WorldWideScience

Sample records for biosurfactant-enhanced soil bioremediation

  1. Biosurfactant-enhanced soil bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Kosaric, N.; Lu, G.; Velikonja, J. [Univ. of Western Ontario, London, Ontario (Canada)

    1995-12-01

    Bioremediation of soil contaminated with organic chemicals is a viable alternative method for clean-up and remedy of hazardous waste sites. The final objective in this approach is to convert the parent toxicant into a readily biodegradable product which is harmless to human health and/or the environment. Biodegradation of hydrocarbons in soil can also efficiently be enhanced by addition or in-situ production of biosufactants. It was generally observed that the degradation time was shortened and particularly the adaptation time for the microbes. More data from our laboratories showed that chlorinated aromatic compounds, such as 2,4-dichlorophenol, a herbicide Metolachlor, as well as naphthalene are degraded faster and more completely when selected biosurfactants are added to the soil. More recent data demonstrated an enhanced biodegradation of heavy hydrocarbons in petrochemical sludges, and in contaminated oil when biosurfactants were present or were added prior to the biodegradation process.

  2. Biosurfactant-enhanced bioremediation of hydrophobic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Cameotra, S.S.; Makkar, R.S. [Inst. of Microbial Technology, Chandigarh (India)

    2010-01-15

    Biosurfactants are surface-active compounds synthesized by a wide variety of microorganisms. They are molecules that have both hydrophobic and - philic domains and are capable of lowering the surface tension and the interfacial tension of the growth medium. Biosurfactants possess different chemical structures-lipopeptides, glycolipids, neutral lipids, and fatty acids. They are nontoxic biomolecules that are biodegradable. Biosurfactants also exhibit strong emulsification of hydrophobic compounds and form stable emulsions. Polycyclic aromatic hydrocarbons (PAHs), crude on sludge, and pesticides call be toxic, mutagenic, and carcinogenic compounds that pollute the environment. They are released into the environment as a result of oil spillage and by-products of coal treatment processes. The low water solubility of these compounds limits their availability to microorganisms, which is a potential problem for bioremediation of contaminated sites. Microbially produced surfactants enhance the bioavailability of these hydrophobic compounds for bioremediation. Therefore, biosurfactant-enhanced solubility of pollutants has potential hioremediation applications.

  3. Biosurfactant-enhanced bioremediation of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Cameotra, S.S.; Bollag, J.M. [Penn State University, University Park, PA (USA). Soil Biochemical Lab.

    2003-07-01

    Biosurfactants are surface-active compounds synthesized by it wide variety of micro-organisms. They are molecules that have both hydrophobic and hydrophilic domains and are capable of lowering the surface tension and the interfacial tension of the growth medium. Biosurfactants possess different chemical structures - lipopeptides, glycolipids, neutral lipids, and fatty acids. They are nontoxic biomolecules that are biodegradable. Biosurfactants also exhibit strong emulsification of hydrophobic compounds and form stable emulsions. Polycyclic aromatic hydrocarbons (PAHs) can be toxic, mutagenic, and carcinogenic compounds that pollute the environment. They are released to the environment its a result of spillage of oil and byproducts of coal treatment processes. The low water solubility of PAHs limits their availability to microorganisms, which is a potential problem for bioremediation of PAH-contaminated sites. Microbially produced surfactants enhance the bioavailability of these hydrophobic compounds for bioremediation. Therefore, biosurfactant-enhanced solubility of PAHs has potential applications in bioremediation.

  4. Bioremediation of Creosote - contaminated Soil

    OpenAIRE

    BYSS, Marius

    2008-01-01

    Bioremediation of creosote-contaminated soil was studied employing the methods of soil microbial biology and using new gas chromatography-mass spectrometry-mass spectrometry analytical approach. The changes of the soil microbial community under the polycyclic aromatic hydrocarbons (PAH) pollution impact were analyzed and described, as well as the changes during the bioremediation experiments. Laboratory-scale bioremediation experiments using the soil microbial community (consisted of bacteria...

  5. Soils bio-remediation; Bioremediation des sols

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, T.M. [Universite Claude Bernard, 69 - Lyon-1 (France)

    2001-06-01

    The biological treatment of soils (in-situ or excavated) consists in the use of micro-organisms for the transformation of noxious compounds into non-noxious ones. Bacteria are the main micro-organisms used but fungi can play a role in some ex-situ processes. The bio-remediation of the soil and aquifer requires the use of various processes like diffusion and advection, sorption and desorption, and biodegradation. The degradation of the pollutants is efficient only if a sufficient amount of micro-organisms is in close-contact with the pollutants. The efficiency, fastness and cost are important factors to take into consideration in such remedial actions. Thus, a good mastery of soils sciences and processes engineering is needed. This article presents the concepts and processes used in biological remediation of soils: 1 - concept of processes engineering (heterogenous environments, processes characteristics, in-situ or on-site reactors); 2 - concept of biological treatments (micro-organisms, biodegradation, microbial ecology, bio-stimulation, bio-augmentation); 3 - biological treatment process (bio-venting, bio-spargeing, bio-slurping, in-situ aerobic bio-process, bio-hillock, phyto-remediation, metals extraction). (J.S.)

  6. Bioremediation of oil contaminated soils

    International Nuclear Information System (INIS)

    The Baldwin Waste Oil Site was an abandoned waste oil recycling facility located in Robstown, Nueces County, Texas. As part of their site assessment activities, the US Environmental Protection Agency (EPA) requested that the Ecology and Environment, Inc., Technical Assistance Team (TAT) investigate the feasibility of using in-situ bioremediation to remediate soils contaminated with oil and grease components, petroleum hydrocarbons, and volatile organic compounds. Bioremediation based on the land treatment concept was tested. The land treatment concept uses techniques to optimize indigenous microbial populations and bring them in contact with the contaminants. The study was designed to collect data upon which to base conclusions on the effectiveness of bioremediation, to demonstrate the effectiveness of bioremediation under field conditions, and to identify potential problems in implementing a full-scale project. Bioremediation effectiveness was monitored through total petroleum hydrocarbons (TPH) and Oil and Grease (O and G) analyses. Site specific treatment goals for the pilot project were concentrations of less than 1% for O and G and less than 10,000 mg/kg for TPH. Based on the reduction of TPH and O and G concentrations and the cost effectiveness of bioremediation based on the land treatment concept, full-scale in-situ bioremediation was initiated by the EPA at the Baldwin Waste Oil Site in February of 1993

  7. Bioremediation of petroleum contaminated soil

    International Nuclear Information System (INIS)

    This paper reports on bioremediation, which offers a cost-competitive, effective remediation alternative for soil contaminated with petroleum products. These technologies involve using microorganisms to biologically degrade organic constituents in contaminated soil. All bioremediation applications must mitigate various environmental rate limiting factors so that the biodegradation rates for petroleum hydrocarbons are optimized in field-relevant situations. Traditional bioremediation applications include landfarming, bioreactors, and composting. A more recent bioremediation application that has proven successful involves excavation of contaminated soil. The process involves the placement of the soils into a powerscreen, where it is screened to remove rocks and larger debris. The screened soil is then conveyed to a ribbon blender, where it is mixed in batch with nutrient solution containing nitrogen, phosphorus, water, and surfactants. Each mixed soil batch is then placed in a curing pile, where it remains undisturbed for the remainder of the treatment process, during which time biodegradation by naturally occurring microorganisms, utilizing biochemical pathways mediated by enzymes, will occur

  8. Soil bioremediation at CFB Trenton: evaluation of bioremediation processes

    International Nuclear Information System (INIS)

    Bioremediation processes and their application in the cleanup of contaminated soil, were discussed. The petroleum contaminated soil at CFB Trenton, was evaluated to determine which bioremediation process or combination of processes would be most effective. The following processes were considered: (1) white hot fungus, (2) Daramend proprietary process, (3) composting, (4) bioquest proprietary bioremediation processes, (5) Hobbs and Millar proprietary bioremediation process, and (6) farming. A brief summary of each of these options was included. The project was also used as an opportunity to train Latvian and Ukrainian specialists in Canadian field techniques and laboratory analyses. Preliminary data indicated that bioremediation is a viable method for treatment of contaminated soil. 18 refs., 3 figs

  9. Bioremediation of fossil fuel contaminated soils

    International Nuclear Information System (INIS)

    Bioremediation involves the use of microorganisms and their biodegradative capacity to remove pollutants. The byproducts of effective bioremediation, such as water and carbon dioxide, are nontoxic and can be accommodated without harm to the environment and living organisms. This paper reports that using bioremediation to remove pollutants has many advantages. This method is cheap, whereas physical methods for decontaminating the environment are extraordinarily expensive. Neither government nor private industry can afford the cost to clean up physically the nation's known toxic waste sites. Therefore, a renewed interest in bioremediation has developed. Whereas current technologies call for moving large quantities of toxic waste and its associated contaminated soil to incinerators, bioremediation can be done on site and requires simple equipment that is readily available. Bioremediation, though, is not the solution for all environmental pollution problems. Like other technologies, bioremediation has limitations

  10. Bioremediation of Contaminated Soil Containing Crude Oil

    OpenAIRE

    Casimiro, Rodolfo

    2015-01-01

    Bioremediation of contaminated soil containing crude oil is a technique process whereby biological systems are harnessed to affect the clean-up of environmental pollutants. Microbial systems are most widely employed in bioremediation programs, generally in the treatment of soil and water contaminants with organic pollutants. This thesis reports the experiment of treating the soil without use of any chemicals. Four treatments were used for this experiment. All of the treatments were containing...

  11. Bioremediation of uranium contaminated Fernald soils

    International Nuclear Information System (INIS)

    This study investigated the use of microbial bioleaching for removal of uranium from contaminated soils. The ability of bacteria to assist in oxidation and solubilization of uranium was compared to the ability of fungi to produce complexing compounds which have the same effect. Biosorption of uranium by fungi was also measured. Soil samples were examined for changes in mineralogical properties due to these processes. On the basis of these laboratory scale studies a generalized flow sheet is proposed for bioremediation of contaminated Fernald soils

  12. Bioremediation of petroleum hydrocarbons in soil environments

    International Nuclear Information System (INIS)

    The bioremediation of petroleum hydrocarbons in soil environments was reviewed via a literature survey and discussions with workers in relevant disciplines. The impacts of hydrocarbons on soil are discussed along with a range of methods available to assist in their decomposition by soil microorganisms. The range of petroleum-based materials considered includes conventional and synthetic crude oils, refined oils, sludges, asphalts and bitumens, drilling mud residues, creosote tars, and some pesticides. The degradability of hydrocarbons largely depends upon their aqueous solubility and their adsorption on soil surfaces and, therefore, is related to their molecular structures. The ease of decomposition decreases with increasing complexity of structure, in the order aliphatics > aromatics > heterocyclics and asphaltenes (most recalcitrant). Most soils contain an adequate population of microorganisms and hence bioaugmentation may only be needed in special circumstances. Decomposition is fastest in soils where the hydrocarbon loading rate, aeration, nutrition, moisture, and pH are all optimized. At spill sites there is little control over the application rate, although containment measures can assist in either limiting contamination or distributing it more evenly. The enhancement of bioremediation is discussed in light of all these factors. Other techniques such as enhanced aeration, hydrocarbon decomposition by anaerobic processes, surfactants, and burning are also discussed. 211 refs., 11 figs., 10 tabs

  13. Computer simulation of contaminated soil bioremediation

    International Nuclear Information System (INIS)

    A mathematical model has been developed and simulated to describe contaminated soil bioremediation. The model equations consist of a system of three nonlinear partial differential equations. Dimensional analysis of the model equations has been performed, and solution of these equations has been conducted by an implicit finite difference method. A computer program is ru ned for solving the model equations and by using this program, the influence of the principal parameters (porosity, soil aggregate radius, and partition coefficient of the substrate) on the fate of chemicals has been studied. The rates of substrate, Oxygen diffusion and biodegradation rate have been found to be the controlling mechanisms for remediation in the aggregates

  14. Improving Bioremediation of PAH Contaminated Soils by Thermal Pretreatment

    OpenAIRE

    Bonten, L.T.C.

    2001-01-01

    Numerous sites and large volumes of sediments in the Netherlands are contaminated with polycyclic aromatic hydrocarbons (PAH), which are of great concern because of their toxic and carcinogenic effects. Since PAH tend to sorb very strongly to the soil matrix, bioremediation is a slow process with often high residual concentrations after remediation. In this study it was tried to develop methods to improve bioremediation, this means to decrease residual concentrations after bioremediation. In ...

  15. Bioremediation of diesel fuel contaminated soils

    International Nuclear Information System (INIS)

    Bioremediation techniques were successfully employed in the cost-effective cleanup of approximately 8400 gallons of diesel fuel which had been accidentally discharged at a warehouse in New Jersey. Surrounding soils were contaminated with the diesel fuel at concentrations exceeding 1,470 mg/kg total petroleum hydrocarbons as measured by infrared spectroscopy (TPH-IR, EPA method 418.1, modified for soils). This paper reports on treatment of the contaminated soils through enhanced biological land treatment which was chosen for the soil remediation pursuant to a New Jersey Pollutant Discharge Elimination System - Discharge to Ground Water (NJPDES-DGW) permit. Biological land treatment of diesel fuel focuses on the breakdown of the hydrocarbon fractions by indigenous aerobic microorganisms in the layers of soil where oxygen is made available. Metabolism by these microorganisms can ultimately reduce the hydrocarbons to innocuous end products. The purpose of biological land treatment was to reduce the concentration of the petroleum hydrocarbon constituents of the diesel fuel in the soil to 100 ppm total petroleum hydrocarbons (TPH)

  16. Bioremediation of Copper Contaminated Soil Using Bacteria

    Directory of Open Access Journals (Sweden)

    Parul Bhatt Kotiyal

    2013-04-01

    Full Text Available Bioremediation is the use of living organisms (primarily microorganisms for removal of a pollutant from the biosphere. It relies on biological processes to minimize an unwanted environment impact of the pollutants. The microorganisms in particular have the abilities to degrade, detoxify and even accumulate the harmful organic as well as inorganic compounds. Five soil samples were collected from Selaqui industrial area, from different places at a depth of 0-15 cm. These soil samples were subjected to dilution (1:10, then from these dilution 4 and 5 were used for inoculation. Nutrient agar plates were prepared to be used as media. Replica of each dilution was prepared. After 24 hours of incubation at 28 degree centigrade bacterial colonies were observed on the plates. These cultures were purified to get 10 bacterial cultures. Further these cultures were inoculated in 10ml of nutrient broths each and after dense growth were inoculated in 10gm of soil samples in petriplates and were incubated for four days and then copper was estimated by Atomic Absorption Spectrometry technique and compared with the levels of copper obtained that were not inoculated with bacterial strains. The soil samples collected are all alkaline in nature; all the 10 isolated bacteria are gram negative and are chained cocci in structure. Sample 1 and 2, both dilutions have shown reduction in the amount of copper as compared to original soil samples without bacterial inoculation. According to this research sample 1 and sample 2 have shown reduction in the copper levels as compared to the raw soil samples that is without bacterial inoculation in them.

  17. Chemometric assessment of enhanced bioremediation of oil contaminated soils

    DEFF Research Database (Denmark)

    Soleimani, Mohsen; Farhoudi, Majid; Christensen, Jan H.

    2013-01-01

    Bioremediation is a promising technique for reclamation of oil polluted soils. In this study, six methods for enhancing bioremediation were tested on oil contaminated soils from three refinery areas in Iran (Isfahan, Arak, and Tehran). The methods included bacterial enrichment, planting, and addi......Bioremediation is a promising technique for reclamation of oil polluted soils. In this study, six methods for enhancing bioremediation were tested on oil contaminated soils from three refinery areas in Iran (Isfahan, Arak, and Tehran). The methods included bacterial enrichment, planting...... steranes were used for determining the level and type of hydrocarbon contamination. The same methods were used to study oil weathering of 2 to 6 ring polycyclic aromatic compounds (PACs). Results demonstrated that bacterial enrichment and addition of nutrients were most efficient with 50% to 62% removal...

  18. TECHNOLOGIES FOR BIOREMEDIATION OF SOILS CONTAMINATED WITH PETROLEUM PRODUCTS

    Directory of Open Access Journals (Sweden)

    Roxana Gabriela POPA

    2012-05-01

    Full Text Available Biological methods for remediation of soils is based on the degradation of pollutants due to activity of microorganisms (bacteria, fungi. Effectiveness of biological decontamination of soils depends on the following factors: biodegradation of pollutants, type of microorganisms used, choice of oxidant and nutrient and subject to clean up environmental characteristics. Ex situ techniques for bioremediation of soils polluted are: composting (static / mechanical agitation, land farming and biopiles. Techniques in situ bioremediation of soils polluted are: bioventingul, biospargingul and biostimulation – bioaugumentarea.

  19. Bioremediation and detoxification of hydrocarbon pollutants in soil

    International Nuclear Information System (INIS)

    As a cleanup alterative, the bioremediation potential of soil, contaminated by spills of three medium petroleum distillates, jet fuel heating oil (No. 2 fuel oil) and diesel fuel was evaluated in controlled-temperature laboratory soil columns and in outdoor lysimeters. Solvent extraction followed by gas chromatography (GC) was used routinely for analysis of fuel residues. Occasionally, class separation and GC-mass spectrometry (GC-MS) were also used in residue characterization. The decrease in toxic residues was evaluated by Microtox and Ames tests. Seed germination and plant growth bioassays were also performed. Persistence and toxicity of the fuels increased in the order of jet fuel < heating oil < diesel fuel. Bioremediation consisting of liming, fertilization and tilling decreased the half-lives of the pollutants in soil by a factor of 2-3. Biodegradation was faster at 27C than at 17 or 37C, but hydrocarbon concentration and soil quality had only modest influence on biodegradation rates and did not preclude successful bioremediation of these contaminated soils within one growing season. Microbial activity measurements by the fluorescein diacetate hydrolysis assay confirmed that microbial activity was the principal force in hydrocarbon elimination. Bioremediation was highly effective in eliminating also the polycyclic aromatic components of diesel fuel. The bioremediation and detoxification of fuel-contaminated soil was corroborated by Microtox, Ames and plant growth bioassays

  20. Bioremediation of diesel oil contaminated soil and water

    OpenAIRE

    Kauppi, Sari

    2011-01-01

    Diesel spills contaminate aquatic and terrestrial environments. To prevent the environmental and health risks, the remediation needs to be advanced. Bioremediation, i.e., degradation by microbes, is one of the suitable methods for cleaning diesel contamination. In monitored natural attenuation technique are natural processes in situ combined, including bioremediation, volatilization, sorption, dilution and dispersion. Soil bacteria are capable of adapting to degrade environmental pollutants, ...

  1. Rehabilitation of oil polluted soils by bioremediation

    Science.gov (United States)

    Dumitru, Mihail; Parvan, Lavinia; Cioroianu, Mihai; Carmen, Sirbu; Constantin, Carolina

    2015-04-01

    In Romania about 50,000 ha are polluted with oil and/or brine. The main sources of pollution are the different activities using petroleum products: extraction, transport, treatment, refining and distribution. Taking into acoount the large areas and the cost per unit area, bioremediation was tested as a method of rehabilitation. To stimulate the performance of the bioremediation process for a polluted soil (luvisol) by 3% oil, different methods were tested: -application of a bacterial inoculum consisting of species of the Pseudomonas and Arthrobacter genera;- application of two types of absorbent materials, 16 t/ha peat and 16, respectively, 32 kg/ha Zeba (starch-based polymer, superabsorbent); -mineral fertilization with N200P200K200 and 5 different liquid fertilizer based on potassium humates extracted from lignite in a NPK matrix with micronutrients and added monosaccharides (4 and 8%). After 45 days from the treatment (60 days from pollution) the following observations have been noticed: • the application of only bacterial inoculum had no significant effect on the degradation of petroleum hydrocarbons; • the use of 650 l/ha AH-SH fertilizer (potassium humate in a NPK matrix) led to a 47% decrease of TPH (total petroleum hydrocarbons); • the application of 16 t/ha peat, together with the bacterial inoculum and the AH-SG2 liquid fertilizer (containing humates of potassium in a NPK matrix with microelements and 8% monosaccharides, in which the nitrogen is amide form) led to a 50% decrease of the TPH content; • the application of 16 kg/ha Zeba absorbent together with bacterial inoculum and 650 l/ha AH-SG1 liquid fertilizer (containing humates of potassium in a NPK matrix with microelements and 4% monosaccharide in which the nitrogen is in amide form) led to a 57% decrease of the TPH content; • the application of 32 kg/ha Zeba absorbent, together with the AH-SG2 fertilizer, led to a 58% decrease of the TPH content.

  2. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods

    OpenAIRE

    Chibuike, G. U.; S. C. Obiora

    2014-01-01

    Soils polluted with heavy metals have become common across the globe due to increase in geologic and anthropogenic activities. Plants growing on these soils show a reduction in growth, performance, and yield. Bioremediation is an effective method of treating heavy metal polluted soils. It is a widely accepted method that is mostly carried out in situ; hence it is suitable for the establishment/reestablishment of crops on treated soils. Microorganisms and plants employ different mechanisms for...

  3. Electromigration of Contaminated Soil by Electro-Bioremediation Technique

    Science.gov (United States)

    Azhar, A. T. S.; Nabila, A. T. A.; Nurshuhaila, M. S.; Shaylinda, M. Z. N.; Azim, M. A. M.

    2016-07-01

    Soil contamination with heavy metals poses major environmental and human health problems. This problem needs an efficient method and affordable technological solution such as electro-bioremediation technique. The electro-bioremediation technique used in this study is the combination of bacteria and electrokinetic process. The aim of this study is to investigate the effectiveness of Pseudomonas putida bacteria as a biodegradation agent to remediate contaminated soil. 5 kg of kaolin soil was spiked with 5 g of zinc oxide. During this process, the anode reservoir was filled with Pseudomonas putida while the cathode was filled with distilled water for 5 days at 50 V of electrical gradient. The X-Ray Fluorescent (XRF) test indicated that there was a significant reduction of zinc concentration for the soil near the anode with 89% percentage removal. The bacteria count is high near the anode which is 1.3x107 cfu/gww whereas the bacteria count at the middle and near the cathode was 5.0x106 cfu/gww and 8.0x106 cfu/gww respectively. The migration of ions to the opposite charge of electrodes during the electrokinetic process resulted from the reduction of zinc. The results obtained proved that the electro-bioremediation reduced the level of contaminants in the soil sample. Thus, the electro-bioremediation technique has the potential to be used in the treatment of contaminated soil.

  4. Bioremediation of a pesticide polluted soil: Case DDT

    International Nuclear Information System (INIS)

    1,1,1-trichloro-2,2 bis (p-chlorophenyl) ethane (DDT) has been used since the Second World War to control insect-borne diseases in humans and domestic animals. The use of these organochlorine insecticides has been banned in most countries because of its persistence in the environment, biomagnification and potential susceptibility to toxicity to higher animals. Bioremediation involves the use of microorganisms to degrade organic contaminants in the environment, transforming them into simpler and less dangerous, even harmless compounds. This decontamination strategy has low costs, and wide public acceptance, also it can take place on the site. Compared to other methods, bioremediation is a more promising and less expensive to eliminate contaminants in soil and water. In soil, compounds such as DDT, chlorinated biphenyls can be partially biodegraded by a group of aerobic bacteria that cometabolize the contaminant. The bioavailability of pollutants may be enhanced by treating the soil in the presence of contaminant mobilizing agents such as surfactants. In this review we discuss the different strategies for bioremediation of soil contaminated with DDT, including mechanisms and degradation pathways. The application of these techniques in contaminated soil is also described. This review also discusses which is the best strategy for bioremediation of DDT.

  5. Bioremediation evaluation of surface soils contaminated with organic compounds

    International Nuclear Information System (INIS)

    This paper presents background information on bioremediation; information on biotechnologies that have been proven in other industries and that may be applicable to the natural gas industry; a protocol for assessing the feasibility of bioremediation; and, some preliminary results on some soils that were evaluated using the protocol. Background information related to natural gas production and processing sites and chemicals that are typically used are presented because both are important preliminary feasibility screening criteria. Applications of bioremediation to sites with similar chemicals such as refineries, wood treating plants, and former manufactured gas plants (MGP's) have been used for approximately 30 years, however bioremediation is not widely used to treat wellhead sites or natural gas production and processing sites. Examples of applications of bioremediation to non-natural gas industry sites are presented and the similarities, primarily chemical, are presented. The GRI developed an Accelerated Biotreatability Protocol for former MGP sites and it is currently being modified for application to the Exploration and Production (E and P) industry. The Accelerated Treatability Protocol is a decision-making framework to evaluate the potential full-scale biological treatment options. Preliminary results from some soils collected and evaluated using the protocol are presented

  6. Use of Additives in Bioremediation of Contaminated Groundwater and Soil

    Science.gov (United States)

    This chapter reviews application of additives used in bioremediation of chlorinated solvents and fuels for groundwater and soil remediation. Soluble carbon substrates are applicable to most site conditions except aquifers with very high or very low groundwater flow. Slow-release ...

  7. Influence of salinity on bioremediation of oil in soil

    International Nuclear Information System (INIS)

    Spills from oil production and processing result in soils being contaminated with oil and salt. The effect of NaCl on degradation of oil in a sandy-clay loam and a clay loam soil was determined. Soils were treated with 50 g kg-1 non-detergent motor oil (30 SAE). Salt treatments included NaCl amendments to adjust the soil solution electrical conductivities to 40, 120, and 200 dS m-1. Soils were amended with nutrients and incubated at 25oC. Oil degradation was estimated from the quantities of CO2 evolved and from gravimetric determinations of remaining oil. Salt concentrations of 200 dS m-1 in oil amended soils resulted in a decrease in oil mineralized by 44% for a clay loam and 20% for a sandy-clay loam soil. A salt concentration of 40 dS m-1 reduced oil mineralization by about 10% in both soils. Oil mineralized in the oil amended clay-loam soil was 2-3 times greater than for comparable treatments of the sandy-clay loam soil. Amending the sandy-clay loam soil with 5% by weight of the clay-loam soil enhanced oil mineralization by 40%. Removal of salts from oil and salt contaminated soils before undertaking bioremediation may reduce the time required for bioremediation. (author)

  8. Pilot bioremediation of petroleum-contaminated soil

    International Nuclear Information System (INIS)

    This paper discusses bioremediation of various petroleum hydrocarbons accomplished during a 4-month period at the Carlow Road, Port Stanley site. Intensive biological and physical operations results in a decrease of all contaminants which were monitored including BTEX compounds, oil and grease, and polycyclic aromatic hydrocarbon compounds. Percentage reduction of 2- and 3-ring, and 4- and 5-ring PAHs decreased as molecular weight increased

  9. Bioremediation of contaminated soil: Strategy and case histories

    International Nuclear Information System (INIS)

    Microorganisms are capable of degrading many kinds of xenobiotic compounds and toxic chemicals. These microorganisms are ubiquitous in nature and there are numerous cases in which long-term contamination of soil and groundwater has been observed. The persistence of the contamination is usually caused by the inability of micro-organisms to metabolize these compounds under the prevailing environmental conditions. Two general reasons account for the failure of microbes to degrade pollutants in any environment: (1) inherent molecular recalcitrance of the contaminants and (2) environmental factors. The inherent molecular recalcitrance is usually associated with xenobiotic compounds where the chemical structure of the molecule is such that microbes and enzymes required for its catabolism have not evolved yet in nature. The environmental factors include a range of physicochemical conditions which influence microbial growth and activity. Biological remediation of contaminated sites can be accomplished using naturally-occurring microorganisms to treat the contaminants. Only particular groups of microorganisms are capable of decomposing specific compounds. The development of a bioremediation program for a specific contaminated soil system usually includes: thorough site/soil/waste characterization; treatability studies; and design and implementation of the bioremediation plan. The results of in situ and ex situ treatment programs involving the cleanup of petroleum hydrocarbon-contaminated soil will be discussed in detail. The paper will address key issues affecting the success of the bioremediation process such as nutrient transport, metal precipitation and potential soil clogging, microbial inoculation, etc

  10. Assessing bioremediation of crude oil in soils and sludges

    International Nuclear Information System (INIS)

    Standard bulk property analytical methods currently being employed to evaluate crude oil bioremediation efficacy in soils provide no information concerning the mechanisms by which hydrocarbon losses are occurring (e.g., biodegradation versus leaching). Site/sample heterogeneity in field bioremediation projects may make it difficult to accurately quantify hydrocarbon losses due to biodegradation. To better understand the mechanisms by which losses are occurring and to accurately evaluate biodegradation rates, the hydrocarbon analytical methods must provide both quantitative and compositional information. In this study laboratory bioremediation experiments were used to compare the results of bulk property analytical methods with those methods used by petroleum geochemists that provide both quantitative and compositional data. A tecator extraction was used to isolate the total extractable matter (TEM) from the samples. Compositional changes were monitored by (1) column chromatography to determine class distributions, (2) high resolution gas chromatography with a flame-ionization detector (GC/FID) and (3) gas chromatography/mass spectrometry (GC/MS). Illustrations of the compositional changes detected by each method and their application to validating bioremediation are provided

  11. Importance of soil-water relation in assessment endpoint in bioremediated soils: Plant growth and soil physical properties

    International Nuclear Information System (INIS)

    Much effort has been focused on defining the end-point of bioremediated soils by chemical analysis (Alberta Tier 1 or CCME Guideline for Contaminated Soils) or toxicity tests. However, these tests do not completely assess the soil quality, or the capability of soil to support plant growth after bioremediation. This study compared barley (Hordeum vulgare) growth on: (i) non-contaminated, agricultural topsoil, (2) oil-contaminated soil (4% total extractable hydrocarbons, or TEH), and (3) oil-contaminated soil treated by bioremediation (< 2% TEH). Soil physical properties including water retention, water uptake, and water repellence were measured. The results indicated that the growth of barley was significantly reduced by oil-contamination of agricultural topsoil. Furthermore, bioremediation did not improve the barley yield. The lack of effects from bioremediation was attributed to development of water repellence in hydrocarbon contaminated soils. There seemed to be a critical water content around 18% to 20% in contaminated soils. Above this value the water uptake by contaminated soil was near that of the agricultural topsoil. For lower water contents, there was a strong divergence in sorptivity between contaminated and agricultural topsoil. For these soils, water availability was likely the single most important parameter controlling plant growth. This parameter should be considered in assessing endpoint of bioremediation for hydrocarbon contaminated soils

  12. Nitrate removal by electro-bioremediation technology in Korean soil

    International Nuclear Information System (INIS)

    The nitrate concentration of surface has become a serious concern in agricultural industry through out the world. In the present study, nitrate was removed in the soil by employing electro-bioremediation, a hybrid technology of bioremediation and electrokinetics. The abundance of Bacillus spp. as nitrate reducing bacteria were isolated and identified from the soil sample collected from a greenhouse at Jinju City of Gyengsangnamdo, South Korea. The nitrate reducing bacterial species were identified by 16 s RNA sequencing technique. The efficiency of bacterial isolates on nitrate removal in broth was tested. The experiment was conducted in an electrokinetic (EK) cell by applying 20 V across the electrodes. The nitrate reducing bacteria (Bacillus spp.) were inoculated in the soil for nitrate removal process by the addition of necessary nutrient. The influence of nitrate reducers on electrokinetic process was also studied. The concentration of nitrate at anodic area of soil was higher when compared to cathode in electrokinetic system, while adding bacteria in EK (EK + bio) system, the nitrate concentration was almost nil in all the area of soil. The bacteria supplies electron from organic degradation (humic substances) and enhances NO3- reduction (denitrification). Experimental results showed that the electro-bio kinetic process viz. electroosmosis and physiological activity of bacteria reduced nitrate in soil environment effectively. Involvement of Bacillus spp. on nitrification was controlled by electrokinetics at cathode area by reduction of ammonium ions to nitrogen gas. The excellence of the combined electro-bio kinetics technology on nitrate removal is discussed.

  13. Ex-situ bioremediation of petroleum contaminated soil

    International Nuclear Information System (INIS)

    The use of stress acclimated bacteria and nutrient supplements to enhance the biodegradation of petroleum contaminated soil can be a cost effective and reliable treatment technology to reduce organic contaminant levels to below established by local, state, and federal regulatory clean-up criteria. This paper will summarize the results of a field study in which 12,000 yds3 of petroleum contaminated soil was successfully treated via ex-situ bioremediation and through management of macro and micronutrient concentrations, as well as, other site specific environmental factors that are essential for optimizing microbial growth

  14. Aerobic bioremediation of petroleum contaminated soil using controlled landfarming technology

    International Nuclear Information System (INIS)

    This paper reports that the Delaware Department of Natural Resources and Environmental Control (DNREC) has been concerned about open, uncontrolled landfarming remediation procedures producing a significant amount of atmospheric volatile petroleum discharge and increasing the probability of the remediation site's soil and groundwater becoming contaminated by rainwater. WIK Associates, Inc., therefore, has been developing full scale aerobic bioremediation technology for clients within the Delaware area in order to carry out year round, full scale, aerobic biodegradation of petroleum contaminated soils, while controlling any volatile emissions

  15. Chemometric assessment of enhanced bioremediation of oil contaminated soils.

    Science.gov (United States)

    Soleimani, Mohsen; Farhoudi, Majid; Christensen, Jan H

    2013-06-15

    Bioremediation is a promising technique for reclamation of oil polluted soils. In this study, six methods for enhancing bioremediation were tested on oil contaminated soils from three refinery areas in Iran (Isfahan, Arak, and Tehran). The methods included bacterial enrichment, planting, and addition of nitrogen and phosphorous, molasses, hydrogen peroxide, and a surfactant (Tween 80). Total petroleum hydrocarbon (TPH) concentrations and CHEMometric analysis of Selected Ion Chromatograms (SIC) termed CHEMSIC method of petroleum biomarkers including terpanes, regular, diaromatic and triaromatic steranes were used for determining the level and type of hydrocarbon contamination. The same methods were used to study oil weathering of 2 to 6 ring polycyclic aromatic compounds (PACs). Results demonstrated that bacterial enrichment and addition of nutrients were most efficient with 50% to 62% removal of TPH. Furthermore, the CHEMSIC results demonstrated that the bacterial enrichment was more efficient in degradation of n-alkanes and low molecular weight PACs as well as alkylated PACs (e.g. C₃-C₄ naphthalenes, C₂ phenanthrenes and C₂-C₃ dibenzothiophenes), while nutrient addition led to a larger relative removal of isoprenoids (e.g. norpristane, pristane and phytane). It is concluded that the CHEMSIC method is a valuable tool for assessing bioremediation efficiency. PMID:23644688

  16. A petroleum contaminated soil bioremediation facility

    International Nuclear Information System (INIS)

    The amount of petroleum contaminated soil (PCS) at the Savannah River site (SRS) that has been identified, excavated and is currently in storage has increased several fold during the last few years. Several factors have contributed to this problem: (1) South Carolina Department of Health ad Environmental control (SCDHEC) lowered the sanitary landfill maximum concentration for total petroleum hydrocarbons (TPH) in the soil from 500 to 100 parts per million (ppm), (2) removal and replacement of underground storage tanks at several sites, (3) most recently SCDHEC disallowed aeration for treatment of contaminated soil, and (4) discovery of several very large contaminated areas of soil associated with leaking underground storage tanks (LUST), leaking pipes, disposal areas, and spills. Thus, SRS has an urgent need to remediate large quantities of contaminated soil that are currently stockpiled and the anticipated contaminated soils to be generated from accidental spills. As long as we utilize petroleum based compounds at the site, we will continue to generate contaminated soil that will require remediation

  17. Ethanol-enhanced bioremediation of PAH-contaminated soils

    International Nuclear Information System (INIS)

    Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs) is highly challenging because of the low solubility and strong sorption properties of PAHs to soil organic matter. Two PAH-contaminated soils from former manufactured gas plant (MGP) sites were pretreated with ethanol to enhance the bioavailability of PAH compounds. The biodegradation of various PAHs in the pretreated soils was assessed using soil slurry reactor studies. The time needed to degrade 90% of the total PAH in the pretreated soils was at least 5 days faster than soils that were not pretreated with ethanol. A distinctive advantage with the pretreatment of soils with ethanol was the enhanced removal of 4-ring compounds such as chrysene. Approximately 90% of chrysene in the ethanol-treated soils were removed within 15 days while soils without pretreatment needed more than 30 days to obtain similar removal levels. After 35 days of biotreatment in the slurry reactors, approximately 40% of benzo(a)pyrene were removed in the ethanol-treated soils while only 20% were removed in soils not pretreated with ethanol

  18. Bioremediation potential of crude oil spilled on soil

    International Nuclear Information System (INIS)

    Spills sometimes occur during routine operations associated with exploration and production (E and P) of crude oil. These spills at E and P sites typically are small, less than 1 acre (0.4 ha), and the spill may be in remote locations. As a result, bioremediation often represents a cost-effective alternative to other cleanup technologies. The goal of this study was to determine the potential for biodegrading a range of crude oil types and determining the effect of process variables such as soil texture and soil salinity. Crude oils evaluated ranged in American Petroleum institute (API) gravity from 14 degree to 45 degree. The extent of biodegradation was calculated from oxygen uptake data and the total extractable material (TEM) concentration. Based on the data collected, a simple model was developed for predicting the bioremediation potential of a range of crude oil types. Biodegradation rates were significantly lower in sandy soils. Soil salinities greater than approximately 40 mmhos/cm adversely impacted soil microbial activity and biodegradation rate

  19. BIOREMEDIATION

    Science.gov (United States)

    Bioremediation is a method for using the activities of microorganisms and-or plants to transform organic or inorganic compounds that may be harmful to humans, animals, plants or the environment to compounds that are less harmful. In many instances the toxic compounds may be compl...

  20. Microbial changes in rhizospheric soils contaminated with petroleum hydrocarbons after bioremediation

    Institute of Scientific and Technical Information of China (English)

    LIN Xin; LI Pei-jun; ZHOU Qi-xing; XU Hua-xia; ZHANG Hai-rong

    2004-01-01

    Effects of bioremediation on microbial communities in soils contaminated with petroleum hydrocarbons are a scientific problem to be solved. Changes in dominate microbial species and the total amount of microorganisms including bacteria and fungi in rhizospheric soils after bioremediation were thus evaluated using field bioremediation experiments. The results showed that there were changed dominant microorganisms including 11 bacterial strains which are mostly Gram positive bacteria and 6 fungal species which were identified. The total amount of microorganisms including bacteria and fungi increased after bioremediation of microbial agents combined with planting maize. On the contrary, fungi in rhizospheric soils were inhibited by adding microbial agents combined with planting soybean.

  1. Effect of alternating bioremediation and electrokinetics on the remediation of n-hexadecane-contaminated soil

    OpenAIRE

    Sa Wang; Shuhai Guo; Fengmei Li; Xuelian Yang; Fei Teng; Jianing Wang

    2016-01-01

    This study demonstrated the highly efficient degradation of n-hexadecane in soil, realized by alternating bioremediation and electrokinetic technologies. Using an alternating technology instead of simultaneous application prevented competition between the processes that would lower their efficiency. For the consumption of the soil dissolved organic matter (DOM) necessary for bioremediation by electrokinetics, bioremediation was performed first. Because of the utilization and loss of the DOM a...

  2. Overview of a large-scale bioremediation soil treatment project

    International Nuclear Information System (INIS)

    How long does it take to remediate 290,000 yd3 of impacted soil containing an average total petroleum hydrocarbon concentration of 3,000 ppm? Approximately 15 months from start to end of treatment using bioremediation. Mittelhauser was retained by the seller of the property (a major oil company) as technical manager to supervise remediation of a 45-ac parcel in the Los Angeles basin. Mittelhauser completed site characterization, negotiated clean-up levels with the regulatory agencies, and prepared the remedial action plan (RAP) with which the treatment approach was approved and permitted. The RAP outlined the excavation, treatment, and recompaction procedures for the impacted soil resulting from leakage of bunker fuel oil from a large surface impoundment. The impacted soil was treated on site in unline Land Treatment Units (LTUs) in 18-in.-thick lifts. Due to space restraints, multiple lifts site. The native microbial population was cultivated using soil stabilization mixing equipment with the application of water and agricultural grade fertilizers. Costs on this multimillion dollar project are broken down as follows: general contractor cost (47%), bioremediation subcontractor cost (35%), site characterization (10%), technical management (7%), analytical services (3%), RAP preparation and permitting (1%), and civil engineering subcontractor cost (1%). Start-up of field work could have been severely impacted by the existence of Red Fox habitation. The foxes were successfully relocated prior to start of field work

  3. Electro-bioremediation of diesel polluted soils

    OpenAIRE

    Mena Ramírez, Esperanza

    2015-01-01

    Soil pollution is a topic of the major significance all around the World. This environmental problem has increased in the last two centuries, because the Industrial Revolution marked the starting point for the development and intensification of the different industrial activities. Many of them involves the manipulation of multitude substances, hazardous for the environment and, consequently, also for the human health. Among the most widely extended pollutants, heavy metals, fossil fuels and p...

  4. Enhance soil bioremediation with electric fields

    International Nuclear Information System (INIS)

    Electrokinetic remediation is an in situ remediation technique that uses low-level direct-current electric potential differences (on the order of volts per centimeter) or an electric current (on the order of milliamps per square centimeter of cross-sectional area between electrodes) applied across a soil mass by electrodes placed in an open- or closed-flow arrangement. In electrokinetic methods, the groundwater in the boreholes or an externally supplied fluid (processing fluid) is used as the conductive medium. Electrokinetic remediation technology for metal extraction is expected to decrease the cost of remediating contaminated soils to the lower end of the $100--$1,000/m3 range. This would be a significant savings in the $350 billion hazardous waste site cleanup and remediation market. The environmental restoration cost for the mixed (radioactive)-waste market is separately estimated to be $65 billion. The potential of the electrokinetic remediation technique in remediating soils contaminated with radioactive mixed waste using depolarization agents and complexing agents is noteworthy. The authors have removed uranyl ions from spiked kaolinite using the technique

  5. Bioremediation of uranium contaminated soils and wastes

    International Nuclear Information System (INIS)

    Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (1) stabilization of uranium and toxic metals with reduction in waste volume and (2) removal and recovery of uranium and toxic metals from wastes and contaminated soils. Stabilization of uranium and toxic metals in wastes is accomplished by exploiting the unique metabolic capabilities of the anaerobic bacterium, Clostridium sp. The radionuclides and toxic metals are solubilized by the bacteria directly by enzymatic reductive dissolution, or indirectly due to the production of organic acid metabolites. The radionuclides and toxic metals released into solution are immobilized by enzymatic reductive precipitation, biosorption and redistribution with stable mineral phases in the waste. Non-hazardous bulk components of the waste volume. In the second process uranium and toxic metals are removed from wastes or contaminated soils by extracting with the complexing agent citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, followed by photochemical degradation of the uranium citrate complex which is recalcitrant to biodegradation. The toxic metals and uranium are recovered in separate fractions for recycling or for disposal. The use of combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in clean-up and disposal costs

  6. Bioremediation of industrially contaminated soil using compost and plant technology.

    Science.gov (United States)

    Taiwo, A M; Gbadebo, A M; Oyedepo, J A; Ojekunle, Z O; Alo, O M; Oyeniran, A A; Onalaja, O J; Ogunjimi, D; Taiwo, O T

    2016-03-01

    Compost technology can be utilized for bioremediation of contaminated soil using the active microorganisms present in the matrix of contaminants. This study examined bioremediation of industrially polluted soil using the compost and plant technology. Soil samples were collected at the vicinity of three industrial locations in Ogun State and a goldmine site in Iperindo, Osun State in March, 2014. The compost used was made from cow dung, water hyacinth and sawdust for a period of twelve weeks. The matured compost was mixed with contaminated soil samples in a five-ratio pot experimental design. The compost and contaminated soil samples were analyzed using the standard procedures for pH, electrical conductivity (EC), organic carbon (OC), total nitrogen (TN), phosphorus, exchangeable cations (Na, K, Ca and Mg) and heavy metals (Fe, Mn, Cu, Zn and Cr). Kenaf (Hibiscus cannabinus) seeds were also planted for co-remediation of metals. The growth parameters of Kenaf plants were observed weekly for a period of one month. Results showed that during the one-month remediation experiment, treatments with 'compost-only' removed 49 ± 8% Mn, 32 ± 7% Fe, 29 ± 11% Zn, 27 ± 6% Cu and 11 ± 5% Cr from the contaminated soil. On the other hand, treatments with 'compost+plant' remediated 71 ± 8% Mn, 63 ± 3% Fe, 59 ± 11% Zn, 40 ± 6% Cu and 5 ± 4% Cr. Enrichment factor (EF) of metals in the compost was low while that of Cu (EF=7.3) and Zn (EF=8.6) were high in the contaminated soils. Bioaccumulation factor (BF) revealed low metal uptake by Kenaf plant. The growth parameters of Kenaf plant showed steady increments from week 1 to week 4 of planting. PMID:26551220

  7. Evaluation of bio-remediation technologies for PAHs contaminated soils

    International Nuclear Information System (INIS)

    Natural attenuation is a new concept related to polluted soil remediation. Can be understood like an 'in situ' bio-remediation process with low technical intervention. This low intervention may be in order to follow the behaviour of pollutants 'monitored natural attenuation' or include an optimisation process to improve biological remediation. The use of this technology is a fact for light hydrocarbon polluted soil, but few is known about the behaviour of polycyclic aromatic hydrocarbons (PAHs) in this process. PAHs are more recalcitrant to bio-remediation due to their physic-chemical characteristics, mainly hydrophobicity and electrochemical stability. PAHs are a kind of pollutants widely distributed in the environment, not only in the proximity of the source. This linked to the characteristics of some of them related to toxicity and mutagenicity implies its inclusion as target compounds from an environmental point of view. Their low availability, solubility and the strong tendency to bind to soil particle, especially to the organic phase affect PAHs biological mineralisation. So, if the pollutant is not available to microorganisms it can not be bio-degraded. Bioavailability can be assessed form several but complementary points of view: physico-chemical and biological. First including the term availability and the second to point out the capacity of soil microorganisms to mineralize PAHs. Availability and Bio-degradability must be determined, as well as the presence and activity of specific degraders among the soil organisms, once settled these points is necessary to study the biological requirements to optimise biodegradation kinetics of these compounds. In this work we present a study carried out on a soil, contaminated by PAHs, the study includes three main topics: bioavailability assessment (both term availability and bio-degradability), bio-remediation assessment, once optimised conditions for natural attenuation and finally a simulation of the

  8. [Bio-remediation techniques of crude oil contaminated soils].

    Science.gov (United States)

    Li, Peijun; Guo, Shuhai; Sun, Tieheng; Tai, Peidong; Zhang, Chungui; Bai, Yuxing; Sun, Qiang; Sheng, Ping

    2002-11-01

    The bioremediation of soils contaminated by different types of petroleum were carried out with composting process in a prepared bed. By the measures of nutrient- and microbiological agent addition, and moisture- and pH control, an ideal environment for microbes were obtained. When total petroleum hydrocarbons, which consist of thin oil, high condensation oil, special viscous oil, and viscous oil, were in the range of 25.8-77.2 g.kg-1 dry soil, the petroleum removal rate could reach 38.37-56.74% by 2 months operation. The contents of aromatic hydrocarbon, asphaltum and resin were important factors controlling the degradation of petroleum. 6 fungi, 6 bacteria and 1 actinomyces were found to be the dominant strains for petroleum degradation. The results could provide theoretical bases for remediation of soil contaminated by petroleum. PMID:12625007

  9. Bioremediation of Petroleum Hydrocarbons in Heterogeneous Soils

    Energy Technology Data Exchange (ETDEWEB)

    Song Jin; Paul Fallgren; Terry Brown

    2006-03-02

    Western Research Institute (WRI) in conjunction with the University of Wyoming, Department of Renewable Resources and the U.S. Department of Energy, under Task 35, conducted a laboratory-scale study of hydrocarbon biodegradation rates versus a variety of physical and chemical parameters to develop a base model. By using this model, biodegradation of Petroleum hydrocarbons in heterogeneous soils can be predicted. The base model, as developed in this study, have been tested by both field and laboratory data. Temperature, pH, and nutrients appear to be the key parameters that can be incorporate into the model to predict biodegradation rates. Results to date show the effect of soil texture and source on the role of each parameter in the rates of hydrocarbon biodegradation. Derived from the existing study, an alternative approach of using CO{sub 2} accumulation data has been attempted by our collaborators at the University of Wyoming. The model has been modified and fine tuned by incorporating these data to provide more information on biodegradation.

  10. Bioremediation of hydrocarbon polluted soil - Improvement of in situ bioremediation by bioaugmentation with endogenous and exogenous strains

    OpenAIRE

    Tarayre, Cédric

    2010-01-01

    Petroleum pollution has now become a real problem because hydrocarbons are persistent contaminants in soils and water. Contamination problems increase when ages of relevant facilities, such as oil storage tanks and pipelines, increase over time. The evolution of Legislation concerning soil pollution has led to the need of efficient techniques able to restore the polluted ground. Unfortunately, these techniques are expensive. Bioremediation of hydrocarbon polluted soils has been recognized as...

  11. Aggregation of Diesel Contaminated Soil for Bioremediation

    Institute of Scientific and Technical Information of China (English)

    Yu Ying; Shi Xiu-hong; Li Song; Xu Jing-gang

    2014-01-01

    Diesel contaminated soil (DCS) contained a large amount of the hydrocarbons and salt which was dominated by soluble sodium chloride. Aggregation process which made the desired aggregate size distribution could speed up the degradation rate of the hydrocarbons since the aggregated DCS had better physical characteristics than the non-aggregated material. Artificial aggregation increased pores >30 µm by approximately 5% and reduced pores <1 µm by 5%, but did not change the percentage of the pores between 1 and 30 µm. The saturated hydraulic conductivity of non-aggregated DCS was 5×10-6 m• s-l, but it increased to 1×10-5 m• s-l after aggregation. The compression index of the non-aggregated DCS was 0.0186; however, the artificial aggregates with and without lime were 0.031 and 0.028, respectively. DCS could be piled 0.2 m deep without artificial aggregation; however, it could be applied 0.28 m deep when artificial aggregates were formed without limiting O2 transport.

  12. Test plan for the soils facility demonstration: A petroleum contaminated soil bioremediation facility

    International Nuclear Information System (INIS)

    The objectives of this test plan are to show the value added by using bioremediation as an effective and environmentally sound method to remediate petroleum contaminated soils (PCS) by: demonstrating bioremediation as a permanent method for remediating soils contaminated with petroleum products; establishing the best operating conditions for maximizing bioremediation and minimizing volatilization for SRS PCS during different seasons; determining the minimum set of analyses and sampling frequency to allow efficient and cost-effective operation; determining best use of existing site equipment and personnel to optimize facility operations and conserve SRS resources; and as an ancillary objective, demonstrating and optimizing new and innovative analytical techniques that will lower cost, decrease time, and decrease secondary waste streams for required PCS assays

  13. Test plan for the soils facility demonstration: A petroleum contaminated soil bioremediation facility

    Energy Technology Data Exchange (ETDEWEB)

    Lombard, K.H.

    1994-08-01

    The objectives of this test plan are to show the value added by using bioremediation as an effective and environmentally sound method to remediate petroleum contaminated soils (PCS) by: demonstrating bioremediation as a permanent method for remediating soils contaminated with petroleum products; establishing the best operating conditions for maximizing bioremediation and minimizing volatilization for SRS PCS during different seasons; determining the minimum set of analyses and sampling frequency to allow efficient and cost-effective operation; determining best use of existing site equipment and personnel to optimize facility operations and conserve SRS resources; and as an ancillary objective, demonstrating and optimizing new and innovative analytical techniques that will lower cost, decrease time, and decrease secondary waste streams for required PCS assays.

  14. In situ recycling of contaminated soil uses bioremediation

    International Nuclear Information System (INIS)

    OxyChem Pipeline Operations, primarily an ethylene and propylene products mover, has determined that substantial savings can be realized by adopting a bioremediation maintenance and recycling approach to hydrocarbon-contaminated soil. By this method, the soil can be recycled in situ, or in containers. To implement the soil-recycling program, OxyChem elected to use a soil remediator and natural absorbent product, Oil Snapper. This field maintenance material, based on an Enhanced Urea Technology, provides a diet to stimulate the growth of hydrocarbon-eating microbes. It works well either with indigenous soil microbes or with commercial microbes. The product is carried in field vehicles, which makes it immediately available when leaks or spills are discovered. Procedure for clean-up is to apply product and mix it into affected soil. Thus the contaminant is contained, preventing further migration; the contaminant is dispersed throughout the product, making it more accessible to the microbes; nutrients are immediately available to the microbes; and the material contributes aeration and moisture-retention properties

  15. The effect of soil type on the bioremediation of petroleum contaminated soils.

    Science.gov (United States)

    Haghollahi, Ali; Fazaelipoor, Mohammad Hassan; Schaffie, Mahin

    2016-09-15

    In this research the bioremediation of four different types of contaminated soils was monitored as a function of time and moisture content. The soils were categorized as sandy soil containing 100% sand (type I), clay soil containing more than 95% clay (type II), coarse grained soil containing 68% gravel and 32% sand (type III), and coarse grained with high clay content containing 40% gravel, 20% sand, and 40% clay (type IV). The initially clean soils were contaminated with gasoil to the concentration of 100 g/kg, and left on the floor for the evaporation of light hydrocarbons. A full factorial experimental design with soil type (four levels), and moisture content (10 and 20%) as the factors was employed. The soils were inoculated with petroleum degrading microorganisms. Soil samples were taken on days 90, 180, and 270, and the residual total petroleum hydrocarbon (TPH) was extracted using soxhlet apparatus. The moisture content of the soils was kept almost constant during the process by intermittent addition of water. The results showed that the efficiency of bioremediation was affected significantly by the soil type (Pvalue < 0.05). The removal percentage was the highest (70%) for the sandy soil with the initial TPH content of 69.62 g/kg, and the lowest for the clay soil (23.5%) with the initial TPH content of 69.70 g/kg. The effect of moisture content on bioremediation was not statistically significant for the investigated levels. The removal percentage in the clay soil was improved to 57% (within a month) in a separate experiment by more frequent mixing of the soil, indicating low availability of oxygen as a reason for low degradation of hydrocarbons in the clay soil. PMID:27233045

  16. The Influence of Soil Chemical Factors on In Situ Bioremediation of Soil Contamination

    Energy Technology Data Exchange (ETDEWEB)

    Breedveld, Gijs D.

    1997-12-31

    Mineral oil is the major energy source in Western society. Production, transport and distribution of oil and oil products cause serious contamination problems of water, air and soil. The present thesis studies the natural biodegradation processes in the soil environment which can remove contamination by oil products and creosote. The main physical/chemical processes determining the distribution of organic contaminants between the soil solid, aqueous and vapour phase are discussed. Then a short introduction to soil microbiology and environmental factors important for biodegradation is given. There is a discussion of engineered and natural bioremediation methods and the problems related to scaling up laboratory experiments to field scale remediation. Bioremediation will seldom remove the contaminants completely; a residue remains. Factors affecting the level of residual contamination and the consequences for contaminant availability are discussed. Finally, the main findings of the work are summarized and recommendations for further research are given. 111 refs., 41 figs., 19 tabs.

  17. Slurry reactor bioremediation of soil-bound polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    ECOVA Corporation conducted pilot-scale process development studies in 1991 using a slurry-phase biotreatment design to evaluate bioremediation of polycyclic aromatic hydrocarbons (PAHs) in creosote-contaminated soil collected from a superfund site. Bench-scale studies were performed as an antecedent to pilot-scale evaluations in order to collect data which would be used to determine the optimal treatment protocols. This study was performed for the US EPA to supply information as part of the database on Best Demonstrated Available Technology (BDAT) for soil remediation. The database will be used to develop soil standards for land disposal restriction. This paper is a summary of the complete on-site engineering (OER) report is available from the US EPA. The site is a former railroad tie-treating facility. Two surface impoundments were used for the disposal of wastewater generated from wood-treating processes (Resource Conservation and Recovery Act waste code K001). Although all wastewater and liquid creosote have been removed from the impoundments, there is an estimated 12,500 cubic yards of soil and sludge remaining that is contaminated with 2-, 3-, and 4+-ring PAHs. There is also some groundwater contamination restricted to a relatively small area downgradient from the site

  18. Bioremediation potential of coal-tar-oil-contaminated soil

    International Nuclear Information System (INIS)

    The bioremediation of coal tar oil contaminated soil was investigated in 90 day laboratory simulation experiments. The effect of soil moisture, humic acid amendment, and coal tar oil concentration on the rate of disappearance of individual coal tar oil constituents (PAHs and related compounds) was determined by methylene chloride extraction and gas chromatography. Mass balance experiments determined the fate of both the individual 14C-labeled PAHs phenanthrene, pyrene, and benzo(a)pyrene, and the total coal tar oil carbon. Mineralization, volatilization, incorporation into microbial biomass, disappearance of individual coal tar oil constitutents, and the distribution of residual 14C-activity in different soil fractions were measured. The rate of disappearance of coal tar oil constituents increased with increasing soil moisture over the experimental range. Humic acid amendment initially enhanced the rate of disappearance, but decreased the extent of disappearance. The amount of contamination removed decreased at higher coal tar oil concentrations. The practical limit for biodegradation in the system tested appeared to be between 1.0 and 2.5% coal tar oil. Mineralization accounted for 40 to 50% of the applied coal tar oil. Volatilization was a minor pathway of disappearance

  19. Bioremediation of coal contaminated soil under sulfate-reducing condition.

    Science.gov (United States)

    Kuwano, Y; Shimizu, Y

    2006-01-01

    The objective of this study was to investigate the biodegradation of coal-derived hydrocarbons, especially high molecular weight (HMW) components, under anaerobic conditions. For this purpose biodegradation experiments were performed, using specifically designed soil column bioreactors. For the experiment, coal-contaminated soil was prepared, which contains high molecular weight hydrocarbons at high concentration (approx. 55.5 mgC g-drysoil(-1)). The experiment was carried out in two different conditions: sulfate reducing (SR) condition (SO4(2-) = 10 mmol l(-1) in the liquid medium) and control condition (SO4(2-)resin fraction decreased to half (from 6,541 to 3,386 mgC g-soil(-1)) under SR condition, with the concomitant increase of two PAHs (phenanthrene and fluoranthene, 9 and 2.5 times, respectively). From these results, we could conclude that high molecular hydrocarbons were biodegradable and transformed to low molecular weight PAHs under the sulfate-reducing condition. Since these PAHs are known to be biologically degraded under aerobic condition, a serial combination of anaerobic (sulfate reducing) and then aerobic bioremediations could be effective and useful for the soil pollution by petroleum and/or coal derived hydrocarbons. PMID:16457179

  20. Effects on lead bioavailability and plant uptake during the bioremediation of soil PAHs

    Energy Technology Data Exchange (ETDEWEB)

    Amezcua-Allieri, M.A. [Inst. Politecnico Nacional, Mexico City (Mexico); Rodriguez-Vazquez, R. [CINVESTAV, Mexico City (Mexico)

    2008-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are a group of priority pollutants that are present in the soils of many industrially contaminated sites. In Mexico, the petrochemical industry is the main source of soil pollution. Soils polluted with PAHs are often accompanied by high levels of metals. Although bioremediation of soil contaminated with PAHs have received increasing attentions, the influence of microbial activity on metal behaviour is not understood. For that reason, this study investigated lead behaviour during the bioremoval of phenanthrene in soils sampled from Tabasco, Mexico. Lead bioavailable concentrations were evaluated by diffusive gradients in thin-films (DGT). Metal uptake to plants was quantified. Lead concentrations were determined before and after organic removal by Penicillium frequentans and soil microflora. Metal uptake by Echinochloa polystachya and Triticum aestivum L was also investigated. DGT concentrations increased significantly after the addition of fungi in the presence of plants before bioremediation and after fungal addition. Although DGT responded immediately to uptake, plant uptake did not begin immediately. The fungal bioremediation reduced organic contaminants significantly while it increased bioavailable metal concentrations and plant uptake. The results highlight the impact of bioremediation of organic contaminants on trace metal behaviour. The bioremediation process makes the toxic lead more available to plants, and therefore more metal may be incorporated into the human food chain if crops grown on bioremediated soil are used for human or animal consumption. 15 refs., 3 figs.

  1. USING PHYTOREMEDIATION AND BIOREMEDIATION FOR PROTECTION SOIL NEAR GRAVEYARD

    Directory of Open Access Journals (Sweden)

    Katarzyna Ignatowicz

    2016-07-01

    Full Text Available The aim of present research was to assess the usefulness of Basket willow (Salix viminalis to phytoremediation and bioremediation of sorption subsoil contaminated with pesticides. Studies upon purification of sorption material consisting of a soil and composting sewage sludge were conducted under pot experiment conditions. The study design included control pot along with 3 other ones polluted with pesticides. The vegetation season has lasted since spring till late autumn 2015. After acclimatization, the mixture of chloroorganic pesticides was added into 3 experimental pots. After harvest, it was found that pesticide contents in sorption subsoil (from 0.0017 to 0.0087 mg kg DM were much higher than in control soil (from 0.0005 to 0.0027 mg kg DM. Achieved results initially indicate that Basket willow (Salix viminalis can be used for reclamation of soils contaminated with pesticides, particularly for vitality prolongation of sorption barrier around the pesticide burial area. In future, it would allow for applying the sorption screen around pesticide burial area, which reduces pesticide migration into the environment, and grown energetic plants – through phytoremediation – would prolong the sorbent vitality and remove pesticides from above ground parts by means of combustion.

  2. A review on slurry bioreactors for bioremediation of soils and sediments

    OpenAIRE

    Poggi-Varaldo Héctor M; Fava Fabio; Robles-González Ireri V

    2008-01-01

    Abstract The aim of this work is to present a critical review on slurry bioreactors (SB) and their application to bioremediation of soils and sediments polluted with recalcitrant and toxic compounds. The scope of the review encompasses the following subjects: (i) process fundamentals of SB and analysis of advantages and disadvantages; (ii) the most recent applications of SB to laboratory scale and commercial scale soil bioremediation, with a focus on pesticides, explosives, polynuclear aromat...

  3. Bioremediation of Acetochlor in Soil and Water Systems by Cyanobacterial Mat

    OpenAIRE

    Yasser El-Nahhal; Yousef Awad; Jamal Safi

    2013-01-01

    This study investigated the bioremediation of organic pollution in soil and water systems by cyanobacterial mats collected from Wadi Gaza. Acetochlor, a model compound of herbicide, was used as a standard organic pollutant. Various concentrations of acetochlor were injected in soil and water samples pre-treated with cyanobacterial mat for several periods of time. Percentage of growth of wheat as a test plant was taken as indicator of bioremediation of acetochlor. Results showed that acetoc...

  4. Bioremediation of Dioxin-Contaminated Soil by Fungi Screened from Nature

    OpenAIRE

    Sanro Tachibana; Yukinori Kiyota; Michifusa Koga

    2007-01-01

    To degrade dioxins in contaminated soil, bioremediation was conducted with two fungi (PL1 and 267) screened from nature. A comparison of the concentration of dioxins (Toxicity equivalent quantity) before and after the bioremediation revealed 20 to 90% of dioxins in the soil to be degraded in 15 and 30 days, respectively. Maximum degradation (90%) was obtained with PL1 after 30 days in the presence of 0.1% surfactant.

  5. Potential of cold-adapted microorganisms for bioremediation of oil-polluted Alpine soils

    International Nuclear Information System (INIS)

    The environmental contamination by organic pollutants is a widespread problem in all climates. The most widely distributed pollution can be attributed to oil contamination. Bioremediation methods can provide efficient, inexpensive and environmentally safe cleanup tools. The role of cold-adapted microorganisms for the bioremediation of experimentally and chronically oil-contaminated Alpine soils was evaluated in the studies described. The results demonstrated that there is a considerable potential for oil bioremediation in Alpine soils. Oil biodegradation can be significantly enhanced by biostimulation (inorganic nutrient supply), but a complete oil elimination is not possible by employing biological decontamination alone. (Author)

  6. Ecotoxicity monitoring and bioindicator screening of oil-contaminated soil during bioremediation.

    Science.gov (United States)

    Shen, Weihang; Zhu, Nengwu; Cui, Jiaying; Wang, Huajin; Dang, Zhi; Wu, Pingxiao; Luo, Yidan; Shi, Chaohong

    2016-02-01

    A series of toxicity bioassays was conducted to monitor the ecotoxicity of soils in the different phases of bioremediation. Artificially oil-contaminated soil was inoculated with a petroleum hydrocarbon-degrading bacterial consortium containing Burkholderia cepacia GS3C, Sphingomonas GY2B and Pandoraea pnomenusa GP3B strains adapted to crude oil. Soil ecotoxicity in different phases of bioremediation was examined by monitoring total petroleum hydrocarbons, soil enzyme activities, phytotoxicity (inhibition of seed germination and plant growth), malonaldehyde content, superoxide dismutase activity and bacterial luminescence. Although the total petroleum hydrocarbon (TPH) concentration in soil was reduced by 64.4%, forty days after bioremediation, the phytotoxicity and Photobacterium phosphoreum ecotoxicity test results indicated an initial increase in ecotoxicity, suggesting the formation of intermediate metabolites characterized by high toxicity and low bioavailability during bioremediation. The ecotoxicity values are a more valid indicator for evaluating the effectiveness of bioremediation techniques compared with only using the total petroleum hydrocarbon concentrations. Among all of the potential indicators that could be used to evaluate the effectiveness of bioremediation techniques, soil enzyme activities, phytotoxicity (inhibition of plant height, shoot weight and root fresh weight), malonaldehyde content, superoxide dismutase activity and luminescence of P. phosphoreum were the most sensitive. PMID:26491984

  7. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    The Iron Park Superfund site, North Billerica, Massachusetts, is located within a 553 acre operating industrial complex and railyard located approximately 20 miles northwest of Boston. Fifteen acres of this site are designated as the Wastewater Lagoon Area containing lagoons and materials previously dredged from those lagoons. The U.S. Environmental Protection Agency (EPA) placed the Iron Horse Park facility on its National Priorities List in 1984, and a Remedial Investigation (RI) for the site as a whole began n 1985. In September 1988, responding to the presence of these site contaminants, the EPA issued the first Superfund Record of Decision (ROD) in EPA Region I that specified bioremediation as the remedial technology. Specifically, the EPA stipulated biological land treatment cell with an impervious lower liner. In this form of biotreatment, sludges and contaminated soil are placed in the cell in lifts (i.e. layers approximately one foot thick) and the lifts are frequently aerated by tilling while nutrients are applied at optimal levels to stimulate the degradation of organic contaminants by indigenous microorganisms. In its Administrative Order (September 1989), the EPA stipulated cleanup goals to be achieved, and required that a Predesign Evaluation be initiated to ascertain which soil/sludge piles would require treatment. The design and execution of this remediation-focused site evaluation by ENSR forms the subject of this paper

  8. Cyclodextrines accelerate off-site bioremediation of soils contaminated with mineral oil

    OpenAIRE

    Sniegowski, Kristel; Achten, Sonja; Vanhecke, Marina

    2011-01-01

    Soils contaminated with mineral oil are often excavated and bioremediated off-site by biostimulation and biodegradation. The soils are aerated and supplied with the necessary nutrients to accelerate biodegradation. Ideally, without seriously disturbing the soil, the contaminants are completely mineralized and the soil can be reused. However, for some soils the degradation performance is poor despite the sufficient amount of bacteria, oxygen and nutrients present in the soil. The main factor i...

  9. Bioremediation of hydrocarbon contaminated surface water, groundwater, and soils

    International Nuclear Information System (INIS)

    Bioremediation is currently receiving considerable attention as a remediation option for sites contaminated with hazardous organic compounds. There is an enormous amount of interest in bioremediation, and numerous journals now publish research articles concerning some aspect of the remediation approach. A review of the literature indicates that two basic forms of bioremediation are currently being practiced: the microbiological approach and the microbial ecology approach. Each form has its advocates and detractors, and the microbiological approach is generally advocated by most of the firms that practice bioremediation. In this paper, the merits and disadvantages of these forms are reviewed and a conceptual approach is presented for assessing which form may be most useful for a particular contaminant situation. I conclude that the microbial ecology form of bioremediation may be the most useful for the majority of contaminant situations, and I will present two case histories in support of this hypothesis

  10. Ex-situ bioremediation of Brazilian soil contaminated with plasticizers process wastes

    Directory of Open Access Journals (Sweden)

    I. D. Ferreira

    2012-03-01

    Full Text Available The aim of this research was to evaluate the bioremediation of a soil contaminated with wastes from a plasticizers industry, located in São Paulo, Brazil. A 100-kg soil sample containing alcohols, adipates and phthalates was treated in an aerobic slurry-phase reactor using indigenous and acclimated microorganisms from the sludge of a wastewater treatment plant of the plasticizers industry (11gVSS kg-1 dry soil, during 120 days. The soil pH and temperature were not corrected during bioremediation; soil humidity was corrected weekly to maintain 40%. The biodegradation of the pollutants followed first-order kinetics; the removal efficiencies were above 61% and, among the analyzed plasticizers, adipate was removed to below the detection limit. Biological molecular analysis during bioremediation revealed a significant change in the dominant populations initially present in the reactor.

  11. ASSESSMENT OF DISTILLERY EFFLUENT IRRIGATION ON SOIL MICROBES AND ITS BIOREMEDIATION

    Directory of Open Access Journals (Sweden)

    Tripathi D. M

    2014-12-01

    Full Text Available The present study deals with the assessment of toxicity of distillery effluent on soil microorganisms and its quality improvement through bioremediation using Pseudomonas spp. Under lab scale experiment, different dilutions of distillery effluent i.e. 25%, 50%, 75% were used to examine effects on physico-chemical parameters of effluent and on soil microflora e.g. algae, bacteria, fungi and actinomycetes. The results revealed that dilution may reduce significantly the metal contents and other toxicants in the effluent as well as in the soil. Statistical analysis revealed that bioremediation of distillery effluent using Pseudomonas spp. caused significant reduction in BOD, COD, TDS, TN, TP and color. The study indicates that raw distillery effluent is harmful for soil microflora and bioremediation improves the quality of distillery effluent making it suitable as a soil amendment.

  12. Aspergillus flavus: A potential Bioremediator for oil contaminated soils

    Directory of Open Access Journals (Sweden)

    Y.Avasn Maruthi

    2013-02-01

    Full Text Available Biodegradation is cost-effective, environmentally friendly treatment for oily contaminated sites by the use of microorganisms. In this study, laboratory experiments were conducted to establish the performance of fungal isolates in degradation of organic compounds contained in soils contaminated with petrol and diesel. As a result of the laboratory screening, two natural fungal strains capable of degrading total organic carbons (TOC were prepared from isolates enriched from the oil contaminated sites. Experiments were conducted in Erlenmeyer flasks under aerobic conditions, with TOC removal percentage varied from 0.7 to 32% depending on strains type and concentration. Strains Phanerocheate chrysosporium and Aspergillus niger exhibited the highest TOC removal percentage of 32 and 21%, respectively, before nutrient addition. TOC removal rate was enhanced after addition of nutrients to incubated flasks. The highest TOC reduction (45% was estimated after addition of combination of nitrogen, phosphorus and sulphur to Phanerocheate chrysosporium strains. Results of experimental work carried out elucidate that the fungi like Phanerocheate chrysosporium and Aspergillus niger were capabled of producing enzymes at a faster rate to decompose the substrate hydrocarbon and released more CO2 and hence these potential fungi can be utilized effectively as agents of biodegradation in waste recycling process and Bioremediation of oil contaminated sites.

  13. Metagenomic Analysis of the Bioremediation of Diesel-Contaminated Canadian High Arctic Soils

    OpenAIRE

    Yergeau, Etienne; Sanschagrin, Sylvie; Beaumier, Danielle; Greer, Charles W.

    2012-01-01

    As human activity in the Arctic increases, so does the risk of hydrocarbon pollution events. On site bioremediation of contaminated soil is the only feasible clean up solution in these remote areas, but degradation rates vary widely between bioremediation treatments. Most previous studies have focused on the feasibility of on site clean-up and very little attention has been given to the microbial and functional communities involved and their ecology. Here, we ask the question: which microorga...

  14. White rot fungi in bioremediation – Ecology in the soil environment

    Czech Academy of Sciences Publication Activity Database

    Baldrian, Petr

    Chania: Technical University of Crete, 2008, s. 1-4. ISBN 978-960-8475-12-0. [European Bioremediation Conference /4./. Chania (GR), 03.09.2008-06.09.2008] R&D Projects: GA MŠk OC 155; GA MŠk LC06066 Institutional research plan: CEZ:AV0Z50200510 Keywords : basidiomycetes * bioremediation * forest soil Subject RIV: EE - Microbiology, Virology

  15. Assessment of microbial community changes and limiting factors during bioremediation of hydrocarbon-polluted soil with new miniaturized physiological methods

    OpenAIRE

    Kaufmann, Karin

    2004-01-01

    Due to human activities, organic pollutants are spilled to the environment where they threaten public health, often as contaminants of soil or groundwater. Living organisms are able to transform or mineralize many organic pollutants, and bioremediation techniques have been developed to remove pollutants from a contaminated site. However, fast and easy methods to document both the efficacy of bioremediation and the changes in soil microbial communities during bioremediation are not well develo...

  16. Assessment of microbial community changes and limiting factors during bioremediation of hydrocarbon-polluted soil with new miniaturized physiological methods

    OpenAIRE

    Kaufmann, Karin; Holliger, Hans Christof

    2005-01-01

    Due to human activities, organic pollutants are spilled to the environment where they threaten public health, often as contaminants of soil or groundwater. Living organisms are able to transform or mineralize many organic pollutants, and bioremediation techniques have been developed to remove pollutants from a contaminated site. However, fast and easy methods to document both the efficacy of bioremediation and the changes in soil microbial communities during bioremediation are not well develo...

  17. Bioremediation of oil-contaminated soils: A recipe for success

    Energy Technology Data Exchange (ETDEWEB)

    Wittenbach, S.A.

    1995-12-31

    Bioremediation of land crude oil and lube oil spills is an effective and economical option. Other options include road spreading (where permitted), thermal desorption, and off-site disposal. The challenge for environment and operations managers is to select the best approach for each remediation site. Costs and liability for off-site disposal are ever increasing. Kerr-McGee`s extensive field research in eastern and western Texas provides the data to support bioremediation as a legitimate and valid option. Both practical and economical bioremediation as a legitimate and valid option. Both practical and economical, bioremediation also offers a lower risk of, for example, Superfund clean-up exposure than off-site disposal.

  18. Microorganisms in heavy metal bioremediation: strategies for applying microbial-community engineering to remediate soils

    Directory of Open Access Journals (Sweden)

    Jennifer L. Wood

    2016-06-01

    Full Text Available The remediation of heavy-metal-contaminated soils is essential as heavy metals persist and do not degrade in the environment. Remediating heavy-metal-contaminated soils requires metals to be mobilized for extraction whilst, at the same time, employing strategies to avoid mobilized metals leaching into ground-water or aquatic systems. Phytoextraction is a bioremediation strategy that extracts heavy metals from soils by sequestration in plant tissues and is currently the predominant bioremediation strategy investigated for remediating heavy-metal-contaminated soils. Although the efficiency of phytoextraction remains a limiting feature of the technology, there are numerous reports that soil microorganisms can improve rates of heavy metal extraction.This review highlights the unique challenges faced when remediating heavy-metal-contaminated soils as compared to static aquatic systems and suggests new strategies for using microorganisms to improve phytoextraction. We compare how microorganisms are used in soil bioremediation (i.e. phytoextraction and water bioremediation processes, discussing how the engineering of microbial communities, used in water remediation, could be applied to phytoextraction. We briefly outline possible approaches for the engineering of soil communities to improve phytoextraction either by mobilizing metals in the rhizosphere of the plant or by promoting plant growth to increase the root-surface area available for uptake of heavy metals. We highlight the technological advances that make this research direction possible and how these technologies could be employed in future research.

  19. Initial assessment of intrinsic and assisted bioremediation potential for diesel fuel impacted soils at Eureka, NWT

    International Nuclear Information System (INIS)

    Two diesel fuel-impacted soil columns prepared to simulate in situ conditions for assessing intrinsic bioremediation were studied. The samples were from Eureka in the Northwest Territories. Two soil jars that were mixed periodically to simulate the ex situ land treatment bioremediation option, were also part of the treatability study. Results strongly suggest that bioremediation at Eureka is a viable option, although the slow rate of biodegradation and the short operating season will necessitate treatment over several years to achieve the remediation endpoint. The intrinsic bioremediation process can be accelerated using periodic addition of a water soluble nitrogen fertilizer, as shown by the nitrogen-amended soil column test. Ex situ bioremediation also appears to be possible judged by the response of the natural bacterial population to periodic mixing and oxygen uptake at 5 degrees C. The principal challenge will be to adequately mix the soil at the surface and to prevent it from drying out. The addition of organic bulking material may be required. 1 ref., 3 tabs., 4 figs

  20. Bioremediation: is it the solution to reclamation of heavy oil contaminated soils in the Canadian climate?

    International Nuclear Information System (INIS)

    The issue of bioremediation of heavy oil contaminated soils in cold climates was discussed. No model of the bioremediation system for cold climates exists. Environmental groups use three environmental concepts as the basis to evaluate petroleum activities: (1) cradle to grave responsibility, (2) the precautionary principle, and (3) sustainable development. The reclamation of an abandoned petroleum production facility must meet stringent standards. Most sites are contaminated with weathered hydrocarbons, brine and other chemicals that have been used at the location. Bioremediation, either in-situ or ex-situ, is one of the lowest cost remediation techniques available and has been used extensively by the downstream petroleum industry in warm climates. However, there are many unresolved issues with the use of bioremediation in cold climates, for heavy or weathered crude oil products and in areas of clay or other low permeability. Some of these unresolved issues are highlighted

  1. In-situ bioremediation: Or how to get nutrients to all the contaminated soil

    International Nuclear Information System (INIS)

    Petroleum contamination is a pervasive environmental problem. Bioremediation is winning favor primarily because the soil may be treated on site and systems can be installed to operate without interfering with facility activities. Although bioremediation has been utilized for many years, its acceptance as a cost-effective approach is only now being realized. KEMRON applied in-situ bioremediation at a retired rail yard which had maintained a diesel locomotive refueling station supplied by two 20,000 gallon above ground storage tanks. Contamination originated from both spillage at the pumps and leaking fuel distribution lines. The contamination spread over a 3 acre area from the surface to a depth of up to 20 feet. Levels of diesel contamination found in the soil ranged from less than a 100 ppm to more than 25,000 ppm. The volume of soil which ultimately required treatment was more than 60,000 cubic yards. Several remedial options were examined including excavation and disposal. Excavation was rejected because it would have been cost prohibitive due to the random distribution of the contaminated soil. In-situ Bioremediation was selected as the only alternative which could successfully treat all the contaminated soils. This paper focuses on how KEMRON solved four major problems which would have prevented a successful remediation project. These problems were: soil compaction, random distribution of contaminated soils, potential free product, and extremely high levels of dissolved iron in the groundwater

  2. Bioremediation of soils and sediments containing PAHs and PCP using Daramend trademark

    International Nuclear Information System (INIS)

    A full-scale demonstration of Grace Dearborn's Daramend trademark for bioremediation of soil containing chlorinated phenols, PAHs and petroleum hydrocarbons is being conducted at an industrial wood treatment site in Ontario. A pilot-scale demonstration of Daramend for the clean-up of sediments contaminated with PAHs was also conducted. The full-scale demonstration, which includes bioremediation of approximately 4,500 m3 of soil, was initiated at a wood preserving facility in Ontario, in the summer of 1993. The soil contains chlorinated phenols, PAHs and total petroleum hydrocarbons at concentrations of up to 700, 1,400 and 6,300 mg/kg respectively. Full-scale bioremediation at this site employs the same Daramend protocols and organic amendment treatments that were used at the pilot-scale phase where the PAH, total petroleum hydrocarbon, and pentachlorophenol concentrations were reduced to below the Canadian clean-up guidelines for industrial soils. In addition, the toxicity of the soil to earthworms was eliminated while the rate of seed germination was increased to that of an agricultural soil during the pilot scale demonstration phase. The ex-situ portion of the full-scale demonstration is currently being audited by the EPA under the SITE program. This paper will focus on the ex-situ work. The pilot-scale demonstration of sediment remediation consisted of ex-situ bioremediation of approximately 90 tonnes of PAH-contaminated sediment in a confined treatment area

  3. Residues of endosulfan in surface and subsurface agricultural soil and its bioremediation.

    Science.gov (United States)

    Odukkathil, Greeshma; Vasudevan, Namasivayam

    2016-01-01

    The persistence of many hydrophobic pesticides has been reported by various workers in various soil environments and its bioremediation is a major concern due to less bioavailability. In the present study, the pesticide residues in the surface and subsurface soil in an area of intense agricultural activity in Pakkam Village of Thiruvallur District, Tamilnadu, India, and its bioremediation using a novel bacterial consortium was investigated. Surface (0-15 cm) and subsurface soils (15-30 cm and 30-40 cm) were sampled, and pesticides in different layers of the soil were analyzed. Alpha endosulfan and beta endosulfan concentrations ranged from 1.42 to 3.4 mg/g and 1.28-3.1 mg/g in the surface soil, 0.6-1.4 mg/g and 0.3-0.6 mg/g in the subsurface soil (15-30 cm), and 0.9-1.5 mg/g and 0.34-1.3 mg/g in the subsurface soil (30-40 cm) respectively. Residues of other persistent pesticides were also detected in minor concentrations. These soil layers were subjected to bioremediation using a novel bacterial consortium under a simulated soil profile condition in a soil reactor. The complete removal of alpha and beta endosulfan was observed over 25 days. Residues of endosulfate were also detected during bioremediation, which was subsequently degraded on the 30th day. This study revealed the existence of endosulfan in the surface and subsurface soils and also proved that the removal of such a ubiquitous pesticide in the surface and subsurface environment can be achieved in the field by bioaugumenting a biosurfactant-producing bacterial consortium that degrades pesticides. PMID:26413801

  4. Bioremediation of Petroleum Hydrocarbon-Contaminated Soils, Comprehensive Report

    Energy Technology Data Exchange (ETDEWEB)

    Altman, D.J.

    2001-01-12

    The US Department of Energy and the Institute for Ecology of Industrial Areas, Katowice, Poland have been cooperating in the development and implementation of innovative environmental remediation technologies since 1995. U.S. experts worked in tandem with counterparts from the IETU and CZOR throughout this project to characterize, assess and subsequently, design, implement and monitor a bioremediation system.

  5. Monitoring bioremediation of atrazine in soil microcosms using molecular tools

    International Nuclear Information System (INIS)

    Molecular tools in microbial community analysis give access to information on catabolic potential and diversity of microbes. Applied in bioremediation, they could provide a new dimension to improve pollution control. This concept has been demonstrated in the study using atrazine as model pollutant. Bioremediation of the herbicide, atrazine, was analyzed in microcosm studies by bioaugmentation, biostimulation and natural attenuation. Genes from the atrazine degrading pathway atzA/B/C/D/E/F, trzN, and trzD were monitored during the course of treatment and results demonstrated variation in atzC, trzD and trzN genes with time. Change in copy number of trzN gene under different treatment processes was demonstrated by real-time PCR. The amplified trzN gene was cloned and sequence data showed homology to genes reported in Arthrobacter and Nocardioides. Results demonstrate that specific target genes can be monitored, quantified and correlated to degradation analysis which would help in predicting the outcome of any bioremediation strategy. - Highlights: ► Degradation of herbicide, atrazine. ► Comparison of bioremediation via bioaugmentation, biostimulation and natural attenuation. ► Gene profile analysis in all treatments. ► Variation in trzN gene numbers correlated to degradation efficiency. ► Cloning and sequence analysis of trzN gene demonstrates very high homology to reported gene. - This study demonstrates the use of molecular tools in bioremediation to monitor and track target genes; correlates the results with degradation and thereby predicts the efficiency of treatment.

  6. Investigation of the bioremediation potential of aerobic zymogenous microorganisms in soil for crude oil biodegradation

    Directory of Open Access Journals (Sweden)

    TATJANA ŠOLEVIĆ

    2011-03-01

    Full Text Available The bioremediation potential of the aerobic zymogenous microorganisms in soil (Danube alluvium, Pančevo, Serbia for crude oil biodegradation was investigated. A mixture of paraffinic types of oils was used as the substrate. The laboratory experiment of the simulated oil biodegradation lasted 15, 30, 45, 60 and 75 days. In parallel, an experiment with a control sample was conducted. Extracts were isolated from the samples with chloroform in a separation funnel. From these extracts, the hydrocarbons were isolated by column chromatography and analyzed by gas chromatography–mass spectrometry (GC–MS. n-Alkanes, isoprenoids, phenanthrene and its derivatives with one and two methyl groups were quantitatively analyzed. The ability and efficiency of zymogenous microorganisms in soil for crude oil bioremediation was assessed by comparison between the composition of samples which were exposed to the microorganisms and the control sample. The investigated microorganisms showed the highest bioremediation potential in the biodegradation of n-alkanes and isoprenoids. A considerably high bioremediation potential was confirmed in the biodegradation of phenanthrene and methyl phenanthrenes. Low bioremediation potential of these microorganisms was proven in the case of polycyclic alkanes of the sterane and triterpane types and dimethyl phenanthrenes.

  7. Characterization of bacterial consortia for its use in bioremediation of gas-oil contaminated antarctic soils

    Energy Technology Data Exchange (ETDEWEB)

    Ruberto, L.; Vazquez, S.; Mestre, C.; Nogales, B.; Christie-Oleza, J.; Bosch, R.; Mac Cormack, W. P.

    2009-07-01

    Success of bio augmentation of chronically-contaminated soils is controversial, mainly because the inocula are frequently unable to establish in the matrix under bioremediation. In Antarctica, the environmental conditions and the restriction for the introduction of non-autochthonous organisms (imposed by the Antarctic Treaty) prevent inoculation with foreign bacteria. (Author)

  8. Ecotoxicity monitoring of hydrocarbon-contaminated soil during bioremediation: a case study

    Czech Academy of Sciences Publication Activity Database

    Hubálek, Tomáš; Vosáhlová, S.; Matějů, V.; Kováčová, Nora; Novotný, Čeněk

    2007-01-01

    Roč. 52, č. 1 (2007), s. 1-7. ISSN 0090-4341 R&D Projects: GA MŠk LN00B030; GA AV ČR KJB600200514 Institutional research plan: CEZ:AV0Z50200510 Keywords : bioremediation * ecotoxicity * hydrocarbon-contaminated soil Subject RIV: EE - Microbiology, Virology Impact factor: 1.620, year: 2007

  9. Bioremediation of PAH-contaminated soil with fungi - from laboratory to field scale

    Czech Academy of Sciences Publication Activity Database

    Winquist, E.; Björklöf, K.; Schultz, E.; Räsänen, M.; Salonen, K.; Anasonye, F.; Cajthaml, Tomáš; Steffen, K.; Jorgensen, K.S.; Tuomela, M.

    2014-01-01

    Roč. 86, č. 2 (2014), s. 238-247. ISSN 0964-8305 R&D Projects: GA TA ČR TE01020218 Institutional support: RVO:61388971 Keywords : bioremediation * contaminated soil * PAH * field scale Subject RIV: EE - Microbiology, Virology Impact factor: 2.131, year: 2014

  10. Characterization of bacterial consortia for its use in bioremediation of gas-oil contaminated antarctic soils

    International Nuclear Information System (INIS)

    Success of bio augmentation of chronically-contaminated soils is controversial, mainly because the inocula are frequently unable to establish in the matrix under bioremediation. In Antarctica, the environmental conditions and the restriction for the introduction of non-autochthonous organisms (imposed by the Antarctic Treaty) prevent inoculation with foreign bacteria. (Author)

  11. Bioremediation of PAH-Contaminated Soil by Composting: A Case Study

    Czech Academy of Sciences Publication Activity Database

    Cajthaml, Tomáš; Bhatt, M.; Šašek, Václav; Matějů, V.

    2002-01-01

    Roč. 47, č. 6 (2002), s. 696-700. ISSN 0015-5632 R&D Projects: GA MŠk LN00B030 Institutional research plan: CEZ:AV0Z5020903 Keywords : bioremediation * pah-contaminated * soil Subject RIV: EE - Microbiology, Virology Impact factor: 0.979, year: 2002

  12. A review on slurry bioreactors for bioremediation of soils and sediments

    Directory of Open Access Journals (Sweden)

    Poggi-Varaldo Héctor M

    2008-02-01

    Full Text Available Abstract The aim of this work is to present a critical review on slurry bioreactors (SB and their application to bioremediation of soils and sediments polluted with recalcitrant and toxic compounds. The scope of the review encompasses the following subjects: (i process fundamentals of SB and analysis of advantages and disadvantages; (ii the most recent applications of SB to laboratory scale and commercial scale soil bioremediation, with a focus on pesticides, explosives, polynuclear aromatic hydrocarbons, and chlorinated organic pollutants; (iii trends on the use of surfactants to improve availability of contaminants and supplementation with degradable carbon sources to enhance cometabolism of pollutants; (iv recent findings on the utilization of electron acceptors other than oxygen; (v bioaugmentation and advances made on characterization of microbial communities of SB; (vi developments on ecotoxicity assays aimed at evaluating bioremediation efficiency of the process. From this review it can be concluded that SB is an effective ad situ and ex situ technology that can be used for bioremediation of problematic sites, such as those characterized by soils with high contents of clay and organic matter, by pollutants that are recalcitrant, toxic, and display hysteretic behavior, or when bioremediation should be accomplished in short times under the pressure and monitoring of environmental agencies and regulators. SB technology allows for the convenient manipulation and control of several environmental parameters that could lead to enhanced and faster treatment of polluted soils: nutrient N, P and organic carbon source (biostimulation, inocula (bioaugmentation, increased availability of pollutants by use of surfactants or inducing biosurfactant production inside the SB, etc. An interesting emerging area is the use of SB with simultaneous electron acceptors, which has demonstrated its usefulness for the bioremediation of soils polluted with

  13. Assessment of the role of plants in the bioremediation of two hydrocarbon-contaminated soils

    International Nuclear Information System (INIS)

    Phytoremediation has been considered as a viable alternative for cleaning up contaminated soils. A study was conducted to examine the potential for plant-assisted bioremediation of hydrocarbon contaminated soils using wheat, canola, sunflower, fababean, and alsike clover. Crops were grown to maturity in greenhouses. Creosote and oil contaminated soils were used. The soils and plant tissues were then extracted and measured for dichloromethane-extractable organic (DEO) materials. The concentrations of DEO within the soil was them compared with non-planted samples. The study showed that at the end of a three month period there was no major difference in DEO concentrations in any of the soils. After six months, the DEO concentrations of the greenhouse soils had decreased compared to the reserved samples, but there was no major change in concentration due to the presence of any of the plant species. The results indicate that the role of plants in bioremediation systems, both as enhancers of bioremediation systems and as the possible sinks of contaminant C, should be further studied. 22 refs., 1 tab., 7 figs

  14. Methodology for bioremediation monitoring of oil wastes contaminated soils by using vegetal bio indicators; Metodologia para monitoramento de biorremediacao de solos contaminados com residuos oleosos com bioindicadores vegetais

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento Neto, Durval; Carvalho, Francisco Jose Pereira de Campos [Parana Univ., Curitiba, PR (Brazil). Curso de Pos-Graduacao em Ciencia do Solo]. E-mail: fjcampos@cce.ufpr.br

    1998-07-01

    This work studies the development of a methodology for the evaluation of the bioremediation status of oil waste contaminated soils, by using vegetal bioindicators for the bioremediation process monitoring, and evaluation of the environmental impacts on the contaminated areas.

  15. Evaluation of Four Bio fertilizers for Bioremediation of Pesticide contaminated Soil

    International Nuclear Information System (INIS)

    Experiments were conducted to asses the ability of mixed populations of microorganisms which produced as a bio fertilizers by the General Organization of Agriculture Fund, Ministry of Agriculture, Egypt (phosphoren, microbien, cerealin and azospirillum) to degrade five selected pesticides representing different classes including organophosphate, carbamate and chlorinated organic compounds. There were differences in rates of biotransformation, suggesting the selective induction of certain metabolic enzymes. Inoculation of soil incorporated with malathion, fenamiphos, carbaryl, aldicarb and dieldrin, resulted in ca. 80-90% removal of malathion and fenamiphos within 8 days, carbaryl and aldicarb within 11-15 days respectively. Dieldrin removal occurred slowly within 2 months. These data suggest that bioremediate may act as potential candidates for soil inoculation to bioremediate pesticide contaminated soil. The production of Co2 (soil respiration ) was stimulated by some pesticides. In samples with microbien, an about 2 times higher Co2 production was measured

  16. ASSESSMENT OF DISTILLERY EFFLUENT IRRIGATION ON SOIL MICROBES AND ITS BIOREMEDIATION

    OpenAIRE

    Tripathi D. M; Tripathi S

    2014-01-01

    The present study deals with the assessment of toxicity of distillery effluent on soil microorganisms and its quality improvement through bioremediation using Pseudomonas spp. Under lab scale experiment, different dilutions of distillery effluent i.e. 25%, 50%, 75% were used to examine effects on physico-chemical parameters of effluent and on soil microflora e.g. algae, bacteria, fungi and actinomycetes. The results revealed that dilution may reduce significantly the metal contents and other...

  17. Effect of alternating bioremediation and electrokinetics on the remediation of n-hexadecane-contaminated soil

    Science.gov (United States)

    Wang, Sa; Guo, Shuhai; Li, Fengmei; Yang, Xuelian; Teng, Fei; Wang, Jianing

    2016-04-01

    This study demonstrated the highly efficient degradation of n-hexadecane in soil, realized by alternating bioremediation and electrokinetic technologies. Using an alternating technology instead of simultaneous application prevented competition between the processes that would lower their efficiency. For the consumption of the soil dissolved organic matter (DOM) necessary for bioremediation by electrokinetics, bioremediation was performed first. Because of the utilization and loss of the DOM and water-soluble ions by the microbial and electrokinetic processes, respectively, both of them were supplemented to provide a basic carbon resource, maintain a high electrical conductivity and produce a uniform distribution of ions. The moisture and bacteria were also supplemented. The optimal DOM supplement (20.5 mg·kg‑1 glucose; 80–90% of the total natural DOM content in the soil) was calculated to avoid competitive effects (between the DOM and n-hexadecane) and to prevent nutritional deficiency. The replenishment of the water-soluble ions maintained their content equal to their initial concentrations. The degradation rate of n-hexadecane was only 167.0 mg·kg‑1·d‑1 (1.9%, w/w) for the first 9 days in the treatments with bioremediation or electrokinetics alone, but this rate was realized throughout the whole process when the two technologies were alternated, with a degradation of 78.5% ± 2.0% for the n-hexadecane after 45 days of treatment.

  18. Bioremediation of hydrocarbon-contaminated soils: are treatability and ecotoxicity endpoints related?

    International Nuclear Information System (INIS)

    To determine if there is a relationship between biotreatability and ecotoxicity endpoints in a wide range of hydrocarbon-contaminated soils, including medium and heavy crude oil-contaminated flare pit wastes and lubrication oil contaminated soil, research was conducted. Each test material was analyzed for pH, water repellency, electrical conductivity, available N and P, total extractable hydrocarbons, oil and grease, and toxicity to seedling emergence, root elongation in barley, lettuce and canola, earthworm survival and luminescent bacteria (Microtox), prior to, and following three months of bioremediation in the laboratory. By monitoring soil respiration, progress of the bioremediation process and determination of a treatment endpoint were assessed. The time required to attain a treatment endpoint under laboratory conditions can range from 30 days to 100 days depending on the concentration of hydrocarbons and degree of weathering. Most flare pits are biotreatable, averaging a loss of 25-30% of hydrocarbons during bioremediation. Once a treatment endpoint is achieved, residual hydrocarbons contents almost always exceeds Alberta Tier I criteria for mineral oil and grease. As a result of bioremediation treatments, hydrophobicity is often reduced from severe to low. Many flare pit materials are still moderately to extremely toxic after reaching a treatment endpoint. (Abstract only)

  19. Bioremediation of soil polluted with crude oil and its derivatives: Microorganisms, degradation pathways, technologies

    Directory of Open Access Journals (Sweden)

    Beškoski Vladimir P.

    2012-01-01

    Full Text Available The contamination of soil and water with petroleum and its products occurs due to accidental spills during exploitation, transport, processing, storing and use. In order to control the environmental risks caused by petroleum products a variety of techniques based on physical, chemical and biological methods have been used. Biological methods are considered to have a comparative advantage as cost effective and environmentally friendly technologies. Bioremediation, defined as the use of biological systems to destroy and reduce the concentrations of hazardous waste from contaminated sites, is an evolving technology for the removal and degradation of petroleum hydrocarbons as well as industrial solvents, phenols and pesticides. Microorganisms are the main bioremediation agents due to their diverse metabolic capacities. In order to enhance the rate of pollutant degradation the technology optimizes the conditions for the growth of microorganisms present in soil by aeration, nutrient addition and, if necessary, by adding separately prepared microorganisms cultures. The other factors that influence the efficiency of process are temperature, humidity, presence of surfactants, soil pH, mineral composition, content of organic substance of soil as well as type and concentration of contaminant. This paper presents a review of our ex situ bioremediation procedures successfully implemented on the industrial level. This technology was used for treatment of soils contaminated by crude oil and its derivatives originated from refinery as well as soils polluted with oil fuel and transformer oil.

  20. Bioremediation of polluted soil through the combined application of plants, earthworms and organic matter.

    Science.gov (United States)

    Macci, Cristina; Doni, Serena; Peruzzi, Eleonora; Ceccanti, Brunello; Masciandaro, Grazia

    2012-10-26

    Two plant species (Paulownia tomentosa and Cytisus scoparius), earthworms (Eisenia fetida), and organic matter (horse manure) were used as an ecological approach to bioremediate a soil historically contaminated by heavy metals and hydrocarbons. The experiment was carried out for six months at a mesoscale level using pots containing 90 kg of polluted soil. Three different treatments were performed for each plant: (i) untreated planted soil as a control (C); (ii) planted soil + horse manure (20:1 w/w) (M); (iii) planted soil + horse manure + 15 earthworms (ME). Both the plant species were able to grow in the polluted soil and to improve the soil's bio-chemical conditions, especially when organic matter and earthworms were applied. By comparing the two plant species, few significant differences were observed in the soil characteristics; Cytisus scoparius improved soil nutrient content more than Paulownia tomentosa, which instead stimulated more soil microbial metabolism. Regarding the pollutants, Paulownia tomentosa was more efficient in reducing the heavy metal (Pb, Cr, Cd, Zn, Cu, Ni) content, while earthworms were particularly able to stimulate the processes involved in the decontamination of organic pollutants (hydrocarbons). This ecological approach, validated at a mesoscale level, has recently been transferred to a real scale situation to carry out the bioremediation of polluted soil in San Giuliano Terme Municipality (Pisa, Italy). PMID:22911348

  1. Economical and environmental valorization of compost: possible utilization for contaminated soil bioremediation

    International Nuclear Information System (INIS)

    The Bo.S.Co project (Bioremediation of contaminated soils by compost) aims at creating an innovative bioremediation technology ready-to-use and competitive in price. This technology use a particular kind of certified compost that optimizes cleaning processes. Compost, in fact, is a very rich matrix that can supply nutrients, used by the autochthonous microflora. In the present study compost was used to enhance diesel oil and PAHs degradation in two heavily contaminated soils; laboratory scale experiments were performed by preparing four soil-bio piles, under laboratory conditions chemical, microbiological and eco toxic parameters were analyzed at different times. Compost addition was effective in enhancing biodegradation of diesel oil compounds and simultaneous reduction of genotoxicity with respect to the control.

  2. Implications of nitrogen fertilization for in-situ bioremediation of petroleum-contaminated soils

    International Nuclear Information System (INIS)

    In situ bioremediation is a promising and rapidly evolving technology for the cleanup of contaminated soils. Although the principles of biodegradation are not new, they are being applied to field remediations in novel ways. Likewise, the metabolic requirements for nitrogen and phosphorus during biodegradation are well-established. However, their effect on the quality of biodegradation still needs delineation. In addition to the physiological effects of mineral nutrients, their mobility and bioavailability in soil becomes critical during an in-situ bioremediation. Studies in the authors laboratory have investigated the effect of different types of fertilizers on hydrocarbon biodegradation in a variety of contaminated soils. Results indicate that the amount and/or species of fertilizer may affect not only the rate of biodegradation, but also the quality of biodegradation, i.e. mineralization of CO2

  3. Comparative Bioremediation of Crude Oil-Amended Tropical Soil Microcosms by Natural Attenuation, Bioaugmentation, or Bioenrichment

    Directory of Open Access Journals (Sweden)

    Vanessa Marques Alvarez

    2011-01-01

    Full Text Available Bioremediation is an efficient strategy for cleaning up sites contaminated with organic pollutants. In this study, we evaluated the effectiveness of monitored natural attenuation, bioenrichment, and bioaugmentation using a consortium of three actinomycetes strains in remediating two distinct typical Brazilian soils from the Atlantic Forest and Cerrado biomes that were contaminated with crude oil, with or without the addition of NaCl. Microcosms were used to simulate bioremediation treatments over a 120-day period. During this period, we monitored total petroleum hydrocarbons (TPHs and n-alkanes degradation and changes in bacterial communities. Over time, we found the degradation rate of n-alkanes was higher than TPH in both soils, independent of the treatment used. In fact, our data show that the total bacterial community in the soils was mainly affected by the experimental period of time, while the type of bioremediation treatment used was the main factor influencing the actinomycetes populations in both soils. Based on these data, we conclude that monitored natural attenuation is the best strategy for remediation of the two tropical soils studied, with or without salt addition.

  4. Metagenomic analysis of the bioremediation of diesel-contaminated Canadian high arctic soils.

    Directory of Open Access Journals (Sweden)

    Etienne Yergeau

    Full Text Available As human activity in the Arctic increases, so does the risk of hydrocarbon pollution events. On site bioremediation of contaminated soil is the only feasible clean up solution in these remote areas, but degradation rates vary widely between bioremediation treatments. Most previous studies have focused on the feasibility of on site clean-up and very little attention has been given to the microbial and functional communities involved and their ecology. Here, we ask the question: which microorganisms and functional genes are abundant and active during hydrocarbon degradation at cold temperature? To answer this question, we sequenced the soil metagenome of an ongoing bioremediation project in Alert, Canada through a time course. We also used reverse-transcriptase real-time PCR (RT-qPCR to quantify the expression of several hydrocarbon-degrading genes. Pseudomonas species appeared as the most abundant organisms in Alert soils right after contamination with diesel and excavation (t = 0 and one month after the start of the bioremediation treatment (t = 1m, when degradation rates were at their highest, but decreased after one year (t = 1y, when residual soil hydrocarbons were almost depleted. This trend was also reflected in hydrocarbon degrading genes, which were mainly affiliated with Gammaproteobacteria at t = 0 and t = 1m and with Alphaproteobacteria and Actinobacteria at t = 1y. RT-qPCR assays confirmed that Pseudomonas and Rhodococcus species actively expressed hydrocarbon degradation genes in Arctic biopile soils. Taken together, these results indicated that biopile treatment leads to major shifts in soil microbial communities, favoring aerobic bacteria that can degrade hydrocarbons.

  5. Bioremediation: Effective treatment of petroleum-fuel-contaminated soil, a common environmental problem at industrial and governmental agency sites

    International Nuclear Information System (INIS)

    Bioremediation methods are receiving increased attention for degradation of petroleum-fuel-hydrocarbon contamination in soils. An in situ bioremediation demonstration is being conducted on petroleum-fuel-contaminated soil at Kwajalein Island, a remote Pacific site. Bioreaction parameters studied include water, air, nutrient, and microorganism culture addition. This paper presents planning and design aspects of the demonstration that is scheduled to be completed in 1993

  6. Integration of pneumatic fracturing with bioremediation from the enhanced removal of BTX from low permeability gasoline-contaminated soils

    International Nuclear Information System (INIS)

    A pilot-scale evaluation of the integrated pneumatic fracturing and bioremediation system was carried out to demonstrate the enhanced removal of BTX from a gasoline contaminated, low permeability soil formation. The fracturing enhanced subsurface permeability by an average of over 36 times, and established an extended bioremediation zone supporting aerobic, denitrifying and methanogenic populations. Subsurface amendment injections consisting of phosphate and nitrogen were made periodically over a 50-week period to stimulate microbial activity. Results indicate that 79% of the soil-phase BTX was removed during the field test, with over 85% of the mass removed attributable to bioremediation

  7. Pilot-scale feasibility of petroleum hydrocarbon-contaminated soil in situ bioremediation

    International Nuclear Information System (INIS)

    An environmental project was conducted to evaluate in situ bioremediation of petroleum hydrocarbon-contaminated soils on Kwajalein Island, a US Army Kwajalein Atoll base in the Republic of the Marshall Islands. Results of laboratory column studies determined that nutrient loadings stimulated biodegradation rates and that bioremediation of hydrocarbon-contaminated soils at Kwajalein was possible using indigenous microbes. The column studies were followed by an ∼10-month on-site demonstration at Kwajalein to further evaluate in situ bioremediation and to determine design and operating conditions necessary to optimize the process. The demonstration site contained low levels of total petroleum hydrocarbons (diesel fuel) in the soil near the ground surface, with concentrations increasing to ∼10,000 mg/kg in the soil near the groundwater. The demonstration utilized 12 in situ plots to evaluate the effects of various combinations of water, air, and nutrient additions on both the microbial population and the hydrocarbon concentration within the treatment plots as a function of depth from the ground surface

  8. In situ bioremediation of petroleum in tight soils using hydraulic fracturing

    International Nuclear Information System (INIS)

    This case study evaluated the effectiveness of in situ bioremediation of petroleum hydrocarbons in tight soils. The study area was contaminated with cutting oil from historic releases from underground piping, probably dating back to the 1940's. Previous site assessment work indicated that the only chemicals of concern were total petroleum hydrocarbons (TPH). Two fracture sets (stacks) were installed at different locations to evaluate this in situ bioremediation technique under passive and active conditions. Several injection wells were drilled at both locations to provide entry for hydraulic fracturing equipment. A series of circular, horizontal fractures 40 to 50 feet in diameter were created at different depths, based on the vertical extent of contamination at the site. The injection wells were screened across the contaminated interval which effectively created underground bioreactors. Soils were sampled and analyzed for total petroleum hydrocarbons on five separate occasions over the nine-month study. Initial average soil concentrations of total petroleum hydrocarbons of 5,700 mg/kg were reduced to 475 mg/kg within nine months of hydraulic fracturing. The analytical results indicate an average reduction in TPH at the sample locations of 92 percent over the nine-month study period. This project demonstrates that in situ bioremediation using hydraulic fracturing has significant potential as a treatment technology for petroleum contaminated soils

  9. Design and field-scale implementation of an “on site” bioremediation treatment in PAH-polluted soil

    International Nuclear Information System (INIS)

    An “on site” bioremediation program was designed and implemented in soil polluted with polycyclic aromatic hydrocarbons (PAHs), especially naphthalene. We began by characterizing the soil's physical and chemical properties. A microbiological screening corroborated the presence of microorganisms capable of metabolizing PAHs. We then analyzed the viability of bioremediation by developing laboratory microcosms and pilot scale studies, to optimize the costs and time associated with remediation. The treatment assays were based on different types of biostimulants, such as a slow or fast-release fertilizer, combined with commercial surfactants. Once the feasibility of the biostimulation was confirmed, a real-scale bioremediation program was undertaken in 900 m3 of contaminated soil. The three-step design reduced PAH contamination by 94.4% at the end of treatment (161 days). The decrease in pollutants was concomitant with the selection of autochthonous bacteria capable of degrading PAHs, with Bacillus and Pseudomonas the most abundant genera. -- Highlights: •A three-step bioremediation program was designed for a polluted soil with PAHs. •Biostimulation was based in applying nutrient plus surfactants, watering and aeration. •Microcosm and pilot scale studies allowed the selection of the best treatment. •Bioremediation of 900 m3 of contaminated soil showed a final reduction of 94.4% PAHs. •Autochthonous Bacillus and Pseudomonas were the bacterial genera with highest representation. -- PAH-polluted soil underwent biostimulation at the microcosms and pilot-scale to optimize subsequent field-scale bioremediation

  10. Bioremediation of soils containing petroleum hydrocarbons, chlorinated phenols, and polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Bench-scale treatability investigations, pilot-scale and full-scale bioremediation projects were conducted to evaluate Daramend trademark bioremediation of soils containing petroleum hydrocarbons, heavy oils, paraffins, chlorinated phenols and polycyclic aromatic hydrocarbons (PAHs). Bench-scale investigations were conducted using glass microcosms. Pilot-scale and full-scale demonstrations were conducted at industrial sites and included treatment of excavated soils and sediments in on-site cells constructed using synthetic liners and covered by steel/polyethylene structures as well as in-situ treatment. A total of approximately 5,000 tons of soil was treated. The soil treatment included organic soil amendments, specialized tillage/aeration apparatus, and strict control of soil moisture. The amendments are composed of naturally-occurring organic materials prepared to soil-specific particle size distributions, nutrient profiles, and nutrient-release kinetics. Bench-scale work indicated that in refinery soil containing high concentrations of heavy oils, extractable hydrocarbon concentrations could be rapidly reduced to industrial clean-up criteria, and that the hydrocarbons were fully mineralized with release of CO2

  11. Effects of biosurfactant production by indigenous soil microorganisms on bioremediation of a co-contaminated soil in batch experiments

    Energy Technology Data Exchange (ETDEWEB)

    Jalali, F.; Mulligan, C.N. [Concordia Univ., Centre for Building Studies, Montreal, PQ (Canada). Dept. of Building, Civil and Environmental Engineering

    2007-07-01

    The challenge of remediating soils that are contaminated with both hydrocarbon compounds and metals was discussed, with particular reference to an in-situ bioremediation technique that was developed in the 1970s to deal with contaminated soils. The technique involves a two-stage process where water with added oxygen and nutrients is applied onto and injected into a contaminated area to stimulate the indigenous microbial populations in the soil. In addition to using organic pollutants as their carbon source, microorganisms can facilitate the removal of metals from the soil matrix and attenuate the toxicity of certain metals. Extraction wells placed downstream of the contaminated soils are used to remove and treat the water to eliminate any mobilized contaminants. This paper presented the results of batch experiments that evaluated the feasibility of biosurfactant production for the purpose of bioremediating a soil contaminated with aged petroleum hydrocarbons and heavy metals. The first phase of the study examined the growth of the native microbial population and the biodegradation of petroleum hydrocarbons, the production of biosurfactant and the mobilization of the total petroleum hydrocarbons (TPH) and metals into the aqueous phase. Biodegradation of petroleum hydrocarbons was observed in both soil and soil amended with nitrogen and phosphorous. However, the nutrient-amended soil had higher biodegradation of petroleum hydrocarbons, where 36 per cent of TPH was degraded by the end of the 50 day experiment, compared to 15 per cent for the non-amended soils. The concentration of biosurfactants in the same period increased 3 times their critical micelle concentration. It was concluded that biosurfactant production enhances the bioremediation of co-contaminated soils. 36 refs., 1 tab., 8 figs.

  12. Phylogenetic diversity of dominant bacterial communities during bioremediation of crude oil-polluted soil

    Directory of Open Access Journals (Sweden)

    Eugene Thomas Cloete

    2011-08-01

    Full Text Available Bioremediation of hydrocarbon pollutants is advantageous owing to the cost-effectiveness of the technology and the ubiquity of hydrocarbon degrading microorganisms in the soil. Soil microbial diversity is affected by hydrocarbon perturbation thus selective enrichment of hydrocarbon utilizers occurs. Hydrocarbons interact with the soil matrix and soil microorganisms determining the fate of the contaminants relative to their chemical nature and microbial degradative capabilities respectively. Bacterial dynamics in crude oil-polluted soil microcosms undergoing bioremediation were investigated over a 42-day period. Four out of the five microcosms containing 4kg of pristine soil each were contaminated with 4% Arabian light crude oil. Three microcosms were amended with either 25g of NPK fertilizer, calcium ammonium nitrate or poultry droppings respectively while the fourth designated oil-contaminated control was unamended. The fifth microcosm had only pristine soil and was set up to ascertain indigenous bacterial community structure pre-contamination. Biostimulated soils were periodically tilled and watered. Hydrocarbon degradation was measured throughout the experimental period by gas chromatography. Gas chromatographic tracing of residual hydrocarbons in biostimulated soils showed marked attenuation of contaminants starting from the second (day 14 till the sixth (day 42 week after contamination whereas no significant reduction in hydrocarbon peaks was seen in the oil contaminated control soil throughout the 6-week experimental period. Molecular fingerprints of bacterial communities involved in aerobic biodegradation of crude oil hydrocarbons in biostimulated soils and controls were generated with DGGE using PCR-amplification of 16S rRNA gene obtained from extracted total soil community DNA. DGGE fingerprints demonstrated that NPK, calcium ammonium nitrate and poultry droppings selected different bacterial populations during the active phase of oil

  13. BIOREMEDIATION - TECHNOLOGY FOR DECONTAMINATION OF SOILS POLLUTED WITH PETROLEUM HYDROCARBONS

    OpenAIRE

    Irina-Ramona PECINGINĂ; Daniela CÎRŢÎNĂ

    2013-01-01

    The pollution of soil with petroleum hydrocarbons prevents unfolding processes ofwater infiltration in soil, its circulation and the exchanges of the gaseous substances with theatmosphere. The biodegradation speed of the pollutants by the microorganisms is influenced ofsome factors: nutrients, soil type, humidity, temperature, pH, the type and the metabolism of themicroorganisms. The spill of the crude oil in the soil results in numerical growth of bacteriapopulations, with a concomitant redu...

  14. Bioremediation of soil polluted with crude oil and its derivatives: Microorganisms, degradation pathways, technologies

    OpenAIRE

    Beškoski Vladimir P.; Gojgić-Cvijović Gordana Đ.; Milić Jelena S.; Ilić Mila V.; Miletić Srđan B.; Jovančićević Branimir S.; Vrvić-Miroslav M.

    2012-01-01

    The contamination of soil and water with petroleum and its products occurs due to accidental spills during exploitation, transport, processing, storing and use. In order to control the environmental risks caused by petroleum products a variety of techniques based on physical, chemical and biological methods have been used. Biological methods are considered to have a comparative advantage as cost effective and environmentally friendly technologies. Bioremediation, defined as the use of b...

  15. Electrokinetically enhanced bioremediation of creosote-contaminated soil: laboratory and field studies.

    Science.gov (United States)

    Suni, Sonja; Malinen, Essi; Kosonen, Jarmo; Silvennoinen, Hannu; Romantschuk, Martin

    2007-02-15

    Creosote is a toxic and carcinogenic substance used in wood impregnation. Approximately 1,200 sites in Finland are contaminated with creosote. This study examined the possibility of enhancing bioremediation of creosote-contaminated soil with a combination of electric heating and infiltration and electrokinetic introduction of oxygenated, nutrient-rich liquid. Preliminary tests were performed in the laboratory, and a pilot test was conducted in situ at a creosote-contaminated former wood impregnation plant in Eastern Finland. Wood preservation practices at the plant were discontinued in 1989, but the soil and the groundwater in the area are still highly contaminated. The laboratory tests were mainly performed as a methodological test aiming for upscaling. The soils used in these tests were a highly polluted soil from a marsh next to the impregnation plant and a less polluted soil near the base of the impregnation building. The laboratory test showed that the relative degradation was significantly higher in high initial contaminant concentrations than with low initial concentrations. During the first 7 weeks, PAH-concentrations decreased by 68% in the marsh soil compared with a 51% reduction in the building soil. The field test was performed to a ca. 100 m3 soil section next to the former impregnation building. Nutrient and oxygen levels in the soils were elevated by hydraulic and electrokinetic pumping of urea and phosphate amended, aerated water into the soil. The DC current introduced into the soil raised the temperature from the ambient ca. 6 degrees C up to between 16 and 50 degrees C. Total PAH concentrations decreased by 50-80% during 3 months of treatment while mineral oil concentrations decreased approximately 30%. Electrokinetically enhanced in situ - bioremediation, which also significantly raised the soil temperature, proved to be a promising method to remediate creosote-contaminated soils. PMID:17365294

  16. Soil pollution in the railway junction Niš (Serbia) and possibility of bioremediation of hydrocarbon-contaminated soil

    Science.gov (United States)

    Jovanovic, Larisa; Aleksic, Gorica; Radosavljevic, Milan; Onjia, Antonije

    2015-04-01

    Mineral oil leaking from vehicles or released during accidents is an important source of soil and ground water pollution. In the railway junction Niš (Serbia) total 90 soil samples polluted with mineral oil derivatives were investigated. Field work at the railway Niš sites included the opening of soil profiles and soil sampling. The aim of this work is the determination of petroleum hydrocarbons concentration in the soil samples and the investigation of the bioremediation technique for treatment heavily contaminated soil. For determination of petroleum hydrocarbons in the soil samples method of gas-chromatography was carried out. On the basis of measured concentrations of petroleum hydrocarbons in the soil it can be concluded that: Obtained concentrations of petroleum hydrocarbons in 60% of soil samples exceed the permissible values (5000 mg/kg). The heavily contaminated soils, according the Regulation on the program of systematic monitoring of soil quality indicators for assessing the risk of soil degradation and methodology for development of remediation programs, Annex 3 (Official Gazette of RS, No.88 / 2010), must be treated using some of remediation technologies. Between many types of phytoremediation of soil contaminated with mineral oils and their derivatives, the most suitable are phytovolatalisation and phytostimulation. During phytovolatalisation plants (poplar, willow, aspen, sorgum, and rye) absorb organic pollutants through the root, and then transported them to the leaves where the reduced pollutants are released into the atmosphere. In the case of phytostimulation plants (mulberry, apple, rye, Bermuda) secrete from the roots enzymes that stimulates the growth of bacteria in the soil. The increase in microbial activity in soil promotes the degradation of pollutants. Bioremediation is performed by composting the contaminated soil with addition of composting materials (straw, manure, sawdust, and shavings), moisture components, oligotrophs and

  17. BIOREMEDIATION - TECHNOLOGY FOR DECONTAMINATION OF SOILS POLLUTED WITH PETROLEUM HYDROCARBONS

    Directory of Open Access Journals (Sweden)

    Irina-Ramona PECINGINĂ

    2013-05-01

    Full Text Available The pollution of soil with petroleum hydrocarbons prevents unfolding processes ofwater infiltration in soil, its circulation and the exchanges of the gaseous substances with theatmosphere. The biodegradation speed of the pollutants by the microorganisms is influenced ofsome factors: nutrients, soil type, humidity, temperature, pH, the type and the metabolism of themicroorganisms. The spill of the crude oil in the soil results in numerical growth of bacteriapopulations, with a concomitant reduction in their diversity, respectively with the predominantspecies that degrade hydrocarbons to simpler compounds, determining their gradualdisappearance.

  18. The concomitant use of indigenous soil bacteria and fungi to enhance the bioremediation of refinery waste

    Energy Technology Data Exchange (ETDEWEB)

    Campos Carvalho, F.J.P. de [Universidade Federal do Parana, Curitiba (Brazil)

    2001-07-01

    Usually, the use of indigenous soil bacteria for the remediation of petroleum-contaminated soils was restricted to the biodegradation of low-molecular weight petroleum hydrocarbons such as gasoline, diesel, fuel oil and jet fuel. The advantage of using indigenous microorganisms is the minimization of the impact of the treatment on the microbial diversity. As a rule,these techniques are also well accepted by the public. Other studies have shown that fungi is successful for the bioremediation of heavier-weight contaminants. The concomitant transformation of low-molecular weight and heavier recalcitrant oil fractions to inorganic and humic form can be accomplished with the concomitant action of bacteria and fungi. The development of a soil biotreatment program using this concomitant technique was performed by PETROBRAS Petroleo Brasileiro S.A. - Refinaria Presidente Getulio Vargas in conjunction with the Universidade Federal do Parana. It resulted in a full-scale technology that allows the degradation of oil waste. Approximately two years of treatment are required to achieve the desired results. The use of standard analytical methods and bioindicators used on the treated soil indicated that the treated soil met the standards for agricultural soil quality. A recent oil spill occurred in Araucaria, Brazil and a bioremediation area was inoculated, and to date the results prove the beneficial effects to be derived from the use of inoculation. Some results were presented in table format. 3 tabs.

  19. Solid-phase bioremediation of diesel fuel-contaminated soil utilizing indigenous microorganisms

    International Nuclear Information System (INIS)

    In the spring of 1993, R.E. Wright Environmental, Inc. (REWEI) was retained by BP Oil Company (BP) to evaluate the use of bioremediation technology to remediate approximately 3,000 cubic yards (yd3) of soil impacted with diesel fuel. The impacted soil resulted from the release of several hundred gallons of diesel fuel from a ruptured valve on an aboveground pipeline within a terminal. The overland flow of the diesel fuel resulted in a significant area of soil being impacted by the fuel. Immediate response activities limited vertical migration of the fuel through the excavation and stockpiling of the surface-impacted soil. The nature of the contaminant -- an unweathered, refined petroleum product comprised primarily of alkanes of a medium chain length -- and the biodegradable nature of the diesel fuel made bioremediation a cost-effective and technically feasible remedial option. The objective of the project was to reduce the concentrations of the petroleum hydrocarbons to below the Pennsylvania Department of Environmental Protection (DEP) soil cleanup levels in order to reuse the soil on-site as fill. Basic agronomic principles were applied throughout all phases of the project in order to successfully biodegrade the hydrocarbon

  20. Enrichment of degrading microbes and bioremediation of petrochemical contaminants in polluted soil

    International Nuclear Information System (INIS)

    Soil at a site near Zibo City, China, is polluted with hydrocarbons at concentrations up to 200 g kg-1 dry soil. Samples contained 107 microbial cells g-1 dry soil, and the concentration of aerobic degradation bacteria is 107 cells g-1 dry soil. The most active species were Xanthomonas, Bacillus and Hyphomicrobium. The nitrogen and phosphorus contents of the polluted soil are typically 0.1 %, and are sufficient to sustain natural or enhanced biodegradation. The BAC (Biological Activated Carbon) system was used to enrich indigenous microbes to enhance bioremediation rates in the laboratory. The BAC used the large surface area and sorption characteristics to fix bacteria and media, and effectively culture and enrich the microbes. Effluent from the BAC system contained up to 4 x 1011 cells ml-1, and was introduced to the contaminated soil to enhance biodegradation. The results indicated that the natural biodegradation rate of the petroleum hydrocarbons is lower than the BAC enhanced bioremediation rate, 1.7% as opposed to 42% in 32 days. (Author)

  1. Bioremediation of the Soils Contaminated with Cadmium and Chromium, by the Earthworm Eisenia fetida

    Directory of Open Access Journals (Sweden)

    Elham Aseman- Bashiz1

    2014-07-01

    Full Text Available One of the most important environmental problems in the world is the soils contamination by heavy metals in the industrial areas, and especially the contamination of the agricultural lands. The use of earthworms to bioremediate the soils results in reducing the pollutants concentration through a bioaccumulation mechanism on the contaminants in the earthworm's body. Hence, the present study aimed to prove the biological effectiveness of Eisenia fetida earthworms in bioremediation the soils contaminated with chromium and cadmium. Concentration of chromium and cadmium pollution in soil was determined to be 0.04 mg/g and 0.08 mg/g respectively. 30 worms were added to 500 g soil samples. Chromium and cadmium concentration in soil and in the body of worms was measured at two time periods of 21 and 42 days. To measure the concentration of chromium and cadmium we used ICP spectrometry. Software in usage was SPSS version 17. There was a significant correlation between the reduction of chromium and cadmium metals in the soils and the accumulation of chromium and cadmium metals in the worm’s body. A significant decline of chromium levels of the soil was observed in the days 21 and 42 during the study compared to initial amount of 0.1 mg/g. on the other hand chromium concentration of the soil decreased from 0.14 mg/g to 0.1 mg/g after 42 days. Comparison of mortality in two different time periods showed that by passing the time and by increase in soil chromium and cadmium concentrations the death toll of worms rises. The increased mortality of worms in the soil at a concentration of 0.08 mg/g of chromium, say that using the worms for bioremediation is not recommended at such concentration of chromium but using the worms for the removal of cadmium at concentrations of 0.04 mg/g and 0.08 mg/g in the soil is recommended.

  2. Evaluation of oil removal efficiency and enzymatic activity in some fungal strains for bioremediation of petroleum-polluted soils

    OpenAIRE

    Fariba Mohsenzadeh; Abdolkarim Chehregani Rad; Mehrangiz Akbari

    2012-01-01

    Abstract Background Petroleum pollution is a global disaster and there are several soil cleaning methods including bioremediation. Methods In a field study, fugal strains were isolated from oil-contaminated sites of Arak refinery (Iran) and their growth ability was checked in potato dextrose agar (PDA) media containing 0-10% v/v crude oil, the activity of three enzymes (Catalase, Peroxidase and Phenol Oxidase) was evaluated in the fungal colonies and bioremediation ability of the fungi was ch...

  3. Evaluation of soil bioremediation techniques in an aged diesel spill at the Antarctic Peninsula.

    Science.gov (United States)

    de Jesus, Hugo E; Peixoto, Raquel S; Cury, Juliano C; van Elsas, Jan D; Rosado, Alexandre S

    2015-12-01

    Many areas on the Antarctic continent already suffer from the direct and indirect influences of human activities. The main cause of contamination is petroleum hydrocarbons because this compound is used as a source of energy at the many research stations around the continent. Thus, the current study aims to evaluate treatments for bioremediation (biostimulation, bioaugmentation, and bioaugmentation + biostimulation) using soils from around the Brazilian Antarctic Station "Comandante Ferraz" (EACF), King George Island, Antarctic Peninsula. The experiment lasted for 45 days, and at the end of this period, chemical and molecular analyses were performed. Those analyses included the quantification of carbon and nitrogen, denaturing gradient gel electrophoresis (DGGE) analysis (with gradient denaturation), real-time PCR, and quantification of total hydrocarbons and polyaromatics. Molecular tests evaluated changes in the profile and quantity of the rrs genes of archaea and bacteria and also the alkB gene. The influence of the treatments tested was directly related to the type of soil used. The work confirmed that despite the extreme conditions found in Antarctic soils, the bacterial strains degraded hydrocarbons and bioremediation treatments directly influenced the microbial communities present in these soils even in short periods. Although the majority of the previous studies demonstrate that the addition of fertilizer seems to be most effective at promoting bioremediation, our results show that for some conditions, autochthonous bioaugmentation (ABA) treatment is indicated. This work highlights the importance of understanding the processes of recovery of contaminated environments in polar regions because time is crucial to the soil recovery and to choosing the appropriate treatment. PMID:26286513

  4. Bioremediation case study: Fuel-contaminated soil cleanup in the Marshall Islands

    International Nuclear Information System (INIS)

    Using microbes to degrade fuels in contaminated soils is becoming increasingly more attractive as an approach to environmental restoration. Removing contamination by traditional methods is costly, does not always eliminate the problem, and often just moves it somewhere else. Biodegradation of contaminants can often be accomplished in situ, resulting in the actual destruction of the contaminants by microbial conversion to harmless by-products. Bioremediation is not applicable to all forms of environmental contamination but has been demonstrated to be particularly effective on petroleum hydrocarbon based fuels. Bioremediation can offer a cost-effective means for site cleanup, particularly where challenging logistical considerations have to be factored into cleanup projects. Logistical considerations have made bioremediation the method of choice for the decontamination of fuel-containing soils on Kwajalein Island, Republic of the Marshall Islands. Kwajalein is located more than 2,100 miles west of Hawaii in the southernmost part of the North Pacific. The site of a major missile range of the Strategic Defense Command (SDC), Kwajalein has been the center of US defense activities for almost 50 years. The island is part of a typical coral atoll and is only 2.5 miles long and 0.5 miles wide. Mission-related activities over the past 5 decades have resulted in about 10% of the island being contaminated with diesel, gasoline, and jet fuels. SDC has executed an agreement with the Department of Energy for the Hazardous Waste Remedial Actions Program (HAZWRAP), a division of Martin Marietta Energy Systems, Inc., to assist the US Army Kwajalein Atoll (USAKA) in the management of the Base restoration activities on Kwajalein Atoll. HAZWRAP initiated sampling and feasibility studies to determine whether bioremediation was a viable choice for site cleanup at USAKA

  5. Bioremediation Well Borehole Soil Sampling and Data Analysis Summary Report for the 100-N Area Bioremediation Project

    Energy Technology Data Exchange (ETDEWEB)

    D. A. Gamon

    2009-09-28

    The purpose of this report is to present data and findings acquired during the drilling and construction of seven bioremediation wells in the 100-N Area in conjunction with remediation of the UPR-100-N-17 petroleum waste site.

  6. Emergency in situ detoxification of gasoline contaminated soil through bioremediation

    International Nuclear Information System (INIS)

    A soil column study was conducted to investigate short-term biological cleanup of a site contaminated with gasoline. Toxicity, measured using the Microtox 500 by MICROBICS Corp., was the parameter used for monitoring the process. The results were very encouraging. A final 6-foot-depth toxicity, equivalent to 3 ppm and 9 ppm gasoline was found for low level spills on wet and dry soil after 6 and 8 days, respectively. A high level spill on dry soil had a final 6-foot-depth toxicity of about 9 ppm after 8 days. Additionally, pure flushing of a low level spill on wet soil demonstrated that it took about 3 days for the gasoline to reach a depth of 4 feet. Several conclusions may be drawn from the experimental results. When a low level gasoline spill occurs on wet soil, gasoline permeates slower, thus allowing longer microbial contact time. Slow flushing was seen to enhance the process in that the bacteria are spread throughout the column. If a high level spills occur on dry soil, it was observed that water should be added in smaller quantities, and over a longer period of time, to prevent pushing contamination downward. The results of a low level spill incident on dry soil indicate that even after 8 days, no significant concentrations of gasoline were found at the 6 foot depth. Based upon examination of attenuation factors, the hydraulics of the experiment, and the analysis of pure flushing, it can be concluded that biodegradation was the primary reason for toxicity reduction

  7. Application of radiochemical methods for development of new biological preparation designed for soil bioremediation

    International Nuclear Information System (INIS)

    Full text: Internationally the bioremediation of agricultural lands contaminated by persistent chloroorganic compounds by means of the microbial methods are used as the most low-cost and the most effective. One of the factors reducing efficacy of microbial degradation, is often the low quantity of microorganisms - destructors in the soil. Therefore, we have designed bioremediation technology of soils, contaminated by organochlorine compounds, with use of the alive microorganisms as active agent. We developed the biological preparation containing 5 aboriginal active strains of bacteria - destructors of persistent chloroorganic compounds and investigated the ability of biological preparation to increase the bioremediation potential of contaminated soils. To carry out the investigation we developed the complex of radiochemical methods with use of tritium labeled PCBs, including the following methods: 1.The method to define the accumulation and degradation of PCBs in soil bacteria in culture allows determination of quantitative characteristics of bacterial strains. 2. The method to define the PCBs degradation by soil bacteria strains in model conditions in the soil allows to estimate the PCB-destructive activity of strains after introducing in soil. 3. A method to define the PCB-destructive activity of own microbiota of contaminated soil. 4. A method to define the effect of stimulation of the PCB-destructive activity of biological preparation and own microbiota of soil with the help of biofertilizers. By using the developed radiochemical methods we have carried out investigation on creation of new biological preparation on the basis of strains of soil bacteria - destructors of PCBs. We also determined the quality and quantity characteristics of HCCH and PCBs-destructive activity of new biological preparation. It is shown that the new biological preparation is capable of accumulation and destruction of the PCBs in culture and in soil at model conditions. Thus, the

  8. Analysis of bioremediation of pesticides by soil microorganisms

    Science.gov (United States)

    Ruml, Tomas; Klotz, Dietmar; Tykva, Richard

    1995-10-01

    The application of new pesticides requires careful monitoring of their distribution in the environment. The effect of the soil microflora on the stability of the [14C]- labelled juvenoid hormone analogue W-328 was estimated. The micro-organisms from two different soil samples were isolated and tested for their ability to decompose W-328. One bacterial strain, yeast and mold isolates, exhibited the degradation activity. The growth characteristics such as pH and temperature optima were determined. The degradation products were estimated using HPLC.

  9. Combining Solvent Extraction and Bioremediation for Removing Weathered Petroleum from Contaminated Soil

    Institute of Scientific and Technical Information of China (English)

    WU Guo-Zhong; F.COULON; YANG Yue-Wei; LI Hong; SUI Hong

    2013-01-01

    This study aimed to evaluate the efficacy,practicality and sustainability of a combined approach based on solvent extraction and biodegradation to remediate the soils contaminated with high levels of weathered petroleum hydrocarbons.The soils used in this study were obtained from the Shengli Oilfield in China,which had a long history of contamination with high concentrations of petroleum hydrocarbons.The contaminated soils were washed using a composite organic solvent consisting of hexane and pentane (4:1,v/v) and then bioremediated in microcosms which were bioaugmentated with Bacillus subtilis FQ06 strains and/or rhamnolipid.The optimal solvent extraction conditions were determined as extraction for 20 min at 25 ℃ with solvent-soil ratio of 6:1 (v/w).On this basis,total petroleum hydrocarbon was decreased from 140000 to 14000 mg kg-1,which was further reduced to < 4000 mg kg-1 by subsequent bioremediation for 132 d.Sustainability assessment of this integrated technology showed its good performance for both short-and long-term effectiveness.Overall the results encouraged its application for remediating contaminated sites especially with high concentration weathered hydrocarbons.

  10. Literature review and assessment of various approaches to bioremediation of oil and associated hydrocarbons in soil and groundwater

    International Nuclear Information System (INIS)

    A study was conducted of available techniques for the biological treatment of oil and associated hydrocarbon contamination in soil and groundwater. The study involved a detailed literature search and review, as well as discussions with the users and developers of a number of the bioremediation techniques assessed. The result is a compendium of selected state-of-the-art bioremediation technologies which can serve to guide the selection process for treatment technology for a particular site subject to remediation. Background is provided on the various classes of sites on which petroleum-related contamination could occur, and the nature of contaminants typical of such sites. The mechanisms of hydrocarbon biodegradation are outlined along with various approaches to bioremediation such as in-situ, on-site, bioreactors, landfarming, composting, and physical/chemical treatments. Field trials required to characterize the site and provide an indication of the suitability of bioremediation and the most appropriate bioremediation approach are described. Commercially available bioremediation technologies are briefly discussed. A number of the bioremedial techniques reviewed are compared to more conventional treatment processes in terms of such criteria as operating cost, effectiveness, advantages, risks, applicability, equipment and manpower requirements, and considerations regarding usage in Canadian conditions. 15 figs., 17 tabs

  11. Bioremediation of petroleum hydrocarbons in soil: Activated sludge treatability study

    International Nuclear Information System (INIS)

    Batch activated sludge treatability studies utilizing petroleum hydrocarbon contaminated soils (diesel oil and leaded gasoline) were conducted to determine: initial indigenous biological activity in hydrocarbon-contaminated soils; limiting factors of microbiological growth by investigating nutrient addition, chemical emulsifiers, and co-substrate; acclimation of indigenous population of microorganisms to utilize hydrocarbons as sole carbon source; and temperature effects. Soil samples were taken from three different contaminated sites and sequencing batch reactors were run. Substrate (diesel fuel) and nutrient were added as determined by laboratory analysis of orthophosphate, ammonia nitrogen, chemical oxygen demand, and total organic carbon. Substrate was made available to the bacterial mass by experimenting with four different chemical emulsifiers. Indigenous microorganisms capable of biotransforming hydrocarbons seem to be present in all the contaminated soil samples received from all sites. Microscopic analysis revealed no visible activity at the beginning of the study and presence of flagellated protozoa, paramecium, rotifers, and nematodes at the end of the year. Nutrient requirements and the limiting factors in microorganism growth were determined for each site. An emulsifier was initially necessary to make the substrate available to the microbial population. Decreases in removal were found with lowered temperature. Removal efficiencies ranged from 50-90%. 95 refs., 11 figs., 13 tabs

  12. Variations in the bioavailability of polycyclic aromatic hydrocarbons in industrial and agricultural soils after bioremediation.

    Science.gov (United States)

    Guo, Meixia; Gong, Zongqiang; Allinson, Graeme; Tai, Peidong; Miao, Renhui; Li, Xiaojun; Jia, Chunyun; Zhuang, Jie

    2016-02-01

    The aim of this study was to demonstrate the variations in bioavailability remaining in industrial and agricultural soils contaminated by polycyclic aromatic hydrocarbons (PAHs) after bioremediation. After inoculation of Mycobacterium sp. and Mucor sp., PAH biodegradation was tested on a manufactured gas plant (MGP) soil and an agricultural soil. PAH bioavailability was assessed before and after biodegradation using solid-phase extraction (Tenax-TA extraction) and solid-phase micro-extraction (SPME) to represent bioaccessibility and chemical activity of PAHs, respectively. Only 3- and 4-ring PAHs were noticeably biodegradable in the MGP soil. PAH biodegradation in the agricultural soil was different from that in the MGP soil. The rapidly desorbing fractions (F(rap)) extracted by Tenax-TA and the freely dissolved concentrations of 3- and 4-ring PAHs determined by SPME from the MGP soil decreased after 30 days biodegradation; those values of the 5- and 6-ring PAHs changed to a lesser degree. For the agricultural soil, the F(rap) values of the 3- and 4-ring PAHs also decreased after the biodegradation experiment. The Tenax-TA extraction and the SPME have the potential to assess variations in the bioavailability of PAHs and the degree of biodegradation in contaminated MGP soils. In addition, Tenax-TA extraction is more sensitive than SPME when used in the agricultural soil. PMID:26498099

  13. Bioremediation (Natural Attenuation and Biostimulation) of Diesel-Oil-Contaminated Soil in an Alpine Glacier Skiing Area

    OpenAIRE

    Margesin, R.; Schinner, F.

    2001-01-01

    We investigated the feasibility of bioremediation as a treatment option for a chronically diesel-oil-polluted soil in an alpine glacier area at an altitude of 2,875 m above sea level. To examine the efficiencies of natural attenuation and biostimulation, we used field-incubated lysimeters (mesocosms) with unfertilized and fertilized (N-P-K) soil. For three summer seasons (July 1997 to September 1999), we monitored changes in hydrocarbon concentrations in soil and soil leachate and the accompa...

  14. Sequential Application of Soil Vapor Extraction and Bioremediation Processes for the Remediation of Ethylbenzene-Contaminated Soils

    DEFF Research Database (Denmark)

    Soares, António Carlos Alves; Pinho, Maria Teresa; Albergaria, José Tomás; Domingues, Valentina; Alvim-Ferraz, Maria da Conceição M; Marco, Paolo De; Delerue-Matos, Cristina

    2012-01-01

    Soil vapor extraction (SVE) is an efficient, well-known and widely applied soil remediation technology. However, under certain conditions it cannot achieve the defined cleanup goals, requiring further treatment, for example, through bioremediation (BR). The sequential application of these...... technologies is presented as a valid option but is not yet entirely studied. This work presents the study of the remediation of ethylbenzene (EB)-contaminated soils, with different soil water and natural organic matter (NOMC) contents, using sequential SVE and BR. The obtained results allow the conclusion that......: (1) SVE was sufficient to reach the cleanup goals in 63% of the experiments (all the soils with NOMC below 4%), (2) higher NOMCs led to longer SVE remediation times, (3) BR showed to be a possible and cost-effective option when EB concentrations were lower than 335 mg kgsoil −1, and (4...

  15. Enhanced petroleum-contaminated soil bioremediation by plants

    OpenAIRE

    Al-Ghazzawi, Ziad D.

    1995-01-01

    A petroleum-contaminated soil remediation study was conducted in a greenhouse. The system consisted of 36 pots, 12 were vegetated with squash, 12 were vegetated with fescue grass and the last 12 units served as unvegetated controls. For each group, three treatments were applied, 1) the addition of single dose of nutrients, 2) the addition of double dose of nutrients and 3) the addition of double dose of nutrients and acclimated bacteria to the irrigation water. The two plants w...

  16. Development and application of techniques for monitoring the bioremediation of petroleum hydrocarbon-contaminated soils

    International Nuclear Information System (INIS)

    A series of tests was designed to examine bioremediation potential in soil and to monitor performance during the treatment operation. Physical and chemical characterization of the soil provides information on the types of organics, their concentrations, and whether interfering materials are present. Microbiological assessment involves culturing of bacterial populations in the soil and examination of the colonies to determine which have the genetic potential to degrade the soil contaminants. Catabolic gene probes are used to survey viable bacteria from petroleum hydrocarbon contaminated soils. Such soils consistently demonstrate the presence of bacteria possessing the genetic capability to degrade simple straight-chain alkanes and aromatics. Mineralization and respirometric studies are indicators of the biological activity in the soil, and can be directed at microbial activity towards specific substrates. Gene probe monitoring of a petroleum hydrocarbon contaminated soil during biopile treatment demonstrated that hydrocarbon-degrading bacterial numbers and activity were temperature dependent. The results showed that the activity of the indigenous bacteria as measured by hexadecane mineralization also correlated with the disappearance of the oil and grease. The application of this protocol has provided a useful means to screen contaminated soils for bacteria with desirable catabolic properties and to monitor pollutant-degrading bacteria during biotreatment. 15 refs., 10 figs

  17. Ecotoxicological evaluation of in situ bioremediation of soils contaminated by the explosive 2,4,6-trinitrotoluene (TNT)

    International Nuclear Information System (INIS)

    The luminescent bacteria assay, using soil leachates, was the most sensitive toxicity indicator. - To evaluate the environmental relevance of in situ bioremediation of contaminated soils, effective and reliable monitoring approaches are of special importance. The presented study was conducted as part of a research project investigating in situ bioremediation of topsoils contaminated by the explosive 2,4,6-trinitrotoluene (TNT). Changes in soil toxicity within different experimental fields at a former ordnance factory were evaluated using a battery of five bioassays (plant growth, Collembola reproduction, soil respiration, luminescent bacteria acute toxicity and mutagenicity test) in combination to chemical contaminant analysis. Resulting data reveal clear differences in sensitivities between methods with the luminescent bacteria assay performed with soil leachates as most sensitive toxicity indicator. Complete test battery results are presented in so-called soil toxicity profiles to visualise and facilitate the interpretation of data. Both biological and chemical monitoring results indicate a reduction of soil toxicity within 17 months of remediation

  18. Evaluation of bio-remediation technologies for PAH{sub s} contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Frutos, F.J.; Diaz, J.; Rodriguez, V.; Escolano, O.; Garcia, S.; Perez, R. [CIEMAT, Dept. of Environment, Madrid (Spain); Martinez, R.; Oromendia, R. [Dept. Ingenieria y Morfologia del Terreno. ETS Ingenieros Caminos, Canales y Puertos (UPM), Madrid (Spain)

    2005-07-01

    Natural attenuation is a new concept related to polluted soil remediation. Can be understood like an 'in situ' bio-remediation process with low technical intervention. This low intervention may be in order to follow the behaviour of pollutants 'monitored natural attenuation' or include an optimisation process to improve biological remediation. The use of this technology is a fact for light hydrocarbon polluted soil, but few is known about the behaviour of polycyclic aromatic hydrocarbons (PAHs) in this process. PAHs are more recalcitrant to bio-remediation due to their physic-chemical characteristics, mainly hydrophobicity and electrochemical stability. PAHs are a kind of pollutants widely distributed in the environment, not only in the proximity of the source. This linked to the characteristics of some of them related to toxicity and mutagenicity implies its inclusion as target compounds from an environmental point of view. Their low availability, solubility and the strong tendency to bind to soil particle, especially to the organic phase affect PAHs biological mineralisation. So, if the pollutant is not available to microorganisms it can not be bio-degraded. Bioavailability can be assessed form several but complementary points of view: physico-chemical and biological. First including the term availability and the second to point out the capacity of soil microorganisms to mineralize PAHs. Availability and Bio-degradability must be determined, as well as the presence and activity of specific degraders among the soil organisms, once settled these points is necessary to study the biological requirements to optimise biodegradation kinetics of these compounds. In this work we present a study carried out on a soil, contaminated by PAHs, the study includes three main topics: bioavailability assessment (both term availability and bio-degradability), bio-remediation assessment, once optimised conditions for natural attenuation and finally a simulation

  19. Design and field-scale implementation of an "on site" bioremediation treatment in PAH-polluted soil.

    Science.gov (United States)

    Pelaez, A I; Lores, I; Sotres, A; Mendez-Garcia, C; Fernandez-Velarde, C; Santos, J A; Gallego, J L R; Sanchez, J

    2013-10-01

    An "on site" bioremediation program was designed and implemented in soil polluted with polycyclic aromatic hydrocarbons (PAHs), especially naphthalene. We began by characterizing the soil's physical and chemical properties. A microbiological screening corroborated the presence of microorganisms capable of metabolizing PAHs. We then analyzed the viability of bioremediation by developing laboratory microcosms and pilot scale studies, to optimize the costs and time associated with remediation. The treatment assays were based on different types of biostimulants, such as a slow or fast-release fertilizer, combined with commercial surfactants. Once the feasibility of the biostimulation was confirmed, a real-scale bioremediation program was undertaken in 900 m(3) of contaminated soil. The three-step design reduced PAH contamination by 94.4% at the end of treatment (161 days). The decrease in pollutants was concomitant with the selection of autochthonous bacteria capable of degrading PAHs, with Bacillus and Pseudomonas the most abundant genera. PMID:23867700

  20. Bioremediation of soil with diesel Through the use of autochthonous microorganisms

    International Nuclear Information System (INIS)

    In this study was isolated and characterized biochemical and molecular a bacterial consortium able to degrade hydrocarbons several, comprised of the following genres: Enterobacter sp, Bacillus sp, Staphylococcus aureus, Sanguibacter soli, Arthrobacter spy Flavobacterium sp, from soil contaminated with diesel fuel in a laboratory scale, and treated with two technologies for bioremediation: natural attenuation and biostimulation. We obtained a reduction in the concentration of Total Petroleum Hydrocarbons (TPH) in a period of 4 months was 36,86% for natural attenuation and 50,99% for biostimulation.

  1. Can soil bacteria solve PCB disposal problems with bioremediation

    International Nuclear Information System (INIS)

    A study headed by scientists at Laval University in Quebec City is designed to turn common soil bacteria into polychlorinated biphenyl (PCB) neutralizers. There are currently four natural enzymes that can give bacteria the power they need to break down 30 or 40 of the 209 compounds which make up PCBs. The objective of this research project is to explore the enzymatic mechanisms that enable bacteria to break down some PCB compounds but not others. The research team hopes to be able to modify the enzymes so that they will be able to degrade many other toxic PCB compounds, and other toxic materials such as polycyclic aromatic hydrocarbons, dioxins and furans. 1 fig

  2. Anaerobic Metabolism and Bioremediation of Explosives-Contaminated Soil

    Science.gov (United States)

    Boopathy, Raj

    Nitroaromatic compounds pollute soil, water, and food via use of pesticides, plastics, pharmaceuticals, landfill dumping of industrial wastes, and the military use of explosives. Biotransformation of trinitrotoluene and other nitroaromatics by aerobic bacteria in the laboratory has been frequently reported, but the anaerobic bacterial metabolism of nitroaromatics has not been studied as extensively perhaps due to the difficulty in working with anaerobic cultures and the slow growth of anaerobes. Sulfate-reducing and methanogenic bacteria can metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment.

  3. A dual phased approach for bioremediation of petroleum contaminated soil and ground water

    International Nuclear Information System (INIS)

    A case study will be presented to demonstrate an effective and timely method of site remediation which yields complete contaminant destruction rather than the contaminant transfer that traditional ground water extraction and treatment techniques result in. By utilizing bioremediation at this site, the client was able to completely degrade the contamination beneath the property, and in the process avoid future liability from transfer of the contamination to another party (i.e. landfill) or phase (i.e. liquid to vapor through air stripping). The provisions of a real estate transaction involving a former service station site in Central Iowa stipulated that the site be remediated prior to title transfer. Previous Environmental Investigative activities revealed significant soil and ground water contamination resulting from over 50 years of diesel and gasoline fuel storage and dispensing operations at the site. Microbial Environmental Services, Inc. (MES) utilized a dual phased bioremediation approach to meet regulatory clean-up guidelines in order for a timely property transfer to occur. To facilitate and expedite ground water remediation, contaminated soil was excavated and remediated via Advanced Biological Surface Treatment (ABST) techniques. ABST techniques are utilized by MES to treat excavated soil in closed cell to control emissions and treatment conditions. Following contaminant source removal, ground water was extracted and treated in a submerged, fixed film, flow through 1,000 gallon fixed film bioreactor at a rate of 2.5 gallons per minute

  4. Bioremediation of soil heavily contaminated with crude oil and its products: composition of the microbial consortium

    Directory of Open Access Journals (Sweden)

    JELENA S. MILIĆ

    2009-04-01

    Full Text Available Bioremediation, a process that utilizes the capability of microorganism to degrade toxic waste, is emerging as a promising technology for the treatment of soil and groundwater contamination. The technology is very effective in dealing with petroleum hydrocarbon contamination. The aim of this study was to examine the composition of the microbial consortium during the ex situ experiment of bioremediation of soil heavily contaminated with crude oil and its products from the Oil Refinery Pančevo, Serbia. After a 5.5-month experiment with biostimulation and bioventilation, the concentration of the total petroleum hydrocarbons (TPH had been reduced from 29.80 to 3.29 g/kg (89 %. In soil, the dominant microorganism population comprised Gram-positive bacteria from actinomycete-Nocardia group. The microorganisms which decompose hydrocarbons were the dominant microbial population at the end of the process, with a share of more than 80 % (range 107 CFU/g. On the basis of the results, it was concluded that a stable microbial community had been formed after initial fluctuations.

  5. Laboratory bioremediation of diesel fuel contaminated soil using indigenous cultures and surfactants

    International Nuclear Information System (INIS)

    To help verify soil and groundwater remediation techniques, an Environmental Testing Facility (ETF) was built in Argentia, Newfoundland. A laboratory program has been developed and the influence of various parameters such as temperature, pH, nutrients and bacterial seeding on the biodegradation of diesel fuel-contaminated soils by indigenous microorganisms has been evaluated. Two non-toxic surfactants, Triton X-100 and Tween-60, have also been tested to determine their leaching potential for possible use in hydrocarbon removal, alone, or in combination with bioremediation. The addition of Triton X-100 showed no significant effect on the biotreatment of diesel fuel, but improved markedly diesel fuel leaching by percolation, indicating good potential for global remediation of the test soil by a combination of leaching and biodegradation. Tween-60 appears to inhibit biological activity, causing the efficiency of bacterial growth to drop from 50 per cent to 35 per cent. 8 refs., 4 tabs., 6 figs

  6. Bioremediation of MGP soils with mixed fungal and bacterial cultures

    International Nuclear Information System (INIS)

    This culture selection study examines the degradation of polycyclic automatic hydrocarbon (PAH) by a number of brown- and white-rot fungi and bacterial cultures for the treatment of coal tar wastes. Cultures were screened for naphthalene degradation in shake flasks, and selected organisms were then examined for their ability to degrade a mixture of PAHs in aqueous culture. PAH degradation in the presence of the surfactant, TWEEN 80, was examined for some cultures. Many of the organisms were observed to be resistant to greater than 10 mg/L free cyanide. Solid substrate growth conditions were optimized for the selected fungal cultures in preparation for manufactured gas plant (MGP) soil microcosm experiments. The fungi generally produced more biomass under conditions of acidic to neutral pH, incubation at 30 C with 90% moisture saturation, and with granulated corncobs or alfalfa pellets supplied as a lignocellulosic substrate. Of the cultures screened, nine fungal cultures were selected based on their ability to degrade at least 40% of naphthalene, fluorene, or benzo(a)pyrene in 2 weeks or less. A bacterial culture capable of degrading 30 mg/L of naphthalene in 1 week was also selected, and the cultures were examined further in PAH-degradation studies in contaminated soils

  7. Developments in Bioremediation of Soils and Sediments Pollutedwith Metals and Radionuclides: 2. Field Research on Bioremediation of Metals and Radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.; Tabak, Henry H.

    2007-03-15

    Bioremediation of metals and radionuclides has had manyfield tests, demonstrations, and full-scale implementations in recentyears. Field research in this area has occurred for many different metalsand radionuclides using a wide array of strategies. These strategies canbe generally characterized in six major categories: biotransformation,bioaccumulation/bisorption, biodegradation of chelators, volatilization,treatment trains, and natural attenuation. For all field applicationsthere are a number of critical biogeochemical issues that most beaddressed for the successful field application. Monitoring andcharacterization parameters that are enabling to bioremediation of metalsand radionuclides are presented here. For each of the strategies a casestudy is presented to demonstrate a field application that uses thisstrategy.

  8. Dynamics of bacterial populations during bench-scale bioremediation of oily seawater and desert soil bioaugmented with coastal microbial mats.

    Science.gov (United States)

    Ali, Nidaa; Dashti, Narjes; Salamah, Samar; Sorkhoh, Naser; Al-Awadhi, Husain; Radwan, Samir

    2016-03-01

    This study describes a bench-scale attempt to bioremediate Kuwaiti, oily water and soil samples through bioaugmentation with coastal microbial mats rich in hydrocarbonoclastic bacterioflora. Seawater and desert soil samples were artificially polluted with 1% weathered oil, and bioaugmented with microbial mat suspensions. Oil removal and microbial community dynamics were monitored. In batch cultures, oil removal was more effective in soil than in seawater. Hydrocarbonoclastic bacteria associated with mat samples colonized soil more readily than seawater. The predominant oil degrading bacterium in seawater batches was the autochthonous seawater species Marinobacter hydrocarbonoclasticus. The main oil degraders in the inoculated soil samples, on the other hand, were a mixture of the autochthonous mat and desert soil bacteria; Xanthobacter tagetidis, Pseudomonas geniculata, Olivibacter ginsengisoli and others. More bacterial diversity prevailed in seawater during continuous than batch bioremediation. Out of seven hydrocarbonoclastic bacterial species isolated from those cultures, only one, Mycobacterium chlorophenolicum, was of mat origin. This result too confirms that most of the autochthonous mat bacteria failed to colonize seawater. Also culture-independent analysis of seawater from continuous cultures revealed high-bacterial diversity. Many of the bacteria belonged to the Alphaproteobacteria, Flavobacteria and Gammaproteobacteria, and were hydrocarbonoclastic. Optimal biostimulation practices for continuous culture bioremediation of seawater via mat bioaugmentation were adding the highest possible oil concentration as one lot in the beginning of bioremediation, addition of vitamins, and slowing down the seawater flow rate. PMID:26751253

  9. Dynamics of bacterial populations during bench‐scale bioremediation of oily seawater and desert soil bioaugmented with coastal microbial mats

    OpenAIRE

    Ali, Nidaa; Dashti, Narjes; Salamah, Samar; Sorkhoh, Naser; Al‐Awadhi, Husain; Samir RADWAN

    2016-01-01

    Summary This study describes a bench‐scale attempt to bioremediate Kuwaiti, oily water and soil samples through bioaugmentation with coastal microbial mats rich in hydrocarbonoclastic bacterioflora. Seawater and desert soil samples were artificially polluted with 1% weathered oil, and bioaugmented with microbial mat suspensions. Oil removal and microbial community dynamics were monitored. In batch cultures, oil removal was more effective in soil than in seawater. Hydrocarbonoclastic bacteria ...

  10. Effects of Triton X-100 and Quillaya Saponin on the ex situ bioremediation of a chronically polychlorobiphenyl-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Fava, F.; Di Gioia, D. [Bologna Univ. (Italy). Dept. of Applied Chemistry and Material Science

    1998-12-31

    The possibility of enhancing the ex situ bioremediation of a chronically polychlorinated biphenyl (PCB)-contaminated soil by using Triton X-100 or Quillaya Saponin, a synthetic and a biogenic surfactant, respectively, was studied. The soil, which contained about 350 mg/kg of PCBs and indigenous aerobic bacteria capable of growing on biphenyl or on monochlorobenzoic acids, was amended with inorganic nutrients and biphenyl, saturated with water and treated in aerobic batch slurry- and fixed-phase reactors. Triton X-100 and Quillays Saponin were added to the reactors at a final concentration of 10 g/l at the 42nd day of treatment, and at the 43rd and 100th day, respectively. Triton X-100 was not metabolised by the soil microflora and it exerted inhibitory effects on the indigenous bacteria. Quillaya Saponin, on the contrary, was readily metabolised by the soil microflora. Under slurry-phase conditions, Triton X-100 negatively influenced the soil bioremediation process by affecting the availability of the chlorobenzoic acid degrading indigenous bacteria, wheres Quillays Saponin slightly enhanced the biological degradation and dechlorination of the soil PCBs. In the fixed-phase reactors, where both the surfactant availability and the mixing of the soil were lower, Triton X-100 did not exert inhibitory effects on the soil biomass and enhanced significantly the soil PCB depletion, whereas Quillays Saponin did not influence the bioremediation process. (orig.)

  11. Microarray and Real-Time PCR Analyses of the Responses of High-Arctic Soil Bacteria to Hydrocarbon Pollution and Bioremediation Treatments▿

    OpenAIRE

    Yergeau, Etienne; Arbour, Mélanie; Brousseau, Roland; Juck, David; Lawrence, John R.; Masson, Luke; Whyte, Lyle G; Greer, Charles W.

    2009-01-01

    High-Arctic soils have low nutrient availability, low moisture content, and very low temperatures and, as such, they pose a particular problem in terms of hydrocarbon bioremediation. An in-depth knowledge of the microbiology involved in this process is likely to be crucial to understand and optimize the factors most influencing bioremediation. Here, we compared two distinct large-scale field bioremediation experiments, located at the Canadian high-Arctic stations of Alert (ex situ approach) a...

  12. The application of immunoassay testing to monitoring of bioremediation of petroleum contaminated soil

    International Nuclear Information System (INIS)

    Ex-situ bioremediation continues to be a cost-effective remediation technology for petroleum contaminated soil. Its wide regulatory acceptance and proven technique has caused many clients to ask for a lump sum cost proposal for employing the technology. This in turn has raised the need to closely monitoring the progress of the degradation process to keep operating costs as low as possible. Traditional laboratory costs for analysis of soils with hydrocarbons has become less expensive, but for 24 turnaround of results, costs are still subject to 100% mark-ups. Yet the ability to obtain the analysis rapidly can assist the environmental professional in modifying oxygen, nutrients and other components that are essential in the degradation process, therefore, minimizing the time required to accomplish the remediation project. This is why the use of immunochemistry-based field methods, which are rapid and cost-effective, are being employed by environmental professionals

  13. Low-cost bioremediation of heavy metals and radionuclides of contaminated soils

    International Nuclear Information System (INIS)

    The environmental pollution by toxic metals, especially lead (Pb), mercury (Hg), cadmium (Cd), nickel (Ni), copper (Cu), selenium (Se), chromium (Cr) and radionuclides (137Cs, 90Sr, 238Pu, 226Ra) is a potential hazard to health and welfare of mankind. Rapid industrial revolution has left an international legacy of soil and water contaminated with a combination of toxic and potentially carcinogenic compounds and heavy metals. Many of the contaminated sites were abandoned due to high cost of traditional clean-up approaches. Various approaches are being practiced to decontaminate heavy metals and radionuclides from polluted-soil. Remediation of heavy metal and radionuclides contaminated soils poses a significant expense to many industries and government organizations. Remediation cost in the United States and European Union alone is expected to exceed US$20 billion annually. Bioremediation strategy depends on the limitations of technology, cost and nature of the contaminant in the soil. Certain higher plants are capable of accumulation of heavy metals (2-5 %) in roots and shoots to the level far exceeding those present in the soils, these are called hyper-accumulators. Using heavy metal hyper-accumulating higher plants for environmental clean-up of contaminated soil is a recently emerged technology known as 'phytoremediation'. Genetically engineered (Transgenic) plants have a remarkable potential to absorb heavy metals and show a new avenue for biotechnology technique in Phytoremediation. The cost-effective approach of using heavy metal and radionuclide hyper-accumulators in phytoremediation is discussed. (author)

  14. From Rare to Dominant: a Fine-Tuned Soil Bacterial Bloom during Petroleum Hydrocarbon Bioremediation.

    Science.gov (United States)

    Fuentes, Sebastián; Barra, Bárbara; Caporaso, J Gregory; Seeger, Michael

    2016-02-01

    Hydrocarbons are worldwide-distributed pollutants that disturb various ecosystems. The aim of this study was to characterize the short-lapse dynamics of soil microbial communities in response to hydrocarbon pollution and different bioremediation treatments. Replicate diesel-spiked soil microcosms were inoculated with either a defined bacterial consortium or a hydrocarbonoclastic bacterial enrichment and incubated for 12 weeks. The microbial community dynamics was followed weekly in microcosms using Illumina 16S rRNA gene sequencing. Both the bacterial consortium and enrichment enhanced hydrocarbon degradation in diesel-polluted soils. A pronounced and rapid bloom of a native gammaproteobacterium was observed in all diesel-polluted soils. A unique operational taxonomic unit (OTU) related to the Alkanindiges genus represented ∼ 0.1% of the sequences in the original community but surprisingly reached >60% after 6 weeks. Despite this Alkanindiges-related bloom, inoculated strains were maintained in the community and may explain the differences in hydrocarbon degradation. This study shows the detailed dynamics of a soil bacterial bloom in response to hydrocarbon pollution, resembling microbial blooms observed in marine environments. Rare community members presumably act as a reservoir of ecological functions in high-diversity environments, such as soils. This rare-to-dominant bacterial shift illustrates the potential role of a rare biosphere facing drastic environmental disturbances. Additionally, it supports the concept of "conditionally rare taxa," in which rareness is a temporary state conditioned by environmental constraints. PMID:26590285

  15. Enzymatic bioremediation of polyaromatic hydrocarbons by fungal consortia enriched from petroleum contaminated soil and oil seeds.

    Science.gov (United States)

    Balaji, V; Arulazhagan, P; Ebenezer, P

    2014-05-01

    The present study focuses on fungal strains capable of secreting extracellular enzymes by utilizing hydrocarbons present in the contaminated soil. Fungal strains were enriched from petroleum hydrocarbons contaminated soil samples collected from Chennai city, India. The potential fungi were isolated and screened for their enzyme secretion such as lipase, laccase, peroxidase and protease and also evaluated fungal enzyme mediated PAHs degradation. Total, 21 potential PAHs degrading fungi were isolated from PAHs contaminated soil, which belongs to 9 genera such as Aspergillus, Curvularia, Drechslera, Fusarium, Lasiodiplodia, Mucor Penicillium, Rhizopus, Trichoderma, and two oilseed-associated fungal genera such as Colletotrichum and Lasiodiplodia were used to test their efficacy in degradation of PAHs in polluted soil. Maximum lipase production was obtained with P. chrysogenum, M. racemosus and L. theobromae VBE1 under optimized cultural condition, which utilized PAHs in contaminated soil as sole carbon source. Fungal strains, P. chrysogenum, M. racemosus and L. theobromae VBE1, as consortia, used in the present study were capable of degrading branched alkane isoprenoids such as pristine (C17) and pyrene (C18) present in PAHs contaminated soil with high lipase production. The fungal consortia acts as potential candidate for bioremediation of PAHs contaminated environments. PMID:24813008

  16. Isolation and evaluation of potent Pseudomonas species for bioremediation of phorate in amended soil.

    Science.gov (United States)

    Jariyal, Monu; Gupta, V K; Jindal, Vikas; Mandal, Kousik

    2015-12-01

    Use of phorate as a broad spectrum pesticide in agricultural crops is finding disfavor due to persistence of both the principal compound as well as its toxic residues in soil. Three phorate utilizing bacterial species (Pseudomonas sp. strain Imbl 4.3, Pseudomonas sp. strain Imbl 5.1, Pseudomonas sp. strain Imbl 5.2) were isolated from field soils. Comparative phorate degradation analysis of these species in liquid cultures identified Pseudomonas sp. strain Imbl 5.1 to cause complete metabolization of phorate during seven days as compared to the other two species in 13 days. In soils amended with phorate at different levels (100, 200, 300 mg kg(-1) soil), Pseudomonas sp. strain Imbl 5.1 resulted in active metabolization of phorate by between 94.66% and 95.62% establishing the same to be a potent bacterium for significantly relieving soil from phorate residues. Metabolization of phorate to these phorate residues did not follow the first order kinetics. This study proves that Pseudomonas sp. strain Imbl 5.1 has huge potential for active bioremediation of phorate both in liquid cultures and agricultural soils. PMID:26186726

  17. Bioremediation of soil and groundwater contaminated with stoddard solvent and mop oil using the PetroClean bioremediation system

    International Nuclear Information System (INIS)

    This paper reports that Environmental Science and Engineering Inc. (ESE) was contracted by a confidential industrial client to perform a three-phased project. Phase I involved characterizing the site and delineating the extent of subsurface contamination. Phase II included biofeasibility and pilot-scale evaluations, determining remedial requirements, and designing the full-scale treatment system. Phase III involved implementing and operating the designed in situ bioremediation system (i.e., PetroClean 4000) to achieve site closure

  18. Treatability testing of intrinsic bioremediation, biostimulation, and bioaugmentation of diesel-oil contaminated soil at 5 degrees C

    International Nuclear Information System (INIS)

    The likely success of in-situ bioremediation on diesel-contaminated soil was studied at 5 degrees C under four conditions of soil amendments. The four conditions were: (1) intrinsic bioremediation where the soil received only water, (2) biostimulation with one application of slow-release fertilizer, (3) bioaugmentation with one application of fertilizer and a cold-adapted hydrocarbon-degrading bacterial culture, and (4) surfactant enhanced bioavailability, where the soil received one application of fertilizer and treatment with a biodegradable surfactant solution. All tests showed significant reduction in diesel range under aerobic conditions after a 40-day incubation. The intrinsic control (No.1) was least effective, with 66 per cent of extractable hydrocarbons (TEH) at 5 degrees C. The biostimulated soil (No.2) was most effective, allowing a reduction in TEH of 86 per cent. The bioaugmented soil and surfactant treated soil allowed TEH reduction of about 75 per cent. Based on these results, biostimulation with slow-release fertilizer will be implemented as the most cost-effective means of bioremediation, combined with appropriate monitoring of results. 2 refs., 3 tabs., 4 figs

  19. Partial characterization of biosurfactant from Lactobacillus pentosus and comparison with sodium dodecyl sulphate for the bioremediation of hydrocarbon contaminated soil.

    Science.gov (United States)

    Moldes, A B; Paradelo, R; Vecino, X; Cruz, J M; Gudiña, E; Rodrigues, L; Teixeira, J A; Domínguez, J M; Barral, M T

    2013-01-01

    The capability of a cell bound biosurfactant produced by Lactobacillus pentosus, to accelerate the bioremediation of a hydrocarbon-contaminated soil, was compared with a synthetic anionic surfactant (sodium dodecyl sulphate SDS-). The biosurfactant produced by the bacteria was analyzed by Fourier transform infrared spectroscopy (FTIR) that clearly indicates the presence of OH and NH groups, C=O stretching of carbonyl groups and NH nebding (peptide linkage), as well as CH2-CH3 and C-O stretching, with similar FTIR spectra than other biosurfactants obtained from lactic acid bacteria. After the characterization of biosurfactant by FTIR, soil contaminated with 7,000 mg Kg(-1) of octane was treated with biosurfactant from L. pentosus or SDS. Treatment of soil for 15 days with the biosurfactant produced by L. pentosus led to a 65.1% reduction in the hydrocarbon concentration, whereas SDS reduced the octane concentration to 37.2% compared with a 2.2% reduction in the soil contaminated with octane in absence of biosurfactant used as control. Besides, after 30 days of incubation soil with SDS or biosurfactant gave percentages of bioremediation around 90% in both cases. Thus, it can be concluded that biosurfactant produced by L. pentosus accelerates the bioremediation of octane-contaminated soil by improving the solubilisation of octane in the water phase of soil, achieving even better results than those reached with SDS after 15-day treatment. PMID:23691515

  20. A laboratory feasibility study on a new electrokinetic nutrient injection pattern and bioremediation of phenanthrene in a clayey soil

    International Nuclear Information System (INIS)

    Electrokinetic (EK) injection has recently been proposed to supply nutrients and electron acceptors in bioremediation of low permeable soils. However, effective pH control and uniform injection of inorganic ions have yet to be developed. The present study investigated a new EK injection pattern, which combined electrolyte circulation and electrode polarity reversal on a clayey soil. Soil pH could be controlled ranging from 7.0 to 7.6 by circulating the mixed electrolyte at a suitable rate (800 mL/h in this study) without any buffer. Ammonium and nitrate ions were distributed more uniformly in soil by electrode polarity reversal. The developed electrokinetic injection technology was applied primarily in bioremediation of phenanthrene contaminated soil. Over 80% of the initial 200 mg/kg phenanthrene in soil could be removed in 20 d, and greater phenanthrene removal was achieved using electrode polarity reversal. Hence, the present study provides a promising electrokinetic injection technology for bioremediation of contaminated soils.

  1. Finger printing of mixed contaminants from former manufactured gas plant (MGP) site soils: Implications to bioremediation.

    Science.gov (United States)

    Thavamani, Palanisami; Megharaj, Mallavarapu; Krishnamurti, G S R; McFarland, Ross; Naidu, Ravi

    2011-01-01

    Contaminants in general do not occur as single chemicals but as mixtures at any contaminated site. Gasworks sites are the typical mixed contaminated sites. These sites are not only subjected to PAH contamination but also varying degrees of heavy metal contamination. Bioremediation in these sites is often hindered by the presence of heavy metals. The co-occurrence of PAHs with heavy metals has not been systematically investigated. Metals are reported to inhibit the general soil microbiological processes. The total concentration of soluble metal in the system includes both free metal ion and complexed forms. Within bioavailable fraction, the most toxic form is the free metal species, which was not addressed well so far in gas works site characterisation. This study underpins the science and importance of metal bioavailability and speciation based site characterisation in mixed contaminated sites. In this study a detailed elemental chemistry of the gas works site soils are discussed using different methods. The PAH contamination was contributed by both low and high molecular weight PAHs. The total PAHs concentration ranged from 335 to 8645 mg/kg. Among most toxic metals Pb was found in high concentration ranging from 88 to 671 mg/kg, Cd 8 to 112 mg/kg and Zn varied from 64 to 488 mg/kg. Thermodynamic chemical equilibrium model VMINTEQ (Ver 2.52) was used to calculate the free metal species in gas works site soils. The percentage free metal species showed a different trend compared to total metal concentrations, free Zn species ranged 18-86%, free Cd was 26-87% and Pb showed lowest free metal percentage (0-17%). The bioavailable metal species and its implications to bioremediation have also been discussed. PMID:20875686

  2. Bioremediation of soils contaminated by hydrocarbons at the coastal zone of “Punta Majagua”.

    Directory of Open Access Journals (Sweden)

    Jelvys Bermúdez Acosta

    2012-03-01

    Full Text Available The purpose of this research was to describe and assess the main results in the process of bioremediation of 479 m3 of petroleum residuals spilled on the soil and restrained into four deposits of fuel on the coastal zone of “Punta Majagua”, Cienfuegos. The volume of hydrocarbons spilled and contained into the tanks was determined by means of their previous mixture with fertile ground in a ratio of 3/1. The hydrocarbons were disposed in a bioremediation area of 115 m X 75m built in situ. In turn 54, 5 m3 of BIOIL - FC were applied, which were fermented in an industrial bioreactor of 12000 L. An initial sampling was carried out registering values of total hydrocarbons (HTP higher than 41880 mg/kg, with high concentrations of Saturated hydrocarbons, aromatics, resins, asphaltens (SARA. Three subsequent samples were taken with a sampling interval of 0, 45, 90 and 120 days of the application. An average concentration of 1884.57 mg/kg of total hydrocarbons was obtained at 120 days with an average removal rate of 94.8%, moreover values of 94.6%, 90.78%, 86.99% y 79.9% of SARA were respectively reported.

  3. KINETIC MODELLING AND HALF LIFE STUDY OF ADSORPTIVE BIOREMEDIATION OF SOIL ARTIFICIALLY CONTAMINATED WITH BONNY LIGHT CRUDE OIL

    OpenAIRE

    Samuel Enahoro Agarry; Kigho Moses Oghenejoboh; Bamidele Ogbe Solomon

    2015-01-01

    In this study, comparative potential effects of commercial activated carbon (CAC) and plantain peel-derived biochar (PPBC) of different particle sizes and dosage to stimulate petroleum hydrocarbon biodegradation in soil were investigated. Microcosms containing soil were spiked with weathered Bonny light crude oil (WBLCO) (10% w/w) and amended with different particle sizes (0.02, 0.07 and 0.48 mm) and dosage (20, 30 and 40 g) of CAC and PPBC, respectively. The bioremediation experiments were c...

  4. Strong Impact on the Polycyclic Aromatic Hydrocarbon (PAH)-Degrading Community of a PAH-Polluted Soil but Marginal Effect on PAH Degradation when Priming with Bioremediated Soil Dominated by Mycobacteria▿

    OpenAIRE

    Johnsen, Anders R.; Schmidt, Stine; Hybholt, Trine K.; Henriksen, Sidsel; Jacobsen, Carsten S.; Andersen, Ole

    2007-01-01

    Bioaugmentation of soil polluted with polycyclic aromatic hydrocarbons (PAHs) is often disappointing because of the low survival rate and low activity of the introduced degrader bacteria. We therefore investigated the possibility of priming PAH degradation in soil by adding 2% of bioremediated soil with a high capacity for PAH degradation. The culturable PAH-degrading community of the bioremediated primer soil was dominated by Mycobacterium spp. A microcosm containing pristine soil artificial...

  5. Dynamics and role of sphingomonas/mycobacterium populations during bio-remediation of weathered PAH-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Bastiaens, L.; Ryngaert, A.; Leys, N.; Van Houtven, D.; Gemoets, J. [Flemish Institute for Technological Research-Vito, Mol (Belgium); Goethals, L. [ENVISAN, Aalst, (Belgium); Springael, D. [Catholic University of Leuven-KUL, Leuven (Belgium)

    2005-07-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are major soil pollutants in many industrialized countries. During the last decades, a diversity of PAH-degrading micro-organisms has been isolated, suggesting possibilities for bio-remediation. However, biodegradation of PAHs in contaminated soils is not always successful. The low bio-availability of the PAHs is the major problem, especially in weathered soils. In these soils a tightly sorbed PAH-fraction is present which is in general hardly accessible for microorganisms. In order to bio-remedy PAHs also in weathered soils, stimulation of bacteria which have special strategies to access sorbed organics may be a solution. Sphingomonas and Mycobacterium strains may represent such bacteria as (I) they are often isolated as PAH degraders, (II) they are ubiquitously present in PAH-contaminated soils, and (III) they display features which might promote bioavailability. Lab- and pilot-scale experiments were set up in order (A) to study the dynamics of indigenous Sphingomonas and Mycobacterium populations during bio-remediation, and (B) to evaluate their role in the biodegradation of the less bio-available PAH-fraction during treatment of an historic PAH polluted soil. The soil was treated under natural soil moisture conditions and slurry conditions. The experimental set-ups ranged from 2 g lab-scale test to pilot experiments in 1 ton bio-piles and dry solid reactors (50 kg 70% dry matter soil). Different additives were evaluated for stimulation of the Sphingomonas and Mycobacterium population as a strategy to improve bio-remediation of PAHs. The evolution of this microbial population was followed using culture-independent general and genus-specific PCR-based detection methods targeting the 16S rRNA genes of the eu-bacterial community, Mycobacterium or the Sphingomonas populations, respectively. During the different bio-remediation experiments that were conducted, the Mycobacterium population remained very stable, only minor

  6. Dynamics and role of sphingomonas/mycobacterium populations during bio-remediation of weathered PAH-contaminated soils

    International Nuclear Information System (INIS)

    Polycyclic Aromatic Hydrocarbons (PAHs) are major soil pollutants in many industrialized countries. During the last decades, a diversity of PAH-degrading micro-organisms has been isolated, suggesting possibilities for bio-remediation. However, biodegradation of PAHs in contaminated soils is not always successful. The low bio-availability of the PAHs is the major problem, especially in weathered soils. In these soils a tightly sorbed PAH-fraction is present which is in general hardly accessible for microorganisms. In order to bio-remedy PAHs also in weathered soils, stimulation of bacteria which have special strategies to access sorbed organics may be a solution. Sphingomonas and Mycobacterium strains may represent such bacteria as (I) they are often isolated as PAH degraders, (II) they are ubiquitously present in PAH-contaminated soils, and (III) they display features which might promote bioavailability. Lab- and pilot-scale experiments were set up in order (A) to study the dynamics of indigenous Sphingomonas and Mycobacterium populations during bio-remediation, and (B) to evaluate their role in the biodegradation of the less bio-available PAH-fraction during treatment of an historic PAH polluted soil. The soil was treated under natural soil moisture conditions and slurry conditions. The experimental set-ups ranged from 2 g lab-scale test to pilot experiments in 1 ton bio-piles and dry solid reactors (50 kg 70% dry matter soil). Different additives were evaluated for stimulation of the Sphingomonas and Mycobacterium population as a strategy to improve bio-remediation of PAHs. The evolution of this microbial population was followed using culture-independent general and genus-specific PCR-based detection methods targeting the 16S rRNA genes of the eu-bacterial community, Mycobacterium or the Sphingomonas populations, respectively. During the different bio-remediation experiments that were conducted, the Mycobacterium population remained very stable, only minor

  7. Aerobic Bioremediation of PAH Contaminated Soil Results in Increased Genotoxicity and Developmental Toxicity.

    Science.gov (United States)

    Chibwe, Leah; Geier, Mitra C; Nakamura, Jun; Tanguay, Robert L; Aitken, Michael D; Simonich, Staci L Massey

    2015-12-01

    The formation of more polar and toxic polycyclic aromatic hydrocarbon (PAH) transformation products is one of the concerns associated with the bioremediation of PAH-contaminated soils. Soil contaminated with coal tar (prebioremediation) from a former manufactured gas plant (MGP) site was treated in a laboratory scale bioreactor (postbioremediation) and extracted using pressurized liquid extraction. The soil extracts were fractionated, based on polarity, and analyzed for 88 PAHs (unsubstituted, oxygenated, nitrated, and heterocyclic PAHs). The PAH concentrations in the soil tested, postbioremediation, were lower than their regulatory maximum allowable concentrations (MACs), with the exception of the higher molecular weight PAHs (BaA, BkF, BbF, BaP, and IcdP), most of which did not undergo significant biodegradation. The soil extract fractions were tested for genotoxicity using the DT40 chicken lymphocyte bioassay and developmental toxicity using the embryonic zebrafish (Danio rerio) bioassay. A statistically significant increase in genotoxicity was measured in the unfractionated soil extract, as well as in four polar soil extract fractions, postbioremediation (p extract fraction, postbioremediation (p extract fractions in embryonic zebrafish, both pre- and postbioremediation. The increased toxicity measured postbioremediation is not likely due to the 88 PAHs measured in this study (including quinones), because most were not present in the toxic polar fractions and/or because their concentrations did not increase postbioremediation. However, the increased toxicity measured postbioremediation is likely due to hydroxylated and carboxylated transformation products of the 3- and 4-ring PAHs (PHE, 1MPHE, 2MPHE, PRY, BaA, and FLA) that were most degraded. PMID:26200254

  8. Bioremediation of petroleum-contaminated soil on Kwajalein Island: Microbiological characterization and biotreatability studies

    Energy Technology Data Exchange (ETDEWEB)

    Adler, H.I. [Oak Ridge Associated Universities, Inc., TN (United States); Jolley, R.L.; Donaldson, T.L. [Oak Ridge National Lab., TN (United States)] [comps.

    1992-05-01

    Bioremediation technology is being evaluated for use on the Kwajalein Atoll, which is located in the Republic of the Marshall Islands. The study was undertaken by the Oak Ridge National Laboratory (ORNL) on behalf of the US Army Kwajalein Atoll (USAKA). During February of 1991, a team from ORNL and The University of Tennessee (UT) visited the USAKA. In addition to making on-site observations regarding microbial abundance and distribution of petroleum contaminants, they brought back to Oak Ridge various soil and water samples for detailed analyses. This report documents the biological studies of these samples and presents observations made during the period from February to April of 1991 by investigators at ORNL, UT, and the Oak Ridge Associated Universities.

  9. Application of compost for effective bioremediation of organic contaminants and pollutants in soil.

    Science.gov (United States)

    Kästner, Matthias; Miltner, Anja

    2016-04-01

    Soils contaminated with hazardous chemicals worldwide are awaiting remediation activities; bioremediation is often considered as a cost-effective remediation approach. Potential bioapproaches are biostimulation, e.g. by addition of nutrients, fertiliser and organic substrates, and bioaugmentation by addition of compound-degrading microbes or of organic amendments containing active microorganisms, e.g. activated sludge or compost. In most contaminated soils, the abundance of the intrinsic metabolic potential is too low to be improved by biostimulation alone, since the physical and chemical conditions in these soils are not conducive to biodegradation. In the last few decades, compost or farmyard manure addition as well as composting with various organic supplements have been found to be very efficient for soil bioremediation. In the present minireview, we provide an overview of the composting and compost addition approaches as 'stimulants' of natural attenuation. Laboratory degradation experiments are often biased either by not considering the abiotic factors or by focusing solely on the elimination of the chemicals without taking the biotic factors and processes into account. Therefore, we first systemise the concepts of composting and compost addition, then summarise the relevant physical, chemical and biotic factors and mechanisms for improved contaminant degradation triggered by compost addition. These factors and mechanisms are of particular interest, since they are more relevant and easier to determine than the composition of the degrading community, which is also addressed in this review. Due to the mostly empirical knowledge and the nonstandardised biowaste or compost materials, the field use of these approaches is highly challenging, but also promising. Based on the huge metabolic diversity of microorganisms developing during the composting processes, a highly complex metabolic diversity is established as a 'metabolic memory' within developing and mature

  10. Bioremediation of Crude Oil Contaminated Desert Soil: Effect of Biostimulation, Bioaugmentation and Bioavailability in Biopile Treatment Systems.

    Science.gov (United States)

    Benyahia, Farid; Embaby, Ahmed Shams

    2016-02-01

    This work was aimed at evaluating the relative merits of bioaugmentation, biostimulation and surfactant-enhanced bioavailability of a desert soil contaminated by crude oil through biopile treatment. The results show that the desert soil required bioaugmentation and biostimulation for bioremediation of crude oil. The bioaugmented biopile system led to a total petroleum hydrocarbon (TPH) reduction of 77% over 156 days while the system with polyoxyethylene (20) sorbitan monooleate (Tween 80) gave a 56% decrease in TPH. The biostimulated system with indigenous micro-organisms gave 23% reduction in TPH. The control system gave 4% TPH reduction. The addition of Tween 80 led to a respiration rate that peaked in 48 days compared to 88 days for the bioaugmented system and respiration declined rapidly due to nitrogen depletion. The residual hydrocarbon in the biopile systems studied contained polyaromatics (PAH) in quantities that may be considered as hazardous. Nitrogen was found to be a limiting nutrient in desert soil bioremediation. PMID:26891314

  11. Comparative Bioremediation of Crude Oil-Amended Tropical Soil Microcosms by Natural Attenuation, Bio augmentation, or Bio enrichment

    International Nuclear Information System (INIS)

    Bioremediation is an efficient strategy for cleaning up sites contaminated with organic pollutants. In this study, we evaluated the effectiveness of monitored natural attenuation, bio enrichment, and bio augmentation using a consortium of three actinomycetes strains in remediating two distinct typical Brazilian soils from the Atlantic Forest and Cerrado biomes that were contaminated with crude oil, with or without the addition of NaCl. Microcosms were used to simulate bioremediation treatments over a 120-day period. During this period, we monitored total petroleum hydrocarbons (TPHs) and n-alkanes degradation and changes in bacterial communities. Over time, we found the degradation rate of n-alkanes was higher than TPH in both soils, independent of the treatment used. In fact, our data show that the total bacterial community in the soils was mainly affected by the experimental period of time, while the type of bioremediation treatment used was the main factor influencing the actinomycetes populations in both soils. Based on these data, we conclude that monitored natural attenuation is the best strategy for remediation of the two tropical soils studied, with or without salt addition.

  12. Reaction engineering studies on the biodegradation of anthracene on bioremediation of diesel contaminated soil using Acinetobacter sp. (ATCC no. 14293)

    Energy Technology Data Exchange (ETDEWEB)

    Roy, R.; Bhattacharya, P.; Chowdhury, R. [Jadavpur Univ., Kolkata, West Bengal (India). Dept. of Chemical Engineering

    2006-08-15

    Bioremediation is a simple and cost-effective means of cleaning up chemically contaminated soil. This study was conducted to better understand the complex reaction chemistry associated with the biodegradation of anthracene. Anthracene was selected as a model PAH because it represents a typical polyaromatic hydrocarbon found in diesel. This paper presented the results of a systematic bioprocess study of the monoculture system that can decompose anthracene from its simulated mixture in methanol using a pure bacterial strain, Acinetobacter sp. (ATCC no. 14293). In a separate attempt, bioremediation of diesel contaminated soil to reduce total aromatic content using the same bacterial strain was carried out. The kinetic parameters needed for bioreactor design were also evaluated. It was observed that Monod's classical substrate uninhibited model can predict cell growth rate and substrate depletion kinetics. When coupled with first order cell decay rate, it can also be used to express the reaction engineering behaviour of the bioremediation of diesel contaminated soil. It was shown that the maximum specific cell growth rate in soil depends on moisture content of the oil-contaminated soil. 20 refs., 1 tab., 7 figs.

  13. Pilot-scale bioremediation of a petroleum hydrocarbon-contaminated clayey soil from a sub-Arctic site

    International Nuclear Information System (INIS)

    Highlights: • Aeration and moisture addition alone caused extensive hydrocarbon biodegradation. • 30-day slurry reactor remediation endpoints attained in 385 days in biopiles. • High nitrogen concentrations inhibited hydrocarbon degradation. • Inhibition of biodegradation linked to lack of shifts in soil microbial community. - Abstract: Bioremediation is a potentially cost-effective solution for petroleum contamination in cold region sites. This study investigates the extent of biodegradation of petroleum hydrocarbons (C16–C34) in a pilot-scale biopile experiment conducted at 15 °C for periods up to 385 days, with a clayey soil, from a crude oil-impacted site in northern Canada. Although several studies on bioremediation of petroleum hydrocarbon-contaminated soils from cold region sites have been reported for coarse-textured, sandy soils, there are limited studies of bioremediation of petroleum contamination in fine-textured, clayey soils. Our results indicate that aeration and moisture addition was sufficient for achieving 47% biodegradation and an endpoint of 530 mg/kg for non-volatile (C16–C34) petroleum hydrocarbons. Nutrient amendment with 95 mg-N/kg showed no significant effect on biodegradation compared to a control system without nutrient but similar moisture content. In contrast, in a biopile amended with 1340 mg-N/kg, no statistically significant biodegradation of non-volatile fraction was detected. Terminal Restriction Fragment Length Polymorphism (T-RFLP) analyses of alkB and 16S rRNA genes revealed that inhibition of hydrocarbon biodegradation was associated with a lack of change in microbial community composition. Overall, our data suggests that biopiles are feasible for attaining the bioremediation endpoint in clayey soils. Despite the significantly lower biodegradation rate of 0.009 day−1 in biopile tank compared to 0.11 day−1 in slurry bioreactors for C16–C34 hydrocarbons, the biodegradation extents for this fraction were

  14. Pilot-scale bioremediation of a petroleum hydrocarbon-contaminated clayey soil from a sub-Arctic site

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Ali; Ghoshal, Subhasis, E-mail: subhasis.ghoshal@mcgill.ca

    2014-09-15

    Highlights: • Aeration and moisture addition alone caused extensive hydrocarbon biodegradation. • 30-day slurry reactor remediation endpoints attained in 385 days in biopiles. • High nitrogen concentrations inhibited hydrocarbon degradation. • Inhibition of biodegradation linked to lack of shifts in soil microbial community. - Abstract: Bioremediation is a potentially cost-effective solution for petroleum contamination in cold region sites. This study investigates the extent of biodegradation of petroleum hydrocarbons (C16–C34) in a pilot-scale biopile experiment conducted at 15 °C for periods up to 385 days, with a clayey soil, from a crude oil-impacted site in northern Canada. Although several studies on bioremediation of petroleum hydrocarbon-contaminated soils from cold region sites have been reported for coarse-textured, sandy soils, there are limited studies of bioremediation of petroleum contamination in fine-textured, clayey soils. Our results indicate that aeration and moisture addition was sufficient for achieving 47% biodegradation and an endpoint of 530 mg/kg for non-volatile (C16–C34) petroleum hydrocarbons. Nutrient amendment with 95 mg-N/kg showed no significant effect on biodegradation compared to a control system without nutrient but similar moisture content. In contrast, in a biopile amended with 1340 mg-N/kg, no statistically significant biodegradation of non-volatile fraction was detected. Terminal Restriction Fragment Length Polymorphism (T-RFLP) analyses of alkB and 16S rRNA genes revealed that inhibition of hydrocarbon biodegradation was associated with a lack of change in microbial community composition. Overall, our data suggests that biopiles are feasible for attaining the bioremediation endpoint in clayey soils. Despite the significantly lower biodegradation rate of 0.009 day{sup −1} in biopile tank compared to 0.11 day{sup −1} in slurry bioreactors for C16–C34 hydrocarbons, the biodegradation extents for this fraction

  15. Evaluation of oil removal efficiency and enzymatic activity in some fungal strains for bioremediation of petroleum-polluted soils

    Directory of Open Access Journals (Sweden)

    Mohsenzadeh Fariba

    2012-12-01

    Full Text Available Abstract Background Petroleum pollution is a global disaster and there are several soil cleaning methods including bioremediation. Methods In a field study, fugal strains were isolated from oil-contaminated sites of Arak refinery (Iran and their growth ability was checked in potato dextrose agar (PDA media containing 0-10% v/v crude oil, the activity of three enzymes (Catalase, Peroxidase and Phenol Oxidase was evaluated in the fungal colonies and bioremediation ability of the fungi was checked in the experimental pots containing 3 kg sterilized soil and different concentrations of petroleum (0-10% w/w. Results Four fungal strains, Acromonium sp., Alternaria sp., Aspergillus terreus and Penicillium sp., were selected as the most resistant ones. They were able to growth in the subjected concentrations and Alternaria sp. showed the highest growth ability in the petroleum containing media. The enzyme assay showed that the enzymatic activity was increased in the oil-contaminated media. Bioremediation results showed that the studied fungi were able to decrease petroleum pollution. The highest petroleum removing efficiency of Aspergillus terreus, Penicillium sp., Alternaria sp. and Acromonium sp. was evaluated in the 10%, 8%, 8% and 2% petroleum pollution respectively. Conclusions Fungi are important microorganisms in decreasing of petroleum pollution. They have bioremediation potency that is related to their enzymatic activities.

  16. Evaluation of Oil Removal Efficiency and Enzymatic Activity in Some fungal Strains for Bioremediation of Petroleum-Polluted Soils

    Directory of Open Access Journals (Sweden)

    Fariba Mohsenzadeh

    2012-12-01

    Full Text Available Background: Petroleum pollution is a global disaster and there are several soil cleaning methods including bioremediation.Methods: In a field study, fugal strains were isolated from oil-contaminated sites of Arak refinery (Iran and their growth ability was checked in potato dextrose agar (PDA media containing 0-10% v/v crude oil, the activity of three enzymes (Catalase, Peroxidase and Phenol Oxidase was evaluated in the fungal colonies and bioremediation ability of the fungi was checked in the experimental pots containing 3 kg sterilized soil and different concentrations of petroleum (0-10% w/w.Results: Four fungal strains, Acromonium sp., Alternaria sp., Aspergillus terreus and Penicillium sp., were selected asthe most resistant ones. They were able to growth in the subjected concentrations and Alternaria sp. showed thehighest growth ability in the petroleum containing media. The enzyme assay showed that the enzymatic activity was increased in the oil-contaminated media. Bioremediation results showed that the studied fungi were able to decrease petroleum pollution. The highest petroleum removing efficiency of Aspergillus terreus, Penicillium sp.,Alternaria sp. and Acromonium sp. was evaluated in the 10%, 8%, 8% and 2% petroleum pollution respectively.Conclusions: Fungi are important microorganisms in decreasing of petroleum pollution. They have bioremediation potency that is related to their enzymatic activities.

  17. Enhanced bioremediation of oil contaminated soil by graded modified Fenton oxidation

    Institute of Scientific and Technical Information of China (English)

    Jinlan Xu; Lei Xin; Tinglin Huang; Kun Chang

    2011-01-01

    Graded modified Fenton's (MF) oxidation is a strategy in which H2O2 is added intermittently to prevent a sharp temperature increase and undesired soil sterilization at soil circumneutral pH versus adding the same amount of H2O2 continuously.The primary objective of the present study was to investigate whether a mild MF pre-oxidation such as a stepwise addition of H2O2 can prevent sterilization and achieve a maximum degradation of tank oil in soil.Optimization experiments of graded MF oxidation were conducted using citric acid,oxalic acid and SOLV-X as iron chelators under different frequencies of H2O2 addition.The results indicated that the activity order of iron chelates decreased as:citric acid (51%) > SOLV-X (44%) > oxalic acid (9%),and citric acid was found to be an optimized iron chelating agent of graded MF oxidation.Three-time addition of H2O2 was found to be favorable and economical due to decreasing total petroleum hydrocarbon removal from three time addition (51%) to five time addition (59%).Biological experiments were conducted after graded MF oxidation of tank oil completed under optimum conditions mentioned above.After graded oxidation,substantially higher increase (31%) in microbial activity was observed with excessive H2O2 (1470 mmol,/L,the mol ratio of H2O2:Fe2+ was 210:1)than that of non-oxidized soil.Removal efficiency of tank oil was up to 93% after four weeks.Especially,the oil fraction (C10-C40) became more biodagradable after graded MF oxidation than its absence.Therefore,graded MF oxidation is a mild pretreatment to achieve an effective bioremediation of oil contaminated soil.

  18. Bioremediation of oil sludge contaminated soil using bulking agent mixture enriched consortia of microbial inoculants based by irradiated compost

    International Nuclear Information System (INIS)

    Bulking agent mixture enriched consortia of microbial inoculants based by irradiated compost was used on bioremediation of microcosm scale contaminated by hydrocarbon soil. Bioremediation composting was carried out for 42 days. Composting was done with a mixture of bulking agent (sawdust, residual sludge biogas and compost) by 30%, mud petroleum (oil sludge) by 20% and 50% of soil. Mixture of 80% soil and 20% oil sludge was used as a control. Irradiated compost was used as a carrier for consortia of microbial inoculants (F + B) which biodegradable hydrocarbons. Treatment variations include A1, A2, B1, B2, C1, C2, D1 and D2. Process parameters were observed to determine the optimal conditions include: temperature, pH, water content, TPC (Total Plate Count) and degradation of % TPH (Total Petroleum Hydrocarbon). Optimal conditions were achieved in the remediation of oil sludge contamination of 20% using the B2 treatment with the addition consortia of microbial inoculants based by irradiated compost of sawdust (bulking agentby 30% at concentrations of soil by 50% with TPH degradation optimal efficiency of 81.32%. The result of GC-MS analysis showed that bioremediation for 42 days by using a sawdust as a mixture of bulking agents which enriched consortia of microbial inoculants based by irradiated compost is biodegradeable, so initial hydrocarbons with the distribution of the carbon chain C-7 to C-54 into final hydrocarbons with the distribution of carbon chain C-6 to C-8. (author)

  19. Cadmium tolerance and bioremediation potential of bacteria isolated from soils irrigated with untreated industrial effluent

    International Nuclear Information System (INIS)

    The present study was aimed to investigate the Cd tolerance of bacteria isolated from municipal effluent irrigated soils. Thirty bacterial strains were isolated and screened for their Cd+ tolerance by growing on nutrient agar plates amended with varying amount of Cd +. Out of them four bacteria (GS 2, GS5, GS10 and GS20) were found highly Cd tolerant (600 ppm Cd). The minimum inhibitory concentration of Cd+ was found 200 ppm. The isolates showed optimum growth at 30 degree C and pH 7.5-8.5. Growth curve study against different concentrations of Cd (0-600 ppm) revealed that GS2 was more tolerant among selected strains showing only 33% reduction in growth compared to 64% by GS5 and 77% by both GS 10 and GS20 at 600 ppm Cd. Inoculation of maize seeds with Cd tolerant bacteria for root elongation demonstrated upto 1.7 fold increase in root elongation (in the absence of Cd) and up to 1.5 fold (in the presence of 50 ppm Cd) compared to the un-inoculated plants. The results of the study revealed that the bacterial isolates exhibiting great Cd tolerance and growth promoting activity can be potential candidates for bioremediation of metal contaminated soils and wastewaters. (author)

  20. Kinetic modelling of a diesel-polluted clayey soil bioremediation process.

    Science.gov (United States)

    Fernández, Engracia Lacasa; Merlo, Elena Moliterni; Mayor, Lourdes Rodríguez; Camacho, José Villaseñor

    2016-07-01

    A mathematical model is proposed to describe a diesel-polluted clayey soil bioremediation process. The reaction system under study was considered a completely mixed closed batch reactor, which initially contacted a soil matrix polluted with diesel hydrocarbons, an aqueous liquid-specific culture medium and a microbial inoculation. The model coupled the mass transfer phenomena and the distribution of hydrocarbons among four phases (solid, S; water, A; non-aqueous liquid, NAPL; and air, V) with Monod kinetics. In the first step, the model simulating abiotic conditions was used to estimate only the mass transfer coefficients. In the second step, the model including both mass transfer and biodegradation phenomena was used to estimate the biological kinetic and stoichiometric parameters. In both situations, the model predictions were validated with experimental data that corresponded to previous research by the same authors. A correct fit between the model predictions and the experimental data was observed because the modelling curves captured the major trends for the diesel distribution in each phase. The model parameters were compared to different previously reported values found in the literature. Pearson correlation coefficients were used to show the reproducibility level of the model. PMID:27016675

  1. Modeling bioremediation of contaminated groundwater

    OpenAIRE

    Atlas, R M; Hazen, T.; Philp, J. C.; Prommer, H.; Barry, D. A.

    2005-01-01

    Bioremediation: Applied Microbial Solutions for Real-World Environmental Cleanup is a fascinating examination of research and its real-world application. Intended for both academics and practitioners, the book presents information on the legal, scientific, and engineering principles behind bioremediation for cleaning up contaminated soil and groundwater sources. Bioremediation incorporates a variety of international perspectives in detailing for industrial engineers and rese...

  2. Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes

    Directory of Open Access Journals (Sweden)

    Ruchita Dixit

    2015-02-01

    Full Text Available Heavy metals are natural constituents of the environment, but indiscriminate use for human purposes has altered their geochemical cycles and biochemical balance. This results in excess release of heavy metals such as cadmium, copper, lead, nickel, zinc etc. into natural resources like the soil and aquatic environments. Prolonged exposure and higher accumulation of such heavy metals can have deleterious health effects on human life and aquatic biota. The role of microorganisms and plants in biotransformation of heavy metals into nontoxic forms is well-documented, and understanding the molecular mechanism of metal accumulation has numerous biotechnological implications for bioremediation of metal-contaminated sites. In view of this, the present review investigates the abilities of microorganisms and plants in terms of tolerance and degradation of heavy metals. Also, advances in bioremediation technologies and strategies to explore these immense and valuable biological resources for bioremediation are discussed. An assessment of the current status of technology deployment and suggestions for future bioremediation research has also been included. Finally, there is a discussion of the genetic and molecular basis of metal tolerance in microbes, with special reference to the genomics of heavy metal accumulator plants and the identification of functional genes involved in tolerance and detoxification.

  3. Combined in-situ and ex-situ bioremediation of petroleum hydrocarbon contaminated soils by closed-loop soil vapor extraction and air injection

    International Nuclear Information System (INIS)

    Treatment and restoration of petroleum hydrocarbon contaminated soils at a bulk petroleum above-ground storage tank (AST) site in Michigan is being conducted through in-situ and ex-situ closed-loop soil vapor extraction (SVE), soil vapor treatment, and treated air injection (AI) processes. The soil vapor extraction process applies a vacuum through the petroleum hydrocarbon affected soils in the ex-situ bio-remediation pile (bio-pile) and along the perimeter of excavated area (in-situ area) to remove the volatile or light petroleum hydrocarbons. This process also draws ambient air into the ex-situ bio-pile and in-situ vadose zone soil along the perimeter of excavated area to enhance biodegradation of light and heavy petroleum hydrocarbons in the soil. The extracted soil vapor is treated using a custom-designed air bio-remediation filter (bio-filter) to degrade the petroleum hydrocarbon compounds in the soil vapor extraction air streams. The treated air is then injected into a flush grade soil bed in the backfill area to perform final polishing of the air stream, and to form a closed-loop air flow with the soil vapor extraction perforated pipes along the perimeter of the excavated area

  4. Bioremediation of petroleum hydrocarbo-contaminated soils, comprehensive report, December 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry

    2000-04-01

    The US Department of Energy and the Institute for Ecology of Industrial Areas (IETU), Katowice, Poland have been cooperating in the development and implementation of innovative environmental remediation technologies since 1995. A major focus of this program has been the demonstration of bioremediation techniques to cleanup the soil and sediment associated with a waste lagoon at the Czechowice Oil Refinery (CZOR) in southern Poland. After an expedited site characterization (ESC), treatability study, and risk assessment study, a remediation system was designed that took advantage of local materials to minimize cost and maximize treatment efficiency. U.S. experts worked in tandem with counterparts from the IETU and CZOR throughout this project to characterize, assess and subsequently, design, implement and monitor a bioremediation system. The CZOR, our industrial partner for this project, was chosen because of their foresight and commitment to the use of new approaches for environmental restoration. This program sets a precedent for Poland in which a portion of the funds necessary to complete the project were provided by the company responsible for the problem. The CZOR was named by PIOS (State Environmental Protection Inspectorate of Poland) as one of the top 80 biggest polluters in Poland. The history of the CZOR dates back more than 100 years to its establishment by the Vacuum Oil Company (a U.S. company and forerunner of Standard Oil). More than a century of continuous use of a sulfuric acid-based oil refining method by the CZOR has produced an estimated 120,000 tons of acidic, highly weathered, petroleum sludge. This waste has been deposited into three open, unlined process waste lagoons, 3 meters deep, now covering 3.8 hectares. Initial analysis indicated that the sludge was composed mainly of high molecular weight paraffinic and polynuclear aromatic hydrocarbons (PAHs). The overall objective of this full-scale demonstration project was to characterize, assess

  5. Bioremediation of multi-polluted soil by spent mushroom (Agaricus bisporus) substrate: Polycyclic aromatic hydrocarbons degradation and Pb availability.

    Science.gov (United States)

    García-Delgado, Carlos; Yunta, Felipe; Eymar, Enrique

    2015-12-30

    This study investigates the effect of three spent Agaricus bisporus substrate (SAS) application methods on bioremediation of soil multi-polluted with Pb and PAH from close to a shooting range with respect natural attenuation (SM). The remediation treatments involve (i) use of sterilized SAS to biostimulate the inherent soil microbiota (SSAS) and two bioaugmentation possibilities (ii) its use without previous treatment to inoculate A. bisporus and inherent microbiota (SAS) or (iii) SAS sterilization and further A. bisporus re-inoculation (Abisp). The efficiency of each bioremediation microcosm was evaluated by: fungal activity, heterotrophic and PAH-degrading bacterial population, PAH removal, Pb mobility and soil eco-toxicity. Biostimulation of the native soil microbiology (SSAS) achieved similar levels of PAH biodegradation as SM and poor soil detoxification. Bioaugmented microcosms produced higher PAH removal and eco-toxicity reduction via different routes. SAS increased the PAH-degrading bacterial population, but lowered fungal activity. Abisp was a good inoculum carrier for A. bisporus exhibiting high levels of ligninolytic activity, the total and PAH-degrading bacteria population increased with incubation time. The three SAS applications produced slight Pb mobilization (<0.3%). SAS sterilization and further A. bisporus re-inoculation (Abisp) proved the best application method to remove PAH, mainly BaP, and detoxify the multi-polluted soil. PMID:26188871

  6. Bioremediation: A natural solution

    International Nuclear Information System (INIS)

    Bioremediation is an attractive remediation alternative because most full-scale bioremediation projects involve cost-effective contaminant treatment on-site. Recently, large scale bioremediation projects have included cleanups of ocean tanker spills, land-based chemical spills, and leaking chemical and petroleum storage tanks. Contaminated matrices have included beaches, soils, groundwater, surface waters (i.e., pits, ponds, lagoons), process waste streams and grease traps. Bioremediation is especially cost-effective when both soil and groundwater matrices are impacted because one remediation treatment system can be design to treat both media simultaneously in place. The primary advantages of in situ bioremediation include: on-site destruction of contaminants; accelerated cleanup time; minimal disruption to operations; lower remediation costs; and reduction of future liability

  7. Pilot-scale in situ bioremediation of HMX and RDX in soil pore water in Hawaii.

    Science.gov (United States)

    Payne, Zachary M; Lamichhane, Krishna M; Babcock, Roger W; Turnbull, Stephen J

    2013-10-01

    A nine-month in situ bioremediation study was conducted in Makua Military Reservation (MMR) in Oahu, Hawaii (USA) to evaluate the potential of molasses to enhance biodegradation of royal demolition explosive (RDX) and high-melting explosive (HMX) contaminated soil below the root zone. MMR has been in operation since the 1940's resulting in subsurface contamination that in some locations exceeds USEPA preliminary remediation goals for these chemicals. A molasses-water mixture (1 : 40 dilution) was applied to a treatment plot and clean water was applied to a control plot via seven flood irrigation events. Pore water samples were collected from 12 lysimeters installed at different depths in 3 boreholes in each test plot. The difference in mean concentrations of RDX in pore water samples from the two test plots was very highly significant (p biodegradation was modeled as first order and the rate constant was 0.063 per day at 5 ft and decreased to 0.023 per day at 11 ft to 13.5 ft depth. Enhanced biodegradation of HMX was also observed in molasses treated plot samples but only at a depth of 5 ft. The difference in mean TOC concentration (surrogate for molasses) was highly significant with depth (p = 0.003) and very highly significant with treatment (p biodegradation of explosives in situ and preventing them from migrating to through the vadose zone to underlying ground water and off-site. PMID:24061783

  8. Natural and bioremediated selective degradation of polycyclic aromatic alkyl isomers in oil-contaminated soils

    International Nuclear Information System (INIS)

    In studies where 2- to 6-ring polycyclic aromatic hydrocarbons (PAHs) are determined as part of characterizing released oil constituents in environmental samples, the changes in composition of PAHs from weathering (e.g., evaporation, dissolution) and biodegradation are most often represented by PAH alkyl homologue distributions. Concentrations of PAH alkyl groups are the sum of individual PAH isomers of similar carbon number; such as for C2-naphthalenes, the C2 alkyl group consists of dimethyl and ethyl substitutions on the parent naphthalene. In weathering and degradation studies, the changes in relative concentration of the individual isomers within an alkyl group are rarely reported. In a field study of oiled soils, the authors looked at the selective losses, for a period of a year, of individual PAH alkyl isomers that occur both naturally by weathering processes and through the use of bioremediation technology. Results showed that decreases in alkyl group concentrations were not always represented by similar losses of each isomer in the alkyl group, but were often due to the preferential or selective loss of certain isomers in the group

  9. Enhanced bioremediation of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems

    International Nuclear Information System (INIS)

    Highlights: • Pilot bioelectrochemical system showed high-performance hydrocarbon remediation. • Radius of influence characterization demonstrated system efficacy. • Current serves as degradation indicator. - Abstract: Two column-type bioelectrochemical system (BES) modules were installed into a 50-L pilot scale reactor packed with diesel-contaminated soils to investigate the enhancement of passive biodegradation of petroleum compounds. By using low cost electrodes such as biochar and graphite granule as non-exhaustible solid-state electron acceptors, the results show that 82.1–89.7% of the total petroleum hydrocarbon (TPH) was degraded after 120 days across 1–34 cm radius of influence (ROI) from the modules. This represents a maximum of 241% increase of biodegradation compared to a baseline control reactor. The current production in the BESs correlated with the TPH removal, reaching the maximum output of 70.4 ± 0.2 mA/m2. The maximum ROI of the BES, deducting influence from the baseline natural attenuation, was estimated to be more than 90 cm beyond the edge of the reactor (34 cm), and exceed 300 cm should a non-degradation baseline be used. The ratio of the projected ROI to the radius of BES (ROB) module was 11–12. The results suggest that this BES can serve as an innovative and sustainable technology for enhanced in situ bioremediation of petroleum hydrocarbons in large field scale, with additional benefits of electricity production and being integrated into existing field infrastructures

  10. Laboratory and field scale bioremediation of hexachlorocyclohexane (HCH) contaminated soils by means of bioaugmentation and biostimulation.

    Science.gov (United States)

    Garg, Nidhi; Lata, Pushp; Jit, Simran; Sangwan, Naseer; Singh, Amit Kumar; Dwivedi, Vatsala; Niharika, Neha; Kaur, Jasvinder; Saxena, Anjali; Dua, Ankita; Nayyar, Namita; Kohli, Puneet; Geueke, Birgit; Kunz, Petra; Rentsch, Daniel; Holliger, Christof; Kohler, Hans-Peter E; Lal, Rup

    2016-06-01

    Hexachlorocyclohexane (HCH) contaminated soils were treated for a period of up to 64 days in situ (HCH dumpsite, Lucknow) and ex situ (University of Delhi) in line with three bioremediation approaches. The first approach, biostimulation, involved addition of ammonium phosphate and molasses, while the second approach, bioaugmentation, involved addition of a microbial consortium consisting of a group of HCH-degrading sphingomonads that were isolated from HCH contaminated sites. The third approach involved a combination of biostimulation and bioaugmentation. The efficiency of the consortium was investigated in laboratory scale experiments, in a pot scale study, and in a full-scale field trial. It turned out that the approach of combining biostimulation and bioaugmentation was most effective in achieving reduction in the levels of α- and β-HCH and that the application of a bacterial consortium as compared to the action of a single HCH-degrading bacterial strain was more successful. Although further degradation of β- and δ-tetrachlorocyclohexane-1,4-diol, the terminal metabolites of β- and δ-HCH, respectively, did not occur by the strains comprising the consortium, these metabolites turned out to be less toxic than the parental HCH isomers. PMID:27142265

  11. In-situ bioremediation of gasoline in soil and groundwater: A case history

    International Nuclear Information System (INIS)

    This paper presents a case history of the in-situ biotreatment of gasoline in soil and groundwater at a leaking UST site in Greenville, North Carolina. The dissolved contaminant plume covers an area of about 18,000 sq. ft. and to a depth below the land surface (BLS) of about 15 ft. The total volume of the plume (1 pore volume) is estimated at about 40,000 cu. ft. or 300,000 gals. The initial concentration of gasoline in the plume averaged about 40 mg/l of total BTEX with some free phase product present. The in-situ bioremediation system consists of two 4-in. diameter ground water recovery wells, a treatment system and an infiltration gallery for treated effluent recycle to the subsurface. The above ground treatment system consists of transfer pumps, pressure filters, granulated activated carbon filters, air spargers, holding tanks, chemical feed system, propane fired hot water heater and monitoring instruments. The system was operated at a constant recirculation rate of about 25 gpm. The bioenhancement process includes water heating, nutrient demands in the form of monoammonium phosphate and trisodium phosphate and oxygen additions in the form of dilute hydrogen peroxide

  12. Enhanced bioremediation of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Lu; Yazdi, Hadi [Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO (United States); Jin, Song [Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY (United States); Zuo, Yi [Chevron Energy Technology Company, San Ramon, CA (United States); Fallgren, Paul H. [Department of Civil Engineering, University of Colorado Denver, Denver, CO (United States); Ren, Zhiyong Jason, E-mail: jason.ren@colorado.edu [Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO (United States); Department of Civil Engineering, University of Colorado Denver, Denver, CO (United States)

    2014-06-01

    Highlights: • Pilot bioelectrochemical system showed high-performance hydrocarbon remediation. • Radius of influence characterization demonstrated system efficacy. • Current serves as degradation indicator. - Abstract: Two column-type bioelectrochemical system (BES) modules were installed into a 50-L pilot scale reactor packed with diesel-contaminated soils to investigate the enhancement of passive biodegradation of petroleum compounds. By using low cost electrodes such as biochar and graphite granule as non-exhaustible solid-state electron acceptors, the results show that 82.1–89.7% of the total petroleum hydrocarbon (TPH) was degraded after 120 days across 1–34 cm radius of influence (ROI) from the modules. This represents a maximum of 241% increase of biodegradation compared to a baseline control reactor. The current production in the BESs correlated with the TPH removal, reaching the maximum output of 70.4 ± 0.2 mA/m{sup 2}. The maximum ROI of the BES, deducting influence from the baseline natural attenuation, was estimated to be more than 90 cm beyond the edge of the reactor (34 cm), and exceed 300 cm should a non-degradation baseline be used. The ratio of the projected ROI to the radius of BES (ROB) module was 11–12. The results suggest that this BES can serve as an innovative and sustainable technology for enhanced in situ bioremediation of petroleum hydrocarbons in large field scale, with additional benefits of electricity production and being integrated into existing field infrastructures.

  13. Comparison of analytical methods used to measure petroleum hydrocarbons in soils and their application to bioremediation studies

    International Nuclear Information System (INIS)

    Chemical measurements provide a means to evaluate crude oil and refined product bioremediation effectiveness in field and laboratory studies. These measurements are used to determine the net decrease in product or target compound concentrations in complex soil systems. The analytical methods used to evaluate these constituents will have a direct impact on the ability of the investigator to; (1) detect losses due to biodegradation, (2) understand the processes responsible for the hydrocarbon degradation and, (3) determine the rates of hydrocarbon degradation. This understanding is critical for the testing and design of bioremediation programs. While standard EPA methods are useful for measuring a wide variety of industrial and agrochemicals, they were not designed for the detection and accurate measurement of petroleum compounds. The chemical data generated with these standard methods are usually of limited utility because they lack the chemical specificity required to evaluate hydrocarbon compositional changes in the oil contamination required to evaluate biodegradation. The applications and limitations of standard EPA methodologies (EPA Methods 418.1, 8270, and modified 8015) will be evaluated and compared to several new analytical methods currently being used by the petroleum industry (e.g., gross compositional analysis, TLC-FID analysis, and enhanced EPA Method 8270) to evaluate bioremediation effectiveness in soils

  14. Autochthonous bioaugmentation with environmental samples rich in hydrocarbonoclastic bacteria for bench-scale bioremediation of oily seawater and desert soil.

    Science.gov (United States)

    Ali, Nedaa; Dashti, Narjes; Salamah, Samar; Al-Awadhi, Husain; Sorkhoh, Naser; Radwan, Samir

    2016-05-01

    Oil-contaminated seawater and desert soil batches were bioaugmented with suspensions of pea (Pisum sativum) rhizosphere and soil with long history of oil pollution. Oil consumption was measured by gas-liquid chromatography. Hydrocarbonoclastic bacteria in the bioremediation batches were counted using a mineral medium with oil vapor as a sole carbon source and characterized by their 16S ribosomal RNA (rRNA)-gene sequences. Most of the oil was consumed during the first 2-4 months, and the oil-removal rate decreased or ceased thereafter due to nutrient and oxygen depletion. Supplying the batches with NaNO3 (nitrogen fertilization) at a late phase of bioremediation resulted in reenhanced oil consumption and bacterial growth. In the seawater batches bioaugmented with rhizospheric suspension, the autochthonous rhizospheric bacterial species Microbacterium oxidans and Rhodococcus spp. were established and contributed to oil-removal. The rhizosphere-bioaugmented soil batches selectively favored Arthrobacter nitroguajacolicus, Caulobacter segnis, and Ensifer adherens. In seawater batches bioaugmented with long-contaminated soil, the predominant oil-removing bacterium was the marine species Marinobacter hydrocarbonoclasticus. In soil batches on the other hand, the autochthonous inhabitants of the long-contaminated soil, Pseudomonas and Massilia species were established and contributed to oil removal. It was concluded that the use of rhizospheric bacteria for inoculating seawater and desert soil and of bacteria in long-contaminated soil for inoculating desert soil follows the concept of "autochthonous bioaugmentation." Inoculating seawater with bacteria in long-contaminated soil, on the other hand, merits the designation "allochthonous bioaugmentation." PMID:26801925

  15. Evaluating the Effects of Bioremediation on Genotoxicity of Polycyclic Aromatic Hydrocarbon-Contaminated Soil Using Genetically Engineered, Higher Eukaryotic Cell Lines

    OpenAIRE

    Jing HU; Nakamura, Jun; Richardson, Stephen D.; Aitken, Michael D.

    2012-01-01

    Bioremediation is one of the commonly applied remediation strategies at sites contaminated with polycyclic aromatic hydrocarbons (PAHs). However, remediation goals are typically based on removal of the target contaminants rather than on broader measures related to health risks. We investigated changes in the toxicity and genotoxicity of PAH-contaminated soil from a former manufactured-gas plant site before and after two simulated bioremediation processes: a sequencing batch bioreactor system ...

  16. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs.

    Science.gov (United States)

    Chen, Ming; Xu, Piao; Zeng, Guangming; Yang, Chunping; Huang, Danlian; Zhang, Jiachao

    2015-11-01

    Increasing soil pollution problems have caused world-wide concerns. Large numbers of contaminants such as polycyclic aromatic hydrocarbons (PAHs), petroleum and related products, pesticides, chlorophenols and heavy metals enter the soil, posing a huge threat to human health and natural ecosystem. Chemical and physical technologies for soil remediation are either incompetent or too costly. Composting or compost addition can simultaneously increase soil organic matter content and soil fertility besides bioremediation, and thus is believed to be one of the most cost-effective methods for soil remediation. This paper reviews the application of composting/compost for soil bioremediation, and further provides a critical view on the effects of this technology on microbial aspects in contaminated soils. This review also discusses the future research needs for contaminated soils. PMID:26008965

  17. Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant

    International Nuclear Information System (INIS)

    The aim of the present study was to find methods for enhancing rates of hydrocarbon biodegradation in gasoline contaminated soil by ex situ bioremediation. Red soil (RS) was treated with gasoline-spilled soil (GS) from a gasoline station and different combinations of amendments were prepared using (i) mixed bacterial consortium (MC), (ii) poultry litter (PL), (iii) coir pith (CP) and (iv) rhamnolipid biosurfactant (BS) produced by Pseudomonas sp. DS10-129. The study was conducted for a period of 90 days during which bacterial growth, hydrocarbon degradation and growth parameters of Phaseolus aureus RoxB including seed germination, chlorophyll content, shoot and root length were measured. Approximately 67% and 78% of the hydrocarbons were effectively degraded within 60 days in soil samples amended with RS + GS + MC + PL + CP + BS at 0.1% and 1%. Maximum percentage of seed germination, shoot length, root length and chlorophyll content in P. aureus were recorded after 60 days in the above amendments. Further incubation to 90 days did not exhibit significant improvements. Statistical analysis using analysis of variance (ANOVA) and Duncan's multiple range test (DMRT) revealed that the level of amendments, incubation time and combination of amendments significantly influenced bacterial growth, hydrocarbon degradation, seed germination and chlorophyll content at a 1% probability level. All tested additives MC, PL, CP and rhamnolipid BS had significant positive effects on the bioremediation of GS. (author)

  18. Evaluation of bioremediation methods for the treatment of soil contaminated with explosives in Louisiana Army Ammunition Plant, Minden, Louisiana

    International Nuclear Information System (INIS)

    Two bioremediation methods, namely, soil slurry reactor and land farming technique were evaluated for the treatment of soil contaminated with explosives in Louisiana Army Ammunition Plant, Minden, Louisiana. The soil had a high concentration of 2,4,6-trinitrotoluene (TNT) of 10,000 mg/kg of soil and medium level contamination of RDX 1900 mg/kg and HMX 900 mg/kg of soil. The results indicated that soil slurry reactor under co-metabolic condition with molasses as co-substrate removed TNT more efficiently than land farming method. TNT removal efficiency was 99% in soil slurry reactor compared to 82% in land farming after 182 days. HMX and RDX were also removed from the soil in both methods, but the removal efficiency was low. The radiolabeled study showed that soil microbes mineralize TNT. The mass-balance of TNT indicated 23.5% of TNT was mineralized to CO2, 22.6% was converted to biomass, and 52.3% was converted to various TNT intermediates in the soil slurry reactor. Both methods maintained high bacterial population fairly well. The results of this bench-scale study are promising with regard to transferring the technology to full-scale application at this site

  19. KINETIC MODELLING AND HALF LIFE STUDY OF ADSORPTIVE BIOREMEDIATION OF SOIL ARTIFICIALLY CONTAMINATED WITH BONNY LIGHT CRUDE OIL

    Directory of Open Access Journals (Sweden)

    Samuel Enahoro Agarry

    2015-06-01

    Full Text Available In this study, comparative potential effects of commercial activated carbon (CAC and plantain peel-derived biochar (PPBC of different particle sizes and dosage to stimulate petroleum hydrocarbon biodegradation in soil were investigated. Microcosms containing soil were spiked with weathered Bonny light crude oil (WBLCO (10% w/w and amended with different particle sizes (0.02, 0.07 and 0.48 mm and dosage (20, 30 and 40 g of CAC and PPBC, respectively. The bioremediation experiments were carried out for a period of 28 days under laboratory conditions. The results showed that there was a positive relationship between the rate of petroleum hydrocarbons reduction and presence of the CAC and PPBC in crude oil contaminated soil microcosms. The WBLCO biodegradation data fitted well to the first-order kinetic model. The model revealed that WBLCO contaminated-soil microcosms amended with CAC and PPBC had higher biodegradation rate constants (k as well as lower half-life times (t1/2 than unamended soil (natural attenuation remediation system. The rate constants increased while half-life times decreased with decreased particle size and increased dosage of amendment agents. ANOVA statistical analysis revealed that WBLCO biodegradation in soil was significantly (p = 0.05 influenced by the addition of CAC and biochar amendment agents, respectively. However, Tukey’s post hoc test (at p = 0.05 showed that there was no significant difference in the bioremediation efficiency of CAC and PPBC. Thus, amendment of soils with biochar has the potential to be an inexpensive, efficient, environmentally friendly and relatively novel strategy to mitigate organic compound-contaminated soil.

  20. Strong Impact on the Polycyclic Aromatic Hydrocarbon (PAH)-Degrading Community of a PAH-Polluted Soil but Marginal Effect on PAH Degradation when Priming with Bioremediated Soil Dominated by Mycobacteria

    DEFF Research Database (Denmark)

    Johnsen, Anders R.; Schmidt, Stine; Hybholdt, Trine K.;

    2007-01-01

    with a high capacity for PAH degradation. The culturable PAH-degrading community of the bioremediated primer soil was dominated by Mycobacterium spp. A microcosm containing pristine soil artificially polluted with PAHs and primed with bioremediated soil showed a fast, 100- to 1,000-fold increase in...... incubation. A nonprimed control microcosm containing pristine soil artificially polluted with PAHs showed only small increases in the numbers of culturable PAH degraders and no pdo1 genes. Initial PAH degradation rates were highest in the primed microcosm, but later, the degradation rates were comparable in......Bioaugmentation of soil polluted with polycyclic aromatic hydrocarbons (PAHs) is often disappointing because of the low survival rate and low activity of the introduced degrader bacteria. We therefore investigated the possibility of priming PAH degradation in soil by adding 2% of bioremediated soil...

  1. Analysis of petroleum hydrocarbons in soil from view of bioremediation process

    International Nuclear Information System (INIS)

    The pollution of the environment by petroleum hydrocarbons is the most often pollution of them all. Nevertheless, hydrocarbons present in environment can be not only of petroleum or anthropogenic origin, but of biogenic as well. Typically the hydrocarbons are presented in the environment as very complex mixtures of individual compounds with very different chemical structure, wide range of the boiling points (∼800 0C) as well as with the wide range of the number of carbon atoms. Immediately they are spread in any environmental matrix the complex physical, chemical and biochemical reactions start. A lot of methods have been developed and new are permanently in progress for the monitoring and control of petroleum hydrocarbons contamination and/or soils bioremediation. Generally, all methods by whose the hydrocarbons contaminants are determined in GC-FID system do not satisfied recommendations for enough accurate and precise results. Hyphenation of capillary gas chromatography and mass selective detector operated in the selective ion monitoring mode essentially allows detailed specification of non-polar extractable hydrocarbons. Isoprenoid alkanes, alkylhomologues of aromatic hydrocarbons and polycyclic alkanes hopanes-like were investigated as markers for recognition of petroleum and biogenic contamination. C3017α(H)21β(H)-hopane (C30-hopane) seems to be a suitable marker to identify hydrocarbons origin, to determine composting rates for nonpolar extractable compounds and to calculate real content of non-polar extractable compounds in final composting status on the assumption that the contamination is of mineral oil type. This is the survey into the results obtained in this field published in the literature as well as reached in our laboratory. (author)

  2. Enhanced Bioremediation of Soil Artificially Contaminated with Petroleum Hydrocarbons after Amendment with Capra aegagrus hircus (Goat) Manure

    OpenAIRE

    Nwogu, T. P.; Azubuike, C. C.; C. J. Ogugbue

    2015-01-01

    This study was carried out to evaluate the biostimulant potentials of Capra aegagrus hircus manure for bioremediation of crude oil contaminated soil (COCS) under tropical conditions. 1 kg of COCS sample was amended with 0.02 kg of C. a. hircus manure and monitored at 14-day intervals for total petroleum hydrocarbon (TPH), nutrient content, and changes in microbial counts. At the end of the study period, there was 62.08% decrease in the concentration of TPH in the amended sample compared to 8....

  3. Bioremediation of Petroleum and Radiological Contaminated Soils at the Savannah River Site: Laboratory to Field Scale Applications

    Energy Technology Data Exchange (ETDEWEB)

    BRIGMON, ROBINL.

    2004-06-07

    In the process of Savannah River Site (SRS) operations limited amounts of waste are generated containing petroleum, and radiological contaminated soils. Currently, this combination of radiological and petroleum contaminated waste does not have an immediate disposal route and is being stored in low activity vaults. SRS developed and implemented a successful plan for clean up of the petroleum portion of the soils in situ using simple, inexpensive, bioreactor technology. Treatment in a bioreactor removes the petroleum contamination from the soil without spreading radiological contamination to the environment. This bioreactor uses the bioventing process and bioaugmentation or the addition of the select hydrocarbon degrading bacteria. Oxygen is usually the initial rate-limiting factor in the biodegradation of petroleum hydrocarbons. Using the bioventing process allowed control of the supply of nutrients and moisture based on petroleum contamination concentrations and soil type. The results of this work have proven to be a safe and cost-effective means of cleaning up low level radiological and petroleum-contaminated soil. Many of the other elements of the bioreactor design were developed or enhanced during the demonstration of a ''biopile'' to treat the soils beneath a Polish oil refinery's waste disposal lagoons. Aerobic microorganisms were isolated from the aged refinery's acidic sludge contaminated with polycyclic aromatic hydrocarbons (PAHs). Twelve hydrocarbon-degrading bacteria were isolated from the sludge. The predominant PAH degraders were tentatively identified as Achromobacter, Pseudomonas Burkholderia, and Sphingomonas spp. Several Ralstonia spp were also isolated that produce biosurfactants. Biosurfactants can enhance bioremediation by increasing the bioavailability of hydrophobic contaminants including hydrocarbons. The results indicated that the diversity of acid-tolerant PAH-degrading microorganisms in acidic oil wastes may

  4. Combination of bioremediation and electrokinetics for the in-situ treatment of diesel polluted soil: A comparison of strategies.

    Science.gov (United States)

    Mena Ramírez, Esperanza; Villaseñor Camacho, José; Rodrigo, Manuel A; Cañizares, Pablo

    2015-11-15

    The aim of this work is to compare different strategies based on electrokinetic soil flushing and bioremediation for the remediation of diesel-polluted soil. Four options were tested at the laboratory scale: single bioremediation (Bio), performed as a control test; a direct combination of electrokinetic soil flushing and biological technologies (EKSF-Bio); EKSF-Bio with daily polarity reversal of the electric field (PR-EKSF-Bio); and a combination of electrokinetic soil flushing and a permeable reactive biological barrier (EKSF-BioPRB). Four batch experiments of 14 days duration were carried out for comparing technologies at room temperature with an electric field of 1.0 V cm(-1) (in EKSF). A diesel degrading microbial consortium was used. The experimental procedure and some specific details, such as the flushing fluids used, varied depending on the strategy. When using the EKSF-Bio option, a high buffer concentration was required to control the pH, causing soil heating, which negatively affected the biological growth and thus the diesel removal. The PR-EKSF-Bio and the EKSF-BioPRB options attained suitable operating conditions and improved the transport processes for biological growth. Polarity reversal was an efficient option for pH, moisture and temperature control. Homogeneous microbial growth was observed, and approximately 20% of the diesel was removed. The BioPRB option was not as efficient as PR-EKSF-Bio in controlling the operating conditions, but the central biobarrier protected the biological activity. Microbial growth was observed not only in the biobarrier but also in a large portion of the soil, and 29% of the diesel was removed in the short remediation test. PMID:26172598

  5. AN APPROACH TO BIOREMEDIATION

    OpenAIRE

    ELENA-ROXANA ARDELEANU

    2011-01-01

    This paper provides some mathematical models associated with bioremediation processes. Bioremediation is a process in which contaminants in polluted soils are eliminated by bacteria. The initial model is the one given by Keller and Segel. The Keller- Segel model takes into account the movement of bacteria by diffusion and chemotaxis. Starting from this generalized model, we present different forms of diffusion and chemotactic coefficients. All particular cases presented were confirmed experim...

  6. Shifts in microbial community structure during in situ surfactant-enhanced bioremediation of polycyclic aromatic hydrocarbon-contaminated soil.

    Science.gov (United States)

    Wang, Lingwen; Li, Feng; Zhan, Yu; Zhu, Lizhong

    2016-07-01

    This study aims to reveal the microbial mechanism of in situ surfactant-enhanced bioremediation (SEBR). Various concentrations of rhamnolipids, Tween 80, and sodium dodecyl benzenesulfonate (SDBS) were separately sprayed onto soils contaminated with polycyclic aromatic hydrocarbons (PAHs) for years. Within 90 days, the highest level of degradation (95 %) was observed in the soil treated with rhamnolipids (10 mg/kg), followed by 92 % degradation with Tween 80 (50 mg/kg) and 90 % degradation with SDBS (50 mg/kg). The results of the microbial phospholipid fatty acids (PLFAs) suggest that bacteria dominated the enhanced PAH biodegradation (94 % of the maximum contribution). The shift of bacterial community structure during the surfactant treatment was analyzed by using the 16S rRNA gene high-throughput sequencing. In the presence of surfactants, the number of the operational taxonomic units (OTUs) associated with Bacillus, Pseudomonas, and Sphingomonas increased from 2-3 to 15-30 % at the end of the experiment (two to three times of control). Gene prediction with phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) shows that the PAH-degrading genes, such as 1-hydroxy-2-naphthoate dioxygenase and PAH dioxygenase large subunit, significantly increased after the surfactant applications (p < 0.05). The findings of this study provide insights into the surfactant-induced shifts of microbial community, as well as critical factors for efficient bioremediation. PMID:27068902

  7. Bioremediation of contaminated sites

    International Nuclear Information System (INIS)

    By volatilizing aromatic compounds through aeration, landfarming is a recognized approach to the bioremediation of hydrocarbon contaminated soil. With this method, the soil is cultivated and aided with fertilizer amendment to provide a nutrient source for the microbial population involved in the degradation of hydrocarbons. The effectiveness of bioremediation will depend on several factors, including topographic features, soil properties, and biochemistry. Since bioremediation is inhibited by anaerobic conditions, sites that are sloped or have trenches to collect runoff water are preferable. As for soil properties, the percentage of sand should not be too high, but aeration is essential to avoid anaerobic conditions. Addition of straw is generally beneficial, and fertilizers with nitrogen, phosphorous and potassium will help degrading hydrocarbons. Temperature, pH, and salt content are also important factors since they facilitate microbial activity. 3 refs

  8. Synergistic effects of Arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria in bioremediation of iron contaminated soils.

    Science.gov (United States)

    Mishra, Vartika; Gupta, Antriksh; Kaur, Parvinder; Singh, Simranjeet; Singh, Nasib; Gehlot, Praveen; Singh, Joginder

    2016-07-01

    Three Arbuscular mycorrhizal fungi (AMF) from Glomus, Acaulospora and Scutellospora, and four plant growth promoting rhizobacteria (PGPR) isolates related to genera Streptomyces, Azotobacter, Pseudomonas and Paenibacillus were found to be effective in phytoremediation of Fe(3+) contaminated soil where Pennisetum glaucum and Sorghum bicolor were growing as host plants. Co-inoculation of AMF and PGPR showed better results in comparison to either, AMF and PGPR under pot conditions. Both AMF and PGPR were able to produce siderophores. AMF and PGPR associated to P. glaucum and S. bicolor plants increased the extent of iron absorption. AMF and PGPR combination exhibited superior (p < 0.01) phytoremediation efficiency with P. glaucum compared to S. bicolor. These findings warrant further investigations of these synergistic interactions and large-scale in situ studies for bioremediation of iron-contaminated soils. PMID:26682583

  9. Engineering Pseudomonas putida KT2440 for simultaneous degradation of organophosphates and pyrethroids and its application in bioremediation of soil.

    Science.gov (United States)

    Zuo, Zhenqiang; Gong, Ting; Che, You; Liu, Ruihua; Xu, Ping; Jiang, Hong; Qiao, Chuanling; Song, Cunjiang; Yang, Chao

    2015-06-01

    Agricultural soils are usually co-contaminated with organophosphate (OP) and pyrethroid pesticides. To develop a stable and marker-free Pseudomonas putida for co-expression of two pesticide-degrading enzymes, we constructed a suicide plasmid with expression cassettes containing a constitutive promoter J23119, an OP-degrading gene (mpd), a pyrethroid-hydrolyzing carboxylesterase gene (pytH) that utilizes the upp gene as a counter-selectable marker for upp-deficient P. putida. By introduction of suicide plasmid and two-step homologous recombination, both mpd and pytH genes were integrated into the chromosome of a robust soil bacterium P. putida KT2440 and no selection marker was left on chromosome. Functional expression of mpd and pytH in P. putida KT2440 was demonstrated by Western blot analysis and enzyme activity assays. Degradation experiments with liquid cultures showed that the mixed pesticides including methyl parathion, fenitrothion, chlorpyrifos, permethrin, fenpropathrin, and cypermethrin (0.2 mM each) were degraded completely within 48 h. The inoculation of engineered strain (10(6) cells/g) to soils treated with the above mixed pesticides resulted in a higher degradation rate than in noninoculated soils. All six pesticides could be degraded completely within 15 days in fumigated and nonfumigated soils with inoculation. Theses results highlight the potential of the engineered strain to be used for in situ bioremediation of soils co-contaminated with OP and pyrethroid pesticides. PMID:25917649

  10. Bioremediation of soil contaminated by diesel oil Biorremediação de solos contaminados por óleo diesel

    Directory of Open Access Journals (Sweden)

    Fatima Menezes Bento

    2003-11-01

    Full Text Available Were evaluated natural attenuation, biostimulation and bioaugmentation on the degradation of total petroleum hydrocarbons (TPH in soils contaminated with diesel oil. Bioaugmentation showed the greatest degradation in the light (C12 - C23 fractions (72.7% and heavy (C23 - C40 fractions of TPH (75.2% and natural attenuation was more effective than biostimulation. The greatest dehydrogenase activity was observed upon bioaugmentation of the Long Beach soil (3.3-fold and the natural attenuation of the Hong Kong soil sample (4.0-fold. The number of diesel oil degrading microorganisms and heterotrophic population was not influenced by the bioremediation treatments. The best approach for bioremediation of soil contaminated with diesel oil is the inoculum of microorganisms pre-selected from their own environment.Avaliou-se a degradação de hidrocarbonetos de petróleo (HP em solos contaminados com óleo diesel através da atenuação natural, bioestimulação e bioaumentação. A bioaumentação apresentou a maior degradação da fração leve (72,6% e da fração pesada (75,2% de HP e a atenuação natural foi mais efetiva do que a bioestimulação. A maior atividade da dehidrogenase no solo Long Beach e Hong Kong foi observada nos tratamentos bioaumentação e atenuação natural, respectivamente. O número de microrganismos degradadores de diesel e a população de heterotróficos não foi influenciada pelas técnicas de biorremediação. A melhor performance para a biorremediação do solo contaminado com diesel foi obtida quando foram adicionados microrganismos pré-selecionados do ambiente contaminado.

  11. Draft Genome Sequence of Pseudomonas putida CBF10-2, a Soil Isolate with Bioremediation Potential in Agricultural and Industrial Environmental Settings.

    Science.gov (United States)

    Iyer, Rupa; Damania, Ashish

    2016-01-01

    Pseudomonas putida CBF10-2 is a microorganism isolated from farmland soil in Fairchild, TX, found to degrade high-impact xenobiotics, including organophosphate insecticides, petroleum hydrocarbons, and both monocyclic and polycyclic aromatics. The versatility of CBF10-2 makes it useful for multipurpose bioremediation of contaminated sites in agricultural and industrial environments. PMID:27417844

  12. Isolation and use of indigenous bacteria for bioremediation of soil from a former wood treatment site in southwestern Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Guinn, D.A.; Tumeo, M.A.; Braddock, J.F. [Univ. of Alaska, Fairbanks, AK (United States)

    1996-11-01

    A temporary wood treatment site located at the University of Alaska Fairbanks (UAF) Palmer Research Farm, Point MacKenzie Agricultural Project was operated during the summer months of 1988--1989. An undefined mixture of diesel fuel, creosote, and pentachlorophenol (PCP) was used in the process. Approximately 75 m{sup 3} (98 yd{sup 3}) of soil were contaminated with up to 13.5 ppm PCP, creosote, and 13,000 ppm diesel range hydrocarbons. The Alaska Department of Environmental Conservation (ADEC) established clean-up levels of 0.5 ppm for PCP, and 1,000 ppm for diesel range hydrocarbons. The contaminated soil was excavated and stored on site in lined cells pending selection and implementation of a remediation method. Physical and chemical treatment options for soil contaminated with xenobiotic compounds in the Lower 48 United States are often not available or economical in Alaska. The expense of shipping contaminated soil outside the state for treatment, difficulties in supporting complex remediation technologies in remote locations, and concerns over long-term liability associated with landfilling make biological treatment, when feasible, a compelling option in Alaska. Therefore, it was determined that studies should be conducted to address the feasibility of bioremediating the Pt. MacKenzie soil.

  13. Bioremediation of polychlorinated-p-dioxins/dibenzofurans contaminated soil using simulated compost-amended landfill reactors under hypoxic conditions.

    Science.gov (United States)

    Chen, Wei-Yu; Wu, Jer-Horng; Lin, Shih-Chiang; Chang, Juu-En

    2016-07-15

    Compost-amended landfill reactors were developed to reduce polychlorinated-p-dioxins and dibenzofurans (PCDD/Fs) in contaminated soils. By periodically recirculating leachate and suppling oxygen, the online monitoring of the oxidation reduction potential confirmed that the reactors were maintained under hypoxic conditions, with redox levels constantly fluctuating between -400 and +80mV. The subsequent reactor operation demonstrated that PCDD/F degradation in soil could be facilitated by amending compost originating from the cow manure and waste sludge and that the degradation might be affected by the availability of easily degradable substrates in the soil and compost. The pyrosequencing analysis of V4/V5 regions of bacterial 16S rRNA genes suggested that species richness of the soil microbial community was increased by a factor of 1.37-1.61. Although the bacterial community varied with the compost origin and changed markedly during reactor operation, it was dominated by Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, and Firmicutes. The aerotolerant anaerobic Sedimentibacter and Propionibacterium spp., and the uncultured Chloroflexi group could be temporarily induced to a high abundance by amending the cow manure compost; the bacterial growths were associated with the rapid degradation of PCDD/Fs. Overall, the novel bioremediation method for PCDD/F-contaminated soils using hypoxic conditions was effective, simple, energy saving, and thus easily practicable. PMID:27037469

  14. Monitoring Arthrobacter protophormiae RKJ100 in a 'tag and chase' method during p-nitrophenol bio-remediation in soil microcosms.

    Science.gov (United States)

    Pandey, Gunjan; Pandey, Janmejay; Jain, Rakesh K

    2006-05-01

    Monitoring of micro-organisms released deliberately into the environment is essential to assess their movement during the bio-remediation process. During the last few years, DNA-based genetic methods have emerged as the preferred method for such monitoring; however, their use is restricted in cases where organisms used for bio-remediation are not well characterized or where the public domain databases do not provide sufficient information regarding their sequence. For monitoring of such micro-organisms, alternate approaches have to be undertaken. In this study, we have specifically monitored a p-nitrophenol (PNP)-degrading organism, Arthrobacter protophormiae RKJ100, using molecular methods during PNP degradation in soil microcosm. Cells were tagged with a transposon-based foreign DNA sequence prior to their introduction into PNP-contaminated microcosms. Later, this artificially introduced DNA sequence was PCR-amplified to distinguish the bio-augmented organism from the indigenous microflora during PNP bio-remediation. PMID:16205921

  15. The ecological and physiological responses of the microbial community from a semiarid soil to hydrocarbon contamination and its bioremediation using compost amendment.

    Science.gov (United States)

    Bastida, F; Jehmlich, N; Lima, K; Morris, B E L; Richnow, H H; Hernández, T; von Bergen, M; García, C

    2016-03-01

    The linkage between phylogenetic and functional processes may provide profound insights into the effects of hydrocarbon contamination and biodegradation processes in high-diversity environments. Here, the impacts of petroleum contamination and the bioremediation potential of compost amendment, as enhancer of the microbial activity in semiarid soils, were evaluated in a model experiment. The analysis of phospholipid fatty-acids (PLFAs) and metaproteomics allowed the study of biomass, phylogenetic and physiological responses of the microbial community in polluted semiarid soils. Petroleum pollution induced an increase of proteobacterial proteins during the contamination, while the relative abundance of Rhizobiales lowered in comparison to the non-contaminated soil. Despite only 0.55% of the metaproteome of the compost-treated soil was involved in biodegradation processes, the addition of compost promoted the removal of polycyclic aromatic hydrocarbons (PAHs) and alkanes up to 88% after 50 days. However, natural biodegradation of hydrocarbons was not significant in soils without compost. Compost-assisted bioremediation was mainly driven by Sphingomonadales and uncultured bacteria that showed an increased abundance of catabolic enzymes such as catechol 2,3-dioxygenases, cis-dihydrodiol dehydrogenase and 2-hydroxymuconic semialdehyde. For the first time, metaproteomics revealed the functional and phylogenetic relationships of petroleum contamination in soil and the microbial key players involved in the compost-assisted bioremediation. PMID:26225916

  16. Evaluation of hydrocarbons and organochlorine pesticides and their tolerant microorganisms from an agricultural soil to define its bioremediation feasibility.

    Science.gov (United States)

    Islas-García, Alejandro; Vega-Loyo, Libia; Aguilar-López, Ricardo; Xoconostle-Cázares, Beatriz; Rodríguez-Vázquez, Refugio

    2015-01-01

    The concentrations of hydrocarbons and organochlorine pesticides (OCPs), nutrients and tolerant microorganisms in an agricultural soil from a locality in Tepeaca, Puebla, Mexico, were determined to define its feasibility for bioremediation. The OCPs detected were heptachlor, aldrin, trans-chlordane, endosulfán I, endosulfán II, 1,1,1-bis-(4-chlorophenyl)-2,2-trichloroethane (4,4'-DDT), 1,1-bis-(4-chlorophenyl)-2,2-dichloroethene (4,4'-DDE) and endrin aldehyde, with values of 0.69-30.81 ng g(-1). The concentration of hydrocarbons in the soil of Middle Hydrocarbons Fraction (MHF), C10 to C28, was 4608-27,748 mg kg(-1) and 1117-19,610 mg kg(-1) for Heavy Hydrocarbons Fraction (HHF), C28 to C35, due to an oil spill from the rupture of a pipeline. The soil was deficient in nitrogen (0.03-0.07%) and phosphorus (0 ppm), and therefore it was advisable to fertilize to bio-stimulate the native microorganisms of soil. In the soil samples, hydrocarbonoclast fungi 3.72 × 10(2) to 44.6 × 10(2) CFU g(-1) d.s. and hydrocarbonoclast bacteria (0.17 × 10(5) to 8.60 × 10(5) CFU g(-1) d.s.) were detected, with a tolerance of 30,000 mg kg(-1) of diesel. Moreover, pesticideclast fungi (5.13 × 10(2) to 42.2 × 10(2) CFU g(-1) d.s.) and pesticideclast bacteria (0.15 × 10(5) to 9.68 × 10(5) CFU g(-1) d.s.) were determined with tolerance to 20 mg kg(-1) of OCPs. Fungi and bacteria tolerant to both pollutants were also quantified. Therefore, native microorganisms had potential to be stimulated to degrade hydrocarbons and pesticides or both pollutants. The concentration of pollutants and the microbial activity analyzed indicated that bioremediation of the soil contaminated with hydrocarbons and pesticides using bio-stimulation of native microorganisms was feasible. PMID:25587779

  17. Composting as a tool for bioremediation of contaminated soils: Correlation between bioavailability and prediction of bioremediation results by supercritical fluid extraction

    Czech Academy of Sciences Publication Activity Database

    Cajthaml, Tomáš; Šašek, Václav

    Chania, 2005, s. 18-18. [European Bioremediation Conference /3./. Chania (GR), 04.07.2005-07.07.2005] R&D Projects: GA ČR GP206/03/P078 Institutional research plan: CEZ:AV0Z50200510 Keywords : composting * bioremedation Subject RIV: EE - Microbiology, Virology

  18. Phytoremediation of Polycyclic Aromatic Hydrocarbons in Soils Artificially Polluted Using Plant-Associated-Endophytic Bacteria and Dactylis glomerata as the Bioremediation Plant.

    Science.gov (United States)

    Gałązka, Ann; Gałązka, Rafał

    2015-01-01

    The reaction of soil microorganisms to the contamination of soil artificially polluted with polycyclic aromatic hydrocarbons (PAHs) was evaluated in pot experiments. The plant used in the tests was cock's foot (Dactylis glomerata). Three different soils artificially contaminated with PAHs were applied in the studies. Three selected PAHs (anthracene, phenanthrene, and pyrene) were used at the doses of 100, 500, and 1000 mg/kg d.m. of soil and diesel fuel at the doses of 100, 500, and 1000 mg/kg d.m. of soil. For evaluation of the synergistic effect of nitrogen fixing bacteria, the following strains were selected: associative Azospirillum spp. and Pseudomonas stutzerii. Additionally, in the bioremediation process, the inoculation of plants with a mixture of the bacterial strains in the amount of 1 ml suspension per 500 g of soil was used. Chamber pot-tests were carried out in controlled conditions during four weeks of plant growth period. The basic physical, microbiological and biochemical properties in contaminated soils were determined. The obtained results showed a statistically important increase in the physical properties of soils polluted with PAHs and diesel fuel compared with the control and also an important decrease in the content of PAHs and heavy metals in soils inoculated with Azospirillum spp. and P. stutzeri after cock's foot grass growth. The bioremediation processes were especially intensive in calcareous rendzina soil artificially polluted with PAHs. PMID:26638532

  19. In-situ bioremediation of soil polluted by fuel oil, Strasbourg, France

    International Nuclear Information System (INIS)

    In 1987, a 17,000 gallon fuel oil spill occurred on an industrial site in Strasbourg, France. The Bureau de Recherche Geologique et Miniere (French equivalent to the US Bureau of Mines and the US Geological Survey), and ESYS, a subsidiary of ELF AQUITAINE, a French based oil, chemical, and pharmaceutical corporation, jointly developed a strategy to remediate this site. In-situ bioremediation with addition of exogenous bacteria, as well as hydrogen peroxide and a surfactant, was the process selected for the clean-up. This paper describes the clean-up operation and the results obtained

  20. Treatability and scale-up protocols for polynuclear aromatic hydrocarbon bioremediation of manufactured-gas-plant soils. Final report, September 1987-July 1991

    International Nuclear Information System (INIS)

    The report describes activities to develop a framework to reliably scale-up and apply challenging bioremediation processes to polynuclear aromatic hydrocarbons in Manufactured Gas Plant (MGP) soils. It includes: a discussion of the accuracy needed for competitive application of bioremediation; a framework and examples for treatability and scale-up protocols for selection, design and application of these processes; both batch and continuous testing protocols for developing predictive rate data; and special predictive relationships that may be used in process selection/scale-up. The work, coupled with subsequent work (as recommended) to develop an MGP soil desorption/diffusion protocol and new scale-up methods, and with subsequent scale-up testing should lead to the capability for improved selection of MGP sites for bioremediation and improved performance, success, and reliability of field applications. With this greater predictive reliability, bioremediation will be used more often in the field on the most favorable applications and its cost advantages over other remediation options will be realized

  1. Biosurfactant from red ash trees enhances the bioremediation of PAH contaminated soil at a former gasworks site.

    Science.gov (United States)

    Blyth, Warren; Shahsavari, Esmaeil; Morrison, Paul D; Ball, Andrew S

    2015-10-01

    Polycyclic aromatic hydrocarbons (PAHs) are persistent contaminants that accumulate in soil, sludge and on vegetation and are produced through activities such as coal burning, wood combustion and in the use of transport vehicles. Naturally occurring surfactants have been known to enhance PAH-removal from soil by improving PAH solubilization thereby increasing PAH-microbe interactions. The aim of this research was to determine if a biosurfactant derived from the leaves of the Australian red ash (Alphitonia excelsa) would enhance bioremediation of a heavily PAH-contaminated soil and to determine how the microbial community was affected. Results of GC-MS analysis show that the extracted biosurfactant was significantly more efficient than the control in regards to the degradation of total 16 US EPA priority PAHs (78.7% degradation compared to 62.0%) and total petroleum hydrocarbons (TPH) (92.9% degradation compared to 44.3%). Furthermore the quantification of bacterial genes by qPCR analysis showed that there was an increase in the number of gene copies associated with Gram positive PAH-degrading bacteria. The results suggest a commercial potential for the use of the Australian red ash tree as a source of biosurfactant for use in the accelerated degradation of hydrocarbons. PMID:26217887

  2. Bioremediation of recalcitrant chemical pollutant-contaminated soil. Applying edible mushroom cultivation waste to bioremediation; Kinoko kinsho ni yoru nanbunkaisei busshitsu osendo no bioremidiation. Kinoko kinsho no rigunin bunkai koso kassei to takan hokozoku tanka suiso no bunkaino

    Energy Technology Data Exchange (ETDEWEB)

    Okada, S.; Oide, E.; Oshima, Y.; Tsuji, H. [Obayashi Corp., Tokyo (Japan)

    2000-01-10

    Bioremediation is a viable and cost effective method for soil contaminated with a variety of chemical pollutants. White-rot fungi, with emitted extracellular free radicals, are known to be able to decompose lignin, which is usually nonbiodegradable by most bacteria. The decomposition mechanism has been shown to be attributed, at least in part, to lignolytic peroxidases. We examined a method that utilizes edible mushroom cultivation waste as the microbial source, and found that these waste materials have high lignolytic peroxidase activity and degradated polyaromatic hydrocarbons in sands. (author)

  3. Degradability of n-alkanes during ex situ natural bioremediation of soil contaminated by heavy residual fuel oil (mazut

    Directory of Open Access Journals (Sweden)

    Ali Ramadan Mohamed Muftah

    2013-01-01

    Full Text Available It is well known that during biodegradation of oil in natural geological conditions, or oil pollutants in the environment, a degradation of hydrocarbons occurs according to the well defined sequence. For example, the major changes during the degradation process of n-alkanes occur in the second, slight and third, moderate level (on the biodegradation scale from 1 to 10. According to previous research, in the fourth, heavy level, when intensive changes of phenanthrene and its methyl isomers begin, n-alkanes have already been completely removed. In this paper, the ex situ natural bioremediation (unstimulated bioremediation, without addition of biomass, nutrient substances and biosurfactant of soil contaminated with heavy residual fuel oil (mazut was conducted during the period of 6 months. Low abundance of n-alkanes in the fraction of total saturated hydrocarbons in the initial sample (identification was possible only after concentration by urea adduction technique showed that the investigated oil pollutant was at the boundary between the third and the fourth biodegradation level. During the experiment, an intense degradation of phenanthrene and its methyl-, dimethyl-and trimethyl-isomers was not followed by the removal of the remaining n-alkanes. The abundance of n-alkanes remained at the initial low level, even at end of the experiment when the pollutant reached one of the highest biodegradation levels. These results showed that the unstimulated biodegradation of some hydrocarbons, despite of their high biodegradability, do not proceed completely to the end, even at final degradation stages. In the condition of the reduced availability of some hydrocarbons, microorganisms tend to opt for less biodegradable but more accessible hydrocarbons.

  4. Bioremediation of Petroleum hydrocarbon by using Pseudomonas species isolated from Petroleum contaminated soil

    Directory of Open Access Journals (Sweden)

    Vijay Kumar

    2014-12-01

    Full Text Available A newly isolated strain Pseudomonas fluorescens (Accession number KF 279042.1 have potential in diesel degradation and can be recommended for bioremediation of sites that are contaminated with diesel. This bacterium was characterized on the basis of microbiological, biochemical and molecular analysis. Bacterial growth optimization was studied based on carbon source, nitrogen source, pH and temperature. The strain was selected based on its ability to show growth in medium containing diesel. In addition, optimum temperature and pH for increased growth by the isolate were found to be 37oC and pH 8.0 indicating the maximum utilization of diesel. At the same time, production of protease and urease enzymes during the utilization of diesel was also assayed following the standard procedures.

  5. Low accessibility and chemical activity of PAHs restrict bioremediation and risk of exposure in a manufactured gas plant soil

    Energy Technology Data Exchange (ETDEWEB)

    Reichenberg, Fredrik; Karlson, Ulrich Gosewinkel [Department of Environmental Chemistry and Microbiology, National Environmental Research Institute, Aarhus University, P.O. Box 358, 4000 Roskilde (Denmark); Gustafsson, Orjan [Stockholm University, Department of Applied Environmental Science (ITM), 10691 Stockholm (Sweden); Long, Sara M. [Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Huntingdon, Cambridgeshire PE28 2LS (United Kingdom); Pritchard, Parmely H. [Department of Environmental Chemistry and Microbiology, National Environmental Research Institute, Aarhus University, P.O. Box 358, 4000 Roskilde (Denmark); Department of Biology, Portland State University, PO Box 751, Portland, OR 97207 (United States); Mayer, Philipp, E-mail: phm@dmu.d [Department of Environmental Chemistry and Microbiology, National Environmental Research Institute, Aarhus University, P.O. Box 358, 4000 Roskilde (Denmark)

    2010-05-15

    Composting of manufactured gas plant soil by a commercial enterprise had removed most of its polycyclic aromatic hydrocarbons (PAHs), but concentrations remained above regulatory threshold levels. Several amendments and treatments were first tested to restart the PAH degradation, albeit with little success. The working hypothesis was then that PAHs were 'stuck' due to strong sorption to black carbon. Accessibility was measured with cyclodextrin extractions and on average only 4% of the PAHs were accessible. Chemical activity of the PAHs was measured by equilibrium sampling, which confirmed a low exposure level. These results are consistent with strong sorption to black carbon (BC), which constituted 59% of the total organic carbon. Composting failed to remove the PAHs, but it succeeded to minimize PAH accessibility and chemical activity. This adds to accumulating evidence that current regulatory thresholds based on bulk concentrations are questionable and alternative approaches probing actual risk should be considered. - Bioremediation of MGP soil failed to eliminate PAHs but it succeeded to limit their accessibility, chemical activity and the remaining risk of biological exposure.

  6. Low accessibility and chemical activity of PAHs restrict bioremediation and risk of exposure in a manufactured gas plant soil

    International Nuclear Information System (INIS)

    Composting of manufactured gas plant soil by a commercial enterprise had removed most of its polycyclic aromatic hydrocarbons (PAHs), but concentrations remained above regulatory threshold levels. Several amendments and treatments were first tested to restart the PAH degradation, albeit with little success. The working hypothesis was then that PAHs were 'stuck' due to strong sorption to black carbon. Accessibility was measured with cyclodextrin extractions and on average only 4% of the PAHs were accessible. Chemical activity of the PAHs was measured by equilibrium sampling, which confirmed a low exposure level. These results are consistent with strong sorption to black carbon (BC), which constituted 59% of the total organic carbon. Composting failed to remove the PAHs, but it succeeded to minimize PAH accessibility and chemical activity. This adds to accumulating evidence that current regulatory thresholds based on bulk concentrations are questionable and alternative approaches probing actual risk should be considered. - Bioremediation of MGP soil failed to eliminate PAHs but it succeeded to limit their accessibility, chemical activity and the remaining risk of biological exposure.

  7. Using Plants for the Bioremediation (Phyto-remediation) of Chromium-Contaminated Soils

    International Nuclear Information System (INIS)

    A trial was made to study the use of hyper accumulator plant species to extract Cr out of contaminated soils. Three soils (A,B, and C) were selected in this experiment, Soil A: Polluted soil from El-Gabal El-Asfer farm. (subjected to sewage effluent irrigation for more than 75 years). Soil B: Polluted soil from Bahtem area (subjected to sewage effluent irrigation for more than 30 years). Soil C: Polluted soil from Mostorud area (irrigated with contaminated water for more than 30 years due to direct discharge of industrial wastewater to irrigation water canals). Four Kg of each air-dried surface soil sample (0-20 cm) were packed in plastic containers in three replicates. Four plant species tested in this study namely, Sorghum (Sorghum Vulgar L.), Clover (Trifolium Pretense L.), Panikum (Panicum antidotal) and Canola (Brassica Napous.); were grown on each tested soil in a complete randomized block experimental design. Plant shoots were harvested every 60 days (three cuts) for sorghum, clover and panikum. In case of canola plants, the shoots were harvested after 60 days (vegetative stage) and 85 days(fruiting stage). The roots of all species were collected after the final cut. Initial and final soil samples were taken for Cr analyses using neutron activation analyses technique (NAA)

  8. Bioremediation of endosulfan contaminated soil and water-Optimization of operating conditions in laboratory scale reactors

    International Nuclear Information System (INIS)

    A mixed bacterial culture consisted of Staphylococcus sp., Bacillus circulans-I and -II has been enriched from contaminated soil collected from the vicinity of an endosulfan processing industry. The degradation of endosulfan by mixed bacterial culture was studied in aerobic and facultative anaerobic conditions via batch experiments with an initial endosulfan concentration of 50 mg/L. After 3 weeks of incubation, mixed bacterial culture was able to degrade 71.58 ± 0.2% and 75.88 ± 0.2% of endosulfan in aerobic and facultative anaerobic conditions, respectively. The addition of external carbon (dextrose) increased the endosulfan degradation in both the conditions. The optimal dextrose concentration and inoculum size was estimated as 1 g/L and 75 mg/L, respectively. The pH of the system has significant effect on endosulfan degradation. The degradation of alpha endosulfan was more compared to beta endosulfan in all the experiments. Endosulfan biodegradation in soil was evaluated by miniature and bench scale soil reactors. The soils used for the biodegradation experiments were identified as clayey soil (CL, lean clay with sand), red soil (GM, silty gravel with sand), sandy soil (SM, silty sand with gravel) and composted soil (PT, peat) as per ASTM (American society for testing and materials) standards. Endosulfan degradation efficiency in miniature soil reactors were in the order of sandy soil followed by red soil, composted soil and clayey soil in both aerobic and anaerobic conditions. In bench scale soil reactors, endosulfan degradation was observed more in the bottom layers. After 4 weeks, maximum endosulfan degradation efficiency of 95.48 ± 0.17% was observed in red soil reactor where as in composted soil-I (moisture 38 ± 1%) and composted soil-II (moisture 45 ± 1%) it was 96.03 ± 0.23% and 94.84 ± 0.19%, respectively. The high moisture content in compost soil reactor-II increased the endosulfan concentration in the leachate. Known intermediate metabolites of

  9. Bioremediation of a crude-oil polluted agricultural-soil at Port Harcourt, Nigeria.

    OpenAIRE

    Ayotamuno, M. J.; Kogbara, R. B.; Ogaji, S. O. T.; Probert, S. D.

    2006-01-01

    A combination of treatments, consisting of the application of fertilizers and oxygen exposure, was evaluated in situ during a period of six weeks. Conditions of a major spill were simulated by sprinkling crude-oil on experimental cells containing agricultural soil. The remedial treatments were then applied and the soil characteristics analyzed after set periods. Soil physicochemical parameters, such as moisture content, pH value, electrical conductivity as well as organic-carbon and total-nit...

  10. J.R. SIMPLOT EX-SITU BIOREMEDIATION TECHNOLOGY FOR TREATMENT OF TNT-CONTAMINATED SOILS - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    This report summarizes the findings of the second evaluation of the J.R. Simplot Ex-situ Bioremediation Technology also known as the Simplot Anaerobic Bioremediation (SABRE™) process. This technology was developed by the J.R. Simplot Company to biologically degrade nitroaromatic...

  11. Decreasing the contamination and toxicity of a heavily contaminated soil by in situ bioremediation

    Science.gov (United States)

    Groudev, Stoyan; Georgiev, Plamen; Spasova, Irena; Nikolova, Marina

    2013-04-01

    An experimental plot of 140 m2 consisting of acidic soil heavily contaminated with uranium, non-ferrous metals (mainly Cu, Zn and Cd) and arsenic was treated in situ under real field conditions using the activity of the indigenous soil microflora. This activity was enhanced by suitable changes of some essential environmental factors such as pH and water, oxygen and nutrient contents of the soil. The treatment was connected with solubilization and removal of contaminants from the top soil layers (horizon A) due to the joint action of the soil microorganisms (mainly acidophilic chemolithotrophic bacteria) and leach solutions (diluted sulphuric acid). The dissolved contaminants were transferred to the soil horizon B and were removed from the soil profile through a system of drainage collecting pipes. The contaminated soil effluents were treated by means of a multi-component passive system consisting of an anoxic alkalizing drain, a permeable reactive multibarrier and a rock filter. The contamination and toxicity of the soil were regularly tested during the cleaning procedure and were considerably decreased at the end of the treatment.

  12. Biostimulatory Effect Of Processed Sewage Sludge In Bioremediation Of Engine Oil Contaminated Soils

    OpenAIRE

    Kamaluddeen; Kabir; Yerima; Mohammed Bello; Abu; Tijjani Rimi; Deeni; Yusuf,, Abdirizak,

    2015-01-01

    A study was conducted to evaluate the influence of sewage sludge on biodegradation of engine oil in contaminated soil. Soil samples were collected from a mechanics workshop in Sokoto metropolis. The Soil samples were taken to the laboratory for isolation of engine oil degrading bacteria. About 1 g of soil sample was used to inoculate 9 ml of trypticase soy broth and incubated at 28oC for 24 h. The growth obtained was sub-cultured in mineral salt medium overlaid with crude oil and allowed to s...

  13. Bioremediation of experimental petroleum spills on mineral soils in the Vestfold Hills, Antarctica

    International Nuclear Information System (INIS)

    The effect of nutrient and water enhancement on the biodegradation of petroleum was tested in Antarctic mineral soils. Nitrogen, phosphorus and potassium were applied in solution, with or without gum xanthan or plastic covers, to sites artificially contaminated with distillate. The effectiveness of these procedures was assessed by measuring changes in total petroleum hydrocarbons; heptadecane/pristane and octadecane/phytane ratios; in concentrations of major hydrocarbon components and in microbial numbers and activity. Significantly lower hydrocarbon concentration were recorded after one year in soils treated with fertilizer solutions, but only in the surface 3 cm. These soils also showed lowered heptadecane/pristane and octadecane/phytane ratios and had the highest levels of microbial activity relative to other plots. Soils treated with gum xanthan or covered with plastic had the highest residual hydrocarbon levels. Both treatments inhibited evaporative loss of hydrocarbon, and there were indications that gum xanthan was utilized by the microbiota as an alternative carbon source to distillate. Higher temperatures were recorded under the plastic but no stimulation of biodegradation was detected. Estimated numbers of metabolically active bacteria were in the range 107 to 108 g-1 dry weight of soil, with an estimated biomass of 0.03 to 0.26 mg g-1 soil. Estimated numbers of amoebae were in the range 106 107 g-1 soil (biomass of 2 to 4 mg g-1). The highest populations were recorded in fertilized, contaminated soils, the only soils where petroleum degradation was demonstrated. 23 refs., 1 fig., 4 tabs

  14. Evaluation of microbial population and functional genes during the bioremediation of petroleum-contaminated soil as an effective monitoring approach.

    Science.gov (United States)

    Shahi, Aiyoub; Aydin, Sevcan; Ince, Bahar; Ince, Orhan

    2016-03-01

    This study investigated the abundance and diversity of soil n-alkane and polycyclic aromatic hydrocarbon (PAH)-degrading bacterial communities. It also investigated the quantity of the functional genes, the occurrence of horizontal gene transfer (HGT) in the identified bacterial communities and the effect that such HGT can have on biostimulation process. Illumina sequencing was used to detect the microbial diversity of petroleum-polluted soil prior to the biostimulation process, and quantitative real-time PCR was used to determine changes in the bacterial community and functional genes (alkB, phnAc and nah) expressions throughout the biostimulation of petroleum-contaminated soil. The illumine results revealed that γ-proteobacteria, Chloroflexi, Firmicutes, and δ-proteobacteria were the most dominant bacterial phyla in the contaminated site, and that most of the strains were Gram-negative. The results of the gene expression results revealed that gram-negative bacteria and alkB are critical to successful bioremediation. Failure to maintain the stability of hydrocarbon-degrading bacteria and functional gene will reduce the extend to which alkanes and PAHs are degraded. According to the results of the study, the application of a C:N:P ratio of was 100:15:1 in the biodegradation experiment resulted in the highest rate at which petroleum hydrocarbons were biodegraded. The diversity of pollutant-degrading bacteria and the effective transfer of degrading genes among resident microorganisms are essential factors for the successful biostimulation of petroleum hydrocarbons. As such, screening these factors throughout the biostimulation process represents an effective monitoring approach by which the success of the biostimulation can be assessed. PMID:26685788

  15. Noncompetitive microbial diversity patterns in soils: their causes and implications for bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    James M. Tiedje; Jizhong Zhou; Anthony Palumbo; Nathaniel Ostrom; Terence L. Marsh

    2007-07-05

    This funding provided support for over nine years of research on the structure and function of microbial communities in subsurface environments. The overarching goal during these years was to understand the impact of mixed contaminants, particularly heavy metals like uranium, on the structure and function of microbial communities. In addition we sought to identify microbial populations that were actively involved in the reduction of metals because these species of bacteria hold the potential for immobilizing soluble metals moving in subsurface water. Bacterial mediated biochemical reduction of metals like uranium, technetium and chromium, greatly reduces their mobility through complexation and precipitation. Hence, by taking advantage of natural metabolic capabilities of subsurface microbial populations it is possible to bioremediate contaminated subsurface environments with a cost-effective in situ approach. Towards this end we have i.) identified bacterial populations that have thrived under the adverse conditions at the contaminated FRC site, ii.) phylogenetically identified populations that respond to imposed remediation conditions at the FRC, iii.) used metagenomics to begin a reconstruction of the metabolic web in a contaminated subsurface zone, iv.) investigated the metal reducing attributes of a Gram-positive spore forming rod also capable of dechlorination.

  16. Removal of Pah from clay soil contaminated with diesel oil by bioremediation treatments

    International Nuclear Information System (INIS)

    Diesel oil is one of the most common soil organic pollutants, as a consequence of spilling of storage tank spills and accidental leaks. In Pernambuco State, Northeast part of Brazil, there are several evidences of soil contamination by petroleum derivates due to gas station leaking. (Author)

  17. Removal of Pah from clay soil contaminated with diesel oil by bioremediation treatments

    Energy Technology Data Exchange (ETDEWEB)

    Changas-spinelli, A. C. O.; Kato, M. T.; Lima, E. S.; Gavazza, S.

    2009-07-01

    Diesel oil is one of the most common soil organic pollutants, as a consequence of spilling of storage tank spills and accidental leaks. In Pernambuco State, Northeast part of Brazil, there are several evidences of soil contamination by petroleum derivates due to gas station leaking. (Author)

  18. A radiotracer study of groundwater pollution and bioremediation by a pesticide passing through different soils

    International Nuclear Information System (INIS)

    Radiotracer methodology has been used to study the fate of radiolabelled pesticides (e.g. methoprene, carbofuran or others) in soils. The persistence, movement and degradation of a radiolabelled inset growth regulator in deeper zones of two different soils was studied. 6 refs, 1 fig

  19. In situ bio-remediation of contaminated soil in a uranium deposit

    International Nuclear Information System (INIS)

    The uranium deposit Curilo, located in Western Bulgaria, for a long period of time was a site of intensive mining activities including both the open-pit and underground techniques as well as in situ leaching of uranium. The mining operations were ended in 1990 but until now both the surface and ground waters and soils within and near the deposit are heavily polluted with radionuclides (mainly uranium and radium) and heavy metals (mainly copper, zinc and cadmium). Laboratory experiments carried out with soil samples from the deposit revealed that an efficient removal of the above-mentioned contaminants was achieved by their solubilizing and washing the soil profile by means of acidified water solutions. The solubilization was connected with the activity of the indigenous soil microflora, mainly with the activity of some acidophilic chemo-litho-trophic bacteria. It was possible to enhance considerably this activity by suitable changes in the levels of some essential environmental factors such as pH and water, oxygen and nutrient contents in the soil. Such treatment was successfully applied also under real field conditions in the deposit. The effluents from the soil profile during the operation above-mentioned contained the pollutants as well as other heavy metals such as iron and manganese dissolved from the soil in concentrations usually higher than the relevant permissible levels for waters intended for use in the agriculture and/or industry. For that reason, these effluents were efficiently cleaned up by means of a natural wetland located near the treated soil. However, such treatment as any other method for treatment of polluted waters is connected with additional costs which increase the total costs for the soil cleanup. A possible way to avoid or at least largely to facilitate the cleanup of the soil effluents is to apply a biotechnological method in which the soil contaminants solubilized in the upper soil layers (mainly in the horizon A) are transferred into

  20. In situ bio-remediation of contaminated soil in a uranium deposit

    Energy Technology Data Exchange (ETDEWEB)

    Groudev, St.; Spasova, I.; Nicolova, M.; Georgiev, P. [University of Mining and Geology, Saint Ivan Rilskil, Dept. of Engineering GeoecologySofia (Bulgaria)

    2005-07-01

    The uranium deposit Curilo, located in Western Bulgaria, for a long period of time was a site of intensive mining activities including both the open-pit and underground techniques as well as in situ leaching of uranium. The mining operations were ended in 1990 but until now both the surface and ground waters and soils within and near the deposit are heavily polluted with radionuclides (mainly uranium and radium) and heavy metals (mainly copper, zinc and cadmium). Laboratory experiments carried out with soil samples from the deposit revealed that an efficient removal of the above-mentioned contaminants was achieved by their solubilizing and washing the soil profile by means of acidified water solutions. The solubilization was connected with the activity of the indigenous soil microflora, mainly with the activity of some acidophilic chemo-litho-trophic bacteria. It was possible to enhance considerably this activity by suitable changes in the levels of some essential environmental factors such as pH and water, oxygen and nutrient contents in the soil. Such treatment was successfully applied also under real field conditions in the deposit. The effluents from the soil profile during the operation above-mentioned contained the pollutants as well as other heavy metals such as iron and manganese dissolved from the soil in concentrations usually higher than the relevant permissible levels for waters intended for use in the agriculture and/or industry. For that reason, these effluents were efficiently cleaned up by means of a natural wetland located near the treated soil. However, such treatment as any other method for treatment of polluted waters is connected with additional costs which increase the total costs for the soil cleanup. A possible way to avoid or at least largely to facilitate the cleanup of the soil effluents is to apply a biotechnological method in which the soil contaminants solubilized in the upper soil layers (mainly in the horizon A) are transferred into

  1. Enhanced Bioremediation of Soil Artificially Contaminated with Petroleum Hydrocarbons after Amendment with Capra aegagrus hircus (Goat Manure

    Directory of Open Access Journals (Sweden)

    T. P. Nwogu

    2015-01-01

    Full Text Available This study was carried out to evaluate the biostimulant potentials of Capra aegagrus hircus manure for bioremediation of crude oil contaminated soil (COCS under tropical conditions. 1 kg of COCS sample was amended with 0.02 kg of C. a. hircus manure and monitored at 14-day intervals for total petroleum hydrocarbon (TPH, nutrient content, and changes in microbial counts. At the end of the study period, there was 62.08% decrease in the concentration of TPH in the amended sample compared to 8.15% decrease in the unamended sample, with significant differences (P<0.05 in TPH concentrations for both samples at different time intervals. Similarly, there was a gradual decrease in the concentrations of total organic carbon, nitrogen, phosphorus, and potassium in both samples. The culturable hydrocarbon-utilizing bacteria (CHUB increased steadily from 8.5 × 105 cfu/g to 2.70 × 106 cfu/g and from 8.0 × 105 cfu/g to 1.78 × 106 cfu/g for both samples. Acinetobacter, Achromobacter, Bacillus, Flavobacterium, Klebsiella, Micrococcus, Pseudomonas, and Staphylococcus were isolated from amended sample with Pseudomonas being the predominant isolated bacterial genus. This study demonstrated that C. a. hircus manure is a good biostimulant, which enhanced the activities of indigenous hydrocarbonoclastic bacteria resulting in significant decrease in TPH concentration of COCS.

  2. Enhanced Bioremediation of Soil Artificially Contaminated with Petroleum Hydrocarbons after Amendment with Capra aegagrus hircus (Goat) Manure

    Science.gov (United States)

    Nwogu, T. P.; Azubuike, C. C.; Ogugbue, C. J.

    2015-01-01

    This study was carried out to evaluate the biostimulant potentials of Capra aegagrus hircus manure for bioremediation of crude oil contaminated soil (COCS) under tropical conditions. 1 kg of COCS sample was amended with 0.02 kg of C. a. hircus manure and monitored at 14-day intervals for total petroleum hydrocarbon (TPH), nutrient content, and changes in microbial counts. At the end of the study period, there was 62.08% decrease in the concentration of TPH in the amended sample compared to 8.15% decrease in the unamended sample, with significant differences (P < 0.05) in TPH concentrations for both samples at different time intervals. Similarly, there was a gradual decrease in the concentrations of total organic carbon, nitrogen, phosphorus, and potassium in both samples. The culturable hydrocarbon-utilizing bacteria (CHUB) increased steadily from 8.5 × 105 cfu/g to 2.70 × 106 cfu/g and from 8.0 × 105 cfu/g to 1.78 × 106 cfu/g for both samples. Acinetobacter, Achromobacter, Bacillus, Flavobacterium, Klebsiella, Micrococcus, Pseudomonas, and Staphylococcus were isolated from amended sample with Pseudomonas being the predominant isolated bacterial genus. This study demonstrated that C. a. hircus manure is a good biostimulant, which enhanced the activities of indigenous hydrocarbonoclastic bacteria resulting in significant decrease in TPH concentration of COCS. PMID:26770830

  3. Biostimulatory Effect Of Processed Sewage Sludge In Bioremediation Of Engine Oil Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Kamaluddeen

    2015-08-01

    Full Text Available A study was conducted to evaluate the influence of sewage sludge on biodegradation of engine oil in contaminated soil. Soil samples were collected from a mechanics workshop in Sokoto metropolis. The Soil samples were taken to the laboratory for isolation of engine oil degrading bacteria. About 1 g of soil sample was used to inoculate 9 ml of trypticase soy broth and incubated at 28oC for 24 h. The growth obtained was sub-cultured in mineral salt medium overlaid with crude oil and allowed to stand at 28oC for 72 h. The culture obtained was then maintained on tryticase soy agar plates at 28oC for 48 h. A combination of microscopy and biochemical tests was carried out to identify the colonies. The sewage sludge was obtained from sewage collection point located behind Jibril Aminu Hall of Usmanu Danfodiyo University Sokoto and processed i.e. dried grounded and sterilized. A portion of land obtained in a botanical garden was divided into small portions 30 X 30 cm and the soil was excavated in-situ and sterilized in the laboratory. A polythene bag was subsequently used to demarcate between the sterilized soil and the garden soil. The sterilized soil plots were artificially contaminated with equal amount of used engine oil to represent a typical farmland oil spill. The plots were amended with various amount of processed sewage sludge i.e. 200 g 300 g and 400 g respectively. A pure culture of the bacteria was maintained on trypticase soy broth and was introduced into the sterile amended soil. The plots were watered twice daily for ten days. The degree of biodegradation and heavy metal content were assessed using standard procedures and the results obtained indicate a remarkable reduction in poly aromatic hydrocarbons PAHs total petroleum hydrocarbon TPH and heavy metal content.

  4. Influence of pretreatment on efficiency of bioremediation of hydrocarbon contaminated soils

    International Nuclear Information System (INIS)

    Biodegradation has been selected as a technique to treat a Montreal site which was contaminated by oil pipeline spills. A 2500 m3 volume of soil was excavated and stored in piles. Three large closed cells were then constructed for use in on-site biodegradation of the soil. Before proceeding with the on-site biodegradation, a feasibility study was conducted in the laboratory using 20 kg of soil placed in mini-reactors for 188 d of biodegradation at ambient temperature. Before biodegradation began, the soil in certain of the mini-reactors was pretreated by comminuting gravel pieces larger than 0.5 cm in diameter and by mixing the soil with sawdust and nutrients. At predetermined intervals, the soils were analyzed at various locations in the mini-reactors for such parameters as oil and grease concentrations, organic matter content, Kjeldahl nitrogen, humidity, phosphorus, and metals. Emissions of volatile organic compounds and CO2 were also measured. The mean decrease in oil and grease concentration was found to be 89%. No decrease was noted in those soils that had not been pretreated with sawdust and nutrients. An increase in soil pH was noted up to the 50th day of biodegradation, after which the pH decreased gradually. The feasibility study shows the influence of the addition of sawdust on one of the most important environmental parameters during the course of biodegradation: the pH value. Increase in pH can decrease or stop the activity of soil microorganisms. 11 refs., 6 figs

  5. PAHs污染土壤生物修复强化技术研究进展%Research progress in enhanced bioremediation of polycyclic aromatic hydrocarbons contaminated soil

    Institute of Scientific and Technical Information of China (English)

    王洪; 李海波; 孙铁珩; 胡筱敏

    2011-01-01

    为提高生物修复多环芳烃(PAHs)污染土壤的效率,从PAHs生物修复的原理和强化措施出发,综述了PAHs污染土壤生物修复的物理化学强化技术和生物强化技术,分析了各种技术的原理与适用条件,提出了植物强化微生物修复是PAHs污染土壤生物修复的重要发展方向.在进行强化修复的过程中,要注重现场应用和安全性评价.%This paper is aimed to present a general review on the enhanced measures to the bioremediation of polycyclic aromatic hydrocarbons contaminated soil. Polycyclic aromatic hydrocarbons (PAHs) are well known as a group of persistent organic pollutants (POPs) and more than 90% of PAHs present in the soil, which are toxic to the environment and pose as a hazard in food chain to human health.Bioremediation technology is the primary method to treat the PAHs contaminated soil and the enhanced measures of bioremediation treatment are essential to improve the degradation rate and adapt to the needs of field application. Referring to the reported literature at home and abroad in recent years, this paper comes out with a detail introduction and discussion on the principles and application of physicalchemical and biological based enhancement. The enhanced measures of physical-chemical included the application of surfactants, nutrient addition and co-metabolic substrate addition as well as the electron acceptors addition and utilization of chemical oxidants. The enhanced measures of bioremediation included the addition of highly efficient PAH-degrading bacteria and immobilization of bacteria, utilization of mycorrhizal fungi and application of bio-surfactants. The combined remediation of phytoremediation and microorganism on the PAHs conlaminated soil is an important direction of development and field application technology. At the same time, safety evaluation in the process of enhanced bioremediation is necessary in order to avoid new pollution and other security risks to

  6. Bioremediation of Cd-DDT co-contaminated soil using the Cd-hyperaccumulator Sedum alfredii and DDT-degrading microbes.

    Science.gov (United States)

    Zhu, Zhi-qiang; Yang, Xiao-e; Wang, Kai; Huang, Hua-gang; Zhang, Xincheng; Fang, Hua; Li, Ting-qiang; Alva, A K; He, Zhen-li

    2012-10-15

    The development of an integrated strategy for the remediation of soil co-contaminated by heavy metals and persistent organic pollutants is a major research priority for the decontamination of soil slated for use in agricultural production. The objective of this study was to develop a bioremediation strategy for fields co-contaminated with cadmium (Cd), dichlorodiphenyltrichloroethane (DDT), and its metabolites 1, 1-dichloro-2, 2-bis (4-chlorophenyl) ethylene (DDE) and 1, 1-dichloro-2, 2-bis (4-chlorophenyl) ethane (DDD) (DDT, DDE, and DDD are collectively called DDs) using an identified Cd-hyperaccumulator plant Sedum alfredii (SA) and DDT-degrading microbes (DDT-1). Initially, inoculation with DDT-1 was shown to increase SA root biomass in a pot experiment. When SA was applied together with DDT-1, the levels of Cd and DDs in the co-contaminated soil decreased by 32.1-40.3% and 33.9-37.6%, respectively, in a pot experiment over 18 months compared to 3.25% and 3.76% decreases in soil Cd and DDs, respectively, in unplanted, untreated controls. A subsequent field study (18-month duration) in which the levels of Cd and DDs decreased by 31.1% and 53.6%, respectively, confirmed the beneficial results of this approach. This study demonstrates that the integrated bioremediation strategy is effective for the remediation of Cd-DDs co-contaminated soils. PMID:22868749

  7. Plasmids and aromatic degradation in Sphingomonas for bioremediation : Aromatic ring cleavage genes in soil and rhizosphere

    OpenAIRE

    SipilÀ, Timo

    2009-01-01

    Microbial degradation pathways play a key role in the detoxification and the mineralization of polyaromatic hydrocarbons (PAHs), which are widespread pollutants in soil and constituents of petroleum hydrocarbons. In microbiology the aromatic degradation pathways are traditionally studied from single bacterial strains with capacity to degrade certain pollutant. In soil the degradation of aromatics is performed by a diverse community of micro-organisms. The aim of this thesis was to study biode...

  8. Potential of grasses and rhizosphere bacteria for bioremediation of diesel-contaminated soils

    Directory of Open Access Journals (Sweden)

    Melissa Paola Mezzari

    2011-12-01

    Full Text Available The techniques available for the remediation of environmental accidents involving petroleum hydrocarbons are generally high-cost solutions. A cheaper, practical and ecologically relevant alternative is the association of plants with microorganisms that contribute to the degradation and removal of hydrocarbons from the soil. The growth of three tropical grass species (Brachiaria brizantha, Brachiaria decumbens and Paspalum notatum and the survival of root-associated bacterial communities was evaluated at different diesel oil concentrations. Seeds of three grass species were germinated in greenhouse and at different doses of diesel (0, 2.5, 5 and 10 g kg-1 soil. Plants were grown for 10 weeks with periodic assessment of germination, growth (fresh and dry weight, height, and number of bacteria in the soil (pots with or without plants. Growth and biomass of B. decumbens and P. notatum declined significantly when planted in diesel-oil contaminated soils. The presence of diesel fuel did not affect the growth of B. brizantha, which was highly tolerant to this pollutant. Bacterial growth was significant (p < 0.05 and the increase was directly proportional to the diesel dose. Bacteria growth in diesel-contaminated soils was stimulated up to 5-fold by the presence of grasses, demonstrating the positive interactions between rhizosphere and hydrocarbon-degrading bacteria in the remediation of diesel-contaminated soils.

  9. Genotoxicity changes in test plot soil: Impact on risk assessment at a contaminated site planning bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Collie, S.L.; Donnelly, K.C. [Texas A and M Univ., College Station, TX (United States)

    1995-12-31

    Soil samples from test plots designed to investigate the suitability of biodegradation to reduce levels of polycyclic aromatic hydrocarbons (PAHs) and pentachlorophenol (PCP) were collected and solvent-extracted throughout a four-month study. Samples were followed for contaminant concentration and genotoxicity. Test plots were constructed to represent four concentrations of contaminated soil. Although the highest PCP concentration plot was negative in the Salmonella/microsome plate incorporation both with and without metabolic activation at the beginning of the treatment period, these soils became cytotoxic by the end of the study when tested without metabolic activation, and chemical analysis indicated no degradation of PCP. The methanol extract from the lowest PCP concentration plot was positive in the plate incorporation assay at the beginning of the study with an average weighted activity of 29 revertants/gram soil without and 32 revertants/g with metabolic activation at the highest dose level. The mutagenic potential of the methanol extract of this soil increased to an average weighted activity of 306 revertants/g without and 291 revertants/g with metabolic activation, despite a reduction from 46 to below 10 {micro}g PCP/g soil. A human health risk assessment employing the current US/EPA method of incorporating chemical concentration data in calculating cancer risk was then compared with the level of risk that can be inferred from the corresponding bioassay data. These findings emphasize the need for careful remediation design as this step will prove critical in achieving both maximum biodegradation and protection of human health.

  10. Biological quality of soils containing hydrocarbons and efficacy of ecological risk reduction by bioremediation alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, A.J.; Napolitano, G.E.; Sample, B.E.

    1996-06-01

    This project provides technical support to the Petroleum Environmental Research Forum (PERF; a consortium of petroleum companies) on environmentally acceptable endpoints that may be used to help assess the ecological risk of petroleum hydrocarbon residuals in soils. The project, was designed in consultation with PERF representatives and focuses on the relationship between {open_quotes}chemically available{close_quotes} and {open_quotes}biologically available{close_quotes} measurements of petroleum hydrocarbon compounds in soils, a discrepancy of considerable interest to the petroleum industry. Presently, clean-up standards for soils contaminated with total petroleum hydrocarbon (TPH) constituents are based on concentrations of TPH, as measured in solvent extracts of soil samples. Interestingly, TPH includes a complex mixture of compounds which differ from one another in molecular weight and toxicity. Based on various studies with insecticides, herbicides and metals, some compounds apparently can slowly permeate into soil particles. If this situation occurs, the particle-embedded compounds may be extractable by use of organic solvents, and yet be unavailable biologically. This hypothesis serves as the central focus for our study. If this hypothesis is correct, then soil clean-up standards based on solvent-extractable TPH data may be more stringent than necessary to achieve a desired level of environmental risk. The economic significance of this possibility is considerable, because clean-up costs to achieve a low-risk status would, in most cases, be lower than those needed to achieve a standard based on present limits, which are based on measurements of {open_quotes}extractable{close_quotes} TPH.

  11. Effect of Bioremediation on Growth of Wheat Plant Cultivated In Contaminated Soil with Heavy Metals

    International Nuclear Information System (INIS)

    Pot experiment was carried out under greenhouse conditions to evaluate the impact of BYFA (bacterial, fungal, yeast, and actinomycetes isolates), and bio fertilizers (mycorrhizas and N2 fixers) in remedy the heavy metals -polluted soil and its effect on wheat growth. Basal recommended doses of P and N were applied; the treatments were arranged in completely randomized block design. The results showed a positive effect on growth and N uptake by wheat cultivated in polluted soil with (Zn, Cu, Pb, Co, Ni and Cd). The data cleared that, the lowest content of Pb in the soil was occurred with composite inoculants plus BFYA (274.57μ g/gm) as compared to the other treatments. Reduction in zinc content in soil was recorded with control + BFYA (272.0 μg/g) compared to other one. Similarly, inoculation with (Azo) + (BFYA) induced a reduction in Cu content in soil, Data of 15N revealed that both the mechanisms of BNF have been occurred. In this respect, it is worthy to mention that, symbiotic bacteria has a considerable role with such cereal crop via BNF or enhancement of plant growth, The inoculation with Rh + AM resulted in the highest percentage of N uptake from fertilizer (29%), followed by AM, then Azo (23.9%, 22.7%, respectively) without BFYA. Another picture was noticed with BFYA whereas the best percentage was recorded with Azospirillum (19.3 %). This treatment is the only one that increased the portion of N derived from fertilizer over those recorded with the control (11.13%). BFYA have the ability to reduce the content of heavy metal in both the contaminated soil and wheat plant. Similar function was detected with bio fertilizers, besides to their effects on enhancement of plant growth via plant growth promotion substances and BNF mechanisms

  12. Application of backpropagation artificial neural network prediction model for the PAH bioremediation of polluted soil.

    Science.gov (United States)

    Olawoyin, Richard

    2016-10-01

    The backpropagation (BP) artificial neural network (ANN) is a renowned and extensively functional mathematical tool used for time-series predictions and approximations; which also define results for non-linear functions. ANNs are vital tools in the predictions of toxicant levels, such as polycyclic aromatic hydrocarbons (PAH) potentially derived from anthropogenic activities in the microenvironment. In the present work, BP ANN was used as a prediction tool to study the potential toxicity of PAH carcinogens (PAHcarc) in soils. Soil samples (16 × 4 = 64) were collected from locations in South-southern Nigeria. The concentration of PAHcarc in laboratory cultivated white melilot, Melilotus alba roots grown on treated soils was predicted using ANN model training. Results indicated the Levenberg-Marquardt back-propagation training algorithm converged in 2.5E+04 epochs at an average RMSE value of 1.06E-06. The averagedR(2) comparison between the measured and predicted outputs was 0.9994. It may be deduced from this study that, analytical processes involving environmental risk assessment as used in this study can successfully provide prompt prediction and source identification of major soil toxicants. PMID:27424056

  13. Bioremediation of oil contaminated soil from service stations. Evaluation of biological treatment

    International Nuclear Information System (INIS)

    Biological treatment of contaminated soil has received much attention during the last decade. Microbes are known to be able to degrade many oil hydrocarbons. However, research is needed to ensure that new technologies are implemented in a safe and reliable way under Finnish climatic conditions. The main points of interest are the rate of the degradation as well as the survival and efficiency of microbial inoculants possibly introduced during the treatment. During 1993 the biotreatability of oil-contaminated soil from service stations was investigated in cooperation with the Finnish Petroleum Federation. The goal of this field-scale study was to test how fast lubrication oil can be composted during one Finnish summer season and to find out whether microbial inoculants would enhance the degradation rate. The soil was excavated from three different service stations in the Helsinki metropolitan area and was transported to a controlled composting area. The soil was sieved and compost piles, also called biopiles, were constructed on the site. Bark chips were used as the bulking agent and nutrients and lime were added to enhance the biological activity. Two different commercial bacterial inoculants were added to two of the piles. The piles were turned by a tractor-drawn screw-type mixer at two to four weeks interval. Between the mixings, the piles were covered with tarpaulins to prevent evaporation and potential excessive wetting. Several microbiological parameters were determined during the test period as well as the temperature and mineral oil content

  14. Bioremediation of Cd-DDT co-contaminated soil using the Cd-hyperaccumulator Sedum alfredii and DDT-degrading microbes

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhi-qiang [MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Zijingang Campus, Hangzhou 310058 (China); College of Agriculture, Hainan University, Renmin Road 58, Haikou 570228 (China); Yang, Xiao-e, E-mail: xyang@zju.edu.cn [MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Zijingang Campus, Hangzhou 310058 (China); Wang, Kai; Huang, Hua-gang; Zhang, Xincheng [MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Zijingang Campus, Hangzhou 310058 (China); Fang, Hua [Department of Plant Protection, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058 (China); Li, Ting-qiang [MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Zijingang Campus, Hangzhou 310058 (China); Alva, A.K. [U.S. Department of Agriculture-Agricultural Research Service, Prosser, WA (United States); He, Zhen-li [University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Fort Pierce, FL 34945 (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Planting of S. alfredii is an effective technique for phytoextraction of Cd and DDs. Black-Right-Pointing-Pointer Soil inoculation with Pseudomonas sp. DDT-1 increases root biomass of S. alfredii. Black-Right-Pointing-Pointer Soil inoculation with Pseudomonas sp. DDT-1 improves the removal efficiency of DDs. Black-Right-Pointing-Pointer The plant-microbe strategy is promising for remediation of Cd-DDT co-contaminated soil. - Abstract: The development of an integrated strategy for the remediation of soil co-contaminated by heavy metals and persistent organic pollutants is a major research priority for the decontamination of soil slated for use in agricultural production. The objective of this study was to develop a bioremediation strategy for fields co-contaminated with cadmium (Cd), dichlorodiphenyltrichloroethane (DDT), and its metabolites 1, 1-dichloro-2, 2-bis (4-chlorophenyl) ethylene (DDE) and 1, 1-dichloro-2, 2-bis (4-chlorophenyl) ethane (DDD) (DDT, DDE, and DDD are collectively called DDs) using an identified Cd-hyperaccumulator plant Sedum alfredii (SA) and DDT-degrading microbes (DDT-1). Initially, inoculation with DDT-1 was shown to increase SA root biomass in a pot experiment. When SA was applied together with DDT-1, the levels of Cd and DDs in the co-contaminated soil decreased by 32.1-40.3% and 33.9-37.6%, respectively, in a pot experiment over 18 months compared to 3.25% and 3.76% decreases in soil Cd and DDs, respectively, in unplanted, untreated controls. A subsequent field study (18-month duration) in which the levels of Cd and DDs decreased by 31.1% and 53.6%, respectively, confirmed the beneficial results of this approach. This study demonstrates that the integrated bioremediation strategy is effective for the remediation of Cd-DDs co-contaminated soils.

  15. Bioremediation of Cd-DDT co-contaminated soil using the Cd-hyperaccumulator Sedum alfredii and DDT-degrading microbes

    International Nuclear Information System (INIS)

    Highlights: ► Planting of S. alfredii is an effective technique for phytoextraction of Cd and DDs. ► Soil inoculation with Pseudomonas sp. DDT-1 increases root biomass of S. alfredii. ► Soil inoculation with Pseudomonas sp. DDT-1 improves the removal efficiency of DDs. ► The plant-microbe strategy is promising for remediation of Cd-DDT co-contaminated soil. - Abstract: The development of an integrated strategy for the remediation of soil co-contaminated by heavy metals and persistent organic pollutants is a major research priority for the decontamination of soil slated for use in agricultural production. The objective of this study was to develop a bioremediation strategy for fields co-contaminated with cadmium (Cd), dichlorodiphenyltrichloroethane (DDT), and its metabolites 1, 1-dichloro-2, 2-bis (4-chlorophenyl) ethylene (DDE) and 1, 1-dichloro-2, 2-bis (4-chlorophenyl) ethane (DDD) (DDT, DDE, and DDD are collectively called DDs) using an identified Cd-hyperaccumulator plant Sedum alfredii (SA) and DDT-degrading microbes (DDT-1). Initially, inoculation with DDT-1 was shown to increase SA root biomass in a pot experiment. When SA was applied together with DDT-1, the levels of Cd and DDs in the co-contaminated soil decreased by 32.1–40.3% and 33.9–37.6%, respectively, in a pot experiment over 18 months compared to 3.25% and 3.76% decreases in soil Cd and DDs, respectively, in unplanted, untreated controls. A subsequent field study (18-month duration) in which the levels of Cd and DDs decreased by 31.1% and 53.6%, respectively, confirmed the beneficial results of this approach. This study demonstrates that the integrated bioremediation strategy is effective for the remediation of Cd-DDs co-contaminated soils.

  16. Cometabolic bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2009-02-15

    Cometabolic bioremediation is probably the most under appreciated bioremediation strategy currently available. Cometabolism strategies stimulate only indigenous microbes with the ability to degrade the contaminant and cosubstrate e.g. methane, propane, toluene and others. This highly targeted stimulation insures that only those microbes that can degrade the contaminant are targeted, thus reducing amendment costs, well and formation plugging, etc. Cometabolic bioremediation has been used on some of the most recalcitrant contaminants, e.g. PCE, TCE, MTBE, TNT, dioxane, atrazine, etc. Methanotrophs have been demonstrated to produce methane monooxygense, an oxidase that can degrade over 300 compounds. Cometabolic bioremediation also has the advantage of being able to degrade contaminants to trace concentrations, since the biodegrader is not dependent on the contaminant for carbon or energy. Increasingly we are finding that in order to protect human health and the environment that we must remediate to lower and lower concentrations, especially for compounds like endocrine disrupters, thus cometabolism may be the best and maybe the only possibility that we have to bioremediate some contaminants.

  17. Bioremediation of Soil Contaminated with Some Heavy Metals using Nuclear Techniques

    International Nuclear Information System (INIS)

    The present study dealt with different isolates of bacteria, fungi,yeasts and actinomycetes (BFYA) group that can detoxify the harmful effect of heavy metals in polluted soils. laboratory experiments were carried out with fungal cells isolated from al-gabal al-asfar farm to obtain the main tolerant group against heavy metals toxicity. identified as fusarium oxysporum and aspergillus parasiticus and are able to grow at high concentrations of cadmium 8000 ppm and nickel 10000 ppm, respectively. also, reduction of metals by different inoculums was occurred in soil solution . a great reduction was noticed by inoculation with fusarium oxysporum + aspergillus parasiticus + group of different isolates from nile down stream of delta barrage and pure water el-rhaway drain water especially in case of cobalt (80.8%). Pot experiments were carried out with faba bean and wheat plants cultivated in sandy loam soil collected from al-gabal al-asfar farm and irrigated with effluent for several years. the plant was inoculated with BFYA group (remediator tool), as well as different bio fertilizers including symbiotic, asymbiotic bacteria and arbuscular mycorrhizal fungi as enhancer or promoters for plant growth

  18. Bio-remediation examination in a field with dioxin contaminated soil using a lysimeter

    Energy Technology Data Exchange (ETDEWEB)

    Souta, I. [Shizuoka Institute of Science and Technology, Fukuroi (Japan); Furuichi, T.; Ishii, K. [Hokkaido Univ. (Japan). Graduate School of Engineering; Youji, O. [Shounan Pure Ham Corporation, Okazaki, Hiratsuka, Kangawa (Japan)

    2004-09-15

    Treatment of incinerated ash of municipal waste, especially fly ash, containing dioxin and incinerated ash disposed at landfill sites in the past has become a problem in Japan. For example, in Nose city, Osaka, Japan, the contaminated soil with high concentration dioxins has been stored in a building, and has not been treated yet. Our report has been indicated that runoff of dioxin from contaminated sites where incinerated ash was previously disposed of could cause environmental pollution. Not only is there a concern that this dioxin can contaminate rivers but also that the effects can reach the downstream region. Therefore, decontamination process of the dioxincontaminated soil including incinerated ash becomes an important problem in environmental preservation. In the past Dioxin conference, we reported the microbial degradation of dioxin in laboratory experiments. In this study, we reported the result of lysimeter test using actual dioxin-contaminated soils and mixtures of microorganisms in landfill sites, in order to determine the degree of dioxin digestion by microorganisms in the field.

  19. Bioremediation of petroleum contaminated soil using vegetation--A technology transfer project

    International Nuclear Information System (INIS)

    A common environmental problem associated with the pumping and refining of crude oil is the disposal of petroleum sludge. Unfortunately, the biodegradation fate of more recalcitrant and potentially toxic contaminants, such as the polynuclear aromatic hydrocarbons (PNAs), is rapid at first but declines quickly. Biodegradation of these compounds is limited by their strong adsorption potential and low solubility. Recent research has suggested that vegetation may play an important role in the biodegradation of toxic organic chemicals, such as PNAs, in soil. The establishment of vegetation on hazardous waste sites may be an economic, effective, low maintenance approach to waste remediation and stabilization. Completed greenhouse studies have indicated that vegetative remediation is a feasible method for clean-up of surface soil contaminated with petroleum products. However, a field demonstration is needed to exhibit this new technology to the industrial community. In this project, several petroleum contaminated field sites will be chosen in collaboration with three industrial partners. These sites will be thoroughly characterized for chemical properties, physical properties, and initial PNA concentrations. A variety of plant species will be established on the sites, including warm and cool season grasses and alfalfa. Soil analyses for the target compounds over time will allow them to assess the efficiency and applicability of this remediation method

  20. Bioremediation and thermal treatment for soil recycling, a new business approach

    International Nuclear Information System (INIS)

    Petroleum-contaminated soils (PCS) from the clean-up of underground storage tanks (UST) or refinery operations are usually treated on-site or hauled to a solid waste landfill for disposal. On-site remediation of PCS is fairly common and cost-effective for many large and medium sized projects, and has been a major remedial business in the last several years. For small jobs, though, it is generally easier to truck the soil off-site for disposal. This is because on-site remediation usually requires (1) permitting for the site, (2) mobilization and de-mobilization of the equipment and setup, (3) space for on-site storage and operation, and (4) adequate treatment time to do an on-site clean up project. The combination of these requirements may make on-site remediation cost prohibitive. More and more states are requiring treatment of PCS prior to landfilling because of the potential for the organic contaminants to leach out and contaminate the surrounding groundwater. Thus, it is expected that there will be a great demand for treatment and recycling of PCS versus land disposal for soils requiring off-site disposal

  1. Arctic bioremediation

    International Nuclear Information System (INIS)

    Cleanup of oil and diesel spills on gravel pads in the Arctic has typically been accomplished by utilizing a water flushing technique to remove the gross contamination or excavating the spill area and placing the material into a lined pit, or a combination of both. Enhancing the biological degradation of hydrocarbon (bioremediation) by adding nutrients to the spill area has been demonstrated to be an effective cleanup tool in more temperate locations. However, this technique has never been considered for restoration in the Arctic because the process of microbial degradation of hydrocarbon in this area is very slow. The short growing season and apparent lack of nutrients in the gravel pads were thought to be detrimental to using bioremediation to cleanup Arctic oil spills. This paper discusses the potential to utilize bioremediation as an effective method to clean up hydrocarbon spills in the northern latitudes

  2. Bioremediation Treatability Studies for Soils Containing Herbicides, Chemicals, and Petroleum Products

    OpenAIRE

    Nies, Loring F.; Mesarch, Matthew B.

    1996-01-01

    Leaking underground storage tanks are widespread throughout the United States. It is estimated that there are 1.4 million underground gasoline storage tanks in the United States, with as many as 75,000 to 100,000 that may be leaking. In Indiana alone, more than 3,500 of the 15,000 registered underground storage tank facilities have reported leaks. Conventional remediation methods often involve pump-and-treat schemes for contaminated water, and excavation and burial of contaminated soil in haz...

  3. Use of organo mineral complex (OMC) for bioremediation of pentachlorophenol (PCP) in forest soil

    International Nuclear Information System (INIS)

    Adsorption/desorption characteristics for the organic pollutant pentachlorophenol (PCP) were determined for the organo mineral complex (OMC) prepared in the laboratory with clay mineral (zeolite) and organic matter (humic acids), both natural products with excellent sorption properties.Experiments were carried out in two characterized soil samples, Calcarosol and Fluvisol. The results of this study indicate that OMC has better retention abilities than the clay minerals alone. Higher amounts of humic acids (HAs), bound to zeolite, enhance its potential to adsorb and retain PCP.

  4. Application of genomic tools in bioremediation of atrazine contaminated soil and groundwater

    OpenAIRE

    Nousiainen, Aura

    2015-01-01

    The use of pesticides has allowed the efficient use of agricultural soil and provided humans with greater yields and agri-food security. Unfortunately, many pesticides have also adverse effects to the environment or human health, and may end up where they were not intended: the precious groundwater reserves. The use of atrazine, a herbicide used for controlling broad-leaf weeds, was banned in the EU for this reason in 2004, but is still globally one of the most widely used herbicides today. A...

  5. Arctic bioremediation

    International Nuclear Information System (INIS)

    Cleanup of oil and diesel spills on gravel pads in the Arctic has typically been accomplished by utilizing a water flushing technique to remove the gross contamination or excavating the spill area and placing the material into a lined pit, or a combination of both. This paper discusses the potential to utilize bioremediation as an effective method to clean up hydrocarbon spills in the northern latitudes. Discussed are the results of a laboratory bioremediation study which simulated microbial degradation of hydrocarbon under arctic conditions

  6. Bioremediation of Diesel Fuel Contaminated Soil: Effect of Non Ionic Surfactants and Selected Bacteria Addition

    International Nuclear Information System (INIS)

    Aim of this work was to evaluate influence of two commercial surfactants and inoculum of selected bacteria on biodegradation of diesel fuel in different systems. Among alkyl polyethossilates (Brij family) and sorbitan derivates (Tween family) a first selection of surfactants was performed by estimation of Koc and Dafnia magna EC50 with molecular descriptor and QSAR model. Further experiments were conducted to evaluate soil sorption, biodegradability and toxicity. In the second part of the research, the effect of Brij 56, Tween 80 and selected bacteria addition on biodegradation of diesel fuel was studied in liquid cultures and in slurry and solid phase systems. The latter experiments were performed with diesel contaminated soil in bench scale slurry phase bioreactor and solid phase columns. Tween 80 addition increased the biodegradation rate of hydrocarbons both in liquid and in slurry phase systems. Regarding the effect of inoculum, no enhancement of biodegradation rate was observed neither in surfactant added nor in experiments without addition. On the contrary, in solid phase experiments, inoculum addition resulted in enhanced biodegradation compared to surfactant addition

  7. A bench-scale treatability study for in situ bioremediation of pentachlorophenol and oil in soil

    International Nuclear Information System (INIS)

    The objective of this study was to determine the extent to which indigenous microorganisms could be induced to degrade a mixture of pentachlorophenol (PCP) and diesel oil in the subsurface at a wood treatment site. A second, and related objective, was to determine the overall rate of degradation for (1) PCP, and (2) the petroleum hydrocarbons, and which factors could be controlled to enhance these processes. Contaminated soil samples were incubated under both aerobic and anaerobic conditions for periods varying from 0 to 180 days. The effect of nutrient (N, P, S, K, Mg) supplementation on the rate and extent of degradation in both aerobic and anaerobic microcosms were studied. At eleven selected time intervals the chemical concentrations remaining in a set of microcosms (duplicate samples plus a sterile control) were determined by extracting and analyzing the soils. Enumeration of bacteria, actinomycetes and fungi by plate counting were performed to obtain specific growth rate data. Aerobic microbial activity, as measured by CO2 evolution, was also determined. Kinetic models and constants were determined to predict cleanup times under the given experimental conditions. Power (zero and first order) and hyperbolic (Michaelis-Menten and Monod) kinetic models were evaluated

  8. Production of CO2 in crude oil bioremediation in clay soil

    Directory of Open Access Journals (Sweden)

    Sandro José Baptista

    2005-06-01

    Full Text Available The aim of the present work was to evaluate the biodegradation of petroleum hydrocarbons in clay soil a 45-days experiment. The experiment was conducted using an aerobic fixed bed reactor, containing 300g of contaminated soil at room temperature with an air rate of 6 L/h. The growth medium was supplemented with 2.5% (w/w (NH42SO4 and 0.035% (w/w KH2PO4. Biodegradation of the crude oil in the contaminated clay soil was monitored by measuring CO2 production and removal of organic matter (OM, oil and grease (OandG, and total petroleum hydrocarbons (TPH, measured before and after the 45-days experiment, together with total heterotrophic and hydrocarbon-degrading bacterial count. The best removals of OM (50%, OandG (37% and TPH (45% were obtained in the bioreactors in which the highest CO2 production was achieved.O objetivo do trabalho foi avaliar a biodegradação de petróleo em solo argiloso durante 45 dias de ensaios. Os ensaios de biodegradação foram conduzidos em biorreatores aeróbios de leito fixo, com 300 g de solo contaminado, à temperatura ambiente e com uma vazão de ar de 6 L/h. As deficiências nutricionais foram corrigidas com 2,5% (p/p (NH42SO4 e com 0,035% (p/p KH2PO4. O monitoramento foi realizado em função da produção de CO2, da remoção de matéria orgânica (OM, de óleos e graxas (OandG e de hidrocarbonetos totais de petróleo (TPH, além bactérias heterotróficas totais (BHT e hidrocarbonoclásticas (BHc, no início e após 45 dias. Nos biorreatores onde houve maior crescimento de bactérias hidrocarbonoclásticas e maior produção de CO2, obteve-se os melhores percentuais de remoções de MO (50%, OandG (37% e TPH (45%.

  9. Bioremediation treatment for cleaning up toxic chemical contaminated soil in field trials

    Energy Technology Data Exchange (ETDEWEB)

    Dang Thi Cam Ha; Nguyen Ba Huu; Pham Thi Quynh Vam; Nguyen Thi De; Nguyen Quoc Viet; Nguyen Duong Nha; La Thamh Phuong; Tran Nhu Hoa; Mai Anh Tuan; Pham Huu Ly; Nguyen Van Minh; Le van Hong; Do quang Huy; Dang Vu Minh; Nguyen Duc Hue

    2002-07-01

    At present, in South and Midle of Vietnam there are some US old military bases were contaminated by toxic chemicals (Orange/Dioxins). These soils were heavily contaminated by exposure of toxic chemicals for a long time (30-40 years). Recently several groups of researches working on detoxination by one or other ways and they obtained promissing results. However, up to now there are no single and promisin solutions that help government to select effective projects to cleapu these contaminated areas. In order to find down complex of cleaning methods for remediation of these heavy dioxin contaminated sites based on the results of distribution of native microbial populations in toxic chemical contaminated sites and laboratory detoxination experiments that were performed we carried out field trial in different scales directly in the site of Central Vietnam. Polychlorinated dibenzo-p-dioxin (PCDDs) and polychlorinated dibenzofurans (PCDFs) are recognized as toxic pollutants and persists in an environment. These compounds are unintentionally formed in the process of producing chlorine-containing herbicides, and in other industrial processes such as bleaching of paper pulp, combustion of domestic and industrial waste etc. These kinds of contaminants have been found in many environmental matrices such as air, soil and plant. In recent years, there are more and more reports on capacity of microorganisms that are capable of degrading PCDDs, PCDFs and PCBs. Particularly, research of German scientists showed that there are many genes that encoded for enzymes involved in PCDDs, PCDFs and PCBs degrading pathways were found in bacteria and in several fungal genera etc. Enzymes were involved in oxidation, dechlorination, catalysis or direct ring cleavage, PCDDs, PCDFs and PCBs degrading pathways in microorganisms are providing knowledge and experiments for us study of cleaningup these contamiants in Vietnam. Several representative microbial generas are capable degrade dioxin such as

  10. Bioremediation of bunker C

    International Nuclear Information System (INIS)

    Bioremediation works extremely well for most common hydrocarbons including aviation fuel, heating oil and diesel oil. Bunker C, a high boiling point distillate, is the most recalcitrant hydrocarbon for treatment and is the topic of this paper. Bioremediation, Inc. has had an opportunity to perform two projects involving soil contaminated with bunker C. One was at a bulk terminal site which involved predominantly diesel, but also had bunker C contamination; the other was a paper-mill site which had exclusively bunker C contamination. This paper will address the authors' experiences at the paper-mill site. Bunker C lives up to its reputation of being a very recalcitrant hydrocarbon to biodegrade. They have demonstrated, however, that the soil matrix standards at industrial sites in Washington and Oregon can be achieved using new bioremediation techniques. These techniques are necessary over those typically used to biodegrade jet fuel, heating oil and diesel oil. These extra steps, as discussed later, have been developed for their own use in their treatability laboratory

  11. A Review on Bioremediation Technologies of Organic Pollutants Contaminated Soils%土壤有机污染物生物修复技术研究进展

    Institute of Scientific and Technical Information of China (English)

    周际海; 袁颖红; 朱志保; 姚春阳; 张谷雨; 高琪

    2015-01-01

    biphenyls (PCBs) and Antibiotics (ATBs), worsen soil organic matter pollution, thus making remediation of organic pollutants contaminated soils a pressing issue. The remediation of contaminated soils is a qualitative process in which pollutant concentration is reduced to an acceptable level, or poisonous and harmful pollutants transformed into innoxious substances through absorption, degradation, transfer and transformation in soils using physical, chemical or biological methods. It includes physical remediation technology, chemical remediation technology and bioremediation technology. Among all kinds of soil remediation techniques, bioremediation is receiving more and more attention because of its safety and low cost. Besides, it won’t cause secondary pollution. The bioremediation of organic pollutants contaminated soils consists of phytoremediation technologies, soil fauna remediation technologies and microbial remediation technologies. The microbial bioremediation as an important component of the bioremediation of contaminated soils, boasts the most value in development and application in biological environmental protection. This paper systematically introduces the bioremediation technologies of organic pollutants contaminated soils at home and abroad in terms of their principles, the research progresses, the advantages and limitations. In the meantime, we cast a brief look into the prospects of the research of soil fauna remediation in future. Hopefully, it will provide references for research on bioremediation of organic pollutants contaminated soils.

  12. Comparative plant uptake and microbial degradation of trichloroethylene in the rhizospheres of five plant species-- implications for bioremediation of contaminated surface soils

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, T.A. (Tennessee Univ., Knoxville, TN (United States)); Walton, B.T. (Oak Ridge National Lab., TN (United States))

    1992-01-01

    The objective of this study was to collect data that would provide a foundation for the concept of using vegetation to enhance in situ bioremediation of contaminated surface soils. Soil and vegetation (Lespedeza cuneata, Paspalum notatum, Pinus taeda, and Solidago sp.) samples from the Miscellaneous Chemicals Basin (MCB) at the Savannah River Site were used in tests to identify critical plant and microbiological variables affecting the fate of trichloroethylene (TCE) in the root zone. Microbiological assays including phospholipid acid analyses, and {sup 14}C-acetate incorporation were conducted to elucidate differences in rhizosphere and nonvegetated soil microbial communities from the MCB. The microbial activity, biomass, and degradation of TCE in rhizosphere soils were significantly greater than corresponding nonvegetated soils. Vegetation had a positive effect on microbial degradation of {sup 14}C-TCE in whole-plant experiments. Soils from the MCB containing Lespedeza cuneata, Pinus taeda, and Glycine max mineralized greater than 25% of the {sup 14}C- TCE added compared with less than 20% in nonvegetated soils. Collectively, these results provide evidence for the positive role of vegetation in enhancing biodegradation.

  13. BIOREMEDIATION TECHNIQUES ON CRUDE OIL CONTAMINATED SOILS IN OHIO. Final report includes the quarterly report that ended 12/31/1996

    Energy Technology Data Exchange (ETDEWEB)

    David A. Hodges; Richard J. Simmers

    1997-05-30

    The purpose of this study is to define the optimum limits of chemical and physical conditions that reduce soil salinity and maximize indigenous aerobic microbiological populations in the bioremediation of oil field waste solids. Specifically, the study centers around treatment of surface contained oily waste having low density and limited solubility in water. Successful remediation is defined by total petroleum hydrocarbon (TPH) reduction to 1% and no hydrocarbon or salinity impact on ground water resources. The Department of Energy, the US Environmental Protection Agency and the Interstate Oil and Gas Compact Commission have encouraged oil and gas producing states to identify and develop improved methods such as this to reduce, recycle or treat solid waste generated with the exploration and development of domestic petroleum resources (IOGCC, 1995). With encouragement and funding assistance through the Department of Energy, Ohio is developing these bioremediation practices to protect soil and water resources. Ohio produced 8,300,000 barrels of crude oil in 1996 from wells operated by 4310 registered owners (ODNR, 1996). Good well site housekeeping can minimize spills, however accidental spills inevitably occur with oil production of this magnitude. Development of sound environmental and economical clean-up procedures is essential.

  14. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation.

    Science.gov (United States)

    Agnello, A C; Bagard, M; van Hullebusch, E D; Esposito, G; Huguenot, D

    2016-09-01

    Biological remediation technologies are an environmentally friendly approach for the treatment of polluted soils. This study evaluated through a pot experiment four bioremediation strategies: a) natural attenuation, b) phytoremediation with alfalfa (Medicago sativa L.), c) bioaugmentation with Pseudomonas aeruginosa and d) bioaugmentation-assisted phytoremediation, for the treatment of a co-contaminated soil presenting moderate levels of heavy metals (Cu, Pb and Zn at 87, 100 and 110mgkg(-1) DW, respectively) and petroleum hydrocarbons (3800mgkg(-1) DW). As demonstrated by plant biomass and selected physiological parameters alfalfa plants were able to tolerate and grow in the co-contaminated soil, especially when soil was inoculated with P. aeruginosa, which promoted plant growth (56% and 105% increase for shoots and roots, respectively) and appeared to alleviate plant stress. The content of heavy metals in alfalfa plants was limited and followed the order: Zn>Cu>Pb. Heavy metals were mainly concentrated in plant roots and were poorly translocated, favouring their stabilization in the root zone. Bioaugmentation of planted soil with P. aeruginosa generally led to a decrease of plant metal concentration and translocation. The highest degree of total petroleum hydrocarbon removal was obtained for bioaugmentation-assisted phytoremediation treatment (68%), followed by bioaugmentation (59%), phytoremediation (47%) and natural attenuation (37%). The results of this study demonstrated that the combined use of plant and bacteria was the most advantageous option for the treatment of the present co-contaminated soil, as compared to natural attenuation, bioaugmentation or phytoremediation applied alone. PMID:26524994

  15. Postremediation bioremediation

    International Nuclear Information System (INIS)

    In applying remediation technology, an important question is when to stop operations. Conventional wisdom states that each site has a limit of treatability. Beyond a point, the site conditions limit access to residual contaminants and, therefore, treatment effectiveness. In the treatment of petroleum hydrocarbons, the issue in ceasing remedial operations is not what is the limit of treatment, but what should be the limit of effort. Because hydrocarbons are inherently biodegradable, there is a point in remediation where natural or intrinsic bioremediation is adequate to complete the remedial process. This point is reached when the rate of residual carbon release is the limiting factor, not the rate of oxygen or nutrient supply. At such a point, the rate and degree of remediation is the same whether an active system is being applied or whether nothing is being actively done. This paper presents data from several bioremediation projects where active remediation was terminated above the desired closure levels. These site data illustrate that intrinsic bioremediation is as effective in site closure as continued active remediation

  16. Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leachability in soil

    Energy Technology Data Exchange (ETDEWEB)

    Cassidy, Daniel P., E-mail: daniel.cassidy@wmich.edu [Department of Geosciences, Western Michigan University, Kalamazoo, MI 49008 (United States); Srivastava, Vipul J., E-mail: vipul.srivastava@ch2m.com [CH2M HILL, 125S Wacker, Ste 3000, Chicago, IL 60606 (United States); Dombrowski, Frank J., E-mail: frank.dombrowski@we-energies.com [We Energies, 333W Everett St., A231, Milwaukee, WI 53203 (United States); Lingle, James W., E-mail: jlingle@epri.com [Electric Power Research Institute (EPRI), 4927W Willow Road, Brown Deer, WI 53223 (United States)

    2015-10-30

    Highlights: • Portland cement and lime activated persulfate by increasing pH and temperature. • Chemical oxidation achieved BTEX and PAH removal ranging from 55% to 75%. • Activating persulfate with ISS amendments reduced leachability more than NaOH. • Native sulfate-reducing bacteria degraded PAHs within weeks after ISCO finished. • ISCO, ISS, and anaerobic bioremediation were combined in a single application. - Abstract: Laboratory batch reactors were maintained for 32 weeks to test the potential for an in situ remedy that combines chemical oxidation, stabilization, and anaerobic bioremediation in a single application to treat soil from a manufactured gas plant, contaminated with polycyclic aromatic hydrocarbons (PAH) and benzene, toluene, ethylbenzene, and xylenes (BTEX). Portland cement and slaked lime were used to activate the persulfate and to stabilize/encapsulate the contaminants that were not chemically oxidized. Native sulfate-reducing bacteria degraded residual contaminants using the sulfate left after persulfate activation. The ability of the combined remedy to reduce contaminant mass and leachability was compared with NaOH-activated persulfate, stabilization, and sulfate-reducing bioremediation as stand-alone technologies. The stabilization amendments increased pH and temperature sufficiently to activate the persulfate within 1 week. Activation with both stabilization amendments and NaOH removed between 55% and 70% of PAH and BTEX. However, combined persulfate and stabilization significantly reduced the leachability of residual BTEX and PAH compared with NaOH activation. Sulfide, 2-naphthoic acid, and the abundance of subunit A of the dissimilatory sulfite reductase gene (dsrA) were used to monitor native sulfate-reducing bacteria, which were negatively impacted by activated persulfate, but recovered completely within weeks.

  17. Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leachability in soil

    International Nuclear Information System (INIS)

    Highlights: • Portland cement and lime activated persulfate by increasing pH and temperature. • Chemical oxidation achieved BTEX and PAH removal ranging from 55% to 75%. • Activating persulfate with ISS amendments reduced leachability more than NaOH. • Native sulfate-reducing bacteria degraded PAHs within weeks after ISCO finished. • ISCO, ISS, and anaerobic bioremediation were combined in a single application. - Abstract: Laboratory batch reactors were maintained for 32 weeks to test the potential for an in situ remedy that combines chemical oxidation, stabilization, and anaerobic bioremediation in a single application to treat soil from a manufactured gas plant, contaminated with polycyclic aromatic hydrocarbons (PAH) and benzene, toluene, ethylbenzene, and xylenes (BTEX). Portland cement and slaked lime were used to activate the persulfate and to stabilize/encapsulate the contaminants that were not chemically oxidized. Native sulfate-reducing bacteria degraded residual contaminants using the sulfate left after persulfate activation. The ability of the combined remedy to reduce contaminant mass and leachability was compared with NaOH-activated persulfate, stabilization, and sulfate-reducing bioremediation as stand-alone technologies. The stabilization amendments increased pH and temperature sufficiently to activate the persulfate within 1 week. Activation with both stabilization amendments and NaOH removed between 55% and 70% of PAH and BTEX. However, combined persulfate and stabilization significantly reduced the leachability of residual BTEX and PAH compared with NaOH activation. Sulfide, 2-naphthoic acid, and the abundance of subunit A of the dissimilatory sulfite reductase gene (dsrA) were used to monitor native sulfate-reducing bacteria, which were negatively impacted by activated persulfate, but recovered completely within weeks

  18. Case study: Bioremediation in the Aleutian Islands

    International Nuclear Information System (INIS)

    This case study describes the design, construction, and operation of a bioremediation pile on Adak Island, which is located in the Aleutian Island chain. Approximately 1,900 m3 of petroleum-contaminated soil were placed in the bioremediation pile. The natural bioremediation process was enhanced by an oxygen and nutrient addition system to stimulate microbial activity. Despite the harsh weather on the island, after the first 6 months of operation, laboratory analyses of soil samples indicated a significant (80%) reduction in diesel concentrations

  19. Bioremediation of Bunker C

    International Nuclear Information System (INIS)

    In the states of Washington and Oregon, the highest priority for waste management is now given to recycling, reuse and permanent solutions as opposed to landfill disposal. Bioremediation is recognized as a treatment of choice over other technologies that do not provide permanent solutions. From a business point of view, it is usually the most cost-effective. Bioremediation works extremely well for most common hydrocarbons including aviation fuel, heating oil and diesel oil. Bunker C, a high boiling point distillate, is the most recalcitrant hydrocarbon for treatment and is the topic of this paper. Bunker C lives up to its reputation of being a very recalcitrant hydrocarbon to biodegrade. The authors have demonstrated, however, that the soil matrix standards at industrial sites in Washington and Oregon can be achieved using new bioremediation techniques. These techniques are necessary over those typically used to biodegrade jet fuel, heating oil and diesel oil. These extra steps have been developed for our own use in our treatability laboratory

  20. Bioremediation of Hanford groundwater

    International Nuclear Information System (INIS)

    Liquid wastes containing radioactive, hazardous, and regulated chemicals have been generated throughout the 40 years of operations at the US Department of Energy's (DOE) Hanford Site. Some of these wastes were discharged to the soil column and many of the waste components, including nitrate (NO3-), carbon tetrachloride (CCl4), and several radionuclides, have been detected in the Hanford groundwater. A research and development program is presently underway to develop bioremediation technologies for treating contaminated Hanford groundwaters. The program includes development of both ex situ and in situ treatment methods, with primary emphasis on developing an in situ treatment process. The goal of the in situ process is to stimulate the native microorganisms and accelerate the natural degradation of NO3- and CCl4. A demonstration site at Hanford for in situ biological treatment was selected in 1990, and extensive hydrological, chemical, and biological characterization of the site is underway. Current research and development activities are focusing on developing methods for supplying nutrients to the subsurface, evaluating the effect of in situ bioremediation on the long-term mobility of metal and radionuclide co-contaminants, and modeling the bioremediation process using three-dimensional visualization tools to help design the field-scale demonstration site and predict performance

  1. Bioremediation of contaminated mixtures of desert mining soil and sawdust with fuel oil by aerated in-vessel composting in the Atacama Region (Chile)

    International Nuclear Information System (INIS)

    Since early 1900s, with the beginning of mining operations and especially in the last decade, small, although repetitive spills of fuel oil had occurred frequently in the Chilean mining desert industry during reparation and maintenance of machinery, as well as casual accidents. Normally, soils and sawdust had been used as cheap readily available sorbent materials of spills of fuel oil, consisting of complex mixtures of aliphatic and aromatic hydrocarbons. Chilean legislation considers these fuel oil contaminated mixtures of soil and sawdust as hazardous wastes, and thus they must be contained. It remains unknown whether it would be feasible to clean-up Chilean desert soils with high salinity and metal content, historically polluted with different commercial fuel oil, and contained during years. Thus, this study evaluated the feasibility of aerated in-vessel composting at a laboratory scale as a bioremediation technology to clean-up contaminated desert mining soils (fuel concentration > 50,000 mg kg-1) and sawdust (fuel concentration > 225,000 mg kg-1) in the Atacama Region. The composting reactors were operated using five soil to sawdust ratios (S:SD, 1:0, 3:1, 1:1, 1:3, 0:1, on a dry weight basis) under mesophilic temperatures (30-40 deg. C), constant moisture content (MC, 50%) and continuous aeration (16 l min-1) during 56 days. Fuel oil concentration and physico-chemical changes in the composting reactors were monitored following standard procedures. The highest (59%) and the lowest (35%) contaminant removals were observed in the contaminated sawdust and contaminated soil reactors after 56 days of treatment, respectively. The S:SD ratio, time of treatment and interaction between both factors had a significant effect (p < 0.050) on the contaminant removal. The results of this research indicate that bioremediation of an aged contaminated mixture of desert mining soil and sawdust with fuel oil is feasible. This study recommends a S:SD ratio 1:3 and a correct

  2. Phenotypic and molecular characterization of bacterial populations isolated from diesel-contaminated soil and treated by two bioremediation technologies

    International Nuclear Information System (INIS)

    In this study bioremediation is presented as an alternative for the recovery of contaminated ecosystems. In this work an experimental diesel spill on pasture land was remediated using two bioremediation technologies: natural attenuation, which is the natural capability of indigenous microorganisms to degrade a xenobiotic component in a determined time, and biostimulation, which consist in the acceleration of the degradation process through the stimulation of the metabolism of indigenous microorganisms by the addition of nutrients (P and N) to the media. Results of respirometry assays indicated that both treatments produced significant levels of hydrocarbon removal but the biostimulation treatment stranded out with 98.17% degradation. Seven bacterial isolates were obtained from these treatments which according to their molecular characterization and phylogenetic analysis belong to the genus: Enterobacter, Bacillus, Arthrobacter, Sanguibacter, Staphylococcus and Flavobacterium. All isolates were able to metabolize diesel as a carbon and energy source; for this reason and taking into account that for some of these microorganisms their role in bioremediation have not been extensively studied, it is recommended to continue with their evaluation to know their real potential for the solution of environmental problems.

  3. Simple DNA extraction protocol for a 16S rDNA study of bacterial diversity in tropical landfarm soil used for bioremediation of oil waste.

    Science.gov (United States)

    Maciel, B M; Santos, A C F; Dias, J C T; Vidal, R O; Dias, R J C; Gross, E; Cascardo, J C M; Rezende, R P

    2009-01-01

    Landfarm soil is used to bioremediate oil wastes from petrochemical industries. We developed a simplified protocol for microbial DNA extraction of tropical landfarm soil using only direct lysis of macerated material. Two samples of tropical landfarm soil from a Brazilian refinery were analyzed by this protocol (one consisted of crude oil-contaminated soil; the other was continuously enriched for nine months with petroleum). The soil samples were lysed by maceration with liquid nitrogen, eliminating the need for detergents, organic solvents and enzymatic cell lysis. Then, the DNA from the lysed soil sample was extracted using phenol-chloroform-isoamyl alcohol or guanidium isothiocyanate, giving high DNA yields (more than 1 micro g DNA/g soil) from both soil types. This protocol compared favorably with an established method of DNA template preparation that included mechanical, chemical and enzymatic treatment for cell lysis. The efficiency of this extraction protocol was confirmed by polymerase chain reaction amplification of the 16S rRNA gene, denaturing gradient gel electrophoresis and cloning assays. Fifty-one different clones were obtained; their sequences were classified into at least seven different phyla of the Eubacteria group (Proteobacteria - alpha, gamma and delta, Chloroflexi, Actinobacteria, Acidobac teria, Planctomycetes, Bacteroidetes, and Firmicutes). Forty percent of the sequences could not be classified into these phyla, demonstrating the genetic diversity of this microbial community. Only eight isolates had sequences similar to known sequences of 16S rRNA of cultivable organisms or of known environmental isolates and therefore could be identified to the genus level. This method of DNA extraction is a useful tool for analysis of the bacteria responsible for petroleum degradation in contaminated environments. PMID:19440973

  4. Genetically engineered Pseudomonas putida X3 strain and its potential ability to bioremediate soil microcosms contaminated with methyl parathion and cadmium.

    Science.gov (United States)

    Zhang, Rong; Xu, Xingjian; Chen, Wenli; Huang, Qiaoyun

    2016-02-01

    A multifunctional Pseudomonas putida X3 strain was successfully engineered by introducing methyl parathion (MP)-degrading gene and enhanced green fluorescent protein (EGFP) gene in P. putida X4 (CCTCC: 209319). In liquid cultures, the engineered X3 strain utilized MP as sole carbon source for growth and degraded 100 mg L(-1) of MP within 24 h; however, this strain did not further metabolize p-nitrophenol (PNP), an intermediate metabolite of MP. No discrepancy in minimum inhibitory concentrations (MICs) to cadmium (Cd), copper (Cu), zinc (Zn), and cobalt (Co) was observed between the engineered X3 strain and its host strain. The inoculated X3 strain accelerated MP degradation in different polluted soil microcosms with 100 mg MP kg(-1) dry soil and/or 5 mg Cd kg(-1) dry soil; MP was completely eliminated within 40 h. However, the presence of Cd in the early stage of remediation slightly delayed MP degradation. The application of X3 strain in Cd-contaminated soil strongly affected the distribution of Cd fractions and immobilized Cd by reducing bioavailable Cd concentrations with lower soluble/exchangeable Cd and organic-bound Cd. The inoculated X3 strain also colonized and proliferated in various contaminated microcosms. Our results suggested that the engineered X3 strain is a potential bioremediation agent showing competitive advantage in complex contaminated environments. PMID:26521245

  5. Biorremediação de solos contaminados com hidrocarbonetos aromáticos policíclicos Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons

    Directory of Open Access Journals (Sweden)

    Rodrigo Josemar Seminoti Jacques

    2007-08-01

    capacity to degrade them, which results in its accumulation in the atmosphere and contamination of the ecosystems. A strategy for PAHs elimination from the soil is through the bioremediation, where microorganisms having capacity to metabolize these compounds will transform them in inert substances, CO2 and water. However, this biotechnology can be limited by the lack of specific HAP microbial-degraders in soil, by unfavorable environmental conditions to these microorganisms or by the low bioavailability of those contaminants to the microorganisms. To overcome these limitations and to promote an efficient removal of the pollutants to the atmosphere, several bioremediation techniques were developed as passive bioremediation, bioaugmentation, biostimulation, phytoremediation, landfarming, composting and bioreactors. This revision aims at discussing microbial metabolism of PAHs, present the main chemical and physical factors that influence the survival and the activity of these microorganisms and to show the bioremediation techniques that are being used now for the PAHs removal in soil.

  6. Acceleration of bioremediation of soil polluted with oil derivatives by using lad farming microorganisms from President Getulio Vargas refinery - REPAR/PETROBRAS, PR, Brazil; Aceleracao da biorremediacao de solo contaminado com derivados de petroleo com o uso de microorganismos do landfarming da Refinaria Presidente Getulio Vargas - PETROBRAS/REPAR

    Energy Technology Data Exchange (ETDEWEB)

    Krenczynski, Michele Cristine; Carvalho, Francisco Jose Pereira de Campos [Parana Univ., Curitiba, PR (Brazil). Curso de Pos-Graduacao em Ciencia do Solo]. E-mail: fjcampos@cce.ufpr.br

    1998-07-01

    This work is part of the studies on bioremediation criteria of the oil wastes contaminated soil, which are being performed by the Presidente Getulio Vargas refinery - REPAR - PETROBRAS, Brazil. (author)

  7. Bioremediation of petroleum contaminated soil to combat toxicity on Withania somnifera through seed priming with biosurfactant producing plant growth promoting rhizobacteria.

    Science.gov (United States)

    Das, Amar Jyoti; Kumar, Rajesh

    2016-06-01

    Soil contaminated by Petroleum oil cannot be utilized for agricultural purposes due to hydrocarbon toxicity. Oil contaminated soil induces toxicity affecting germination, growth and productivity. Several technologies have been proposed for bioremediation of oil contaminated sites, but remediation through biosurfactant producing plant growth promontory rhizobacteria (PGPR) is considered to be most promising methods. In the present study the efficacy of seed priming on growth and pigment of Withania somnifera under petroleum toxicity is explored. Seeds of W. somnifera were primed with biosurfactant producing Pseudomonas sp. AJ15 with plant growth promoting traits having potentiality to utilized petroleum as carbon source. Results indicates that plant arose from priming seeds under various petroleum concentration expressed high values for all the parameters studied namely germination, shoot length, root length, fresh and dry weight and pigments (chlorophyll and carotenoid) as compared to non primed seed. Hence, the present study signifies that petroleum degrarding biosurfactant producing PGPR could be further used for management and detoxification of petroleum contaminated soils for growing economically important crops. PMID:27016896

  8. Biosol Project: development of a new technology for the treatment of soils contaminated with hydrocarbons. bio-remediation by means of the addition of a biomass material (part one)

    International Nuclear Information System (INIS)

    The general mission of the project is to contribute to the development of new technologies based on the bio-remediation of soils contaminated with hydrocarbons. It is pretended to develop a bio-remediation technology based on the use 'on site' of a biomass material with absorbent properties that allows to reduce time and costs of treatment of contaminated soils by hydrocarbons in comparison with other current technologies. The biomass must be biodegradable and to act as a bio-stimulator of the endogenous microbial population, which is the responsible of the degradation of the pollutants contained in the soil. Another objective to achieve is that the new technology has to be able to decontaminate soils over the maximum thresholds of concentration reached by similar technologies of bio-remediation (50.000 ppm), in order to obtain that the technique could be competitive in comparison with other techniques more conventional based on chemical or physical treatments, and more aggressive from an ecological point of view (for example: chemical oxidation, thermal desorption). The amount and quality of published scientific works also demonstrate that still there are many points to investigate until understanding perfectly how the microorganisms interact with the different phases and compounds that conforms the porous matrix of the soil. In this sense IAP emphasizes the necessity to have a previous study of characterization for any contaminated soil that it wants to be treated by means of technologies based on the bio-remediation. In a similar line, it emphasizes the studies about bio-remediation presented in the 8. Consoil (May of 2003). The works presented in this forum put in evidence the necessity of arrange pilot experiences of application that allow to advance in the development of new technologies applicable to similar scales to the real ones. Also the bio-remediation based on the bio-stimulation of the endogenous microbial populations by means of the addition of

  9. Biosol Project: development of a new technology for the treatment of soils contaminated with hydrocarbons. bio-remediation by means of the addition of a biomass material (part one)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The general mission of the project is to contribute to the development of new technologies based on the bio-remediation of soils contaminated with hydrocarbons. It is pretended to develop a bio-remediation technology based on the use 'on site' of a biomass material with absorbent properties that allows to reduce time and costs of treatment of contaminated soils by hydrocarbons in comparison with other current technologies. The biomass must be biodegradable and to act as a bio-stimulator of the endogenous microbial population, which is the responsible of the degradation of the pollutants contained in the soil. Another objective to achieve is that the new technology has to be able to decontaminate soils over the maximum thresholds of concentration reached by similar technologies of bio-remediation (50.000 ppm), in order to obtain that the technique could be competitive in comparison with other techniques more conventional based on chemical or physical treatments, and more aggressive from an ecological point of view (for example: chemical oxidation, thermal desorption). The amount and quality of published scientific works also demonstrate that still there are many points to investigate until understanding perfectly how the microorganisms interact with the different phases and compounds that conforms the porous matrix of the soil. In this sense IAP emphasizes the necessity to have a previous study of characterization for any contaminated soil that it wants to be treated by means of technologies based on the bio-remediation. In a similar line, it emphasizes the studies about bio-remediation presented in the 8. Consoil (May of 2003). The works presented in this forum put in evidence the necessity of arrange pilot experiences of application that allow to advance in the development of new technologies applicable to similar scales to the real ones. Also the bio-remediation based on the bio-stimulation of the endogenous microbial populations by means of the

  10. Bioremediation of Cd and carbendazim co-contaminated soil by Cd-hyperaccumulator Sedum alfredii associated with carbendazim-degrading bacterial strains.

    Science.gov (United States)

    Xiao, Wendan; Wang, Huan; Li, Tingqiang; Zhu, Zhiqiang; Zhang, Jie; He, Zhenli; Yang, Xiaoe

    2013-01-01

    The objective of this study was to develop a bioremediation strategy for cadmium (Cd) and carbendazim co-contaminated soil using a hyperaccumulator plant (Sedum alfredii) combined with carbendazim-degrading bacterial strains (Bacillus subtilis, Paracoccus sp., Flavobacterium and Pseudomonas sp.). A pot experiment was conducted under greenhouse conditions for 180 days with S. alfredii and/or carbendazim-degrading strains grown in soil artificially polluted with two levels of contaminants (low level, 1 mg kg(-1) Cd and 21 mg kg(-1) carbendazim; high level, 6 mg kg(-1) Cd and 117 mg kg(-1) carbendazim). Cd removal efficiencies were 32.3-35.1 % and 7.8-8.2 % for the low and high contaminant level, respectively. Inoculation with carbendazim-degrading bacterial strains significantly (P < 0.05) increased Cd removal efficiencies at the low level. The carbendazim removal efficiencies increased by 32.1-42.5 % by the association of S. alfredii with carbendazim-degrading bacterial strains, as compared to control, regardless of contaminant level. Cultivation with S. alfredii and inoculation of carbendazim-degrading bacterial strains increased soil microbial biomass, dehydrogenase activities and microbial diversities by 46.2-121.3 %, 64.2-143.4 %, and 2.4-24.7 %, respectively. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis revealed that S. alfredii stimulated the activities of Flavobacteria and Bradyrhizobiaceae. The association of S. alfredii with carbendazim-degrading bacterial strains enhanced the degradation of carbendazim by changing microbial activity and community structure in the soil. The results demonstrated that association of S. alfredii with carbendazim-degrading bacterial strains is promising for remediation of Cd and carbendazim co-contaminated soil. PMID:22529002

  11. Polycyclic aromatic hydrocarbon-contaminated soils: bioaugmentation of autochthonous bacteria and toxicological assessment of the bioremediation process by means of Vicia faba L.

    Science.gov (United States)

    Ruffini Castiglione, Monica; Giorgetti, Lucia; Becarelli, Simone; Siracusa, Giovanna; Lorenzi, Roberto; Di Gregorio, Simona

    2016-04-01

    Two bacterial strains, Achromobacter sp. (ACH01) and Sphingomonas sp. (SPH01), were isolated from a heavily polycyclic aromatic hydrocarbon (PAH)-contaminated soil (5431.3 ± 102.3 ppm) for their capacity to use a mixture of anthracene, pyrene, phenanthrene and fluorene as sole carbon sources for growth and for the capacity to produce biosurfactants. The two strains were exploited for bioaugmentation in a biopile pilot plant to increase the bioavailability and the degradation of the residual PAH contamination (99.5 ± 7.1 ppm) reached after 9 months of treatment. The denaturing gel gradient electrophoresis (DGGE) profile of the microbial ecology of the soil during the experimentation showed that the bioaugmentation approach was successful in terms of permanence of the two strains in the soil in treatment. The bioaugmentation of the two bacterial isolates positively correlated with the PAH depletion that reached 7.9 ± 2 ppm value in 2 months of treatment. The PAH depletion was assessed by the loss of the phyto-genotoxicity of soil elutriates on the model plant Vicia faba L., toxicological assessment adopted also to determine the minimum length of the decontamination process for obtaining both the depletion of the PAH contamination and the detoxification of the soil at the end of the process. The intermediate phases of the bioremediation process were the most significant in terms of toxicity, inducing genotoxic effects and selective DNA fragmentation in the stem cell niche of the root tip. The selective DNA fragmentation can be related to the selective induction of cell death of mutant stem cells that can compromise offsprings. PMID:26769476

  12. Exploitation of bioremediation in the environment protection

    OpenAIRE

    Alena Luptáková; Mária Praščáková

    2005-01-01

    Soils and waters contaminated with toxic metals pose a major environmental problem that needs an effective and affordable technological solution. Many areas remain contaminated with no remediation in sight because it is too expensive to clean them up with available technologies. Bioremediation may provide an economically viable solution for remediation of some of these sites. The bioremediation is an application of the biological treatment to the cleanup of hazardous chemicals and is an examp...

  13. Bioremediation in Germany: Markets, technologies, and leading companies

    International Nuclear Information System (INIS)

    Bioremediation has become an internationally accepted remediation tool. Commercial bioremediation activities take place in many European countries, but Germany and the Netherlands are the clear European leaders, with both having a long history of public and private sector activity in biological technologies. The German bioremediation market has been driven by government regulation, in particular the waste laws that apply to contaminated soils. The 1994 German market for bioremediation is estimated at $70 to 100 million (US $). There are at least 150 companies active in bioremediation in Germany, most of which practice bioremediation of hydrocarbon-contaminated soils, either in situ or ex situ. Because of their predominance in the current European market, German firms are well positioned to expand into those nations in the European Union (EU) currently lacking an environmental business infrastructure

  14. Biodegradation of 2,3,7,8 TCDD by anaerobic and aerobic microcosms collected from bioremediation treatments for cleaning up dioxin contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Dang Thi; Tuan, Mai Anh; Viet, Nguyen Quoc; Sanh, Nguyen Thi [Vietnamese Academy of Science and Technology (VAST) (Viet Nam). Inst. of Biotechnology; Sau, Trinh Khac [Vietnam-Russian Tropical Center (Viet Nam); Papke, O. [ERGO Forschungsgesellschaft, Hamburg (Germany)

    2004-09-15

    There are many microbes that can degrade polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurants (PCDFs) and polychlorinated biphenyls (PCBs) have been isolated including purified bacteria, actinomycetes, white rods, filamentous fungi, anaerobes and also anaerobic and aerobic consortia. Bioremediation one of biological remediation has been studied as hopeful alternative to physical and chemical treatments that using for cleaning up PCDDs, PCDFs. In Vietnam for cleaning up ''hot spot'' of some former military air bases, bioremediation has been studying in different scales of Danang site. After 18 to 24 month treatments, the reduction of toxicity was significally detected. In order to study biodegradability by different groups and one of dominated strain that are existing microorganisms in our treatments, the investigation of 2,3,7,8 TCDD anaerobic and aerobic degradations was carried out in the laboratory condition. Anaerobic microbial consortium containing three different bacteria such as two Gram- negative vibrio and rod and one gram positive cocoides bacteria. This consortium could degrade 118 pg TEQ/ml 2,3,7,8 TCDD after 133 days under sulfate reduction. Concentration of 2,3,7,8 TCDD in the soil extract that adding to medium at starting point of cultivation was 144.6 pg TEQ/ml. About 81% toxicity was removed. Aerobic consortium containing all three Gram-negative bacteria and one fungal strain. After 9 day shaking at 180 rpm/min and 30 C, 85.6 % of 164.45 pg TEQ/ml 2,3,7,8 TCDD was removed. Other preliminary results of study of 2,3,7,8 TCDD biodegradation as sole carbon and energy by show that this strain FDN30 could remove 43,45 pg TEQ/ml (59%) of 73,1 pgTEQ/ml adding dioxin after two weeks. These findings explain why high concentration of contaminants in treated soil was decreased after two year treatment. Indigenous microorganisms play leading role in the detoxification of 2,3,7,8 TCDD in contaminated soils.

  15. Monitoring of ground water quality and heavy metals in soil during large scale bioremediation of petroleum hydrocarbon contaminated waste in India: case studies

    OpenAIRE

    Ajoy Kumar Mandal; Atanu Jana; Mr. Abhijit Datta; Sarma, Priyangshu M.; Banwari Lal; Jayati Datta

    2014-01-01

    Bioremediation using microbes has been well accepted as an environmentally friendly and economical treatment method for disposal of hazardous petroleum hydrocarbon contaminated waste (oily waste) and this type of bioremediation has been successfully conducted in laboratory and on a pilot scale in various countries, including India. Presently there are no federal regulatory guidelines available in India for carrying out field-scale bioremediation of oily waste using microbes. The results of th...

  16. Applied bioremediation of hazardous, petroleum, and industrial wastes

    International Nuclear Information System (INIS)

    Blasland and Bouck Engineers, P.C. (Blasland and Bouck) conducted a large-scale soil bioremediation pilot study at an inactive hazardous waste site in Upstate New York. Remediation of soils at the site is regulated in accordance with a Consent Order entered into with the New York State Department of Environmental Conservation. The chemicals of concern in soils at the site consist of a wide range of volatile and semi-volatile organic compounds including: trichloroethylene, methylene chloride, methanol, aniline, and N,N-dimethylaniline. The large-scale soil Bioremediation Pilot Study consisted of evaluating the effectiveness of two bioremediation techniques: ex-situ solid phase treatment of excavation soils; and in-situ solid phase treatment with soil mixing. The feasibility of bioremediation for soils at this site was evaluated in the field at pilot scale due to the generally high sensitivity of the technology's effectiveness and feasibility from site to site

  17. Isolation of Lead Resistant Bacteria from Lead Contaminated Soil Samples Collected from Sundar Industrial Estate and their Potential Use in Bioremediation

    International Nuclear Information System (INIS)

    Industrial waste water pollution is one of the most controversial problem especially in countries like Pakistan. Human activities and the release of industrial waste have resulted the accumulation of metals in the environment. Noxious chemicals like heavy metals include cadmium, lead, chromium, copper, nickel, etc. that pollute the soils, ground water, sediments and surface waters re present in soluble form. Biosorpotion is a form of bioremediation by which metal ions are adsorbed from polluted site by microorganisms. Samples collected from industrial area were analyzed for lead contamination by Flame Atomic Spectrophotometer. Soil samples of Sundar Industrial Estate were highly resistant to different concentrations (300ppm, 800ppm, and 1600ppm) of Pb+2 whereas, the sample PbFa-458 showed maximum (127.9819mg/L) absorption of Pb+2, so can be used for environmental cleanup. From 24 selected lead resistant strains PbFa-136, PbFa-287, PbFa-960 showed resistance to multimetals, multidrug and high lead concentrations i.e 1800ppm, 2000ppm. Lead resistant strains were predicted as Klebsiella or Eenterobacter, Bacillus, Shigella, Salmonella and Enteroccocus. (author)

  18. Bioremediation of oil-contaminated sites

    Energy Technology Data Exchange (ETDEWEB)

    Balba, T. [Conestoga-Rovers and Associates, Calgary, AB (Canada)

    2003-07-01

    One of the most prevalent contaminants in subsurface soil and groundwater are petroleum hydrocarbons. This paper presented bioremediation of petroleum hydrocarbons as one of the most promising treatment technologies. Petroleum hydrocarbons are categorized into four simple fractions: saturates, aromatics, resins, and asphaltenes. Bioremediation refers to the treatment process whereby contaminants are metabolized into less toxic or nontoxic compounds by naturally occurring organisms. The various strategies include: use of constitutive enzymes, enzyme induction, co-metabolism, transfer of plasmids coding for certain metabolic pathways, and production of biosurfactants to enhance bioavailability of hydrophobic compounds. Three case studies were presented: (1) bioremediation of heavy oils in soil at a locomotive maintenance yard in California, involving a multi-step laboratory treatability study followed by a field demonstration achieving up to 94 per cent removal of TPH in less than 16 weeks, (2) bioremediation of light oils in soil at an oil refinery in Germany where a dual process was applied (excavation and in-situ treatment), achieving an 84 per cent reduction within 24 weeks, and (3) bioremediation of oil-contaminated desert soil in Kuwait which involved landfarming, composting piles, and bioventing soil piles, achieving an 80 per cent reduction within 12 months. 7 refs., 1 tab., 3 figs.

  19. Laboratory study on the bioremediation of diesel oil contaminated soil from a petrol station Estudo laboratorial da biorremediação de solo de posto de combustíveis contaminado com óleo diesel

    OpenAIRE

    Adriano Pinto Mariano; Ana Paula Arruda Geraldes Kataoka; Dejanira de Franceschi de Angelis; Daniel Marcos Bonotto

    2007-01-01

    The purpose of the present study was to investigate possible methods to enhance the rate of aerobic biodegradation of hydrocarbons (ex-situ treatments). In this work, the bioremediation processes were applied to a sandy soil with a high level of contamination originated from the leakage of a diesel oil underground storage tank at a petrol station. Laboratory scale experiments (Bartha biometer flasks) were used to evaluate the biodegradation of the diesel oil. Enhancement of biodegradation was...

  20. Bioremediation of Petroleum Hydrocarbon Contaminated Sites

    Energy Technology Data Exchange (ETDEWEB)

    Fallgren, Paul

    2009-03-30

    Bioremediation has been widely applied in the restoration of petroleum hydrocarbon-contaminated. Parameters that may affect the rate and efficiency of biodegradation include temperature, moisture, salinity, nutrient availability, microbial species, and type and concentration of contaminants. Other factors can also affect the success of the bioremediation treatment of contaminants, such as climatic conditions, soil type, soil permeability, contaminant distribution and concentration, and drainage. Western Research Institute in conjunction with TechLink Environmental, Inc. and the U.S. Department of Energy conducted laboratory studies to evaluate major parameters that contribute to the bioremediation of petroleum-contaminated drill cuttings using land farming and to develop a biotreatment cell to expedite biodegradation of hydrocarbons. Physical characteristics such as soil texture, hydraulic conductivity, and water retention were determined for the petroleum hydrocarbon contaminated soil. Soil texture was determined to be loamy sand to sand, and high hydraulic conductivity and low water retention was observed. Temperature appeared to have the greatest influence on biodegradation rates where high temperatures (>50 C) favored biodegradation. High nitrogen content in the form of ammonium enhanced biodegradation as well did the presence of water near field water holding capacity. Urea was not a good source of nitrogen and has detrimental effects for bioremediation for this site soil. Artificial sea water had little effect on biodegradation rates, but biodegradation rates decreased after increasing the concentrations of salts. Biotreatment cell (biocell) tests demonstrated hydrocarbon biodegradation can be enhanced substantially when utilizing a leachate recirculation design where a 72% reduction of hydrocarbon concentration was observed with a 72-h period at a treatment temperature of 50 C. Overall, this study demonstrates the investigation of the effects of

  1. A novel arsenic methyltransferase gene of Westerdykella aurantiaca isolated from arsenic contaminated soil: phylogenetic, physiological, and biochemical studies and its role in arsenic bioremediation.

    Science.gov (United States)

    Verma, Shikha; Verma, Pankaj Kumar; Meher, Alok Kumar; Dwivedi, Sanjay; Bansiwal, Amit Kumar; Pande, Veena; Srivastava, Pankaj Kumar; Verma, Praveen Chandra; Tripathi, Rudra Deo; Chakrabarty, Debasis

    2016-03-01

    Elevated arsenic concentration in the environment and agricultural soil is a serious concern to crop production and human health. Among different detoxification mechanisms, the methylation of arsenic is a widespread phenomenon in nature. A number of microorganisms are able to methylate arsenic, but less is known about the arsenic metabolism in fungi. We identified a novel arsenic methyltransferase (WaarsM) gene from a soil fungus, Westerdykella aurantiaca. WaarsM showed sequence homology with all known arsenic methyltransferases having three conserved SAM binding motifs. The expression of WaarsM enhanced arsenic resistance in E. coli (Δars) and S. cerevisiae (Δacr2) strains by biomethylation and required endogenous reductants, preferably GSH, for methyltransferase activity. The purified WaarsM catalyzes the production of methylated arsenicals from both AsIII and AsV, and also displays AsV reductase activity. It displayed higher methyltransferase activity and lower KM 0.1945 ± 0.021 mM and KM 0.4034 ± 0.078 mM for AsIII and AsV, respectively. S. cerevisiae (Δacr2) cells expressing WaarsM produced 2.2 ppm volatile arsenic and 0.64 ppm DMA(v) with 0.58 ppm volatile arsenicals when exposed to 20 ppm AsV and 2 ppm AsIII, respectively. Arsenic tolerance in rice after co-culture with genetically engineered yeast suggested its potential role in arsenic bioremediation. Thus, characterization of WaarsM provides a potential strategy to reduce arsenic concentration in soil with reduced arsenic accumulation in crops grown in arsenic contaminated areas, and thereby alleviating human health risks. PMID:26776948

  2. Bioremediation of cadmium contaminated soil using symbiosis between leguminous plant and recombinant rhizobia with the MTL4 and the PCS genes.

    Science.gov (United States)

    Ike, Akiko; Sriprang, Rutchadaporn; Ono, Hisayo; Murooka, Yoshikatsu; Yamashita, Mitsuo

    2007-01-01

    Cadmium contamination in rice grains is one of the important issues in Asian countries. We have developed a novel bio-remediation system based on the symbiosis between leguminous plant and genetically engineered rhizobia. We designed two types of recombinant rhizobia, carrying two genes, synthetic tetrameric metallothionein (MTL4) and cDNA encoding phytochelatin synthase from Arabidopsis thaliana (AtPCS). The MTL4 and AtPCS genes were transferred to Mesorhizobium huakuii subsp. rengei B3, which can infect and form nodules on Chinese milk vetch, Astragalus sinicus. The two genes were fused to the nolB or nifH promoter, which generated nodule specific expression of these genes in strain B3. The two recombinant strains, B3(pMPnolBMTL4nifHPCS) and B3::nifHMTL4(pMPnifHPCS), showed 25 and 12-fold increase in Cd concentration, in the free-living cells, respectively. When these recombinant strains established the symbiotic relationship with A. sinicus, the symbionts increased Cd accumulation in nodules by two-fold in hydroponic culture. The expression of the both MTL4 and AtPCS genes showed additive effect on cadmium accumulation in nodules. We also applied these recombinant bacteria to rice paddy soil polluted with Cd (1mgkg(-1) dry weight soil). The accumulation of Cd increased not only in nodules but also in the roots of A. sinicus infected by the recombinant rhizobia. The accumulation of Cd in the plant roots infected by B3(pMPnolBMTL4nifHPCS) achieved three-fold than that by the wild-type B3. After two months of cultivation of the symbiont, a maximum of 9% of Cd in paddy soil was removed. Thus, the symbiosis will be useful in phytoremediation for heavy metals. PMID:16950497

  3. Performance parameters for ex situ bioremediation systems

    International Nuclear Information System (INIS)

    The potential of biotechnology to reduce the concentration of undesirable hydrocarbons, i.e. gasoline and diesel fuel pollution, is very attractive due to its apparent benign nature and potentially low cost. When good industrial practices are used in the design, construction, and administration of the bioremediation system, the performance of the technology can be predicted and monitored. Some of the principles behind the design, construction, and operation of ex situ bioremediation systems and facilities are described. Biological considerations include creation of a favorable environment for hydrocarbon degrading bacteria in the soils, selection of bacteria, and bacterial byproducts. Chemical considerations include nutrient augmentation, oxygen availability, and the use of surfactants and dispersants. Physical considerations include soil textures and structures, soil temperatures, moisture content, and the use of bulking agents. Experience has shown that indigenous microbes will usually be sufficient to implement bioremediation of petroleum hydrocarbons if encouraged through the application of fertilizers. The introduction of additional carbon sources may be considered if rapid bioremediation rates are desired or if soil conditions are poor. Adjustments to a bioremediation system may be made to enhance the performance of the bacterial community by introducing bulking agents and external temperature sources. Surfactants may be helpful in promoting bacteria-hydrocarbon contact and may be particularly useful for mobilization of free-phase hydrocarbons. 7 refs

  4. Ecotoxicological characteristic of a soil polluted by radioactive elements and heavy metals before and after its bioremediation

    Science.gov (United States)

    Georgiev, P.; Groudev, S.; Spasova, I.; Nikolova, M.

    2012-04-01

    Cinnamon soils from southeastern Bulgaria are heavily polluted with radionuclides (uranium, radium) and toxic heavy metals (copper and lead) due to the winds transportation of fine particles from flotation dumps to the soil surface. As a result of this, the polluted soils are characterized by a slightly alkaline pH (7.82) and positive net neutralization potential (+136.8 kg CaCO3/t). A fresh sample of cinnamon soil was subjected to remediation under laboratory conditions in four lysimeters each containing 70 kg of soil. The preliminary study revealed that most of the pollutants were presented as carbonate, reducible and oxidisable mobility fractions, i.e. pollutants ions were specifically adsorbed by carbonate and ferric iron minerals or were capsulated in sulfides. The applied soil treatment was connected with leaching of the pollutants located mainly in the horizon A, their transportation through the soil profile as soluble forms, and their precipitation in the rich-in-clay subhorizon B3. The efficiency of leaching depended on the activity of the indigenous microflora and on the chemical processes connected with solubilization of pollutants and formation of stable complexes with some organic compounds, chloride and hydrocarbonate ions. These processes were considerably enhanced by adding hay to the horizon A and irrigating the soil with water solutions containing the above-mentioned ions and some nutrients. After 18 months of treatment, each of the soil profiles in the different lysimeters was divided into five sections reflecting the different soil layers. The soil in these sections was subjected to a detailed chemical analysis and the data obtained were compared with the relevant data obtained before the start of the experiment. The best leaching of pollutants from horizon A was measured in the variants where soil mulching was applied. For example, the best leaching of lead (54.5 %) was found in the variant combining this technique and irrigation with solutions

  5. 放射性污染土壤生物修复的研究进展%Research advances review over the bioremediation of soil contaminated by radionuclide

    Institute of Scientific and Technical Information of China (English)

    范婷; 张晓文; 吕俊文; 唐东山; 陈亮

    2011-01-01

    土壤中放射性核素主要为天然来源和人为来源.而人为来源主要包括核试验、核武器制造、核能生产、核事故、放射性同位素的生产应用和矿物的开采冶炼等.综述了放射性核素污染土壤的植物修复、菌根修复、微生物修复等生物修复技术的研究进展,侧重探讨了这3种修复技术的协同作用,并对其研究的发展方向及今后的应用前景进行了讨论.%The present paper would like to give a general revision of research advances on the bioremediation of soil contaminated by ra-dionuclide. As the nuclear industry has been developing fast, the ra-dionuclide in the soil has become one of the major factors threatening human health and eco-toxicology. And, in turn, it has been found from the research channels that the rqain sources of the radionuclide pollution in the soil are coming from the nuclear tests, nuclear weapons production, the energy production of the nuclear power stations, nuclear accidents, as well as the production and application of radioisotopes and refining and application of minerals. It is just for the above reasons that we believe it necessary to point out the ever more great significance of such research advances in helping to reclaim the contaminated land soil and then illustrate some more effective and efficient new pollution-reducing and -removing techniques. Among them, the bioremediation technology is universally considered to be safest and most reliable. What is more, it also enjoys the obvious technological advantages of low cost, subtle disturbance on the environment with its capability of removing pollutants from the surrounding conditions of soil or water along with the radioactive contaminations. In addition, we also think it worthwhile to make a review of their new research advances, such as, phytoremediation, microbial remediation and mycorhiza remediation technologies. In spite of this, we would also like to put our emphasis on the limitations

  6. Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation, and monitored natural attenuation

    International Nuclear Information System (INIS)

    Two methods of biostimulation were compared in a laboratory incubation study with monitored natural attenuation (MNA) for total petroleum hydrocarbon (TPH) degradation in diesel-contaminated Tarpley clay soil with low carbon content. One method utilized rapid-release inorganic fertilizers rich in N and P, and the other used sterilized, slow-release biosolids, which added C in addition to N and P. After 8 weeks of incubation, both biostimulation methods degraded approximately 96% of TPH compared to MNA, which degraded 93.8%. However, in the first week of incubation, biosolids-amended soils showed a linear two orders of magnitude increase in microbial population compared to MNA, whereas, in the fertilizer-amended soils, only a one order of magnitude increase was noted. In the following weeks, microbial population in the fertilizer-amended soils dropped appreciably, suggesting a toxic effect owing to fertilizer-induced acidity and/or NH3 overdosing. Results suggest that biosolids addition is a more effective soil amendment method for biostimulation than the commonly practiced inorganic fertilizer application, because of the abilities of biosolids to supplement carbon. No statistically significant difference was observed between the biostimulation methods and MNA, suggesting that MNA can be a viable remediation strategy in certain soils with high native microbial population. - Addition of biosolids is a potentially effective method of biostimulation for degradation of petroleum hydrocarbons in soils

  7. Enhanced bioremediation of anthracene contaminated soil by bioaugmentation and application of non-ionic surfactant -- Fuelbuster reg-sign

    International Nuclear Information System (INIS)

    Surfactants enable the mass transfer of hydrophobic compounds to more hydrophilic phases, thereby increasing bioavailability to microorganisms for degradation. Indigenous soil bacteria was enriched over three months to selectively degrade anthracene. Enhanced soil remediation was determined using radiolabeled anthracene and comparing the end product 14-CO2 from different treatment and control groups. Bioreactors were engineered, fitted with inflow of air and CO2 trapping devices. The two treatment groups included were, (1) sterile soil seeded with enriched microorganisms and (2) sterile soil seeded with microorganisms and Fuelbuster reg-sign at concentrations below its critical micellar concentrations (determined by surface tension method). The control group had only sterile soil to account for any abiotic degradation. Remediation was monitored over 91 days and the end product was analyzed by liquid scintillation counting. On day 50 of remediation the relative CO2 evolution was 0.086 : 0.22 : 0.69 for control: Treatment 1: Treatment 2. On day 50 additional Fuelbuster reg-sign was injected into Treatment 2, which resulted in a 30% increase in CO2 evolution when the study was terminated. Binding effect of soil on the bioavailability of anthracene is currently being studied using the same experimental setup, excluding soil from all treatment groups

  8. Petroleum contaminated soil in Oman: evaluation of bioremediation treatment and potential for reuse in hot asphalt mix concrete.

    Science.gov (United States)

    Jamrah, Ahmad; Al-Futaisi, Ahmed; Hassan, Hossam; Al-Oraimi, Salem

    2007-01-01

    This paper presents a study that aims at evaluating the leaching characteristics of petroleum contaminated soils as well as their application in hot mix asphalt concrete. Soil samples are environmentally characterized in terms of their total heavy metals and hydrocarbon compounds and leachability. The total petroleum hydrocarbon (TPH) present in the PCS before and after treatment was determined to be 6.8% and 5.3% by dry weight, indicating a reduction of 1% in the TPH of PCS due to the current treatment employed. Results of the total heavy metal analysis on soils indicate that the concentrations of heavy metals are lower when extraction of the soil samples is carried out using hexane in comparison to TCE. The results show that the clean soils present in the vicinity of contaminated sites contain heavy metals in the following decreasing order: nickel (Ni), followed by chromium (Cr), zinc (Zn), copper (Cu), lead (Pb), and vanadium (V). The current treatment practice employed for remediation of the contaminated soil reduces the concentrations of nickel and chromium, but increases the concentrations of all remaining heavy metals. PMID:16957858

  9. Assessment of the physicochemical and microbiological status of western Niger Delta soil for crude oil pollution bioremediation potential.

    Science.gov (United States)

    Ejechi, Bernard O; Ozochi, Chizoba A

    2015-06-01

    The physical, chemical and microbiological characteristics of the soil across the western Niger Delta area of Nigeria were determined to assess its potential for natural remediation of crude oil pollution. The pH (oil-producing area, 6.1 ± 1.1; non-oil producing, 5.9 ± 0.9) and temperature (28-35 °C in both areas) were favourable to natural remediation, while the fluctuating moisture (7.7-45.6 %) and the dominant sandy soil textural classes (70 %) were limitations. The carbon nitrogen phosphorus (CNP) ratio markedly exceeded recommended 100:10:1, while the cation exchange capacity was below acceptable range. Counts of heterotrophic bacteria, fungi and hydrocarbon-utilising and nitrogen-fixing bacteria (mean range log10 3.8 ± 1.5-6.52 ± 0.9 cfu/g) were favourable having markedly exceeded the minimum counts required. Crude oil loss was highest in loam soil, but significantly (P = 0.00) increased in all soil textural classes including sandy soils after amendment with cow dung/poultry dropping and manual aeration in laboratory and 8-month field tests as indicated by two-way ANOVA. Thus, the overall assessment is that while CNP can be viewed as the major limiting factor to natural oil pollution remediation in the western Niger Delta soil, its influence can be minimised by the amendment indicated in the study. PMID:25995137

  10. Advanced Review of Microbial Bio-remediating Organic Polluted Soils%有机污染土壤的微生物修复研究进展

    Institute of Scientific and Technical Information of China (English)

    王晓锋; 张磊

    2013-01-01

    Soil pollution has become a global environmental issue in recent years, and the remediation for polyaromatic hydrocarbon (PAHs) and polychlorinated biphenyl (PCBs) has been more aware because of their potential carcinogenicity and teratogenicity. Bioremediation is a very promising new environmental technology in light of its economic and no secondary pollution characteristics. Based on up-date publications worldwide, this paper mainly review PAHs and PCBs pollution remediation by microbial procedures in soil by focusing on introduction of development on screening microbial species which can degrade and adsorption these two organic pollutants, as well as on the methods and mechanism of microbial remediation to proceed systematically integrated effect. At last, we sum the trend of this researching field in China.%土壤污染已经成为全球性的重要环境问题之一.多环芳烃(polyaromatic hydrocarbon,PAHs)和多氯联苯(polychlorinated biphenyl,PCBs)等有机污染物具有潜在的致癌性和致畸性,其修复研究近年来受到广泛关注.微生物修复技术既经济且无二次污染,具有其他修复技术难以比拟的优势.结合最新文献,综合阐述了目前利用微生物修复这2种有机污染物的研究进展及存在问题,重点介绍了降解微生物的筛选、降解过程和机理的研究成果,综合评述了微生物修复有机污染土壤的发展方向和发展趋势.

  11. Isolation and characterization of atrazine-degrading Arthrobacter sp. AD26 and use of this strain in bioremediation of contaminated soil

    Institute of Scientific and Technical Information of China (English)

    LI Qingyan; LI Ying; ZHU Xikun; CAI Baoli

    2008-01-01

    A bacterial strain (AD26) capable of utilizing atrazine as a sole nitrogen source for growth was isolated from an industrial wastewatersample by enrichment culture. The 16S rRNA gene sequencing identified AD26 as anArthrobacter sp. PCR assays indicated that AD26contained atrazine-degrading genes trzN and atzBC. The trzN gene of AD26 only differs from the trzN ofArthrobacter aurescens TC1by one base (A→T at 907) and one amino acid (Met→Leu at 303). The specific activity of trzN of AD26 in crude cell extract was0.28 U/mg, which was 1.2 times that of TC 1. This strain has shown faster growth and atrazine-degradation rates in atrazine-containingminimal media than two well characterized atrazine-degrading bacteria, Pseudomonas sp. ADP and Arthrobacter aurescens TC 1. Afterincubating for 48 h at 30℃, the OD600 of AD26 reached 2.6 compared with 1.33 of ADP. AD26 was capable of degrading 500 mg/Lof atrazine in minimal medium at 95% in 72 h, while the degradative rates by TC1 and ADP were only 90% and 86%, respectively. Abioremediation trial of contaminated soil has indicated that AD26 can degrade as high as 98% of atrazine contained in soil (300 mg/kg)after incubating for 20 d at 26℃, nominating this strain as a good candidate for use in bioremediation programs.

  12. Passive in-situ cometabolic biotreatment of gasoline and diesel in soil and groundwater: An electrokinetic enhanced bioremediation case history

    International Nuclear Information System (INIS)

    This paper presents the results of passive in-situ biotreatment of gasoline and diesel conducted at the subject facility in Hayward, California. Past spills of petroleum hydrocarbon fuels from an underground storage tank farm caused soil and shallow groundwater contamination in the clayey Bay Mud. The soil contamination was limited to a depth of about 10 feet with total petroleum hydrocarbons (TPH) concentration of 100 to 3,900 ppm. Due to the low permeability of the clayey Bay Mud, a passive in-situ biotreatment (PISB) system was designed and implemented for both soil and groundwater plumes. The PISB consisted of a system of electrokinetic, oxygen, nutrient and moisture enhancement units covering the soil and groundwater plumes. The electrokinetic system was installed to promote rapid migration of nutrient oxidant between electrodes to enhance the in-situ biodegradation processes. The gasoline and diesel in soil was remediated to less than 100 ppm of TPH. The TPH in groundwater was remediated to less than 10 ppm of TPH. The TPH in groundwater was remediated to less than 10 ppm. The groundwater remediation is in progress and the target cleanup levels were to be less than 10 ppm TPH and BTEX to less than 0.005, 1.0, 0.7 and 10.0 ppm respectively which are all below the MCL under the EPA primary drinking water standard. The total duration of this PISB was completed in less than 4 weeks

  13. Comparison of a bioremediation process of PAHs in a PAH-contaminated soil at field and laboratory scales

    International Nuclear Information System (INIS)

    A laboratory experiment was carried on the same initial soil and at the same time than a windrow treatment in order to compare results at field and laboratory scales for a soil mainly contaminated with PAHs. After 6 months, laboratory experiments gave similar but less scattered results than those obtained in the field indicating that the field biotreatment was well optimised. The total amount of PAHs degraded after 6 months was ca. 90% and degradation rates followed a negative exponential trend. Relative degradation rates of 3- and 4-ring PAHs were about 32 and 7.2 times greater than those of 5- and 6-ring PAHs, respectively. With respect to the bacterial community, bacteria belonging to Gamma-proteobacteria persisted whereas Beta-proteobacteria appeared after three months of biotreatment when PAH concentration was low enough to render the soil non-ecotoxic. - Highlights: ► Laboratory experiment representative of PAH-contaminated soil biotreatment. ► Beta-proteobacteria : a good bioindicator to estimate the endpoint of biotreatment. ► Optimizing biotreatment conditions with a laboratory experiment. ► Monitoring biotreatment process with a laboratory experiment. - Comparison of field and laboratory biotreatments of the same PAH-contaminated soil gave similar results with respect to PAH concentration and bacterial diversity.

  14. Enhancement of the microbial community biomass and diversity during air sparging bioremediation of a soil highly contaminated with kerosene and BTEX

    Czech Academy of Sciences Publication Activity Database

    Kabelitz, N.; Macháčková, I.; Imfeld, G.; Brennerová, Mária; Pieper, D. H.; Heipieper, H. J.; Junca, H.

    2009-01-01

    Roč. 82, - (2009), s. 565-577. ISSN 0175-7598 Institutional research plan: CEZ:AV0Z50200510 Keywords : btex * air sparging * bioremediation Subject RIV: EE - Microbiology, Virology Impact factor: 2.896, year: 2009

  15. Monitoring of ground water quality and heavy metals in soil during large scale bioremediation of petroleum hydrocarbon contaminated waste in India: case studies

    Directory of Open Access Journals (Sweden)

    Ajoy Kumar Mandal

    2014-10-01

    Full Text Available Bioremediation using microbes has been well accepted as an environmentally friendly and economical treatment method for disposal of hazardous petroleum hydrocarbon contaminated waste (oily waste and this type of bioremediation has been successfully conducted in laboratory and on a pilot scale in various countries, including India. Presently there are no federal regulatory guidelines available in India for carrying out field-scale bioremediation of oily waste using microbes. The results of the present study describe the analysis of ground water quality as well as selected heavy metals in oily waste in some of the large-scale field case studies on bioremediation of oily waste (solid waste carried out at various oil installations in India. The results show that there was no contribution of oil and grease and selected heavy metals to the ground water in the nearby area due to adoption of this bioremediation process. The results further reveal that there were no changes in pH and EC of the groundwater due to bioremediation. In almost all cases the selected heavy metals in residual oily waste were within the permissible limits as per Schedule – II of Hazardous Waste Management, Handling and Transboundary Movement Act, Amendment 2008, (HWM Act 2008, by the Ministry of Environment and Forests (MoEF, Government of India (GoI.

  16. In situ groundwater bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2009-02-01

    In situ groundwater bioremediation of hydrocarbons has been used for more than 40 years. Most strategies involve biostimulation; however, recently bioaugmentation have been used for dehalorespiration. Aquifer and contaminant profiles are critical to determining the feasibility and strategy for in situ groundwater bioremediation. Hydraulic conductivity and redox conditions, including concentrations of terminal electron acceptors are critical to determine the feasibility and strategy for potential bioremediation applications. Conceptual models followed by characterization and subsequent numerical models are critical for efficient and cost effective bioremediation. Critical research needs in this area include better modeling and integration of remediation strategies with natural attenuation.

  17. DEMONSTRATION BULLETIN: NEW YORK STATE MULTI-VENDOR BIOREMEDIATION - R.E. WRIGHT ENVIRONMENTAL, INC.'S IN-SITU BIOREMEDIATION TREATMENT SYSTEM

    Science.gov (United States)

    The R.E. Wright Environmental, Inc.‘s (REWEI) In-situ Bioremediation Treatment System is an in-situ bioremediation technology for the treatment of soils contaminated with organic compounds. According to the Developer, contaminated soils are remediated in-situ by stimulating the a...

  18. Bioremediation at a petroleum refinery

    International Nuclear Information System (INIS)

    This paper presents a summary of three projects at the Mobil Refinery in Torrance, California where bioremediation technologies were successfully employed for the remediation of hydrocarbon contaminated soil. The three projects represent variations of implementation of bioremediation, both in-situ and ex-situ. Soil from all of the projects was considered non-hazardous designated waste under the California Code of Regulations, Title 23, section 2522. The projects were permitted and cleanup requirements were defined with the Los Angeles Regional Water Quality Control Board. In all of the projects, different methods were used for supplying water, oxygen, and nutrients to the hydrocarbon degrading bacteria to stimulate growth. The Stormwater Retention Basin Project utilized in-situ mechanical mixing of soils to supply solid nutrients and oxygen, and a self-propelled irrigation system to supply water. The Tank Farm Lake project used an in-situ active bioventing technology to introduce oxygen, moisture, and vapor phase nutrients. The Tank 1340X247 project was an ex-situ bioventing remediation project using a drip irrigation system to supply water and dissolved nutrients, and a vapor extraction system to provide oxygen

  19. Natural and accelerated bioremediation research program plan

    International Nuclear Information System (INIS)

    This draft plan describes a ten-year program to develop the scientific understanding needed to harness and develop natural and enhanced biogeochemical processes to bioremediate contaminated soils, sediments and groundwater at DOE facilities. The Office of Health and Environmental Research (OHER) developed this program plan, with advice and assistance from DOE's Office of Environmental Management (EM). The program builds on OHER's tradition of sponsoring fundamental research in the life and environmental sciences and was motivated by OHER's and Office of Energy Research's (OER's) commitment to supporting DOE's environmental management mission and the belief that bioremediation is an important part of the solution to DOE's environmental problems

  20. The influence of bioaugmentation and biosurfactant addition on bioremediation efficiency of diesel-oil contaminated soil: feasibility during field studies.

    Science.gov (United States)

    Szulc, Alicja; Ambrożewicz, Damian; Sydow, Mateusz; Ławniczak, Łukasz; Piotrowska-Cyplik, Agnieszka; Marecik, Roman; Chrzanowski, Łukasz

    2014-01-01

    The study focused on assessing the influence of bioaugmentation and addition of rhamnolipids on diesel oil biodegradation efficiency during field studies. Initial laboratory studies (measurement of emitted CO2 and dehydrogenase activity) were carried out in order to select the consortium for bioaugmentation as well as to evaluate the most appropriate concentration of rhamnolipids. The selected consortium consisted of following bacterial taxa: Aeromonas hydrophila, Alcaligenes xylosoxidans, Gordonia sp., Pseudomonas fluorescens, Pseudomonas putida, Rhodococcus equi, Stenotrophomonas maltophilia, Xanthomonas sp. It was established that the application of rhamnolipids at 150 mg/kg of soil was most appropriate in terms of dehydrogenase activity. Based on the obtained results, four treatment methods were designed and tested during 365 days of field studies: I) natural attenuation; II) addition of rhamnolipids; III) bioaugmentation; IV) bioaugmentation and addition of rhamnolipids. It was observed that bioaugmentation contributed to the highest diesel oil biodegradation efficiency, whereas the addition of rhamnolipids did not notably influence the treatment process. PMID:24291585

  1. Bioremediation of heavy metals by employing resistant microbial isolates from agricultural soil irrigated with Industrial Waste water

    Directory of Open Access Journals (Sweden)

    Vijay Kumar

    2015-03-01

    Full Text Available This study was focused to isolate the most efficient bacteria from heavy metal contaminated soil from Ludhiana, Punjab. A total of 14 microbial isolates were characterized and out of 14, IS1 and IS14 were observed to be most effective because of their high relative growth and resistance against heavy metals. Further, these two isolates were assessed for their ability to remove Zinc and Lead from medium amended with heavy metals. IS1, Bacillus thuringiensis strain “Simi” (Accession number KF 916618.1 was found to be more effective as compared to IS14, Bacillus subtilis strain PSB (Accession number KF 279045.1 for the remediation of heavy metals. IS1 showed mean of 54% biodegradation efficacy in the first three days and from day 4 on wards the mean percentage of biodegradation efficacy decreased to around 31%. The results of the present study showed that the metal resistant bacteria can be used for heavy metal bio accumulation.

  2. BIOREMEDIATION OF CONTAMINATED SOIL BY SLUDGE OIL USING THE BIOPILES AMELIORATED = BIORREMEDIAÇÃO DE SOLO CONTAMINADO POR BORRA DE ÓLEO POR BIOPILHAS MELHORADAS

    Directory of Open Access Journals (Sweden)

    Eduardo Beraldo de Morais

    2014-06-01

    Full Text Available The bioremediation of contaminated soil by sludge oil from petroleum refinery using amended biopiles through bio-stimulation and/or bio-augmentation was objective of this work. Four biopiles were constructed as follows: B1. control; B2. Bio-supplemented with oil-sludge-degrading bacteria and fungus; B3. Bio-supplemented and bio-stimulated with nutrients (N and P; B4. Bio-supplemented and bio-stimulated with nutrients and rice husk. The study lasted 50 weeks and three different biodegradation stages were found during this period: an initial stage in which the reduction of oil and grease was greatest (up to 10 weeks; a stage with low biodegradation rates of the residue (10-30 weeks, and a late stage (30-50 weeks in which it was observed an increase of the oily sludge biodegradation after the biopiles were covered with black plastic in thirtieth week. This procedure increased the internal temperature of biopiles and showed the importance of this parameter in the biodegradation process. The bio-stimulation using rice husk improved soil aeration and allowed the development of microorganisms added and increased their metabolic activities; consequently, the oil and grease removal was greater (79.1%. The bacteria and fungus added in biopiles B2 and B3 did not survive, so it is necessary to produce inoculum more competitive and adapted. The biopiles system proved to be a viable technology for the bioremediation of soil polluted by oily sludge from petroleum refinery and the bio-stimulation by addition of materials such as rice husk increases its efficiency. = A biorremediação de solo contaminado por borra de óleo de refinaria de petróleo por meio de biopilhas bioestimuladas e/ou bioenriquecidas foi objetivo deste trabalho. Quatro biopilhas foram construídas, sendo: B1. controle; B2. adicionada de inóculo constituído por bactérias e fungos degradadores de borra de óleo; B3. adicionada de inóculo e nutrientes (N e P; B4. com inóculo, nutrientes

  3. 微生物修复石油污染土壤的生态毒性指示%Study on Combined Bioindicators in Ecotoxicity Monitoring of Oil-contaminated Soil during Bioremediation

    Institute of Scientific and Technical Information of China (English)

    沈伟航; 朱能武; 尹富华; 王华金; 党志

    2015-01-01

    order to explore the soil ecotoxicity patterns and biological indicator effects, bioremediation of oil-contaminated soil were conducted. Oil degrading bacterial consortium were built with three strains isolated from oil-contaminated soil. Bacterial luminescence, chlorophyll a and carotene contents, and soil catalase activity was employed to evaluate the ecotoxicity of soil sampled in different bioremediation phases. Good consistency can be obtained among phytotoxicity tests, soil enzyme activity and Photobacterium phosphoreum ecotoxicity tests. The results showed that the application of a mixed bacterial consortium was illustrated to effectively remediate oil-contaminated soil due to the high TPH removal efficiency, which reduced the crude oil concentration from 5 000 mg·kg-1 soil to 1 781 mg·kg-1 in only 40 d. The maximum inhibition of bacterial luminescence for Photobacterium phosphoreum in the dichloromethane/dimethyl sulfoxide extracts was observed at the initial stage of bioremediation and gradually dropped to normal. Compared with the control group, the chlorophyll a content of Triticum acstivnm L. was significantly inhibited in the different phases of bioremediation. In soils S1, the chlorophyll a content decreased by 39.3%to (1.36±0.04) mg·g-1. A significant negative correlation can be found between soil catalase activity and the residue of petroleum hydrocarbon. The correlation coefficient is-0.973. Soil extract on the 8th day of the bioremediation remained constant at a relative luminosity of 18.1%, with toxicity equivalent to that of 0.187 mg·L-1 HgCl2. Therefore, bacterial luminescence, phytotoxicity (inhibition of chlorophyll a and carotene contents), and soil catalase activity could potentially be sensitive indicators to evaluate the effectiveness of bioremediation techniques.

  4. Preliminary evaluation of the utilization of biopiles technology to the bioremediation of the soil of Guamare/RN (Brazil); Avaliacao preliminar da aplicacao da tecnologia de biopilhas para a biorremediacao do solo de Guamare/RN (Brasil)

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Edmilson P.; Macedo, Gorete R.; Duarte, Marcia M.L. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. de Engenharia Quimica; Costa, Alex S.S. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2004-07-01

    The aim of this work was to evaluate the use of biopiles to the bioremediation of the soil of Stabilization Station of Guamare-RN-Brazil. The evaluation was performed by the characterization of the soil, tests of biodegradation in laboratory scale and by the use of a complete 2{sup 3} factorial design with triplicate at the central point. The input variables were: Nitrogen concentration; diesel-oil concentration; and inoculum concentration. The response variable was the percentage gravimetric loss of organic matter. Statistical analyses of the main factors and their interactions on the response variable were performed using contour curves and Pareto obtained from the software STATISTICA for Windows, Release 5.5. The results showed that biopiles technology can be used to remediate eventual contaminated areas in that region. (author)

  5. Biodegradation efficiency and optimum growth conditions of bacterial strains isolated from a petroleum hydrocarbons contaminated soil: Evaluation of the selected strain efficiency for contaminated soil bioremediation.

    OpenAIRE

    Kotas, Petr

    2009-01-01

    Laboratory scale batch studies were performed in order to determine the optimum growth conditions and diesel oil biodegradation ability of the selected strain isolated from petroleum hydrocarbons contaminated soil. These results were used to evaluate the potential of the selected strain for in situ application in PRB remediation technology.

  6. Bioremediation of oil spills

    International Nuclear Information System (INIS)

    In-situ bioremediation of crude oil spills relies on either the indigenous microbes at the polluted site, whose degradative abilities are accelerated by adding such agents as fertilizers or dispersants, or on introducing pollutant-degrading microbes into the site (possibly accompanied by stimulatory chemicals). The bioremediation method to be used at a specific site must be selected to be suitable for that site and its environmental conditions. The basic components of bioremediation are outlined and the background information needed to understand the chemical and biological limitations of the technique are presented. Specifically, the microbial community, the crude oil substrate composition, and biological limiting factors are discussed. Generalized examples of bioremediation applications are illustrated. 10 refs

  7. SITE TECHNOLOGY CAPSULE: GRACE DEARBORN INC.'S DARAMEND BIOREMEDIATION TECHNOLOGY

    Science.gov (United States)

    Grace Dearborn's DARAMEND Bioremediation Technology was developed to treat soils/sediment contaminated with organic contaminants using solid-phase organic amendments. The amendments increase the soil's ability to supply biologically available water/nutrients to microorganisms and...

  8. Field Implementation of Bioremediation at INDOT Facilities-Phase I

    OpenAIRE

    Nies, Loring F.; Baldwin, Brett Robert; Mesarch, Matthew B.

    2000-01-01

    Bioremediation is often the most cost-effective and successful technique available for the remediation of soils and groundwater contaminated with organic pollutants (e.g. petroleum). The goal of bioremediation is to stimulate naturally occurring microorganisms to biodegrade the contaminants to harmless products. To be in compliance with EPA regulations all underground fuel storage tanks must have spill, leak and corrosion protection. Many older obsolete tanks had deteriorated to the extent th...

  9. Bioremediation--Why doesn't it work sometimes?

    International Nuclear Information System (INIS)

    Biological treatment has rapidly become the technology of choice for remediation of soils contaminated by petroleum constituents. Since the mid-1980s, bioremediation has been used at more than 100 locations to cost-effectively remediate hundreds of thousands of cubic yards of contaminated soil. However, despite the excellent track record of bioremediation, during the past few years bioremediation was not successful at several sites. The same type of contaminated soils has been treated successfully at numerous other sites. The treatment process was the same, but bioremediation was not effective. Testing identified other sites where bioremediation was unsuccessful for remediating petroleum constituents, and the factors that contributed to the failures were explored in greater depth. This article outlines a quick and inexpensive screening technique that allows one to determine whether bioremediation is practical and also provides an assessment of the time and cost factors. It involves four steps: (1) Site study; (2) Regulatory analysis; (3) Biological screening; (4) Treatability testing. The methodology can be reduced to a set of decision trees to simplify the screening process

  10. Bioremediation of Phenanthrene Polluted Soils

    Directory of Open Access Journals (Sweden)

    Simona Belviso

    2005-01-01

    Full Text Available Las mejores condiciones metabólicas para la biodegradación de hidrocarburos por un consorcio microbiano seleccionado de un suelo natural fueron investigadas para mejorar la eficacia de los procesos de la bioremediación para la limpieza de aguas y de suelos contaminados. El fenantreno es uno de los contaminantes más recalcitrantes a la descomposición microbiana y el más difícil de eliminar. Un consorcio microbiano fue seleccionado de un suelo no contaminado usando un medio selectivo que contenía el fenantreno como única fuente de carbono; El ADN fue extraído de las colonias microbianas purificadas y el ADNr 16S fue PCR-amplificado y ordenado para la caracterización. Con objeto de mejorar la biodisponibilidad del fenantreno, las ¿, ¿, ¿-, ciclodextrina fueron probadas como coadyuvantes. Las cinéticas de degradación fueron realizadas: en presencia de ¿-, B-, ¿-, ciclodextrina en fase acuosa a 28°C y 37°C; en presencia de ¿-ciclodextrina en fase fangosa a 37°C y en fase sólida a temperatura ambiente. La concentración del fenantreno fue detectada por HPLC. La degradación del fenantreno depende del tipo de ciclodextrinas y de la temperatura. En fase acuosa, el efecto combinado de la temperatura y la adición de ciclodextrina mejora la degradación del fenantreno, y la B-ciclodextrina es el mejor coadyuvante cuando está combinado a una temperatura de 37°C. En fase fangosa, la tasa de degradación fue más baja que en la fase sólida, indicando un papel más importante de la disponibilidad del aire que de la temperatura en el proceso de biodegradación. El consorcio microbiano fue caracterizado. En conclusión, la bioaugmentación de consorcios microbianos autóctonos, el aumento de la biodisponibilidad por B-ciclodextrina, la alta temperatura ambiental y la buena aireación del suelo dan lugar a una disminución significativa (el 50% en 35 días del fenantreno en suelos contaminados.

  11. Enhanced bioremediation as a cost effective approach following thermally enhanced soil vapour extraction for sites requiring remediation of chlorinated solvents - 16296

    International Nuclear Information System (INIS)

    Thermally enhanced bioremediation can be a more cost-effective alternative to full scale in-situ thermal treatment especially for sites contaminated with chlorinated solvents, where reductive dechlorination is or might be a dominant biological step. The effect of Thermally Enhanced Soil Vapour Extraction (TESVE) on indigenous microbial communities and the potential for subsequent biological polishing of chlorinated solvents was investigated in field trials at the Western Storage Area (WSA) - RSRL (formerly United Kingdom Atomic Energy Authority - UKAEA) Oxfordshire, UK. The WSA site had been contaminated with various chemicals including mineral oil, chloroform, trichloroethane (TCA), carbon tetrachloride and tetrachloroethene (PCE). The contamination had affected the unsaturated zone, groundwater in the chalk aquifer and was a continuing source of groundwater contamination below the WSA. During TESVE the target treatment zone was heated to above the boiling point of water increasing the degree of volatilization of contaminants of concern (CoC), which were mobilised and extracted in the vapour phase. A significant reduction of concentrations of chlorinated solvent in the unsaturated zone was achieved by the full-scale application of TESVE - In Situ Thermal Desorption (ISTD) technology. The rock mass temperature within target treatment zone remained in the range of 35 deg. - 44 deg. C, 6 months after cessation of heating. The concentration of chlorinated ethenes and other CoC were found to be significantly lower adjacent to the thermal treatment area and 1 to 2 orders of magnitude lower within the thermal treatment zone. Samples were collected within and outside the thermal treatment zone using BioTrapsR (passive, in- situ microbial samplers) from which the numbers of specific bacteria were measured using quantitative polymerase chain reaction (qPCR) methods of analysis. High populations of reductive de-chlorinators such as Dechalococcoides spp. and Dehalobacter spp

  12. In-situ bioremediation via horizontal wells

    International Nuclear Information System (INIS)

    This project is designed to demonstrate in situ bioremediation of groundwater and sediment contaminated with chlorinated solvents. Indigenous microorganisms were stimulated to degrade TCE, PCE and their daughter products in situ by addition of nutrients to the contaminated zone. In situ biodegradation is a highly attractive technology for remediation because contaminants are destroyed, not simply moved to another location or immobilized, thus decreasing costs, risks, and time, while increasing efficiency and public and regulatory acceptability. Bioremediation has been found to be among the least costly technologies in applications where it will work (Radian 1989). Subsurface soils and water adjacent to an abandoned process sewer line at the SRS have been found to have elevated levels of TCE (Marine and Bledsoe 1984). This area of subsurface and groundwater contamination is the focus of a current integrated demonstration of new remediation technologies utilizing horizontal wells. Bioremediation has the potential to enhance the performance of in situ air stripping as well as offering stand-alone remediation of this and other contaminated sites (Looney et al. 1991). Horizontal wells could also be used to enhance the recovery of groundwater contaminants for bioreactor conversions from deep or inaccessible areas (e.g., under buildings) and to enhance the distribution of nutrient or microbe additions in an in situ bioremediation

  13. DNAPL Bioremediation-RTDF. Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    The Bioremediation Working Group of the Remediation Technologies Development Forum is a consortium including General Electric, Beak International, Ciba-Geigy, Dow, DuPont, ICI Americas, Novartis, Zeneca, DOE, the U.S. Air Force and the EPA. Each partner in the consortium brings expertise as well as resources to conduct studies on the effectiveness of bioremediation in degrading contaminants in soil. Reactive Transport in Three Dimensions (RT3D) software is based on the premise that bioremediation processes can be designed and controlled like other chemical processes and is now being using for natural attenuation evaluation at several government and industrial chlorinated ethenes contaminated sites. Users simply enter the site-specific information to simulate the contaminant plume in the ground water and can then evaluate various bioremediation options

  14. Bioremediation of Petroleum Contaminated Soil Using Bio-Slurry Reactor Process%生物反应器法处理油泥污染土壤的研究

    Institute of Scientific and Technical Information of China (English)

    张海荣; 姜昌亮; 赵彦; 李培军; 许华夏; 杨桂芬

    2001-01-01

    Bio-remidiation possibility of soil contaminated by oil mud,and the optimization of the technological conditions for the bioremediation were studied using bio-slurry reactor in pilot-scale.A group of micro-orgamism which are addicted to oil and rich in both amount and species in oil contaminated soil was discovered.Fusarium sp.was screeded for its high crude oil degradation rate.Oil mud with high concentration of crude oil was mixed with clean soil in the ratio of 1∶1,and 10% complex organic fertilizer and inorganic nutrients in proper proportion were added before treatment. Particularly,microbiological agent of indigenous superior strains for crude oil degradation was applied. Other operative conditions of the reactor included 25℃ for temperature and intermittent venting. After 75 days operation,the contents of total petroleum hydrocarbon (TPH) in oil mud was decreased from 43.39 to 0.72g*kg-1.The degradation rate of TPH reached 98.3% under optimal conditions.

  15. Bioremediation of nanomaterials

    Science.gov (United States)

    Chen, Frank Fanqing; Keasling, Jay D; Tang, Yinjie J

    2013-05-14

    The present invention provides a method comprising the use of microorganisms for nanotoxicity study and bioremediation. In some embodiment, the microorganisms are bacterial organisms such as Gram negative bacteria, which are used as model organisms to study the nanotoxicity of the fullerene compounds: E. coli W3110, a human related enterobacterium and Shewanella oneidensis MR-1, an environmentally important bacterium with versatile metabolism.

  16. Natural and accelerated bioremediation research program plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This draft plan describes a ten-year program to develop the scientific understanding needed to harness and develop natural and enhanced biogeochemical processes to bioremediate contaminated soils, sediments and groundwater at DOE facilities. The Office of Health and Environmental Research (OHER) developed this program plan, with advice and assistance from DOE`s Office of Environmental Management (EM). The program builds on OHER`s tradition of sponsoring fundamental research in the life and environmental sciences and was motivated by OHER`s and Office of Energy Research`s (OER`s) commitment to supporting DOE`s environmental management mission and the belief that bioremediation is an important part of the solution to DOE`s environmental problems.

  17. Bioremediation of petroleum hydrocarbon-contaminated soils by cold-adapted microorganisms:Research advance%低温微生物修复石油烃类污染土壤研究进展

    Institute of Scientific and Technical Information of China (English)

    王世杰; 王翔; 卢桂兰; 汪群慧; 李发生; 郭观林

    2011-01-01

    Cold-adapted microorganisms such as psychrotrophs and psychrophiles widely exist in the soils of sub-Arctic, Arctic, Antarctic, alpine, and high mountains, being the important microbial resources for the biodegradation of petroleum hydrocarbons at low temperature. Using the unique advantage of cold-adapted microorganisms to the bioremediation of petroleum hydrocarbon-contaminated soils in low temperature region has become a research hotspot. This paper summarized the category and cold-adaptation mechanisms of the microorganisms able to degrade petroleum hydrocarbon at low temperature, biodegradation characteristics and mechanisms of different petroleum fractions under the action of cold-adapted microorganisms. bio-stimulation techniques for improving biodegradation efficiency, e. g. , inoculating petroleum-degrading microorganisms and adding nutrients or bio-surfactants. and the present status of applying molecular biotechnology in this research field,aimed to provide references to the development of bioremediation techniques for petroleum hydrocarbon-contaminated soils.%耐冷菌、嗜冷菌等低温微生物广泛存在于极地、高山以及高纬度等土壤环境中,是石油烃类污染物在低温条件下降解与转化的重要微生物资源.利用低温微生物的独特优势,石油污染土壤的低温生物修复技术的研究成为当前热点领域.本文系统综述了低温石油烃降解菌的分类及冷适机制,低温微生物对不同类型石油烃组分的降解特征和降解机理,低温环境中接种降解菌、添加营养物质和表面活性剂等强化技术在石油污染土壤中生物修复的应用.以及微生物分子生物学技术在低温微生物降解石油烃的研究现状,为拓展我国石油污染土壤生物修复技术提供参考.

  18. Bioremediation of oil spills

    International Nuclear Information System (INIS)

    The conversion of oil to environmentally benign chemicals such as water and carbon dioxide by 'hydrocarbon-eating' bacteria is described. The emphasis is on a new process to selectively increase the population of 'oil eating' bacteria, a development that became the foundation for the second-generation bioremediation accelerator, Inipol EAP-22. Second-generation bioremediation products focus on providing nitrogen and phosphorus, chemicals that are not present in crude oil in readily available form, but are essential for the synthesis of proteins, nucleic acids, phospholipids and the energy metabolism of the bacteria. Providing these chemicals in the proper amounts encourages the preferential growth of oil-degrading microbes already present in the local biomass, thus overcoming the major limiting factor for biodegradation. These second-generation bioremediation products also have strong oleophilic properties engineered into them, to assure that the nutrients essential for the bacteria are in contact with the oil. The first major test for second-generation bioremediation accelerators came with the clean-up of the oil spill from the Exxon Valdez, a disaster that contaminated more than 120 kilometres of Alaskan beaches along the shores of Prince William Sound. The Inipol EAP-22 successfully held the nutrients in contact with the oil for the duration of the treatment period, despite constant exposure to the washing action of the surf and occasional heavy rainstorms. Today, the accelerator is routinely used in cleaning up all types of ordinary spills including diesel fuel spills along railway right-of-ways, truck yards and refinery sludge. Conditions under which the application of the accelerator is likely to be most successful are described

  19. Immobilization of bacteria isolated from the mining areas on polymeric supports for bioremediation

    International Nuclear Information System (INIS)

    Today pollution is an important environmental problem. Many bacteria have the ability to degrade several types of pollutants in various media (soil, water and air) are used in bioremediation. The present work is to study bacterial diversity colonizing contaminated soil from a mining site in the region of Gafsa and Sfax phosphogypsum and evaluate their potential in bioremediation. Three bacterial strains were selected based on the presence of pigments. These strains have been studied for their tolerances of strontium. Selected strains, was assessed for its bioremediation potential to confirm his use in the biodeppolution processes.

  20. Laboratory study on the bioremediation of diesel oil contaminated soil from a petrol station Estudo laboratorial da biorremediação de solo de posto de combustíveis contaminado com óleo diesel

    Directory of Open Access Journals (Sweden)

    Adriano Pinto Mariano

    2007-06-01

    Full Text Available The purpose of the present study was to investigate possible methods to enhance the rate of aerobic biodegradation of hydrocarbons (ex-situ treatments. In this work, the bioremediation processes were applied to a sandy soil with a high level of contamination originated from the leakage of a diesel oil underground storage tank at a petrol station. Laboratory scale experiments (Bartha biometer flasks were used to evaluate the biodegradation of the diesel oil. Enhancement of biodegradation was carried out through biostimulation (addition of nitrogen and phosphorus solutions or Tween 80 surfactant and bioaugmentation (bacterial consortium isolated from a landfarming system. To investigate interactions between optimizing factors, and to find the right combination of these agents, the study was based on full factorial experimental design. Efficiency of biodegradation was simultaneously measured by two methods: respirometric (microbial CO2 production and gas chromatography. Acute toxicity tests with Daphnia similis were applied for examination of the efficiency of the processes in terms of the generation of less toxic products. Results showed that all bioremediation strategies enhanced the natural bioremediation of the contaminated soil and the best results were obtained when treatments had nutritional amendment. Respirometric data indicated a maximum hydrocarbon mineralization of 19.8%, obtained through the combination of the three agents, with a total petroleum hydrocarbons (TPH removal of 45.5% in 55 days of treatment. At the end of the experiments, two predominant bacteria species were isolated and identified (Staphylococcus hominis and Kocuria palustris.O objetivo do presente estudo foi investigar possíveis métodos para aumentar a taxa de biodegradação aeróbia de hidrocarbonetos (tratamentos ex-situ. Neste trabalho, processos de biorremediação foram aplicados a um solo arenoso com alto nível de contaminação ocasionada por um vazamento de

  1. Combined use of Mediterranean local resources for restoring TCE-Contaminated soils. The bioremediation effect of Dittrichia viscosa and vermicomposted olive wastes

    International Nuclear Information System (INIS)

    Trichloroethylene (TCE) and its metabolic intermediates are resistant to biodegradation in aerobic subsurface environments, which contributes to their persistence in soils and polluted groundwater. In this study, the combined action of Dittricha viscosa (L.) and vermicomposted olive waste for the remediation of a TCE-contaminated soil was analyzed. (Author)

  2. Bioremediation of nitroaromatic and haloaromatic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Alleman, B.C.; Leeson, A. [eds.

    1999-10-01

    Sites contaminated with explosive compounds, pesticides, herbicides, PCBs, and other aromatic compounds present formidable technical, regulatory, and financial challenges. The application of bioremediation technologies at such sites offers the promise of cost-effective site remediation that can serve as a key component of a well-formulated strategy for achieving site closure. This volume presents the results of bench-, pilot-, and field-scale projects focused on the use of biological approaches to remediate problem compounds, such as RDX, HMX, TNT, DDT, 2,4-D, nitro- and chlorobenzenes, nitroaniline, chloroaniline, hexachlorobenzene, PCPs, PCBs, and dichlorophenol in soils and groundwater.

  3. Brevibacterium frigoritolerans as a Novel Organism for the Bioremediation of Phorate.

    Science.gov (United States)

    Jariyal, Monu; Gupta, V K; Mandal, Kousik; Jindal, Vikas

    2015-11-01

    Phorate, an organophosphorus insecticide, has been found effective for the control of various insect pests. However, it is an extremely hazardous insecticide and causes a potential threat to ecosystem. Bioremediation is a promising approach to degrade the pesticide from the soil. The screening of soil from sugarcane fields resulted in identification of Brevibacterium frigoritolerans, a microorganism with potential for phorate bioremediation was determined. B. frigoritolerans strain Imbl 2.1 resulted in the active metabolization of phorate by between 89.81% and 92.32% from soils amended with phorate at different levels (100, 200, 300 mg kg(-1) soil). But in case of control soil, 33.76%-40.92% degradation were observed. Among metabolites, sulfone was found as the main metabolite followed by sulfoxide. Total phorate residues were not found to follow the first order kinetics. This demonstrated that B. frigoritolerans has potential for bioremediation of phorate both in liquid cultures and agricultural soils. PMID:26205232

  4. Use of bioremediation to resolve a petroleum hydrocarbon contamination lawsuit

    International Nuclear Information System (INIS)

    Bioremediation was selected to remediate a public works site in the South Bay of San Diego County, California. The soil and groundwater at this site was contaminated with petroleum hydrocarbons and was the subject of extensive litigation. The parties agreed to resolve the dispute by using a combination of bioremediation and excavation/disposal. This paper includes an overview of the legal and technical issues involved in addressing the problems that were encountered and how those problems were solved. A model is presented for economically resolving environmental disputes in which the parties jointly agree to remediation of a site using bioremediation or similar techniques. This case study addresses the problems encountered because of the differing needs and goals of the legal and scientific communities. Notwithstanding the conflicts, it is demonstrated that the parties can, in most cases, work together toward remediation and resolution

  5. Application of radioisotope induced EDXRF in bioremediation studies

    International Nuclear Information System (INIS)

    Bioremediation is an emerging technology that employs the use of certain microbes for the clean up of heavy metals/radionuclides contaminated environments. Progress in this field is however handicapped by limited knowledge of the biological processes involved in microbial metal uptake, translocation, tolerance and microbe-metal interactions. Therefore a better understanding of the basic biological processes involved in cell/soil/contaminant interactions would allow further optimization of bioremediation technologies. Advanced analytical techniques have proven to be instrumental in understanding the metal microbe interactions. It is important that in bioremediation studies, the analytical procedures used for elemental determination in cells should be fast, cheap, non-destructive, with easy, sample preparation, good sensitivity and accuracy. The present paper demonstrates the utility of Energy Dispersive X-ray Fluorescence Spectroscopy in detection of uranium and tellurium associated with the microbial cells. This technique was found to be convenient and suitable for such metal microbial interactive studies

  6. COVALENT BINDING OF REDUCED METABOLITES OF [15N3] TNT TO SOIL ORGANIC MATTER DURING A BIOREMEDIATION PROCESS ANALYZED BY 15N NMR SPECTROSCOPY. (R826646)

    Science.gov (United States)

    Evidence is presented for the covalent binding ofbiologically reduced metabolites of 2,4,6-15N3-trinitrotoluene(TNT) to different soil fractions (humic acids, fulvicacids, and humin) using liquid 15N NMR spectroscopy. Asilylation p...

  7. An overview of the bioremediation of inorganic contaminants

    International Nuclear Information System (INIS)

    Bioremediation, or the biological treatment of wastes, usually is associated with the remediation of organic contaminants. Similarly, there is an increasing body of literature and expertise in applying biological systems to assist in the bioremediation of soils, sediments, and water contaminated with inorganic compounds including metals, radionuclides, nitrates, and cyanides. Inorganic compounds can be toxic both to humans and to organisms used to remediate these contaminants. However, in contrast to organic contaminants, most inorganic contaminants cannot be degraded, but must be remediated by altering their transport properties. Immobilization, mobilization, or transformation of inorganic contaminants via bioaccumulation, biosorption, oxidation, reduction, methylation, demethylation, metal-organic complexation, ligand degradation, and phytoremediation are the various processes applied in the bioremediation of inorganic compounds. This paper briefly describes these processes, referring to other contributors in this book as examples when possible, and summarize the factors that must be considered when choosing bioremediation as a cleanup technology for inorganics. Understanding the current state of knowledge as well as the limitations for bioremediation of inorganic compounds will assist in identifying and implementing successful remediation strategies at sites containing inorganic contaminants. 79 refs

  8. Oil bioremediation processes in Brazilian marine environments : laboratory simulations

    International Nuclear Information System (INIS)

    Bioremediation methods have been used in Brazil to remediate contaminated soils from refinery residues. In particular, bioremediation is a process that can reduce the amount of oil that reaches shorelines, by enhancing natural biodegradation. This presentation presents the results of a laboratory study in which seawater contaminated with light crude oil was bioremediated in a period of 28 days using NPK fertilizer. Whole oil gas chromatography and gas chromatography-mass spectrometry analyses of the hydrocarbon fractions were used to determine the extent of oil biodegradation. It was determined that natural degradation occurred in the first 4 days, and mostly through the evaporation of light end n-alkanes. Biodegradation of n-alkanes was found to be most effective after 7 days, and no changes were observed in the relative abundance of steranes and triterpanes. It appears that the addition of NPK nutrient reduces the biodegradation potential of polyaromatic compounds. Seawater samples were also measured to determine the efficiency of bioremediation. The use of NPK fertilizer resulted in higher toxicity after 14 days probably due to the creation of metabolites as polyaromatic compounds biodegrade. Non toxic levels were found to be reestablished after 28 days of bioremediation. 16 refs., 4 tabs., 6 figs

  9. Principles of Bioremediation Assessment

    Science.gov (United States)

    Madsen, E. L.

    2001-12-01

    Although microorganisms have successfully and spontaneously maintained the biosphere since its inception, industrialized societies now produce undesirable chemical compounds at rates that outpace naturally occurring microbial detoxification processes. This presentation provides an overview of both the complexities of contaminated sites and methodological limitations in environmental microbiology that impede the documentation of biodegradation processes in the field. An essential step toward attaining reliable bioremediation technologies is the development of criteria which prove that microorganisms in contaminated field sites are truly active in metabolizing contaminants of interest. These criteria, which rely upon genetic, biochemical, physiological, and ecological principles and apply to both in situ and ex situ bioremediation strategies include: (i) internal conservative tracers; (ii) added conservative tracers; (iii) added radioactive tracers; (iv) added isotopic tracers; (v) stable isotopic fractionation patterns; (vi) detection of intermediary metabolites; (vii) replicated field plots; (viii) microbial metabolic adaptation; (ix) molecular biological indicators; (x) gradients of coreactants and/or products; (xi) in situ rates of respiration; (xii) mass balances of contaminants, coreactants, and products; and (xiii) computer modeling that incorporates transport and reactive stoichiometries of electron donors and acceptors. The ideal goal is achieving a quantitative understanding of the geochemistry, hydrogeology, and physiology of complex real-world systems.

  10. Bioremediation of marine oil pollution

    International Nuclear Information System (INIS)

    An assessment is presented of the scientific and technological developments in the area of bioremediation and biodegradation of marine oil pollution. A number of allied technologies are also considered. The basic technology in bioremediation involves adding fertilizers to an oil spill to enhance the natural process of oil biodegradation. Bioremediation can be applied to open systems such as beach or land spills, or in closed and controlled environments such as storage containers, specially constructed or modified bioreactors, and cargo tanks. The major advantage of using closed environments is the opportunity to control the physical and nutritional parameters to optimize the rate of biodegradation. An evaluation of the state of the art of bioremediation in Canada is also included. Recommendations are made to involve the Canadian Transportation Development Centre in short-term research projects on bioremediation. These projects would include the use of a barge as a mobile bioreactor for the treatment of off-loaded oily waste products, the use of in-situ bioremediation to carry out extensive cleaning, degassing, and sludge remediation on board an oil tanker, and the use of a barge as a mobile bioreactor and facility for the bioremediation of bilges. 51 refs., 4 figs., 14 tabs

  11. Isolamento e seleção de fungos para biorremediação a partir de solo contaminado com herbicidas triazínicos Isolation and screening of fungi to bioremediation from triazine herbicide contaminated soil

    Directory of Open Access Journals (Sweden)

    Luciane Maria Colla

    2008-06-01

    Full Text Available A biorremediação é uma tecnologia que utiliza o metabolismo de microrganismos para eliminação ou redução, a níveis aceitáveis, de poluentes presentes no ambiente. Os herbicidas triazínicos são usados intensivamente no controle de ervas daninhas, principalmente na cultura de milho. Objetivou-se, neste trabalho, isolar fungos filamentosos de solos contaminados com herbicidas triazínicos (atrazine e simazine e selecionar os microrganismos isolados quanto à capacidade de crescimento em meio adicionado de atrazine. Os microrganismos foram isolados, cultivados em meio Ágar-Batata-Dextrose (BDA acidificado com ácido tartárico 10%, adicionado de 50 mg.Kg-1 de atrazine e incubados por 5 dias a 25ºC. Foi realizada a medida diária do crescimento fúngico e calculada a velocidade de crescimento radial através de regressão linear dos raios das colônias utilizando-se a equação r(t = a + VCR .t (r:raio; t: tempo; VCR: velocidade de crescimento radial. Os resultados de VCR foram analisados através de Anova simples e do teste de Tukey, para comparação de médias. Foram isolados 15 fungos, pertencentes aos gêneros Aspergillus, Penicillium e Trichoderma. As maiores VCRs foram obtidas com fungos Aspergillus (A1 e Penicillium (AS1, isolados de solo contaminado com atrazine e atrazine adicionado de simazine, respectivamente, que apresentaram VCRs de 1,57 mm.d-1 e 1,28 mm.d-1. O crescimento dos fungos em meio contaminado com a atrazine indica a possibilidade de utilização desses fungos em estudos de biorremediação de solos contaminados com herbicidas triazínicos.Bioremediation is a technology that uses microrganism metabolism to quickly eliminate or reduce pollutants to acceptable levels into the environment. The triazine herbicides are intensively used to control harmful grass in the culture of maize. The aim of this work was to isolate filamentous fungi from soil contaminated with triazine herbicides and screening these fungi due to

  12. Mineralization of PCBs by the genetically modified strain Cupriavidus necator JMS34 and its application for bioremediation of PCBs in soil

    Energy Technology Data Exchange (ETDEWEB)

    Saavedra, Juan Matias; Acevedo, Francisca; Gonzalez, Myriam; Seeger, Michael [Universidad Tecnica Federico Santa Maria, Valparaiso (Chile). Lab. de Microbiologia Molecular y Biotecnologia

    2010-07-15

    Polychlorobiphenyls (PCBs) are classified as ''high-priority pollutants''. Diverse microorganisms are able to degrade PCBs. However, bacterial degradation of PCBs is generally incomplete, leading to the accumulation of chlorobenzoates (CBAs) as dead-end metabolites. To obtain a microorganism able to mineralize PCB congeners, the bph locus of Burkholderia xenovorans LB400, which encodes one of the most effective PCB degradation pathways, was incorporated into the genome of the CBA-degrading bacterium Cupriavidus necator JMP134-X3. The bph genes were transferred into strain JMP134-X3, using the mini-Tn5 transposon system and biparental mating. The genetically modified derivative, C. necator strain JMS34, had only one chromosomal insertion of bph locus, which was stable under nonselective conditions. This modified bacterium was able to grow on biphenyl, 3-CBA and 4-CBA, and degraded 3,5-CBA in the presence of m-toluate. The strain JMS34 mineralized 3-CB, 4-CB, 2,4{sup '}-CB, and 3,5-CB, without accumulation of CBAs. Bioaugmentation of PCB-polluted soils with C. necator strain JMS34 and with the native B. xenovorans LB400 was monitored. It is noteworthy that strain JMS34 degraded, in 1 week, 99% of 3-CB and 4-CB and approximately 80% of 2,4{sup '}-CB in nonsterile soil, as well as in sterile soil. Additionally, the bacterial count of strain JMS34 increased by almost two orders of magnitude in PCB-polluted nonsterile soil. In contrast, the presence of native microflora reduced the degradation of these PCBs by strain LB400 from 73% (sterile soil) to approximately 50% (nonsterile soil). This study contributes to the development of improved biocatalysts for remediation of PCB-contaminated environments. (orig.)

  13. Bioremediation of Carbendazim by Streptomyces albogriseolus

    Directory of Open Access Journals (Sweden)

    Ridhima Arya

    2014-08-01

    Full Text Available Carbendazim (methyl-1H-benzimidazol-2-ylcarbamate, or MBC is a benzimidazole fungicide which is used to protect crops against the attack of fungi. MBC has a half-life of about 3-12 months and remain persistent in the environment which may lead to many harmful consequences. Besides chemical and photo-catalytic degradation of pesticides, microbial degradation has now been evolved as a much effective and safer way to eliminate these harmful compounds from the environment. However, in the literature very few reports are available where microbial community is involved in degrading MBC. Hence, the present study was planned to investigate the role of microbes isolated from the field soils for the bioremediation of MBC. Soil samples were collected from wheat fields of northern regions of India. Enrichment culture technique was employed to isolate the bacterium which was found to be growing at higher concentrations of MBC up to 500µg/ml. After biochemical and morphological analysis, the bacterium was identified as Streptomyces albogriseolus. Streptomyces albogriseolus was found to degrade MBC in a time-dependent manner from the initial concentration of 29 ppm to 285.67ppb and 62.73ppb in 24hrs and 48hrs respectively. LCMS-MS analysis was carried out to detect 2-aminobenzimidazole, a metabolite formed after degradation in 10 hrs of growth which eventually disappeared after 24hrs of growth. The strain Streptomyces albogriseolus holds a promising potential to be an efficient MBC bioremediation agent.

  14. ANAEROBIC BIOREMEDIATION OF PAH-CONTAMINATED SOIL: ASSESSMENT OF THE DEGRADATION OF CONTAMINANTS AND BIOGAS PRODUCTION UNDER THERMOPHILIC AND MESOPHILIC CONDITIONS

    Czech Academy of Sciences Publication Activity Database

    Sayara, T.; Čvančarová, Monika; Cajthaml, Tomáš; Sarra, M.; Sánchez, A.

    2015-01-01

    Roč. 14, č. 1 (2015), s. 153-165. ISSN 1582-9596 R&D Projects: GA ČR GA525/09/1058 Institutional support: RVO:61388971 Keywords : anaerobic digestion * central composite design * PAH-contaminated soil Subject RIV: EE - Microbiology, Virology Impact factor: 1.065, year: 2014

  15. ORD RESEARCH PRIORITIES IN BIOREMEDIATION

    Science.gov (United States)

    ORD is conducting research on bioremediation impacting Superfund sites, RCRA facilities, underground storage tanks and oil spills. Work supporting Superfund is focused on understanding monitored natural recovery in sediments for contaminants including PCBs and PAHs. Under RCRA,...

  16. Bioremediation of oil spills

    International Nuclear Information System (INIS)

    For some years now UK and European oil spill response agencies, together with oil companies having an exploration or production interest in the European area, have been developing interest in the possible use of bioremediation techniques in combatting oil spills. The interest has accelerated in the aftermath of Exxon Valdez but there is significant scepticism over the actual value of the technique. The promise of increased rates of oil degradation, using bacteria or nutrients, does not yet appear to have been properly validated and there is concern over possible knock-on environmental effects. In consequence the response agencies are reluctant to bring the technique into their current combat armory. Some of the questions raised are: What efficacious techniques are available and how were they proven? On what type of oils can they be used? What is the scope for their use (at sea, type of coastline, temperature limitations, etc.)? What are the short and long term effects? Does bioremediation really work and offer a potential tool for oil spill clean-up? How do cleaning rates compare with natural recovery? There are many others. The view of the European Commission is that there should be a coordinated effort to answer these questions, but that effort should be properly targeted. I concur strongly with this view. The tasks are too large and varied for piecemeal attention. The European Commission wishes to initiate appropriate coordinated work, directed at the needs of European nations but which will subsequently inform the international response community through the International Maritime Organization and its Oil Pollution Preparedness and Response Cooperation initiative

  17. Bioremediation of a PAH-contaminated gasworks site with the Ebiox vacuum heap system

    International Nuclear Information System (INIS)

    A former gasworks site in the industrial city of Winterthur, Switzerland, was extremely contaminated with polycyclic aromatic hydrocarbons (PAHs); benzene, toluene, ethylbenzene, and xylenes (BTEX); phenols; ammonia; and mineral oils. Three vacuum heaps, with a total volume of 10,500 m3 of contaminated soil, were bioremediated during 1993/94. Separating excavated soil material into different soil qualities was of particular importance because of the pathway definition of the specific soil material. Excavation of contamination took longer than 10 months, delivering continuously different contaminated soil-type material for bioremediation. Conditioning and subsequent biostimulation of the large soil volumes were the prerequisites for most advanced milieu optimization. The degradation results demonstrated the potential for successful application of bioremediation on former industrial sites. PAH-concentration reductions ranged from 75 to 83% for the soil values and from 87 to 98% for the elution values. Soil and elution target qualities were met within 6 to 12 months, depending on initial PAH-concentration and soil structure. The achieved target quality for the bioremediated soil allowed subsequent reuse as high-value backfill material for the ongoing building project

  18. MODERN APPROACHES FOR THE STUDY OF s-TRIAZINE HERBICIDE BIOREMEDIATION IN AGRICULTURAL SOILS Enfoques modernos para el estudio de la biorremediación de herbicidas s-triazinas en suelos agrícolas

    Directory of Open Access Journals (Sweden)

    Marcela Hernández

    2008-01-01

    Full Text Available The extensive use of s-triazine herbicides in diverse countries causes environmental and health concern. Simazine and atrazine are s-triazines widely used in agriculture and forestry. Although, natural dissipation of s-triazines in soils by physicochemical processes has been described, the main mechanism for their removal is biological degradation by microorganisms. Bioremediation is a successful strategy for the removal of i-triazines in soil. For bioaugmentation processes, s-triazine-degrading bacteria are required, which isolation from agricultural soils was described in this report. Studies of s-triazine adsorption and leaching in soil are useful to determine the bioavailability of these herbicides. The detection of s-triazine-degrading catabolic activity by most-probable-number (MPN and the reduction of the respiration indicator 2,3,5-triphenyl-2H-tetrazolium chloride (TTC were presented. The relative abundances of s-triazine catabolic genes in soil were analyzed by the MPN-PCR technique. Culture-independent molecular methods such as FISH, T-RFLP and clone libraries are useful to study the effects of herbicide application and bioaugmentation on soil microbial communities and their dynamics. These experimental methods allow the design of biotechnological strategies for the clean-up of s-triazine contaminated soils.El empleo masivo de herbicidas s-triazinas en diversos países ha causado preocupación ambiental y de salud. Simazina y atrazina son s-triazinas ampliamente utilizados en la agricultura y en predios forestales. La disipación natural de s-triazinas en suelos puede ocurrir por procesos físicoquímicos. Sin embargo, el principal mecanismo de remoción de estos herbicidas es la degradación mediada por microorganismos. La biorremediación es una estrategia eficiente para la remoción de s-triazinas del suelo. Para establecer procesos de bioaumentación, se requieren bacterias degradadoras de s-triazinas, cuyo aislamiento desde

  19. Development and applications of a DNA labeling method with magnetic nanoparticles to study the role of horizontal gene transfer events between bacteria in soil pollutant bioremediation processes.

    Science.gov (United States)

    Pivetal, J; Frénéa-Robin, M; Haddour, N; Vézy, C; Zanini, L F; Ciuta, G; Dempsey, N M; Dumas-Bouchiat, F; Reyne, G; Bégin-Colin, S; Felder-Flesh, D; Ghobril, C; Pourroy, G; Simonet, P

    2015-12-01

    Horizontal gene transfers are critical mechanisms of bacterial evolution and adaptation that are involved to a significant level in the degradation of toxic molecules such as xenobiotic pesticides. However, understanding how these mechanisms are regulated in situ and how they could be used by man to increase the degradation potential of soil microbes is compromised by conceptual and technical limitations. This includes the physical and chemical complexity and heterogeneity in such environments leading to an extreme bacterial taxonomical diversity and a strong redundancy of genes and functions. In addition, more than 99 % of soil bacteria fail to develop colonies in vitro, and even new DNA-based investigation methods (metagenomics) are not specific and sensitive enough to consider lysis recalcitrant bacteria and those belonging to the rare biosphere. The objective of the ANR funded project “Emergent” was to develop a new culture independent approach to monitor gene transfer among soil bacteria by labeling plasmid DNA with magnetic nanoparticles in order to specifically capture and isolate recombinant cells using magnetic microfluidic devices. We showed the feasibility of the approach by using electrotransformation to transform a suspension of Escherichia coli cells with biotin-functionalized plasmid DNA molecules linked to streptavidin-coated superparamagnetic nanoparticles. Our results have demonstrated that magnetically labeled cells could be specifically retained on micromagnets integrated in a microfluidic channel and that an efficient selective separation can be achieved with the microfluidic device. Altogether, the project offers a promising alternative to traditional culture-based approaches for deciphering the extent of horizontal gene transfer events mediated by electro or natural genetic transformation mechanisms in complex environments such as soil. PMID:26498963

  20. Bioremediation of soil contaminated with hydrocarbons using sewage sludge as an alternative source of nutrients; Biorremediacion de suelo contaminado con hidrocarburos empleando lodos residuales como fuente alterna de nutrientes

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Prado, Adriana [Instituto Tecnologico de Durango, Durango, Durango (Mexico)]. E-mail: adriana.martinez@orst.edu; Perez Lopez, Ma. Elena [Centro Interdisciplinario de Investigacion para el Desarrollo Integral Regional (IPN-CIIDIR) Unidad Durango, Durango, Durango (Mexico); Pinto Espinoza, Joaquin; Gurrola Nevarez, Blanca Amelia; Osorio Rodriguez, Ana Lilia [Instituto Tecnologico de Durango, Durango, Durango (Mexico)

    2011-07-01

    In this research an aerobic bioremediation process, of a petroleum hydrocarbon contaminated soil, was evaluated using residual sludge (biosolids) from a local domestic wastewater treatment plant, as an alternative micro and macro nutrient source. Contamination of the soil resulted from accidental spills with hydrocarbons, mainly diesel, gasoline, and residual oils, from the San Antonio mining unit which belongs to Goldcorp Mexico Company, located in Tayoltita, from the municipality of San Dimas, Durango. Laboratory and pilot experiments were conducted, adjusting soil water content to field capacity and carbon:nitrogen (C:N) ratio to 10:1, evaluating the effect of addition of nutrients, density of the material being remediated, and the influence of soil particle size in the remediation process. It was demonstrated that the biosolids stimulated the native microorganisms of the polluted soil; consequently the hydrocarbon degradation process was accelerated. The hydrocarbons were used as carbon and electron donor source, coupling the oxidation-reduction reaction with oxygen which served as the electron acceptor. Treated soil was remediated and reached the maximum permissible limit (MPL), established in the Mexican current regulations (NOM-138-SEMARNAT/SS-2003), at both stages, and it is recommended as an optional process to the mining company to fulfill with the Clean Industry Program. [Spanish] En la presente investigacion se evaluo el proceso de biorremediacion aerobica de un suelo contaminado con hidrocarburos de petroleo empleando lodos residuales (biosolidos), provenientes de una planta de tratamiento de aguas residuales (PTAR) domesticas de la localidad, como fuente alterna de macro y micronutrientes. La contaminacion del suelo fue resultado de derrames accidentales de diesel, aceite y grasas en la unidad minera San Antonio perteneciente al grupo Goldcorp Mexico, ubicada en el municipio de San Dimas, en Tayoltita, Durango. Se realizaron experimentos a escala

  1. Effects of bioremediation agents on oil degradation in mineral and sandy salt marsh sediments

    International Nuclear Information System (INIS)

    Although bioremediation for oil spill cleanup has received considerable attention in recent years, its satisfactory use in the cleanup of oil spills in the wetland environment is still generally untested. A study of the often most used bioremediation agents, fertiliser, microbial product and soil oxidation, as a means of enhancing oil biodegradation in coastal mineral and sandy marsh substrates was conducted in controlled greenhouse conditions. Artificially weathered south Louisiana crude oil was applied to sods of marsh (soil and intact vegetation) at the rate of 2 l m-2. Fertiliser application enhanced marsh plant growth, soil microbial populations, and oil biodegradation rate. The live aboveground biomass of Spartina alterniflora with fertiliser application was higher than that without fertiliser. The application of fertiliser significantly increased soil microbial respiration rates, indicating the potential for enhancing oil biodegradation. Bioremediation with fertiliser application significantly reduced the total targeted normal hydrocarbons (TTNH) and total targeted aromatic hydrocarbons (TTAH) remaining in the soil, by 81% and 17%, respectively, compared to those of the oil controls. TTNH/hopane and TTAAH/hopane ratios showed a more consistent reduction, further suggesting an enhancement of oil biodegradation by fertilisation. Furthermore, soil type affected oil bioremediation; the extent of fertiliser-enhanced oil biodegradation was greater for sandy (13% TTNH remaining in the treatments with fertiliser compared to the control) than for mineral soils (26% of the control), suggesting that fertiliser application was more effective in enhancing TTNH degradation in the former. Application of microbial product and soil oxidant had no positive effects on the variables mentioned above under the present experimental conditions, suggesting that microbial degraders are not limiting biodegradation in this soil. Thus, the high cost of microbial amendments during

  2. Stakeholder acceptance analysis: In-well vapor stripping, in-situ bioremediation, gas membrane separation system (membrane separation)

    International Nuclear Information System (INIS)

    This document provides stakeholder evaluations on innovative technologies to be used in the remediation of volatile organic compounds from soils and ground water. The technologies evaluated are; in-well vapor stripping, in-situ bioremediation, and gas membrane separation

  3. A case study of the intrinsic bioremediation of petroleum hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Barker, G.W.; Raterman, K.T.; Fisher, J.B.; Corgan, J.M. [and others

    1995-12-31

    Condensate liquids have been found to contaminate soil and groundwater at two gas production sites in the Denver Basin operated by Amoco Production Co. These sites have been closely monitored since July 1993 to determine whether intrinsic aerobic or anaerobic bioremediation of hydrocarbons occurs at a sufficient rate and to an adequate endpoint to support a no-intervention decision. Groundwater monitoring and analysis of soil cores suggest that intrinsic bioremediation is occurring at these sites by multiple pathways including aerobic oxidation, Fe{sup 3+} reduction, and sulfate reduction. In laboratory experiments the addition of gas condensate hydrocarbons to saturated soil from the gas production site stimulated sulfate reduction under anaerobic and oxygen-limiting conditions, and nitrate and Fe{sup 3+} reduction under oxygen-limiting conditions, compared to biotic controls that lacked hydrocarbon and sterile controls. The sulfate reduction corresponded to a reduction in the amount of toluene relative to other hydrocarbons. These results confirmed that subsurface soils at the gas production site have the potential for intrinsic bioremediation of hydrocarbons.

  4. 砷污染土壤的生物修复研究进展%Research Advance in Bioremediation of Soil Polluted by Arsenic

    Institute of Scientific and Technical Information of China (English)

    杨金红

    2012-01-01

    In this article, the research advance in the microbial remediation, phytoremediation and plant - microbial remediation of soil polluted by arsenic at home and abroad was summarized, and the existing problems and the developmental prospects in this field in the future were analyzed.%综述了国内外对砷污染土壤微生物修复、植物修复及微生物-植物修复技术的应用等方面的研究进展,并对该领域存在的问题和今后的发展趋势作了具体的分析.

  5. Isolation, characterization and development of bacteria in the Mine Gafsa for applications in bioremediation

    International Nuclear Information System (INIS)

    Today pollution represents an important environmental problem. Bacterial ability to bioremediate many types of pollutants in different matrixes (soil, water, and air) have been widely acknowledged. The goal of the present work is to isolate from contaminated soil of Gafsa, in Tunisia, bacterial strains to evaluate their potential for bioremediation. Soil from the mining area of Gafsa was collected. Initially, many bacterial strains were isolated in TGY agar (Tryptone/Glucose/Yeast extract agar) based on the presence of pigments. The primary bacterial selection was performed using heavy metals and the minimal inhibitory concentrations (MICs) of a metal-resistant bacterium, Cupriavidus metallidurans CH34. Isolated metal-resistant bacterium was checked for its potential to resistant to gamma radiation. Selected strain, Micrococcus luteus S7, was assessed for its bioremediation potential of matrixes artificially contaminated under laboratory conditions for its future use in developing a bio product for contaminated soil inoculation.

  6. Complete degradation of the endocrine disruptor di-(2-ethylhexyl) phthalate by a novel Agromyces sp. MT-O strain and its application to bioremediation of contaminated soil.

    Science.gov (United States)

    Zhao, Hai-Ming; Du, Huan; Lin, Jing; Chen, Xue-Bin; Li, Yan-Wen; Li, Hui; Cai, Quan-Ying; Mo, Ce-Hui; Qin, Hua-Ming; Wong, Ming-Hung

    2016-08-15

    A newly isolated strain Agromyces sp. MT-O could utilize various phthalates and efficiently degraded di-(2-ethylhexyl) phthalate (DEHP). Response surface methodology was successfully employed for the optimization of culture conditions including pH (7.2), temperature (29.6), and inoculum size (OD600 of 0.2), resulting in almost complete degradation of DEHP (200mgL(-1)) within 7days. At different initial concentrations (50-1000mgL(-1)), DEHP degradation curves were fitted well with the first-order kinetic model, and the half-life of DEHP degradation ranged from 0.83 to 2.92days. Meanwhile, the substrate inhibition model was used to describe the special degradation rate with qmax, Ks, and Ki of 0.6298day(-1), 86.78mgL(-1), and 714.3mgL(-1), respectively. The GC-MS analysis indicated that DEHP was degraded into mono-ethylhexyl phthalate and phthalate acid before its complete mineralization. Bioaugmentation of DEHP-contaminated soils with strain MT-O has greatly enhanced DEHP disappearance rate in soils, providing great potential for efficiently remediating DEHP-contaminated environment. PMID:27099998

  7. Promotion of arsenic phytoextraction efficiency in the fern Pteris vittata by the inoculation of As-resistant bacteria: a soil bioremediation perspective.

    Directory of Open Access Journals (Sweden)

    Silvia eLampis

    2015-02-01

    Full Text Available A greenhouse pot experiment was carried out to evaluate the efficiency of arsenic phytoextraction by the fern Pteris vittata growing in arsenic-contaminated soil, with or without the addition of selected rhizobacteria isolated from the polluted site. The bacterial strains were selected for arsenic resistance, the ability to reduce arsenate to arsenite, and the ability to promote plant growth. P. vittata plants were cultivated for 4 months in a contaminated substrate consisting of arsenopyrite cinders and mature compost. Four different experimental conditions were tested: i non-inoculated plants; ii plants inoculated with the siderophore-producing and arsenate-reducing bacteria Pseudomonas sp. P1III2 and Delftia sp. P2III5 (A; iii plants inoculated with the siderophore and indoleacetic acid-producing bacteria Bacillus sp. MPV12, Variovorax sp. P4III4 and Pseudoxanthomonas sp. P4V6 (B, and iv plants inoculated with all five bacterial strains (AB. The presence of growth-promoting rhizobacteria increased plant biomass by up to 45% and increased As removal efficiency from 13% without bacteria to 35% in the presence of the mixed inoculum. Molecular analysis confirmed the persistence of the introduced bacterial strains in the soil and resulted in a significant impact on the structure of the bacterial community.

  8. Toxicity of fungal-generated silver nanoparticles to soil-inhabiting Pseudomonas putida KT2440, a rhizospheric bacterium responsible for plant protection and bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Indarchand R. [Nanobiotechnology Laboratory, Department of Biotechnology, S.G.B. Amravati University, Amravati 444602, Maharashtra (India); Department of Biotechnology, Institute of Science, Nipat Niranjan Nagar, Caves Road, Aurangabad 431004, Maharashtra (India); Anderson, Anne J. [Department of Biology, Utah State University, Logan, Utah 84321 (United States); Rai, Mahendra, E-mail: mahendrarai@sgbau.ac.in [Nanobiotechnology Laboratory, Department of Biotechnology, S.G.B. Amravati University, Amravati 444602, Maharashtra (India); Laboratório de Química Biológica, Instituto de Química, UNICAMP, Cidade Universitária “Zefferino Vaz” Barão Geraldo, CEP 13083-970, Caixa Postal 6150, Campinas, SP (Brazil)

    2015-04-09

    Highlights: • This study incorporates the mycosynthesis of AgNPs and their characterisation by various methods. • A first attempt demonstrating the toxicity assessment of AgNPs on beneficial soil microbe. • Use of biosensor in Pseudomonas putida KT2440, gave accurate antimicrobial results. - Abstract: Silver nanoparticles have attracted considerable attention due to their beneficial properties. But toxicity issues associated with them are also rising. The reports in the past suggested health hazards of silver nanoparticles at the cellular, molecular, or whole organismal level in eukaryotes. Whereas, there is also need to examine the exposure effects of silver nanoparticle to the microbes, which are beneficial to humans as well as environment. The available literature suggests the harmful effects of physically and chemically synthesised silver nanoparticles. The toxicity of biogenically synthesized nanoparticles has been less studied than physically and chemically synthesised nanoparticles. Hence, there is a greater need to study the toxic effects of biologically synthesised silver nanoparticles in general and mycosynthesized nanoparticles in particular. In the present study, attempts have been made to assess the risk associated with the exposure of mycosynthesized silver nanoparticles on a beneficial soil microbe Pseudomonas putida. KT2440. The study demonstrates mycosynthesis of silver nanoparticles and their characterisation by UV–vis spectrophotometry, FTIR, X-ray diffraction, nanosight LM20 – a particle size distribution analyzer and TEM. Silver nanoparticles obtained herein were found to exert the hazardous effect at the concentration of 0.4 μg/ml, which warrants further detailed investigations concerning toxicity.

  9. Toxicity of fungal-generated silver nanoparticles to soil-inhabiting Pseudomonas putida KT2440, a rhizospheric bacterium responsible for plant protection and bioremediation

    International Nuclear Information System (INIS)

    Highlights: • This study incorporates the mycosynthesis of AgNPs and their characterisation by various methods. • A first attempt demonstrating the toxicity assessment of AgNPs on beneficial soil microbe. • Use of biosensor in Pseudomonas putida KT2440, gave accurate antimicrobial results. - Abstract: Silver nanoparticles have attracted considerable attention due to their beneficial properties. But toxicity issues associated with them are also rising. The reports in the past suggested health hazards of silver nanoparticles at the cellular, molecular, or whole organismal level in eukaryotes. Whereas, there is also need to examine the exposure effects of silver nanoparticle to the microbes, which are beneficial to humans as well as environment. The available literature suggests the harmful effects of physically and chemically synthesised silver nanoparticles. The toxicity of biogenically synthesized nanoparticles has been less studied than physically and chemically synthesised nanoparticles. Hence, there is a greater need to study the toxic effects of biologically synthesised silver nanoparticles in general and mycosynthesized nanoparticles in particular. In the present study, attempts have been made to assess the risk associated with the exposure of mycosynthesized silver nanoparticles on a beneficial soil microbe Pseudomonas putida. KT2440. The study demonstrates mycosynthesis of silver nanoparticles and their characterisation by UV–vis spectrophotometry, FTIR, X-ray diffraction, nanosight LM20 – a particle size distribution analyzer and TEM. Silver nanoparticles obtained herein were found to exert the hazardous effect at the concentration of 0.4 μg/ml, which warrants further detailed investigations concerning toxicity

  10. The Kwajalein bioremediation demonstration: Final technical report

    International Nuclear Information System (INIS)

    The US Army Kwajalein Atoll (USAKA) Base, located in the Republic of the Marshall Islands (RMI) in the east-central Pacific Ocean, has significant petroleum hydrocarbon contamination resulting from years of military activities. Because of its remoteness, the lack of on-site sophisticated remediation or waste disposal facilities, the amenability of petroleum hydrocarbons to biodegradation, and the year-round temperature favorable for microbial activity, USAKA requested, through the Hazardous Waste Remedial Actions Program (HAZWRAP), that a project be conducted to evaluate the feasibility of using bioremediation for environmental restoration of contaminated sites within the atoll. The project was conducted in four distinct phases: (1) initial site characterization and on-site biotreatability studies, (2) selection of the demonstration area and collection of soil columns, (3) laboratory column biotreatability studies, and (4) an on-site bioremediation demonstration. The results of phases (1) and (3) have been detailed in previous reports. This report summarizes the results of phases (1) and (3) and presents phases (2) and (4) in detail

  11. The Kwajalein bioremediation demonstration: Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J.R. Jr.; Walker, A.B.

    1994-12-01

    The US Army Kwajalein Atoll (USAKA) Base, located in the Republic of the Marshall Islands (RMI) in the east-central Pacific Ocean, has significant petroleum hydrocarbon contamination resulting from years of military activities. Because of its remoteness, the lack of on-site sophisticated remediation or waste disposal facilities, the amenability of petroleum hydrocarbons to biodegradation, and the year-round temperature favorable for microbial activity, USAKA requested, through the Hazardous Waste Remedial Actions Program (HAZWRAP), that a project be conducted to evaluate the feasibility of using bioremediation for environmental restoration of contaminated sites within the atoll. The project was conducted in four distinct phases: (1) initial site characterization and on-site biotreatability studies, (2) selection of the demonstration area and collection of soil columns, (3) laboratory column biotreatability studies, and (4) an on-site bioremediation demonstration. The results of phases (1) and (3) have been detailed in previous reports. This report summarizes the results of phases (1) and (3) and presents phases (2) and (4) in detail.

  12. In situ bioremediation using horizontal wells. Innovative technology summary report

    International Nuclear Information System (INIS)

    In Situ Bioremediation (ISB) is the term used in this report for Gaseous Nutrient Injection for In Situ Bioremediation. This process (ISB) involves injection of air and nutrients (sparging and biostimulation) into the ground water and vacuum extraction to remove Volatile Organic Compounds (VOCs) from the vadose zone concomitant with biodegradation of the VOCs. This process is effective for remediation of soils and ground water contaminated with VOCs both above and below the water table. A full-scale demonstration of ISB was conducted as part of the Savannah River Integrated Demonstration: VOCs in Soils and Ground Water at Nonarid Sites. This demonstration was performed at the Savannah River Site from February 1992 to April 1993

  13. Low cost bioremediation of petroleum contamination using denitrification

    International Nuclear Information System (INIS)

    Denitrification is the use of nitrate in place of oxygen in the metabolism of certain microorganisms. Under the appropriate conditions, these microorganisms can be stimulated to degrade petroleum and other contaminants in soils and groundwaters. Denitrification eliminates the problems of subsurface aeration with the addition of nitrate salts that are inexpensive, very soluble in water, and mobile in subsurface environments. This paper describes the process and examines the use of denitrification in bioremediation projects

  14. U.S. bioremediation market: Yesterday, today, and tomorrow

    International Nuclear Information System (INIS)

    The use of bioremediation for full-scale cleanup has increased dramatically throughout the past 10 years. This growth in activity is expected to continue through the year 2000. It is estimated that fewer than 10 companies offered field-level bioremedial services prior to 1985. Although the market today still is dominated by a small number of companies, the total number of firms claiming to offer services and/or products for bioremediation purposes has grown to over 1,000. It is estimated that aggregate bioremediation revenues for 1994 through 2000 will equal $2 to $3 billion (1994 dollars). This revenue will be generated in the initial part of this 7-year period primarily from underground storage cleanup, with revenues from hazardous waste sites becoming an increasingly important factor by accounting for the majority of revenues in the latter years. Market opportunities exist in technology development and implementation including biosparging, centralized treatment facilities for petroleum-contaminated soils, biofilters, and improvements in the cost-effectiveness of the technology

  15. Characterization of weathered petroleum hydrocarbons during a landfarming bioremediation study

    Directory of Open Access Journals (Sweden)

    Maletić Snežana

    2012-01-01

    Full Text Available Landfarming bioremediation was performed over 2 years on soil heavily polluted with weathered oil and oil derivatives: 23200 mg kg-1 of mineral oil, 35300 mg kg-1 total hydrocarbons, and 8.65 mg kg-1 of total PAHs. During the experiment, mineral oil, total hydrocarbon and PAH concentrations decreased by approximately 53%, 27% and 72%, respectively. A GC/MS-Scan was used to identify the crude oil components that persist after bioremediation treatment of contaminated soil and the metabolites generated during this process. The data shows that in weathered-hydrocarbons contaminated soil, the number of initially detected compounds after the bioremediation process further decreased over a 2 year period, and at the same time several new compounds were observed at the end of experiment. Higher persistence was also shown for heavier n-alkanes and branched alkanes, which could be detected over a longer period of time. The analysis highlights the importance of n-alkanes, their substituted derivatives and polycyclic aromatic hydrocarbons as the most significant pollutants.

  16. Microbial inoculants and fertilization for bioremediation of oil in wetlands

    International Nuclear Information System (INIS)

    Bioremediation is an attractive alternative to physical methods of oil spill cleanup in wetlands where the ecosystem can be easily damaged. Because populations of oil-degrading microorganisms are usually low in wetlands, there is potential for increasing bioremediation through bioaugmentation in conjunction with N and P supplementation. Eight microbial inoculant products were added to microcosms containing soil from a salt marsh. Four of these products were also used in mesocosms containing Spartina alterniflora grown in a glasshouse. In unfertilized microcosms, the extent of oil degraded as measured by carbon dioxide evolution during 90 days, was 30% higher in the product with the highest activity than was recorded in the control with oil by 36%. None of the products when added to the fertilized soil increased activity above that of the fertilized control with oil. Addition of oil to microcosms increased populations of hydrocarbon-degrading microorganisms, but bioaugmentation products did not increase populations. Neither addition of products nor fertilization enhanced the disappearance of oil in mesocosms in the glasshouse. Approximately 50% of the weathered oil disappeared in 41 d for all treatments. Because bioaugmentation did not enhance oil degradation, it seems that natural populations of hydrocarbon-degrading microorganisms were adequate in the salt marsh soil for bioremediation

  17. In situ bioremediation of Hanford groundwater

    International Nuclear Information System (INIS)

    Liquid wastes containing radioactive, hazardous, and regulated chemicals have been generated throughout the 40+ years of operations at the US Department of Energy's (DOE) Hanford Site. Some of these wastes were discharged to the soil column and many of the waste components, including nitrate, carbon tetrachloride (CCl4), and several radionuclides, have been detected in the Hanford groundwater. Current DOE policy prohibits the disposal of contaminated liquids directly to the environment, and remediation of existing contaminated groundwaters may be required. In situ bioremediation is one technology currently being developed at Hanford to meet the need for cost effective technologies to clean groundwater contaminated with CCl4, nitrate, and other organic and inorganic contaminants. This paper focuses on the latest results of an on going effort to develop effective in situ remediation strategies through the use of predictive simulations

  18. Systems biology approach to bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Romy; Wu, Cindy H.; Hazen, Terry C.

    2012-06-01

    Bioremediation has historically been approached as a ‘black box’ in terms of our fundamental understanding. Thus it succeeds and fails, seldom without a complete understanding of why. Systems biology is an integrated research approach to study complex biological systems, by investigating interactions and networks at the molecular, cellular, community, and ecosystem level. The knowledge of these interactions within individual components is fundamental to understanding the dynamics of the ecosystem under investigation. Finally, understanding and modeling functional microbial community structure and stress responses in environments at all levels have tremendous implications for our fundamental understanding of hydrobiogeochemical processes and the potential for making bioremediation breakthroughs and illuminating the ‘black box’.

  19. Microorganism as a tool of bioremediation technology for cleaning environment: A review

    Directory of Open Access Journals (Sweden)

    Ravindra Singh

    2014-03-01

    Full Text Available The term bioremediation has been introduced to describe the process of using biological agents to remove toxic waste from environment. Bioremediation is the most effective management tool to manage the polluted environment and recover contaminated soil. The hazardous wastes generated from the chemical processes/operations are being treated using physico-chemical and biological methods by the respective industries to meet the prescribed standard as per the Environmental Protection Act, 1986. The wastes treated by the respective industries are collected at Common Effluent Treatment Plant, before discharge into the environment. After the treatment of collected waste at Common Effluent Treatment Plant, the solid and treated effluents are segregated and disposed of into the soil- water environment. In spite of the present treatment technology, the organic pollutants are found persisting in the soil-water environment above their acceptable level. Hence, bioremediation is an innovative technology that has the potential to alleviate the toxic contamination.

  20. Rapid bioremediation processes: Theory and application

    International Nuclear Information System (INIS)

    Bioremediation generally involves stimulating microorganisms (bacteria and fungi) to grow and in the process of growth, degrade hazardous waste. A variety of contaminant compounds can be readily biodegraded by both pure cultures of bacteria and by bacteria under field conditions. These compounds include petroleum and its distillates (gasoline, diesel fuel, etc.), aromatic hydrocarbons (BTEX and PAHS), PCBs (most congeners), chlorinated aeromatics (TCE and dichloroethane) and chlorinated aromatics (polychlorophenols and chlorobenzene). While the metabolic pathways for biodegradation are fairly distinct for each class of contaminants, the pathways generally converge on a central metabolite, acetyl-CoA, which can then be directly converted to CO2 or microbial biomass. Organic compounds are most rapidly degraded aerobically. SafeSoil is a proprietary additive and biotreatment process. The additive contains inorganic nutrients (primarily N and P) and organic nutrients (simple sugars, protein and more complex cometabolites) which, upon addition to soil, stimulate natural microbial (primarily bacterial) populations to grow and degrade the contaminants of interest. Field applications of SafeSoil at Channel Gateway Development Project in Marina del Rey, California, validated that the SafeSoil treatment process effectively reduced TPH and BTEX concentrations for petroleum-contaminated soils to below action levels in as few as 4 days; the median curing time was 14 days. Longer chain hydrocarbons required more time, up to 36 days for TPH. Aerobic soil bacterial populations increased up to five-fold in response to treatment and returned to near pretreatment levels soon after the contaminant level was depleted. Volatilization of organics was measured and was found to be insignificant when compared to the total contaminant load indicating that the majority of the hydrocarbon contaminants were removed by biological means

  1. The use of hydraulic fracturing to enhance in situ bioremediation

    International Nuclear Information System (INIS)

    Bioremediation was determined to be a viable method of degrading the hydrocarbon contaminants at a fuel distribution and storage facility in Dayton, Ohio. Laboratory tests done by the on-site contractor indicated that percolating water containing oxygen and nutrients through the soil would result in biodegradation of the contaminants. The site is underlain by silty clay till of relatively low hydraulic conductivity, so conventional methods of delivery were expected to result in either slow rates of percolation, and thus slow rates of remediation, or excessive drilling costs. Therefore, the site was selected as a candidate for hydraulic fracturing, a technique of creating high permeability channel ways in tight soils. 1 fig

  2. Bio-remediation of a sludge containing hydrocarbons

    OpenAIRE

    Ayotamuno, M. J.; Okparanma, R. N.; Nweneka, E. K.; Ogaji, S. O. T.; Probert, S. D.

    2007-01-01

    Bio-augmentation has been used as a bio-remediation option for hydrocarbon-contaminated, oily-sludge restoration. This sludge was obtained from the Bonny-Terminal Improvement Project (BTIP) for Bonny Island, near Port Harcourt, Nigeria. Its total hydrocarbon-content (THC) was 69,372 mg/kg of sludge. Three treatment reactors (X, Y and Z) and one control reactor (A) were charged with 1500 g of oily sludge and 250 g of agricultural soil (i.e. an oily sludge to soil ratio of 6:1), the mixture hom...

  3. Bioremediation: A competitive alternative for the cleanup of contaminated MGP sites

    International Nuclear Information System (INIS)

    Polycyclic aromatic hydrocarbons (PAHs) are characteristically highly carcinogenic, microbial recalcitrant, and accumulate easily in soil and groundwater. This contributes to the increasing environmental concern of contamination from PAHs. PAH contamination occurs primarily from leaking underground storage tanks and manufactured gas plant (MGP) sites. In this work, contaminated soil was analyzed for feasibility of cleanup via bioremediation, and selection criteria for the microorganisms were developed for the specificity of a MGP sites. The bioremediation process was compared with the ex-situ processes of coal agloflotation, solvent extraction, and supercritical fluid extraction

  4. Assessment of natural hydrocarbon bioremediation at two gas condensate production sites

    International Nuclear Information System (INIS)

    Condensate liquids are present in soil and groundwater at two gas production sites in the Denver-Julesburg Basin operated by Amoco. These sites have been closely monitored since July 1993 to determine whether intrinsic aerobic or anaerobic bioremediation of hydrocarbons occurs at a sufficient rate and to an adequate endpoint to support a no-intervention decision. Groundwater monitoring and analysis of soil cores strongly suggest that intrinsic bioremediation is occurring at these sites by multiple pathways, including aerobic oxidation, Fe(III) reduction, and sulfate reduction

  5. The use of modern on-site bioremediation systems to reduce crude oil contamination on oilfield properties

    International Nuclear Information System (INIS)

    Oil-field properties frequently have areas in which the soil has been degraded with crude oil. Soil contaminated in this manner is often considered either a hazardous waste or designated waste under regulatory guidelines. As a result, there is often concern about an owner's liabilities and the financial institution's liabilities whenever oilfield properties are transferred to new operators, abandoned, or converted to other uses such as real estate. There is also concern about the methods and relative costs to remediate soil which has been contaminated with crude oil. Modern, well-designed, soil bioremediation systems are cost effective for the treatment of crude oil contamination, and these systems can eliminate an owner's subsequent liabilities. Compared to traditional land-farming practices, a modern on-site bioremediation system (1) requires significantly less surface area, (2) results in lower operating costs, and (3) provides more expeditious results. Compared to excavation and off-site disposal of the contaminated soil, on-site bioremediation will eliminate subsequent liabilities and is typically more cost effective. Case studies indicate that o-site bioremediation systems have been successful at reducing the crude oil contamination in soil to levels which are acceptable to regulatory agencies in less than 10 weeks. Total costs for on-site bioremediation has ranged from $35 to $40 per cubic yard of treated soil, including excavation

  6. Remediation of hexachlorobenzene contaminated soils by rhamnolipid enhanced soil washing coupled with activated carbon selective adsorption.

    Science.gov (United States)

    Wan, Jinzhong; Chai, Lina; Lu, Xiaohua; Lin, Yusuo; Zhang, Shengtian

    2011-05-15

    The present study investigates the selective adsorption of hexachlorobenzene (HCB) from rhamnolipid solution by a powdered activated carbon (PAC). A combined soil washing-PAC adsorption technique is further evaluated on the removal of HCB from two soils, a spiked kaolin and a contaminated real soil. PAC at a dosage of 10 g L(-1) could achieve a HCB removal of 80-99% with initial HCB and rhamnolipid concentrations of 1 mg L(-1) and 3.3-25 g L(-1), respectively. The corresponding adsorptive loss of rhamnolipid was 8-19%. Successive soil washing-PAC adsorption tests (new soil sample was subjected to washing for each cycle) showed encouraging leaching and adsorption performances for HCB. When 25 g L(-1) rhamnolipid solution was applied, HCB leaching from soils was 55-71% for three cycles of washing, and HCB removal by PAC was nearly 90%. An overall 86% and 88% removal of HCB were obtained for kaolin and real soil, respectively, by using the combined process to wash one soil sample for twice. Our investigation suggests that coupling AC adsorption with biosurfactant-enhanced soil washing is a promising alternative to remove hydrophobic organic compounds from soils. PMID:21397398

  7. Subtask 1.16-Slow-Release Bioremediation Accelerators

    International Nuclear Information System (INIS)

    Low-cost methods are needed to enhance various bioremediation technologies, from natural attenuation to heavily engineered remediation of subsurface hydrocarbon contamination. Many subsurface sites have insufficient quantities of nitrogen and phosphorus, resulting in poor bioactivity and increased remediation time and costs. The addition of conventional fertilizers can improve bioactivity, but often the nutrients dissolve quickly and migrate away from the contaminant zone before being utilized by the microbes. Through this project, conducted by the Energy and Environmental Research Center, polymers were developed that slowly release nitrogen and phosphorus into the subsurface. Conceptually, these polymers are designed to adhere to soil particles in the subsurface contamination zone where they slowly degrade and release nutrients over longer periods of time compared to conventional fertilizer applications. Tests conducted during this study indicate that some of the developed polymers have excellent potential to satisfy the microbial requirements for enhanced bioremediation

  8. Kinetics of in situ bioremediation of Hanford groundwater

    International Nuclear Information System (INIS)

    Liquid wastes containing radioactive, hazardous, and regulated chemicals have been generated throughout the 40+ years of operations at the US Department of Energy's (DOE) Hanford Site. Some of these wastes were discharged to the soil column and many of the waste components, including nitrate, carbon tetrachloride (CCl4), and several radionuclides, have been detected in the Hanford groundwater. Current DOE policy prohibits the disposal of contaminated liquids directly to the environment, and may require the remediation of existing contaminated groundwaters. In situ bioremediation is one technology currently being developed at Hanford to meet the need for cost effective technologies to clean groundwater contaminated with CCl4, nitrate, and other organic and inorganic contaminants. This paper focuses on the latest results of an on-going effort to quantify the biological and chemical reactions that would occur during in situ bioremediation

  9. Walking softly : using bioremediation to reclaim sites leaves a smaller footprint than traditional dig-and-dump technologies

    Energy Technology Data Exchange (ETDEWEB)

    Collison, M.

    2006-10-15

    Recent developments in the bioremediation industry in Alberta were outlined. The market for bioremediation services in the United States alone is estimated to hit $1 billion by 2010 and has become a staple of the U.S. Environmental Protection Agency's emergency management practices in the event of an oil spill. Alberta Environment has recently updated its policies and guidance documents on contaminated sites management, and is planning a manual that will include best bioremediation practices. Advances in the science and technology of bioremediation and a rise in environmental awareness have contributed to the sector's growth in recent years. In the past, oil companies in Alberta typically reclaimed sites by digging up contaminated soil and trucking it to landfills. Recent techniques developed by industry and bioremediation experts now mean that soil profiles can remain undisturbed, and biological treatment amendments are often introduced into the fractures to destroy contaminants where they lie. The National Research Council's Biotechnology Research Institute (NRC-BRI) is now conducting research to identify and profile unknown micro-organisms to improve conditions for the breakdown of toxins. Bioremediation techniques are also being used in urban redevelopment. It was concluded that while the environmental industry is regulatory-driven, many oil and mining companies are deciding to invest in remediation instead of waiting until a later date. A list of new bioremediation partnerships with industry, government and municipalities was also provided. 2 figs.

  10. Walking softly : using bioremediation to reclaim sites leaves a smaller footprint than traditional dig-and-dump technologies

    International Nuclear Information System (INIS)

    Recent developments in the bioremediation industry in Alberta were outlined. The market for bioremediation services in the United States alone is estimated to hit $1 billion by 2010 and has become a staple of the U.S. Environmental Protection Agency's emergency management practices in the event of an oil spill. Alberta Environment has recently updated its policies and guidance documents on contaminated sites management, and is planning a manual that will include best bioremediation practices. Advances in the science and technology of bioremediation and a rise in environmental awareness have contributed to the sector's growth in recent years. In the past, oil companies in Alberta typically reclaimed sites by digging up contaminated soil and trucking it to landfills. Recent techniques developed by industry and bioremediation experts now mean that soil profiles can remain undisturbed, and biological treatment amendments are often introduced into the fractures to destroy contaminants where they lie. The National Research Council's Biotechnology Research Institute (NRC-BRI) is now conducting research to identify and profile unknown micro-organisms to improve conditions for the breakdown of toxins. Bioremediation techniques are also being used in urban redevelopment. It was concluded that while the environmental industry is regulatory-driven, many oil and mining companies are deciding to invest in remediation instead of waiting until a later date. A list of new bioremediation partnerships with industry, government and municipalities was also provided. 2 figs

  11. Diagnosis of In Situ Metabolic State and Rates of Microbial Metabolism During In Situ Uranium Bioremediation with Molecular Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lovley, Derek R

    2012-11-28

    The goal of these projects was to develop molecule tools to tract the metabolic activity and physiological status of microorganisms during in situ uranium bioremediation. Such information is important in able to design improved bioremediation strategies. As summarized below, the research was highly successful with new strategies developed for estimating in situ rates of metabolism and diagnosing the physiological status of the predominant subsurface microorganisms. This is a first not only for groundwater bioremediation studies, but also for subsurface microbiology in general. The tools and approaches developed in these studies should be applicable to the study of microbial communities in a diversity of soils and sediments.

  12. Bioremediation of Metals and Radionuclides: What It Is and How It Works (2nd Edition)

    Energy Technology Data Exchange (ETDEWEB)

    Palmisano, Anna; Hazen, Terry

    2003-09-30

    an insoluble salt in the sediment. In other cases, the opposite occurs--the solubility of the altered species increases, increasing the mobility of the contaminant and allowing it to be more easily flushed from the environment. Both of these kinds of transformations present opportunities for bioremediation of metals and radionuclides--either to lock them in place, or to accelerate their removal. DOE's goal is to reduce the risk and related exposure to ground water, sediment, and soil contamination at Department of Energy facilities. Subsurface bioremediation of metals and radionuclides at the site of contamination (in situ bioremediation) is not yet in widespread use. However, successful in situ applications of bioremediation to petroleum products and chlorinated solvents provide experience from which scientists can draw. Taken together, the accomplishments in these areas have led scientists and engineers to be optimistic about applying this technology to the mixtures of metals and radionuclides that are found at some of the most contaminated DOE sites. This primer examines some of the basic microbial and chemical processes that are a part of bioremediation, specifically the bioremediation of metals and radionuclides. The primer is divided into six sections, with the information in each building on that of the previous. The sections include features that highlight topics of interest and provide background information on specific biological and chemical processes and reactions. The first section briefly examines the scope of the contamination problem at DOE facilities. The second section gives a summary of some of the most commonly used bioremediation technologies, including successful in situ and ex situ techniques. The third discusses chemical and physical properties of metals and radionuclides found in contaminant mixtures at DOE sites, including solubility and the most common oxidation states in which these materials are found. The fourth section is an

  13. Restoration of contaminated soils

    International Nuclear Information System (INIS)

    A great variety of techniques are used for the restoration of contaminated soils. The contamination is present by both organic and inorganic pollutants. Environmental conditions and soil characteristics should take into account in order to implement a remedial technique. The bioremediation technologies are showed as help to remove a variety of soil contaminants. (author)

  14. Enhancing in situ bioremediation with pneumatic fracturing

    International Nuclear Information System (INIS)

    A major technical obstacle affecting the application of in situ bioremediation is the effective distribution of nutrients to the subsurface media. Pneumatic fracturing can increase the permeability of subsurface formations through the injection of high pressure air to create horizontal fracture planes, thus enhancing macro-scale mass-transfer processes. Pneumatic fracturing technology was demonstrated at two field sites at Tinker Air Force Base, Oklahoma City, Oklahoma. Tests were performed to increase the permeability for more effective bioventing, and evaluated the potential to increase permeability and recovery of free product in low permeability soils consisting of fine grain silts, clays, and sedimentary rock. Pneumatic fracturing significantly improved formation permeability by enhancing secondary permeability and by promoting removal of excess soil moisture from the unsaturated zone. Postfracture airflows were 500% to 1,700% higher than prefracture airflows for specific fractured intervals in the formation. This corresponds to an average prefracturing permeability of 0.017 Darcy, increasing to an average of 0.32 Darcy after fracturing. Pneumatic fracturing also increased free-product recovery rates of number 2 fuel from an average of 587 L (155 gal) per month before fracturing to 1,647 L (435 gal) per month after fracturing

  15. Fungal bioremediation of the creosote-contaminated soil: Influence of Pleurotus ostreatus and Irpex lacteus on polycyclic aromatic hydrocarbons removal and soil microbial community composition in the laboratory-scale study

    Czech Academy of Sciences Publication Activity Database

    Byss, Marius; Elhottová, Dana; Tříska, Jan; Baldrian, Petr

    2008-01-01

    Roč. 2008, č. 73 (2008), s. 1518-1523. ISSN 0045-6535 R&D Projects: GA MŠk LC06066 Institutional research plan: CEZ:AV0Z60870520; CEZ:AV0Z60660521; CEZ:AV0Z50200510 Keywords : Wood-rotting basidiomycetes * Soil microbial community * PLFA, PAH Subject RIV: EH - Ecology, Behaviour Impact factor: 3.054, year: 2008

  16. Change of isoprenoids, steranes and terpanes during ex situ bioremediation of mazut on industrial level

    Directory of Open Access Journals (Sweden)

    Beškoski Vladimir P.

    2010-01-01

    Full Text Available The paper presents results of the ex situ bioremediation of soil contaminated by mazut (heavy residual fuel oil in the field scale (600 m3. A treatment-bed (thickness 0.4 m consisted of mechanically mixed mazut-contaminated soil, softwood sawdust as the additional carbon source and crude river sand, as bulking and porosity increasing material. The inoculation/reinoculation was conducted periodically using a biomass of a consortium of zymogenous microorganisms isolated from the bioremediation substrate. The biostimulation was performed through addition of nutritious substances (N, P and K. The aeration was improved by systematic mixing of the bioremediation system. After 50 days, the number of hydrocarbon degraders increased 100 times. Based on the changes in the group composition, the average biodegradation rate during bioremediation was 24 mg/kg/day for the aliphatic fraction, 6 mg/kg/day for the aromatic fraction, and 3 mg/kg/day for the nitrogen-sulphuroxygen compounds (NSO-asphaltene fraction. In the saturated hydrocarbon fraction, gas chromatography-mass spectrometry (GC-MS in the single ion-monitoring mode (SIM was applied to analyse isoprenoids pristane and phytane and polycyclic molecules of sterane and triterpane type. Biodegradation occurred during the bioremediation process, as well as reduction of relative quantities of isoprenoids, steranes, tri- and tetracyclic terpanes and pentacyclic terpanes of hopane type.

  17. The bioremediation, solution at the land´s pollution caused by hydrocarbon in Sergio Soto oil Refinery.

    Directory of Open Access Journals (Sweden)

    Carlos Blanco Valdivia

    2010-04-01

    Full Text Available The land´s polution caused by hydrocarbon in Sergio Soto oil refinery constituted a problem for the technicians of this entity that in coordination with the Petroleum Investigations Center (CEINPET, carried out a study for the application of the bioremediation in the company. The area to this purpose was determined and the soil impacted was deposit on it, this soil was homogenized with an appropriate equipment (agricultural tractor. The fertilizers were added and the removal stage was made in order to help the soil oxygenation. They were carried out samples and analysis obtaining satisfactory results with the application of the bioremediation in the company.

  18. Bioremediation for coal-fired power stations using macroalgae.

    Science.gov (United States)

    Roberts, David A; Paul, Nicholas A; Bird, Michael I; de Nys, Rocky

    2015-04-15

    Macroalgae are a productive resource that can be cultured in metal-contaminated waste water for bioremediation but there have been no demonstrations of this biotechnology integrated with industry. Coal-fired power production is a water-limited industry that requires novel approaches to waste water treatment and recycling. In this study, a freshwater macroalga (genus Oedogonium) was cultivated in contaminated ash water amended with flue gas (containing 20% CO₂) at an Australian coal-fired power station. The continuous process of macroalgal growth and intracellular metal sequestration reduced the concentrations of all metals in the treated ash water. Predictive modelling shows that the power station could feasibly achieve zero discharge of most regulated metals (Al, As, Cd, Cr, Cu, Ni, and Zn) in waste water by using the ash water dam for bioremediation with algal cultivation ponds rather than storage of ash water. Slow pyrolysis of the cultivated algae immobilised the accumulated metals in a recalcitrant C-rich biochar. While the algal biochar had higher total metal concentrations than the algae feedstock, the biochar had very low concentrations of leachable metals and therefore has potential for use as an ameliorant for low-fertility soils. This study demonstrates a bioremediation technology at a large scale for a water-limited industry that could be implemented at new or existing power stations, or during the decommissioning of older power stations. PMID:25646673

  19. Bioremediation of Oil Spills in Cold Environments: A Review

    Institute of Scientific and Technical Information of China (English)

    YANG Si-Zhong; JIN Hui-Jun; WEI Zhi; HE Rui-Xia; JI Yan-Jun; LI Xiu-Mei; YU Shao-Peng

    2009-01-01

    Oil spills have become a serious problem in cold environments with the ever-increasing resource exploitation,transportation,storage,and accidental leakage of oil.Several techniques,including physical,chemical,and biological methods,are used to recover spilled oil from the environment.Bioremediation is a promising option for remediation since it is effective and economic in removing oil with less undue environmental damages.However,it is a relatively slow process in cold regions and the degree of success depends on a number of factors,including the properties and fate of oil spilled in cold environments,and the major microbial and environmental limitations of bioremediation.The microbial factors include bioavailability of hydrocarbons,mass transfer through the cell membrane,and metabolic limitations.As for the environmental limitations in the cold regions,the emphasis is on soil temperatures,freeze-thaw processes,oxygen and nutrients availability,toxicity,and electron acceptors.There have been several cases of success in the polar regions,particularly in the Arctic and sub-Arctic regions.However,the challenges and constraints for bioremediation in cold environments remain large.

  20. DESIGN AND OPERATION OF A HORIZONTAL WELL, IN SITU BIOREMEDIATION SYSTEM

    Science.gov (United States)

    A large field demonstration using nutrient addition to stimulate insitu anaerobic bioremediation of chlorinated solvent contaminated soil and ground water was performed at the former U.S. Department of Energy Pinellas Plant in Largo, Florida, from January through June, 1997. Ins...

  1. Importance of rhizosperic bacteria for bioremediation and approaches for their studies

    Czech Academy of Sciences Publication Activity Database

    Macek, Tomáš; Uhlík, Ondřej; Šanda, Miloslav; Hlaváčová, E.; Ječná, K.; Štursa, P.; Macková, M.

    Bratislava: Copycentrum PACI, 2008. s. 28-29. ISBN 978-80-969950-0-4. [Contaminants and nutrients: Availability, accumulation/exclusion and plant-microbia-soil interactions. 22.05.2008-24.05.2008, Smolenice] Institutional research plan: CEZ:AV0Z40550506 Keywords : rhizosphere * bioremediation * metabolisation * xenebiotics Subject RIV: EI - Biotechnology ; Bionics

  2. Intrinsic bioremediation of landfills interim report

    International Nuclear Information System (INIS)

    Intrinsic bioremediation is a risk management option that relies on natural biological and physical processes to contain the spread of contamination from a source. Evidence is presented in this report that intrinsic bioremediation is occurring at the Sanitary Landfill is fundamental to support incorportion into a Corrective Action Plan (CAP)

  3. Intrinsic bioremediation of landfills interim report

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.L. [Westinghouse Savannah River Company, Aiken, SC (United States); Fliermans, C.B.

    1997-07-14

    Intrinsic bioremediation is a risk management option that relies on natural biological and physical processes to contain the spread of contamination from a source. Evidence is presented in this report that intrinsic bioremediation is occurring at the Sanitary Landfill is fundamental to support incorportion into a Corrective Action Plan (CAP).

  4. Preliminary technology report for Southern Sector bioremediation

    International Nuclear Information System (INIS)

    This project was designed to demonstrate the potential of intrinsic bioremediation and phytoremediation in the Southern Sector of the A/M-Area at the Savannah River Site. A subsurface plume of trichloroethylene (TCE) and perchloroethylene (PCE) is present in the Lost Lake aquifer upgradient of the study site and is predicted to impact the area at some point in the future. The surface area along the Lost lake aquifer seep line where the plume is estimated to emerge was identified. Ten sites along the seep line were selected for biological, chemical, and contaminant treatability analyses. A survey was undertaken in this area to to quantify the microbial and plant population known to be capable of remediating TCE and PCE. The current groundwater quality upgradient and downgradient of the zone of influence was determined. No TCE or PCE was found in the soils or surface water from the area tested at this time. A TCE biodegradation treatability test was done on soil from the 10 selected locations. From an initial exposure of 25 ppm of TCE, eight of the samples biodegraded up to 99.9 percent of all the compound within 6 weeks. This biodegradation of TCE appears to be combination of aerobic and anaerobic microbial activity as intermediates that were detected in the treatability test include vinyl chloride (VC) and the dichloroethenes (DCE) 1,2-cis-dichloroethylene and 1,1-dichloroethylene. The TCE biological treatability studies were combines with microbiological and chemical analyses. The soils were found through immunological analysis with direct fluorescent antibodies (DFA) and microbiological analysis with direct fluorescent antibodies (DFA) and microbiological analysis to have a microbial population of methanotrophic bacteria that utilize the enzyme methane monooxygenase (MMO) and cometabolize TCE

  5. Limitation of point source pesticide pollution: results of bioremediation system.

    Science.gov (United States)

    Spanoghe, P; Maes, A; Steurbaut, W

    2004-01-01

    Groundwater and surface water is at risk of contamination from the use of some agricultural pesticides. In many circumstances pesticide contamination of water resources is more likely to result from point sources than from diffuse sources following approved application to crops in the field. Such point sources include areas on farms where pesticides are handled, filled into sprayers or where sprayers are washed down. To overcome this way of contamination different kind of bio-remediation systems are nowadays in development. In Flanders, Belgium two pilot plants of bioremediation systems for the in situ retention and/or degradation of pesticides were installed. Both systems were based on the Phytobac concept, a watertight excavation filled with straw, peat, compost and soil. The channel was made in the bottom from plastic foil. All kinds of spray rests were captured by the phytobacs. This study focuses on what level pesticides leach, bio-degrade or are retained by the filling of the phytobac. The soil-properties of the filling were investigated. Pesticide tracers were added for monitoring to both phytobacs. Soil and water samples were taken during one year. Pesticides are retained at least for one month by the filling of the phytobac. Almost no pesticide leached out. In winter hardly any pesticide degradation was observed in the filling of the phytobac. In summer no detectable pesticides were still left in the phytobacs. PMID:15756863

  6. Bioremediation of Metals and Radionuclides: What It Is and How It Works (2nd Edition)

    Energy Technology Data Exchange (ETDEWEB)

    Palmisano, Anna; Hazen, Terry

    2003-09-30

    an insoluble salt in the sediment. In other cases, the opposite occurs--the solubility of the altered species increases, increasing the mobility of the contaminant and allowing it to be more easily flushed from the environment. Both of these kinds of transformations present opportunities for bioremediation of metals and radionuclides--either to lock them in place, or to accelerate their removal. DOE's goal is to reduce the risk and related exposure to ground water, sediment, and soil contamination at Department of Energy facilities. Subsurface bioremediation of metals and radionuclides at the site of contamination (in situ bioremediation) is not yet in widespread use. However, successful in situ applications of bioremediation to petroleum products and chlorinated solvents provide experience from which scientists can draw. Taken together, the accomplishments in these areas have led scientists and engineers to be optimistic about applying this technology to the mixtures of metals and radionuclides that are found at some of the most contaminated DOE sites. This primer examines some of the basic microbial and chemical processes that are a part of bioremediation, specifically the bioremediation of metals and radionuclides. The primer is divided into six sections, with the information in each building on that of the previous. The sections include features that highlight topics of interest and provide background information on specific biological and chemical processes and reactions. The first section briefly examines the scope of the contamination problem at DOE facilities. The second section gives a summary of some of the most commonly used bioremediation technologies, including successful in situ and ex situ techniques. The third discusses chemical and physical properties of metals and radionuclides found in contaminant mixtures at DOE sites, including solubility and the most common oxidation states in which these materials are found. The fourth section is an

  7. Fungal degradation of pesticides - construction of microbial consortia for bioremediation

    DEFF Research Database (Denmark)

    Ellegaard-Jensen, Lea

    Pesticides are used worldwide on agricultural land as well as in urban areas. This use has often led to contamination of the environment with serious effects on our natural resources. Frequent pesticide use and spills have led to deterioration of soil quality and pesticide leaching has resulted in...... pesticide contaminated soil and water. The objectives of this PhD were to investigate fungal degradation of pesticides and following to construct microbial consortia for bioremediation. In Manuscript I the fungal degradation of the phenylurea herbicide diuron was studied. Isolates of soil fungi of the genus...... constructing fungal-bacterial consortia and examining whether their degradation would be superior to that of the single strains in unsaturated systems. In Manuscript II a consortium was created for degradation of the pesticide metabolite 2,6-dichlorobenzamide (BAM). A consortium with Mortierella sp. LEJ702 and...

  8. BIOREMEDIATION OF LOW GRADE ORES

    OpenAIRE

    Rashmi Mishra*

    2016-01-01

    The research work presented in this paper is on a Bioremediation for the recovery of zinc from mining waste i.e. Low grade ore of Hindustan Zinc Limited. They are waste product for the mines, as the recovery process is expensive compared to the recovery product moreover it causes lots of pollution   Bioleaching Studies were carried out at different pH using mixed culture grown from mine water. Recovery of zinc in control set (without culture) was 8% in 37 days and at the same pH ...

  9. Polychlorinated biphenyls fractioning assessment in aqueous bioremediation assy with phanerochaete chrysosporium

    OpenAIRE

    Sangely, Matthieu; Sablayrolles, Caroline; Vialle, Claire; Strehaiano, Pierre; Thannberger, Laurent; Vignoles, Mireille

    2009-01-01

    Thanks to growing environmental concerns in public opinion, bioremediation processes are more and more used to decontaminate soils from organic compounds. Polychlorinated biphenyls (PCBs) are known to be world wide spread persistent organic pollutants (POPs). The white rot fungus Phanerochaete chrysosporium is able to degrade PCBs in water, and soil As POPs, PCBs can also be adsorbed onto organic matter, such as Phanerochaete chrysosporium mycelium. This study aims at estimating the fractioni...

  10. TECHNOLOGY MATURATION OF DISPERSION TECHNOLOGY TO AUGMENT BIOREMEDIATION

    Energy Technology Data Exchange (ETDEWEB)

    J. NEELY - 54GO

    2000-07-01

    The data obtained from this preliminary short-term project demonstrated that dispersants such as 54GO are effective in accelerating the bio-remediation of soils containing contamination from waste oils, diesel, creosote and manufactured gas plant waste. This acceleration appears to be in the observation that 54GO quickly separates the hydrocarbon wastes from the soil particles, thereby allowing closer contact with the microbes. The project time limitations impacted the scope of data but was able to demonstrate a general reduction in the levels of contaminates. In this project only Total Petroleum Hydrocarbons [TPH] and 17 polycyclic aromatic hydrocarbons [PAH] were analyzed. These were chosen because they are standardized by EPA methodology. The raw data from these analytical methods indicate that there are many more intermediate metabolizes from the bio-remediation process that were not identified or measured [a limitation of the 17 analyte EPA Method 8270 protocol]. The limited data from these bio-reactors indicates that when both 54GO [dispersant] and stress selected microbes are used the reduction of contaminate metabolizes is the greatest. The use of microbes alone was also effective, but not consistent and to a lesser degree. An additional observation with 54GO, either alone or with microbes is that significant amounts of hydrocarbons were extracted or released from the test soils and became a separate phase floating on the surface of these bio-reactors. The levels of floating oil in these bio-reactors made mixing and sampling difficult tasks. This latter effect of, 54GO, indicates that this family of dispersants are excellent candidates for classic soil washing techniques and may be better served by pre-treating waste soils before mixing with microbes. It is estimated that 75% or more of the hydrocarbons were in the oil phase in these bio-reactors even in low water conditions [saturated soil].

  11. Bioremediation strategies for removal of residual atrazine in the boreal groundwater zone.

    Science.gov (United States)

    Nousiainen, Aura O; Björklöf, Katarina; Sagarkar, Sneha; Nielsen, Jeppe Lund; Kapley, Atya; Jørgensen, Kirsten S

    2015-12-01

    Strategies for bioremediation of atrazine, a pesticide commonly polluting groundwater in low concentrations, were studied in two boreal nonagricultural soils. Atrazine was not mineralized in soil without bioremediation treatments. In biostimulation treatment with molasses, up to 52% of atrazine was mineralized at 10 °C, even though the degradation gene copy numbers did not increase. Incubations with radioactively labeled atrazine followed by microautoradiographic analysis revealed that bioremediation strategies increased the relative proportion of active degraders from 0.3 up to 1.9% of the total bacterial count. These results indicate that atrazine degradation might not solely be facilitated by atzA/trzN-atzB genes. In combined biostimulation treatment using citrate or molasses and augmentation with Pseudomonas citronellolis ADP or Arthrobacter aurescens strain TC1, up to 76% of atrazine was mineralized at 30 °C, and the atrazine degradation gene numbers increased up to 10(7) copies g(-1) soil. Clone libraries from passive samplers in groundwater monitoring wells revealed the presence of phylogenetic groups formerly shown to include atrazine degraders, and the presence of atrazine degradation genes atzA and atzB. These results show that the mineralization of low concentrations of atrazine in the groundwater zone at low temperatures is possible by bioremediation treatments. PMID:26239066

  12. Optimalisation and feasability of bioremediation systems for the processing of spray losses of pesticides.

    Science.gov (United States)

    De Wilde, T; Spanoghe, P; Ryckeboer, J; Springael, D; Jaeken, P

    2006-01-01

    Contamination of ground and surface water puts pressure on the use of pesticides. Pesticide contamination of water can often be linked to point sources rather than to diffuse sources. Examples of such point sources are areas on farms where pesticides are handled, filled into sprayers and where sprayers are cleaned. To reduce contamination from these point sources, different kinds of bio-remediation systems are in various member states of the EU. Bioremediation is the use of living organisms, primarily micro-organisms, to degrade the environmental contaminants into less toxic forms. In this study, the behaviour of six different pesticides with varying physico-chemical properties on substrates used in a bioremediation system is studied. The adsorption of individual pesticides on the substrates is determined. After determination of the adsorption coefficient Kd, it could be concluded for metalaxyl that coco chips had the highest sorption capacity, followed by straw, compost, willow chopping and a sandy loam soil. PMID:17390767

  13. Approach of Bioremediation in Olive Oil and Dairy Industry: A Review

    Directory of Open Access Journals (Sweden)

    Amir Hamid

    2013-02-01

    Full Text Available Bioremediation methods are a promising way of dealing with soil and subsoil contamination by organic substances. This biodegradation process is supported by micro-organisms which use the organic carbon from the pollutants as energy source and cells building blocks. There are several advantages of the implementation of such methods but mainly they have to do with the lack of interference with the ecology of the ecosystem. This study presents the use of technique in numerous ways such as olive oil industry and dairy industry. Although the use of bioremediation technique is not innovative in food industry and microbiology. The use of herbicides, pesticides and contaminated chemicals are producing pollutant compounds in ecosystem which is effecting the environment. Bioremediation method is very constructive method to converted contaminated compounds into non contaminated compounds.

  14. Bioremediation of PAHs and VOCs: Advances in clay mineral-microbial interaction.

    Science.gov (United States)

    Biswas, Bhabananda; Sarkar, Binoy; Rusmin, Ruhaida; Naidu, Ravi

    2015-12-01

    Bioremediation is an effective strategy for cleaning up organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Advanced bioremediation implies that biotic agents are more efficient in degrading the contaminants completely. Bioremediation by microbial degradation is often employed and to make this process efficient, natural and cost-effective materials can serve as supportive matrices. Clay/modified clay minerals are effective adsorbents of PAHs/VOCs, and readily available substrate and habitat for microorganisms in the natural soil and sediment. However, the mechanism underpinning clay-mediated biodegradation of organic compounds is often unclear, and this requires critical investigation. This review describes the role of clay/modified clay minerals in hydrocarbon bioremediation through interaction with microbial agents in specific scenarios. The vision is on a faster, more efficient and cost-effective bioremediation technique using clay-based products. This review also proposes future research directions in the field of clay modulated microbial degradation of hydrocarbons. PMID:26408945

  15. Electrokinetic-enhanced bioremediation of organic contaminants: a review of processes and environmental applications.

    Science.gov (United States)

    Gill, R T; Harbottle, M J; Smith, J W N; Thornton, S F

    2014-07-01

    There is current interest in finding sustainable remediation technologies for the removal of contaminants from soil and groundwater. This review focuses on the combination of electrokinetics, the use of an electric potential to move organic and inorganic compounds, or charged particles/organisms in the subsurface independent of hydraulic conductivity; and bioremediation, the destruction of organic contaminants or attenuation of inorganic compounds by the activity of microorganisms in situ or ex situ. The objective of the review is to examine the state of knowledge on electrokinetic bioremediation and critically evaluate factors which affect the up-scaling of laboratory and bench-scale research to field-scale application. It discusses the mechanisms of electrokinetic bioremediation in the subsurface environment at different micro and macroscales, the influence of environmental processes on electrokinetic phenomena and the design options available for application to the field scale. The review also presents results from a modelling exercise to illustrate the effectiveness of electrokinetics on the supply electron acceptors to a plume scale scenario where these are limiting. Current research needs include analysis of electrokinetic bioremediation in more representative environmental settings, such as those in physically heterogeneous systems in order to gain a greater understanding of the controlling mechanisms on both electrokinetics and bioremediation in those scenarios. PMID:24875868

  16. Patterns of intrinsic bioremediation at two U.S. Air Force bases

    International Nuclear Information System (INIS)

    Intrinsic bioremediation of benzene, toluene, ethylbenzene, and xylenes (BTEX) occurs when indigenous microorganisms work to reduce the total mass of contamination in the subsurface without the addition of nutrients. A conservative tracer, such as trimethylbenzene, found commingled with the contaminant plume can be used to distinguish between attenuation caused by dispersion, dilution from recharge, volatilization, and sorption and attenuation caused by biodegradation. Patterns of intrinsic bioremediation can vary markedly from site to site depending on governing physical, biological, and chemical processes. Intrinsic bioremediation causes measurable changes in groundwater chemistry. Specifically, concentrations of contaminants, dissolved oxygen, nitrate, ferrous iron, sulfate, and methane in groundwater change both temporally and spatially as biodegradation proceeds Operations at Hill Air Force Base (AFB) and Patrick AFB resulted in fuel-hydrocarbon contamination of soil and groundwater. In both cases, trimethylbenzene data confirm that dissolved BTEX is biodegrading. Geochemical evidence from the Hill AFB site suggests that aerobic respiration, denitrification, iron reduction, sulfate reduction, and methanogenesis all are contributing to intrinsic bioremediation of dissolved BTEX. Sulfate reduction is the dominant biodegradation mechanism at this site. Geochemical evidence from Patrick AFB suggests that aerobic respiration, iron reduction, and methanogenesis are contributing to intrinsic bioremediation of dissolved BTEX. Methanogenesis is the dominant biodegradation mechanism at this site

  17. Monitoring and interpreting bioremediation effectiveness

    International Nuclear Information System (INIS)

    Following the Exxon Valdez oil spill in 1989, extensive research was conducted by the US Environments Protection Agency and Exxon to develop and implement bioremediation techniques for oil spill cleanup. A key challenge of this program was to develop effective methods for monitoring and interpreting bioremediation effectiveness on extremely heterogenous intertidal shorelines. Fertilizers were applied to shorelines at concentrations known to be safe, and effectiveness achieved in acceleration biodegradation of oil residues was measure using several techniques. This paper describes the most definitive method identified, which monitors biodegradation loss by measuring changes in ratios of hydrocarbons to hopane, a cycloalkane present in the oil that showed no measurable degradation. Rates of loss measured by the hopane ratio method have high levels of statistical confidence, and show that the fertilizer addition stimulated biodegradation rates as much a fivefold. Multiple regression analyses of data show that fertilizer addition of nitrogen in interstitial pore water per unit of oil load was the most important parameter affecting biodegradation rate, and results suggest that monitoring nitrogen concentrations in the subsurface pore water is preferred technique for determining fertilizer dosage and reapplication frequency

  18. Large Scale Bioremediation of Petroleum Hydrocarbon Contaminated Waste at Various Installations of ONGC. India: Case Studies

    Directory of Open Access Journals (Sweden)

    Ajoy Kumar Mandal

    2014-07-01

    Full Text Available In situ and ex situ bioremediation of oil contaminated effluent pits, sludge pits, oil spilled land and tank bottom, and effluent treatment plant (ETP oily sludge was carried out at Ankleshwar, Mehsana, Assam and Cauvery Asset of Oil and Natural Gas Corporation Limited (ONGC, India. The types of contaminant were heavy paraffinic, asphaltic and light crude oil and emulsified oily sludge /contaminated soil. An indigenous microbial consortium was developed by assembling four species of bacteria, isolated from various oil contaminated sites of India, which could biodegrade different fractions of total petroleum hydrocarbon (TPH of the oily waste to environment friendly end products. The said consortium was on a large scale field applied to the above oil installations and it successfully bioremediated 30,706 tonnes of different types of oily waste. In 65 case studies of different batch size of in situ and ex situ bioremediation processes, the initial TPH content varying from 69.20 to 662.70 g/kg of oily waste has been biodegraded to 5.30 – 16.90 g/kg of oily waste in a range of 2 to 33 months. Biodegradation rate varied in the range of 0.22 – 1.10 Kg TPH /day/m2 area due to the climatic condition of the treatment zone and the type of waste treated. The bioremediated soil was non-toxic and natural vegetation was found to be grown on the same ground. Successful eco-restoration of one large effluent pit of 26,000 m2 area was carried out by cultivation of local fish species after completion of bioremediation. Bioremediation technology has helped ONGC with the management of their hazardous oily wastes in an environment friendly manner. DOI: http://dx.doi.org/10.5755/j01.erem.68.2.5632

  19. Advances in speed and performance of on-site bioremediation

    International Nuclear Information System (INIS)

    SafeSoil is a proprietary additive and ex-situ treatment process which mediates and enhances biodegradation of environmental pollutants. The additive itself contains natural surfactants, organic and inorganic nutrients, and enzymes (primarily oxygenases). The treatment is an ex-situ process involving excavation and stockpiling of contaminated soil, mixing of the excavated soil with the authors proprietary additive in a mixer, and then the placement of the treated soil in curing piles, during which time biodegradation is actively occurring. SafeSoil was proven effective at treating approximately 35,000 cubic yards of soil contaminated with gasoline, diesel fuel, kerosene, motor oil, and transmission fluid to below specified action levels (50 ppm for TFH, and five ppm for total BTEX) in a full-scale remedial action for the channel Gateway Development project at Marina del Rey, California, within 15 days for 70 to 75% of the soil mass treated. More time was required for successful bioremediation of some of the more recalcitrant (persistent) contaminants, principally longer chain aliphatic hydrocarbons

  20. Test plan, the Czechowice Oil Refinery bioremediation demonstration of a process waste lagoon. Revision 1

    International Nuclear Information System (INIS)

    The overall objective of the bioremediation project is to provide a cost effective bioremediation demonstration of petroleum contaminated soil at the Czechowice Oil Refinery. Additional objectives include training of personnel, and transfer of this technology by example to Poland, and the Risk Abatement Center for Central and Eastern Europe (RACE). The goal of the remediation is to reduce the risk of PAH compounds in soil and provide a green zone (grassy area) adjacent to the site boundary. Initial project discussions with the Czechowice Oil Refinery resulted in helping the refinery find an immediate cost effective solution for the dense organic sludge in the lagoons. They found that when mixed with other waste materials, the sludge could be sold as a fuel source to local cement kilns. Thus the waste was incinerated and provided a revenue stream for the refinery to cleanup the lagoon. This allowed the bioremediation project to focus on remediation of contaminated soil that unusable as fuel, less recalcitrant and easier to handle and remediate. The assessment identified 19 compounds at the refinery that represented significant risk and would require remediation. These compounds consisted of metals, PAH's, and BTEX. The contaminated soil to be remediated in the bioremediation demonstration contains only PAH (BTEX and metals are not significantly above background concentrations). The final biopile design consists of (1) dewatering and clearing lagoon A to clean clay, (2) adding a 20 cm layer of dolomite with pipes for drainage, leachate collection, air injection, and pH adjustment, (3) adding a 1.1 m layer of contaminated soil mixed with wood chips to improve permeability, and (4) completing the surface with 20 cm of top soil planted with grass

  1. Test plan, the Czechowice Oil Refinery bioremediation demonstration of a process waste lagoon. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Altman, D.J.; Hazen, T.C.; Tien, A.J. [Westinghouse Savannah River Co., Aiken, SC (United States). Savannah River Technology Center; Worsztynowicz, A.; Ulfig, K. [Inst. for Ecology of Industrial Areas, Katowice (Poland)

    1997-05-10

    The overall objective of the bioremediation project is to provide a cost effective bioremediation demonstration of petroleum contaminated soil at the Czechowice Oil Refinery. Additional objectives include training of personnel, and transfer of this technology by example to Poland, and the Risk Abatement Center for Central and Eastern Europe (RACE). The goal of the remediation is to reduce the risk of PAH compounds in soil and provide a green zone (grassy area) adjacent to the site boundary. Initial project discussions with the Czechowice Oil Refinery resulted in helping the refinery find an immediate cost effective solution for the dense organic sludge in the lagoons. They found that when mixed with other waste materials, the sludge could be sold as a fuel source to local cement kilns. Thus the waste was incinerated and provided a revenue stream for the refinery to cleanup the lagoon. This allowed the bioremediation project to focus on remediation of contaminated soil that unusable as fuel, less recalcitrant and easier to handle and remediate. The assessment identified 19 compounds at the refinery that represented significant risk and would require remediation. These compounds consisted of metals, PAH`s, and BTEX. The contaminated soil to be remediated in the bioremediation demonstration contains only PAH (BTEX and metals are not significantly above background concentrations). The final biopile design consists of (1) dewatering and clearing lagoon A to clean clay, (2) adding a 20 cm layer of dolomite with pipes for drainage, leachate collection, air injection, and pH adjustment, (3) adding a 1.1 m layer of contaminated soil mixed with wood chips to improve permeability, and (4) completing the surface with 20 cm of top soil planted with grass.

  2. Microbial bioremediation of Uranium: an overview

    International Nuclear Information System (INIS)

    Uranium contamination is a worldwide problem. Preventing uranium contamination in the environment is quite challenging and requires a thorough understanding of the microbiological, ecological and biogeochemical features of the contaminated sites. Bioremediation of uranium is largely dependent on reducing its bioavailability in the environment. In situ bioremediation of uranium by microbial processes has been shown to be effective for immobilizing uranium in contaminated sites. Such microbial processes are important components of biogeochemical cycles and regulate the mobility and fate of uranium in the environment. It is therefore vital to advance our understanding of the uranium-microbe interactions to develop suitable bioremediation strategies for uranium contaminated sites. This article focuses on the fundamental mechanisms adopted by various microbes to mitigate uranium toxicity which could be utilized for developing various approaches for uranium bioremediation. (author)

  3. Treatment of a mud pit by bioremediation.

    Science.gov (United States)

    Avdalović, Jelena; Đurić, Aleksandra; Miletić, Srdjan; Ilić, Mila; Milić, Jelena; Vrvić, Miroslav M

    2016-08-01

    The mud generated from oil and natural gas drilling, presents a considerable ecological problem. There are still insufficient remedies for the removal and minimization of these very stable emulsions. Existing technologies that are in use, more or less successfully, treat about 20% of generated waste drilling mud, while the rest is temporarily deposited in so-called mud pits. This study investigated in situ bioremediation of a mud pit. The bioremediation technology used in this case was based on the use of naturally occurring microorganisms, isolated from the contaminated site, which were capable of using the contaminating substances as nutrients. The bioremediation was stimulated through repeated inoculation with a zymogenous microbial consortium, along with mixing, watering and biostimulation. Application of these bioremediation techniques reduced the concentration of total petroleum hydrocarbons from 32.2 to 1.5 g kg(-1) (95% degradation) during six months of treatment. PMID:27354013

  4. Petroleum biodegradation and oil spill bioremediation

    International Nuclear Information System (INIS)

    Hydrocarbon-utilizing microorganisms are ubiquitously distributed in the marine environment following oil spills. These microorganisms naturally biodegrade numerous contaminating petroleum hydrocarbons, thereby cleansing the oceans of oil pullutants. Bioremediation, which is accomplished by adding exogenous microbial populations or stimulating indigenous ones, attempts to raise the rates of degradation found naturally to significantly higher rates. Seeding with oil degraders has not been demonstrated to be effective, but addition of nitrogenous fertilizers has been shown to increase rates of petroleum biodegradation. In the case of the Exxon Valdez spill, the largest and most thoroughly studied application of bioremediation, the application of fertilizer (slow release or oleophilic) increased rates of biodegradation 3-5 times. Because of the patchiness of oil, an internally conserved compound, hopane, was critical for demonstrating the efficacy of bioremediation. Multiple regression models showed that the effectiveness of bioremediation depended upon the amount of nitrogen delivered, the concentration of oil, and time. (author)

  5. MICROBIAL TRANSFORMATIONS OF URANIUM AND ENVIRONMENTAL RESTORATION THROUGH BIOREMEDIATION.

    Energy Technology Data Exchange (ETDEWEB)

    FRANCIS,A.J.

    2002-09-10

    Microorganisms present in the natural environment play a significant role in the mobilization and immobilization of uranium. Fundamental understanding of the mechanisms of microbiological transformations of various chemical forms of uranium present in wastes and contaminated soils and water has led to the development of novel bioremediation processes. One process uses anaerobic bacteria to stabilize the radionuclides and toxic metals from the waste, with a concurrent reduction in volume due to the dissolution and removal of nontoxic elements from the waste matrix. In an another process, uranium and other toxic metals are removed from contaminated soils and wastes by extracting with the chelating agent citric acid. Uranium is recovered from the citric acid extract after biodegradation/photodegradation in a concentrated form as UO{sub 3} {center_dot} 2H{sub 2}O for recycling or appropriate disposal.

  6. Efficacy of monitoring in situ bioremediation of fossil fuel using the Mesocosm system

    International Nuclear Information System (INIS)

    With in situ bioremediation applications being recommended frequently out of practical and economic necessity, cost-efficient and effective implementation strategies need to be developed and/or refined. At the same time, unequivocal approaches for demonstrating in situ bioremediation of target contaminants need to be established. Toward this end, the authors have developed and refined innovative in situ soil and groundwater bioremediation strategies on a pilot and full-scale, including monitoring approaches using stable carbon isotope biogeochemistry to assess progress during in situ bioremediation of fossil fuels (more specifically PAHs and BTEX). To evaluate rigorously and assess these technologies, the authors have initiated mesocosm studies. The Mesocosm system is installed at the Process Engineering Facility, US Army Aberdeen Proving Ground, Maryland. This system integrates two technologies: a modification of the proven UVB technology, which creates a vertical groundwater circulation, and an in situ bioreactor. Incorporated into this system are four soil columns of approximately two meter height with a diameter of 60 cm, allowing them to model and test the efficacy of monitoring and biodegradation in a controlled environment. Parallel field studies currently at two sites will comparatively define the fate and effect of parent compounds and biotransformation products for mass balances (by monitoring natural abundance stable carbon isotope ratios 13C/12C using a GC/IRMS, the fate of organic compounds can be measured)

  7. Bioremediation of wastewater using microalgae

    Science.gov (United States)

    Chalivendra, Saikumar

    Population expansion and industrial development has deteriorated the quality of freshwater reservoirs around the world and has caused freshwater shortages in certain areas. Discharge of industrial effluents containing toxic heavy metals such as Cd and Cr into the environment have serious impact on human, animal and aquatic life. In order to solve these problems, the present study was focused on evaluating and demonstrating potential of microalgae for bioremediation of wastewater laden with nitrogen (N) in the form of nitrates, phosphorous (P) in the form of phosphates, chromium (Cr (VI)) and cadmium (Cd (II)). After screening several microalgae, Chlorella vulgaris and algae taken from Pleasant Hill Lake were chosen as candidate species for this study. The viability of the process was demonstrated in laboratory bioreactors and various experimental parameters such as contact time, initial metal concentration, algae concentration, pH and temperature that would affect remediation rates were studied. Based on the experimental results, correlations were developed to enable customizing and designing a commercial Algae based Wastewater Treatment System (AWTS). A commercial AWTS system that can be easily customized and is suitable for integration into existing wastewater treatment facilities was developed, and capital cost estimates for system including installation and annual operating costs were determined. The work concludes that algal bioremediation is a viable alternate technology for treating wastewater in an economical and sustainable way when compared to conventional treatment processes. The annual wastewater treatment cost to remove N,P is ~26x lower and to remove Cr, Cd is 7x lower than conventional treatment processes. The cost benefit analysis performed shows that if this technology is implemented at industrial complexes, Air Force freight and other Department of Defense installations with wastewater treatment plants, it could lead to millions of dollars in

  8. Solvent enhanced bioremediation of weathered oil contamination

    International Nuclear Information System (INIS)

    This paper describes a novel bioremediation process for the treatment of oil spills on land. The method was developed specifically to deal with long term oil contamination where the volatile fractions have evaporated leaving the more recalcitrant fractions. A model system of sand and Kuwaiti crude oil was used to test the system. A combined treatment which introduced an additional solvent component was found to enhance mobility and availability of oil, enhancing bioremediation. (author)

  9. Relation between mass-transfer and biodegradation of hydrophobic pollutants in soil

    OpenAIRE

    Mulder, H.

    1999-01-01

    The Dutch soil is contaminated at numerous locations with toxic organic compounds, such as polycyclic aromatic hydrocarbons (PAHs). To reduce the risks at these sites bioremediation can be applied as an alternative for the more destructive and energy intensive physicochemical soil sanitation techniques. During bioremediation microorganisms convert pollutants to less harmful compounds. Implementation of bioremediation is, however, limited because the strongly hydrophobic PAHs possess low water...

  10. Effect of hybrid poplar trees on microbial populations important to hazardous waste bioremediation

    International Nuclear Information System (INIS)

    Microbial concentrations of denitrifiers, pseudomonads, and monoaromatic petroleum hydrocarbon (BTX) degraders were significantly higher (p < 0.1) in soil samples from the rhizosphere of poplar trees than in adjacent agricultural soils, and atrazine degraders were found only in one rhizosphere sample. The relative abundance of these phenotypes (as a fraction of total heterotrophs) was not significantly different between rhizosphere and surrounding soils. Therefore, the poplar rhizosphere enhanced the growth of microbial populations that participate in natural bioremediation without exerting selective pressure for them

  11. Bio-remediation of a sludge containing hydrocarbons

    International Nuclear Information System (INIS)

    Bio-augmentation has been used as a bio-remediation option for hydrocarbon-contaminated, oily-sludge restoration. This sludge was obtained from the Bonny-Terminal Improvement Project (BTIP) for Bonny Island, near Port Harcourt, Nigeria. Its total hydrocarbon-content (THC) was 69,372 mg/kg of sludge. Three treatment reactors (X, Y and Z) and one control reactor (A) were charged with 1500 g of oily sludge and 250 g of agricultural soil (i.e. an oily sludge to soil ratio of 6:1), the mixture homogenized and allowed to settle for seven days before various CFUs were added to reactors X, Y and Z. Reactor A did not receive any bio-preparation. The agricultural soil served both as a nutrient and a microbe carrier. With regularly scheduled mixing and watering, the THC reduction in the oily sludge varied between 40.7% and 53.2% within two weeks as well as between 63.7% and 84.5% within six weeks of applying the bio-remediation. The CFU counts of the added bio-preparation varied between 1.2 x 1212 and 3.0 x 1012 CFU/g of sludge and decreased to 7.0 x 1011 CFU/g of sludge by the end of the sixth week. The pH of the degrading sludge fluctuated between 6.5 and 7.8 during the same period. When compared with the performance of the indigenous microbes in the control sample, the added bio-preparation evidently increased the THC reduction rate in the oily sludge

  12. Bio-remediation of a sludge containing hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Ayotamuno, M.J. [Agricultural and Environmental Engineering Department, Rivers State University of Science and Technology, Port Harcourt, P. M. B. 5080, Rivers State (Nigeria); Okparanma, R.N. [Agricultural and Environmental Engineering Department, Rivers State University of Science and Technology, Port Harcourt, P. M. B. 5080, Rivers State (Nigeria); Nweneka, E.K. [Agricultural and Environmental Engineering Department, Rivers State University of Science and Technology, Port Harcourt, P. M. B. 5080, Rivers State (Nigeria); Ogaji, S.O.T. [School of Engineering, Cranfield University, Bedfordshire MK43 0AL (United Kingdom)]. E-mail: s.ogaji@cranfield.ac.uk; Probert, S.D. [School of Engineering, Cranfield University, Bedfordshire MK43 0AL (United Kingdom)

    2007-09-15

    Bio-augmentation has been used as a bio-remediation option for hydrocarbon-contaminated, oily-sludge restoration. This sludge was obtained from the Bonny-Terminal Improvement Project (BTIP) for Bonny Island, near Port Harcourt, Nigeria. Its total hydrocarbon-content (THC) was 69,372 mg/kg of sludge. Three treatment reactors (X, Y and Z) and one control reactor (A) were charged with 1500 g of oily sludge and 250 g of agricultural soil (i.e. an oily sludge to soil ratio of 6:1), the mixture homogenized and allowed to settle for seven days before various CFUs were added to reactors X, Y and Z. Reactor A did not receive any bio-preparation. The agricultural soil served both as a nutrient and a microbe carrier. With regularly scheduled mixing and watering, the THC reduction in the oily sludge varied between 40.7% and 53.2% within two weeks as well as between 63.7% and 84.5% within six weeks of applying the bio-remediation. The CFU counts of the added bio-preparation varied between 1.2 x 12{sup 12} and 3.0 x 10{sup 12} CFU/g of sludge and decreased to 7.0 x 10{sup 11} CFU/g of sludge by the end of the sixth week. The pH of the degrading sludge fluctuated between 6.5 and 7.8 during the same period. When compared with the performance of the indigenous microbes in the control sample, the added bio-preparation evidently increased the THC reduction rate in the oily sludge.

  13. Intrinsic bioremediation of diesel-contaminated cold groundwater in bedrock

    International Nuclear Information System (INIS)

    Natural attenuation refers to the natural process by which contaminants in groundwater or soil are reduced through a combination of physico-chemical processes and biodegradation by indigenous organisms. The physico chemical processes include advection, dilution, dispersion, sorption, volatilization and abiotic transformation. This study evaluated the historical contaminant and geochemical evidence of natural attenuation at a well site where groundwater had been contaminated by a diesel fuel leak in 1982. In particular, evidence of intrinsic bioremediation was evaluated. Evidence of microbial activity was determined by most probably number (MPN) and commercial biological activity reaction tests. Groundwater samples from the site were incubated in a laboratory under aerobic and anaerobic conditions with electron acceptor and nutrient amendment to assess microbial activity. Mineralization of carbon 14-dodecane was measured to determine aerobic biodegradation rates. Anaerobic biodegradation rates were calculated from the depletion of total extractable hydrocarbon over 717 days. Nutrient addition increased the anaerobic first-order biodegradation rate from 0.0005 to 0.0016 per day. It was suggested controlled nutrient addition can improve the current slow rates of intrinsic bioremediation. 33 refs., 9 tabs., 5 figs

  14. CHARACTERIZATION OF POLYLACTIC ACID COLLOIDS FOR IN SITU BIOREMEDIATION

    Energy Technology Data Exchange (ETDEWEB)

    Ashley N. Westbrook

    2003-07-01

    Groundwater contamination is a widespread problem. As human activities generate chemical wastes, we seek quick, yet not always environmentally friendly, ways to dispose of them. Often, chemicals are dumped into waste containers and buried. Unfortunately, these chemicals may spill or leak, seep deeper into the ground, and eventually reach groundwater. Chlorinated organic solvents such as trichloroethene, tetrachloroethane, and chloroform are common contaminants in groundwater [1]. These solvents originate from chemical spills, tank leaks, and waste disposal practices [2]. Such contaminants are harmful to humans, and need to be removed to restore clean groundwater. There are two types of methods to clean chemically contaminated soil and groundwater: ex situ and in situ. Both types have advantages and disadvantages. In situ remediation avoids the cost of removing the contaminated material and has a lower risk of worker exposure to the contaminants. One in situ technique that shows promise is remediation, which uses microorganisms to anaerobically degrade contaminants. In bioremediation in situ, the microorganisms that are already present in the ground utilize nutrients that are injected into the ground to metabolize the contaminants into nonhazardous materials. The nutrients serve as a carbon source for the microbes. Though this method has been used with some success, there have been problems with too rapid release of nutrients to the microbes. In these cases, the microbes multiplied too rapidly and caused biofouling. This can occur when the nutrient content of the bioremediation solution is too high, as when lactate or lactic acid is the nutrient. Lactic acid is typically produced in carbohydrate matter by fermentation, and is used mainly in the food and pharmaceutical industries [3]. Because it has been found difficult to uniformly distribute lactate solutions in a contaminated area due to biofouling, it was suggested that polylactic acid, in colloidal form, be used

  15. Efficacy monitoring of in situ fuel bioremediation

    International Nuclear Information System (INIS)

    The wide-scale, multiple-purpose use of fossil fuels throughout the industrialized world has resulted in the inadvertent contamination of myriad environments. Given the scope and magnitude of these environmental contamination problems, bioremediation often represents the only practical and economically feasible solution. This is especially true when depth of contamination, magnitude of the problem, and nature of contaminated material preclude other remedial actions, short of the no-response alternative. From the perspective, the effective, safe and scientifically valid use of in situ bioremediation technologies requires cost-efficient and effective implementation strategies in combination with unequivocal approaches for monitoring efficacy of performance. Accordingly, with support from the SERDP program, the authors are field-testing advanced in situ bioremediation strategies and new approaches in efficacy monitoring that employ techniques instable carbon and nitrogen isotope biogeochemistry. One field demonstration has been initiated at the NEX site in Port Hueneme, CA (US Navy's National Test Site). The objectives are: (1) to use stable isotopes as a biogeochemical monitoring tool for in situ bioremediation of refined petroleum (i.e., BTEX), and (2) to use vertical groundwater circulation technology to effect in situ chemical containment and enhanced in situ bioremediation

  16. Accelerated in situ bioremediation of groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Truex, M.J.; Hooker, B.S.; Anderson, D.B.

    1996-07-01

    In situ bioremediation, as applied in this project, is based on the principal of biostimulation: supplying nutrients to indigenous microbes to stimulate their metabolic activity and subsequent degradation of contaminants. Typically, a network of injection and extraction wells are used to recirculate groundwater into which amendments are added and distributed within the aquifer. The objective of the in situ process is to create in the aquifer a microbially active zone that maximizes contaminant destruction while controlling the distribution of microbial growth. It is important to control microbial growth to avoid plugging the aquifer near the injection well and to establish and sustain maximum treatment zones for each injection well. Figure I illustrates this concept for in situ bioremediation. The technology described herein is innovative in its use of the computer-based Accelerated Bioremediation Design Tool (ABDT) to aid in selecting appropriate system designs and to determine optimal operating strategies. In addition, numerical simulations within the design tool proved to be valuable during remediation operations to determine appropriate changes in the` operating strategy as the bioremediation process progressed. This is particularly important because in situ bioremediation is not a steady- state process, and corrective actions to operating parameters are typically needed to maintain both rapid destruction rates and hydraulic containment.

  17. Remediation of hydrocarbon contaminants in cold environments : electrokinetically enhanced bioremediation and biodegradable oil sorbents

    OpenAIRE

    Suni, Sonja

    2006-01-01

    Owing to the vast amounts of oil in the world, oil spills are common on land as well as at sea. In addition to oil products, other industrially used hydrocarbons, such as creosote, also contaminate soils. Most hydrocarbons are biodegradable. Hence, bioremediation is an attractive alternative for cleaning up hydrocarbon spills. In cold climate areas, however, biodegradation is often a slow process. The aim of this thesis was to develop efficient, cost-effective, and ecologically sound techniqu...

  18. Bioremediation potential of a newly isolate solvent tolerant strain Bacillus thermophilus PS11

    OpenAIRE

    PAYEL SARKAR; SHILPI GHOSH

    2012-01-01

    The increased generation of solvent waste has been stated as one of the most critical environmental problems. Though microbial bioremediation has been widely used for waste treatment but their application in solvent waste treatment is limited since the solvents have toxic effects on the microbial cells. A solvent tolerant strain of Bacillus thermophilus PS11 was isolated from soil by cyclohexane enrichment. Transmission electron micrograph of PS11 showed convoluted cell membrane and accumulat...

  19. Approach of Bioremediation in Olive Oil and Dairy Industry: A Review

    OpenAIRE

    Amir Hamid; Zohra Bibi; Irum Ghafoor; Zubair Anwar; Jabar Zaman Khan Khattak

    2013-01-01

    Bioremediation methods are a promising way of dealing with soil and subsoil contamination by organic substances. This biodegradation process is supported by micro-organisms which use the organic carbon from the pollutants as energy source and cells building blocks. There are several advantages of the implementation of such methods but mainly they have to do with the lack of interference with the ecology of the ecosystem. This study presents the use of technique in numerous ways such as olive ...

  20. Monitoring Genetic and Metabolic Potential for In-Site Bioremediation: Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, M.V.

    2000-07-20

    A number of DOE sites are contaminated with mixtures of dense non-aqueous phase liquids (DNAPLs) such as carbon tetrachloride, chloroform, perchloroethylene, and trichloroethylene. At many of these sites, in situ microbial bioremediation is an attractive strategy for cleanup, since it has the potential to degrade DNAPLs in situ without the need for pump-and-treat or soil removal procedures, and without producing toxic byproducts. A rapid screening method to determine broad range metabolic and genetic potential for contaminant degradation would greatly reduce the cost and time involved in assessment for in situ bioremediation, as well as for monitoring ongoing bioremediation treatment. The objective of this project was the development of mass-spectrometry-based methods to screen for genetic potential for both assessment and monitoring of in situ bioremediation of DNAPLs. These methods were designed to provide more robust and routine methods for DNA-based characterization of the genetic potential of subsurface microbes for degrading pollutants. Specifically, we sought to (1) Develop gene probes that yield information equivalent to conventional probes, but in a smaller size that is more amenable to mass spectrometric detection, (2) Pursue improvements to matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) methodology in order to allow its more general application to gene probe detection, and (3) Increase the throughput of microbial characterization by integrating gene probe preparation, purification, and MALDI-MS analysis.

  1. The use of remote temperature measurement for a bio-remediation pilot project in Cambridge Bay, Nunavut

    Energy Technology Data Exchange (ETDEWEB)

    McCullogh, R.W. [Jacques Whitford Environment Ltd., Dartmouth, NS (Canada); Burkill, R. [Transport Canada, Ottawa, ON (Canada)

    2001-07-01

    Several remote sites in Arctic Canada are contaminated with diesel fuel from leaky storage tanks. Soil remediation in these permafrost areas is expensive and time consuming. A study was conducted at the Cambridge Bay Transmitter site to develop a soil treatment method that can be used to clean-up small volumes of contaminated soils at sites across the Arctic with similar climates and geology. Bioremediation is generally an effective way to treat contaminated soils, but ambient temperature is the main limiting factor associated with bioremediation of hydrocarbon impacted soil in Arctic environments. As temperatures approach 5 degrees C, the rates of microbial activity are very much reduced. This study examined the temperature of the soil to determine the performance of bioremediation processes and to optimize heat preservation. A series of thermocouples were installed to monitor soil and ambient temperatures. The statistical data showing the temperature conditions at the site can be applied to other contaminated sites. This paper described the data logger installation, the available data and how it can be used to design and monitor remediation projects in the Arctic. 5 refs., 9 figs.

  2. New parameters for a better evaluation of vegetative bioremediation, leaching, and phytodesalination.

    Science.gov (United States)

    Rabhi, Mokded; Atia, Abdallah; Abdelly, Chedly; Smaoui, Abderrazak

    2015-10-21

    Vegetative bioremediation of calcareous sodic and saline-sodic soils is a biological approach for soil desalination by plants. It is based on three main processes: (i) sodium release from cation exchange sites, (ii) its leaching, and/or (iii) phytodesalination (Na(+) uptake by plant roots and its accumulation in shoots). Leaching needs sufficient rainfall and/or adequate irrigation. Thus, under non-leaching conditions, phytodesalination is the only existing process in terms of sodium removal. Several works tried to evaluate these processes; used plants were grown in field, in lysimeters, or in non-perforated pots. The evaluation of vegetative bioremediation, leaching, and phytodesalination was mainly based on plant analyses (including biomass production, sodium accumulation, test culture, and co-culture) and soil analyses (porosity, salinity, sodicity...). Nevertheless, used parameters are not enough to ensure comparisons between results found in different investigations. The present study introduces new parameters like phytodesalination efficiency, yield, and rate as well as vegetative bioremediation and leaching yields and rates. Our study is also illustrated by an estimation of all parameters for several previously-published data from our own works and those of other authors. Obtained results showed usefulness of these parameters and some of them can be extended to heavy metal phytoexraction. PMID:26254216

  3. Role of Penicillium chrysogenum XJ-1 in the Detoxification and Bioremediation of Cadmium

    Science.gov (United States)

    Xu, Xingjian; Xia, Lu; Zhu, Wei; Zhang, Zheyi; Huang, Qiaoyun; Chen, Wenli

    2015-01-01

    Microbial bioremediation is a promising technology to treat heavy metal-contaminated soils. However, the efficiency of filamentous fungi as bioremediation agents remains unknown, and the detoxification mechanism of heavy metals by filamentous fungi remains unclear. Therefore, in this study, we investigated the cell morphology and antioxidant systems of Penicillium chrysogenum XJ-1 in response to different cadmium (Cd) concentrations (0–10 mM) by using physico-chemical and biochemical methods. Cd in XJ-1 was mainly bound to the cell wall. The malondialdehyde level in XJ-1 cells was increased by 14.82–94.67 times with the increase in Cd concentration. The activities of superoxide dismutase, glutathione reductase (GR), and glucose-6-phosphate dehydrogenase (G6PDH) peaked at 1 mM Cd, whereas that of catalase peaked at 5 mM Cd. Cd exposure increased the glutathione/oxidized glutathione ratio and the activities of GR and G6PDH in XJ-1. These results suggested that the Cd detoxification mechanism of XJ-1 included biosorption, cellular sequestration, and antioxidant defense. The application of XJ-1 in Cd-polluted soils (5–50 mg kg-1) successfully reduced bioavailable Cd and increased the plant yield, indicating that this fungus was a promising candidate for in situ bioremediation of Cd-polluted soil. PMID:26733967

  4. Technical Basis for Assessing Uranium Bioremediation Performance

    Energy Technology Data Exchange (ETDEWEB)

    PE Long; SB Yabusaki; PD Meyer; CJ Murray; AL N’Guessan

    2008-04-01

    In situ bioremediation of uranium holds significant promise for effective stabilization of U(VI) from groundwater at reduced cost compared to conventional pump and treat. This promise is unlikely to be realized unless researchers and practitioners successfully predict and demonstrate the long-term effectiveness of uranium bioremediation protocols. Field research to date has focused on both proof of principle and a mechanistic level of understanding. Current practice typically involves an engineering approach using proprietary amendments that focuses mainly on monitoring U(VI) concentration for a limited time period. Given the complexity of uranium biogeochemistry and uranium secondary minerals, and the lack of documented case studies, a systematic monitoring approach using multiple performance indicators is needed. This document provides an overview of uranium bioremediation, summarizes design considerations, and identifies and prioritizes field performance indicators for the application of uranium bioremediation. The performance indicators provided as part of this document are based on current biogeochemical understanding of uranium and will enable practitioners to monitor the performance of their system and make a strong case to clients, regulators, and the public that the future performance of the system can be assured and changes in performance addressed as needed. The performance indicators established by this document and the information gained by using these indicators do add to the cost of uranium bioremediation. However, they are vital to the long-term success of the application of uranium bioremediation and provide a significant assurance that regulatory goals will be met. The document also emphasizes the need for systematic development of key information from bench scale tests and pilot scales tests prior to full-scale implementation.

  5. Technical Basis for Assessing Uranium Bioremediation Performance

    International Nuclear Information System (INIS)

    In situ bioremediation of uranium holds significant promise for effective stabilization of U(VI) from groundwater at reduced cost compared to conventional pump and treat. This promise is unlikely to be realized unless researchers and practitioners successfully predict and demonstrate the long-term effectiveness of uranium bioremediation protocols. Field research to date has focused on both proof of principle and a mechanistic level of understanding. Current practice typically involves an engineering approach using proprietary amendments that focuses mainly on monitoring U(VI) concentration for a limited time period. Given the complexity of uranium biogeochemistry and uranium secondary minerals, and the lack of documented case studies, a systematic monitoring approach using multiple performance indicators is needed. This document provides an overview of uranium bioremediation, summarizes design considerations, and identifies and prioritizes field performance indicators for the application of uranium bioremediation. The performance indicators provided as part of this document are based on current biogeochemical understanding of uranium and will enable practitioners to monitor the performance of their system and make a strong case to clients, regulators, and the public that the future performance of the system can be assured and changes in performance addressed as needed. The performance indicators established by this document and the information gained by using these indicators do add to the cost of uranium bioremediation. However, they are vital to the long-term success of the application of uranium bioremediation and provide a significant assurance that regulatory goals will be met. The document also emphasizes the need for systematic development of key information from bench scale tests and pilot scales tests prior to full-scale implementation

  6. An evaluation of in-situ bioremediation processes

    International Nuclear Information System (INIS)

    Remediation of petroleum hydrocarbons in groundwater was the primary focus in the initial application of in-situ bioremediation which, from its development in the 1970s, has grown to become one of the most promising technologies for the degradation of a wide variety of organic contaminants. The degradation of contaminants in subsurface soils is the current new focus of the technology. While the need for improvements in the technology does exist, the indisputable fact remains that this technology is by far the least expensive and that it has the capability to provide long term reduced levels of contaminants or long term complete remediation of contaminated sites. The aim of this paper is to disclose pertinent information related to current conditions and current feelings in the area of new research, novel applications, new government regulations, and an overview of new topics on the horizon that relate to the overall technology

  7. An evaluation of in-situ bioremediation processes

    Energy Technology Data Exchange (ETDEWEB)

    Cole, L.L. [Prairie View A and M Univ., TX (United States); Rashidi, M. [Lawrence Livermore National Lab., CA (United States). Environmental Programs Directorate

    1996-08-01

    Remediation of petroleum hydrocarbons in groundwater was the primary focus in the initial application of in-situ bioremediation which, from its development in the 1970s, has grown to become one of the most promising technologies for the degradation of a wide variety of organic contaminants. The degradation of contaminants in subsurface soils is the current new focus of the technology. While the need for improvements in the technology does exist, the indisputable fact remains that this technology is by far the least expensive and that it has the capability to provide long term reduced levels of contaminants or long term complete remediation of contaminated sites. The aim of this paper is to disclose pertinent information related to current conditions and current feelings in the area of new research, novel applications, new government regulations, and an overview of new topics on the horizon that relate to the overall technology.

  8. Bioremediation of municipal solid waste by windrow composting.

    Science.gov (United States)

    Manjula, G; Ravikannan, S P; Meenambal, T

    2013-10-01

    Due to rapid urbanization and economic development the urban cities are facing the problem of solid waste management. It is one among the major challenges faced by governing bodies. Bioremediation of municipal solid waste can be effectively done by windrow composting. In this study, a consortium of effective microorganisms was used for the windrow composting process. About 500 kg of shredded waste was placed in two windrows and 1 litre effective microorganisms were sprayed on one of the windrows. The variation in physical and chemical parameters was monitored throughout the process. The results indicate that usage of effective microorganisms not only shortens the stabilization time but also improves product quality. The final product was more stable and homogenous and can be effectively used as soil conditioner. PMID:25906592

  9. Strategies for chromium bioremediation of tannery effluent.

    Science.gov (United States)

    Garg, Satyendra Kumar; Tripathi, Manikant; Srinath, Thiruneelakantan

    2012-01-01

    Bioremediation offers the possibility of using living organisms (bacteria, fungi, algae,or plants), but primarily microorganisms, to degrade or remove environmental contaminants, and transform them into nontoxic or less-toxic forms. The major advantages of bioremediation over conventional physicochemical and biological treatment methods include low cost, good efficiency, minimization of chemicals, reduced quantity of secondary sludge, regeneration of cell biomass, and the possibility of recover-ing pollutant metals. Leather industries, which extensively employ chromium compounds in the tanning process, discharge spent-chromium-laden effluent into nearby water bodies. Worldwide, chromium is known to be one of the most common inorganic contaminants of groundwater at pollutant hazardous sites. Hexavalent chromium poses a health risk to all forms of life. Bioremediation of chromium extant in tannery waste involves different strategies that include biosorption, bioaccumulation,bioreduction, and immobilization of biomaterial(s). Biosorption is a nondirected physiochemical interaction that occurs between metal species and the cellular components of biological species. It is metabolism-dependent when living biomass is employed, and metabolism-independent in dead cell biomass. Dead cell biomass is much more effective than living cell biomass at biosorping heavy metals, including chromium. Bioaccumulation is a metabolically active process in living organisms that works through adsorption, intracellular accumulation, and bioprecipitation mechanisms. In bioreduction processes, microorganisms alter the oxidation/reduction state of toxic metals through direct or indirect biological and chemical process(es).Bioreduction of Cr6+ to Cr3+ not only decreases the chromium toxicity to living organisms, but also helps precipitate chromium at a neutral pH for further physical removal,thus offering promise as a bioremediation strategy. However, biosorption, bioaccumulation, and

  10. The bioremediation, solution at the land´s pollution caused by hydrocarbon in Sergio Soto oil Refinery.

    OpenAIRE

    Carlos Blanco Valdivia; Mijail Bonachea Crespo; Roberto Romero Silva

    2010-01-01

    The land´s polution caused by hydrocarbon in Sergio Soto oil refinery constituted a problem for the technicians of this entity that in coordination with the Petroleum Investigations Center (CEINPET), carried out a study for the application of the bioremediation in the company. The area to this purpose was determined and the soil impacted was deposit on it, this soil was homogenized with an appropriate equipment (agricultural tractor). The fertilizers were added and the removal stage was mad...

  11. Assessing the Effectiveness of Land farming in the Remediation of Hydrocarbon Polluted Soils in the Niger Delta, Nigeria

    OpenAIRE

    Mmom Prince Chinedu; T. Deekor

    2010-01-01

    Hydrocarbons pollution of soils has constituted environmental issues over the years. The biggest concern associated w ith hydrocarbon pollution in the environment is the risk to farmlands, fisheries and potable water supplies contamination. Several remediation techniques exist (Bioremediation and Non-bioremediation), which aim at reducing the hydrocarbon content of the polluted soil and water with their varying degrees of success. Thus land farming, one of the bioremediation remediation techn...

  12. Bio-depollution, bio-remediation; Biodepollution, bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Vavasseur, A.; Peltier, G.; Pignol, D. [CEA Cadarache, Dir. des Sciences du Vivant, 13 - Saint Paul lez Durance (France); Bourguignon, J. [CEA Grenoble, 38 (France); Coves, J. [CEA Grenoble, CEA-CNRS IBS, 38 (France)

    2003-07-01

    Plants can be used in different ways for the biological depollution of contaminated media. Organic pollutants, metals and radionuclides can be eliminated with ranging degrees of facility using various methods developed by scientists. Certain bacteria that are resistant to toxics should be able to play a useful role in the depollution of soils and water. (authors)

  13. BIOREMEDIATION AT WOOD-PRESERVING SITES

    Science.gov (United States)

    The removal of organic compounds from ground water during bioremediation at wood-preserving sites is a function of the stoichiometric demand for electron acceptors (oxygen, nitrate, and sulfate) to metabolize the organic contaminants and the supply of the electron acceptors in th...

  14. States' attitudes on the use of bioremediation

    International Nuclear Information System (INIS)

    Results from a telephone survey of state government program coordinators and representatives from companies performing full-scale bioremediation shows differences among states in the use and degree of acceptance of bioremediation for environmental cleanup. The survey also found that states vary in the potential future direction of regulatory activity concerning bioremediation. The survey focused primarily on underground storage tank (UST) cleanups. Diminishing state UST cleanup funds have provided the impetus for many states to consider alternative cost-effective measures in order to continue with cleanups. In recent years, more than 30 states have either implemented programs that consider the cost-effectiveness of various cleanup measures, or are considering adoption of programs that are founded on risk-based corrective action. Less than a dozen states were considered as having made significant strides in innovative technology utilization. Forums whereby state groups can exchange ideas and experiences associated with the practical application of bioremediation will facilitate this nationwide movement towards cost-effective cleanup

  15. Bioremediation effectiveness following the Exxon Valdez spill

    International Nuclear Information System (INIS)

    Statistical analyses of changes in the composition of oil residues remaining on beaches following the Exxon Valdez oil spill in Prince William Sound have demonstrated that bioremediation was effective in accelerating oil removal. Extensive data were obtained in a joint bioremediation monitoring program conducted during the summer of 1990 by the US Environmental Protection Agency (EPA), the State of Alaska, and Exxon. Composition changes in the oil relative to hopane, a trace oil component very resistant to biodegradation, provided the basis for accurately determining rates and extent of biodegradation. Results show that on fertilized beaches the rate of oil biodegradation was from three to more than five times faster than on adjacent, unfertilized control beaches. Further, most hydrocarbon components of the oil were biodegraded simultaneously, although at different rates. On one beach studied, about 60 percent of the total hydrocarbons detectable by gas chromatograph and 45 percent of the total PAH were biodegraded in three months. Bioremediation effectiveness was determined to depend primarily on the amount of nitrogen fertilizer delivered to the sediment per unit of oil present, time, and the extent of oil degradation prior to fertilizer application. The results suggest ways to improve future bioremediation application strategies and monitoring

  16. Bioremediation: A countermeasure for marine oil spills

    International Nuclear Information System (INIS)

    Three main types of bioremediation techniques are currently being developed or used for treatment of oil spills: adding nutrients to oiled shorelines; adding microbes to oiled shorelines; and addition of nutrients and/or microbes to open water oil slicks. Since all these technologies attempt to accelerate biodegradation, the processes of biodegradation of oil are summarized. Some of the potential uses of this technology are discussed, including specific instances where bioremediation has been applied at oil spills. Guidelines for evaluating and monitoring bioremediation applications are presented. Of the three types of bioremediation discussed, nutrient addition seems to hold the most immediate promise, especially for use in areas that would be adversely affected by physical or other removal methods. Environments where nutrient addition may play an important role in shoreline treatment include sheltered shorelines that are heavily oiled, shorelines with subsurface oil, and sensitive environments, especially wetlands. Nutrient additions are less likely to be effective in environments that are already nutrient-rich and for short-term, immediate response actions. 41 refs., 1 tab

  17. Bioremediation: Effectiveness in reducing the ecological impact

    International Nuclear Information System (INIS)

    Bioremediation becomes an important technique in oil spill combat programmes. The purpose is to shorten the exposure time of biota to oil compounds, in order to reduce long term environmental effects. Although bioremediation products have the advantage of stimulating the natural capacity to degrade oil, there are some limitations to be considered. Application as a technique for first emergency actions following an oil spill is not effective, and can therefore be no alternative for dispersion or mechanical removal of floating or freshly stranded oil slicks. Acute toxic effects are related to the short term exposure to unweathered oils. An immediate removal of oil is necessary to reduce the extent of the environmental impact of an oil spill. Physical processes (transport, dilution and evaporation) are determining the initial fate of environmentally released oil. Biodegradation only becomes important as a process of removing oil in the next phase. It is the only effective way to further reduce the concentration of oil that is left in (intertidal) coastal areas. Bioremediation thus reduces the duration of the environmental impact of an oil spill. This is especially important in ecosystems with a low recovery potential (e.g., salt marshes, rocky shores). The experimental evaluation of bioremediation products is mainly based on the capacity to reduce fresh oil and the acute toxicity of the product itself, rather than on the capacity to enhance the further reduction of weathered oil and the toxicological consequences of higher release rates of intermediate metabolites produced during the biotransformation processes

  18. Field evaluations of marine oil spill bioremediation.

    Science.gov (United States)

    Swannell, R P; Lee, K; McDonagh, M

    1996-06-01

    Bioremediation is defined as the act of adding or improving the availability of materials (e.g., nutrients, microorganisms, or oxygen) to contaminated environments to cause an acceleration of natural biodegradative processes. The results of field experiments and trials following actual spill incidents have been reviewed to evaluate the feasibility of this approach as a treatment for oil contamination in the marine environment. The ubiquity of oil-degrading microorganisms in the marine environment is well established, and research has demonstrated the capability of the indigenous microflora to degrade many components of petroleum shortly after exposure. Studies have identified numerous factors which affect the natural biodegradation rates of oil, such as the origin and concentration of oil, the availability of oil-degrading microorganisms, nutrient concentrations, oxygen levels, climatic conditions, and sediment characteristics. Bioremediation strategies based on the application of fertilizers have been shown to stimulate the biodegradation rates of oil in aerobic intertidal sediments such as sand and cobble. The ratio of oil loading to nitrogen concentration within the interstitial water has been identified to be the principal controlling factor influencing the success of this bioremediation strategy. However, the need for the seeding of natural environments with hydrocarbon-degrading bacteria has not been clearly demonstrated under natural environmental conditions. It is suggested that bioremediation should now take its place among the many techniques available for the treatment of oil spills, although there is still a clear need to set operational limits for its use. On the basis of the available evidence, we have proposed preliminary operational guidelines for bioremediation on shoreline environments. PMID:8801437

  19. Research on On-Site Experiment of Bioremediation on Oil-Contaminated Soil by Mixed Microorganism Bacteria Agent%混合菌剂修复油污土壤现场试验研究

    Institute of Scientific and Technical Information of China (English)

    张璇; 陈丽华; 常沁春; 雒晓芳; 张浩

    2013-01-01

    把5株石油降解菌制成的混合菌剂投加到现场油污土壤中,通过分析残油中石油各组分的含量以及土壤氮、磷含量,脱氢酶活性和土壤微生物数量的变化,研究了菌剂现场修复油污土壤的能力和影响因素.结果表明:混合菌剂在现场试验中表现出了对低、高浓度油污土壤良好的降解效果,优先降解饱和烷烃,其次是芳香烃,石油烃降解率在60 d时达到了88%以上.在降解过程中,细菌对饱和烃的降解作用最明显,每类菌对于石油的降解都起着一定作用.添加氮、磷元素达到合适比例时,对污染土壤的石油降解有显著的促进作用.%Mixed bacteria agent made of 5 petroleum degrading strains was added to the oil-contaminated soil of site.The content of each component in oil,the soil nitrogen,phosphorus content of residual oil and the change of dehydrogenase activity and soil microbial quantity were analyzed,in order to study remediation ability of mixed bacteria for oil-polluted soil and influence factors.The results show that:the mixed bacteria in the field tests has a good degradation effect for low,high oil-contaminated soil,and preferentially degrade alkanes,secondly aromatic hydrocarbons.The degradation rate of petroleum hydrocarbon in 60 d reaches more than 88%.In the process of degradation,bacteria degrade saturated hydrocarbons obviously; each type of bacteria for oil degradation plays a certain role.Adding nitrogen,phosphorus elements reached the right proportion has significant promoting effect on degradation of petroleum contaminated soil.

  20. In situ closed-loop bioremediation: Rapid closure in a northern climate

    International Nuclear Information System (INIS)

    In situ closed-loop bioremediation was employed to achieve site closure at a former railyard in Minneapolis, Minnesota. Soil and groundwater were contaminated with gasoline. The closed-loop remediation system design incorporated three downgradient groundwater recovery wells and a low-pressure pipe infiltration gallery. Aboveground treatment of recovered groundwater was provided by a fixed-film bioreactor. The total reported benzene, toluene, ethylbenzene, and xylenes (BTEX)-removal efficiency of the bioreactor ranged from 98.8% to 100%. Concentrations of BTEX components in groundwater wells were reduced by 45% to 98%. The cleanup goals set by the Minnesota Pollution Control Agency were met within the first 6 months of treatment, and the remediation system was shut down after 20 months of operation. This project further demonstrates the effectiveness of reactor-based, closed-loop in situ bioremediation at sites with favorable conditions

  1. Mega Borg oil spill of the Texas coast: An open-water bioremediation test

    International Nuclear Information System (INIS)

    Nature has developed hydrocarbons as a part of life. Since the origin of life, more than 60,000 organic molecules have evolved that make up protoplasm; a given percentage of these molecules are hydrocarbons. Commercial hydrocarbon deposits are a by-product of this natural process and a continual source of oil in the aquatic environment through seeps. As a result, nature has also evolved a recycling system for the hydrocarbons. This cycle is the basis for a program of bioremediation using microorganisms. Effort has been made to develop mixed cultures capable of a wide range of hydrocarbon metabolism and co-metabolism. The cultures are economically produced in high concentrations as a dry powder with a shelf life of one year. The result is an economical process for the application of bacteria to hydrocarbon pollutants on water and soils. The process of bioremediation to the recent Mega Borg accident will be discussed

  2. In situ bioremediation (natural attenuation) at a gas plant waste site

    International Nuclear Information System (INIS)

    A former manufactured gas plant (MGP) waste site in New York was evaluated with regard to natural attenuation of polycyclic aromatic hydrocarbons (PAHs). Parent-compound concentrations of PAHs within an aquifer plume were observed to decrease with time subsequent to source removal of coal tar. Biotransformation-potential studies indicated that indigenous microorganisms in soil from the site were capable of degrading naphthalene and phenanthrene. A biochemical metabolite of phenanthrene degradation, 1-hydroxy-2-naphthoic acid (1H2NA), was tentatively characterized in coal-tar-contaminated soil from the site-based on liquid chromatographic retention time. Kinetic information was developed for the disappearance of phenanthrene and 1H2NA in nonspiked contaminated soil at the site. The Microtox trademark bioassay was used to evaluate toxicity trends in contaminated soil at the site. Results from the Microtox trademark indicated a decreasing trend in toxicity with respect to time in contaminated site soil. Research results were evaluated with regard to the National Research Council's guidelines for evaluating in situ bioremediation, and were used to enhance site characterization and monitoring information for evaluating the role of bioremediation as part of natural attenuation of PAHs at coal-tar-contaminated sites

  3. Bioremediation of Mixtures of High Molecular Weight Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Xu, H.; Wu, J.; Shi, X.; Sun, Y.

    2014-12-01

    Although bioremediation has been considered as one of the most promising means to remove polycyclic aromatic hydrocarbons (PAHs) from polluted environments, the efficacy of PAHs bioremediation still remains challenged, especially for high molecular weight PAHs (HMW PAHs) and their mixtures. This study was focused on (a) isolation and characterization of pure strain and mixed microbial communities able to degrade HMW PAHs and (b) further evaluation of the ability of the isolated microbes to degrade HMW PAHs mixtures in the absence and presence of indigenous flora. Fluoranthene, benzo[b]fluoranthene and pyrene were selected as the representative HMW PAHs in this study. A pure bacterial strain, identified as Herbaspirillum chlorophenolicum FA1, was isolated from activated sludge. A mixed bacterial community designated as consortium-4 was isolated from petroleum contaminated soils, containing Pseudomonas sp. FbP1、Enterobacter sp. FbP2、Hydrogenophaga sp. FbP3 and Luteolibacter pohnpeiensis. FbP4. To our knowledge, this is the first study to demonstrate that bacterial strains of Herbaspirillum chlorophenolicum FA1 and Luteolibacter pohnpeiensis. FbP4 can also degrade fluoranthene, benzo[b]fluoranthene and pyrene. Experiment results showed that both strain FA1 and consortium-4 could degrade fluoranthene, benzo[b]fluoranthene and pyrene within a wide range of temperature, pH and initial PAHs concentration. Degradation of HMW PAHs mixtures (binary and ternary) demonstrated the interactive effects that can alter the rate and extent of biodegradation within a mixture. The presence of indigenous flora was found to either increase or decrease the degradation of HMW PAHs, suggesting possible synergistic or competition effects. Biodegradation kinetics of HMW PAHs for sole substrates, binary and ternary systems was evaluated, with the purpose to better characterize and compare the biodegradation process of individual HMW PAH and mixtures of HMW PAHs. Results of this study

  4. Study on the Bioremediation of Petroleum Contaminated Soil by Wastewater Treatment Agent ABR Hydrocarbon%废水处理剂ABR Hydrocarbon对石油污染土壤生物修复的研究

    Institute of Scientific and Technical Information of China (English)

    杜国丰

    2016-01-01

    The application conditions of wastewater treatment agent ABR Hydrocarbon and the microbial remediation of petroleum contaminated soil were studied. The results showed that the optimal fermentation temperature of wastewater treatment agent ABR Hydrocarbon was 40 ℃, and the optimal fermentation pH was 7. 0 , surfactants produced in the fermentation liquid, there was a good correlation between the activity of dehydrogenase activity and the degradation rate of petroleum hydrocarbons in soil. After continuous cultivation for 32 days, petroleum hydrocarbon degradation rate reached 33. 4%, soil microbial dehydrogenase activity was 83. 0 μg/( g · h ) . The experiments showed that the wastewater treatment agent ABR Hydrocarbon had good petroleum hydrocarbon degradation ability.%对废水处理剂ABR Hydrocarbon的应用条件及其对石油污染土壤的微生物修复进行了研究。结果表明:废水处理剂ABR Hydrocarbon的最佳发酵温度为40益、最佳发酵pH为7.0,发酵液中有表面活性物质产生,土壤中微生物的脱氢酶活性与石油烃降解率之间存在较好的相关性。连续培养32天,石油烃的降解率达到了33.4%,土壤微生物脱氢酶活性为83.0μg/( g·h)。试验表明废水处理剂ABR Hydrocarbon具有较好的石油烃降解能力。

  5. 土壤重金属镉污染的生物修复技术研究进展%Research Progress of Bioremediation Technology of Cadmium Polluted Soil

    Institute of Scientific and Technical Information of China (English)

    徐良将; 张明礼; 杨浩

    2011-01-01

    With the development of agriculture and industry, the heavy metal-cadmium pollution is becoming increasingly severe. In order to alleviate the effect of cadmium pollution, many researchers have engaged in phytoremediation research of soil polluted by cadmium and have proposed restoration measures, chemical treatment measures, agro-ecology restoration measures and phytoremediation technology etc. In this paper, comparing the merit and demerit of various ways of restoration, it is found that the phytoremediation technology is more preferred for it is more environment-friendly and economical. This paper focuses on the concept, types and research status of phytoremediation of cadmium polluted soil and the perspectives of phytoremediation of cadmium polluted soil is also discussed.%随着工农业的发展,重金属Cd污染也日益严重,为了减轻Cd污染带来的危害,众多研究人员进行了镉污染土壤的植物修复研究,并提出工程修复措施、化学治理措施、农业生态修复措施和生物修复措施等技术,本文比较了各种修复方法的优势和局限,发现生物修复中的植物修复技术因其环保、经济等特点备受推崇.并重点阐述了Cd污染土壤植物修复的概念、类型和研究现状,进而对Cd污染土壤的植物修复技术进行了展望.

  6. Endophytic microorganisms—promising applications in bioremediation of greenhouse gases

    OpenAIRE

    Z. Stępniewska; Kuźniar, A.

    2013-01-01

    Bioremediation is a technique that uses microbial metabolism to remove pollutants. Various techniques and strategies of bioremediation (e.g., phytoremediation enhanced by endophytic microorganisms, rhizoremediation) can mainly be used to remove hazardous waste from the biosphere. During the last decade, this specific technique has emerged as a potential cleanup tool only for metal pollutants. This situation has changed recently as a possibility has appeared for bioremediation of other polluta...

  7. Molecular Tools for Monitoring and Validating Bioremediation

    Science.gov (United States)

    Stenuit, Ben; Eyers, Laurent; Schuler, Luc; George, Isabelle; Agathos, Spiros N.

    Bioremediation is now in a position to take advantage of genomic-driven strategies to analyze, monitor and assess its course by considering multiple micro-organisms with various genomes, expressed transcripts and proteins. High-throughput methodologies, including microarrays, fingerprinting, real-time PCR, metagenomics and metaproteomics, show great promise in our environmental interventions against recalcitrant contaminants such as 2,4,6-trinitrotoluene (TNT) that we have been studying for many years. The emerging genomic and metagenomic methodologies will allow us to promote or restore environmental health in impacted sites, monitor remediation activities, identify key microbial players and processes, and finally compile an intelligent database of genes for targeted use in bioremediation.

  8. Some Case Studies on Metal-Microbe Interactions to Remediate Heavy Metals- Contaminated Soils in Korea

    Science.gov (United States)

    Chon, Hyo-Taek

    2015-04-01

    Conventional physicochemical technologies to remediate heavy metals-contaminated soil have many problems such as low efficiency, high cost and occurrence of byproducts. Recently bioremediation technology is getting more and more attention. Bioremediation is defined as the use of biological methods to remediate and/or restore the contaminated land. The objectives of bioremediation are to degrade hazardous organic contaminants and to convert hazardous inorganic contaminants to less toxic compounds of safe levels. The use of bioremediation in the treatment of heavy metals in soils is a relatively new concept. Bioremediation using microbes has been developed to remove toxic heavy metals from contaminated soils in laboratory scale to the contaminated field sites. Recently the application of cost-effective and environment-friendly bioremediation technology to the heavy metals-contaminated sites has been gradually realized in Korea. The merits of bioremediation include low cost, natural process, minimal exposure to the contaminants, and minimum amount of equipment. The limitations of bioremediation are length of remediation, long monitoring time, and, sometimes, toxicity of byproducts for especially organic contaminants. From now on, it is necessary to prove applicability of the technologies to contaminated sites and to establish highly effective, low-cost and easy bioremediation technology. Four categories of metal-microbe interactions are generally biosorption, bioreduction, biomineralization and bioleaching. In this paper, some case studies of the above metal-microbe interactions in author's lab which were published recently in domestic and international journals will be introduced and summarized.

  9. Bioremediation Kinetics of Pharmaceutical Industrial Effluent

    OpenAIRE

    Šabić, M.; Vuković Domanovac, M.; Findrik Blažević, Z.; Meštrović, E.

    2015-01-01

    In recent years, concerns about the occurrence and fate of pharmaceuticals that could be present in water and wastewater has gained increasing attention. With the public’s enhanced awareness of eco-safety, environmentally benign methods based on microorganisms have become more accepted methods of removing pollutants from aquatic systems. This study investigates bioremediation of pharmaceutical wastewater from pharmaceutical company Pliva Hrvatska d.o.o., using activated sludge and bioaugmente...

  10. Use of molecular techniques in bioremediation.

    Science.gov (United States)

    Płaza, G; Ulfig, K; Hazen, T C; Brigmon, R L

    2001-01-01

    In a practical sense, biotechnology is concerned with the production of commercial products generated by biological processes. More formally, biotechnology may be defined as "the application of scientific and engineering principles to the processing of material by biological agents to provide goods and services" (Cantor, 2000). From a historical perspective, biotechnology dates back to the time when yeast was first used for beer or wine fermentation, and bacteria were used to make yogurt. In 1972, the birth of recombinant DNA technology moved biotechnology to new heights and led to the establishment of a new industry. Progress in biotechnology has been truly remarkable. Within four years of the discovery of recombinant DNA technology, genetically modified organisms (GMOs) were making human insulin, interferon, and human growth hormone. Now, recombinant DNA technology and its products--GMOs are widely used in environmental biotechnology (Glick and Pasternak, 1988; Cowan, 2000). Bioremediation is one of the most rapidly growing areas of environmental biotechnology. Use of bioremediation for environmental clean up is popular due to low costs and its public acceptability. Indeed, bioremediation stands to benefit greatly and advance even more rapidly with the adoption of molecular techniques developed originally for other areas of biotechnology. The 1990s was the decade of molecular microbial ecology (time of using molecular techniques in environmental biotechnology). Adoption of these molecular techniques made scientists realize that microbial populations in the natural environments are much more diverse than previously thought using traditional culture methods. Using molecular ecological methods, such as direct DNA isolation from environmental samples, denaturing gradient gel electrophoresis (DGGE), PCR methods, nucleic acid hybridization etc., we can now study microbial consortia relevant to pollutant degradation in the environment. These techniques promise to

  11. Biomarkers of marine pollution and bioremediation

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.

    pollution and bioremediation Anupam Sarkar Accepted: 1 February 2006 / Published online: 4 May 2006 C211 Springer Science+Business Media, LLC 2006 This special issue of Ecotoxicology is dealt with selected papers presented at the ‘International Workshop... species of marine organisms and their bio-magnification across the food chain leading to serious threat to human health. In recent years, levels of contaminants in the marine environment have increased to a large extent as a consequence of vari- ous...

  12. The enzymatic basis for pesticide bioremediation

    OpenAIRE

    Scott, Colin; Pandey, Gunjan; Hartley, Carol J.; Jackson, Colin J.; Cheesman, Matthew J.; Taylor, Matthew C.; Pandey, Rinku; Khurana, Jeevan L.; Teese, Mark; Coppin, Chris W; Weir, Kahli M.; Jain, Rakesh K.; Lal, Rup; Russell, Robyn J.; Oakeshott, John G.

    2008-01-01

    Enzymes are central to the biology of many pesticides, influencing their modes of action, environmental fates and mechanisms of target species resistance. Since the introduction of synthetic xenobiotic pesticides, enzymes responsible for pesticide turnover have evolved rapidly, in both the target organisms and incidentally exposed biota. Such enzymes are a source of significant biotechnological potential and form the basis of several bioremediation strategies intended to reduce the environmen...

  13. Bioremediation: Copper Nanoparticles from Electronic-waste

    OpenAIRE

    D. R. MAJUMDER

    2012-01-01

    A single-step eco-friendly approach has been employed to synthesize copper nanoparticles. The superfast advancement in the field of electronics has given rise to a new type of waste called electronic waste. Since the physical and chemical recycling procedures have proved to be hazardous, the present work aims at the bioremediation of e-waste in order to recycle valuable metals. Microorganisms such as Fusarium oxysporum and Pseudomonas sp. were able to leach copper (84-130 nm) from integrated ...

  14. Field evaluations of marine oil spill bioremediation.

    OpenAIRE

    Swannell, R P; Lee, K; McDonagh, M

    1996-01-01

    Bioremediation is defined as the act of adding or improving the availability of materials (e.g., nutrients, microorganisms, or oxygen) to contaminated environments to cause an acceleration of natural biodegradative processes. The results of field experiments and trials following actual spill incidents have been reviewed to evaluate the feasibility of this approach as a treatment for oil contamination in the marine environment. The ubiquity of oil-degrading microorganisms in the marine environ...

  15. Bioremediation Education Science and Technology (BEST) Program Annual Report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2000-07-01

    The Bioremediation, Education, Science and Technology (BEST) partnership provides a sustainable and contemporary approach to developing new bioremedial technologies for US Department of Defense (DoD) priority contaminants while increasing the representation of underrepresented minorities and women in an exciting new biotechnical field. This comprehensive and innovative bioremediation education program provides under-represented groups with a cross-disciplinary bioremediation cirruculum and financial support, coupled with relevant training experiences at advanced research laboratories and field sites. These programs are designed to provide a stream of highly trained minority and women professionals to meet national environmental needs.

  16. Potential of Penicillium Species in the Bioremediation Field

    Directory of Open Access Journals (Sweden)

    Ana Lúcia Leitão

    2009-04-01

    Full Text Available The effects on the environment of pollution, particularly that caused by various industrial activities, have been responsible for the accelerated fluxes of organic and inorganic matter in the ecosphere. Xenobiotics such as phenol, phenolic compounds, polycyclic aromatic hydrocarbons (PAHs, and heavy metals, even at low concentrations, can be toxic to humans and other forms of life. Many of the remediation technologies currently being used for contaminated soil and water involve not only physical and chemical treatment, but also biological processes, where microbial activity is the responsible for pollutant removal and/or recovery. Fungi are present in aquatic sediments, terrestrial habitats and water surfaces and play a significant part in natural remediation of metal and aromatic compounds. Fungi also have advantages over bacteria since fungal hyphae can penetrate contaminated soil, reaching not only heavy metals but also xenobiotic compounds. Despite of the abundance of such fungi in wastes, penicillia in particular have received little attention in bioremediation and biodegradation studies. Additionally, several studies conducted with different strains of imperfecti fungi, Penicillium spp. have demonstrated their ability to degrade different xenobiotic compounds with low co-substrate requirements, and could be potentially interesting for the development of economically feasible processes for pollutant transformation.

  17. Bioremediation of polyaromatic hydrocarbons (PAHs using rhizosphere technology

    Directory of Open Access Journals (Sweden)

    Sandeep Bisht

    2015-03-01

    Full Text Available The remediation of polluted sites has become a priority for society because of increase in quality of life standards and the awareness of environmental issues. Over the past few decades there has been avid interest in developing in situ strategies for remediation of environmental contaminants, because of the high economic cost of physicochemical strategies, the biological tools for remediation of these persistent pollutants is the better option. Major foci have been considered on persistent organic chemicals i.e.polyaromatic hydrocarbons (PAHs due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity. Rhizoremediation, a specific type of phytoremediation that involves both plants and their associated rhizospheric microbes is the creative biotechnological approach that has been explored in this review. Moreover, in this review we showed the significance of rhizoremediation of PAHs from other bioremediation strategies i.e. natural attenuation, bioaugmentation and phytoremediation and also analyze certain environmental factor that may influence the rhizoremediation technique. Numerous bacterial species were reported to degrade variety of PAHs and most of them are isolated from contaminated soil, however few reports are available from non contaminated soil. Pseudomonas aeruginosa, Pseudomons fluoresens, Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Finally, exploring the molecular communication between plants and microbes, and exploiting this communication to achieve better results in the elimination of contaminants, is a fascinating area of research for future perspective.

  18. Life cycle assessment of Polychlorinated Biphenyl contaminated soil remediation processes

    OpenAIRE

    Busset, Guillaume; Sangely, Matthieu; Montréjaud-Vignoles, Mireille; Thannberger, Laurent; Sablayrolles, Caroline

    2012-01-01

    Goal and scope. A life-cycle assessment (LCA) was performed to evaluate the environmental impacts of the remediation of industrial soils contaminated by polychlorobiphenyl (PCB). Two new bioremediation treatment options were compared with the usual incineration process. In this attributional LCA, only secondary impacts were considered. The contaminated soil used for the experiments contained 200 mg of PCB per kg. Methods. Three off-site treatments scenarios were studied: 1) bioremediation...

  19. Soils

    International Nuclear Information System (INIS)

    For Austria there exists a comprehensive soil data collection, integrated in a GIS (geographical information system). The content values of pollutants (cadmium, mercury, lead, copper, mercury, radio-cesium) are given in geographical charts and in tables by regions and by type of soil (forests, agriculture, greenland, others) for the whole area of Austria. Erosion effects are studied for the Austrian region. Legal regulations and measures for an effective soil protection, reduction of soil degradation and sustainable development in Austria and the European Union are discussed. (a.n.)

  20. Risk-based approach for bioremediation of fuel hydrocarbons at a major airport

    International Nuclear Information System (INIS)

    This paper describes a risk-based approach for bioremediation of fuel-hydrocarbon-contaminated soil and ground water at a major airport in Colorado. In situ bioremediation pilot testing, natural attenuation modeling, and full-scale remedial action planning and implementation for soil and ground water contamination has conducted at four airport fuel farms. The sources of fuel contamination were leaking underground storage tanks (USTs) or pipelines transporting Jet A fuel and aviation gasoline. Continuing sources of contamination were present in several small cells of free-phase product and in fuel residuals trapped within the capillary fringe at depths 15 to 20 feet below ground surface. Bioventing pilot tests were conducted to assess the feasibility of using this technology to remediate contaminated soils. The pilot tests included measurement of initial soil gas chemistry at the site, determination of subsurface permeability, and in situ respiration tests to determine fuel biodegradation rates. A product recovery test was also conducted. ES designed and installed four full-scale bioventing systems to remediate the long-term sources of continuing fuel contamination. Benzene, toluene, ethylbenzene, and xylenes (BTEX) and total petroleum hydrocarbons (TPH) were detected in ground water at concentrations slightly above regulatory guidelines

  1. MICROBIAL TRANSFORMATIONS OF RADIONUCLIDES AND ENVIRONMENTAL RESTORATION THROUGH BIOREMEDIATION.

    Energy Technology Data Exchange (ETDEWEB)

    FRANCIS, A.J.

    2006-09-29

    Treatment of waste streams containing radionuclides, the remediation of contaminated materials, soils, and water, and the safe and economical disposal of radionuclides and toxic metals containing wastes is a major concern. Radionuclides may exist in various oxidation states and may be present as oxide, coprecipitates, inorganic, and organic complexes depending on the process and waste stream. Unlike organic contaminants, the metals cannot be destroyed, but must either be converted to a stable form or removed. Microorganisms present in the natural environment play a major role in the mobilization and immobilization of radionuclides and toxic metals by direct enzymatic or indirect non-enzymatic actions and could affect the chemical nature of the radionuclides by altering the speciation, solubility and sorption properties and thus could increase or decrease the concentrations of radionuclides in solution. Fundamental understanding of the mechanisms of microbiological transformations of various chemical forms of uranium present in wastes and contaminated soils and water has led to the development of novel bioremediation processes. One process uses anaerobic bacteria to stabilize the radionuclides by reductive precipitation from higher to lower oxidation state with a concurrent reduction in volume due to the dissolution and removal of nontoxic elements from the waste matrix. In an another process, uranium and other toxic metals are removed from contaminated surfaces, soils, and wastes by extracting with the chelating agent citric acid. Uranium is recovered from the citric acid extract after biodegradation followed by photodegradation in a concentrated form as UO{sub 3} {center_dot} 2H{sub 2}O for recycling or appropriate disposal. These processes use all naturally occurring materials, common soil bacteria, naturally occurring organic compound citric acid and sunlight.

  2. Reseach on oil-contaminated soil in-site bioremediation in the Northwest loess area%西北黄土地区现场石油污染土壤生物修复研究

    Institute of Scientific and Technical Information of China (English)

    郭超; 黄廷林; 唐智新; 宁亚平

    2011-01-01

    通过在陕北安塞油田某废弃油井建立中试试验基地,以实验室中筛选分离得到的高效降解石油的优势菌为添加的高效菌,研究土壤石油初始浓度、营养物质和高效菌对石油降解的影响.结果表明:(1)在各土壤石油初始浓度下,石油降解率总体均随降解时间的延长而升高.在土壤石油初始质量浓度为15.34 g/kg下,72 d时石油降解率为47.8%左右;在土壤石油初始质量浓度为12.77 g/kg下,72 d时石油降解率为53.0%左右;在土壤石油初始质量浓度为6.56 g/kg下,79 d时石油降解事高达83.2%.较低的土壤石油初始浓度有利于石油降解.(2)添加营养物质使石油降解率显著提高,这说明污染土壤中严重缺乏氮、磷营养物质.(3)添加高效菌和不添加高效菌的石油降解曲线变化基本一致.27 d时添加高效菌和不添加高效菌的石油降解率分别为87.0%和75.9%;42 d时添加高效菌和不添加高效菌的石油降解率分别为80.2%和47.2%;79 d时添加高效菌和不添加高效菌的石油降解率分别为72.0%和72.6%.(4)添加高效菌在短期内有利于快速降解石油污染物.石油浓度和营养物质的添加是高效菌生长的重要因素.%In order to study the influence of oil content, the supplementary of nutritive material and addition of high effective strains on the oil degradability, the pilot test was carried out in the abandoned well site at Ansai oilfield in Northern Shaanxi Province and the high effective strains selected from oil-contaminated soil in the laboratory were added to the soil. The results showed that the degradability of oil was increased with increasing the degradation time. When the initial oil concentration was 15. 34, 12. 77 g/kg respectively, the corresponding degradability was 47. 8%, 53. 0% after 72 days. When the initial oil concentration was below 6. 56 g/kg, the degradability was 83. 2% after 79 days. So, lower oil concentration

  3. In situ bioremediation: Cost effectiveness of a remediation technology field tested at the Savannah River

    International Nuclear Information System (INIS)

    In Situ Bioremediation (ISBR) is an innovative new remediation technology for the removal of chlorinated solvents from contaminated soils and groundwater. The principal contaminant at the SRID is the volatile organic compound (VOC), tricloroetylene(TCE). A 384 day test run at Savannah River, sponsored by the US Department of Energy, Office of Technology Development (EM-50), furnished information about the performance and applications of ISBR. In Situ Bioremediation, as tested, is based on two distinct processes occurring simultaneously; the physical process of in situ air stripping and the biolgoical process of bioremediation. Both processes have the potential to remediate some amount of contamination. A quantity of VOCs, directly measured from the extracted air stream, was removed from the test area by the physical process of air stripping. The biological process is difficult to examine. However, the results of several tests performed at the SRID and independent numerical modeling determined that the biological process remediated an additional 40% above the physical process. Given this data, the cost effectiveness of this new technology can be evaluated

  4. An enhanced aerobic bioremediation system at a central production facility -- system design and data analysis

    International Nuclear Information System (INIS)

    A successful field demonstration of the enhanced in-situ aerobic bioremediation with remarkable results took place during the period of August 1, 1991 through year-end 1992 at a central production facility in Michigan. The in-situ soil logging and groundwater sampling by the cone penetrometer/porous probe system provided a real-time definition of the groundwater flow ''channel'' and a clear delineation of the plume extent. That facilitated the design of the closed-loop bioremediation system, consisting of two downgradient pumping wells to completely capture the plume and two pairs of bi-level injection wells located upgradient of the plume. The purged groundwater from the two pumping wells after amending with dissolved oxygen is directly reinjected to the two pairs of upgradient bi-level injection wells. In addition, the performance of the system is monitored by 17 multilevel piezometers. Each piezometer consists of four vertical sampling levels, providing a total of 68 sampling points to fully define the three-dimensional characteristics of the BTEX and DO plumes. Based on a hydrograph analysis of the groundwater data, the closed-loop bioremediation system has been operating properly. In addition, a particle tracking analysis showed groundwater flowlines converge to the pumping wells demonstrating the effectiveness of the plume capture. The trend analysis showed a consistent decline of BTEX concentrations at all of the 68 sampling points

  5. Biodegradation of Used Motor Oil in Soil Using Organic Waste Amendments

    OpenAIRE

    O. P. Abioye; Agamuthu, P.; A.R Abdul_Aziz

    2012-01-01

    Soil and surface water contamination by used lubricating oil is a common occurrence in most developing countries. This has been shown to have harmful effects on the environment and human beings at large. Bioremediation can be an alternative green technology for remediation of such hydrocarbon-contaminated soil. Bioremediation of soil contaminated with 5% and 15% (w/w) used lubricating oil and amended with 10% brewery spent grain (BSG), banana skin (BS), and spent mushroom compost (SMC) was st...

  6. Anaerobic and aerobic slurry bioreactors for remediation of a heavy soil contaminated with lindane

    International Nuclear Information System (INIS)

    Slurry bioreactors (SB) can be used for bioremediation of polluted heavy soils such as those characterized by high contents of clay and organic matter, when the contaminants are recalcitrant, toxic, and display hysteretic behaviour, and/or when bioremediation should be accomplished in short times under the pressure and monitoring of environmental agencies and regulators. (Author)

  7. BIOREMEDIATION OF PETROLEUM HYDROCARBON CONTAMINANTS IN MARINE HABITATS

    Science.gov (United States)

    Bioremediation is being increasingly seen as an effective environmentally benign treatment for shorelines contaminated as a result of marine oil spills. Despite a relatively long history of research on oil-spill bioremediation, it remains an essentially empirical technology and m...

  8. Ecogenomics of microbial communities in bioremediation of chlorinated contaminated sites

    OpenAIRE

    Maphosa, Farai; Lieten, Shakti H.; Dinkla, Inez; Stams, Alfons J.; Smidt, Hauke; Fennell, Donna E.

    2012-01-01

    Organohalide compounds such as chloroethenes, chloroethanes, and polychlorinated benzenes are among the most significant pollutants in the world. These compounds are often found in contamination plumes with other pollutants such as solvents, pesticides, and petroleum derivatives. Microbial bioremediation of contaminated sites, has become commonplace whereby key processes involved in bioremediation include anaerobic degradation and transformation of these organohalides by organohalide respirin...

  9. Ecogenomics of microbial communities in bioremediation of chlorinated contaminated sites

    OpenAIRE

    FaraiMaphosa; ShaktiHLieten; DonnaE.Fennell

    2012-01-01

    Organohalide compounds such as chloroethenes, chloroethanes and polychlorinated benzenes are among the most significant pollutants in the world. These compounds are often found in contamination plumes with other pollutants such as solvents, pesticides and petroleum derivatives. Microbial bioremediation of contaminated sites, has become commonplace whereby key processes involved in bioremediation include anaerobic degradation and transformation of these organohalides by organohalide respiring ...

  10. Raw Materials Synthesis from Heavy Metal Industry Effluents with Bioremediation and Phytomining: A Biomimetic Resource Management Approach

    Directory of Open Access Journals (Sweden)

    Salmah B. Karman

    2015-01-01

    Full Text Available Heavy metal wastewater poses a threat to human life and causes significant environmental problems. Bioremediation provides a sustainable waste management technique that uses organisms to remove heavy metals from contaminated water through a variety of different processes. Biosorption involves the use of biomass, such as plant extracts and microorganisms (bacteria, fungi, algae, yeast, and represents a low-cost and environmentally friendly method of bioremediation and resource management. Biosorption-based biosynthesis is proposed as a means of removing heavy metals from wastewaters and soils as it aids the development of heavy metal nanoparticles that may have an application within the technology industry. Phytomining provides a further green method of managing the metal content of wastewater. These approaches represent a viable means of removing toxic chemicals from the effluent produced during the process of manufacturing, and the bioremediation process, furthermore, has the potential to save metal resources from depletion. Biomimetic resource management comprises bioremediation, biosorption, biosynthesis, phytomining, and further methods that provide innovative ways of interpreting waste and pollutants as raw materials for research and industry, inspired by materials, structures, and processes in living nature.

  11. Degradation of polycyclic aromatic hydrocarbons by microbial consortia enriched from three soils using two different culture media

    International Nuclear Information System (INIS)

    A consortium composed of many different bacterial species is required to efficiently degrade polycyclic aromatic hydrocarbons (PAH) in oil-contaminated soil. We obtained six PAH-degrading microbial consortia from three oil-contaminated soils using two different isolation culture media. Denaturing gradient gel electrophoresis (DGGE) and sequence analyses of amplified 16s rRNA genes confirmed the bacterial community was greatly affected by both the culture medium and the soil from which the consortia were enriched. Three bacterial consortia enriched using malt yeast extract (MYE) medium showed higher degradation rates of PAHs than consortia enriched using Luria broth (LB) medium. Consortia obtained from a soil and then added back to that same soil was more effective in degrading PAHs than adding, to the same soil, consortia isolated from other, unrelated soils. This suggests that inoculum used for bioremediation should be from the same, or very similar nearby soils, as the soil that is actually being bioremediated. -- Highlights: •Six PAH-degrading microbial consortia were isolated from three oil-contaminated soils. •The bacterial community by 16s rRNA genes was affected by culture media and source soil. •Inoculum should be from the same or similar soil as the soil being bioremediated. -- Bioremediation of oil-contaminated soils was most effective when using inoculum of microbial consortia from the same or similar soil as the soil being bioremediated

  12. Isolation of a diphenylamine-degrading bacterium and characterization of its metabolic capacities, bioremediation and bioaugmentation potential.

    Science.gov (United States)

    Perruchon, Chiara; Batianis, Christos; Zouborlis, Stelios; Papadopoulou, Evangelia S; Ntougias, Spyridon; Vasileiadis, Sotirios; Karpouzas, Dimitrios G

    2015-12-01

    The antioxidant diphenylamine (DPA) is used in fruit-packaging plants for the control of the physiological disorder apple scald. Its use results in the production of DPA-contaminated wastewater which should be treated before finally discharged. Biological treatment systems using tailored-made microbial inocula with specific catabolic activities comprise an appealing and sustainable solution. This study aimed to isolate DPA-degrading bacteria, identify the metabolic pathway of DPA and evaluate their potential for future implementation in bioremediation and biodepuration applications. A Pseudomonas putida strain named DPA1 able to rapidly degrade and utilize DPA as the sole C and N source was enriched from a DPA-contaminated soil. The isolated strain degraded spillage-level concentrations of DPA in liquid culture (2000 mg L(-1)) and in contaminated soil (1000 mg kg(-1)) and metabolized DPA via the transient formation of aniline and catechol. Further evidence for the bioremediation and biodepuration potential of the P. putida strain DPA1 was provided by its capacity to degrade the post-harvest fungicide ortho-phenylphenol (OPP), concurrently used by the fruit-packaging plants, although at slower rates and DPA in a wide range of pH (4.5-9) and temperatures (15-37 °C). These findings revealed the high potential of the P. putida strain DPA1 for use in future soil bioremediation strategies and/or as start-up inocula in wastewater biodepuration systems. PMID:26260839

  13. Bioremediation Of Heavy Metal Toxicity-With Special Reference To Chromium

    Directory of Open Access Journals (Sweden)

    Suranjana (Arora Ray and Manas Kanti Ray

    2009-12-01

    Full Text Available All metals are toxic and our bodies require special transport and handling mechanisms to keep them from harming us. The toxicity occurs in humans due to environmental pollution via soil or water contamination or due to occupational exposure. Some of these metals are useful to us in low concentrations but are highly toxic in higher concentrations. These metal toxicity cause serious morbidity and mortality. Among these heavy metals chromium toxicity can cause serious carcinogenic, genotoxic and immunotoxic effects in humans and animals. Of the two oxidative states in which chromium can be present Cr (III and Cr (VI, Cr (III is essential for the human system whereas Cr (VI has harmful effects. So, one of the ways of reducing Cr-toxicity in Cr-contaminated soil and water is to reduce soluble Cr (VI to insoluble Cr (III. This can be achieved by microbial activity and is a cost-effective and environment friendly method. Many genera of microbes like Bacillus, Enterobacter, Escherichia, Pseudomonas and also some yeasts and fungi help in bioremediation of metals and chromium-contaminated soil and water by bio-absorption and bioaccumulation of chromium. The potential of bioremediation of metal toxicity and its impact on the environment is discussed.

  14. In situ bioremediation of a diesel fuel spill in northern Manitoba

    International Nuclear Information System (INIS)

    At a northern Manitoba airport, a site was contaminated with diesel fuel, which was confined within the unsaturated zone in silt and silty sand. A two-phase bioremediation process was designed and implemented in-situ in a pilot test. The first phase, ground surface spraying, involved mixing nutrients (ammonium-nitrogen and orthophosphate) with water in a tank and then spraying the mixture on the ground surface above the diesel plume. The second phase, a pump-cycle system, involved pumping groundwater from below the diesel plume into one of two tanks in series. The groundwater underwent both nutrient addition (weekly) and aeration in the tanks, then it was pumped into eight feeder wells which circumscribed an extraction well. Soil testing revealed that both remediation processes aided in increasing subsurface nutrient concentrations and the moisture content within the diesel plume. In addition, high total coliform counts were observed in both the silt and silty sand layers. This implied that conditions for suitable bioremediation can be developed in relatively fine-grained soil. Intermittent soil sampling at three locations over a 14-month period revealed that the diesel plume decreased in size by ca 30% and contaminant concentrations (diesel fuel) also decreased. Plume movement also occurred. The pump-cycle system remains operational. 67 refs., 77 figs., 9 tabs

  15. Alternanthera philoxeroides Might Be Used for Bioremediating Heavy Metal Contaminated Soil%重金属胁迫条件下空心莲子草的生长和营养特征分析

    Institute of Scientific and Technical Information of China (English)

    宋志忠; 王莉; 金曼; 苏彦华

    2011-01-01

    Alternanthera philoxeroides,usually called as Shui-hua-sheng in China and commonly known as Alligator weed in English,is an immersed aquatic plant and is listed an invasive species in China.In this work,we found that Shui-hua-sheng(A.philoxeroides) is able to accumulate six heavy metals with the ability of Zn2+Mn2+Pb2+Cu2+Cd2+Cr3+.Under the conditions of the stimulated external high concentration(1 mmol/L) of Cu2+,Mn2+,Zn2+ and Cr3+,the biomass of Shui-hua-sheng(A.philoxeroides) reduced,total length of root and total area of root surface decreased as well,accordingly R/S ratios increased.Moreover,the nutriational characteristics of K+,Ca2+ and Mg2+ were altered significantly,respectively,under the exposure to contaminations of Pb2+,Cd2+,Cu2+ and Zn2+.The findings in this research implied that the Shui-hua-sheng(A.philoxeroides) be able to tolerate mentioned heavy-metals with high level contamination,and also might be as alternative to be used for biomediation of heavy-metal polluted soil or water.%空心莲子草是一种常见的水生植物,并能在重金属污染的水体或附近土壤中生长。本研究发现,空心莲子草能富集6种常见的重金属元素,其富集能力为:Zn2+〉Mn2+〉Pb2+〉Cu2+〉Cd2+〉Cr3+。高浓度(1mmol/L)Cu2+、Mn2+、Zn2+和Cr3+等重金属胁迫处理条件下,空心莲子草的根冠比增加,生物干重、总根长和总根表面积都相应降低。此外,高浓度(1mmol/L)Pb2+、Cd2+、Cu2+或Zn2+分别胁迫处理条件下,空心莲子草的K+、Ca+和Mg+等元素的含量变化差异显著(P〈0.05)。以上研究表明,空心莲子草通过改变体内钾钙镁等重要生长元素营养情况来适应重金属污染的胁迫,有很强的富集重金属元素的能力,进而降低污染、净化水体。空心莲子草对重金属污染的生长响应及体内重要矿物元素营养特性之间的相互关系,可

  16. Natural and Accelerated Bioremediation Research Program. Final Report

    International Nuclear Information System (INIS)

    Bioremediation of radionuclides and metals in the subsurface necessitate an understanding of the metabolic capacities and interactions of the anaerobic microorganisms that are found there, including members of the sulfate-reducing bacteria (SRB). Genetic investigation into the pathway of reductant flow to U(VI) in the SRB belonging to the genus Desulfovibrio has been the focus of this project. In Dv. desulfuricans strain G20, we confirmed the importance of the tetraheme cytochrome c3 by disruption of the gene encoding that cytochrome, cycA, and demonstrated a decrease in the ability of the mutant (I2) to reduce U(VI). We found that the cytochrome c3 was necessary for electrons from pyruvate to reach sulfate or fumarate as terminal electron acceptors. It was not needed for electrons from lactate to reach sulfate, from which we infer that a different pathway is used for the electrons from these two substrates. Cyrstal structure of the tetraheme cytochrome c3 was obtained and site-directed mutations of the protein indicated a binding site for metals at heme 4 of the structure. Kinetic studies for oxidation of reduced cytochrome c3 with U(VI) or molybdate revealed a preference for U(VI) as a substrate. Evidence for a role for sodium gradients in the energetic scheme for this soil organism was obtained.

  17. Application Evaluation of Air-Sparging and Aerobic Bioremediation in PAM(Physical Aquifer Model) with Advanced and Integrated Module

    Science.gov (United States)

    Hong, U.; Ko, J.; Park, S.; Kim, Y.; Kwon, S.; Ha, J.; Lim, J.; Han, K.

    2010-12-01

    It is generally difficult for a single process to remediate contaminated soil and groundwater contaminated with various organic compounds such as total petroleum hydrocarbon (TPH), benzene, toluene, ethylbenzene, xylene (BTEX), chlorinated aliphatic hydrocarbons (CAHs) because those contaminants show different chemical properties in two phases (e.g. soil and groundwater). Therefore, it is necessary to design an in-situ remediation system which can remove various contaminants simultaneously. For the purpose, we constructed integrated well module which can apply several remediation process such as air sparging, soil vapor extraction, and bioventing. The advanced integrated module consisted of three main parts such as head, body, and end cap. First of all, head part has three 3.6-cm-diameter stainless lines and can simultaneously inject air or extract NAPL, respectively. Secondly, body part has two 10-cm-height screen intervals with 100-mesh stainless inserts for unsaturated and smear zone. Lastly, we constructed three different sizes of end caps for injection and extraction from a saturated zone. We assumed that the integrated module can play bioremediation, air sparging, cometabolic sparging, chemical oxidation. In this study, we examined application of air sparing and aerobic bioremediation of toluene in Physical Aquifer Model (PAM) with an integrated well module. During air sparging experiments, toluene concentration decreased by injection of air. In addition, we accomplished bioremediation experiment to evaluate removal of toluene by indigenous microbes in PAM with continuous air injection. From the two experiments result, we confirmed that air sparging and aerobic bioremediation processes can be simultaneously carried out by an intergrated well module.

  18. Bioremediation of a Chilean Andisol contaminated with pentachlorophenol (PCP) by solid substrate cultures of white-rot fungi.

    Science.gov (United States)

    Rubilar, O; Tortella, G; Cea, M; Acevedo, F; Bustamante, M; Gianfreda, L; Diez, M C

    2011-02-01

    This study provides a first attempt investigation of a serie of studies on the ability of Anthracophyllum discolor, a recently isolated white-rot fungus from forest of southern Chile, for the treatment of soil contaminated with pentachlorophenol (PCP) to future research on potential applications in bioremediation process. Bioremediation of soil contaminated with PCP (250 and 350 mg kg⁻¹ soil) was investigated with A. discolor and compared with the reference strain Phanerochaete chrysosporium. Both strains were incorporated as free and immobilized in wheat grains, a lignocellulosic material previously selected among wheat straw, wheat grains and wood chips through the growth and colonization of A. discolor. Wheat grains showed a higher growth and colonization of A. discolor, increasing the production of manganese peroxidase (MnP) activity. Moreover, the application of white-rot fungi immobilized in wheat grains to the contaminated soil favored the fungus spread. In turn, with both fungal strains and at the two PCP concentrations a high PCP removal (70-85%) occurred as respect to that measured with the fungus as free mycelium (30-45%). Additionally, the use of wheat grains in soil allowed the proliferation of microorganisms PCP decomposers, showing a synergistic effect with A. discolor and P. chrysosporium and increasing the PCP removal in the soil. PMID:20512655

  19. Profiling microbial community structures across six large oilfields in China and the potential role of dominant microorganisms in bioremediation.

    Science.gov (United States)

    Sun, Weimin; Li, Jiwei; Jiang, Lei; Sun, Zhilei; Fu, Meiyan; Peng, Xiaotong

    2015-10-01

    Successful bioremediation of oil pollution is based on a comprehensive understanding of the in situ physicochemical conditions and indigenous microbial communities as well as the interaction between microorganisms and geochemical variables. Nineteen oil-contaminated soil samples and five uncontaminated controls were taken from six major oilfields across different geoclimatic regions in China to investigate the spatial distribution of the microbial ecosystem. Microbial community analysis revealed remarkable variation in microbial diversity between oil-contaminated soils taken from different oilfields. Canonical correspondence analysis (CCA) further demonstrated that a suite of in situ geochemical parameters, including soil moisture and sulfate concentrations, were among the factors that influenced the overall microbial community structure and composition. Phylogenetic analysis indicated that the vast majority of sequences were related to the genera Arthrobacter, Dietzia, Pseudomonas, Rhodococcus, and Marinobacter, many of which contain known oil-degrading or oil-emulsifying species. Remarkably, a number of archaeal genera including Halalkalicoccus, Natronomonas, Haloterrigena, and Natrinema were found in relatively high abundance in some of the oil-contaminated soil samples, indicating that these Euryarchaeota may play an important ecological role in some oil-contaminated soils. This study offers a direct and reliable reference of the diversity of the microbial community in various oil-contaminated soils and may influence strategies for in situ bioremediation of oil pollution. PMID:26078113

  20. Influence of a precepitator on bioremedial processes

    Directory of Open Access Journals (Sweden)

    Nježić Zvonko B.

    2010-01-01

    Full Text Available Natural environment represents a dynamic bioreactor with numerous chemical, biochemical and microbiological processes through which harmful materials are destroyed, so that living organisms and human beings are not endanger. Controlled anthropogenic actions can assist the natural ecosystem to become an efficient bioremedial unit and to reduce the level of effluents produced in the biotechnological transformations during massive food production. In this study, a monitoring system for the chemical oxygen demand (COD and the heavy metal levels in water was established, followed by construction and building of a precipitator in order to prevent discharging of sludge. The results contribute to the hypothesis of existence of in situ bioremedial processes in the observed ecosystem. The significant influence of the precipitator on the decrease of pollution was demonstrated: a decrease of both the COD value and the heavy metal levels downstream from the precipitator for about 15%. Therefore it can be concluded that the precipitator significantly contributes to the ecosystem by the reduction of pollutant level.