-Glc and UDP-Gal and UDP-GlcNAc and UDP-GalNAc was at a different locus in each species, including rps operons of S. sanguinis. The findings provide insight into cell surface properties that distinguish different RPS-producing streptococci and open an approach for identifying these bacteria based on the arrangement of genes for synthesis of polysaccharide precursors. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  7. Biochemical and genetic analysis of the role of the viral polymerase in enterovirus recombination.

    Science.gov (United States)

    Woodman, Andrew; Arnold, Jamie J; Cameron, Craig E; Evans, David J

    2016-08-19

    Genetic recombination in single-strand, positive-sense RNA viruses is a poorly understand mechanism responsible for generating extensive genetic change and novel phenotypes. By moving a critical cis-acting replication element (CRE) from the polyprotein coding region to the 3' non-coding region we have further developed a cell-based assay (the 3'CRE-REP assay) to yield recombinants throughout the non-structural coding region of poliovirus from dually transfected cells. We have additionally developed a defined biochemical assay in which the only protein present is the poliovirus RNA dependent RNA polymerase (RdRp), which recapitulates the strand transfer events of the recombination process. We have used both assays to investigate the role of the polymerase fidelity and nucleotide turnover rates in recombination. Our results, of both poliovirus intertypic and intratypic recombination in the CRE-REP assay and using a range of polymerase variants in the biochemical assay, demonstrate that RdRp fidelity is a fundamental determinant of recombination frequency. High fidelity polymerases exhibit reduced recombination and low fidelity polymerases exhibit increased recombination in both assays. These studies provide the basis for the analysis of poliovirus recombination throughout the non-structural region of the virus genome and provide a defined biochemical assay to further dissect this important evolutionary process. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Plant responses to UV and blue light: biochemical and genetic approaches

    International Nuclear Information System (INIS)

    Jenkins, G.I.; Christie, J.M.; Fuglevand, G.; Long, J.C.; Jackson, J.A.

    1995-01-01

    UV and blue light control many aspects of plant growth and development. It is evident that several different photoreceptors mediate responses to UV and blue light, and there are reports of the functional and biochemical characterisation of a putative photoreceptor for phototropism and of the functional and molecular characterisation of the CRY1 photoreceptor, encoded by the Arabidopsis HY4 gene. The CRY1 photoreceptor mediates extension growth and gene expression responses to UV-A/blue light presumably through different or branching signal transduction pathways. Progress has been made in cell physiological and biochemical studies of UV/blue light signal transduction, but much remains to be done to relate candidate UV/blue signal transduction events to particular photoreceptors and responses. The application of a genetic approach in Arabidopsis has been responsible for many advances in understanding UV/blue responses, but further UV-B, UV-A and blue light response mutants need to be isolated. (author)

  9. Acetylcholine receptors and cholinergic ligands: biochemical and genetic aspects in Torpedo californica and Drosophila melanogaster

    International Nuclear Information System (INIS)

    Rosenthal, L.S.

    1987-01-01

    This study evaluates the biochemical and genetic aspects of the acetylcholine receptor proteins and cholinergic ligands in Drosophila melanogaster and Torpedo californica. Included are (1) a comparative study of nicotinic ligand-induced cation release from acetylcholine receptors isolated from Torpedo californica and from Drosophila melanogaster, (2) solution studies of the cholinergic ligands, nikethamide and ethamivan, aimed at measuring internal molecular rotational barriers in solvents of different polarity; and (3) the isolation and characterization of the gene(s) for the acetylcholine receptor in Drosophila melasogaster. Acetylcholine receptor proteins isolated from Drosphila melanogaster heads were found to behave kinetically similar (with regards to cholinergic ligand-induced 155 Eu: 3+ displacement from prelabeled proteins) to receptor proteins isolated from Torpedo californica electric tissue, providing additional biochemical evidence for the existence of a Drosophila acetylcholine receptor

  10. The enzymology of polyether biosynthesis.

    Science.gov (United States)

    Liu, Tiangang; Cane, David E; Deng, Zixin

    2009-01-01

    Polyether ionophore antibiotics are a special class of polyketides widely used in veterinary medicine, and as food additives in animal husbandry. In this article, we review current knowledge about the mechanism of polyether biosynthesis, and the genetic and biochemical strategies used for its study. Several clear differences distinguish it from traditional type I modular polyketide biosynthesis: polyether backbones are assembled by modular polyketide synthases but are modified by two key enzymes, epoxidase and epoxide hydrolase, to generate the product. All double bonds involved in the oxidative cyclization in the polyketide backbone are of E geometry. Chain release in the polyether biosynthetic pathway requires a special type II thioesterase which specifically hydrolyzes the polyether thioester. All these discoveries should be very helpful for a deep understanding of the biosynthetic mechanism of this class of important natural compounds, and for the targeted engineering of polyether derivatives.

  11. Transcriptome analysis of Panax vietnamensis var. fuscidicus discovers putative ocotillol-type ginsenosides biosynthesis genes and genetic markers.

    Science.gov (United States)

    Zhang, Guang-Hui; Ma, Chun-Hua; Zhang, Jia-Jin; Chen, Jun-Wen; Tang, Qing-Yan; He, Mu-Han; Xu, Xiang-Zeng; Jiang, Ni-Hao; Yang, Sheng-Chao

    2015-03-08

    liquid chromatography (HPLC) and evaporative light scattering detector (ELSD). The genomic resources generated from P. vietnamensis var. fuscidiscus provide new insights into the identification of putative genes involved in triterpenoid saponins biosynthesis pathway. This will facilitate our understanding of the biosynthesis of triterpenoid saponins at molecular level. The SSR markers identified and developed in this study show genetic diversity for this important crop and will contribute to marker-assisted breeding for P. vietnamensis var. fuscidiscus.

  12. Biochemical traits useful for the determination of genetic variation in a natural population of Myracrodruon urundeuva

    Directory of Open Access Journals (Sweden)

    Abdala Ludmila

    2002-01-01

    Full Text Available The objectives of this work were to analyze seeds from 20 trees of aroeira (Myracrodruon urundeuva Fr. All. of a natural population located in the region of Selvíria, State of Mato Grosso do Sul, Brazil, in order to evaluate their protein, lipid and carbohydrate contents, and to estimate their genetic variation. A completely randomized experimental design consisting of 20 treatments (families was set up, with two replications. Four types of proteins were detected: albumin (35.0 to 107.3 mg/g seed, globulin (3.4 to 9.3 mg/g, prolamin (60.0 to 135.2 mg/g and glutelin (118.0 to 286.0 mg/g. The lipid content varied between 200 and 334 mg/g seed. The total sugars also varied (26.5 to 46.3 mg/g seed, with a predominance of polyols (arabinitol, mannitol, glucitol and xylitol. The main monosaccharides detected were glucose and arabinose. Total hydrolysis of the sugars indicated the presence of neutral arabinan and xylan oligosaccharides. The starch content varied from 0.35 to 1.58 mg/g seed. These biochemical traits showed considerable genetic variability, indicating that only the collection of seeds from many different trees can provide a representative sample of the population for conservation and genetic improvement.

  13. A comparative clinical, pathological, biochemical and genetic study of fused in sarcoma proteinopathies

    DEFF Research Database (Denmark)

    Lashley, Tammaryn; Rohrer, Jonathan D; Bandopadhyay, Rina

    2011-01-01

    Neuronal intermediate filament inclusion disease and atypical frontotemporal lobar degeneration are rare diseases characterized by ubiquitin-positive inclusions lacking transactive response DNA-binding protein-43 and tau. Recently, mutations in the fused in sarcoma gene have been shown to cause...... findings, as well as genetic and biochemical data in 14 fused in sarcoma proteinopathy cases. In this cohort, the age of onset was variable but included cases of young-onset disease. Patients with atypical frontotemporal lobar degeneration with ubiquitinated inclusions all presented with behavioural...... familial amyotrophic lateral sclerosis and fused in sarcoma-positive neuronal inclusions have subsequently been demonstrated in neuronal intermediate filament inclusion disease and atypical frontotemporal lobar degeneration with ubiquitinated inclusions. Here we provide clinical, imaging, morphological...

  14. Genetic and biochemical changes of the serotonergic system in migraine pathobiology.

    Science.gov (United States)

    Gasparini, Claudia Francesca; Smith, Robert Anthony; Griffiths, Lyn Robyn

    2017-12-01

    Migraine is a brain disorder characterized by a piercing headache which affects one side of the head, located mainly at the temples and in the area around the eye. Migraine imparts substantial suffering to the family in addition to the sufferer, particularly as it affects three times more women than men and is most prevalent between the ages of 25 and 45, the years of child rearing. Migraine typically occurs in individuals with a genetic predisposition and is aggravated by specific environmental triggers. Attempts to study the biochemistry of migraine began as early as the 1960s and were primarily directed at serotonin metabolism after an increase of 5-hydroxyindoleacetic acid (5-HIAA), the main metabolite of serotonin was observed in urine of migraineurs. Genetic and biochemical studies have primarily focused on the neurotransmitter serotonin, considering receptor binding, transport and synthesis of serotonin and have investigated serotonergic mediators including enzymes, receptors as well as intermediary metabolites. These studies have been mainly assayed in blood, CSF and urine as the most accessible fluids. More recently PET imaging technology integrated with a metabolomics and a systems biology platform are being applied to study serotonergic biology. The general trend observed is that migraine patients have alterations of neurotransmitter metabolism detected in biological fluids with different biochemistry from controls, however the interpretation of the biological significance of these peripheral changes is unresolved. In this review we present the biology of the serotonergic system and metabolic routes for serotonin and discuss results of biochemical studies with regard to alterations in serotonin in brain, cerebrospinal fluid, saliva, platelets, plasma and urine of migraine patients.

  15. The genetic origins of biosynthesis and light-responsive control of the chemical UV screen of land plants

    International Nuclear Information System (INIS)

    Jorgensen, R.

    1994-01-01

    Most land plants possess the capacity to protect themselves from UV light, and do so by producing pigments that absorb efficiently in the UV-A and UV-B regions of the spectrum while allowing transmission of nearly all photosynthetically useful wavelengths. These UV-absorbing pigments are mainly phenylpropanoids and flavonoids. This chapter summarizes current understanding of the mechanism of UV protection in higher land plants, evaluates the information available from lower land plants and their green-algal relatives, and then considers the possible evolutionary origins of this use of chemical filters for selectively screening UV light from solar radiation. It is proposed that photo control over the biosynthesis of UV-absorbing phenylpropanoids and flavonoids may have evolved in concert with the evolution of the high biosynthetic activity necessary for UV protection. The toxicity of phenylpropanoids and flavonoids has been postulated to have been a barrier to the evolution of an effective chemical UV screen, and that some means for sequestering these compounds and/or for controlling their synthesis probably evolved prior to, or in concert with, the evolution of high rates of biosynthesis. The original photoreceptor and signal transduction system is speculated to have been based on photo isomerization of a phenylpropanoid ester and a pre-existing product feedback mechanism for controlling phenylpropanoid biosynthesis. Understanding the original mechanism for photo control of the chemical UV screen of land plants could be valuable for understanding the adaptability of extant land plants to rising levels of solar UV-B radiation and may suggest genetic strategies for engineering improved UV tolerance in crop plants. (author)

  16. Intra-specific genetic relationship analyses of Elaeagnus angustifolia based on RP-HPLC biochemical markers

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Elaeagnus angustifolia Linn. has various ecological, medicinal and economical uses. An approach was established using RP-HPLC (reversed-phase high-performance liquid chromatography) to classify and analyse the intra-specific genetic relationships of seventeen populations of E. angustifolia, collected from the Xinjiang areas of China. Chromatograms of alcohol-soluble proteins produced by seventeen populations ofE. angustifolia, were compared. Each chromatogram of alcohol-soluble proteins came from a single seed of one wild plant only. The results showed that when using a Waters Delta Pak. C18, 5 μm particle size reversed phase column (150 mm×3.9 mm), a linear gradient of 25%~60% solvent B with flow rate of 1 ml/min and run time of 67 min, the chromatography yielded optimum separation ofE. angustifolia alcohol-soluble proteins. Representative peaks in each population were chosen according to peak area and occurrence in every seed. The converted data on the elution peaks of each population were different and could be used to represent those populations. GSC (genetic similarity coefficients) of 41% to 62% showed a medium degree of genetic diversity among the populations in these eco-areas. Cluster analysis showed that the seventeen populations ofE. angustifolia could be divided into six clusters at the GSC=0.535 level and indicated the general and unique biochemical markers of these clusters. We suggest that E. angustifolia distribution in these eco-areas could be classified into six variable species. RP-HPLC was shown to be a rapid, repeatable and reliable method for E. angustifolia classification and identification and for analysis of genetic diversity.

  17. Genetic parameters for the prediction of abdominal fat traits using blood biochemical indicators in broilers.

    Science.gov (United States)

    Zhang, H L; Xu, Z Q; Yang, L L; Wang, Y X; Li, Y M; Dong, J Q; Zhang, X Y; Jiang, X Y; Jiang, X F; Li, H; Zhang, D X; Zhang, H

    2018-02-01

    1. Excessive deposition of body fat, especially abdominal fat, is detrimental in chickens and the prevention of excessive fat accumulation is an important problem. The aim of this study was to identify blood biochemical indicators that could be used as criteria to select lean Yellow-feathered chicken lines. 2. Levels of blood biochemical indicators in the fed and fasted states and the abdominal fat traits were measured in 332 Guangxi Yellow chickens. In the fed state, the genetic correlations (r g ) of triglycerides and very low density lipoprotein levels were positive for the abdominal fat traits (0.47 ≤ r g  ≤ 0.67), whereas total cholesterol, high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) showed higher negative correlations with abdominal fat traits (-0.59 ≤ r g  ≤ -0.33). Heritabilities of these blood biochemical parameters were high, varying from 0.26 to 0.60. 3. In the fasted state, HDL-C:LDL-C level was positively correlated with abdominal fat traits (0.35 ≤ r g  ≤ 0.38), but triglycerides, total cholesterol, HDL-C, LDL-C, total protein, albumin, aspartate transaminase, uric acid and creatinine levels were negatively correlated with abdominal fat traits (-0.79 ≤ r g  ≤ -0.35). The heritabilities of these 10 blood biochemical parameters were high (0.22 ≤ h 2  ≤ 0.59). 4. In the fed state, optimal multiple regression models were constructed to predict abdominal fat traits by using triglycerides and LDL-C. In the fasted state, triglycerides, total cholesterol, HDL-C, LDL-C, total protein, albumin and uric acid could be used to predict abdominal fat content. 5. It was concluded that these models in both nutritional states could be used to predict abdominal fat content in Guangxi Yellow broiler chickens.

  18. Biochemical and genetic analysis of the Drk SH2/SH3 adaptor protein of Drosophila.

    Science.gov (United States)

    Raabe, T; Olivier, J P; Dickson, B; Liu, X; Gish, G D; Pawson, T; Hafen, E

    1995-06-01

    The Drk SH3-SH2-SH3 adaptor protein has been genetically identified in a screen for rate-limiting components acting downstream of the Sevenless (Sev) receptor tyrosine kinase in the developing eye of Drosophila. It provides a link between the activated Sev receptor and Sos, a guanine nucleotide release factor that activates Ras1. We have used a combined biochemical and genetic approach to study the interactions between Sev, Drk and Sos. We show that Tyr2546 in the cytoplasmic tail of Sev is required for Drk binding, probably because it provides a recognition site for the Drk SH2 domain. Interestingly, a mutation at this site does not completely block Sev function in vivo. This may suggest that Sev can signal in a Drk-independent, parallel pathway or that Drk can also bind to an intermediate docking protein. Analysis of the Drk-Sos interaction has identified a high affinity binding site for Drk SH3 domains in the Sos tail. We show that the N-terminal Drk SH3 domain is primarily responsible for binding to the tail of Sos in vitro, and for signalling to Ras in vivo.

  19. Tramadol Induced Adrenal Insufficiency: Histological, Immunohistochemical, Ultrastructural, and Biochemical Genetic Experimental Study

    Directory of Open Access Journals (Sweden)

    Shereen Abdelhakim Abdelaleem

    2017-01-01

    Full Text Available Tramadol is a synthetic, centrally acting analgesic. It is the most consumed narcotic drug that is prescribed in the world. Tramadol abuse has dramatically increased in Egypt. Long term use of tramadol can induce endocrinopathy. So, the aim of this study was to analyze the adrenal insufficiency induced by long term use of tramadol in experimental animals and also to assess its withdrawal effects through histopathological and biochemical genetic study. Forty male albino rats were used in this study. The rats were divided into 4 groups (control group, tramadol-treated group, and withdrawal groups. Tramadol was given to albino rats at a dose of 80 mg/kg body weight for 3 months and after withdrawal periods (7–15 days rats were sacrificed. Long term use of tramadol induced severe histopathological changes in adrenal glands. Tramadol decreased the levels of serum cortisol and DHEAS hormones. In addition, it increased the level of adrenal MDA and decreased the genetic expression of glutathione peroxidase and thioredoxin reductase in adrenal gland tissues. All these changes started to return to normal after withdrawal of tramadol. Thus, it was confirmed that long term use of tramadol can induce severe adrenal insufficiency.

  20. Tramadol Induced Adrenal Insufficiency: Histological, Immunohistochemical, Ultrastructural, and Biochemical Genetic Experimental Study.

    Science.gov (United States)

    Abdelaleem, Shereen Abdelhakim; Hassan, Osama A; Ahmed, Rasha F; Zenhom, Nagwa M; Rifaai, Rehab A; El-Tahawy, Nashwa F

    2017-01-01

    Tramadol is a synthetic, centrally acting analgesic. It is the most consumed narcotic drug that is prescribed in the world. Tramadol abuse has dramatically increased in Egypt. Long term use of tramadol can induce endocrinopathy. So, the aim of this study was to analyze the adrenal insufficiency induced by long term use of tramadol in experimental animals and also to assess its withdrawal effects through histopathological and biochemical genetic study. Forty male albino rats were used in this study. The rats were divided into 4 groups (control group, tramadol-treated group, and withdrawal groups). Tramadol was given to albino rats at a dose of 80 mg/kg body weight for 3 months and after withdrawal periods (7-15 days) rats were sacrificed. Long term use of tramadol induced severe histopathological changes in adrenal glands. Tramadol decreased the levels of serum cortisol and DHEAS hormones. In addition, it increased the level of adrenal MDA and decreased the genetic expression of glutathione peroxidase and thioredoxin reductase in adrenal gland tissues. All these changes started to return to normal after withdrawal of tramadol. Thus, it was confirmed that long term use of tramadol can induce severe adrenal insufficiency.

  1. Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Maresca, Julia A; Yunker, Colleen E

    2004-01-01

    The green sulfur bacterium Chlorobium tepidum is a strict anaerobe and an obligate photoautotroph. On the basis of sequence similarity with known enzymes or sequence motifs, nine open reading frames encoding putative enzymes of carotenoid biosynthesis were identified in the genome sequence of C....... tepidum, and all nine genes were inactivated. Analysis of the carotenoid composition in the resulting mutants allowed the genes encoding the following six enzymes to be identified: phytoene synthase (crtB/CT1386), phytoene desaturase (crtP/CT0807), zeta-carotene desaturase (crtQ/CT1414), gamma......-carotene desaturase (crtU/CT0323), carotenoid 1',2'-hydratase (crtC/CT0301), and carotenoid cis-trans isomerase (crtH/CT0649). Three mutants (CT0180, CT1357, and CT1416 mutants) did not exhibit a discernible phenotype. The carotenoid biosynthetic pathway in C. tepidum is similar to that in cyanobacteria and plants...

  2. New function for Escherichia coli xanthosine phophorylase (xapA): genetic and biochemical evidences on its participation in NAD+ salvage from nicotinamide

    Science.gov (United States)

    2014-01-01

    Background In an effort to reconstitute the NAD+ synthetic pathway in Escherichia coli (E. coli), we produced a set of gene knockout mutants with deficiencies in previously well-defined NAD+de novo and salvage pathways. Unexpectedly, the mutant deficient in NAD+de novo and salvage pathway I could grow in M9/nicotinamide medium, which was contradictory to the proposed classic NAD+ metabolism of E. coli. Such E. coli mutagenesis assay suggested the presence of an undefined machinery to feed nicotinamide into the NAD+ biosynthesis. We wanted to verify whether xanthosine phophorylase (xapA) contributed to a new NAD+ salvage pathway from nicotinamide. Results Additional knockout of xapA further slowed down the bacterial growth in M9/nicotinamide medium, whereas the complementation of xapA restored the growth phenotype. To further validate the new function of xapA, we cloned and expressed E. coli xapA as a recombinant soluble protein. Biochemical assay confirmed that xapA was capable of using nicotinamide as a substrate for nicotinamide riboside formation. Conclusions Both the genetic and biochemical evidences indicated that xapA could convert nicotinamide to nicotinamide riboside in E. coli, albeit with relatively weak activity, indicating that xapA may contribute to a second NAD+ salvage pathway from nicotinamide. We speculate that this xapA-mediated NAD+ salvage pathway might be significant in some bacteria lacking NAD+de novo and NAD+ salvage pathway I or II, to not only use nicotinamide riboside, but also nicotinamide as precursors to synthesize NAD+. However, this speculation needs to be experimentally tested. PMID:24506841

  3. Genetic Variability among Lucerne Cultivars Based on Biochemical (SDS-PAGE) and Morphological Markers

    Science.gov (United States)

    Farshadfar, M.; Farshadfar, E.

    The present research was conducted to determine the genetic variability of 18 Lucerne cultivars, based on morphological and biochemical markers. The traits studied were plant height, tiller number, biomass, dry yield, dry yield/biomass, dry leaf/dry yield, macro and micro elements, crude protein, dry matter, crude fiber and ash percentage and SDS- PAGE in seed and leaf samples. Field experiments included 18 plots of two meter rows. Data based on morphological, chemical and SDS-PAGE markers were analyzed using SPSSWIN soft ware and the multivariate statistical procedures: cluster analysis (UPGMA), principal component. Analysis of analysis of variance and mean comparison for morphological traits reflected significant differences among genotypes. Genotype 13 and 15 had the greatest values for most traits. The Genotypic Coefficient of Variation (GCV), Phenotypic Coefficient of Variation (PCV) and Heritability (Hb) parameters for different characters raged from 12.49 to 26.58% for PCV, hence the GCV ranged from 6.84 to 18.84%. The greatest value of Hb was 0.94 for stem number. Lucerne genotypes could be classified, based on morphological traits, into four clusters and 94% of the variance among the genotypes was explained by two PCAs: Based on chemical traits they were classified into five groups and 73.492% of variance was explained by four principal components: Dry matter, protein, fiber, P, K, Na, Mg and Zn had higher variance. Genotypes based on the SDS-PAGE patterns all genotypes were classified into three clusters. The greatest genetic distance was between cultivar 10 and others, therefore they would be suitable parent in a breeding program.

  4. Mediator Complex Subunits MED2, MED5, MED16, and MED23 Genetically Interact in the Regulation of Phenylpropanoid Biosynthesis.

    Science.gov (United States)

    Dolan, Whitney L; Dilkes, Brian P; Stout, Jake M; Bonawitz, Nicholas D; Chapple, Clint

    2017-12-01

    The phenylpropanoid pathway is a major global carbon sink and is important for plant fitness and the engineering of bioenergy feedstocks. In Arabidopsis thaliana , disruption of two subunits of the transcriptional regulatory Mediator complex, MED5a and MED5b, results in an increase in phenylpropanoid accumulation. By contrast, the semidominant MED5b mutation reduced epidermal fluorescence4-3 ( ref4-3 ) results in dwarfism and constitutively repressed phenylpropanoid accumulation. Here, we report the results of a forward genetic screen for suppressors of ref4-3. We identified 13 independent lines that restore growth and/or phenylpropanoid accumulation in the ref4-3 background. Two of the suppressors restore growth without restoring soluble phenylpropanoid accumulation, indicating that the growth and metabolic phenotypes of the ref4-3 mutant can be genetically disentangled. Whole-genome sequencing revealed that all but one of the suppressors carry mutations in MED5b or other Mediator subunits. RNA-seq analysis showed that the ref4-3 mutation causes widespread changes in gene expression, including the upregulation of negative regulators of the phenylpropanoid pathway, and that the suppressors reverse many of these changes. Together, our data highlight the interdependence of individual Mediator subunits and provide greater insight into the transcriptional regulation of phenylpropanoid biosynthesis by the Mediator complex. © 2017 American Society of Plant Biologists. All rights reserved.

  5. Environmental, biochemical and genetic drivers of DMSP degradation and DMS production in the Sargasso Sea.

    Science.gov (United States)

    Levine, Naomi Marcil; Varaljay, Vanessa A; Toole, Dierdre A; Dacey, John W H; Doney, Scott C; Moran, Mary Ann

    2012-05-01

    Dimethylsulfide (DMS) is a climatically relevant trace gas produced and cycled by the surface ocean food web. Mechanisms driving intraannual variability in DMS production and dimethylsulfoniopropionate (DMSP) degradation in open-ocean, oligotrophic regions were investigated during a 10-month time-series at the Bermuda Atlantic Time-series Study site in the Sargasso Sea. Abundance and transcription of bacterial DMSP degradation genes, DMSP lyase enzyme activity, and DMS and DMSP concentrations, consumption rates and production rates were quantified over time and depth. This interdisciplinary data set was used to test current hypotheses of the role of light and carbon supply in regulating upper-ocean sulfur cycling. Findings supported UV-A-dependent phytoplankton DMS production. Bacterial DMSP degraders may also contribute significantly to DMS production when temperatures are elevated and UV-A dose is moderate, but may favour DMSP demethylation under low UV-A doses. Three groups of bacterial DMSP degraders with distinct intraannual variability were identified and niche differentiation was indicated. The combination of genetic and biochemical data suggest a modified 'bacterial switch' hypothesis where the prevalence of different bacterial DMSP degradation pathways is regulated by a complex set of factors including carbon supply, temperature and UV-A dose. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  6. Biochemical and genetic characterization of three molybdenum cofactor hydroxylases in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Hoff, Tine; Frandsen, Gitte Inselmann; Rocher, Anne

    1998-01-01

    Aldehyde oxidases and xanthine dehydrogenases/oxidases belong to the molybdenum cofactor dependent hydroxylase class of enzymes. Zymograms show that Arabidopsis thaliana has at least three different aldehyde oxidases and one xanthine oxidase. Three different cDNA clones encoding putative aldehyde...... oxidases (AtAO1, 2, 3) were isolated. An aldehyde oxidase is the last step in abscisic acid (ABA) biosynthesis. AtAO1 is mainly expressed in seeds and roots which might reflect that it is involved in ABA biosynthesis....

  7. Genetic and biochemical identification of a novel single-stranded DNA binding complex in Haloferax volcanii

    Directory of Open Access Journals (Sweden)

    Amy eStroud

    2012-06-01

    Full Text Available Single-stranded DNA binding proteins play an essential role in DNA replication and repair. They use oligosaccharide-binding folds, a five-stranded ß-sheet coiled into a closed barrel, to bind to single-stranded DNA thereby protecting and stabilizing the DNA. In eukaryotes the single-stranded DNA binding protein is known as replication protein A (RPA and consists of three distinct subunits that function as a heterotrimer. The bacterial homolog is termed single-stranded DNA-binding protein (SSB and functions as a homotetramer. In the archaeon Haloferax volcanii there are three genes encoding homologs of RPA. Two of the rpa genes (rpa1 and rpa3 exist in operons with a novel gene specific to Euryarchaeota, this gene encodes a protein that we have termed rpa-associated protein (RPAP. The rpap genes encode proteins belonging to COG3390 group and feature oligosaccharide-binding folds, suggesting that they might cooperate with RPA in binding to single-stranded DNA. Our genetic analysis showed that rpa1 and rpa3 deletion mutants have differing phenotypes; only ∆rpa3 strains are hypersensitive to DNA damaging agents. Deletion of the rpa3-associated gene rpap3 led to similar levels of DNA damage sensitivity, as did deletion of the rpa3 operon, suggesting that RPA3 and RPAP3 function in the same pathway. Protein pull-downs involving recombinant hexahistidine-tagged RPAs showed that RPA3 co-purifies with RPAP3, and RPA1 co-purifies with RPAP1. This indicates that the RPAs interact only with their respective associated proteins; this was corroborated by the inability to construct rpa1 rpap3 and rpa3 rpap1 double mutants. This is the first report investigating the individual function of the archaeal COG3390 RPA-associated proteins. We have shown genetically and biochemically that the RPAPs interact with their respective RPAs, and have uncovered a novel single-stranded DNA binding complex that is unique to Euryarchaeota.

  8. Diagnostic approach to neurotransmitter monoamine disorders: experience from clinical, biochemical, and genetic profiles.

    Science.gov (United States)

    Kuster, Alice; Arnoux, Jean-Baptiste; Barth, Magalie; Lamireau, Delphine; Houcinat, Nada; Goizet, Cyril; Doray, Bérénice; Gobin, Stéphanie; Schiff, Manuel; Cano, Aline; Amsallem, Daniel; Barnerias, Christine; Chaumette, Boris; Plaze, Marion; Slama, Abdelhamid; Ioos, Christine; Desguerre, Isabelle; Lebre, Anne-Sophie; de Lonlay, Pascale; Christa, Laurence

    2018-01-01

    To improve the diagnostic work-up of patients with diverse neurological diseases, we have elaborated specific clinical and CSF neurotransmitter patterns. Neurotransmitter determinations in CSF from 1200 patients revealed abnormal values in 228 (19%) cases. In 54/228 (24%) patients, a final diagnosis was identified. We have reported primary (30/54, 56%) and secondary (24/54, 44%) monoamine neurotransmitter disorders. For primary deficiencies, the most frequently mutated gene was DDC (n = 9), and the others included PAH with neuropsychiatric features (n = 4), PTS (n = 5), QDPR (n = 3), SR (n = 1), and TH (n = 1). We have also identified mutations in SLC6A3, FOXG1 (n = 1 of each), MTHFR (n = 3), FOLR1, and MTHFD (n = 1 of each), for dopamine transporter, neuronal development, and folate metabolism disorders, respectively. For secondary deficiencies, we have identified POLG (n = 3), ACSF3 (n = 1), NFU1, and SDHD (n = 1 of each), playing a role in mitochondrial function. Other mutated genes included: ADAR, RNASEH2B, RNASET2, SLC7A2-IT1 A/B lncRNA, and EXOSC3 involved in nuclear and cytoplasmic metabolism; RanBP2 and CASK implicated in post-traductional and scaffolding modifications; SLC6A19 regulating amino acid transport; MTM1, KCNQ2 (n = 2), and ATP1A3 playing a role in nerve cell electrophysiological state. Chromosome abnormalities, del(8)(p23)/dup(12) (p23) (n = 1), del(6)(q21) (n = 1), dup(17)(p13.3) (n = 1), and non-genetic etiologies (n = 3) were also identified. We have classified the final 54 diagnoses in 11 distinctive biochemical profiles and described them through 20 clinical features. To identify the specific molecular cause of abnormal NT profiles, (targeted) genomics might be used, to improve diagnosis and allow early treatment of complex and rare neurological genetic diseases.

  9. Volatile terpenoids: multiple functions, biosynthesis, modulation and manipulation by genetic engineering.

    Science.gov (United States)

    Abbas, Farhat; Ke, Yanguo; Yu, Rangcai; Yue, Yuechong; Amanullah, Sikandar; Jahangir, Muhammad Muzammil; Fan, Yanping

    2017-11-01

    Terpenoids play several physiological and ecological functions in plant life through direct and indirect plant defenses and also in human society because of their enormous applications in the pharmaceutical, food and cosmetics industries. Through the aid of genetic engineering its role can by magnified to broad spectrum by improving genetic ability of crop plants, enhancing the aroma quality of fruits and flowers and the production of pharmaceutical terpenoids contents in medicinal plants. Terpenoids are structurally diverse and the most abundant plant secondary metabolites, playing an important role in plant life through direct and indirect plant defenses, by attracting pollinators and through different interactions between the plants and their environment. Terpenoids are also significant because of their enormous applications in the pharmaceutical, food and cosmetics industries. Due to their broad distribution and functional versatility, efforts are being made to decode the biosynthetic pathways and comprehend the regulatory mechanisms of terpenoids. This review summarizes the recent advances in biosynthetic pathways, including the spatiotemporal, transcriptional and post-transcriptional regulatory mechanisms. Moreover, we discuss the multiple functions of the terpene synthase genes (TPS), their interaction with the surrounding environment and the use of genetic engineering for terpenoid production in model plants. Here, we also provide an overview of the significance of terpenoid metabolic engineering in crop protection, plant reproduction and plant metabolic engineering approaches for pharmaceutical terpenoids production and future scenarios in agriculture, which call for sustainable production platforms by improving different plant traits.

  10. Social stratification in the Sikh population of Punjab (India) has a genetic basis: evidence from serological and biochemical markers.

    Science.gov (United States)

    Chahal, Sukh Mohinder Singh; Virk, Rupinder Kaur; Kaur, Sukhvir; Bansal, Rupinder

    2011-01-01

    The present study was planned to assess whether social stratification in the Sikh population inhabiting the northwest border Indian state of Punjab has any genetic basis. Blood samples were collected randomly from a total of 2851 unrelated subjects belonging to 21 groups of two low-ranking Sikh scheduled caste populations, viz. Mazhabi and Ramdasi, and a high-ranking Jat Sikh caste population of Punjab. The genetic profile of Sikh groups was investigated using a total of nine serobiochemical genetic markers, comprising two blood groups (ABO, RH(D)) and a battery of seven red cell enzyme polymorphisms (ADA, AK1, ESD, PGM1, GLO1, ACP1, GPI), following standard serological and biochemical laboratory protocols. Genetic structure was studied using original allele frequency data and statistical measures of heterozygosity, genic differentiation, genetic distance, and genetic admixture. Great heterogeneity was observed between Sikh scheduled caste and Jat Sikh populations, especially in the RH(D) blood group system, and distribution of ESD, ACP1, and PGM1 enzyme markers was also found to be significantly different between many of their groups. Genetic distance trees demonstrated little or no genetic affinities between Sikh scheduled caste and Jat Sikh populations; the Mazhabi and Ramdasi also showed little genetic relationship. Genetic admixture analysis suggested a higher element of autochthonous tribal extraction in the Ramdasi. The present study revealed much genetic heterogeneity in differently ranking Sikh caste populations of Punjab, mainly attributable to their different ethnic backgrounds, and provided a genetic basis to social stratification present in this religious community of Punjab, India.

  11. GM1-gangliosidosis in American black bears: clinical, pathological, biochemical and molecular genetic characterization.

    Science.gov (United States)

    Muthupalani, Sureshkumar; Torres, Paola A; Wang, Betty C; Zeng, Bai Jin; Eaton, Samuel; Erdelyi, Ildiko; Ducore, Rebecca; Maganti, Rajanikarath; Keating, John; Perry, Bain J; Tseng, Florina S; Waliszewski, Nicole; Pokras, Mark; Causey, Robert; Seger, Rita; March, Philip; Tidwell, Amy; Pfannl, Rolf; Seyfried, Thomas; Kolodny, Edwin H; Alroy, Joseph

    2014-04-01

    G(M1)-gangliosidosis is a rare progressive neurodegenerative disorder due to an autosomal recessively inherited deficiency of lysosomal β-galactosidase. We have identified seven American black bears (Ursus americanus) found in the Northeast United States suffering from G(M1)-gangliosidosis. This report describes the clinical features, brain MRI, and morphologic, biochemical and molecular genetic findings in the affected bears. Brain lipids were compared with those in the brain of a G(M1)-mouse. The bears presented at ages 10-14 months in poor clinical condition, lethargic, tremulous and ataxic. They continued to decline and were humanely euthanized. The T(2)-weighted MR images of the brain of one bear disclosed white matter hyperintensity. Morphological studies of the brain from five of the bears revealed enlarged neurons with foamy cytoplasm containing granules. Axonal spheroids were present in white matter. Electron microscopic examination revealed lamellated membrane structures within neurons. Cytoplasmic vacuoles were found in the liver, kidneys and chondrocytes and foamy macrophages within the lungs. Acid β-galactosidase activity in cultured skin fibroblasts was only 1-2% of control values. In the brain, ganglioside-bound sialic acid was increased more than 2-fold with G(M1)-ganglioside predominating. G(A1) content was also increased whereas cerebrosides and sulfatides were markedly decreased. The distribution of gangliosides was similar to that in the G(M1)-mouse brain, but the loss of myelin lipids was greater in the brain of the affected bear than in the brain of the G(M1) mouse. Isolated full-length cDNA of the black bear GLB1 gene revealed 86% homology to its human counterpart in nucleotide sequence and 82% in amino acid sequence. GLB1 cDNA from liver tissue of an affected bear contained a homozygous recessive T(1042) to C transition inducing a Tyr348 to His mutation (Y348H) within a highly conserved region of the GLB1 gene. The coincidence of several

  12. Biochemical and molecular study of genetic stability in tomatoes plants rom seeds treated with low doses of X-ray

    International Nuclear Information System (INIS)

    Ramirez, R; Gonzalez, LM; Chavez, Licet; Camejo, Yanelis; Gonzalez, Maria C; Fernandez, Arais

    2008-01-01

    For the extensive agricultural exploitation of vegetable radio stimulation, it is indispensable to study the genetic stability of treated varieties, having in mind X ray potentialities of inducing not only physiological but genetic changes as well. Therefore, biochemical and molecular markers were employed in tomato plants derived from irradiated seeds at low doses of X rays. For the biochemical analysis, peroxidases, polyphenoloxidases and dismutase superoxide isoenzymes were determined whereas the Random Amplification of Polymorphic DNA (RAPD) method based on Polymerase Chain Reaction (PCR) was used for the molecular analysis. When comparing the electrophoretic patterns from the control and irradiated treatments applied to the three enzymatic systems, there were not appreciable variations on the number of bands and their intensities, indicating the little variability induced in these systems by the low X ray doses. Also, from the molecular viewpoint, electrophoretic patterns showed a clear amplification of DNA by generating a total of 155 bands in all varieties studied. This molecular marker showed a high monomorphism independently of the treatments applied, with values ranging between 86 and 97 %, indicating that irradiation at low doses did not induce an important genetic variability and confirming its possible practical usefulness for stimulating some physiological processes without causing. (Author)

  13. Biochemical and Phylogenetic Characterization of a Novel Diaminopimelate Biosynthesis Pathway in Prokaryotes Identifies a Diverged Form of ll-Diaminopimelate Aminotransferase▿ †

    OpenAIRE

    Hudson, André O.; Gilvarg, Charles; Leustek, Thomas

    2008-01-01

    A variant of the diaminopimelate (DAP)-lysine biosynthesis pathway uses an ll-DAP aminotransferase (DapL, EC 2.6.1.83) to catalyze the direct conversion of l-2,3,4,5-tetrahydrodipicolinate to ll-DAP. Comparative genomic analysis and experimental verification of DapL candidates revealed the existence of two diverged forms of DapL (DapL1 and DapL2). DapL orthologs were identified in eubacteria and archaea. In some species the corresponding dapL gene was found to lie in genomic contiguity with o...

  14. Biochemical and phylogenetic characterization of a novel diaminopimelate biosynthesis pathway in prokaryotes identifies a diverged form of LL-diaminopimelate aminotransferase.

    Science.gov (United States)

    Hudson, André O; Gilvarg, Charles; Leustek, Thomas

    2008-05-01

    A variant of the diaminopimelate (DAP)-lysine biosynthesis pathway uses an LL-DAP aminotransferase (DapL, EC 2.6.1.83) to catalyze the direct conversion of L-2,3,4,5-tetrahydrodipicolinate to LL-DAP. Comparative genomic analysis and experimental verification of DapL candidates revealed the existence of two diverged forms of DapL (DapL1 and DapL2). DapL orthologs were identified in eubacteria and archaea. In some species the corresponding dapL gene was found to lie in genomic contiguity with other dap genes, suggestive of a polycistronic structure. The DapL candidate enzymes were found to cluster into two classes sharing approximately 30% amino acid identity. The function of selected enzymes from each class was studied. Both classes were able to functionally complement Escherichia coli dapD and dapE mutants and to catalyze LL-DAP transamination, providing functional evidence for a role in DAP/lysine biosynthesis. In all cases the occurrence of dapL in a species correlated with the absence of genes for dapD and dapE representing the acyl DAP pathway variants, and only in a few cases was dapL coincident with ddh encoding meso-DAP dehydrogenase. The results indicate that the DapL pathway is restricted to specific lineages of eubacteria including the Cyanobacteria, Desulfuromonadales, Firmicutes, Bacteroidetes, Chlamydiae, Spirochaeta, and Chloroflexi and two archaeal groups, the Methanobacteriaceae and Archaeoglobaceae.

  15. Heritability and genetic advance studies for biochemical traits in F2-3 introgressed families of Brassica

    International Nuclear Information System (INIS)

    Farhatullah, N.K.; Khalil, I.H.; Nahed, H.

    2015-01-01

    Higher heritability estimates along with high genetic advance values are effective in envisaging gain under selection in developing genotypes. The objective of the present study was to evaluate variability, heritability and genetic advance in 10 interspecific F2-3 families of Brassica species (B. napus * B. juncea, B. napus * B. rapa). These families were studied for heterospecific introgression of biochemical traits. Low to high heritability estimates were recorded for seed quality traits. Considerable variations within F2-3 families were observed for biochemical traits. Most of the F2-3 families for oil content and erucic showed moderate to high heritability indicating the slightest influence of environment thus modification of trait by selection would be more effective. Among F2-3 introgressed families Bn-510 x Bj-109 produced high oil i.e., 49.5% while Bn-532 x Br-118 (24.4%), Bn-533 x Bj-109 (24.1%) and high protein percentage in terms of mean performance. In the present research, individual segregating progenies of interspecific cross populations i.e., which possessed combination of desirable traits, were identified which could be incorporated in the future Breeding programs and it may facilitate varietal development. (author)

  16. Hereditary rickets. How genetic alterations explain the biochemical and clinical phenotypes.

    Science.gov (United States)

    Papadopoulou, Anna; Gole, Evaggelia; Nicolaidou, Polyxeni

    2013-12-01

    The reemergence of vitamin D deficiency in the industrialized countries resurrects the "threat" of nutritional rickets, especially among pediatric populations, a fact that may lead to underdiagnosis of hereditary rickets. Today, hereditary rickets may be subdivided into two main groups according to their biochemical profile: the one associated with defects in vitamin D synthesis and action and the second associated with abnormal phosphorus metabolism. The classification of the patients in a particular group of hereditary rickets is determinative of the treatment to follow. This review, through the recent advances on vitamin D and P metabolism, discusses the molecular and biochemical defects associated to each group of inherited rickets, as well as the clinical phenotypes and the recommended therapeutic approaches.

  17. Biochemical investigations of the effect of NaF on mammalian cells. 2. Influence on biosynthesis of nucleic acids and proteins in mouse spleen cells ''in vivo''

    Energy Technology Data Exchange (ETDEWEB)

    Klein, W; Kocsis, F; Altmann, H

    1974-10-01

    The influence of NaF on the biosynthesis of nucleic acids and proteins was studied ''in vivo'' with ''Swiss mice''. Using a fluoride concentration of 0.4 ..mu..g/g no effect on DNA-repair appeared within 12 weeks, while DNA-, RNA- and protein-synthesis were suppressed after 10 weeks. Fluoride in a concentration of 3.5 ..mu..g/g gives a nearly complete inhibition of DNA-repair after 10 weeks, while DNA-, RNA- and protein-synthesis were suppressed to various degrees from week 2 until week 12. The phosphorylation of DNA- and RNA-precursors indicated results comparable to both synthesis, but investigating the particular kinase-steps of the phosphorylation, no specific effect on one of them can be localized significantly. (auth)

  18. Biochemical and Phylogenetic Characterization of a Novel Diaminopimelate Biosynthesis Pathway in Prokaryotes Identifies a Diverged Form of ll-Diaminopimelate Aminotransferase▿ †

    Science.gov (United States)

    Hudson, André O.; Gilvarg, Charles; Leustek, Thomas

    2008-01-01

    A variant of the diaminopimelate (DAP)-lysine biosynthesis pathway uses an ll-DAP aminotransferase (DapL, EC 2.6.1.83) to catalyze the direct conversion of l-2,3,4,5-tetrahydrodipicolinate to ll-DAP. Comparative genomic analysis and experimental verification of DapL candidates revealed the existence of two diverged forms of DapL (DapL1 and DapL2). DapL orthologs were identified in eubacteria and archaea. In some species the corresponding dapL gene was found to lie in genomic contiguity with other dap genes, suggestive of a polycistronic structure. The DapL candidate enzymes were found to cluster into two classes sharing approximately 30% amino acid identity. The function of selected enzymes from each class was studied. Both classes were able to functionally complement Escherichia coli dapD and dapE mutants and to catalyze ll-DAP transamination, providing functional evidence for a role in DAP/lysine biosynthesis. In all cases the occurrence of dapL in a species correlated with the absence of genes for dapD and dapE representing the acyl DAP pathway variants, and only in a few cases was dapL coincident with ddh encoding meso-DAP dehydrogenase. The results indicate that the DapL pathway is restricted to specific lineages of eubacteria including the Cyanobacteria, Desulfuromonadales, Firmicutes, Bacteroidetes, Chlamydiae, Spirochaeta, and Chloroflexi and two archaeal groups, the Methanobacteriaceae and Archaeoglobaceae. PMID:18310350

  19. Benzylisoquinoline alkaloid biosynthesis in opium poppy.

    Science.gov (United States)

    Beaudoin, Guillaume A W; Facchini, Peter J

    2014-07-01

    Opium poppy (Papaver somniferum) is one of the world's oldest medicinal plants and remains the only commercial source for the narcotic analgesics morphine, codeine and semi-synthetic derivatives such as oxycodone and naltrexone. The plant also produces several other benzylisoquinoline alkaloids with potent pharmacological properties including the vasodilator papaverine, the cough suppressant and potential anticancer drug noscapine and the antimicrobial agent sanguinarine. Opium poppy has served as a model system to investigate the biosynthesis of benzylisoquinoline alkaloids in plants. The application of biochemical and functional genomics has resulted in a recent surge in the discovery of biosynthetic genes involved in the formation of major benzylisoquinoline alkaloids in opium poppy. The availability of extensive biochemical genetic tools and information pertaining to benzylisoquinoline alkaloid metabolism is facilitating the study of a wide range of phenomena including the structural biology of novel catalysts, the genomic organization of biosynthetic genes, the cellular and sub-cellular localization of biosynthetic enzymes and a variety of biotechnological applications. In this review, we highlight recent developments and summarize the frontiers of knowledge regarding the biochemistry, cellular biology and biotechnology of benzylisoquinoline alkaloid biosynthesis in opium poppy.

  20. Transcriptome analysis reveals the genetic basis underlying the biosynthesis of volatile oil, gingerols, and diarylheptanoids in ginger (Zingiber officinale Rosc.).

    Science.gov (United States)

    Jiang, Yusong; Liao, Qinhong; Zou, Yong; Liu, Yiqing; Lan, Jianbin

    2017-10-23

    Ginger (Zingiber officinale Rosc.) is a popular flavoring that widely used in Asian, and the volatile oil in ginger rhizomes adds a special fragrance and taste to foods. The bioactive compounds in ginger, such as gingerols, diarylheptanoids, and flavonoids, are of significant value to human health because of their anticancer, anti-oxidant, and anti-inflammatory properties. However, as a non-model plant, knowledge about the genome sequences of ginger is extremely limited, and this limits molecular studies on this plant. In this study, de novo transcriptome sequencing was performed to investigate the expression of genes associated with the biosynthesis of major bioactive compounds in matured ginger rhizome (MG), young ginger rhizome (YG), and fibrous roots of ginger (FR). A total of 361,876 unigenes were generated by de novo assembly. The expression of genes involved in the pathways responsible for the biosynthesis of major bioactive compounds differed between tissues (MG, YG, and FR). Two pathways that give rise to volatile oil, gingerols, and diarylheptanoids, the "terpenoid backbone biosynthesis" and "stilbenoid, diarylheptanoid and gingerol biosynthesis" pathways, were significantly enriched (adjusted P value < 0.05) for differentially expressed genes (DEGs) (FDR < 0.005) both between the FR and YG libraries, and the FR and MG libraries. Most of the unigenes mapped in these two pathways, including curcumin synthase, phenylpropanoylacetyl-CoA synthase, trans-cinnamate 4-monooxygenase, and 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase, were expressed to a significantly higher level (log 2 (fold-change) ≥ 1) in FR than in YG or MG. This study provides the first insight into the biosynthesis of bioactive compounds in ginger at a molecular level and provides valuable genome resources for future molecular studies on ginger. Moreover, our results establish that bioactive compounds in ginger may predominantly synthesized in the root and then transported to

  1. Atherogenic dyslipidemia in children: evaluation of clinical, biochemical and genetic aspects.

    Science.gov (United States)

    Montali, Anna; Truglio, Gessica; Martino, Francesco; Ceci, Fabrizio; Ferraguti, Giampiero; Ciociola, Ester; Maranghi, Marianna; Gianfagna, Francesco; Iacoviello, Licia; Strom, Roberto; Lucarelli, Marco; Arca, Marcello

    2015-01-01

    The precursors of atherogenic dyslipidemia (AD) are not well defined. Therefore, we investigated 62 non-obese, non-diabetic AD and 221 normolipemic children. Anthropometric parameters, blood pressure and biochemical measures were obtained in index children, their parents and all available siblings. The heritability (h(2)) of anthropometric and biochemical traits was estimated by SOLAR. Rare and common variants in APOA1 and LPL genes were screened by re-sequencing. Compared to normolipemic, AD children showed increased body mass index, waist circumference, plasma glucose, insulin, ApoB, HOMA-IR, hs-CRP and lower adiponectin (pchildren (0.073 vs. 0.026; P=0.038). The LPL p.S447* gain-of-function mutation, resulted to be less frequent in AD than in control children (0.064 vs. 0.126; P=0.082). No variant in the APOA1 gene was found. Our data indicate that AD is a rather common dyslipidemia in childhood; it associates with metabolic abnormalities typical of insulin resistant state and shows a strong familial aggregation. LPL variants may contribute to the development of AD phenotype.

  2. Genetic and Biochemical Diversity of Paenibacillus larvae Isolated from Tunisian Infected Honey Bee Broods

    Directory of Open Access Journals (Sweden)

    Chadlia Hamdi

    2013-01-01

    Full Text Available Paenibacillus larvae is the causative agent of American foulbrood (AFB, a virulent disease of honeybee (Apis mellifera larvae. In Tunisia, AFB has been detected in many beekeeping areas, where it causes important economic losses, but nothing is known about the diversity of the causing agent. Seventy-five isolates of P. larvae, identified by biochemical tests and 16S rRNA gene sequencing, were obtained from fifteen contaminated broods showing typical AFB symptoms, collected in different locations in the northern part of the country. Using BOX-PCR, a distinct profile of P. larvae with respect to related Paenibacillus species was detected which may be useful for its identification. Some P. larvae-specific bands represented novel potential molecular markers for the species. BOX-PCR fingerprints indicated a relatively high intraspecific diversity among the isolates not described previously with several molecular polymorphisms identifying six genotypes on polyacrylamide gel. Polymorphisms were also detected in several biochemical characters (indol production, nitrate reduction, and methyl red and oxidase tests. Contrary to the relatively high intraspecies molecular and phenotypic diversity, the in vivo virulence of three selected P. larvae genotypes did not differ significantly, suggesting that the genotypic/phenotypic differences are neutral or related to ecological aspects other than virulence.

  3. Genetic variations in genes involved in heparan sulphate biosynthesis are associated with Plasmodium falciparum parasitaemia: a familial study in Burkina Faso

    Directory of Open Access Journals (Sweden)

    Atkinson Alexandre

    2012-04-01

    Full Text Available Abstract Background There is accumulating evidence that host heparan sulphate proteoglycans play an important role in the life cycle of Plasmodium through their heparan sulphate chains, suggesting that genetic variations in genes involved in heparan sulphate biosynthesis may influence parasitaemia. Interestingly, Hs3st3a1 and Hs3st3b1 encoding enzymes involved in the biosynthesis of heparan sulphate are located within a chromosomal region linked to Plasmodium chabaudi parasitaemia in mice. This suggests that HS3ST3A1 and HS3ST3B1 may influence P. falciparum parasitaemia in humans. Methods Polymorphisms within HS3ST3A1 and HS3ST3B1 were identified in 270 individuals belonging to 44 pedigrees and living in Burkina Faso. Linkage and association between parasitaemia and the polymorphisms were assessed with MERLIN and FBAT. A genetic interaction analysis was also conducted based on the PGMDR approach. Results Linkage between P. falciparum parasitaemia and the chromosomal region containing HS3ST3A1 and HS3ST3B1 was detected on the basis of the 20 SNPs identified. In addition, rs28470223 located within the promoter of HS3ST3A1 was associated with P. falciparum parasitaemia, whereas the PGMDR analysis revealed a genetic interaction between HS3ST3A1 and HS3ST3B1. Seventy-three significant multi-locus models were identified after correcting for multiple tests; 37 significant multi-locus models included rs28470223, whereas 38 multi-locus models contained at least one mis-sense mutation within HS3ST3B1. Conclusion Genetic variants of HS3ST3A1 and HS3ST3B1 are associated with P. falciparum parasitaemia. This suggests that those variants alter both the function of heparan sulphate proteoglycans and P. falciparum parasitaemia.

  4. The clinical, biochemical and genetic features associated with RMND1-related mitochondrial disease

    Czech Academy of Sciences Publication Activity Database

    Ng, Y. S.; Alston, Ch. L.; Diodato, D.; Morris, A. A.; Ulrick, N.; Kmoch, S.; Houštěk, Josef; Martinelli, D.; Haghighi, A.; Atiq, M.; Gamero, M. A.; Garcia-Martinez, E.; Kratochvílová, H.; Santra, S.; Brown, R. M.; Brown, G. K.; Ragge, N.; Monavari, A.; Pysden, K.; Ravn, K.; Casey, J. P.; Khan, A.; Chakrapani, A.; Vassallo, G.; Simons, C.; McKeever, K.; O´Sullivan, S.; Childs, A.-M.; Ostergaard, E.; Vanderver, A.; Goldstein, A.; Vogt, J.; Taylor, R. W.; McFarland, R.

    2016-01-01

    Roč. 53, č. 11 (2016), s. 768-775 ISSN 0022-2593 R&D Projects: GA ČR(CZ) GB14-36804G Institutional support: RVO:67985823 Keywords : congenital sensorineural deafness * lactic acidosis * mitochondrial respiratory chain deficiencies * prognosis * renal disease Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.451, year: 2016

  5. Genetic, Biochemical and Environmental Factors Associated with Pregnancy Outcomes in Newborns from the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Rössner ml., Pavel; Tabashidze, Nana; Dostál, Miroslav; Nováková, Zuzana; Chvátalová, Irena; Špátová, Milada; Šrám, Radim

    2011-01-01

    Roč. 119, č. 2 (2011), s. 265-271 ISSN 0091-6765 R&D Projects: GA MŽP(CZ) SP/1B3/50/07 Institutional research plan: CEZ:AV0Z50390512 Keywords : air pollution * biomarkers * genetic polymorphisms Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 7.036, year: 2011

  6. Physiological, Biochemical and Genetic Characteristics of Ralstonia solanacearum Strains Isolated from Pepper Plants in Korea

    Directory of Open Access Journals (Sweden)

    Young Kee Lee

    2013-12-01

    Full Text Available Totally sixty three bacteria were isolated from lower stems showing symptoms of bacterial wilt on pepper plants in 14 counties of 7 provinces, Korea. The isolates showed strong pathogenicity on red pepper (cv. Daewang and tomato (cv. Seogwang seedlings. All virulent bacteria were identified as Ralstonia solanacearum based on colony types, physiological and biochemical tests and polymerase chain reaction (PCR. All R. solanacearum isolates from peppers were race 1. The bacterial isolates consisted of biovar 3 (27% and biovar 4 (73%. Based on polymorphic PCR bands generated by repetitive sequence (rep-PCR, the 63 R. solanacearum isolates were divided into 12 groups at 70% similarity level. These results will be used as basic materials for resistant breeding program and efficient control against bacterial wilt disease of pepper.

  7. Genetic and biochemical studies of the lipid-containing bacteriophage PR4

    International Nuclear Information System (INIS)

    Vanden Boom, T.J.

    1989-01-01

    Bacteriophage PR4 is a lipid-containing bacterial virus able to infect Escherichia coli and Salmonella typhimurium. The icosahedral virion consists of an external protein capsid layer which surrounds a membrane vesicle enclosed ds DNA genome. The author has analyzed the time course of phage PR4 protein synthesis and have identified at least 34 proteins present in phage infected cells not detected in uninfected control cultures. In addition, he has isolated a more extensive set of conditional-lethal nonsense mutants of this virus. This collection of mutants permitted the identification of seven additional phage PR4 gene products, including the terminal genome protein and an accessory lytic factor. The present collection of phage PR4 mutants has been assigned to 19 distinct genetic groups on the basis of genetic complementation tests and sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis of the proteins produced in mutant-infected UV-irradiated cells. A restriction endonuclease map of the phage PR4 genome was constructed which includes 59 sites for ten restriction endonucleases. In addition, he has constructed a collection of recombinant plasmids containing subgenomic DNA fragments of bacteriophage PR4. He has used this collection of plasmids to generate a physical-genetic map of the PR4 genome. The physical-genetic map localizes mutations in 13 phage PR4 genetic groups on the viral DNA molecule. To investigate the role of phosphatidylglycerol (PG) in phage assembly and infectivity, he propagated PR4 on an E. coli mutant defective in PG synthesis. The PG content of phage PR4 grown on the mutant host accounted for 0.4% of the total viral phospholipids, representing a 90-fold decrease in PG relative to the PG content of phage grown on a wild type host

  8. Biochemical genetics of the circadian rhythm in Neurospora crassa: studies on the cel strain

    International Nuclear Information System (INIS)

    Lakin-Thomas, P.L.

    1985-01-01

    In Neurospora crassa, the cel mutation lengthens the period of the circadian rhythm when the medium is supplemented with linoleic acid (18:2). Double mutant strains were constructed between cel and the clock mutants prd-1 and four alleles at the frq locus. It was found that: (1) the effect of 18:2 on cel was blocked by prd-1, i.e., prd-1 is epistatic to cel. (2) cel and frq interact such that the percent increase in the period produced by 18:2 was inversely proportional to the period of the frq parent. (3) Data from the literature on period effects in double mutant strains support a multiplicative rather than an additive model. A biochemical interpretation of these interactions is discussed, based on the control of flux through metabolic pathways. Because the cel strain is known to be deficient in the pantothenate derivative normally attached to the fatty acid synthetase (FAS) complex, the possibility that cel may affect other pantothenate-modified proteins was investigated. It was found that in the cel + strain, five proteins of molecular weights (M/sub r/) 9000, 19,000, 22,000, 140,000, and 200,000 were labelled with [ 14 C]pantothenate. In the cel strain, only the 200 k (FAS) label was reduced in amount. Therefore, there is no evidence that cel affects circadian rhythmicity through any deficiency other than FAS. A biochemical model for circadian rhythmicity in Neurospora is presented. Oscillations in cytoplasmic and mitochondrial Ca 2+ are proposed; clock mutations are postulated to affect Ca 2+ transporters and the mitochondrial membrane; and phase-shifting effects are accounted for by changes in Ca 2+ or ATP levels

  9. Atherogenic dyslipidemia in children: evaluation of clinical, biochemical and genetic aspects.

    Directory of Open Access Journals (Sweden)

    Anna Montali

    Full Text Available The precursors of atherogenic dyslipidemia (AD are not well defined. Therefore, we investigated 62 non-obese, non-diabetic AD and 221 normolipemic children. Anthropometric parameters, blood pressure and biochemical measures were obtained in index children, their parents and all available siblings. The heritability (h(2 of anthropometric and biochemical traits was estimated by SOLAR. Rare and common variants in APOA1 and LPL genes were screened by re-sequencing. Compared to normolipemic, AD children showed increased body mass index, waist circumference, plasma glucose, insulin, ApoB, HOMA-IR, hs-CRP and lower adiponectin (p<0.001 for all. Metabolic syndrome was present in 40% of AD while absent in controls. All traits (except adiponectin and hs-CRP showed a strong familial aggregation, with plasma glucose having the highest heritability (89%. Overall, 4 LPL loss-of-function mutations were detected (p.Asp9Asn, p.Ser45Asn, p.Asn291Ser, p.Leu365Val and their cumulative prevalence was higher in AD than in control children (0.073 vs. 0.026; P=0.038. The LPL p.S447* gain-of-function mutation, resulted to be less frequent in AD than in control children (0.064 vs. 0.126; P=0.082. No variant in the APOA1 gene was found. Our data indicate that AD is a rather common dyslipidemia in childhood; it associates with metabolic abnormalities typical of insulin resistant state and shows a strong familial aggregation. LPL variants may contribute to the development of AD phenotype.

  10. [The muzzle and biochemical genetic markers as supplementary breed characteristics in cattle].

    Science.gov (United States)

    Tarasiuk, S I; Glazko, V I; Trofimenko, A L

    1997-01-01

    The comparative analysis of characteristics of three different cattle breeds (Brown Carpathian, Pinzgauer, Red Polish) on the 5 molecular-genetic markers and 5 muzzle dermatoglyphic types was carried out. It was indicated, that one characteristic can not be use as a breed-specific one but only their complex. The main aspect of search of this complex is the use of characteristics which mark different structure-functional systems of whole organism.

  11. Attention-deficit hyperactivity disorder in adults: A systematic review and meta-analysis of genetic, pharmacogenetic and biochemical studies

    Science.gov (United States)

    Bonvicini, C; Faraone, S V; Scassellati, C

    2016-01-01

    The adult form of attention-deficit/hyperactivity disorder has a prevalence of up to 5% and is the most severe long-term outcome of this common disorder. Family studies in clinical samples as well as twin studies suggest a familial liability and consequently different genes were investigated in association studies. Pharmacotherapy with methylphenidate (MPH) seems to be the first-line treatment of choice in adults with attention-deficit hyperactive disorder (ADHD) and some studies were conducted on the genes influencing the response to this drug. Finally some peripheral biomarkers were identified in ADHD adult patients. We believe this work is the first systematic review and meta-analysis of candidate gene association studies, pharmacogenetic and biochemical (metabolomics) studies performed in adults with ADHD to identify potential genetic, predictive and peripheral markers linked specifically to ADHD in adults. After screening 5129 records, we selected 87 studies of which 61 were available for candidate gene association studies, 5 for pharmacogenetics and 21 for biochemical studies. Of these, 15 genetic, 2 pharmacogenetic and 6 biochemical studies were included in the meta-analyses. We obtained an association between adult ADHD and the gene BAIAP2 (brain-specific angiogenesis inhibitor 1-associated protein 2), even after Bonferroni correction, with any heterogeneity in effect size and no publication bias. If we did not apply the Bonferroni correction, a trend was found for the carriers allele 9R of dopamine transporter SLC6A3 40 bp variable tandem repeat polymorphism (VNTR) and for 6/6 homozygotes of SLC6A3 30 bp VNTR. Negative results were obtained for the 9-6 haplotype, the dopamine receptor DRD4 48 bp VNTR, and the enzyme COMT SNP rs4680. Concerning pharmacogenetic studies, no association was found for the SLC6A3 40 bp and response to MPH with only two studies selected. For the metabolomics studies, no differences between ADHD adults and controls were

  12. GBA2 Mutations Cause a Marinesco-Sjögren-Like Syndrome: Genetic and Biochemical Studies.

    Directory of Open Access Journals (Sweden)

    Kristoffer Haugarvoll

    Full Text Available With the advent new sequencing technologies, we now have the tools to understand the phenotypic diversity and the common occurrence of phenocopies. We used these techniques to investigate two Norwegian families with an autosomal recessive cerebellar ataxia with cataracts and mental retardation.Single nucleotide polymorphism (SNP chip analysis followed by Exome sequencing identified a 2 bp homozygous deletion in GBA2 in both families, c.1528_1529del [p.Met510Valfs*17]. Furthermore, we report the biochemical characterization of GBA2 in these patients. Our studies show that a reduced activity of GBA2 is sufficient to elevate the levels of glucosylceramide to similar levels as seen in Gaucher disease. Furthermore, leucocytes seem to be the proper enzyme source for in vitro analysis of GBA2 activity.We report GBA2 mutations causing a Marinesco-Sjögren-like syndrome in two Norwegian families. One of the families was originally diagnosed with Marinesco-Sjögren syndrome based on an autosomal recessive cerebellar ataxia with cataracts and mental retardation. Our findings highlight the phenotypic variability associated with GBA2 mutations, and suggest that patients with Marinesco-Sjögren-like syndromes should be tested for mutations in this gene.

  13. Molecular genetic and biochemical analyses of a DNA repair gene from Serratia marcescens

    International Nuclear Information System (INIS)

    Murphy, K.E.

    1989-01-01

    In Escherichia coli, the SOS response and two 3-methyladenine DNA glycosylases (TagI and TagII) are required for repair of DNA damaged by alkylating agents such as methyl methanesulfonate (MMS). Mutations of the recA gene eliminate the SOS response. TagI and TagII are encoded by the tag and alkA genes, respectively. A gene (rpr) encoding 3-methyladenine DNA glycosylase activity was isolated from the Gram-negative bacterium Serratia marcescens. The gene, localized to a 1.5-kilobase pair SmaI-HindIII restriction fragment, was cloned into plasmid pUC18. The clone complemented E. coli tag alkA and recA mutations for MMS resistance. The rpr gene did not, however, complement recA mutations for resistance to ultraviolet light or the ability to perform homologous recombination reactions, nor did it complement E. coli ada or alkB mutations. Two proteins of molecular weights 42,000 and 16,000 were produced from the rpr locus. Analysis of deletion and insertion mutants of rpr suggested that the 42kD molecule is the active protein. The 16kD protein may either be a breakdown product of the 42kD species or may be encoded by another gene overlapping the reading frame of the rpr gene. Biochemical assays showed that the rpr gene product (Rpr) possesses 3-methyladenine DNA glycosylase activity

  14. Development of enhanced radioprotectors - Biochemical and molecular genetical approaches on the radioprotective mechanism of natural products

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Hee; Lee, Eun Ju; Hong, Jung A [Kyunghee University, Seoul (Korea)

    2000-04-01

    To identify radio-protective agent candidate among medicinal plants and to elucidate the mechanism of action of the candidate material by using modern biochemical and molecular biological methods, we screened radio-protective activity among 48 medicinal plants. Seven samples showed above 20% protective activities against oxidative cell damage: Euryale ferox, Glycyrrhiza uralensis, Salvia miltiorrhiza, Eucomia ulmoides, Paeonia suffruticosa, Spirodela polyrrhiza, and Nelumbo nucifera. We also screened for oxidative stress sensitizing activity among other 51 medicinal plants. Among those samples, 11 samples showed good sensitizing effect; Melia azedarach, Agastache rugosa, Catalpa ovata, Prunus persica, Sinomenium acutum, Pulsatilla koreana, Oldenlandia diffusa, Anthriscus sylvestris, Schizandra chinensis, Gleditsia sinensis, and Cridium officinale. We also reported the radio-protective effect of DTT. The treatment of DTT increased cell survival after gamma-irradiation, decreased in the frequencies of micronucleus, and reduction in DNA fragmentation and apoptotic cells. Induction of apoptosis after UV-C irradiation was revealed by the changes in the relative cell death, increase in the relative amount of apoptotic cells, and the induction of DNA fragmentation. 165 refs., 9 figs., 8 tabs. (Author)

  15. Seed Biochemical Analysis Based Profiling of Diverse Wheat Genetic Resource from Pakistan

    Science.gov (United States)

    Khalid, Anam; Hameed, Amjad

    2017-01-01

    Wheat is the major nutrient source worldwide. In Pakistan, it has a crucial place in agriculture as well as in national economy. For seed biochemical compositional analysis, wheat germplasm (77 genotypes) was collected from different agro-climatic zones of Pakistan. Significant variation (p sugar was found in Saleem-2000 (29.86 mg/g s. wt.), reducing sugars in Punjab-96 (12.68 mg/g s. wt.), non-reducing sugars in Saleem-2000 (27.33 mg/g s. wt.). However, highest albumins was identified in TC-4928 (352.89 mg/g s. wt.) and globulins in MEXI PAK (252.67 mg/g s. wt.), salt soluble proteins in Faisalabad-2008 (162.44 mg/g s. wt.), and total soluble proteins in Punjab-96 (487.33 mg/g s. wt.) indicating good quality of wheat genotypes as well as good nutritional status. Genotypes which have been ranked high in respective parameter can be employed in breeding to enhance the nutritional quality of wheat. PMID:28775731

  16. Genetic, histochemical and biochemical studies on goat TSE cases from Cyprus.

    Science.gov (United States)

    Niedermeyer, Susanne; Eiden, Martin; Toumazos, Pavlos; Papasavva-Stylianou, Penelope; Ioannou, Ioannis; Sklaviadis, Theodoros; Panagiotidis, Cynthia; Langeveld, Jan; Bossers, Alex; Kuczius, Thorsten; Kaatz, Martin; Groschup, Martin H; Fast, Christine

    2016-10-06

    Scrapie and bovine spongiform encephalopathy (BSE) are transmissible spongiform encephalopathies (TSE's) affecting sheep and goats. Susceptibility of goats to scrapie is influenced by polymorphisms of the prion protein gene (PRNP) of the host. Five polymorphisms are associated with reduced susceptibility to TSE's. In the study presented here caprine samples from a scrapie eradication program on Cyprus were genotyped and further characterized using BioRad TeSeE rapid test, histological, immunohistochemical and biochemical methods. In total 42 goats from 20 flocks were necropsied from which 25 goats showed a positive result in the rapid test, a spongiform encephalopathy and an accumulation of pathological prion protein (PrP Sc ) in the obex. PrP Sc deposits were demonstrated in the placenta, peripheral nervous and lymphoreticular system. Two animals showed PrP Sc -accumulations in peripheral tissues only. By discriminatory immunoblots a scrapie infection could be confirmed for all cases. Nevertheless, slight deviations in the glycosylation pattern might indicate the presence of different scrapie strains. Furthermore scrapie samples from goats in the current study demonstrated less long term resistance to proteinase K than ovine or caprine BSE control samples. Reduced scrapie susceptibility according to the PRNP genotype was demonstrated (Fishers Exact test, p goats with at least one polymorphism (p = 0.023) at the six codons examined and in particular for those with polymorphisms at codon 146 (p = 0.016). This work characterizes scrapie in goats having implications for breeding and surveillance strategies.

  17. Genetic variation for lettuce seed thermoinhibition is associated with temperature-sensitive expression of abscisic Acid, gibberellin, and ethylene biosynthesis, metabolism, and response genes.

    Science.gov (United States)

    Argyris, Jason; Dahal, Peetambar; Hayashi, Eiji; Still, David W; Bradford, Kent J

    2008-10-01

    Lettuce (Lactuca sativa 'Salinas') seeds fail to germinate when imbibed at temperatures above 25 degrees C to 30 degrees C (termed thermoinhibition). However, seeds of an accession of Lactuca serriola (UC96US23) do not exhibit thermoinhibition up to 37 degrees C in the light. Comparative genetics, physiology, and gene expression were analyzed in these genotypes to determine the mechanisms governing the regulation of seed germination by temperature. Germination of the two genotypes was differentially sensitive to abscisic acid (ABA) and gibberellin (GA) at elevated temperatures. Quantitative trait loci associated with these phenotypes colocated with a major quantitative trait locus (Htg6.1) from UC96US23 conferring germination thermotolerance. ABA contents were elevated in Salinas seeds that exhibited thermoinhibition, consistent with the ability of fluridone (an ABA biosynthesis inhibitor) to improve germination at high temperatures. Expression of many genes involved in ABA, GA, and ethylene biosynthesis, metabolism, and response was differentially affected by high temperature and light in the two genotypes. In general, ABA-related genes were more highly expressed when germination was inhibited, and GA- and ethylene-related genes were more highly expressed when germination was permitted. In particular, LsNCED4, a gene encoding an enzyme in the ABA biosynthetic pathway, was up-regulated by high temperature only in Salinas seeds and also colocated with Htg6.1. The temperature sensitivity of expression of LsNCED4 may determine the upper temperature limit for lettuce seed germination and may indirectly influence other regulatory pathways via interconnected effects of increased ABA biosynthesis.

  18. Biochemical and genetic characterization of a novel metallo-β-lactamase from marine bacterium Erythrobacter litoralis HTCC 2594.

    Science.gov (United States)

    Jiang, Xia-Wei; Cheng, Hong; Huo, Ying-Yi; Xu, Lin; Wu, Yue-Hong; Liu, Wen-Hong; Tao, Fang-Fang; Cui, Xin-Jie; Zheng, Bei-Wen

    2018-01-16

    Metallo-β-lactamases (MBLs) are a group of enzymes that can inactivate most commonly used β-lactam-based antibiotics. Among MBLs, New Delhi metallo-β-lactamase-1 (NDM-1) constitutes an urgent threat to public health as evidenced by its success in rapidly disseminating worldwide since its first discovery. Here we report the biochemical and genetic characteristics of a novel MBL, ElBla2, from the marine bacterium Erythrobacter litoralis HTCC 2594. This enzyme has a higher amino acid sequence similarity to NDM-1 (56%) than any previously reported MBL. Enzymatic assays and secondary structure alignment also confirmed the high similarity between these two enzymes. Whole genome comparison of four Erythrobacter species showed that genes located upstream and downstream of elbla2 were highly conserved, which may indicate that elbla2 was lost during evolution. Furthermore, we predicted two prophages, 13 genomic islands and 25 open reading frames related to insertion sequences in the genome of E. litoralis HTCC 2594. However, unlike NDM-1, the chromosome encoded ElBla2 did not locate in or near these mobile genetic elements, indicating that it cannot transfer between strains. Finally, following our phylogenetic analysis, we suggest a reclassification of E. litoralis HTCC 2594 as a novel species: Erythrobacter sp. HTCC 2594.

  19. Biochemical and functional characterization of AcUFGT3a, a galactosyltransferase involved in anthocyanin biosynthesis in the red-fleshed kiwifruit (Actinidia chinensis).

    Science.gov (United States)

    Liu, Yanfei; Zhou, Bin; Qi, Yingwei; Liu, Cuihua; Liu, Zhande; Ren, Xiaolin

    2018-04-01

    Much of the diversity of anthocyanin pigmentation in plant tissues is due to the action of glycosyltransferases, which attach sugar moieties to the anthocyanin aglycone. This step can increase both their solubility and stability. We investigated the pigmentation of the outer and inner pericarps of developing fruits of the red-fleshed kiwifruit Actinidia chinensis cv. 'Hongyang'. The results show that the red color of the inner pericarp is due to anthocyanin. Based on expression analyses of structural genes, AcUFGT was shown to be the key gene involved in the anthocyanin biosynthetic pathway. Expression of AcUFGT in developing fruit paralleled changes in anthocyanin concentration. Thirteen putative UFGT genes, including different transcripts, were identified in the genome of 'Hongyang'. Among these, only the expression of AcUFGT3a was found to be highly consistent with anthocyanin accumulation. Fruit infiltrated with virus-induced gene silencing showed delayed red colorations, lower anthocyanin contents and lower expressions of AcUFGT3a. At the same time, transient overexpression of AcUFGT3a in both Actinidia arguta and green apple fruit resulted in higher anthocyanin contents and deeper red coloration. In vitro biochemical assays revealed that recombinant AcUFGT3a recognized only anthocyanidins as substrate but not flavonols. Also, UDP-galactose was used preferentially as the sugar donor. These results indicate AcUFGT3a is the key enzyme regulating anthocyanin accumulation in red-fleshed kiwifruit. © 2017 Scandinavian Plant Physiology Society.

  20. Genetic, Biochemical, Nutritional and Antimicrobial Characteristics of Pomegranate (Punica granatum L. Grown in Istria

    Directory of Open Access Journals (Sweden)

    Ana Miklavčič Višnjevec

    2017-01-01

    Full Text Available This study characterises the genetic variability of local pomegranate (Punica granatum L. germplasm from the Slovenian and Croatian areas of Istria. The bioactive components and antioxidant and antimicrobial properties of ethanol and water extracts of different parts of pomegranate fruit were also determined, along with their preliminary nutritional characterisation. Twenty-six different genotypes identified with microsatellite analysis indicate the great diversity of pomegranate in Istria. The pomegranate fruit ethanol extracts represent rich sources of phenolic compounds (mean value of the mass fraction in exocarp and mesocarp expressed as gallic acid is 23 and 16 mg/g, respectively. The ethanol extracts of pomegranate exocarp and mesocarp showed the greatest antimicrobial activity against Candida albicans, Candida parapsilosis, Rhodotorula mucilaginosa, Exophiala dermatitidis and Staphylococcus aureus, and the same water extracts against S. aureus and Escherichia coli. To the best of our knowledge, this study represents the first report of the characterisation of pomegranate genetic resources from Istria at different levels, including the molecular, chemical, antimicrobial and nutritional properties.

  1. Genetic engineering: a promising tool to engender physiological, biochemical and molecular stress resilience in green microalgae

    Directory of Open Access Journals (Sweden)

    Freddy eGuiheneuf

    2016-03-01

    Full Text Available As we march into the 21st century, the prevailing scenario of depleting energy resources, global warming and ever increasing issues of human health and food security will quadruple. In this context, genetic and metabolic engineering of green microalgae complete the quest towards a continuum of environmentally clean fuel and food production. Evolutionarily related, but unlike land plants, microalgae need nominal land or water, and are best described as unicellular autotrophs using light energy to fix atmospheric CO2 into algal biomass, mitigating fossil CO2 pollution in the process. Remarkably, a feature innate to most microalgae is synthesis and accumulation of lipids (60–65% of dry weight, carbohydrates and secondary metabolites like pigments and vitamins, especially when grown under abiotic stress conditions. Particularly fruitful, such an application of abiotic stress factors like nitrogen starvation , salinity, heat shock etc. can be used in a biorefinery concept for production of multiple valuable products. The focus of this mini-review underlies metabolic reorientation practices and tolerance mechanisms as applied to green microalgae under specific stress stimuli for a sustainable pollution-free future. Moreover, we entail current progress on genetic engineering as a promising tool to grasp adaptive processes for improving strains with potential biotechnological interests.

  2. Genetic, Biochemical, Nutritional and Antimicrobial Characteristics of Pomegranate (Punica granatum L.)
Grown in Istria.

    Science.gov (United States)

    Višnjevec, Ana Miklavčič; Ota, Ajda; Skrt, Mihaela; Butinar, Bojan; Možina, Sonja Smole; Cimerman, Nina Gunde; Nečemer, Marijan; Arbeiter, Alenka Baruca; Hladnik, Matjaž; Krapac, Marin; Ban, Dean; Bučar-Miklavčič, Milena; Ulrih, Nataša Poklar; Bandelj, Dunja

    2017-06-01

    This study characterises the genetic variability of local pomegranate ( Punica granatum L.) germplasm from the Slovenian and Croatian areas of Istria. The bioactive components and antioxidant and antimicrobial properties of ethanol and water extracts of different parts of pomegranate fruit were also determined, along with their preliminary nutritional characterisation. Twenty-six different genotypes identified with microsatellite analysis indicate the great diversity of pomegranate in Istria. The pomegranate fruit ethanol extracts represent rich sources of phenolic compounds (mean value of the mass fraction in exocarp and mesocarp expressed as gallic acid is 23 and 16 mg/g, respectively). The ethanol extracts of pomegranate exocarp and mesocarp showed the greatest antimicrobial activity against Candida albicans , Candida parapsilosis , Rhodotorula mucilaginosa , Exophiala dermatitidis and Staphylococcus aureus , and the same water extracts against S. aureus and Escherichia coli. To the best of our knowledge, this study represents the first report of the characterisation of pomegranate genetic resources from Istria at different levels, including the molecular, chemical, antimicrobial and nutritional properties.

  3. Enzymatic Reductive Dehalogenation Controls the Biosynthesis of Marine Bacterial Pyrroles.

    Science.gov (United States)

    El Gamal, Abrahim; Agarwal, Vinayak; Rahman, Imran; Moore, Bradley S

    2016-10-12

    Enzymes capable of performing dehalogenating reactions have attracted tremendous contemporary attention due to their potential application in the bioremediation of anthropogenic polyhalogenated persistent organic pollutants. Nature, in particular the marine environment, is also a prolific source of polyhalogenated organic natural products. The study of the biosynthesis of these natural products has furnished a diverse array of halogenation biocatalysts, but thus far no examples of dehalogenating enzymes have been reported from a secondary metabolic pathway. Here we show that the penultimate step in the biosynthesis of the highly brominated marine bacterial product pentabromopseudilin is catalyzed by an unusual debrominase Bmp8 that utilizes a redox thiol mechanism to remove the C-2 bromine atom of 2,3,4,5-tetrabromopyrrole to facilitate oxidative coupling to 2,4-dibromophenol. To the best of our knowledge, Bmp8 is first example of a dehalogenating enzyme from the established genetic and biochemical context of a natural product biosynthetic pathway.

  4. Genetic and Biochemical Characterization of the MinC-FtsZ Interaction in Bacillus subtilis

    Science.gov (United States)

    Castellen, Patricia; Nogueira, Maria Luiza C.; Bettini, Jefferson; Portugal, Rodrigo V.; Zeri, Ana Carolina M.; Gueiros-Filho, Frederico J.

    2013-01-01

    Cell division in bacteria is regulated by proteins that interact with FtsZ and modulate its ability to polymerize into the Z ring structure. The best studied of these regulators is MinC, an inhibitor of FtsZ polymerization that plays a crucial role in the spatial control of Z ring formation. Recent work established that E. coli MinC interacts with two regions of FtsZ, the bottom face of the H10 helix and the extreme C-terminal peptide (CTP). Here we determined the binding site for MinC on Bacillus subtilis FtsZ. Selection of a library of FtsZ mutants for survival in the presence of Min overexpression resulted in the isolation of 13 Min-resistant mutants. Most of the substitutions that gave rise to Min resistance clustered around the H9 and H10 helices in the C-terminal domain of FtsZ. In addition, a mutation in the CTP of B. subtilis FtsZ also produced MinC resistance. Biochemical characterization of some of the mutant proteins showed that they exhibited normal polymerization properties but reduced interaction with MinC, as expected for binding site mutations. Thus, our study shows that the overall architecture of the MinC-FtsZ interaction is conserved in E. coli and B. subtilis. Nevertheless, there was a clear difference in the mutations that conferred Min resistance, with those in B. subtilis FtsZ pointing to the side of the molecule rather than to its polymerization interface. This observation suggests that the mechanism of Z ring inhibition by MinC differs in both species. PMID:23577149

  5. Integrated biochemical, molecular genetic, and bioacoustical analysis of mesoscale variability of the euphausiid Nematoscelis difficilis in the California Current

    Science.gov (United States)

    Bucklin, Ann; Wiebe, Peter H.; Smolenack, Sara B.; Copley, Nancy J.; Clarke, M. Elizabeth

    2002-03-01

    Integrated assessment of the euphausiid Nematoscelis difficilis (Crustacea; Euphausiacea) and the zooplankton assemblage of the California Current was designed to investigate individual, population, and community responses to mesoscale variability in biological and physical characters of the ocean. Zooplankton samples and observational data were collected along a cross-shelf transect of the California Current in association with the California Cooperative Fisheries Investigations (CalCOFI) Survey during October 1996. The transect crossed three domains defined by temperature and salinity: nearshore, mid-Current, and offshore. Individual N. difficilis differed in physiological condition along the transect, with higher size-corrected concentrations of four central metabolic enzymes (citrate synthetase, hexokinase, lactate dehydrogenase (LDH), and phosphoglucose isomerase (PGI)) for euphausiids collected in nearshore waters than in mid-Current and offshore waters. There was little variation in the DNA sequences of the genes encoding PGI and LDH (all DNA changes were either silent or heterozygous base substitutions), suggesting that differences in enzyme concentration did not result from underlying molecular genetic variation. The population genetic makeup of N. difficilis varied from sample to sample based on haplotype frequencies of mitochondrial cytochrome oxidase I (mtCOI; P=0.029). There were significant differences between pooled nearshore and offshore samples, based on allele frequencies at two sites of common substitutions in the mtCOI sequence ( P=0.020 and 0.026). Silhouette and bioacoustical backscattering measurements of the zooplankton assemblage of the top 100 m showed marked diel vertical migration of the scattering layer, of which euphausiids were a small but significant fraction. The biochemical and molecular assays are used as indices of complex physiological (i.e., growth and condition) and genetic (i.e., mortality) processes; the bioacoustical

  6. Duchenne/Becker muscular dystrophy: A report on clinical, biochemical, and genetic study in Gujarat population, India.

    Science.gov (United States)

    Rao, Mandava V; Sindhav, Gaurang M; Mehta, Jitendra J

    2014-07-01

    In India, various groups have studied different regions to find out deletion pattern of dystrophin gene. We have investigated its deletion pattern among Duchenne/Becker muscular dystrophy (D/BMD) patients across Gujarat. Moreover, in this study we also correlate the same with reading frame rule. However, we too consider various clinicopathological features to establish as adjunct indices when deletion detection fails. In this pilot study, a total of 88 D/BMD patients consulting at our centers in Gujarat, India were included. All patients were reviewed on basis of their clinical characteristics, tested by three primer sets of 10-plex, 9-plex, and 7-plex polymerase chain reaction (PCR) for genetic analysis; whereas, biochemical indices were measured using automated biochemical analyzers. The diagnosis of D/BMD was confirmed by multiplex-PCR (M-PCR) in D/BMD patients. A number of 65 (73.86%) out of 88 patients showed deletion in dystrophin gene. The exon 50 (58.46%) was the most frequent deletion found in our study. The mean age of onset of DMD and BMD was 4.09 ± 0.15 and 7.14 ± 0.55 years, respectively. In patients, mean creatine phosphokinase (CPK), lactate dehydrogenase (LDH), and myoglobin levels were elevated significantly (P < 0.05) in comparison to controls. Addition to CPK, LDH and myoglobin are good adjunct when deletion detection failed. These data are further in accordance with world literature when correlated with frame rule. The analysis has been carried out for the first time for a total of 88 D/BMD patients particularly from Gujarat, India. More research is essential to elucidate specific mutation pattern in association with management and therapies of proband.

  7. Duchenne/Becker muscular dystrophy: A report on clinical, biochemical, and genetic study in Gujarat population, India

    Directory of Open Access Journals (Sweden)

    Mandava V Rao

    2014-01-01

    Full Text Available Objective: In India, various groups have studied different regions to find out deletion pattern of dystrophin gene. We have investigated its deletion pattern among Duchenne/Becker muscular dystrophy (D/BMD patients across Gujarat. Moreover, in this study we also correlate the same with reading frame rule. However, we too consider various clinicopathological features to establish as adjunct indices when deletion detection fails. Materials and Methods: In this pilot study, a total of 88 D/BMD patients consulting at our centers in Gujarat, India were included. All patients were reviewed on basis of their clinical characteristics, tested by three primer sets of 10-plex, 9-plex, and 7-plex polymerase chain reaction (PCR for genetic analysis; whereas, biochemical indices were measured using automated biochemical analyzers. Results: The diagnosis of D/BMD was confirmed by multiplex-PCR (M-PCR in D/BMD patients. A number of 65 (73.86% out of 88 patients showed deletion in dystrophin gene. The exon 50 (58.46% was the most frequent deletion found in our study. The mean age of onset of DMD and BMD was 4.09 ΁ 0.15 and 7.14 ΁ 0.55 years, respectively. In patients, mean creatine phosphokinase (CPK, lactate dehydrogenase (LDH, and myoglobin levels were elevated significantly (P < 0.05 in comparison to controls. Addition to CPK, LDH and myoglobin are good adjunct when deletion detection failed. These data are further in accordance with world literature when correlated with frame rule. Conclusion: The analysis has been carried out for the first time for a total of 88 D/BMD patients particularly from Gujarat, India. More research is essential to elucidate specific mutation pattern in association with management and therapies of proband.

  8. Genetic and biochemical investigations of the role of MamP in redox control of iron biomineralization in Magnetospirillum magneticum.

    Science.gov (United States)

    Jones, Stephanie R; Wilson, Tiffany D; Brown, Margaret E; Rahn-Lee, Lilah; Yu, Yi; Fredriksen, Laura L; Ozyamak, Ertan; Komeili, Arash; Chang, Michelle C Y

    2015-03-31

    Magnetotactic bacteria have evolved complex subcellular machinery to construct linear chains of magnetite nanocrystals that allow the host cell to sense direction. Each mixed-valent iron nanoparticle is mineralized from soluble iron within a membrane-encapsulated vesicle termed the magnetosome, which serves as a specialized compartment that regulates the iron, redox, and pH environment of the growing mineral. To dissect the biological components that control this process, we have carried out a genetic and biochemical study of proteins proposed to function in iron mineralization. In this study, we show that the redox sites of c-type cytochromes of the Magnetospirillum magneticum AMB-1 magnetosome island, MamP and MamT, are essential to their physiological function and that ablation of one or both heme motifs leads to loss of function, suggesting that their ability to carry out redox chemistry in vivo is important. We also develop a method to heterologously express fully heme-loaded MamP from AMB-1 for in vitro biochemical studies, which show that its Fe(III)-Fe(II) redox couple is set at an unusual potential (-89 ± 11 mV) compared with other related cytochromes involved in iron reduction or oxidation. Despite its low reduction potential, it remains competent to oxidize Fe(II) to Fe(III) and mineralize iron to produce mixed-valent iron oxides. Finally, in vitro mineralization experiments suggest that Mms mineral-templating peptides from AMB-1 can modulate the iron redox chemistry of MamP.

  9. Phosphatidylserine biosynthesis in cultured Chinese hamster ovary cells. III. Genetic evidence for utilization of phosphatidylcholine and phosphatidylethanolamine as precursors

    International Nuclear Information System (INIS)

    Kuge, O.; Nishijima, M.; Akamatsu, Y.

    1986-01-01

    We reported that Chinese hamster ovary (CHO) cells contain two different serine-exchange enzymes (I and II) which catalyze the base-exchange reaction of phospholipid(s) with serine and that a phosphatidylserine-requiring mutant (strain PSA-3) of CHO cells is defective in serine-exchange enzyme I and lacks the ability to synthesize phosphatidylserine. In this study, we examined precursor phospholipids for phosphatidylserine biosynthesis in CHO cells. When mutant PSA-3 and parent (CHO-K1) cells were cultured with [ 32 P]phosphatidylcholine, phosphatidylserine in the parent accumulated radioactivity while that in the mutant was not labeled significantly. On the contrary, when cultured with [ 32 P]phosphatidylethanolamine, the mutant incorporated the label into phosphatidylserine more efficiently than the parent. Furthermore, we found that mutant PSA-3 grew normally in growth medium supplemented with 30 microM phosphatidylethanolamine as well as phosphatidylserine and that the biosynthesis of phosphatidylserine in the mutant was normal when cells were cultured in the presence of exogenous phosphatidylethanolamine. The simplest interpretation of these findings is that phosphatidylserine in CHO cells is biosynthesized through the following sequential reactions: phosphatidylcholine----phosphatidylserine----phosphatidylethanolamine--- - phosphatidylserine. The three reactions are catalyzed by serine-exchange enzyme I, phosphatidylserine decarboxylase, and serine-exchange enzyme II, respectively

  10. Biochemical and genetic variation of some Syrian wheat varieties using NIR, RAPD and AFLPs techniques

    International Nuclear Information System (INIS)

    Saleh, B.

    2012-01-01

    This study was performed to assess chemical components and genetic variability of five Syrian wheat varieties using NIR, RAPD and AFLP techniques. NIR technique showed that Cham6 was the best variety in term of wheat grain quality due to their lowest protein (%), hardness, water uptake and baking volume and the highest starch (%) compared to the other tested varieties. PCR amplifications with 21 RAPD primers and 13 AFLP PCs primer combinations gave 104 and 466 discernible loci of which 24 (18.823%) and 199 (45.527%) were polymorphic for the both techniques respectively. Our data indicated that the three techniques gave similar results regarding the degree of relatedness among the tested varieties. In the present investigation, AFLP fingerprinting was more efficient than the RAPD assay. Where the letter exhibited lower Marker Index (MI) average (0.219) compared to AFLP one (3.203). The pattern generated by RAPD, AFLPs markers or by NIR separated the five wheat varieties into two groups. The first group consists of two subclusters. The first subcluster involved Cham8 and Bohous6, while the second one includes Cham6 that is very closed to precedent varieties. The second group consists of Bohous9 and Cham7 that were also closely related. Based on this study, the use of NIR, RAPD and AFLP techniques could be a powerful tool to detect the effectiveness relationships of these technologies. (author)

  11. Genetic and biochemical characterization of the GH72 family of cell wall transglycosylases in Neurospora crassa.

    Science.gov (United States)

    Ao, Jie; Free, Stephen J

    2017-04-01

    The Neurospora crassa genome encodes five GH72 family transglycosylases, and four of these enzymes (GEL-1, GEL-2, GEL-3 and GEL-5) have been found to be present in the cell wall proteome. We carried out an extensive genetic analysis on the role of these four transglycosylases in cell wall biogenesis and demonstrated that the transglycosylases are required for the formation of a normal cell wall. As suggested by the proteomic analysis, we found that multiple transglycosylases were being expressed in N. crassa cells and that different combinations of the enzymes are required in different cell types. The combination of GEL-1, GEL-2 and GEL-5 is required for the growth of vegetative hyphae, while the GEL-1, GEL-2, GEL-3 combination is needed for the production of aerial hyphae and conidia. Our data demonstrates that the enzymes are redundant with partially overlapping enzymatic activities, which provides the fungus with a robust cell wall biosynthetic system. Characterization of the transglycosylase-deficient mutants demonstrated that the incorporation of cell wall proteins was severely compromised. Interestingly, we found that the transglycosylase-deficient mutant cell walls contained more β-1,3-glucan than the wild type cell wall. Our results demonstrate that the GH72 transglycosylases are not needed for the incorporation of β-1,3-glucan into the cell wall, but they are required for the incorporation of cell wall glycoprotein into the cell wall. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Purification, biochemical characterization, and genetic cloning of the phytase produced by Burkholderia sp. strain a13.

    Science.gov (United States)

    Graminho, Eduardo Rezende; Takaya, Naoki; Nakamura, Akira; Hoshino, Takayuki

    2015-01-01

    A phytase-producing bacterium, Burkholderia sp. a13 (JCM 30421), was isolated from Lake Kasumigaura by enrichment cultivation using minimum medium containing phytic acid as the sole phosphorus source. The phytase production by strain a13 was induced by the presence of phytic acid and repressed by the addition of glucose. The purified enzyme had a molecular weight of 44 kDa and a phytase activity of 174 μmol min(-1) mg(-1). The enzyme showed broad substrate specificity, but the highest activity was observed with phytic acid. The enzyme activity was strongly inhibited by Cu(2+), Zn(2+), Hg(2+), and iodoacetic acid, indicating the requirement of a thiol group for the activity. Genetic cloning reveals that the mature portion of this enzyme consists of 428 amino acids with a calculated molecular weight of 46 kDa. The amino acid sequence showed the highest similarity to the phytase produced by Hafnia alvei with 48% identity; it also contained histidine acid phosphatase (HAP) motifs (RHGXRXP and HD), indicating the classification of this enzyme in the HAP phytase family. We have successfully expressed the cloned gene in Escherichia coli from its putative initiation codon, showing that the gene actually encodes the phytase.

  13. Assessment of a land-locked Atlantic salmon (Salmo salar L.) population as a potential genetic resource with a focus on long-chain polyunsaturated fatty acid biosynthesis.

    Science.gov (United States)

    Betancor, M B; Olsen, R E; Solstorm, D; Skulstad, O F; Tocher, D R

    2016-03-01

    The natural food for Atlantic salmon (Salmo salar) in freshwater has relatively lower levels of omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA) than found in prey for post-smolt salmon in seawater. Land-locked salmon such as the Gullspång population feed exclusively on freshwater type lipids during its entire life cycle, a successful adaptation derived from divergent evolution. Studying land-locked populations may provide insights into the molecular and genetic control mechanisms that determine and regulate n-3 LC-PUFA biosynthesis and retention in Atlantic salmon. A two factorial study was performed comparing land-locked and farmed salmon parr fed diets formulated with fish or rapeseed oil for 8 weeks. The land-locked parr had higher capacity to synthesise n-3 LC-PUFA as indicated by higher expression and activity of desaturase and elongase enzymes. The data suggested that the land-locked salmon had reduced sensitivity to dietary fatty acid composition and that dietary docosahexaenoic acid (DHA) did not appear to suppress expression of LC-PUFA biosynthetic genes or activity of the biosynthesis pathway, probably an evolutionary adaptation to a natural diet lower in DHA. Increased biosynthetic activity did not translate to enhanced n-3 LC-PUFA contents in the flesh and diet was the only factor affecting this parameter. Additionally, high lipogenic and glycolytic potentials were found in land-locked salmon, together with decreased lipolysis which in turn could indicate increased use of carbohydrates as an energy source and a sparing of lipid. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Serine biosynthesis and transport defects.

    Science.gov (United States)

    El-Hattab, Ayman W

    2016-07-01

    l-serine is a non-essential amino acid that is biosynthesized via the enzymes phosphoglycerate dehydrogenase (PGDH), phosphoserine aminotransferase (PSAT), and phosphoserine phosphatase (PSP). Besides its role in protein synthesis, l-serine is a potent neurotrophic factor and a precursor of a number of essential compounds including phosphatidylserine, sphingomyelin, glycine, and d-serine. Serine biosynthesis defects result from impairments of PGDH, PSAT, or PSP leading to systemic serine deficiency. Serine biosynthesis defects present in a broad phenotypic spectrum that includes, at the severe end, Neu-Laxova syndrome, a lethal multiple congenital anomaly disease, intermediately, infantile serine biosynthesis defects with severe neurological manifestations and growth deficiency, and at the mild end, the childhood disease with intellectual disability. A serine transport defect resulting from deficiency of the ASCT1, the main transporter for serine in the central nervous system, has been recently described in children with neurological manifestations that overlap with those observed in serine biosynthesis defects. l-serine therapy may be beneficial in preventing or ameliorating symptoms in serine biosynthesis and transport defects, if started before neurological damage occurs. Herein, we review serine metabolism and transport, the clinical, biochemical, and molecular aspects of serine biosynthesis and transport defects, the mechanisms of these diseases, and the potential role of serine therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Acetylglutamate synthase in Neurospora crassa: characterization, localization, and genetic behavior of a regulatory enzyme of arginine biosynthesis

    International Nuclear Information System (INIS)

    Jacobson, J.A.

    1988-01-01

    This study describes the characterization and localization of the first enzyme of arginine biosynthesis in Neurospora crassa. A radioactive assay was developed to detect this enzyme whereby radioactive substrate and product molecules could be separated by ion-exchange chromatography. The enzyme was found to have a pH optimum of 9.0 and K/sub m/ values for glutamate and acetyl-CoA of approximately 4.7 and 0.45 mM, respectively. The enzyme was shown to be feedback inhibited by arginine. Half-maximal inhibition was observed at 0.13 mM arginine, a concentration which is similar to be in vivo cytosolic concentration of 0.2 mM. Arginine was found to act as a competitive inhibitor with respect to acetyl-CoA. Acetylglutamate synthase was localized to the mitochondrion. However, in contrast to the mitochondrial matrix location of the other ornithine biosynthetic enzymes, this enzyme was found to reside on the mitochondrial inner membrane

  16. Biochemical and genetic toxicity of the ionic liquid 1-octyl-3-methylimidazolium chloride on earthworms (Eisenia fetida).

    Science.gov (United States)

    Guo, Yingying; Liu, Tong; Zhang, Jun; Wang, Jinhua; Wang, Jun; Zhu, Lusheng; Yang, Jinhui

    2016-02-01

    Ionic liquids also known as "green solvents," are used in many fields. However, the dispersion of ionic liquids in soil systems is likely to cause damage to soil organisms. The objective of the present study was to investigate the toxicity of 1-octyl-3-methylimidazolium chloride ([C8 mim]Cl) on earthworms (Eisenia fetida). For this purpose, earthworms were exposed to different concentrations of [C8 mim]Cl (0 mg/kg, 5 mg/kg, 10 mg/kg, 20 mg/kg, and 40 mg/kg artificial soil) and sampled at 7 d, 14 d, 21 d, and 28 d. The results indicated that [C8 mim]Cl could cause an accumulation of reactive oxygen species (ROS) in earthworms, even at the lowest concentration (5 mg/kg). Compared with the controls, during the [C8 mim]Cl exposure period, the activities of superoxide dismutase (SOD) and catalase (CAT) decreased and then increased, whereas the activities of peroxidase (POD) and glutathione S-transferase (GST) increased. These changes in the activities of antioxidant enzymes and GST indicated that [C8 mim]Cl could induce oxidative damage in earthworms. The malondialdehyde content was increased by high levels of [C8 mim]Cl at 14 d and 28 d, indicating that [C8 mim]Cl could lead to lipid peroxidation in earthworms. In addition, the degree of DNA damage significantly increased with increasing [C8 mim]Cl concentrations and exposure time. The present study shows that [C8 mim]Cl caused biochemical and genetic toxicity in earthworms. © 2015 SETAC.

  17. Genetic and Biochemical Identification of a Novel Single-Stranded DNA-Binding Complex in Haloferax volcanii.

    Science.gov (United States)

    Stroud, Amy; Liddell, Susan; Allers, Thorsten

    2012-01-01

    Single-stranded DNA (ssDNA)-binding proteins play an essential role in DNA replication and repair. They use oligonucleotide/oligosaccharide-binding (OB)-folds, a five-stranded β-sheet coiled into a closed barrel, to bind to ssDNA thereby protecting and stabilizing the DNA. In eukaryotes the ssDNA-binding protein (SSB) is known as replication protein A (RPA) and consists of three distinct subunits that function as a heterotrimer. The bacterial homolog is termed SSB and functions as a homotetramer. In the archaeon Haloferax volcanii there are three genes encoding homologs of RPA. Two of the rpa genes (rpa1 and rpa3) exist in operons with a novel gene specific to Euryarchaeota; this gene encodes a protein that we have termed RPA-associated protein (rpap). The rpap genes encode proteins belonging to COG3390 group and feature OB-folds, suggesting that they might cooperate with RPA in binding to ssDNA. Our genetic analysis showed that rpa1 and rpa3 deletion mutants have differing phenotypes; only Δrpa3 strains are hypersensitive to DNA damaging agents. Deletion of the rpa3-associated gene rpap3 led to similar levels of DNA damage sensitivity, as did deletion of the rpa3 operon, suggesting that RPA3 and RPAP3 function in the same pathway. Protein pull-downs involving recombinant hexahistidine-tagged RPAs showed that RPA3 co-purifies with RPAP3, and RPA1 co-purifies with RPAP1. This indicates that the RPAs interact only with their respective associated proteins; this was corroborated by the inability to construct rpa1 rpap3 and rpa3 rpap1 double mutants. This is the first report investigating the individual function of the archaeal COG3390 RPA-associated proteins (RPAPs). We have shown genetically and biochemically that the RPAPs interact with their respective RPAs, and have uncovered a novel single-stranded DNA-binding complex that is unique to Euryarchaeota.

  18. A molecular genetic analysis of carotenoid biosynthesis and the effects of carotenoid mutations on other photosynthetic genes in Rhodobacter capsulatus

    International Nuclear Information System (INIS)

    Armstrong, G.A.

    1989-04-01

    The nine known R. capsulatus carotenoid genes are contained within the 46 kilobase (kb) photosynthesis gene cluster. An 11 kb subcluster containing eight of these genes has been cloned and its nucleotide sequence determined. A new gene, crtK, has been located in the middle of the subcluster. The carotenoid gene cluster contains sequences homologous to Escherichia coli ω 70 promoters, rho-independent transcription terminators, and prokaryotic transcriptional factor binding sites. The phenotypes and genotypes of ten transposon Tn5.7 insertion mutations within the carotenoid gene cluster have been analyzed, by characterization of the carotenoids accumulated and high resolution mapping of the Tn5.7 insertions. The enzymatic blockages in previously uncharacterized early carotenoid mutants have been determined using a new in vitro synthesis system, suggesting specific roles for the CrtB and CrtE gene products. The expression of six of the eight carotenoid genes in the cluster is induced upon the shift from dark chemoheterotrophic to anaerobic photosynthetic growth. The magnitude of the induction is equivalent to that of genes encoding structural photosynthesis polypeptides, although the carotenoid genes are induced earlier after the growth shift. Different means of regulating photosynthesis genes in R. capsulatus are discussed, and a rationale for the temporal pattern of expression of the carotenoid genes during photosynthetic adaptation is presented. Comparison of the deduced amino acid sequences of the two dehydrogenases of the R. capsulatus carotenoid biosynthesis pathway reveals two regions of strong similarity. The effect of carotenoid mutations on the photosynthetic phenotype has been studied by examining growth rates, pigments, pigment-protein complexes and gene expression for a complete set of carotenoid mutants. 161 refs

  19. A molecular genetic analysis of carotenoid biosynthesis and the effects of carotenoid mutations on other photosynthetic genes in Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, G.A.

    1989-04-01

    The nine known R. capsulatus carotenoid genes are contained within the 46 kilobase (kb) photosynthesis gene cluster. An 11 kb subcluster containing eight of these genes has been cloned and its nucleotide sequence determined. A new gene, crtK, has been located in the middle of the subcluster. The carotenoid gene cluster contains sequences homologous to Escherichia coli ..omega../sup 70/ promoters, rho-independent transcription terminators, and prokaryotic transcriptional factor binding sites. The phenotypes and genotypes of ten transposon Tn5.7 insertion mutations within the carotenoid gene cluster have been analyzed, by characterization of the carotenoids accumulated and high resolution mapping of the Tn5.7 insertions. The enzymatic blockages in previously uncharacterized early carotenoid mutants have been determined using a new in vitro synthesis system, suggesting specific roles for the CrtB and CrtE gene products. The expression of six of the eight carotenoid genes in the cluster is induced upon the shift from dark chemoheterotrophic to anaerobic photosynthetic growth. The magnitude of the induction is equivalent to that of genes encoding structural photosynthesis polypeptides, although the carotenoid genes are induced earlier after the growth shift. Different means of regulating photosynthesis genes in R. capsulatus are discussed, and a rationale for the temporal pattern of expression of the carotenoid genes during photosynthetic adaptation is presented. Comparison of the deduced amino acid sequences of the two dehydrogenases of the R. capsulatus carotenoid biosynthesis pathway reveals two regions of strong similarity. The effect of carotenoid mutations on the photosynthetic phenotype has been studied by examining growth rates, pigments, pigment-protein complexes and gene expression for a complete set of carotenoid mutants. 161 refs.

  20. Chronic effects of soft drink consumption on the health state of Wistar rats: A biochemical, genetic and histopathological study

    OpenAIRE

    ALKHEDAIDE, ADEL; SOLIMAN, MOHAMED MOHAMED; SALAH-ELDIN, ALAA-ELDIN; ISMAIL, TAMER AHMED; ALSHEHIRI, ZAFER SAAD; ATTIA, HOSSAM FOUAD

    2016-01-01

    The present study was performed to examine the effects of chronic soft drink consumption (SDC) on oxidative stress, biochemical alterations, gene biomarkers and histopathology of bone, liver and kidney. Free drinking water of adult male Wistar rats was substituted with three different soft drinks: Coca-Cola, Pepsi and 7-Up, for three consecutive months. The serum and organs were collected for examining the biochemical parameters associated with bone, liver and kidney functions. Semi-quantitat...

  1. Identification and characterization of an archaeal ketopantoate reductase and its involvement in regulation of coenzyme A biosynthesis.

    Science.gov (United States)

    Tomita, Hiroya; Imanaka, Tadayuki; Atomi, Haruyuki

    2013-10-01

    Coenzyme A (CoA) biosynthesis in bacteria and eukaryotes is regulated primarily by feedback inhibition towards pantothenate kinase (PanK). As most archaea utilize a modified route for CoA biosynthesis and do not harbour PanK, the mechanisms governing regulation of CoA biosynthesis are unknown. Here we performed genetic and biochemical studies on the ketopantoate reductase (KPR) from the hyperthermophilic archaeon Thermococcus kodakarensis. KPR catalyses the second step in CoA biosynthesis, the reduction of 2-oxopantoate to pantoate. Gene disruption of TK1968, whose product was 20-29% identical to previously characterized KPRs from bacteria/eukaryotes, resulted in a strain with growth defects that were complemented by addition of pantoate. The TK1968 protein (Tk-KPR) displayed reductase activity specific for 2-oxopantoate and preferred NADH as the electron donor, distinct to the bacterial/eukaryotic NADPH-dependent enzymes. Tk-KPR activity decreased dramatically in the presence of CoA and KPR activity in cell-free extracts was also inhibited by CoA. Kinetic studies indicated that CoA inhibits KPR by competing with NADH. Inhibition of ketopantoate hydroxymethyltransferase, the first enzyme of the pathway, by CoA was not observed. Our results suggest that CoA biosynthesis in T. kodakarensis is regulated by feedback inhibition of KPR, providing a feasible regulation mechanism of CoA biosynthesis in archaea. © 2013 John Wiley & Sons Ltd.

  2. Convergent Transcription in the Butyrolactone Regulon in Streptomyces coelicolor Confers a Bistable Genetic Switch for Antibiotic Biosynthesis

    Science.gov (United States)

    Chatterjee, Anushree; Drews, Laurie; Mehra, Sarika; Takano, Eriko; Kaznessis, Yiannis N.; Hu, Wei-Shou

    2011-01-01

    cis-encoded antisense RNAs (cis asRNA) have been reported to participate in gene expression regulation in both eukaryotic and prokaryotic organisms. Its presence in Streptomyces coelicolor has also been reported recently; however, its role has yet to be fully investigated. Using mathematical modeling we explore the role of cis asRNA produced as a result of convergent transcription in scbA-scbR genetic switch. scbA and scbR gene pair, encoding repressor–amplifier proteins respectively, mediates the synthesis of a signaling molecule, the γ-butyrolactone SCB1 and controls the onset of antibiotic production. Our model considers that transcriptional interference caused by convergent transcription of two opposing RNA polymerases results in fatal collision and transcriptional termination, which suppresses transcription efficiency. Additionally, convergent transcription causes sense and antisense interactions between complementary sequences from opposing strands, rendering the full length transcript inaccessible for translation. We evaluated the role of transcriptional interference and the antisense effect conferred by convergent transcription on the behavior of scbA-scbR system. Stability analysis showed that while transcriptional interference affects the system, it is asRNA that confers scbA-scbR system the characteristics of a bistable switch in response to the signaling molecule SCB1. With its critical role of regulating the onset of antibiotic synthesis the bistable behavior offers this two gene system the needed robustness to be a genetic switch. The convergent two gene system with potential of transcriptional interference is a frequent feature in various genomes. The possibility of asRNA regulation in other such gene-pairs is yet to be examined. PMID:21765930

  3. Biosynthesis of the 22nd Genetically Encoded Amino Acid Pyrrolysine: Structure and Reaction Mechanism of PylC at 1.5Å Resolution

    KAUST Repository

    Quitterer, Felix; List, Anja; Beck, Philipp; Bacher, Adelbert; Groll, Michael

    2012-01-01

    The second step in the biosynthesis of the 22nd genetically encoded amino acid pyrrolysine (Pyl) is catalyzed by PylC that forms the pseudopeptide l-lysine-Nε-3R-methyl-d-ornithine. Here, we present six crystal structures of the monomeric active ligase in complex with substrates, reaction intermediates, and products including ATP, the non-hydrolyzable ATP analogue 5′-adenylyl-β-γ-imidodiphosphate, ADP, d-ornithine (d-Orn), l-lysine (Lys), phosphorylated d-Orn, l-lysine-Nε-d-ornithine, inorganic phosphate, carbonate, and Mg2 +. The overall structure of PylC reveals similarities to the superfamily of ATP-grasp enzymes; however, there exist unique structural and functional features for a topological control of successive substrate entry and product release. Furthermore, the presented high-resolution structures provide detailed insights into the reaction mechanism of isopeptide bond formation starting with phosphorylation of d-Orn by transfer of a phosphate moiety from activated ATP. The binding of Lys to the enzyme complex is then followed by an SN2 reaction resulting in l-lysine-Nε-d-ornithine and inorganic phosphate. Surprisingly, PylC harbors two adenine nucleotides bound at the active site, what has not been observed in any ATP-grasp protein analyzed to date. Whereas one ATP molecule is involved in catalysis, the second adenine nucleotide functions as a selective anchor for the C- and N-terminus of the Lys substrate and is responsible for protein stability as shown by mutagenesis. © 2012 Elsevier Ltd.

  4. Biosynthesis of the 22nd Genetically Encoded Amino Acid Pyrrolysine: Structure and Reaction Mechanism of PylC at 1.5Å Resolution

    KAUST Repository

    Quitterer, Felix

    2012-12-01

    The second step in the biosynthesis of the 22nd genetically encoded amino acid pyrrolysine (Pyl) is catalyzed by PylC that forms the pseudopeptide l-lysine-Nε-3R-methyl-d-ornithine. Here, we present six crystal structures of the monomeric active ligase in complex with substrates, reaction intermediates, and products including ATP, the non-hydrolyzable ATP analogue 5′-adenylyl-β-γ-imidodiphosphate, ADP, d-ornithine (d-Orn), l-lysine (Lys), phosphorylated d-Orn, l-lysine-Nε-d-ornithine, inorganic phosphate, carbonate, and Mg2 +. The overall structure of PylC reveals similarities to the superfamily of ATP-grasp enzymes; however, there exist unique structural and functional features for a topological control of successive substrate entry and product release. Furthermore, the presented high-resolution structures provide detailed insights into the reaction mechanism of isopeptide bond formation starting with phosphorylation of d-Orn by transfer of a phosphate moiety from activated ATP. The binding of Lys to the enzyme complex is then followed by an SN2 reaction resulting in l-lysine-Nε-d-ornithine and inorganic phosphate. Surprisingly, PylC harbors two adenine nucleotides bound at the active site, what has not been observed in any ATP-grasp protein analyzed to date. Whereas one ATP molecule is involved in catalysis, the second adenine nucleotide functions as a selective anchor for the C- and N-terminus of the Lys substrate and is responsible for protein stability as shown by mutagenesis. © 2012 Elsevier Ltd.

  5. Biochemical and genetical analysis reveal a new clade of biovar 3 Dickeya spp. strains isolated from potato in Europe

    NARCIS (Netherlands)

    Slawiak, M.; Beckhoven, van J.R.C.M.; Speksnijder, A.G.C.L.; Czajkowski, R.L.; Grabe, G.; Wolf, van der J.M.

    2009-01-01

    Sixty-five potato strains of the soft rot-causing plant pathogenic bacterium Dickeya spp., and two strains from hyacinth, were characterised using biochemical assays, REP-PCR genomic finger printing, 16S rDNA and dnaX sequence analysis. These methods were compared with nineteen strains representing

  6. Partial response to biotin therapy in a patient with holocarboxylase synthetase deficiency: clinical, biochemical, and molecular genetic aspects

    NARCIS (Netherlands)

    Santer, R.; Muhle, H.; Suormala, T.; Baumgartner, E. R.; Duran, M.; Yang, X.; Aoki, Y.; Suzuki, Y.; Stephani, U.

    2003-01-01

    We report the clinical course and biochemical findings of a 10-year-old, mentally retarded girl with late-onset holocarboxylase synthetase (HCS, gene symbol HLCS) deficiency and only partial response to biotin. On treatment, even with an unusually high dose of 200mg/day, activities of the

  7. A Metabolic Gene Cluster in the Wheat W1 and the Barley Cer-cqu Loci Determines β-Diketone Biosynthesis and Glaucousness.

    Science.gov (United States)

    Hen-Avivi, Shelly; Savin, Orna; Racovita, Radu C; Lee, Wing-Sham; Adamski, Nikolai M; Malitsky, Sergey; Almekias-Siegl, Efrat; Levy, Matan; Vautrin, Sonia; Bergès, Hélène; Friedlander, Gilgi; Kartvelishvily, Elena; Ben-Zvi, Gil; Alkan, Noam; Uauy, Cristobal; Kanyuka, Kostya; Jetter, Reinhard; Distelfeld, Assaf; Aharoni, Asaph

    2016-06-01

    The glaucous appearance of wheat (Triticum aestivum) and barley (Hordeum vulgare) plants, that is the light bluish-gray look of flag leaf, stem, and spike surfaces, results from deposition of cuticular β-diketone wax on their surfaces; this phenotype is associated with high yield, especially under drought conditions. Despite extensive genetic and biochemical characterization, the molecular genetic basis underlying the biosynthesis of β-diketones remains unclear. Here, we discovered that the wheat W1 locus contains a metabolic gene cluster mediating β-diketone biosynthesis. The cluster comprises genes encoding proteins of several families including type-III polyketide synthases, hydrolases, and cytochrome P450s related to known fatty acid hydroxylases. The cluster region was identified in both genetic and physical maps of glaucous and glossy tetraploid wheat, demonstrating entirely different haplotypes in these accessions. Complementary evidence obtained through gene silencing in planta and heterologous expression in bacteria supports a model for a β-diketone biosynthesis pathway involving members of these three protein families. Mutations in homologous genes were identified in the barley eceriferum mutants defective in β-diketone biosynthesis, demonstrating a gene cluster also in the β-diketone biosynthesis Cer-cqu locus in barley. Hence, our findings open new opportunities to breed major cereal crops for surface features that impact yield and stress response. © 2016 American Society of Plant Biologists. All rights reserved.

  8. Biochemical features of genetic Creutzfeldt-Jakob disease with valine-to-isoleucine substitution at codon 180 on the prion protein gene.

    Science.gov (United States)

    Ito, Yoko; Sanjo, Nobuo; Hizume, Masaki; Kobayashi, Atsushi; Ohgami, Tetsuya; Satoh, Katsuya; Hamaguchi, Tsuyoshi; Yamada, Masahito; Kitamoto, Tetsuyuki; Mizusawa, Hidehiro; Yokota, Takanori

    2018-02-19

    Valine-to-isoleucine substitution at codon 180 of the prion protein gene is only observed in patients with Creutzfeldt-Jakob disease and accounts for approximately half of all cases of genetic prion disease in Japan. In the present study, we investigated the biochemical characteristics of valine-to-isoleucine substitution at codon 180 in the prion protein gene, using samples obtained from the autopsied brains of seven patients with genetic Creutzfeldt-Jakob disease exhibiting this mutation (diagnoses confirmed via neuropathological examination). Among these patients, we observed an absence of diglycosylated and monoglycosylated forms of PrP res at codon 181. Our findings further indicated that the abnormal prion proteins were composed of at least three components, although smaller carboxyl-terminal fragments were predominant. Western blot analyses revealed large amounts of PrP res in the cerebral neocortices, where neuropathological examination revealed marked spongiosis. Relatively smaller amounts of PrP res were detected in the hippocampus, where milder spongiosis was observed, than in the cerebral neocortex. These findings indicate that abnormal prion proteins in the neocortex are associated with severe toxicity, resulting in severe spongiosis. Our findings further indicate that the valine-to-isoleucine substitution is not a polymorphism, but rather an authentic pathogenic mutation associated with specific biochemical characteristics that differ from those observed in sporadic Creutzfeldt-Jakob disease. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Biosynthesis of polybrominated aromatic organic compounds by marine bacteria

    Science.gov (United States)

    Agarwal, Vinayak; El Gamal, Abrahim A.; Yamanaka, Kazuya; Poth, Dennis; Kersten, Roland D.; Schorn, Michelle; Allen, Eric E.; Moore, Bradley S.

    2014-01-01

    Polybrominated diphenyl ethers (PBDEs) and polybrominated bipyrroles are natural products that bioaccumulate in the marine food chain. PBDEs have attracted widespread attention due to their persistence in the environment and potential toxicity to humans. However, the natural origins of PBDE biosynthesis are not known. Here we report marine bacteria as producers of PBDEs and establish a genetic and molecular foundation for their production that unifies paradigms for the elaboration of bromophenols and bromopyrroles abundant in marine biota. We provide biochemical evidence of marine brominase enzymes revealing decarboxylative-halogenation enzymology previously unknown among halogenating enzymes. Biosynthetic motifs discovered in our study were used to mine sequence databases to discover unrealized marine bacterial producers of organobromine compounds. PMID:24974229

  10. Asparagus Spears as a Model to Study Heteroxylan Biosynthesis during Secondary Wall Development.

    Directory of Open Access Journals (Sweden)

    Lili Song

    Full Text Available Garden asparagus (Asparagus officinalis L. is a commercially important crop species utilized for its excellent source of vitamins, minerals and dietary fiber. However, after harvest the tissue hardens and its quality rapidly deteriorates because spear cell walls become rigidified due to lignification and substantial increases in heteroxylan content. This latter observation prompted us to investigate the in vitro xylan xylosyltransferase (XylT activity in asparagus. The current model system for studying heteroxylan biosynthesis, Arabidopsis, whilst a powerful genetic system, displays relatively low xylan XylT activity in in vitro microsomal preparations compared with garden asparagus therefore hampering our ability to study the molecular mechanism(s of heteroxylan assembly. Here, we analyzed physiological and biochemical changes of garden asparagus spears stored at 4 °C after harvest and detected a high level of xylan XylT activity that accounts for this increased heteroxylan. The xylan XylT catalytic activity is at least thirteen-fold higher than that reported for previously published species, including Arabidopsis and grasses. A biochemical assay was optimized and up to seven successive Xyl residues were incorporated to extend the xylotetraose (Xyl4 acceptor backbone. To further elucidate the xylan biosynthesis mechanism, we used RNA-seq to generate an Asparagus reference transcriptome and identified five putative xylan biosynthetic genes (AoIRX9, AoIRX9-L, AoIRX10, AoIRX14_A, AoIRX14_B with AoIRX9 having an expression profile that is distinct from the other genes. We propose that Asparagus provides an ideal biochemical system to investigate the biochemical aspects of heteroxylan biosynthesis and also offers the additional benefit of being able to study the lignification process during plant stem maturation.

  11. Asparagus Spears as a Model to Study Heteroxylan Biosynthesis during Secondary Wall Development.

    Science.gov (United States)

    Song, Lili; Zeng, Wei; Wu, Aimin; Picard, Kelsey; Lampugnani, Edwin R; Cheetamun, Roshan; Beahan, Cherie; Cassin, Andrew; Lonsdale, Andrew; Doblin, Monika S; Bacic, Antony

    2015-01-01

    Garden asparagus (Asparagus officinalis L.) is a commercially important crop species utilized for its excellent source of vitamins, minerals and dietary fiber. However, after harvest the tissue hardens and its quality rapidly deteriorates because spear cell walls become rigidified due to lignification and substantial increases in heteroxylan content. This latter observation prompted us to investigate the in vitro xylan xylosyltransferase (XylT) activity in asparagus. The current model system for studying heteroxylan biosynthesis, Arabidopsis, whilst a powerful genetic system, displays relatively low xylan XylT activity in in vitro microsomal preparations compared with garden asparagus therefore hampering our ability to study the molecular mechanism(s) of heteroxylan assembly. Here, we analyzed physiological and biochemical changes of garden asparagus spears stored at 4 °C after harvest and detected a high level of xylan XylT activity that accounts for this increased heteroxylan. The xylan XylT catalytic activity is at least thirteen-fold higher than that reported for previously published species, including Arabidopsis and grasses. A biochemical assay was optimized and up to seven successive Xyl residues were incorporated to extend the xylotetraose (Xyl4) acceptor backbone. To further elucidate the xylan biosynthesis mechanism, we used RNA-seq to generate an Asparagus reference transcriptome and identified five putative xylan biosynthetic genes (AoIRX9, AoIRX9-L, AoIRX10, AoIRX14_A, AoIRX14_B) with AoIRX9 having an expression profile that is distinct from the other genes. We propose that Asparagus provides an ideal biochemical system to investigate the biochemical aspects of heteroxylan biosynthesis and also offers the additional benefit of being able to study the lignification process during plant stem maturation.

  12. Genetic cytological and biochemical study of a tomato chlorophyll mutant of the xanthic type, obtained by irradiation of the seeds

    International Nuclear Information System (INIS)

    Lefort, M.; Duranton, J.; Galmiche, J.M.; Roux, E.

    1958-01-01

    Irradiation of Lycopersicum aesculantum seeds with increasing doses of X-rays and thermal neutrons leads to the appearance of chlorophyll mutations in the descendants of the irradiated seeds. A genetic study of one of these mutants of the xanthic type showed that it was a recessive mutant with typical mono-genetic separation, while the cytological study demonstrated that the differentiation of the plast stopped at the stage of elementary lamella. Finally it is shown that in the light, the mutation brings about a very large deviation of the carbon metabolism towards the synthesis of amino acids and proteins, at the expense of that of glucosides. (author) [fr

  13. Genetic diversity of notary-national uniform rape seed yield trial and brassica napus varieties using raped markers and biochemical analysis

    International Nuclear Information System (INIS)

    Bakhat, J.; Fareed, A.; Swati, Z.A.; Shafi, M.

    2011-01-01

    In Pakistan, Brassica is the second most important source of oil after cotton. Seventeen NURYT (National Uniform Rape Seed Yield Trial) lines and 5 Brassica napus varieties were assessed through RAPD primers and biochemical assays. Seven different Randomly Amplified Polymorphic DNA markers (RAPD) were employed during the present study. A total of 30 RAPD bands were scored by these primers. Size of the scorable fragments ranged from approximately 250 to 2000 bp. Diversity index was estimated to be 42%. Mean genetic distance estimates ranged between 0.10 and 1.00. For the assessment of various biochemical parameters, Near Infrared Reflectance Spectroscopy (NIRS) was used. Oil content ranged from 38.30 to 49% and protein content from 19.80 to 29.10% among the 22 genotypes. Maximum protein content was assayed in genotype RBN 3046 while minimum in Hyola 405. Glucosinolates ranged between 2 and 84% for genotype CRH 60/08 and CRH05/08 showing the maximum and minimum values respectively. Oleic acid (52 to 72.5%), linolenic acid (7.07 and 9.90%) and erucic acid content (9.57 to 38.3%) was also recorded during the present study. (author)

  14. Genetic variability in biochemical characters of Brazilian field populations of the Leishmania vector, Lutzomyia longipalpis (Diptera: Psychodidae).

    Science.gov (United States)

    Mukhopadhyay, J; Ghosh, K; Rangel, E F; Munstermann, L E

    1998-12-01

    The phlebotomine sand fly Lutzomyia longipalpis is the insect vector of visceral leishmaniasis, a protozoan disease of increasing incidence and distribution in Central and South America. Electrophoretic allele frequencies of 15 enzyme loci were compared among the L. longipalpis populations selected across its distribution range in Brazil. The mean heterozygosity of two colonized geographic strains (one each from Colombia and Brazil) were 6% and 13% respectively, with 1.6-1.9 alleles detected per locus. In contrast, among the seven widely separated field populations, the mean heterozygosity ranged from 11% to 16% with 2.1-2.9 alleles per locus. No locus was recovered that was diagnostic for any of the field populations. Allelic frequency differences among five field strains from the Amazon basin and eastern coastal Brazil were very low, with Nei's genetic distances of less than 0.01 separating them. The two inland and southerly samples from Minas Gerais (Lapinha) and Bahia (Jacobina) states were more distinctive with genetic distances of 0.024-0.038 and 0.038-0.059, respectively, when compared with the five other samples. These differences were the consequence of several high frequency alleles (glycerol-3-phosphate dehydrogenase [Gpd1.69] and phosphoglucomutase [Pgm1.69]) relatively uncommon in other strains. The low genetic distances, absence of diagnostic loci, and the distribution of genes in geographic space indicate L. longipalpis of Brazil to be a single, but genetically heterogeneous, polymorphic species.

  15. Chronic effects of soft drink consumption on the health state of Wistar rats: A biochemical, genetic and histopathological study.

    Science.gov (United States)

    Alkhedaide, Adel; Soliman, Mohamed Mohamed; Salah-Eldin, Alaa-Eldin; Ismail, Tamer Ahmed; Alshehiri, Zafer Saad; Attia, Hossam Fouad

    2016-06-01

    The present study was performed to examine the effects of chronic soft drink consumption (SDC) on oxidative stress, biochemical alterations, gene biomarkers and histopathology of bone, liver and kidney. Free drinking water of adult male Wistar rats was substituted with three different soft drinks: Coca‑Cola, Pepsi and 7‑Up, for three consecutive months. The serum and organs were collected for examining the biochemical parameters associated with bone, liver and kidney functions. Semi‑quantitative reverse transcription polymerase chain reaction was used to observe the changes in the expression of genes in the liver and kidney, which are associated with oxidative stress resistance. Histopathological investigations were performed to determine the changes in bone, liver and kidney tissues using hematoxylin and eosin stains. SDC affected liver, kidney and bone function biomarkers. Soft drinks increased oxidative stress, which is represented by an increase in malondialdehyde and a decrease in antioxidant levels. SDC affected serum mineral levels, particularly calcium and phosphorus. Soft drinks downregulated the expression levels of glutathione‑S‑transferase and super oxide dismutase in the liver compared with that of control rats. Rats administered Coca‑Cola exhibited a hepatic decrease in the mRNA expression of α2‑macroglobulin compared with rats administered Pepsi and 7‑Up. On the other hand, SDC increased the mRNA expression of α1‑acid glycoprotein. The present renal studies revealed that Coca‑Cola increased the mRNA expression levels of desmin, angiotensinogen and angiotensinogen receptor compared with the other groups, together with mild congestion in renal histopathology. Deleterious histopathological changes were reported predominantly in the bone and liver of the Coca‑Cola and Pepsi groups. In conclusion, a very strict caution must be considered with SDC due to the increase in oxidative stress biomarkers and disruption in the expression

  16. Chronic effects of soft drink consumption on the health state of Wistar rats: A biochemical, genetic and histopathological study

    Science.gov (United States)

    ALKHEDAIDE, ADEL; SOLIMAN, MOHAMED MOHAMED; SALAH-ELDIN, ALAA-ELDIN; ISMAIL, TAMER AHMED; ALSHEHIRI, ZAFER SAAD; ATTIA, HOSSAM FOUAD

    2016-01-01

    The present study was performed to examine the effects of chronic soft drink consumption (SDC) on oxidative stress, biochemical alterations, gene biomarkers and histopathology of bone, liver and kidney. Free drinking water of adult male Wistar rats was substituted with three different soft drinks: Coca-Cola, Pepsi and 7-Up, for three consecutive months. The serum and organs were collected for examining the biochemical parameters associated with bone, liver and kidney functions. Semi-quantitative reverse transcription polymerase chain reaction was used to observe the changes in the expression of genes in the liver and kidney, which are associated with oxidative stress resistance. Histopathological investigations were performed to determine the changes in bone, liver and kidney tissues using hematoxylin and eosin stains. SDC affected liver, kidney and bone function biomarkers. Soft drinks increased oxidative stress, which is represented by an increase in malondialdehyde and a decrease in antioxidant levels. SDC affected serum mineral levels, particularly calcium and phosphorus. Soft drinks downregulated the expression levels of glutathione-S-transferase and super oxide dismutase in the liver compared with that of control rats. Rats administered Coca-Cola exhibited a hepatic decrease in the mRNA expression of α2-macroglobulin compared with rats administered Pepsi and 7-Up. On the other hand, SDC increased the mRNA expression of α1-acid glycoprotein. The present renal studies revealed that Coca-Cola increased the mRNA expression levels of desmin, angiotensinogen and angiotensinogen receptor compared with the other groups, together with mild congestion in renal histopathology. Deleterious histopathological changes were reported predominantly in the bone and liver of the Coca-Cola and Pepsi groups. In conclusion, a very strict caution must be considered with SDC due to the increase in oxidative stress biomarkers and disruption in the expression of certain genes

  17. Genetic variations of the NPC1L1 gene associated with hepatitis C virus (HCV) infection and biochemical characteristics of HCV patients in China.

    Science.gov (United States)

    Zhang, A-Mei; Zhang, Cheng-Lin; Song, Yuzhu; Zhao, Ping; Feng, Yue; Wang, Binghui; Li, Zheng; Liu, Li; Xia, Xueshan

    2016-12-01

    About 2% of the world population is infected with hepatitis C virus (HCV), a leading cause of hepatic cirrhosis and hepatocellular carcinoma. The Niemann-Pick C1-like 1 cholesterol absorption receptor (NPC1L1) was recently identified to be an important factor for HCV entry into host cells. Whether genetic variations of the NPC1L1 gene are associated with HCV infection is unknown. In this study, five single nucleotide polymorphisms (SNPs) of the NPC1L1 gene were analyzed in 261 HCV-infected individuals and 265 general controls from Yunnan Province, China. No significant differences were identified in genotypes or alleles of the SNPs between the two groups. After constructing haplotypes based on the five SNPs, a significant difference between HCV-infected individuals and general controls was shown for two haplotypes. Haplotype GCCTT appeared to be a protective factor and haplotype GCCCT was a risk factor for HCV-infected individuals. Genotypes of four SNPs correlated with biochemical characteristics of HCV-infected persons. Genotypes of SNPs rs799444 and rs2070607 were correlated with total bilirubin. Genotype TT of rs917098 was a risk factor for the gamma-glutamyltransferase level. Furthermore, HCV-infected individuals carrying genotype GG of rs41279633 showed statistically higher gamma-glutamyltransferase levels than HCV-infected persons with GT and TT. The results of this study identified the association between genetic susceptibility of the NPC1L1 gene and HCV infection, as well as biochemical characteristics of HCV-infected persons in Yunnan, China. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  18. Biochemical diversity of fatty acid composition in flax from VIR genetic collection and effect of environment on its development

    Directory of Open Access Journals (Sweden)

    Elizaveta A Porokhovinova

    2016-03-01

    Full Text Available Background. In connection with climate change vary known patterns of environmental influences on the ratio of fatty acids(FA in oil. Therefore,relevant data of modern geography test. Materials and methods. In work 24 lines and 3 commercial varieties of flax including 3 low linolenic (LL accessions, grown in the Leningrad and Samara regions were used. FA composition was evaluated by gas chromatography for the ratio of palmitic (PAL, stearic (STE, oleic (OLE, linoleic (ω6,LIO, linolenic (ω3, LIN acids, ω6/ω3 and iodine number of the oil (IOD. Results. The strongest differences are due to the level of LIN. It is lower in LL and gc-119 from India and higher in 3 lines carrying the gene s1 (deranged anthocyanin biosynthesis. In gc-119, contrast to LL, LIN decrease increase of OLE, instead of LIO. In lines with the gene s1 LIN increase due to the OLE reduction. Contrary to earlier publications the seeds of northern reproduction have more PAL, OLE, less LIN, IOD. 2F ANOVA revealed significant effect of genotype and reproductions place on PAL, OLE, LIN, IOD. LIO is affected only by genotype. Independence of ω6/ω3 is explained by strong abnormity of distribution due to LL. In high linolenic (HL accessions group both factors influenced all characters except STE. Kruskal-Wallis H test (non-parametric 1F ANOVA analogue show significant effect of genotype and place of reproductions on ω6/ω3. It reveals the impact of the reproduction place on LIN,no significant effect of genotype on OLE and IOD, which in the case of 1F ANOVA were significant. For characters of HL with normal distribution, comparing of both tests showed that in case of 0,01 0,10 they are identical. Conclusion. In our studies the geographical effect is less important than the weather in the year of growing. For abnormal distribution it is desirable to use both statistics and carefully make conclusions about the significance of differences in borderline probabilities.

  19. Signal perception, transduction, and gene expression involved in anthocyanin biosynthesis

    International Nuclear Information System (INIS)

    Mol, J.; Jenkins, G.; Schäfer, E.; Weiss, D.

    1996-01-01

    Anthocyanin pigments provide fruits and flowers with their bright red and blue colors and are induced in vegetative tissues by various signals. The biosynthetic pathway probably represents one of the best‐studied examples of higher plant secondary metabolism. It has attracted much attention of plant geneticists because of the dispensable nature of the compounds it produces. Not unexpectedly, several excellent reviews on anthocyanin biosynthesis have been published over the last 5 years (Dooner et al., 1991; Martin and Gerats, 1993a, 1993b; Koes et al., 1994; Holton and Cornish, 1995). These reviews emphasize the late steps of pigment biosynthesis rather than the early and intermediate events of signal perception and transduction. This review is broader and not only covers the identification of components of the anthocyanin signal perception/transduction networks but also provides a description of our current understanding of how they evoke the responses that they do. Progress has derived from a combination of biochemical, molecular and genetic studies. We discuss a range of relevant research to highlight the different experimental approaches being used and the diverse biological systems under investigation. (author)

  20. Genetic and biochemical characterization of rhizobacterial strains and their potential use in combination with chelants for assisted phytoremediation.

    Science.gov (United States)

    Cicatelli, Angela; Guarino, Francesco; Baldan, Enrico; Castiglione, Stefano

    2017-03-01

    Copper and zinc are essential micronutrients in plants but, at high concentrations, they are toxic. Assisted phytoremediation is an emerging "green" technology that aims to improve the efficiency of tolerant species to remove metals from soils through the use of chelants or microorganisms. Rhizobacteria can promote plant growth and tolerance and also affect the mobility, bioavailability, and complexation of metals. A pot experiment was conducted to evaluate the phytoremediation effectiveness of sunflowers cultivated in a Cu- and Zn-spiked soil, in the presence or absence of bacterial consortium and/or chelants. The consortium was constituted of two Stenotrophomonas maltophilia strains and one of Agrobacterium sp. These strains were previously isolated from the rhizosphere of maize plants cultivated on a metal-polluted soil and here molecularly and biochemically characterized. Results showed that the consortium improved sunflower growth and biomass production on the spiked soils. Sunflowers accumulated large amounts of metals in their roots and leaves; however, neither the bacterial consortium nor the chelants, singularly added to pots, influenced significantly Cu and Zn plant uptake. Furthermore, the consecutive soil amendment with the EDTA and bacterial consortium determined a consistent accumulation of metals in sunflowers, and it might be an alternative strategy to limit the use of EDTA and its associated environmental risks in phytoremediation.

  1. Biosynthesis of oleamide.

    Science.gov (United States)

    Mueller, Gregory P; Driscoll, William J

    2009-01-01

    Oleamide (cis-9-octadecenamide) is the prototype long chain primary fatty acid amide lipid messenger. The natural occurrence of oleamide was first reported in human serum in 1989. Subsequently oleamide was shown to accumulate in the cerebrospinal fluid of sleep-deprived cats and to induce sleep when administered to experimental animals. Accordingly, oleamide first became known for its potential role in the mechanisms that mediate the drive to sleep. Oleamide also has profound effects on thermoregulation and acts as an analgesic in several models of experimental pain. Although these important pharmacologic effects are well establish, the biochemical mechanism for the synthesis of oleamide has not yet been defined. This chapter reviews the biosynthetic pathways that have been proposed and highlights two mechanisms which are most supported by experimental evidence: the generation of oleamide from oleoylglycine by the neuropeptide processing enzyme, peptidylglycine alpha-amidating monooxygenase (PAM), and alternatively, the direct amidation of oleic acid via oleoyl coenzyme A by cytochrome c using ammonia as the nitrogen source. The latter mechanism is discussed in the context of apoptosis where oleamide may play a role in regulating gap junction communication. Lastly, several considerations and caveats pertinent to the future study oleamide biosynthesis are discussed.

  2. Two enzymes involved in biosynthesis of the host-selective phytotoxin HC-toxin

    International Nuclear Information System (INIS)

    Walton, J.D.

    1987-01-01

    Cochliobolus carbonum race 1 produces a cyclic tetrapeptide HC-toxin, which is necessary for its exceptional virulence on certain varieties of maize. Previous genetic analysis of HC-toxin production by the fungus has indicated that a single genetic locus controls HC-toxin production. Enzymes involved in the biosynthesis of HC-toxin have been sought by following the precedents established for the biosynthetic enzymes of cyclic peptide antibiotics. Two enzymatic activities from C. carbonum race 1 were found, a D-alanine- and an L-proline-dependent ATP/PP/sub i/ exchange, which by biochemical and genetic criteria were shown to be involved in the biosynthesis of HC-toxin. These two activities were present in all tested race 1 isolates of C. carbonum, which produce HC-toxin, and in none of the tested race 2 and race 3 isolates, which do not produce the toxin. In a genetic cross between two isolates of C. carbonum differing at the tox locus, all tox + progeny had both activities, and all tox - progeny lacked both activities

  3. Higher physiopathogenicity by Fasciola gigantica than by the genetically close F. hepatica: experimental long-term follow-up of biochemical markers.

    Science.gov (United States)

    Valero, M Adela; Bargues, M Dolores; Khoubbane, Messaoud; Artigas, Patricio; Quesada, Carla; Berinde, Lavinia; Ubeira, Florencio M; Mezo, Mercedes; Hernandez, Jose L; Agramunt, Veronica H; Mas-Coma, Santiago

    2016-01-01

    Fascioliasis is caused by Fasciola hepatica and F. gigantica. The latter, always considered secondary in human infection, nowadays appears increasingly involved in Africa and Asia. Unfortunately, little is known about its pathogenicity, mainly due to difficulties in assessing the moment a patient first becomes infected and the differential diagnosis with F. hepatica. A long-term, 24-week, experimental study comparing F. hepatica and F. gigantica was made for the first time in the same animal model host, Guirra sheep. Serum biochemical parameters of liver damage, serum electrolytes, protein metabolism, plasma proteins, carbohydrate metabolism, hepatic lipid metabolism and inflammation were analysed on a biweekly basis as morbidity indicators. Serum anti-Fasciola IgG, coproantigen and egg shedding were simultaneously followed up. rDNA and mtDNA sequencing and the morphometric study by computer image analysis system (CIAS) showed that fasciolids used fitted standard species characteristics. Results demonstrated that F. gigantica is more pathogenic, given its bigger size and biomass but not due to genetic differences which are few. Fasciola gigantica shows a delayed development of 1-2 weeks regarding both the biliary phase and the beginning of egg shedding, with respective consequences for biochemical modifications in the acute and chronic periods. The higher F. gigantica pathogenicity contrasts with previous studies which only reflected the faster development of F. hepatica observed in short-term experiments. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Genetic Variation for Lettuce Seed Thermoinhibition Is Associated with Temperature-Sensitive Expression of Abscisic Acid, Gibberellin, and Ethylene Biosynthesis, Metabolism, and Response Genes1[C][W][OA

    Science.gov (United States)

    Argyris, Jason; Dahal, Peetambar; Hayashi, Eiji; Still, David W.; Bradford, Kent J.

    2008-01-01

    Lettuce (Lactuca sativa ‘Salinas’) seeds fail to germinate when imbibed at temperatures above 25°C to 30°C (termed thermoinhibition). However, seeds of an accession of Lactuca serriola (UC96US23) do not exhibit thermoinhibition up to 37°C in the light. Comparative genetics, physiology, and gene expression were analyzed in these genotypes to determine the mechanisms governing the regulation of seed germination by temperature. Germination of the two genotypes was differentially sensitive to abscisic acid (ABA) and gibberellin (GA) at elevated temperatures. Quantitative trait loci associated with these phenotypes colocated with a major quantitative trait locus (Htg6.1) from UC96US23 conferring germination thermotolerance. ABA contents were elevated in Salinas seeds that exhibited thermoinhibition, consistent with the ability of fluridone (an ABA biosynthesis inhibitor) to improve germination at high temperatures. Expression of many genes involved in ABA, GA, and ethylene biosynthesis, metabolism, and response was differentially affected by high temperature and light in the two genotypes. In general, ABA-related genes were more highly expressed when germination was inhibited, and GA- and ethylene-related genes were more highly expressed when germination was permitted. In particular, LsNCED4, a gene encoding an enzyme in the ABA biosynthetic pathway, was up-regulated by high temperature only in Salinas seeds and also colocated with Htg6.1. The temperature sensitivity of expression of LsNCED4 may determine the upper temperature limit for lettuce seed germination and may indirectly influence other regulatory pathways via interconnected effects of increased ABA biosynthesis. PMID:18753282

  5. Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis

    International Nuclear Information System (INIS)

    Shirley, B.W.; Kubasek, W.L.; Storz, G.; Bruggemann, E.; Koornneef, M.; Ausubel, F.M.; Goodman, H.M.

    1995-01-01

    Eleven loci that play a role in the synthesis of flavonoids in Arabidopsis are described. Mutations at these loci, collectively named transparent testa (tt), disrupt the synthesis of brown pigments in the seed coat (testa). Several of these loci (tt3, tt4, tt5 and ttg) are also required for the accumulation of purple anthocyanins in leaves and stems and one locus (ttg) plays additional roles in trichome and root hair development. Specific functions were previously assigned to tt1-7 and ttg. Here, the results of additional genetic, biochemical and molecular analyses of these mutants are described. Genetic map positions were determined for tt8, tt9 and tt10. Thin-layer chromatography identified tissue- and locus-specific differences in the flavonols and anthocyanidins synthesized by mutant and wild-type plants. It was found that UV light reveals distinct differences in the floral tissues of tt3, tt4, tt5, tt6 and ttg, even though these tissues are indistinguishable under visible light. Evidence was also uncovered that tt8 and ttg specifically affect dihydroflavonol reductase gene expression. A summary of these and previously published results are incorporated into an overview of the genetics of flavonoid biosynthesis in Arabidopsis

  6. The first joint congress of the South African Biochemical Society, South African Genetics Society and the South African Society for Microbiology at the University of the Witwatersrand, 29 June-4 July 1986

    International Nuclear Information System (INIS)

    1986-01-01

    The South African Biochemical Society, South African Genetics Society and the South African Society for Microbiology held a joint congress at the University of the Witwatersrand from 29 June - 4 July 1986. The papers delivered cover subjects such as Molecular biology, Genetics, Biochemistry, Medical biochemistry, Physiology, Zoology and Isotope and radiation sciences. Different isotopes are used in labelling studies of enzymes, nutrition, metabolism, viruses, bacteria and other biological assays done in the fields of Biochenmistry, Genetics and Microbiology. This work contains only the abstracts of these papers

  7. A Combined Genetic, Biochemical, and Biophysical Analysis of the A1 Phylloquinone Binding Site of Photosystem I from Green Algae

    Energy Technology Data Exchange (ETDEWEB)

    Kevin E. Redding

    2008-05-31

    This project has resulted in the increase in our understanding of how proteins interact with and influence the properties of bound cofactors. This information is important for several reasons, including providing essential information for the re-engineering of biological molecules, such as proteins, for either improved function or entirely new ones. In particular, we have found that a molecule, such as the phylloquinone used in Photosystem I (PS1), can be made a stronger electron donor by placing it in a hydrophobic (greasy) environment surrounded by negative charges. In addition, the protein is constrained in its interactions with the phylloqinone, in that it must bind the cofactor tightly, but not in such a way that would stabilize the reduced (natively-charged) version of the molecule. We have used a combination of molecular genetics, in order to make specific mutations in the region of the phylloquinone, and an advanced form of spectroscopy capable of monitoring the transfer of electrons within PS1 using living cells as the material. This approach turned out to produce a significant savings in time and supplies, as it allowed us to focus quickly on the mutants that produced interesting effects, without having to go through laborious purification of the affected proteins. We followed up selected mutants using other spectroscopic techniques in order to gain more specialized information.

  8. Micropropagation and validation of genetic and biochemical fidelity amongst regenerants of Cassia angustifolia Vahl employing RAPD marker and HPLC.

    Science.gov (United States)

    Chetri, Siva K; Sardar, Pratima Rani; Agrawal, Veena

    2014-10-01

    In vitro protocol has been established for clonal propagation of Cassia angustifolia Vahl which is an important source of anticancerous bioactive compounds, sennoside A and B. Nodal explants excised from field raised elite plant (showing optimum level of sennoside A and B) of C. angustifolia when reared on Murashige and Skoog's medium augmented with different cytokinins, viz. N(6)-benzyladenine (BA), N(6)-(2-isopentenyl) adenine (2iP) and 6-furfuryl aminopurine (Kn) differentiated multiple shoots in their axils. Of the three cytokinins, BA at 5 μM proved optimum for differentiating multiple shoots in 95 % cultures with an average of 9.14 shoots per explant within 8 weeks of culture. Nearly, 95 % of the excised in vitro shoots rooted on half strength MS medium supplemented with 10 μM indole-3-butyric acid (IBA). The phenotypically similar micropropagated plants were evaluated for their genetic fidelity employing random amplified polymorphic DNA (RAPD) markers. Eleven individuals, randomly chosen amongst a population of 120 regenerants were compared with the donor plant. A total of 36 scorable bands, ranging in size from 100 to 1,000 bp were generated amongst them by the RAPD primers. All banding profiles from micropropagated plants were monomorphic and similar to those of mother plant proving their true to the type nature. Besides, high performance liquid chromatography evaluation of the sennoside A and B content amongst leaves of the mature regenerants and the elite mother plant too revealed consistency in their content.

  9. Micropropagation and validation of genetic and biochemical fidelity among regenerants of Nothapodytes nimmoniana (Graham) Mabb. employing ISSR markers and HPLC.

    Science.gov (United States)

    Prakash, Lokesh; Middha, Sushil Kumar; Mohanty, Sudipta Kumar; Swamy, Mallappa Kumara

    2016-12-01

    An in vitro protocol has been established for clonal propagation of Nothapodytes nimmoniana which is an important source of Camptothecin (CPT). Elite source was identified based on the chemical potency to accumulate the optimum level of CPT. Different types and concentrations of plant growth regulators were used to study their effect on inducing multiple shoots from the explants regenerated from embryos of N. nimmoniana. Of these, a combination of N6-benzyladenine (0.2 mg L -1 ) and Indole-3-butyric acid (IBA) (0.1 mg L -1 ) proved optimum for differentiating multiple shoots in 90.6 % of the cultures with an average of 10.24 shoots per explant obtained within 8 weeks of inoculation. Nearly, 92 % of the excised in vitro shoots rooted on half strength Murashige and Skoog (MS) medium containing 0.05 % activated charcoal, supplemented with 1-naphthaleneacetic acid and IBA at 0.1 mg L -1 each. The micropropagated plants were evaluated for their genetic fidelity by employing inter simple sequence repeats (ISSR) markers. Ten individuals, randomly chosen from a population of 145 regenerants, were compared with the donor plant. The regenerated plants were also evaluated for their chemical potency using high-performance liquid chromatography (HPLC) analysis of CPT content. The true-to-type nature of the micropropagated plants was confirmed based on their monomorphic banding profiles with that of the mother plants using ISSR markers. Besides, HPLC evaluation of the CPT content confirmed the existence of chemical uniformity among the regenerated plants and the elite mother plant.

  10. Cognitive deficits in a genetic mouse model of the most common biochemical cause of human mental retardation.

    Science.gov (United States)

    Zagreda, L; Goodman, J; Druin, D P; McDonald, D; Diamond, A

    1999-07-15

    Phenylalanine hydroxylase (Pah)-deficient "PKU mice" have a mutation in the Pah gene that causes phenylketonuria (PKU) in humans. PKU produces cognitive deficits in humans if it is untreated. We report here the first evidence that the genetic mouse model of PKU (Pah(enu2)) also produces cognitive impairments. PKU mice were impaired on both odor discrimination reversal and latent learning compared with heterozygote littermates and with wild-type mice of the same BTBR strain. A small container of cinnamon-scented sand was presented on the right or left, and nutmeg-scented sand was presented on the other side; left-right location varied over trials. Digging in sand of the correct scent was rewarded by finding phenylalanine-free chocolate. To prevent scent cuing, new containers were used on every trial, and both containers always contained chocolate. Digging in the incorrect choice was stopped before the chocolate was uncovered. Once criterion was reached, the other scent was rewarded. PKU mice were impaired on reversals 2, 3, and 4. They were also impaired in latent learning. On day 1, half the mice were allowed to explore a maze and discover the location of water. On day 2, all mice were water-deprived and were placed in the maze. Whereas pre-exposed wild-type and heterozygous mice showed evidence that they remembered the location of the water and hence could find the water faster on day 2, pre-exposed PKU mice showed no significant benefit from their pre-exposure on day 1.

  11. Biosynthesis and Degradation of Mono-, Oligo-, and Polysaccharides: Introduction

    Science.gov (United States)

    Wilson, Iain B. H.

    Glycomolecules, whether they be mono-, oligo-, or polysaccharides or simple glycosides, are—as any biological molecules—the products of biosynthetic processes; on the other hand, at the end of their lifespan, they are also subject to degradation. The beginning point, biochemically, is the fixation of carbon by photosynthesis; subsequent metabolism in plants and other organisms results in the generation of the various monosaccharides. These must be activated—typically as nucleotide sugars or lipid-phosphosugars—before transfer by glycosyltransferases can take place in order to produce the wide variety of oligo- and polysaccharides seen in Nature; complicated remodelling processes may take place—depending on the pathway—which result in partial trimming of a precursor by glycosidases prior to the addition of further monosaccharide units. Upon completion of the 'life' of a glycoconjugate, glycosidases will degrade the macromolecule finally into monosaccharide units which can be metabolized or salvaged for incorporation into new glycan chains. In modern glycoscience, a wide variety of methods—genetic, biochemical, analytical—are being employed in order to understand these various pathways and to place them within their biological and medical context. In this chapter, these processes and relevant concepts and methods are introduced, prior to elaboration in the subsequent more specialized chapters on biosynthesis and degradation of mono-, oligo-, and polysaccharides.

  12. A Reverse-Genetics Mutational Analysis of the Barley HvDWARF Gene Results in Identification of a Series of Alleles and Mutants with Short Stature of Various Degree and Disturbance in BR Biosynthesis Allowing a New Insight into the Process

    Czech Academy of Sciences Publication Activity Database

    Gruszka, D.; Gorniak, M.; Glodowska, E.; Wierus, E.; Oklešťková, Jana; Janeczko, A.; Maluszynski, M.; Szarejko, I.

    2016-01-01

    Roč. 17, č. 4 (2016), s. 600 E-ISSN 1422-0067 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : barley * biosynthesis * brassinosteroids Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.226, year: 2016

  13. Immune and biochemical responses in skin differ between bovine hosts genetically susceptible and resistant to the cattle tick Rhipicephalus microplus.

    Science.gov (United States)

    Franzin, Alessandra Mara; Maruyama, Sandra Regina; Garcia, Gustavo Rocha; Oliveira, Rosane Pereira; Ribeiro, José Marcos Chaves; Bishop, Richard; Maia, Antônio Augusto Mendes; Moré, Daniela Dantas; Ferreira, Beatriz Rossetti; Santos, Isabel Kinney Ferreira de Miranda

    2017-01-31

    Ticks attach to and penetrate their hosts' skin and inactivate multiple components of host responses in order to acquire a blood meal. Infestation loads with the cattle tick, Rhipicephalus microplus, are heritable: some breeds carry high loads of reproductively successful ticks, whereas in others, few ticks feed and reproduce efficiently. In order to elucidate the mechanisms that result in the different outcomes of infestations with cattle ticks, we examined global gene expression and inflammation induced by tick bites in skins from one resistant and one susceptible breed of cattle that underwent primary infestations with larvae and nymphs of R. microplus. We also examined the expression profiles of genes encoding secreted tick proteins that mediate parasitism in larvae and nymphs feeding on these breeds. Functional analyses of differentially expressed genes in the skin suggest that allergic contact-like dermatitis develops with ensuing production of IL-6, CXCL-8 and CCL-2 and is sustained by HMGB1, ISG15 and PKR, leading to expression of pro-inflammatory chemokines and cytokines that recruit granulocytes and T lymphocytes. Importantly, this response is delayed in susceptible hosts. Histopathological analyses of infested skins showed inflammatory reactions surrounding tick cement cones that enable attachment in both breeds, but in genetically tick-resistant bovines they destabilized the cone. The transcription data provided insights into tick-mediated activation of basophils, which have previously been shown to be a key to host resistance in model systems. Skin from tick-susceptible bovines expressed more transcripts encoding enzymes that detoxify tissues. Interestingly, these enzymes also produce volatile odoriferous compounds and, accordingly, skin rubbings from tick-susceptible bovines attracted significantly more tick larvae than rubbings from resistant hosts. Moreover, transcripts encoding secreted modulatory molecules by the tick were significantly more

  14. Genetic, serological and biochemical characterization of Leishmania tropica from foci in northern Palestine and discovery of zymodeme MON-307

    Directory of Open Access Journals (Sweden)

    Azmi Kifaya

    2012-06-01

    came. Conclusions The Palestinian strains that were assigned to different genetic groups differed in their MLEE profiles and their EF types. A new zymodeme, zymodeme MON-307 was discovered that seems to be unique to the northern part of the Palestinian West Bank. What seemed to be a straight forward classical situation of L. tropica causing anthroponotic CL in the Jenin District might be a more complex situation, owing to the presence of two separate sub-types of L. tropica that, possibly, indicates two separate transmission cycles involving two separate types of phlebotomine sand fly vector.

  15. Genetic polymorphisms of antioxidant enzymes CAT and SOD affect the outcome of clinical, biochemical, and anthropometric variables in people with obesity under a dietary intervention.

    Science.gov (United States)

    Hernández-Guerrero, César; Parra-Carriedo, Alicia; Ruiz-de-Santiago, Diana; Galicia-Castillo, Oscar; Buenrostro-Jáuregui, Mario; Díaz-Gutiérrez, Carmen

    2018-01-01

    Genetic polymorphisms of antioxidant enzymes CAT, GPX, and SOD are involved in the etiology of obesity and its principal comorbidities. The aim of the present study was to analyze the effect of aforementioned SNPs over the output of several variables in people with obesity after a nutritional intervention. The study included 92 Mexican women, which received a dietary intervention by 3 months. Participants were genotyped and stratified into two groups: (1) carriers; mutated homozygous plus heterozygous (CR) and (2) homozygous wild type (WT). A comparison between CR and WT was done in clinical (CV), biochemical (BV), and anthropometric variables (AV), at the beginning and at the end of the intervention. Participants ( n  = 92) showed statistically significant differences ( p  T GPX1 (rs1050450), - 251A>G SOD1 (rs2070424), and - 262C>T CAT (rs1001179). (B) Only CR showed statistically changes ( p  T CAT (rs7943316) and 47C>T SOD2 (rs4880). The dietary intervention effect was statistically significantly between the polymorphisms of 47C>T SOD2 and BMI, SBP, TBARS, total cholesterol, and C-LCL ( p  T CAT (rs7943316) and SBP, DBP, total cholesterol, and atherogenic index ( p  CAT enzymes.

  16. Elucidation and chemical modulation of sulfolipid-1 biosynthesis in Mycobacterium tuberculosis.

    Science.gov (United States)

    Seeliger, Jessica C; Holsclaw, Cynthia M; Schelle, Michael W; Botyanszki, Zsofia; Gilmore, Sarah A; Tully, Sarah E; Niederweis, Michael; Cravatt, Benjamin F; Leary, Julie A; Bertozzi, Carolyn R

    2012-03-09

    Mycobacterium tuberculosis possesses unique cell-surface lipids that have been implicated in virulence. One of the most abundant is sulfolipid-1 (SL-1), a tetraacyl-sulfotrehalose glycolipid. Although the early steps in SL-1 biosynthesis are known, the machinery underlying the final acylation reactions is not understood. We provide genetic and biochemical evidence for the activities of two proteins, Chp1 and Sap (corresponding to gene loci rv3822 and rv3821), that complete this pathway. The membrane-associated acyltransferase Chp1 accepts a synthetic diacyl sulfolipid and transfers an acyl group regioselectively from one donor substrate molecule to a second acceptor molecule in two successive reactions to yield a tetraacylated product. Chp1 is fully active in vitro, but in M. tuberculosis, its function is potentiated by the previously identified sulfolipid transporter MmpL8. We also show that the integral membrane protein Sap and MmpL8 are both essential for sulfolipid transport. Finally, the lipase inhibitor tetrahydrolipstatin disrupts Chp1 activity in M. tuberculosis, suggesting an avenue for perturbing SL-1 biosynthesis in vivo. These data complete the SL-1 biosynthetic pathway and corroborate a model in which lipid biosynthesis and transmembrane transport are coupled at the membrane-cytosol interface through the activity of multiple proteins, possibly as a macromolecular complex.

  17. A directed-overflow and damage-control N-glycosidase in riboflavin biosynthesis

    Science.gov (United States)

    Frelin, Océane; Huang, Lili; Hasnain, Ghulam; Jeffryes, James G.; Ziemak, Michael J.; Rocca, James R.; Wang, Bing; Rice, Jennifer; Roje, Sanja; Yurgel, Svetlana N.; Gregory, Jesse F.; Edison, Arthur S.; Henry, Christopher S.; deCrécy-Lagard, Valérie; Hanson, Andrew D.

    2015-01-01

    Plants and bacteria synthesize the essential human micronutrient riboflavin (vitamin B2) via the same multistep pathway. The early intermediates of this pathway are notoriously reactive, and may be overproduced in vivo because riboflavin biosynthesis enzymes lack feedback controls. Here we demonstrate disposal of riboflavin intermediates by COG3236 (DUF1768), a protein of previously unknown function that is fused to two different riboflavin pathway enzymes in plants and bacteria (RIBR and RibA, respectively). We present cheminformatic, biochemical, genetic, and genomic evidence to show that: (i) plant and bacterial COG3236 proteins cleave the N-glycosidic bond of the first two intermediates of riboflavin biosynthesis, yielding relatively innocuous products; (ii) certain COG3236 proteins are in a multienzyme riboflavin biosynthesis complex that gives them privileged access to riboflavin intermediates; and (iii) COG3236 action in Arabidopsis thaliana and Escherichia coli helps maintain flavin levels. COG3236 proteins thus illustrate two emerging principles in chemical biology: directed overflow metabolism, in which excess flux is diverted out of a pathway, and the pre-emption of damage from reactive metabolites. PMID:25431972

  18. Combinatorial biosynthesis of medicinal plant secondary metabolites

    NARCIS (Netherlands)

    Julsing, Mattijs K.; Koulman, Albert; Woerdenbag, Herman J.; Quax, Wim J.; Kayser, Oliver

    2006-01-01

    Combinatorial biosynthesis is a new tool in the generation of novel natural products and for the production of rare and expensive natural products. The basic concept is combining metabolic pathways in different organisms on a genetic level. As a consequence heterologous organisms provide precursors

  19. Biosynthesis of polyhydroxyalkanotes in wildtype yeasts | Desuoky ...

    African Journals Online (AJOL)

    Biosynthesis of the biodegradable polymers polyhydroxyalkanotes (PHAs) are studied extensively in wild type and genetically modified prokaryotic cells, however the content and structure of PHA in wild type yeasts are not well documented. The purpose of this study was to screen forty yeast isolates collected from different ...

  20. How Embryophytic is the Biosynthesis of Phenylpropanoids and their Derivatives in Streptophyte Algae?

    Science.gov (United States)

    de Vries, Jan; de Vries, Sophie; Slamovits, Claudio H; Rose, Laura E; Archibald, John M

    2017-05-01

    The origin of land plants from algae is a long-standing question in evolutionary biology. It is becoming increasingly clear that many characters that were once assumed to be 'embryophyte specific' can in fact be found in their closest algal relatives, the streptophyte algae. One such case is the phenylpropanoid pathway. While biochemical data indicate that streptophyte algae harbor lignin-like components, the phenylpropanoid core pathway, which serves as the backbone of lignin biosynthesis, has been proposed to have arisen at the base of the land plants. Here we revisit this hypothesis using a wealth of new sequence data from streptophyte algae. Tracing the biochemical pathway towards lignin biogenesis, we show that most of the genes required for phenylpropanoid synthesis and the precursors for lignin production were already present in streptophyte algae. Nevertheless, phylogenetic analyses and protein structure predictions of one of the key enzyme classes in lignin production, cinnamyl alcohol dehydrogenase (CAD), suggest that CADs of streptophyte algae are more similar to sinapyl alcohol dehydrogenases (SADs). This suggests that the end-products of the pathway leading to lignin biosynthesis in streptophyte algae may facilitate the production of lignin-like compounds and defense molecules. We hypothesize that streptophyte algae already possessed the genetic toolkit from which the capacity to produce lignin later evolved in vascular plants. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Biochemical and Structural Characterization of WlbA from Bordetella pertussis and Chromobacterium violaceum: Enzymes Required for the Biosynthesis of 2,3-Diacetamido-2,3-dideoxy-d-mannuronic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Thoden, James B.; Holden, Hazel M. (UW)

    2011-12-22

    The unusual sugar 2,3-diacetamido-2,3-dideoxy-d-mannuronic acid, or ManNAc3NAcA, has been observed in the lipopolysaccharides of both pathogenic and nonpathogenic Gram-negative bacteria. It is added to the lipopolysaccharides of these organisms by glycosyltransferases that use as substrates UDP-ManNAc3NAcA. Five enzymes are ultimately required for the biosynthesis of UDP-ManNAc3NAcA starting from UDP-N-acetylglucosamine. The second enzyme in the pathway, encoded by the wlba gene and referred to as WlbA, catalyzes the NAD-dependent oxidation of the C-3' hydroxyl group of the UDP-linked sugar. Here we describe a combined structural and functional investigation of the WlbA enzymes from Bordetella pertussis and Chromobacterium violaceum. For this investigation, ternary structures were determined in the presence of NAD(H) and substrate to 2.13 and 1.5 {angstrom} resolution, respectively. Both of the enzymes display octameric quaternary structures with their active sites positioned far apart. The octamers can be envisioned as tetramers of dimers. Kinetic studies demonstrate that the reaction mechanisms for these enzymes are sequential and that they do not require {alpha}-ketoglutarate for activity. These results are in sharp contrast to those recently reported for the WlbA enzymes from Pseudomonas aeruginosa and Thermus thermophilus, which function via ping-pong mechanisms that involve {alpha}-ketoglutarate. Taken together, the results reported here demonstrate that there are two distinct families of WlbA enzymes, which differ with respect to amino acid sequences, quaternary structures, active site architectures, and kinetic mechanisms.

  2. Organization and characterization of genetic regions in Bacillus subtilis subsp. krictiensis ATCC55079 associated with the biosynthesis of iturin and surfactin compounds.

    Directory of Open Access Journals (Sweden)

    Young Tae Kim

    Full Text Available Bacillus subtilis subsp. krictiensis ATCC55079 produces the cyclic lipopeptide antibiotics iturin A-F as well as several surfactins. Here, we analyzed and characterized the biosynthetic genes associated with iturin and surfactin production in this strain. We aligned the sequences of each iturin and surfactin synthetase ORF obtained from a genomic library screen and next generation sequencing. The resulting 37,249-bp and 37,645-bp sequences associated with iturin and surfactin production, respectively, contained several ORFs that are predicted to encode proteins involved in iturin and surfactin biosynthesis. These ORFs showed higher sequence homologies with the respective iturin and surfactin synthetase genes of B. methylotrophicus CAU B946 than with those of B. subtilis RB14 and B. subtilis ATCC6633. Moreover, comparative analysis of the secondary metabolites produced by the wild-type and surfactin-less mutant (with a spectinomycin resistance cassette inserted into the srfAB gene within the putative surfactin gene region strains demonstrated that the mutant strain showed significantly higher antifungal activity against Fusarium oxysporum than the wild-type strain. In addition, the wild-type strain-specific surfactin high performance liquid chromatography (HPLC peaks were not observed in the surfactin-less mutant strain. In contrast, the iturin A peak detected by HPLC and liquid chromatography-mass spectrometry (LC/MS in the surfactin-less mutant strain was 30% greater than that in the wild-type strain. These results suggested that the gene cluster we identified is involved in surfactin biosynthesis, and the biosynthetic pathways for iturin and surfactin in Bacillus strains producing both iturin and surfactin may utilize a common pathway.

  3. Variants in estrogen-biosynthesis genes CYP17 and CYP19 and breast cancer risk: a family-based genetic association study

    International Nuclear Information System (INIS)

    Ahsan, Habibul; Whittemore, Alice S; Chen, Yu; Senie, Ruby T; Hamilton, Steven P; Wang, Qiao; Gurvich, Irina; Santella, Regina M

    2005-01-01

    Case-control studies have reported inconsistent results concerning breast cancer risk and polymorphisms in genes that control endogenous estrogen biosynthesis. We report findings from the first family-based association study examining associations between female breast cancer risk and polymorphisms in two key estrogen-biosynthesis genes CYP17 (T→C promoter polymorphism) and CYP19 (TTTA repeat polymorphism). We conducted the study among 278 nuclear families containing one or more daughters with breast cancer, with a total of 1123 family members (702 with available constitutional DNA and questionnaire data and 421 without them). These nuclear families were selected from breast cancer families participating in the Metropolitan New York Registry, one of the six centers of the National Cancer Institute's Breast Cancer Family Registry. We used likelihood-based statistical methods to examine allelic associations. We found the CYP19 allele with 11 TTTA repeats to be associated with breast cancer risk in these families. We also found that maternal (but not paternal) carrier status of CYP19 alleles with 11 repeats tended to be associated with breast cancer risk in daughters (independently of the daughters' own genotype), suggesting a possible in utero effect of CYP19. We found no association of a woman's breast cancer risk either with her own or with her mother's CYP17 genotype. This family-based study indicates that a woman's personal and maternal carrier status of CYP19 11 TTTA repeat allele might be related to increased breast cancer risk. However, because this is the first study to report an association between CYP19 11 TTTA repeat allele and breast cancer, and because multiple comparisons have been made, the associations should be interpreted with caution and need confirmation in future family-based studies

  4. Organization and characterization of genetic regions in Bacillus subtilis subsp. krictiensis ATCC55079 associated with the biosynthesis of iturin and surfactin compounds

    Science.gov (United States)

    Kim, Sung Eun; Lee, Won Jung; Moon, Jae Sun; Cho, Min Seop; Park, Ho-Yong; Hwang, Ingyu

    2017-01-01

    Bacillus subtilis subsp. krictiensis ATCC55079 produces the cyclic lipopeptide antibiotics iturin A–F as well as several surfactins. Here, we analyzed and characterized the biosynthetic genes associated with iturin and surfactin production in this strain. We aligned the sequences of each iturin and surfactin synthetase ORF obtained from a genomic library screen and next generation sequencing. The resulting 37,249-bp and 37,645-bp sequences associated with iturin and surfactin production, respectively, contained several ORFs that are predicted to encode proteins involved in iturin and surfactin biosynthesis. These ORFs showed higher sequence homologies with the respective iturin and surfactin synthetase genes of B. methylotrophicus CAU B946 than with those of B. subtilis RB14 and B. subtilis ATCC6633. Moreover, comparative analysis of the secondary metabolites produced by the wild-type and surfactin-less mutant (with a spectinomycin resistance cassette inserted into the srfAB gene within the putative surfactin gene region) strains demonstrated that the mutant strain showed significantly higher antifungal activity against Fusarium oxysporum than the wild-type strain. In addition, the wild-type strain-specific surfactin high performance liquid chromatography (HPLC) peaks were not observed in the surfactin-less mutant strain. In contrast, the iturin A peak detected by HPLC and liquid chromatography-mass spectrometry (LC/MS) in the surfactin-less mutant strain was 30% greater than that in the wild-type strain. These results suggested that the gene cluster we identified is involved in surfactin biosynthesis, and the biosynthetic pathways for iturin and surfactin in Bacillus strains producing both iturin and surfactin may utilize a common pathway. PMID:29267290

  5. Cantharidin biosynthesis in a blister beetle: inhibition by 6-fluoromevalonate causes chemical disarmament.

    Science.gov (United States)

    Carrel, J E; Doom, J P; McCormick, J P

    1986-07-15

    Biosynthesis of cantharidin in a blister beetle, Lytta polita, is effectively inhibited by 6-fluoromevalonate. Inhibition is attributed specifically to the fluorine substituent. Biochemical inhibition has not been demonstrated previously for an arthropod's defensive substance.

  6. DGAT enzymes and triacylglycerol biosynthesis

    Science.gov (United States)

    Yen, Chi-Liang Eric; Stone, Scot J.; Koliwad, Suneil; Harris, Charles; Farese, Robert V.

    2008-01-01

    Triacylglycerols (triglycerides) (TGs) are the major storage molecules of metabolic energy and FAs in most living organisms. Excessive accumulation of TGs, however, is associated with human diseases, such as obesity, diabetes mellitus, and steatohepatitis. The final and the only committed step in the biosynthesis of TGs is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. The genes encoding two DGAT enzymes, DGAT1 and DGAT2, were identified in the past decade, and the use of molecular tools, including mice deficient in either enzyme, has shed light on their functions. Although DGAT enzymes are involved in TG synthesis, they have distinct protein sequences and differ in their biochemical, cellular, and physiological functions. Both enzymes may be useful as therapeutic targets for diseases. Here we review the current knowledge of DGAT enzymes, focusing on new advances since the cloning of their genes, including possible roles in human health and diseases. PMID:18757836

  7. Inverse problem studies of biochemical systems with structure identification of S-systems by embedding training functions in a genetic algorithm.

    Science.gov (United States)

    Sarode, Ketan Dinkar; Kumar, V Ravi; Kulkarni, B D

    2016-05-01

    An efficient inverse problem approach for parameter estimation, state and structure identification from dynamic data by embedding training functions in a genetic algorithm methodology (ETFGA) is proposed for nonlinear dynamical biosystems using S-system canonical models. Use of multiple shooting and decomposition approach as training functions has been shown for handling of noisy datasets and computational efficiency in studying the inverse problem. The advantages of the methodology are brought out systematically by studying it for three biochemical model systems of interest. By studying a small-scale gene regulatory system described by a S-system model, the first example demonstrates the use of ETFGA for the multifold aims of the inverse problem. The estimation of a large number of parameters with simultaneous state and network identification is shown by training a generalized S-system canonical model with noisy datasets. The results of this study bring out the superior performance of ETFGA on comparison with other metaheuristic approaches. The second example studies the regulation of cAMP oscillations in Dictyostelium cells now assuming limited availability of noisy data. Here, flexibility of the approach to incorporate partial system information in the identification process is shown and its effect on accuracy and predictive ability of the estimated model are studied. The third example studies the phenomenological toy model of the regulation of circadian oscillations in Drosophila that follows rate laws different from S-system power-law. For the limited noisy data, using a priori information about properties of the system, we could estimate an alternate S-system model that showed robust oscillatory behavior with predictive abilities. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Genetic and biochemical characterization of HMB-1, a novel subclass B1 metallo-β-lactamase found in a Pseudomonas aeruginosa clinical isolate.

    Science.gov (United States)

    Pfennigwerth, Niels; Lange, Felix; Belmar Campos, Cristina; Hentschke, Moritz; Gatermann, Sören G; Kaase, Martin

    2017-04-01

    To characterize a novel subclass B1 metallo-β-lactamase (MBL) found in an MDR Pseudomonas aeruginosa clinical isolate. The isolate P. aeruginosa NRZ-03096 was recovered in 2012 from an anal swab from a patient hospitalized in Northern Germany and showed high MICs of carbapenems. MBL production was analysed by several phenotypic tests. Genetic characterization of the novel bla gene and MLST was performed by WGS. The novel bla gene was expressed in Escherichia coli TOP10 and the enzyme was subjected to biochemical characterization to determine the kinetic parameters K m and k cat . P. aeruginosa NRZ-03096 was resistant to all tested β-lactams and showed an MBL phenotype. Shotgun cloning experiments yielded a clone producing a novel subclass B1 enzyme with only 74.3% identity to the next nearest relative, KHM-1. The novel MBL was named HMB-1 (for Hamburg MBL). Analysis of WGS data showed that the bla HMB-1 gene was chromosomally located as part of a Tn 3 family transposon that was named Tn 6345 . Expression of bla HMB-1 in E. coli TOP10 led to increased resistance to β-lactams. Determination of K m and k cat revealed that HMB-1 had different hydrolytic characteristics compared with KHM-1, with lower hydrolytic rates for cephalosporins and a higher rate for imipenem. The identification of HMB-1 further underlines the ongoing spread and diversification of carbapenemases in Gram-negative human pathogens and especially in P. aeruginosa . © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Growth stage-based modulation in physiological and biochemical attributes of two genetically diverse wheat (Triticum aestivum L.) cultivars grown in salinized hydroponic culture.

    Science.gov (United States)

    Ashraf, Muhammad Arslan; Ashraf, Muhammad

    2016-04-01

    Hydroponic experiment was conducted to appraise variation in the salt tolerance potential of two wheat cultivars (salt tolerant, S-24, and moderately salt sensitive, MH-97) at different growth stages. These two wheat cultivars are not genetically related as evident from randomized polymorphic DNA analysis (random amplified polymorphic DNA (RAPD)) which revealed 28% genetic diversity. Salinity stress caused a marked reduction in grain yield of both wheat cultivars. However, cv. S-24 was superior to cv. MH-97 in maintaining grain yield under saline stress. Furthermore, salinity caused a significant variation in different physiological attributes measured at different growth stages. Salt stress caused considerable reduction in different water relation attributes of wheat plants. A significant reduction in leaf water, osmotic, and turgor potentials was recorded in both wheat cultivars at different growth stages. Maximal reduction in leaf water potential was recorded at the reproductive stage in both wheat cultivars. In contrast, maximal turgor potential was observed at the boot stage. Salt-induced adverse effects of salinity on different water relation attributes were more prominent in cv. MH-97 as compared to those in cv. S-24. Salt stress caused a substantial decrease in glycine betaine and alpha tocopherols. These biochemical attributes exhibited significant salt-induced variation at different growth stages in both wheat cultivars. For example, maximal accumulation of glycine betaine was evident at the early growth stages (vegetative and boot). However, cv. S-24 showed higher accumulation of this organic osmolyte, and this could be the reason for maintenance of higher turgor than that of cv. MH-97 under stress conditions. Salt stress significantly increased the endogenous levels of toxic ions (Na(+) and Cl(-)) and decreased essential cations (K(+) and Ca(2+)) in both wheat cultivars at different growth stages. Furthermore, K(+)/Na(+) and Ca(2+)/Na(+) ratios

  10. Genetics of trehalose biosynthesis in desert-derived Aureobasidium melanogenum and role of trehalose in the adaptation of the yeast to extreme environments.

    Science.gov (United States)

    Jiang, Hong; Liu, Guang-Lei; Chi, Zhe; Hu, Zhong; Chi, Zhen-Ming

    2018-04-01

    Melanin plays an important role in the stress adaptation of Aureobasidium melanogenum XJ5-1 isolated from the Taklimakan desert. A trehalose-6-phosphate synthase gene (TPS1 gene) was cloned from K5, characterized, and then deleted to determine the role of trehalose in the stress adaptation of the albino mutant K5. No stress response element and heat shock element were found in the promoter of the TPS1 gene. Deletion of the TPS1 gene in the albino mutant rendered a strain DT43 unable to synthesize any trehalose, but DT43 still could grow in glucose, suggesting that its hexokinase was insensitive to inhibition by trehalose-6-phosphate. Overexpression of the TPS1 gene enhanced trehalose biosynthesis in strain ET6. DT43 could not grow at 33 °C, whereas K5, ET6, and XJ5-1 could grow well at this temperature. Compared with K5 and ET6, DT43 was highly sensitive to heat shock treatment, high oxidation, and high desiccation, but all the three strains demonstrated the same sensitivity to UV light and high NaCl concentration. Therefore, trehalose played an important role in the adaptation of K5 to heat shock treatment, high oxidation, and high desiccation.

  11. Potential genetic polymorphisms predicting polycystic ovary syndrome

    Directory of Open Access Journals (Sweden)

    Yao Chen

    2018-05-01

    Full Text Available Polycystic ovary syndrome (PCOS is a heterogenous endocrine disorder with typical symptoms of oligomenorrhoea, hyperandrogenism, hirsutism, obesity, insulin resistance and increased risk of type 2 diabetes mellitus. Extensive evidence indicates that PCOS is a genetic disease and numerous biochemical pathways have been linked with its pathogenesis. A number of genes from these pathways have been investigated, which include those involved with steroid hormone biosynthesis and metabolism, action of gonadotropin and gonadal hormones, folliculogenesis, obesity and energy regulation, insulin secretion and action and many others. In this review, we summarize the historical and recent findings in genetic polymorphisms of PCOS from the relevant publications and outline some genetic polymorphisms that are potentially associated with the risk of PCOS. This information could uncover candidate genes associating with PCOS, which will be valuable for the development of novel diagnostic and treatment platforms for PCOS patients.

  12. Integrating the protein and metabolic engineering toolkits for next-generation chemical biosynthesis.

    Science.gov (United States)

    Pirie, Christopher M; De Mey, Marjan; Jones Prather, Kristala L; Ajikumar, Parayil Kumaran

    2013-04-19

    Through microbial engineering, biosynthesis has the potential to produce thousands of chemicals used in everyday life. Metabolic engineering and synthetic biology are fields driven by the manipulation of genes, genetic regulatory systems, and enzymatic pathways for developing highly productive microbial strains. Fundamentally, it is the biochemical characteristics of the enzymes themselves that dictate flux through a biosynthetic pathway toward the product of interest. As metabolic engineers target sophisticated secondary metabolites, there has been little recognition of the reduced catalytic activity and increased substrate/product promiscuity of the corresponding enzymes compared to those of central metabolism. Thus, fine-tuning these enzymatic characteristics through protein engineering is paramount for developing high-productivity microbial strains for secondary metabolites. Here, we describe the importance of protein engineering for advancing metabolic engineering of secondary metabolism pathways. This pathway integrated enzyme optimization can enhance the collective toolkit of microbial engineering to shape the future of chemical manufacturing.

  13. Medicago truncatula CYP716A12 Is a Multifunctional Oxidase Involved in the Biosynthesis of Hemolytic Saponins[W

    Science.gov (United States)

    Carelli, Maria; Biazzi, Elisa; Panara, Francesco; Tava, Aldo; Scaramelli, Laura; Porceddu, Andrea; Graham, Neil; Odoardi, Miriam; Piano, Efisio; Arcioni, Sergio; May, Sean; Scotti, Carla; Calderini, Ornella

    2011-01-01

    Saponins, a group of glycosidic compounds present in several plant species, have aglycone moieties that are formed using triterpenoid or steroidal skeletons. In spite of their importance as antimicrobial compounds and their possible benefits for human health, knowledge of the genetic control of saponin biosynthesis is still poorly understood. In the Medicago genus, the hemolytic activity of saponins is related to the nature of their aglycone moieties. We have identified a cytochrome P450 gene (CYP716A12) involved in saponin synthesis in Medicago truncatula using a combined genetic and biochemical approach. Genetic loss-of-function analysis and complementation studies showed that CYP716A12 is responsible for an early step in the saponin biosynthetic pathway. Mutants in CYP716A12 were unable to produce hemolytic saponins and only synthetized soyasaponins, and were thus named lacking hemolytic activity (lha). In vitro enzymatic activity assays indicate that CYP716A12 catalyzes the oxidation of β-amyrin and erythrodiol at the C-28 position, yielding oleanolic acid. Transcriptome changes in the lha mutant showed a modulation in the main steps of triterpenic saponin biosynthetic pathway: squalene cyclization, β-amyrin oxidation, and glycosylation. The analysis of CYP716A12 expression in planta is reported together with the sapogenin content in different tissues and stages. This article provides evidence for CYP716A12 being a key gene in hemolytic saponin biosynthesis. PMID:21821776

  14. Medicago truncatula CYP716A12 is a multifunctional oxidase involved in the biosynthesis of hemolytic saponins.

    Science.gov (United States)

    Carelli, Maria; Biazzi, Elisa; Panara, Francesco; Tava, Aldo; Scaramelli, Laura; Porceddu, Andrea; Graham, Neil; Odoardi, Miriam; Piano, Efisio; Arcioni, Sergio; May, Sean; Scotti, Carla; Calderini, Ornella

    2011-08-01

    Saponins, a group of glycosidic compounds present in several plant species, have aglycone moieties that are formed using triterpenoid or steroidal skeletons. In spite of their importance as antimicrobial compounds and their possible benefits for human health, knowledge of the genetic control of saponin biosynthesis is still poorly understood. In the Medicago genus, the hemolytic activity of saponins is related to the nature of their aglycone moieties. We have identified a cytochrome P450 gene (CYP716A12) involved in saponin synthesis in Medicago truncatula using a combined genetic and biochemical approach. Genetic loss-of-function analysis and complementation studies showed that CYP716A12 is responsible for an early step in the saponin biosynthetic pathway. Mutants in CYP716A12 were unable to produce hemolytic saponins and only synthetized soyasaponins, and were thus named lacking hemolytic activity (lha). In vitro enzymatic activity assays indicate that CYP716A12 catalyzes the oxidation of β-amyrin and erythrodiol at the C-28 position, yielding oleanolic acid. Transcriptome changes in the lha mutant showed a modulation in the main steps of triterpenic saponin biosynthetic pathway: squalene cyclization, β-amyrin oxidation, and glycosylation. The analysis of CYP716A12 expression in planta is reported together with the sapogenin content in different tissues and stages. This article provides evidence for CYP716A12 being a key gene in hemolytic saponin biosynthesis.

  15. Effects of Azospirillum brasilense with genetically modified auxin biosynthesis gene ipdC upon the diversity of the indigenous microbiota of the wheat rhizosphere.

    Science.gov (United States)

    Baudoin, Ezékiel; Lerner, Anat; Mirza, M Sajjad; El Zemrany, Hamdy; Prigent-Combaret, Claire; Jurkevich, Edouard; Spaepen, Stijn; Vanderleyden, Jos; Nazaret, Sylvie; Okon, Yaacov; Moënne-Loccoz, Yvan

    2010-04-01

    The phytostimulatory properties of Azospirillum inoculants, which entail production of the phytohormone indole-3-acetic acid (IAA), can be enhanced by genetic means. However, it is not known whether this could affect their interactions with indigenous soil microbes. Here, wheat seeds were inoculated with the wild-type strain Azospirillum brasilense Sp245 or one of three genetically modified (GM) derivatives and grown for one month. The GM derivatives contained a plasmid vector harboring the indole-3-pyruvate/phenylpyruvate decarboxylase gene ipdC (IAA production) controlled either by the constitutive promoter PnptII or the root exudate-responsive promoter PsbpA, or by an empty vector (GM control). All inoculants displayed equal rhizosphere population densities. Only inoculation with either ipdC construct increased shoot biomass compared with the non-inoculated control. At one month after inoculation, automated ribosomal intergenic spacer analysis (ARISA) revealed that the effect of the PsbpA construct on bacterial community structure differed from that of the GM control, which was confirmed by 16S rDNA-based denaturing gradient gel electrophoresis (DGGE). The fungal community was sensitive to inoculation with the PsbpA construct and especially the GM control, based on ARISA data. Overall, fungal and bacterial communities displayed distinct responses to inoculation of GM A. brasilense phytostimulators, whose effects could differ from those of the wild-type.

  16. Genetic and biochemical basis of Gall Midge resistance in some cultivars of Indica Rice. Final report for the period 1 October 1980 - 30 November 1986

    International Nuclear Information System (INIS)

    Reddy, G.M.

    1986-01-01

    The stability of high productivity of modern rice varieties is greatly affected by insect pests. Rice gall midge is a serious insect pest of rice that is prevalent in several south eastern asian countries. Gall midge resistance has been mainly attributed to antibiosis. No progress has so far been made in identifying the exact biochemical nature of resistance. In Indica subspecies the understanding of chemical nature of disease would be helpful in the control of the disease and also in breeding programme aimed at developing resistance varieties. Studies were undertaken to establish the biochemical basis of resistance. Biochemical characterization of resistant and susceptible varieties were carried out. The parameters considered were: total sugar and reducing sugar content, total phenol content, amino acid profile, post infectional changes in sugar and phenol, isozyme studies. 2 figs, 6 tabs

  17. Genetic and biochemical basis of Gall Midge resistance in some cultivars of Indica Rice. Final report for the period 1 October 1980 - 30 November 1986

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, G M [Osmania Univ., Hyderabad (India). Dept. of Genetics

    1987-12-31

    The stability of high productivity of modern rice varieties is greatly affected by insect pests. Rice gall midge is a serious insect pest of rice that is prevalent in several south eastern asian countries. Gall midge resistance has been mainly attributed to antibiosis. No progress has so far been made in identifying the exact biochemical nature of resistance. In Indica subspecies the understanding of chemical nature of disease would be helpful in the control of the disease and also in breeding programme aimed at developing resistance varieties. Studies were undertaken to establish the biochemical basis of resistance. Biochemical characterization of resistant and susceptible varieties were carried out. The parameters considered were: total sugar and reducing sugar content, total phenol content, amino acid profile, post infectional changes in sugar and phenol, isozyme studies. 2 figs, 6 tabs.

  18. Biochemical and genetic analyses of the oomycete Pythium insidiosum provide new insights into clinical identification and urease-based evolution of metabolism-related traits

    Directory of Open Access Journals (Sweden)

    Theerapong Krajaejun

    2018-06-01

    Full Text Available The oomycete microorganism, Pythium insidiosum, causes the life-threatening infectious condition, pythiosis, in humans and animals worldwide. Affected individuals typically endure surgical removal of the infected organ(s. Detection of P. insidiosum by the established microbiological, immunological, or molecular methods is not feasible in non-reference laboratories, resulting in delayed diagnosis. Biochemical assays have been used to characterize P. insidiosum, some of which could aid in the clinical identification of this organism. Although hydrolysis of maltose and sucrose has been proposed as the key biochemical feature useful in discriminating P. insidiosum from other oomycetes and fungi, this technique requires a more rigorous evaluation involving a wider selection of P. insidiosum strains. Here, we evaluated 10 routinely available biochemical assays for characterization of 26 P. insidiosum strains, isolated from different hosts and geographic origins. Initial assessment revealed diverse biochemical characteristics across the P. insidiosum strains tested. Failure to hydrolyze sugars is observed, especially in slow-growing strains. Because hydrolysis of maltose and sucrose varied among different strains, use of the biochemical assays for identification of P. insidiosum should be cautioned. The ability of P. insidiosum to hydrolyze urea is our focus, because this metabolic process relies on the enzyme urease, an important virulence factor of other pathogens. The ability to hydrolyze urea varied among P. insidiosum strains and was not associated with growth rates. Genome analyses demonstrated that urease- and urease accessory protein-encoding genes are present in both urea-hydrolyzing and non-urea-hydrolyzing strains of P. insidiosum. Urease genes are phylogenetically conserved in P. insidiosum and related oomycetes, while the presence of urease accessory protein-encoding genes is markedly diverse in these organisms. In summary, we dissected

  19. PLANT VOLATILES. Biosynthesis of monoterpene scent compounds in roses.

    Science.gov (United States)

    Magnard, Jean-Louis; Roccia, Aymeric; Caissard, Jean-Claude; Vergne, Philippe; Sun, Pulu; Hecquet, Romain; Dubois, Annick; Hibrand-Saint Oyant, Laurence; Jullien, Frédéric; Nicolè, Florence; Raymond, Olivier; Huguet, Stéphanie; Baltenweck, Raymonde; Meyer, Sophie; Claudel, Patricia; Jeauffre, Julien; Rohmer, Michel; Foucher, Fabrice; Hugueney, Philippe; Bendahmane, Mohammed; Baudino, Sylvie

    2015-07-03

    The scent of roses (Rosa x hybrida) is composed of hundreds of volatile molecules. Monoterpenes represent up to 70% percent of the scent content in some cultivars, such as the Papa Meilland rose. Monoterpene biosynthesis in plants relies on plastid-localized terpene synthases. Combining transcriptomic and genetic approaches, we show that the Nudix hydrolase RhNUDX1, localized in the cytoplasm, is part of a pathway for the biosynthesis of free monoterpene alcohols that contribute to fragrance in roses. The RhNUDX1 protein shows geranyl diphosphate diphosphohydrolase activity in vitro and supports geraniol biosynthesis in planta. Copyright © 2015, American Association for the Advancement of Science.

  20. A Reverse-Genetics Mutational Analysis of the Barley HvDWARF Gene Results in Identification of a Series of Alleles and Mutants with Short Stature of Various Degree and Disturbance in BR Biosynthesis Allowing a New Insight into the Process.

    Science.gov (United States)

    Gruszka, Damian; Gorniak, Malgorzata; Glodowska, Ewelina; Wierus, Ewa; Oklestkova, Jana; Janeczko, Anna; Maluszynski, Miroslaw; Szarejko, Iwona

    2016-04-22

    Brassinosteroids (BRs) are plant steroid hormones, regulating a broad range of physiological processes. The largest amount of data related with BR biosynthesis has been gathered in Arabidopsis thaliana, however understanding of this process is far less elucidated in monocot crops. Up to now, only four barley genes implicated in BR biosynthesis have been identified. Two of them, HvDWARF and HvBRD, encode BR-6-oxidases catalyzing biosynthesis of castasterone, but their relation is not yet understood. In the present study, the identification of the HvDWARF genomic sequence, its mutational and functional analysis and characterization of new mutants are reported. Various types of mutations located in different positions within functional domains were identified and characterized. Analysis of their impact on phenotype of the mutants was performed. The identified homozygous mutants show reduced height of various degree and disrupted skotomorphogenesis. Mutational analysis of the HvDWARF gene with the "reverse genetics" approach allowed for its detailed functional analysis at the level of protein functional domains. The HvDWARF gene function and mutants' phenotypes were also validated by measurement of endogenous BR concentration. These results allowed a new insight into the BR biosynthesis in barley.

  1. Biosynthesis of tylophora alkaloids

    International Nuclear Information System (INIS)

    Mulchandani, N.B.; Iyer, S.S.; Badheka, L.P.

    1974-01-01

    Using labelled precursors, biosynthesis of the tylophora alkaloids, tylophorine, tylophorinidine and tylophorinide has been investigated in Tylophora asthmatica plants. The radioactive precursors, phenylalanine-2- 14 C, benzoic acid-1- 14 C, benzoic acid-ring 14 C, acetate-2- 14 C, ornithine-5- 14 C, acetate-2- 14 C, ornithine-5- 14 C and cinnamic acid-2- 14 C were administered to the plants individually by wick technique. Tylophorine was isolated in each case and assayed for its radioactivity to find out the incorporation of the label into it. The results indicate that: (1) phenylalanine via cinnamic acid is an important precursor in the biosynthesis of tylophorine (2) orinithine participates in tylophorine biosynthesis via pyrroline and (3) tylophorinidine may be a direct precursor of tylophorine. (M.G.B.)

  2. Wybutosine biosynthesis: Structural and mechanistic overview

    Science.gov (United States)

    Perche-Letuvée, Phanélie; Molle, Thibaut; Forouhar, Farhad; Mulliez, Etienne; Atta, Mohamed

    2014-01-01

    Over the last 10 years, significant progress has been made in understanding the genetics, enzymology and structural components of the wybutosine (yW) biosynthetic pathway. These studies have played a key role in expanding our understanding of yW biosynthesis and have revealed unexpected evolutionary ties, which are presently being unraveled. The enzymes catalyzing the 5 steps of this pathway, from genetically encoded guanosine to wybutosine base, provide an ensemble of amazing reaction mechanisms that are to be discussed in this review article. PMID:25629788

  3. Estimating P-coverage of biosynthetic pathways in DNA libraries and screening by genetic selection: biotin biosynthesis in the marine microorganism Chromohalobacter.

    Science.gov (United States)

    Kim, Eun Jin; Angell, Scott; Janes, Jeff; Watanabe, Coran M H

    2008-06-01

    Traditional approaches to natural product discovery involve cell-based screening of natural product extracts followed by compound isolation and characterization. Their importance notwithstanding, continued mining leads to depletion of natural resources and the reisolation of previously identified metabolites. Metagenomic strategies aimed at localizing the biosynthetic cluster genes and expressing them in surrogate hosts offers one possible alternative. A fundamental question that naturally arises when pursuing such a strategy is, how large must the genomic library be to effectively represent the genome of an organism(s) and the biosynthetic gene clusters they harbor? Such an issue is certainly augmented in the absence of expensive robotics to expedite colony picking and/or screening of clones. We have developed an algorism, named BPC (biosynthetic pathway coverage), supported by molecular simulations to deduce the number of BAC clones required to achieve proper coverage of the genome and their respective biosynthetic pathways. The strategy has been applied to the construction of a large-insert BAC library from a marine microorganism, Hon6 (isolated from Honokohau, Maui) thought to represent a new species. The genomic library is constructed with a BAC yeast shuttle vector pClasper lacZ paving the way for the culturing of libraries in both prokaryotic and eukaryotic hosts. Flow cytometric methods are utilized to estimate the genome size of the organism and BPC implemented to assess P-coverage or percent coverage. A genetic selection strategy is illustrated, applications of which could expedite screening efforts in the identification and localization of biosynthetic pathways from marine microbial consortia, offering a powerful complement to genome sequencing and degenerate probe strategies. Implementing this approach, we report on the biotin biosynthetic pathway from the marine microorganism Hon6.

  4. Isoprenoid biosynthesis in Archaea - Biochemical and evolutionary implications

    NARCIS (Netherlands)

    Matsumi, Rie; Atomi, Haruyuki; Driessen, Arnold J. M.; van der Oost, John

    Isoprenoids are indispensable for all types of cellular life in the Archaea, Bacteria, and Eucarya. These membrane-associated molecules are involved in a wide variety of vital biological functions, ranging from compartmentalization and stability, to protection and energy-transduction. In Archaea,

  5. A strictly monofunctional bacterial hydroxymethylpyrimidine phosphate kinase precludes damaging errors in thiamin biosynthesis.

    Science.gov (United States)

    Thamm, Antje M; Li, Gengnan; Taja-Moreno, Marlene; Gerdes, Svetlana Y; de Crécy-Lagard, Valérie; Bruner, Steven D; Hanson, Andrew D

    2017-07-20

    The canonical kinase (ThiD) that converts the thiamin biosynthesis intermediate hydroxymethylpyrimidine (HMP) monophosphate to the diphosphate can also very efficiently convert free HMP to the monophosphate in prokaryotes, plants, and fungi. This HMP kinase activity enables salvage of HMP, but it is not substrate-specific and so allows toxic HMP analogs and damage products to infiltrate the thiamin biosynthesis pathway. Comparative analysis of bacterial genomes uncovered a gene, thiD2 , that is often fused to the thiamin synthesis gene thiE and could potentially encode a replacement for ThiD. Standalone ThiD2 proteins and ThiD2 fusion domains are small (~130-residues) and do not belong to any previously known protein family. Genetic and biochemical analyses showed that representative standalone and fused ThiD2 proteins catalyze phosphorylation of HMP monophosphate, but not of HMP or its toxic analogs and damage products such as bacimethrin and 5-(hydroxymethyl)-2-methylpyrimidin-4-ol. As strictly monofunctional HMP monophosphate kinases, ThiD2 proteins eliminate a potentially fatal vulnerability of canonical ThiD, at the cost of the ability to reclaim HMP formed by thiamin turnover. ©2017 The Author(s).

  6. Comparison of transcripts in Phalaenopsis bellina and Phalaenopsis equestris (Orchidaceae) flowers to deduce monoterpene biosynthesis pathway.

    Science.gov (United States)

    Hsiao, Yu-Yun; Tsai, Wen-Chieh; Kuoh, Chang-Sheng; Huang, Tian-Hsiang; Wang, Hei-Chia; Wu, Tian-Shung; Leu, Yann-Lii; Chen, Wen-Huei; Chen, Hong-Hwa

    2006-07-13

    Floral scent is one of the important strategies for ensuring fertilization and for determining seed or fruit set. Research on plant scents has hampered mainly by the invisibility of this character, its dynamic nature, and complex mixtures of components that are present in very small quantities. Most progress in scent research, as in other areas of plant biology, has come from the use of molecular and biochemical techniques. Although volatile components have been identified in several orchid species, the biosynthetic pathways of orchid flower fragrance are far from understood. We investigated how flower fragrance was generated in certain Phalaenopsis orchids by determining the chemical components of the floral scent, identifying floral expressed-sequence-tags (ESTs), and deducing the pathways of floral scent biosynthesis in Phalaneopsis bellina by bioinformatics analysis. The main chemical components in the P. bellina flower were shown by gas chromatography-mass spectrometry to be monoterpenoids, benzenoids and phenylpropanoids. The set of floral scent producing enzymes in the biosynthetic pathway from glyceraldehyde-3-phosphate (G3P) to geraniol and linalool were recognized through data mining of the P. bellina floral EST database (dbEST). Transcripts preferentially expressed in P. bellina were distinguished by comparing the scent floral dbEST to that of a scentless species, P. equestris, and included those encoding lipoxygenase, epimerase, diacylglycerol kinase and geranyl diphosphate synthase. In addition, EST filtering results showed that transcripts encoding signal transduction and Myb transcription factors and methyltransferase, in addition to those for scent biosynthesis, were detected by in silico hybridization of the P. bellina unigene database against those of the scentless species, rice and Arabidopsis. Altogether, we pinpointed 66% of the biosynthetic steps from G3P to geraniol, linalool and their derivatives. This systems biology program combined

  7. Biosynthesis of secondary metabolites in sugarcane

    Directory of Open Access Journals (Sweden)

    S.C. França

    2001-12-01

    Full Text Available A set of genes related to secondary metabolism was extracted from the sugarcane expressed sequence tag (SUCEST database and was used to investigate both the gene expression pattern of key enzymes regulating the main biosynthetic secondary metabolism pathways and the major classes of metabolites involved in the response of sugarcane to environmental and developmental cues. The SUCEST database was constructed with tissues in different physiological conditions which had been collected under varied situation of environmental stress. This database allows researchers to identify and characterize the expressed genes of a wide range of putative enzymes able to catalyze steps in the phenylpropanoid, isoprenoid and other pathways of the special metabolic mechanisms involved in the response of sugarcane to environmental changes. Our results show that sugarcane cDNAs encoded putative ultra-violet induced sesquiterpene cyclases (SC; chalcone synthase (CHS, the first enzyme in the pathway branch for flavonoid biosynthesis; isoflavone synthase (IFS, involved in plant defense and root nodulation; isoflavone reductase (IFR, a key enzyme in phenylpropanoid phytoalexin biosynthesis; and caffeic acid-O-methyltransferase, a key enzyme in the biosynthesis of lignin cell wall precursors. High levels of CHS transcripts from plantlets infected with Herbaspirillum rubri or Gluconacetobacter diazotroficans suggests that agents of biotic stress can elicit flavonoid biosynthesis in sugarcane. From this data we have predicted the profile of isoprenoid and phenylpropanoid metabolism in sugarcane and pointed the branches of secondary metabolism activated during tissue-specific stages of development and the adaptive response of sugarcane to agents of biotic and abiotic stress, although our assignment of enzyme function should be confirmed by careful biochemical and genetic supporting evidence.Este trabalho foi realizado com os objetivos de gerar uma coleção de genes

  8. Glycopeptide antibiotic biosynthesis.

    Science.gov (United States)

    Yim, Grace; Thaker, Maulik N; Koteva, Kalinka; Wright, Gerard

    2014-01-01

    Glycopeptides such as vancomycin, teicoplanin and telavancin are essential for treating infections caused by Gram-positive bacteria. Unfortunately, the dwindled pipeline of new antibiotics into the market and the emergence of glycopeptide-resistant enterococci and other resistant bacteria are increasingly making effective antibiotic treatment difficult. We have now learned a great deal about how bacteria produce antibiotics. This information can be exploited to develop the next generation of antimicrobials. The biosynthesis of glycopeptides via nonribosomal peptide assembly and unusual amino acid synthesis, crosslinking and tailoring enzymes gives rise to intricate chemical structures that target the bacterial cell wall. This review seeks to describe recent advances in our understanding of both biosynthesis and resistance of these important antibiotics.

  9. Genetic background of Porphyromonas gingivalis capsule biosynthesis

    NARCIS (Netherlands)

    Brunner, J.

    2011-01-01

    Paradontitis is een inflammatoire aandoening van het weefsel rond de tanden. Het ontstaat door een bacteriële infectie van het tandvlees waarna door de daaropvolgende ontstekingsreactie uiteindelijk het bot rond de tanden wordt aangetast. Dit kan zelfs leiden tot tanduitval. Paradontitis is een

  10. Structure and mechanism of a bacterial t6A biosynthesis system

    OpenAIRE

    Luthra, Amit; Swinehart, William; Bayooz, Susan; Phan, Phuc; Stec, Boguslaw; Iwata-Reuyl, Dirk; Swairjo, Manal A

    2018-01-01

    Abstract The universal N(6)-threonylcarbamoyladenosine (t6A) modification at position 37 of ANN-decoding tRNAs is central to translational fidelity. In bacteria, t6A biosynthesis is catalyzed by the proteins TsaB, TsaC/TsaC2, TsaD and TsaE. Despite intense research, the molecular mechanisms underlying t6A biosynthesis are poorly understood. Here, we report biochemical and biophysical studies of the t6A biosynthesis system from Thermotoga maritima. Small angle X-ray scattering analysis reveals...

  11. Genetics

    International Nuclear Information System (INIS)

    Hubitschek, H.E.

    1975-01-01

    Progress is reported on the following research projects: genetic effects of high LET radiations; genetic regulation, alteration, and repair; chromosome replication and the division cycle of Escherichia coli; effects of radioisotope decay in the DNA of microorganisms; initiation and termination of DNA replication in Bacillus subtilis; mutagenesis in mouse myeloma cells; lethal and mutagenic effects of near-uv radiation; effect of 8-methoxypsoralen on photodynamic lethality and mutagenicity in Escherichia coli; DNA repair of the lethal effects of far-uv; and near uv irradiation of bacterial cells

  12. Genetic and biochemical evidence that haploinsufficiency of the Nf1 tumor suppressor gene modulates melanocyte and mast cell fates in vivo.

    Science.gov (United States)

    Ingram, D A; Yang, F C; Travers, J B; Wenning, M J; Hiatt, K; New, S; Hood, A; Shannon, K; Williams, D A; Clapp, D W

    2000-01-03

    Neurofibromatosis type 1 (NF1) is a common autosomal-dominant disorder characterized by cutaneous neurofibromas infiltrated with large numbers of mast cells, melanocyte hyperplasia, and a predisposition to develop malignant neoplasms. NF1 encodes a GTPase activating protein (GAP) for Ras. Consistent with Knudson's "two hit" model of tumor suppressor genes, leukemias and malignant solid tumors in NF1 patients frequently demonstrate somatic loss of the normal NF1 allele. However, the phenotypic and biochemical consequences of heterozygous inactivation of Nf1 are largely unknown. Recently neurofibromin, the protein encoded by NF1, was shown to negatively regulate Ras activity in Nf1-/- murine myeloid hematopoietic cells in vitro through the c-kit receptor tyrosine kinase (dominant white spotting, W). Since the W and Nf1 locus appear to function along a common developmental pathway, we generated mice with mutations at both loci to examine potential interactions in vivo. Here, we show that haploinsufficiency at Nf1 perturbs cell fates in mast cells in vivo, and partially rescues coat color and mast cell defects in W(41) mice. Haploinsufficiency at Nf1 also increased mast cell proliferation, survival, and colony formation in response to Steel factor, the ligand for c-kit. Furthermore, haploinsufficiency was associated with enhanced Ras-mitogen-activated protein kinase activity, a major downstream effector of Ras, via wild-type and mutant (W(41)) c-kit receptors. These observations identify a novel interaction between c-kit and neurofibromin in vivo, and offer experimental evidence that haploinsufficiency of Nf1 alters both cellular and biochemical phenotypes in two cell lineages that are affected in individuals with NF1. Collectively, these data support the emerging concept that heterozygous inactivation of tumor suppressor genes may have profound biological effects in multiple cell types.

  13. A Novel TetR Family Transcriptional Regulator, CalR3, Negatively Controls Calcimycin Biosynthesis in Streptomyces chartreusis NRRL 3882

    Directory of Open Access Journals (Sweden)

    Lixia Gou

    2017-11-01

    Full Text Available Calcimycin is a unique ionophoric antibiotic that is widely used in biochemical and pharmaceutical applications, but the genetic basis underlying the regulatory mechanisms of calcimycin biosynthesis are unclear. Here, we identified the calR3 gene, which encodes a novel TetR family transcriptional regulator and exerts a negative effect on calcimycin biosynthesis. Disruption of calR3 in Streptomyces chartreusis NRRL 3882 led to significantly increased calcimycin and its intermediate cezomycin. Gene expression analysis showed that the transcription of calR3 and its adjacent calT gene were dramatically enhanced (30- and 171-fold, respectively in GLX26 (ΔcalR3 mutants compared with the wild-type strains. Two CalR3-binding sites within the bidirectional calR3-calT promoter region were identified using a DNase I footprinting assay, indicating that CalR3 directly repressed the transcription of its own gene and the calT gene. In vitro electrophoretic mobility shift assays suggested that both calcimycin and cezomycin can act as CalR3 ligands to induce CalR3 to dissociate from its binding sites. These findings indicate negative feedback for the regulation of CalR3 in calcimycin biosynthesis and suggest that calcimycin production can be improved by manipulating its biosynthetic machinery.

  14. Genetics

    DEFF Research Database (Denmark)

    Christensen, Kaare; McGue, Matt

    2016-01-01

    The sequenced genomes of individuals aged ≥80 years, who were highly educated, self-referred volunteers and with no self-reported chronic diseases were compared to young controls. In these data, healthy ageing is a distinct phenotype from exceptional longevity and genetic factors that protect...

  15. Expression profiles of genes involved in tanshinone biosynthesis of ...

    Indian Academy of Sciences (India)

    Expression profiles of genes involved in tanshinone biosynthesis of two. Salvia miltiorrhiza genotypes with different tanshinone contents. Zhenqiao Song, Jianhua Wang and Xingfeng Li. J. Genet. 95, 433–439. Table 1. S. miltiorrhiza genes and primer pairs used for qRT-PCR. Gene. GenBank accession. Primer name.

  16. Triterpene biosynthesis in plants.

    Science.gov (United States)

    Thimmappa, Ramesha; Geisler, Katrin; Louveau, Thomas; O'Maille, Paul; Osbourn, Anne

    2014-01-01

    The triterpenes are one of the most numerous and diverse groups of plant natural products. They are complex molecules that are, for the most part, beyond the reach of chemical synthesis. Simple triterpenes are components of surface waxes and specialized membranes and may potentially act as signaling molecules, whereas complex glycosylated triterpenes (saponins) provide protection against pathogens and pests. Simple and conjugated triterpenes have a wide range of applications in the food, health, and industrial biotechnology sectors. Here, we review recent developments in the field of triterpene biosynthesis, give an overview of the genes and enzymes that have been identified to date, and discuss strategies for discovering new triterpene biosynthetic pathways.

  17. Final Report on Regulation of Guaiacyl and Syringyl Monolignol Biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Vincent L. Chiang

    2006-03-09

    The focus of this research is to understand syringyl monolignol biosynthesis that leads to the formation of syringyl lignin, a type of lignin that can be easily removed during biomass conversion. We have achieved the three originally proposed goals for this project. (1) SAD and CAD genes (enzyme catalytic and kinetic properties) and their functional relevance to CAld5H/AldOMT pathway, (2) spatiotemporal expression patterns of Cald5H, AldOMT, SAD and CAD genes, and (3) functions of CAld5H, AldOMT, and SAD genes in vivo using transgenic aspen. Furthermore, we also found that microRNA might be involved in the upstream regulatory network of lignin biosynthesis and wood formation. The achievements are as below. (1) Based on biochemical and molecular studies, we discovered a novel syringyl-specific alcohol dehydrogenase (SAD) involved in monolignol biosynthesis in angiosperm trees. Through CAld5H/OMT/SAD mediation, syringyl monolignol biosynthesis branches out from guaiacyl pathway at coniferaldehyde; (2) The function of CAld5H gene in this syringyl monolignol biosynthesis pathway also was confirmed in vivo in transgenic Populus; (3) The proposed major monolignol biosynthesis pathways were further supported by the involving biochemical functions of CCR based on a detailed kinetic study; (4) Gene promoter activity analysis also supported the cell-type specific expression of SAD and CAD genes in xylem tissue, consistent with the cell-specific locations of SAD and CAD proteins and with the proposed pathways; (5) We have developed a novel small interfering RNA (siRNA)-mediated stable gene-silencing system in transgenic plants; (6) Using the siRNA and P. trichocarpa transformation/regeneration systems we are currently producing transgenic P. trichocarpa to investigate the interactive functions of CAD and SAD in regulating guaiacyl and syringyl lignin biosynthesis; (7) We have cloned for the first time from a tree species, P. trichocarpa, small regulatory RNAs termed micro

  18. Predictive hypotheses are ineffectual in resolving complex biochemical systems.

    Science.gov (United States)

    Fry, Michael

    2018-03-20

    Scientific hypotheses may either predict particular unknown facts or accommodate previously-known data. Although affirmed predictions are intuitively more rewarding than accommodations of established facts, opinions divide whether predictive hypotheses are also epistemically superior to accommodation hypotheses. This paper examines the contribution of predictive hypotheses to discoveries of several bio-molecular systems. Having all the necessary elements of the system known beforehand, an abstract predictive hypothesis of semiconservative mode of DNA replication was successfully affirmed. However, in defining the genetic code whose biochemical basis was unclear, hypotheses were only partially effective and supplementary experimentation was required for its conclusive definition. Markedly, hypotheses were entirely inept in predicting workings of complex systems that included unknown elements. Thus, hypotheses did not predict the existence and function of mRNA, the multiple unidentified components of the protein biosynthesis machinery, or the manifold unknown constituents of the ubiquitin-proteasome system of protein breakdown. Consequently, because of their inability to envision unknown entities, predictive hypotheses did not contribute to the elucidation of cation theories remained the sole instrument to explain complex bio-molecular systems, the philosophical question of alleged advantage of predictive over accommodative hypotheses became inconsequential.

  19. Integrated analysis of genetic, behavioral, and biochemical data implicates neural stem cell-induced changes in immunity, neurotransmission and mitochondrial function in Dementia with Lewy Body mice.

    Science.gov (United States)

    Lakatos, Anita; Goldberg, Natalie R S; Blurton-Jones, Mathew

    2017-03-10

    We previously demonstrated that transplantation of murine neural stem cells (NSCs) can improve motor and cognitive function in a transgenic model of Dementia with Lewy Bodies (DLB). These benefits occurred without changes in human α-synuclein pathology and were mediated in part by stem cell-induced elevation of brain-derived neurotrophic factor (BDNF). However, instrastriatal NSC transplantation likely alters the brain microenvironment via multiple mechanisms that may synergize to promote cognitive and motor recovery. The underlying neurobiology that mediates such restoration no doubt involves numerous genes acting in concert to modulate signaling within and between host brain cells and transplanted NSCs. In order to identify functionally connected gene networks and additional mechanisms that may contribute to stem cell-induced benefits, we performed weighted gene co-expression network analysis (WGCNA) on striatal tissue isolated from NSC- and vehicle-injected wild-type and DLB mice. Combining continuous behavioral and biochemical data with genome wide expression via network analysis proved to be a powerful approach; revealing significant alterations in immune response, neurotransmission, and mitochondria function. Taken together, these data shed further light on the gene network and biological processes that underlie the therapeutic effects of NSC transplantation on α-synuclein induced cognitive and motor impairments, thereby highlighting additional therapeutic targets for synucleinopathies.

  20. Biosynthesis of nanoparticles using microbes- a review.

    Science.gov (United States)

    Hulkoti, Nasreen I; Taranath, T C

    2014-09-01

    The biosynthesis of nanoparticles by microorganism is a green and eco-friendly technology. This review focuses on the use of consortium of diverse microorganisms belonging to both prokaryotes and eukaryotes for the synthesis of metallic nanoparticles viz. silver, gold, platinum, zirconium, palladium, iron, cadmium and metal oxides such as titanium oxide, zinc oxide, etc. These microorganisms include bacteria, actinomycetes, fungi and algae. The synthesis of nanoparticles may be intracellular or extracellular. The several workers have reported that NADH dependent nitrate reductase enzyme plays a vital role in the conversion of metallic ions to nanoparticles. The FTIR study reveals that diverse biomolecules viz. carboxyl group, primary and secondary amines, amide I, II, and III bands etc serve as a tool for bioreduction and capping agents there by offering stability to particles by preventing agglomeration and growth. The size and shape of the nanoparticles vary with the organism employed and conditions employed during the synthesis which included pH, temperature and substrate concentration. The microorganisms provide diverse environment for biosynthesis of nanoparticles. These particles are safe and eco-friendly with a lot of applications in medicine, agriculture, cosmetic industry, drug delivery and biochemical sensors. The challenges for redressal include optimal production and minimal time to obtain desired size and shape, to enhance the stability of nanoparticles and optimization of specific microorganisms for specific application. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Metabolic plasticity for isoprenoid biosynthesis in bacteria.

    Science.gov (United States)

    Pérez-Gil, Jordi; Rodríguez-Concepción, Manuel

    2013-05-15

    Isoprenoids are a large family of compounds synthesized by all free-living organisms. In most bacteria, the common precursors of all isoprenoids are produced by the MEP (methylerythritol 4-phosphate) pathway. The MEP pathway is absent from archaea, fungi and animals (including humans), which synthesize their isoprenoid precursors using the completely unrelated MVA (mevalonate) pathway. Because the MEP pathway is essential in most bacterial pathogens (as well as in the malaria parasites), it has been proposed as a promising new target for the development of novel anti-infective agents. However, bacteria show a remarkable plasticity for isoprenoid biosynthesis that should be taken into account when targeting this metabolic pathway for the development of new antibiotics. For example, a few bacteria use the MVA pathway instead of the MEP pathway, whereas others possess the two full pathways, and some parasitic strains lack both the MVA and the MEP pathways (probably because they obtain their isoprenoids from host cells). Moreover, alternative enzymes and metabolic intermediates to those of the canonical MVA or MEP pathways exist in some organisms. Recent work has also shown that resistance to a block of the first steps of the MEP pathway can easily be developed because several enzymes unrelated to isoprenoid biosynthesis can produce pathway intermediates upon spontaneous mutations. In the present review, we discuss the major advances in our knowledge of the biochemical toolbox exploited by bacteria to synthesize the universal precursors for their essential isoprenoids.

  2. Genetic, biochemical, and structural characterization of a new densovirus isolated from a chronically infected Aedes albopictus C6/36 cell line

    International Nuclear Information System (INIS)

    Chen Senxiong; Cheng Lingpeng; Zhang Qinfen; Lin Wei; Lu Xinying; Brannan, Jennifer; Zhou, Z.H.; Zhang Jingqiang

    2004-01-01

    We report the isolation, sequencing, biochemical, and structural characterization of a previously undescribed virus in a chronically infected Aedes albopictus C6/36 cell line. This virus is identified as a new densovirus under the Densovirinae subfamily of the Parvoviridae based on its biological and morphologic properties as well as sequence homologies, and is tentatively designated A. albopictus C6/36 cell densovirus (C6/36 DNV). Analysis of the 4094 nt of the C6/36 DNV genome revealed that the plus strand had three large open reading frames (ORFs): a left ORF, a right ORF, and a mid-ORF (within the left ORF), whose potential coding capacities are 91.0, 40.8, and 41.2 kDa, respectively. The left ORF likely encodes the nonstructural protein NS-1, which contains NTP-binding and helicase domains. The right ORF likely encodes structural proteins, VP1 and VP2. Our analyses revealed that C6/36 DNV has a similar genomic organization and shares very high homology in nucleotide sequence and amino acid sequences with Aedes aegypti densovirus (AaeDNV) and A. albopictus densovirus (AalDNV), members of the genus Brevidensovirus of the Densovirinae. Similar to other densoviruses, C6/36 DNV has a different genomic organization and no recognizable sequence homology with viruses in the Parvovirinae. The three-dimensional (3D) reconstruction of the C6/36 DNV at 15.6-A resolution by electron cryomicroscopy (cryoEM) revealed distinctive outer surface features not previously seen in other parvoviruses, indicating structural divergence of densoviruses, in addition to its genomic differences, while the inner surface of the C6/36 DNV capsid exhibits features that are conserved among parvoviruses

  3. Biosynthesis of actinorhodin and related antibiotics: discovery of alternative routes for quinone formation encoded in the act gene cluster.

    Science.gov (United States)

    Okamoto, Susumu; Taguchi, Takaaki; Ochi, Kozo; Ichinose, Koji

    2009-02-27

    All known benzoisochromanequinone (BIQ) biosynthetic gene clusters carry a set of genes encoding a two-component monooxygenase homologous to the ActVA-ORF5/ActVB system for actinorhodin biosynthesis in Streptomyces coelicolor A3(2). Here, we conducted molecular genetic and biochemical studies of this enzyme system. Inactivation of actVA-ORF5 yielded a shunt product, actinoperylone (ACPL), apparently derived from 6-deoxy-dihydrokalafungin. Similarly, deletion of actVB resulted in accumulation of ACPL, indicating a critical role for the monooxygenase system in C-6 oxygenation, a biosynthetic step common to all BIQ biosyntheses. Furthermore, in vitro, we showed a quinone-forming activity of the ActVA-ORF5/ActVB system in addition to that of a known C-6 monooxygenase, ActVA-ORF6, by using emodinanthrone as a model substrate. Our results demonstrate that the act gene cluster encodes two alternative routes for quinone formation by C-6 oxygenation in BIQ biosynthesis.

  4. Identification and functional analysis of gene cluster involvement in biosynthesis of the cyclic lipopeptide antibiotic pelgipeptin produced by Paenibacillus elgii

    Directory of Open Access Journals (Sweden)

    Qian Chao-Dong

    2012-09-01

    Full Text Available Abstract Background Pelgipeptin, a potent antibacterial and antifungal agent, is a non-ribosomally synthesised lipopeptide antibiotic. This compound consists of a β-hydroxy fatty acid and nine amino acids. To date, there is no information about its biosynthetic pathway. Results A potential pelgipeptin synthetase gene cluster (plp was identified from Paenibacillus elgii B69 through genome analysis. The gene cluster spans 40.8 kb with eight open reading frames. Among the genes in this cluster, three large genes, plpD, plpE, and plpF, were shown to encode non-ribosomal peptide synthetases (NRPSs, with one, seven, and one module(s, respectively. Bioinformatic analysis of the substrate specificity of all nine adenylation domains indicated that the sequence of the NRPS modules is well collinear with the order of amino acids in pelgipeptin. Additional biochemical analysis of four recombinant adenylation domains (PlpD A1, PlpE A1, PlpE A3, and PlpF A1 provided further evidence that the plp gene cluster involved in pelgipeptin biosynthesis. Conclusions In this study, a gene cluster (plp responsible for the biosynthesis of pelgipeptin was identified from the genome sequence of Paenibacillus elgii B69. The identification of the plp gene cluster provides an opportunity to develop novel lipopeptide antibiotics by genetic engineering.

  5. Sequential enzymatic epoxidation involved in polyether lasalocid biosynthesis.

    Science.gov (United States)

    Minami, Atsushi; Shimaya, Mayu; Suzuki, Gaku; Migita, Akira; Shinde, Sandip S; Sato, Kyohei; Watanabe, Kenji; Tamura, Tomohiro; Oguri, Hiroki; Oikawa, Hideaki

    2012-05-02

    Enantioselective epoxidation followed by regioselective epoxide opening reaction are the key processes in construction of the polyether skeleton. Recent genetic analysis of ionophore polyether biosynthetic gene clusters suggested that flavin-containing monooxygenases (FMOs) could be involved in the oxidation steps. In vivo and in vitro analyses of Lsd18, an FMO involved in the biosynthesis of polyether lasalocid, using simple olefin or truncated diene of a putative substrate as substrate mimics demonstrated that enantioselective epoxidation affords natural type mono- or bis-epoxide in a stepwise manner. These findings allow us to figure out enzymatic polyether construction in lasalocid biosynthesis. © 2012 American Chemical Society

  6. On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin.

    Science.gov (United States)

    Pearson, Leanne; Mihali, Troco; Moffitt, Michelle; Kellmann, Ralf; Neilan, Brett

    2010-05-10

    The cyanobacteria or "blue-green algae", as they are commonly termed, comprise a diverse group of oxygenic photosynthetic bacteria that inhabit a wide range of aquatic and terrestrial environments, and display incredible morphological diversity. Many aquatic, bloom-forming species of cyanobacteria are capable of producing biologically active secondary metabolites, which are highly toxic to humans and other animals. From a toxicological viewpoint, the cyanotoxins span four major classes: the neurotoxins, hepatotoxins, cytotoxins, and dermatoxins (irritant toxins). However, structurally they are quite diverse. Over the past decade, the biosynthesis pathways of the four major cyanotoxins: microcystin, nodularin, saxitoxin and cylindrospermopsin, have been genetically and biochemically elucidated. This review provides an overview of these biosynthesis pathways and additionally summarizes the chemistry and toxicology of these remarkable secondary metabolites.

  7. On the Chemistry, Toxicology and Genetics of the Cyanobacterial Toxins, Microcystin, Nodularin, Saxitoxin and Cylindrospermopsin

    Directory of Open Access Journals (Sweden)

    Leanne Pearson

    2010-05-01

    Full Text Available The cyanobacteria or “blue-green algae”, as they are commonly termed, comprise a diverse group of oxygenic photosynthetic bacteria that inhabit a wide range of aquatic and terrestrial environments, and display incredible morphological diversity. Many aquatic, bloom-forming species of cyanobacteria are capable of producing biologically active secondary metabolites, which are highly toxic to humans and other animals. From a toxicological viewpoint, the cyanotoxins span four major classes: the neurotoxins, hepatotoxins, cytotoxins, and dermatoxins (irritant toxins. However, structurally they are quite diverse. Over the past decade, the biosynthesis pathways of the four major cyanotoxins: microcystin, nodularin, saxitoxin and cylindrospermopsin, have been genetically and biochemically elucidated. This review provides an overview of these biosynthesis pathways and additionally summarizes the chemistry and toxicology of these remarkable secondary metabolites.

  8. Improved phytoaccumulation of cadmium by genetically modified tobacco plants (Nicotiana tabacum L.). Physiological and biochemical response of the transformants to cadmium toxicity

    International Nuclear Information System (INIS)

    Gorinova, N.; Nedkovska, M.; Todorovska, E.; Simova-Stoilova, L.; Stoyanova, Z.; Georgieva, K.; Demirevska-Kepova, K.; Atanassov, A.; Herzig, R.

    2007-01-01

    The response of tobacco plants (Nicotiana tabacum L.)-non-transformed and transformed with a metallothionein gene MThis from Silene vulgaris L. - to increase cadmium supply in the nutrient solution was compared. The transgenic plants accumulated significantly more Cd both in the roots and the leaves. Visual toxicity symptoms and disturbance in water balance were correlated with Cd tissue content. Treatment with 300 μM CdCl 2 resulted in inhibition of photosynthesis and mobilization of the ascorbate-glutathione cycle. Treatment with 500 μM CdCl 2 led to irreversible damage of photosynthesis and oxidative stress. An appearance of a new peroxidase isoform and changes in the leaf polypeptide pattern were observed at the highest Cd concentration. The level of non-protein thiols gradually increased following the Cd treatment both in transgenic and non-transformed plants. - Genetic transformation of Nicotiana tabacum L. by metallothionein gene improved phytoaccumulation of cadmium

  9. BISEN: Biochemical simulation environment

    NARCIS (Netherlands)

    Vanlier, J.; Wu, F.; Qi, F.; Vinnakota, K.C.; Han, Y.; Dash, R.K.; Yang, F.; Beard, D.A.

    2009-01-01

    The Biochemical Simulation Environment (BISEN) is a suite of tools for generating equations and associated computer programs for simulating biochemical systems in the MATLAB® computing environment. This is the first package that can generate appropriate systems of differential equations for

  10. Increased Insulin following an Oral Glucose Load, Genetic Variation near the Melatonin Receptor MTNR1B, but No Biochemical Evidence of Endothelial Dysfunction in Young Asian Men and Women.

    Directory of Open Access Journals (Sweden)

    Maria A Matuszek

    Full Text Available To identify biochemical and genetic variation relating to increased risk of developing type 2 diabetes mellitus and cardiovascular disease in young, lean male and female adults of different ethnicities.Fasting blood and urine and non-fasting blood following oral glucose intake were analysed in 90 Caucasians, South Asians and South East/East Asians.There were no differences in age, birthweight, blood pressure, body mass index, percent body fat, total energy, percentage of macronutrient intake, microalbumin, leptin, cortisol, adrenocorticotropic hormone, nitric oxide metabolites, C-reactive protein, homocysteine, tumor necrosis factor-α, interleukin-6, von Willebrand factor, vascular cell adhesion molecule-1, plasminogen activator inhibitor-1, and tissue plasminogen activator. Fasting total cholesterol (P = .000, triglycerides (P = .050, low density lipoprotein (P = .009 and non-fasting blood glucose (15 min (P = .024 were elevated in South Asians compared with Caucasians, but there was no significant difference in glucose area under curve (AUC. Non-fasting insulin in South Asians (15-120 min, in South East/East Asians (60-120 min, and insulin AUC in South Asians and South East/East Asians, were elevated compared with Caucasians (P≤0.006. The molar ratio of C-peptide AUC/Insulin AUC (P = .045 and adiponectin (P = .037 were lower in South Asians compared with Caucasians. A significant difference in allele frequency distributions in Caucasians and South Asians was found for rs2166706 (P = 0.022 and rs10830963 (P = 0.009, which are both near the melatonin receptor MTNR1B.Elevated non-fasting insulin exists in young South Asians of normal fasting glucose and insulin. Hepatic clearance of insulin may be reduced in South Asians. No current biochemical evidence exists of endothelial dysfunction at this stage of development. MTNR1B signalling may be a useful therapeutic target in Asian populations in the prevention of type 2 diabetes mellitus.

  11. Increased Insulin following an Oral Glucose Load, Genetic Variation near the Melatonin Receptor MTNR1B, but No Biochemical Evidence of Endothelial Dysfunction in Young Asian Men and Women.

    Science.gov (United States)

    Matuszek, Maria A; Anton, Angelyn; Thillainathan, Sobana; Armstrong, Nicola J

    2015-01-01

    To identify biochemical and genetic variation relating to increased risk of developing type 2 diabetes mellitus and cardiovascular disease in young, lean male and female adults of different ethnicities. Fasting blood and urine and non-fasting blood following oral glucose intake were analysed in 90 Caucasians, South Asians and South East/East Asians. There were no differences in age, birthweight, blood pressure, body mass index, percent body fat, total energy, percentage of macronutrient intake, microalbumin, leptin, cortisol, adrenocorticotropic hormone, nitric oxide metabolites, C-reactive protein, homocysteine, tumor necrosis factor-α, interleukin-6, von Willebrand factor, vascular cell adhesion molecule-1, plasminogen activator inhibitor-1, and tissue plasminogen activator. Fasting total cholesterol (P = .000), triglycerides (P = .050), low density lipoprotein (P = .009) and non-fasting blood glucose (15 min) (P = .024) were elevated in South Asians compared with Caucasians, but there was no significant difference in glucose area under curve (AUC). Non-fasting insulin in South Asians (15-120 min), in South East/East Asians (60-120 min), and insulin AUC in South Asians and South East/East Asians, were elevated compared with Caucasians (P≤0.006). The molar ratio of C-peptide AUC/Insulin AUC (P = .045) and adiponectin (P = .037) were lower in South Asians compared with Caucasians. A significant difference in allele frequency distributions in Caucasians and South Asians was found for rs2166706 (P = 0.022) and rs10830963 (P = 0.009), which are both near the melatonin receptor MTNR1B. Elevated non-fasting insulin exists in young South Asians of normal fasting glucose and insulin. Hepatic clearance of insulin may be reduced in South Asians. No current biochemical evidence exists of endothelial dysfunction at this stage of development. MTNR1B signalling may be a useful therapeutic target in Asian populations in the prevention of type 2 diabetes mellitus.

  12. Improvement of Neutral Lipid and Polyunsaturated Fatty Acid Biosynthesis by Overexpressing a Type 2 Diacylglycerol Acyltransferase in Marine Diatom Phaeodactylum tricornutum

    Directory of Open Access Journals (Sweden)

    Ying-Fang Niu

    2013-11-01

    Full Text Available Microalgae have been emerging as an important source for the production of bioactive compounds. Marine diatoms can store high amounts of lipid and grow quite quickly. However, the genetic and biochemical characteristics of fatty acid biosynthesis in diatoms remain unclear. Glycerophospholipids are integral as structural and functional components of cellular membranes, as well as precursors of various lipid mediators. In addition, diacylglycerol acyltransferase (DGAT is a key enzyme that catalyzes the last step of triacylglyceride (TAG biosynthesis. However, a comprehensive sequence-structure and functional analysis of DGAT in diatoms is lacking. In this study, an isoform of diacylglycerol acyltransferase type 2 of the marine diatom Phaeodactylum tricornutum was characterized. Surprisingly, DGAT2 overexpression in P. tricornutum stimulated more oil bodies, and the neutral lipid content increased by 35%. The fatty acid composition showed a significant increase in the proportion of polyunsaturated fatty acids; in particular, EPA was increased by 76.2%. Moreover, the growth rate of transgenic microalgae remained similar, thereby maintaining a high biomass. Our results suggest that increased DGAT2 expression could alter fatty acid profile in the diatom, and the results thus represent a valuable strategy for polyunsaturated fatty acid production by genetic manipulation.

  13. Biochemical and Genetic Characterization of Coagulin, a New Antilisterial Bacteriocin in the Pediocin Family of Bacteriocins, Produced by Bacillus coagulans I4

    Science.gov (United States)

    Le Marrec, Claire; Hyronimus, Bertrand; Bressollier, Philippe; Verneuil, Bernard; Urdaci, Maria C.

    2000-01-01

    A plasmid-linked antimicrobial peptide, named coagulin, produced by Bacillus coagulans I4 has recently been reported (B. Hyronimus, C. Le Marrec and M. C. Urdaci, J. Appl. Microbiol. 85:42–50, 1998). In the present study, the complete, unambiguous primary amino acid sequence of the peptide was obtained by a combination of both N-terminal sequencing of purified peptide and the complete sequence deduced from the structural gene harbored by plasmid I4. Data revealed that this peptide of 44 residues has an amino acid sequence similar to that described for pediocins AcH and PA-1, produced by different Pediococcus acidilactici strains and 100% identical. Coagulin and pediocin differed only by a single amino acid at their C terminus. Analysis of the genetic determinants revealed the presence, on the pI4 DNA, of the entire 3.5-kb operon of four genes described for pediocin AcH and PA-1 production. No extended homology was observed between pSMB74 from P. acidilactici and pI4 when analyzing the regions upstream and downstream of the operon. An oppositely oriented gene immediately dowstream of the bacteriocin operon specifies a 474-amino-acid protein which shows homology to Mob-Pre (plasmid recombination enzyme) proteins encoded by several small plasmids extracted from gram-positive bacteria. This is the first report of a pediocin-like peptide appearing naturally in a non-lactic acid bacterium genus. PMID:11097892

  14. Genetically based low oxygen affinities of felid hemoglobins: lack of biochemical adaptation to high-altitude hypoxia in the snow leopard

    Science.gov (United States)

    Janecka, Jan E.; Nielsen, Simone S. E.; Andersen, Sidsel D.; Hoffmann, Federico G.; Weber, Roy E.; Anderson, Trevor; Storz, Jay F.; Fago, Angela

    2015-01-01

    ABSTRACT Genetically based modifications of hemoglobin (Hb) function that increase blood–O2 affinity are hallmarks of hypoxia adaptation in vertebrates. Among mammals, felid Hbs are unusual in that they have low intrinsic O2 affinities and reduced sensitivities to the allosteric cofactor 2,3-diphosphoglycerate (DPG). This combination of features compromises the acclimatization capacity of blood–O2 affinity and has led to the hypothesis that felids have a restricted physiological niche breadth relative to other mammals. In seeming defiance of this conjecture, the snow leopard (Panthera uncia) has an extraordinarily broad elevational distribution and occurs at elevations above 6000 m in the Himalayas. Here, we characterized structural and functional variation of big cat Hbs and investigated molecular mechanisms of Hb adaptation and allosteric regulation that may contribute to the extreme hypoxia tolerance of the snow leopard. Experiments revealed that purified Hbs from snow leopard and African lion exhibited equally low O2 affinities and DPG sensitivities. Both properties are primarily attributable to a single amino acid substitution, β2His→Phe, which occurred in the common ancestor of Felidae. Given the low O2 affinity and reduced regulatory capacity of feline Hbs, the extreme hypoxia tolerance of snow leopards must be attributable to compensatory modifications of other steps in the O2-transport pathway. PMID:26246610

  15. Zincophorin – biosynthesis in Streptomyces griseus and antibiotic properties

    Directory of Open Access Journals (Sweden)

    Walther, Elisabeth

    2016-11-01

    Full Text Available Zincophorin is a polyketide antibiotic that possesses potent activity against Gram-positive bacteria, including human pathogens. While a number of total syntheses of this highly functionalized natural product were reported since its initial discovery, the genetic basis for the biosynthesis of zincophorin has remained unclear. In this study, the co-linearity inherent to polyketide pathways was used to identify the zincophorin biosynthesis gene cluster in the genome of the natural producer HKI 0741. Interestingly, the same locus is fully conserved in the streptomycin-producing actinomycete IFO 13350, suggesting that the latter bacterium is also capable of zincophorin biosynthesis. Biological profiling of zincophorin revealed a dose-dependent inhibition of the Gram-positive bacterium . The antibacterial effect, however, is accompanied by cytotoxicity. Antibiotic and cytotoxic activities were completely abolished upon esterification of the carboxylic acid group in zincophorin.

  16. Genes encoding enzymes of the lignin biosynthesis pathway in Eucalyptus

    Directory of Open Access Journals (Sweden)

    Ricardo Harakava

    2005-01-01

    Full Text Available Eucalyptus ESTs libraries were screened for genes involved in lignin biosynthesis. This search was performed under the perspective of recent revisions on the monolignols biosynthetic pathway. Eucalyptus orthologues of all genes of the phenylpropanoid pathway leading to lignin biosynthesis reported in other plant species were identified. A library made with mRNAs extracted from wood was enriched for genes involved in lignin biosynthesis and allowed to infer the isoforms of each gene family that play a major role in wood lignin formation. Analysis of the wood library suggests that, besides the enzymes of the phenylpropanoids pathway, chitinases, laccases, and dirigent proteins are also important for lignification. Colocalization of several enzymes on the endoplasmic reticulum membrane, as predicted by amino acid sequence analysis, supports the existence of metabolic channeling in the phenylpropanoid pathway. This study establishes a framework for future investigations on gene expression level, protein expression and enzymatic assays, sequence polymorphisms, and genetic engineering.

  17. l-Galactono-gamma-lactone dehydrogenase from Arabidopsis thaliana, a flavoprotein involved in vitamin C biosynthesis.

    NARCIS (Netherlands)

    Leferink, N.G.H.; Berg, van den W.A.M.; Berkel, van W.J.H.

    2008-01-01

    l-Galactono-1,4-lactone dehydrogenase (GALDH; ferricytochrome c oxidoreductase; EC 1.3.2.3) is a mitochondrial flavoenzyme that catalyzes the final step in the biosynthesis of vitamin C (l-ascorbic acid) in plants. In the present study, we report on the biochemical properties of recombinant

  18. A soluble RecN homologue provides means for biochemical and genetic analysis of DNA double-strand break repair in Escherichia coli.

    Science.gov (United States)

    Grove, Jane I; Wood, Stuart R; Briggs, Geoffrey S; Oldham, Neil J; Lloyd, Robert G

    2009-12-03

    RecN is a highly conserved, SMC-like protein in bacteria. It plays an important role in the repair of DNA double-strand breaks and is therefore a key factor in maintaining genome integrity. The insolubility of Escherichia coli RecN has limited efforts to unravel its function. We overcame this limitation by replacing the resident coding sequence with that of Haemophilus influenzae RecN. The heterologous construct expresses Haemophilus RecN from the SOS-inducible E. coli promoter. The hybrid gene is fully functional, promoting survival after I-SceI induced DNA breakage, gamma irradiation or exposure to mitomycin C as effectively as the native gene, indicating that the repair activity is conserved between these two species. H. influenzae RecN is quite soluble, even when expressed at high levels, and is readily purified. Its analysis by ionisation-mass spectrometry, gel filtration and glutaraldehyde crosslinking indicates that it is probably a dimer under physiological conditions, although a higher multimer cannot be excluded. The purified protein displays a weak ATPase activity that is essential for its DNA repair function in vivo. However, no DNA-binding activity was detected, which contrasts with RecN from Bacillus subtilis. RecN proteins from Aquifex aeolicus and Bacteriodes fragilis also proved soluble. Neither binds DNA, but the Aquifex RecN has weak ATPase activity. Our findings support studies indicating that RecN, and the SOS response in general, behave differently in E. coli and B. subtilis. The hybrid recN reported provides new opportunities to study the genetics and biochemistry of how RecN operates in E. coli.

  19. A recruiting protein of geranylgeranyl diphosphate synthase controls metabolic flux toward chlorophyll biosynthesis in rice.

    Science.gov (United States)

    Zhou, Fei; Wang, Cheng-Yuan; Gutensohn, Michael; Jiang, Ling; Zhang, Peng; Zhang, Dabing; Dudareva, Natalia; Lu, Shan

    2017-06-27

    In plants, geranylgeranyl diphosphate (GGPP) is produced by plastidic GGPP synthase (GGPPS) and serves as a precursor for vital metabolic branches, including chlorophyll, carotenoid, and gibberellin biosynthesis. However, molecular mechanisms regulating GGPP allocation among these biosynthetic pathways localized in the same subcellular compartment are largely unknown. We found that rice contains only one functionally active GGPPS, OsGGPPS1, in chloroplasts. A functionally active homodimeric enzyme composed of two OsGGPPS1 subunits is located in the stroma. In thylakoid membranes, however, the GGPPS activity resides in a heterodimeric enzyme composed of one OsGGPPS1 subunit and GGPPS recruiting protein (OsGRP). OsGRP is structurally most similar to members of the geranyl diphosphate synthase small subunit type II subfamily. In contrast to members of this subfamily, OsGRP enhances OsGGPPS1 catalytic efficiency and specificity of GGPP production on interaction with OsGGPPS1. Structural biology and protein interaction analyses demonstrate that affinity between OsGRP and OsGGPPS1 is stronger than between two OsGGPPS1 molecules in homodimers. OsGRP determines OsGGPPS1 suborganellar localization and directs it to a large protein complex in thylakoid membranes, consisting of geranylgeranyl reductase (OsGGR), light-harvesting-like protein 3 (OsLIL3), protochlorophyllide oxidoreductase (OsPORB), and chlorophyll synthase (OsCHLG). Taken together, genetic and biochemical analyses suggest OsGRP functions in recruiting OsGGPPS1 from the stroma toward thylakoid membranes, thus providing a mechanism to control GGPP flux toward chlorophyll biosynthesis.

  20. 46_ _267 - 278__Aminu- Biosynthesis

    African Journals Online (AJOL)

    User

    ISSN 2006 – 6996. BIOSYNTHESIS, CHARACTERIZATION AND ANTIMICROBIAL STUDY OF .... the excitation of surface Plasmon vibration with. AgNPs. ... Thin films of the sample were prepared on a carbon ... The resulting film on the SEM.

  1. Jasmonate mediates salt-induced nicotine biosynthesis in tobacco (Nicotiana tabacum L.

    Directory of Open Access Journals (Sweden)

    Xiaodong Chen

    2016-04-01

    Full Text Available Jasmonate (JA, as an important signal, plays a key role in multiple processes of plant growth, development and stress response. Nicotine and related pyridine alkaloids in tobacco (Nicotiana tabacum L. are essential secondary metabolites. Whether environmental factors control nicotine biosynthesis and the underlying mechanism remains previously unreported. Here, we applied physiological and biochemical approaches to investigate how salt stress affects nicotine biosynthesis in tobacco. We found that salt stress induced the biosynthesis of JA, which subsequently triggered the activation of JA-responsive gene expression and, ultimately, nicotine synthesis. Bioinformatics analysis revealed the existence of many NtMYC2a-recognized G-box motifs in the promoter regions of NtLOX, NtAOS, NtAOC and NtOPR genes. Applying exogenous JA increased nicotine content, while suppressing JA biosynthesis reduced nicotine biosynthesis. Salt treatment could not efficiently induce nicotine biosynthesis in transgenic anti-COI1 tobacco plants. These results demonstrate that JA acts as the essential signal which triggers nicotine biosynthesis in tobacco after salt stress.

  2. Glycolipid biosynthesis in cyanobacteria

    International Nuclear Information System (INIS)

    Van Dusen, W.J.; Jaworski, J.G.

    1987-01-01

    The biosynthesis of monogalactosyldiacyl-glycerol (MGDG) was studied in five different cyanobacteria. Previous work has shown Anabaena variabilis to synthesize both MGDG and monoglucosyl-diacylglycerol (MG1cDG) with MG1cDG being the precursor of MGDG. They have examined four other cyanobacteria to determine if a similar relationship exists. The cyanobacteria studied were Anabaena variabilis, Chlorogloeopsis sp., Schizothrix calcicola, Anacystis nidulans, and Anacystis marina. Each were grown in liquid culture and lipids were labeled with 14 C]CO 2 for 20 min., 1.0 hr, 1.0 hr + 10 hr chase. Glycolipids were analyzed by initial separation of MGDG and MG1cDG by TLC followed by further analysis by HPLC. Complete separation of molecular species was obtained isocratically on an ODS column. All of the cyanobacteria labeled 16-C and 18-C fatty acids except for A. marina which labeled only 14-C and 16-C fatty acids. Desaturation of the fatty acids could be observed in the 1.0 hr and chase experiments. All were capable of labeling both MG1cDG and MGDG with the precursor-product relationship being observed. There does not appear to be a direct relationship between the epimerization of the sugar moiety and fatty acid desaturation

  3. Physiological and molecular biochemical mechanisms of bile formation

    Science.gov (United States)

    Reshetnyak, Vasiliy Ivanovich

    2013-01-01

    This review considers the physiological and molecular biochemical mechanisms of bile formation. The composition of bile and structure of a bile canaliculus, biosynthesis and conjugation of bile acids, bile phospholipids, formation of bile micellar structures, and enterohepatic circulation of bile acids are described. In general, the review focuses on the molecular physiology of the transporting systems of the hepatocyte sinusoidal and apical membranes. Knowledge of physiological and biochemical basis of bile formation has implications for understanding the mechanisms of development of pathological processes, associated with diseases of the liver and biliary tract. PMID:24259965

  4. 40 CFR 798.5195 - Mouse biochemical specific locus test.

    Science.gov (United States)

    2010-07-01

    ...-induced variants are bred to determine the genetic nature of the change. (f) Data and reports—(1... SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798.5195 Mouse...) A biochemical specific locus mutation is a genetic change resulting from a DNA lesion causing...

  5. Raman spectroscopic biochemical mapping of tissues

    Science.gov (United States)

    Stone, Nicholas; Hart Prieto, Maria C.; Kendall, Catherine A.; Shetty, Geeta; Barr, Hugh

    2006-02-01

    Advances in technologies have brought us closer to routine spectroscopic diagnosis of early malignant disease. However, there is still a poor understanding of the carcinogenesis process. For example it is not known whether many cancers follow a logical sequence from dysplasia, to carcinoma in situ, to invasion. Biochemical tissue changes, triggered by genetic mutations, precede morphological and structural changes. These can be probed using Raman or FTIR microspectroscopy and the spectra analysed for biochemical constituents. Local microscopic distribution of various constituents can then be visualised. Raman mapping has been performed on a number of tissues including oesophagus, breast, bladder and prostate. The biochemical constituents have been calculated at each point using basis spectra and least squares analysis. The residual of the least squares fit indicates any unfit spectral components. The biochemical distribution will be compared with the defined histopathological boundaries. The distribution of nucleic acids, glycogen, actin, collagen I, III, IV, lipids and others appear to follow expected patterns.

  6. Biosynthesis of antimycins with a reconstituted 3-formamidosalicylate pharmacophore in Escherichia coli.

    Science.gov (United States)

    Liu, Joyce; Zhu, Xuejun; Seipke, Ryan F; Zhang, Wenjun

    2015-05-15

    Antimycins are a family of natural products generated from a hybrid nonribosomal peptide synthetase (NRPS)-polyketide synthase (PKS) assembly line. Although they possess an array of useful biological activities, their structural complexity makes chemical synthesis challenging, and their biosynthesis has thus far been dependent on slow-growing source organisms. Here, we reconstituted the biosynthesis of antimycins in Escherichia coli, a versatile host that is robust and easy to manipulate genetically. Along with Streptomyces genetic studies, the heterologous expression of different combinations of ant genes enabled us to systematically confirm the functions of the modification enzymes, AntHIJKL and AntO, in the biosynthesis of the 3-formamidosalicylate pharmacophore of antimycins. Our E. coli-based antimycin production system can not only be used to engineer the increased production of these bioactive compounds, but it also paves the way for the facile generation of novel and diverse antimycin analogues through combinatorial biosynthesis.

  7. Brassinosteroid biosynthesis and signalling in Petunia hybrida.

    Science.gov (United States)

    Verhoef, Nathalie; Yokota, Takao; Shibata, Kyomi; de Boer, Gert-Jan; Gerats, Tom; Vandenbussche, Michiel; Koes, Ronald; Souer, Erik

    2013-05-01

    Brassinosteroids (BRs) are steroidal plant hormones that play an important role in the growth and development of plants. The biosynthesis of sterols and BRs as well as the signalling cascade they induce in plants have been elucidated largely through metabolic studies and the analysis of mutants in Arabidopsis and rice. Only fragmentary details about BR signalling in other plant species are known. Here a forward genetics strategy was used in Petunia hybrida, by which 19 families with phenotypic alterations typical for BR deficiency mutants were identified. In all mutants, the endogenous BR levels were severely reduced. In seven families, the tagged genes were revealed as the petunia BR biosynthesis genes CYP90A1 and CYP85A1 and the BR receptor gene BRI1. In addition, several homologues of key regulators of the BR signalling pathway were cloned from petunia based on homology with their Arabidopsis counterparts, including the BRI1 receptor, a member of the BES1/BZR1 transcription factor family (PhBEH2), and two GSK3-like kinases (PSK8 and PSK9). PhBEH2 was shown to interact with PSK8 and 14-3-3 proteins in yeast, revealing similar interactions to those during BR signalling in Arabidopsis. Interestingly, PhBEH2 also interacted with proteins implicated in other signalling pathways. This suggests that PhBEH2 might function as an important hub in the cross-talk between diverse signalling pathways.

  8. Comparison of transcripts in Phalaenopsis bellina and Phalaenopsis equestris (Orchidaceae flowers to deduce monoterpene biosynthesis pathway

    Directory of Open Access Journals (Sweden)

    Wu Tian-Shung

    2006-07-01

    Full Text Available Abstract Background Floral scent is one of the important strategies for ensuring fertilization and for determining seed or fruit set. Research on plant scents has hampered mainly by the invisibility of this character, its dynamic nature, and complex mixtures of components that are present in very small quantities. Most progress in scent research, as in other areas of plant biology, has come from the use of molecular and biochemical techniques. Although volatile components have been identified in several orchid species, the biosynthetic pathways of orchid flower fragrance are far from understood. We investigated how flower fragrance was generated in certain Phalaenopsis orchids by determining the chemical components of the floral scent, identifying floral expressed-sequence-tags (ESTs, and deducing the pathways of floral scent biosynthesis in Phalaneopsis bellina by bioinformatics analysis. Results The main chemical components in the P. bellina flower were shown by gas chromatography-mass spectrometry to be monoterpenoids, benzenoids and phenylpropanoids. The set of floral scent producing enzymes in the biosynthetic pathway from glyceraldehyde-3-phosphate (G3P to geraniol and linalool were recognized through data mining of the P. bellina floral EST database (dbEST. Transcripts preferentially expressed in P. bellina were distinguished by comparing the scent floral dbEST to that of a scentless species, P. equestris, and included those encoding lipoxygenase, epimerase, diacylglycerol kinase and geranyl diphosphate synthase. In addition, EST filtering results showed that transcripts encoding signal transduction and Myb transcription factors and methyltransferase, in addition to those for scent biosynthesis, were detected by in silico hybridization of the P. bellina unigene database against those of the scentless species, rice and Arabidopsis. Altogether, we pinpointed 66% of the biosynthetic steps from G3P to geraniol, linalool and their derivatives

  9. Lignin biosynthesis in wheat (Triticum aestivum L.): its response to waterlogging and association with hormonal levels.

    Science.gov (United States)

    Nguyen, Tran-Nguyen; Son, SeungHyun; Jordan, Mark C; Levin, David B; Ayele, Belay T

    2016-01-25

    Lignin is an important structural component of plant cell wall that confers mechanical strength and tolerance against biotic and abiotic stressors; however it affects the use of biomass such as wheat straw for some industrial applications such as biofuel production. Genetic alteration of lignin quantity and quality has been considered as a viable option to overcome this problem. However, the molecular mechanisms underlying lignin formation in wheat biomass has not been studied. Combining molecular and biochemical approaches, the present study investigated the transcriptional regulation of lignin biosynthesis in two wheat cultivars with varying lodging characteristics and also in response to waterlogging. It also examined the association of lignin level in tissues with that of plant hormones implicated in the control of lignin biosynthesis. Analysis of lignin biosynthesis in the two wheat cultivars revealed a close association of lodging resistance with internode lignin content and expression of 4-coumarate:CoA ligase1 (4CL1), p-coumarate 3-hydroxylase1 (C3H1), cinnamoyl-CoA reductase2 (CCR2), ferulate 5-hydroxylase2 (F5H2) and caffeic acid O-methyltransferase2 (COMT2), which are among the genes highly expressed in wheat tissues, implying the importance of these genes in mediating lignin deposition in wheat stem. Waterlogging of wheat plants reduced internode lignin content, and this effect is accompanied by transcriptional repression of three of the genes characterized as highly expressed in wheat internode including phenylalanine ammonia-lyase6 (PAL6), CCR2 and F5H2, and decreased activity of PAL. Expression of the other genes was, however, induced by waterlogging, suggesting their role in the synthesis of other phenylpropanoid-derived molecules with roles in stress responses. Moreover, difference in internode lignin content between cultivars or change in its level due to waterlogging is associated with the level of cytokinin. Lodging resistance, tolerance against

  10. A comparative genomics approach to understanding the biosynthesis of the sunscreen scytonemin in cyanobacteria

    Directory of Open Access Journals (Sweden)

    Potrafka Ruth M

    2009-07-01

    Full Text Available Abstract Background The extracellular sunscreen scytonemin is the most common and widespread indole-alkaloid among cyanobacteria. Previous research using the cyanobacterium Nostoc punctiforme ATCC 29133 revealed a unique 18-gene cluster (NpR1276 to NpR1259 in the N. punctiforme genome involved in the biosynthesis of scytonemin. We provide further genomic characterization of these genes in N. punctiforme and extend it to homologous regions in other cyanobacteria. Results Six putative genes in the scytonemin gene cluster (NpR1276 to NpR1271 in the N. punctiforme genome, with no previously known protein function and annotated in this study as scyA to scyF, are likely involved in the assembly of scytonemin from central metabolites, based on genetic, biochemical, and sequence similarity evidence. Also in this cluster are redundant copies of genes encoding for aromatic amino acid biosynthetic enzymes. These can theoretically lead to tryptophan and the tyrosine precursor, p-hydroxyphenylpyruvate, (expected biosynthetic precursors of scytonemin from end products of the shikimic acid pathway. Redundant copies of the genes coding for the key regulatory and rate-limiting enzymes of the shikimic acid pathway are found there as well. We identified four other cyanobacterial strains containing orthologues of all of these genes, three of them by database searches (Lyngbya PCC 8106, Anabaena PCC 7120, and Nodularia CCY 9414 and one by targeted sequencing (Chlorogloeopsis sp. strain Cgs-089; CCMEE 5094. Genomic comparisons revealed that most scytonemin-related genes were highly conserved among strains and that two additional conserved clusters, NpF5232 to NpF5236 and a putative two-component regulatory system (NpF1278 and NpF1277, are likely involved in scytonemin biosynthesis and regulation, respectively, on the basis of conservation and location. Since many of the protein product sequences for the newly described genes, including ScyD, ScyE, and ScyF, have

  11. Comparison of Effect of Brassinosteroid and Gibberellin Biosynthesis Inhibitors on Growth of Rice Seedlings

    OpenAIRE

    Matusmoto, Tadashi; Yamada, Kazuhiro; Yoshizawa, Yuko; Oh, Keimei

    2016-01-01

    Brassinosteroid (BR) and gibberellin (GA) are two predominant plant hormones that regulate plant cell elongation. Mutants disrupt the biosynthesis of these hormones and display different degrees of dwarf phenotypes in rice. Although the role of each plant hormone in promoting the longitudinal growth of plants has been extensively studied using genetic methods, their relationship is still poorly understood. In this study, we used two specific inhibitors targeting BR and GA biosynthesis to inve...

  12. A Simple Approach to Study Designs in Complex Biochemical ...

    Indian Academy of Sciences (India)

    Somdatta Sinha

    Protein sequences. • Biochemical & Genetic information. REVERSE ENGINEERING. LARGE NETWORKS. FORWARD ENGINEERING. All designs that are not physically forbidden are realizable, but not all realizable designs are functionally effective. (in relation to context and constraints of the system and environment).

  13. Regulation of cell wall biosynthesis.

    Science.gov (United States)

    Zhong, Ruiqin; Ye, Zheng-Hua

    2007-12-01

    Plant cell walls differ in their amount and composition among various cell types and even in different microdomains of the wall of a given cell. Plants must have evolved regulatory mechanisms controlling biosynthesis, targeted secretion, and assembly of wall components to achieve the heterogeneity in cell walls. A number of factors, including hormones, the cytoskeleton, glycosylphosphatidylinositol-anchored proteins, phosphoinositides, and sugar nucleotide supply, have been implicated in the regulation of cell wall biosynthesis or deposition. In the past two years, there have been important discoveries in transcriptional regulation of secondary wall biosynthesis. Several transcription factors in the NAC and MYB families have been shown to be the key switches for activation of secondary wall biosynthesis. These studies suggest a transcriptional network comprised of a hierarchy of transcription factors is involved in regulating secondary wall biosynthesis. Further investigation and integration of the regulatory players participating in the making of cell walls will certainly lead to our understanding of how wall amounts and composition are controlled in a given cell type. This may eventually allow custom design of plant cell walls on the basis of our needs.

  14. Recent advances in combinatorial biosynthesis for drug discovery

    Directory of Open Access Journals (Sweden)

    Sun H

    2015-02-01

    Full Text Available Huihua Sun,1,* Zihe Liu,1,* Huimin Zhao,1,2 Ee Lui Ang1 1Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, Singapore; 2Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA *These authors contributed equally to this work Abstract: Because of extraordinary structural diversity and broad biological activities, natural products have played a significant role in drug discovery. These therapeutically important secondary metabolites are assembled and modified by dedicated biosynthetic pathways in their host living organisms. Traditionally, chemists have attempted to synthesize natural product analogs that are important sources of new drugs. However, the extraordinary structural complexity of natural products sometimes makes it challenging for traditional chemical synthesis, which usually involves multiple steps, harsh conditions, toxic organic solvents, and byproduct wastes. In contrast, combinatorial biosynthesis exploits substrate promiscuity and employs engineered enzymes and pathways to produce novel “unnatural” natural products, substantially expanding the structural diversity of natural products with potential pharmaceutical value. Thus, combinatorial biosynthesis provides an environmentally friendly way to produce natural product analogs. Efficient expression of the combinatorial biosynthetic pathway in genetically tractable heterologous hosts can increase the titer of the compound, eventually resulting in less expensive drugs. In this review, we will discuss three major strategies for combinatorial biosynthesis: 1 precursor-directed biosynthesis; 2 enzyme-level modification, which includes swapping of the entire domains, modules and subunits, site-specific mutagenesis, and directed evolution; 3 pathway-level recombination. Recent examples of combinatorial biosynthesis employing these

  15. Cross-Neutralizing Antibodies in HIV-1 Individuals Infected by Subtypes B, F1, C or the B/Bbr Variant in Relation to the Genetics and Biochemical Characteristics of the env Gene.

    Directory of Open Access Journals (Sweden)

    Dalziza Victalina de Almeida

    Full Text Available Various HIV-1 env genetic and biochemical features impact the elicitation of cross-reactive neutralizing antibodies in natural infections. Thus, we aimed to investigate cross-neutralizing antibodies in individuals infected with HIV-1 env subtypes B, F1, C or the B/Bbr variant as well as env characteristics. Therefore, plasma samples from Brazilian chronically HIV-1 infected individuals were submitted to the TZM-bl neutralization assay. We also analyzed putative N-glycosylation sites (PNGLs and the size of gp120 variable domains in the context of HIV-1 subtypes prevalent in Brazil. We observed a greater breadth and potency of the anti-Env neutralizing response in individuals infected with the F1 or B HIV-1 subtypes compared with the C subtype and the variant B/Bbr. We observed greater V1 B/Bbr and smaller V4 F1 than those of other subtypes (p<0.005, however neither was there a correlation verified between the variable region length and neutralization potency, nor between PNLG and HIV-1 subtypes. The enrichment of W at top of V3 loop in weak neutralizing response viruses and the P in viruses with higher neutralization susceptibility was statistically significant (p = 0.013. Some other signatures sites were associated to HIV-1 subtype-specific F1 and B/Bbr samples might influence in the distinct neutralizing response. These results indicate that a single amino acid substitution may lead to a distinct conformational exposure or load in the association domain of the trimer of gp120 and interfere with the induction power of the neutralizing response, which affects the sensitivity of the neutralizing antibody and has significant implications for vaccine design.

  16. Coupled biochemical genetic and karyomorphological analyses for ...

    African Journals Online (AJOL)

    S. esocinus showed five bands, S. curvifrons five, S. niger seven, S. labiatus and S. plagiostomus each showed six bands; they also showed species characteristic bands. Karyotypic study of these was carried out. The diploid chromosome numbers recorded were 98 in S. niger (24 m + 32 sm + 22 st + 20 t), 98 in S. esocinus ...

  17. Biochemical and genetic studies on cardiometabolic syndrome

    OpenAIRE

    Supriya Simon, A.; Dinesh Roy, D.; Jayapal, V.; Vijayakumar, T.

    2010-01-01

    Cardiometabolic syndrome is one of the major public health issues of this century which describes a cluster of clinical characteristics. Seventy two patients with coronary artery disease (CAD) and cardiometabolic syndrome and forty healthy age and sex matched normal controls were selected for this study. Detailed clinical epidemiological and anthropometric characteristics were noted. Lipid profile and Cytokinesis-block micronuclei (CBMN) assay using cytochalasin B were carried out in all the ...

  18. RxnFinder: biochemical reaction search engines using molecular structures, molecular fragments and reaction similarity.

    Science.gov (United States)

    Hu, Qian-Nan; Deng, Zhe; Hu, Huanan; Cao, Dong-Sheng; Liang, Yi-Zeng

    2011-09-01

    Biochemical reactions play a key role to help sustain life and allow cells to grow. RxnFinder was developed to search biochemical reactions from KEGG reaction database using three search criteria: molecular structures, molecular fragments and reaction similarity. RxnFinder is helpful to get reference reactions for biosynthesis and xenobiotics metabolism. RxnFinder is freely available via: http://sdd.whu.edu.cn/rxnfinder. qnhu@whu.edu.cn.

  19. Comparison of 454-ESTs from Huperzia serrata and Phlegmariurus carinatus reveals putative genes involved in lycopodium alkaloid biosynthesis and developmental regulation

    Directory of Open Access Journals (Sweden)

    Steinmetz André

    2010-09-01

    Full Text Available Abstract Background Plants of the Huperziaceae family, which comprise the two genera Huperzia and Phlegmariurus, produce various types of lycopodium alkaloids that are used to treat a number of human ailments, such as contusions, swellings and strains. Huperzine A, which belongs to the lycodine type of lycopodium alkaloids, has been used as an anti-Alzheimer's disease drug candidate. Despite their medical importance, little genomic or transcriptomic data are available for the members of this family. We used massive parallel pyrosequencing on the Roche 454-GS FLX Titanium platform to generate a substantial EST dataset for Huperzia serrata (H. serrata and Phlegmariurus carinatus (P. carinatus as representative members of the Huperzia and Phlegmariurus genera, respectively. H. serrata and P. carinatus are important plants for research on the biosynthesis of lycopodium alkaloids. We focused on gene discovery in the areas of bioactive compound biosynthesis and transcriptional regulation as well as genetic marker detection in these species. Results For H. serrata, 36,763 unique putative transcripts were generated from 140,930 reads totaling over 57,028,559 base pairs; for P. carinatus, 31,812 unique putative transcripts were generated from 79,920 reads totaling over 30,498,684 base pairs. Using BLASTX searches of public databases, 16,274 (44.3% unique putative transcripts from H. serrata and 14,070 (44.2% from P. carinatus were assigned to at least one protein. Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG orthology annotations revealed that the functions of the unique putative transcripts from these two species cover a similarly broad set of molecular functions, biological processes and biochemical pathways. In particular, a total of 20 H. serrata candidate cytochrome P450 genes, which are more abundant in leaves than in roots and might be involved in lycopodium alkaloid biosynthesis, were found based on the comparison of H

  20. Biosynthesis of silver nanoparticles synthesized by Aspergillus ...

    Indian Academy of Sciences (India)

    Biotechnology Division, Applied Science Department, University of ... Abstract. In the present study, biosynthesis of silver nanoparticles and its antioxidant, antimicrobial and cytotoxic ... example of the biosynthesis using fungi was that the cell-.

  1. On the Adaptive Design Rules of Biochemical Networks in Evolution

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2007-01-01

    Full Text Available Biochemical networks are the backbones of physiological systems of organisms. Therefore, a biochemical network should be sufficiently robust (not sensitive to tolerate genetic mutations and environmental changes in the evolutionary process. In this study, based on the robustness and sensitivity criteria of biochemical networks, the adaptive design rules are developed for natural selection in the evolutionary process. This will provide insights into the robust adaptive mechanism of biochemical networks in the evolutionary process. We find that if a mutated biochemical network satisfies the robustness and sensitivity criteria of natural selection, there is a high probability for the biochemical network to prevail during natural selection in the evolutionary process. Since there are various mutated biochemical networks that can satisfy these criteria but have some differences in phenotype, the biochemical networks increase their diversities in the evolutionary process. The robustness of a biochemical network enables co-option so that new phenotypes can be generated in evolution. The proposed robust adaptive design rules of natural selection gain much insight into the evolutionary mechanism and provide a systematic robust biochemical circuit design method of biochemical networks for biotechnological and therapeutic purposes in the future.

  2. Arogenate Dehydratase Isoforms Differentially Regulate Anthocyanin Biosynthesis in Arabidopsis thaliana.

    Science.gov (United States)

    Chen, Qingbo; Man, Cong; Li, Danning; Tan, Huijuan; Xie, Ye; Huang, Jirong

    2016-12-05

    Anthocyanins, a group of L-phenylalanine (Phe)-derived flavonoids, have been demonstrated to play important roles in plant stress resistance and interactions between plants and insects. Although the anthocyanin biosynthetic pathway and its regulatory mechanisms have been extensively studied, it remains unclear whether the level of Phe supply affects anthocyanin biosynthesis. Here, we investigated the roles of arogenate dehydratases (ADTs), the key enzymes that catalyze the conversion of arogenate into Phe, in sucrose-induced anthocyanin biosynthesis in Arabidopsis. Genetic analysis showed that all six ADT isoforms function redundantly in anthocyanin biosynthesis but have differential contributions. ADT2 contributes the most to anthocyanin accumulation, followed by ADT1 and ADT3, and ADT4-ADT6. We found that anthocyanin content is positively correlated with the levels of Phe and sucrose-induced ADT transcripts in seedlings. Consistently, addition of Phe to the medium could dramatically increase anthocyanin content in the wild-type plants and rescue the phenotype of the adt1 adt3 double mutant regarding the anthocyanin accumulation. Moreover, transgenic plants overexpressing ADT4, which appears to be less sensitive to Phe than overexpression of ADT2, hyperaccumulate Phe and produce elevated level of anthocyanins. Taken together, our results suggest that the level of Phe is an important regulatory factor for sustaining anthocyanin biosynthesis. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  3. Defining Determinants and Dynamics and Cellulose Microfibril Biosynthesis, Assembly and Degredation OSP Number: 63079/A001

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-12-01

    been based on the idea that the most effective way to address this long standing and highly complex question is to adopt a broad ‘systems approach’. Accordingly, we assembled a multi-disciplinary collaborative team with collective expertise in plant biology and molecular genetics, polymer structure and chemistry, enzyme biochemistry and biochemical engineering. We used a spectrum of cutting edge technologies, including plant functional genomics, chemical genetics, live cell imaging, advanced microscopy, high energy X-ray spectroscopy and nanotechnology, to study the molecular determinants of cellulose microfibril structure. Importantly, this research effort was closely coupled with an analytical pipeline to characterize the effects of altering microfibril architecture on bioconversion potential, with the goal of generating predictive models to help guide the identification, development and implementation of new feedstocks. This project therefore spanned core basic science and applied research, in line with the goals of the program. Over the course of the project, accomplishments included: - Establishing platforms through reverse and forward genetics to identify and manipulate candidate genes that influence cellulose microfibril synthesis and structure in a model C3 grass, Brachypodium distachyon and a model C4 grass Setaria viridis; Identifying and characterizing the effects of a number of cellulose biosynthesis inhibitors (CBIs), and particularly those that target monocots with the aim of generating resistance loci; Developing protocols for the use of high energy X-ray diffraction (XRD) to study the structure and organization of cellulose microfibrils in plant walls, notably those in Arabidopsis and Brachypodium; Using the chemical and genetic based inhibition strategies to develop new mechanistic models of cellulose microfibril crystallization, and of how altering microfibril architecture influences digestibility.

  4. The Arabidopsis Vacuolar Sorting Receptor1 Is Required for Osmotic Stress-Induced Abscisic Acid Biosynthesis

    KAUST Repository

    Wang, Zhen-Yu

    2014-11-21

    Osmotic stress activates the biosynthesis of the phytohormone abscisic acid (ABA) through a pathway that is rate limited by the carotenoid cleavage enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). To understand the signal transduction mechanism underlying the activation of ABA biosynthesis, we performed a forward genetic screen to isolate mutants defective in osmotic stress regulation of the NCED3 gene. Here, we identified the Arabidopsis (Arabidopsis thaliana) Vacuolar Sorting Receptor1 (VSR1) as a unique regulator of ABA biosynthesis. The vsr1 mutant not only shows increased sensitivity to osmotic stress, but also is defective in the feedback regulation of ABA biosynthesis by ABA. Further analysis revealed that vacuolar trafficking mediated by VSR1 is required for osmotic stress-responsive ABA biosynthesis and osmotic stress tolerance. Moreover, under osmotic stress conditions, the membrane potential, calcium flux, and vacuolar pH changes in the vsr1 mutant differ from those in the wild type. Given that manipulation of the intracellular pH is sufficient to modulate the expression of ABA biosynthesis genes, including NCED3, and ABA accumulation, we propose that intracellular pH changes caused by osmotic stress may play a signaling role in regulating ABA biosynthesis and that this regulation is dependent on functional VSR1.

  5. The Arabidopsis Vacuolar Sorting Receptor1 Is Required for Osmotic Stress-Induced Abscisic Acid Biosynthesis

    KAUST Repository

    Wang, Zhen-Yu; Gehring, Christoph A; Zhu, Jianhua; Li, Feng-Min; Zhu, Jian-Kang; Xiong, Liming

    2014-01-01

    Osmotic stress activates the biosynthesis of the phytohormone abscisic acid (ABA) through a pathway that is rate limited by the carotenoid cleavage enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). To understand the signal transduction mechanism underlying the activation of ABA biosynthesis, we performed a forward genetic screen to isolate mutants defective in osmotic stress regulation of the NCED3 gene. Here, we identified the Arabidopsis (Arabidopsis thaliana) Vacuolar Sorting Receptor1 (VSR1) as a unique regulator of ABA biosynthesis. The vsr1 mutant not only shows increased sensitivity to osmotic stress, but also is defective in the feedback regulation of ABA biosynthesis by ABA. Further analysis revealed that vacuolar trafficking mediated by VSR1 is required for osmotic stress-responsive ABA biosynthesis and osmotic stress tolerance. Moreover, under osmotic stress conditions, the membrane potential, calcium flux, and vacuolar pH changes in the vsr1 mutant differ from those in the wild type. Given that manipulation of the intracellular pH is sufficient to modulate the expression of ABA biosynthesis genes, including NCED3, and ABA accumulation, we propose that intracellular pH changes caused by osmotic stress may play a signaling role in regulating ABA biosynthesis and that this regulation is dependent on functional VSR1.

  6. Regulation of neurosteroid biosynthesis by neurotransmitters and neuropeptides

    Directory of Open Access Journals (Sweden)

    Jean-Luc eDo-Rego

    2012-01-01

    Full Text Available The enzymatic pathways leading to the synthesis of bioactive steroids in the brain are now almost completely elucidated in various groups of vertebrates and, during the last decade, the neuronal mechanisms involved in the regulation of neurosteroid production have received increasing attention. This report reviews the current knowledge concerning the effects of neurotransmitters, peptide hormones and neuropeptides on the biosynthesis of neurosteroids. Anatomical studies have been carried out to visualize the neurotransmitter- or neuropeptide-containing fibers contacting steroid-synthesizing neurons as well as the neurotransmitter, peptide hormones or neuropeptide receptors expressed in these neurons. Biochemical experiments have been conducted to investigate the effects of neurotransmitters, peptide hormones or neuropeptides on neurosteroid biosynthesis, and to characterize the type of receptors involved. Thus, it has been found that glutamate, acting through kainate and/or AMPA receptors, rapidly inactivates P450arom, and that melatonin produced by the pineal gland and eye inhibits the biosynthesis of 7-hydroxypregnenolone (7-OH-5P, while prolactin produced by the adenohypophysis enhances the formation of 7-OH-5P. It has also been demonstrated that the biosynthesis of neurosteroids is inhibited by GABA, acting through GABAA receptors, and neuropeptide Y, acting through Y1 receptors. In contrast, it has been shown that the octadecaneuropetide ODN, acting through central-type benzodiazepine receptors, the triakontatetraneuropeptide TTN, acting though peripheral-type benzodiazepine receptors, and vasotocine, acting through V1a-like receptors, stimulate the production of neurosteroids. Since neurosteroids are implicated in the control of various neurophysiological and behavioral processes, these data suggest that some of the neurophysiological effects exerted by neurotransmitters and neuropeptides may be mediated via the regulation

  7. The p450 monooxygenase BcABA1 is essential for abscisic acid biosynthesis in Botrytis cinerea

    DEFF Research Database (Denmark)

    Siewers, V.; Smedsgaard, Jørn; Tudzynski, P.

    2004-01-01

    The phytopathogenic ascomycete Botrytis cinerea is known to produce abscisic acid (ABA), which is thought to be involved in host-pathogen interaction. Biochemical analyses had previously shown that, in contrast to higher plants, the fungal ABA biosynthesis probably does not proceed via carotenoids...

  8. Isoprenoid-derived plant signaling molecules: biosynthesis and biological importance

    Czech Academy of Sciences Publication Activity Database

    Tarkowská, Danuše; Strnad, Miroslav

    2018-01-01

    Roč. 247, č. 5 (2018), s. 1051-1066 ISSN 0032-0935 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Dimethylallyl diphosphate * Isopentenyl diphosphate * Isoprenoids * Phytoecdysteroids * Plant hormones * Terpenoids Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemical research methods Impact factor: 3.361, year: 2016

  9. Cysteine Biosynthesis Controls Serratia marcescens Phospholipase Activity.

    Science.gov (United States)

    Anderson, Mark T; Mitchell, Lindsay A; Mobley, Harry L T

    2017-08-15

    Serratia marcescens causes health care-associated opportunistic infections that can be difficult to treat due to a high incidence of antibiotic resistance. One of the many secreted proteins of S. marcescens is the PhlA phospholipase enzyme. Genes involved in the production and secretion of PhlA were identified by screening a transposon insertion library for phospholipase-deficient mutants on phosphatidylcholine-containing medium. Mutations were identified in four genes ( cyaA , crp , fliJ , and fliP ) that are involved in the flagellum-dependent PhlA secretion pathway. An additional phospholipase-deficient isolate harbored a transposon insertion in the cysE gene encoding a predicted serine O -acetyltransferase required for cysteine biosynthesis. The cysE requirement for extracellular phospholipase activity was confirmed using a fluorogenic phospholipase substrate. Phospholipase activity was restored to the cysE mutant by the addition of exogenous l-cysteine or O -acetylserine to the culture medium and by genetic complementation. Additionally, phlA transcript levels were decreased 6-fold in bacteria lacking cysE and were restored with added cysteine, indicating a role for cysteine-dependent transcriptional regulation of S. marcescens phospholipase activity. S. marcescens cysE mutants also exhibited a defect in swarming motility that was correlated with reduced levels of flhD and fliA flagellar regulator gene transcription. Together, these findings suggest a model in which cysteine is required for the regulation of both extracellular phospholipase activity and surface motility in S. marcescens IMPORTANCE Serratia marcescens is known to secrete multiple extracellular enzymes, but PhlA is unusual in that this protein is thought to be exported by the flagellar transport apparatus. In this study, we demonstrate that both extracellular phospholipase activity and flagellar function are dependent on the cysteine biosynthesis pathway. Furthermore, a disruption of cysteine

  10. A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Fan, J.; Xu, C.; Andre, C.

    2011-06-23

    Neutral lipid metabolism has been extensively studied in yeast, plants and mammals. In contrast, little information is available regarding the biochemical pathway, enzymes and regulatory factors involved in the biosynthesis of triacylglycerol (TAG) in microalgae. In the conventional TAG biosynthetic pathway widely accepted for yeast, plants and mammals, TAG is assembled in the endoplasmic reticulum (ER) from its immediate precursor diacylglycerol (DAG) made by ER-specific acyltransferases, and is deposited exclusively in lipid droplets in the cytosol. Here, we demonstrated that the unicellular microalga Chlamydomonas reinhardtii employs a distinct pathway that uses DAG derived almost exclusively from the chloroplast to produce TAG. This unique TAG biosynthesis pathway is largely dependent on de novo fatty acid synthesis, and the TAG formed in this pathway is stored in lipid droplets in both the chloroplast and the cytosol. These findings have wide implications for understanding TAG biosynthesis and storage and other areas of lipid metabolism in microalgae and other organisms.

  11. Biosynthesis and therapeutic properties of Lavandula essential oil constituents.

    Science.gov (United States)

    Woronuk, Grant; Demissie, Zerihun; Rheault, Mark; Mahmoud, Soheil

    2011-01-01

    Lavenders and their essential oils have been used in alternative medicine for several centuries. The volatile compounds that comprise lavender essential oils, including linalool and linalyl acetate, have demonstrative therapeutic properties, and the relative abundance of these metabolites is greatly influenced by the genetics and environment of the developing plants. With the rapid progress of molecular biology and the genomic sciences, our understanding of essential oil biosynthesis has greatly improved over the past few decades. At the same time, there is a recent surge of interest in the use of natural remedies, including lavender essential oils, in alternative medicine and aromatherapy. This article provides a review of recent developments related to the biosynthesis and medicinal properties of lavender essential oils. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Biosynthesis of Anthocyanins and Their Regulation in Colored Grapes

    Directory of Open Access Journals (Sweden)

    Guo-Liang Yan

    2010-12-01

    Full Text Available Anthocyanins, synthesized via the flavonoid pathway, are a class of crucial phenolic compounds which are fundamentally responsible for the red color of grapes and wines. As the most important natural colorants in grapes and their products, anthocyanins are also widely studied for their numerous beneficial effects on human health. In recent years, the biosynthetic pathway of anthocyanins in grapes has been thoroughly investigated. Their intracellular transportation and accumulation have also been further clarified. Additionally, the genetic mechanism regulating their biosynthesis and the phytohormone influences on them are better understood. Furthermore, due to their importance in the quality of wine grapes, the effects of the environmental factors and viticulture practices on anthocyanin accumulation are being investigated increasingly. The present paper summarizes both the basic information and the most recent advances in the study of the anthocyanin biosynthesis in red grapes, emphasizing their gene structure, the transcriptional factors and the diverse exterior regulation factors.

  13. Biosynthesis of anthocyanins and their regulation in colored grapes.

    Science.gov (United States)

    He, Fei; Mu, Lin; Yan, Guo-Liang; Liang, Na-Na; Pan, Qiu-Hong; Wang, Jun; Reeves, Malcolm J; Duan, Chang-Qing

    2010-12-09

    Anthocyanins, synthesized via the flavonoid pathway, are a class of crucial phenolic compounds which are fundamentally responsible for the red color of grapes and wines. As the most important natural colorants in grapes and their products, anthocyanins are also widely studied for their numerous beneficial effects on human health. In recent years, the biosynthetic pathway of anthocyanins in grapes has been thoroughly investigated. Their intracellular transportation and accumulation have also been further clarified. Additionally, the genetic mechanism regulating their biosynthesis and the phytohormone influences on them are better understood. Furthermore, due to their importance in the quality of wine grapes, the effects of the environmental factors and viticulture practices on anthocyanin accumulation are being investigated increasingly. The present paper summarizes both the basic information and the most recent advances in the study of the anthocyanin biosynthesis in red grapes, emphasizing their gene structure, the transcriptional factors and the diverse exterior regulation factors.

  14. DGAT enzymes and triacylglycerol biosynthesis

    OpenAIRE

    Yen, Chi-Liang Eric; Stone, Scot J.; Koliwad, Suneil; Harris, Charles; Farese, Robert V.

    2008-01-01

    Triacylglycerols (triglycerides) (TGs) are the major storage molecules of metabolic energy and FAs in most living organisms. Excessive accumulation of TGs, however, is associated with human diseases, such as obesity, diabetes mellitus, and steatohepatitis. The final and the only committed step in the biosynthesis of TGs is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. The genes encoding two DGAT enzymes, DGAT1 and DGAT2, were identified in the past decade, ...

  15. In Vivo Roles of Fatty Acid Biosynthesis Enzymes in Biosynthesis of Biotin and α-Lipoic Acid in Corynebacterium glutamicum.

    Science.gov (United States)

    Ikeda, Masato; Nagashima, Takashi; Nakamura, Eri; Kato, Ryosuke; Ohshita, Masakazu; Hayashi, Mikiro; Takeno, Seiki

    2017-10-01

    For fatty acid biosynthesis, Corynebacterium glutamicum uses two type I fatty acid synthases (FAS-I), FasA and FasB, in addition to acetyl-coenzyme A (CoA) carboxylase (ACC) consisting of AccBC, AccD1, and AccE. The in vivo roles of the enzymes in supplying precursors for biotin and α-lipoic acid remain unclear. Here, we report genetic evidence demonstrating that the biosynthesis of these cofactors is linked to fatty acid biosynthesis through the FAS-I pathway. For this study, we used wild-type C. glutamicum and its derived biotin vitamer producer BFI-5, which was engineered to express Escherichia coli bioBF and Bacillus subtilis bioI Disruption of either fasA or fasB in strain BFI-5 led to decreased production of biotin vitamers, whereas its amplification contributed to increased production, with a larger impact of fasA in both cases. Double disruptions of fasA and fasB resulted in no biotin vitamer production. The acc genes showed a positive effect on production when amplified simultaneously. Augmented fatty acid biosynthesis was also reflected in pimelic acid production when carbon flow was blocked at the BioF reaction. These results indicate that carbon flow down the FAS-I pathway is destined for channeling into the biotin biosynthesis pathway, and that FasA in particular has a significant impact on precursor supply. In contrast, fasB disruption resulted in auxotrophy for lipoic acid or its precursor octanoic acid in both wild-type and BFI-5 strains. The phenotypes were fully complemented by plasmid-mediated expression of fasB but not fasA These results reveal that FasB plays a specific physiological role in lipoic acid biosynthesis in C. glutamicum IMPORTANCE For the de novo biosynthesis of fatty acids, C. glutamicum exceptionally uses a eukaryotic multifunctional type I fatty acid synthase (FAS-I) system comprising FasA and FasB, in contrast to most bacteria, such as E. coli and B. subtilis , which use an individual nonaggregating type II fatty acid synthase

  16. Purine biosynthesis is the bottleneck in trimethoprim-treated Bacillus subtilis.

    Science.gov (United States)

    Stepanek, Jennifer Janina; Schäkermann, Sina; Wenzel, Michaela; Prochnow, Pascal; Bandow, Julia Elisabeth

    2016-10-01

    Trimethoprim is a folate biosynthesis inhibitor. Tetrahydrofolates are essential for the transfer of C 1 units in several biochemical pathways including purine, thymine, methionine, and glycine biosynthesis. This study addressed the effects of folate biosynthesis inhibition on bacterial physiology. Two complementary proteomic approaches were employed to analyze the response of Bacillus subtilis to trimethoprim. Acute changes in protein synthesis rates were monitored by radioactive pulse labeling of newly synthesized proteins and subsequent 2DE analysis. Changes in protein levels were detected using gel-free quantitative MS. Proteins involved in purine and histidine biosynthesis, the σ B -dependent general stress response, and sporulation were upregulated. Most prominently, the PurR-regulon required for de novo purine biosynthesis was derepressed indicating purine depletion. The general stress response was activated energy dependently and in a subpopulation of treated cultures an early onset of sporulation was observed, most likely triggered by low guanosine triphosphate levels. Supplementation of adenosine triphosphate, adenosine, and guanosine to the medium substantially decreased antibacterial activity, showing that purine depletion becomes the bottleneck in trimethoprim-treated B. subtilis. The frequently prescribed antibiotic trimethoprim causes purine depletion in B. subtilis, which can be complemented by supplementing purines to the medium. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Measures of Biochemical Sociology

    Science.gov (United States)

    Snell, Joel; Marsh, Mitchell

    2008-01-01

    In a previous article, the authors introduced a new sub field in sociology that we labeled "biochemical sociology." We introduced the definition of a sociology that encompasses sociological measures, psychological measures, and biological indicators Snell & Marsh (2003). In this article, we want to demonstrate a research strategy that would assess…

  18. Comparison of Effect of Brassinosteroid and Gibberellin Biosynthesis Inhibitors on Growth of Rice Seedlings

    Directory of Open Access Journals (Sweden)

    Tadashi Matusmoto

    2016-01-01

    Full Text Available Brassinosteroid (BR and gibberellin (GA are two predominant plant hormones that regulate plant cell elongation. Mutants disrupt the biosynthesis of these hormones and display different degrees of dwarf phenotypes in rice. Although the role of each plant hormone in promoting the longitudinal growth of plants has been extensively studied using genetic methods, their relationship is still poorly understood. In this study, we used two specific inhibitors targeting BR and GA biosynthesis to investigate the roles of BR and GA in growth of rice seedlings. Yucaizol, a specific inhibitor of BR biosynthesis, and Trinexapac-ethyl, a commercially available inhibitor of GA biosynthesis, were used. The effect of Yucaizol on rice seedlings indicated that Yucaizol significantly retarded stem elongation. The IC50 value was found to be approximately 0.8 μmol/L. Yucaizol also induced small leaf angle phenocopy in rice seedlings, similarly to BR-deficient rice, while Trinexapac-ethyl did not. When Yucaizol combined with Trinexapac-ethyl was applied to the rice plants, the mixture of these two inhibitors retarded stem elongation of rice at lower doses. Our results suggest that the use of a BR biosynthesis inhibitor combined with a GA biosynthesis inhibitor may be useful in the development of new technologies for controlling rice plant height.

  19. Distinct Prominent Roles for Enzymes of Plasmodium berghei Heme Biosynthesis in Sporozoite and Liver Stage Maturation

    Science.gov (United States)

    Matuschewski, Kai; Haussig, Joana M.

    2016-01-01

    Malarial parasites have evolved complex regulation of heme supply and disposal to adjust to heme-rich and -deprived host environments. In addition to its own pathway for heme biosynthesis, Plasmodium likely harbors mechanisms for heme scavenging from host erythrocytes. Elaborate compartmentalization of de novo heme synthesis into three subcellular locations, including the vestigial plastid organelle, indicates critical roles in life cycle progression. In this study, we systematically profile the essentiality of heme biosynthesis by targeted gene deletion of enzymes in early steps of this pathway. We show that disruption of endogenous heme biosynthesis leads to a first detectable defect in oocyst maturation and sporogony in the Anopheles vector, whereas blood stage propagation, colonization of mosquito midguts, or initiation of oocyst development occurs indistinguishably from that of wild-type parasites. Although sporozoites are produced by parasites lacking an intact pathway for heme biosynthesis, they are absent from mosquito salivary glands, indicative of a vital role for heme biosynthesis only in sporozoite maturation. Rescue of the first defect in sporogony permitted analysis of potential roles in liver stages. We show that liver stage parasites benefit from but do not strictly depend upon their own aminolevulinic acid synthase and that they can scavenge aminolevulinic acid from the host environment. Together, our experimental genetics analysis of Plasmodium enzymes for heme biosynthesis exemplifies remarkable shifts between the use of endogenous and host resources during life cycle progression. PMID:27600503

  20. Polyamine biosynthesis is critical for growth and differentiation of the pancreas

    Science.gov (United States)

    Mastracci, Teresa L.; Robertson, Morgan A.; Mirmira, Raghavendra G.; Anderson, Ryan M.

    2015-01-01

    The pancreas, in most studied vertebrates, is a compound organ with both exocrine and endocrine functions. The exocrine compartment makes and secretes digestive enzymes, while the endocrine compartment, organized into islets of Langerhans, produces hormones that regulate blood glucose. High concentrations of polyamines, which are aliphatic amines, are reported in exocrine and endocrine cells, with insulin-producing β cells showing the highest concentrations. We utilized zebrafish as a model organism, together with pharmacological inhibition or genetic manipulation, to determine how polyamine biosynthesis functions in pancreatic organogenesis. We identified that inhibition of polyamine biosynthesis reduces exocrine pancreas and β cell mass, and that these reductions are at the level of differentiation. Moreover, we demonstrate that inhibition of ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis, phenocopies inhibition or knockdown of the enzyme deoxyhypusine synthase (DHS). These data identify that the pancreatic requirement for polyamine biosynthesis is largely mediated through a requirement for spermidine for the downstream posttranslational modification of eIF5A by its enzymatic activator DHS, which in turn impacts mRNA translation. Altogether, we have uncovered a role for polyamine biosynthesis in pancreatic organogenesis and identified that it may be possible to exploit polyamine biosynthesis to manipulate pancreatic cell differentiation. PMID:26299433

  1. Biosynthesis and metabolic fate of phenylalanine in conifers

    Directory of Open Access Journals (Sweden)

    María Belén Pascual

    2016-07-01

    Full Text Available The amino acid phenylalanine (Phe is a critical metabolic node that plays an essential role in the interconnection between primary and secondary metabolism in plants. Phe is used as a protein building block but it is also as a precursor for numerous plant compounds that are crucial for plant reproduction, growth, development and defense against different types of stresses. The metabolism of Phe plays a central role in the channeling of carbon from photosynthesis to the biosynthesis of phenylpropanoids. The study of this metabolic pathway is particularly relevant in trees, which divert large amounts of carbon into the biosynthesis of Phe-derived compounds, particularly lignin, an important constituent of wood. The trunks of trees are metabolic sinks that consume a considerable percentage of carbon and energy from photosynthesis, and carbon is finally immobilized in wood. This paper reviews recent advances in the biosynthesis and metabolic utilization of Phe in conifer trees. Two alternative routes have been identified: the ancient phenylpyruvate pathway that is present in microorganisms, and the arogenate pathway that possibly evolved later during plant evolution. Additionally, an efficient nitrogen recycling mechanism is required to maintain sustained growth during xylem formation. The relevance of phenylalanine metabolic pathways in wood formation, the biotic interactions and ultraviolet protection is discussed. The genetic manipulation and transcriptional regulation of the pathways are also outlined.

  2. Biosynthesis and Metabolic Fate of Phenylalanine in Conifers.

    Science.gov (United States)

    Pascual, María B; El-Azaz, Jorge; de la Torre, Fernando N; Cañas, Rafael A; Avila, Concepción; Cánovas, Francisco M

    2016-01-01

    The amino acid phenylalanine (Phe) is a critical metabolic node that plays an essential role in the interconnection between primary and secondary metabolism in plants. Phe is used as a protein building block but it is also as a precursor for numerous plant compounds that are crucial for plant reproduction, growth, development, and defense against different types of stresses. The metabolism of Phe plays a central role in the channeling of carbon from photosynthesis to the biosynthesis of phenylpropanoids. The study of this metabolic pathway is particularly relevant in trees, which divert large amounts of carbon into the biosynthesis of Phe-derived compounds, particularly lignin, an important constituent of wood. The trunks of trees are metabolic sinks that consume a considerable percentage of carbon and energy from photosynthesis, and carbon is finally immobilized in wood. This paper reviews recent advances in the biosynthesis and metabolic utilization of Phe in conifer trees. Two alternative routes have been identified: the ancient phenylpyruvate pathway that is present in microorganisms, and the arogenate pathway that possibly evolved later during plant evolution. Additionally, an efficient nitrogen recycling mechanism is required to maintain sustained growth during xylem formation. The relevance of phenylalanine metabolic pathways in wood formation, the biotic interactions, and ultraviolet protection is discussed. The genetic manipulation and transcriptional regulation of the pathways are also outlined.

  3. Disruption of Sphingolipid Biosynthesis Blocks Phagocytosis of Candida albicans.

    Directory of Open Access Journals (Sweden)

    Fikadu G Tafesse

    2015-10-01

    Full Text Available The ability of phagocytes to clear pathogens is an essential attribute of the innate immune response. The role of signaling lipid molecules such as phosphoinositides is well established, but the role of membrane sphingolipids in phagocytosis is largely unknown. Using a genetic approach and small molecule inhibitors, we show that phagocytosis of Candida albicans requires an intact sphingolipid biosynthetic pathway. Blockade of serine-palmitoyltransferase (SPT and ceramide synthase-enzymes involved in sphingolipid biosynthesis- by myriocin and fumonisin B1, respectively, impaired phagocytosis by phagocytes. We used CRISPR/Cas9-mediated genome editing to generate Sptlc2-deficient DC2.4 dendritic cells, which lack serine palmitoyl transferase activity. Sptlc2-/- DC2.4 cells exhibited a stark defect in phagocytosis, were unable to bind fungal particles and failed to form a normal phagocytic cup to engulf C. albicans. Supplementing the growth media with GM1, the major ganglioside present at the cell surface, restored phagocytic activity of Sptlc2-/- DC2.4 cells. While overall membrane trafficking and endocytic pathways remained functional, Sptlc2-/- DC2.4 cells express reduced levels of the pattern recognition receptors Dectin-1 and TLR2 at the cell surface. Consistent with the in vitro data, compromised sphingolipid biosynthesis in mice sensitizes the animal to C. albicans infection. Sphingolipid biosynthesis is therefore critical for phagocytosis and in vivo clearance of C. albicans.

  4. Uridine monophosphate synthetase enables eukaryotic de novo NAD+ biosynthesis from quinolinic acid.

    Science.gov (United States)

    McReynolds, Melanie R; Wang, Wenqing; Holleran, Lauren M; Hanna-Rose, Wendy

    2017-07-07

    NAD + biosynthesis is an attractive and promising therapeutic target for influencing health span and obesity-related phenotypes as well as tumor growth. Full and effective use of this target for therapeutic benefit requires a complete understanding of NAD + biosynthetic pathways. Here, we report a previously unrecognized role for a conserved phosphoribosyltransferase in NAD + biosynthesis. Because a required quinolinic acid phosphoribosyltransferase (QPRTase) is not encoded in its genome, Caenorhabditis elegans are reported to lack a de novo NAD + biosynthetic pathway. However, all the genes of the kynurenine pathway required for quinolinic acid (QA) production from tryptophan are present. Thus, we investigated the presence of de novo NAD + biosynthesis in this organism. By combining isotope-tracing and genetic experiments, we have demonstrated the presence of an intact de novo biosynthesis pathway for NAD + from tryptophan via QA, highlighting the functional conservation of this important biosynthetic activity. Supplementation with kynurenine pathway intermediates also boosted NAD + levels and partially reversed NAD + -dependent phenotypes caused by mutation of pnc-1 , which encodes a nicotinamidase required for NAD + salvage biosynthesis, demonstrating contribution of de novo synthesis to NAD + homeostasis. By investigating candidate phosphoribosyltransferase genes in the genome, we determined that the conserved uridine monophosphate phosphoribosyltransferase (UMPS), which acts in pyrimidine biosynthesis, is required for NAD + biosynthesis in place of the missing QPRTase. We suggest that similar underground metabolic activity of UMPS may function in other organisms. This mechanism for NAD + biosynthesis creates novel possibilities for manipulating NAD + biosynthetic pathways, which is key for the future of therapeutics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis.

    Science.gov (United States)

    Yen, Chi-Liang Eric; Stone, Scot J; Koliwad, Suneil; Harris, Charles; Farese, Robert V

    2008-11-01

    Triacylglycerols (triglycerides) (TGs) are the major storage molecules of metabolic energy and FAs in most living organisms. Excessive accumulation of TGs, however, is associated with human diseases, such as obesity, diabetes mellitus, and steatohepatitis. The final and the only committed step in the biosynthesis of TGs is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. The genes encoding two DGAT enzymes, DGAT1 and DGAT2, were identified in the past decade, and the use of molecular tools, including mice deficient in either enzyme, has shed light on their functions. Although DGAT enzymes are involved in TG synthesis, they have distinct protein sequences and differ in their biochemical, cellular, and physiological functions. Both enzymes may be useful as therapeutic targets for diseases. Here we review the current knowledge of DGAT enzymes, focusing on new advances since the cloning of their genes, including possible roles in human health and diseases.

  6. Phenolic Amides Are Potent Inhibitors of De Novo Nucleotide Biosynthesis.

    Science.gov (United States)

    Pisithkul, Tippapha; Jacobson, Tyler B; O'Brien, Thomas J; Stevenson, David M; Amador-Noguez, Daniel

    2015-09-01

    An outstanding challenge toward efficient production of biofuels and value-added chemicals from plant biomass is the impact that lignocellulose-derived inhibitors have on microbial fermentations. Elucidating the mechanisms that underlie their toxicity is critical for developing strategies to overcome them. Here, using Escherichia coli as a model system, we investigated the metabolic effects and toxicity mechanisms of feruloyl amide and coumaroyl amide, the predominant phenolic compounds in ammonia-pretreated biomass hydrolysates. Using metabolomics, isotope tracers, and biochemical assays, we showed that these two phenolic amides act as potent and fast-acting inhibitors of purine and pyrimidine biosynthetic pathways. Feruloyl or coumaroyl amide exposure leads to (i) a rapid buildup of 5-phosphoribosyl-1-pyrophosphate (PRPP), a key precursor in nucleotide biosynthesis, (ii) a rapid decrease in the levels of pyrimidine biosynthetic intermediates, and (iii) a long-term generalized decrease in nucleotide and deoxynucleotide levels. Tracer experiments using (13)C-labeled sugars and [(15)N]ammonia demonstrated that carbon and nitrogen fluxes into nucleotides and deoxynucleotides are inhibited by these phenolic amides. We found that these effects are mediated via direct inhibition of glutamine amidotransferases that participate in nucleotide biosynthetic pathways. In particular, feruloyl amide is a competitive inhibitor of glutamine PRPP amidotransferase (PurF), which catalyzes the first committed step in de novo purine biosynthesis. Finally, external nucleoside supplementation prevents phenolic amide-mediated growth inhibition by allowing nucleotide biosynthesis via salvage pathways. The results presented here will help in the development of strategies to overcome toxicity of phenolic compounds and facilitate engineering of more efficient microbial producers of biofuels and chemicals. Copyright © 2015, Pisithkul et al.

  7. Phenolic Amides Are Potent Inhibitors of De Novo Nucleotide Biosynthesis

    Science.gov (United States)

    Pisithkul, Tippapha; Jacobson, Tyler B.; O'Brien, Thomas J.; Stevenson, David M.

    2015-01-01

    An outstanding challenge toward efficient production of biofuels and value-added chemicals from plant biomass is the impact that lignocellulose-derived inhibitors have on microbial fermentations. Elucidating the mechanisms that underlie their toxicity is critical for developing strategies to overcome them. Here, using Escherichia coli as a model system, we investigated the metabolic effects and toxicity mechanisms of feruloyl amide and coumaroyl amide, the predominant phenolic compounds in ammonia-pretreated biomass hydrolysates. Using metabolomics, isotope tracers, and biochemical assays, we showed that these two phenolic amides act as potent and fast-acting inhibitors of purine and pyrimidine biosynthetic pathways. Feruloyl or coumaroyl amide exposure leads to (i) a rapid buildup of 5-phosphoribosyl-1-pyrophosphate (PRPP), a key precursor in nucleotide biosynthesis, (ii) a rapid decrease in the levels of pyrimidine biosynthetic intermediates, and (iii) a long-term generalized decrease in nucleotide and deoxynucleotide levels. Tracer experiments using 13C-labeled sugars and [15N]ammonia demonstrated that carbon and nitrogen fluxes into nucleotides and deoxynucleotides are inhibited by these phenolic amides. We found that these effects are mediated via direct inhibition of glutamine amidotransferases that participate in nucleotide biosynthetic pathways. In particular, feruloyl amide is a competitive inhibitor of glutamine PRPP amidotransferase (PurF), which catalyzes the first committed step in de novo purine biosynthesis. Finally, external nucleoside supplementation prevents phenolic amide-mediated growth inhibition by allowing nucleotide biosynthesis via salvage pathways. The results presented here will help in the development of strategies to overcome toxicity of phenolic compounds and facilitate engineering of more efficient microbial producers of biofuels and chemicals. PMID:26070680

  8. Oleic acid biosynthesis in cyanobacteria

    International Nuclear Information System (INIS)

    VanDusen, W.J.; Jaworski, J.G.

    1986-01-01

    The biosynthesis of fatty acids in cyanobacteria is very similar to the well characterized system found in green plants. However, the initial desaturation of stearic acid in cyanobacteria appears to represent a significant departure from plant systems in which stearoyl-ACP is the exclusive substrate for desaturation. In Anabaena variabilis, the substrate appears to be monoglucosyldiacylglycerol, a lipid not found in plants. The authors examined five different cyanobacteria to determine if the pathway in A. variabilis was generally present in other cyanobacteria. The cyanobacteria studied were A. variabilis, Chlorogloeopsis sp., Schizothrix calcicola, Anacystis marina, and Anacystis nidulans. Each were grown in liquid culture, harvested, and examined for stearoyl-ACP desaturase activity or incubated with 14 CO 2 . None of the cyanobacteria contained any stearoyl-ACP desaturase activity in whole homogenates or 105,000g supernatants. All were capable of incorporating 14 CO 2 into monoglucosyldiacylglycerol and results from incubations of 20 min, 1 hr, 1 hr + 10 hr chase were consistent with monoglucosyldiacylglycerol serving as precursor for monogalctosyldiacylglycerol. Thus, initial evidence is consistent with oleic acid biosynthesis occurring by desaturation of stearoyl-monoglucosyldiacylglycerol in all cyanobacteria

  9. Plant amino acid-derived vitamins: biosynthesis and function.

    Science.gov (United States)

    Miret, Javier A; Munné-Bosch, Sergi

    2014-04-01

    Vitamins are essential organic compounds for humans, having lost the ability to de novo synthesize them. Hence, they represent dietary requirements, which are covered by plants as the main dietary source of most vitamins (through food or livestock's feed). Most vitamins synthesized by plants present amino acids as precursors (B1, B2, B3, B5, B7, B9 and E) and are therefore linked to plant nitrogen metabolism. Amino acids play different roles in their biosynthesis and metabolism, either incorporated into the backbone of the vitamin or as amino, sulfur or one-carbon group donors. There is a high natural variation in vitamin contents in crops and its exploitation through breeding, metabolic engineering and agronomic practices can enhance their nutritional quality. While the underlying biochemical roles of vitamins as cosubstrates or cofactors are usually common for most eukaryotes, the impact of vitamins B and E in metabolism and physiology can be quite different on plants and animals. Here, we first aim at giving an overview of the biosynthesis of amino acid-derived vitamins in plants, with a particular focus on how this knowledge can be exploited to increase vitamin contents in crops. Second, we will focus on the functions of these vitamins in both plants and animals (and humans in particular), to unravel common and specific roles for vitamins in evolutionary distant organisms, in which these amino acid-derived vitamins play, however, an essential role.

  10. Genetic and perinatal effects of abused substances

    Energy Technology Data Exchange (ETDEWEB)

    Brande, M.C.; Zimmerman, A.M.

    1987-01-01

    This book provides an overview of the effects of several abused drugs, including opiates, cannabinoids, alcohol, nicotine, and cocaine, with special emphasis on the actions of these substances at the molecular and cellular levels. The first half deals with genetic effects, including molecular genetics, biochemical genetics, pharmacogenetics, cytogenetics, and genetic toxicity. The second half focuses on perinatal effects and covers: drug abuse during pregnancy; biochemical aspects of marihuana on male reproduction; and long-term behavioral and neuroendocrine effects of perinatal alcohol exposure.

  11. Direct Ionic Regulation of the Activity of Myo-Inositol Biosynthesis Enzymes in Mozambique Tilapia.

    Directory of Open Access Journals (Sweden)

    Fernando D Villarreal

    Full Text Available Myo-inositol (Ins is a major compatible osmolyte in many cells, including those of Mozambique tilapia (Oreochromis mossambicus. Ins biosynthesis is highly up-regulated in tilapia and other euryhaline fish exposed to hyperosmotic stress. In this study, enzymatic regulation of two enzymes of Ins biosynthesis, Ins phosphate synthase (MIPS and inositol monophosphatase (IMPase, by direct ionic effects is analyzed. Specific MIPS and IMPase isoforms from Mozambique tilapia (MIPS-160 and IMPase 1 were selected based on experimental, phylogenetic, and structural evidence supporting their role for Ins biosynthesis during hyperosmotic stress. Recombinant tilapia IMPase 1 and MIPS-160 activity was assayed in vitro at ionic conditions that mimic changes in the intracellular milieu during hyperosmotic stress. The in vitro activities of MIPS-160 and IMPase 1 are highest at alkaline pH of 8.8. IMPase 1 catalytic efficiency is strongly increased during hyperosmolality (particularly for the substrate D-Ins-3-phosphate, Ins-3P, mainly as a result of [Na+] elevation. Furthermore, the substrate-specificity of IMPase 1 towards D-Ins-1-phosphate (Ins-1P is lower than towards Ins-3P. Because MIPS catalysis results in Ins-3P this results represents additional evidence for IMPase 1 being the isoform that mediates Ins biosynthesis in tilapia. Our data collectively demonstrate that the Ins biosynthesis enzymes are activated under ionic conditions that cells are exposed to during hypertonicity, resulting in Ins accumulation, which, in turn, results in restoration of intracellular ion homeostasis. We propose that the unique and direct ionic regulation of the activities of Ins biosynthesis enzymes represents an efficient biochemical feedback loop for regulation of intracellular physiological ion homeostasis during hyperosmotic stress.

  12. Direct Ionic Regulation of the Activity of Myo-Inositol Biosynthesis Enzymes in Mozambique Tilapia.

    Science.gov (United States)

    Villarreal, Fernando D; Kültz, Dietmar

    2015-01-01

    Myo-inositol (Ins) is a major compatible osmolyte in many cells, including those of Mozambique tilapia (Oreochromis mossambicus). Ins biosynthesis is highly up-regulated in tilapia and other euryhaline fish exposed to hyperosmotic stress. In this study, enzymatic regulation of two enzymes of Ins biosynthesis, Ins phosphate synthase (MIPS) and inositol monophosphatase (IMPase), by direct ionic effects is analyzed. Specific MIPS and IMPase isoforms from Mozambique tilapia (MIPS-160 and IMPase 1) were selected based on experimental, phylogenetic, and structural evidence supporting their role for Ins biosynthesis during hyperosmotic stress. Recombinant tilapia IMPase 1 and MIPS-160 activity was assayed in vitro at ionic conditions that mimic changes in the intracellular milieu during hyperosmotic stress. The in vitro activities of MIPS-160 and IMPase 1 are highest at alkaline pH of 8.8. IMPase 1 catalytic efficiency is strongly increased during hyperosmolality (particularly for the substrate D-Ins-3-phosphate, Ins-3P), mainly as a result of [Na+] elevation. Furthermore, the substrate-specificity of IMPase 1 towards D-Ins-1-phosphate (Ins-1P) is lower than towards Ins-3P. Because MIPS catalysis results in Ins-3P this results represents additional evidence for IMPase 1 being the isoform that mediates Ins biosynthesis in tilapia. Our data collectively demonstrate that the Ins biosynthesis enzymes are activated under ionic conditions that cells are exposed to during hypertonicity, resulting in Ins accumulation, which, in turn, results in restoration of intracellular ion homeostasis. We propose that the unique and direct ionic regulation of the activities of Ins biosynthesis enzymes represents an efficient biochemical feedback loop for regulation of intracellular physiological ion homeostasis during hyperosmotic stress.

  13. Effect of Modifying Factors on Radiosensitive Biochemical Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Romantsev, E. F.; Filippovich, I. V.; Zhulanova, Z. I.; Blokhina, V. D.; Trebenok, Z. A.; Kolesnikov, E. E.; Sheremetyevskaya, T. N.; Nikolsky, A. V.; Zymaleva, O. G. [Institute of Biophysics, USSR Ministry of Health, Moscow, USSR (Russian Federation)

    1971-03-15

    Some of the radioprotective aminothiols are now routine pharmacopoeial drugs and are used in clinics to decrease the radiation reaction which appears as a side effect during the radiotherapy of cancer. The action of effective modifying agents on radiosensitive biochemical reactions in the organisms of mammals, in principle, cannot be different from the same effects of the protectors on biochemical systems of the human organism. The effect of modifying agents is mediated by biochemical systems. The administration of radioprotective doses of MEA to rats before irradiation results in a significant normalization of the excretion in urine of degradation products of nucleic acids (so-called Dische-positive compounds), the excretion of which sharply rises after irradiation. The curve of the radioprotective effect of MEA (survival rate after administration of radioprotectors at different intervals of time) completely corresponds to curves of the accumulation of MEA which is bound (by mixed disulphide links) to the proteins of liver mitochondria, to proteins of the nuclear-sap, to the hyaloplasm of rat thymus and to the nuclear ribosomes of the spleen. After MEA administration the curve of the biosynthesis of deoxycytidine represents a mirror reflection of the curve of MEA bound to proteins of the thymus hyaloplasm by means of mixed disulphide links. The mechanism of action of such modifying factors as MEA in experiments on mammals is mediated to a great degree through the temporary formation of mixed disulphide links between the aminothiol and the protein component of enzymes in different biochemical systems. (author)

  14. Diphthamide biosynthesis requires an organic radical generated by an iron-sulphur enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yang; Zhu, Xuling; Torelli, Andrew T; Lee, Michael; Dzikovski, Boris; Koralewski, Rachel M; Wang, Eileen; Freed, Jack; Krebs, Carsten; Ealick, Steve E; Lin, Hening [Cornell; (Penn)

    2010-08-30

    Archaeal and eukaryotic translation elongation factor 2 contain a unique post-translationally modified histidine residue called diphthamide, which is the target of diphtheria toxin. The biosynthesis of diphthamide was proposed to involve three steps, with the first being the formation of a C-C bond between the histidine residue and the 3-amino-3-carboxypropyl group of S-adenosyl-l-methionine (SAM). However, further details of the biosynthesis remain unknown. Here we present structural and biochemical evidence showing that the first step of diphthamide biosynthesis in the archaeon Pyrococcus horikoshii uses a novel iron-sulphur-cluster enzyme, Dph2. Dph2 is a homodimer and each of its monomers can bind a [4Fe-4S] cluster. Biochemical data suggest that unlike the enzymes in the radical SAM superfamily, Dph2 does not form the canonical 5'-deoxyadenosyl radical. Instead, it breaks the Cγ,Met-S bond of SAM and generates a 3-amino-3-carboxypropyl radical. Our results suggest that P. horikoshii Dph2 represents a previously unknown, SAM-dependent, [4Fe-4S]-containing enzyme that catalyses unprecedented chemistry.

  15. The Arabidopsis transcription factor ANAC032 represses anthocyanin biosynthesis in response to high sucrose and oxidative and abiotic stresses

    Directory of Open Access Journals (Sweden)

    Kashif Mahmood

    2016-10-01

    Full Text Available Production of anthocyanins is one of the adaptive responses employed by plants during stress conditions. During stress, anthocyanin biosynthesis is mainly regulated at the transcriptional level via a complex interplay between activators and repressors of anthocyanin biosynthesis genes. In this study, we investigated the role of a NAC transcription factor, ANAC032, in the regulation of anthocyanin biosynthesis during stress conditions. ANAC032 expression was found to be induced by exogenous sucrose as well as high light stress. Using biochemical, molecular and transgenic approaches, we show that ANAC032 represses anthocyanin biosynthesis in response to sucrose treatment, high light and oxidative stress. ANAC032 was found to negatively affect anthocyanin accumulation and the expression of anthocyanin biosynthesis (DFR, ANS/LDOX and positive regulatory (TT8 genes as demonstrated in overexpression line (35S:ANAC032 compared to wild-type under high light stress. The chimeric repressor line (35S:ANAC032-SRDX exhibited the opposite expression patterns for these genes. The negative impact of ANAC032 on the expression of DFR, ANS/LDOX and TT8 was found to be correlated with the altered expression of negative regulators of anthocyanin biosynthesis, AtMYBL2 and SPL9. In addition to this, ANAC032 also repressed the MeJA- and ABA-induced anthocyanin biosynthesis. As a result, transgenic lines overexpressing ANAC032 (35S:ANAC032 produced drastically reduced levels of anthocyanin pigment compared to wild-type when challenged with salinity stress. However, transgenic chimeric repressor lines (35S:ANAC032-SRDX exhibited the opposite phenotype. Our results suggest that ANAC032 functions as a negative regulator of anthocyanin biosynthesis in Arabidopsis thaliana during stress conditions.

  16. The Arabidopsis Transcription Factor ANAC032 Represses Anthocyanin Biosynthesis in Response to High Sucrose and Oxidative and Abiotic Stresses.

    Science.gov (United States)

    Mahmood, Kashif; Xu, Zhenhua; El-Kereamy, Ashraf; Casaretto, José A; Rothstein, Steven J

    2016-01-01

    Production of anthocyanins is one of the adaptive responses employed by plants during stress conditions. During stress, anthocyanin biosynthesis is mainly regulated at the transcriptional level via a complex interplay between activators and repressors of anthocyanin biosynthesis genes. In this study, we investigated the role of a NAC transcription factor, ANAC032, in the regulation of anthocyanin biosynthesis during stress conditions. ANAC032 expression was found to be induced by exogenous sucrose as well as high light (HL) stress. Using biochemical, molecular and transgenic approaches, we show that ANAC032 represses anthocyanin biosynthesis in response to sucrose treatment, HL and oxidative stress. ANAC032 was found to negatively affect anthocyanin accumulation and the expression of anthocyanin biosynthesis ( DFR, ANS/LDOX) and positive regulatory ( TT8) genes as demonstrated in overexpression line (35S:ANAC032) compared to wild-type under HL stress. The chimeric repressor line (35S:ANAC032-SRDX) exhibited the opposite expression patterns for these genes. The negative impact of ANAC032 on the expression of DFR, ANS/LDOX and TT8 was found to be correlated with the altered expression of negative regulators of anthocyanin biosynthesis, AtMYBL2 and SPL9 . In addition to this, ANAC032 also repressed the MeJA- and ABA-induced anthocyanin biosynthesis. As a result, transgenic lines overexpressing ANAC032 (35S:ANAC032) produced drastically reduced levels of anthocyanin pigment compared to wild-type when challenged with salinity stress. However, transgenic chimeric repressor lines (35S:ANAC032-SRDX) exhibited the opposite phenotype. Our results suggest that ANAC032 functions as a negative regulator of anthocyanin biosynthesis in Arabidopsis thaliana during stress conditions.

  17. Biochemical Hypermedia: Galactose Metabolism.

    Directory of Open Access Journals (Sweden)

    J.K. Sugai

    2013-05-01

    Full Text Available Introduction: Animations of biochemical processes and virtual laboratory environments lead to true molecular simulations. The use of interactive software’s in education can improve cognitive capacity, better learning and, mainly, it makes information acquisition easier. Material and Methods: This work presents the development of a biochemical hypermedia to understanding of the galactose metabolism. It was developed with the help of concept maps, ISIS Draw, ADOBE Photoshop and FLASH MX Program. Results and Discussion: A step by step animation process shows the enzymatic reactions of galactose conversion to glucose-1-phosphate (to glycogen synthesis, glucose-6-phosphate (glycolysis intermediary, UDP-galactose (substrate to mucopolysaccharides synthesis and collagen’s glycosylation. There are navigation guide that allow scrolling the mouse over the names of the components of enzymatic reactions of via the metabolism of galactose. Thus, explanatory text box, chemical structures and animation of the actions of enzymes appear to navigator. Upon completion of the module, the user’s response to the proposed exercise can be checked immediately through text box with interactive content of the answer. Conclusion: This hypermedia was presented for undergraduate students (UFSC who revealed that it was extremely effective in promoting the understanding of the theme.

  18. [The genetics of collagen diseases].

    Science.gov (United States)

    Kaplan, J; Maroteaux, P; Frezal, J

    1986-01-01

    Heritable disorders of collagen include Ehler-Danlos syndromes (11 types are actually known), Larsen syndrome and osteogenesis imperfecta. Their clinical, genetic and biochemical features are reviewed. Marfan syndrome is closely related to heritable disorders of collagen.

  19. Medical Genetics In Clinical Practice

    African Journals Online (AJOL)

    1974-08-24

    Aug 24, 1974 ... Genetics is now an important facet of medical practice. and clinical ... facilities for cytogenetic and biochemical investigation are an essential ..... mem, and Rehabilitation (WHO Technical Report Series No. 497). Geneva: WHO ...

  20. The biochemical womb of schizophrenia: A review.

    Science.gov (United States)

    Gaur, N; Gautam, S; Gaur, M; Sharma, P; Dadheech, G; Mishra, S

    2008-10-01

    The conclusive identification of specific etiological factors or pathogenic processes in the illness of schizophrenia has remained elusive despite great technological progress. The convergence of state-of-art scientific studies in molecular genetics, molecular neuropathophysiology, in vivo brain imaging and psychopharmacology, however, indicates that we may be coming much closer to understanding the genesis of schizophrenia. In near future, the diagnosis and assessment of schizophrenia using biochemical markers may become a "dream come true" for the medical community as well as for the general population. An understanding of the biochemistry/ visa vis pathophysiology of schizophrenia is essential to the discovery of preventive measures and therapeutic intervention.

  1. The Spatial Organization of Glucosinolate Biosynthesis

    DEFF Research Database (Denmark)

    Nintemann, Sebastian

    cells is an open question. Likewise, it is not known how glucosinolate biosynthesis is orchestrated at the subcellular level. These open questions were addressed with several approaches in this project, with the aim of shedding light on the spatial organization of glucosinolate biosynthesis from...... between the individual classes of glucosinolates under constitutive and induced conditions and identified the source tissues of these defense compounds. Protein-protein interaction studies were carried out to investigate the subcellular organization of glucosinolate biosynthesis. We identified a family...

  2. Agrobacterium Mediated Transient Gene Silencing (AMTS) in Stevia rebaudiana: Insights into Steviol Glycoside Biosynthesis Pathway

    Science.gov (United States)

    Guleria, Praveen; Yadav, Sudesh Kumar

    2013-01-01

    Background Steviol glycoside biosynthesis pathway has emerged as bifurcation from ent-kaurenoic acid, substrate of methyl erythritol phosphate pathway that also leads to gibberellin biosynthesis. However, the genetic regulation of steviol glycoside biosynthesis has not been studied. So, in present study RNA interference (RNAi) based Agrobacterium mediated transient gene silencing (AMTS) approach was followed. SrKA13H and three SrUGTs (SrUGT85C2, SrUGT74G1 and SrUGT76G1) genes encoding ent-kaurenoic acid-13 hydroxylase and three UDP glycosyltransferases of steviol glycoside biosynthesis pathway were silenced in Stevia rebaudiana to understand its molecular mechanism and association with gibberellins. Methodology/Principal Findings RNAi mediated AMTS of SrKA13H and three SrUGTs has significantly reduced the expression of targeted endogenous genes as well as total steviol glycoside accumulation. While gibberellins (GA3) content was significantly enhanced on AMTS of SrUGT85C2 and SrKA13H. Silencing of SrKA13H and SrUGT85C2 was found to block the metabolite flux of steviol glycoside pathway and shifted it towards GA3 biosynthesis. Further, molecular docking of three SrUGT proteins has documented highest affinity of SrUGT76G1 for the substrates of alternate pathways synthesizing steviol glycosides. This could be a plausible reason for maximum reduction in steviol glycoside content on silencing of SrUGT76G1 than other genes. Conclusions SrKA13H and SrUGT85C2 were identified as regulatory genes influencing carbon flux between steviol glycoside and gibberellin biosynthesis. This study has also documented the existence of alternate steviol glycoside biosynthesis route. PMID:24023961

  3. Agrobacterium mediated transient gene silencing (AMTS in Stevia rebaudiana: insights into steviol glycoside biosynthesis pathway.

    Directory of Open Access Journals (Sweden)

    Praveen Guleria

    Full Text Available Steviol glycoside biosynthesis pathway has emerged as bifurcation from ent-kaurenoic acid, substrate of methyl erythritol phosphate pathway that also leads to gibberellin biosynthesis. However, the genetic regulation of steviol glycoside biosynthesis has not been studied. So, in present study RNA interference (RNAi based Agrobacterium mediated transient gene silencing (AMTS approach was followed. SrKA13H and three SrUGTs (SrUGT85C2, SrUGT74G1 and SrUGT76G1 genes encoding ent-kaurenoic acid-13 hydroxylase and three UDP glycosyltransferases of steviol glycoside biosynthesis pathway were silenced in Stevia rebaudiana to understand its molecular mechanism and association with gibberellins.RNAi mediated AMTS of SrKA13H and three SrUGTs has significantly reduced the expression of targeted endogenous genes as well as total steviol glycoside accumulation. While gibberellins (GA3 content was significantly enhanced on AMTS of SrUGT85C2 and SrKA13H. Silencing of SrKA13H and SrUGT85C2 was found to block the metabolite flux of steviol glycoside pathway and shifted it towards GA3 biosynthesis. Further, molecular docking of three SrUGT proteins has documented highest affinity of SrUGT76G1 for the substrates of alternate pathways synthesizing steviol glycosides. This could be a plausible reason for maximum reduction in steviol glycoside content on silencing of SrUGT76G1 than other genes.SrKA13H and SrUGT85C2 were identified as regulatory genes influencing carbon flux between steviol glycoside and gibberellin biosynthesis. This study has also documented the existence of alternate steviol glycoside biosynthesis route.

  4. Implantable biochemical fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Richter, G; Rao, J R

    1978-01-05

    Implantable biochemical fuel cells for the operation of heart pacemakers or artificial hearts convert oxidisable body substances such as glucose on the anode side and reduce the oxygen contained in body fluids at the cathode. The anode and cathode are separated by membranes which are impermeable to albumen and blood corpuscles in body fluids. A chemical shortcircuit cannot occur in practice if, according to the invention, one or more selective oxygen electrodes with carbon as catalyst are arranged so that the mixture which diffuses into the cell from body fluids during operation reaches the fuel cell electrode through the porous oxygen electrode. The membranes used must be permeable to water. Cellulose, polymerised polyvinyl alcohol or an ion exchanger with a buffering capacity between pH5 and 8 act as permeable materials.

  5. biochemical and haematological findings in alcohol consumers in Ile

    African Journals Online (AJOL)

    Administrator

    Effect of drinking patterns on biochemical and haematological parameters was conducted on ... disease depends on a variety of factors, including genetic ... by cirrhosis, cancer and violent deaths. .... (1985) stated that the marked influence of alcohol ... The relationship between alcohol consumption, health indicators and.

  6. Monoterpene biosynthesis potential of plant subcellular compartments

    NARCIS (Netherlands)

    Dong, L.; Jongedijk, E.J.; Bouwmeester, H.J.; Krol, van der A.R.

    2016-01-01

    Subcellular monoterpene biosynthesis capacity based on local geranyl diphosphate (GDP) availability or locally boosted GDP production was determined for plastids, cytosol and mitochondria. A geraniol synthase (GES) was targeted to plastids, cytosol, or mitochondria. Transient expression in Nicotiana

  7. Method for determining heterologous biosynthesis pathways

    KAUST Repository

    Gao, Xin; Kuwahara, Hiroyuki; Alazmi, Meshari Saud; Cui, Xuefeng

    2017-01-01

    suitable pathways for the endogenous metabolism of a host organism because the efficacy of heterologous biosynthesis is affected by competing endogenous pathways. The present invention is called MRE (Metabolic Route Explorer), and it was conceived

  8. The pomegranate (Punica granatum L.) genome and the genomics of punicalagin biosynthesis.

    Science.gov (United States)

    Qin, Gaihua; Xu, Chunyan; Ming, Ray; Tang, Haibao; Guyot, Romain; Kramer, Elena M; Hu, Yudong; Yi, Xingkai; Qi, Yongjie; Xu, Xiangyang; Gao, Zhenghui; Pan, Haifa; Jian, Jianbo; Tian, Yinping; Yue, Zhen; Xu, Yiliu

    2017-09-01

    Pomegranate (Punica granatum L.) is a perennial fruit crop grown since ancient times that has been planted worldwide and is known for its functional metabolites, particularly punicalagins. We have sequenced and assembled the pomegranate genome with 328 Mb anchored into nine pseudo-chromosomes and annotated 29 229 gene models. A Myrtales lineage-specific whole-genome duplication event was detected that occurred in the common ancestor before the divergence of pomegranate and Eucalyptus. Repetitive sequences accounted for 46.1% of the assembled genome. We found that the integument development gene INNER NO OUTER (INO) was under positive selection and potentially contributed to the development of the fleshy outer layer of the seed coat, an edible part of pomegranate fruit. The genes encoding the enzymes for synthesis and degradation of lignin, hemicelluloses and cellulose were also differentially expressed between soft- and hard-seeded varieties, reflecting differences in their accumulation in cultivars differing in seed hardness. Candidate genes for punicalagin biosynthesis were identified and their expression patterns indicated that gallic acid synthesis in tissues could follow different biochemical pathways. The genome sequence of pomegranate provides a valuable resource for the dissection of many biological and biochemical traits and also provides important insights for the acceleration of breeding. Elucidation of the biochemical pathway(s) involved in punicalagin biosynthesis could assist breeding efforts to increase production of this bioactive compound. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  9. Cellulose biosynthesis in higher plants

    Directory of Open Access Journals (Sweden)

    Krystyna Kudlicka

    2014-01-01

    Full Text Available Knowledge of the control and regulation of cellulose synthesis is fundamental to an understanding of plant development since cellulose is the primary structural component of plant cell walls. In vivo, the polymerization step requires a coordinated transport of substrates across membranes and relies on delicate orientations of the membrane-associated synthase complexes. Little is known about the properties of the enzyme complexes, and many questions about the biosynthesis of cell wall components at the cell surface still remain unanswered. Attempts to purify cellulose synthase from higher plants have not been successful because of the liability of enzymes upon isolation and lack of reliable in vitro assays. Membrane preparations from higher plant cells incorporate UDP-glucose into a glucan polymer, but this invariably turns out to be predominantly β -1,3-linked rather than β -1,4-linked glucans. Various hypotheses have been advanced to explain this phenomenon. One idea is that callose and cellulose-synthase systems are the same, but cell disruption activates callose synthesis preferentially. A second concept suggests that a regulatory protein as a part of the cellulose-synthase complex is rapidly degraded upon cell disruption. With new methods of enzyme isolation and analysis of the in vitro product, recent advances have been made in the isolation of an active synthase from the plasma membrane whereby cellulose synthase was separated from callose synthase.

  10. The regulation of microcystin biosynthesis pathways and genetic mechanisms

    OpenAIRE

    Serap YALÇIN

    2012-01-01

    The cyanobacteria (blue-green algae), as they arecommonly named, comprise a diverse group of oxygenicphotosynthetic bacteria that inhabit a wide rangeof aquatic and terrestrial environments, and displayincredible morphological diversity. Cyanobacteriaproduce bioactive secondary metabolites, includingalkaloids, polyketides and non-ribosomal peptides, someof which are potent toxins. The common occurrenceof toxic cyanobacteria causes problems for health ofanimals and human. Cyanobacterial toxins...

  11. Biosynthesis of promatrix metalloproteinase-9/chondroitin sulphate proteoglycan heteromer involves a Rottlerin-sensitive pathway.

    Directory of Open Access Journals (Sweden)

    Nabin Malla

    Full Text Available BACKGROUND: Previously we have shown that a fraction of the matrix metalloproteinase-9 (MMP-9 synthesized by the macrophage cell line THP-1 was bound to a chondroitin sulphate proteoglycan (CSPG core protein as a reduction sensitive heteromer. Several biochemical properties of the enzyme were changed when it was bound to the CSPG. METHODOLOGY/PRINCIPAL FINDINGS: By use of affinity chromatography, zymography, and radioactive labelling, various macrophage stimulators were tested for their effect on the synthesis of the proMMP-9/CSPG heteromer and its components by THP-1 cells. Of the stimulators, only PMA largely increased the biosynthesis of the heteromer. As PMA is an activator of PKC, we determined which PKC isoenzymes were expressed by performing RT-PCR and Western Blotting. Subsequently specific inhibitors were used to investigate their involvement in the biosynthesis of the heteromer. Of the inhibitors, only Rottlerin repressed the biosynthesis of proMMP-9/CSPG and its two components. Much lower concentrations of Rottlerin were needed to reduce the amount of CSPG than what was needed to repress the synthesis of the heteromer and MMP-9. Furthermore, Rottlerin caused a minor reduction in the activation of the PKC isoenzymes δ, ε, θ and υ (PKD3 in both control and PMA exposed cells. CONCLUSIONS/SIGNIFICANCE: The biosynthesis of the proMMP-9/CSPG heteromer and proMMP-9 in THP-1 cells involves a Rottlerin-sensitive pathway that is different from the Rottlerin sensitive pathway involved in the CSPG biosynthesis. MMP-9 and CSPGs are known to be involved in various physiological and pathological processes. Formation of complexes may influence both the specificity and localization of the enzyme. Therefore, knowledge about biosynthetic pathways and factors involved in the formation of the MMP-9/CSPG heteromer may contribute to insight in the heteromers biological function as well as pointing to future targets for therapeutic agents.

  12. Anthocyanin Biosynthesis and Degradation Mechanisms in Solanaceous Vegetables: A Review

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2018-03-01

    Full Text Available Anthocyanins are a group of polyphenolic pigments that are ubiquitously found in the plant kingdom. In plants, anthocyanins play a role not only in reproduction, by attracting pollinators and seed dispersers, but also in protection against various abiotic and biotic stresses. There is accumulating evidence that anthocyanins have health-promoting properties, which makes anthocyanin metabolism an interesting target for breeders and researchers. In this review, the state of the art knowledge concerning anthocyanins in the Solanaceous vegetables, i.e., pepper, tomato, eggplant, and potato, is discussed, including biochemistry and biological function of anthocyanins, as well as their genetic and environmental regulation. Anthocyanin accumulation is determined by the balance between biosynthesis and degradation. Although the anthocyanin biosynthetic pathway has been well-studied in Solanaceous vegetables, more research is needed on the inhibition of biosynthesis and, in particular, the anthocyanin degradation mechanisms if we want to control anthocyanin content of Solanaceous vegetables. In addition, anthocyanin metabolism is distinctly affected by environmental conditions, but the molecular regulation of these effects is poorly understood. Existing knowledge is summarized and current gaps in our understanding are highlighted and discussed, to create opportunities for the development of anthocyanin-rich crops through breeding and environmental management.

  13. Anthocyanin biosynthesis and degradation mechanisms in Solanaceous vegetables: a review

    Science.gov (United States)

    Liu, Ying; Tikunov, Yury; Schouten, Rob E.; Marcelis, Leo F. M.; Visser, Richard G. F.; Bovy, Arnaud

    2018-03-01

    Anthocyanins are a group of polyphenolic pigments that are ubiquitously found in the plant kingdom. In plants, anthocyanins play a role not only in reproduction, by attracting pollinators and seed dispersers, but also in protection against various abiotic and biotic stresses. There is accumulating evidence that anthocyanins have health-promoting properties, which makes anthocyanin metabolism an interesting target for breeders and researchers. In this review, the state of the art knowledge concerning anthocyanins in the Solanaceous vegetables, i.e. pepper, tomato, eggplant and potato, is discussed, including biochemistry and biological function of anthocyanins, as well as their genetic and environmental regulation. Anthocyanin accumulation is determined by the balance between biosynthesis and degradation. Although the anthocyanin biosynthetic pathway has been well studied in Solanaceous vegetables, more research is needed on the inhibition of biosynthesis and, in particular, the anthocyanin degradation mechanisms if we want to control anthocyanin content of Solanaceous vegetables. In addition, anthocyanin metabolism is distinctly affected by environmental conditions, but the molecular regulation of these effects is poorly understood. Existing knowledge is summarized and current gaps in our understanding are highlighted and discussed, to create opportunities for the development of anthocyanin-rich crops through breeding and environmental management.

  14. The Catalytic Diversity of Multimodular Polyketide Synthases: Natural Product Biosynthesis Beyond Textbook Assembly Rules.

    Science.gov (United States)

    Gulder, Tobias A M; Freeman, Michael F; Piel, Jörn

    2011-03-01

    Bacterial multimodular polyketide synthases (PKSs) are responsible for the biosynthesis of a wide range of pharmacologically active natural products. These megaenzymes contain numerous catalytic and structural domains and act as biochemical templates to generate complex polyketides in an assembly line-like fashion. While the prototypical PKS is composed of only a few different domain types that are fused together in a combinatorial fashion, an increasing number of enzymes is being found that contain additional components. These domains can introduce remarkably diverse modifications into polyketides. This review discusses our current understanding of such noncanonical domains and their role in expanding the biosynthetic versatility of bacterial PKSs.

  15. Genetics and developmental biology

    International Nuclear Information System (INIS)

    Barnett, W.E.

    1975-01-01

    Progress is reported on research activities in the fields of mutagenesis in Haemophilus influenzae and Escherichia coli; radioinduced chromosomal aberrations in mammalian germ cells; effects of uv radiation on xeroderma pigmentosum skin cells; mutations in Chinese hamster ovary cells; radioinduced hemoglobin variants in the mouse; analysis of mutants in yeast; Drosophila genetics; biochemical genetics of Neurospora; DNA polymerase activity in Xenopus laevis oocytes; uv-induced damage in Bacillus subtilis; and others

  16. Mechanism of N6-threonylcarbamoyladenonsine (t(6)A) biosynthesis: isolation and characterization of the intermediate threonylcarbamoyl-AMP.

    Science.gov (United States)

    Lauhon, Charles T

    2012-11-06

    Genetic and biochemical studies have recently implicated four proteins required in bacteria for the biosynthesis of the universal tRNA modified base N6-threonylcarbamoyl adenosine (t(6)A). In this work, t(6)A biosynthesis in Bacillus subtilis has been reconstituted in vitro and found to indeed require the four proteins YwlC (TsaC), YdiB (TsaE), YdiC (TsaB) and YdiE (TsaD). YwlC was found to catalyze the conversion of L-threonine, bicarbonate/CO(2) and ATP to give the intermediate L-threonylcarbamoyl-AMP (TC-AMP) and pyrophosphate as products. TC-AMP was isolated by HPLC and characterized by mass spectrometry and (1)H NMR. NMR analysis showed that TC-AMP decomposes to give AMP and a nearly equimolar mixture of L-threonine and 5-methyl-2-oxazolidinone-4-carboxylate as final products. Under physiological conditions (pH 7.5, 37 °C, 2 mM MgCl(2)), the half-life of TC-AMP was measured to be 3.5 min. Both YwlC (in the presence of pyrophosphatase) and its Escherichia coli homologue YrdC catalyze the formation of TC-AMP while producing only a small molar fraction of AMP. This suggests that CO(2) and not an activated form of bicarbonate is the true substrate for these enzymes. In the presence of pyrophosphate, both enzymes catalyze clean conversion of TC-AMP back to ATP. Purified TC-AMP is efficiently processed to t(6)A by the YdiBCE proteins in the presence of tRNA substrates. This reaction is ATP independent in vitro, despite the known ATPase activity of YdiB. The estimated rate of conversion of TC-AMP by YdiBCE to t(6)A is somewhat lower than the initial rate from L-threonine, bicarbonate and ATP, which together with the stability data, is consistent with previous studies that suggest channeling of this intermediate.

  17. Evolution of the Phosphatidylcholine Biosynthesis Pathways in Green Algae: Combinatorial Diversity of Methyltransferases.

    Science.gov (United States)

    Hirashima, Takashi; Toyoshima, Masakazu; Moriyama, Takashi; Sato, Naoki

    2018-01-01

    Phosphatidylcholine (PC) is one of the most common phospholipids in eukaryotes, although some green algae such as Chlamydomonas reinhardtii are known to lack PC. Recently, we detected PC in four species in the genus Chlamydomonas: C. applanata NIES-2202, C. asymmetrica NIES-2207, C. debaryana NIES-2212, and C. sphaeroides NIES-2242. To reveal the PC biosynthesis pathways in green algae and the evolutionary scenario involved in their diversity, we analyzed the PC biosynthesis genes in these four algae using draft genome sequences. Homology searches suggested that PC in these species is synthesized by phosphoethanolamine-N-methyltransferase (PEAMT) and/or phosphatidylethanolamine-N-methyltransferase (PEMT), both of which are absent in C. reinhardtii. Recombinant PEAMTs from these algae showed methyltransferase activity for phosphoethanolamine but not for monomethyl phosphoethanolamine in vitro, in contrast to land plant PEAMT, which catalyzes the three methylations from phosphoethanolamine to phosphocholine. This suggested an involvement of other methyltransferases in PC biosynthesis. Here, we characterized the putative phospholipid-N-methyltransferase (PLMT) genes of these species by genetic and phylogenetic analysis. Complementation assays using a PC biosynthesis-deficient yeast suggested that the PLMTs of these algae can synthesize PC from phosphatidylethanolamine. These results indicated that the PC biosynthesis pathways in green algae differ from those of land plants, although the enzymes involved are homologous. Phylogenetic analysis suggested that the PEAMTs and PLMTs in these algae were inherited from the common ancestor of green algae. The absence of PC biosynthesis in many Chlamydomonas species is likely a result of parallel losses of PEAMT and PLMT in this genus.

  18. Identification of Putative Genes Involved in Limonoids Biosynthesis in Citrus by Comparative Transcriptomic Analysis

    Directory of Open Access Journals (Sweden)

    Fusheng Wang

    2017-05-01

    Full Text Available Limonoids produced by citrus are a group of highly bioactive secondary metabolites which provide health benefits for humans. Currently there is a lack of information derived from research on the genetic mechanisms controlling the biosynthesis of limonoids, which has limited the improvement of citrus for high production of limonoids. In this study, the transcriptome sequences of leaves, phloems and seeds of pummelo (Citrus grandis (L. Osbeck at different development stages with variances in limonoids contents were used for digital gene expression profiling analysis in order to identify the genes corresponding to the biosynthesis of limonoids. Pair-wise comparison of transcriptional profiles between different tissues identified 924 differentially expressed genes commonly shared between them. Expression pattern analysis suggested that 382 genes from three conjunctive groups of K-means clustering could be possibly related to the biosynthesis of limonoids. Correlation analysis with the samples from different genotypes, and different developing tissues of the citrus revealed that the expression of 15 candidate genes were highly correlated with the contents of limonoids. Among them, the cytochrome P450s (CYP450s and transcriptional factor MYB demonstrated significantly high correlation coefficients, which indicated the importance of those genes on the biosynthesis of limonoids. CiOSC gene encoding the critical enzyme oxidosqualene cyclase (OSC for biosynthesis of the precursor of triterpene scaffolds was found positively corresponding to the accumulation of limonoids during the development of seeds. Suppressing the expression of CiOSC with VIGS (Virus-induced gene silencing demonstrated that the level of gene silencing was significantly correlated to the reduction of limonoids contents. The results indicated that the CiOSC gene plays a pivotal role in biosynthesis of limonoids.

  19. HOG MAP kinase regulation of alternariol biosynthesis in Alternaria alternata is important for substrate colonization.

    Science.gov (United States)

    Graf, Eva; Schmidt-Heydt, Markus; Geisen, Rolf

    2012-07-16

    Strains of the genus Alternaria are ubiquitously present and frequently found on fruits, vegetables and cereals. One of the most commonly found species from this genus is A. alternata which is able to produce the mycotoxin alternariol among others. To date only limited knowledge is available about the regulation of the biosynthesis of alternariol, especially under conditions relevant to food. Tomatoes are a typical substrate of A. alternata and have a high water activity. On the other hand cereals with moderate water activity are also frequently colonized by A. alternata. In the current analysis it was demonstrated that even minor changes in the osmotic status of the substrate affect the alternariol biosynthesis of strains from vegetables resulting in nearly complete inhibition. High osmolarity in the environment is usually transmitted to the transcriptional level of downstream regulated genes by the HOG signal cascade (high osmolarity glycerol cascade) which is a MAP kinase transduction pathway. The phosphorylation status of the A. alternata HOG (AaHOG) was determined. Various concentrations of NaCl induce the phosphorylation of AaHOG in a concentration, time and strain dependent manner. A strain with a genetically inactivated aahog gene was no longer able to produce alternariol indicating that the activity of the aahog gene is required for alternariol biosynthesis. Further experiments revealed that the biosynthesis of alternariol is important for the fungus to colonize tomato tissue. The tight water activity dependent regulation of alternariol biosynthesis ensures alternariol biosynthesis at conditions which indicate an optimal colonization substrate for the fungus. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Biosynthesis of therapeutic natural products using synthetic biology.

    Science.gov (United States)

    Awan, Ali R; Shaw, William M; Ellis, Tom

    2016-10-01

    Natural products are a group of bioactive structurally diverse chemicals produced by microorganisms and plants. These molecules and their derivatives have contributed to over a third of the therapeutic drugs produced in the last century. However, over the last few decades traditional drug discovery pipelines from natural products have become far less productive and far more expensive. One recent development with promise to combat this trend is the application of synthetic biology to therapeutic natural product biosynthesis. Synthetic biology is a young discipline with roots in systems biology, genetic engineering, and metabolic engineering. In this review, we discuss the use of synthetic biology to engineer improved yields of existing therapeutic natural products. We further describe the use of synthetic biology to combine and express natural product biosynthetic genes in unprecedented ways, and how this holds promise for opening up completely new avenues for drug discovery and production. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Genetic cytological and biochemical study of a tomato chlorophyll mutant of the xanthic type, obtained by irradiation of the seeds; Etude genetique, cytologique et biochimique d'un mutant chlorophyllien de tomate du type xantha, obtenu par irradiation de graines

    Energy Technology Data Exchange (ETDEWEB)

    Lefort, M; Duranton, J; Galmiche, J M; Roux, E [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    Irradiation of Lycopersicum aesculantum seeds with increasing doses of X-rays and thermal neutrons leads to the appearance of chlorophyll mutations in the descendants of the irradiated seeds. A genetic study of one of these mutants of the xanthic type showed that it was a recessive mutant with typical mono-genetic separation, while the cytological study demonstrated that the differentiation of the plast stopped at the stage of elementary lamella. Finally it is shown that in the light, the mutation brings about a very large deviation of the carbon metabolism towards the synthesis of amino acids and proteins, at the expense of that of glucosides. (author) [French] L'irradiation de graines de Lycopersicum Aesculantum avec des doses croissantes de rayons X et de neutrons thermiques entraine l'apparition de mutations chlorophylliennes dans la descendance des graines irradiees. L'etude genetique d'un de ces mutants du type xantha a montre qu'il s'agissait d'un mutant recessif a disjonction monogenique typique, tandis que l'etude cytologique a revele que la differentiation du plaste s'arretait au stade de lamelles elementaires. Il est apparu enfin qu'a la lumiere la mutation entrainait une deviation tres importante du metabolisme du carbone vers la synthese des acides amines et des proteines, au detriment de celle des glucides. (auteur)

  2. Candidate genes involved in the biosynthesis of triterpenoid saponins in Platycodon grandiflorum identified by transcriptome analysis

    Directory of Open Access Journals (Sweden)

    Chunhua eMa

    2016-05-01

    Full Text Available Background: Platycodon grandiflorum is the only species in the genus Platycodon of the family Campanulaceae, which has been traditionally used as a medicinal plant for its lung-heat-clearing, antitussive, and expectorant properties in China, Japanese and Korean. Oleanane-type triterpenoid saponins were the main chemical components of P. grandiflorum and platycodin D was the abundant and main bioactive component, but little is known about their biosynthesis in plants. Hence, P. grandiflorum is an ideal medicinal plant for studying the biosynthesis of Oleanane-type saponins. In addition, the genomic information of this important herbal plant is unavailable.Principal Findings:A total of 58,580,566 clean reads were obtained, which were assembled into 34,053 unigenes, with an average length of 936 bp and N50 of 1,661 bp by analyzing the transcriptome data of P. grandiflorum. Among these 34,053 unigenes, 22,409 unigenes (65.80% were annotated based on the information available from public databases, including Nr, NCBI, Swiss-Prot, KOG and KEGG. Furthermore, 21 candidate cytochrome P450 genes and 17 candidate UDP-glycosyltransferase genes most likely involved in triterpenoid saponins biosynthesis pathway were discovered from the transcriptome sequencing of P. grandiflorum. In addition, 10,626 SSRs were identified based on the transcriptome data, which would provide abundant candidates of molecular markers for genetic diversity and genetic map for this medicinal plant.Conclusion:The genomic data obtained from P. grandiflorum, especially the identification of putative genes involved in triterpenoid saponins biosynthesis pathway, will facilitate our understanding of the biosynthesis of triterpenoid saponins at molecular level.

  3. Biosynthesis and function of chondroitin sulfate.

    Science.gov (United States)

    Mikami, Tadahisa; Kitagawa, Hiroshi

    2013-10-01

    Chondroitin sulfate proteoglycans (CSPGs) are principal pericellular and extracellular components that form regulatory milieu involving numerous biological and pathophysiological phenomena. Diverse functions of CSPGs can be mainly attributed to structural variability of their polysaccharide moieties, chondroitin sulfate glycosaminoglycans (CS-GAG). Comprehensive understanding of the regulatory mechanisms for CS biosynthesis and its catabolic processes is required in order to understand those functions. Here, we focus on recent advances in the study of enzymatic regulatory pathways for CS biosynthesis including successive modification/degradation, distinct CS functions, and disease phenotypes that have been revealed by perturbation of the respective enzymes in vitro and in vivo. Fine-tuned machineries for CS production/degradation are crucial for the functional expression of CS chains in developmental and pathophysiological processes. Control of enzymes responsible for CS biosynthesis/catabolism is a potential target for therapeutic intervention for the CS-associated disorders. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Ouroboros - Playing A Biochemical

    Directory of Open Access Journals (Sweden)

    D. T. Rodrigues

    2014-08-01

    Full Text Available Ouroboros: Playing A Biochemical RODRIGUES,D.T.1,2;GAYER, M.C.1,2; ESCOTO, D.F.1; DENARDIN, E.L.G.2, ROEHRS, R.1,2 1Interdisciplinary Research Group on Teaching Practice, Graduate Program in Biochemistry, Unipampa, RS, Brazil 2Laboratory of Physicochemical Studies and Natural Products, Post Graduate Program in Biochemistry, Unipampa, RS, Brazil Introduction: Currently, teachers seek different alternatives to enhance the teaching-learning process. Innovative teaching methodologies are increasingly common tools in educational routine. The use of games, electronic or conventional, is an effective tool to assist in learning and also to raise the social interaction between students. Objective: In this sense our work aims to evaluate the card game and "Ouroboros" board as a teaching and learning tool in biochemistry for a graduating class in Natural Sciences. Materials and methods: The class gathered 22 students of BSc in Natural Sciences. Each letter contained a question across the board that was drawn to a group to answer within the allotted time. The questions related concepts of metabolism, organic and inorganic chemical reactions, bioenergetics, etc.. Before the game application, students underwent a pre-test with four issues involving the content that was being developed. Soon after, the game was applied. Then again questions were asked. Data analysis was performed from the ratio of the number of correct pre-test and post-test answers. Results and discussion: In the pre-test 18.1% of the students knew all issues, 18.1% got 3 correct answers, 40.9% answered only 2 questions correctly and 22.7% did not hit any. In post-test 45.4% answered all the questions right, 31.8% got 3 questions and 22.7% got 2 correct answers. The results show a significant improvement of the students about the field of content taught through the game. Conclusion: Generally, traditional approaches of chemistry and biochemistry are abstract and complex. Thus, through games

  5. Triterpenoid biosynthesis in Euphorbia lathyris latex

    International Nuclear Information System (INIS)

    Hawkins, D.R.

    1987-11-01

    The structures of triterpenols, not previously been known, from Euphorbia lathyris latex are reported. A method for quantifying very small amounts of these compounds was developed. Concerning the biochemistry of the latex, no exogenous cofactors were required for the biosynthesis and the addition of compounds such as NADPAH and ATP do not stimulate the biosynthesis. The addition of DTE or a similar anti-oxidant was found to help reduce the oxidation of the latex, thus increasing the length of time that the latex remains active. The requirement of a divalent cation and the preference for Mn in the pellet was observed. The effect of several inhibitors on the biosynthesis of the triterpenoids was examined. Mevinolin was found to inhibit the biosynthesis of the triterpenoids from acetate, but not mevalonate. A dixon plot of the inhibition of acetate incorporation showed an I 50 concentration of 3.2 μM. Fenpropimorph was found to have little or no effect on the biosynthesis. Tridemorph was found to inhibit the biosynthesis of all of the triterpenoids with an I 50 of 4 μM. It was also observed that the cyclopropyl containing triterpenols, cycloartenol and 24-methylenecycloartenol were inhibited much more strongly than those containing an 8-9 double bond, lanosterol and 24-methylenelanosterol. The evidence indicates, but does not definetely prove, that lanosterol and 24-methylenelanosterol are not made from cycloartenol and 24-methylenecycloartenol via a ring-opening enzyme such as cycloeucalenol-obtusifoliol isomerase. The possibilty that cycloartenol is made via lanosterol was investigated by synthesizing 4-R-4- 3 H-mevalonic acid and incubating latex with a mixture of this and 14 C-mevalonic acid. From the 3 H/ 14 C ratio it was shown that cycloartenol and 24-methylenecycloartenol are not made via an intermediate containing as 8-9 double bond. 88 refs., 15 figs., 30 tabs

  6. Triterpenoid biosynthesis in Euphorbia lathyris latex

    Energy Technology Data Exchange (ETDEWEB)

    Hawkins, D.R.

    1987-11-01

    The structures of triterpenols, not previously been known, from Euphorbia lathyris latex are reported. A method for quantifying very small amounts of these compounds was developed. Concerning the biochemistry of the latex, no exogenous cofactors were required for the biosynthesis and the addition of compounds such as NADPAH and ATP do not stimulate the biosynthesis. The addition of DTE or a similar anti-oxidant was found to help reduce the oxidation of the latex, thus increasing the length of time that the latex remains active. The requirement of a divalent cation and the preference for Mn in the pellet was observed. The effect of several inhibitors on the biosynthesis of the triterpenoids was examined. Mevinolin was found to inhibit the biosynthesis of the triterpenoids from acetate, but not mevalonate. A dixon plot of the inhibition of acetate incorporation showed an I/sub 50/ concentration of 3.2 ..mu..M. Fenpropimorph was found to have little or no effect on the biosynthesis. Tridemorph was found to inhibit the biosynthesis of all of the triterpenoids with an I/sub 50/ of 4 ..mu..M. It was also observed that the cyclopropyl containing triterpenols, cycloartenol and 24-methylenecycloartenol were inhibited much more strongly than those containing an 8-9 double bond, lanosterol and 24-methylenelanosterol. The evidence indicates, but does not definetely prove, that lanosterol and 24-methylenelanosterol are not made from cycloartenol and 24-methylenecycloartenol via a ring-opening enzyme such as cycloeucalenol-obtusifoliol isomerase. The possibilty that cycloartenol is made via lanosterol was investigated by synthesizing 4-R-4-/sup 3/H-mevalonic acid and incubating latex with a mixture of this and /sup 14/C-mevalonic acid. From the /sup 3/H//sup 14/C ratio it was shown that cycloartenol and 24-methylenecycloartenol are not made via an intermediate containing as 8-9 double bond. 88 refs., 15 figs., 30 tabs.

  7. Enzyme and biochemical producing fungi

    DEFF Research Database (Denmark)

    Lübeck, Peter Stephensen; Lübeck, Mette; Nilsson, Lena

    2010-01-01

    factories for sustainable production of important molecules. For developing fungi into efficient cell factories, the project includes identification of important factors that control the flux through the pathways using metabolic flux analysis and metabolic engineering of biochemical pathways....

  8. Convergent Evolution of Ergothioneine Biosynthesis in Cyanobacteria.

    Science.gov (United States)

    Liao, Cangsong; Seebeck, Florian P

    2017-11-02

    Biosynthesis of N-α-trimethyl-2-thiohistidine (ergothioneine) is a frequent trait in cyanobacteria. This sulfur compound may provide essential relief from oxidative stress related to oxygenic photosynthesis. The central steps in ergothioneine biosynthesis are catalyzed by a histidine methyltransferase and an iron-dependent sulfoxide synthase. In this report, we present evidence that some cyanobacteria recruited and adapted a sulfoxide synthase from a different biosynthetic pathway to make ergothioneine. The discovery of a second origin of ergothioneine production underscores the physiological importance of this metabolite and highlights the evolutionary malleability of the thiohistidine biosynthetic machinery. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Method for determining heterologous biosynthesis pathways

    KAUST Repository

    Gao, Xin

    2017-08-10

    The present invention relates to a method and system for dynamically analyzing, determining, predicting and displaying ranked suitable heterologous biosynthesis pathways for a specified host. The present invention addresses the problem of finding suitable pathways for the endogenous metabolism of a host organism because the efficacy of heterologous biosynthesis is affected by competing endogenous pathways. The present invention is called MRE (Metabolic Route Explorer), and it was conceived and developed to systematically and dynamically search for, determine, analyze, and display promising heterologous pathways while considering competing endogenous reactions in a given host organism.

  10. The expanding universe of alkaloid biosynthesis.

    Science.gov (United States)

    De Luca, V; Laflamme, P

    2001-06-01

    Characterization of many of the major gene families responsible for the generation of central intermediates and for their decoration, together with the development of large genomics and proteomics databases, has revolutionized our capability to identify exotic and interesting natural-product pathways. Over the next few years, these tools will facilitate dramatic advances in our knowledge of the biosynthesis of alkaloids, which will far surpass that which we have learned in the past 50 years. These tools will also be exploited for the rapid characterization of regulatory genes, which control the development of specialized cell factories for alkaloid biosynthesis.

  11. Biosynthesis of silver nanoparticles by Aspergillus niger , Fusarium ...

    African Journals Online (AJOL)

    ... scanning electron microscope (SEM). Results indicate the synthesis of silver nanoparticles in the reaction mixture. The synthesis of nanoparticles would be suitable for developing a microbial nanotechnology biosynthesis process for mass scale production. Keywords: Silver nanoparticles, biosynthesis, fungi, Aspergillus.

  12. In vitro biochemical characterization of all barley endosperm starch synthases

    DEFF Research Database (Denmark)

    Cuesta-Seijo, Jose A.; Nielsen, Morten M.; Ruzanski, Christian

    2016-01-01

    Starch is the main storage polysaccharide in cereals and the major source of calories in the human diet. It is synthesized by a panel of enzymes including five classes of starch synthases (SSs). While the overall starch synthase (SS) reaction is known, the functional differences between the five SS....... Here we provide a detailed biochemical study of the activity of all five classes of SSs in barley endosperm. Each enzyme was produced recombinantly in E. coli and the properties and modes of action in vitro were studied in isolation from other SSs and other substrate modifying activities. Our results...... define the mode of action of each SS class in unprecedented detail; we analyze their substrate selection, temperature dependence and stability, substrate affinity and temporal abundance during barley development. Our results are at variance with some generally accepted ideas about starch biosynthesis...

  13. Control of biotin biosynthesis in mycobacteria by a pyruvate carboxylase dependent metabolic signal.

    Science.gov (United States)

    Lazar, Nathaniel; Fay, Allison; Nandakumar, Madhumitha; Boyle, Kerry E; Xavier, Joao; Rhee, Kyu; Glickman, Michael S

    2017-12-01

    Biotin is an essential cofactor utilized by all domains of life, but only synthesized by bacteria, fungi and plants, making biotin biosynthesis a target for antimicrobial development. To understand biotin biosynthesis in mycobacteria, we executed a genetic screen in Mycobacterium smegmatis for biotin auxotrophs and identified pyruvate carboxylase (Pyc) as required for biotin biosynthesis. The biotin auxotrophy of the pyc::tn strain is due to failure to transcriptionally induce late stage biotin biosynthetic genes in low biotin conditions. Loss of bioQ, the repressor of biotin biosynthesis, in the pyc::tn strain reverted biotin auxotrophy, as did reconstituting the last step of the pathway through heterologous expression of BioB and provision of its substrate DTB. The role of Pyc in biotin regulation required its catalytic activities and could be supported by M. tuberculosis Pyc. Quantitation of the kinetics of depletion of biotinylated proteins after biotin withdrawal revealed that Pyc is the most rapidly depleted biotinylated protein and metabolomics revealed a broad metabolic shift in wild type cells upon biotin withdrawal which was blunted in cell lacking Pyc. Our data indicate that mycobacterial cells monitor biotin sufficiency through a metabolic signal generated by dysfunction of a biotinylated protein of central metabolism. © 2017 John Wiley & Sons Ltd.

  14. Biosynthesis of Polyunsaturated Fatty Acids in Marine Invertebrates: Recent Advances in Molecular Mechanisms

    Science.gov (United States)

    Monroig, Óscar; Tocher, Douglas R.; Navarro, Juan C.

    2013-01-01

    Virtually all polyunsaturated fatty acids (PUFA) originate from primary producers but can be modified by bioconversions as they pass up the food chain in a process termed trophic upgrading. Therefore, although the main primary producers of PUFA in the marine environment are microalgae, higher trophic levels have metabolic pathways that can produce novel and unique PUFA. However, little is known about the pathways of PUFA biosynthesis and metabolism in the levels between primary producers and fish that are largely filled by invertebrates. It has become increasingly apparent that, in addition to trophic upgrading, de novo synthesis of PUFA is possible in some lower animals. The unequivocal identification of PUFA biosynthetic pathways in many invertebrates is complicated by the presence of other organisms within them. These organisms include bacteria and algae with PUFA biosynthesis pathways, and range from intestinal flora to symbiotic relationships that can involve PUFA translocation to host organisms. This emphasizes the importance of studying biosynthetic pathways at a molecular level, and the continual expansion of genomic resources and advances in molecular analysis is facilitating this. The present paper highlights recent research into the molecular and biochemical mechanisms of PUFA biosynthesis in marine invertebrates, particularly focusing on cephalopod molluscs. PMID:24152561

  15. Biochemistry and Molecular Biology of Carotenoid Biosynthesis in Chili Peppers (Capsicum spp.

    Directory of Open Access Journals (Sweden)

    María del Rocío Gómez-García

    2013-09-01

    Full Text Available Capsicum species produce fruits that synthesize and accumulate carotenoid pigments, which are responsible for the fruits’ yellow, orange and red colors. Chili peppers have been used as an experimental model for studying the biochemical and molecular aspects of carotenoid biosynthesis. Most reports refer to the characterization of carotenoids and content determination in chili pepper fruits from different species, cultivars, varieties or genotypes. The types and levels of carotenoids differ between different chili pepper fruits, and they are also influenced by environmental conditions. Yellow-orange colors of chili pepper fruits are mainly due to the accumulation of α- and β-carotene, zeaxanthin, lutein and β-cryptoxanthin. Carotenoids such as capsanthin, capsorubin and capsanthin-5,6-epoxide confer the red colors. Chromoplasts are the sites of carotenoid pigment synthesis and storage. According to the most accepted theory, the synthesis of carotenoids in chili peppers is controlled by three loci: c1, c2 and y. Several enzymes participating in carotenoid biosynthesis in chili pepper fruits have been isolated and characterized, and the corresponding gene sequences have been reported. However, there is currently limited information on the molecular mechanisms that regulate this biosynthetic pathway. Approaches to gain more knowledge of the regulation of carotenoid biosynthesis are discussed.

  16. Biochemistry and Molecular Biology of Carotenoid Biosynthesis in Chili Peppers (Capsicum spp.)

    Science.gov (United States)

    del Rocío Gómez-García, María; Ochoa-Alejo, Neftalí

    2013-01-01

    Capsicum species produce fruits that synthesize and accumulate carotenoid pigments, which are responsible for the fruits’ yellow, orange and red colors. Chili peppers have been used as an experimental model for studying the biochemical and molecular aspects of carotenoid biosynthesis. Most reports refer to the characterization of carotenoids and content determination in chili pepper fruits from different species, cultivars, varieties or genotypes. The types and levels of carotenoids differ between different chili pepper fruits, and they are also influenced by environmental conditions. Yellow-orange colors of chili pepper fruits are mainly due to the accumulation of α- and β-carotene, zeaxanthin, lutein and β-cryptoxanthin. Carotenoids such as capsanthin, capsorubin and capsanthin-5,6-epoxide confer the red colors. Chromoplasts are the sites of carotenoid pigment synthesis and storage. According to the most accepted theory, the synthesis of carotenoids in chili peppers is controlled by three loci: c1, c2 and y. Several enzymes participating in carotenoid biosynthesis in chili pepper fruits have been isolated and characterized, and the corresponding gene sequences have been reported. However, there is currently limited information on the molecular mechanisms that regulate this biosynthetic pathway. Approaches to gain more knowledge of the regulation of carotenoid biosynthesis are discussed. PMID:24065101

  17. A balanced ATP driving force module for enhancing photosynthetic biosynthesis of 3-hydroxybutyrate from CO2.

    Science.gov (United States)

    Ku, Jason T; Lan, Ethan I

    2018-03-01

    Using engineered photoautotrophic microorganisms for the direct chemical synthesis from CO 2 is an attractive direction for both sustainability and CO 2 mitigation. However, the behaviors of non-native metabolic pathways may be difficult to control due to the different intracellular contexts between natural and heterologous hosts. While most metabolic engineering efforts focus on strengthening driving forces in pathway design to favor biochemical production in these organisms, excessive driving force may be detrimental to product biosynthesis due to imbalanced cellular intermediate distribution. In this study, an ATP-hydrolysis based driving force module was engineered into cyanobacterium Synechococcus elongatus PCC 7942 to produce 3-hydroxybutyrate (3HB), a valuable chemical feedstock for the synthesis of biodegradable plastics and antibiotics. However, while the ATP driving force module is effective for increasing product formation, uncontrolled accumulation of intermediate metabolites likely led to metabolic imbalance and thus to cell growth inhibition. Therefore, the ATP driving force module was reengineered by providing a reversible outlet for excessive carbon flux. Upon expression of this balanced ATP driving force module with 3HB biosynthesis, engineered strain produced 3HB with a cumulative titer of 1.2 g/L, a significant increase over the initial strain. This result highlighted the importance of pathway reversibility as an effective design strategy for balancing driving force and intermediate accumulation, thereby achieving a self-regulated control for increased net flux towards product biosynthesis. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  18. Hemoglobin Variants: Biochemical Properties and Clinical Correlates

    Science.gov (United States)

    Thom, Christopher S.; Dickson, Claire F.; Gell, David A.; Weiss, Mitchell J.

    2013-01-01

    Diseases affecting hemoglobin synthesis and function are extremely common worldwide. More than 1000 naturally occurring human hemoglobin variants with single amino acid substitutions throughout the molecule have been discovered, mainly through their clinical and/or laboratory manifestations. These variants alter hemoglobin structure and biochemical properties with physiological effects ranging from insignificant to severe. Studies of these mutations in patients and in the laboratory have produced a wealth of information on hemoglobin biochemistry and biology with significant implications for hematology practice. More generally, landmark studies of hemoglobin performed over the past 60 years have established important paradigms for the disciplines of structural biology, genetics, biochemistry, and medicine. Here we review the major classes of hemoglobin variants, emphasizing general concepts and illustrative examples. PMID:23388674

  19. Peroxidase enzymes regulate collagen extracellular matrix biosynthesis.

    Science.gov (United States)

    DeNichilo, Mark O; Panagopoulos, Vasilios; Rayner, Timothy E; Borowicz, Romana A; Greenwood, John E; Evdokiou, Andreas

    2015-05-01

    Myeloperoxidase and eosinophil peroxidase are heme-containing enzymes often physically associated with fibrotic tissue and cancer in various organs, without any direct involvement in promoting fibroblast recruitment and extracellular matrix (ECM) biosynthesis at these sites. We report herein novel findings that show peroxidase enzymes possess a well-conserved profibrogenic capacity to stimulate the migration of fibroblastic cells and promote their ability to secrete collagenous proteins to generate a functional ECM both in vitro and in vivo. Mechanistic studies conducted using cultured fibroblasts show that these cells are capable of rapidly binding and internalizing both myeloperoxidase and eosinophil peroxidase. Peroxidase enzymes stimulate collagen biosynthesis at a post-translational level in a prolyl 4-hydroxylase-dependent manner that does not require ascorbic acid. This response was blocked by the irreversible myeloperoxidase inhibitor 4-amino-benzoic acid hydrazide, indicating peroxidase catalytic activity is essential for collagen biosynthesis. These results suggest that peroxidase enzymes, such as myeloperoxidase and eosinophil peroxidase, may play a fundamental role in regulating the recruitment of fibroblast and the biosynthesis of collagen ECM at sites of normal tissue repair and fibrosis, with enormous implications for many disease states where infiltrating inflammatory cells deposit peroxidases. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  20. Metabolic engineering for improved heterologous terpenoid biosynthesis

    NARCIS (Netherlands)

    Ryden, A.; Melillo, E.; Czepnik, M.; Kayser, O.

    Terpenoids belong to the largest class of natural compounds and are produced in all living organisms. The isoprenoid skeleton is based on assembling of C5 building blocks, but the biosynthesis of a great variety of terpenoids ranging from monoterpenoids to polyterpenoids is not fully understood

  1. Biosynthesis of silver nanoparticles synthesized by Aspergillus

    Indian Academy of Sciences (India)

    In the present study, biosynthesis of silver nanoparticles and its antioxidant, antimicrobial and cytotoxic activities were investigated. Silver nanoparticles were extracellularly synthesized using Aspergillus flavus and the formation of nanoparticles was observed after 72 h of incubation. The results recorded from colour ...

  2. Biosynthesis of furanochromones in Pimpinella monoica

    Indian Academy of Sciences (India)

    polyketide origin of their aromatic and pyrone rings while the furan ring originates via an acetate-mevalonate pathway. The plant also utilises glycine and leucine as substrate via acetate. Biotransformation of 3-H-visnagin to (6) but not to (2) was also observed. Keywords. Biosynthesis; furochromones; polyketide origin; ...

  3. Biochemical mechanisms determine the functional compatibility of heterologous genes

    DEFF Research Database (Denmark)

    Porse, Andreas; Schou, Thea S.; Munck, Christian

    2018-01-01

    -gene libraries have suggested that sequence composition is a strong barrier for the successful integration of heterologous genes. Here we sample 200 diverse genes, representing >80% of sequenced antibiotic resistance genes, to interrogate the factors governing genetic compatibility in new hosts. In contrast...... factors governing the functionality and fitness of antibiotic resistance genes. These findings emphasize the importance of biochemical mechanism for heterologous gene compatibility, and suggest physiological constraints as a pivotal feature orienting the evolution of antibiotic resistance....

  4. Biochemical and Genetic Evidence that Enterococcus faecium L50 Produces Enterocins L50A and L50B, the sec-Dependent Enterocin P, and a Novel Bacteriocin Secreted without an N-Terminal Extension Termed Enterocin Q

    Science.gov (United States)

    Cintas, Luis M.; Casaus, Pilar; Herranz, Carmen; Håvarstein, Leiv Sigve; Holo, Helge; Hernández, Pablo E.; Nes, Ingolf F.

    2000-01-01

    Enterococcus faecium L50 grown at 16 to 32°C produces enterocin L50 (EntL50), consisting of EntL50A and EntL50B, two unmodified non-pediocin-like peptides synthesized without an N-terminal leader sequence or signal peptide. However, the bacteriocin activity found in the cell-free culture supernatants following growth at higher temperatures (37 to 47°C) is not due to EntL50. A purification procedure including cation-exchange, hydrophobic interaction, and reverse-phase liquid chromatography has shown that the antimicrobial activity is due to two different bacteriocins. Amino acid sequences obtained by Edman degradation and DNA sequencing analyses revealed that one is identical to the sec-dependent pediocin-like enterocin P produced by E. faecium P13 (L. M. Cintas, P. Casaus, L. S. Håvarstein, P. E. Hernández, and I. F. Nes, Appl. Environ. Microbiol. 63:4321–4330, 1997) and the other is a novel unmodified non-pediocin-like bacteriocin termed enterocin Q (EntQ), with a molecular mass of 3,980. DNA sequencing analysis of a 963-bp region of E. faecium L50 containing the enterocin P structural gene (entP) and the putative immunity protein gene (entiP) reveals a genetic organization identical to that previously found in E. faecium P13. DNA sequencing analysis of a 1,448-bp region identified two consecutive but diverging open reading frames (ORFs) of which one, termed entQ, encodes a 34-amino-acid protein whose deduced amino acid sequence was identical to that obtained for EntQ by amino acid sequencing, showing that EntQ, similarly to EntL50A and EntL50B, is synthesized without an N-terminal leader sequence or signal peptide. The second ORF, termed orf2, was located immediately upstream of and in opposite orientation to entQ and encodes a putative immunity protein composed of 221 amino acids. Bacteriocin production by E. faecium L50 showed that EntP and EntQ are produced in the temperature range from 16 to 47°C and maximally detected at 47 and 37 to 47

  5. Comprehensive Characterization for Ginsenosides Biosynthesis in Ginseng Root by Integration Analysis of Chemical and Transcriptome

    Directory of Open Access Journals (Sweden)

    Jing-Jing Zhang

    2017-05-01

    Full Text Available Herbgenomics provides a global platform to explore the genetics and biology of herbs on the genome level. Panax ginseng C.A. Meyer is an important medicinal plant with numerous pharmaceutical effects. Previous reports mainly discussed the transcriptome of ginseng at the organ level. However, based on mass spectrometry imaging analyses, the ginsenosides varied among different tissues. In this work, ginseng root was separated into three tissues—periderm, cortex and stele—each for five duplicates. The chemical analysis and transcriptome analysis were conducted simultaneously. Gene-encoding enzymes involved in ginsenosides biosynthesis and modification were studied based on gene and molecule data. Eight widely-used ginsenosides were distributed unevenly in ginseng roots. A total of 182,881 unigenes were assembled with an N50 contig size of 1374 bp. About 21,000 of these unigenes were positively correlated with the content of ginsenosides. Additionally, we identified 192 transcripts encoding enzymes involved in two triterpenoid biosynthesis pathways and 290 transcripts encoding UDP-glycosyltransferases (UGTs. Of these UGTs, 195 UGTs (67.2% were more highly expressed in the periderm, and that seven UGTs and one UGT were specifically expressed in the periderm and stele, respectively. This genetic resource will help to improve the interpretation on complex mechanisms of ginsenosides biosynthesis, accumulation, and transportation.

  6. Isoprenoid biosynthesis in eukaryotic phototrophs: A spotlight on algae

    Energy Technology Data Exchange (ETDEWEB)

    Lohr M.; Schwender J.; Polle, J. E. W.

    2012-04-01

    Isoprenoids are one of the largest groups of natural compounds and have a variety of important functions in the primary metabolism of land plants and algae. In recent years, our understanding of the numerous facets of isoprenoid metabolism in land plants has been rapidly increasing, while knowledge on the metabolic network of isoprenoids in algae still lags behind. Here, current views on the biochemistry and genetics of the core isoprenoid metabolism in land plants and in the major algal phyla are compared and some of the most pressing open questions are highlighted. Based on the different evolutionary histories of the various groups of eukaryotic phototrophs, we discuss the distribution and regulation of the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways in land plants and algae and the potential consequences of the loss of the MVA pathway in groups such as the green algae. For the prenyltransferases, serving as gatekeepers to the various branches of terpenoid biosynthesis in land plants and algae, we explore the minimal inventory necessary for the formation of primary isoprenoids and present a preliminary analysis of their occurrence and phylogeny in algae with primary and secondary plastids. The review concludes with some perspectives on genetic engineering of the isoprenoid metabolism in algae.

  7. Biochemical reactions of the organism

    International Nuclear Information System (INIS)

    Fedorova, A.V.

    1984-01-01

    Effects of mercury, strontium chloride, GMDA, trichlorfon as well as some radionuclides ( 89 Sr, 137 Cs, 203 Hg) were studied on rats. Changes in biochemical parameters (histamine content, activity of cholinesterase and histaminase) are noted. Most noticeable changes were observed in enzymatic activity. Distortion of enzymatic systems and accumulation of intermediate exchange and decay products of tissues in excess quantities affecting other systems can be the reason for changes in the organism. The observed changes in biochemical parameters should be necessarily taken into account at hygienic regulations of harmful effects of enviroment

  8. The complete coenzyme B12 biosynthesis gene cluster of Lactobacillus reuteri CRL 1098

    NARCIS (Netherlands)

    Santos, dos F.; Vera, J.L.; Heijden, van der R.; Valdez, G.F.; Vos, de W.M.; Sesma, F.; Hugenholtz, J.

    2008-01-01

    The coenzyme B12 production pathway in Lactobacillus reuteri has been deduced using a combination of genetic, biochemical and bioinformatics approaches. The coenzyme B12 gene cluster of Lb. reuteri CRL1098 has the unique feature of clustering together the cbi, cob and hem genes. It consists of 29

  9. Genetics Home Reference: spastic paraplegia type 7

    Science.gov (United States)

    ... in the arms; speech difficulties (dysarthria); difficulty swallowing (dysphagia); involuntary movements of the eyes (nystagmus); mild hearing ... AH, Warner TT. A clinical, genetic and biochemical study of SPG7 mutations in hereditary spastic paraplegia. Brain. ...

  10. Virus-Induced Silencing of Key Genes Leads to Differential Impact on Withanolide Biosynthesis in the Medicinal Plant, Withania somnifera.

    Science.gov (United States)

    Agarwal, Aditya Vikram; Singh, Deeksha; Dhar, Yogeshwar Vikram; Michael, Rahul; Gupta, Parul; Chandra, Deepak; Trivedi, Prabodh Kumar

    2018-02-01

    Withanolides are a collection of naturally occurring, pharmacologically active, secondary metabolites synthesized in the medicinally important plant, Withania somnifera. These bioactive molecules are C28-steroidal lactone triterpenoids and their synthesis is proposed to take place via the mevalonate (MVA) and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways through the sterol pathway using 24-methylene cholesterol as substrate flux. Although the phytochemical profiles as well as pharmaceutical activities of Withania extracts have been well studied, limited genomic information and difficult genetic transformation have been a major bottleneck towards understanding the participation of specific genes in withanolide biosynthesis. In this study, we used the Tobacco rattle virus (TRV)-mediated virus-induced gene silencing (VIGS) approach to study the participation of key genes from MVA, MEP and triterpenoid biosynthesis for their involvement in withanolide biosynthesis. TRV-infected W. somnifera plants displayed unique phenotypic characteristics and differential accumulation of total Chl as well as carotenoid content for each silenced gene suggesting a reduction in overall isoprenoid synthesis. Comprehensive expression analysis of putative genes of withanolide biosynthesis revealed transcriptional modulations conferring the presence of complex regulatory mechanisms leading to withanolide biosynthesis. In addition, silencing of genes exhibited modulated total and specific withanolide accumulation at different levels as compared with control plants. Comparative analysis also suggests a major role for the MVA pathway as compared with the MEP pathway in providing substrate flux for withanolide biosynthesis. These results demonstrate that transcriptional regulation of selected Withania genes of the triterpenoid biosynthetic pathway critically affects withanolide biosynthesis, providing new horizons to explore this process further, in planta.

  11. Genes involved in long-chain alkene biosynthesis in Micrococcus luteus

    Energy Technology Data Exchange (ETDEWEB)

    Beller, Harry R.; Goh, Ee-Been; Keasling, Jay D.

    2010-01-07

    Aliphatic hydrocarbons are highly appealing targets for advanced cellulosic biofuels, as they are already predominant components of petroleum-based gasoline and diesel fuels. We have studied alkene biosynthesis in Micrococcus luteus ATCC 4698, a close relative of Sarcina lutea (now Kocuria rhizophila), which four decades ago was reported to biosynthesize iso- and anteiso branched, long-chain alkenes. The underlying biochemistry and genetics of alkene biosynthesis were not elucidated in those studies. We show here that heterologous expression of a three-gene cluster from M. luteus (Mlut_13230-13250) in a fatty-acid overproducing E. coli strain resulted in production of long-chain alkenes, predominantly 27:3 and 29:3 (no. carbon atoms: no. C=C bonds). Heterologous expression of Mlut_13230 (oleA) alone produced no long-chain alkenes but unsaturated aliphatic monoketones, predominantly 27:2, and in vitro studies with the purified Mlut_13230 protein and tetradecanoyl-CoA produced the same C27 monoketone. Gas chromatography-time of flight mass spectrometry confirmed the elemental composition of all detected long-chain alkenes and monoketones (putative intermediates of alkene biosynthesis). Negative controls demonstrated that the M. luteus genes were responsible for production of these metabolites. Studies with wild-type M. luteus showed that the transcript copy number of Mlut_13230-13250 and the concentrations of 29:1 alkene isomers (the dominant alkenes produced by this strain) generally corresponded with bacterial population over time. We propose a metabolic pathway for alkene biosynthesis starting with acyl-CoA (or -ACP) thioesters and involving decarboxylative Claisen condensation as a key step, which we believe is catalyzed by OleA. Such activity is consistent with our data and with the homology (including the conserved Cys-His-Asn catalytic triad) of Mlut_13230 (OleA) to FabH (?-ketoacyl-ACP synthase III), which catalyzes decarboxylative Claisen condensation during

  12. Fatty Acid Biosynthesis Pathways in Methylomicrobium buryatense 5G(B1).

    Science.gov (United States)

    Demidenko, Aleksandr; Akberdin, Ilya R; Allemann, Marco; Allen, Eric E; Kalyuzhnaya, Marina G

    2016-01-01

    Methane utilization by methanotrophic bacteria is an attractive application for biotechnological conversion of natural or biogas into high-added-value products. Haloalcaliphilic methanotrophic bacteria belonging to the genus Methylomicrobium are among the most promising strains for methane-based biotechnology, providing easy and inexpensive cultivation, rapid growth, and the availability of established genetic tools. A number of methane bioconversions using these microbial cultures have been discussed, including the derivation of biodiesel, alkanes, and OMEGA-3 supplements. These compounds are derived from bacterial fatty acid pools. Here, we investigate fatty acid biosynthesis in Methylomicrobium buryatense 5G(B1) . Most of the genes homologous to typical Type II fatty acid biosynthesis pathways could be annotated by bioinformatics analyses, with the exception of fatty acid transport and regulatory elements. Different approaches for improving fatty acid accumulation were investigated. These studies indicated that both fatty acid degradation and acetyl- and malonyl-CoA levels are bottlenecks for higher level fatty acid production. The best strain generated in this study synthesizes 111 ± 2 mg/gDCW of extractable fatty acids, which is ~20% more than the original strain. A candidate gene for fatty acid biosynthesis regulation, farE , was identified and studied. Its deletion resulted in drastic changes to the fatty acid profile, leading to an increased pool of C18-fatty acid methyl ester. The FarE-regulon was further investigated by RNA-seq analysis of gene expression in farE -knockout mutants and farE -overexpressing strains. These gene profiles highlighted a novel set of enzymes and regulators involved in fatty acid biosynthesis. The gene expression and fatty acid profiles of the different farE -strains support the hypothesis that metabolic fluxes upstream of fatty acid biosynthesis restrict fatty acid production in the methanotroph.

  13. Discovery, biosynthesis, and rational engineering of novel enterocin and wailupemycin polyketide analogues.

    Science.gov (United States)

    Kalaitzis, John A

    2013-01-01

    The marine actinomycete Streptomyces maritimus produces a structurally diverse set of unusual polyketide natural products including the major metabolite enterocin. Investigations of enterocin biosynthesis revealed that the unique carbon skeleton is derived from an aromatic polyketide pathway which is genetically coded by the 21.3 kb enc gene cluster in S. maritimus. Characterization of the enc biosynthesis gene cluster and subsequent manipulation of it via heterologous expression and/or mutagenesis enabled the discovery of other enc-based metabolites that were produced in only very minor amounts in the wild type. Also described are techniques used to harness the enterocin biosynthetic machinery in order to generate unnatural enc-derived polyketide analogues. This review focuses upon the molecular methods used in combination with classical natural products detection and isolation techniques to access minor metabolites of the S. maritimus secondary metabolome.

  14. A Genetic System for the Thermophilic Acetogenic Bacterium Thermoanaerobacter kivui.

    Science.gov (United States)

    Basen, Mirko; Geiger, Irina; Henke, Laura; Müller, Volker

    2018-02-01

    urgent need to understand the carbon and electron flows through the Wood-Ljungdahl pathway and their links to energy conservation, which requires genetic manipulations such as deletion or overexpression of genes encoding putative key enzymes. Unfortunately, genetic systems have been reported for only a few acetogenic bacteria. Here, we demonstrate proof of concept for the genetic modification of the thermophilic acetogenic species Thermoanaerobacter kivui The genetic system will be used to study genes involved in biosynthesis and energy metabolism, and may further be applied to metabolically engineer T. kivui to produce fuels and chemicals. Copyright © 2018 American Society for Microbiology.

  15. Biochemical and functional characterization of MRA-1571 of Mycobacterium tuberculosis H37Ra and effect of its down-regulation on survival in macrophages

    International Nuclear Information System (INIS)

    Sharma, Rishabh; Keshari, Deepa; Singh, Kumar Sachin; Singh, Sudheer Kumar

    2017-01-01

    Amino acid biosynthesis has emerged as a source of new drug targets as many bacterial strains auxotrophic for amino acids fail to proliferate under in vivo conditions. Branch chain amino acids (BCAAs) are important for Mycobacterium tuberculosis (Mtb) survival and strains deficient in their biosynthesis were attenuated for growth in mice. Threonine dehydratase (IlvA) is a pyridoxal-5-phosphate (PLP) dependent enzyme that catalyzes the first step in isoleucine biosynthesis. The MRA-1571 of Mycobacterium tuberculosis H37Ra (Mtb-Ra), annotated to be coding for IlvA, was cloned, expressed and purified. Purified protein was subsequently used for developing enzyme assay and to study its biochemical properties. Also, E. coli BL21 (DE3) IlvA knockout (E. coli-ΔilvA) was developed and genetically complemented with Mtb-Ra ilvA expression construct (pET32a-ilvA) to make complemented E. coli strain (E. coli-ΔilvA + pET32a-ilvA). The E. coli-ΔilvA showed growth failure in minimal medium but growth restoration was observed in E. coli-ΔilvA + pET32a-ilvA. E. coli-ΔilvA growth was also restored in the presence of isoleucine. The IlvA localization studies detected its distribution in cell wall and membrane fractions with relatively minor presence in cytosolic fraction. Maximum IlvA expression was observed at 72 h in wild-type (WT) Mtb-Ra infecting macrophages. Also, Mtb-Ra IlvA knockdown (KD) showed reduced survival in macrophages compared to WT and complemented strain (KDC). - Highlights: • Mtb-Ra gene MRA-1571 codes for a functional threonine dehydratase (IlvA). • IlvA is pyridoxal 5’-phosphate dependent and is inhibited by isoleucine. • E. coli IlvA knockout growth can be supplemented by isoleucine or by Mtb-Ra IlvA. • The enzyme is primarily localized in cell wall and membrane fractions. • IlvA knockdown Mtb-Ra shows reduced growth in macrophages.

  16. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 95; Issue 2. Expression profiles of genes involved in tanshinone biosynthesis of two Salvia miltiorrhiza genotypes with different tanshinone contents. ZHENQIAO SONG JIANHUA WANG XINGFENG LI. RESEARCH NOTE Volume 95 Issue 2 June 2016 pp 433-439 ...

  17. Circadian Clocks: Unexpected Biochemical Cogs.

    Science.gov (United States)

    Mori, Tetsuya; Mchaourab, Hassane; Johnson, Carl Hirschie

    2015-10-05

    A circadian oscillation can be reconstituted in vitro from three proteins that cycles with a period of ∼ 24 h. Two recent studies provide surprising biochemical answers to why this remarkable oscillator has such a long time constant and how it can switch effortlessly between alternating enzymatic modes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Circadian Clocks: Unexpected Biochemical Cogs

    OpenAIRE

    Mori, Tetsuya; Mchaourab, Hassane; Johnson, Carl Hirschie

    2015-01-01

    A circadian oscillation can be reconstituted in vitro from three proteins that cycles with a period of ~24 h. Two recent studies provide surprising biochemical answers to why this remarkable oscillator has such a long time constant and how it can switch effortlessly between alternating enzymatic modes.

  19. Structural basis for phosphatidylinositol-phosphate biosynthesis

    Science.gov (United States)

    Clarke, Oliver B.; Tomasek, David; Jorge, Carla D.; Dufrisne, Meagan Belcher; Kim, Minah; Banerjee, Surajit; Rajashankar, Kanagalaghatta R.; Shapiro, Lawrence; Hendrickson, Wayne A.; Santos, Helena; Mancia, Filippo

    2015-10-01

    Phosphatidylinositol is critical for intracellular signalling and anchoring of carbohydrates and proteins to outer cellular membranes. The defining step in phosphatidylinositol biosynthesis is catalysed by CDP-alcohol phosphotransferases, transmembrane enzymes that use CDP-diacylglycerol as donor substrate for this reaction, and either inositol in eukaryotes or inositol phosphate in prokaryotes as the acceptor alcohol. Here we report the structures of a related enzyme, the phosphatidylinositol-phosphate synthase from Renibacterium salmoninarum, with and without bound CDP-diacylglycerol to 3.6 and 2.5 Å resolution, respectively. These structures reveal the location of the acceptor site, and the molecular determinants of substrate specificity and catalysis. Functional characterization of the 40%-identical ortholog from Mycobacterium tuberculosis, a potential target for the development of novel anti-tuberculosis drugs, supports the proposed mechanism of substrate binding and catalysis. This work therefore provides a structural and functional framework to understand the mechanism of phosphatidylinositol-phosphate biosynthesis.

  20. Occurrence and biosynthesis of carotenoids in phytoplankton.

    Science.gov (United States)

    Huang, Jim Junhui; Lin, Shaoling; Xu, Wenwen; Cheung, Peter Chi Keung

    2017-09-01

    Naturally occurring carotenoids are important sources of antioxidants, anti-cancer compounds and anti-inflammatory agents and there is thus considerable market demand for their pharmaceutical applications. Carotenoids are widely distributed in marine and freshwater organisms including microalgae, phytoplankton, crustaceans and fish, as well as in terrestrial plants and birds. Recently, phytoplankton-derived carotenoids have received much attention due to their abundance, rapid rate of biosynthesis and unique composition. The carotenoids that accumulate in particular phytoplankton phyla are synthesized by specific enzymes and play unique physiological roles. This review focuses on studies related to the occurrence of carotenoids in different phytoplankton phyla and the molecular aspects of their biosynthesis. Recent biotechnological advances in the isolation and characterization of some representative carotenoid synthases in phytoplankton are also discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Microbial biosynthesis of nontoxic gold nanoparticles

    International Nuclear Information System (INIS)

    Roy, Swarup; Das, Tapan Kumar; Maiti, Guru Prasad; Basu, Utpal

    2016-01-01

    Graphical abstract: The manuscript deals with the fungus mediated optimized biologically synthesized GNPs using Aspergillus foetidus and characterization of biosynthesized GNPs using various physico-chemical methods. The fairly stable synthesized nanoparticles have size in the range of 10–40 nm. Cytotoxicity study of biosynthesized GNPs on Human lung cancer cell line A549 showed no significant toxicity of GNPs. - Highlights: • A novel biosynthesis process of GNPs using Aspergillus foetidus. • Biosynthesized GNPs are in the range of 10–40 nm as observed from TEM. • This process of synthesis is an optimized biosynthesis process of GNPs. • Biosynthesized GNPs are noncytotoxic against A549 cell line. - Abstract: We study the extracellular biosynthesis of gold nanoparticles (GNPs) using the fungal species Aspergillus foetidus. The formation of GNPs were initially monitored by visual observation and then characterized with the help of various characterization techniques. X-ray diffraction (XRD) results revealed distinctive formation of face centered cubic crystalline GNPs. From field emission scanning electron microscopy (FESEM) the morphology of the nanoparticles were found to be roughly spherical and within the size range of 30–50 nm. The spherical and polydispersed GNPs in the range of 10–40 nm were observed by transmission electron microscopy (TEM) analysis. It was established that alkaline pH, 1 mM gold salt concentration and 75 °C temperature were the respective optimum parameter for biosynthesis of GNPs. Cell cytotoxicity of GNP was compared with that of normal gold salt solution on A549 cell. The A549 cell growth in presence of GNPs was found to be comparatively less toxic than the gold ion.

  2. Microbial biosynthesis of nontoxic gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Swarup, E-mail: swaruproy@klyuniv.ac.in [Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal (India); Das, Tapan Kumar [Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal (India); Maiti, Guru Prasad [Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, West Bengal (India); Department of Anesthesiology, Texas Tech University Health science Center, 3601 4th Street, Lubbock, TX 79430 (United States); Basu, Utpal [Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, West Bengal (India)

    2016-01-15

    Graphical abstract: The manuscript deals with the fungus mediated optimized biologically synthesized GNPs using Aspergillus foetidus and characterization of biosynthesized GNPs using various physico-chemical methods. The fairly stable synthesized nanoparticles have size in the range of 10–40 nm. Cytotoxicity study of biosynthesized GNPs on Human lung cancer cell line A549 showed no significant toxicity of GNPs. - Highlights: • A novel biosynthesis process of GNPs using Aspergillus foetidus. • Biosynthesized GNPs are in the range of 10–40 nm as observed from TEM. • This process of synthesis is an optimized biosynthesis process of GNPs. • Biosynthesized GNPs are noncytotoxic against A549 cell line. - Abstract: We study the extracellular biosynthesis of gold nanoparticles (GNPs) using the fungal species Aspergillus foetidus. The formation of GNPs were initially monitored by visual observation and then characterized with the help of various characterization techniques. X-ray diffraction (XRD) results revealed distinctive formation of face centered cubic crystalline GNPs. From field emission scanning electron microscopy (FESEM) the morphology of the nanoparticles were found to be roughly spherical and within the size range of 30–50 nm. The spherical and polydispersed GNPs in the range of 10–40 nm were observed by transmission electron microscopy (TEM) analysis. It was established that alkaline pH, 1 mM gold salt concentration and 75 °C temperature were the respective optimum parameter for biosynthesis of GNPs. Cell cytotoxicity of GNP was compared with that of normal gold salt solution on A549 cell. The A549 cell growth in presence of GNPs was found to be comparatively less toxic than the gold ion.

  3. Physiological and biochemical characteristics of tobacco transgenic plants expressing bacterial dioxygenase

    Czech Academy of Sciences Publication Activity Database

    Piruzian, S.; Goldenkova, V.; Lenets, A.; Cvikrová, Milena; Macháčková, Ivana; Kobets, N.; Mett, V.

    2002-01-01

    Roč. 49, č. 6 (2002), s. 817-822 ISSN 1021-4437 R&D Projects: GA MŠk LN00A081; GA ČR GA206/00/1354 Institutional research plan: CEZ:AV0Z5038910 Keywords : phenylalanine ammonia lyase * polyphenol oxidases * biosynthesis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.102, year: 2002

  4. Biochemical Process Development and Integration | Bioenergy | NREL

    Science.gov (United States)

    Biochemical Process Development and Integration Biochemical Process Development and Integration Our conversion and separation processes to pilot-scale integrated process development and scale up. We also Publications Accounting for all sugar produced during integrated production of ethanol from lignocellulosic

  5. Penicillium expansum (compatible) and Penicillium digitatum (non-host) pathogen infection differentially alter ethylene biosynthesis in apple fruit.

    Science.gov (United States)

    Vilanova, Laura; Vall-Llaura, Núria; Torres, Rosario; Usall, Josep; Teixidó, Neus; Larrigaudière, Christian; Giné-Bordonaba, Jordi

    2017-11-01

    The role of ethylene on inducing plant resistance or susceptibility to certain fungal pathogens clearly depends on the plant pathogen interaction with little or no-information available focused on the apple-Penicillium interaction. Taken advantage that Penicillium expansum is the compatible pathogen and P. digitatum is the non-host of apples, the present study aimed at deciphering how each Penicillium spp. could interfere in the fruit ethylene biosynthesis at the biochemical and molecular level. The infection capacity and different aspects related to the ethylene biosynthesis were conducted at different times post-inoculation. The results show that the fruit ethylene biosynthesis was differently altered during the P. expansum infection than in response to other biotic (non-host pathogen P. digitatum) or abiotic stresses (wounding). The first symptoms of the disease due to P. expansum were visible before the initiation of the fruit ethylene climacteric burst. Indeed, the ethylene climacteric burst was reduced in response to P. expansum concomitant to an important induction of MdACO3 gene expression and an inhibition (ca. 3-fold) and overexpression (ca. 2-fold) of ACO (1-Aminocyclopropane-1-carboxylic acid oxidase) and ACS (1-Aminocyclopropane-1-carboxylic acid synthase) enzyme activities, indicating a putative role of MdACO3 in the P. expansum-apple interaction which may, in turn, be related to System-1 ethylene biosynthesis. System-1 is auto-inhibited by ethylene and is characteristic of non-climateric or pre-climacteric fruit. Accordingly, we hypothesise that P. expansum may 'manipulate' the endogenous ethylene biosynthesis in apples, leading to the circumvention or suppression of effective defences hence facilitating its colonization. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Complete Biosynthesis of Anthocyanins Using E. coli Polycultures.

    Science.gov (United States)

    Jones, J Andrew; Vernacchio, Victoria R; Collins, Shannon M; Shirke, Abhijit N; Xiu, Yu; Englaender, Jacob A; Cress, Brady F; McCutcheon, Catherine C; Linhardt, Robert J; Gross, Richard A; Koffas, Mattheos A G

    2017-06-06

    Fermentation-based chemical production strategies provide a feasible route for the rapid, safe, and sustainable production of a wide variety of important chemical products, ranging from fuels to pharmaceuticals. These strategies have yet to find wide industrial utilization due to their inability to economically compete with traditional extraction and chemical production methods. Here, we engineer for the first time the complex microbial biosynthesis of an anthocyanin plant natural product, starting from sugar. This was accomplished through the development of a synthetic, 4-strain Escherichia coli polyculture collectively expressing 15 exogenous or modified pathway enzymes from diverse plants and other microbes. This synthetic consortium-based approach enables the functional expression and connection of lengthy pathways while effectively managing the accompanying metabolic burden. The de novo production of specific anthocyanin molecules, such as calistephin, has been an elusive metabolic engineering target for over a decade. The utilization of our polyculture strategy affords milligram-per-liter production titers. This study also lays the groundwork for significant advances in strain and process design toward the development of cost-competitive biochemical production hosts through nontraditional methodologies. IMPORTANCE To efficiently express active extensive recombinant pathways with high flux in microbial hosts requires careful balance and allocation of metabolic resources such as ATP, reducing equivalents, and malonyl coenzyme A (malonyl-CoA), as well as various other pathway-dependent cofactors and precursors. To address this issue, we report the design, characterization, and implementation of the first synthetic 4-strain polyculture. Division of the overexpression of 15 enzymes and transcription factors over 4 independent strain modules allowed for the division of metabolic burden and for independent strain optimization for module-specific metabolite needs

  7. Genomics of glycopeptidolipid biosynthesis in Mycobacterium abscessus and M. chelonae

    Directory of Open Access Journals (Sweden)

    Etienne Gilles

    2007-05-01

    Full Text Available Abstract Background The outermost layer of the bacterial surface is of crucial importance because it is in constant interaction with the host. Glycopeptidolipids (GPLs are major surface glycolipids present on various mycobacterial species. In the fast-grower model organism Mycobacterium smegmatis, GPL biosynthesis involves approximately 30 genes all mapping to a single region of 65 kb. Results We have recently sequenced the complete genomes of two fast-growers causing human infections, Mycobacterium abscessus (CIP 104536T and M. chelonae (CIP 104535T. We show here that these two species contain genes corresponding to all those of the M. smegmatis "GPL locus", with extensive conservation of the predicted protein sequences consistent with the production of GPL molecules indistinguishable by biochemical analysis. However, the GPL locus appears to be split into several parts in M. chelonae and M. abscessus. One large cluster (19 genes comprises all genes involved in the synthesis of the tripeptide-aminoalcohol moiety, the glycosylation of the lipopeptide and methylation/acetylation modifications. We provide evidence that a duplicated acetyltransferase (atf1 and atf2 in M. abscessus and M. chelonae has evolved through specialization, being able to transfer one acetyl at once in a sequential manner. There is a second smaller and distant (M. chelonae, 900 kb; M. abscessus, 3 Mb cluster of six genes involved in the synthesis of the fatty acyl moiety and its attachment to the tripeptide-aminoalcohol moiety. The other genes are scattered throughout the genome, including two genes encoding putative regulatory proteins. Conclusion Although these three species produce identical GPL molecules, the organization of GPL genes differ between them, thus constituting species-specific signatures. An hypothesis is that the compact organization of the GPL locus in M. smegmatis represents the ancestral form and that evolution has scattered various pieces throughout the

  8. Over-expression of the transcription factor HlMYB3 in transgenic hop (Humulus lupulus L. cv. Tettnanger) modulates the expression of genes involved in the biosynthesis of flavonoids and phloroglucinols

    Czech Academy of Sciences Publication Activity Database

    Gatica-Arias, A.; Stanke, M.; Häntzschel, K.R.; Matoušek, Jaroslav; Weber, G.

    2013-01-01

    Roč. 113, č. 2 (2013), s. 279-289 ISSN 0167-6857 R&D Projects: GA ČR GA521/08/0740 Institutional support: RVO:60077344 Keywords : Hop * R2R3 MYB transcription factors * Genetic transformation * Flavonoid biosynthesis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.612, year: 2013

  9. Biochemical markers of bone turnover

    International Nuclear Information System (INIS)

    Kim, Deog Yoon

    1999-01-01

    Biochemical markers of bone turnover has received increasing attention over the past few years, because of the need for sensitivity and specific tool in the clinical investigation of osteoporosis. Bone markers should be unique to bone, reflect changes of bone less, and should be correlated with radiocalcium kinetics, histomorphometry, or changes in bone mass. The markers also should be useful in monitoring treatment efficacy. Although no bone marker has been established to meet all these criteria, currently osteocalcin and pyridinium crosslinks are the most efficient markers to assess the level of bone turnover in the menopausal and senile osteoporosis. Recently, N-terminal telopeptide (NTX), C-terminal telopeptide (CTX) and bone specific alkaline phosphatase are considered as new valid markers of bone turnover. Recent data suggest that CTX and free deoxypyridinoline could predict the subsequent risk of hip fracture of elderly women. Treatment of postmenopausal women with estrogen, calcitonin and bisphosphonates demonstrated rapid decrease of the levels of bone markers that correlated with the long-term increase of bone mass. Factors such as circadian rhythms, diet, age, sex, bone mass and renal function affect the results of biochemical markers and should be appropriately adjusted whenever possible. Each biochemical markers of bone turnover may have its own specific advantages and limitations. Recent advances in research will provide more sensitive and specific assays

  10. Biochemical toxicology of environmental agents

    International Nuclear Information System (INIS)

    Bruin, A. de

    1976-01-01

    A thorough and up-to-date account of the molecular-biological aspects of harmful agents - both chemical and physical - is given. This current treatise is principally intended to serve as an informative reference work for researchers in various areas of the field. In the pursuit of this aim, a devision of the entire field into 42 chapters has been made. Each chapter starts with a short introductory account dealing with the biochemical essentials of the particular subject. Radiation effects are discussed briefly at the end of each treatise. In order to make the treatise useful as a source book, a substantial collection of pertinent literature references is provided which are numbered in order of citation in the text. Initial chapters are devoted to the metabolic fate of the major classes of xenobiotic compounds. Peripheral topics, closely related to metabolism and dealing with modification of xenobiotic-metabolizing ability, as well as interaction phenomena follow (chs. 5-8). Subjects that draw heavily on the practical field of occupational hygiene are dealt with in chapters 9 and 10. The systematic treatment of how chemical and physical agents interact with the various biochemical and enzymatic systems they encounter during their passage through the organism occupies quantitatively the main part of the book (chs. 11-36). Finally, radiation biochemistry is discussed from the viewpoint of its high degree of scientific advancement, and secondly because the type of biochemical changes produced in vivo by X-rays closely parallel those evoked by chemical agents

  11. Salt Stress Represses Soybean Seed Germination by Negatively Regulating GA Biosynthesis While Positively Mediating ABA Biosynthesis

    Directory of Open Access Journals (Sweden)

    Kai Shu

    2017-08-01

    Full Text Available Soybean is an important and staple oilseed crop worldwide. Salinity stress has adverse effects on soybean development periods, especially on seed germination and post-germinative growth. Improving seed germination and emergence will have positive effects under salt stress conditions on agricultural production. Here we report that NaCl delays soybean seed germination by negatively regulating gibberellin (GA while positively mediating abscisic acid (ABA biogenesis, which leads to a decrease in the GA/ABA ratio. This study suggests that fluridone (FLUN, an ABA biogenesis inhibitor, might be a potential plant growth regulator that can promote soybean seed germination under saline stress. Different soybean cultivars, which possessed distinct genetic backgrounds, showed a similar repressed phenotype during seed germination under exogenous NaCl application. Biochemical analysis revealed that NaCl treatment led to high MDA (malondialdehyde level during germination and the post-germinative growth stages. Furthermore, catalase, superoxide dismutase, and peroxidase activities also changed after NaCl treatment. Subsequent quantitative Real-Time Polymerase Chain Reaction analysis showed that the transcription levels of ABA and GA biogenesis and signaling genes were altered after NaCl treatment. In line with this, phytohormone measurement also revealed that NaCl considerably down-regulated active GA1, GA3, and GA4 levels, whereas the ABA content was up-regulated; and therefore ratios, such as GA1/ABA, GA3/ABA, and GA4/ABA, are decreased. Consistent with the hormonal quantification, FLUN partially rescued the delayed-germination phenotype caused by NaCl-treatment. Altogether, these results demonstrate that NaCl stress inhibits soybean seed germination by decreasing the GA/ABA ratio, and that FLUN might be a potential plant growth regulator that could promote soybean seed germination under salinity stress.

  12. Salt Stress Represses Soybean Seed Germination by Negatively Regulating GA Biosynthesis While Positively Mediating ABA Biosynthesis.

    Science.gov (United States)

    Shu, Kai; Qi, Ying; Chen, Feng; Meng, Yongjie; Luo, Xiaofeng; Shuai, Haiwei; Zhou, Wenguan; Ding, Jun; Du, Junbo; Liu, Jiang; Yang, Feng; Wang, Qiang; Liu, Weiguo; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Yang, Wenyu

    2017-01-01

    Soybean is an important and staple oilseed crop worldwide. Salinity stress has adverse effects on soybean development periods, especially on seed germination and post-germinative growth. Improving seed germination and emergence will have positive effects under salt stress conditions on agricultural production. Here we report that NaCl delays soybean seed germination by negatively regulating gibberellin (GA) while positively mediating abscisic acid (ABA) biogenesis, which leads to a decrease in the GA/ABA ratio. This study suggests that fluridone (FLUN), an ABA biogenesis inhibitor, might be a potential plant growth regulator that can promote soybean seed germination under saline stress. Different soybean cultivars, which possessed distinct genetic backgrounds, showed a similar repressed phenotype during seed germination under exogenous NaCl application. Biochemical analysis revealed that NaCl treatment led to high MDA (malondialdehyde) level during germination and the post-germinative growth stages. Furthermore, catalase, superoxide dismutase, and peroxidase activities also changed after NaCl treatment. Subsequent quantitative Real-Time Polymerase Chain Reaction analysis showed that the transcription levels of ABA and GA biogenesis and signaling genes were altered after NaCl treatment. In line with this, phytohormone measurement also revealed that NaCl considerably down-regulated active GA 1 , GA 3 , and GA 4 levels, whereas the ABA content was up-regulated; and therefore ratios, such as GA 1 /ABA, GA 3 /ABA, and GA 4 /ABA, are decreased. Consistent with the hormonal quantification, FLUN partially rescued the delayed-germination phenotype caused by NaCl-treatment. Altogether, these results demonstrate that NaCl stress inhibits soybean seed germination by decreasing the GA/ABA ratio, and that FLUN might be a potential plant growth regulator that could promote soybean seed germination under salinity stress.

  13. Biochemical and genetic diagnosis of Smith-Lemli- Opitz syndrome ...

    African Journals Online (AJOL)

    -ups in four South African families of European ancestry with suspected SLOS in a range of presentations, from early fatality, congenital ... All the patients were of European ancestry, and the mutations reflected those in European studies.

  14. Biochemical population genetics of the black mussel Choromytilus ...

    African Journals Online (AJOL)

    proteins suggests no racial differences between west and ... coast and is rare east of Hermanus in the Cape Province. Over ..... have occurred in the work of Koehn & Gaffney (1984) had ... environmental gradients over the same distance.

  15. Biochemical population genetics of the black mussel Choromytilus ...

    African Journals Online (AJOL)

    Gene products of nine loci were examined by horizontal starch-gel electrophoresis in five samples of black mussels, Choromytilus meridionalis, from the south-western Cape coast. Allelic frequency variation for four polymorphic proteins suggests no racial differences between west and south coast populations.

  16. Study of some biochemical and genetic risk factors for ...

    African Journals Online (AJOL)

    The aim of this study was to evaluate the relation between asymmetric dimethylarginine (ADMA ), high sensitive C-reactive protein (hs-CRP), monocyte chemoattractant protein-1 (MCP-1) ( both serum levels and the genotypes of the MCP-1 A-2518G polymorphism) with the development of carotid atherosclerosis in systemic ...

  17. Genetic and biochemical evidences reveal novel insights into the ...

    Indian Academy of Sciences (India)

    2016-10-26

    Oct 26, 2016 ... veillance mechanisms to detect and repair various types of. DNA damage and maintain .... A plethora of research suggests that Mn2+ dependent ...... Indeed, using qualitative and quantitative methods, we have demonstrated ...

  18. Genetic and Biochemical Characterization of Peptidoglycan Synthesis in Chlamydia

    Science.gov (United States)

    2005-09-01

    23: 493-494. Hamre, D., and Rake, G. (1947) Studies on lymphogranuloma venereum . V. The action of some antibiotic stubstances and sulfonamides in...vitro and in vivo up the agents of feline pneumonitis and lymphogranuloma venereum . J Infect Dis 81: 175-190. Hantke, K. (2001) Iron and metal...agents of the psittacosis- lymphogranuloma group. 1. The effect of penicillin. J Infect Dis 87: 249-263. Witte, W. (2004) Glycopeptide resistant

  19. Assessment of genetic and biochemical diversity of ecologically ...

    African Journals Online (AJOL)

    USER

    2010-03-22

    Mar 22, 2010 ... variant Russula species on the basis of RAPD and isozyme analysis. Key words: ..... Singh RP, Singh U (eds) Molecular Methods in Plant Pathology, CRC. Press INC., pp. ... Speciation and synonymy in Penicillium subgenus ...

  20. Study of some biochemical and genetic markers in asthmatic children

    International Nuclear Information System (INIS)

    Abdel-Latif, A.; Abdalla, A.; EL-NASHAR, N.; Abdel-Samad, N.

    2005-01-01

    Bronchial asthma is the most common chronic disease of childhood. Interleukin-4 (IL-4) and interleukin-13 (IL-13) are T-helper type 2 (Th2) cytokines with numerous activities that contribute to allergic inflammation and asthma. Both IL-4 and IL-13 use the IL-4 receptor alpha chain (IL-4 Ra) as a component of their respective systems. Allelic variants of IL-4 Ra have been reported and the R 576 IL-4 Ra allele was recently shown to be a risk factor for atopy. This study was designed to determine whether the R 576 allele was associated with the prevalence of asthma among children and also to evaluate the role of serum IL-4 and IL-13 in the development of asthma. Hence, we used a developed, rapid and reliable PCR-based assay to screen individuals for the R 576 IL-4 Ra allele. This assay has also used to genotype prospectively both recruited children with asthma (n = 22) and controls (n = 11). Serum IL-4 and IL-13 were determined by ELISA. The results of the PCR-based assay revealed a significant association of R 576 IL-4 Ra with the prevalence of all asthmatics, Chi-square (x 2 ) 4.035; P 2 = 4.197, P 2 = 0.609, P > 0.05). Consequently, R 576 IL-4 Ra acts as an allergic asthma susceptibility gene. Also, asthmatic children displayed higher significant levels of IL-4 and IL-13 (P <0.()1). Allergic group exhibited significant higher levels of IL-4 (P < 0.001) and IL-13 (P < 0. 05). This gave clear evidence that both cytokines contributed to the development of asthma especially the allergic phenotype

  1. The transcription factor AtMYB75/PAP1 regulates the expression of flavonoid biosynthesis genes in transgenic hop (Humulus lupulus L.)

    Czech Academy of Sciences Publication Activity Database

    Gatica-Arias, A.; Farag, M.A.; Häntzschel, K.R.; Matoušek, Jaroslav; Weber, G.

    2012-01-01

    Roč. 65, 7-8 (2012), s. 103-111 ISSN 1866-5195 R&D Projects: GA ČR GA521/08/0740 Institutional research plan: CEZ:AV0Z50510513 Institutional support: RVO:60077344 Keywords : metabolic engineering * Humulus lupulus L. * transcription factors * flavonoid biosynthesis Subject RIV: EB - Genetic s ; Molecular Biology

  2. Transcriptomic analysis of Siberian ginseng (Eleutherococcus senticosus) to discover genes involved in saponin biosynthesis.

    Science.gov (United States)

    Hwang, Hwan-Su; Lee, Hyoshin; Choi, Yong Eui

    2015-03-14

    Eleutherococcus senticosus, Siberian ginseng, is a highly valued woody medicinal plant belonging to the family Araliaceae. E. senticosus produces a rich variety of saponins such as oleanane-type, noroleanane-type, 29-hydroxyoleanan-type, and lupane-type saponins. Genomic or transcriptomic approaches have not been used to investigate the saponin biosynthetic pathway in this plant. In this study, de novo sequencing was performed to select candidate genes involved in the saponin biosynthetic pathway. A half-plate 454 pyrosequencing run produced 627,923 high-quality reads with an average sequence length of 422 bases. De novo assembly generated 72,811 unique sequences, including 15,217 contigs and 57,594 singletons. Approximately 48,300 (66.3%) unique sequences were annotated using BLAST similarity searches. All of the mevalonate pathway genes for saponin biosynthesis starting from acetyl-CoA were isolated. Moreover, 206 reads of cytochrome P450 (CYP) and 145 reads of uridine diphosphate glycosyltransferase (UGT) sequences were isolated. Based on methyl jasmonate (MeJA) treatment and real-time PCR (qPCR) analysis, 3 CYPs and 3 UGTs were finally selected as candidate genes involved in the saponin biosynthetic pathway. The identified sequences associated with saponin biosynthesis will facilitate the study of the functional genomics of saponin biosynthesis and genetic engineering of E. senticosus.

  3. Transformation of Aspergillus parasiticus with a homologous gene (pyrG) involved in pyrimidine biosynthesis

    International Nuclear Information System (INIS)

    Skory, C.D.; Horng, J.S.; Pestka, J.J.; Linz, J.E.

    1990-01-01

    The lack of efficient transformation methods for aflatoxigenic Aspergillus parasiticus has been a major constraint for the study of aflatoxin biosynthesis at the genetic level. A transformation system with efficiencies of 30 to 50 stable transformants per μg of DNA was developed for A. parasiticus by using homologous pyrG gene. The pyrG gene from A. parasiticus was isolated by in situ plaque hybridization of a lambda genomic DNA library. Uridine auxotrophs of A. parasiticus ATCC 36537, a mutant blocked in aflatoxin biosynthesis, were isolated by selection on 5-fluoroorotic acid following nitrosoguanidine mutagenesis. Isolates with mutations in the pyrG gene resulting in elimination of orotidine monophosphate (OMP) decarboxylase activity were detected by assaying cell extracts for their ability to convert [ 14 C]OMP to [ 14 C]UMP. Transformation of A. parasiticus pyrG protoplasts with the homologous pyrG gene restored the fungal cells to prototrophy. Enzymatic analysis of cell extracts of transformant clones demonstrated that these extracts had the ability to convert [ 14 C]OMP to [ 14 C]UMP. Southern analysis of DNA purified from transformant clones indicated that both pUC19 vector sequences and pyrG sequences were integrated into the genome. The development of this pyrG transformation system should allow cloning of the aflatoxin-biosynthetic genes, which will be useful in studying the regulation of aflatoxin biosynthesis and may ultimately provide a means for controlling aflatoxin production in the field

  4. The mbo operon is specific and essential for biosynthesis of mangotoxin in Pseudomonas syringae.

    Science.gov (United States)

    Carrión, Víctor J; Arrebola, Eva; Cazorla, Francisco M; Murillo, Jesús; de Vicente, Antonio

    2012-01-01

    Mangotoxin is an antimetabolite toxin produced by certain Pseudomonas syringae pv. syringae strains. This toxin is an oligopeptide that inhibits ornithine N-acetyl transferase, a key enzyme in the biosynthesis of ornithine and arginine. Previous studies have reported the involvement of the putative nonribosomal peptide synthetase MgoA in virulence and mangotoxin production. In this study, we analyse a new chromosomal region of P. syringae pv. syringae UMAF0158, which contains six coding sequences arranged as an operon (mbo operon). The mbo operon was detected in only mangotoxin-producing strains, and it was shown to be essential for the biosynthesis of this toxin. Mutants in each of the six ORFs of the mbo operon were partially or completely impaired in the production of the toxin. In addition, Pseudomonas spp. mangotoxin non-producer strains transformed with the mbo operon gained the ability to produce mangotoxin, indicating that this operon contains all the genetic information necessary for mangotoxin biosynthesis. The generation of a single transcript for the mbo operon was confirmed and supported by the allocation of a unique promoter and Rho-independent terminator. The phylogenetic analysis of the P. syringae strains harbouring the mbo operon revealed that these strains clustered together.

  5. Apicobasal domain identities of expanding tubular membranes depend on glycosphingolipid biosynthesis.

    Science.gov (United States)

    Zhang, Hongjie; Abraham, Nessy; Khan, Liakot A; Hall, David H; Fleming, John T; Göbel, Verena

    2011-09-18

    Metazoan internal organs are assembled from polarized tubular epithelia that must set aside an apical membrane domain as a lumenal surface. In a global Caenorhabditis elegans tubulogenesis screen, interference with several distinct fatty-acid-biosynthetic enzymes transformed a contiguous central intestinal lumen into multiple ectopic lumens. We show that multiple-lumen formation is caused by apicobasal polarity conversion, and demonstrate that in situ modulation of lipid biosynthesis is sufficient to reversibly switch apical domain identities on growing membranes of single post-mitotic cells, shifting lumen positions. Follow-on targeted lipid-biosynthesis pathway screens and functional genetic assays were designed to identify a putative single causative lipid species. They demonstrate that fatty-acid biosynthesis affects polarity through sphingolipid synthesis, and reveal ceramide glucosyltransferases (CGTs) as end-point biosynthetic enzymes in this pathway. Our findings identify glycosphingolipids, CGT products and obligate membrane lipids, as critical determinants of in vivo polarity and indicate that they sort new components to the expanding apical membrane.

  6. The MIEL1 E3 Ubiquitin Ligase Negatively Regulates Cuticular Wax Biosynthesis in Arabidopsis Stems.

    Science.gov (United States)

    Lee, Hong Gil; Kim, Juyoung; Suh, Mi Chung; Seo, Pil Joon

    2017-07-01

    Cuticular wax is an important hydrophobic layer that covers the plant aerial surface. Cuticular wax biosynthesis is shaped by multiple layers of regulation. In particular, a pair of R2R3-type MYB transcription factors, MYB96 and MYB30, are known to be the main participants in cuticular wax accumulation. Here, we report that the MYB30-INTERACTING E3 LIGASE 1 (MIEL1) E3 ubiquitin ligase controls the protein stability of the two MYB transcription factors and thereby wax biosynthesis in Arabidopsis. MIEL1-deficient miel1 mutants exhibit increased wax accumulation in stems, with up-regulation of wax biosynthetic genes targeted by MYB96 and MYB30. Genetic analysis reveals that wax accumulation of the miel1 mutant is compromised by myb96 or myb30 mutation, but MYB96 is mainly epistatic to MIEL1, playing a predominant role in cuticular wax deposition. These observations indicate that the MIEL1-MYB96 module is important for balanced cuticular wax biosynthesis in developing inflorescence stems. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. De Novo Assembly and Comparative Transcriptome Analysis Provide Insight into Lysine Biosynthesis in Toona sinensis Roem.

    Science.gov (United States)

    Zhang, Xia; Song, Zhenqiao; Liu, Tian; Guo, Linlin; Li, Xingfeng

    2016-01-01

    Toona sinensis Roem is a popular leafy vegetable in Chinese cuisine and is also used as a traditional Chinese medicine. In this study, leaf samples were collected from the same plant on two development stages and then used for high-throughput Illumina RNA-sequencing (RNA-Seq). 125,884 transcripts and 54,628 unigenes were obtained through de novo assembly. A total of 25,570 could be annotated with known biological functions, which indicated that the T. sinensis leaves and shoots were undergoing multiple developmental processes especially for active metabolic processes. Analysis of differentially expressed unigenes between the two libraries showed that the lysine biosynthesis was an enriched KEGG pathway, and candidate genes involved in the lysine biosynthesis pathway in T. sinensis leaves and shoots were identified. Our results provide a primary analysis of the gene expression files of T. sinensis leaf and shoot on different development stages and afford a valuable resource for genetic and genomic research on plant lysine biosynthesis.

  8. Chlorophyll Degradation: The Tocopherol Biosynthesis-Related Phytol Hydrolase in Arabidopsis Seeds Is Still Missing1[C][W][OPEN

    Science.gov (United States)

    Zhang, Wei; Liu, Tianqi; Ren, Guodong; Hörtensteiner, Stefan; Zhou, Yongming; Cahoon, Edgar B.; Zhang, Chunyu

    2014-01-01

    Phytyl diphosphate (PDP) is the prenyl precursor for tocopherol biosynthesis. Based on recent genetic evidence, PDP is supplied to the tocopherol biosynthetic pathway primarily by chlorophyll degradation and sequential phytol phosphorylation. Three enzymes of Arabidopsis (Arabidopsis thaliana) are known to be capable of removing the phytol chain from chlorophyll in vitro: chlorophyllase1 (CLH1), CLH2, and pheophytin pheophorbide hydrolase (PPH), which specifically hydrolyzes pheophytin. While PPH, but not chlorophyllases, is required for in vivo chlorophyll breakdown during Arabidopsis leaf senescence, little is known about the involvement of these phytol-releasing enzymes in tocopherol biosynthesis. To explore the origin of PDP for tocopherol synthesis, seed tocopherol concentrations were determined in Arabidopsis lines engineered for seed-specific overexpression of PPH and in single and multiple mutants in the three genes encoding known dephytylating enzymes. Except for modestly increasing tocopherol content observed in the PPH overexpressor, none of the remaining lines exhibited significantly reduced tocopherol concentrations, suggesting that the known chlorophyll-derived phytol-releasing enzymes do not play major roles in tocopherol biosynthesis. Tocopherol content of seeds from double mutants in NONYELLOWING1 (NYE1) and NYE2, regulators of chlorophyll degradation, had modest reduction compared with wild-type seeds, although mature seeds of the double mutant retained significantly higher chlorophyll levels. These findings suggest that NYEs may play limited roles in regulating an unknown tocopherol biosynthesis-related phytol hydrolase. Meanwhile, seeds of wild-type over-expressing NYE1 had lower tocopherol levels, suggesting that phytol derived from NYE1-dependent chlorophyll degradation probably doesn’t enter tocopherol biosynthesis. Potential routes of chlorophyll degradation are discussed in relation to tocopherol biosynthesis. PMID:25059706

  9. Heme biosynthesis and its regulation : Toward understanding and improvement of heme biosynthesis in filamentous fungi.

    NARCIS (Netherlands)

    S. de Weert; P.J. Punt; Christien Lokman; C.A. van den Hondel; A.C. Franken; A.F. Ram

    2011-01-01

    Heme biosynthesis in fungal host strains has acquired considerable interest in relation to the production of secreted heme-containing peroxidases. Class II peroxidase enzymes have been suggested as eco-friendly replacements of polluting chemical processes in industry. These peroxidases are naturally

  10. Heme biosynthesis and its regulation: Towards understanding and improvement of heme biosynthesis in filamentous fungi

    NARCIS (Netherlands)

    Franken, A.C.W.; Lokman, B.C.; Ram, A.F.J.; Punt, P.J.; Hondel, C.A.M.J.J. van den; Weert, S. de

    2011-01-01

    Heme biosynthesis in fungal host strains has acquired considerable interest in relation to the production of secreted heme-containing peroxidases. Class II peroxidase enzymes have been suggested as eco-friendly replacements of polluting chemical processes in industry. These peroxidases are naturally

  11. Biosynthesis of Gold Nanoparticles Using Pseudomonas Aeruginosa

    International Nuclear Information System (INIS)

    Abd El-Aziz, M.; Badr, Y.; Mahmoud, M. A.

    2007-01-01

    Pseudomonas aeruginosa were used for extracellular biosynthesis of gold nanoparticles (Au NPs). Consequently, Au NPs were formed due to reduction of gold ion by bacterial cell supernatant of P. aeruginos ATCC 90271, P. aeruginos (2) and P. aeruginos (1). The UV-Vis. and fluorescence spectra of the bacterial as well as chemical prepared Au NPs were recorded. Transmission electron microscopy (TEM) micrograph showed the formation of well-dispersed gold nanoparticles in the range of 15-30 nm. The process of reduction being extracellular and may lead to the development of an easy bioprocess for synthesis of Au NPs

  12. Chemical Elicitors of Antibiotic Biosynthesis in Actinomycetes

    Directory of Open Access Journals (Sweden)

    Anton P. Tyurin

    2018-06-01

    Full Text Available Whole genome sequencing of actinomycetes has uncovered a new immense realm of microbial chemistry and biology. Most biosynthetic gene clusters present in genomes were found to remain “silent” under standard cultivation conditions. Some small molecules—chemical elicitors—can be used to induce the biosynthesis of antibiotics in actinobacteria and to expand the chemical diversity of secondary metabolites. Here, we outline a brief account of the basic principles of the search for regulators of this type and their application.

  13. ADP1 Affects Plant Architecture by Regulating Local Auxin Biosynthesis

    Science.gov (United States)

    Li, Shibai; Qin, Genji; Novák, Ondřej; Pěnčík, Aleš; Ljung, Karin; Aoyama, Takashi; Liu, Jingjing; Murphy, Angus; Gu, Hongya; Tsuge, Tomohiko; Qu, Li-Jia

    2014-01-01

    Plant architecture is one of the key factors that affect plant survival and productivity. Plant body structure is established through the iterative initiation and outgrowth of lateral organs, which are derived from the shoot apical meristem and root apical meristem, after embryogenesis. Here we report that ADP1, a putative MATE (multidrug and toxic compound extrusion) transporter, plays an essential role in regulating lateral organ outgrowth, and thus in maintaining normal architecture of Arabidopsis. Elevated expression levels of ADP1 resulted in accelerated plant growth rate, and increased the numbers of axillary branches and flowers. Our molecular and genetic evidence demonstrated that the phenotypes of plants over-expressing ADP1 were caused by reduction of local auxin levels in the meristematic regions. We further discovered that this reduction was probably due to decreased levels of auxin biosynthesis in the local meristematic regions based on the measured reduction in IAA levels and the gene expression data. Simultaneous inactivation of ADP1 and its three closest homologs led to growth retardation, relative reduction of lateral organ number and slightly elevated auxin level. Our results indicated that ADP1-mediated regulation of the local auxin level in meristematic regions is an essential determinant for plant architecture maintenance by restraining the outgrowth of lateral organs. PMID:24391508

  14. Prioritization of Candidate Genes in QTL Regions for Physiological and Biochemical Traits Underlying Drought Response in Barley (Hordeum vulgare L.

    Directory of Open Access Journals (Sweden)

    Kornelia Gudys

    2018-06-01

    Full Text Available Drought is one of the most adverse abiotic factors limiting growth and productivity of crops. Among them is barley, ranked fourth cereal worldwide in terms of harvested acreage and production. Plants have evolved various mechanisms to cope with water deficit at different biological levels, but there is an enormous challenge to decipher genes responsible for particular complex phenotypic traits, in order to develop drought tolerant crops. This work presents a comprehensive approach for elucidation of molecular mechanisms of drought tolerance in barley at the seedling stage of development. The study includes mapping of QTLs for physiological and biochemical traits associated with drought tolerance on a high-density function map, projection of QTL confidence intervals on barley physical map, and the retrievement of positional candidate genes (CGs, followed by their prioritization based on Gene Ontology (GO enrichment analysis. A total of 64 QTLs for 25 physiological and biochemical traits that describe plant water status, photosynthetic efficiency, osmoprotectant and hormone content, as well as antioxidant activity, were positioned on a consensus map, constructed using RIL populations developed from the crosses between European and Syrian genotypes. The map contained a total of 875 SNP, SSR and CGs, spanning 941.86 cM with resolution of 1.1 cM. For the first time, QTLs for ethylene, glucose, sucrose, maltose, raffinose, α-tocopherol, γ-tocotrienol content, and catalase activity, have been mapped in barley. Based on overlapping confidence intervals of QTLs, 11 hotspots were identified that enclosed more than 60% of mapped QTLs. Genetic and physical map integration allowed the identification of 1,101 positional CGs within the confidence intervals of drought response-specific QTLs. Prioritization resulted in the designation of 143 CGs, among them were genes encoding antioxidants, carboxylic acid biosynthesis enzymes, heat shock proteins, small auxin

  15. Genus-wide physicochemical evidence of extracellular crystalline silver nanoparticles biosynthesis by Morganella spp.

    Directory of Open Access Journals (Sweden)

    Rasesh Y Parikh

    Full Text Available This study was performed to determine whether extracellular silver nanoparticles (AgNPs production is a genus-wide phenotype associated with all the members of genus Morganella, or only Morganella morganii RP-42 isolate is able to synthesize extracellular Ag nanoparticles. To undertake this study, all the available Morganella isolates were exposed to Ag+ ions, and the obtained nanoproducts were thoroughly analyzed using physico-chemical characterization tools such as transmission electron microscopy (TEM, UV-visible spectrophotometry (UV-vis, and X-ray diffraction (XRD analysis. It was identified that extracellular biosynthesis of crystalline silver nanoparticles is a unique biochemical character of all the members of genus Morganella, which was found independent of environmental changes. Significantly, the inability of other closely related members of the family Enterobacteriaceae towards AgNPs synthesis strongly suggests that AgNPs synthesis in the presence of Ag+ ions is a phenotypic character that is uniquely associated with genus Morganella.

  16. Cloning and characterization of a potato StAN11 gene involved in anthocyanin biosynthesis regulation.

    Science.gov (United States)

    Li, Wang; Wang, Bing; Wang, Man; Chen, Min; Yin, Jing-Ming; Kaleri, Ghullam Murtaza; Zhang, Rui-Jie; Zuo, Tie-Niu; You, Xiong; Yang, Qing

    2014-04-01

    Anthocyanins are a class of products of plant secondary metabolism and are responsible for tubers color in potato. The biosynthesis of anthocyanins is a complex biological process, in which multiple genes are involved including structural genes and regulatory genes. In this study, StAN11, a WD40-repeat gene, was cloned from potato cultivar Chieftain (Solanum tuberosum L.). StAN11 (HQ599506) contained no intron and its open reading frame (ORF) was 1,029 bp long, encoding a putative protein of 342 amino acids. In order to verify its role in anthocyanin biosynthesis, StAN11 was inserted behind the CaMV-35S promoter of pCMBIA1304 and the recombination vector was introduced into the potato cultivar Désirée plants by Agrobacterium-mediated transformation. The color of transgenic tuber skin was significantly deepened, compared to the wild-type control, which was highly consistent with the accumulation of anthocyanin and expression of StAN11 in transgenic lines tuber skin. Further analysis on the expression of Flavonone-3-hydroxylase (F3H), Dihydroflavonol reductase (DFR), Anthocyanidin synthase (ANS), and Flavonoid 3-O-glucosyl transferase (3GT) in transgenic plants revealed that only DFR was upregulated. This result suggested that StAN11 regulated anthocyanin biosynthesis in potato by controlling DFR expression and accumulation of anthocyanin could be increased through overexpression of StAN11 in the tubers with the genetic background of anthocyanin biosynthesis. © 2013 Institute of Botany, Chinese Academy of Sciences.

  17. A comparative modeling and molecular docking study on Mycobacterium tuberculosis targets involved in peptidoglycan biosynthesis.

    Science.gov (United States)

    Fakhar, Zeynab; Naiker, Suhashni; Alves, Claudio N; Govender, Thavendran; Maguire, Glenn E M; Lameira, Jeronimo; Lamichhane, Gyanu; Kruger, Hendrik G; Honarparvar, Bahareh

    2016-11-01

    An alarming rise of multidrug-resistant Mycobacterium tuberculosis strains and the continuous high global morbidity of tuberculosis have reinvigorated the need to identify novel targets to combat the disease. The enzymes that catalyze the biosynthesis of peptidoglycan in M. tuberculosis are essential and noteworthy therapeutic targets. In this study, the biochemical function and homology modeling of MurI, MurG, MraY, DapE, DapA, Alr, and Ddl enzymes of the CDC1551 M. tuberculosis strain involved in the biosynthesis of peptidoglycan cell wall are reported. Generation of the 3D structures was achieved with Modeller 9.13. To assess the structural quality of the obtained homology modeled targets, the models were validated using PROCHECK, PDBsum, QMEAN, and ERRAT scores. Molecular dynamics simulations were performed to calculate root mean square deviation (RMSD) and radius of gyration (Rg) of MurI and MurG target proteins and their corresponding templates. For further model validation, RMSD and Rg for selected targets/templates were investigated to compare the close proximity of their dynamic behavior in terms of protein stability and average distances. To identify the potential binding mode required for molecular docking, binding site information of all modeled targets was obtained using two prediction algorithms. A docking study was performed for MurI to determine the potential mode of interaction between the inhibitor and the active site residues. This study presents the first accounts of the 3D structural information for the selected M. tuberculosis targets involved in peptidoglycan biosynthesis.

  18. Citrus fruit flavor and aroma biosynthesis: isolation, functional characterization, and developmental regulation of Cstps1, a key gene in the production of the sesquiterpene aroma compound valencene.

    Science.gov (United States)

    Sharon-Asa, Liat; Shalit, Moshe; Frydman, Ahuva; Bar, Einat; Holland, Doron; Or, Etti; Lavi, Uri; Lewinsohn, Efraim; Eyal, Yoram

    2003-12-01

    Citrus fruits possess unique aromas rarely found in other fruit species. While fruit flavor is composed of complex combinations of soluble and volatile compounds, several low-abundance sesquiterpenes, such as valencene, nootkatone, alpha-sinensal, and beta-sinensal, stand out in citrus as important flavor and aroma compounds. The profile of terpenoid volatiles in various citrus species and their importance as aroma compounds have been studied in detail, but much is still lacking in our understanding of the physiological, biochemical, and genetic regulation of their production. Here, we report on the isolation, functional expression, and developmental regulation of Cstps1, a sesquiterpene synthase-encoding gene, involved in citrus aroma formation. The recombinant enzyme encoded by Cstps1 was shown to convert farnesyl diphosphate to a single sesquiterpene product identified as valencene by gas chromatography-mass spectrometry (GC-MS). Phylogenetic analysis of plant terpene synthase genes localized Cstps1 to the group of angiosperm sesquiterpene synthases. Within this group, Cstps1 belongs to a subgroup of citrus sesquiterpene synthases. Cstps1 was found to be developmentally regulated: transcript was found to accumulate only towards fruit maturation, corresponding well with the timing of valencene accumulation in fruit. Although citrus fruits are non-climacteric, valencene accumulation and Cstps1 expression were found to be responsive to ethylene, providing further evidence for the role of ethylene in the final stages of citrus fruit ripening. Isolation of the gene encoding valencene synthase provides a tool for an in-depth study of the regulation of aroma compound biosynthesis in citrus and for metabolic engineering for fruit flavor characteristics.

  19. Monoterpene biosynthesis potential of plant subcellular compartments.

    Science.gov (United States)

    Dong, Lemeng; Jongedijk, Esmer; Bouwmeester, Harro; Van Der Krol, Alexander

    2016-01-01

    Subcellular monoterpene biosynthesis capacity based on local geranyl diphosphate (GDP) availability or locally boosted GDP production was determined for plastids, cytosol and mitochondria. A geraniol synthase (GES) was targeted to plastids, cytosol, or mitochondria. Transient expression in Nicotiana benthamiana indicated local GDP availability for each compartment but resulted in different product levels. A GDP synthase from Picea abies (PaGDPS1) was shown to boost GDP production. PaGDPS1 was also targeted to plastids, cytosol or mitochondria and PaGDPS1 and GES were coexpressed in all possible combinations. Geraniol and geraniol-derived products were analyzed by GC-MS and LC-MS, respectively. GES product levels were highest for plastid-targeted GES, followed by mitochondrial- and then cytosolic-targeted GES. For each compartment local boosting of GDP biosynthesis increased GES product levels. GDP exchange between compartments is not equal: while no GDP is exchanged from the cytosol to the plastids, 100% of GDP in mitochondria can be exchanged to plastids, while only 7% of GDP from plastids is available for mitochondria. This suggests a direct exchange mechanism for GDP between plastids and mitochondria. Cytosolic PaGDPS1 competes with plastidial GES activity, suggesting an effective drain of isopentenyl diphosphate from the plastids to the cytosol. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  20. Fatty acid biosynthesis in pea root plastids

    International Nuclear Information System (INIS)

    Stahl, R.J.; Sparace, S.A.

    1989-01-01

    Fatty acid biosynthesis from [1- 14 C]acetate was optimized in plastids isolated from primary root tips of 7-day-old germinating pea seeds. Fatty acid synthesis was maximum at approximately 80 nmoles/hr/mg protein in the presence of 200 μM acetate, 0.5 mM each of NADH, NADPH and CoA, 6 mM each of ATP and MgCl 2 , 1 mM each of the MnCl 2 and glycerol-3-phosphate, 15 mM KHCO 3 , and 0.1M Bis-tris-propane, pH 8.0 incubated at 35C. At the standard incubation temperature of 25C, fatty acid synthesis was linear from up to 6 hours with 80 to 100 μg/mL plastid protein. ATP and CoA were absolute requirements, whereas KHCO 3 , divalent cations and reduced nucleotides all improved activity by 80 to 85%. Mg 2+ and NADH were the preferred cation and nucleotide, respectively. Dithiothreitol and detergents were generally inhibitory. The radioactive products of fatty acid biosynthesis were approximately 33% 16:0, 10% 18:0 and 56% 18:1 and generally did not vary with increasing concentrations of each cofactor

  1. Molecular Regulation of Antibiotic Biosynthesis in Streptomyces

    Science.gov (United States)

    Liu, Gang; Chandra, Govind; Niu, Guoqing

    2013-01-01

    SUMMARY Streptomycetes are the most abundant source of antibiotics. Typically, each species produces several antibiotics, with the profile being species specific. Streptomyces coelicolor, the model species, produces at least five different antibiotics. We review the regulation of antibiotic biosynthesis in S. coelicolor and other, nonmodel streptomycetes in the light of recent studies. The biosynthesis of each antibiotic is specified by a large gene cluster, usually including regulatory genes (cluster-situated regulators [CSRs]). These are the main point of connection with a plethora of generally conserved regulatory systems that monitor the organism's physiology, developmental state, population density, and environment to determine the onset and level of production of each antibiotic. Some CSRs may also be sensitive to the levels of different kinds of ligands, including products of the pathway itself, products of other antibiotic pathways in the same organism, and specialized regulatory small molecules such as gamma-butyrolactones. These interactions can result in self-reinforcing feed-forward circuitry and complex cross talk between pathways. The physiological signals and regulatory mechanisms may be of practical importance for the activation of the many cryptic secondary metabolic gene cluster pathways revealed by recent sequencing of numerous Streptomyces genomes. PMID:23471619

  2. Essences in Metabolic Engineering of Lignan Biosynthesis

    Directory of Open Access Journals (Sweden)

    Honoo Satake

    2015-05-01

    Full Text Available Lignans are structurally and functionally diverse phytochemicals biosynthesized in diverse plant species and have received wide attentions as leading compounds of novel drugs for tumor treatment and healthy diets to reduce of the risks of lifestyle-related non-communicable diseases. However, the lineage-specific distribution and the low-amount of production in natural plants, some of which are endangered species, hinder the efficient and stable production of beneficial lignans. Accordingly, the development of new procedures for lignan production is of keen interest. Recent marked advances in the molecular and functional characterization of lignan biosynthetic enzymes and endogenous and exogenous factors for lignan biosynthesis have suggested new methods for the metabolic engineering of lignan biosynthesis cascades leading to the efficient, sustainable, and stable lignan production in plants, including plant cell/organ cultures. Optimization of light conditions, utilization of a wide range of elicitor treatments, and construction of transiently gene-transfected or transgenic lignan-biosynthesizing plants are mainly being attempted. This review will present the basic and latest knowledge regarding metabolic engineering of lignans based on their biosynthetic pathways and biological activities, and the perspectives in lignan production via metabolic engineering.

  3. BIOSYNTHESIS AND ACTION OF JASMONATES IN PLANTS.

    Science.gov (United States)

    Creelman, Robert A.; Mullet, John E.

    1997-06-01

    Jasmonic acid and its derivatives can modulate aspects of fruit ripening, production of viable pollen, root growth, tendril coiling, and plant resistance to insects and pathogens. Jasmonate activates genes involved in pathogen and insect resistance, and genes encoding vegetative storage proteins, but represses genes encoding proteins involved in photosynthesis. Jasmonic acid is derived from linolenic acid, and most of the enzymes in the biosynthetic pathway have been extensively characterized. Modulation of lipoxygenase and allene oxide synthase gene expression in transgenic plants raises new questions about the compartmentation of the biosynthetic pathway and its regulation. The activation of jasmonic acid biosynthesis by cell wall elicitors, the peptide systemin, and other compounds will be related to the function of jasmonates in plants. Jasmonate modulates gene expression at the level of translation, RNA processing, and transcription. Promoter elements that mediate responses to jasmonate have been isolated. This review covers recent advances in our understanding of how jasmonate biosynthesis is regulated and relates this information to knowledge of jasmonate modulated gene expression.

  4. Biochemical Abnormalities in Batten's Syndrome

    DEFF Research Database (Denmark)

    Clausen, Jytte Lene; Nielsen, Gunnar Gissel; Jensen, Gunde Egeskov

    1978-01-01

    The present data indicate that a group of ten patients with Batten's syndrome showed reduced activity of erythrocyte glutathione (GSH) peroxidase (Px) (glutathione: H2O2 oxidoreductase, EC 1.1.1.9.) using H2O2 as peroxide donor. Assay of erythrocyte GSHPx using H2O2, cumene hydroperoxide and t......-butyl hydroperoxide as donors also makes it possible biochemically to divide Batten's syndrome into two types: (1) one type with decreased values when H2O2 and cumene hydroperoxide are used, and (2) one type with increased values when t-butyl hydroperoxide is used. Furthermore an increased content of palmitic, oleic...

  5. Slot-waveguide biochemical sensor.

    Science.gov (United States)

    Barrios, Carlos A; Gylfason, Kristinn B; Sánchez, Benito; Griol, Amadeu; Sohlström, H; Holgado, M; Casquel, R

    2007-11-01

    We report an experimental demonstration of an integrated biochemical sensor based on a slot-waveguide microring resonator. The microresonator is fabricated on a Si3N4-SiO2 platform and operates at a wavelength of 1.3 microm. The transmission spectrum of the sensor is measured with different ambient refractive indices ranging from n=1.33 to 1.42. A linear shift of the resonant wavelength with increasing ambient refractive index of 212 nm/refractive index units (RIU) is observed. The sensor detects a minimal refractive index variation of 2x10(-4) RIU.

  6. Thermodynamic analysis of biochemical systems

    International Nuclear Information System (INIS)

    Yuan, Y.; Fan, L.T.; Shieh, J.H.

    1989-01-01

    Introduction of the concepts of the availability (or exergy), datum level materials, and the dead state has been regarded as some of the most significant recent developments in classical thermodynamics. Not only the available energy balance but also the material and energy balances of a biological system may be established in reference to the datum level materials in the dead state or environment. In this paper these concepts are illustrated with two examples of fermentation and are shown to be useful in identifying sources of thermodynamic inefficiency, thereby leading naturally to the rational definition of thermodynamic efficiency of a biochemical process

  7. Characterization of Human and Yeast Mitochondrial Glycine Carriers with Implications for Heme Biosynthesis and Anemia.

    Science.gov (United States)

    Lunetti, Paola; Damiano, Fabrizio; De Benedetto, Giuseppe; Siculella, Luisa; Pennetta, Antonio; Muto, Luigina; Paradies, Eleonora; Marobbio, Carlo Marya Thomas; Dolce, Vincenza; Capobianco, Loredana

    2016-09-16

    Heme is an essential molecule in many biological processes, such as transport and storage of oxygen and electron transfer as well as a structural component of hemoproteins. Defects of heme biosynthesis in developing erythroblasts have profound medical implications, as represented by sideroblastic anemia. The synthesis of heme requires the uptake of glycine into the mitochondrial matrix where glycine is condensed with succinyl coenzyme A to yield δ-aminolevulinic acid. Herein we describe the biochemical and molecular characterization of yeast Hem25p and human SLC25A38, providing evidence that they are mitochondrial carriers for glycine. In particular, the hem25Δ mutant manifests a defect in the biosynthesis of δ-aminolevulinic acid and displays reduced levels of downstream heme and mitochondrial cytochromes. The observed defects are rescued by complementation with yeast HEM25 or human SLC25A38 genes. Our results identify new proteins in the heme biosynthetic pathway and demonstrate that Hem25p and its human orthologue SLC25A38 are the main mitochondrial glycine transporters required for heme synthesis, providing definitive evidence of their previously proposed glycine transport function. Furthermore, our work may suggest new therapeutic approaches for the treatment of congenital sideroblastic anemia. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Low-Molecular-Weight Metabolites from Diatoms: Structures, Biological Roles and Biosynthesis

    Directory of Open Access Journals (Sweden)

    Valentin Stonik

    2015-06-01

    Full Text Available Diatoms are abundant and important biological components of the marine environment that biosynthesize diverse natural products. These microalgae are rich in various lipids, carotenoids, sterols and isoprenoids, some of them containing toxins and other metabolites. Several groups of diatom natural products have attracted great interest due to their potential practical application as energy sources (biofuel, valuable food constituents, and prospective materials for nanotechnology. In addition, hydrocarbons, which are used in climate reconstruction, polyamines which participate in biomineralization, new apoptotic agents against tumor cells, attractants and deterrents that regulate the biochemical communications between marine species in seawaters have also been isolated from diatoms. However, chemical studies on these microalgae are complicated by difficulties, connected with obtaining their biomass, and the influence of nutrients and contaminators in their environment as well as by seasonal and climatic factors on the biosynthesis of the corresponding natural products. Overall, the number of chemically studied diatoms is lower than that of other algae, but further studies, particularly those connected with improvements in the isolation and structure elucidation technique as well as the genomics of diatoms, promise both to increase the number of studied species with isolated biologically active natural products and to provide a clearer perception of their biosynthesis.

  9. Rapid biosynthesis of cadmium sulfide (CdS) nanoparticles using ...

    African Journals Online (AJOL)

    Rapid biosynthesis of cadmium sulfide (CdS) nanoparticles using culture supernatants of Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633 and Lactobacillus ... The process of extracellular and fast biosynthesis may help in the development of an easy and eco-friendly route for the synthesis of CdS nanoparticles.

  10. Rare cause of post-squalene disorder of cholesterol biosynthesis ...

    African Journals Online (AJOL)

    Errors of cholesterol biosynthesis represent a heterogeneous group of metabolic disorders. The aim of the authors of this article is to present a case of a patient with typical symptoms of a rare post-squalene disorder of cholesterol biosynthesis, its diagnostics and progress in neonatal period. The differential diagnosis of a ...

  11. Isoprenoid biosynthesis in hereditary periodic fever syndromes and inflammation

    NARCIS (Netherlands)

    Houten, S. M.; Frenkel, J.; Waterham, H. R.

    2003-01-01

    Mevalonate kinase (MK) is an essential enzyme in the isoprenoid biosynthesis pathway which produces numerous biomolecules (isoprenoids) involved in a variety of cellular processes. The indispensability of MK and isoprenoid biosynthesis for human health is demonstrated by the identification of its

  12. Biochemical and Cellular Assessment of Acetabular Chondral Flaps Identified During Hip Arthroscopy.

    Science.gov (United States)

    Hariri, Sanaz; Truntzer, Jeremy; Smith, Robert Lane; Safran, Marc R

    2015-06-01

    To analyze chondral flaps debrided during hip arthroscopy to determine their biochemical and cellular composition. Thirty-one full-thickness acetabular chondral flaps were collected during hip arthroscopy. Biochemical analysis was undertaken in 21 flaps from 20 patients, and cellular viability was determined in 10 flaps from 10 patients. Biochemical analysis included concentrations of (1) DNA (an indicator of chondrocyte content), (2) hydroxyproline (an indicator of collagen content), and (3) glycosaminoglycan (an indicator of chondrocyte biosynthesis). Higher values for these parameters indicated more healthy tissue. The flaps were examined to determine the percentage of viable chondrocytes. The percentage of acetabular chondral flap specimens that had concentrations within 1 SD of the mean values reported in previous normal cartilage studies was 38% for DNA, 0% for glycosaminoglycan, and 43% for hydroxyproline. The average cellular viability of our acetabular chondral flap specimens was 39% (SD, 14%). Only 2 of the 10 specimens had more than half the cells still viable. There was no correlation between (1) the gross examination of the joint or knowledge of the patient's demographic characteristics and symptoms and (2) biochemical properties and cell viability of the flap, with one exception: a degenerative appearance of the surrounding cartilage correlated with a higher hydroxyproline concentration. Although full-thickness acetabular chondral flaps can appear normal grossly, the biochemical properties and percentage of live chondrocytes in full-thickness chondral flaps encountered in hip arthroscopy show that this tissue is not normal. There has been recent interest in repairing chondral flaps encountered during hip arthroscopy. These data suggest that acetabular chondral flaps are not biochemically and cellularly normal. Although these flaps may still be valuable mechanically and/or as a scaffold in some conductive or inductive capacity, further study is

  13. Frequency and expression of mutacin biosynthesis genes in isolates of Streptococcus mutans with different mutacin-producing phenotypes.

    Science.gov (United States)

    Kamiya, Regianne Umeko; Höfling, José Francisco; Gonçalves, Reginaldo Bruno

    2008-05-01

    The aim of this study was to analyse the frequency and expression of biosynthesis genes in 47 Streptococcus mutans isolates with different mutacin-producing phenotypes. Detection of the frequency and expression of genes encoding mutacin types I, II, III and IV were carried out by PCR and semi-quantitative RT-PCR, respectively, using primers specific for each type of biosynthesis gene. In addition, a further eight genes encoding putative bacteriocins, designated bsm 283, bsm 299, bsm 423, bsm 1889c, bsm 1892c, bsm 1896, bsm 1906c and bsm 1914, were also screened. There was a high phenotypic diversity; some Streptococcus mutans isolates presented broad antimicrobial spectra against other Streptococcus mutans clinical isolates, including bacteria resistant to common antibiotics, as well as Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis and Streptococcus pyogenes. The expression frequency of the bsm gene was higher than that of the previously characterized mutacins (I-IV). There was no positive correlation between the number of indicator strains inhibited (antimicrobial spectra) and the number of biosynthesis genes expressed (Spearman correlation test, r=-0.03, P>0.05). In conclusion, the high diversity of mutacin-producing phenotypes, associated with high frequency of expression of the biosynthesis genes screened, reveals a broad repertoire of genetic determinants encoding antimicrobial peptides that can act in different combinations.

  14. Trace element deficiency and its diagnosis by biochemical criteria

    International Nuclear Information System (INIS)

    Kirchgessner, M.; Grassmann, E.; Roth, H.P.; Spoerl, R.; Schnegg, A.

    1976-01-01

    The effect of trace element deficiency on growth of rats and dairy cows is demonstrated using zinc and nickel. The effect of copper deficiency on reproductive performance is shown to be associated with increased death rates of pregnant animals and their foetuses. For the diagnosis of suboptimum states of trace element supply, biochemical criteria are needed. The mere analysis of the trace element content of various body tissues may lead to falase diagnoses because of the often slow response to varying intake and because of interactions with other dietary ingredients affecting absorption and metabolic efficiency of utilization. Thus copper deficiency is associated with a decrease in the serum level of both copper and iron, despite adequate iron intake, and simultaneously with an accumulation of iron in the liver of the animal. Enzymes and hormones containing the essential trace element as an integral constituent may serve as biochemical criteria. A sensitive response to zinc intake is exhibited by the activity of the alkaline phosphatase of serum or bones, and by the activity of the pancreatic carboxypeptidase A, all of which show a significant reaction to deficient intake within two to four days, and perhaps by the biopotency of insulin. Ceruloplasmin responds to the supply of copper. Its biosynthesis in the liver is possible only from copper available for this purpose. Thus, the determination of ceruloplasmin may take account of at least part of the copper available to the body for metabolic functions. Among various criteria, the catalase activity in blood may provide additional information on the state of iron supply. Malate dehydrogenase and glucose-6-phosphate dehydrogenase respond to nickel-deficient intake. Nickel deficiency also involves anaemia due to disorders in iron absorption

  15. Engineering plastid fatty acid biosynthesis to improve food quality and biofuel production in higher plants.

    Science.gov (United States)

    Rogalski, Marcelo; Carrer, Helaine

    2011-06-01

    The ability to manipulate plant fatty acid biosynthesis by using new biotechnological approaches has allowed the production of transgenic plants with unusual fatty acid profile and increased oil content. This review focuses on the production of very long chain polyunsaturated fatty acids (VLCPUFAs) and the increase in oil content in plants using molecular biology tools. Evidences suggest that regular consumption of food rich in VLCPUFAs has multiple positive health benefits. Alternative sources of these nutritional fatty acids are found in cold-water fishes. However, fish stocks are in severe decline because of decades of overfishing, and also fish oils can be contaminated by the accumulation of toxic compounds. Recently, there is also an increase in oilseed use for the production of biofuels. This tendency is partly associated with the rapidly rising costs of petroleum, increased concern about the environmental impact of fossil oil and the attractive need to develop renewable sources of fuel. In contrast to this scenario, oil derived from crop plants is normally contaminant free and less environmentally aggressive. Genetic engineering of the plastid genome (plastome) offers a number of attractive advantages, including high-level foreign protein expression, marker-gene excision and transgene containment because of maternal inheritance of plastid genome in most crops. Here, we describe the possibility to improve fatty acid biosynthesis in plastids, production of new fatty acids and increase their content in plants by genetic engineering of plastid fatty acid biosynthesis via plastid transformation. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  16. Genetic Causes of Rickets

    Science.gov (United States)

    Acar, Sezer; Demir, Korcan; Shi, Yufei

    2017-01-01

    Rickets is a metabolic bone disease that develops as a result of inadequate mineralization of growing bone due to disruption of calcium, phosphorus and/or vitamin D metabolism. Nutritional rickets remains a significant child health problem in developing countries. In addition, several rare genetic causes of rickets have also been described, which can be divided into two groups. The first group consists of genetic disorders of vitamin D biosynthesis and action, such as vitamin D-dependent rickets type 1A (VDDR1A), vitamin D-dependent rickets type 1B (VDDR1B), vitamin D-dependent rickets type 2A (VDDR2A), and vitamin D-dependent rickets type 2B (VDDR2B). The second group involves genetic disorders of excessive renal phosphate loss (hereditary hypophosphatemic rickets) due to impairment in renal tubular phosphate reabsorption as a result of FGF23-related or FGF23-independent causes. In this review, we focus on clinical, laboratory and genetic characteristics of various types of hereditary rickets as well as differential diagnosis and treatment approaches. PMID:29280738

  17. Biosynthesis of dipicolinic acid in Clostridium roseum

    Energy Technology Data Exchange (ETDEWEB)

    Prakasan, K. (Paraiba Univ., Joao Pessoa (Brazil)); Sharma, D. (Gobind Ballabh Pant Univ. of Agriculture and Technology, Nainital (India))

    1981-02-01

    Dipicolinic acid (DPA) synthesis was studied in Clostridium roseum by permitting the organism to complete vegetative growth in trypticase medium and trasfering the cells to a non-growth-promoting-medium, supplemented with the appropriate /sup 14/C-labelled precursors to complete sporulation and assaying the incorporation of label into DPA. Glu, asp, ala, ser and acetate were found to be efficient precursors of DPA and each one influenced the incorporation of other into DPA. The data suggest that a C/sub 5/ precursor is being trasformed into a C/sub 4/ intermediate, and a C/sub 2/ precursor into a C/sub 4/ intermediate, before their entry into DPA carbon structure. A C/sub 4/ plus C/sub 3/ condensation is favoured over C/sub 5/ plus C/sub 2/ or other condensation in the DPA biosynthesis.

  18. Polyamine biosynthesis during germination of yeast ascospores.

    Science.gov (United States)

    Brawley, J V; Ferro, A J

    1979-01-01

    The role of the diamine putrescine during germination and outgrowth of ascospores of Saccharomyces cerevisiae was examined. Ornithine decarboxylase activity increased and declined rapidly during germination and outgrowth; peak activity was attained after the cells had proceeded through the G1 interval of the cell cycle, whereas minimal activity was present at the completion of the first cell division. alpha-Methylornithine inhibited both ornithine decarboxylase activity and the in vivo accumulation of putrescine. In the presence of alpha-methylornithireak dormancy and proceed through one cell division. Subsequent cellular growth, however, was retarded but not completely inhibited. The supplementation of Methylglyoxal bis(guanylhydrazone) to sporulation medium greatly inhibited this sexual process. These data suggest that the synthesis of putrescine is not required for the breaking of spore dormancy, but that polyamine biosynthesis may be essential for meiosis and sporulation. PMID:387744

  19. Biosurfactant Mediated Biosynthesis of Selected Metallic Nanoparticles

    Science.gov (United States)

    Płaza, Grażyna A.; Chojniak, Joanna; Banat, Ibrahim M.

    2014-01-01

    Developing a reliable experimental protocol for the synthesis of nanomaterials is one of the challenging topics in current nanotechnology particularly in the context of the recent drive to promote green technologies in their synthesis. The increasing need to develop clean, nontoxic and environmentally safe production processes for nanoparticles to reduce environmental impact, minimize waste and increase energy efficiency has become essential in this field. Consequently, recent studies on the use of microorganisms in the synthesis of selected nanoparticles are gaining increased interest as they represent an exciting area of research with considerable development potential. Microorganisms are known to be capable of synthesizing inorganic molecules that are deposited either intra- or extracellularly. This review presents a brief overview of current research on the use of biosurfactants in the biosynthesis of selected metallic nanoparticles and their potential importance. PMID:25110864

  20. Terpenoids and Their Biosynthesis in Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Bagmi Pattanaik

    2015-01-01

    Full Text Available Terpenoids, or isoprenoids, are a family of compounds with great structural diversity which are essential for all living organisms. In cyanobacteria, they are synthesized from the methylerythritol-phosphate (MEP pathway, using glyceraldehyde 3-phosphate and pyruvate produced by photosynthesis as substrates. The products of the MEP pathway are the isomeric five-carbon compounds isopentenyl diphosphate and dimethylallyl diphosphate, which in turn form the basic building blocks for formation of all terpenoids. Many terpenoid compounds have useful properties and are of interest in the fields of pharmaceuticals and nutrition, and even potentially as future biofuels. The MEP pathway, its function and regulation, and the subsequent formation of terpenoids have not been fully elucidated in cyanobacteria, despite its relevance for biotechnological applications. In this review, we summarize the present knowledge about cyanobacterial terpenoid biosynthesis, both regarding the native metabolism and regarding metabolic engineering of cyanobacteria for heterologous production of non-native terpenoids.

  1. Terpenoids and Their Biosynthesis in Cyanobacteria

    Science.gov (United States)

    Pattanaik, Bagmi; Lindberg, Pia

    2015-01-01

    Terpenoids, or isoprenoids, are a family of compounds with great structural diversity which are essential for all living organisms. In cyanobacteria, they are synthesized from the methylerythritol-phosphate (MEP) pathway, using glyceraldehyde 3-phosphate and pyruvate produced by photosynthesis as substrates. The products of the MEP pathway are the isomeric five-carbon compounds isopentenyl diphosphate and dimethylallyl diphosphate, which in turn form the basic building blocks for formation of all terpenoids. Many terpenoid compounds have useful properties and are of interest in the fields of pharmaceuticals and nutrition, and even potentially as future biofuels. The MEP pathway, its function and regulation, and the subsequent formation of terpenoids have not been fully elucidated in cyanobacteria, despite its relevance for biotechnological applications. In this review, we summarize the present knowledge about cyanobacterial terpenoid biosynthesis, both regarding the native metabolism and regarding metabolic engineering of cyanobacteria for heterologous production of non-native terpenoids. PMID:25615610

  2. Biosurfactant Mediated Biosynthesis of Selected Metallic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Grażyna A. Płaza

    2014-08-01

    Full Text Available Developing a reliable experimental protocol for the synthesis of nanomaterials is one of the challenging topics in current nanotechnology particularly in the context of the recent drive to promote green technologies in their synthesis. The increasing need to develop clean, nontoxic and environmentally safe production processes for nanoparticles to reduce environmental impact, minimize waste and increase energy efficiency has become essential in this field. Consequently, recent studies on the use of microorganisms in the synthesis of selected nanoparticles are gaining increased interest as they represent an exciting area of research with considerable development potential. Microorganisms are known to be capable of synthesizing inorganic molecules that are deposited either intra- or extracellularly. This review presents a brief overview of current research on the use of biosurfactants in the biosynthesis of selected metallic nanoparticles and their potential importance.

  3. Biosynthesis of dipicolinic acid in Clostridium roseum

    International Nuclear Information System (INIS)

    Prakasan, K.; Sharma, D.

    1981-01-01

    Dipicolinic acid (DPA) synthesis was studied in Clostridium roseum by permitting the organism to complete vegetative growth in trypticase medium and trasfering the cells to a non-growth-promoting-medium, supplemented with the appropriate 14 C-labelled precursors to complete sporulation and assaying the incorporation of label into DPA. Glu, asp, ala, ser and acetate were found to be efficient precursors of DPA and each one influenced the incorporation of other into DPA. The data suggest that a C 5 precursor is being trasformed into a C 4 intermediate, and a C 2 precursor into a C 4 intermediate, before their entry into DPA carbon structure. A C 4 plus C 3 condensation is favoured over C 5 plus C 2 or other condensation in the DPA biosynthesis. (Author) [pt

  4. Biosynthesis and function of plant lipids

    International Nuclear Information System (INIS)

    Thomson, W.W.; Mudd, J.B.; Gibbs, M.

    1983-01-01

    The Sixth Annual Symposium in Botany and Plant Physiology was held January 13-15, 1983, at the University of California, Riverside. This volume comprises the papers that were presented. Subjects discussed at the symposium covered a wide range in the field of plant lipids. Biosynthesis of lipids occupied an important fraction of the presentations at the symposium. Subjects included detailed studies of the enzymes of fatty acid synthesis, several discussions of the incorporation of fatty acids into glycerolipids and the further modification of the fatty acids, and the synthesis of glycerolipids and desaturation of fatty acids in both maturing oilseeds and chloroplasts. The physicochemical studies of glycerolipids and sterols in artificial membranes have led to distinct conclusions about their behaviour which must be relevant in the biological membrane. Results on the functional consequences of modifying the galactolipid composition in the chloroplast were an encouraging sign of progress in the attempts to relate membrane lipid composition to physiological function

  5. A Molecular Description of Cellulose Biosynthesis

    Science.gov (United States)

    McNamara, Joshua T.; Morgan, Jacob L.W.; Zimmer, Jochen

    2016-01-01

    Cellulose is the most abundant biopolymer on Earth, and certain organisms from bacteria to plants and animals synthesize cellulose as an extracellular polymer for various biological functions. Humans have used cellulose for millennia as a material and an energy source, and the advent of a lignocellulosic fuel industry will elevate it to the primary carbon source for the burgeoning renewable energy sector. Despite the biological and societal importance of cellulose, the molecular mechanism by which it is synthesized is now only beginning to emerge. On the basis of recent advances in structural and molecular biology on bacterial cellulose synthases, we review emerging concepts of how the enzymes polymerize glucose molecules, how the nascent polymer is transported across the plasma membrane, and how bacterial cellulose biosynthesis is regulated during biofilm formation. Additionally, we review evolutionary commonalities and differences between cellulose synthases that modulate the nature of the cellulose product formed. PMID:26034894

  6. Phenylpropenes: Occurrence, Distribution, and Biosynthesis in Fruit.

    Science.gov (United States)

    Atkinson, Ross G

    2018-03-14

    Phenylpropenes such as eugenol, chavicol, estragole, and anethole contribute to the flavor and aroma of a number of important herbs and spices. They have been shown to function as floral attractants for pollinators and to have antifungal and antimicrobial activities. Phenylpropenes are also detected as free volatiles and sequestered glycosides in a range of economically important fresh fruit species including apple, strawberry, tomato, and grape. Although they contribute a relatively small percentage of total volatiles compared with esters, aldehydes, and alcohols, phenylpropenes have been shown to contribute spicy anise- and clove-like notes to fruit. Phenylpropenes are typically found in fruit throughout development and to reach maximum concentrations in ripe fruit. Genes involved in the biosynthesis of phenylpropenes have been characterized and manipulated in strawberry and apple, which has validated the importance of these compounds to fruit aroma and may help elucidate other functions for phenylpropenes in fruit.

  7. Collagens--structure, function, and biosynthesis.

    Science.gov (United States)

    Gelse, K; Pöschl, E; Aigner, T

    2003-11-28

    The extracellular matrix represents a complex alloy of variable members of diverse protein families defining structural integrity and various physiological functions. The most abundant family is the collagens with more than 20 different collagen types identified so far. Collagens are centrally involved in the formation of fibrillar and microfibrillar networks of the extracellular matrix, basement membranes as well as other structures of the extracellular matrix. This review focuses on the distribution and function of various collagen types in different tissues. It introduces their basic structural subunits and points out major steps in the biosynthesis and supramolecular processing of fibrillar collagens as prototypical members of this protein family. A final outlook indicates the importance of different collagen types not only for the understanding of collagen-related diseases, but also as a basis for the therapeutical use of members of this protein family discussed in other chapters of this issue.

  8. Craniometaphyseal dysplasia with obvious biochemical abnormality and rickets-like features.

    Science.gov (United States)

    Wu, Bo; Jiang, Yan; Wang, Ou; Li, Mei; Xing, Xiao-Ping; Xia, Wei-Bo

    2016-05-01

    Craniometaphyseal dysplasia (CMD) is a rare genetic disorder that is characterized by progressive sclerosis of the craniofacial bones and metaphyseal widening of long bones, and biochemical indexes were mostly normal. To further the understanding of the disease from a biochemical perspective, we reported a CMD case with obviously abnormal biochemical indexes. A 1-year-old boy was referred to our clinic. Biochemical test showed obviously increased alkaline phosphatase (ALP) and parathyroid hormone (PTH), mild hypocalcemia and hypophosphatemia. Moreover, significant elevated receptor activator of nuclear factor kappa-B ligand (RANKL) level, but normal β-C-terminal telopeptide of type I collagen (β-CTX) concentration were revealed. He was initially suspected of rickets, because the radiological examination also showed broadened epiphysis in his long bones. Supplementation with calcium and calcitriol alleviated biochemical abnormality. However, the patient gradually developed osteosclerosis which was inconformity with rickets. Considering that he was also presented with facial paralysis and nasal obstruction symptom, the diagnosis of craniometaphyseal dysplasia was suspected, and then was confirmed by the mutation analysis of ANKH of the proband and his family, which showed a de novo heterozygous mutation (C1124-1126delCCT) on exon 9. Our study revealed that obvious biochemical abnormality and rickets-like features might present as uncommon characteristics in CMD patients, and the calcium and calcitriol supplementation could alleviate biochemical abnormalities. Furthermore, although early osteoclast differentiation factor was excited in CMD patient, activity of osteoclast was still inert. Copyright © 2016. Published by Elsevier B.V.

  9. Genetic characterization of a brangus-ibage cattle population: biochemical polymorphisms and reproductive efficiency Caracterização genética de uma população de bovinos brangus-ibagé: polimorfismos bioquímicos e eficiência reprodutiva

    Directory of Open Access Journals (Sweden)

    Luiz Ernani Henkes

    2000-10-01

    Full Text Available Biochemical techniques were used to investigate the genetic variability in a Brangus-Ibage population by determining allele frequencies of 18 blood protein systems: Hemogloin beta-Chain (Hb, Albumin (Alb, Amylase (Am, Transferrin (Tf, Carbonic Anhydrase (CA, Ceruloplasmin (Cp, Malic Enzyme (ME, Diaphorase I and II (Dia I and Dia II, Slow Alpha 2 Macroglobulin (Ap, Acid Phosphatase (ACP, Esterase B and D (EstB and EstD, Phosphogluconate Dehydrogenase (PGD, Glucose-6-Phosphate Dehydrogenase (G-6-PD, Glucose-Phosphate-Isomerase (GPI, Superoxide Dismutase (SOD and Glyoxalase I (GLO. The percentage of polymorphic loci were estimated at 0.27, the mean number of alleles was 1.33 and the mean heterozygosity was 0.07. There was a good agreement between expected and observed heterozygosity values. The population was in agreement with Hardy-Weinberg expectations in all systems. Reproductive records allowed to estimate three parameters of reproductive efficiency: mean age at first calving (1152.15 ± 166.60 days, mean calving interval (539.23 ± 124.10 days and mean weight at first calving (391.02 ± 37.59kg. No relationship was found between reproductive efficiency and genetic systems.Técnicas bioquímicas foram utilizadas para determinar a variabilidade genética numa população de bovinos da raça Brangus-Ibagé com relação a 18 sistemas protéicos sangüíneos: Hemoglobina - Cadeia beta (Hb, Albumina (Alb, Amilase (Am, Transferrina (Tf, Anidrase Carbônica (CA, Ceruloplasmina (Cp, Enzima Málica (ME, Diaforase I and II (Dia I and Dia II, Macroglobulina alfa2 lenta (Ap, Fosfatase Ácida (ACP, Esterase B and D (EstB and EstD, Fosfogliconato Desidrogenase (PGD, Glicose-6-Fosfato Desidrogenase (G-6-PD, Glicose-Fosfato-Isomerase (GPI, Superóxido Dismutase (SOD e Glioxalase I (GLO. O percentual de locos polimórficos foi estimado em 0,27, o número médio de alelos foi 1,33 e a heterozigosidade média foi de 0,07. Houve boa concordância entre a

  10. Role of MbtH-like Proteins in the Adenylation of Tyrosine during Aminocoumarin and Vancomycin Biosynthesis*

    Science.gov (United States)

    Boll, Björn; Taubitz, Tatjana; Heide, Lutz

    2011-01-01

    MbtH-like proteins consist of ∼70 amino acids and are encoded in the biosynthetic gene clusters of non-ribosomally formed peptides and other secondary metabolites derived from amino acids. Recently, several MbtH-like proteins have been shown to be required for the adenylation of amino acid in non-ribosomal peptide synthesis. We now investigated the role of MbtH-like proteins in the biosynthesis of the aminocoumarin antibiotics novobiocin, clorobiocin, and simocyclinone D8 and of the glycopeptide antibiotic vancomycin. The tyrosine-adenylating enzymes CloH, SimH, and Pcza361.18, involved in the biosynthesis of clorobiocin, simocyclinone D8, and vancomycin, respectively, required the presence of MbtH-like proteins in a 1:1 molar ratio, forming heterotetrameric complexes. In contrast, NovH, involved in novobiocin biosynthesis, showed activity in the absence of MbtH-like proteins. Comparison of the active centers of CloH and NovH showed only one amino acid to be different, i.e. Leu-383 versus Met-383. Mutation of this amino acid in CloH (L383M) indeed led to MbtH-independent adenylating activity. All investigated tyrosine-adenylating enzymes exhibited remarkable promiscuity for MbtH-like proteins from different pathways and organisms. YbdZ, the MbtH-like protein from the expression host Escherichia coli, was found to bind to adenylating enzymes during expression and to influence their biochemical properties markedly. Therefore, the use of ybdZ-deficient expression hosts is important in biochemical studies of adenylating enzymes. PMID:21890635

  11. CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis.

    Science.gov (United States)

    Chen, Sixue; Glawischnig, Erich; Jørgensen, Kirsten; Naur, Peter; Jørgensen, Bodil; Olsen, Carl-Erik; Hansen, Carsten H; Rasmussen, Hasse; Pickett, John A; Halkier, Barbara A

    2003-03-01

    Cytochromes P450 of the CYP79 family catalyze the conversion of amino acids to oximes in the biosynthesis of glucosinolates, a group of natural plant products known to be involved in plant defense and as a source of flavor compounds, cancer-preventing agents and bioherbicides. We report a detailed biochemical analysis of the substrate specificity and kinetics of CYP79F1 and CYP79F2, two cytochromes P450 involved in the biosynthesis of aliphatic glucosinolates in Arabidopsis thaliana. Using recombinant CYP79F1 and CYP79F2 expressed in Escherichia coli and Saccharomyces cerevisiae, respectively, we show that CYP79F1 metabolizes mono- to hexahomomethionine, resulting in both short- and long-chain aliphatic glucosinolates. In contrast, CYP79F2 exclusively metabolizes long-chain elongated penta- and hexahomomethionines. CYP79F1 and CYP79F2 are spatially and developmentally regulated, with different gene expression patterns. CYP79F2 is highly expressed in hypocotyl and roots, whereas CYP79F1 is strongly expressed in cotyledons, rosette leaves, stems, and siliques. A transposon-tagged CYP79F1 knockout mutant completely lacks short-chain aliphatic glucosinolates, but has an increased level of long-chain aliphatic glucosinolates, especially in leaves and seeds. The level of long-chain aliphatic glucosinolates in a transposon-tagged CYP79F2 knockout mutant is substantially reduced, whereas the level of short-chain aliphatic glucosinolates is not affected. Biochemical characterization of CYP79F1 and CYP79F2, and gene expression analysis, combined with glucosinolate profiling of knockout mutants demonstrate the functional role of these enzymes. This provides valuable insights into the metabolic network leading to the biosynthesis of aliphatic glucosinolates, and into metabolic engineering of altered aliphatic glucosinolate profiles to improve nutritional value and pest resistance.

  12. Biosynthesis of archaeal membrane ether lipids

    Directory of Open Access Journals (Sweden)

    Samta eJain

    2014-11-01

    Full Text Available A vital function of the cell membrane in all living organism is to maintain the membrane permeability barrier and fluidity. The composition of the phospholipid bilayer is distinct in archaea when compared to bacteria and eukarya. In archaea, isoprenoid hydrocarbon side chains are linked via an ether bond to the sn-glycerol-1-phosphate backbone. In bacteria and eukarya on the other hand, fatty acid side chains are linked via an ester bond to the sn-glycerol-3-phosphate backbone. The polar head groups are globally shared in the three domains of life. The unique membrane lipids of archaea have been implicated not only in the survival and adaptation of the organisms to extreme environments but also to form the basis of the membrane composition of the last universal common ancestor (LUCA. In nature, a diverse range of archaeal lipids is found, the most common are the diether (or archaeol and the tetraether (or caldarchaeol lipids that form a monolayer. Variations in chain length, cyclization and other modifications lead to diversification of these lipids. The biosynthesis of these lipids is not yet well understood however progress in the last decade has led to a comprehensive understanding of the biosynthesis of archaeol. This review describes the current knowledge of the biosynthetic pathway of archaeal ether lipids; insights on the stability and robustness of archaeal lipid membranes; and evolutionary aspects of the lipid divide and the last universal common ancestor LUCA. It examines recent advances made in the field of pathway reconstruction in bacteria.

  13. In vitro biosynthesis of complement protein D

    International Nuclear Information System (INIS)

    Barnum, S.R.

    1985-01-01

    The aim of this study was twofold: to determine site(s) of complement protein D biosynthesis and to examine D biosynthesis with respect to the kinetics of D secretion, the post-translational modification of D and the tissue-specific differences in D secretion and processing. Antigenic D was detected in the culture supernatants of two cell lines, U937 and HepG2, and adherent blood monocytes by a solid-phase radioimmunoassay. D secreted by U937 cells was hemolytically active with a specific activity comparable to D in serum. De novo synthesis of D by U937 cells was demonstrated with the use of cycloheximide. Biosynthetic labeling using 35 S labeled methionine or cysteine, followed by immunoprecipitation demonstrated a single d band intra- and extra-cellularly in all three cell types as analyzed by SDS-PAGE and auto-radiography. Elevated serum D levels in individuals with IgA nephropathy led to studies on the D levels in serum and urine of individuals with chronic renal failure and an individual with Fanconi's syndrome. The former group had elevated serum D levels, compared to normals, and insignificant levels of D in their urine while the patient with Fanconi's syndrome had normal serum D levels but markedly elevated urinary D levels. These studies demonstrate that the monocyte and hepatocyte are both sites of D synthesis and that there are no apparent differences in the secretion rates and processing of D produced by these cell types. The results also suggest that D is not synthesized or secreted as a precursor molecule. Additionally, these studies suggest that the kidney is a major site of D catabolism

  14. Biochemical nature of Russell Bodies.

    Science.gov (United States)

    Mossuto, Maria Francesca; Ami, Diletta; Anelli, Tiziana; Fagioli, Claudio; Doglia, Silvia Maria; Sitia, Roberto

    2015-07-30

    Professional secretory cells produce and release abundant proteins. Particularly in case of mutations and/or insufficient chaperoning, these can aggregate and become toxic within or amongst cells. Immunoglobulins (Ig) are no exception. In the extracellular space, certain Ig-L chains form fibrils causing systemic amyloidosis. On the other hand, Ig variants lacking the first constant domain condense in dilated cisternae of the early secretory compartment, called Russell Bodies (RB), frequently observed in plasma cell dyscrasias, autoimmune diseases and chronic infections. RB biogenesis can be recapitulated in lymphoid and non-lymphoid cells by expressing mutant Ig-μ, providing powerful models to investigate the pathophysiology of endoplasmic reticulum storage disorders. Here we analyze the aggregation propensity and the biochemical features of the intra- and extra-cellular Ig deposits in human cells, revealing β-aggregated features for RB.

  15. In Vitro Biochemical Characterization of All Barley Endosperm Starch Synthases

    Directory of Open Access Journals (Sweden)

    Jose Antonio Cuesta-Seijo

    2016-01-01

    Full Text Available Starch is the main storage polysaccharide in cereals and the major source of calories in the human diet. It is synthesized by a panel of enzymes including five classes of starch synthases (SSs. While the overall starch synthase (SS reaction is known, the functional differences between the five SS classes are poorly understood. Much of our knowledge comes from analyzing mutant plants with altered SS activities, but the resulting data are often difficult to interpret as a result of pleitropic effects, competition between enzymes, overlaps in enzyme activity and disruption of multi-enzyme complexes. Here we provide a detailed biochemical study of the activity of all five classes of SSs in barley endosperm. Each enzyme was produced recombinantly in E. coli and the properties and modes of action in vitro were studied in isolation from other SSs and other substrate modifying activities. Our results define the mode of action of each SS class in unprecedented detail; we analyze their substrate selection, temperature dependence and stability, substrate affinity and temporal abundance during barley development. Our results are at variance with some generally accepted ideas about starch biosynthesis and might lead to the reinterpretation of results obtained in planta. In particular, they indicate that granule bound SS is capable of processive action even in the absence of a starch matrix, that SSI has no elongation limit, and that SSIV, believed to be critical for the initiation of starch granules, has maltoligosaccharides and not polysaccharides as its preferred substrates.

  16. Biochemical Markers in Neurocritical Care

    Directory of Open Access Journals (Sweden)

    Omidvar Rezae

    2016-07-01

    Full Text Available During the past two decades, a variety of serum or cerebrospinal fluid (CSF biochemical markers in daily clinical practice have been recommended to diagnose and monitor diverse diseases or pathologic situations. It will be essential to develop a panel of biomarkers, to be suitable for evaluation of treatment efficacy, representing distinct phases of injury and recovery and consider the temporal profile of those. Among the possible and different biochemical markers, S100b appeared to fulfill many of optimized criteria of an ideal marker. S100b, a cytosolic low molecular weight dimeric calciumbinding protein from chromosome 21, synthesized in glial cells throughout the CNS, an homodimeric diffusible, belongs to a family of closely related protein, predominantly expressed by astrocytes and Schwann cells and a classic immunohistochemical marker for these cells, is implicated in brain development and neurophysiology. Of the 3 isoforms of S-100, the BB subunit (S100B is present in high concentrations in central and peripheral glial and Schwann cells, Langerhans and anterior pituitary cells, fat, muscle, and bone marrow tissues. The biomarker has shown to be a sensitive marker of clinical and subclinical cerebral damage, such as stroke, traumatic brain injury, and spinal cord injury. Increasing evidence suggests that the biomarker plays a double function as an intracellular regulator and an extracellular signal of the CNS. S100b is found in the cytoplasm in a soluble form and also is associated with intracellular membranes, centrosomes, microtubules, and type III intermediate filaments. Their genomic organization now is known, and many of their target proteins have been identified, although the mechanisms of regulating S100b secretion are not completely understood and appear to be related to many factors, such as the proinflammatory cytokines, tumor necrosis factor alpha (TNF-a, interleukin (IL-1b, and metabolic stress. 

  17. The logic, experimental steps, and potential of heterologous natural product biosynthesis featuring the complex antibiotic erythromycin A produced through E. coli.

    Science.gov (United States)

    Jiang, Ming; Zhang, Haoran; Pfeifer, Blaine A

    2013-01-13

    The heterologous production of complex natural products is an approach designed to address current limitations and future possibilities. It is particularly useful for those compounds which possess therapeutic value but cannot be sufficiently produced or would benefit from an improved form of production. The experimental procedures involved can be subdivided into three components: 1) genetic transfer; 2) heterologous reconstitution; and 3) product analysis. Each experimental component is under continual optimization to meet the challenges and anticipate the opportunities associated with this emerging approach. Heterologous biosynthesis begins with the identification of a genetic sequence responsible for a valuable natural product. Transferring this sequence to a heterologous host is complicated by the biosynthetic pathway complexity responsible for product formation. The antibiotic erythromycin A is a good example. Twenty genes (totaling >50 kb) are required for eventual biosynthesis. In addition, three of these genes encode megasynthases, multi-domain enzymes each ~300 kDa in size. This genetic material must be designed and transferred to E. coli for reconstituted biosynthesis. The use of PCR isolation, operon construction, multi-cystronic plasmids, and electro-transformation will be described in transferring the erythromycin A genetic cluster to E. coli. Once transferred, the E. coli cell must support eventual biosynthesis. This process is also challenging given the substantial differences between E. coli and most original hosts responsible for complex natural product formation. The cell must provide necessary substrates to support biosynthesis and coordinately express the transferred genetic cluster to produce active enzymes. In the case of erythromycin A, the E. coli cell had to be engineered to provide the two precursors (propionyl-CoA and (2S)-methylmalonyl-CoA) required for biosynthesis. In addition, gene sequence modifications, plasmid copy number

  18. Linear analysis near a steady-state of biochemical networks: control analysis, correlation metrics and circuit theory

    Directory of Open Access Journals (Sweden)

    Qian Hong

    2008-05-01

    Full Text Available Abstract Background: Several approaches, including metabolic control analysis (MCA, flux balance analysis (FBA, correlation metric construction (CMC, and biochemical circuit theory (BCT, have been developed for the quantitative analysis of complex biochemical networks. Here, we present a comprehensive theory of linear analysis for nonequilibrium steady-state (NESS biochemical reaction networks that unites these disparate approaches in a common mathematical framework and thermodynamic basis. Results: In this theory a number of relationships between key matrices are introduced: the matrix A obtained in the standard, linear-dynamic-stability analysis of the steady-state can be decomposed as A = SRT where R and S are directly related to the elasticity-coefficient matrix for the fluxes and chemical potentials in MCA, respectively; the control-coefficients for the fluxes and chemical potentials can be written in terms of RT BS and ST BS respectively where matrix B is the inverse of A; the matrix S is precisely the stoichiometric matrix in FBA; and the matrix eAt plays a central role in CMC. Conclusion: One key finding that emerges from this analysis is that the well-known summation theorems in MCA take different forms depending on whether metabolic steady-state is maintained by flux injection or concentration clamping. We demonstrate that if rate-limiting steps exist in a biochemical pathway, they are the steps with smallest biochemical conductances and largest flux control-coefficients. We hypothesize that biochemical networks for cellular signaling have a different strategy for minimizing energy waste and being efficient than do biochemical networks for biosynthesis. We also discuss the intimate relationship between MCA and biochemical systems analysis (BSA.

  19. Cloning and characterization of genes involved in nostoxanthin biosynthesis of Sphingomonas elodea ATCC 31461.

    Directory of Open Access Journals (Sweden)

    Liang Zhu

    Full Text Available Most Sphingomonas species synthesize the yellow carotenoid nostoxanthin. However, the carotenoid biosynthetic pathway of these species remains unclear. In this study, we cloned and characterized a carotenoid biosynthesis gene cluster containing four carotenogenic genes (crtG, crtY, crtI and crtB and a β-carotene hydroxylase gene (crtZ located outside the cluster, from the gellan-gum producing bacterium Sphingomonas elodea ATCC 31461. Each of these genes was inactivated, and the biochemical function of each gene was confirmed based on chromatographic and spectroscopic analysis of the intermediates accumulated in the knockout mutants. Moreover, the crtG gene encoding the 2,2'-β-hydroxylase and the crtZ gene encoding the β-carotene hydroxylase, both responsible for hydroxylation of β-carotene, were confirmed by complementation studies using Escherichia coli producing different carotenoids. Expression of crtG in zeaxanthin and β-carotene accumulating E. coli cells resulted in the formation of nostoxanthin and 2,2'-dihydroxy-β-carotene, respectively. Based on these results, a biochemical pathway for synthesis of nostoxanthin in S. elodea ATCC 31461 is proposed.

  20. Cloning and characterization of genes involved in nostoxanthin biosynthesis of Sphingomonas elodea ATCC 31461.

    Science.gov (United States)

    Zhu, Liang; Wu, Xuechang; Li, Ou; Qian, Chaodong; Gao, Haichun

    2012-01-01

    Most Sphingomonas species synthesize the yellow carotenoid nostoxanthin. However, the carotenoid biosynthetic pathway of these species remains unclear. In this study, we cloned and characterized a carotenoid biosynthesis gene cluster containing four carotenogenic genes (crtG, crtY, crtI and crtB) and a β-carotene hydroxylase gene (crtZ) located outside the cluster, from the gellan-gum producing bacterium Sphingomonas elodea ATCC 31461. Each of these genes was inactivated, and the biochemical function of each gene was confirmed based on chromatographic and spectroscopic analysis of the intermediates accumulated in the knockout mutants. Moreover, the crtG gene encoding the 2,2'-β-hydroxylase and the crtZ gene encoding the β-carotene hydroxylase, both responsible for hydroxylation of β-carotene, were confirmed by complementation studies using Escherichia coli producing different carotenoids. Expression of crtG in zeaxanthin and β-carotene accumulating E. coli cells resulted in the formation of nostoxanthin and 2,2'-dihydroxy-β-carotene, respectively. Based on these results, a biochemical pathway for synthesis of nostoxanthin in S. elodea ATCC 31461 is proposed.

  1. Global transcriptome analysis of Huperzia serrata and identification of critical genes involved in the biosynthesis of huperzine A.

    Science.gov (United States)

    Yang, Mengquan; You, Wenjing; Wu, Shiwen; Fan, Zhen; Xu, Baofu; Zhu, Mulan; Li, Xuan; Xiao, Youli

    2017-03-22

    Huperzia serrata (H. serrata) is an economically important traditional Chinese herb with the notably medicinal value. As a representative member of the Lycopodiaceae family, the H. serrata produces various types of effectively bioactive lycopodium alkaloids, especially the huperzine A (HupA) which is a promising drug for Alzheimer's disease. Despite their medicinal importance, the public genomic and transcriptomic resources are very limited and the biosynthesis of HupA is largely unknown. Previous studies on comparison of 454-ESTs from H. serrata and Phlegmariurus carinatus predicted putative genes involved in lycopodium alkaloid biosynthesis, such as lysine decarboxylase like (LDC-like) protein and some CYP450s. However, these gene annotations were not carried out with further biochemical characterizations. To understand the biosynthesis of HupA and its regulation in H. serrata, a global transcriptome analysis on H. Serrata tissues was performed. In this study, we used the Illumina Highseq4000 platform to generate a substantial RNA sequencing dataset of H. serrata. A total of 40.1 Gb clean data was generated from four different tissues: root, stem, leaf, and sporangia and assembled into 181,141 unigenes. The total length, average length, N50 and GC content of unigenes were 219,520,611 bp, 1,211 bp, 2,488 bp and 42.51%, respectively. Among them, 105,516 unigenes (58.25%) were annotated by seven public databases (NR, NT, Swiss-Prot, KEGG, COG, Interpro, GO), and 54 GO terms and 3,391 transcription factors (TFs) were functionally classified, respectively. KEGG pathway analysis revealed that 72,230 unigenes were classified into 21 functional pathways. Three types of candidate enzymes, LDC, CAO and PKS, responsible for the biosynthesis of precursors of HupA were all identified in the transcripts. Four hundred and fifty-seven CYP450 genes in H. serrata were also analyzed and compared with tissue-specific gene expression. Moreover, two key classes of CYP450 genes BBE

  2. Genes involved in long-chain alkene biosynthesis in Micrococcus luteus.

    Science.gov (United States)

    Beller, Harry R; Goh, Ee-Been; Keasling, Jay D

    2010-02-01

    Aliphatic hydrocarbons are highly appealing targets for advanced cellulosic biofuels, as they are already predominant components of petroleum-based gasoline and diesel fuels. We have studied alkene biosynthesis in Micrococcus luteus ATCC 4698, a close relative of Sarcina lutea (now Kocuria rhizophila), which 4 decades ago was reported to biosynthesize iso- and anteiso-branched, long-chain alkenes. The underlying biochemistry and genetics of alkene biosynthesis were not elucidated in those studies. We show here that heterologous expression of a three-gene cluster from M. luteus (Mlut_13230-13250) in a fatty acid-overproducing Escherichia coli strain resulted in production of long-chain alkenes, predominantly 27:3 and 29:3 (no. carbon atoms: no. C=C bonds). Heterologous expression of Mlut_13230 (oleA) alone produced no long-chain alkenes but unsaturated aliphatic monoketones, predominantly 27:2, and in vitro studies with the purified Mlut_13230 protein and tetradecanoyl-coenzyme A (CoA) produced the same C(27) monoketone. Gas chromatography-time of flight mass spectrometry confirmed the elemental composition of all detected long-chain alkenes and monoketones (putative intermediates of alkene biosynthesis). Negative controls demonstrated that the M. luteus genes were responsible for production of these metabolites. Studies with wild-type M. luteus showed that the transcript copy number of Mlut_13230-13250 and the concentrations of 29:1 alkene isomers (the dominant alkenes produced by this strain) generally corresponded with bacterial population over time. We propose a metabolic pathway for alkene biosynthesis starting with acyl-CoA (or-ACP [acyl carrier protein]) thioesters and involving decarboxylative Claisen condensation as a key step, which we believe is catalyzed by OleA. Such activity is consistent with our data and with the homology (including the conserved Cys-His-Asn catalytic triad) of Mlut_13230 (OleA) to FabH (beta-ketoacyl-ACP synthase III), which

  3. Biochemical survey for children of A-bomb survivors

    International Nuclear Information System (INIS)

    Sato, Chiyoko

    1992-01-01

    The Radiation Effects Research Foundation has conducted biochemical survey in children of A-bomb survivors, with the purpose of elucidating whether or not the rate of genetic mutation in genital cells is increased. This paper describes the previous surveys done at protein levels. Two kinds of indicators have been used: (1) 'rare mutation type' reflecting base substitution mutation, base deletion, and insertion; (2) 'mutation type' reflecting the decrease of red cell enzyme activity. According to the DS86 dosimetry system, the children population of A-bomb survivors were examined by dividing into the exposed group (n=11,364) of their parents exposed to 0.01 Sv or more and the control group (n=12,297) of those exposed to less than 0.01 Sv. 'Rare mutation type' was detected using electrophoresis in a total of 1,233 children in both groups. Of these children, 2 in the exposed group and 4 in the control group had a new 'mutation', i.e., mutation that was considered to have occurred in genital cells of their parents. Survey for genetic foci has revealed mutation in 2 children in the exposed group and 4 children in the control group, with the rate of mutation being 0.37 x 10 -5 /genetic foci/generation and 0.68 x 10 -5 /genetic foci/generation, respectively. Mutation type reflecting the decrease in red cell enzyme activity was seen in 26 in the exposed group and 21 in the control group. A total of 41 children were found to have been inherited from their parents. In the survey for genetic foci, only one had mutation in the exposed group, with the rate of mutation being 1.7 x 10 -5 /genetic foci/generation. These findings have revealed no evidence of significant difference in the rate of mutation between the exposed and control groups. Finally, the future genetic surveys at molecular levels are briefly discussed. (N.K.)

  4. On the relation of vitamin A to the protein biosynthesis in the organism of intact animals and during the action of ionizing radiation

    International Nuclear Information System (INIS)

    Leutskij, K.M.; Baran, M.M.; Batsura, A.F.

    1975-01-01

    Rats were investigated to determine the separate and joint effects of A-avitaminosis and ionizing radiation on protein biosynthesis in the tunica mucosa of the small intestine (cpm/10 mg ribosomal protein; M+-m). X-raying of control and A-avitaminotic animals was shown to result in decline of protein synthesis by 20 and 47 per cent, respectively. The joint action of A-avitaminosis in and irradiation of the organism enhanced the resultant variations in protein biosynthesis, which subsequently decreased by 60 per cent. Vitamin A-alcohol, introduced in the form of an aqueous emulsion into the incubation medium in vitro, was found to affect protein biosynthesis. Retinol (3 μg/ml) introduced in vitro increased inclusion of 14 C-leucine in the proteins of the acellular protein-synthesizing system in control and A-avitaminotic animals by 15 and 38 per cent, respectively. Addition of retinol (6μg/ml) increased inclusion of 14 C-leucine in control and A-avitaminotic rats by 11 and 18 per cent, respectively. Protein synthesis was found to have reliably increased by 17 per cent following introduction of retinol (3 μg) into the incubation medium of irradiated control animals. Protein biosynthesis was assumed to be the principal irradiation-affected stage in the system of biochemical processes in the intestine [ru

  5. Probenazole treatment inhibits anthocyanins biosynthesis via ...

    African Journals Online (AJOL)

    ELO

    2012-01-05

    Jan 5, 2012 ... State Key Laboratory of Genetic Engineering and Institute of Plant Biology, School of Life .... was reverse-transcribed with SuperScript reverse transcriptase ..... treated plant have more drought and salt stress tolerance.

  6. Arabidopsis miR171-Targeted Scarecrow-Like Proteins Bind to GT cis-Elements and Mediate Gibberellin-Regulated Chlorophyll Biosynthesis under Light Conditions

    Science.gov (United States)

    Ma, Zhaoxue; Hu, Xupeng; Cai, Wenjuan; Huang, Weihua; Zhou, Xin; Luo, Qian; Yang, Hongquan; Wang, Jiawei; Huang, Jirong

    2014-01-01

    An extraordinarily precise regulation of chlorophyll biosynthesis is essential for plant growth and development. However, our knowledge on the complex regulatory mechanisms of chlorophyll biosynthesis is very limited. Previous studies have demonstrated that miR171-targeted scarecrow-like proteins (SCL6/22/27) negatively regulate chlorophyll biosynthesis via an unknown mechanism. Here we showed that SCLs inhibit the expression of the key gene encoding protochlorophyllide oxidoreductase (POR) in light-grown plants, but have no significant effect on protochlorophyllide biosynthesis in etiolated seedlings. Histochemical analysis of β-glucuronidase (GUS) activity in transgenic plants expressing pSCL27::rSCL27-GUS revealed that SCL27-GUS accumulates at high levels and suppresses chlorophyll biosynthesis at the leaf basal proliferation region during leaf development. Transient gene expression assays showed that the promoter activity of PORC is indeed regulated by SCL27. Consistently, chromatin immunoprecipitation and quantitative PCR assays showed that SCL27 binds to the promoter region of PORC in vivo. An electrophoretic mobility shift assay revealed that SCL27 is directly interacted with G(A/G)(A/T)AA(A/T)GT cis-elements of the PORC promoter. Furthermore, genetic analysis showed that gibberellin (GA)-regulated chlorophyll biosynthesis is mediated, at least in part, by SCLs. We demonstrated that SCL27 interacts with DELLA proteins in vitro and in vivo by yeast-two-hybrid and coimmunoprecipitation analysis and found that their interaction reduces the binding activity of SCL27 to the PORC promoter. Additionally, we showed that SCL27 activates MIR171 gene expression, forming a feedback regulatory loop. Taken together, our data suggest that the miR171-SCL module is critical for mediating GA-DELLA signaling in the coordinate regulation of chlorophyll biosynthesis and leaf growth in light. PMID:25101599

  7. Regulation of anthocyanin and proanthocyanidin biosynthesis by Medicago truncatula bHLH transcription factor MtTT8.

    Science.gov (United States)

    Li, Penghui; Chen, Beibei; Zhang, Gaoyang; Chen, Longxiang; Dong, Qiang; Wen, Jiangqi; Mysore, Kirankumar S; Zhao, Jian

    2016-05-01

    The MYB- basic helix-loop-helix (bHLH)-WD40 complexes regulating anthocyanin and proanthocyanidin (PA) biosynthesis in plants are not fully understood. Here Medicago truncatula bHLH MtTT8 was characterized as a central component of these ternary complexes that control anthocyanin and PA biosynthesis. Mttt8 mutant seeds have a transparent testa phenotype with reduced PAs and anthocyanins. MtTT8 restores PA and anthocyanin productions in Arabidopsis tt8 mutant. Ectopic expression of MtTT8 restores anthocyanins and PAs in mttt8 plant and hairy roots and further enhances both productions in wild-type hairy roots. Transcriptomic analyses and metabolite profiling of mttt8 mutant seeds and M. truncatula hairy roots (mttt8 mutant, mttt8 mutant complemented with MtTT8, or MtTT8 overexpression lines) indicate that MtTT8 regulates a subset of genes involved in PA and anthocyanin biosynthesis. MtTT8 is genetically regulated by MtLAP1, MtPAR and MtWD40-1. Combinations of MtPAR, MtLAP1, MtTT8 and MtWD40-1 activate MtTT8 promoter in yeast assay. MtTT8 interacts with these transcription factors to form regulatory complexes. MtTT8, MtWD40-1 and an MYB factor, MtPAR or MtLAP1, interacted and activated promoters of anthocyanidin reductase and anthocyanidin synthase to regulate PA and anthocyanin biosynthesis, respectively. Our results provide new insights into the complex regulation of PA and anthocyanin biosynthesis in M. truncatula. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  8. Light influences cytokinin biosynthesis and sensing in Nostoc (cyanobacteria).

    Science.gov (United States)

    Frébortová, Jitka; Plíhal, Ondřej; Florová, Vendula; Kokáš, Filip; Kubiasová, Karolina; Greplová, Marta; Šimura, Jan; Novák, Ondřej; Frébort, Ivo

    2017-06-01

    Cytokinins are an important group of plant hormones that are also found in other organisms, including cyanobacteria. While various aspects of cytokinin function and metabolism are well understood in plants, the information is limited for cyanobacteria. In this study, we first experimentally confirmed a prenylation of tRNA by recombinant isopentenyl transferase NoIPT2 from Nostoc sp. PCC 7120, whose encoding gene we previously identified in Nostoc genome along with the gene for adenylate isopentenyl transferase NoIPT1. In contrast to NoIPT2, the transcription of NoIPT1 was strongly activated during the dark period and was followed by an increase in the cytokinin content several hours later in the light period. Dominant cytokinin metabolites detected at all time points were free bases and monophosphates of isopentenyladenine and cis-zeatin, while N-glucosides were not detected at all. Whole transcriptome differential expression analysis of cultures of the above Nostoc strain treated by cytokinin compared to untreated controls indicated that cytokinin together with light trigger expression of several genes related to signal transduction, including two-component sensor histidine kinases and two-component hybrid sensors and regulators. One of the affected histidine kinases with a cyclase/histidine kinase-associated sensory extracellular domain similar to the cytokinin-binding domain in plant cytokinin receptors was able to modestly bind isopentenyladenine. The data show that the genetic disposition allows Nostoc not only to produce free cytokinins and prenylate tRNA but also modulate the cytokinin biosynthesis in response to light, triggering complex changes in sensing and regulation. © 2017 Phycological Society of America.

  9. Wild tobacco genomes reveal the evolution of nicotine biosynthesis.

    Science.gov (United States)

    Xu, Shuqing; Brockmöller, Thomas; Navarro-Quezada, Aura; Kuhl, Heiner; Gase, Klaus; Ling, Zhihao; Zhou, Wenwu; Kreitzer, Christoph; Stanke, Mario; Tang, Haibao; Lyons, Eric; Pandey, Priyanka; Pandey, Shree P; Timmermann, Bernd; Gaquerel, Emmanuel; Baldwin, Ian T

    2017-06-06

    Nicotine, the signature alkaloid of Nicotiana species responsible for the addictive properties of human tobacco smoking, functions as a defensive neurotoxin against attacking herbivores. However, the evolution of the genetic features that contributed to the assembly of the nicotine biosynthetic pathway remains unknown. We sequenced and assembled genomes of two wild tobaccos, Nicotiana attenuata (2.5 Gb) and Nicotiana obtusifolia (1.5 Gb), two ecological models for investigating adaptive traits in nature. We show that after the Solanaceae whole-genome triplication event, a repertoire of rapidly expanding transposable elements (TEs) bloated these Nicotiana genomes, promoted expression divergences among duplicated genes, and contributed to the evolution of herbivory-induced signaling and defenses, including nicotine biosynthesis. The biosynthetic machinery that allows for nicotine synthesis in the roots evolved from the stepwise duplications of two ancient primary metabolic pathways: the polyamine and nicotinamide adenine dinucleotide (NAD) pathways. In contrast to the duplication of the polyamine pathway that is shared among several solanaceous genera producing polyamine-derived tropane alkaloids, we found that lineage-specific duplications within the NAD pathway and the evolution of root-specific expression of the duplicated Solanaceae-specific ethylene response factor that activates the expression of all nicotine biosynthetic genes resulted in the innovative and efficient production of nicotine in the genus Nicotiana Transcription factor binding motifs derived from TEs may have contributed to the coexpression of nicotine biosynthetic pathway genes and coordinated the metabolic flux. Together, these results provide evidence that TEs and gene duplications facilitated the emergence of a key metabolic innovation relevant to plant fitness.

  10. NAD+ Biosynthesis Ameliorates a Zebrafish Model of Muscular Dystrophy

    Science.gov (United States)

    Goody, Michelle F.; Kelly, Meghan W.; Reynolds, Christine J.; Khalil, Andre; Crawford, Bryan D.; Henry, Clarissa A.

    2012-01-01

    Muscular dystrophies are common, currently incurable diseases. A subset of dystrophies result from genetic disruptions in complexes that attach muscle fibers to their surrounding extracellular matrix microenvironment. Cell-matrix adhesions are exquisite sensors of physiological conditions and mediate responses that allow cells to adapt to changing conditions. Thus, one approach towards finding targets for future therapeutic applications is to identify cell adhesion pathways that mediate these dynamic, adaptive responses in vivo. We find that nicotinamide riboside kinase 2b-mediated NAD+ biosynthesis, which functions as a small molecule agonist of muscle fiber-extracellular matrix adhesion, corrects dystrophic phenotypes in zebrafish lacking either a primary component of the dystrophin-glycoprotein complex or integrin alpha7. Exogenous NAD+ or a vitamin precursor to NAD+ reduces muscle fiber degeneration and results in significantly faster escape responses in dystrophic embryos. Overexpression of paxillin, a cell adhesion protein downstream of NAD+ in this novel cell adhesion pathway, reduces muscle degeneration in zebrafish with intact integrin receptors but does not improve motility. Activation of this pathway significantly increases organization of laminin, a major component of the extracellular matrix basement membrane. Our results indicate that the primary protective effects of NAD+ result from changes to the basement membrane, as a wild-type basement membrane is sufficient to increase resilience of dystrophic muscle fibers to damage. The surprising result that NAD+ supplementation ameliorates dystrophy in dystrophin-glycoprotein complex– or integrin alpha7–deficient zebrafish suggests the existence of an additional laminin receptor complex that anchors muscle fibers to the basement membrane. We find that integrin alpha6 participates in this pathway, but either integrin alpha7 or the dystrophin-glycoprotein complex is required in conjunction with integrin

  11. NAD+ biosynthesis ameliorates a zebrafish model of muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Michelle F Goody

    Full Text Available Muscular dystrophies are common, currently incurable diseases. A subset of dystrophies result from genetic disruptions in complexes that attach muscle fibers to their surrounding extracellular matrix microenvironment. Cell-matrix adhesions are exquisite sensors of physiological conditions and mediate responses that allow cells to adapt to changing conditions. Thus, one approach towards finding targets for future therapeutic applications is to identify cell adhesion pathways that mediate these dynamic, adaptive responses in vivo. We find that nicotinamide riboside kinase 2b-mediated NAD+ biosynthesis, which functions as a small molecule agonist of muscle fiber-extracellular matrix adhesion, corrects dystrophic phenotypes in zebrafish lacking either a primary component of the dystrophin-glycoprotein complex or integrin alpha7. Exogenous NAD+ or a vitamin precursor to NAD+ reduces muscle fiber degeneration and results in significantly faster escape responses in dystrophic embryos. Overexpression of paxillin, a cell adhesion protein downstream of NAD+ in this novel cell adhesion pathway, reduces muscle degeneration in zebrafish with intact integrin receptors but does not improve motility. Activation of this pathway significantly increases organization of laminin, a major component of the extracellular matrix basement membrane. Our results indicate that the primary protective effects of NAD+ result from changes to the basement membrane, as a wild-type basement membrane is sufficient to increase resilience of dystrophic muscle fibers to damage. The surprising result that NAD+ supplementation ameliorates dystrophy in dystrophin-glycoprotein complex- or integrin alpha7-deficient zebrafish suggests the existence of an additional laminin receptor complex that anchors muscle fibers to the basement membrane. We find that integrin alpha6 participates in this pathway, but either integrin alpha7 or the dystrophin-glycoprotein complex is required in conjunction

  12. Prevalence of biochemical and immunological abnormalities in ...

    African Journals Online (AJOL)

    Tile prevalence of biochemical and immunological abnormalities was studied in a group of 256 patients with rheumatoid arthritis (104 coloureds, 100 whites and 52 blacks). The most common biochemical abnormalities detected were a reduction in the serum creatinine value (43,4%), raised globulins (39,7%), raised serum ...

  13. A functional bikaverin biosynthesis gene cluster in rare strains of Botrytis cinerea is positively controlled by VELVET.

    Directory of Open Access Journals (Sweden)

    Julia Schumacher

    Full Text Available The gene cluster responsible for the biosynthesis of the red polyketidic pigment bikaverin has only been characterized in Fusarium ssp. so far. Recently, a highly homologous but incomplete and nonfunctional bikaverin cluster has been found in the genome of the unrelated phytopathogenic fungus Botrytis cinerea. In this study, we provided evidence that rare B. cinerea strains such as 1750 have a complete and functional cluster comprising the six genes orthologous to Fusarium fujikuroi ffbik1-ffbik6 and do produce bikaverin. Phylogenetic analysis confirmed that the whole cluster was acquired from Fusarium through a horizontal gene transfer (HGT. In the bikaverin-nonproducing strain B05.10, the genes encoding bikaverin biosynthesis enzymes are nonfunctional due to deleterious mutations (bcbik2-3 or missing (bcbik1 but interestingly, the genes encoding the regulatory proteins BcBIK4 and BcBIK5 do not harbor deleterious mutations which suggests that they may still be functional. Heterologous complementation of the F. fujikuroi Δffbik4 mutant confirmed that bcbik4 of strain B05.10 is indeed fully functional. Deletion of bcvel1 in the pink strain 1750 resulted in loss of bikaverin and overproduction of melanin indicating that the VELVET protein BcVEL1 regulates the biosynthesis of the two pigments in an opposite manner. Although strain 1750 itself expresses a truncated BcVEL1 protein (100 instead of 575 aa that is nonfunctional with regard to sclerotia formation, virulence and oxalic acid formation, it is sufficient to regulate pigment biosynthesis (bikaverin and melanin and fenhexamid HydR2 type of resistance. Finally, a genetic cross between strain 1750 and a bikaverin-nonproducing strain sensitive to fenhexamid revealed that the functional bikaverin cluster is genetically linked to the HydR2 locus.

  14. Organic and biochemical synthesis group

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Stable isotopes, because of their unique properties and non-radioactive nature, have great potential for many fields of science and technology. In particular, isotopes of carbon, nitrogen, oxygen, and sulfur (the basic building blocks of all biological molecules) would be widely used in biomedical and environmental research if they were economically available in sufficient quantities and in the required chemical forms. The major objective of our program continues to be stimulation of the widespread utilization of stable isotopes and commercial involvement through development and demonstration of applications which have potential requirements for large quantities of isotopes. Thus, demand will be created which is necessary for large-scale production of stable isotopes and labeled compounds and concomitant low unit costs. The program continues to produce a variety of labeled materials needed for clinical, biomedical, chemical, and environmental applications which serve as effective demonstrations of unique and advantageous utilization of stable isotopes. Future commercial involvement should benefit, and is a consideration in our research and development, from the technology transfer that can readily be made as a result of our organic and biochemical syntheses and also of various techniques involved in applications

  15. Genetic engineering of syringyl-enriched lignin in plants

    Science.gov (United States)

    Chiang, Vincent Lee; Li, Laigeng

    2004-11-02

    The present invention relates to a novel DNA sequence, which encodes a previously unidentified lignin biosynthetic pathway enzyme, sinapyl alcohol dehydrogenase (SAD) that regulates the biosynthesis of syringyl lignin in plants. Also provided are methods for incorporating this novel SAD gene sequence or substantially similar sequences into a plant genome for genetic engineering of syringyl-enriched lignin in plants.

  16. Genetic algorithms

    Science.gov (United States)

    Wang, Lui; Bayer, Steven E.

    1991-01-01

    Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.

  17. Fenarimol, a Pyrimidine-Type Fungicide, Inhibits Brassinosteroid Biosynthesis

    Directory of Open Access Journals (Sweden)

    Keimei Oh

    2015-07-01

    Full Text Available The plant steroid hormone brassinosteroids (BRs are important signal mediators that regulate broad aspects of plant growth and development. With the discovery of brassinoazole (Brz, the first specific inhibitor of BR biosynthesis, several triazole-type BR biosynthesis inhibitors have been developed. In this article, we report that fenarimol (FM, a pyrimidine-type fungicide, exhibits potent inhibitory activity against BR biosynthesis. FM induces dwarfism and the open cotyledon phenotype of Arabidopsis seedlings in the dark. The IC50 value for FM to inhibit stem elongation of Arabidopsis seedlings grown in the dark was approximately 1.8 ± 0.2 μM. FM-induced dwarfism of Arabidopsis seedlings could be restored by brassinolide (BL but not by gibberellin (GA. Assessment of the target site of FM in BR biosynthesis by feeding BR biosynthesis intermediates indicated that FM interferes with the side chain hydroxylation of BR biosynthesis from campestanol to teasterone. Determination of the binding affinity of FM to purified recombinant CYP90D1 indicated that FM induced a typical type II binding spectrum with a Kd value of approximately 0.79 μM. Quantitative real-time PCR analysis of the expression level of the BR responsive gene in Arabidopsis seedlings indicated that FM induces the BR deficiency in Arabidopsis.

  18. Regulation of Strigolactone Biosynthesis by Gibberellin Signaling.

    Science.gov (United States)

    Ito, Shinsaku; Yamagami, Daichi; Umehara, Mikihisa; Hanada, Atsushi; Yoshida, Satoko; Sasaki, Yasuyuki; Yajima, Shunsuke; Kyozuka, Junko; Ueguchi-Tanaka, Miyako; Matsuoka, Makoto; Shirasu, Ken; Yamaguchi, Shinjiro; Asami, Tadao

    2017-06-01

    Strigolactones (SLs) are a class of plant hormones that regulate diverse physiological processes, including shoot branching and root development. They also act as rhizosphere signaling molecules to stimulate the germination of root parasitic weeds and the branching of arbuscular mycorrhizal fungi. Although various types of cross talk between SLs and other hormones have been reported in physiological analyses, the cross talk between gibberellin (GA) and SLs is poorly understood. We screened for chemicals that regulate the level of SLs in rice ( Oryza sativa ) and identified GA as, to our knowledge, a novel SL-regulating molecule. The regulation of SL biosynthesis by GA is dependent on the GA receptor GID1 and F-box protein GID2. GA treatment also reduced the infection of rice plants by the parasitic plant witchers weed ( Striga hermonthica ). These data not only demonstrate, to our knowledge, the novel plant hormone cross talk between SL and GA, but also suggest that GA can be used to control parasitic weed infections. © 2017 American Society of Plant Biologists. All Rights Reserved.

  19. Estrogen biosynthesis in human uterine adenomyosis

    International Nuclear Information System (INIS)

    Urabe, Mamoru; Yamamoto, Takara; Kitawaki, Jo; Honjo, Hideo; Okada, Hiroji

    1989-01-01

    Estrogen biosynthesis (aromatiase activity) was investigated in human adenomyosis tissue and compared with that of the normal myometrium, endometrium, and endometrical cancer tissues. Homogenates were incubated with [1,2,6,7- 3 H]androstenedione and NADPH at 37 deg. C for 1 h. After stopping the enzymatic reaction with ethyl acetate, [4- 14 C]estrone and [4- 14 C]estradiol-17β were added to the incubated sample. Estrone and estradiol were purified and identified by Bio-Rad AG1-X2 column chromatography, thin-layer chromatography and co-crystallization. Estrogen formed in the incubated sample was calculated from the 3 H/ 14 C ratio of the final crystal. The value for estrone formed from androstenedione was 52-132 fmol . h -1. g -1 wet weight. Aromatase activity in the adenomyosis tissues was higher than that in normal endometrial or myometrial tissues, but lower than that found in myometrial or endometrial tumour tissue. Furthermore, we investigated the effect of danazol, progresterone, and medroxyprogesterone acetate on adenomyosis cells in primary cultures. Aromatase activity in adenomyosis was blocked by danazol, but stimulated by progesterone and MPA. These results indicate that aromatase activity in adenomyosis may contribute to the growth of the ectopic endometrial tissue which occurs in this disease. (author)

  20. A Biotin Biosynthesis Gene Restricted to Helicobacter

    Science.gov (United States)

    Bi, Hongkai; Zhu, Lei; Jia, Jia; Cronan, John E.

    2016-01-01

    In most bacteria the last step in synthesis of the pimelate moiety of biotin is cleavage of the ester bond of pimeloyl-acyl carrier protein (ACP) methyl ester. The paradigm cleavage enzyme is Escherichia coli BioH which together with the BioC methyltransferase allows synthesis of the pimelate moiety by a modified fatty acid biosynthetic pathway. Analyses of the extant bacterial genomes showed that bioH is absent from many bioC-containing bacteria and is replaced by other genes. Helicobacter pylori lacks a gene encoding a homologue of the known pimeloyl-ACP methyl ester cleavage enzymes suggesting that it encodes a novel enzyme that cleaves this intermediate. We isolated the H. pylori gene encoding this enzyme, bioV, by complementation of an E. coli bioH deletion strain. Purified BioV cleaved the physiological substrate, pimeloyl-ACP methyl ester to pimeloyl-ACP by use of a catalytic triad, each member of which was essential for activity. The role of BioV in biotin biosynthesis was demonstrated using a reconstituted in vitro desthiobiotin synthesis system. BioV homologues seem the sole pimeloyl-ACP methyl ester esterase present in the Helicobacter species and their occurrence only in H. pylori and close relatives provide a target for development of drugs to specifically treat Helicobacter infections. PMID:26868423

  1. Explorations into the biosynthesis of bioscorine

    International Nuclear Information System (INIS)

    Michelson, R.H.

    1988-01-01

    The biosynthesis of dioscorine in Dioscorea hispida has been studied by the feeding of putative precursors labelled at specific positions with 2 H, 3 H, and 14 C. Administration of [3- 14 C]3-hydroxy-3-methylglutaric acid to D. hispida by the wick method afforded dioscorine labelled preferentially at the C 10 position implying that the biosynthetic pathway to the acetate-derived half of the dioscorine skeleton is going through this compound. Administration of ethyl [6- 14 C]orsellinate to D. hispida by the wick method failed to give an appreciable incorporation into dioscroine thereby disproving an alternative mechanism describing the formation of the acetate-derived half of the dioscorine skeleton. Two attempts to simulate the alternative mechanism by oxidatively cleaving ethyl orsellinate also failed, further disfavoring this mechanism. Administration of [2,3] 13 C 2 , 14 C 2 succinic acid, [3- 14 C]aspartic acid and [7a- 14 C]tryptophan by the leaf painting method gave very low incorporations into dioscorine making determination of the source of the nicotinic acid half of the dioscorine skeleton inconclusive. Administration of [6- 2 H, 3 H]nicotinic acid to D. hispida by the wick method afforded dioscorine exhibiting complete retention of 3 H thereby disfavoring a mechanism involving a 3,6-dihydropyridine intermediate in the formation of the dioscorine skeleton

  2. Transcriptional analysis of apple fruit proanthocyanidin biosynthesis

    Science.gov (United States)

    Henry-Kirk, Rebecca A.

    2012-01-01

    Proanthocyanidins (PAs) are products of the flavonoid pathway, which also leads to the production of anthocyanins and flavonols. Many flavonoids have antioxidant properties and may have beneficial effects for human health. PAs are found in the seeds and fruits of many plants. In apple fruit (Malus × domestica Borkh.), the flavonoid biosynthetic pathway is most active in the skin, with the flavan-3-ols, catechin, and epicatechin acting as the initiating units for the synthesis of PA polymers. This study examined the genes involved in the production of PAs in three apple cultivars: two heritage apple cultivars, Hetlina and Devonshire Quarrenden, and a commercial cultivar, Royal Gala. HPLC analysis shows that tree-ripe fruit from Hetlina and Devonshire Quarrenden had a higher phenolic content than Royal Gala. Epicatechin and catechin biosynthesis is under the control of the biosynthetic enzymes anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR1), respectively. Counter-intuitively, real-time quantitative PCR analysis showed that the expression levels of Royal Gala LAR1 and ANR were significantly higher than those of both Devonshire Quarrenden and Hetlina. This suggests that a compensatory feedback mechanism may be active, whereby low concentrations of PAs may induce higher expression of gene transcripts. Further investigation is required into the regulation of these key enzymes in apple. Abbreviations:ANOVAanalysis of varianceANRanthocyanidin reductaseDADdiode array detectorDAFBdays after full bloomDFRdihydroflavonol reductaseLARleucoanthocyanidin reductaseLC-MSliquid chromatography/mass spectrometryPAproanthocyanidinqPCRreal-time quantitative PCR PMID:22859681

  3. The regulation and biosynthesis of antimycins

    Directory of Open Access Journals (Sweden)

    Ryan F. Seipke

    2013-11-01

    Full Text Available Antimycins (>40 members were discovered nearly 65 years ago but the discovery of the gene cluster encoding antimycin biosynthesis in 2011 has facilitated rapid progress in understanding the unusual biosynthetic pathway. Antimycin A is widely used as a piscicide in the catfish farming industry and also has potent killing activity against insects, nematodes and fungi. The mode of action of antimycins is to inhibit cytochrome c reductase in the electron transport chain and halt respiration. However, more recently, antimycin A has attracted attention as a potent and selective inhibitor of the mitochondrial anti-apoptotic proteins Bcl-2 and Bcl-xL. Remarkably, this inhibition is independent of the main mode of action of antimycins such that an artificial derivative named 2-methoxyantimycin A inhibits Bcl-xL but does not inhibit respiration. The Bcl-2/Bcl-xL family of proteins are over-produced in cancer cells that are resistant to apoptosis-inducing chemotherapy agents, so antimycins have great potential as anticancer drugs used in combination with existing chemotherapeutics. Here we review what is known about antimycins, the regulation of the ant gene cluster and the unusual biosynthetic pathway.

  4. Engineering bacteria for enhanced polyhydroxyalkanoates (PHA biosynthesis

    Directory of Open Access Journals (Sweden)

    Guo-Qiang Chen

    2017-09-01

    Full Text Available Polyhydroxyalkanoates (PHA have been produced by some bacteria as bioplastics for many years. Yet their commercialization is still on the way. A few issues are related to the difficulty of PHA commercialization: namely, high cost and instabilities on molecular weights (Mw and structures, thus instability on thermo-mechanical properties. The high cost is the result of complicated bioprocessing associated with sterilization, low conversion of carbon substrates to PHA products, and slow growth of microorganisms as well as difficulty of downstream separation. Future engineering on PHA producing microorganisms should be focused on contamination resistant bacteria especially extremophiles, developments of engineering approaches for the extremophiles, increase on carbon substrates to PHA conversion and controlling Mw of PHA. The concept proof studies could still be conducted on E. coli or Pseudomonas spp. that are easily used for molecular manipulations. In this review, we will use E. coli and halophiles as examples to show how to engineer bacteria for enhanced PHA biosynthesis and for increasing PHA competitiveness.

  5. Biosynthesis of myristic acid in luminescent bacteria

    International Nuclear Information System (INIS)

    Byers, D.M.

    1987-01-01

    In vivo pulse-label studies have demonstrated that luminescent bacteria can provide myritic acid (14:0) required for the synthesis of the luciferase substrate myristyl aldehyde. Luminescent wild type Vibrio harveyi incubated with [ 14 C] acetate in a nutrient-depleted medium accumulated substantial tree [ 14 C]fatty acid (up to 20% of the total lipid label). Radio-gas chromatography revealed that > 75% of the labeled fatty acid is 14:0. No free fatty acid was detected in wild type cells labeled prior to the development of bioluminescence in the exponential growth phase, or in a dark mutant of V. harveyi (mutant M17) that requires exogenous 14:0 for light emission. The preferential accumulation of 14:0 was not observed when wild type cells were labeled with [ 14 C]acetate in regular growth medium. Moreover, all V. harveyi strains exhibited similar fatty acid mass compositions regardless of the state of bioluminescence. Since earlier work has shown that a luminescence-related acyltransferase (defective in the M17 mutant) can catalyze the deacylation of fatty acyl-acyl carrier protein in vitro, the present results are consistent with a model in which this enzyme diverts 14:0 to the luminescence system during fatty acid biosynthesis. Under normal conditions, the supply of 14:0 by this pathway is tightly regulated such that bioluminescence development does not significantly alter the total fatty acid composition

  6. Biosynthesis of plasmenylcholine in guinea pig heart

    International Nuclear Information System (INIS)

    Wientzek, M.; Choy, P.C.

    1986-01-01

    In some mammalian hearts, up to 40% of the choline phosphoglyceride (CPG) exists as plasmenylcholine (1-alkenyl-2-acyl-glycero-3-phosphocholine). Although the majority of diacylphosphatidylcholine (PC) in mammalian hearts is synthesized from choline via the CDP-choline pathway, the formation of plasmenylcholine from choline was not known. In this study, they investigated the biosynthesis of plasmenyl-choline in the isolated guinea pig heart by perfusion with [ 3 H]choline. Labelled choline containing metabolites and labelled plasmenylcholine were isolated and determined at different perfusion time points. Significant amounts of labelling were found only in choline, phosphocholine, CDP-choline, plasmenyl-choline and PC. In addition, a precursor-product relationship was observed between the labelling of CDP-choline and plasmenylcholine. Such a relationship was not observed between choline and plasmenylcholine. Hence, they postulate that the incorporation of choline into plasmenylcholine is via the CDP-choline pathway and not via base exchange. The ability to condense 1-alkenyl-2-acyl-glycerol with CDP-choline was also demonstrated in vitro with guinea pig heart microsomes

  7. Tyrosine biosynthesis, metabolism, and catabolism in plants.

    Science.gov (United States)

    Schenck, Craig A; Maeda, Hiroshi A

    2018-05-01

    L-Tyrosine (Tyr) is an aromatic amino acid (AAA) required for protein synthesis in all organisms, but synthesized de novo only in plants and microorganisms. In plants, Tyr also serves as a precursor of numerous specialized metabolites that have diverse physiological roles as electron carriers, antioxidants, attractants, and defense compounds. Some of these Tyr-derived plant natural products are also used in human medicine and nutrition (e.g. morphine and vitamin E). While the Tyr biosynthesis and catabolic pathways have been extensively studied in microbes and animals, respectively, those of plants have received much less attention until recently. Accumulating evidence suggest that the Tyr biosynthetic pathways differ between microbes and plants and even within the plant kingdom, likely to support the production of lineage-specific plant specialized metabolites derived from Tyr. The interspecies variations of plant Tyr pathway enzymes can now be used to enhance the production of Tyr and Tyr-derived compounds in plants and other synthetic biology platforms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Glycoprotein biosynthesis by human normal platelets

    International Nuclear Information System (INIS)

    Rodriguez, P.; Bello, O.; Apitz-Castro, R.

    1987-01-01

    Incorporation of radioactive Man, Gal, Fuc, Glc-N, and NANA into washed human normal platelets and endogenous glycoproteins has been found. Both parameters were time dependent. Analysis of hydrolyzed labeled glycoproteins by paper chromatography revealed that the radioactive monosaccharide incubated with the platelets had not been converted into other sugars. Acid hydrolysis demonstrates the presence of a glycosidic linkage. All the effort directed to the demonstration of the existence of a lipid-sugar intermediate in intact human platelets yielded negative results for Man and Glc-N used as precursors. The incorporation of these sugars into glycoproteins is insensitive to bacitracin, suggesting no involvement of lipid-linked saccharides in the synthesis of glycoproteins in human blood platelets. The absence of inhibition of the glycosylation process in the presence of cycloheximide suggests that the sugars are added to proteins present in the intact platelets. These results support the contention that glycoprotein biosynthesis in human blood platelets observed under our experimental conditions is effected through direct sugar nucleotide glycosylation

  9. Preliminary studies of the biosynthesis of Austin

    International Nuclear Information System (INIS)

    Wicnienski, N.A.

    1979-01-01

    Aspergillus ustus is one of the most prevalent fungi in the soil. There are now two reports of the occurrence of toxin-producing strains of this fungus on stored foodstuffs. In addition, strains of A. ustus have been isolated along with Penicillium species from samples of South African cheeses. All A. ustus isolates tested were judged to be highly toxic to ducklings when grown on maize meal, however, the toxins involved were not isolated. Austin is the trivial name of one of the toxins made by the fungus found on stored food. Preliminary work to studying the biosynthesis of this compound using 13 C-labeled sodium acetate is reported here. The feasibility of the biosynthetic study was determined by feeding [1- 14 C]-sodium acetate to A. ustus cultures. The assignments made in the 13 C-nmr spectrum of Austin are shown. The lowest dilution factor obtained in [1- 14 C]-sodium acetate feeding experiments was 14. This dilution factor is sufficiently low to allow a successful feeding of [1,2- 13 C 2 ]-sodium acetate. A new metabolite of A. ustus, deacetylaustin, was isolated and identified. An alkaloid of unknown structure was also isolated from the fungus

  10. Investigation of the Genetics and Biochemistry of Roseobacticide Production in the Roseobacter Clade Bacterium Phaeobacter inhibens

    Directory of Open Access Journals (Sweden)

    Rurun Wang

    2016-03-01

    Full Text Available Roseobacter clade bacteria are abundant in surface waters and are among the most metabolically diverse and ecologically significant species. This group includes opportunistic symbionts that associate with micro- and macroalgae. We have proposed that one representative member, Phaeobacter inhibens, engages in a dynamic symbiosis with the microalga Emiliania huxleyi. In one phase, mutualistically beneficial molecules are exchanged, including the Roseobacter-produced antibiotic tropodithietic acid (TDA, which is thought to protect the symbiotic interaction. In an alternative parasitic phase, triggered by algal senescence, the bacteria produce potent algaecides, the roseobacticides, which kill the algal host. Here, we employed genetic and biochemical screens to identify the roseobacticide biosynthetic gene cluster. By using a transposon mutagenesis approach, we found that genes required for TDA synthesis—the tda operon and paa catabolon—are also necessary for roseobacticide production. Thus, in contrast to the one-cluster–one-compound paradigm, the tda gene cluster can generate two sets of molecules with distinct structures and bioactivities. We further show that roseobacticide production is quorum sensing regulated via an N-acyl homoserine lactone signal (3-OH–C10-HSL. To ensure tight regulation of algaecide production, and thus of a lifestyle switch from mutualism to parasitism, roseobacticide biosynthesis necessitates the presence of both an algal senescence molecule and a quorum sensing signal.

  11. Genetic Mapping

    Science.gov (United States)

    ... greatly advanced genetics research. The improved quality of genetic data has reduced the time required to identify a ... cases, a matter of months or even weeks. Genetic mapping data generated by the HGP's laboratories is freely accessible ...

  12. Chemical-genetic profile analysis of five inhibitory compounds in yeast.

    Science.gov (United States)

    Alamgir, Md; Erukova, Veronika; Jessulat, Matthew; Azizi, Ali; Golshani, Ashkan

    2010-08-06

    Chemical-genetic profiling of inhibitory compounds can lead to identification of their modes of action. These profiles can help elucidate the complex interactions between small bioactive compounds and the cell machinery, and explain putative gene function(s). Colony size reduction was used to investigate the chemical-genetic profile of cycloheximide, 3-amino-1,2,4-triazole, paromomycin, streptomycin and neomycin in the yeast Saccharomyces cerevisiae. These compounds target the process of protein biosynthesis. More than 70,000 strains were analyzed from the array of gene deletion mutant yeast strains. As expected, the overall profiles of the tested compounds were similar, with deletions for genes involved in protein biosynthesis being the major category followed by metabolism. This implies that novel genes involved in protein biosynthesis could be identified from these profiles. Further investigations were carried out to assess the activity of three profiled genes in the process of protein biosynthesis using relative fitness of double mutants and other genetic assays. Chemical-genetic profiles provide insight into the molecular mechanism(s) of the examined compounds by elucidating their potential primary and secondary cellular target sites. Our follow-up investigations into the activity of three profiled genes in the process of protein biosynthesis provided further evidence concerning the usefulness of chemical-genetic analyses for annotating gene functions. We termed these genes TAE2, TAE3 and TAE4 for translation associated elements 2-4.

  13. Chemical-genetic profile analysis of five inhibitory compounds in yeast

    Directory of Open Access Journals (Sweden)

    Alamgir Md

    2010-08-01

    Full Text Available Abstract Background Chemical-genetic profiling of inhibitory compounds can lead to identification of their modes of action. These profiles can help elucidate the complex interactions between small bioactive compounds and the cell machinery, and explain putative gene function(s. Results Colony size reduction was used to investigate the chemical-genetic profile of cycloheximide, 3-amino-1,2,4-triazole, paromomycin, streptomycin and neomycin in the yeast Saccharomyces cerevisiae. These compounds target the process of protein biosynthesis. More than 70,000 strains were analyzed from the array of gene deletion mutant yeast strains. As expected, the overall profiles of the tested compounds were similar, with deletions for genes involved in protein biosynthesis being the major category followed by metabolism. This implies that novel genes involved in protein biosynthesis could be identified from these profiles. Further investigations were carried out to assess the activity of three profiled genes in the process of protein biosynthesis using relative fitness of double mutants and other genetic assays. Conclusion Chemical-genetic profiles provide insight into the molecular mechanism(s of the examined compounds by elucidating their potential primary and secondary cellular target sites. Our follow-up investigations into the activity of three profiled genes in the process of protein biosynthesis provided further evidence concerning the usefulness of chemical-genetic analyses for annotating gene functions. We termed these genes TAE2, TAE3 and TAE4 for translation associated elements 2-4.

  14. Genetic privacy.

    Science.gov (United States)

    Sankar, Pamela

    2003-01-01

    During the past 10 years, the number of genetic tests performed more than tripled, and public concern about genetic privacy emerged. The majority of states and the U.S. government have passed regulations protecting genetic information. However, research has shown that concerns about genetic privacy are disproportionate to known instances of information misuse. Beliefs in genetic determinacy explain some of the heightened concern about genetic privacy. Discussion of the debate over genetic testing within families illustrates the most recent response to genetic privacy concerns.

  15. Gibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice.

    Science.gov (United States)

    Ayano, Madoka; Kani, Takahiro; Kojima, Mikiko; Sakakibara, Hitoshi; Kitaoka, Takuya; Kuroha, Takeshi; Angeles-Shim, Rosalyn B; Kitano, Hidemi; Nagai, Keisuke; Ashikari, Motoyuki

    2014-10-01

    Under flooded conditions, the leaves and internodes of deepwater rice can elongate above the water surface to capture oxygen and prevent drowning. Our previous studies showed that three major quantitative trait loci (QTL) regulate deepwater-dependent internode elongation in deepwater rice. In this study, we investigated the age-dependent internode elongation in deepwater rice. We also investigated the relationship between deepwater-dependent internode elongation and the phytohormone gibberellin (GA) by physiological and genetic approach using a QTL pyramiding line (NIL-1 + 3 + 12). Deepwater rice did not show internode elongation before the sixth leaf stage under deepwater condition. Additionally, deepwater-dependent internode elongation occurred on the sixth and seventh internodes during the sixth leaf stage. These results indicate that deepwater rice could not start internode elongation until the sixth leaf stage. Ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS) method for the phytohormone contents showed a deepwater-dependent GA1 and GA4 accumulation in deepwater rice. Additionally, a GA inhibitor abolished deepwater-dependent internode elongation in deepwater rice. On the contrary, GA feeding mimicked internode elongation under ordinary growth conditions. However, mutations in GA biosynthesis and signal transduction genes blocked deepwater-dependent internode elongation. These data suggested that GA biosynthesis and signal transduction are essential for deepwater-dependent internode elongation in deepwater rice. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  16. Propiconazole is a specific and accessible brassinosteroid (BR) biosynthesis inhibitor for Arabidopsis and maize.

    Science.gov (United States)

    Hartwig, Thomas; Corvalan, Claudia; Best, Norman B; Budka, Joshua S; Zhu, Jia-Ying; Choe, Sunghwa; Schulz, Burkhard

    2012-01-01

    Brassinosteroids (BRs) are steroidal hormones that play pivotal roles during plant development. In addition to the characterization of BR deficient mutants, specific BR biosynthesis inhibitors played an essential role in the elucidation of BR function in plants. However, high costs and limited availability of common BR biosynthetic inhibitors constrain their key advantage as a species-independent tool to investigate BR function. We studied propiconazole (Pcz) as an alternative to the BR inhibitor brassinazole (Brz). Arabidopsis seedlings treated with Pcz phenocopied BR biosynthetic mutants. The steady state mRNA levels of BR, but not gibberellic acid (GA), regulated genes increased proportional to the concentrations of Pcz. Moreover, root inhibition and Pcz-induced expression of BR biosynthetic genes were rescued by 24epi-brassinolide, but not by GA(3) co-applications. Maize seedlings treated with Pcz showed impaired mesocotyl, coleoptile, and true leaf elongation. Interestingly, the genetic background strongly impacted the tissue specific sensitivity towards Pcz. Based on these findings we conclude that Pcz is a potent and specific inhibitor of BR biosynthesis and an alternative to Brz. The reduced cost and increased availability of Pcz, compared to Brz, opens new possibilities to study BR function in larger crop species.

  17. Current Models for Transcriptional Regulation of Secondary Cell Wall Biosynthesis in Grasses

    Directory of Open Access Journals (Sweden)

    Xiaolan Rao

    2018-04-01

    Full Text Available Secondary cell walls mediate many crucial biological processes in plants including mechanical support, water and nutrient transport and stress management. They also provide an abundant resource of renewable feed, fiber, and fuel. The grass family contains the most important food, forage, and biofuel crops. Understanding the regulatory mechanism of secondary wall formation in grasses is necessary for exploiting these plants for agriculture and industry. Previous research has established a detailed model of the secondary wall regulatory network in the dicot model species Arabidopsis thaliana. Grasses, branching off from the dicot ancestor 140–150 million years ago, display distinct cell wall morphology and composition, suggesting potential for a different secondary wall regulation program from that established for dicots. Recently, combined application of molecular, genetic and bioinformatics approaches have revealed more transcription factors involved in secondary cell wall biosynthesis in grasses. Compared with the dicots, grasses exhibit a relatively conserved but nevertheless divergent transcriptional regulatory program to activate their secondary cell wall development and to coordinate secondary wall biosynthesis with other physiological processes.

  18. Increased biosynthesis and processing of fibronectin in fibroblasts from diabetic mice

    International Nuclear Information System (INIS)

    Phan-Thanh, L.; Robert, L.; Derouette, J.C.; Labat-Robert, J.

    1987-01-01

    Diabetic connective tissues exhibit a deranged regulation of extracellular matrix biosynthesis. Fibronectin is shown to be increased in human dermal connective tissue by immunofluorescence, mainly at the dermoepidermal and capillary basement membranes. The rate of fibronectin biosynthesis, excretion, and incorporation in a pericellular polymeric form was investigated using genetically diabetic KK mouse skin and fibroblasts as compared to swiss and C57BL mouse skin and fibroblasts. The rate of incorporation of [ 35 S]methionine into proteins recovered in the culture medium or in deoxycholate and NaDodSO 4 or urea extracts was investigated. The rate of incorporation in the medium and deoxycholate extracts was comparable. However, the relative rate of incorporation of the tracer in the NaDodSO 4 -extractable, pericellular polymeric form was increased in the diabetic KK fibroblasts both for total proteins and for fibronectin. In pulse-chase experiments, the deoxycholate-soluble and NaDodSO 4 -soluble fractions exhibited a precursor-product relationship. The rate of passage of fibronectin from the deoxycholate-soluble (cellular compartment) form to the NaDodSO 4 -soluble (pericellular polymeric) form was strongly accelerated in the diabetic fibroblast cultures. These results confirm the increased rate of synthesis of fibronectin in diabetic fibroblasts as well as its processing from the cellular compartment to the polymeric pericellular form

  19. Biochemical characterization of a novel tyrosine phenol-lyase from Fusobacterium nucleatum for highly efficient biosynthesis of l-DOPA.

    Science.gov (United States)

    Zheng, Ren-Chao; Tang, Xiao-Ling; Suo, Hui; Feng, Li-Lin; Liu, Xiao; Yang, Jian; Zheng, Yu-Guo

    2018-05-01

    Tyrosine phenol-lyase (TPL) catalyzes the reversible cleavage of l-tyrosine to phenol, pyruvate and ammonia. When pyrocatechol is substituted for phenol, l-dihydroxyphenylalanine (l-DOPA) is produced. The TPL-catalyzed route was regarded as the most economic process for l-DOPA production. In this study, a novel TPL from Fusobacterium nucleatum (Fn-TPL) was successfully overexpressed in Escherichia coli and screened for l-DOPA synthesis with a specific activity of 2.69Umg -1 . Fn-TPL was found to be a tetramer, and the optimal temperature and pH for α, β-elimination of l-tyrosine was 60°C and pH 8.5, respectively. The enzyme showed broad substrate specificity toward natural and synthetic l-amino acids. Kinetic analysis suggested that the k cat /K m value for l-tyrosine decomposition was much higher than that for l-DOPA decomposition, while Fn-TPL exhibited similar catalytic efficiency for synthesis of l-tyrosine and l-DOPA. With whole cells of recombinant E. coli as biocatalyst, l-DOPA yield reached 110gL -1 with a pyrocatechol conversion of 95%, which was comparable to the reported highest level. The results demonstrated the great potential of Fn-TPL for industrial production of l-DOPA. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Gene expression in the lignin biosynthesis pathway during soybean seed development.

    Science.gov (United States)

    Baldoni, A; Von Pinho, E V R; Fernandes, J S; Abreu, V M; Carvalho, M L M

    2013-02-28

    The study of gene expression in plants is fundamental, and understanding the molecular mechanisms involved in important biological processes, such as biochemical pathways or signaling that are used or manipulated in improvement programs, are key for the production of high-quality soybean seeds. Reports related to gene expression of lignin in seeds are scarce in the literature. We studied the expression of the phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase, 4-hydroxycinnamate 3-hydroxylase, and cinnamyl alcohol dehydrogenase genes involved in lignin biosynthesis during the development of soybean (Glycine max L. Merrill) seeds. As the endogenous control, the eukaryotic elongation factor 1-beta gene was used in two biological replicates performed in triplicate. Relative quantitative expression of these genes during the R4, R5, R6, and R7 development stages was analyzed. Real-time polymerase chain reaction was used for the gene expression study. The analyses were carried out in an ABI PRISM 7500 thermocycler using the comparative Ct method and SYBR Green to detect amplification. The seed samples at the R4 stage were chosen as calibrators. Increased expression of the cinnamate-4-hydroxylase and PAL genes occurred in soybean seeds at the R5 and R6 development stages. The cinnamyl alcohol dehydrogenase gene was expressed during the final development phases of soybean seeds. In low-lignin soybean cultivars, the higher expression of the PAL gene occurs at development stages R6 and R7. Activation of the genes involved in the lignin biosynthesis pathway occurs at the beginning of soybean seed development.

  1. LIL3, a Light-Harvesting Complex Protein, Links Terpenoid and Tetrapyrrole Biosynthesis in Arabidopsis thaliana.

    Science.gov (United States)

    Hey, Daniel; Rothbart, Maxi; Herbst, Josephine; Wang, Peng; Müller, Jakob; Wittmann, Daniel; Gruhl, Kirsten; Grimm, Bernhard

    2017-06-01

    The LIL3 protein of Arabidopsis ( Arabidopsis thaliana ) belongs to the light-harvesting complex (LHC) protein family, which also includes the light-harvesting chlorophyll-binding proteins of photosystems I and II, the early-light-inducible proteins, PsbS involved in nonphotochemical quenching, and the one-helix proteins and their cyanobacterial homologs designated high-light-inducible proteins. Each member of this family is characterized by one or two LHC transmembrane domains (referred to as the LHC motif) to which potential functions such as chlorophyll binding, protein interaction, and integration of interacting partners into the plastid membranes have been attributed. Initially, LIL3 was shown to interact with geranylgeranyl reductase (CHLP), an enzyme of terpene biosynthesis that supplies the hydrocarbon chain for chlorophyll and tocopherol. Here, we show another function of LIL3 for the stability of protochlorophyllide oxidoreductase (POR). Multiple protein-protein interaction analyses suggest the direct physical interaction of LIL3 with POR but not with chlorophyll synthase. Consistently, LIL3-deficient plants exhibit substantial loss of POR as well as CHLP, which is not due to defective transcription of the POR and CHLP genes but to the posttranslational modification of their protein products. Interestingly, in vitro biochemical analyses provide novel evidence that LIL3 shows high binding affinity to protochlorophyllide, the substrate of POR. Taken together, this study suggests a critical role for LIL3 in the organization of later steps in chlorophyll biosynthesis. We suggest that LIL3 associates with POR and CHLP and thus contributes to the supply of the two metabolites, chlorophyllide and phytyl pyrophosphate, required for the final step in chlorophyll a synthesis. © 2017 American Society of Plant Biologists. All Rights Reserved.

  2. A rice plastidial nucleotide sugar epimerase is involved in galactolipid biosynthesis and improves photosynthetic efficiency.

    Directory of Open Access Journals (Sweden)

    Chunlai Li

    2011-07-01

    Full Text Available Photosynthesis is the final determinator for crop yield. To gain insight into genes controlling photosynthetic capacity, we selected from our large T-DNA mutant population a rice stunted growth mutant with decreased carbon assimilate and yield production named photoassimilate defective1 (phd1. Molecular and biochemical analyses revealed that PHD1 encodes a novel chloroplast-localized UDP-glucose epimerase (UGE, which is conserved in the plant kingdom. The chloroplast localization of PHD1 was confirmed by immunoblots, immunocytochemistry, and UGE activity in isolated chloroplasts, which was approximately 50% lower in the phd1-1 mutant than in the wild type. In addition, the amounts of UDP-glucose and UDP-galactose substrates in chloroplasts were significantly higher and lower, respectively, indicating that PHD1 was responsible for a major part of UGE activity in plastids. The relative amount of monogalactosyldiacylglycerol (MGDG, a major chloroplast membrane galactolipid, was decreased in the mutant, while the digalactosyldiacylglycerol (DGDG amount was not significantly altered, suggesting that PHD1 participates mainly in UDP-galactose supply for MGDG biosynthesis in chloroplasts. The phd1 mutant showed decreased chlorophyll content, photosynthetic activity, and altered chloroplast ultrastructure, suggesting that a correct amount of galactoglycerolipids and the ratio of glycolipids versus phospholipids are necessary for proper chloroplast function. Downregulated expression of starch biosynthesis genes and upregulated expression of sucrose cleavage genes might be a result of reduced photosynthetic activity and account for the decreased starch and sucrose levels seen in phd1 leaves. PHD1 overexpression increased photosynthetic efficiency, biomass, and grain production, suggesting that PHD1 plays an important role in supplying sufficient galactolipids to thylakoid membranes for proper chloroplast biogenesis and photosynthetic activity. These

  3. Overlapping functions of the starch synthases SSII and SSIII in amylopectin biosynthesis in Arabidopsis

    Directory of Open Access Journals (Sweden)

    D'Hulst Christophe

    2008-09-01

    Full Text Available Abstract Background The biochemical mechanisms that determine the molecular architecture of amylopectin are central in plant biology because they allow long-term storage of reduced carbon. Amylopectin structure imparts the ability to form semi-crystalline starch granules, which in turn provides its glucose storage function. The enzymatic steps of amylopectin biosynthesis resemble those of the soluble polymer glycogen, however, the reasons for amylopectin's architectural distinctions are not clearly understood. The multiplicity of starch biosynthetic enzymes conserved in plants likely is involved. For example, amylopectin chain elongation in plants involves five conserved classes of starch synthase (SS, whereas glycogen biosynthesis typically requires only one class of glycogen synthase. Results Null mutations were characterized in AtSS2, which codes for SSII, and mutant lines were compared to lines lacking SSIII and to an Atss2, Atss3 double mutant. Loss of SSII did not affect growth rate or starch quantity, but caused increased amylose/amylopectin ratio, increased total amylose, and deficiency in amylopectin chains with degree of polymerization (DP 12 to DP28. In contrast, loss of both SSII and SSIII caused slower plant growth and dramatically reduced starch content. Extreme deficiency in DP12 to DP28 chains occurred in the double mutant, far more severe than the summed changes in SSII- or SSIII-deficient plants lacking only one of the two enzymes. Conclusion SSII and SSIII have partially redundant functions in determination of amylopectin structure, and these roles cannot be substituted by any other conserved SS, specifically SSI, GBSSI, or SSIV. Even though SSIII is not required for the normal abundance of glucan chains of DP12 to DP18, the enzyme clearly is capable of functioning in production such chains. The role of SSIII in producing these chains cannot be detected simply by analysis of an individual mutation. Competition between

  4. Soybean oil biosynthesis: role of diacylglycerol acyltransferases.

    Science.gov (United States)

    Li, Runzhi; Hatanaka, Tomoko; Yu, Keshun; Wu, Yongmei; Fukushige, Hirotada; Hildebrand, David

    2013-03-01

    Diacylglycerol acyltransferase (DGAT) catalyzes the acyl-CoA-dependent acylation of sn-1,2-diacylglycerol to form seed oil triacylglycerol (TAG). To understand the features of genes encoding soybean (Glycine max) DGATs and possible roles in soybean seed oil synthesis and accumulation, two full-length cDNAs encoding type 1 diacylglycerol acyltransferases (GmDGAT1A and GmDGAT1B) were cloned from developing soybean seeds. These coding sequences share identities of 94 % and 95 % in protein and DNA sequences. The genomic architectures of GmDGAT1A and GmDGAT1B both contain 15 introns and 16 exons. Differences in the lengths of the first exon and most of the introns were found between GmDGAT1A and GmDGAT1B genomic sequences. Furthermore, detailed in silico analysis revealed a third predicted DGAT1, GmDGAT1C. GmDGAT1A and GmDGAT1B were found to have similar activity levels and substrate specificities. Oleoyl-CoA and sn-1,2-diacylglycerol were preferred substrates over vernoloyl-CoA and sn-1,2-divernoloylglycerol. Both transcripts are much more abundant in developing seeds than in other tissues including leaves, stem, roots, and flowers. Both soybean DGAT1A and DGAT1B are highly expressed at developing seed stages of maximal TAG accumulation with DGAT1B showing highest expression at somewhat later stages than DGAT1A. DGAT1A and DGAT1B show expression profiles consistent with important roles in soybean seed oil biosynthesis and accumulation.

  5. Biochemical thermodynamics: applications of Mathematica.

    Science.gov (United States)

    Alberty, Robert A

    2006-01-01

    reactants. Thus loading this package makes available 774 mathematical functions for these properties. These functions can be added and subtracted to obtain changes in these properties in biochemical reactions and apparent equilibrium constants.

  6. Morphological, physiological and biochemical studies on Pyricularia ...

    African Journals Online (AJOL)

    SARAH

    2014-02-28

    Feb 28, 2014 ... compounds seem to reflect inherent biochemical and physiological differences among P. grisea isolates .... solutions for imaging and microscopy, soft image system .... characteristics among 12 P. grisea isolates from rice were.

  7. Biochemical changes in blood caused by radioisotopes

    International Nuclear Information System (INIS)

    Zapol'skaya, N.A.; Fedorova, A.V.

    1975-01-01

    The changes were studied occurring in some biochemical indicators in blood at chronic peroral administration of strontium-90, cesium-137 and iodine-131 in amounts resulting in accumulation of commensurable doses in critical organs corresponding to each isotope

  8. Biochemical and kinetic characterization of geranylgeraniol 18 ...

    African Journals Online (AJOL)

    Suchart

    2015-07-22

    Jul 22, 2015 ... biochemical characterization of GGOH 18-hydroxylase activity in the microsomal fraction from C. .... method as previously described (Chanama et al., 2009). Briefly, 30 g of frozen ..... Catalytic properties of the plant cytochrome.

  9. Short Report Biochemical derangements prior to emergency ...

    African Journals Online (AJOL)

    MMJ VOL 29 (1): March 2017. Biochemical derangements prior to emergency laparotomy at QECH 55. Malawi Medical Journal 29 (1): March 2017 ... Venepuncture was performed preoperatively for urgent cases, defined as those requiring.

  10. A Program on Biochemical and Biomedical Engineering.

    Science.gov (United States)

    San, Ka-Yiu; McIntire, Larry V.

    1989-01-01

    Presents an introduction to the Biochemical and Biomedical Engineering program at Rice University. Describes the development of the academic and enhancement programs, including organizational structure and research project titles. (YP)

  11. Expression of flavonoid 3’-hydroxylase is controlled by P1, the regulator of 3-deoxyflavonoid biosynthesis in maize

    Science.gov (United States)

    2012-01-01

    Background The maize (Zea mays) red aleurone1 (pr1) encodes a CYP450-dependent flavonoid 3’-hydroxylase (ZmF3’H1) required for the biosynthesis of purple and red anthocyanin pigments. We previously showed that Zmf3’h1 is regulated by C1 (Colorless1) and R1 (Red1) transcription factors. The current study demonstrates that, in addition to its role in anthocyanin biosynthesis, the Zmf3’h1 gene also participates in the biosynthesis of 3-deoxyflavonoids and phlobaphenes that accumulate in maize pericarps, cob glumes, and silks. Biosynthesis of 3-deoxyflavonoids is regulated by P1 (Pericarp color1) and is independent from the action of C1 and R1 transcription factors. Results In maize, apiforol and luteoforol are the precursors of condensed phlobaphenes. Maize lines with functional alleles of pr1 and p1 (Pr1;P1) accumulate luteoforol, while null pr1 lines with a functional or non-functional p1 allele (pr1;P1 or pr1;p1) accumulate apiforol. Apiforol lacks a hydroxyl group at the 3’-position of the flavylium B-ring, while luteoforol has this hydroxyl group. Our biochemical analysis of accumulated compounds in different pr1 genotypes showed that the pr1 encoded ZmF3’H1 has a role in the conversion of mono-hydroxylated to bi-hydroxylated compounds in the B-ring. Steady state RNA analyses demonstrated that Zmf3’h1 mRNA accumulation requires a functional p1 allele. Using a combination of EMSA and ChIP experiments, we established that the Zmf3’h1 gene is a direct target of P1. Highlighting the significance of the Zmf3’h1 gene for resistance against biotic stress, we also show here that the p1 controlled 3-deoxyanthocyanidin and C-glycosyl flavone (maysin) defence compounds accumulate at significantly higher levels in Pr1 silks as compared to pr1 silks. By virtue of increased maysin synthesis in Pr1 plants, corn ear worm larvae fed on Pr1; P1 silks showed slower growth as compared to pr1; P1 silks. Conclusions Our results show that the Zmf3’h1 gene

  12. Expression of flavonoid 3'-hydroxylase is controlled by P1, the regulator of 3-deoxyflavonoid biosynthesis in maize.

    Science.gov (United States)

    Sharma, Mandeep; Chai, Chenglin; Morohashi, Kengo; Grotewold, Erich; Snook, Maurice E; Chopra, Surinder

    2012-11-01

    The maize (Zea mays) red aleurone1 (pr1) encodes a CYP450-dependent flavonoid 3'-hydroxylase (ZmF3'H1) required for the biosynthesis of purple and red anthocyanin pigments. We previously showed that Zmf3'h1 is regulated by C1 (Colorless1) and R1 (Red1) transcription factors. The current study demonstrates that, in addition to its role in anthocyanin biosynthesis, the Zmf3'h1 gene also participates in the biosynthesis of 3-deoxyflavonoids and phlobaphenes that accumulate in maize pericarps, cob glumes, and silks. Biosynthesis of 3-deoxyflavonoids is regulated by P1 (Pericarp color1) and is independent from the action of C1 and R1 transcription factors. In maize, apiforol and luteoforol are the precursors of condensed phlobaphenes. Maize lines with functional alleles of pr1 and p1 (Pr1;P1) accumulate luteoforol, while null pr1 lines with a functional or non-functional p1 allele (pr1;P1 or pr1;p1) accumulate apiforol. Apiforol lacks a hydroxyl group at the 3'-position of the flavylium B-ring, while luteoforol has this hydroxyl group. Our biochemical analysis of accumulated compounds in different pr1 genotypes showed that the pr1 encoded ZmF3'H1 has a role in the conversion of mono-hydroxylated to bi-hydroxylated compounds in the B-ring. Steady state RNA analyses demonstrated that Zmf3'h1 mRNA accumulation requires a functional p1 allele. Using a combination of EMSA and ChIP experiments, we established that the Zmf3'h1 gene is a direct target of P1. Highlighting the significance of the Zmf3'h1 gene for resistance against biotic stress, we also show here that the p1 controlled 3-deoxyanthocyanidin and C-glycosyl flavone (maysin) defence compounds accumulate at significantly higher levels in Pr1 silks as compared to pr1 silks. By virtue of increased maysin synthesis in Pr1 plants, corn ear worm larvae fed on Pr1; P1 silks showed slower growth as compared to pr1; P1 silks. Our results show that the Zmf3'h1 gene participates in the biosynthesis of phlobaphenes and

  13. Expression of flavonoid 3’-hydroxylase is controlled by P1, the regulator of 3-deoxyflavonoid biosynthesis in maize

    Directory of Open Access Journals (Sweden)

    Sharma Mandeep

    2012-11-01

    Full Text Available Abstract Background The maize (Zea mays red aleurone1 (pr1 encodes a CYP450-dependent flavonoid 3’-hydroxylase (ZmF3’H1 required for the biosynthesis of purple and red anthocyanin pigments. We previously showed that Zmf3’h1 is regulated by C1 (Colorless1 and R1 (Red1 transcription factors. The current study demonstrates that, in addition to its role in anthocyanin biosynthesis, the Zmf3’h1 gene also participates in the biosynthesis of 3-deoxyflavonoids and phlobaphenes that accumulate in maize pericarps, cob glumes, and silks. Biosynthesis of 3-deoxyflavonoids is regulated by P1 (Pericarp color1 and is independent from the action of C1 and R1 transcription factors. Results In maize, apiforol and luteoforol are the precursors of condensed phlobaphenes. Maize lines with functional alleles of pr1 and p1 (Pr1;P1 accumulate luteoforol, while null pr1 lines with a functional or non-functional p1 allele (pr1;P1 or pr1;p1 accumulate apiforol. Apiforol lacks a hydroxyl group at the 3’-position of the flavylium B-ring, while luteoforol has this hydroxyl group. Our biochemical analysis of accumulated compounds in different pr1 genotypes showed that the pr1 encoded ZmF3’H1 has a role in the conversion of mono-hydroxylated to bi-hydroxylated compounds in the B-ring. Steady state RNA analyses demonstrated that Zmf3’h1 mRNA accumulation requires a functional p1 allele. Using a combination of EMSA and ChIP experiments, we established that the Zmf3’h1 gene is a direct target of P1. Highlighting the significance of the Zmf3’h1 gene for resistance against biotic stress, we also show here that the p1 controlled 3-deoxyanthocyanidin and C-glycosyl flavone (maysin defence compounds accumulate at significantly higher levels in Pr1 silks as compared to pr1 silks. By virtue of increased maysin synthesis in Pr1 plants, corn ear worm larvae fed on Pr1; P1 silks showed slower growth as compared to pr1; P1 silks. Conclusions Our results show that the Zmf3

  14. [Biochemical diagnostics of fatal opium intoxication].

    Science.gov (United States)

    Papyshev, I P; Astashkina, O G; Tuchik, E S; Nikolaev, B S; Cherniaev, A L

    2013-01-01

    Biochemical diagnostics of fatal opium intoxication remains a topical problem in forensic medical science and practice. We investigated materials obtained in the course of forensic medical expertise of the cases of fatal opium intoxication. The study revealed significant differences between myoglobin levels in blood, urine, myocardium, and skeletal muscles. The proposed approach to biochemical diagnostics of fatal opium intoxication enhances the accuracy and the level of evidence of expert conclusions.

  15. Education and certification of genetic counselors.

    Science.gov (United States)

    Katsichti, L; Hadzipetros-Bardanis, M; Bartsocas, C S

    1999-01-01

    Genetic counseling is defined by the American Society of Human Genetics as a communication process which deals with the human problems associated with the occurrence, or risk of occurrence, of a genetic disorder in a family. The first graduate program (Master's degree) in genetic counseling started in 1969 at Sarah Lawrence College, NY, USA, while in 1979 the National Society of Genetic Counseling (NSGC) was established. Today, there are 29 programs in U.S.A. offering a Master's degree in Genetic Counseling, five programs in Canada, one in Mexico, one in England and one in S. Africa. Most of these graduate programs offer two year training, consisting of graduate courses, seminars, research and practical training. Emphasis is given in human physiology, biochemistry, clinical genetics, cytogenetics, molecular and biochemical genetics, population genetics and statistics, prenatal diagnosis, teratology and genetic counseling in relation to psychosocial and ethical issues. Certification for eligible candidates is available through the American Board of Medical Genetics (ABMG). Requirements for certification include a master's degree in human genetics, training at sites accredited by the ABMG, documentation of genetic counseling experience, evidence of continuing education and successful completion of a comprehensive ABMG certification examination. As professionals, genetic counselors should maintain expertise, should insure mechanisms for professional advancement and should always maintain the ability to approach their patients.

  16. Improving Marine Ecosystem Models with Biochemical Tracers

    Science.gov (United States)

    Pethybridge, Heidi R.; Choy, C. Anela; Polovina, Jeffrey J.; Fulton, Elizabeth A.

    2018-01-01

    Empirical data on food web dynamics and predator-prey interactions underpin ecosystem models, which are increasingly used to support strategic management of marine resources. These data have traditionally derived from stomach content analysis, but new and complementary forms of ecological data are increasingly available from biochemical tracer techniques. Extensive opportunities exist to improve the empirical robustness of ecosystem models through the incorporation of biochemical tracer data and derived indices, an area that is rapidly expanding because of advances in analytical developments and sophisticated statistical techniques. Here, we explore the trophic information required by ecosystem model frameworks (species, individual, and size based) and match them to the most commonly used biochemical tracers (bulk tissue and compound-specific stable isotopes, fatty acids, and trace elements). Key quantitative parameters derived from biochemical tracers include estimates of diet composition, niche width, and trophic position. Biochemical tracers also provide powerful insight into the spatial and temporal variability of food web structure and the characterization of dominant basal and microbial food web groups. A major challenge in incorporating biochemical tracer data into ecosystem models is scale and data type mismatches, which can be overcome with greater knowledge exchange and numerical approaches that transform, integrate, and visualize data.

  17. RMBNToolbox: random models for biochemical networks

    Directory of Open Access Journals (Sweden)

    Niemi Jari

    2007-05-01

    Full Text Available Abstract Background There is an increasing interest to model biochemical and cell biological networks, as well as to the computational analysis of these models. The development of analysis methodologies and related software is rapid in the field. However, the number of available models is still relatively small and the model sizes remain limited. The lack of kinetic information is usually the limiting factor for the construction of detailed simulation models. Results We present a computational toolbox for generating random biochemical network models which mimic real biochemical networks. The toolbox is called Random Models for Biochemical Networks. The toolbox works in the Matlab environment, and it makes it possible to generate various network structures, stoichiometries, kinetic laws for reactions, and parameters therein. The generation can be based on statistical rules and distributions, and more detailed information of real biochemical networks can be used in situations where it is known. The toolbox can be easily extended. The resulting network models can be exported in the format of Systems Biology Markup Language. Conclusion While more information is accumulating on biochemical networks, random networks can be used as an intermediate step towards their better understanding. Random networks make it possible to study the effects of various network characteristics to the overall behavior of the network. Moreover, the construction of artificial network models provides the ground truth data needed in the validation of various computational methods in the fields of parameter estimation and data analysis.

  18. The "putative" role of transcription factors from HlWRKY family in the regulation of the final steps of prenylflavonid and bitter acids biosynthesis in hop (Humulus lupulus L.)

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Jaroslav; Kocábek, Tomáš; Patzak, J.; Bříza, Jindřich; Siglová, Kristýna; Mishra, Ajay Kumar; Duraisamy, Ganesh Selvaraj; Týcová, Anna; Ono, E.; Krofta, K.

    2016-01-01

    Roč. 92, č. 3 (2016), s. 263-277 ISSN 0167-4412 R&D Projects: GA ČR GA13-03037S Institutional support: RVO:60077344 Keywords : Lupulin biosynthesis * Transcription factors * 5' RNA degradome * Plant promoter activation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.356, year: 2016

  19. Engineered biosynthesis of regioselectively modified aromatic polyketides using bimodular polyketide synthases.

    Directory of Open Access Journals (Sweden)

    Yi Tang

    2004-02-01

    Full Text Available Bacterial aromatic polyketides such as tetracycline and doxorubicin are a medicinally important class of natural products produced as secondary metabolites by actinomyces bacteria. Their backbones are derived from malonyl-CoA units by polyketide synthases (PKSs. The nascent polyketide chain is synthesized by the minimal PKS, a module consisting of four dissociated enzymes. Although the biosynthesis of most aromatic polyketide backbones is initiated through decarboxylation of a malonyl building block (which results in an acetate group, some polyketides, such as the estrogen receptor antagonist R1128, are derived from nonacetate primers. Understanding the mechanism of nonacetate priming can lead to biosynthesis of novel polyketides that have improved pharmacological properties. Recent biochemical analysis has shown that nonacetate priming is the result of stepwise activity of two dissociated PKS modules with orthogonal molecular recognition features. In these PKSs, an initiation module that synthesizes a starter unit is present in addition to the minimal PKS module. Here we describe a general method for the engineered biosynthesis of regioselectively modified aromatic polyketides. When coexpressed with the R1128 initiation module, the actinorhodin minimal PKS produced novel hexaketides with propionyl and isobutyryl primer units. Analogous octaketides could be synthesized by combining the tetracenomycin minimal PKS with the R1128 initiation module. Tailoring enzymes such as ketoreductases and cyclases were able to process the unnatural polyketides efficiently. Based upon these findings, hybrid PKSs were engineered to synthesize new anthraquinone antibiotics with predictable functional group modifications. Our results demonstrate that (i bimodular aromatic PKSs present a general mechanism for priming aromatic polyketide backbones with nonacetate precursors; (ii the minimal PKS controls polyketide chain length by counting the number of atoms

  20. Biochemical System Analysis of Lutein Production by Heterotrophic Chlorella pyrenoidosa in a Fermentor

    Directory of Open Access Journals (Sweden)

    Zheng-Yun Wu

    2009-01-01

    Full Text Available Chlorella is a promising alternative source of lutein, as it can be cultivated heterotrophically with high efficiency. In this study, the carotenoids in Chlorella pyrenoidosa heterotrophically cultivated in a 19-litre fermentor have been analyzed and determined by using HPLC and HPLC-MS. A biochemical system theory (BST model was developed for understanding the regulatory features of carotenoid metabolism during the batch cultivation. Factors that influence lutein production by C. pyrenoidosa were discussed based on the model. It shows that low flux for lycopene formation is the major bottleneck for lutein production, while by-product syntheses and inhibitions affect the cellular lutein content much less. However, with further increase of the cellular lutein content, the inhibition on lycopene formation by lutein may become a limiting factor. Although speculative, these results may provide useful information for further elucidation of the regulatory mechanisms of carotenoid biosynthesis in Chlorella and modifying its metabolic network to enhance lutein production.

  1. Jasmonate-induced biosynthesis of andrographolide in Andrographis paniculata.

    Science.gov (United States)

    Sharma, Shiv Narayan; Jha, Zenu; Sinha, Rakesh Kumar; Geda, Arvind Kumar

    2015-02-01

    Andrographolide is a prominent secondary metabolite found in Andrographis paniculata that exhibits enormous pharmacological effects. In spite of immense value, the normal biosynthesis of andrographolide results in low amount of the metabolite. To induce the biosynthesis of andrographolide, we attempted elicitor-induced activation of andrographolide biosynthesis in cell cultures of A. paniculata. This was carried out by using methyl jasmonate (MeJA) as an elicitor. Among the various concentrations of MeJA tested at different time periods, 5 µM MeJA yielded 5.25 times more andrographolide content after 24 h of treatment. The accumulation of andrographolide was correlated with the expression level of known regulatory genes (hmgs, hmgr, dxs, dxr, isph and ggps) of mevalonic acid (MVA) and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways. These results established the involvement of MeJA in andrographolide biosynthesis by inducing the transcription of its biosynthetic pathways genes. The coordination of isph, ggps and hmgs expression highly influenced the andrographolide biosynthesis. © 2014 Scandinavian Plant Physiology Society.

  2. Cloning and characterization of novel methylsalicylic acid synthase gene involved in the biosynthesis of isoasperlactone and asperlactone in Aspergillus westerdijkiae

    International Nuclear Information System (INIS)

    Bacha, N.; Dao, H.P.; Mathieu, F.; Liboz, T.; Lebrihi, A.; Atoui, A.; O'Callaghan, J.; Dobson, A.D.W.; Puel, O.

    2008-01-01

    Aspergillus westerdijkiae is the main producer of several biologically active polyketide metabolites including isoasperlactone and asperlactone. A 5298 bp polyketide synthase gene ''aomsas'' has been cloned in Aspergillus westerdijkiae by using gene walking approach and RACE-PCR. The predicted amino acid sequence of aomsas shows an identity of 40-56% with different methylsalicylic acid synthase genes found in Byssochlamys nivea, P. patulum, A. terreus and Streptomyces viridochromogenes. Based on the reverse transcription PCR and kinetic secondary metabolites production studies, aomsas expression was found to be associated with the biosynthesis of isoasperlactone and asperlactone. Moreover an aomsas knockout mutant ''aomsas'' of A. westerdijkiae, not only lost the capacity to produce isoasperlactone and asperlactone, but also 6-methylsalicylic acid. The genetically complemented mutant aomsas restored the biosynthesis of all the missing metabolites. Chemical complementation through the addition of 6-methylsalicylic acid, aspyrone and diepoxide to growing culture of aomsas mutant revealed that these compounds play intermediate roles in the biosynthesis of asperlactone and isoasperlactone. (author)

  3. Purification and biochemical characterization of Mur ligases from Staphylococcus aureus.

    Science.gov (United States)

    Patin, Delphine; Boniface, Audrey; Kovač, Andreja; Hervé, Mireille; Dementin, Sébastien; Barreteau, Hélène; Mengin-Lecreulx, Dominique; Blanot, Didier

    2010-12-01

    The Mur ligases (MurC, MurD, MurE and MurF) catalyze the stepwise synthesis of the UDP-N-acetylmuramoyl-pentapeptide precursor of peptidoglycan. The murC, murD, murE and murF genes from Staphylococcus aureus, a major pathogen, were cloned and the corresponding proteins were overproduced in Escherichia coli and purified as His(6)-tagged forms. Their biochemical properties were investigated and compared to those of the E. coli enzymes. Staphylococcal MurC accepted L-Ala, L-Ser and Gly as substrates, as the E. coli enzyme does, with a strong preference for L-Ala. S. aureus MurE was very specific for L-lysine and in particular did not accept meso-diaminopimelic acid as a substrate. This mirrors the E. coli MurE specificity, for which meso-diaminopimelic acid is the preferred substrate and L-lysine a very poor one. S. aureus MurF appeared less specific and accepted both forms (L-lysine and meso-diaminopimelic acid) of UDP-MurNAc-tripeptide, as the E. coli MurF does. The inverse and strict substrate specificities of the two MurE orthologues is thus responsible for the presence of exclusively meso-diaminopimelic acid and L-lysine at the third position of the peptide in the peptidoglycans of E. coli and S. aureus, respectively. The specific activities of the four Mur ligases were also determined in crude extracts of S. aureus and compared to cell requirements for peptidoglycan biosynthesis. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  4. Mutations in Four Glycosyl Hydrolases Reveal a Highly Coordinated Pathway for Rhodopsin Biosynthesis and N-Glycan Trimming in Drosophila melanogaster

    Science.gov (United States)

    Rosenbaum, Erica E.; Vasiljevic, Eva; Brehm, Kimberley S.; Colley, Nansi Jo

    2014-01-01

    As newly synthesized glycoproteins move through the secretory pathway, the asparagine-linked glycan (N-glycan) undergoes extensive modifications involving the sequential removal and addition of sugar residues. These modifications are critical for the proper assembly, quality control and transport of glycoproteins during biosynthesis. The importance of N-glycosylation is illustrated by a growing list of diseases that result from defects in the biosynthesis and processing of N-linked glycans. The major rhodopsin in Drosophila melanogaster photoreceptors, Rh1, is highly unique among glycoproteins, as the N-glycan appears to be completely removed during Rh1 biosynthesis and maturation. However, much of the deglycosylation pathway for Rh1 remains unknown. To elucidate the key steps in Rh1 deglycosylation in vivo, we characterized mutant alleles of four Drosophila glycosyl hydrolases, namely α-mannosidase-II (α-Man-II), α-mannosidase-IIb (α-Man-IIb), a β-N-acetylglucosaminidase called fused lobes (Fdl), and hexosaminidase 1 (Hexo1). We have demonstrated that these four enzymes play essential and unique roles in a highly coordinated pathway for oligosaccharide trimming during Rh1 biosynthesis. Our results reveal that α-Man-II and α-Man-IIb are not isozymes like their mammalian counterparts, but rather function at distinct stages in Rh1 maturation. Also of significance, our results indicate that Hexo1 has a biosynthetic role in N-glycan processing during Rh1 maturation. This is unexpected given that in humans, the hexosaminidases are typically lysosomal enzymes involved in N-glycan catabolism with no known roles in protein biosynthesis. Here, we present a genetic dissection of glycoprotein processing in Drosophila and unveil key steps in N-glycan trimming during Rh1 biosynthesis. Taken together, our results provide fundamental advances towards understanding the complex and highly regulated pathway of N-glycosylation in vivo and reveal novel insights into the

  5. Mutations in four glycosyl hydrolases reveal a highly coordinated pathway for rhodopsin biosynthesis and N-glycan trimming in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Erica E Rosenbaum

    2014-05-01

    Full Text Available As newly synthesized glycoproteins move through the secretory pathway, the asparagine-linked glycan (N-glycan undergoes extensive modifications involving the sequential removal and addition of sugar residues. These modifications are critical for the proper assembly, quality control and transport of glycoproteins during biosynthesis. The importance of N-glycosylation is illustrated by a growing list of diseases that result from defects in the biosynthesis and processing of N-linked glycans. The major rhodopsin in Drosophila melanogaster photoreceptors, Rh1, is highly unique among glycoproteins, as the N-glycan appears to be completely removed during Rh1 biosynthesis and maturation. However, much of the deglycosylation pathway for Rh1 remains unknown. To elucidate the key steps in Rh1 deglycosylation in vivo, we characterized mutant alleles of four Drosophila glycosyl hydrolases, namely α-mannosidase-II (α-Man-II, α-mannosidase-IIb (α-Man-IIb, a β-N-acetylglucosaminidase called fused lobes (Fdl, and hexosaminidase 1 (Hexo1. We have demonstrated that these four enzymes play essential and unique roles in a highly coordinated pathway for oligosaccharide trimming during Rh1 biosynthesis. Our results reveal that α-Man-II and α-Man-IIb are not isozymes like their mammalian counterparts, but rather function at distinct stages in Rh1 maturation. Also of significance, our results indicate that Hexo1 has a biosynthetic role in N-glycan processing during Rh1 maturation. This is unexpected given that in humans, the hexosaminidases are typically lysosomal enzymes involved in N-glycan catabolism with no known roles in protein biosynthesis. Here, we present a genetic dissection of glycoprotein processing in Drosophila and unveil key steps in N-glycan trimming during Rh1 biosynthesis. Taken together, our results provide fundamental advances towards understanding the complex and highly regulated pathway of N-glycosylation in vivo and reveal novel insights

  6. Genetic sexing of the Mediterranean fruit fly

    International Nuclear Information System (INIS)

    1990-01-01

    In the early 1980s, it was recognized by the FAO and the IAEA that a genetic sexing method for the Mediterranean fruit fly (medfly) would greatly improve the efficacy of the medfly sterile insect technique (SIT) and reduce its costs. These Proceedings summarize the research and development findings of the Agency's co-operators in the co-ordinated research programme to develop a genetic sexing method for the medfly. Great progress has been made in many aspects of medfly genetics. including the development of a number of genetic sexing strains. Contents: Genetics, Cytogenetics and Population Genetics. Genetic Sexing of Ceratitis Capitata by Morphological, Biochemical and other means. Recommendations. Refs, figs and tabs

  7. Isotopic and molecular distributions of biochemicals from fresh and buried Rhizophora mangle leaves†

    Science.gov (United States)

    Smallwood, Barbara J; Wooller, Matthew J; Jacobson, Myrna E; Fogel, Marilyn L

    2003-01-01

    Rhizophora mangle L. (red mangrove) is the dominant species of mangrove in the Americas. At Twin Cays, Belize (BZ) red mangroves are present in a variety of stand structures (tall >5 m in height, transition ~2–4 m and dwarf ~1–1.5 m). These height differences are coupled with very different stable carbon and nitrogen isotopic values[1] (mean tall δ13C = -28.3‰, δ15N = 0‰; mean tall δ13C = -25.3‰, δ15N = -10‰). To determine the utility of using these distinct isotopic compositions as 'biomarkers' for paleoenvironmental reconstruction of mangrove ecosystems and nutrient availability, we investigated the distribution and isotopic (δ13C and δ15N) composition of different biochemical fractions (water soluble compounds, free lipids, acid hydrolysable compounds, individual amino acids, and the residual un-extractable compounds) in fresh and preserved red mangrove leaves from dwarf and tall trees. The distribution of biochemicals are similar in dwarf and tall red mangrove leaves, suggesting that, regardless of stand structure, red mangroves use nutrients for biosynthesis and metabolism in a similar manner. However, the δ13C and δ15N of the bulk leaf, the biochemical fractions, and seven amino acids can be used to distinguish dwarf and tall trees at Twin Cays, BZ. The data support the theory that the fractionation of carbon and nitrogen occurs prior to or during uptake in dwarf and tall red mangrove trees. Stable carbon and nitrogen isotopes could, therefore, be powerful tools for predicting levels of nutrient limitation at Twin Cays. The δ13C and δ15N of biochemical fractions within preserved leaves, reflect sedimentary cycling and nitrogen immobilization. The δ15N of the immobilized fraction reveals the overlying stand structure at the time of leaf deposition. The isotopic composition of preserved mangrove leaves could yield significant information about changes in ecosystem dynamics, nutrient limitation and past stand structure in mangrove

  8. Isotopic and molecular distributions of biochemicals from fresh and buried Rhizophora mangle leaves†

    Directory of Open Access Journals (Sweden)

    Jacobson Myrna E

    2003-12-01

    Full Text Available Rhizophora mangle L. (red mangrove is the dominant species of mangrove in the Americas. At Twin Cays, Belize (BZ red mangroves are present in a variety of stand structures (tall >5 m in height, transition ~2–4 m and dwarf ~1–1.5 m. These height differences are coupled with very different stable carbon and nitrogen isotopic values1 (mean tall δ13C = -28.3‰, δ15N = 0‰; mean tall δ13C = -25.3‰, δ15N = -10‰. To determine the utility of using these distinct isotopic compositions as 'biomarkers' for paleoenvironmental reconstruction of mangrove ecosystems and nutrient availability, we investigated the distribution and isotopic (δ13C and δ15N composition of different biochemical fractions (water soluble compounds, free lipids, acid hydrolysable compounds, individual amino acids, and the residual un-extractable compounds in fresh and preserved red mangrove leaves from dwarf and tall trees. The distribution of biochemicals are similar in dwarf and tall red mangrove leaves, suggesting that, regardless of stand structure, red mangroves use nutrients for biosynthesis and metabolism in a similar manner. However, the δ13C and δ15N of the bulk leaf, the biochemical fractions, and seven amino acids can be used to distinguish dwarf and tall trees at Twin Cays, BZ. The data support the theory that the fractionation of carbon and nitrogen occurs prior to or during uptake in dwarf and tall red mangrove trees. Stable carbon and nitrogen isotopes could, therefore, be powerful tools for predicting levels of nutrient limitation at Twin Cays. The δ13C and δ15N of biochemical fractions within preserved leaves, reflect sedimentary cycling and nitrogen immobilization. The δ15N of the immobilized fraction reveals the overlying stand structure at the time of leaf deposition. The isotopic composition of preserved mangrove leaves could yield significant information about changes in ecosystem dynamics, nutrient limitation and past stand structure in

  9. Dynamics of biochemical processes and redox conditions in geochemically linked landscapes of oligotrophic bogs

    Science.gov (United States)

    Inisheva, L. I.; Szajdak, L.; Sergeeva, M. A.

    2016-04-01

    The biological activity in oligotrophic peatlands at the margins of the Vasyugan Mire has been studied. It is shown found that differently directed biochemical processes manifest themselves in the entire peat profile down to the underlying mineral substrate. Their activity is highly variable. It is argued that the notion about active and inert layers in peat soils is only applicable for the description of their water regime. The degree of the biochemical activity is specified by the physical soil properties. As a result of the biochemical processes, a micromosaic aerobic-anaerobic medium is developed under the surface waterlogged layer of peat deposits. This layer contains the gas phase, including oxygen. It is concluded that the organic and mineral parts of peat bogs represent a single functional system of a genetic peat profile with a clear record of the history of its development.

  10. pH stability and comparative evaluation of ranaspumin-2 foam for application in biochemical reactors

    International Nuclear Information System (INIS)

    Choi, Hyo-Jick; Ebersbacher, Charles F; Quan, Fu-Shi; Montemagno, Carlo D

    2013-01-01

    Aqueous channels of foam represent a simplified, natural bioreactor on the micro-/nano-scale. Previous studies have demonstrated the feasibility and potential application of foams in replicating cellular process in vitro, but no research has been performed to establish a basis for designing stable and biocompatible foam formulations. Our research has been directed specifically to the evaluation of ranaspumin-2 (RSN-2), a frog foam nest protein. The strong surfactant activity of RSN-2 enabled us to produce foams using low protein concentration (1 mg ml −1 ) over a wide pH range (pH ≥ 3). Importantly, the RSN-2 formulation exhibited the best foam stability at a near neutral pH condition, which shows a potential for application to various biosynthesis applications. Model cellular systems such as liposomes and inactivated A/PR/8/34 influenza virus maintained their physicochemical stability and full hemagglutination activity, indicating biocompatibility of RSN-2 with both cellular membranes and proteins both in bulk solution and in foam. Moreover, the addition of RSN-2 did not exert any deteriorative effects on bacterial cell growth kinetics. In contrast, Tween 20, Triton X-100, and BSA did not show satisfactory performance in terms of foamability, foam stability, physicochemcial stability, and biochemical stability. Although our study has been limited to representative formulations composed of only surfactant molecules, a number of unique advantages make RSN-2 a promising candidate for in vitro foam biosynthesis. (paper)

  11. Molecular and Biochemical Analysis of Chalcone Synthase from Freesia hybrid in flavonoid biosynthetic pathway.

    Directory of Open Access Journals (Sweden)

    Wei Sun

    Full Text Available Chalcone synthase (CHS catalyzes the first committed step in the flavonoid biosynthetic pathway. In this study, the cDNA (FhCHS1 encoding CHS from Freesia hybrida was successfully isolated and analyzed. Multiple sequence alignments showed that both the conserved CHS active site residues and CHS signature sequence were found in the deduced amino acid sequence of FhCHS1. Meanwhile, crystallographic analysis revealed that protein structure of FhCHS1 is highly similar to that of alfalfa CHS2, and the biochemical analysis results indicated that it has an enzymatic role in naringenin biosynthesis. Moreover, quantitative real-time PCR was performed to detect the transcript levels of FhCHS1 in flowers and different tissues, and patterns of FhCHS1 expression in flowers showed significant correlation to the accumulation patterns of anthocyanin during flower development. To further characterize the functionality of FhCHS1, its ectopic expression in Arabidopsis thaliana tt4 mutants and Petunia hybrida was performed. The results showed that overexpression of FhCHS1 in tt4 mutants fully restored the pigmentation phenotype of the seed coats, cotyledons and hypocotyls, while transgenic petunia expressing FhCHS1 showed flower color alteration from white to pink. In summary, these results suggest that FhCHS1 plays an essential role in the biosynthesis of flavonoid in Freesia hybrida and may be used to modify the components of flavonoids in other plants.

  12. Systems Level Engineering of Plant Cell Wall Biosynthesis to Improve Biofuel Feedstock Quality

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Samuel

    2013-09-27

    Our new regulatory model of cell wall biosynthesis proposes original network architecture with several newly incorporated components. The mapped set of protein-DNA interactions will serve as a foundation for 1) understanding the regulation of a complex and integral plant component and 2) the manipulation of crop species for biofuel and biotechnology purposes. This study revealed interesting and novel aspects of grass growth and development and further enforce the importance of a grass model system. By functionally characterizing a suite of genes, we have begun to improve the sparse model for transcription regulation of biomass accumulation in grasses. In the process, we have advanced methodology and brachy molecular genetic tools that will serve as valuable community resource.

  13. Engineering Plant Architecture via CRISPR/Cas9-mediated Alteration of Strigolactone Biosynthesis

    KAUST Repository

    Butt, Haroon; Jamil, Muhammad; Wang, Jian You; Al-Babili, Salim; Mahfouz, Magdy M.

    2018-01-01

    Precision plant genome engineering holds much promise for targeted improvement of crop traits via unprecedented single-base level control over the genetic material. Strigolactones (SLs) are a key determinant of plant architecture, known for their role in inhibiting shoot branching (tillering). Here, we used CRISPR/Cas9 in rice (Oryza sativa) for targeted disruption of CAROTENOID CLEAVAGE DIOXYGENASE 7 (CCD7), which controls a key step in SL biosynthesis. The ccd7 mutants exhibited a striking increase in tillering, combined with a dwarf phenotype, which could be rescued by application of the synthetic SL analog GR24. Striga germination assays and liquid chromatography mass spectrometry analysis showed that root exudates of ccd7 mutants were also SL deficient. Taken together, our results show the power of CRISPR/Cas9 for targeted engineering of plant architecture and for elucidating the molecular underpinnings of architecture-related traits.

  14. [Expression of the genes for lysine biosynthesis of Bacillus subtilis in Escherichia coli cells].

    Science.gov (United States)

    Shevchenko, T N; Okunev, O V; Aleksieva, Z M; Maliuta, S S

    1984-01-01

    Hybrid plasmids pLRS33 and pLRB4 containing Bac. subtilis genes coding lysin biosynthesis were subjected to genetical analysis. It is shown that after pLRS33- and pLRB4- transformation of E. coli strains, auxotrophic relative to lysin and diaminopimelic acid, there occurs complementation of dapA, dapB, dapC, dapD, dapE, lysA mutations by plasmid pLRS33 and of dapC, dapB, lysA mutations by plasmid pLRB4. The plasmids are studied for their influence on the level of lysin and its precurror synthesis in E. coli strains.

  15. Engineering Plant Architecture via CRISPR/Cas9-mediated Alteration of Strigolactone Biosynthesis

    KAUST Repository

    Butt, Haroon

    2018-01-28

    Precision plant genome engineering holds much promise for targeted improvement of crop traits via unprecedented single-base level control over the genetic material. Strigolactones (SLs) are a key determinant of plant architecture, known for their role in inhibiting shoot branching (tillering). Here, we used CRISPR/Cas9 in rice (Oryza sativa) for targeted disruption of CAROTENOID CLEAVAGE DIOXYGENASE 7 (CCD7), which controls a key step in SL