WorldWideScience

Sample records for biosurfactant-enhanced soil bioremediation

  1. Biosurfactant-enhanced soil bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Kosaric, N.; Lu, G.; Velikonja, J. [Univ. of Western Ontario, London, Ontario (Canada)

    1995-12-01

    Bioremediation of soil contaminated with organic chemicals is a viable alternative method for clean-up and remedy of hazardous waste sites. The final objective in this approach is to convert the parent toxicant into a readily biodegradable product which is harmless to human health and/or the environment. Biodegradation of hydrocarbons in soil can also efficiently be enhanced by addition or in-situ production of biosufactants. It was generally observed that the degradation time was shortened and particularly the adaptation time for the microbes. More data from our laboratories showed that chlorinated aromatic compounds, such as 2,4-dichlorophenol, a herbicide Metolachlor, as well as naphthalene are degraded faster and more completely when selected biosurfactants are added to the soil. More recent data demonstrated an enhanced biodegradation of heavy hydrocarbons in petrochemical sludges, and in contaminated oil when biosurfactants were present or were added prior to the biodegradation process.

  2. Biosurfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated soil.

    Science.gov (United States)

    Bezza, Fisseha Andualem; Chirwa, Evans M Nkhalambayausi

    2016-02-01

    The potential for biological treatment of an environment contaminated by complex petrochemical contaminants was evaluated using creosote contaminated soil in ex situ bio-slurry reactors. The efficacy of biosurfactant application and stimulation of in situ biosurfactant production was investigated. The biosurfactant produced was purified and characterised using Fourier transform infrared (FTIR) spectroscopy. Biosurfactant enhanced degradation of PAHs was 86.5% (with addition of biosurfactant) and 57% in controls with no biosurfactant and nutrient amendments after incubation for 45 days. A slight decrease in degradation rate observed in the simultaneous biosurfactant and nutrient, NH4NO3 and KH2PO4, supplemented microcosm can be attributed to preferential microbial consumption of the biosurfactant supplemented. The overall removal of PAHs was determined to be mass transport limited since the dissolution rate caused by the biosurfactant enhanced the bioavailability of the PAHs to the microorganisms. The consortium culture was predominated by the aromatic ring-cleaving species Bacillus stratosphericus, Bacillus subtilis, Bacillus megaterium, and Pseudomonas aeruginosa.

  3. Biosurfactant-enhanced bioremediation of hydrophobic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Cameotra, S.S.; Makkar, R.S. [Inst. of Microbial Technology, Chandigarh (India)

    2010-01-15

    Biosurfactants are surface-active compounds synthesized by a wide variety of microorganisms. They are molecules that have both hydrophobic and - philic domains and are capable of lowering the surface tension and the interfacial tension of the growth medium. Biosurfactants possess different chemical structures-lipopeptides, glycolipids, neutral lipids, and fatty acids. They are nontoxic biomolecules that are biodegradable. Biosurfactants also exhibit strong emulsification of hydrophobic compounds and form stable emulsions. Polycyclic aromatic hydrocarbons (PAHs), crude on sludge, and pesticides call be toxic, mutagenic, and carcinogenic compounds that pollute the environment. They are released into the environment as a result of oil spillage and by-products of coal treatment processes. The low water solubility of these compounds limits their availability to microorganisms, which is a potential problem for bioremediation of contaminated sites. Microbially produced surfactants enhance the bioavailability of these hydrophobic compounds for bioremediation. Therefore, biosurfactant-enhanced solubility of pollutants has potential hioremediation applications.

  4. Biosurfactant-enhanced bioremediation of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Cameotra, S.S.; Bollag, J.M. [Penn State University, University Park, PA (USA). Soil Biochemical Lab.

    2003-07-01

    Biosurfactants are surface-active compounds synthesized by it wide variety of micro-organisms. They are molecules that have both hydrophobic and hydrophilic domains and are capable of lowering the surface tension and the interfacial tension of the growth medium. Biosurfactants possess different chemical structures - lipopeptides, glycolipids, neutral lipids, and fatty acids. They are nontoxic biomolecules that are biodegradable. Biosurfactants also exhibit strong emulsification of hydrophobic compounds and form stable emulsions. Polycyclic aromatic hydrocarbons (PAHs) can be toxic, mutagenic, and carcinogenic compounds that pollute the environment. They are released to the environment its a result of spillage of oil and byproducts of coal treatment processes. The low water solubility of PAHs limits their availability to microorganisms, which is a potential problem for bioremediation of PAH-contaminated sites. Microbially produced surfactants enhance the bioavailability of these hydrophobic compounds for bioremediation. Therefore, biosurfactant-enhanced solubility of PAHs has potential applications in bioremediation.

  5. Combined effects of DOM and biosurfactant enhanced biodegradation of polycylic armotic hydrocarbons (PAHs) in soil-water systems.

    Science.gov (United States)

    Yu, Hui; Huang, Guo-He; Xiao, Huining; Wang, Lei; Chen, Wei

    2014-09-01

    This study systematically investigated the interactive effects of dissolved organic matter (DOM) and biosurfactant (rhamnolipid) on the biodegradation of phenanthrene (PHE) and pyrene (PYR) in soil-water systems. The degradations of two polycyclic aromatic hydrocarbons (PAHs) were fitted well with first order kinetic model and the degradation rates were in proportion to the concentration of biosurfactant. In addition, the degradation enhancement of PHE was higher than that of PYR. The addition of soil DOM itself at an environmental level would inhibit the biodegradation of PAHs. However, in the system with co-existence of DOM and biosurfactant, the degradation of PAHs was higher than that in only biosurfactant addition system, which may be attributed to the formation of DOM-biosurfactant complex micelles. Furthermore, under the combined conditions, the degradation of PAH increased with the biosurfactant concentration, and the soil DOM added system showed slightly higher degradation than the compost DOM added system, indicating that the chemical structure and composition of DOM would also affect the bioavailability of PAHs. The study result may broaden knowledge of biosurfactant enhanced bioremediation of PAHs contaminated soil and groundwater.

  6. Bioremediation of Creosote - contaminated Soil

    OpenAIRE

    BYSS, Marius

    2008-01-01

    Bioremediation of creosote-contaminated soil was studied employing the methods of soil microbial biology and using new gas chromatography-mass spectrometry-mass spectrometry analytical approach. The changes of the soil microbial community under the polycyclic aromatic hydrocarbons (PAH) pollution impact were analyzed and described, as well as the changes during the bioremediation experiments. Laboratory-scale bioremediation experiments using the soil microbial community (consisted of bacteria...

  7. Fungal Bioremediation of Creosote-contaminated Soil

    OpenAIRE

    BYSS, Marius

    2008-01-01

    The influence of two ligninolytic fungi (Pleurotus ostreatus and Irpex lacteus) on bioremediation of creosote-contaminated soil was studied. The thesis describes the polycyclic aromatic hydrocarbon concentration decrease during the laboratory-scale experiments and reveals the changes in the present soil microbial community under the influence of either fungus. The thesis compares different impact on PAH concentrations and soil microbial community depending on the fungus applied.

  8. Soil mesocosm studies on atrazine bioremediation.

    Science.gov (United States)

    Sagarkar, Sneha; Nousiainen, Aura; Shaligram, Shraddha; Björklöf, Katarina; Lindström, Kristina; Jørgensen, Kirsten S; Kapley, Atya

    2014-06-15

    Accumulation of pesticides in the environment causes serious issues of contamination and toxicity. Bioremediation is an ecologically sound method to manage soil pollution, but the bottleneck here, is the successful scale-up of lab-scale experiments to field applications. This study demonstrates pilot-scale bioremediation in tropical soil using atrazine as model pollutant. Mimicking field conditions, three different bioremediation strategies for atrazine degradation were explored. 100 kg soil mesocosms were set-up, with or without atrazine application history. Natural attenuation and enhanced bioremediation were tested, where augmentation with an atrazine degrading consortium demonstrated best pollutant removal. 90% atrazine degradation was observed in six days in soil previously exposed to atrazine, while soil without history of atrazine use, needed 15 days to remove the same amount of amended atrazine. The bacterial consortium comprised of 3 novel bacterial strains with different genetic atrazine degrading potential. The progress of bioremediation was monitored by measuring the levels of atrazine and its intermediate, cyanuric acid. Genes from the atrazine degradation pathway, namely, atzA, atzB, atzD, trzN and trzD were quantified in all mesocosms for 60 days. The highest abundance of all target genes was observed on the 6th day of treatment. trzD was observed in the bioaugmented mesocosms only. The bacterial community profile in all mesocosms was monitored by LH-PCR over a period of two months. Results indicate that the communities changed rapidly after inoculation, but there was no drastic change in microbial community profile after 1 month. Results indicated that efficient bioremediation of atrazine using a microbial consortium could be successfully up-scaled to pilot scale.

  9. BIOREMEDIATION OF CONTAMINATED SURFACE SOILS

    Science.gov (United States)

    Biological remediation of soils contaminated with organic chemicals is an alternative treatment technology that can often meet the goal of achieving a permanent clean-up remedy at hazardous waste sites, as encouraged by the U.S. Environmental Protection Agency (U.S. EPA) for impl...

  10. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods

    Directory of Open Access Journals (Sweden)

    G. U. Chibuike

    2014-01-01

    Full Text Available Soils polluted with heavy metals have become common across the globe due to increase in geologic and anthropogenic activities. Plants growing on these soils show a reduction in growth, performance, and yield. Bioremediation is an effective method of treating heavy metal polluted soils. It is a widely accepted method that is mostly carried out in situ; hence it is suitable for the establishment/reestablishment of crops on treated soils. Microorganisms and plants employ different mechanisms for the bioremediation of polluted soils. Using plants for the treatment of polluted soils is a more common approach in the bioremediation of heavy metal polluted soils. Combining both microorganisms and plants is an approach to bioremediation that ensures a more efficient clean-up of heavy metal polluted soils. However, success of this approach largely depends on the species of organisms involved in the process.

  11. Improving Bioremediation of PAH Contaminated Soils by Thermal Pretreatment

    OpenAIRE

    Bonten, L.T.C.

    2001-01-01

    Numerous sites and large volumes of sediments in the Netherlands are contaminated with polycyclic aromatic hydrocarbons (PAH), which are of great concern because of their toxic and carcinogenic effects. Since PAH tend to sorb very strongly to the soil matrix, bioremediation is a slow process with often high residual concentrations after remediation. In this study it was tried to develop methods to improve bioremediation, this means to decrease residual concentrations after bioremediation. In ...

  12. TECHNOLOGIES FOR BIOREMEDIATION OF SOILS CONTAMINATED WITH PETROLEUM PRODUCTS

    Directory of Open Access Journals (Sweden)

    Roxana Gabriela POPA

    2012-05-01

    Full Text Available Biological methods for remediation of soils is based on the degradation of pollutants due to activity of microorganisms (bacteria, fungi. Effectiveness of biological decontamination of soils depends on the following factors: biodegradation of pollutants, type of microorganisms used, choice of oxidant and nutrient and subject to clean up environmental characteristics. Ex situ techniques for bioremediation of soils polluted are: composting (static / mechanical agitation, land farming and biopiles. Techniques in situ bioremediation of soils polluted are: bioventingul, biospargingul and biostimulation – bioaugumentarea.

  13. Rehabilitation of oil polluted soils by bioremediation

    Science.gov (United States)

    Dumitru, Mihail; Parvan, Lavinia; Cioroianu, Mihai; Carmen, Sirbu; Constantin, Carolina

    2015-04-01

    In Romania about 50,000 ha are polluted with oil and/or brine. The main sources of pollution are the different activities using petroleum products: extraction, transport, treatment, refining and distribution. Taking into acoount the large areas and the cost per unit area, bioremediation was tested as a method of rehabilitation. To stimulate the performance of the bioremediation process for a polluted soil (luvisol) by 3% oil, different methods were tested: -application of a bacterial inoculum consisting of species of the Pseudomonas and Arthrobacter genera;- application of two types of absorbent materials, 16 t/ha peat and 16, respectively, 32 kg/ha Zeba (starch-based polymer, superabsorbent); -mineral fertilization with N200P200K200 and 5 different liquid fertilizer based on potassium humates extracted from lignite in a NPK matrix with micronutrients and added monosaccharides (4 and 8%). After 45 days from the treatment (60 days from pollution) the following observations have been noticed: • the application of only bacterial inoculum had no significant effect on the degradation of petroleum hydrocarbons; • the use of 650 l/ha AH-SH fertilizer (potassium humate in a NPK matrix) led to a 47% decrease of TPH (total petroleum hydrocarbons); • the application of 16 t/ha peat, together with the bacterial inoculum and the AH-SG2 liquid fertilizer (containing humates of potassium in a NPK matrix with microelements and 8% monosaccharides, in which the nitrogen is amide form) led to a 50% decrease of the TPH content; • the application of 16 kg/ha Zeba absorbent together with bacterial inoculum and 650 l/ha AH-SG1 liquid fertilizer (containing humates of potassium in a NPK matrix with microelements and 4% monosaccharide in which the nitrogen is in amide form) led to a 57% decrease of the TPH content; • the application of 32 kg/ha Zeba absorbent, together with the AH-SG2 fertilizer, led to a 58% decrease of the TPH content.

  14. ENGINEERING ISSUE: IN SITU BIOREMEDIATION OF CONTAMINATED UNSATURATED SUBSURFACE SOILS

    Science.gov (United States)

    An emerging technology for the remediation of unsaturated subsurface soils involves the use of microorganisms to degrade contaminants which are present in such soils. Understanding the processes which drive in situ bioremediation, as well as the effectiveness and efficiency of th...

  15. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods

    OpenAIRE

    Chibuike, G. U.; Obiora, S. C.

    2014-01-01

    Soils polluted with heavy metals have become common across the globe due to increase in geologic and anthropogenic activities. Plants growing on these soils show a reduction in growth, performance, and yield. Bioremediation is an effective method of treating heavy metal polluted soils. It is a widely accepted method that is mostly carried out in situ; hence it is suitable for the establishment/reestablishment of crops on treated soils. Microorganisms and plants employ different mechanisms for...

  16. Bioremediation potential of diesel-contaminated Libyan soil.

    Science.gov (United States)

    Koshlaf, Eman; Shahsavari, Esmaeil; Aburto-Medina, Arturo; Taha, Mohamed; Haleyur, Nagalakshmi; Makadia, Tanvi H; Morrison, Paul D; Ball, Andrew S

    2016-11-01

    Bioremediation is a broadly applied environmentally friendly and economical treatment for the clean-up of sites contaminated by petroleum hydrocarbons. However, the application of this technology to contaminated soil in Libya has not been fully exploited. In this study, the efficacy of different bioremediation processes (necrophytoremediation using pea straw, bioaugmentation and a combination of both treatments) together with natural attenuation were assessed in diesel contaminated Libyan soils. The addition of pea straw was found to be the best bioremediation treatment for cleaning up diesel contaminated Libyan soil after 12 weeks. The greatest TPH degradation, 96.1% (18,239.6mgkg(-1)) and 95% (17,991.14mgkg(-1)) were obtained when the soil was amended with pea straw alone and in combination with a hydrocarbonoclastic consortium respectively. In contrast, natural attenuation resulted in a significantly lower TPH reduction of 76% (14,444.5mgkg(-1)). The presence of pea straw also led to a significant increased recovery of hydrocarbon degraders; 5.7log CFU g(-1) dry soil, compared to 4.4log CFUg(-1) dry soil for the untreated (natural attenuation) soil. DGGE and Illumina 16S metagenomic analyses confirm shifts in bacterial communities compared with original soil after 12 weeks incubation. In addition, metagenomic analysis showed that original soil contained hydrocarbon degraders (e.g. Pseudoxanthomonas spp. and Alcanivorax spp.). However, they require a biostimulant (in this case pea straw) to become active. This study is the first to report successful oil bioremediation with pea straw in Libya. It demonstrates the effectiveness of pea straw in enhancing bioremediation of the diesel-contaminated Libyan soil.

  17. Bioremediation of lead contaminated soil with Rhodobacter sphaeroides.

    Science.gov (United States)

    Li, Xiaomin; Peng, Weihua; Jia, Yingying; Lu, Lin; Fan, Wenhong

    2016-08-01

    Bioremediation with microorganisms is a promising technique for heavy metal contaminated soil. Rhodobacter sphaeroides was previously isolated from oil field injection water and used for bioremediation of lead (Pb) contaminated soil in the present study. Based on the investigation of the optimum culturing conditions and the tolerance to Pb, we employed the microorganism for the remediation of Pb contaminated soil simulated at different contamination levels. It was found that the optimum temperature, pH, and inoculum size for R. sphaeroides is 30-35 °C, 7, and 2 × 10(8) mL(-1), respectively. Rhodobacter sphaeroides did not remove the Pb from soil but did change its speciation. During the bioremediation process, more available fractions were transformed to less accessible and inert fractions; in particular, the exchangeable phase was dramatically decreased while the residual phase was substantially increased. A wheat seedling growing experiment showed that Pb phytoavailability was reduced in amended soils. Results inferred that the main mechanism by which R. sphaeroides treats Pb contaminated soil is the precipitation formation of inert compounds, including lead sulfate and lead sulfide. Although the Pb bioremediation efficiency on wheat was not very high (14.78% root and 24.01% in leaf), R. sphaeroides remains a promising alternative for Pb remediation in contaminated soil.

  18. Bioremediation treatment of hydrocarbon-contaminated Arctic soils: influencing parameters.

    Science.gov (United States)

    Naseri, Masoud; Barabadi, Abbas; Barabady, Javad

    2014-10-01

    The Arctic environment is very vulnerable and sensitive to hydrocarbon pollutants. Soil bioremediation is attracting interest as a promising and cost-effective clean-up and soil decontamination technology in the Arctic regions. However, remoteness, lack of appropriate infrastructure, the harsh climatic conditions in the Arctic and some physical and chemical properties of Arctic soils may reduce the performance and limit the application of this technology. Therefore, understanding the weaknesses and bottlenecks in the treatment plans, identifying their associated hazards, and providing precautionary measures are essential to improve the overall efficiency and performance of a bioremediation strategy. The aim of this paper is to review the bioremediation techniques and strategies using microorganisms for treatment of hydrocarbon-contaminated Arctic soils. It takes account of Arctic operational conditions and discusses the factors influencing the performance of a bioremediation treatment plan. Preliminary hazard analysis is used as a technique to identify and assess the hazards that threaten the reliability and maintainability of a bioremediation treatment technology. Some key parameters with regard to the feasibility of the suggested preventive/corrective measures are described as well.

  19. Chemometric assessment of enhanced bioremediation of oil contaminated soils

    DEFF Research Database (Denmark)

    Soleimani, Mohsen; Farhoudi, Majid; Christensen, Jan H.

    2013-01-01

    Bioremediation is a promising technique for reclamation of oil polluted soils. In this study, six methods for enhancing bioremediation were tested on oil contaminated soils from three refinery areas in Iran (Isfahan, Arak, and Tehran). The methods included bacterial enrichment, planting...... steranes were used for determining the level and type of hydrocarbon contamination. The same methods were used to study oil weathering of 2 to 6 ring polycyclic aromatic compounds (PACs). Results demonstrated that bacterial enrichment and addition of nutrients were most efficient with 50% to 62% removal...

  20. Electromigration of Contaminated Soil by Electro-Bioremediation Technique

    Science.gov (United States)

    Azhar, A. T. S.; Nabila, A. T. A.; Nurshuhaila, M. S.; Shaylinda, M. Z. N.; Azim, M. A. M.

    2016-07-01

    Soil contamination with heavy metals poses major environmental and human health problems. This problem needs an efficient method and affordable technological solution such as electro-bioremediation technique. The electro-bioremediation technique used in this study is the combination of bacteria and electrokinetic process. The aim of this study is to investigate the effectiveness of Pseudomonas putida bacteria as a biodegradation agent to remediate contaminated soil. 5 kg of kaolin soil was spiked with 5 g of zinc oxide. During this process, the anode reservoir was filled with Pseudomonas putida while the cathode was filled with distilled water for 5 days at 50 V of electrical gradient. The X-Ray Fluorescent (XRF) test indicated that there was a significant reduction of zinc concentration for the soil near the anode with 89% percentage removal. The bacteria count is high near the anode which is 1.3x107 cfu/gww whereas the bacteria count at the middle and near the cathode was 5.0x106 cfu/gww and 8.0x106 cfu/gww respectively. The migration of ions to the opposite charge of electrodes during the electrokinetic process resulted from the reduction of zinc. The results obtained proved that the electro-bioremediation reduced the level of contaminants in the soil sample. Thus, the electro-bioremediation technique has the potential to be used in the treatment of contaminated soil.

  1. [Effects and Biological Response on Bioremediation of Petroleum Contaminated Soil].

    Science.gov (United States)

    Yang, Qian; Wu, Man-li; Nie, Mai-qian; Wang, Ting-ting; Zhang, Ming-hui

    2015-05-01

    Bioaugmentation and biostimulation were used to remediate petroleum-contaminated soil which were collected from Zichang city in North of Shaanxi. The optimal bioremediation method was obtained by determining the total petroleum hydrocarbon(TPH) using the infrared spectroscopy. During the bioremediation, number of degrading strains, TPH catabolic genes, and soil microbial community diversity were determined by Most Probable Number (MPN), polymerase chain reaction (PCR) combined agarose electrophoresis, and PCR-denaturing gradient electrophoresis (DGGE). The results in different treatments showed different biodegradation effects towards total petroleum hydrocarbon (TPH). Biostimulation by adding N and P to soils achieved the best degradation effects towards TPH, and the bioaugmentation was achieved by inoculating strain SZ-1 to soils. Further analysis indicated the positive correlation between catabolic genes and TPH removal efficiency. During the bioremediation, the number of TPH and alkanes degrading strains was higher than the number of aromatic degrading strains. The results of PCR-DGGE showed microbial inoculums could enhance microbial community functional diversity. These results contribute to understand the ecologically microbial effects during the bioremediation of petroleum-polluted soil.

  2. Use of Additives in Bioremediation of Contaminated Groundwater and Soil

    Science.gov (United States)

    This chapter reviews application of additives used in bioremediation of chlorinated solvents and fuels for groundwater and soil remediation. Soluble carbon substrates are applicable to most site conditions except aquifers with very high or very low groundwater flow. Slow-release ...

  3. Arsenate resistant Penicillium coffeae: a potential fungus for soil bioremediation.

    Science.gov (United States)

    Bhargavi, S D; Savitha, J

    2014-03-01

    Bioremediation is an effective method for the treatment of major metal contaminated sites. Fungi were isolated from soil samples collected from different arsenate contaminated areas across India. An isolate, Penicillium coffeae, exhibited resistance to arsenate up to 500 mM. Results indicated that pretreatment of biomass with alkali (NaOH) enhanced the percentage of adsorption to 66.8% as compared to that of live and untreated dead biomass whose adsorption was 22.9% and 60.2% respectively. The physiological parameters evaluated in this study may help pilot studies aimed at bioremediation of arsenate contaminated effluents using arsenate resistant fungus P. coffeae.

  4. Assisted bioremediation tests on three natural soils contaminated with benzene

    Directory of Open Access Journals (Sweden)

    Maria Manuela Carvalho

    2015-07-01

    Full Text Available Bioremediation is an attractive and useful method of remediation of soils contaminated with petroleum hydrocarbons because it is simple to maintain, applicable in large areas, is economic and enables an effective destruction of the contaminant. Usually, the autochthone microorganisms have no ability to degrade these compounds, and otherwise, the contaminated sites have inappropriate environmental conditions for microorganism’s development. These problems can be overcome by assisted bioremediation (bioaugmentation and/or biostimulation. In this study the assisted bioremediation capacity on the rehabilitation of three natural sub-soils (granite, limestone and schist contaminated with benzene was evaluated. Two different types of assisted bioremediation were used: without and with ventilation (bioventing. The bioaugmentation was held by inoculating the soil with a consortium of microorganisms collected from the protection area of crude oil storage tanks in a refinery. In unventilated trials, biostimulation was accomplished by the addition of a nutrient mineral media, while in bioventing oxygen was also added. The tests were carried out at controlled temperature of 25 ºC in stainless steel columns where the moist soil contaminated with benzene (200 mg per kg of soil occupied about 40% of the column’s volume. The processes were daily monitored in discontinued mode. Benzene concentration in the gas phase was quantified by gas chromatography (GC-FID, oxygen and carbon dioxide concentrations were monitored by respirometry. The results revealed that the three contaminated soils were remediated using both technologies, nevertheless, the bioventing showed faster rates. With this work it was proved that respirometric analysis is an appropriate instrument for monitoring the biological activity.

  5. USING PHYTOREMEDIATION AND BIOREMEDIATION FOR PROTECTION SOIL NEAR GRAVEYARD

    OpenAIRE

    Katarzyna Ignatowicz

    2016-01-01

    The aim of present research was to assess the usefulness of Basket willow (Salix viminalis) to phytoremediation and bioremediation of sorption subsoil contaminated with pesticides. Studies upon purification of sorption material consisting of a soil and composting sewage sludge were conducted under pot experiment conditions. The study design included control pot along with 3 other ones polluted with pesticides. The vegetation season has lasted since spring till late autumn 2015. After acclimat...

  6. Bioremediation of Pyrene-Contaminated Soils Using Biosurfactant

    Directory of Open Access Journals (Sweden)

    Jorfi

    2014-10-01

    Full Text Available Background Polycyclic aromatic hydrocarbons (PAHs are persistence organic chemicals with proved carcinogenic and mutagenic hazards. These compounds are usually adsorbed in soils in vicinity of oil and gas industries. Bioremediation of PAHs contaminated soils is difficult due to hydrophobic nature of PAHs. Objectives The main purpose of the current study was to determine the pyrene removal efficiency in synthetically contaminated soil, using biosurfactant. Materials and Methods Four pure bacterial strains capable of pyrene degradation were isolated from contaminated soils via enrichment techniques. The soil samples were spiked with an initial pyrene concentration of 500 mg/kg and subjected to bioremediation using a mixed culture comprised of previously isolated strains, in addition to application of biosurfactant during 63 days. Results The pyrene removal efficiency in samples containing biosurfactant, without biosurfactant and controls, were 86.4%, 59.8% and 14%, respectively, after 63 days. The difference of pyrene removal efficiency between the biosurfactant-containing samples and the ones without it was significant (P < 0.05. Conclusions Application of rhamnolipid biosurfactant produced by Pseudomonas aeruginosa significantly improved pyrene removal in contaminated soils.

  7. A petroleum contaminated soil bioremediation facility

    Energy Technology Data Exchange (ETDEWEB)

    Lombard, K.; Hazen, T.

    1994-06-01

    The amount of petroleum contaminated soil (PCS) at the Savannah River site (SRS) that has been identified, excavated and is currently in storage has increased several fold during the last few years. Several factors have contributed to this problem: (1) South Carolina Department of Health ad Environmental control (SCDHEC) lowered the sanitary landfill maximum concentration for total petroleum hydrocarbons (TPH) in the soil from 500 to 100 parts per million (ppm), (2) removal and replacement of underground storage tanks at several sites, (3) most recently SCDHEC disallowed aeration for treatment of contaminated soil, and (4) discovery of several very large contaminated areas of soil associated with leaking underground storage tanks (LUST), leaking pipes, disposal areas, and spills. Thus, SRS has an urgent need to remediate large quantities of contaminated soil that are currently stockpiled and the anticipated contaminated soils to be generated from accidental spills. As long as we utilize petroleum based compounds at the site, we will continue to generate contaminated soil that will require remediation.

  8. [Bioremediation of petroleum hydrocarbon contaminated soil by bioaugmentation products].

    Science.gov (United States)

    Huang, Ting-Lin; Xu, Jin-Lan; Tang, Zhi-Xin; Xiao, Zhou-Qiang

    2009-06-15

    In an experimental investigation of bioaugmentation products affected on the petroleum contaminated soil. The influence of the bioaugmentation products dose, injections and temperature on bioremediation were studied. The results showed that the degradation rate was related positively to the amount of inoculation, when the dose was increased to 0.6 mg x kg(-1), total petroleum hydrocarbon (TPH) degradation rate was 87% in 48 days. The results of GC-MS indicated that the dominant petroleum constituents in oil-contaminated raw soil were 82.1% n-alkane, 16% alkene and little of others hydrocarbons, such as carotane, alkylnaphthalenes, hopanes, and steranes. The peaks amount of GC profile decreased from 32 to 14 after 40 days of bioremediation, this result indicated that branched alkanes, alkene, and alkylnaphthalenes were thoroughly degraded, then line alkanes, hopanes, and steranes were left in soil. In addition, the longer part of n-alkane were degraded with rate relatively higher, while the residual fraction at the end of the test is shorter part of n-alkane because bacteria degraded the longer n-alkane to shorter. The shorter n-alkane concentration decreased with increasing inoculation. One time injection of bioaugmentation products into soil clearly improved the biodegradation efficiency higher than injection of bioaugmentation products in turn. Soil temperature also affected TPH degradation rate when it was 30 degrees C, TPH rate reached 80%, where as when it was 20 degrees C, the TPH rate was lower to 60%, which indicated higher temperature improved TPH degradation and accelerated bioremediation.

  9. The effect of soil type on the bioremediation of petroleum contaminated soils.

    Science.gov (United States)

    Haghollahi, Ali; Fazaelipoor, Mohammad Hassan; Schaffie, Mahin

    2016-09-15

    In this research the bioremediation of four different types of contaminated soils was monitored as a function of time and moisture content. The soils were categorized as sandy soil containing 100% sand (type I), clay soil containing more than 95% clay (type II), coarse grained soil containing 68% gravel and 32% sand (type III), and coarse grained with high clay content containing 40% gravel, 20% sand, and 40% clay (type IV). The initially clean soils were contaminated with gasoil to the concentration of 100 g/kg, and left on the floor for the evaporation of light hydrocarbons. A full factorial experimental design with soil type (four levels), and moisture content (10 and 20%) as the factors was employed. The soils were inoculated with petroleum degrading microorganisms. Soil samples were taken on days 90, 180, and 270, and the residual total petroleum hydrocarbon (TPH) was extracted using soxhlet apparatus. The moisture content of the soils was kept almost constant during the process by intermittent addition of water. The results showed that the efficiency of bioremediation was affected significantly by the soil type (Pvalue bioremediation was not statistically significant for the investigated levels. The removal percentage in the clay soil was improved to 57% (within a month) in a separate experiment by more frequent mixing of the soil, indicating low availability of oxygen as a reason for low degradation of hydrocarbons in the clay soil.

  10. Microbial changes in rhizospheric soils contaminated with petroleum hydrocarbons after bioremediation

    Institute of Scientific and Technical Information of China (English)

    LIN Xin; LI Pei-jun; ZHOU Qi-xing; XU Hua-xia; ZHANG Hai-rong

    2004-01-01

    Effects of bioremediation on microbial communities in soils contaminated with petroleum hydrocarbons are a scientific problem to be solved. Changes in dominate microbial species and the total amount of microorganisms including bacteria and fungi in rhizospheric soils after bioremediation were thus evaluated using field bioremediation experiments. The results showed that there were changed dominant microorganisms including 11 bacterial strains which are mostly Gram positive bacteria and 6 fungal species which were identified. The total amount of microorganisms including bacteria and fungi increased after bioremediation of microbial agents combined with planting maize. On the contrary, fungi in rhizospheric soils were inhibited by adding microbial agents combined with planting soybean.

  11. Feasibility of electrokinetic oxygen supply for soil bioremediation purposes.

    Science.gov (United States)

    Mena Ramírez, E; Villaseñor Camacho, J; Rodrigo Rodrigo, M A; Cañizares Cañizares, P

    2014-12-01

    This paper studies the possibility of providing oxygen to a soil by an electrokinetic technique, so that the method could be used in future aerobic polluted soil bioremediation treatments. The oxygen was generated from the anodic reaction of water electrolysis and transported to the soil in a laboratory-scale electrokinetic cell. Two variables were tested: the soil texture and the voltage gradient. The technique was tested in two artificial soils (clay and sand) and later in a real silty soil, and three voltage gradients were used: 0.0 (control), 0.5, and 1.0 V cm(-1). It was observed that these two variables strongly influenced the results. Oxygen transport into the soil was only available in the silty and sandy soils by oxygen diffusion, obtaining high dissolved oxygen concentrations, between 4 and 9 mg L(-1), useful for possible aerobic biodegradation processes, while transport was not possible in fine-grained soils such as clay. Electro-osmotic flow did not contribute to the transport of oxygen, and an increase in voltage gradients produced higher oxygen transfer rates. However, only a minimum fraction of the electrolytically generated oxygen was efficiently used, and the maximum oxygen transport rate observed, approximately 1.4 mgO2 L(-1)d(-1), was rather low, so this technique could be only tested in slow in-situ biostimulation processes for organics removal from polluted soils.

  12. Bioremediation of industrially contaminated soil using compost and plant technology.

    Science.gov (United States)

    Taiwo, A M; Gbadebo, A M; Oyedepo, J A; Ojekunle, Z O; Alo, O M; Oyeniran, A A; Onalaja, O J; Ogunjimi, D; Taiwo, O T

    2016-03-05

    Compost technology can be utilized for bioremediation of contaminated soil using the active microorganisms present in the matrix of contaminants. This study examined bioremediation of industrially polluted soil using the compost and plant technology. Soil samples were collected at the vicinity of three industrial locations in Ogun State and a goldmine site in Iperindo, Osun State in March, 2014. The compost used was made from cow dung, water hyacinth and sawdust for a period of twelve weeks. The matured compost was mixed with contaminated soil samples in a five-ratio pot experimental design. The compost and contaminated soil samples were analyzed using the standard procedures for pH, electrical conductivity (EC), organic carbon (OC), total nitrogen (TN), phosphorus, exchangeable cations (Na, K, Ca and Mg) and heavy metals (Fe, Mn, Cu, Zn and Cr). Kenaf (Hibiscus cannabinus) seeds were also planted for co-remediation of metals. The growth parameters of Kenaf plants were observed weekly for a period of one month. Results showed that during the one-month remediation experiment, treatments with 'compost-only' removed 49 ± 8% Mn, 32 ± 7% Fe, 29 ± 11% Zn, 27 ± 6% Cu and 11 ± 5% Cr from the contaminated soil. On the other hand, treatments with 'compost+plant' remediated 71 ± 8% Mn, 63 ± 3% Fe, 59 ± 11% Zn, 40 ± 6% Cu and 5 ± 4% Cr. Enrichment factor (EF) of metals in the compost was low while that of Cu (EF=7.3) and Zn (EF=8.6) were high in the contaminated soils. Bioaccumulation factor (BF) revealed low metal uptake by Kenaf plant. The growth parameters of Kenaf plant showed steady increments from week 1 to week 4 of planting.

  13. Transformation of a petroleum pollutant during soil bioremediation experiments

    Directory of Open Access Journals (Sweden)

    B. JOVANCICEVIC

    2008-05-01

    Full Text Available The experiment of ex situ soil bioremediation was performed at the locality of the Oil Refinery in Pančevo (alluvial formation of the Danube River, Serbia polluted with an oil type pollutant. The experiments of biostimulation, bioventilation and reinoculation of an autochthonous microbial consortium were performed during the six-month period (May–November 2006. The changes in the quantity and composition of the pollutant, or the bioremediation effect, were monitored by analysis of the samples of the polluted soil taken in time spans of two weeks. In this way, from the beginning until the end of the experiment, 12 samples were collected and marked as P1–P12 (Pančevo 1–Pančevo 12. The results obtained showed that more significant changes in the composition of the oil pollutant occurred only during the last phases of the experiment (P8–P12. The activity of microorganisms was reflected in the increase of the quantity of polar oil fractions, mainly fatty acid fractions. In this way, the quantity of total eluate increased, and the quantity of the insoluble residue was reduced to a minimum, whereby the oil pollutant was transformed to a form that could be removed more efficiently and more completely from the soil, as a segment of the environment.

  14. Soil Bioremediation Strategies Based on the Use of Fungal Enzymes

    Science.gov (United States)

    Mougin, Christian; Boukcim, Hassan; Jolivalt, Claude

    The pollution of soil due to chemical compounds is an important problem worldwide. For that reason, the development of bioremediation processes remains an important challenge. In that context, filamentous fungi and their enzymatic systems appear to be potent tools to decrease the levels of contaminants in soils, by contaminant degradation or stabilisation. The structures and modes of action of selected fungal enzymes, namely peroxidases and laccases, have been extensively studied and are now well-known. Nevertheless, some improvement of their catalytic characteristics can be attempted through genetic engineering, in order to develop specific properties. In addition, some research is still needed to overcome several of their limitations for their efficient use in soils.

  15. Biodegradation and bioremediation of endosulfan contaminated soil.

    Science.gov (United States)

    Kumar, Mohit; Lakshmi, C Vidya; Khanna, Sunil

    2008-05-01

    Among the three mixed bacterial culture AE, BE, and CE, developed by enrichment technique with endosulfan as sole carbon source, consortium CE was found to be the most efficient with 72% and 87% degradation of alpha-endosulfan and beta-endosulfan, respectively, in 20 days. In soil microcosm, consortium AE, BE and CE degraded alpha-endosulfan by 57%, 88% and 91%, respectively, whereas beta-endosulfan was degraded by 4%, 60% and 67% after 30 days. Ochrobacterum sp., Arthrobacter sp., and Burkholderia sp., isolated and identified on the basis of 16s rDNA gene sequence, individually showed in situ biodegradation of alpha-endosulfan in contaminated soil microcosm by 61, 73, and 74, respectively, whereas degradation of beta-endosulfan was 63, 75, and 62, respectively, after 6 weeks of incubation over the control which showed 26% and 23 % degradation of alpha-endosulfan and beta-endosulfan, respectively. Population survival of Ochrobacterum sp., Arthrobacter sp., and Burkholderia sp., by plate count on Luria Broth with carbenicillin showed 75-88% survival of these isolates as compared to 36-48% of survival obtained from PCR fingerprinting. Arthrobacter sp. oxidized endosulfan to endosulfan sulfate which was further metabolized but no known metabolite of endosulfan sulfate was detected.

  16. Bioremediation of Petroleum Hydrocarbons in Heterogeneous Soils

    Energy Technology Data Exchange (ETDEWEB)

    Song Jin; Paul Fallgren; Terry Brown

    2006-03-02

    Western Research Institute (WRI) in conjunction with the University of Wyoming, Department of Renewable Resources and the U.S. Department of Energy, under Task 35, conducted a laboratory-scale study of hydrocarbon biodegradation rates versus a variety of physical and chemical parameters to develop a base model. By using this model, biodegradation of Petroleum hydrocarbons in heterogeneous soils can be predicted. The base model, as developed in this study, have been tested by both field and laboratory data. Temperature, pH, and nutrients appear to be the key parameters that can be incorporate into the model to predict biodegradation rates. Results to date show the effect of soil texture and source on the role of each parameter in the rates of hydrocarbon biodegradation. Derived from the existing study, an alternative approach of using CO{sub 2} accumulation data has been attempted by our collaborators at the University of Wyoming. The model has been modified and fine tuned by incorporating these data to provide more information on biodegradation.

  17. Bioremediation of hydrocarbon polluted soil - Improvement of in situ bioremediation by bioaugmentation with endogenous and exogenous strains

    OpenAIRE

    Tarayre, Cédric

    2010-01-01

    Petroleum pollution has now become a real problem because hydrocarbons are persistent contaminants in soils and water. Contamination problems increase when ages of relevant facilities, such as oil storage tanks and pipelines, increase over time. The evolution of Legislation concerning soil pollution has led to the need of efficient techniques able to restore the polluted ground. Unfortunately, these techniques are expensive. Bioremediation of hydrocarbon polluted soils has been recognized as...

  18. Aggregation of Diesel Contaminated Soil for Bioremediation

    Institute of Scientific and Technical Information of China (English)

    Yu Ying; Shi Xiu-hong; Li Song; Xu Jing-gang

    2014-01-01

    Diesel contaminated soil (DCS) contained a large amount of the hydrocarbons and salt which was dominated by soluble sodium chloride. Aggregation process which made the desired aggregate size distribution could speed up the degradation rate of the hydrocarbons since the aggregated DCS had better physical characteristics than the non-aggregated material. Artificial aggregation increased pores >30 µm by approximately 5% and reduced pores <1 µm by 5%, but did not change the percentage of the pores between 1 and 30 µm. The saturated hydraulic conductivity of non-aggregated DCS was 5×10-6 m• s-l, but it increased to 1×10-5 m• s-l after aggregation. The compression index of the non-aggregated DCS was 0.0186; however, the artificial aggregates with and without lime were 0.031 and 0.028, respectively. DCS could be piled 0.2 m deep without artificial aggregation; however, it could be applied 0.28 m deep when artificial aggregates were formed without limiting O2 transport.

  19. Test plan for the soils facility demonstration: A petroleum contaminated soil bioremediation facility

    Energy Technology Data Exchange (ETDEWEB)

    Lombard, K.H.

    1994-08-01

    The objectives of this test plan are to show the value added by using bioremediation as an effective and environmentally sound method to remediate petroleum contaminated soils (PCS) by: demonstrating bioremediation as a permanent method for remediating soils contaminated with petroleum products; establishing the best operating conditions for maximizing bioremediation and minimizing volatilization for SRS PCS during different seasons; determining the minimum set of analyses and sampling frequency to allow efficient and cost-effective operation; determining best use of existing site equipment and personnel to optimize facility operations and conserve SRS resources; and as an ancillary objective, demonstrating and optimizing new and innovative analytical techniques that will lower cost, decrease time, and decrease secondary waste streams for required PCS assays.

  20. Sequential Application of Soil Vapor Extraction and Bioremediation Processes for the Remediation of Ethylbenzene-Contaminated Soils

    DEFF Research Database (Denmark)

    Soares, António Carlos Alves; Pinho, Maria Teresa; Albergaria, José Tomás;

    2012-01-01

    Soil vapor extraction (SVE) is an efficient, well-known and widely applied soil remediation technology. However, under certain conditions it cannot achieve the defined cleanup goals, requiring further treatment, for example, through bioremediation (BR). The sequential application...

  1. Germination and initial growth of Campomanesia xanthocarpa O. Berg. (Myrtaceae), in petroleum-contaminated soil and bioremediated soil.

    Science.gov (United States)

    Gogosz, A M; Bona, C; Santos, G O; Botosso, P C

    2010-11-01

    In 2000 there was an oil spill at the Getúlio Vargas Refinery (REPAR) in Paraná. Nearly five years after contamination and the use of bioremediation, a study was carried out to identify the effects of the contaminated soil and the bioremediated soil on the germination and initial growth of C. xanthocarpa. The experiment was established with soil from REPAR, with three treatment groups: contaminated soil (C), bioremediated soil (B) and uncontaminated soil (U); with five repetitions of 50 seeds each. There was no significant difference in the percentage of germination and the speed of germination index. The production of total biomass (30 - 60 days) and shoot biomass (60 days) was greater in the bioremediated soil compared to the other treatments. The averages for the root biomass were lower in the contaminated soil than in the bioremediated soil. The shoot length and the total length of the seedling in the contaminated soil and uncontaminated soil were lower than in the bioremediated soil.

  2. Germination and initial growth of Campomanesia xanthocarpa O. Berg. (Myrtaceae, in petroleum-contaminated soil and bioremediated soil

    Directory of Open Access Journals (Sweden)

    AM. Gogosz

    Full Text Available In 2000 there was an oil spill at the Getúlio Vargas Refinery (REPAR in Paraná. Nearly five years after contamination and the use of bioremediation, a study was carried out to identify the effects of the contaminated soil and the bioremediated soil on the germination and initial growth of C. xanthocarpa. The experiment was established with soil from REPAR, with three treatment groups: contaminated soil (C, bioremediated soil (B and uncontaminated soil (U; with five repetitions of 50 seeds each. There was no significant difference in the percentage of germination and the speed of germination index. The production of total biomass (30 - 60 days and shoot biomass (60 days was greater in the bioremediated soil compared to the other treatments. The averages for the root biomass were lower in the contaminated soil than in the bioremediated soil. The shoot length and the total length of the seedling in the contaminated soil and uncontaminated soil were lower than in the bioremediated soil.

  3. Fine tuning soil nitrogen to maximize petroleum bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Walworth, J.; Pond, A. [Arizona Univ., Tucson, AZ (United States); Snape, I.; Rayner, J.; Ferguson, S.; Harvey, P. [Australian Antarctic Division, Kingston, Tasmania (Australia)

    2005-07-01

    Although many studies indicate positive effects from the application of nitrogen to support bioremediation, a surprisingly large number report no benefit, or even deleterious effects when excessive levels of nitrogen are applied. Inhibitory effects include an increased lag phase and preferential inhibition of aromatic degradation. Microbial inhibition has been reported at lower application rates. In this study, oil was collected from a petroleum contaminated site on Macquarie Island, Australia, where the Australian Antarctic Division has maintained a permanent station since 1948. The soil used in this study was collected from a site where an overflow of fuel was reported in 1975. Soil was placed in glass bottles and brought to the University of Arizona. Petroleum hydrocarbons were extracted from 10 g samples of soil with 10 ml of hexane, and 0.5 ml of an internal standard solution. Sieve analysis included: nitrogen levels; water potential depression resulting from the addition of inorganic nitrogen fertilizer; and oxygen consumption during incubation of petroleum contaminated soil. Oxygen (O{sub 2}) consumption was monitored with an N-Con respirometer for approximately 4 months. Maximum O{sub 2} uptake was observed with 125 and 250 mg nitrogen/kg of soil application rates. Respiration in the 625 mg/kg treatment was slightly lower than that in the untreated soil, although they were statistically identical. The nitrogen application rate related to microbial inhibition was lower than in previous studies. Results suggested that a reasonable cutoff level for added plus native inorganic soil nitrogen should be approximately 1,800 mg of nitrogen per kg of soil in water, a lower value than previously recommended. It appeared that this level was applicable without regard to soil salinity. Use of sparingly soluble nitrogen sources may permit the addition of higher nitrogen doses by minimizing osmotic stress. Additionally, nitrogen applications can be split into multiple

  4. The Influence of Soil Chemical Factors on In Situ Bioremediation of Soil Contamination

    Energy Technology Data Exchange (ETDEWEB)

    Breedveld, Gijs D.

    1997-12-31

    Mineral oil is the major energy source in Western society. Production, transport and distribution of oil and oil products cause serious contamination problems of water, air and soil. The present thesis studies the natural biodegradation processes in the soil environment which can remove contamination by oil products and creosote. The main physical/chemical processes determining the distribution of organic contaminants between the soil solid, aqueous and vapour phase are discussed. Then a short introduction to soil microbiology and environmental factors important for biodegradation is given. There is a discussion of engineered and natural bioremediation methods and the problems related to scaling up laboratory experiments to field scale remediation. Bioremediation will seldom remove the contaminants completely; a residue remains. Factors affecting the level of residual contamination and the consequences for contaminant availability are discussed. Finally, the main findings of the work are summarized and recommendations for further research are given. 111 refs., 41 figs., 19 tabs.

  5. Bioremediation of a tropical clay soil contaminated with diesel oil.

    Science.gov (United States)

    Chagas-Spinelli, Alessandra C O; Kato, Mario T; de Lima, Edmilson S; Gavazza, Savia

    2012-12-30

    The removal of polyaromatic hydrocarbons (PAH) in tropical clay soil contaminated with diesel oil was evaluated. Three bioremediation treatments were used: landfarming (LF), biostimulation (BS) and biostimulation with bioaugmentation (BSBA). The treatment removal efficiency for the total PAHs differed from the efficiencies for the removal of individual PAH compounds. In the case of total PAHs, the removal values obtained at the end of the 129-day experimental period were 87%, 89% and 87% for LF, BS and BSBA, respectively. Thus, the efficiency was not improved by the addition of nutrients and microorganisms. Typically, two distinct phases were observed. A higher removal rate occurred in the first 17 days (P-I) and a lower rate occurred in the last 112 days (P-II). In phase P-I, the zero-order kinetic parameter (μg PAH g(-1) soil d(-1)) values were similar (about 4.6) for all the three treatments. In P-II, values were also similar but much lower (about 0.14). P-I was characterized by a sharp pH decrease to less than 5.0 for the BS and BSBA treatments, while the pH remained near 6.5 for LF. Concerning the 16 individual priority PAH compounds, the results varied depending on the bioremediation treatment used and on the PAH species of interest. In general, compounds with fewer aromatic rings were better removed by BS or BSBA, while those with 4 or more rings were most effectively removed by LF. The biphasic removal behavior was observed only for some compounds. In the case of naphthalene, pyrene, chrysene, benzo[k]fluoranthene and benzo[a]pyrene, removal occurred mostly in the P-I phase. Therefore, the best degradation process for total or individual PAHs should be selected considering the target compounds and the local conditions, such as native microbiota and soil type.

  6. Bioremediation of coal contaminated soil under sulfate-reducing condition

    Energy Technology Data Exchange (ETDEWEB)

    Kuwano, Y.; Shimizu, Y. [Kyoto University, Shiga (Japan)

    2006-01-15

    The objective of this study was to investigate the biodegradation of coal-derived hydrocarbons, especially high molecular weight (HMW) components, under anaerobic conditions. For this purpose biodegradation experiments were performed, using specifically designed soil column bioreactors. For the experiment, coal-contaminated soil was prepared, which contains high molecular weight hydrocarbons at high concentration (approx. 55.5 mgC g-drysoil{sup -1}). The experiment was carried out in two different conditions: sulfate reducing (SR) condition (SO{sub 4}{sup 2-}=10 mmol 1{sup -1} in the liquid medium) and control condition (SO{sub 4}{sup 2-} {lt} 0.5 mmol 1{sup -1}). Although no degradation was observed under the control condition, the resin fraction decreased to half (from 6,541 to 3,386 mgC g-soil{sup -1}) under SR condition, with the concomitant increase of two PAHs (phenanthrene and fluoranthene 9 and 2.5 times, respectively). From these results, we could conclude that high molecular hydrocarbons were biodegradable and transformed to low molecular weight PAHs under the sulfate-reducing condition. Since these PAHs are known to be biologically degraded under aerobic condition, a serial combination of anaerobic (sulfate reducing) and then aerobic bioremediations could be effective and useful for the soil pollution by petroleum and/or coal derived hydrocarbons.

  7. Effects on lead bioavailability and plant uptake during the bioremediation of soil PAHs

    Energy Technology Data Exchange (ETDEWEB)

    Amezcua-Allieri, M.A. [Inst. Politecnico Nacional, Mexico City (Mexico); Rodriguez-Vazquez, R. [CINVESTAV, Mexico City (Mexico)

    2008-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are a group of priority pollutants that are present in the soils of many industrially contaminated sites. In Mexico, the petrochemical industry is the main source of soil pollution. Soils polluted with PAHs are often accompanied by high levels of metals. Although bioremediation of soil contaminated with PAHs have received increasing attentions, the influence of microbial activity on metal behaviour is not understood. For that reason, this study investigated lead behaviour during the bioremoval of phenanthrene in soils sampled from Tabasco, Mexico. Lead bioavailable concentrations were evaluated by diffusive gradients in thin-films (DGT). Metal uptake to plants was quantified. Lead concentrations were determined before and after organic removal by Penicillium frequentans and soil microflora. Metal uptake by Echinochloa polystachya and Triticum aestivum L was also investigated. DGT concentrations increased significantly after the addition of fungi in the presence of plants before bioremediation and after fungal addition. Although DGT responded immediately to uptake, plant uptake did not begin immediately. The fungal bioremediation reduced organic contaminants significantly while it increased bioavailable metal concentrations and plant uptake. The results highlight the impact of bioremediation of organic contaminants on trace metal behaviour. The bioremediation process makes the toxic lead more available to plants, and therefore more metal may be incorporated into the human food chain if crops grown on bioremediated soil are used for human or animal consumption. 15 refs., 3 figs.

  8. USING PHYTOREMEDIATION AND BIOREMEDIATION FOR PROTECTION SOIL NEAR GRAVEYARD

    Directory of Open Access Journals (Sweden)

    Katarzyna Ignatowicz

    2016-07-01

    Full Text Available The aim of present research was to assess the usefulness of Basket willow (Salix viminalis to phytoremediation and bioremediation of sorption subsoil contaminated with pesticides. Studies upon purification of sorption material consisting of a soil and composting sewage sludge were conducted under pot experiment conditions. The study design included control pot along with 3 other ones polluted with pesticides. The vegetation season has lasted since spring till late autumn 2015. After acclimatization, the mixture of chloroorganic pesticides was added into 3 experimental pots. After harvest, it was found that pesticide contents in sorption subsoil (from 0.0017 to 0.0087 mg kg DM were much higher than in control soil (from 0.0005 to 0.0027 mg kg DM. Achieved results initially indicate that Basket willow (Salix viminalis can be used for reclamation of soils contaminated with pesticides, particularly for vitality prolongation of sorption barrier around the pesticide burial area. In future, it would allow for applying the sorption screen around pesticide burial area, which reduces pesticide migration into the environment, and grown energetic plants – through phytoremediation – would prolong the sorbent vitality and remove pesticides from above ground parts by means of combustion.

  9. Ecotoxicity monitoring and bioindicator screening of oil-contaminated soil during bioremediation.

    Science.gov (United States)

    Shen, Weihang; Zhu, Nengwu; Cui, Jiaying; Wang, Huajin; Dang, Zhi; Wu, Pingxiao; Luo, Yidan; Shi, Chaohong

    2016-02-01

    A series of toxicity bioassays was conducted to monitor the ecotoxicity of soils in the different phases of bioremediation. Artificially oil-contaminated soil was inoculated with a petroleum hydrocarbon-degrading bacterial consortium containing Burkholderia cepacia GS3C, Sphingomonas GY2B and Pandoraea pnomenusa GP3B strains adapted to crude oil. Soil ecotoxicity in different phases of bioremediation was examined by monitoring total petroleum hydrocarbons, soil enzyme activities, phytotoxicity (inhibition of seed germination and plant growth), malonaldehyde content, superoxide dismutase activity and bacterial luminescence. Although the total petroleum hydrocarbon (TPH) concentration in soil was reduced by 64.4%, forty days after bioremediation, the phytotoxicity and Photobacterium phosphoreum ecotoxicity test results indicated an initial increase in ecotoxicity, suggesting the formation of intermediate metabolites characterized by high toxicity and low bioavailability during bioremediation. The ecotoxicity values are a more valid indicator for evaluating the effectiveness of bioremediation techniques compared with only using the total petroleum hydrocarbon concentrations. Among all of the potential indicators that could be used to evaluate the effectiveness of bioremediation techniques, soil enzyme activities, phytotoxicity (inhibition of plant height, shoot weight and root fresh weight), malonaldehyde content, superoxide dismutase activity and luminescence of P. phosphoreum were the most sensitive.

  10. [Response of soil microbial community to the bioremediation of soil contaminated with PAHs].

    Science.gov (United States)

    Zhang, Jing; Lin, Xian-gui; Liu, Wei-wei; Yin, Rui

    2012-08-01

    The diversity of bacterial community in soil contaminated with polycyclic aromatic hydrocarbons (PAHs) was investigated during the plant-microbe remediation enhanced by biosurfactant rhamnolips (RH), using the polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) method. The results showed that Shannon-Weaver diversity index was only 3.17 before bioremediation, and increased to 3.24-3.45 after bioremediation, in particular, highest value was found in the treatment of alfalfa (AL) inoculated with arbuscular mycorrhizal fungi (AM) and PAHs-degrading bacteria (DB) among all the treatments. The clustering analysis showed that the similarities of soil bacterial community of AL, AL + RH, AL + AM and AL + AM + RH were above 90%. At the same time, the similarity of AL + DB was much closer to those of the four treatments mentioned above. Additionally, when the bacterial communities of AL + DB + RH, AL + DB + AM and AL + DB + AM + RH were grouped together, the similarities of these three treatments were also higher than 80%. By sequence alignment, it was found that the predominant and characteristic bands in DGGE patterns were closely related with PAHs-degrading bacteria, such as Bacillus, Pseudomonas, Acidobacteria, Sphingmonas, Rhodopseudomonas, Firmicutes, and Methylocytaceae. Application of rhamnolipids in plant-microbe bioremediation not only improved the bioavailability of PAHs, but also had a simultaneous influence on the diversity of soil bacterial community, resulting in the efficient promotion of PAHs removal from soils.

  11. Insight in the PCB-degrading functional community in long-term contaminated soil under bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Petric, Ines; Hrsak, Dubravka; Udikovic-Kolic, Nikolina [Ruder Boskovic Inst., Division for Marine and Environmental Research, Zagreb (Croatia); Fingler, Sanja [Inst. for Medical Research and Occupational Health, Zagreb (Croatia); Bru, David; Martin-Laurent, Fabrice [INRA, Univ. der Bourgogne, Soil and Environmental Microbiology, Dijon (France)

    2011-02-15

    A small-scale bioremediation assay was developed in order to get insight into the functioning of a polychlorinated biphenyl (PCB) degrading community during the time course of bioremediation treatment of a contaminated soil. The study was conducted with the aim to better understand the key mechanisms involved in PCB-removal from soils. Materials and methods Two bioremediation strategies were applied in the assay: (a) biostimulation (addition of carvone as inducer of biphenyl pathway, soya lecithin for improving PCB bioavailability, and xylose as supplemental carbon source) and (b) bioaugmentation with selected seed cultures TSZ7 or Rhodococcus sp. Z6 originating from the transformer station soil and showing substantial PCB-degrading activity. Functional PCB-degrading community was investigated by using molecular-based approaches (sequencing, qPCR) targeting bphA and bphC genes, coding key enzymes of the upper biphenyl pathway, in soil DNA extracts. In addition, kinetics of PCBs removal during the bioremediation treatment was determined using gas chromatography mass spectrometry analyses. Results and discussion bphA-based phylogeny revealed that bioremediation affected the structure of the PCB-degrading community in soils, with Rhodococcus-like bacterial populations developing as dominant members. Tracking of this population further indicated that applied bioremediation treatments led to its enrichment within the PCB-degrading community. The abundance of the PCB-degrading community, estimated by quantifying the copy number of bphA and bphC genes, revealed that it represented up to 0.3% of the total bacterial community. All bioremediation treatments were shown to enhance PCB reduction in soils, with approximately 40% of total PCBs being removed during a 1-year period. The faster PCB reduction achieved in bioaugmented soils suggested an important role of the seed cultures in bioremediation processes. Conclusions The PCBs degrading community was modified in response to

  12. Ex-situ bioremediation of Brazilian soil contaminated with plasticizers process wastes

    Directory of Open Access Journals (Sweden)

    I. D. Ferreira

    2012-03-01

    Full Text Available The aim of this research was to evaluate the bioremediation of a soil contaminated with wastes from a plasticizers industry, located in São Paulo, Brazil. A 100-kg soil sample containing alcohols, adipates and phthalates was treated in an aerobic slurry-phase reactor using indigenous and acclimated microorganisms from the sludge of a wastewater treatment plant of the plasticizers industry (11gVSS kg-1 dry soil, during 120 days. The soil pH and temperature were not corrected during bioremediation; soil humidity was corrected weekly to maintain 40%. The biodegradation of the pollutants followed first-order kinetics; the removal efficiencies were above 61% and, among the analyzed plasticizers, adipate was removed to below the detection limit. Biological molecular analysis during bioremediation revealed a significant change in the dominant populations initially present in the reactor.

  13. ASSESSMENT OF DISTILLERY EFFLUENT IRRIGATION ON SOIL MICROBES AND ITS BIOREMEDIATION

    Directory of Open Access Journals (Sweden)

    Tripathi D. M

    2014-12-01

    Full Text Available The present study deals with the assessment of toxicity of distillery effluent on soil microorganisms and its quality improvement through bioremediation using Pseudomonas spp. Under lab scale experiment, different dilutions of distillery effluent i.e. 25%, 50%, 75% were used to examine effects on physico-chemical parameters of effluent and on soil microflora e.g. algae, bacteria, fungi and actinomycetes. The results revealed that dilution may reduce significantly the metal contents and other toxicants in the effluent as well as in the soil. Statistical analysis revealed that bioremediation of distillery effluent using Pseudomonas spp. caused significant reduction in BOD, COD, TDS, TN, TP and color. The study indicates that raw distillery effluent is harmful for soil microflora and bioremediation improves the quality of distillery effluent making it suitable as a soil amendment.

  14. Changes in microbial populations and enzyme activities during the bioremediation of oil-contaminated soil.

    Science.gov (United States)

    Lin, Xin; Li, Xiaojun; Sun, Tieheng; Li, Peijun; Zhou, Qixing; Sun, Lina; Hu, Xiaojun

    2009-10-01

    In the process of bioremediation in the soil contaminated by different oil concentrations, the changes in the microbial numbers (bacteria and fungi) and the enzyme (catalase (CAT), polyphenol oxidase (PPO) and lipase) activities were evaluated over a 2-year period. The results showed that the microbial numbers after 2-year bioremediation were one to ten times higher than those in the initial. The changes in the bacterial and the fungal populations were different during the bioremediation, and the highest microbial numbers for bacteria and fungi were 5.51 x 10(9) CFU g(-1) dry soil in treatment 3 (10,000 mg kg(-1)) in the initial and 5.54 x 10(5) CFU g(-1) dry soil in treatment 5 (50,000 mg kg(-1)) after the 2-year bioremediation period, respectively. The CAT and PPO activities in the contaminated soil decreased with increasing oil concentration, while the lipase activity increased. The activities of CAT and PPO improved after the bioremediation, but lipase activity was on the contrary. The CAT activity was more sensible to the oil than others, and could be alternative to monitor the bioremediation process.

  15. Distribution of hydrocarbon-degrading bacteria in the soil environment and their contribution to bioremediation.

    Science.gov (United States)

    Fukuhara, Yuki; Horii, Sachie; Matsuno, Toshihide; Matsumiya, Yoshiki; Mukai, Masaki; Kubo, Motoki

    2013-05-01

    A real-time PCR quantification method for indigenous hydrocarbon-degrading bacteria (HDB) carrying the alkB gene in the soil environment was developed to investigate their distribution in soil. The detection limit of indigenous HDB by the method was 1 × 10(6) cells/g-soil. The indigenous HDB were widely distributed throughout the soil environment and ranged from 3.7 × 10(7) to 5.0 × 10(8) cells/g-soil, and the ratio to total bacteria was 0.1-4.3 %. The dynamics of total bacteria, indigenous HDB, and Rhodococcus erythropolis NDKK6 (carrying alkB R2) during bioremediation were analyzed. During bioremediation with an inorganic nutrient treatment, the numbers of these bacteria were slightly increased. The numbers of HDB (both indigenous bacteria and strain NDKK6) were gradually decreased from the middle stage of bioremediation. Meanwhile, the numbers of these bacteria were highly increased and were maintained during bioremediation with an organic nutrient. The organic treatment led to activation of not only the soil bacteria but also the HDB, so an efficient bioremediation was carried out.

  16. Aspergillus flavus: A potential Bioremediator for oil contaminated soils

    Directory of Open Access Journals (Sweden)

    Y.Avasn Maruthi

    2013-02-01

    Full Text Available Biodegradation is cost-effective, environmentally friendly treatment for oily contaminated sites by the use of microorganisms. In this study, laboratory experiments were conducted to establish the performance of fungal isolates in degradation of organic compounds contained in soils contaminated with petrol and diesel. As a result of the laboratory screening, two natural fungal strains capable of degrading total organic carbons (TOC were prepared from isolates enriched from the oil contaminated sites. Experiments were conducted in Erlenmeyer flasks under aerobic conditions, with TOC removal percentage varied from 0.7 to 32% depending on strains type and concentration. Strains Phanerocheate chrysosporium and Aspergillus niger exhibited the highest TOC removal percentage of 32 and 21%, respectively, before nutrient addition. TOC removal rate was enhanced after addition of nutrients to incubated flasks. The highest TOC reduction (45% was estimated after addition of combination of nitrogen, phosphorus and sulphur to Phanerocheate chrysosporium strains. Results of experimental work carried out elucidate that the fungi like Phanerocheate chrysosporium and Aspergillus niger were capabled of producing enzymes at a faster rate to decompose the substrate hydrocarbon and released more CO2 and hence these potential fungi can be utilized effectively as agents of biodegradation in waste recycling process and Bioremediation of oil contaminated sites.

  17. Bacterial Community Dynamics and Polycyclic Aromatic Hydrocarbon Degradation during Bioremediation of Heavily Creosote-Contaminated Soil

    OpenAIRE

    Viñas, Marc; Sabaté, Jordi; Espuny, María José; Solanas, Anna M.

    2005-01-01

    Bacterial community dynamics and biodegradation processes were examined in a highly creosote-contaminated soil undergoing a range of laboratory-based bioremediation treatments. The dynamics of the eubacterial community, the number of heterotrophs and polycyclic aromatic hydrocarbon (PAH) degraders, and the total petroleum hydrocarbon (TPH) and PAH concentrations were monitored during the bioremediation process. TPH and PAHs were significantly degraded in all treatments (72 to 79% and 83 to 87...

  18. Assessment of microbial community changes and limiting factors during bioremediation of hydrocarbon-polluted soil with new miniaturized physiological methods

    OpenAIRE

    Kaufmann, Karin; Holliger, Hans Christof

    2005-01-01

    Due to human activities, organic pollutants are spilled to the environment where they threaten public health, often as contaminants of soil or groundwater. Living organisms are able to transform or mineralize many organic pollutants, and bioremediation techniques have been developed to remove pollutants from a contaminated site. However, fast and easy methods to document both the efficacy of bioremediation and the changes in soil microbial communities during bioremediation are not well develo...

  19. Ecotoxicological evaluation of diesel-contaminated soil before and after a bioremediation process.

    Science.gov (United States)

    Molina-Barahona, L; Vega-Loyo, L; Guerrero, M; Ramírez, S; Romero, I; Vega-Jarquín, C; Albores, A

    2005-02-01

    Evaluation of contaminated sites is usually performed by chemical analysis of pollutants in soil. This is not enough either to evaluate the environmental risk of contaminated soil nor to evaluate the efficiency of soil cleanup techniques. Information on the bioavailability of complex mixtures of xenobiotics and degradation products cannot be totally provided by chemical analytical data, but results from bioassays can integrate the effects of pollutants in complex mixtures. In the preservation of human health and environment quality, it is important to assess the ecotoxicological effects of contaminated soils to obtain a better evaluation of the healthiness of this system. The monitoring of a diesel-contaminated soil and the evaluation of a bioremediation technique conducted on a microcosm scale were performed by a battery of ecotoxicological tests including phytotoxicity, Daphnia magna, and nematode assays. In this study we biostimulated the native microflora of soil contaminated with diesel by adding nutrients and crop residue (corn straw) as a bulking agent and as a source of microorganisms and nutrients; in addition, moisture was adjusted to enhance diesel removal. The bioremediation process efficiency was evaluated directly by an innovative, simple phytotoxicity test system and the diesel extracts by Daphnia magna and nematode assays. Contaminated soil samples were revealed to have toxic effects on seed germination, seedling growth, and Daphnia survival. After biostimulation, the diesel concentration was reduced by 50.6%, and the soil samples showed a significant reduction in phytotoxicity (9%-15%) and Daphnia assays (3-fold), confirming the effectiveness of the bioremediation process. Results from our microcosm study suggest that in addition to the evaluation of the bioremediation processes efficiency, toxicity testing is different with organisms representative of diverse phylogenic levels. The integration of analytical, toxicological and bioremediation data

  20. Ecotoxicity monitoring of hydrocarbon-contaminated soil during bioremediation: a case study.

    Science.gov (United States)

    Hubálek, Tomás; Vosáhlová, Simona; Matejů, Vít; Kovácová, Nora; Novotný, Cenek

    2007-01-01

    The ecotoxicity of hydrocarbon-contaminated soil originating from a brownfield site was evaluated during a 17-month biodegradation pilot test. The initial concentration of total petroleum hydrocarbons (TPHs) in the soil was 6380 microg/g dry weight. An amount of 200 kg soil was inoculated with 1.5 L of the bacterial preparation GEM-100 containing Pseudomonas sp. and Acinetobacter sp. strains (5.3 x 10(10) CFU.mL(-1)) adapted to diesel fuel. The concentration of TPHs in the soil decreased by 65.5% after bioremediation. Different organisms such as the bacterium Vibrio fischeri, terrestrial plants Sinapis alba, Lactuca sativa, and Hordeum vulgare, the water plant Lemna minor, the earthworm Eisenia fetida, and the crustacean Heterocypris incongruens were used for ecotoxicity evaluation. The highest toxicity was detected in the first period of bioremediation. However, certain toxic effects were detectable during the whole bioremediation process. The contact tests with plants, earthworms, and crustaceans were the most sensitive of all of the bioassays. Therefore, the contact tests performed directly on soil samples were shown to be a better tool for ecotoxicity evaluation of hydrocarbon-contaminated soil than the tests performed on soil elutriates. The ecotoxicity measured by the responses of the tests did not always correlate with the decrease in TPH concentrations in the soil during bioremediation.

  1. Microorganisms in heavy metal bioremediation: strategies for applying microbial-community engineering to remediate soils

    Directory of Open Access Journals (Sweden)

    Jennifer L. Wood

    2016-06-01

    Full Text Available The remediation of heavy-metal-contaminated soils is essential as heavy metals persist and do not degrade in the environment. Remediating heavy-metal-contaminated soils requires metals to be mobilized for extraction whilst, at the same time, employing strategies to avoid mobilized metals leaching into ground-water or aquatic systems. Phytoextraction is a bioremediation strategy that extracts heavy metals from soils by sequestration in plant tissues and is currently the predominant bioremediation strategy investigated for remediating heavy-metal-contaminated soils. Although the efficiency of phytoextraction remains a limiting feature of the technology, there are numerous reports that soil microorganisms can improve rates of heavy metal extraction.This review highlights the unique challenges faced when remediating heavy-metal-contaminated soils as compared to static aquatic systems and suggests new strategies for using microorganisms to improve phytoextraction. We compare how microorganisms are used in soil bioremediation (i.e. phytoextraction and water bioremediation processes, discussing how the engineering of microbial communities, used in water remediation, could be applied to phytoextraction. We briefly outline possible approaches for the engineering of soil communities to improve phytoextraction either by mobilizing metals in the rhizosphere of the plant or by promoting plant growth to increase the root-surface area available for uptake of heavy metals. We highlight the technological advances that make this research direction possible and how these technologies could be employed in future research.

  2. Bioremediation of oil-contaminated soils: A recipe for success

    Energy Technology Data Exchange (ETDEWEB)

    Wittenbach, S.A.

    1995-12-31

    Bioremediation of land crude oil and lube oil spills is an effective and economical option. Other options include road spreading (where permitted), thermal desorption, and off-site disposal. The challenge for environment and operations managers is to select the best approach for each remediation site. Costs and liability for off-site disposal are ever increasing. Kerr-McGee`s extensive field research in eastern and western Texas provides the data to support bioremediation as a legitimate and valid option. Both practical and economical bioremediation as a legitimate and valid option. Both practical and economical, bioremediation also offers a lower risk of, for example, Superfund clean-up exposure than off-site disposal.

  3. Dynamism of PGPR in bioremediation and plant growth promotion in heavy metal contaminated soil.

    Science.gov (United States)

    Patel, P R; Shaikh, S S; Sayyed, R Z

    2016-04-01

    Heavy metal contamination, particularly of cultivable lands, is a matter of concern. Bioremediation helps in reversing such contamination to certain extent. Here, we report isolation, polyphasic identification and the role of siderophore producing rhizobacteria Alcaligenes feacalis RZS2 and Pseudomonas aeruginosa RZS3 in bioremediation of heavy metal contaminated soil and plant growth promotion activity in such contaminated soil. Siderophore produced by A. feacalis RZS2 and P. aeruginosa RZS3 strains chelated various heavy metal ions like MnCl₂.4H₂O, NiCl₂.6H₂O, ZnCl₂, CuCl₂ and CoCl₂ other than FeCl₃.6H2O at batch scale. Their bioremediation potential was superior over the chemical ion chelators like EDTA and citric acid. These isolates also promoted growth of wheat and peanut seeds sown in heavy metal contaminated soil. Effective root colonizing ability of these isolates was observed in wheat and peanut plants.

  4. Fates of nickel and fluoranthene during the bioremediation by Pleurotus eryngii in three different soils.

    Science.gov (United States)

    Tang, Xia; Dong, Shunwen; Shi, Wenjin; Gao, Ni; Zuo, Lei; Xu, Heng

    2016-11-01

    This study focused on the bioremediation role of Pleurotus eryngii in different characteristics soils contaminated with nickel (Ni) and fluoranthene. The results of bioremediation experiments showed that fluoranthene had a positive effect on the growth of P. eryngii, whereas Ni exerted a negative influence. The concentration of fluoranthene significantly decreased in inoculated soil accounting for 86.39-91.95% of initial concentration in soils and 71.46-81.76% in non-inoculated soils, which showed that the dissipation of fluoranthene was enhanced by mushroom inoculating. The highest removal rates of fluoranthene in sandy loam, loamy clay, and sandy soils reached to 87.81, 86.39, and 91.95%, respectively, which demonstrated that P. eryngii was more suitable for the bioremediation of sandy soil contaminated with fluoranthene. In addition, the presence of Ni tended to decrease the dissipation of fluoranthene in inoculated soil. Higher ligninolytic enzymes activities were detected in inoculated soils, resulting in the enhanced dissipation of fluoranthene in inoculated soils. Furthermore, P. eryngii had the ability to uptake Ni (4.88-39.53 mg kg(-1) ) in co-contamination soil. In conclusion, the inoculating of P. eryngii was effective in remediating of Ni-fluoranthene co-contaminated soils.

  5. Immobilized Native Bacteria as a Tool for Bioremediation of Soils and Waters: Implementation and Modeling

    Directory of Open Access Journals (Sweden)

    C. Lobo

    2002-01-01

    Full Text Available Based on 3,4-dihydroxyphenylacetate (3,4-DHPA dioxygenase amino acid sequence and DNA sequence data for homologous genes, two different oligonucleotides were designed. These were assayed to detect 3,4-DHPA related aromatic compound—degrading bacteria in soil samples by using the FISH method. Also, amplification by PCR using a set of ERIC primers was assayed for the detection of Pseudomonas GCH1 strain, which used in the soil bioremediation process. A model was developed to understand and predict the behavior of bacteria and pollutants in a bioremediation system, taking into account fluid dynamics, molecular/cellular scale processes, and biofilm formation.

  6. Microorganisms in heavy metal bioremediation: strategies for applying microbial-community engineering to remediate soils

    OpenAIRE

    Jennifer L. Wood; Caixian Tang; Franks, Ashley E.; Wuxing Liu

    2016-01-01

    The remediation of heavy-metal-contaminated soils is essential as heavy metals persist and do not degrade in the environment. Remediating heavy-metal-contaminated soils requires metals to be mobilized for extraction whilst, at the same time, employing strategies to avoid mobilized metals leaching into ground-water or aquatic systems. Phytoextraction is a bioremediation strategy that extracts heavy metals from soils by sequestration in plant tissues and is currently the predominant bioremediat...

  7. Assessment and Comparison of Electrokinetic and Electrokinetic-bioremediation Techniques for Mercury Contaminated Soil

    Science.gov (United States)

    Azhar, A. T. S.; Nabila, A. T. A.; Nurshuhaila, M. S.; Zaidi, E.; Azim, M. A. M.; Farhana, S. M. S.

    2016-11-01

    Landfills are major sources of contamination due to the presence of harmful bacteria and heavy metals. Electrokinetic-Bioremediation (Ek-Bio) is one of the techniques that can be conducted to remediate contaminated soil. Therefore, the most prominent bacteria from landfill soil will be isolated to determine their optimal conditions for culture and growth. The degradation rate and the effectiveness of selected local bacteria were used to reduce soil contamination. Hence, this enhances microbiological activities to degrade contaminants in soil and reduce the content of heavy metals. The aim of this study is to investigate the ability of isolated bacteria (Lysinibacillus fusiformis) to remove mercury in landfill soil. 5 kg of landfill soil was mixed with deionized water to make it into slurry condition for the purpose of electrokinetic and bioremediation. This remediation technique was conducted for 7 days by using 50 V/m of electrical gradient and Lysinibacillus fusiformis bacteria was applied at the anode reservoir. The slurry landfill soil was located at the middle of the reservoir while distilled water was placed at the cathode of reservoir. After undergoing treatment for 7 days, the mercury analyzer showed that there was a significant reduction of approximately up to 78 % of mercury concentration for the landfill soil. From the results, it is proven that electrokinetic bioremediation technique is able to remove mercury within in a short period of time. Thus, a combination of Lysinibacillus fusiformis and electrokinetic technique has the potential to remove mercury from contaminated soil in Malaysia.

  8. Glyphosate biodegradation and potential soil bioremediation by Bacillus subtilis strain Bs-15.

    Science.gov (United States)

    Yu, X M; Yu, T; Yin, G H; Dong, Q L; An, M; Wang, H R; Ai, C X

    2015-11-23

    Glyphosate and glyphosate-containing herbicides have an adverse effect on mammals, humans, and soil microbial ecosystems. Therefore, it is important to develop methods for enhancing glyphosate degradation in soil through bioremediation. We investigated the potential of glyphosate degradation and bioremediation in soil by Bacillus subtilis Bs-15. Bs-15 grew well at high concentrations of glyphosate; the maximum concentration tolerated by Bs-15 reached 40,000 mg/L. The optimal conditions for bacterial growth and glyphosate degradation were less than 10,000 mg/L glyphosate, with a temperature of 35°C and a pH of 8.0. Optimal fermentation occurred at 180 rpm for 60 h with an inoculum ratio of 4%. Bs-15 degraded 17.65% (12 h) to 66.97% (96 h) of glyphosate in sterile soil and 19.01% (12 h) to 71.57% (96 h) in unsterilized soil. Using a BIOLOG ECO plate test, we observed no significant difference in average well color development values between the soil inoculated with Bs-15 and the control soil before 72 h, although there was a significant difference (P glyphosate-containing herbicides, increasing the microbial functional diversity in glyphosate-contaminated soils and thus enhancing the bioremediation of glyphosate-contaminated soils.

  9. Residues of endosulfan in surface and subsurface agricultural soil and its bioremediation.

    Science.gov (United States)

    Odukkathil, Greeshma; Vasudevan, Namasivayam

    2016-01-01

    The persistence of many hydrophobic pesticides has been reported by various workers in various soil environments and its bioremediation is a major concern due to less bioavailability. In the present study, the pesticide residues in the surface and subsurface soil in an area of intense agricultural activity in Pakkam Village of Thiruvallur District, Tamilnadu, India, and its bioremediation using a novel bacterial consortium was investigated. Surface (0-15 cm) and subsurface soils (15-30 cm and 30-40 cm) were sampled, and pesticides in different layers of the soil were analyzed. Alpha endosulfan and beta endosulfan concentrations ranged from 1.42 to 3.4 mg/g and 1.28-3.1 mg/g in the surface soil, 0.6-1.4 mg/g and 0.3-0.6 mg/g in the subsurface soil (15-30 cm), and 0.9-1.5 mg/g and 0.34-1.3 mg/g in the subsurface soil (30-40 cm) respectively. Residues of other persistent pesticides were also detected in minor concentrations. These soil layers were subjected to bioremediation using a novel bacterial consortium under a simulated soil profile condition in a soil reactor. The complete removal of alpha and beta endosulfan was observed over 25 days. Residues of endosulfate were also detected during bioremediation, which was subsequently degraded on the 30th day. This study revealed the existence of endosulfan in the surface and subsurface soils and also proved that the removal of such a ubiquitous pesticide in the surface and subsurface environment can be achieved in the field by bioaugumenting a biosurfactant-producing bacterial consortium that degrades pesticides.

  10. Successful bioremediation of an aged and heavily contaminated soil using a microbial/plant combination strategy.

    Science.gov (United States)

    Xu, Yang; Sun, Guang-Dong; Jin, Jing-Hua; Liu, Ying; Luo, Mu; Zhong, Zhi-Ping; Liu, Zhi-Pei

    2014-01-15

    Bioremediation of an aged and heavily contaminated soil was performed using microbial remediation, phytoremediation, and microbial/phytoremediation. The removal efficiency of polycyclic aromatic hydrocarbons (PAHs) was in the order microbial/phytoremediation>microbial remediation≈phytoremediation>control. The removal percentage of microbial/phytoremediation (69.6%) was twice that of control. Kocuria sp. P10 significantly enhanced PAH removal (Psoil microbial communities were also detected by pyrosequencing. The results indicated that biodiversity of the soil bacterial community gradually increased with time and was slightly lower in control, as indicated by operational taxonomic unit (OTU) numbers and Shannon-Wiener indices. Proportions of Betaproteobacteria and Gammaproteobacteria were consistently high in all groups. Actinobacteridae were initially predominant (>37.8%) but rapidly decreased to bioremediation process and a possible basis for ecological assessment for bioremediation on a large scale.

  11. Dynamics of microbial community during bioremediation of phenanthrene and chromium(VI)-contaminated soil microcosms.

    Science.gov (United States)

    Ibarrolaza, Agustín; Coppotelli, Bibiana M; Del Panno, María T; Donati, Edgardo R; Morelli, Irma S

    2009-02-01

    The combined effect of phenanthrene and Cr(VI) on soil microbial activity, community composition and on the efficiency of bioremediation processes has been studied. Biometer flask systems and soil microcosm systems contaminated with 2,000 mg of phenanthrene per kg of dry soil and different Cr(VI) concentrations were investigated. Temperature, soil moisture and oxygen availability were controlled to support bioremediation. Cr(VI) inhibited the phenanthrene mineralization (CO(2) production) and cultivable PAH degrading bacteria at levels of 500-2,600 mg kg(-1). In the bioremediation experiments in soil microcosms the degradation of phenanthrene, the dehydrogenase activity and the increase in PAH degrading bacteria counts were retarded by the presence of Cr(VI) at all studied concentrations (25, 50 and 100 mg kg(-1)). These negative effects did not show a correlation with Cr(VI) concentration. Whereas the presence of Cr(VI) had a negative effect on the phenanthrene elimination rate, co-contamination with phenanthrene reduced the residual Cr(VI) concentration in the water exchangeable Cr(VI) fraction (WEF) in comparison with the soil microcosm contaminated only with Cr(VI). Clear differences were found between the denaturing gradient gel electrophoresis (DGGE) patterns of each soil microcosm, showing that the presence of different Cr(VI) concentrations did modulate the community response to phenanthrene and caused perdurable changes in the structure of the microbial soil community.

  12. Bioremediation of Petroleum Hydrocarbon-Contaminated Soils, Comprehensive Report

    Energy Technology Data Exchange (ETDEWEB)

    Altman, D.J.

    2001-01-12

    The US Department of Energy and the Institute for Ecology of Industrial Areas, Katowice, Poland have been cooperating in the development and implementation of innovative environmental remediation technologies since 1995. U.S. experts worked in tandem with counterparts from the IETU and CZOR throughout this project to characterize, assess and subsequently, design, implement and monitor a bioremediation system.

  13. Semifield testing of a bioremediation tool for atrazine-contaminated soils: evaluating the efficacy on soil and aquatic compartments.

    Science.gov (United States)

    Chelinho, Sónia; Moreira-Santos, Matilde; Silva, Cátia; Costa, Catarina; Viana, Paula; Viegas, Cristina A; Fialho, Arsénio M; Ribeiro, Rui; Sousa, José Paulo

    2012-07-01

    The present study evaluated the bioremediation efficacy of a cleanup tool for atrazine-contaminated soils (Pseudomonas sp. ADP plus citrate [P. ADP + CIT]) at a semifield scale, combining chemical and ecotoxicological information. Three experiments representing worst-case scenarios of atrazine contamination for soil, surface water (due to runoff), and groundwater (due to leaching) were performed in laboratory simulators (100 × 40 × 20 cm). For each experiment, three treatments were set up: bioremediated, nonbioremediated, and a control. In the first, the soil was sprayed with 10 times the recommended dose (RD) for corn of Atrazerba and with P. ADP + CIT at day 0 and a similar amount of P. ADP at day 2. The nonbioremediated treatment consisted of soil spraying with 10 times the RD of Atrazerba (day 0). After 7 d of treatment, samples of soil (and eluates), runoff, and leachate were collected for ecotoxicological tests with plants (Avena sativa and Brassica napus) and microalgae (Pseudokirchneriella subcapitata) species. In the nonbioremediated soils, atrazine was very toxic to both plants, with more pronounced effects on plant growth than on seed emergence. The bioremediation tool annulled atrazine toxicity to A. sativa (86 and 100% efficacy, respectively, for seed emergence and plant growth). For B. napus, results point to incomplete bioremediation. For the microalgae, eluate and runoff samples from the nonbioremediated soils were extremely toxic; a slight toxicity was registered for leachates. After only 7 d, the ecotoxicological risk for the aquatic compartments seemed to be diminished with the application of P. ADP + CIT. In aqueous samples obtained from the bioremediated soils, the microalgal growth was similar to the control for runoff samples and slightly lower than control (by 11%) for eluates.

  14. Investigation of the bioremediation potential of aerobic zymogenous microorganisms in soil for crude oil biodegradation

    Directory of Open Access Journals (Sweden)

    TATJANA ŠOLEVIĆ

    2011-03-01

    Full Text Available The bioremediation potential of the aerobic zymogenous microorganisms in soil (Danube alluvium, Pančevo, Serbia for crude oil biodegradation was investigated. A mixture of paraffinic types of oils was used as the substrate. The laboratory experiment of the simulated oil biodegradation lasted 15, 30, 45, 60 and 75 days. In parallel, an experiment with a control sample was conducted. Extracts were isolated from the samples with chloroform in a separation funnel. From these extracts, the hydrocarbons were isolated by column chromatography and analyzed by gas chromatography–mass spectrometry (GC–MS. n-Alkanes, isoprenoids, phenanthrene and its derivatives with one and two methyl groups were quantitatively analyzed. The ability and efficiency of zymogenous microorganisms in soil for crude oil bioremediation was assessed by comparison between the composition of samples which were exposed to the microorganisms and the control sample. The investigated microorganisms showed the highest bioremediation potential in the biodegradation of n-alkanes and isoprenoids. A considerably high bioremediation potential was confirmed in the biodegradation of phenanthrene and methyl phenanthrenes. Low bioremediation potential of these microorganisms was proven in the case of polycyclic alkanes of the sterane and triterpane types and dimethyl phenanthrenes.

  15. Characterization of bacterial consortia for its use in bioremediation of gas-oil contaminated antarctic soils

    Energy Technology Data Exchange (ETDEWEB)

    Ruberto, L.; Vazquez, S.; Mestre, C.; Nogales, B.; Christie-Oleza, J.; Bosch, R.; Mac Cormack, W. P.

    2009-07-01

    Success of bio augmentation of chronically-contaminated soils is controversial, mainly because the inocula are frequently unable to establish in the matrix under bioremediation. In Antarctica, the environmental conditions and the restriction for the introduction of non-autochthonous organisms (imposed by the Antarctic Treaty) prevent inoculation with foreign bacteria. (Author)

  16. Feasibility of on-site bioremediation of loam soil contaminated by diesel oil.

    Science.gov (United States)

    Rubin, H; Narkis, N

    2001-09-01

    This study originated from an accidental event of diesel oil contamination in a loam soil area of 7,000 m2. Approximately a volume of 1,300 m3 of diesel oil was released into the environment. Reclamation of the contaminated soil by on-site bioremediation was selected as the most appropriate treatment method. A major concern was associated with the nature of the local loam soil. Loam has a very low hydraulic conductivity and very quickly becomes impermeable after its contact with water. The bioremediation approach incorporated excavation of the contaminated soil, mixing it with an agent, which increased its permeability. Following this preliminary treatment came the construction of bioreactors as a suitable environment of nutrients, moisture, dissolved oxygen, and enriched culture of microorganisms, which enabled breakdown of the diesel oil. This case study indicated that the target of 99% of diesel oil clean up could be achieved by using the technology of on-site bioremediation. The selected treatment method was found to be technologically and economically feasible. However, some improvement in the application of the basic treatment approach might increase the bioremediation efficiency.

  17. A review on slurry bioreactors for bioremediation of soils and sediments

    Directory of Open Access Journals (Sweden)

    Poggi-Varaldo Héctor M

    2008-02-01

    Full Text Available Abstract The aim of this work is to present a critical review on slurry bioreactors (SB and their application to bioremediation of soils and sediments polluted with recalcitrant and toxic compounds. The scope of the review encompasses the following subjects: (i process fundamentals of SB and analysis of advantages and disadvantages; (ii the most recent applications of SB to laboratory scale and commercial scale soil bioremediation, with a focus on pesticides, explosives, polynuclear aromatic hydrocarbons, and chlorinated organic pollutants; (iii trends on the use of surfactants to improve availability of contaminants and supplementation with degradable carbon sources to enhance cometabolism of pollutants; (iv recent findings on the utilization of electron acceptors other than oxygen; (v bioaugmentation and advances made on characterization of microbial communities of SB; (vi developments on ecotoxicity assays aimed at evaluating bioremediation efficiency of the process. From this review it can be concluded that SB is an effective ad situ and ex situ technology that can be used for bioremediation of problematic sites, such as those characterized by soils with high contents of clay and organic matter, by pollutants that are recalcitrant, toxic, and display hysteretic behavior, or when bioremediation should be accomplished in short times under the pressure and monitoring of environmental agencies and regulators. SB technology allows for the convenient manipulation and control of several environmental parameters that could lead to enhanced and faster treatment of polluted soils: nutrient N, P and organic carbon source (biostimulation, inocula (bioaugmentation, increased availability of pollutants by use of surfactants or inducing biosurfactant production inside the SB, etc. An interesting emerging area is the use of SB with simultaneous electron acceptors, which has demonstrated its usefulness for the bioremediation of soils polluted with

  18. Bioremediation of Quinoline-contaminated Soil Using Bioaugmentation in Slurry-phase Reactor

    Institute of Scientific and Technical Information of China (English)

    JIAN-LONG WANG; ZE-YU MAO; LI-PING HAN; YI QIAN

    2004-01-01

    Objective To investigate the possibility of using bioaugmentation as a strategy for remediating quinoline-contaminated soil. Methods Microorganisms were introduced to the soil to assess the feasibility of enhancing the removal of quinoline from quinoline-contaminated soil. Slurry-phase reactor was used to investigate the bioremediation of quinoline-contaminated soil. HPLC (Hewlett-Packard model 5050 with an UV detector) was used for analysis of quinoline concentration. Results The biodegradation rate of quinoline was increased through the introduction of Burkholderia pickettii. Quinoline, at a concentration of 1 mg/g soil, could be removed completely within 6 and 8 hours with and without combined effect of indigenous microbes, respectively. Although the indigenous microbes alone had no quinoline-degrading ability, they cooperated with the introduced quinoline-degrader to remove quinoline more quickly than the introduced microbes alone. Bioaugmentaion process was accelerated by the increase of inoculum size and bio-stimulation. The ratio of water to soil in slurry had no significant impact on bioremediation results. Conclusion Bioaugmetation is an effective way for bioremediation of quinoline-contaminated soil.

  19. Genotoxicity assessment of soils from wastewater irrigation areas and bioremediation sites using the Vicia faba root tip micronucleus assay.

    Science.gov (United States)

    Song, Y F; Gong, P; Wilke, B M; Zhang, W; Song, X Y; Sun, T H; Ackland, M L

    2007-02-01

    Genotoxicity potential of soils taken from wastewater irrigation areas and bioremediation sites was assessed using the Vicia faba root tip micronucleus assay. Twenty five soils were tested, of which 8 were uncontaminated soils and taken as the control to examine the influence of soil properties; 6 soils were obtained from paddy rice fields with a history of long-term wastewater irrigation; 6 soils were obtained from bioremediation sites to examine effects of bioremediation; and 5 PAH-contaminated soils were used to examine methodological effects between direct soil exposure and exposure to aqueous soil extracts on micronuclei (MN) frequency ( per thousand) in the V. faba root tips. Results indicate that soil properties had no significant influences on MN frequencies (p > 0.05) when soil pH varied between 3.4 to 7.6 and organic carbon between 0.4% and 18.6%. The MN frequency measured in these control soils ranged from 1.6 per thousand to 5.8 per thousand. MN frequencies in soils from wastewater irrigation areas showed 2- to 48-fold increase as compared with the control. Soils from bioremediation sites showed a mixed picture: MN frequencies in some soils decreased after bioremediation, possibly due to detoxification; whereas in other cases remediated soils induced higher MN frequencies, suggesting that genotoxic substances might be produced during bioremediation. Exposure to aqueous soil extracts gave a higher MN frequency than direct exposure in 3 soils. However, the opposite was observed in the other two soils, suggesting that both exposure routes should be tested in case of negative results from one route. Data obtained from this study indicate that the MN assay is a sensitive assay suitable for evaluating genotoxicity of soils.

  20. Bioremediation of soils contaminated by hydrocarbons at the coastal zone of “Punta Majagua”.

    OpenAIRE

    Jelvys Bermúdez Acosta; Roberto Núñez Moreira; Yoelvis Castro Hernández

    2012-01-01

    The purpose of this research was to describe and assess the main results in the process of bioremediation of 479 m3 of petroleum residuals spilled on the soil and restrained into four deposits of fuel on the coastal zone of “Punta Majagua”, Cienfuegos. The volume of hydrocarbons spilled and contained into the tanks was determined by means of their previous mixture with fertile ground in a ratio of 3/1. The hydrocarbons were disposed in a bioremediation area of 115 m X 75m built in situ. In tu...

  1. Bioremediation of Palm Oil Mill Effluent (POME) Polluted Soil Using Microorganisms Found in Organic Wastes

    OpenAIRE

    Okwute, Ojonoma L.; Ijah, Udeme J.J.

    2014-01-01

    The aim of this study was to demonstrate the use of chicken droppings and cow dung in the amendment of soil polluted with palm oil mill effluent (POME) in bioremediation. Soil polluted with 20 % raw (POME) in the laboratory was amended with different concentrations of chicken droppings, cow dung and a combination of the wastes (10 %, 20 % and 30 %). Isolation, characterization and identification of microorganisms were carried out and compared over time with respect to the different concentrat...

  2. Effect of alternating bioremediation and electrokinetics on the remediation of n-hexadecane-contaminated soil

    Science.gov (United States)

    Wang, Sa; Guo, Shuhai; Li, Fengmei; Yang, Xuelian; Teng, Fei; Wang, Jianing

    2016-04-01

    This study demonstrated the highly efficient degradation of n-hexadecane in soil, realized by alternating bioremediation and electrokinetic technologies. Using an alternating technology instead of simultaneous application prevented competition between the processes that would lower their efficiency. For the consumption of the soil dissolved organic matter (DOM) necessary for bioremediation by electrokinetics, bioremediation was performed first. Because of the utilization and loss of the DOM and water-soluble ions by the microbial and electrokinetic processes, respectively, both of them were supplemented to provide a basic carbon resource, maintain a high electrical conductivity and produce a uniform distribution of ions. The moisture and bacteria were also supplemented. The optimal DOM supplement (20.5 mg·kg-1 glucose; 80-90% of the total natural DOM content in the soil) was calculated to avoid competitive effects (between the DOM and n-hexadecane) and to prevent nutritional deficiency. The replenishment of the water-soluble ions maintained their content equal to their initial concentrations. The degradation rate of n-hexadecane was only 167.0 mg·kg-1·d-1 (1.9%, w/w) for the first 9 days in the treatments with bioremediation or electrokinetics alone, but this rate was realized throughout the whole process when the two technologies were alternated, with a degradation of 78.5% ± 2.0% for the n-hexadecane after 45 days of treatment.

  3. Bioremediation of polluted soil through the combined application of plants, earthworms and organic matter.

    Science.gov (United States)

    Macci, Cristina; Doni, Serena; Peruzzi, Eleonora; Ceccanti, Brunello; Masciandaro, Grazia

    2012-10-26

    Two plant species (Paulownia tomentosa and Cytisus scoparius), earthworms (Eisenia fetida), and organic matter (horse manure) were used as an ecological approach to bioremediate a soil historically contaminated by heavy metals and hydrocarbons. The experiment was carried out for six months at a mesoscale level using pots containing 90 kg of polluted soil. Three different treatments were performed for each plant: (i) untreated planted soil as a control (C); (ii) planted soil + horse manure (20:1 w/w) (M); (iii) planted soil + horse manure + 15 earthworms (ME). Both the plant species were able to grow in the polluted soil and to improve the soil's bio-chemical conditions, especially when organic matter and earthworms were applied. By comparing the two plant species, few significant differences were observed in the soil characteristics; Cytisus scoparius improved soil nutrient content more than Paulownia tomentosa, which instead stimulated more soil microbial metabolism. Regarding the pollutants, Paulownia tomentosa was more efficient in reducing the heavy metal (Pb, Cr, Cd, Zn, Cu, Ni) content, while earthworms were particularly able to stimulate the processes involved in the decontamination of organic pollutants (hydrocarbons). This ecological approach, validated at a mesoscale level, has recently been transferred to a real scale situation to carry out the bioremediation of polluted soil in San Giuliano Terme Municipality (Pisa, Italy).

  4. Bioremediation of soil polluted with crude oil and its derivatives: Microorganisms, degradation pathways, technologies

    Directory of Open Access Journals (Sweden)

    Beškoski Vladimir P.

    2012-01-01

    Full Text Available The contamination of soil and water with petroleum and its products occurs due to accidental spills during exploitation, transport, processing, storing and use. In order to control the environmental risks caused by petroleum products a variety of techniques based on physical, chemical and biological methods have been used. Biological methods are considered to have a comparative advantage as cost effective and environmentally friendly technologies. Bioremediation, defined as the use of biological systems to destroy and reduce the concentrations of hazardous waste from contaminated sites, is an evolving technology for the removal and degradation of petroleum hydrocarbons as well as industrial solvents, phenols and pesticides. Microorganisms are the main bioremediation agents due to their diverse metabolic capacities. In order to enhance the rate of pollutant degradation the technology optimizes the conditions for the growth of microorganisms present in soil by aeration, nutrient addition and, if necessary, by adding separately prepared microorganisms cultures. The other factors that influence the efficiency of process are temperature, humidity, presence of surfactants, soil pH, mineral composition, content of organic substance of soil as well as type and concentration of contaminant. This paper presents a review of our ex situ bioremediation procedures successfully implemented on the industrial level. This technology was used for treatment of soils contaminated by crude oil and its derivatives originated from refinery as well as soils polluted with oil fuel and transformer oil.

  5. Monitoring bioremediation of atrazine in soil microcosms using molecular tools.

    Science.gov (United States)

    Sagarkar, Sneha; Mukherjee, Shinjini; Nousiainen, Aura; Björklöf, Katarina; Purohit, Hemant J; Jørgensen, Kirsten S; Kapley, Atya

    2013-01-01

    Molecular tools in microbial community analysis give access to information on catabolic potential and diversity of microbes. Applied in bioremediation, they could provide a new dimension to improve pollution control. This concept has been demonstrated in the study using atrazine as model pollutant. Bioremediation of the herbicide, atrazine, was analyzed in microcosm studies by bioaugmentation, biostimulation and natural attenuation. Genes from the atrazine degrading pathway atzA/B/C/D/E/F, trzN, and trzD were monitored during the course of treatment and results demonstrated variation in atzC, trzD and trzN genes with time. Change in copy number of trzN gene under different treatment processes was demonstrated by real-time PCR. The amplified trzN gene was cloned and sequence data showed homology to genes reported in Arthrobacter and Nocardioides. Results demonstrate that specific target genes can be monitored, quantified and correlated to degradation analysis which would help in predicting the outcome of any bioremediation strategy.

  6. Microbial-electrochemical bioremediation and detoxification of dibenzothiophene-polluted soil.

    Science.gov (United States)

    Rodrigo, Jose; Boltes, Karina; Esteve-Nuñez, Abraham

    2014-04-01

    Bioremediation is a relatively efficient and cost-effective technology for treating polluted soils. However, the availability of suitable electron acceptors to sustain microbial respiration can reduce the microbial activity. This work aims to evaluate the impact of burying electrically conductive electron acceptors in soil for enhancing the removal of dibenzothiophene (DBT) by native electrogenic microbes. Although this novel approach is based on the use of a microbial electrochemical technology as microbial fuel cells, our goal is not to harvest energy but to maximize bioremediation, so we concluded to name the device as Microbial Electroremediating Cell (MERC). Our results proved that stimulating the microbial electrogenic metabolism, DBT removal was enhanced by more than 3-fold compared to the natural attenuation. On top of that, ecotoxicological test using green algae confirms a decrease of 50% in the toxicity of the treated soil during incubation in MERC, in contrast to the unaltered values detected under natural conditions.

  7. [Bioremediation of petroleum hydrocarbon-contaminated soils by cold-adapted microorganisms: research advance].

    Science.gov (United States)

    Wang, Shi-jie; Wang, Xiang; Lu, Gui-lan; Wang, Qun-hui; Li, Fa-sheng; Guo, Guan-lin

    2011-04-01

    Cold-adapted microorganisms such as psychrotrophs and psychrophiles widely exist in the soils of sub-Arctic, Arctic, Antarctic, alpine, and high mountains, being the important microbial resources for the biodegradation of petroleum hydrocarbons at low temperature. Using the unique advantage of cold-adapted microorganisms to the bioremediation of petroleum hydrocarbon-contaminated soils in low temperature region has become a research hotspot. This paper summarized the category and cold-adaptation mechanisms of the microorganisms able to degrade petroleum hydrocarbon at low temperature, biodegradation characteristics and mechanisms of different petroleum fractions under the action of cold-adapted microorganisms, bio-stimulation techniques for improving biodegradation efficiency, e. g., inoculating petroleum-degrading microorganisms and adding nutrients or bio-surfactants, and the present status of applying molecular biotechnology in this research field, aimed to provide references to the development of bioremediation techniques for petroleum hydrocarbon-contaminated soils.

  8. Comparative Bioremediation of Crude Oil-Amended Tropical Soil Microcosms by Natural Attenuation, Bioaugmentation, or Bioenrichment

    Directory of Open Access Journals (Sweden)

    Vanessa Marques Alvarez

    2011-01-01

    Full Text Available Bioremediation is an efficient strategy for cleaning up sites contaminated with organic pollutants. In this study, we evaluated the effectiveness of monitored natural attenuation, bioenrichment, and bioaugmentation using a consortium of three actinomycetes strains in remediating two distinct typical Brazilian soils from the Atlantic Forest and Cerrado biomes that were contaminated with crude oil, with or without the addition of NaCl. Microcosms were used to simulate bioremediation treatments over a 120-day period. During this period, we monitored total petroleum hydrocarbons (TPHs and n-alkanes degradation and changes in bacterial communities. Over time, we found the degradation rate of n-alkanes was higher than TPH in both soils, independent of the treatment used. In fact, our data show that the total bacterial community in the soils was mainly affected by the experimental period of time, while the type of bioremediation treatment used was the main factor influencing the actinomycetes populations in both soils. Based on these data, we conclude that monitored natural attenuation is the best strategy for remediation of the two tropical soils studied, with or without salt addition.

  9. Evaluating the efficacy of bioremediating a diesel-contaminated soil using ecotoxicological and bacterial community indices.

    Science.gov (United States)

    Khudur, Leadin Salah; Shahsavari, Esmaeil; Miranda, Ana F; Morrison, Paul D; Nugegoda, Dayanthi; Ball, Andrew S

    2015-10-01

    Diesel represents a common environmental contaminant as a result of operation, storage, and transportation accidents. The bioremediation of diesel in a contaminated soil is seen as an environmentally safe approach to treat contaminated land. The effectiveness of the remediation process is usually assessed by the degradation of the total petroleum hydrocarbon (TPH) concentration, without considering ecotoxicological effects. The aim of this study was to assess the efficacy of two bioremediation strategies in terms of reduction in TPH concentration together with ecotoxicity indices and changes in the bacterial diversity assessed using PCR-denaturing gradient gel electrophoresis (DGGE). The biostimulation strategy resulted in a 90 % reduction in the TPH concentration versus 78 % reduction from the natural attenuation strategy over 12 weeks incubation in a laboratory mesocosm-containing diesel-contaminated soil. In contrast, the reduction in the ecotoxicity resulting from the natural attenuation treatment using the Microtox and earthworm toxicity assays was more than double the reduction resulting from the biostimulation treatment (45 and 20 % reduction, respectively). The biostimulated treatment involved the addition of nitrogen and phosphorus in order to stimulate the microorganisms by creating an optimal C:N:P molar ratio. An increased concentration of ammonium and phosphate was detected in the biostimulated soil compared with the naturally attenuated samples before and after the remediation process. Furthermore, through PCR-DGGE, significant changes in the bacterial community were observed as a consequence of adding the nutrients together with the diesel (biostimulation), resulting in the formation of distinctly different bacterial communities in the soil subjected to the two strategies used in this study. These findings indicate the suitability of both bioremediation approaches in treating hydrocarbon-contaminated soil, particularly biostimulation. Although

  10. Metagenomic analysis of the bioremediation of diesel-contaminated Canadian high arctic soils.

    Directory of Open Access Journals (Sweden)

    Etienne Yergeau

    Full Text Available As human activity in the Arctic increases, so does the risk of hydrocarbon pollution events. On site bioremediation of contaminated soil is the only feasible clean up solution in these remote areas, but degradation rates vary widely between bioremediation treatments. Most previous studies have focused on the feasibility of on site clean-up and very little attention has been given to the microbial and functional communities involved and their ecology. Here, we ask the question: which microorganisms and functional genes are abundant and active during hydrocarbon degradation at cold temperature? To answer this question, we sequenced the soil metagenome of an ongoing bioremediation project in Alert, Canada through a time course. We also used reverse-transcriptase real-time PCR (RT-qPCR to quantify the expression of several hydrocarbon-degrading genes. Pseudomonas species appeared as the most abundant organisms in Alert soils right after contamination with diesel and excavation (t = 0 and one month after the start of the bioremediation treatment (t = 1m, when degradation rates were at their highest, but decreased after one year (t = 1y, when residual soil hydrocarbons were almost depleted. This trend was also reflected in hydrocarbon degrading genes, which were mainly affiliated with Gammaproteobacteria at t = 0 and t = 1m and with Alphaproteobacteria and Actinobacteria at t = 1y. RT-qPCR assays confirmed that Pseudomonas and Rhodococcus species actively expressed hydrocarbon degradation genes in Arctic biopile soils. Taken together, these results indicated that biopile treatment leads to major shifts in soil microbial communities, favoring aerobic bacteria that can degrade hydrocarbons.

  11. [Dynamic changes in functional genes for nitrogen bioremediation of petroleum-contaminated soil cycle during].

    Science.gov (United States)

    Wu, Bin-Bin; Lu, Dian-Nan; Liu, Zheng

    2012-06-01

    Microorganisms in nitrogen cycle serve as an important part of the ecological function of soil. The aim of this research was to monitor the abundance of nitrogen-fixing, denitrifying and nitrifying bacteria during bioaugmentation of petroleum-contaminated soil using real-time polymerase chain reaction (real-time PCR) of nifH, narG and amoA genes which encode the key enzymes in nitrogen fixation, nitrification and ammoniation respectively. Three different kinds of soils, which are petroleum-contaminated soil, normal soil, and remediated soil, were monitored. It was shown that the amounts of functional microorganisms in petroleum-contaminated soil were far less than those in normal soil, while the amounts in remediated soil and normal soil were comparable. Results of this experiment demonstrate that nitrogen circular functional bacteria are inhibited in petroleum-contaminated soil and can be recovered through bioremediation. Furthermore, copies of the three functional genes as well as total petroleum hydrocarbons (TPH) for soils with six different treatments were monitored. Among all treatments, the one, into which both E. cloacae as an inoculant and wheat straw as an additive were added, obtained the maximum copies of 2.68 x 10(6), 1.71 x 10(6) and 8.54 x 10(4) per gram dry soil for nifH, narG and amoA genes respectively, companying with the highest degradation rate (48% in 40 days) of TPH. The recovery of functional genes and removal of TPH were better in soil inoculated with E cloacae and C echinulata collectively than soil inoculated with E cloacae only. All above results suggest that the nitrogen circular functional genes could be applied to monitor and assess the bioremediation of petroleum-contaminated soil.

  12. Effects of biosurfactant production by indigenous soil microorganisms on bioremediation of a co-contaminated soil in batch experiments

    Energy Technology Data Exchange (ETDEWEB)

    Jalali, F.; Mulligan, C.N. [Concordia Univ., Centre for Building Studies, Montreal, PQ (Canada). Dept. of Building, Civil and Environmental Engineering

    2007-07-01

    The challenge of remediating soils that are contaminated with both hydrocarbon compounds and metals was discussed, with particular reference to an in-situ bioremediation technique that was developed in the 1970s to deal with contaminated soils. The technique involves a two-stage process where water with added oxygen and nutrients is applied onto and injected into a contaminated area to stimulate the indigenous microbial populations in the soil. In addition to using organic pollutants as their carbon source, microorganisms can facilitate the removal of metals from the soil matrix and attenuate the toxicity of certain metals. Extraction wells placed downstream of the contaminated soils are used to remove and treat the water to eliminate any mobilized contaminants. This paper presented the results of batch experiments that evaluated the feasibility of biosurfactant production for the purpose of bioremediating a soil contaminated with aged petroleum hydrocarbons and heavy metals. The first phase of the study examined the growth of the native microbial population and the biodegradation of petroleum hydrocarbons, the production of biosurfactant and the mobilization of the total petroleum hydrocarbons (TPH) and metals into the aqueous phase. Biodegradation of petroleum hydrocarbons was observed in both soil and soil amended with nitrogen and phosphorous. However, the nutrient-amended soil had higher biodegradation of petroleum hydrocarbons, where 36 per cent of TPH was degraded by the end of the 50 day experiment, compared to 15 per cent for the non-amended soils. The concentration of biosurfactants in the same period increased 3 times their critical micelle concentration. It was concluded that biosurfactant production enhances the bioremediation of co-contaminated soils. 36 refs., 1 tab., 8 figs.

  13. Importance of organic amendment characteristics on bioremediation of PAH-contaminated soil.

    Science.gov (United States)

    Lukić, B; Huguenot, D; Panico, A; Fabbricino, M; van Hullebusch, E D; Esposito, G

    2016-08-01

    This study investigates the importance of the organic matter characteristics of several organic amendments (i.e., buffalo manure, food and kitchen waste, fruit and vegetables waste, and activated sewage sludge) and their influence in the bioremediation of a polycyclic aromatic hydrocarbons (PAH)-contaminated soil. The removal of low molecular weights (LMW) and high molecular weights (HMW) PAHs was monitored in four bioremediation reactors and used as an indicator of the role of organic amendments in contaminant removal. The total initial concentration of LMW PAHs was 234 mg kg(-1) soil (dry weight), while the amount for HMW PAHs was 422 mg kg(-1) soil (dry weight). Monitoring of operational parameters and chemical analysis was performed during 20 weeks. The concentrations of LMW PAH residues in soil were significantly lower in reactors that displayed a mesophilic phase, i.e., 11 and 15 %, compared to reactors that displayed a thermophilic phase, i.e., 29 and 31 %. Residual HMW PAHs were up to five times higher compared to residual LMW PAHs, depending on the reactor. This demonstrated that the amount of added organic matter and macronutrients such as nitrogen and phosphorus, the biochemical organic compound classes (mostly soluble fraction and proteins), and the operational temperature are important factors affecting the overall efficiency of bioremediation. On that basis, this study shows that characterization of biochemical families could contribute to a better understanding of the effects of organic amendments and clarify their different efficiency during a bioremediation process of PAH-contaminated soil.

  14. Bioremediation a potential approach for soil contaminated with polycyclic aromatic hydrocarbons: An Overview

    Directory of Open Access Journals (Sweden)

    Norzila Othman

    2011-12-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs represent a group of priority pollutants which are present at high concentration in soils of many industrially contaminated sites. Standards and criteria for the remediation of soils contaminated with PAHs vary widely between countries. Bioremediation has gained preference as a technology for remediation contaminated sites as it is less expensive and more environmental friendly. Bioremediation utilizes microorganisms to degrade PAHs to less toxic compounds. This technology degrades contaminants through natural biodegradation mechanisms or enhanced biodegradation mechanism and can be performed in-situ or ex-situ under aerobic or anaerobic conditions. The purpose of this paper is to highlight potential of using isolated strains from municipal sludge on soil remediation. Several indigenous bacteria from municipal sludge namely genus Micrococus, Sphingomonas, and Corynebacterium demonstrated a high removal rate of PAHs with more than 80% of lower molecular weight of PAHs degraded after one week incubation. Laboratory studies had established that these genus able to degrade PAHs on contaminated soil. The successful application of bacteria to the bioremediation of PAHs contaminated sites requires a deeper understanding of how microbial PAH degradation proceeds. An overview of research focusing on biodegradation of PAHs will be presented.

  15. Bioremediation of heavy metals and petroleum hydrocarbons in diesel contaminated soil with the earthworm: Eudrilus eugeniae

    OpenAIRE

    Ekperusi, Ogheneruemu Abraham; Aigbodion, Iruobe Felix

    2015-01-01

    A laboratory study on the bioremediation of diesel contaminated soil with the earthworm Eudrilus eugeniae (Kingberg) was conducted. 5 ml of diesel was contaminated into soils in replicates and inoculated with E. eugeniae for 90 days. Physicochemical parameters, heavy metals and total petroleum hydrocarbons were analyzed using AAS. BTEX in contaminated soil and tissues of earthworms were determined with GC-FID. The activities of earthworms resulted in a decrease in pH (3.0 %), electrical condu...

  16. Migration of radionuclides and heavy metals during the bioremediation of a polluted cinnamonic soil

    Science.gov (United States)

    Georgiev, Plamen; Groudev, Stoyan; Spasova, Irena; Nikolova, Marina

    2013-04-01

    A fresh sample of cinnamonic soil polluted with radionuclides (U, Ra) and toxic heavy metals (Cu, Pb, Zn) was subjected to bioremediation in large-scale lysimeters by means of moulching. The aim of soil treatment was solubilization of pollutants located in horizon A, the migration of their dissolved complexes through the soil profile, and the pollutants` precipitation in the rich-in-clays below-lying horizons. The solubilization was due to the joint action of natural soil microflora and leach waters containing ammonium and phosphate ions, and in some variants-hydrocarbonate ions. The precipitation of pollutants was due to the enhanced activity of the indigenous microflora in which iron- and sulphate-reducing bacteria were the prevalent groups. After 24 months of treatment, each of the soil profiles in different lysimeters was divided into five sections reflecting the relevant soil layers (horizon A and the sub-horizons B1, B2, B3, and B4). The soil in these sections was subjected to a detailed chemical analysis and the obtained data were compared with the relevant data obtained before the start of soil bioremediation. It was found that considerable portions of the pollutants were removed from the horizon A and were migrated to the sub-horizons B3 and B4, mainly. In these sub-horizons the non-ferrous metals were precipitated mainly as the relevant sulphides, uranium was precipitated as uraninite (UO2), and radium-mainly as adsorbed ions and complexes.

  17. Phylogenetic diversity of dominant bacterial communities during bioremediation of crude oil-polluted soil

    Directory of Open Access Journals (Sweden)

    Eugene Thomas Cloete

    2011-08-01

    Full Text Available Bioremediation of hydrocarbon pollutants is advantageous owing to the cost-effectiveness of the technology and the ubiquity of hydrocarbon degrading microorganisms in the soil. Soil microbial diversity is affected by hydrocarbon perturbation thus selective enrichment of hydrocarbon utilizers occurs. Hydrocarbons interact with the soil matrix and soil microorganisms determining the fate of the contaminants relative to their chemical nature and microbial degradative capabilities respectively. Bacterial dynamics in crude oil-polluted soil microcosms undergoing bioremediation were investigated over a 42-day period. Four out of the five microcosms containing 4kg of pristine soil each were contaminated with 4% Arabian light crude oil. Three microcosms were amended with either 25g of NPK fertilizer, calcium ammonium nitrate or poultry droppings respectively while the fourth designated oil-contaminated control was unamended. The fifth microcosm had only pristine soil and was set up to ascertain indigenous bacterial community structure pre-contamination. Biostimulated soils were periodically tilled and watered. Hydrocarbon degradation was measured throughout the experimental period by gas chromatography. Gas chromatographic tracing of residual hydrocarbons in biostimulated soils showed marked attenuation of contaminants starting from the second (day 14 till the sixth (day 42 week after contamination whereas no significant reduction in hydrocarbon peaks was seen in the oil contaminated control soil throughout the 6-week experimental period. Molecular fingerprints of bacterial communities involved in aerobic biodegradation of crude oil hydrocarbons in biostimulated soils and controls were generated with DGGE using PCR-amplification of 16S rRNA gene obtained from extracted total soil community DNA. DGGE fingerprints demonstrated that NPK, calcium ammonium nitrate and poultry droppings selected different bacterial populations during the active phase of oil

  18. Bioremediation of PAH-contaminated soil by composting: a case study.

    Science.gov (United States)

    Cajthaml, T; Bhatt, M; Sasek, V; Matĕjů, V

    2002-01-01

    Composting technique was used for bioremediation of industrial soil originating from a former tar-contaminated site. The composting process was regulated by aeration to keep optimal temperature gradient and concentrations of O2 and CO2 inside the composting pile. The efficiency of bioremediation was evaluated by performing analysis of 11 individual three- to six-ring unsubstituted aromatic hydrocarbons (PAH) and estimating of changes in ecotoxicity of the contaminated soil. After 42 d of composting, PAH with 3-4 rings were removed from 42 to 68%, other higher-molar mass PAH from 35 to 57%. Additional 100 d of compost maturation in open-air field did not result in a further decrease of PAH. Ecotoxicity tests performed with bioluminescent bacteria Vibrio fischerii showed a decrease in toxicity both after composting and maturation phases. However, toxicity tests on mustard-seed germination did not reveal any significant changes during composting and maturation phases.

  19. Soil pollution in the railway junction Niš (Serbia) and possibility of bioremediation of hydrocarbon-contaminated soil

    Science.gov (United States)

    Jovanovic, Larisa; Aleksic, Gorica; Radosavljevic, Milan; Onjia, Antonije

    2015-04-01

    Mineral oil leaking from vehicles or released during accidents is an important source of soil and ground water pollution. In the railway junction Niš (Serbia) total 90 soil samples polluted with mineral oil derivatives were investigated. Field work at the railway Niš sites included the opening of soil profiles and soil sampling. The aim of this work is the determination of petroleum hydrocarbons concentration in the soil samples and the investigation of the bioremediation technique for treatment heavily contaminated soil. For determination of petroleum hydrocarbons in the soil samples method of gas-chromatography was carried out. On the basis of measured concentrations of petroleum hydrocarbons in the soil it can be concluded that: Obtained concentrations of petroleum hydrocarbons in 60% of soil samples exceed the permissible values (5000 mg/kg). The heavily contaminated soils, according the Regulation on the program of systematic monitoring of soil quality indicators for assessing the risk of soil degradation and methodology for development of remediation programs, Annex 3 (Official Gazette of RS, No.88 / 2010), must be treated using some of remediation technologies. Between many types of phytoremediation of soil contaminated with mineral oils and their derivatives, the most suitable are phytovolatalisation and phytostimulation. During phytovolatalisation plants (poplar, willow, aspen, sorgum, and rye) absorb organic pollutants through the root, and then transported them to the leaves where the reduced pollutants are released into the atmosphere. In the case of phytostimulation plants (mulberry, apple, rye, Bermuda) secrete from the roots enzymes that stimulates the growth of bacteria in the soil. The increase in microbial activity in soil promotes the degradation of pollutants. Bioremediation is performed by composting the contaminated soil with addition of composting materials (straw, manure, sawdust, and shavings), moisture components, oligotrophs and

  20. Determine the Efficacy of Salinity on Bioremediation of Polluted Soil by Phenanthrene

    OpenAIRE

    2011-01-01

    Background: Phenanthrene is one of the Polycyclic Aromatic Hydrocarbons (PAHs) that are formed during the incomplete combustion of fossil fuels, oil pollution and different process of oil and gas plants. PAHs-contaminated area have increased a health risk to humans and environments due to toxicity, carcinogenicity, hydrophobicity and their tendency to accumulation in soil and sediment and their entrance to food chain. Bioremediation is an effective method for removing toxic pollutants from so...

  1. Microbe-aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation.

    Science.gov (United States)

    Stroud, J L; Paton, G I; Semple, K T

    2007-05-01

    Aliphatic hydrocarbons make up a substantial portion of organic contamination in the terrestrial environment. However, most studies have focussed on the fate and behaviour of aromatic contaminants in soil. Despite structural differences between aromatic and aliphatic hydrocarbons, both classes of contaminants are subject to physicochemical processes, which can affect the degree of loss, sequestration and interaction with soil microflora. Given the nature of hydrocarbon contamination of soils and the importance of bioremediation strategies, understanding the fate and behaviour of aliphatic hydrocarbons is imperative, particularly microbe-contaminant interactions. Biodegradation by microbes is the key removal process of hydrocarbons in soils, which is controlled by hydrocarbon physicochemistry, environmental conditions, bioavailability and the presence of catabolically active microbes. Therefore, the aims of this review are (i) to consider the physicochemical properties of aliphatic hydrocarbons and highlight mechanisms controlling their fate and behaviour in soil; (ii) to discuss the bioavailability and bioaccessibility of aliphatic hydrocarbons in soil, with particular attention being paid to biodegradation, and (iii) to briefly consider bioremediation techniques that may be applied to remove aliphatic hydrocarbons from soil.

  2. [Bioremediation of chlorothalonil-contaminated soil by utilizing Pseudomonas sp. strain CTN-3].

    Science.gov (United States)

    Wang, Guang-Li; Chen, Hong-Hong; Bi, Meng; Li, Shun-Peng

    2012-03-01

    Chlorothalonil is the priority organic pollutant listed by the U.S. Environmental Protection Agency. To utilize the function of microbial degradation in the bioremediation of chlorothalonil-contaminated soil is of practical significance. In this study, a chlorothalonil-degrading Pseudomonas sp. strain CTN-3 isolated from pesticide-contaminated soil was used to examine the chlorothalonil-degrading capacity of the strain and related affecting factors in a microcosm. In sterilized soil, the effect of CTN-3 on chlorothalonil degradation was better than that in unsterilized soil. Various factors, including soil pH, temperature, initial chlorothalonil concentration, and inoculum size, affected the degradation of chlorothalonil by the strain. With the inoculum size of 10(6) CFU x g(-1) soil, the CTN-3 at 15-30 degrees C and pH 5.8-8.3 could effectively degrade 10-200 mg x kg(-1) of chlorothalonil, suggesting that the strain CTN-3 had great potential in the bioremediation of chlorothalonil-contaminated soil.

  3. [Application prospect about bioremediation of polychlorinated biphenyls-contaminated soil with immobilized microorganism technique: a review].

    Science.gov (United States)

    Hu, Jin-Xing; Su, Xiao-Mei; Han, Hui-Bo; Shen, Chao-Feng; Shi, Ji-Yan

    2014-06-01

    As one type of the persistent organic pollutants, polychlorinated biphenyls (PCBs) are tremendously harmful to organisms. These compounds are easily absorbed onto soil particles and able to accumulate in soil after they are released into the environment. Bioremediation technology of PCBs-contaminated soils has become a research hotspot in recent years, and immobilized microorganism technique has high developing and applying value because of its unique advantages in environmental remediation. This paper reviewed the chief remediation technology of PCBs-contaminated soils and then analyzed the characteristics of immobilized microorganism technique and its research progress in remediation of organic polluted soil. Finally, the feasibility and problems of this technique in remediation of PCBs-contaminated soil were also discussed.

  4. Bioremediation of diesel oil-contaminated soil by composting with biowaste

    Energy Technology Data Exchange (ETDEWEB)

    Gestel, Kristin van; Mergaert, Joris; Swings, Jean; Coosemans, Jozef; Ryckeboer, Jaak

    2003-10-01

    Composting of biowaste and diesel contaminated-soil is an efficient bioremediation method, with mature compost as a usable end product. - Soil spiked with diesel oil was mixed with biowaste (vegetable, fruit and garden waste) at a 1:10 ratio (fresh weight) and composted in a monitored composting bin system for 12 weeks. Pure biowaste was composted in parallel. In order to discern the temperature effect from the additional biowaste effect on diesel degradation, one recipient with contaminated soil was hold at room temperature, while another was kept at the actual composting temperature. Measurements of composting parameters together with enumerations and identifications of microorganisms demonstrate that the addition of the contaminated soil had a minor impact on the composting process. The first-order rate constant of diesel degradation in the biowaste mixture was four times higher than in the soil at room temperature, and 1.2 times higher than in the soil at composting temperature.

  5. [Bioremediation of PAHs contaminated soil from Beijing coking plant by Lasiodiplodia theobromae].

    Science.gov (United States)

    Zhang, Zhi-yuan; Wang, Cui-ping; Liu, Hai-bin; Sun, Hong-wen

    2012-08-01

    Bioremediation of PAHs contaminated soil from Beijing Coking Plant was performed using a novel fungal strain Lasiodiplodia theobromae (L. theobromae). Moreover, enhanced bioremediation of PAHs contaminated soil was investigated in the presence of different concentrations of Tween 80 and hydroxypropyl-beta-cyclodextrin (HPCD). The correlation of the dynamics of enzyme activities during remediation and the degradation of PAHs was analyzed. The results showed that the degradation rate of PAHs increased to 45.3% on the 70th day after addition of L. theobromae, which was 30 percentage points higher than that of the control group. At an optimum concentration of 2 g x kg(-1) for Tween 80 and 1 g x kg(-1) for HPCD, the degradation rate of PAHs was enhanced to 65.8% and 63.9%, respectively, which was 50 percentage points higher than that of the control group. Hydrogen peroxidase and invertase activities in soil in the bioremediation group with only L. theobromae and the surfactant enhanced group were both enhanced twice more than that of the control group. These results showed that L. theobromae may produce hydrogen peroxidase and invertase or have synergic effect with indigenous microorganisms. Correlation analysis showed that the correlation coefficients of PAHs degradation rate and maximum enzyme activities of hydrogen peroxidase and invertase were 0.781 and 0.837, respectively. Therefore, the correlation between invertase activities and degradation rate was higher.

  6. Studies concerning the decontamination of hydrocarbons- polluted soil areas using bioremediation techniques

    Science.gov (United States)

    Deac, C.; Barbulescu, A.; Gligor, A.; Bibu, M.; Petrescu, V.

    2016-11-01

    The accidental or historic contamination of soils with hydrocarbons, in areas crossed by oil pipelines or where oil- or gas-extraction installations are located, is a major concern and has significant financial and ecological consequences, both for the owners of those areas and for the oil transportation or exploitation companies. Therefore it is very important to find the optimal method for removing the pollution. The current paper presents measures, mainly involving bioremediation, recommended and applied for the depollution of a contaminated area in Romania. While the topic of dealing with polluted soils is well-established in the Romanian speciality literature, bioremediation is a relatively novel approach and this paper presents important considerations in this regard. Contaminated soil samples were taken from 10 different locations within the targeted area and subjected to a thorough physical and chemical analysis, which led to determining a specific scoring table for assessing the bioremediation potential of the various samples. This has allowed the authors to establish for each of the sampled areas the best mix of factors such as nutrients (nitrogen, phosphorus, potassium), gypsum, microelements etc., that would lead to obtaining the best results in terms of the contaminants' biodegradation.

  7. Bioremediation of weathered petroleum hydrocarbon soil contamination in the Canadian High Arctic: laboratory and field studies.

    Science.gov (United States)

    Sanscartier, David; Laing, Tamsin; Reimer, Ken; Zeeb, Barbara

    2009-11-01

    The bioremediation of weathered medium- to high-molecular weight petroleum hydrocarbons (HCs) in the High Arctic was investigated. The polar desert climate, contaminant characteristics, and logistical constraints can make bioremediation of persistent HCs in the High Arctic challenging. Landfarming (0.3 m(3) plots) was tested in the field for three consecutive years with plots receiving very little maintenance. Application of surfactant and fertilizers, and passive warming using a greenhouse were investigated. The field study was complemented by a laboratory experiment to better understand HC removal mechanisms and limiting factors affecting bioremediation on site. Significant reduction of total petroleum HCs (TPH) was observed in both experiments. Preferential removal of compounds nC16 occurred, whereas in the field, TPH reduction was mainly limited to removal of compounds nC16 was observed in the fertilized field plots only. The greenhouse increased average soil temperatures and extended the treatment season but did not enhance bioremediation. Findings suggest that temperature and low moisture content affected biodegradation of HCs in the field. Little volatilization was measured in the laboratory, but this process may have been predominant in the field. Low-maintenance landfarming may be best suited for remediation of HCs compounds

  8. Enhancing Bioremediation of Oil-contaminated Soils by Controlling Nutrient Transport using Dual Characteristics of Soil Pore Structure

    Science.gov (United States)

    Mori, Y.; Suetsugu, A.; Matsumoto, Y.; Fujihara, A.; Suyama, K.; Miyamoto, T.

    2012-12-01

    Soil structure is heterogeneous with cracks or macropores allowing bypass flow, which may lead to applied chemicals avoiding interaction with soil particles or the contaminated area. We investigated the bioremediation efficiency of oil-contaminated soils by applying suction at the bottom of soil columns during bioremediation. Unsaturated flow conditions were investigated so as to avoid bypass flow and achieve sufficient dispersion of chemicals in the soil column. The boundary conditions at the bottom of the soil columns were 0 kPa and -3 kPa, and were applied to a volcanic ash soil with and without macropores. Unsaturated flow was achieved with -3 kPa and an injection rate of 1/10 of the saturated hydraulic conductivity. The resultant biological activities of the effluent increased dramatically in the unsaturated flow with macropores condition. Unsaturated conditions prevented bypass flow and allowed dispersion of the injected nutrients. Unsaturated flow achieved 60-80% of saturation, which enhanced biological activity in the soil column. Remediation results were better for unsaturated conditions because of higher biological activity. Moreover, unsaturated flow with macropores achieved uniform remediation efficiency from upper through lower positions in the column. Finally, taking the applied solution volume into consideration, unsaturated flow with -3 kPa achieved 10 times higher efficiency when compared with conventional saturated flow application. These results suggest that effective use of nutrients or remediation chemicals is possible by avoiding bypass flow and enhancing biological activity using relatively simple and inexpensive techniques.

  9. DEVELOPMENT OF BIOAVAILABILITY AND BIOKINETICS DETERMINATION METHODS FOR ORGANIC POLLUTANTS IN SOIL TO ENHANCE IN-SITU AND ON-SITE BIOREMEDIATION

    Science.gov (United States)

    Determination of biodegradation rates of organics in soil slurry and compacted soil systems is essential for evaluating the efficacy of bioremediation for treatment of contaminated soils. In this paper, a systematic protocol has been developed for evaluating bioknetic and transp...

  10. BIOREMEDIATION - TECHNOLOGY FOR DECONTAMINATION OF SOILS POLLUTED WITH PETROLEUM HYDROCARBONS

    Directory of Open Access Journals (Sweden)

    Irina-Ramona PECINGINĂ

    2013-05-01

    Full Text Available The pollution of soil with petroleum hydrocarbons prevents unfolding processes ofwater infiltration in soil, its circulation and the exchanges of the gaseous substances with theatmosphere. The biodegradation speed of the pollutants by the microorganisms is influenced ofsome factors: nutrients, soil type, humidity, temperature, pH, the type and the metabolism of themicroorganisms. The spill of the crude oil in the soil results in numerical growth of bacteriapopulations, with a concomitant reduction in their diversity, respectively with the predominantspecies that degrade hydrocarbons to simpler compounds, determining their gradualdisappearance.

  11. Bioremediation of oil refinery sludge by landfarming in semiarid conditions: influence on soil microbial activity.

    Science.gov (United States)

    Marin, J A; Hernandez, T; Garcia, C

    2005-06-01

    Bioremediation of a refinery sludge containing hydrocarbons in a semi-arid climate using landfarming techniques is described. The objective of this study was to assess the ability of this technique to reduce the total hydrocarbon content added to the soil with the refinery sludge in semiarid climate (low rain and high temperature). In addition, we have evaluated the effect of this technique on the microbial activity of the soil involved. For this, biological parameters (carbon fractions, microbial biomass carbon, basal respiration and ATP) and biochemical parameters(different enzymatic activities) were determined. The results showed that 80% of the hydrocarbons were eliminated in eleven months, half of this reduction taking place during the first three months. The labile carbon fractions, MBC, basal respiration and ATP of the soils submitted to landfarming showed higher values than the control soil during the first months of the process, although these values fell down by the end of the experimental period as the hydrocarbons were degraded by mineralisation. All the enzymatic activities studied: oxidoreductases such as dehydrogenase activity, and hydrolases of C(beta-glucosidase activity) and N Cycle (urease and protease) showed higher values in the soils amended with the refinery sludge than in the control. As in the case of the previous parameters, these value fell down as the bioremediation of the hydrocarbons progressed, many of them reaching levels similar to those of the control soil after eleven months.

  12. Bioremediation of the soils contaminated with cadmium and chromium, by the earthworm Eisenia fetida.

    Directory of Open Access Journals (Sweden)

    E Aseman

    2016-01-01

    Results: There was a significant correlation between the reduction of chromium and cadmium metals in the soils and the accumulation of chromium and cadmium metals in the worm’s body. A significant decline of chromium levels of the soil was observed in the days 21 and 42 during the study compared to the initial amount of 0.1 mg/g. On the other hand, chromium concentration of the soil decreased from 0.14 to 0.1 mg/g after 42 days. Conclusion: said the research indicated that increased mortality of worms in the soil at a concentration of 0.08 mg/g of chromium, using the worms for bioremediation is not recommended. Although, this method is effective to remove cadmium from the soils having cadmium with concentrations of 0.04 and 0.08 mg/g but it needs further investigation.

  13. Bioremediation of the Soils Contaminated with Cadmium and Chromium, by the Earthworm Eisenia fetida

    Directory of Open Access Journals (Sweden)

    Elham Aseman- Bashiz1

    2014-07-01

    Full Text Available One of the most important environmental problems in the world is the soils contamination by heavy metals in the industrial areas, and especially the contamination of the agricultural lands. The use of earthworms to bioremediate the soils results in reducing the pollutants concentration through a bioaccumulation mechanism on the contaminants in the earthworm's body. Hence, the present study aimed to prove the biological effectiveness of Eisenia fetida earthworms in bioremediation the soils contaminated with chromium and cadmium. Concentration of chromium and cadmium pollution in soil was determined to be 0.04 mg/g and 0.08 mg/g respectively. 30 worms were added to 500 g soil samples. Chromium and cadmium concentration in soil and in the body of worms was measured at two time periods of 21 and 42 days. To measure the concentration of chromium and cadmium we used ICP spectrometry. Software in usage was SPSS version 17. There was a significant correlation between the reduction of chromium and cadmium metals in the soils and the accumulation of chromium and cadmium metals in the worm’s body. A significant decline of chromium levels of the soil was observed in the days 21 and 42 during the study compared to initial amount of 0.1 mg/g. on the other hand chromium concentration of the soil decreased from 0.14 mg/g to 0.1 mg/g after 42 days. Comparison of mortality in two different time periods showed that by passing the time and by increase in soil chromium and cadmium concentrations the death toll of worms rises. The increased mortality of worms in the soil at a concentration of 0.08 mg/g of chromium, say that using the worms for bioremediation is not recommended at such concentration of chromium but using the worms for the removal of cadmium at concentrations of 0.04 mg/g and 0.08 mg/g in the soil is recommended.

  14. Remediation trials for hydrocarbon-contaminated sludge from a soil washing process: evaluation of bioremediation technologies.

    Science.gov (United States)

    Frutos, F J García; Pérez, R; Escolano, O; Rubio, A; Gimeno, A; Fernandez, M D; Carbonell, G; Perucha, C; Laguna, J

    2012-01-15

    The usual fate of highly contaminated fine products (silt-clay fractions) from soil washing plants is disposal in a dump or thermal destruction (organic contaminants), with consequent environmental impacts. Alternative treatments for these fractions with the aim of on-site reuse are needed. Therefore, the feasibility of two technologies, slurry bioremediation and landfarming, has been studied for the treatment of sludge samples with a total petroleum hydrocarbon (TPH) content of 2243 mg/kg collected from a soil washing plant. The treatability studies were performed at the laboratory and pilot-real scales. The bioslurry assays yielded a TPH reduction efficiency of 57% and 65% in 28 days at the laboratory and pilot scale, respectively. In the landfarming assays, a TPH reduction of 85% in six months was obtained at laboratory scale and 42% in three months for the bioremediation performed in the full-scale. The efficiency of these processes was evaluated by ecotoxicity assessments. The toxic effects in the initial sludge sample were very low for most measured parameters. After the remediation treatments, a decrease in toxic effects was observed in earthworm survival and in carbon mineralisation. The results showed the applicability of two well known bioremediation technologies on these residues, this being a novelty.

  15. Efficacy of an Unsaturated Soil Flushing/Enhanced Bioremediation Technology

    Science.gov (United States)

    Smith, J. E.; Badley, J. A.; Crowe, A. S.

    2003-12-01

    Undesirably high concentrations of DDT and its daughter products DDE and DDD in some soils at Point Pelee National Park (PPNP) in Leamington, Ontario, Canada has resulted in restricted access to relatively large areas of the park. The contamination occurs primarily within the upper 20 cm thick Ah horizon, and has been linked to elevated levels within numerous local fauna. The common solution of "dig-and-dump" is not practical in this case since it would destroy the local protected ecosystem. Field trials conducted by McMaster University in partnership with Environment Canada, and Parks Canada have indicated that the application of solutions of cyclodextrin as a low-impact soil flushing/enhanced biodegradation remediation technology can remove a large proportion of DDT, DDE and DDD from the soil within a few months. Based upon previous studies at PPNP, the naturally occurring degradation processes would take decades to achieve the same mass loss. The cyclodextrin solutions exhibited a strong "tailing-effect" after approximately ten pore-volumes had passed through the Ah. There was an effect on soil hydraulic properties with decreased hydraulic conductivities and higher soil water retention, particularly where the higher concentration solutions were applied. The results indicate that soil flushing with cyclodextrin is highly effective to remediate pesticide contaminated soils. Additional work will quantify the relative amount of enhanced degradation versus mobilisation.

  16. Laboratory-scale bioremediation of oil-contaminated soil of Kuwait with soil amendment materials.

    Science.gov (United States)

    Cho, B H; Chino, H; Tsuji, H; Kunito, T; Nagaoka, K; Otsuka, S; Yamashita, K; Matsumoto, S; Oyaizu, H

    1997-10-01

    A huge amount of oil-contaminated soil remains unremediated in the Kuwait desert. The contaminated oil has the potentiality to cause pollution of underground water and to effect the health of people in the neighborhood. In this study, laboratory scale bioremediation experiments were carried out. Hyponex (Hyponex, Inc.) and bark manure were added as basic nutrients for microorganisms, and twelve kinds of materials (baked diatomite, microporous glass, coconut charcoal, an oil-decomposing bacterial mixture (Formula X from Oppenheimer, Inc.), and eight kinds of surfactants) were applied to accelerate the biodegradation of oil hydrocarbons. 15% to 33% of the contaminated oil was decomposed during 43 weeks' incubation. Among the materials tested, coconut charcoal enhanced the biodegradation. On the contrary, the addition of an oil-decomposing bacterial mixture impeded the biodegradation. The effects of the other materials were very slight. The toxicity of the biodegraded compounds was estimated by the Ames test and the tea pollen tube growth test. Both of the hydrophobic (dichloromethane extracts) and hydrophilic (methanol extracts) fractions showed a very slight toxicity in the Ames test. In the tea pollen tube growth test, the hydrophobic fraction was not toxic and enhanced the growth of pollen tubes.

  17. Enhanced bioremediation of soil from Tianjin, China, contaminated with polybrominated diethyl ethers.

    Science.gov (United States)

    Zhang, Zhiyuan; Wang, Cuiping; Li, Jing; Wang, Baolin; Wu, Jianyu; Jiang, Yan; Sun, Hongwen

    2014-12-01

    This work aimed to evaluate the effectiveness of nutrients, H2O2, and tourmaline on the bioremediation of fields where the soil was contaminated with polybrominated diethyl ethers (PBDEs). The results showed that 39.2, 38.3, and 48.1 % of total PBDE removal was observed in microcosms with the addition of nutrients, such as NaNO3, NH4Cl, and NH4NO3, respectively, compared to only 15.2 and 5.8 % of PBDE removal from soil with added Aspergillus niger and control soil, respectively, after 50 days of incubation. In addition, 50.8 and 56.5 % of total PBDE removal were observed in microcosms with 0.5 and 1 μL H2O2. The addition of tourmaline increased total PBDE removal to 32.4 %. Significant increases in soil enzymatic activity with PBDE degraders and bacterial communities were observed using polymerase chain reaction (PCR)--denaturing gradient gel electrophoresis (DGGE). These observations suggested that the combination of inorganic nutrients with chemical, mineral, and biological treatment could improve the PBDE removal efficiency. However, the combination of H2O2 and biological treatment processes is the most efficient technology. This combination of technologies would not cause adverse effects on the subsequent bioremediation process. Therefore, this work offers a potential alternative for the remediation of soil contaminated with PBDE pollutants.

  18. Bioremediation of Soil Contaminated with Petroleum Using Forced-Aeration Composting

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Laboratory simulation studies and a composting pilot study were conducted to evaluate the capacity of three strains of fungi, indigenous fungus Fusarium sp. and Phanerochaete chrysosporium and Coriolus Versicolor, to remediate petroleum-contaminated soils. In laboratory, the fungi were inoculated into a liquid culture medium and the petroleum-contaminated soil samples for incubation of 40 and 50 days, respectively.In the 200-day pilot study, nutrient contents and moisture were adjusted and maintained under aerobic condition in composting units using concrete container (118.5 cm × 65.5 cm × 12.5 cm) designed specially for this study. The laboratory simulation results showed that all the three fungi were effective in degrading petroleum in the liquid culture medium and in the soil. At the end of both the laboratory incubations, the degradation rates by Phanerochaete chrysosporium were the highest, reaching 66% after incubation in liquid culture for 50 days. This was further demonstrated in the composting pilot study where the degradation rate by P. chrysosporium reached 79% within 200 days, higher than those of the other two fungi (53.1% and 46.1%), indicating that P. chrysosporium was the best fungus for bioremediation of soil contaminated with petroleum. Further research is required to increase degradation rate.Key Words: bioremediation, composting, fungi, petroleum, soil

  19. The role of soil hydrologic heterogeneity for modeling large-scale bioremediation protocols.

    Science.gov (United States)

    Romano, N.; Palladino, M.; Speranza, G.; Di Fiore, P.; Sica, B.; Nasta, P.

    2014-12-01

    The major aim of the EU-Life+ project EcoRemed (Implementation of eco-compatible protocols for agricultural soil remediation in Litorale Domizio-Agro Aversano NIPS) is the implementation of operating protocols for agriculture-based bioremediation of contaminated croplands, which also involves plants extracting pollutants being then used as biomasses for renewable energy production. The study area is the National Interest Priority Site (NIPS) called Litorale Domitio-Agro Aversano, which is located in the Campania Region (Southern Italy) and has an extent of about 200,000 ectars. In this area, a high-level spotted soil contamination is mostly due to the legal or outlaw industrial and municipal wastes, with hazardous consequences also on the quality of the groundwater. An accurate determination of the soil hydraulic properties to characterize the landscape heterogeneity of the study area plays a key role within the general framework of this project, especially in view of the use of various modeling tools for water flow and solute transport simulations and to predict the effectiveness of the adopted bioremediation protocols. The present contribution is part of an ongoing study where we are investigating the following research questions: a) Which spatial aggregation schemes seem more suitable for upscaling from point to block support? b) Which effective soil hydrologic characteristic schemes simulate better the average behavior of larger scale phytoremediation processes? c) Allowing also for questions a) and b), how the spatial variability of soil hydraulic properties affect the variability of plant responses to hydro-meteorological forcing?

  20. Evaluation of soil bioremediation techniques in an aged diesel spill at the Antarctic Peninsula.

    Science.gov (United States)

    de Jesus, Hugo E; Peixoto, Raquel S; Cury, Juliano C; van Elsas, Jan D; Rosado, Alexandre S

    2015-12-01

    Many areas on the Antarctic continent already suffer from the direct and indirect influences of human activities. The main cause of contamination is petroleum hydrocarbons because this compound is used as a source of energy at the many research stations around the continent. Thus, the current study aims to evaluate treatments for bioremediation (biostimulation, bioaugmentation, and bioaugmentation + biostimulation) using soils from around the Brazilian Antarctic Station "Comandante Ferraz" (EACF), King George Island, Antarctic Peninsula. The experiment lasted for 45 days, and at the end of this period, chemical and molecular analyses were performed. Those analyses included the quantification of carbon and nitrogen, denaturing gradient gel electrophoresis (DGGE) analysis (with gradient denaturation), real-time PCR, and quantification of total hydrocarbons and polyaromatics. Molecular tests evaluated changes in the profile and quantity of the rrs genes of archaea and bacteria and also the alkB gene. The influence of the treatments tested was directly related to the type of soil used. The work confirmed that despite the extreme conditions found in Antarctic soils, the bacterial strains degraded hydrocarbons and bioremediation treatments directly influenced the microbial communities present in these soils even in short periods. Although the majority of the previous studies demonstrate that the addition of fertilizer seems to be most effective at promoting bioremediation, our results show that for some conditions, autochthonous bioaugmentation (ABA) treatment is indicated. This work highlights the importance of understanding the processes of recovery of contaminated environments in polar regions because time is crucial to the soil recovery and to choosing the appropriate treatment.

  1. SOLID OXYGEN SOURCE FOR BIOREMEDIATION IN SUBSURFACE SOILS

    Science.gov (United States)

    Sodium percarbonate was encapsulated in poly(vinylidene chloride) to determine its potential as a slow-release oxygen source for biodegradation of contaminan ts in subsurface soils. In laboratory studies under aqueous conditions, the encapsulated sodium percarbonate was estimate...

  2. Bioremediation of petroleum hydrocarbon contaminated soil by Rhodobacter sphaeroides biofertilizer and plants.

    Science.gov (United States)

    Jiao, Haihua; Luo, Jinxue; Zhang, Yiming; Xu, Shengjun; Bai, Zhihui; Huang, Zhanbin

    2015-09-01

    Bio-augmentation is a promising technique for remediation of polluted soils. This study aimed to evaluate the bio-augmentation effect of Rhodobacter sphaeroides biofertilizer (RBF) on the bioremediation of total petroleum hydrocarbons (TPH) contaminated soil. A greenhouse pot experiment was conducted over a period of 120 days, three methods for enhancing bio-augmentation were tested on TPH contaminated soils, including single addition RBF, planting, and combining of RBF and three crop species, such as wheat (W), cabbage (C) and spinach (S), respectively. The results demonstrated that the best removal of TPH from contaminated soil in the RBF bio-augmentation rhizosphere soils was found to be 46.2%, 65.4%, 67.5% for W+RBF, C+RBF, S+RBF rhizosphere soils respectively. RBF supply impacted on the microbial community diversity (phospholipid fatty acids, PLFA) and the activity of soil enzymes, such as dehydrogenase (DH), alkaline phosphatase (AP) and urease (UR). There were significant difference among the soil only containing crude oil (CK), W, C and S rhizosphere soils and RBF bio-augmentation soils. Moreover, the changes were significantly distinct depended on crops species. It was concluded that the RBF is a valuable material for improving effect of remediation of TPH polluted soils.

  3. Growth of streptomycetes in soil and their impact on bioremediation.

    Science.gov (United States)

    Schütze, Eileen; Klose, Michael; Merten, Dirk; Nietzsche, Sandor; Senftleben, Dominik; Roth, Martin; Kothe, Erika

    2014-02-28

    The impact of the extremely heavy metal resistant actinomycete Streptomyces mirabilis P16B-1 on heavy metal mobilization/stabilization, phytoremediation and stress level of plants was analyzed in the presence and absence of Sorghum bicolor in sterile microcosms containing highly metal contaminated or control soil. For control, a metal sensitive S. lividans TK24 was used. The metal contents with respect to the mobile and specifically adsorbed fractions of the contaminated soil were considerably decreased by addition of both, living and dead biomass of the strains, with the heavy metal resistant S. mirabilis P16B-1 showing considerably higher impact. Both strains could grow in control soil, while only S. mirabilis P16B-1 formed new tip growth in the metal contaminated soil. A plant growth promoting effect was visible for S. mirabilis P16B-1 in contaminated soil enhancing the dry weight of inoculated Sorghum plants. Thus, metal resistant strains like S. mirabilis P16B-1 are able to enhance phytoremediation of heavy metal contaminated soils.

  4. Bioremediation of Contaminated Soils%污染土壤的生物修复综述

    Institute of Scientific and Technical Information of China (English)

    姜金华; 乔桂枝; 孙娅楠

    2012-01-01

    土壤是人类赖以生存的主要自然资源之一,是人类生态环境的重要组成部分。我国土壤污染总体形势相当严峻。文章介绍了土壤污染的基本情况,主要阐述了污染土壤的生物修复,并总结了存在的一些问题。%Soil was one of the major natural resources for the human survival, and an important part of the eco- logical environment. The overall situation of pollution soil in our country was quite grim. The basic situation of soil pollution was introduced. The bioremediation of contaminated soils was mainly elaborated and some problems were summarized.

  5. Variations in the bioavailability of polycyclic aromatic hydrocarbons in industrial and agricultural soils after bioremediation.

    Science.gov (United States)

    Guo, Meixia; Gong, Zongqiang; Allinson, Graeme; Tai, Peidong; Miao, Renhui; Li, Xiaojun; Jia, Chunyun; Zhuang, Jie

    2016-02-01

    The aim of this study was to demonstrate the variations in bioavailability remaining in industrial and agricultural soils contaminated by polycyclic aromatic hydrocarbons (PAHs) after bioremediation. After inoculation of Mycobacterium sp. and Mucor sp., PAH biodegradation was tested on a manufactured gas plant (MGP) soil and an agricultural soil. PAH bioavailability was assessed before and after biodegradation using solid-phase extraction (Tenax-TA extraction) and solid-phase micro-extraction (SPME) to represent bioaccessibility and chemical activity of PAHs, respectively. Only 3- and 4-ring PAHs were noticeably biodegradable in the MGP soil. PAH biodegradation in the agricultural soil was different from that in the MGP soil. The rapidly desorbing fractions (F(rap)) extracted by Tenax-TA and the freely dissolved concentrations of 3- and 4-ring PAHs determined by SPME from the MGP soil decreased after 30 days biodegradation; those values of the 5- and 6-ring PAHs changed to a lesser degree. For the agricultural soil, the F(rap) values of the 3- and 4-ring PAHs also decreased after the biodegradation experiment. The Tenax-TA extraction and the SPME have the potential to assess variations in the bioavailability of PAHs and the degree of biodegradation in contaminated MGP soils. In addition, Tenax-TA extraction is more sensitive than SPME when used in the agricultural soil.

  6. Impact of organic carbon and nutrients mobilized during chemical oxidation on subsequent bioremediation of a diesel-contaminated soil

    NARCIS (Netherlands)

    Sutton, N.B.; Grotenhuis, J.T.C.; Rijnaarts, H.H.M.

    2014-01-01

    Remediation with in situ chemical oxidation (ISCO) impacts soil organic matter (SOM) and the microbial community, with deleterious effects on the latter being a major hurdle to coupling ISCO with in situ bioremediation (ISB). We investigate treatment of a diesel-contaminated soil with Fenton’s reage

  7. Analysis of bioremediation of pesticides by soil microorganisms

    Science.gov (United States)

    Ruml, Tomas; Klotz, Dietmar; Tykva, Richard

    1995-10-01

    The application of new pesticides requires careful monitoring of their distribution in the environment. The effect of the soil microflora on the stability of the [14C]- labelled juvenoid hormone analogue W-328 was estimated. The micro-organisms from two different soil samples were isolated and tested for their ability to decompose W-328. One bacterial strain, yeast and mold isolates, exhibited the degradation activity. The growth characteristics such as pH and temperature optima were determined. The degradation products were estimated using HPLC.

  8. Bioremediation Well Borehole Soil Sampling and Data Analysis Summary Report for the 100-N Area Bioremediation Project

    Energy Technology Data Exchange (ETDEWEB)

    D. A. Gamon

    2009-09-28

    The purpose of this report is to present data and findings acquired during the drilling and construction of seven bioremediation wells in the 100-N Area in conjunction with remediation of the UPR-100-N-17 petroleum waste site.

  9. Bioremediation of hydrocarbon degradation in a petroleum-contaminated soil and microbial population and activity determination.

    Science.gov (United States)

    Wu, Manli; Li, Wei; Dick, Warren A; Ye, Xiqiong; Chen, Kaili; Kost, David; Chen, Liming

    2017-02-01

    Bioremediation of hydrocarbon degradation in petroleum-polluted soil is carried out by various microorganisms. However, little information is available for the relationships between hydrocarbon degradation rates in petroleum-contaminated soil and microbial population and activity in laboratory assay. In a microcosm study, degradation rate and efficiency of total petroleum hydrocarbons (TPH), alkanes, and polycyclic aromatic hydrocarbons (PAH) in a petroleum-contaminated soil were determined using an infrared photometer oil content analyzer and a gas chromatography mass spectrometry (GC-MS). Also, the populations of TPH, alkane, and PAH degraders were enumerated by a modified most probable number (MPN) procedure, and the hydrocarbon degrading activities of these degraders were determined by the Biolog (MT2) MicroPlates assay. Results showed linear correlations between the TPH and alkane degradation rates and the population and activity increases of TPH and alkane degraders, but no correlation was observed between the PAH degradation rates and the PAH population and activity increases. Petroleum hydrocarbon degrading microbial population measured by MPN was significantly correlated with metabolic activity in the Biolog assay. The results suggest that the MPN procedure and the Biolog assay are efficient methods for assessing the rates of TPH and alkane, but not PAH, bioremediation in oil-contaminated soil in laboratory.

  10. Combining Solvent Extraction and Bioremediation for Removing Weathered Petroleum from Contaminated Soil

    Institute of Scientific and Technical Information of China (English)

    WU Guo-Zhong; F.COULON; YANG Yue-Wei; LI Hong; SUI Hong

    2013-01-01

    This study aimed to evaluate the efficacy,practicality and sustainability of a combined approach based on solvent extraction and biodegradation to remediate the soils contaminated with high levels of weathered petroleum hydrocarbons.The soils used in this study were obtained from the Shengli Oilfield in China,which had a long history of contamination with high concentrations of petroleum hydrocarbons.The contaminated soils were washed using a composite organic solvent consisting of hexane and pentane (4:1,v/v) and then bioremediated in microcosms which were bioaugmentated with Bacillus subtilis FQ06 strains and/or rhamnolipid.The optimal solvent extraction conditions were determined as extraction for 20 min at 25 ℃ with solvent-soil ratio of 6:1 (v/w).On this basis,total petroleum hydrocarbon was decreased from 140000 to 14000 mg kg-1,which was further reduced to < 4000 mg kg-1 by subsequent bioremediation for 132 d.Sustainability assessment of this integrated technology showed its good performance for both short-and long-term effectiveness.Overall the results encouraged its application for remediating contaminated sites especially with high concentration weathered hydrocarbons.

  11. The use of sulphate-reducing bacteria in bioremediation of ex-coal mining soil

    Directory of Open Access Journals (Sweden)

    ENNY WIDYATI

    2007-10-01

    Full Text Available The most serious impact after exploiting coal by opened peat mining is acid mine drainage phenomenon. This is an oxidation of sulphide minerals by releasing sulphate that generate the environment acidity. This study was aimed to observe the ability of sulphate reducing bacteria (SRB isolated of sludge paper mills in decreasing the ex-coal mining sulphate content. Before inoculating onto the soil, SRB was incubated in the sterilized organic matter for 4 days. Organic matter inhabited SRB mix with ex-coal mining soil (1:3 v/v. As a control was a series ex-coal mining mixed with non inoculated organic matter (1:3 v/v. The experiment is carried out in randomized complete design in 3 replications, each consist of 5 buckets. All buckets were maintained in saturated water content. Every 5 days for 20 days the sulphate content, pH and Eh were assessed to observe the bioremediation progress. The result shown that SRB was able to reduce 84.25% ex-coal mining sulphate content in 20 days. In consequence, the soil pH was increased from 4.15 to 6.66 during the process. It is recommended that SRB is prospective to be further developed as a sulphate bioremediation agents on ex-coal mining soil.

  12. Effects of soil amendment with different carbon sources and other factors on the bioremediation of an aged PAH-contaminated soil.

    Science.gov (United States)

    Teng, Ying; Luo, Yongming; Ping, Lifeng; Zou, Dexun; Li, Zhengao; Christie, Peter

    2010-04-01

    Carbon supplementation, soil moisture and soil aeration are believed to enhance in situ bioremediation of PAH-contaminated soils by stimulating the growth of indigenous microorganisms. However, the effects of added carbon and nitrogen together with soil moisture and soil aeration on the dissipation of PAHs and on associated microbial counts have yet to be fully assessed. In this study the effects on bioremediation of carbon source, carbon-to-nitrogen ratio, soil moisture and aeration on an aged PAH-contaminated agricultural soil were studied in microcosms over a 90-day period. Additions of starch, glucose and sodium succinate increased soil bacterial and fungal counts and accelerated the dissipation of phenanthrene and benzo(a)pyrene in soil. Decreases in phenanthrene and benzo(a)pyrene concentrations were effective in soil supplemented with glucose and sodium succinate (both 0.2 g C kg(-1) dry soil) and starch (1.0 g C kg(-1) dry soil). The bioremediation effect at a C/N ratio of 10:1 was significantly higher (P Soil microbial counts and PAH dissipation were lower in the submerged soil but soil aeration increased bacterial and fungal counts, enhanced indigenous microbial metabolic activities, and accelerated the natural degradation of phenanthrene and benzo(a)pyrene. The results suggest that optimizing carbon source, C/N ratio, soil moisture and aeration conditions may be a feasible remediation strategy in certain PAH contaminated soils with large active microbial populations.

  13. SUMMARY PAPER: IN SITU BIOREMEDIATION OF CONTAMINATED VADOSE ZONE SOIL

    Science.gov (United States)

    The Robert S. Kerr Environmental Research Laboratory (RSKERL) has developed a number of Issue Papers and Briefing Documents which are designed to exchange up-to-date information related to the remediation of contaminated soil and ground water at hazardous waste sites. In an attem...

  14. Bioremediation of petroleum hydrocarbons in soil: Activated sludge treatability study

    Energy Technology Data Exchange (ETDEWEB)

    Rue-Van Es, J.E. La.

    1993-05-01

    Batch activated sludge treatability studies utilizing petroleum hydrocarbon contaminated soils (diesel oil and leaded gasoline) were conducted to determine: initial indigenous biological activity in hydrocarbon-contaminated soils; limiting factors of microbiological growth by investigating nutrient addition, chemical emulsifiers, and co-substrate; acclimation of indigenous population of microorganisms to utilize hydrocarbons as sole carbon source; and temperature effects. Soil samples were taken from three different contaminated sites and sequencing batch reactors were run. Substrate (diesel fuel) and nutrient were added as determined by laboratory analysis of orthophosphate, ammonia nitrogen, chemical oxygen demand, and total organic carbon. Substrate was made available to the bacterial mass by experimenting with four different chemical emulsifiers. Indigenous microorganisms capable of biotransforming hydrocarbons seem to be present in all the contaminated soil samples received from all sites. Microscopic analysis revealed no visible activity at the beginning of the study and presence of flagellated protozoa, paramecium, rotifers, and nematodes at the end of the year. Nutrient requirements and the limiting factors in microorganism growth were determined for each site. An emulsifier was initially necessary to make the substrate available to the microbial population. Decreases in removal were found with lowered temperature. Removal efficiencies ranged from 50-90%. 95 refs., 11 figs., 13 tabs.

  15. [Biological treatments for contaminated soils: hydrocarbon contamination. Fungal applications in bioremediation treatment].

    Science.gov (United States)

    Martín Moreno, Carmen; González Becerra, Aldo; Blanco Santos, María José

    2004-09-01

    Bioremediation is a spontaneous or controlled process in which biological, mainly microbiological, methods are used to degrade or transform contaminants to non or less toxic products, reducing the environmental pollution. The most important parameters to define a contaminated site are: biodegradability, contaminant distribution, lixiviation grade, chemical reactivity of the contaminants, soil type and properties, oxygen availability and occurrence of inhibitory substances. Biological treatments of organic contaminations are based on the degradative abilities of the microorganisms. Therefore the knowledge on the physiology and ecology of the biological species or consortia involved as well as the characteristics of the polluted sites are decisive factors to select an adequate biorremediation protocol. Basidiomycetes which cause white rot decay of wood are able to degrade lignin and a variety of environmentally persistent pollutants. Thus, white rot fungi and their enzymes are thought to be useful not only in some industrial process like biopulping and biobleaching but also in bioremediation. This paper provides a review of different aspects of bioremediation technologies and recent advances on ligninolytic metabolism research.

  16. Bioremediation treatment of MTBE and ETBE in contaminated soils

    Directory of Open Access Journals (Sweden)

    Alissara Reungsang

    2006-07-01

    Full Text Available Three Methyl Tertiary Butyl Ether (MTBE degradative consortia were isolated from gasoline-contaminated soil namely: mKMS, mKGS1 and mKGS2. These consortia were tested for the ability to degrade Ethyl Tertiary Butyl Ether (ETBE at the concentration of 100 mg/L and to degrade a mixture of MTBE and ETBE in the Nutrient Broth (NB media at the concentration of 50 mg/L each. The results showed that mKGS1 was the best degraders in which 74% of MTBE, 25% of ETBE and 16% of MTBE and 23% of ETBE in the mixture were degraded, within 30 days. mKGS1 was then further used in the bioaugmentation and biostimulation experiments. Degradation of MTBE increased from 34% to 61% after 70 days when mKGS1 was amended in soil mixed with the combination of MTBE and ETBE (at 50 mg/L each. However, mKGS1 did not significantly help the ETBE degradation when it was amended in soil (biostimulation technique. One percent glucose significantly stimulated the degradation of MTBE by the indigenous microorganisms. The presence of mKGS1 and an addition of 1% glucose as extra carbon source improved the degradation of MTBE, from 42 to 51%, suggesting mKGS1 played an important role in the degradation of MTBE.

  17. Design and field-scale implementation of an "on site" bioremediation treatment in PAH-polluted soil.

    Science.gov (United States)

    Pelaez, A I; Lores, I; Sotres, A; Mendez-Garcia, C; Fernandez-Velarde, C; Santos, J A; Gallego, J L R; Sanchez, J

    2013-10-01

    An "on site" bioremediation program was designed and implemented in soil polluted with polycyclic aromatic hydrocarbons (PAHs), especially naphthalene. We began by characterizing the soil's physical and chemical properties. A microbiological screening corroborated the presence of microorganisms capable of metabolizing PAHs. We then analyzed the viability of bioremediation by developing laboratory microcosms and pilot scale studies, to optimize the costs and time associated with remediation. The treatment assays were based on different types of biostimulants, such as a slow or fast-release fertilizer, combined with commercial surfactants. Once the feasibility of the biostimulation was confirmed, a real-scale bioremediation program was undertaken in 900 m(3) of contaminated soil. The three-step design reduced PAH contamination by 94.4% at the end of treatment (161 days). The decrease in pollutants was concomitant with the selection of autochthonous bacteria capable of degrading PAHs, with Bacillus and Pseudomonas the most abundant genera.

  18. Bioremediation of poly-aromatic hydrocarbon (PAH)-contaminated soil by composting

    Energy Technology Data Exchange (ETDEWEB)

    Loick, N.; Hobbs, P.J.; Hale, M.D.C.; Jones, D.L. [University of Wales, Bangor (United Kingdom). School of Environmental & Natural Resources

    2009-07-01

    This paper presents a comprehensive and critical review of research on different co-composting approaches to bioremediate hydrocarbon contaminated soil, organisms that have been found to degrade PAHs, and PAH breakdown products. Advantages and limitations of using certain groups of organisms and recommended areas of further research effort are identified. Studies investigating the use of composting techniques to treat contaminated soil are broad ranging and differ in many respects, which makes comparison of the different approaches very difficult. Many studies have investigated the use of specific bio-additives in the form of bacteria or fungi with the aim of accelerating contaminant removal; however, few have employed microbial consortia containing organisms from both kingdoms despite knowledge suggesting synergistic relationships exist between them in contaminant removal. Recommendations suggest that further studies should attempt to systemize the investigations of composting approaches to bio-remediate PAH-contaminated soil, to focus on harnessing the biodegradative capacity of both bacteria and fungi to create a cooperative environment for PAH degradation, and to further investigate the array of PAHs that can be lost during the composting process by either leaching or volatilization.

  19. Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils.

    Science.gov (United States)

    Sutton, Nora B; Langenhoff, Alette A M; Lasso, Daniel Hidalgo; van der Zaan, Bas; van Gaans, Pauline; Maphosa, Farai; Smidt, Hauke; Grotenhuis, Tim; Rijnaarts, Huub H M

    2014-03-01

    To improve the coupling of in situ chemical oxidation and in situ bioremediation, a systematic analysis was performed of the effect of chemical oxidation with Fenton's reagent, modified Fenton's reagent, permanganate, or persulfate, on microbial diversity and activity during 8 weeks of incubation in two diesel-contaminated soils (peat and fill). Chemical oxidant and soil type affected the microbial community diversity and biodegradation activity; however, this was only observed following treatment with Fenton's reagent and modified Fenton's reagent, and in the biotic control without oxidation. Differences in the highest overall removal efficiencies of 69 % for peat (biotic control) and 59 % for fill (Fenton's reagent) were partially explained by changes in contaminant soil properties upon oxidation. Molecular analysis of 16S rRNA and alkane monooxygenase (alkB) gene abundances indicated that oxidation with Fenton's reagent and modified Fenton's reagent negatively affected microbial abundance. However, regeneration occurred, and final relative alkB abundances were 1-2 orders of magnitude higher in chemically treated microcosms than in the biotic control. 16S rRNA gene fragment fingerprinting with DGGE and prominent band sequencing illuminated microbial community composition and diversity differences between treatments and identified a variety of phylotypes within Alpha-, Beta-, and Gammaproteobacteria. Understanding microbial community dynamics during coupled chemical oxidation and bioremediation is integral to improved biphasic field application.

  20. Preliminary screening of co-substrates for bioremediation of pyrene-contaminated soil through composting.

    Science.gov (United States)

    Sayara, Tahseen; Sarrà, Montserrat; Sánchez, Antoni

    2009-12-30

    The feasibility of using different organic amendments of different origin and properties in the bioremediation of pyrene-contaminated soil by means of composting has been tested. The selected pyrene concentration was 1g of pyrene per kg of dry soil. The organic amendments used include: raw organic fraction of municipal solid wastes (OFMSW), industrial compost from OFMSW composting (COFMSW), compost derived from home composting of OFMSW (HCOFMSW), anaerobically digested sludge (ADS), non-digested activated sludge (NDS) and centrifuged non-digested activated sludge (CNDS). The degradation rate was related to the amendment properties that directly affected the composting process. Raw OFMSW was not capable to enhance pyrene degradation in comparison to control, but stable HCOFMSW exhibited the highest removal rate (69%). The amendments stability and the temperatures reached as a consequence influenced the process, and thermophilic temperatures showed an inhibition effect on the microbial activity related to pyrene degradation. Some of the tested wastes need to be further investigated to find inexpensive organic amendments for soil bioremediation.

  1. Optimization and enhancement of soil bioremediation by composting using the experimental design technique.

    Science.gov (United States)

    Sayara, Tahseen; Sarrà, Montserrat; Sánchez, Antoni

    2010-06-01

    The objective of this study was the application of the experimental design technique to optimize the conditions for the bioremediation of contaminated soil by means of composting. A low-cost material such as compost from the Organic Fraction of Municipal Solid Waste as amendment and pyrene as model pollutant were used. The effect of three factors was considered: pollutant concentration (0.1-2 g/kg), soil:compost mixing ratio (1:0.5-1:2 w/w) and compost stability measured as respiration index (0.78, 2.69 and 4.52 mg O2 g(-1) Organic Matter h(-1)). Stable compost permitted to achieve an almost complete degradation of pyrene in a short time (10 days). Results indicated that compost stability is a key parameter to optimize PAHs biodegradation. A factor analysis indicated that the optimal conditions for bioremediation after 10, 20 and 30 days of process were (1.4, 0.78, 1:1.4), (1.4, 2.18. 1:1.3) and (1.3, 2.18, 1:1.3) for concentration (g/kg), compost stability (mg O2 g(-1) Organic Matter h(-1)) and soil:compost mixing ratio, respectively.

  2. Bioremediation of soil heavily contaminated with crude oil and its products: composition of the microbial consortium

    Directory of Open Access Journals (Sweden)

    JELENA S. MILIĆ

    2009-04-01

    Full Text Available Bioremediation, a process that utilizes the capability of microorganism to degrade toxic waste, is emerging as a promising technology for the treatment of soil and groundwater contamination. The technology is very effective in dealing with petroleum hydrocarbon contamination. The aim of this study was to examine the composition of the microbial consortium during the ex situ experiment of bioremediation of soil heavily contaminated with crude oil and its products from the Oil Refinery Pančevo, Serbia. After a 5.5-month experiment with biostimulation and bioventilation, the concentration of the total petroleum hydrocarbons (TPH had been reduced from 29.80 to 3.29 g/kg (89 %. In soil, the dominant microorganism population comprised Gram-positive bacteria from actinomycete-Nocardia group. The microorganisms which decompose hydrocarbons were the dominant microbial population at the end of the process, with a share of more than 80 % (range 107 CFU/g. On the basis of the results, it was concluded that a stable microbial community had been formed after initial fluctuations.

  3. Kinetic modelling of a diesel-polluted clayey soil bioremediation process

    Energy Technology Data Exchange (ETDEWEB)

    Fernández, Engracia Lacasa; Merlo, Elena Moliterni [Chemical Engineering Department, Research Institute for Chemical and Environmental Technology (ITQUIMA), University of Castilla La Mancha, 13071 Ciudad Real (Spain); Mayor, Lourdes Rodríguez [National Institute for Hydrogen Research, C/Fernando el Santo, 13500 Puertollano (Spain); Camacho, José Villaseñor, E-mail: jose.villasenor@uclm.es [Chemical Engineering Department, Research Institute for Chemical and Environmental Technology (ITQUIMA), University of Castilla La Mancha, 13071 Ciudad Real (Spain)

    2016-07-01

    A mathematical model is proposed to describe a diesel-polluted clayey soil bioremediation process. The reaction system under study was considered a completely mixed closed batch reactor, which initially contacted a soil matrix polluted with diesel hydrocarbons, an aqueous liquid-specific culture medium and a microbial inoculation. The model coupled the mass transfer phenomena and the distribution of hydrocarbons among four phases (solid, S; water, A; non-aqueous liquid, NAPL; and air, V) with Monod kinetics. In the first step, the model simulating abiotic conditions was used to estimate only the mass transfer coefficients. In the second step, the model including both mass transfer and biodegradation phenomena was used to estimate the biological kinetic and stoichiometric parameters. In both situations, the model predictions were validated with experimental data that corresponded to previous research by the same authors. A correct fit between the model predictions and the experimental data was observed because the modelling curves captured the major trends for the diesel distribution in each phase. The model parameters were compared to different previously reported values found in the literature. Pearson correlation coefficients were used to show the reproducibility level of the model. - Highlights: • A mathematical model is proposed to describe a soil bioremediation process. • The model couples mass transfer phenomena among phases with biodegradation. • Model predictions were validated with previous data reported by the authors. • A correct fit and correlation coefficients were observed.

  4. Potential of glycerol and soybean oil for bioremediation of weathered oily-sludge contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, T.C.F.; Franca, F.P. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica], E-mail: fpfranca@eq.ufrj.br; Oliveira, F.J.S. [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-04-15

    The bioremediation of petroleum-contaminated soil was investigated on laboratory scale. This work evaluated the effect of co-substrate addition in tropical climate soil highly contaminated with oily residue. Glycerol and soybean oil were used as auxiliary co-substrates for contaminant degradation. Three different concentrations of co-substrate were tested, and the experiments were carried out over 60 days. The following parameters were monitored: humidity, pH, total heterotrophic bacteria, total fungi, total petroleum hydrocarbons (TPH), and the concentrations of benzo[a]pyrene and chrysene. The soil supplementation with renewable co-substrates improved the efficiency of the biodegradation TPH, with removals of 85% and 83% for glycerol and soybean oil, respectively, compared to a 55% removal yielded by the biodegradation process without supplementation. The use of glycerol increased Chrysene and Benzo[a]pyrene biodegradation by 50%, while soybean oil supplementation increased their removal by 36%. (author)

  5. Dual augmentation for aerobic bioremediation of MTBE and TCE pollution in heavy metal-contaminated soil.

    Science.gov (United States)

    Fernandes, V C; Albergaria, J T; Oliva-Teles, T; Delerue-Matos, C; De Marco, P

    2009-06-01

    In this work we isolated from soil and characterized several bacterial strains capable of either resisting high concentrations of heavy metals (Cd(2+) or Hg(2+) or Pb(2+)) or degrading the common soil and groundwater pollutants MTBE (methyl-tert-butyl ether) or TCE (trichloroethylene). We then used soil microcosms exposed to MTBE (50 mg/l) or TCE (50 mg/l) in the presence of one heavy metal (Cd 10 ppm or Hg 5 ppm or Pb 50 or 100 ppm) and two bacterial isolates at a time, a degrader plus a metal-resistant strain. Some of these two-membered consortia showed degradation efficiencies well higher (49-182% higher) than those expected under the conditions employed, demonstrating the occurrence of a synergetic relationship between the strains used. Our results show the efficacy of the dual augmentation strategy for MTBE and TCE bioremediation in the presence of heavy metals.

  6. Simple surface foam application enhances bioremediation of oil-contaminated soil in cold conditions.

    Science.gov (United States)

    Jeong, Seung-Woo; Jeong, Jongshin; Kim, Jaisoo

    2015-04-09

    Landfarming of oil-contaminated soil is ineffective at low temperatures, because the number and activity of micro-organisms declines. This study presents a simple and versatile technique for bioremediation of diesel-contaminated soil, which involves spraying foam on the soil surface without additional works such as tilling, or supply of water and air. Surfactant foam containing psychrophilic oil-degrading microbes and nutrients was sprayed twice daily over diesel-contaminated soil at 6 °C. Removal efficiencies in total petroleum hydrocarbon (TPH) at 30 days were 46.3% for landfarming and 73.7% for foam-spraying. The first-order kinetic biodegradation rates for landfarming and foam-spraying were calculated as 0.019 d(-1) and 0.044 d(-1), respectively. Foam acted as an insulating medium, keeping the soil 2 °C warmer than ambient air. Sprayed foam was slowly converted to aqueous solution within 10-12h and infiltrated the soil, providing microbes, nutrients, water, and air for bioaugmentation. Furthermore, surfactant present in the aqueous solution accelerated the dissolution of oil from the soil, resulting in readily biodegradable aqueous form. Significant reductions in hydrocarbon concentration were simultaneously observed in both semi-volatile and non-volatile fractions. As the initial soil TPH concentration increased, the TPH removal rate of the foam-spraying method also increased.

  7. Anaerobic Metabolism and Bioremediation of Explosives-Contaminated Soil

    Science.gov (United States)

    Boopathy, Raj

    Nitroaromatic compounds pollute soil, water, and food via use of pesticides, plastics, pharmaceuticals, landfill dumping of industrial wastes, and the military use of explosives. Biotransformation of trinitrotoluene and other nitroaromatics by aerobic bacteria in the laboratory has been frequently reported, but the anaerobic bacterial metabolism of nitroaromatics has not been studied as extensively perhaps due to the difficulty in working with anaerobic cultures and the slow growth of anaerobes. Sulfate-reducing and methanogenic bacteria can metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment.

  8. [Enhanced bioremediation of coking plant soils contaminated with polycyclic aromatic hydrocarbons].

    Science.gov (United States)

    Lu, Xiao-Xia; Li, Xiu-Li; Ma, Jie; Wu, Shu-Ke; Chen, Chao-Qi; Wu, Wei

    2011-03-01

    Soil samples contaminated with polycyclic aromatic hydrocarbons (PAHs) were collected from Beijing Coking Plant. The purposes were to isolate PAHs degrading bacteria from the soils, determine their appropriate living condition, enrich them and apply them in the enhanced bioremediation of the contaminated soils. Using each of the 16 USEPA priority PAHs as the sole carbon source, PAHs degrading bacteria were isolated using the method of plate streaking and identified by genetic analysis. In total seven species of PAHs degrading bacteria were obtained. When mixed, these bacteria could degrade the 16 (2-6 cyclic) PAHs studied at appropriate concentrations. In the liquid medium, when the total concentration of the 16 PAHs (sigma PAH16) was 17 microg/mL, single bacteria could grow well and degrade the PAHs. However, when sigma PAH16 was 166 microg/mL, the growth and activity of either single PAHs degrading bacteria or a mixture of the seven PAHs degrading bacteria were inhibited. Aiming at the contaminated soils from Beijing coking plant, five treatments were performed, i.e., control (C), addition of nutrient (N), addition of nutrient and PAHs degrading bacteria (N + B), addition of nutrient and surfactant (N +S), addition of nutrient and PAHs degrading bacteria and surfactant (N + B + S). After five weeks of experiment, compared to the C treatment, the mean removal rate of the 16 PAHs in the N + B treatment was increased 32%, and the mean removal rate of the 16 PAHs in the N + B + S treatment was increased 46% (the mean removal rate of the 10 4-6 cyclic PAHs was increased 52%). The addition of PAHs degrading bacteria and surfactant could significantly enhance the degradation of PAHs in the soils. This study provides evidence for the enhanced bioremediation of PAHs contaminated soil for Beijing coking plant and other coking plants.

  9. Determine the Efficacy of Salinity on Bioremediation of Polluted Soil by Phenanthrene

    Directory of Open Access Journals (Sweden)

    Masoumeh Ravanipour

    2011-04-01

    Full Text Available Background: Phenanthrene is one of the Polycyclic Aromatic Hydrocarbons (PAHs that are formed during the incomplete combustion of fossil fuels, oil pollution and different process of oil and gas plants. PAHs-contaminated area have increased a health risk to humans and environments due to toxicity, carcinogenicity, hydrophobicity and their tendency to accumulation in soil and sediment and their entrance to food chain. Bioremediation is an effective method for removing toxic pollutants from soils such as Phenanthrene. The main object of this study is the assessment of the effects of salinity on the efficacy of the process of bioremediation on polluted soils by Phenanthrene. Methods: The bare soil of any organic and microbial pollution was first polluted artificially to the phenanthrene then a nutrient solution with two minimum and maximum concentrations of salinity were added to it in order to have the proportion of 10% w:v (soil: water. After that a microbial mixture which was enable degradation the phenanthrene added to the slurry and aerated. After the extraction of phenanthrene by ultrasonic, the residual concentration in the soil was analyzed by GC. Results: In the conditions that salinity concentration was maximum, the microbial growth has a longer lag phase than the minimum salinity. The findings from extraction process by GC depict the removal percentage of maximum and minimum salinity in 56th %70.5 day and %71.8, respectively. Conclusion: In In spite of the longer log phase of maximum concentration of salinity and according to GC results, there was just a little difference between two solutions. Therefore it reveals that salinity can increase the lag phase but haven't any inhibitory effect on Phenanthrene removal.

  10. Dynamics of bacterial populations during bench-scale bioremediation of oily seawater and desert soil bioaugmented with coastal microbial mats.

    Science.gov (United States)

    Ali, Nidaa; Dashti, Narjes; Salamah, Samar; Sorkhoh, Naser; Al-Awadhi, Husain; Radwan, Samir

    2016-03-01

    This study describes a bench-scale attempt to bioremediate Kuwaiti, oily water and soil samples through bioaugmentation with coastal microbial mats rich in hydrocarbonoclastic bacterioflora. Seawater and desert soil samples were artificially polluted with 1% weathered oil, and bioaugmented with microbial mat suspensions. Oil removal and microbial community dynamics were monitored. In batch cultures, oil removal was more effective in soil than in seawater. Hydrocarbonoclastic bacteria associated with mat samples colonized soil more readily than seawater. The predominant oil degrading bacterium in seawater batches was the autochthonous seawater species Marinobacter hydrocarbonoclasticus. The main oil degraders in the inoculated soil samples, on the other hand, were a mixture of the autochthonous mat and desert soil bacteria; Xanthobacter tagetidis, Pseudomonas geniculata, Olivibacter ginsengisoli and others. More bacterial diversity prevailed in seawater during continuous than batch bioremediation. Out of seven hydrocarbonoclastic bacterial species isolated from those cultures, only one, Mycobacterium chlorophenolicum, was of mat origin. This result too confirms that most of the autochthonous mat bacteria failed to colonize seawater. Also culture-independent analysis of seawater from continuous cultures revealed high-bacterial diversity. Many of the bacteria belonged to the Alphaproteobacteria, Flavobacteria and Gammaproteobacteria, and were hydrocarbonoclastic. Optimal biostimulation practices for continuous culture bioremediation of seawater via mat bioaugmentation were adding the highest possible oil concentration as one lot in the beginning of bioremediation, addition of vitamins, and slowing down the seawater flow rate.

  11. [Arbuscular mycorrhizal bioremediation and its mechanisms of organic pollutants-contaminated soils].

    Science.gov (United States)

    Li, Qiuling; Ling, Wanting; Gao, Yanzheng; Li, Fuchun; Xiong, Wei

    2006-11-01

    Arbuscular mycorrhiza (AM), the symbiont of arbuscular mycorrhizal fungi (AMF) and host plant root, has been proved to be able to improve soil structure and enhance the plant resistance to environmental stress. There are more than 170 kinds of AMF worldwide. Recently, the promoted degradation of organic pollutants in soils in the presence of AM was observed, and AM bioremediation (AMB) is becoming a promising and perspective remediation technique for organic pollutants-contaminated soils. This paper reviewed the research progress on the AMB of soils contaminated by typical organic pollutants such as polycyclic aromatic hydrocarbons, PAEs, petroleum, and pesticides. The mechanisms of AMB mainly include the metabolism of organic pollutants by AM fungi, the degradation of these pollutants by the enzymes derived from AM exudation and by the enhanced root exudation and rhizospheric microbial activity in the presence of AM, and the removal of the pollutants by plant uptake and accumulation. As a new approach for the remediation of contaminated soils, some aspects involved in AMB, e.g., the screening of high efficient AM fungi, efficacy of co-existing AM fungi, soil ageing, and plant uptake of organic pollutants from soils in the presence of AM, still need to be further investigated.

  12. Developments in Bioremediation of Soils and Sediments Pollutedwith Metals and Radionuclides: 2. Field Research on Bioremediation of Metals and Radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.; Tabak, Henry H.

    2007-03-15

    Bioremediation of metals and radionuclides has had manyfield tests, demonstrations, and full-scale implementations in recentyears. Field research in this area has occurred for many different metalsand radionuclides using a wide array of strategies. These strategies canbe generally characterized in six major categories: biotransformation,bioaccumulation/bisorption, biodegradation of chelators, volatilization,treatment trains, and natural attenuation. For all field applicationsthere are a number of critical biogeochemical issues that most beaddressed for the successful field application. Monitoring andcharacterization parameters that are enabling to bioremediation of metalsand radionuclides are presented here. For each of the strategies a casestudy is presented to demonstrate a field application that uses thisstrategy.

  13. Pyrethroid-Degrading Microorganisms and Their Potential for the Bioremediation of Contaminated Soils: A Review

    Directory of Open Access Journals (Sweden)

    Mariusz Sebastian Cycoń

    2016-09-01

    Full Text Available Pyrethroid insecticides have been used to control pests in agriculture, forestry, horticulture, public health and for indoor home use for more than 20 years. Because pyrethroids were considered to be a safer alternative to organophosphate pesticides (OPs, their applications significantly increased when the use of OPs was banned or limited. Although pyrethroids have agricultural benefits, their widespread and continuous use is a major problem as they pollute the terrestrial and aquatic environments and affect non-target organisms. Since pyrethroids are not degraded immediately after application and because their residues are detected in soils, there is an urgent need to remediate pyrethroid-polluted environments. Various remediation technologies have been developed for this purpose; however, bioremediation, which involves bioaugmentation and/or biostimulation and is a cost-effective and eco-friendly approach, has emerged as the most advantageous method for cleaning-up pesticide-contaminated soils. This review presents an overview of the microorganisms that have been isolated from pyrethroid-polluted sites, characterized and applied for the degradation of pyrethroids in liquid and soil media. The paper is focused on the microbial degradation of the pyrethroids that have been most commonly used for many years such as allethrin, bifenthrin, cyfluthrin, cyhalothrin, cypermethrin, deltamethrin, fenpropathrin, fenvalerate and permethrin. Special attention is given to the bacterial strains from the genera Achromobacter, Acidomonas, Bacillus, Brevibacterium, Catellibacterium, Clostridium, Lysinibacillus, Micrococcus, Ochrobactrum, Pseudomonas, Serratia, Sphingobium, Streptomyces and the fungal strains from the genera Aspergillus, Candida, Cladosporium and Trichoderma, which are characterized by their ability to degrade various pyrethroids. Moreover, the current knowledge on the degradation pathways of pyrethroids, the enzymes that are involved in the

  14. Pyrethroid-Degrading Microorganisms and Their Potential for the Bioremediation of Contaminated Soils: A Review

    Science.gov (United States)

    Cycoń, Mariusz; Piotrowska-Seget, Zofia

    2016-01-01

    Pyrethroid insecticides have been used to control pests in agriculture, forestry, horticulture, public health and for indoor home use for more than 20 years. Because pyrethroids were considered to be a safer alternative to organophosphate pesticides (OPs), their applications significantly increased when the use of OPs was banned or limited. Although, pyrethroids have agricultural benefits, their widespread and continuous use is a major problem as they pollute the terrestrial and aquatic environments and affect non-target organisms. Since pyrethroids are not degraded immediately after application and because their residues are detected in soils, there is an urgent need to remediate pyrethroid-polluted environments. Various remediation technologies have been developed for this purpose; however, bioremediation, which involves bioaugmentation and/or biostimulation and is a cost-effective and eco-friendly approach, has emerged as the most advantageous method for cleaning-up pesticide-contaminated soils. This review presents an overview of the microorganisms that have been isolated from pyrethroid-polluted sites, characterized and applied for the degradation of pyrethroids in liquid and soil media. The paper is focused on the microbial degradation of the pyrethroids that have been most commonly used for many years such as allethrin, bifenthrin, cyfluthrin, cyhalothrin, cypermethrin, deltamethrin, fenpropathrin, fenvalerate, and permethrin. Special attention is given to the bacterial strains from the genera Achromobacter, Acidomonas, Bacillus, Brevibacterium, Catellibacterium, Clostridium, Lysinibacillus, Micrococcus, Ochrobactrum, Pseudomonas, Serratia, Sphingobium, Streptomyces, and the fungal strains from the genera Aspergillus, Candida, Cladosporium, and Trichoderma, which are characterized by their ability to degrade various pyrethroids. Moreover, the current knowledge on the degradation pathways of pyrethroids, the enzymes that are involved in the cleavage of

  15. Bioremediation of heavy metals and petroleum hydrocarbons in diesel contaminated soil with the earthworm: Eudrilus eugeniae.

    Science.gov (United States)

    Ekperusi, Ogheneruemu Abraham; Aigbodion, Iruobe Felix

    2015-01-01

    A laboratory study on the bioremediation of diesel contaminated soil with the earthworm Eudrilus eugeniae (Kingberg) was conducted. 5 ml of diesel was contaminated into soils in replicates and inoculated with E. eugeniae for 90 days. Physicochemical parameters, heavy metals and total petroleum hydrocarbons were analyzed using AAS. BTEX in contaminated soil and tissues of earthworms were determined with GC-FID. The activities of earthworms resulted in a decrease in pH (3.0 %), electrical conductivity (60.66 %), total nitrogen (47.37 %), chloride (60.66 %), total organic carbon (49.22 %), sulphate (60.59 %), nitrate (60.65 %), phosphate (60.80 %), sodium (60.65 %), potassium (60.67 %), calcium (60.67 %), magnesium (60.68 %), zinc (60.59 %), manganese (60.72 %), copper (60.68 %), nickel (60.58 %), cadmium (60.44 %), vanadium (61.19 %), chromium (53.60 %), lead (60.38 %), mercury (61.11 %), arsenic (80.85 %), TPH (84.99 %). Among the BTEX constituents, only benzene (8.35 %) was detected in soil at the end of the study. Earthworm tissue analysis showed varying levels of TPH (57.35 %), benzene (38.91 %), toluene (27.76 %), ethylbenzene (42.16 %) and xylene (09.62 %) in E. eugeniae at the end of the study. The study has shown that E. eugeniae could be applied as a possible bioremediator in diesel polluted soil.

  16. Pilot-scale in situ bioremediation of HMX and RDX in soil pore water in Hawaii.

    Science.gov (United States)

    Payne, Zachary M; Lamichhane, Krishna M; Babcock, Roger W; Turnbull, Stephen J

    2013-10-01

    A nine-month in situ bioremediation study was conducted in Makua Military Reservation (MMR) in Oahu, Hawaii (USA) to evaluate the potential of molasses to enhance biodegradation of royal demolition explosive (RDX) and high-melting explosive (HMX) contaminated soil below the root zone. MMR has been in operation since the 1940's resulting in subsurface contamination that in some locations exceeds USEPA preliminary remediation goals for these chemicals. A molasses-water mixture (1 : 40 dilution) was applied to a treatment plot and clean water was applied to a control plot via seven flood irrigation events. Pore water samples were collected from 12 lysimeters installed at different depths in 3 boreholes in each test plot. The difference in mean concentrations of RDX in pore water samples from the two test plots was very highly significant (p nitrogen concentrations also differed significantly with treatment (p sensor (31 ft) within 5 days of application. Most of the molasses was consumed by soil microorganisms by about 13.5 feet below ground surface and treatment of deeper depths may require greater molasses concentrations and/or more frequent flood irrigation. Use of the bioremediation method described herein could allow the sustainable use of live fire training ranges by enhancing biodegradation of explosives in situ and preventing them from migrating to through the vadose zone to underlying ground water and off-site.

  17. Bioremediation of HCH-contaminated soil: elimination of inhibitory effects of the insecticide on radish and green gram seed germination.

    Science.gov (United States)

    Bidlan, Rajkumar; Afsar, Mohammed; Manonmani, H K

    2004-08-01

    The effects of technical grade hexachlorocyclohexane (tech-HCH) on the germination of different seeds were tested. Two types of seeds, radish and green gram showed marked reduction in germination percentage and seeding vigour index. The abnormalities and reduction in germination increased with increasing concentration of tech-HCH. At 100 microg HCH level the germination of radish and green gram seeds was inhibited almost completely on moist filter paper and soil. Protease and amylase activities were reduced in seeds grown in soil spiked with tech-HCH. Bioremediation of HCH-spiked soils with a HCH-degrading microbial consortium helped in eliminating the toxic effects of tech-HCH towards seed germination. The degradation of 25 microg tech-HCH g(-1) soil was complete by 120 h. The seed germination and the activities of the assayed enzymes, amylase and protease, were same as before or better in bioremediated soils.

  18. Enzymatic bioremediation of polyaromatic hydrocarbons by fungal consortia enriched from petroleum contaminated soil and oil seeds.

    Science.gov (United States)

    Balaji, V; Arulazhagan, P; Ebenezer, P

    2014-05-01

    The present study focuses on fungal strains capable of secreting extracellular enzymes by utilizing hydrocarbons present in the contaminated soil. Fungal strains were enriched from petroleum hydrocarbons contaminated soil samples collected from Chennai city, India. The potential fungi were isolated and screened for their enzyme secretion such as lipase, laccase, peroxidase and protease and also evaluated fungal enzyme mediated PAHs degradation. Total, 21 potential PAHs degrading fungi were isolated from PAHs contaminated soil, which belongs to 9 genera such as Aspergillus, Curvularia, Drechslera, Fusarium, Lasiodiplodia, Mucor Penicillium, Rhizopus, Trichoderma, and two oilseed-associated fungal genera such as Colletotrichum and Lasiodiplodia were used to test their efficacy in degradation of PAHs in polluted soil. Maximum lipase production was obtained with P. chrysogenum, M. racemosus and L. theobromae VBE1 under optimized cultural condition, which utilized PAHs in contaminated soil as sole carbon source. Fungal strains, P. chrysogenum, M. racemosus and L. theobromae VBE1, as consortia, used in the present study were capable of degrading branched alkane isoprenoids such as pristine (C17) and pyrene (C18) present in PAHs contaminated soil with high lipase production. The fungal consortia acts as potential candidate for bioremediation of PAHs contaminated environments.

  19. Isolation and evaluation of potent Pseudomonas species for bioremediation of phorate in amended soil.

    Science.gov (United States)

    Jariyal, Monu; Gupta, V K; Jindal, Vikas; Mandal, Kousik

    2015-12-01

    Use of phorate as a broad spectrum pesticide in agricultural crops is finding disfavor due to persistence of both the principal compound as well as its toxic residues in soil. Three phorate utilizing bacterial species (Pseudomonas sp. strain Imbl 4.3, Pseudomonas sp. strain Imbl 5.1, Pseudomonas sp. strain Imbl 5.2) were isolated from field soils. Comparative phorate degradation analysis of these species in liquid cultures identified Pseudomonas sp. strain Imbl 5.1 to cause complete metabolization of phorate during seven days as compared to the other two species in 13 days. In soils amended with phorate at different levels (100, 200, 300 mg kg(-1) soil), Pseudomonas sp. strain Imbl 5.1 resulted in active metabolization of phorate by between 94.66% and 95.62% establishing the same to be a potent bacterium for significantly relieving soil from phorate residues. Metabolization of phorate to these phorate residues did not follow the first order kinetics. This study proves that Pseudomonas sp. strain Imbl 5.1 has huge potential for active bioremediation of phorate both in liquid cultures and agricultural soils.

  20. From Rare to Dominant: a Fine-Tuned Soil Bacterial Bloom during Petroleum Hydrocarbon Bioremediation.

    Science.gov (United States)

    Fuentes, Sebastián; Barra, Bárbara; Caporaso, J Gregory; Seeger, Michael

    2015-11-20

    Hydrocarbons are worldwide-distributed pollutants that disturb various ecosystems. The aim of this study was to characterize the short-lapse dynamics of soil microbial communities in response to hydrocarbon pollution and different bioremediation treatments. Replicate diesel-spiked soil microcosms were inoculated with either a defined bacterial consortium or a hydrocarbonoclastic bacterial enrichment and incubated for 12 weeks. The microbial community dynamics was followed weekly in microcosms using Illumina 16S rRNA gene sequencing. Both the bacterial consortium and enrichment enhanced hydrocarbon degradation in diesel-polluted soils. A pronounced and rapid bloom of a native gammaproteobacterium was observed in all diesel-polluted soils. A unique operational taxonomic unit (OTU) related to the Alkanindiges genus represented ∼ 0.1% of the sequences in the original community but surprisingly reached >60% after 6 weeks. Despite this Alkanindiges-related bloom, inoculated strains were maintained in the community and may explain the differences in hydrocarbon degradation. This study shows the detailed dynamics of a soil bacterial bloom in response to hydrocarbon pollution, resembling microbial blooms observed in marine environments. Rare community members presumably act as a reservoir of ecological functions in high-diversity environments, such as soils. This rare-to-dominant bacterial shift illustrates the potential role of a rare biosphere facing drastic environmental disturbances. Additionally, it supports the concept of "conditionally rare taxa," in which rareness is a temporary state conditioned by environmental constraints.

  1. [Modeling research about bioremediation of organic pollutants in soil-water-microbes system].

    Science.gov (United States)

    Liu, L; Cui, G; Xia, Z

    2001-03-01

    A new Theory, organic pollutant sequestration inside soil particles, was applied in the research in order to explain the persistence of residual chemicals in remediation sites. Based on this theory, a mathematical model which simulates organic pollutant bioremediation process in soil-water-microbes system was developed. In the model, diffusion is represented by Fick's second law, reversible sorption-desorption by a linear isotherm, irreversible sequestration by a pseudo-first order kinetics, and biodegradation by Monod kinetics. Model results match successfully with experimental data. Model simulations are performed in the study. It is noteworthy that the mathematical model will be useful in quantitatively predicting the time and degradation extend of organic pollutant in remediation sites.

  2. Plant residues--a low cost, effective bioremediation treatment for petrogenic hydrocarbon-contaminated soil.

    Science.gov (United States)

    Shahsavari, Esmaeil; Adetutu, Eric M; Anderson, Peter A; Ball, Andrew S

    2013-01-15

    Petrogenic hydrocarbons represent the most commonly reported environmental contaminant in industrialised countries. In terms of remediating petrogenic contaminated hydrocarbons, finding sustainable non-invasive technologies represents an important goal. In this study, the effect of 4 types of plant residues on the bioremediation of aliphatic hydrocarbons was investigated in a 90 day greenhouse experiment. The results showed that contaminated soil amended with different plant residues led to statistically significant increases in the utilisation rate of Total Petroleum Hydrocarbon (TPH) relative to control values. The maximum TPH reduction (up to 83% or 6800 mg kg(-1)) occurred in soil mixed with pea straw, compared to a TPH reduction of 57% (4633 mg kg(-1)) in control soil. A positive correlation (0.75) between TPH reduction rate and the population of hydrocarbon-utilising microorganisms was observed; a weaker correlation (0.68) was seen between TPH degradation and bacterial population, confirming that adding plant materials significantly enhanced both hydrocarbonoclastic and general microbial soil activities. Microbial community analysis using Denaturing Gradient Gel Electrophoresis (DGGE) showed that amending the contaminated soil with plant residues (e.g., pea straw) caused changes in the soil microbial structure, as observed using the Shannon diversity index; the diversity index increased in amended treatments, suggesting that microorganisms present on the dead biomass may become important members of the microbial community. In terms of specific hydrocarbonoclastic activity, the number of alkB gene copies in the soil microbial community increased about 300-fold when plant residues were added to contaminated soil. This study has shown that plant residues stimulate TPH degradation in contaminated soil through stimulation and perhaps addition to the pool of hydrocarbon-utilising microorganisms, resulting in a changed microbial structure and increased alkB gene

  3. Compost and vermicompost of olive cake to bioremediate triazines-contaminated soil.

    Science.gov (United States)

    Delgado-Moreno, Laura; Peña, Aránzazu

    2009-02-15

    The use of organic amendments to bioremediate potential organic pollutants of soil and water has become an increasingly relevant issue in the last years. This strategy has been applied to four triazine herbicides in a typical calcareous agricultural soil of the Mediterranean area. The soil was amended with olive cake, compost and vermicompost of olive cake at rates four times higher than the agronomic dose in order to stimulate biodegradation of simazine, terbuthylazine, cyanazine and prometryn, added in a mixture to the soils. Degradation studies were carried out in sterile and microbially active soil to evaluate the effect of the chemical and biological degradation of triazines. The residual herbicide concentrations at the end of the degradation assay showed no significant differences between non amended and amended soil. However, the addition of compost and vermicompost enhanced the biological degradation rate of triazines during the first week of incubation, with half-lives ranging form 5 to 18 days for the amended soils, whilst negligible degradation occurred in non-amended soil during this period. In contrast, olive cake did not significantly modify the degradation of triazines in spite that the addition of this amendment to soil resulted in the highest dehidrogenase activity values. In all the substrates, degradation of cyanazine and prometryn was faster (between 1.5 and two times higher) than those of terbuthylazine and simazine, without significant relationship with sorption parameters. The first order kinetic equation satisfactorily explained the experimental data for all triazines. A biphasic model, such as that proposed by Hoerl, was better to predict the very rapid triazines decay during the first week of incubation in soil amended with compost and vermicompost.

  4. Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochar as carriers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Baoliang; Yuan, Miaoxin; Qian, Linbo [Zhejiang Univ., Hangzhou (China). Dept. of Environmental Science; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou (China)

    2012-10-15

    Polycyclic aromatic hydrocarbons (PAHs) are largely accumulated in soils in China. The immobilized-microorganism technique (IMT) is a potential approach for abating soil contamination with PAHs. However, few studies about the application of IMT to contaminated soil remediation were reported. Due to recalcitrance to decomposition, biochar application to soil may enhance soil carbon sequestration, but few studies on the application of biochars to remediation of contaminated soil were reported. In this study, we illustrated enhanced bioremediation of soil having a long history of PAH contamination by IMT using plant residues and biochars as carriers. Two PAH-degrading bacteria, Pseudomonas putida and an unidentified indigenous bacterium, were selected for IMT. The extractability and biodegradation of 15 PAHs in solution and an actual PAH-contaminated soil amended with immobilized-bacteria materials were investigated under different incubation periods. The effects of carriers and the molecular weight of PAHs on bioremediation efficiency were determined to illustrate their different bio-dissipation mechanisms of PAHs in soil. The IMT can considerably enhance the removal of PAHs. Carriers impose different effects on PAH bio-dissipation by amended soil with immobilized-bacteria, which can directly degrade the carrier-associated PAHs. The removal of PAHs from soil depended on PAH molecular weight and carrier types. Enhanced bio-dissipation by IMT was much stronger for 4- and 5-ring PAHs than for 3- and 6-ring ones in soil. Only P400 biochar-immobilized bacteria enhanced bio-dissipation of all PAHs in contaminated soil after a 90-day incubation. Biochar can promote bioremediation of contaminated soil as microbial carriers of IMT. It is vital to select an appropriate biochar as an immobilized carrier to stimulate biodegradation. It is feasible to use adsorption carriers with high sorptive capabilities to concentrate PAHs as well as microorganisms and thereby enhance

  5. Evaluation of biostimulation and Tween 80 addition for the bioremediation of long-term DDT-contaminated soil.

    Science.gov (United States)

    Betancur-Corredor, Bibiana; Pino, Nancy J; Cardona, Santiago; Peñuela, Gustavo A

    2015-02-01

    The bioremediation of a long-term contaminated soil through biostimulation and surfactant addition was evaluated. The concentrations of 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT) and its metabolites 1,1-dichloro-2,2-bis(4-chlorophenyl) ethane (DDD) and 1,1-dichloro-2,2-bis(4-chlorophenyl) ethylene (DDE) were monitored during an 8-week remediation process. Physicochemical characterization of the treated soil was performed before and after the bioremediation process. The isolation and identification of predominant microorganisms during the remediation process were also carried out. The efficiency of detoxification was evaluated after each bioremediation protocol. Humidity and pH and the heterotrophic microorganism count were monitored weekly. The DDT concentration was reduced by 79% after 8 weeks via biostimulation with surfactant addition (B+S) and 94.3% via biostimulation alone (B). Likewise, the concentrations of the metabolites DDE and DDD were reduced to levels below the quantification limits. The microorganisms isolated during bioremediation were identified as Bacillus thuringiensis, Flavobacterium sp., Cuprivadius sp., Variovorax soli, Phenylobacterium sp. and Lysobacter sp., among others. Analysis with scanning electron microscopy (SEM) allowed visualization of the colonization patterns of soil particles. The toxicity of the soil before and after bioremediation was evaluated using Vibrio fischeri as a bioluminescent sensor. A decrease in the toxic potential of the soil was verified by the increase of the concentration/effect relationship EC50 to 26.9% and 27.2% for B+S and B, respectively, compared to 0.4% obtained for the soil before treatment and 2.5% by natural attenuation after 8 weeks of treatment.

  6. Enhancement and inhibition of microbial activity in hydrocarbon- contaminated arctic soils: Implications for nutrient-amended bioremediation

    Science.gov (United States)

    Braddock, J.F.; Ruth, M.L.; Catterall, P.H.; Walworth, J.L.; McCarthy, K.A.

    1997-01-01

    Bioremediation is being used or proposed as a treatment option at many hydrocarbon-contaminated sites. One such site is a former bulk-fuel storage facility near Barrow, AK, where contamination persists after approximately 380 m3 of JP-5 was spilled in 1970. The soil at the site is primarily coarse sand with low organic carbon (hydrocarbon concentrations declined significantly only in the soils treated at the low fertilizer level. These results indicate that an understanding of nutrient effects at a specific site is essential for successful bioremediation.Bioremediation is being used or proposed as a treatment option at many hydrocarbon-contaminated sites. One such site is a former bulk-fuel storage facility near Barrow, AK, where contamination persists after approximately 380 m3 of JP-5 was spilled in 1970. The soil at the site is primarily coarse sand with low organic carbon (hydrocarbon concentrations declined significantly only in the soils treated at the low fertilizer level. These results indicate that an understanding of nutrient effects at a specific site is essential for successful bioremediation.

  7. Assessment of three approaches of bioremediation (Natural Attenuation, Landfarming and Bioagumentation - Assistited Landfarming) for a petroleum hydrocarbons contaminated soil.

    Science.gov (United States)

    Guarino, C; Spada, V; Sciarrillo, R

    2017-03-01

    Contamination with total petroleum hydrocarbons (TPH) subsequent to refining activities, is currently one of the major environmental problems. Among the biological remediation approaches, landfarming and in situ bioremediation strategies are of great interest. Purpose of this study was to verify the feasibility of a remediation process wholly based on biological degradation applied to contaminated soils from a decommissioned refinery. This study evaluated through a pot experiment three bioremediation strategies: a) Natural Attenuation (NA), b) Landfarming (L), c) Bioaugmentation-assisted Landfarming (LB) for the treatment of a contaminated soil with petroleum hydrocarbons (TPHs). After a 90-days trial, Bioagumentation - assistited Landfarming approach produced the best results and the greatest evident effect was shown with the most polluted samples reaching a reduction of about 86% of total petroleum hydrocarbons (TPH), followed by Landfarming (70%), and Natural Attenuation (57%). The results of this study demonstrated that the combined use of bioremediation strategies was the most advantageous option for the treatment of contaminated soil with petroleum hydrocarbons, as compared to natural attenuation, bioaugmentation or landfarming applied alone. Besides, our results indicate that incubation with an autochthonous bacterial consortium may be a promising method for bioremediation of TPH-contaminated soils.

  8. Versatility of Streptomyces sp. M7 to bioremediate soils co-contaminated with Cr(VI) and lindane.

    Science.gov (United States)

    Aparicio, JuanDaniel; Solá, María Zoleica Simón; Benimeli, Claudia Susana; Amoroso, María Julia; Polti, Marta Alejandra

    2015-06-01

    The aim of this work was to study the impact of environmental factors on the bioremediation of Cr(VI) and lindane contaminated soil, by an actinobacterium, Streptomyces sp. M7, in order to optimize the process. Soil samples were contaminated with 25 µg kg(-1) of lindane and 50 mg kg(-1) of Cr(VI) and inoculated with Streptomyces sp. M7. The lowest inoculum concentration which simultaneously produced highest removal of Cr(VI) and lindane was 1 g kg(-1). The influence of physical and chemical parameters was assessed using a full factorial design. The factors and levels tested were: Temperature: 25, 30, 35°C; Humidity: 10%, 20%, 30%; Initial Cr(VI) concentration: 20, 50, 80 mg kg(-1); Initial lindane concentration: 10, 25, 40 µg kg(-1). Streptomyces sp. M7 exhibited strong versatility, showing the ability to bioremediate co-contaminated soil samples at several physicochemical conditions. Streptomyces sp. M7 inoculum size was optimized. Also, it was fitted a model to study this process, and it was possible to predict the system performance, knowing the initial conditions. Moreover, optimum temperature and humidity conditions for the bioremediation of soil with different concentrations of Cr(VI) and lindane were determined. Lettuce seedlings were a suitable biomarker to evaluate the contaminants mixture toxicity. Streptomyces sp. M7 carried out a successful bioremediation, which was demonstrated through ecotoxicity test with Lactuca sativa.

  9. Endosulfan Resistance Profile of Soil Bacteria and Potential Application of Resistant Strains in Bioremediation

    Directory of Open Access Journals (Sweden)

    Chandini P.K.

    2014-05-01

    Full Text Available In the present study, bacterial strains were isolated from the soils of Wayanad District, Kerala, India and the isolates were tested for their tolerance to endosulfan and potential in bioremediation technology. Pesticide contamination in the soils, soil physico-chemical characteristics and socio-economic impacts of pesticide application were also analyzed. 28 pesticide compounds in the soil samples were analyzed and the results revealed that there was no pesticide residues in the soils. As per the survey conducted the pesticide application is very high in the study area and the level of awareness among the farmers was very poor regarding the method of application and its socio-economic and ecological impacts. A total of 9 bacterial strains were isolated with 50μg/ml of endosulfan in the isolating media and the results showed that most of the bacterial strains were highly resistance to endosulfan. Out of the 9 strains isolated 6 were highly resistant to endosulfan (500- 700μg/ml and the other 3 isolates showed the resistance of 250-500μg/ml. From the studied isolate, isolate 9 demonstrating prolific growth and high resistance was selected to check their capability to degrade endosulfan over time. Identification of the selected strain reveals that it belongs to the genus Bacillus. Results of endosulfan removal studies showed that with increase in time, the biomass of the bacterial strains increased. The complete disappearance of endosulfan from the spiked and inoculated broth during the first day of incubation (24 hour interval was observed. While the control flask showed the presence of endosulfan during the experimental period. Pesticide resistant bacteria are widely distributed in the soils of selected study area and the tolerance varied between bacteria even though they were isolated from the soils of the same area. The selected Bacillus species carry the ability to degrade endosulfan at accelerated rates and it could be useful in framing a

  10. Potential bioremediation of mercury-contaminated substrate using filamentous fungi isolated from forest soil.

    Science.gov (United States)

    Kurniati, Evi; Arfarita, Novi; Imai, Tsuyoshi; Higuchi, Takaya; Kanno, Ariyo; Yamamoto, Koichi; Sekine, Masahiko

    2014-06-01

    The use of filamentous fungi in bioremediation of heavy metal contamination has been developed recently. This research aims to observe the capability of filamentous fungi isolated from forest soil for bioremediation of mercury contamination in a substrate. Six fungal strains were selected based on their capability to grow in 25 mg/L Hg(2+)-contaminated potato dextrose agar plates. Fungal strain KRP1 showed the highest ratio of growth diameter, 0.831, thus was chosen for further observation. Identification based on colony and cell morphology carried out by 18S rRNA analysis gave a 98% match to Aspergillus flavus strain KRP1. The fungal characteristics in mercury(II) contamination such as range of optimum pH, optimum temperature and tolerance level were 5.5-7 and 25-35°C and 100 mg/L respectively. The concentration of mercury in the media affected fungal growth during lag phases. The capability of the fungal strain to remove the mercury(II) contaminant was evaluated in 100 mL sterile 10 mg/L Hg(2+)-contaminated potato dextrose broth media in 250 mL Erlenmeyer flasks inoculated with 10(8) spore/mL fungal spore suspension and incubation at 30°C for 7 days. The mercury(II) utilization was observed for flasks shaken in a 130 r/min orbital shaker (shaken) and non-shaken flasks (static) treatments. Flasks containing contaminated media with no fungal spores were also provided as control. All treatments were done in triplicate. The strain was able to remove 97.50% and 98.73% mercury from shaken and static systems respectively. A. flavus strain KRP1 seems to have potential use in bioremediation of aqueous substrates containing mercury(II) through a biosorption mechanism.

  11. Partial characterization of biosurfactant from Lactobacillus pentosus and comparison with sodium dodecyl sulphate for the bioremediation of hydrocarbon contaminated soil.

    Science.gov (United States)

    Moldes, A B; Paradelo, R; Vecino, X; Cruz, J M; Gudiña, E; Rodrigues, L; Teixeira, J A; Domínguez, J M; Barral, M T

    2013-01-01

    The capability of a cell bound biosurfactant produced by Lactobacillus pentosus, to accelerate the bioremediation of a hydrocarbon-contaminated soil, was compared with a synthetic anionic surfactant (sodium dodecyl sulphate SDS-). The biosurfactant produced by the bacteria was analyzed by Fourier transform infrared spectroscopy (FTIR) that clearly indicates the presence of OH and NH groups, C=O stretching of carbonyl groups and NH nebding (peptide linkage), as well as CH2-CH3 and C-O stretching, with similar FTIR spectra than other biosurfactants obtained from lactic acid bacteria. After the characterization of biosurfactant by FTIR, soil contaminated with 7,000 mg Kg(-1) of octane was treated with biosurfactant from L. pentosus or SDS. Treatment of soil for 15 days with the biosurfactant produced by L. pentosus led to a 65.1% reduction in the hydrocarbon concentration, whereas SDS reduced the octane concentration to 37.2% compared with a 2.2% reduction in the soil contaminated with octane in absence of biosurfactant used as control. Besides, after 30 days of incubation soil with SDS or biosurfactant gave percentages of bioremediation around 90% in both cases. Thus, it can be concluded that biosurfactant produced by L. pentosus accelerates the bioremediation of octane-contaminated soil by improving the solubilisation of octane in the water phase of soil, achieving even better results than those reached with SDS after 15-day treatment.

  12. Partial Characterization of Biosurfactant from Lactobacillus pentosus and Comparison with Sodium Dodecyl Sulphate for the Bioremediation of Hydrocarbon Contaminated Soil

    Directory of Open Access Journals (Sweden)

    A. B. Moldes

    2013-01-01

    Full Text Available The capability of a cell bound biosurfactant produced by Lactobacillus pentosus, to accelerate the bioremediation of a hydrocarbon-contaminated soil, was compared with a synthetic anionic surfactant (sodium dodecyl sulphate SDS-. The biosurfactant produced by the bacteria was analyzed by Fourier transform infrared spectroscopy (FTIR that clearly indicates the presence of OH and NH groups, C=O stretching of carbonyl groups and NH nebding (peptide linkage, as well as CH2–CH3 and C–O stretching, with similar FTIR spectra than other biosurfactants obtained from lactic acid bacteria. After the characterization of biosurfactant by FTIR, soil contaminated with 7,000 mg Kg−1 of octane was treated with biosurfactant from L. pentosus or SDS. Treatment of soil for 15 days with the biosurfactant produced by L. pentosus led to a 65.1% reduction in the hydrocarbon concentration, whereas SDS reduced the octane concentration to 37.2% compared with a 2.2% reduction in the soil contaminated with octane in absence of biosurfactant used as control. Besides, after 30 days of incubation soil with SDS or biosurfactant gave percentages of bioremediation around 90% in both cases. Thus, it can be concluded that biosurfactant produced by L. pentosus accelerates the bioremediation of octane-contaminated soil by improving the solubilisation of octane in the water phase of soil, achieving even better results than those reached with SDS after 15-day treatment.

  13. Bioremediation of multi-metal contaminated soil using biosurfactant - a novel approach.

    Science.gov (United States)

    Juwarkar, Asha A; Dubey, Kirti V; Nair, Anupa; Singh, Sanjeev Kumar

    2008-03-01

    An unconventional nutrient medium, distillery spent wash (1:3) diluted) was used to produce di-rhamnolipid biosurfactant by Pseudomonas aeruginosa strain BS2. This research further assessed the potential of the biosurfactant as a washing agent for metal removal from multimetal contaminated soil (Cr-940 ppm; Pb-900 ppm; Cd-430 ppm; Ni-880 ppm; Cu-480 ppm). Out of the treatments of contaminated soil with tap water and rhamnolipid biosurfactant, the latter was found to be potent in mobilization of metal and decontamination of contaminated soil. Within 36 hours of leaching study, di-rhamnolipid as compared to tap water facilitated 13 folds higher removal of Cr from the heavy metal spiked soil whereas removal of Pb and Cu was 9-10 and 14 folds higher respectively. Leaching of Cd and Ni was 25 folds higher from the spiked soil. This shows that leaching behavior of biosurfactant was different for different metals. The use of wastewater for production of biosurfactant and its efficient use in metal removal make it a strong applicant for bioremediation.

  14. Bioremediation of soils contaminated by hydrocarbons at the coastal zone of “Punta Majagua”.

    Directory of Open Access Journals (Sweden)

    Jelvys Bermúdez Acosta

    2012-03-01

    Full Text Available The purpose of this research was to describe and assess the main results in the process of bioremediation of 479 m3 of petroleum residuals spilled on the soil and restrained into four deposits of fuel on the coastal zone of “Punta Majagua”, Cienfuegos. The volume of hydrocarbons spilled and contained into the tanks was determined by means of their previous mixture with fertile ground in a ratio of 3/1. The hydrocarbons were disposed in a bioremediation area of 115 m X 75m built in situ. In turn 54, 5 m3 of BIOIL - FC were applied, which were fermented in an industrial bioreactor of 12000 L. An initial sampling was carried out registering values of total hydrocarbons (HTP higher than 41880 mg/kg, with high concentrations of Saturated hydrocarbons, aromatics, resins, asphaltens (SARA. Three subsequent samples were taken with a sampling interval of 0, 45, 90 and 120 days of the application. An average concentration of 1884.57 mg/kg of total hydrocarbons was obtained at 120 days with an average removal rate of 94.8%, moreover values of 94.6%, 90.78%, 86.99% y 79.9% of SARA were respectively reported.

  15. [Bioremediation of oil-polluted soils: using the [13C]/[12C] ratio to characterize microbial products of oil hydrocarbon biodegradation].

    Science.gov (United States)

    Ziakun, A M; Brodskiĭ, E S; Baskunov, B P; Zakharchenko, V N; Peshenko, V P; Filonov, A E; Vetrova, A A; Ivanova, A A; Boronin, A M

    2014-01-01

    We compared data on the extent of bioremediation in soils polluted with oil. The data were obtained using conventional methods of hydrocarbon determination: extraction gas chromatography-mass spectrometry, extraction IR spectroscopy, and extraction gravimetry. Due to differences in the relative abundances of the stable carbon isotopes (13C/12C) in oil and in soil organic matter, these ratios could be used as natural isotopic labels of either substance. Extraction gravimetry in combination with characteristics of the carbon isotope composition of organic products in the soil before and after bioremediation was shown to be the most informative approach to an evaluation of soil bioremediation. At present, it is the only method enabling quantification of the total petroleum hydrocarbons in oil-polluted soil, as well as of the amounts of hydrocarbons remaining after bioremediation and those microbially transformed into organic products and biomass.

  16. Dynamics and role of sphingomonas/mycobacterium populations during bio-remediation of weathered PAH-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Bastiaens, L.; Ryngaert, A.; Leys, N.; Van Houtven, D.; Gemoets, J. [Flemish Institute for Technological Research-Vito, Mol (Belgium); Goethals, L. [ENVISAN, Aalst, (Belgium); Springael, D. [Catholic University of Leuven-KUL, Leuven (Belgium)

    2005-07-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are major soil pollutants in many industrialized countries. During the last decades, a diversity of PAH-degrading micro-organisms has been isolated, suggesting possibilities for bio-remediation. However, biodegradation of PAHs in contaminated soils is not always successful. The low bio-availability of the PAHs is the major problem, especially in weathered soils. In these soils a tightly sorbed PAH-fraction is present which is in general hardly accessible for microorganisms. In order to bio-remedy PAHs also in weathered soils, stimulation of bacteria which have special strategies to access sorbed organics may be a solution. Sphingomonas and Mycobacterium strains may represent such bacteria as (I) they are often isolated as PAH degraders, (II) they are ubiquitously present in PAH-contaminated soils, and (III) they display features which might promote bioavailability. Lab- and pilot-scale experiments were set up in order (A) to study the dynamics of indigenous Sphingomonas and Mycobacterium populations during bio-remediation, and (B) to evaluate their role in the biodegradation of the less bio-available PAH-fraction during treatment of an historic PAH polluted soil. The soil was treated under natural soil moisture conditions and slurry conditions. The experimental set-ups ranged from 2 g lab-scale test to pilot experiments in 1 ton bio-piles and dry solid reactors (50 kg 70% dry matter soil). Different additives were evaluated for stimulation of the Sphingomonas and Mycobacterium population as a strategy to improve bio-remediation of PAHs. The evolution of this microbial population was followed using culture-independent general and genus-specific PCR-based detection methods targeting the 16S rRNA genes of the eu-bacterial community, Mycobacterium or the Sphingomonas populations, respectively. During the different bio-remediation experiments that were conducted, the Mycobacterium population remained very stable, only minor

  17. Earthworms (Eisenia fetida) demonstrate potential for use in soil bioremediation by increasing the degradation rates of heavy crude oil hydrocarbons.

    Science.gov (United States)

    Martinkosky, Luke; Barkley, Jaimie; Sabadell, Gabriel; Gough, Heidi; Davidson, Seana

    2017-02-15

    Crude oil contamination widely impacts soil as a result of release during oil and gas exploration and production activities. The success of bioremediation methods to meet remediation goals often depends on the composition of the crude oil, the soil, and microbial community. Earthworms may enhance bioremediation by mixing and aerating the soil, and exposing soil microorganisms to conditions in the earthworm gut that lead to increased activity. In this study, the common composting earthworm Eisenia fetida was tested for utility to improve remediation of oil-impacted soil. E. fetida survival in soil contaminated with two distinct crude oils was tested in an artificial (lab-mixed) sandy loam soil, and survival compared to that in the clean soil. Crude oil with a high fraction of light-weight hydrocarbons was more toxic to earthworms than the crude oil with a high proportion of heavy polyaromatic and aliphatic hydrocarbons. The heavier crude oil was added to soil to create a 30,000mg/kg crude oil impacted soil, and degradation in the presence of added earthworms and feed, feed alone, or no additions was monitored over time and compared. Earthworm feed was spread on top to test effectiveness of no mixing. TPH degradation rate for the earthworm treatments was ~90mg/day slowing by 200days to ~20mg/day, producing two phases of degradation. With feed alone, the rate was ~40mg/day, with signs of slowing after 500days. Both treatments reached the same end point concentrations, and exhibited faster degradation of aliphatic hydrocarbons C21, decreased. During these experiments, soils were moderately toxic during the first three months, then earthworms survived well, were active and reproduced with petroleum hydrocarbons present. This study demonstrated that earthworms accelerate bioremediation of crude oil in soils, including the degradation of the heaviest polyaromatic fractions.

  18. Inlfuence of Soil pH and Temperature on Atrazine Bioremediation

    Institute of Scientific and Technical Information of China (English)

    Shahla Andleeb; Zhao Jiang; Khalil ur Rehman; Erinle Kehinda Olajide; Zhang Ying

    2016-01-01

    Present study was conducted to clarify soil pH and temperature influence on different atrazine bioremediation techniques. For this purpose, sodium citrate,Arthrobactorsp. strain DNS10, sawdust and animal manure were selected to clarify their atrazine remediation efficiency under pH 5, 7 and 9 and temperatures 20, 30 and 40℃, respectively. Results showed that atrazine remediation was generally optimized at pH 7 and 30℃ for all the treatments except sodium citrate as soil treated with sawdust was not temperature dependant, but at pH 5 remediation process was determined slower. Atrazine remediation in soil with no additional amendment was only 34%, while in soil treated with sawdust, DNS10, sodium citrate and animal manure were 75.17%, 89%, 74.17% and 76.83% at optimized pH and temperature. Overall atazine removal rate was significantly (≥0.01) higher with increasing in temperature at all the selected pH.

  19. Bioremediation of diethylhexyl phthalate contaminated soil: a feasibility study in slurry- and solid-phase reactors.

    Science.gov (United States)

    Di Gennaro, P; Collina, E; Franzetti, A; Lasagni, M; Luridiana, A; Pitea, D; Bestetti, G

    2005-01-01

    The aim of the research was to verify the possibility of applying bioremediation as a treatment strategy on a poly(vinyl chloride) (PVC) manufacturing site in the north of Italy contaminated by diethylhexyl phthalate (DEHP) at a concentration of 5.51 mg/g of dry soil. Biodegradation kinetic experiments with DEHP contaminated soil samples were performed in both slurry- and solid-phase systems. The slurry-phase results showed that the cultural conditions, such as N and P concentrations and the addition of a selected DEHP degrading strain, increased the natural DEHP degradation rate. On the basis of these data, experiments to simulate bioventing on contaminated soil columns were performed. The DEHP concentration reached 0.63 mg/g of dry soil in 76 days (89% of degradation). A kinetic equation was developed to fit the experimental data and to predict the concentration of contaminant after treatment. The data obtained are encouraging for a future in situ application of the bioventing technology.

  20. Bioremediation of petroleum-contaminated soil on Kwajalein Island: Microbiological characterization and biotreatability studies

    Energy Technology Data Exchange (ETDEWEB)

    Adler, H.I. (Oak Ridge Associated Universities, Inc., TN (United States)); Jolley, R.L.; Donaldson, T.L. (Oak Ridge National Lab., TN (United States)) (comps.)

    1992-05-01

    Bioremediation technology is being evaluated for use on the Kwajalein Atoll, which is located in the Republic of the Marshall Islands. The study was undertaken by the Oak Ridge National Laboratory (ORNL) on behalf of the US Army Kwajalein Atoll (USAKA). During February of 1991, a team from ORNL and The University of Tennessee (UT) visited the USAKA. In addition to making on-site observations regarding microbial abundance and distribution of petroleum contaminants, they brought back to Oak Ridge various soil and water samples for detailed analyses. This report documents the biological studies of these samples and presents observations made during the period from February to April of 1991 by investigators at ORNL, UT, and the Oak Ridge Associated Universities.

  1. Bioremediation of Crude Oil Contaminated Desert Soil: Effect of Biostimulation, Bioaugmentation and Bioavailability in Biopile Treatment Systems

    Directory of Open Access Journals (Sweden)

    Farid Benyahia

    2016-02-01

    Full Text Available This work was aimed at evaluating the relative merits of bioaugmentation, biostimulation and surfactant-enhanced bioavailability of a desert soil contaminated by crude oil through biopile treatment. The results show that the desert soil required bioaugmentation and biostimulation for bioremediation of crude oil. The bioaugmented biopile system led to a total petroleum hydrocarbon (TPH reduction of 77% over 156 days while the system with polyoxyethylene (20 sorbitan monooleate (Tween 80 gave a 56% decrease in TPH. The biostimulated system with indigenous micro-organisms gave 23% reduction in TPH. The control system gave 4% TPH reduction. The addition of Tween 80 led to a respiration rate that peaked in 48 days compared to 88 days for the bioaugmented system and respiration declined rapidly due to nitrogen depletion. The residual hydrocarbon in the biopile systems studied contained polyaromatics (PAH in quantities that may be considered as hazardous. Nitrogen was found to be a limiting nutrient in desert soil bioremediation.

  2. Bioremediation of Crude Oil Contaminated Desert Soil: Effect of Biostimulation, Bioaugmentation and Bioavailability in Biopile Treatment Systems.

    Science.gov (United States)

    Benyahia, Farid; Embaby, Ahmed Shams

    2016-02-15

    This work was aimed at evaluating the relative merits of bioaugmentation, biostimulation and surfactant-enhanced bioavailability of a desert soil contaminated by crude oil through biopile treatment. The results show that the desert soil required bioaugmentation and biostimulation for bioremediation of crude oil. The bioaugmented biopile system led to a total petroleum hydrocarbon (TPH) reduction of 77% over 156 days while the system with polyoxyethylene (20) sorbitan monooleate (Tween 80) gave a 56% decrease in TPH. The biostimulated system with indigenous micro-organisms gave 23% reduction in TPH. The control system gave 4% TPH reduction. The addition of Tween 80 led to a respiration rate that peaked in 48 days compared to 88 days for the bioaugmented system and respiration declined rapidly due to nitrogen depletion. The residual hydrocarbon in the biopile systems studied contained polyaromatics (PAH) in quantities that may be considered as hazardous. Nitrogen was found to be a limiting nutrient in desert soil bioremediation.

  3. Application of compost for effective bioremediation of organic contaminants and pollutants in soil.

    Science.gov (United States)

    Kästner, Matthias; Miltner, Anja

    2016-04-01

    Soils contaminated with hazardous chemicals worldwide are awaiting remediation activities; bioremediation is often considered as a cost-effective remediation approach. Potential bioapproaches are biostimulation, e.g. by addition of nutrients, fertiliser and organic substrates, and bioaugmentation by addition of compound-degrading microbes or of organic amendments containing active microorganisms, e.g. activated sludge or compost. In most contaminated soils, the abundance of the intrinsic metabolic potential is too low to be improved by biostimulation alone, since the physical and chemical conditions in these soils are not conducive to biodegradation. In the last few decades, compost or farmyard manure addition as well as composting with various organic supplements have been found to be very efficient for soil bioremediation. In the present minireview, we provide an overview of the composting and compost addition approaches as 'stimulants' of natural attenuation. Laboratory degradation experiments are often biased either by not considering the abiotic factors or by focusing solely on the elimination of the chemicals without taking the biotic factors and processes into account. Therefore, we first systemise the concepts of composting and compost addition, then summarise the relevant physical, chemical and biotic factors and mechanisms for improved contaminant degradation triggered by compost addition. These factors and mechanisms are of particular interest, since they are more relevant and easier to determine than the composition of the degrading community, which is also addressed in this review. Due to the mostly empirical knowledge and the nonstandardised biowaste or compost materials, the field use of these approaches is highly challenging, but also promising. Based on the huge metabolic diversity of microorganisms developing during the composting processes, a highly complex metabolic diversity is established as a 'metabolic memory' within developing and mature

  4. Pilot-scale bioremediation of a petroleum hydrocarbon-contaminated clayey soil from a sub-Arctic site

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Ali; Ghoshal, Subhasis, E-mail: subhasis.ghoshal@mcgill.ca

    2014-09-15

    Highlights: • Aeration and moisture addition alone caused extensive hydrocarbon biodegradation. • 30-day slurry reactor remediation endpoints attained in 385 days in biopiles. • High nitrogen concentrations inhibited hydrocarbon degradation. • Inhibition of biodegradation linked to lack of shifts in soil microbial community. - Abstract: Bioremediation is a potentially cost-effective solution for petroleum contamination in cold region sites. This study investigates the extent of biodegradation of petroleum hydrocarbons (C16–C34) in a pilot-scale biopile experiment conducted at 15 °C for periods up to 385 days, with a clayey soil, from a crude oil-impacted site in northern Canada. Although several studies on bioremediation of petroleum hydrocarbon-contaminated soils from cold region sites have been reported for coarse-textured, sandy soils, there are limited studies of bioremediation of petroleum contamination in fine-textured, clayey soils. Our results indicate that aeration and moisture addition was sufficient for achieving 47% biodegradation and an endpoint of 530 mg/kg for non-volatile (C16–C34) petroleum hydrocarbons. Nutrient amendment with 95 mg-N/kg showed no significant effect on biodegradation compared to a control system without nutrient but similar moisture content. In contrast, in a biopile amended with 1340 mg-N/kg, no statistically significant biodegradation of non-volatile fraction was detected. Terminal Restriction Fragment Length Polymorphism (T-RFLP) analyses of alkB and 16S rRNA genes revealed that inhibition of hydrocarbon biodegradation was associated with a lack of change in microbial community composition. Overall, our data suggests that biopiles are feasible for attaining the bioremediation endpoint in clayey soils. Despite the significantly lower biodegradation rate of 0.009 day{sup −1} in biopile tank compared to 0.11 day{sup −1} in slurry bioreactors for C16–C34 hydrocarbons, the biodegradation extents for this fraction

  5. Ex situ bioremediation of a soil contaminated by mazut (heavy residual fuel oil)--a field experiment.

    Science.gov (United States)

    Beškoski, Vladimir P; Gojgić-Cvijović, Gordana; Milić, Jelena; Ilić, Mila; Miletić, Srdjan; Solević, Tatjana; Vrvić, Miroslav M

    2011-03-01

    Mazut (heavy residual fuel oil)-polluted soil was exposed to bioremediation in an ex situ field-scale (600 m(3)) study. Re-inoculation was performed periodically with biomasses of microbial consortia isolated from the mazut-contaminated soil. Biostimulation was conducted by adding nutritional elements (N, P and K). The biopile (depth 0.4m) was comprised of mechanically mixed polluted soil with softwood sawdust and crude river sand. Aeration was improved by systematic mixing. The biopile was protected from direct external influences by a polyethylene cover. Part (10 m(3)) of the material prepared for bioremediation was set aside uninoculated, and maintained as an untreated control pile (CP). Biostimulation and re-inoculation with zymogenous microorganisms increased the number of hydrocarbon degraders after 50 d by more than 20 times in the treated soil. During the 5 months, the total petroleum hydrocarbon (TPH) content of the contaminated soil was reduced to 6% of the initial value, from 5.2 to 0.3 g kg(-1) dry matter, while TPH reduced to only 90% of the initial value in the CP. After 150 d there were 96%, 97% and 83% reductions for the aliphatic, aromatic, and nitrogen-sulphur-oxygen and asphaltene fractions, respectively. The isoprenoids, pristane and phytane, were more than 55% biodegraded, which indicated that they are not suitable biomarkers for following bioremediation. According to the available data, this is the first field-scale study of the bioremediation of mazut and mazut sediment-polluted soil, and the efficiency achieved was far above that described in the literature to date for heavy fuel oil.

  6. Improving Polycyclic Aromatic Hydrocarbon Biodegradation in Contaminated Soil Through Low-Level Surfactant Addition After Conventional Bioremediation.

    Science.gov (United States)

    Adrion, Alden C; Singleton, David R; Nakamura, Jun; Shea, Damian; Aitken, Michael D

    2016-09-01

    Efficacy of bioremediation for soil contaminated with polycyclic aromatic hydrocarbons (PAHs) may be limited by the fractions of soil-bound PAHs that are less accessible to PAH-degrading microorganisms. In previous test-tube-scale work, submicellar doses of nonionic surfactants were screened for their ability to enhance the desorption and biodegradation of residual PAHs in soil after conventional bioremediation in a laboratory-scale, slurry-phase bioreactor. Polyoxyethylene sorbitol hexaoleate (POESH) was the optimum surfactant for enhancing PAH removal, especially the high-molecular weight PAHs. This work extends that concept by treating the effluent from the slurry-phase bioreactor in a second-stage batch reactor, to which POESH was added, for an additional 7 or 12 days. Surfactant amendment removed substantial amounts of the PAHs and oxy-PAHs remaining after conventional slurry-phase bioremediation, including more than 80% of residual 4-ring PAHs. Surfactant-amended treatment decreased soil cytotoxicity, but often increased the genotoxicity of the soil as measured using the DT-40 chicken lymphocyte DNA damage response assay. Potential ecotoxicity, measured using a seed germination assay, was reduced by bioreactor treatment and was reduced further after second-stage treatment with POESH. Of bacteria previously implicated as potential PAH degraders under POESH-amended conditions in a prior study, members of the Terrimonas genus were associated with differences in high-molecular weight PAH removal in the current study. Research using submicellar doses of surfactant as a second-stage treatment step is limited and these findings can inform the design of bioremediation systems at field sites treating soil contaminated with PAHs and other hydrophobic contaminants that have low bioaccessibility.

  7. Evaluation of Oil Removal Efficiency and Enzymatic Activity in Some fungal Strains for Bioremediation of Petroleum-Polluted Soils

    Directory of Open Access Journals (Sweden)

    Fariba Mohsenzadeh

    2012-12-01

    Full Text Available Background: Petroleum pollution is a global disaster and there are several soil cleaning methods including bioremediation.Methods: In a field study, fugal strains were isolated from oil-contaminated sites of Arak refinery (Iran and their growth ability was checked in potato dextrose agar (PDA media containing 0-10% v/v crude oil, the activity of three enzymes (Catalase, Peroxidase and Phenol Oxidase was evaluated in the fungal colonies and bioremediation ability of the fungi was checked in the experimental pots containing 3 kg sterilized soil and different concentrations of petroleum (0-10% w/w.Results: Four fungal strains, Acromonium sp., Alternaria sp., Aspergillus terreus and Penicillium sp., were selected asthe most resistant ones. They were able to growth in the subjected concentrations and Alternaria sp. showed thehighest growth ability in the petroleum containing media. The enzyme assay showed that the enzymatic activity was increased in the oil-contaminated media. Bioremediation results showed that the studied fungi were able to decrease petroleum pollution. The highest petroleum removing efficiency of Aspergillus terreus, Penicillium sp.,Alternaria sp. and Acromonium sp. was evaluated in the 10%, 8%, 8% and 2% petroleum pollution respectively.Conclusions: Fungi are important microorganisms in decreasing of petroleum pollution. They have bioremediation potency that is related to their enzymatic activities.

  8. Evaluation of oil removal efficiency and enzymatic activity in some fungal strains for bioremediation of petroleum-polluted soils

    Directory of Open Access Journals (Sweden)

    Mohsenzadeh Fariba

    2012-12-01

    Full Text Available Abstract Background Petroleum pollution is a global disaster and there are several soil cleaning methods including bioremediation. Methods In a field study, fugal strains were isolated from oil-contaminated sites of Arak refinery (Iran and their growth ability was checked in potato dextrose agar (PDA media containing 0-10% v/v crude oil, the activity of three enzymes (Catalase, Peroxidase and Phenol Oxidase was evaluated in the fungal colonies and bioremediation ability of the fungi was checked in the experimental pots containing 3 kg sterilized soil and different concentrations of petroleum (0-10% w/w. Results Four fungal strains, Acromonium sp., Alternaria sp., Aspergillus terreus and Penicillium sp., were selected as the most resistant ones. They were able to growth in the subjected concentrations and Alternaria sp. showed the highest growth ability in the petroleum containing media. The enzyme assay showed that the enzymatic activity was increased in the oil-contaminated media. Bioremediation results showed that the studied fungi were able to decrease petroleum pollution. The highest petroleum removing efficiency of Aspergillus terreus, Penicillium sp., Alternaria sp. and Acromonium sp. was evaluated in the 10%, 8%, 8% and 2% petroleum pollution respectively. Conclusions Fungi are important microorganisms in decreasing of petroleum pollution. They have bioremediation potency that is related to their enzymatic activities.

  9. Synergistic effects of bioremediation and electrokinetics in the remediation of petroleum-contaminated soil.

    Science.gov (United States)

    Guo, Shuhai; Fan, Ruijuan; Li, Tingting; Hartog, Niels; Li, Fengmei; Yang, Xuelian

    2014-08-01

    The present study evaluated the coupling interactions between bioremediation (BIO) and electrokinetics (EK) in the remediation of total petroleum hydrocarbons (TPH) by using bio-electrokinetics (BIO-EK) with a rotatory 2-D electric field. The results demonstrated an obvious positive correlation between the degradation extents of TPH and electric intensity both in the EK and BIO-EK tests. The use of BIO-EK showed a significant improvement in degradation of TPH as compared to BIO or EK alone. The actual degradation curve in BIO-EK tests fitted well with the simulated curve obtained by combining the degradation curves in BIO- and EK-only tests during the first 60 d, indicating a superimposed effect of biological degradation and electrochemical stimulation. The synergistic effect was particularly expressed during the later phase of the experiment, concurrent with changes in the microbial community structure. The community composition changed mainly according to the duration of the electric field, leading to a reduction in diversity. No significant spatial shifts in microbial community composition and bacterial numbers were detected among different sampling positions. Soil pH was uniform during the experimental process, soil temperature showed no variations between the soil chambers with and without an electric field.

  10. Bacterial community analysis of cypermethrin enrichment cultures and bioremediation of cypermethrin contaminated soils.

    Science.gov (United States)

    Akbar, Shamsa; Sultan, Sikander; Kertesz, Michael

    2015-07-01

    Cypermethrin is widely used for insect control; however, its toxicity toward aquatic life requires its complete removal from contaminated areas where the natural degradation ability of microbes can be utilized. Agricultural soil with extensive history of CM application was used to prepare enrichment cultures using cypermethrin as sole carbon source for isolation of cypermethrin degrading bacteria and bacterial community analysis using PCR-DGGE of 16 S rRNA gene. DGGE analysis revealed that dominant members of CM enrichment culture were associated with α-proteobacteria followed by γ-proteobacteria, Firmicutes, and Actinobacteria. Three potential CM-degrading isolates identified as Ochrobactrum anthropi JCm1, Bacillus megaterium JCm2, and Rhodococcus sp. JCm5 degraded 86-100% of CM (100 mg L(-1) ) within 10 days. These isolates were also able to degrade other pyrethroids, carbofuran, and cypermethrin degradation products. Enzyme activity assays revealed that enzymes involved in CM-degradation were inducible and showed activity when strains were grown on cypermethrin. Degradation kinetics of cypermethrin (200 mg kg(-1)) in soils inoculated with isolates JCm1, JCm2, and JCm5 suggested time-dependent disappearance of cypermethrin with rate constants of 0.0516, 0.0425, and 0.0807 d(-1), respectively, following first order rate kinetics. The isolated bacterial strains were among dominant genera selected under CM enriched conditions and represent valuable candidates for in situ bioremediation of contaminated soils and waters.

  11. Strong Impact on the Polycyclic Aromatic Hydrocarbon (PAH)-Degrading Community of a PAH-Polluted Soil but Marginal Effect on PAH Degradation when Priming with Bioremediated Soil Dominated by Mycobacteria

    DEFF Research Database (Denmark)

    Johnsen, Anders R.; Schmidt, Stine; Hybholdt, Trine K.;

    2007-01-01

    Bioaugmentation of soil polluted with polycyclic aromatic hydrocarbons (PAHs) is often disappointing because of the low survival rate and low activity of the introduced degrader bacteria. We therefore investigated the possibility of priming PAH degradation in soil by adding 2% of bioremediated soil...... with a high capacity for PAH degradation. The culturable PAH-degrading community of the bioremediated primer soil was dominated by Mycobacterium spp. A microcosm containing pristine soil artificially polluted with PAHs and primed with bioremediated soil showed a fast, 100- to 1,000-fold increase in numbers...... of culturable phenanthrene-, pyrene-, and fluoranthene degraders and a 160-fold increase in copy numbers of the mycobacterial PAH dioxygenase gene pdo1. A nonpolluted microcosm primed with bioremediated soil showed a high rate of survival of the introduced degrader community during the 112 days of incubation...

  12. Enhanced bioremediation of oil contaminated soil by graded modified Fenton oxidation

    Institute of Scientific and Technical Information of China (English)

    Jinlan Xu; Lei Xin; Tinglin Huang; Kun Chang

    2011-01-01

    Graded modified Fenton's (MF) oxidation is a strategy in which H2O2 is added intermittently to prevent a sharp temperature increase and undesired soil sterilization at soil circumneutral pH versus adding the same amount of H2O2 continuously.The primary objective of the present study was to investigate whether a mild MF pre-oxidation such as a stepwise addition of H2O2 can prevent sterilization and achieve a maximum degradation of tank oil in soil.Optimization experiments of graded MF oxidation were conducted using citric acid,oxalic acid and SOLV-X as iron chelators under different frequencies of H2O2 addition.The results indicated that the activity order of iron chelates decreased as:citric acid (51%) > SOLV-X (44%) > oxalic acid (9%),and citric acid was found to be an optimized iron chelating agent of graded MF oxidation.Three-time addition of H2O2 was found to be favorable and economical due to decreasing total petroleum hydrocarbon removal from three time addition (51%) to five time addition (59%).Biological experiments were conducted after graded MF oxidation of tank oil completed under optimum conditions mentioned above.After graded oxidation,substantially higher increase (31%) in microbial activity was observed with excessive H2O2 (1470 mmol,/L,the mol ratio of H2O2:Fe2+ was 210:1)than that of non-oxidized soil.Removal efficiency of tank oil was up to 93% after four weeks.Especially,the oil fraction (C10-C40) became more biodagradable after graded MF oxidation than its absence.Therefore,graded MF oxidation is a mild pretreatment to achieve an effective bioremediation of oil contaminated soil.

  13. Pilot-scale bioremediation of a petroleum hydrocarbon-contaminated clayey soil from a sub-Arctic site.

    Science.gov (United States)

    Akbari, Ali; Ghoshal, Subhasis

    2014-09-15

    Bioremediation is a potentially cost-effective solution for petroleum contamination in cold region sites. This study investigates the extent of biodegradation of petroleum hydrocarbons (C16-C34) in a pilot-scale biopile experiment conducted at 15°C for periods up to 385 days, with a clayey soil, from a crude oil-impacted site in northern Canada. Although several studies on bioremediation of petroleum hydrocarbon-contaminated soils from cold region sites have been reported for coarse-textured, sandy soils, there are limited studies of bioremediation of petroleum contamination in fine-textured, clayey soils. Our results indicate that aeration and moisture addition was sufficient for achieving 47% biodegradation and an endpoint of 530 mg/kg for non-volatile (C16-C34) petroleum hydrocarbons. Nutrient amendment with 95 mg-N/kg showed no significant effect on biodegradation compared to a control system without nutrient but similar moisture content. In contrast, in a biopile amended with 1340 mg-N/kg, no statistically significant biodegradation of non-volatile fraction was detected. Terminal Restriction Fragment Length Polymorphism (T-RFLP) analyses of alkB and 16S rRNA genes revealed that inhibition of hydrocarbon biodegradation was associated with a lack of change in microbial community composition. Overall, our data suggests that biopiles are feasible for attaining the bioremediation endpoint in clayey soils. Despite the significantly lower biodegradation rate of 0.009 day(-1) in biopile tank compared to 0.11 day(-1) in slurry bioreactors for C16-C34 hydrocarbons, the biodegradation extents for this fraction were comparable in these two systems.

  14. Enhancing plant-microbe associated bioremediation of phenanthrene and pyrene contaminated soil by SDBS-Tween 80 mixed surfactants.

    Science.gov (United States)

    Ni, Hewei; Zhou, Wenjun; Zhu, Lizhong

    2014-05-01

    The use of surfactants to enhance plant-microbe associated dissipation in soils contaminated with polycyclic aromatic hydrocarbons (PAHs) is a promising bioremediation technology. This comparative study was conducted on the effects of plant-microbe treatment on the removal of phenanthrene and pyrene from contaminated soil, in the presence of low concentration single anionic, nonionic and anionic-nonionic mixed surfactants. Sodium dodecyl benzene sulfonate (SDBS) and Tween 80 were chosen as representative anionic and nonionic surfactants, respectively. We found that mixed surfactants with concentrations less than 150 mg/kg were more effective in promoting plant-microbe associated bioremediation than the same amount of single surfactants. Only about (m/m) of mixed surfactants was needed to remove the same amount of phenanthrene and pyrene from either the planted or unplanted soils, when compared to Tween 80. Mixed surfactants (Tween 80. These results may be explained by the lower sorption loss and reduced interfacial tension of mixed surfactants relative to Tween 80, which enhanced the bioavailability of PAHs in soil and the microbial degradation efficiency. The higher remediation efficiency of low dosage SDBS-Tween 80 mixed surfactants thus advanced the technology of surfactant-enhanced plant-microbe associated bioremediation.

  15. Degradation and enantiomeric fractionation of mecoprop in soil previously exposed to phenoxy acid herbicides - New insights for bioremediation

    DEFF Research Database (Denmark)

    Frková, Zuzana; Johansen, Anders; de Jonge, Lis Wollesen;

    2016-01-01

    bioremediation. The degradation processes were studied in soil sampled at different depths (3, 4.5 and 6m) at a Danish urban site with a history of phenoxy acid contamination. We observed preferential degradation of the R-enantiomer only under aerobic conditions in the soil samples from 3- and 6-m depth......, and biodegradation rates may differ between enantiomers. Therefore, enantio-preferred degradation of mecoprop (MCPP) in soil was measured to get in-depth information on whether amendment with glucose (BOD equivalents as substrate for microbial growth) and nitrate (redox equivalents for oxidation) can stimulate...

  16. Bioremediation of anthracene contaminated soil in bio-slurry phase reactor operated in periodic discontinuous batch mode.

    Science.gov (United States)

    Prasanna, D; Venkata Mohan, S; Purushotham Reddy, B; Sarma, P N

    2008-05-01

    Bioremediation of soil-bound anthracene was studied in a series of bio-slurry phase reactors operated in periodic discontinuous/sequencing batch mode under anoxic-aerobic-anoxic microenvironment using native soil microflora. Five reactors were operated for a total cycle period of 144 h (6 days) at soil loading rate of 16.66 kg soil/m(3)/day at 30 +/- 2 degrees C temperature. The performance of the bioreactors was studied at various substrate loading rates (volumetric substrate loading rate (SLR), 0.1, 0.2 and 0.3g anthracene/kg soil/day) with and without bioaugmentation (domestic sewage inoculum; 2 x 10(6) CFU/g of soil). Control reactor (without microflora) showed negligible degradation of anthracene due to the absence of biological activity. The performance of the bio-slurry system with respect to anthracene degradation was found to depend on both substrate loading rate and bioaugmentation. Application of bioaugmentation showed positive influence on the rate of degradation of anthracene. Anthracene degradation data was analysed using different kinetic models to understand the mechanism of bioremediation process in the bio-slurry phase system. Variation in pH/oxidation-reduction potential (ORP), soil microflora and oxygen consumption rate correlated well with the substrate degradation pattern observed during soil slurry phase anthracene degradation.

  17. [Development of bioremediation in China--a review].

    Science.gov (United States)

    Liu, Zhipei; Liu, Shuangjiang

    2015-06-01

    The development of bioremediation for contaminated soil in China during past 30 years was briefly reviewed, mainly including the developing stages, bioremediation techniques/strategies and their applications, and isolation, screening and characterizations of microbial strains for bioremediation as well as their efficiencies in bioremediation of contaminated soils. Finally, future development of bioremediation techniques/strategies and their applications were also discussed.

  18. Microbial community dynamics of soil mesocosms using Orychophragmus violaceus combined with Rhodococcus ruber Em1 for bioremediation of highly PAH-contaminated soil.

    Science.gov (United States)

    Sun, Guang-Dong; Xu, Yang; Liu, Ying; Liu, Zhi-Pei

    2014-12-01

    Understanding of the effects of perturbation strategies on soil microorganisms is helpful in optimizing bioremediation systems and enhancing their efficiency. Four soil mesocosms were constructed for bioremediation of highly polycyclic aromatic hydrocarbon-contaminated soil using the flowering plant Orychophragmus violaceus and/or bacterium Rhodococcus ruber Em1. Bacterial community dynamics were evaluated by 454 pyrosequencing, and Em1 abundance was assessed by quantitative polymerase chain reaction. The results showed that the diversity of the bacterial community increased gradually with time; the degree of increase was in the order mesocosm PE (combination of O. violaceus and Em1), mesocosm WE (Em1), mesocosm PC (O. violaceus only), mesocosm WA (attenuation). Increased diversity may be predictive of PAH degradation. O. violaceus had a marked effect on bacterial community evolution and promoted the growth of Em1. The bacterial community of mesocosm PE gradually separated from the others, as indicated by Venn diagrams and weight-principal component analysis. Abundances of the families Cytophagaceae + Nocardioidaceae + Iamiacaeae (Actinobacteria), and Alcanivoracaceae + Pseodomonadaceae + Xanthomonadaceae (Gammaproteobacteria) were positively correlated with PAH degradation. Our findings help bridge the gap between field bioremediation and laboratory approaches, provide insight into processes of microbial ecological recovery, and will be useful in developing strategies to optimize bioremediation by modifying plant-microbe interaction patterns.

  19. Impact of organic carbon and nutrients mobilized during chemical oxidation on subsequent bioremediation of a diesel-contaminated soil.

    Science.gov (United States)

    Sutton, Nora B; Grotenhuis, Tim; Rijnaarts, Huub H M

    2014-02-01

    Remediation with in situ chemical oxidation (ISCO) impacts soil organic matter (SOM) and the microbial community, with deleterious effects on the latter being a major hurdle to coupling ISCO with in situ bioremediation (ISB). We investigate treatment of a diesel-contaminated soil with Fenton's reagent and modified Fenton's reagent coupled with a subsequent bioremediation phase of 187d, both with and without nutrient amendment. Chemical oxidation mobilized SOM into the liquid phase, producing dissolved organic carbon (DOC) concentrations 8-16 times higher than the untreated field sample. Higher aqueous concentrations of nitrogen and phosphorous species were also observed following oxidation; NH4(+) increased 14-172 times. During the bioremediation phase, dissolved carbon and nutrient species were utilized for microbial growth-yielding DOC concentrations similar to field sample levels within 56d of incubation. In the absence of nutrient amendment, the highest microbial respiration rates were correlated with higher availability of nitrogen and phosphorus species mobilized by oxidation. Significant diesel degradation was only observed following nutrient amendment, implying that nutrients mobilized by chemical oxidation can increase microbial activity but are insufficient for bioremediation. While all bioremediation occurred in the first 28d of incubation in the biotic control microcosm with nutrient amendment, biodegradation continued throughout 187d of incubation following chemical oxidation, suggesting that chemical treatment also affects the desorption of organic contaminants from SOM. Overall, results indicate that biodegradation of DOC, as an alternative substrate to diesel, and biological utilization of mobilized nutrients have implications for the success of coupled ISCO and ISB treatments.

  20. Bioremediation of Contaminated Soil with Oils Residuals through Bioaugmentation and Natural Attenuation

    Directory of Open Access Journals (Sweden)

    Maitê Carla Deon

    2012-04-01

    Full Text Available The potential for soil contamination by oil spills is growing, due to heavy industrialization and economic development of countries. Due to this fact, the bioremediation has become an alternative to remediate areas through the use of biological agents. Two microorganisms, isolated from a lipid-rich effluent, were used in the bioaugmentation of soils contaminated with diesel oil, lubricating oil and soybean oil. Natural attenuation tests were conducted as controls. The removal of diesel fuel at the time of 21 d were of 18.5%, 7.30% and 11.38%, respectively, for the bioaugmentation with isolated I1 and I2 and natural attenuation. The removal of lubricating oil were 41.6%, 14.16% and 6.91% respectively for the bioaugmentation with the isolated I1 and I2 and natural attenuation, while for soybean oil removals were of 87 8%, 73.9% and 49.4%. Considering the processes of bioaugmentatiom and natural attenuation, the bioaugmentation with the isolated I1 showed better results, possibly due to the production of compounds capable of reducing the surface tension during the preparation of bioaugmentation.

  1. Evaluation of the Galega-Rhizobium galegae system for the bioremediation of oil-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Suominen, L.; Jussila, M.M.; Makelainen, K.; Lindstrom, K. [University of Helsinki (Finland). Dept. of Applied Chemistry and Microbiology; Romantschuk, M. [University of Helsinki (Finland). Dept. of Biosciences

    2000-07-01

    The bioremediation potential of a nitrogen-fixing leguminous plant, Galega orientalis, and its microsymbiont Rhizobium galegae was evaluated in BTX (benzene, toluene, xylene)-contaminated soils in microcosm and mesocosm scale. To measure the intrinsic tolerance of the organisms to m-toluate, a model compound representing BTX, G. orientalis and R. galegae were cultivated under increasing concentrations of m-toluate alone and in association with Pseudomonas putida pWWO, a bacterial strain able to degrade toluene-derived compounds. The test plants and rhizobia remained viable in m-toluate concentrations as high as 3000 ppm. Plant growth was inhibited in concentrations higher than 500 ppm, but restituted when plants were transferred into m-toluate-free medium. Nodulation was blocked under the influence of m-toluate, but was restored after the plants were transferred into the non-contaminated media. In the mesocosm assay the Galega plants showed good growth, modulation and nitrogen fixation, and developed a strong rhizosphere in soils contaminated with oil or spiked with 2000 ppm m-toluate. Thus, this legume system has good potential for use on oil-contaminated sites. (author)

  2. Persistence and degrading activity of free and immobilised allochthonous bacteria during bioremediation of hydrocarbon-contaminated soils.

    Science.gov (United States)

    Rivelli, Valentina; Franzetti, Andrea; Gandolfi, Isabella; Cordoni, Sergio; Bestetti, Giuseppina

    2013-02-01

    Rhodococcus sp. and Pseudomonas sp. bioremediation experiments were carried out using free and immobilized cells on natural carrier material (corncob powder) in order to evaluate the feasibility of its use in the bioremediation of hydrocarbon-contaminated soils. Terminal restriction fragment length polymorphism analysis was performed on the 16S rRNA gene as molecular fingerprinting method in order to assess the persistence of inoculated strains in the soil over time. Immobilized Pseudomonas cells degraded hydrocarbons more efficiently in the short term compared to the free ones. Immobilization seemed also to increase cell growth and stability in the soil. Free and immobilized Rhodococcus cells showed comparable degradation percentages, probably due to the peculiarity of Rhodococcus cells to aggregate into irregular clusters in the presence of hydrocarbons as sole carbon source. It is likely that the cells were not properly adsorbed on the porous matrix as a result of the small size of its pores. When Rhodococcus and Pseudomonas cells were co-immobilized on the matrix, a competition established between the two strains, that probably ended in the exclusion of Pseudomonas cells from the pores. The organic matrix might act as protective agent, but it also possibly limited cell density. Nevertheless, when the cells were properly adsorbed on the porous matrix, the immobilization became a suitable bioremediation strategy.

  3. Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes

    Directory of Open Access Journals (Sweden)

    Ruchita Dixit

    2015-02-01

    Full Text Available Heavy metals are natural constituents of the environment, but indiscriminate use for human purposes has altered their geochemical cycles and biochemical balance. This results in excess release of heavy metals such as cadmium, copper, lead, nickel, zinc etc. into natural resources like the soil and aquatic environments. Prolonged exposure and higher accumulation of such heavy metals can have deleterious health effects on human life and aquatic biota. The role of microorganisms and plants in biotransformation of heavy metals into nontoxic forms is well-documented, and understanding the molecular mechanism of metal accumulation has numerous biotechnological implications for bioremediation of metal-contaminated sites. In view of this, the present review investigates the abilities of microorganisms and plants in terms of tolerance and degradation of heavy metals. Also, advances in bioremediation technologies and strategies to explore these immense and valuable biological resources for bioremediation are discussed. An assessment of the current status of technology deployment and suggestions for future bioremediation research has also been included. Finally, there is a discussion of the genetic and molecular basis of metal tolerance in microbes, with special reference to the genomics of heavy metal accumulator plants and the identification of functional genes involved in tolerance and detoxification.

  4. Bioremediation of petroleum hydrocarbo-contaminated soils, comprehensive report, December 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry

    2000-04-01

    The US Department of Energy and the Institute for Ecology of Industrial Areas (IETU), Katowice, Poland have been cooperating in the development and implementation of innovative environmental remediation technologies since 1995. A major focus of this program has been the demonstration of bioremediation techniques to cleanup the soil and sediment associated with a waste lagoon at the Czechowice Oil Refinery (CZOR) in southern Poland. After an expedited site characterization (ESC), treatability study, and risk assessment study, a remediation system was designed that took advantage of local materials to minimize cost and maximize treatment efficiency. U.S. experts worked in tandem with counterparts from the IETU and CZOR throughout this project to characterize, assess and subsequently, design, implement and monitor a bioremediation system. The CZOR, our industrial partner for this project, was chosen because of their foresight and commitment to the use of new approaches for environmental restoration. This program sets a precedent for Poland in which a portion of the funds necessary to complete the project were provided by the company responsible for the problem. The CZOR was named by PIOS (State Environmental Protection Inspectorate of Poland) as one of the top 80 biggest polluters in Poland. The history of the CZOR dates back more than 100 years to its establishment by the Vacuum Oil Company (a U.S. company and forerunner of Standard Oil). More than a century of continuous use of a sulfuric acid-based oil refining method by the CZOR has produced an estimated 120,000 tons of acidic, highly weathered, petroleum sludge. This waste has been deposited into three open, unlined process waste lagoons, 3 meters deep, now covering 3.8 hectares. Initial analysis indicated that the sludge was composed mainly of high molecular weight paraffinic and polynuclear aromatic hydrocarbons (PAHs). The overall objective of this full-scale demonstration project was to characterize, assess

  5. Bioremediation of multi-polluted soil by spent mushroom (Agaricus bisporus) substrate: Polycyclic aromatic hydrocarbons degradation and Pb availability.

    Science.gov (United States)

    García-Delgado, Carlos; Yunta, Felipe; Eymar, Enrique

    2015-12-30

    This study investigates the effect of three spent Agaricus bisporus substrate (SAS) application methods on bioremediation of soil multi-polluted with Pb and PAH from close to a shooting range with respect natural attenuation (SM). The remediation treatments involve (i) use of sterilized SAS to biostimulate the inherent soil microbiota (SSAS) and two bioaugmentation possibilities (ii) its use without previous treatment to inoculate A. bisporus and inherent microbiota (SAS) or (iii) SAS sterilization and further A. bisporus re-inoculation (Abisp). The efficiency of each bioremediation microcosm was evaluated by: fungal activity, heterotrophic and PAH-degrading bacterial population, PAH removal, Pb mobility and soil eco-toxicity. Biostimulation of the native soil microbiology (SSAS) achieved similar levels of PAH biodegradation as SM and poor soil detoxification. Bioaugmented microcosms produced higher PAH removal and eco-toxicity reduction via different routes. SAS increased the PAH-degrading bacterial population, but lowered fungal activity. Abisp was a good inoculum carrier for A. bisporus exhibiting high levels of ligninolytic activity, the total and PAH-degrading bacteria population increased with incubation time. The three SAS applications produced slight Pb mobilization (bisporus re-inoculation (Abisp) proved the best application method to remove PAH, mainly BaP, and detoxify the multi-polluted soil.

  6. Laboratory scale bioremediation of petroleum-contaminated soil by indigenous microorganisms and added Pseudomonas aeruginosa strain Spet.

    Science.gov (United States)

    Karamalidis, A K; Evangelou, A C; Karabika, E; Koukkou, A I; Drainas, C; Voudrias, E A

    2010-08-01

    The bioremediation of petroleum-contaminated soil was investigated at laboratory scale, using three different approaches. The first approach comprised biostimulation of indigenous microorganisms. The second approach involved combination of biostimulation of indigenous microorganisms and bioaugmentation by inoculation with free cells of petroleum degrading Pseudomonas aeruginosa strain Spet. The third was a variation of the second, in which inoculation with encapsulated cells in starch and sodium alginate of P. aeruginosa strain Spet was applied. The bioremediation of the original hydrocarbon-contaminated soil (3.5% dry weight) and that of diluted with clean natural soil at 1:1 w/w were investigated. By providing sufficient moisture, nutrients and aeration by stirring in the original contaminated soil, total concentration of n-alkanes was reduced by 94% after 191 days of treatment and total concentration of 16 polycyclic aromatic compounds by 79%, while for the 1:1 diluted soils biodegradation reached 89% and 79%, respectively. The results showed that bioaugmentation with free or encapsulated P. aeruginosa cells and/or soil dilution had no significant effect on biodegradation.

  7. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs.

    Science.gov (United States)

    Chen, Ming; Xu, Piao; Zeng, Guangming; Yang, Chunping; Huang, Danlian; Zhang, Jiachao

    2015-11-01

    Increasing soil pollution problems have caused world-wide concerns. Large numbers of contaminants such as polycyclic aromatic hydrocarbons (PAHs), petroleum and related products, pesticides, chlorophenols and heavy metals enter the soil, posing a huge threat to human health and natural ecosystem. Chemical and physical technologies for soil remediation are either incompetent or too costly. Composting or compost addition can simultaneously increase soil organic matter content and soil fertility besides bioremediation, and thus is believed to be one of the most cost-effective methods for soil remediation. This paper reviews the application of composting/compost for soil bioremediation, and further provides a critical view on the effects of this technology on microbial aspects in contaminated soils. This review also discusses the future research needs for contaminated soils.

  8. Autochthonous bioaugmentation with environmental samples rich in hydrocarbonoclastic bacteria for bench-scale bioremediation of oily seawater and desert soil.

    Science.gov (United States)

    Ali, Nedaa; Dashti, Narjes; Salamah, Samar; Al-Awadhi, Husain; Sorkhoh, Naser; Radwan, Samir

    2016-05-01

    Oil-contaminated seawater and desert soil batches were bioaugmented with suspensions of pea (Pisum sativum) rhizosphere and soil with long history of oil pollution. Oil consumption was measured by gas-liquid chromatography. Hydrocarbonoclastic bacteria in the bioremediation batches were counted using a mineral medium with oil vapor as a sole carbon source and characterized by their 16S ribosomal RNA (rRNA)-gene sequences. Most of the oil was consumed during the first 2-4 months, and the oil-removal rate decreased or ceased thereafter due to nutrient and oxygen depletion. Supplying the batches with NaNO3 (nitrogen fertilization) at a late phase of bioremediation resulted in reenhanced oil consumption and bacterial growth. In the seawater batches bioaugmented with rhizospheric suspension, the autochthonous rhizospheric bacterial species Microbacterium oxidans and Rhodococcus spp. were established and contributed to oil-removal. The rhizosphere-bioaugmented soil batches selectively favored Arthrobacter nitroguajacolicus, Caulobacter segnis, and Ensifer adherens. In seawater batches bioaugmented with long-contaminated soil, the predominant oil-removing bacterium was the marine species Marinobacter hydrocarbonoclasticus. In soil batches on the other hand, the autochthonous inhabitants of the long-contaminated soil, Pseudomonas and Massilia species were established and contributed to oil removal. It was concluded that the use of rhizospheric bacteria for inoculating seawater and desert soil and of bacteria in long-contaminated soil for inoculating desert soil follows the concept of "autochthonous bioaugmentation." Inoculating seawater with bacteria in long-contaminated soil, on the other hand, merits the designation "allochthonous bioaugmentation."

  9. Laboratory and field scale bioremediation of hexachlorocyclohexane (HCH) contaminated soils by means of bioaugmentation and biostimulation.

    Science.gov (United States)

    Garg, Nidhi; Lata, Pushp; Jit, Simran; Sangwan, Naseer; Singh, Amit Kumar; Dwivedi, Vatsala; Niharika, Neha; Kaur, Jasvinder; Saxena, Anjali; Dua, Ankita; Nayyar, Namita; Kohli, Puneet; Geueke, Birgit; Kunz, Petra; Rentsch, Daniel; Holliger, Christof; Kohler, Hans-Peter E; Lal, Rup

    2016-06-01

    Hexachlorocyclohexane (HCH) contaminated soils were treated for a period of up to 64 days in situ (HCH dumpsite, Lucknow) and ex situ (University of Delhi) in line with three bioremediation approaches. The first approach, biostimulation, involved addition of ammonium phosphate and molasses, while the second approach, bioaugmentation, involved addition of a microbial consortium consisting of a group of HCH-degrading sphingomonads that were isolated from HCH contaminated sites. The third approach involved a combination of biostimulation and bioaugmentation. The efficiency of the consortium was investigated in laboratory scale experiments, in a pot scale study, and in a full-scale field trial. It turned out that the approach of combining biostimulation and bioaugmentation was most effective in achieving reduction in the levels of α- and β-HCH and that the application of a bacterial consortium as compared to the action of a single HCH-degrading bacterial strain was more successful. Although further degradation of β- and δ-tetrachlorocyclohexane-1,4-diol, the terminal metabolites of β- and δ-HCH, respectively, did not occur by the strains comprising the consortium, these metabolites turned out to be less toxic than the parental HCH isomers.

  10. Enhanced bioremediation of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Lu; Yazdi, Hadi [Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO (United States); Jin, Song [Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY (United States); Zuo, Yi [Chevron Energy Technology Company, San Ramon, CA (United States); Fallgren, Paul H. [Department of Civil Engineering, University of Colorado Denver, Denver, CO (United States); Ren, Zhiyong Jason, E-mail: jason.ren@colorado.edu [Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO (United States); Department of Civil Engineering, University of Colorado Denver, Denver, CO (United States)

    2014-06-01

    Highlights: • Pilot bioelectrochemical system showed high-performance hydrocarbon remediation. • Radius of influence characterization demonstrated system efficacy. • Current serves as degradation indicator. - Abstract: Two column-type bioelectrochemical system (BES) modules were installed into a 50-L pilot scale reactor packed with diesel-contaminated soils to investigate the enhancement of passive biodegradation of petroleum compounds. By using low cost electrodes such as biochar and graphite granule as non-exhaustible solid-state electron acceptors, the results show that 82.1–89.7% of the total petroleum hydrocarbon (TPH) was degraded after 120 days across 1–34 cm radius of influence (ROI) from the modules. This represents a maximum of 241% increase of biodegradation compared to a baseline control reactor. The current production in the BESs correlated with the TPH removal, reaching the maximum output of 70.4 ± 0.2 mA/m{sup 2}. The maximum ROI of the BES, deducting influence from the baseline natural attenuation, was estimated to be more than 90 cm beyond the edge of the reactor (34 cm), and exceed 300 cm should a non-degradation baseline be used. The ratio of the projected ROI to the radius of BES (ROB) module was 11–12. The results suggest that this BES can serve as an innovative and sustainable technology for enhanced in situ bioremediation of petroleum hydrocarbons in large field scale, with additional benefits of electricity production and being integrated into existing field infrastructures.

  11. Enhanced bioremediation of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems.

    Science.gov (United States)

    Lu, Lu; Yazdi, Hadi; Jin, Song; Zuo, Yi; Fallgren, Paul H; Ren, Zhiyong Jason

    2014-06-15

    Two column-type bioelectrochemical system (BES) modules were installed into a 50-L pilot scale reactor packed with diesel-contaminated soils to investigate the enhancement of passive biodegradation of petroleum compounds. By using low cost electrodes such as biochar and graphite granule as non-exhaustible solid-state electron acceptors, the results show that 82.1-89.7% of the total petroleum hydrocarbon (TPH) was degraded after 120 days across 1-34 cm radius of influence (ROI) from the modules. This represents a maximum of 241% increase of biodegradation compared to a baseline control reactor. The current production in the BESs correlated with the TPH removal, reaching the maximum output of 70.4 ± 0.2 mA/m(2). The maximum ROI of the BES, deducting influence from the baseline natural attenuation, was estimated to be more than 90 cm beyond the edge of the reactor (34 cm), and exceed 300 cm should a non-degradation baseline be used. The ratio of the projected ROI to the radius of BES (ROB) module was 11-12. The results suggest that this BES can serve as an innovative and sustainable technology for enhanced in situ bioremediation of petroleum hydrocarbons in large field scale, with additional benefits of electricity production and being integrated into existing field infrastructures.

  12. Arsenic accumulating bacteria isolated from soil for possible application in bioremediation.

    Science.gov (United States)

    Majumder, Aparajita; Ghosh, Sagarmoy; Saha, Niharendu; Kole, S C; Sarkar, Supradip

    2013-09-01

    Twenty six arsenic (As) resistant bacterial strains were isolated from As contaminated paddy soil of West Bengal, India. Among them, 10 isolates exhibited higher As resistance capacity and could grow in concentration of 12000 mg I-1 of arsenate (AsV) and 2000 mg l-1 of arsenite (Aslll) in growing medium. Maximum growth was observed at 1000 mg I-1and 100 mg I-1 in case of AsV and Asll respectively. Results of incubation study carried out in basal salt minimal media (BSMY) containing 25 mg l-1 of AsV and Aslll separately showed that the isolates could accumulate 1.03 - 6.41 mg I-1 of AsV and 2.0 - 7.6 mg l-1 of Aslll from the media. The bacterial isolate AGH-21 showed highest As accumulating capacity both for AsV (25.64%) and Aslll (30.4%) under laboratory conditions. The isolates AGH-21 (NCBI accession no: HQ834295) showed highest sequence similarity (98%) with Bacillus sp. and could be used as a potential bioremediator in future to combat with arsenic toxicity.

  13. Bioremediation of oily hypersaline soil and water via potassium and magnesium amendment.

    Science.gov (United States)

    Al-Mailem, D M; Eliyas, M; Radwan, S S

    2013-12-01

    Ten hydrocarbonoclastic halobacterial species and 5 haloarchaeal species that had been isolated on a mineral medium with oil as the sole carbon source grew better and consumed more crude oil, as measured by gas-liquid chromatography, in media receiving between 0.50 and 0.75 mol/L KCl and between 1.50 and 2.25 mol/L MgSO₄. Chemical analysis revealed that within a certain limit, the higher the KCl and MgSO₄ concentrations in the medium, the more K⁺ and Mg²⁺, respectively, was accumulated by cells of all the tested halobacteria and haloarchaea. Also, in experiments in which total natural microbial consortia in hypersaline soil and water samples were directly used as inocula, the consumption of hydrocarbons was enhanced in the presence of the above given concentrations of KCl and MgSO₄. It was concluded that amendment with calculated concentrations of K⁺ and Mg²⁺ could be a promising practice for hydrocarbon bioremediation in hypersaline environments.

  14. Bioremediation of chlorinated pesticide-contaminated soil using anaerobic sludges and surfactant addition.

    Science.gov (United States)

    Baczynski, Tomasz P; Pleissner, Daniel

    2010-01-01

    Methanogenic granular sludge and wastewater fermented sludge were used as inocula for batch tests of anaerobic bioremediation of chlorinated pesticide contaminated soil. Results obtained for both types of biomass were similar: 80 to over 90% of gamma -hexachlorocyclohexane (gamma-HCH), 1,1,1-trichloro-2,2-bis-(4-methoxyphenyl)ethane (methoxychlor) and 1,1,1-trichloro-2,2-bis-(4-chlorophenyl)ethane (DDT) removed in 4-6 weeks. Residual fractions of these pesticides persisted till the end of the 16-week experiment. DDT was degraded through 1,1-dichloro-2,2-bis-(4-chlorophenyl)ethane (DDD). Accumulation of this product corresponded stoichiometrically only to 34-53% of removed DDT, supposedly due to its further transformations, finally resulting in formation of detected 4,4'-dichlorobenzophenone (DBP). Addition of 0.5 mM Tween 80 nonionic surfactant resulted in about a twofold decrease of gamma -HCH and methoxychlor residual concentrations, as well as considerably lower DDD accumulation (7-29%) and higher DBP production. However, 1.25 mM dose of this surfactant applied together with granular sludge brought DDD levels back to that observed for treatments with the sludge alone, also impairing DBP formation.

  15. A polyphasic approach for assessing the suitability of bioremediation for the treatment of hydrocarbon-impacted soil.

    Science.gov (United States)

    Adetutu, Eric M; Smith, Renee J; Weber, John; Aleer, Sam; Mitchell, James G; Ball, Andrew S; Juhasz, Albert L

    2013-04-15

    Bioremediation strategies, though widely used for treating hydrocarbon-contaminated soil, suffer from lack of biodegradation endpoint accountability. To address this limitation, molecular approaches of alkB gene analysis and pyrosequencing were combined with chemical approaches of bioaccessibility and nutrient assays to assess contaminant degrading capacity and develop a strategy for endpoint biodegradation predictions. In long-term hydrocarbon-contaminated soil containing 10.3 g C10-C36 hydrocarbons kg(-1), 454 pyrosequencing detected the overrepresentation of potential hydrocarbon degrading genera such as Pseudomonas, Burkholderia, Mycobacterium and Gordonia whilst amplicons for PCR-DGGE were detected only with alkB primers targeting Pseudomonas. This indicated the presence of potential microbial hydrocarbon degradation capacity in the soil. Using non-exhaustive extraction methods of 1-propanol and HP-β-CD for hydrocarbon bioaccessibility assessment combined with biodegradation endpoint predictions with linear regression models, we estimated 33.7% and 46.7% hydrocarbon removal respectively. These predictions were validated in pilot scale studies using an enhanced natural attenuation strategy which resulted in a 46.4% reduction in soil hydrocarbon content after 320 days. When predicted biodegradation endpoints were compared to measured values, there was no significant difference (P=0.80) when hydrocarbon bioaccessibility was assessed with HP-β-CD. These results indicate that a combination of molecular and chemical techniques that inform microbial diversity, functionality and chemical bioaccessibility can be valuable tools for assessing the suitability of bioremediation strategies for hydrocarbon-contaminated soil.

  16. Bioremediation of carbofuran contaminated soil under saturated condition: soil column study.

    Science.gov (United States)

    Plangklang, Pensri; Reungsang, Alissara; Suphannafai, Wisarut

    2012-06-01

    Disturbed soil columns, 5.8 cm in diameter and 25 cm in length, were used as a basic model to simulate the movement of carbofuran in rice field soil under saturated conditions. Bioaugmentation using a specific carbofuran degrader, Burkholderia sp. PCL3, in free and immobilized cell forms and biostimulation using rice straw as organic amendment were applied with the aim of enhancing the degradation of carbofuran in soil and to prevent the movement of carbofuran along with the flow through. In the abiotic control and the treatment with only indigenous microorganisms, the mass recovery percentage of carbofuran in the effluent was 52.1 and 22.5%, respectively. The application of bioaugmentation or biostimulation significantly enhanced carbofuran degradation in soil and reduced the movement of carbofuran as indicated by a low mass recovery percentage of carbofuran in the effluent of 14.6-15.5%. A low efficiency of carbofuran removal was obtained from the soil column with bioaugmentation together with biostimulation treatments in which the mass recovery percentage of carbofuran in the effluent was in the range of 22.1-22.6%. Sorption of carbofuran to soil, rice straw and corncob, formation of carbofuran metabolite and colony forming unit (CFU) and pH variation with the time were also investigated during column operation.

  17. Bioremediation of Cd-DDT co-contaminated soil using the Cd-hyperaccumulator Sedum alfredii and DDT-degrading microbes

    Science.gov (United States)

    The development of an integrated strategy for the remediation of soil co-contaminated by heavy metals and persistent organic pollutants is a major research priority for the decontamination of soil slated for use in agricultural production. The objective of this study was to develop a bioremediation ...

  18. Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant.

    Science.gov (United States)

    Rahman, K S M; Banat, I M; Thahira, J; Thayumanavan, Tha; Lakshmanaperumalsamy, P

    2002-01-01

    The aim of the present study was to find methods for enhancing rates of hydrocarbon biodegradation in gasoline contaminated soil by ex situ bioremediation. Red soil (RS) was treated with gasoline-spilled soil (GS) from a gasoline station and different combinations of amendments were prepared using (i) mixed bacterial consortium (MC), (ii) poultry litter (PL), (iii) coir pith (CP) and (iv) rhamnolipid biosurfactant (BS) produced by Pseudomonas sp. DS10-129. The study was conducted for a period of 90 days during which bacterial growth, hydrocarbon degradation and growth parameters of Phaseolus aureus RoxB including seed germination, chlorophyll content, shoot and root length were measured. Approximately 67% and 78% of the hydrocarbons were effectively degraded within 60 days in soil samples amended with RS + GS + MC + PL + CP + BS at 0.1% and 1%. Maximum percentage of seed germination, shoot length, root length and chlorophyll content in P. aureus were recorded after 60 days in the above amendments. Further incubation to 90 days did not exhibit significant improvements. Statistical analysis using analysis of variance (ANOVA) and Duncan's multiple range test (DMRT) revealed that the level of amendments, incubation time and combination of amendments significantly influenced bacterial growth, hydrocarbon degradation, seed germination and chlorophyll content at a 1% probability level. All tested additives MC, PL, CP and rhamnolipid BS had significant positive effects on the bioremediation of GS.

  19. Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, K.S.M.; Banat, I.M.; Thahira, J. [University of Ulster, Coleraine (United Kingdom). Biotechnology Group; Thayumanavan, T.; Lakshmanaperumalsamy, P. [Bharathiar University, Tamil Nadu (India). Dept. of Environmental Sciences

    2002-01-01

    The aim of the present study was to find methods for enhancing rates of hydrocarbon biodegradation in gasoline contaminated soil by ex situ bioremediation. Red soil (RS) was treated with gasoline-spilled soil (GS) from a gasoline station and different combinations of amendments were prepared using (i) mixed bacterial consortium (MC), (ii) poultry litter (PL), (iii) coir pith (CP) and (iv) rhamnolipid biosurfactant (BS) produced by Pseudomonas sp. DS10-129. The study was conducted for a period of 90 days during which bacterial growth, hydrocarbon degradation and growth parameters of Phaseolus aureus RoxB including seed germination, chlorophyll content, shoot and root length were measured. Approximately 67% and 78% of the hydrocarbons were effectively degraded within 60 days in soil samples amended with RS + GS + MC + PL + CP + BS at 0.1% and 1%. Maximum percentage of seed germination, shoot length, root length and chlorophyll content in P. aureus were recorded after 60 days in the above amendments. Further incubation to 90 days did not exhibit significant improvements. Statistical analysis using analysis of variance (ANOVA) and Duncan's multiple range test (DMRT) revealed that the level of amendments, incubation time and combination of amendments significantly influenced bacterial growth, hydrocarbon degradation, seed germination and chlorophyll content at a 1% probability level. All tested additives MC, PL, CP and rhamnolipid BS had significant positive effects on the bioremediation of GS. (author)

  20. KINETIC MODELLING AND HALF LIFE STUDY OF ADSORPTIVE BIOREMEDIATION OF SOIL ARTIFICIALLY CONTAMINATED WITH BONNY LIGHT CRUDE OIL

    Directory of Open Access Journals (Sweden)

    Samuel Enahoro Agarry

    2015-06-01

    Full Text Available In this study, comparative potential effects of commercial activated carbon (CAC and plantain peel-derived biochar (PPBC of different particle sizes and dosage to stimulate petroleum hydrocarbon biodegradation in soil were investigated. Microcosms containing soil were spiked with weathered Bonny light crude oil (WBLCO (10% w/w and amended with different particle sizes (0.02, 0.07 and 0.48 mm and dosage (20, 30 and 40 g of CAC and PPBC, respectively. The bioremediation experiments were carried out for a period of 28 days under laboratory conditions. The results showed that there was a positive relationship between the rate of petroleum hydrocarbons reduction and presence of the CAC and PPBC in crude oil contaminated soil microcosms. The WBLCO biodegradation data fitted well to the first-order kinetic model. The model revealed that WBLCO contaminated-soil microcosms amended with CAC and PPBC had higher biodegradation rate constants (k as well as lower half-life times (t1/2 than unamended soil (natural attenuation remediation system. The rate constants increased while half-life times decreased with decreased particle size and increased dosage of amendment agents. ANOVA statistical analysis revealed that WBLCO biodegradation in soil was significantly (p = 0.05 influenced by the addition of CAC and biochar amendment agents, respectively. However, Tukey’s post hoc test (at p = 0.05 showed that there was no significant difference in the bioremediation efficiency of CAC and PPBC. Thus, amendment of soils with biochar has the potential to be an inexpensive, efficient, environmentally friendly and relatively novel strategy to mitigate organic compound-contaminated soil.

  1. Phytoremediation of petroleum-polluted soils: application of Polygonum aviculare and its root-associated (penetrated) fungal strains for bioremediation of petroleum-polluted soils.

    Science.gov (United States)

    Mohsenzadeh, Fariba; Nasseri, Simin; Mesdaghinia, Alireza; Nabizadeh, Ramin; Zafari, Doustmorad; Khodakaramian, Gholam; Chehregani, Abdolkarim

    2010-05-01

    Petroleum-polluted soils are a common disaster in many countries. Bioremediation of oil contamination in soils is based on the stimulation of petroleum-hydrocarbon-degrading fungal and microbial communities. A field study was conducted in a petroleum-contaminated site to find petroleum-resistant plants and their root-associated fungal strains for use in bioremediation of petroleum-polluted soils. Results and observations showed that the amounts of petroleum pollution in nonvegetated soils were several times higher than in vegetated soils. Plants collected from petroleum-polluted areas were identified using morphological characters. Results indicated that seven plant species were growing on the contaminated sites: Alhaji cameleron L. (Fabaceae), Amaranthus retroflexus L. var. retroflexus (Amaranthaceae), Convolvulus arvensis L. (Convolvulaceae), Chrozophora hierosolymitana Spreg. (Euphorbiaceae), Noea mucronata L. (Boraginaceae), Poa sp. (Poaceae), and Polygonum aviculare L. (Polygonaceae). The root-associated fungi of each plant were determined and results showed the presence of 11 species that associated with and also penetrated the roots of plants growing in the polluted areas. Altenaria sp. was common to all of the plants and the others had species-specific distribution within the plants. The largest numbers of fungal species (six) were determined for P. aviculare and Poa sp. in polluted areas. However, the variation of fungal strains in the plants collected from petroleum-polluted areas was greater than for nonpolluted ones. Culture of fungi in oil-contaminated media showed that all the studied fungi were resistant to low petroleum pollution (1% v/v) and a few species, especially Fusarium species, showed resistance to higher petroleum pollution (10% v/v) and may be suitable for bioremediation in highly polluted areas. Bioremediation tests with P. aviculare, with and without fungal strains, showed that application of both the plant and its root-associated fungal

  2. Use of Bacillus thuringiensis supernatant from a fermentation process to improve bioremediation of chlorpyrifos in contaminated soils.

    Science.gov (United States)

    Aceves-Diez, Angel E; Estrada-Castañeda, Kelly J; Castañeda-Sandoval, Laura M

    2015-07-01

    The aim of this research was to investigate the potential of a nutrient-rich organic waste, namely the cell-free supernatant of Bacillus thuringiensis (BtS) gathered from fermentation, as a biostimulating agent to improve and sustain microbial populations and their enzymatic activities, thereby assisting in the bioremediation of chlorpyrifos-contaminated soil at a high dose (70 mg kg(-1)). Experiments were performed for up to 80 d. Chlorpyrifos degradation and its major metabolic product, 3,5,6-trichloro-2-pyridinol (TCP), were quantified by high-performance liquid chromatography (HPLC); total microbial populations were enumerated by direct counts in specific medium; and fluorescein diacetate (FDA) hydrolysis was measured as an index of soil microbial activity. Throughout the experiment, there was higher chlorpyrifos degradation in soil supplemented with BtS (83.1%) as compared to non-supplemented soil. TCP formation and degradation occurred in all soils, but the greatest degradation (30.34%) was observed in soil supplemented with BtS. The total microbial populations were significantly improved by supplementation with BtS. The application of chlorpyrifos to soil inhibited the enzymatic activity; however, this negative effect was counteracted by BtS, inducing an increase of approximately 16% in FDA hydrolysis. These results demonstrate the potential of B. thuringiensis supernatant as a suitable biostimulation agent for enhancing chlorpyrifos and TCP biodegradation in chlorpyrifos-contaminated soils.

  3. Bioremediation of Petroleum and Radiological Contaminated Soils at the Savannah River Site: Laboratory to Field Scale Applications

    Energy Technology Data Exchange (ETDEWEB)

    BRIGMON, ROBINL.

    2004-06-07

    In the process of Savannah River Site (SRS) operations limited amounts of waste are generated containing petroleum, and radiological contaminated soils. Currently, this combination of radiological and petroleum contaminated waste does not have an immediate disposal route and is being stored in low activity vaults. SRS developed and implemented a successful plan for clean up of the petroleum portion of the soils in situ using simple, inexpensive, bioreactor technology. Treatment in a bioreactor removes the petroleum contamination from the soil without spreading radiological contamination to the environment. This bioreactor uses the bioventing process and bioaugmentation or the addition of the select hydrocarbon degrading bacteria. Oxygen is usually the initial rate-limiting factor in the biodegradation of petroleum hydrocarbons. Using the bioventing process allowed control of the supply of nutrients and moisture based on petroleum contamination concentrations and soil type. The results of this work have proven to be a safe and cost-effective means of cleaning up low level radiological and petroleum-contaminated soil. Many of the other elements of the bioreactor design were developed or enhanced during the demonstration of a ''biopile'' to treat the soils beneath a Polish oil refinery's waste disposal lagoons. Aerobic microorganisms were isolated from the aged refinery's acidic sludge contaminated with polycyclic aromatic hydrocarbons (PAHs). Twelve hydrocarbon-degrading bacteria were isolated from the sludge. The predominant PAH degraders were tentatively identified as Achromobacter, Pseudomonas Burkholderia, and Sphingomonas spp. Several Ralstonia spp were also isolated that produce biosurfactants. Biosurfactants can enhance bioremediation by increasing the bioavailability of hydrophobic contaminants including hydrocarbons. The results indicated that the diversity of acid-tolerant PAH-degrading microorganisms in acidic oil wastes may

  4. Combination of bioremediation and electrokinetics for the in-situ treatment of diesel polluted soil: A comparison of strategies.

    Science.gov (United States)

    Mena Ramírez, Esperanza; Villaseñor Camacho, José; Rodrigo, Manuel A; Cañizares, Pablo

    2015-11-15

    The aim of this work is to compare different strategies based on electrokinetic soil flushing and bioremediation for the remediation of diesel-polluted soil. Four options were tested at the laboratory scale: single bioremediation (Bio), performed as a control test; a direct combination of electrokinetic soil flushing and biological technologies (EKSF-Bio); EKSF-Bio with daily polarity reversal of the electric field (PR-EKSF-Bio); and a combination of electrokinetic soil flushing and a permeable reactive biological barrier (EKSF-BioPRB). Four batch experiments of 14 days duration were carried out for comparing technologies at room temperature with an electric field of 1.0 V cm(-1) (in EKSF). A diesel degrading microbial consortium was used. The experimental procedure and some specific details, such as the flushing fluids used, varied depending on the strategy. When using the EKSF-Bio option, a high buffer concentration was required to control the pH, causing soil heating, which negatively affected the biological growth and thus the diesel removal. The PR-EKSF-Bio and the EKSF-BioPRB options attained suitable operating conditions and improved the transport processes for biological growth. Polarity reversal was an efficient option for pH, moisture and temperature control. Homogeneous microbial growth was observed, and approximately 20% of the diesel was removed. The BioPRB option was not as efficient as PR-EKSF-Bio in controlling the operating conditions, but the central biobarrier protected the biological activity. Microbial growth was observed not only in the biobarrier but also in a large portion of the soil, and 29% of the diesel was removed in the short remediation test.

  5. Microarray and real-time PCR analyses of the responses of high-arctic soil bacteria to hydrocarbon pollution and bioremediation treatments.

    Science.gov (United States)

    Yergeau, Etienne; Arbour, Mélanie; Brousseau, Roland; Juck, David; Lawrence, John R; Masson, Luke; Whyte, Lyle G; Greer, Charles W

    2009-10-01

    High-Arctic soils have low nutrient availability, low moisture content, and very low temperatures and, as such, they pose a particular problem in terms of hydrocarbon bioremediation. An in-depth knowledge of the microbiology involved in this process is likely to be crucial to understand and optimize the factors most influencing bioremediation. Here, we compared two distinct large-scale field bioremediation experiments, located at the Canadian high-Arctic stations of Alert (ex situ approach) and Eureka (in situ approach). Bacterial community structure and function were assessed using microarrays targeting the 16S rRNA genes of bacteria found in cold environments and hydrocarbon degradation genes as well as quantitative reverse transcriptase PCR targeting key functional genes. The results indicated a large difference between sampling sites in terms of both soil microbiology and decontamination rates. A rapid reorganization of the bacterial community structure and functional potential as well as rapid increases in the expression of alkane monooxygenases and polyaromatic hydrocarbon-ring-hydroxylating dioxygenases were observed 1 month after the bioremediation treatment commenced in the Alert soils. In contrast, no clear changes in community structure were observed in Eureka soils, while key gene expression increased after a relatively long lag period (1 year). Such discrepancies are likely caused by differences in bioremediation treatments (i.e., ex situ versus in situ), weathering of the hydrocarbons, indigenous microbial communities, and environmental factors such as soil humidity and temperature. In addition, this study demonstrates the value of molecular tools for the monitoring of polar bacteria and their associated functions during bioremediation.

  6. Bioaugmentation and biostimulation as strategies for the bioremediation of a burned woodland soil contaminated by toxic hydrocarbons: a comparative study.

    Science.gov (United States)

    Andreolli, Marco; Lampis, Silvia; Brignoli, Pierlorenzo; Vallini, Giovanni

    2015-04-15

    In this work, the natural attenuation strategy (no soil amendments done) was compared with two different bioremediation approaches, namely bioaugmentation through soil inoculation with a suspension of Trichoderma sp. mycelium and biostimulation by soil addition with a microbial growth promoting formulation, in order to verify the effectiveness of these methods in terms of degradation efficiency towards toxic hydrocarbons, with particular attention to the high molecular weight (HMW) fraction, in a forest area impacted by recent wildfire in Northern Italy. The area under investigation, divided into three parcels, was monitored to figure out the dynamics of decay in soil concentration of C₁₂₋₄₀ hydrocarbons (including isoalkanes, cycloalkanes, alkyl-benzenes and alkyl-naphthalenes besides PAHs) and low molecular weight (LMW) PAHs, following the adoption of the foregoing different remediation strategies. Soil hydrocarbonoclastic potential was even checked by characterizing the autochthonous microbial cenoses. Field experiments proved that the best performance in the abatement of HMW hydrocarbons was reached 60 days after soil treatment through the biostimulation protocol, when about 70% of the initial concentration of HMW hydrocarbons was depleted. Within the same time, about 55% degradation was obtained with the bioaugmentation protocol, whilst natural attenuation allowed only a 45% removal of the starting C12-40 hydrocarbon fraction. Therefore, biostimulation seems to significantly reduce the time required for the remediation, most likely because of the enhancement of microbial degradation through the improvement of nutrient balance in the burned soil.

  7. Microbial community dynamics during the bioremediation process of chlorimuron-ethyl-contaminated soil by Hansschlegelia sp. strain CHL1.

    Directory of Open Access Journals (Sweden)

    Liqiang Yang

    Full Text Available Long-term and excessive application of chlorimuron-ethyl has led to a series of environmental problems. Strain Hansschlegelia sp. CHL1, a highly efficient chlorimuron-ethyl degrading bacterium isolated in our previous study, was employed in the current soil bioremediation study. The residues of chlorimuron-ethyl in soils were detected, and the changes of soil microbial communities were investigated by phospholipid fatty acid (PLFA analysis. The results showed that strain CHL1 exhibited significant chlorimuron-ethyl degradation ability at wide range of concentrations between 10μg kg-1 and 1000μg kg-1. High concentrations of chlorimuron-ethyl significantly decreased the total concentration of PLFAs and the Shannon-Wiener indices and increased the stress level of microbes in soils. The inoculation with strain CHL1, however, reduced the inhibition on soil microbes caused by chlorimuron-ethyl. The results demonstrated that strain CHL1 is effective in the remediation of chlorimuron-ethyl-contaminated soil, and has the potential to remediate chlorimuron-ethyl contaminated soils in situ.

  8. Dynamic changes of bacterial community under bioremediation with Sphingobium sp. LY-6 in buprofezin-contaminated soil.

    Science.gov (United States)

    Liu, Yuan; Hou, Qianqian; Liu, Wanru; Meng, Yawen; Wang, Guangli

    2015-08-01

    Buprofezin is a commonly used chemical with satisfactory biological activity against sucking insect pests, but its disposal can cause serious environmental problems. To study the feasibility of remedying contamination by buprofezin, microcosm experiments were carried out to study the effects of various concentrations of buprofezin and Sphingobium sp. LY-6 on soil bacterial communities in soils collected from vegetable fields. In this experiment, the results showed that buprofezin was effectively degraded by Sphingobium sp. LY-6 in incubation soils. Comparing to non-incubated soils, the cumulative degradation ratio of buprofezin was significantly increased, up to the extent of 85 and 51%, in the initial concentration of 10 and 100 mg kg(-1). The abundance and community structure of the bacterial communities were analysed by real-time PCR (qPCR) and terminal-restriction fragment length polymorphism (T-RFLP). The findings suggest that buprofezin had a negative effect on soil bacterial community, and decreases in bacterial abundance were observed in the later part of the incubation period. The bacterial community structure and diversity shifted significantly at each sampling time. In conclusion, the buprofezin-degrading strain LY-6 played a major role in the bioremediation of the buprofezin-contaminated soil and influenced the dynamics and structure of the bacterial community, demonstrating the great potential of exogenous microorganisms for soil remediation.

  9. Microbial community dynamics during the bioremediation process of chlorimuron-ethyl-contaminated soil by Hansschlegelia sp. strain CHL1.

    Science.gov (United States)

    Yang, Liqiang; Li, Xinyu; Li, Xu; Su, Zhencheng; Zhang, Chenggang; Zhang, Huiwen

    2015-01-01

    Long-term and excessive application of chlorimuron-ethyl has led to a series of environmental problems. Strain Hansschlegelia sp. CHL1, a highly efficient chlorimuron-ethyl degrading bacterium isolated in our previous study, was employed in the current soil bioremediation study. The residues of chlorimuron-ethyl in soils were detected, and the changes of soil microbial communities were investigated by phospholipid fatty acid (PLFA) analysis. The results showed that strain CHL1 exhibited significant chlorimuron-ethyl degradation ability at wide range of concentrations between 10μg kg-1 and 1000μg kg-1. High concentrations of chlorimuron-ethyl significantly decreased the total concentration of PLFAs and the Shannon-Wiener indices and increased the stress level of microbes in soils. The inoculation with strain CHL1, however, reduced the inhibition on soil microbes caused by chlorimuron-ethyl. The results demonstrated that strain CHL1 is effective in the remediation of chlorimuron-ethyl-contaminated soil, and has the potential to remediate chlorimuron-ethyl contaminated soils in situ.

  10. Fate and stability of 14C-labeled 2,4,6-trinitrotoluene in contaminated soil following microbial bioremediation processes.

    Science.gov (United States)

    Weiss, Martin; Geyer, Roland; Günther, Thomas; Kaestner, Matthias

    2004-09-01

    Biological treatment of 2,4,6-trinitrotoluene (TNT) in soil rarely results in complete mineralization of the parent compound. More often, the largest proportion of the TNT carbon is incorporated into the soil organic matrix. Therefore, we evaluated the stability of nonextractable residues from various bioremediation processes of 14C-TNT in soils. The extractable amounts of the residual radioactivity varied between 7 and 33% and thus the nonextractable amount between 93 and 67% (3-15% in fulvic acids, 26-46% in humic acids, and 27-44% in the humin fraction). The residue-containing soils were analyzed for the release of radioactivity after treatment by physical (freeze and thaw, grinding of soil, and steam extraction), chemical (acid rain and addition of metal complexing agent), and biological methods (addition of compost, white rot fungi, radical-generating enzymes, and germination of plants). Freeze and thaw treatment and grinding of the soil did not alter the partitioning of the label significantly. Steam extraction and acid rain extraction increased the water extractability to 11 to 29% and to 51.6% in the native TNT-contaminated soil. The addition of ethylenediamine-tetraacetate (EDTA) increased the extractability from 7 to 12%. After biological treatment, only slightly increased extractability (residues formed during microbial transformation of TNT may be biogenic residues with low mobilization potential and low hazardous impact.

  11. Biodegradation and bioremediation potential of diazinon-degrading Serratia marcescens to remove other organophosphorus pesticides from soils.

    Science.gov (United States)

    Cycoń, Mariusz; Żmijowska, Agnieszka; Wójcik, Marcin; Piotrowska-Seget, Zofia

    2013-03-15

    The ability of diazinon-degrading Serratia marcescens to remove organophosphorus pesticides (OPPs), i.e. chlorpyrifos (CP), fenitrothion (FT), and parathion (PT) was studied in a mineral salt medium (MSM) and in three soils of different characteristics. This strain was capable of using all insecticides at concentration of 50 mg/l as the only carbon source when grown in MSM, and 58.9%, 70.5%, and 82.5% of the initial dosage of CP, FT, and PT, respectively was degraded within 14 days. The biodegradation experiment showed that autochthonous microflora in all soils was characterized by a degradation potential of all tested OPPs; however, the initial lag phases for degradation of CP and FT, especially in sandy soil, were observed. During the 42-day experiment, 45.3%, 61.4% and 72.5% of the initial dose of CP, FT, and PT, respectively, was removed in sandy soil whereas the degradation of CP, FT, and PT in the same period, in sandy loam and silty soils reached 61.4%, 79.7% and 64.2%, and 68.9%, 81.0% and 63.6%, respectively. S. marcescens introduced into sterile soils showed a higher degradation potential (5-13%) for OPPs removal than those observed in non-sterile soil with naturally occurring attenuation. Inoculation of non-sterile soils with S. marcescens enhanced the disappearance rates of all insecticides, and DT50 for CP, FT, and PT was reduced by 20.7, 11.3 and 13.0 days, and 11.9, 7.0 and 8.1 days, and 9.7, 14.5 and 12.6 days in sandy, sandy loam, and silty soils, respectively, in comparison with non-sterile soils with only indigenous microflora. This ability of S. marcescens makes it a suitable strain for bioremediation of soils contaminated with OPPs.

  12. Application of sewage sludge and intermittent aeration strategy to the bioremediation of DDT- and HCH-contaminated soil.

    Science.gov (United States)

    Liang, Qi; Lei, Mei; Chen, Tongbin; Yang, Jun; Wan, Xiaoming; Yang, Sucai

    2014-08-01

    Adding organic amendments to stimulate the biodegradation of pesticides is a subject of ongoing interest. The effect of sewage sludge on the bioremediation of dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH) contaminated soil was investigated in bench scale experiments, and intermittent aeration strategy was also used in this study to form an anaerobic-aerobic cycle. Bioremediation of DDT and HCH was enhanced with the addition of sewage sludge and the intermittent aeration. The removal rates of HCH and DDT were raised by 16.8%-80.8% in 10 days. Sewage sludge increased the organic carbon content from 6.2 to 218 g/kg, and it could also introduce efficient degradation microbes to soil, including Pseudomonas sp., Bacillus sp. and Sphingomonas sp. The unaerated phase enhanced the anaerobic dechlorination of DDT and HCH, and anaerobic removal rates of β-HCH, o,p'-DDT and p,p'-DDT accounted for more than 50% of the total removal rates, but the content of α-HCH declined more in the aerobic phase.

  13. Shifts in microbial community structure during in situ surfactant-enhanced bioremediation of polycyclic aromatic hydrocarbon-contaminated soil.

    Science.gov (United States)

    Wang, Lingwen; Li, Feng; Zhan, Yu; Zhu, Lizhong

    2016-07-01

    This study aims to reveal the microbial mechanism of in situ surfactant-enhanced bioremediation (SEBR). Various concentrations of rhamnolipids, Tween 80, and sodium dodecyl benzenesulfonate (SDBS) were separately sprayed onto soils contaminated with polycyclic aromatic hydrocarbons (PAHs) for years. Within 90 days, the highest level of degradation (95 %) was observed in the soil treated with rhamnolipids (10 mg/kg), followed by 92 % degradation with Tween 80 (50 mg/kg) and 90 % degradation with SDBS (50 mg/kg). The results of the microbial phospholipid fatty acids (PLFAs) suggest that bacteria dominated the enhanced PAH biodegradation (94 % of the maximum contribution). The shift of bacterial community structure during the surfactant treatment was analyzed by using the 16S rRNA gene high-throughput sequencing. In the presence of surfactants, the number of the operational taxonomic units (OTUs) associated with Bacillus, Pseudomonas, and Sphingomonas increased from 2-3 to 15-30 % at the end of the experiment (two to three times of control). Gene prediction with phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) shows that the PAH-degrading genes, such as 1-hydroxy-2-naphthoate dioxygenase and PAH dioxygenase large subunit, significantly increased after the surfactant applications (p bioremediation.

  14. Assessment of the efficiency of in situ bioremediation techniques in a creosote polluted soil: change in bacterial community.

    Science.gov (United States)

    Simarro, R; González, N; Bautista, L F; Molina, M C

    2013-11-15

    This work aimed to assess the effectiveness of different in situ bioremediation treatments (bioaugmentation, biostimulation, bioaugmentation and biostimulation, and natural attenuation) on creosote polluted soil. Toxicity, microbial respiration, creosote degradation and the evolution of bacterial communities were analyzed. Results showed that creosote decreased significantly in all treatments, and no significant differences were found between treatments. However, some specific polycyclic aromatic hydrocarbons (PAH) were degraded to a greater extent by biostimulation. The dominance of low temperatures (8.9 °C average) slowed down microbial creosote and PAH uptake and, despite significantly creosote degradation (>60%) at the end of the experiment, toxicity remained constant and high throughout the biodegradation process. DGGE results revealed that biostimulation showed the highest microbial biodiversity, although at the end of the biodegradation process, community composition in all treatments was different from that of the control assay (unpolluted soil). The active uncultured bacteria belonged to the genera Pseudomonas, Sphingomonas, Flexibacter, Pantoea and Balneimonas, the latter two of which have not been previously described as PAH degraders. The majority of the species identified during the creosote biodegradation belonged to Pseudomonas genus, which has been widely studied in bioremediation processes. Results confirmed that some bacteria have an intrinsic capacity to degrade the creosote without previous exposure.

  15. Effect of electric field on the performance of soil electro-bioremediation with a periodic polarity reversal strategy.

    Science.gov (United States)

    Mena, E; Villaseñor, J; Cañizares, P; Rodrigo, M A

    2016-03-01

    In this work, it is studied the effect of the electric fields (within the range 0.0-1.5 V cm(-1)) on the performance of electrobioremediation with polarity reversal, using a bench scale plant with diesel-spiked kaolinite with 14-d long tests. Results obtained show that the periodic changes in the polarity of the electric field results in a more efficient treatment as compared with the single electro-bioremediation process, and it does not require the addition of a buffer to keep the pH within a suitable range. The soil heating was not very important and it did not cause a change in the temperature of the soil up to values incompatible with the life of microorganisms. Low values of water transported by the electro-osmosis process were attained with this strategy. After only 14 d of treatment, by using the highest electric field studied in this work (1.5 V cm(-1)), up to 35.40% of the diesel added at the beginning of the test was removed, value much higher than the 10.5% obtained by the single bioremediation technology in the same period.

  16. Engineering Pseudomonas putida KT2440 for simultaneous degradation of organophosphates and pyrethroids and its application in bioremediation of soil.

    Science.gov (United States)

    Zuo, Zhenqiang; Gong, Ting; Che, You; Liu, Ruihua; Xu, Ping; Jiang, Hong; Qiao, Chuanling; Song, Cunjiang; Yang, Chao

    2015-06-01

    Agricultural soils are usually co-contaminated with organophosphate (OP) and pyrethroid pesticides. To develop a stable and marker-free Pseudomonas putida for co-expression of two pesticide-degrading enzymes, we constructed a suicide plasmid with expression cassettes containing a constitutive promoter J23119, an OP-degrading gene (mpd), a pyrethroid-hydrolyzing carboxylesterase gene (pytH) that utilizes the upp gene as a counter-selectable marker for upp-deficient P. putida. By introduction of suicide plasmid and two-step homologous recombination, both mpd and pytH genes were integrated into the chromosome of a robust soil bacterium P. putida KT2440 and no selection marker was left on chromosome. Functional expression of mpd and pytH in P. putida KT2440 was demonstrated by Western blot analysis and enzyme activity assays. Degradation experiments with liquid cultures showed that the mixed pesticides including methyl parathion, fenitrothion, chlorpyrifos, permethrin, fenpropathrin, and cypermethrin (0.2 mM each) were degraded completely within 48 h. The inoculation of engineered strain (10(6) cells/g) to soils treated with the above mixed pesticides resulted in a higher degradation rate than in noninoculated soils. All six pesticides could be degraded completely within 15 days in fumigated and nonfumigated soils with inoculation. Theses results highlight the potential of the engineered strain to be used for in situ bioremediation of soils co-contaminated with OP and pyrethroid pesticides.

  17. Bioremediation of chlorimuron-ethyl-contaminated soil by Hansschlegelia sp. strain CHL1 and the changes of indigenous microbial population and N-cycling function genes during the bioremediation process.

    Science.gov (United States)

    Yang, Liqiang; Li, Xinyu; Li, Xu; Su, Zhencheng; Zhang, Chenggang; Zhang, Huiwen

    2014-06-15

    Long-term and excessive application of the herbicide chlorimuron-ethyl has led to soil degradation and crop rotation barriers. In the current study, we isolated bacterial strain Hansschlegelia sp. CHL1, which can utilize chlorimuron-ethyl as its sole carbon and energy source, and investigated its application in soil bioremediation. Indigenous microbial populations and N-cycling function in the soil were also investigated during the bioremediation process by monitoring the copy numbers of bacterial and fungal marker genes, as well as N-cycling functional genes (nifH, amoA, nirS, and nirK). Results showed that >95% of chlorimuron-ethyl could be degraded within 45 days in soils inoculated with CHL1. Inoculation at two time points resulted in a higher remediation efficiency and longer survival time than a single inoculation. At the end of the 60-day incubation, the copy numbers of most indicator genes were recovered to the level of the control, even in the single-inoculation soils. A double inoculation was necessary for recovery of nifH. However, the abundance of nirK and ammonia-oxidizing bacterial genes were significantly inhibited regardless of inoculum. The results suggested that CHL1 is effective for the remediation of chlorimuron-ethyl-contaminated soil, and could partially reduce the toxic effects of chlorimuron-ethyl on soil microorganisms.

  18. The impact on the soil microbial community and enzyme activity of two earthworm species during the bioremediation of pentachlorophenol-contaminated soils.

    Science.gov (United States)

    Lin, Zhong; Zhen, Zhen; Wu, Zhihao; Yang, Jiewen; Zhong, Laiyuan; Hu, Hanqiao; Luo, Chunling; Bai, Jing; Li, Yongtao; Zhang, Dayi

    2016-01-15

    The ecological effect of earthworms on the fate of soil pentachlorophenol (PCP) differs with species. This study addressed the roles and mechanisms by which two earthworm species (epigeic Eisenia fetida and endogeic Amynthas robustus E. Perrier) affect the soil microbial community and enzyme activity during the bioremediation of PCP-contaminated soils. A. robustus removed more soil PCP than did E. foetida. A. robustus improved nitrogen utilisation efficiency and soil oxidation more than did E. foetida, whereas the latter promoted the organic matter cycle in the soil. Both earthworm species significantly increased the amount of cultivable bacteria and actinomyces in soils, enhancing the utilisation rate of the carbon source (i.e. carbohydrates, carboxyl acids, and amino acids) and improving the richness and evenness of the soil microbial community. Additionally, earthworm treatment optimized the soil microbial community and increased the amount of the PCP-4-monooxygenase gene. Phylogenic classification revealed stimulation of indigenous PCP bacterial degraders, as assigned to the families Flavobacteriaceae, Pseudomonadaceae and Sphingobacteriacea, by both earthworms. A. robustus and E. foetida specifically promoted Comamonadaceae and Moraxellaceae PCP degraders, respectively.

  19. Enhanced bioremediation process: A case study of effectiveness on PAH contamination in soils at a former wood-treating site

    Energy Technology Data Exchange (ETDEWEB)

    Mills, W.F. [Miltech Environmental, Inc., Tucker, GA (United States); Matens, B.L. [Dames and Moore, Baton Rouge, LA (United States); Buchalter, D.S. [EMCON, Norcross, GA (United States); Montgomery, D.N. [Georgia Dept. of Transportation, Forest Park, GA (United States). Office of Materials and Research

    1997-12-31

    The Enhanced Bioremediation Process (EBP) technology is an exsitu biodegradation process that utilizes bacterial and fungal inoculants to effectively oxidize and bioremediate persistent hard to degrade organics in contaminated soils. The EBP fungal inoculants produce highly reactive extracellular peroxidase enzymes that can oxidize and degrade lignin, a complex, natural polymer composed of phenylpropane units that is resistant to decay. The lignin peroxidase enzymes are highly nonspecific because of their ability to oxidize the heterogenic lignin molecule, and are capable of degrading a wide variety of complex organic compounds. Because the chemical sub-structure of lignin (1,2-aryl diethers, alkyl sidechains and connected aryl systems) resembles that of many persistent organic compounds, the EBP inoculants are very effective in biodegrading similar hazardous organic pollutants in contaminated soils. As an inadvertent by-product of these biochemical processes, the EBP organisms reduce the organic constituents to a soluble form. In a soluble form, the indigenous organisms can further degrade the contaminants. The technology is applied in such a manner as to maximize the activity of the indigenous organisms by establishing optimum growth conditions. The efficacy of the EBP technology in degrading persistent environmental pollutants has been documented at both the bench scale and pilot demonstration levels. A recently completed field pilot demonstration was conducted at a creosote contaminated site. The demonstration entailed the treatment of approximately 700 tons of soil contaminated with PAH constituents. Laboratory analyses of pre and post-treated soils indicate that total average PAH concentrations in many samples were reduced by greater than 91 percent over a two month treatment period.

  20. Bioremediation of soil contaminated by diesel oil Biorremediação de solos contaminados por óleo diesel

    Directory of Open Access Journals (Sweden)

    Fatima Menezes Bento

    2003-11-01

    Full Text Available Were evaluated natural attenuation, biostimulation and bioaugmentation on the degradation of total petroleum hydrocarbons (TPH in soils contaminated with diesel oil. Bioaugmentation showed the greatest degradation in the light (C12 - C23 fractions (72.7% and heavy (C23 - C40 fractions of TPH (75.2% and natural attenuation was more effective than biostimulation. The greatest dehydrogenase activity was observed upon bioaugmentation of the Long Beach soil (3.3-fold and the natural attenuation of the Hong Kong soil sample (4.0-fold. The number of diesel oil degrading microorganisms and heterotrophic population was not influenced by the bioremediation treatments. The best approach for bioremediation of soil contaminated with diesel oil is the inoculum of microorganisms pre-selected from their own environment.Avaliou-se a degradação de hidrocarbonetos de petróleo (HP em solos contaminados com óleo diesel através da atenuação natural, bioestimulação e bioaumentação. A bioaumentação apresentou a maior degradação da fração leve (72,6% e da fração pesada (75,2% de HP e a atenuação natural foi mais efetiva do que a bioestimulação. A maior atividade da dehidrogenase no solo Long Beach e Hong Kong foi observada nos tratamentos bioaumentação e atenuação natural, respectivamente. O número de microrganismos degradadores de diesel e a população de heterotróficos não foi influenciada pelas técnicas de biorremediação. A melhor performance para a biorremediação do solo contaminado com diesel foi obtida quando foram adicionados microrganismos pré-selecionados do ambiente contaminado.

  1. Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils

    NARCIS (Netherlands)

    Sutton, N.B.; Langenhoff, A.A.M.; Hidalgo Lasso, D.; Zaan, van der B.M.; Gaans, van P.; Maphosa, F.; Smidt, H.; Grotenhuis, J.T.C.; Rijnaarts, H.H.M.

    2014-01-01

    To improve the coupling of in situ chemical oxidation and in situ bioremediation, a systematic analysis was performed of the effect of chemical oxidation with Fenton's reagent, modified Fenton's reagent, permanganate, or persulfate, on microbial diversity and activity during 8 weeks of incubation in

  2. Modelling and monitoring of Aquifer Thermal Energy Storage : impacts of soil heterogeneity, thermal interference and bioremediation

    NARCIS (Netherlands)

    Sommer, W.T.

    2015-01-01

    Modelling and monitoring of Aquifer Thermal Energy Storage Impacts of heterogeneity, thermal interference and bioremediation Wijbrand Sommer
    PhD thesis, Wageningen University, Wageningen, NL (2015)
    ISBN 978-94-6257-294-2 Abstract Aquifer thermal energy storage (ATES) is

  3. PROTOCOL FOR DETERMINING BIOAVAILABILITY AND BIOKINETICS OF ORGANIC POLLUTANTS IN DISPERSED, COMPACTED AND INTACT SOIL SYSTEMS TO ENHANCE IN SITU BIOREMEDIATION

    Science.gov (United States)

    The development of effective in situ and on-site bioremediation technologies can facilitate the cleanup of chemically-contaminated soil sites. Knowledge of biodegradation kinetics and bioavailability of organic pollutants can facilitate decisions on the efficacy of in situ and o...

  4. Bioremediation of crude oil-polluted soil--effect of poultry droppings and natural rubber processing sludge application on biodegradation of petroleum hydrocarbons.

    Science.gov (United States)

    Okieimen, C O; Okieimen, F E

    2005-01-01

    Laboratory bioremediation experiments were carried out on crude oil-polluted soil samples by applying various amounts of poultry droppings and natural rubber processing sludge as nutrient supplements at 29 degrees and using slurry-phase and solid-phase biodegradation techniques. Changes in the total hydrocarbon content of the soil were determined using a spectrophotometric technique as a function of time. It was found that the extent of crude oil degradation in untreated soil samples was markedly lower (by up to 100%) than in the soil samples treated with nutrient supplements. Hydrocarbon degradation efficiency was higher in the slurry-phase than in the soil-phase technique.

  5. In-situ bioremediation of contaminated soils from Rodna mining areas from Bistrița-Năsăud county

    Directory of Open Access Journals (Sweden)

    Cornel Negrusier

    2016-11-01

    Full Text Available Soil ecosystems contaminated with heavy metals can cause significant damages to the environment and human health due to the mobility and solubility capacity of the contaminants. This research was carried out to set up a suitable bioremediation scheme for cleaning up the soil from the mining sites of Anieș and Glod Valley from Bistrița-Năsăud county. Based on the investigations that have been made (soil colour, pH, organic content of the soil, plant inventory phytoremediation seemed to be the most effective and environmentally-friendly method that could be used to neutralize or remove heavy metals from the soil.

  6. Bioremediation of polychlorinated-p-dioxins/dibenzofurans contaminated soil using simulated compost-amended landfill reactors under hypoxic conditions.

    Science.gov (United States)

    Chen, Wei-Yu; Wu, Jer-Horng; Lin, Shih-Chiang; Chang, Juu-En

    2016-07-15

    Compost-amended landfill reactors were developed to reduce polychlorinated-p-dioxins and dibenzofurans (PCDD/Fs) in contaminated soils. By periodically recirculating leachate and suppling oxygen, the online monitoring of the oxidation reduction potential confirmed that the reactors were maintained under hypoxic conditions, with redox levels constantly fluctuating between -400 and +80mV. The subsequent reactor operation demonstrated that PCDD/F degradation in soil could be facilitated by amending compost originating from the cow manure and waste sludge and that the degradation might be affected by the availability of easily degradable substrates in the soil and compost. The pyrosequencing analysis of V4/V5 regions of bacterial 16S rRNA genes suggested that species richness of the soil microbial community was increased by a factor of 1.37-1.61. Although the bacterial community varied with the compost origin and changed markedly during reactor operation, it was dominated by Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, and Firmicutes. The aerotolerant anaerobic Sedimentibacter and Propionibacterium spp., and the uncultured Chloroflexi group could be temporarily induced to a high abundance by amending the cow manure compost; the bacterial growths were associated with the rapid degradation of PCDD/Fs. Overall, the novel bioremediation method for PCDD/F-contaminated soils using hypoxic conditions was effective, simple, energy saving, and thus easily practicable.

  7. Biodegradation of the organophosphorus insecticide diazinon by Serratia sp. and Pseudomonas sp. and their use in bioremediation of contaminated soil.

    Science.gov (United States)

    Cycoń, Mariusz; Wójcik, Marcin; Piotrowska-Seget, Zofia

    2009-07-01

    An enrichment culture technique was used for the isolation of bacteria responsible for biodegradation of diazinon in soil. Three bacterial strains were screened and identified by MIDI-FAME profiling as Serratia liquefaciens, Serratia marcescens and Pseudomonas sp. All isolates were able to grow in mineral salt medium (MSM) supplemented with diazinon (50 mgL(-1)) as a sole carbon source, and within 14d 80-92% of the initial dose of insecticide was degraded by the isolates and their consortium. Degradation of diazinon was accelerated when MSM was supplemented with glucose. However, this process was linked with the decrease of pH values, after glucose utilization. Studies on biodegradation in sterilized soil showed that isolates and their consortium exhibited efficient degradation of insecticide (100mg kg(-1) soil) with a rate constant of 0.032-0.085d(-1), and DT(50) for diazinon was ranged from 11.5d to 24.5d. In contrast, degradation of insecticide in non-sterilized soil, non-supplemented earlier with diazinon, was characterized by a rate constant of 0.014d(-1) and the 7-d lag phase, during which only 2% of applied dose was degraded. The results suggested a strong correlation between microbial activity and chemical processes during diazinon degradation. Moreover, isolated bacterial strains may have potential for use in bioremediation of diazinon-contaminated soils.

  8. Enhanced degradation of bioremediation residues in petroleum-contaminated soil using a two-liquid-phase bioslurry reactor.

    Science.gov (United States)

    Lu, Mang; Zhang, Zhongzhi; Sun, Shanshan; Wang, Qinfang; Zhong, Weizhang

    2009-09-01

    A study was performed to determine the potential of two-liquid-phase (TLP) bioslurry reactors using silicon oil as solvent for degradation of residual contaminants in petroleum-contaminated soil. The residues were characterized by gas chromatography-mass spectrometry and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. This allowed for the identification of a mixture of residual biomarkers, metabolic byproducts, oxygenated and hetero-polynuclear aromatic hydrocarbons in the contaminated soil. The removal amount of total extractable organics (TEO) was 15900mgkg(-1) soil in the TLP reactor within 12weeks. However, TEO remained intact in the bioslurry reactor without the addition of silicon oil for the duration of the experiment, due to high toxicity of metabolites to the microorganisms. The availability of TEO was calculated using a mild extraction with Triton X-100, and the amount of TEO extracted was in accord with the amount of biodegraded TEO. Significantly reduced toxicity in soil was observed at week 12 through TLP remediation. Dehydrogenase activity in the bioslurry reactor was strongly suppressed. Fluorescein diacetate was significantly hydrolyzed by the composition of bioremediation residues in the contaminated soil. Microbial adhesion to the solvent was revealed by the determination of microbial activity in the water-immiscible-liquid.

  9. Development of Field Guidance for Assessing Feasibility of Intrinsic Bioremediation to Restore Petroleum-Contaminated Soils

    Science.gov (United States)

    1994-09-01

    oxygen in ground water is limited by the solubility of oxygen. At 25°C, the maximum solubility of oxygen, according to Henry’s Law, is 8.32 mg/L ( Manahan ... Manahan , 1991:94). Nitrate. The use of nitrate as an anaerobic electron acceptor is wildly observed in intrinsic bioremediation. The primary reason is...Physical-Chemical Properties and Environm gll Fate for Organic Chemicals. Vol I. II. III. Boca Raton: Lewis Publishers, 1992. Manahan , Stanley E

  10. The ecological and physiological responses of the microbial community from a semiarid soil to hydrocarbon contamination and its bioremediation using compost amendment.

    Science.gov (United States)

    Bastida, F; Jehmlich, N; Lima, K; Morris, B E L; Richnow, H H; Hernández, T; von Bergen, M; García, C

    2016-03-01

    The linkage between phylogenetic and functional processes may provide profound insights into the effects of hydrocarbon contamination and biodegradation processes in high-diversity environments. Here, the impacts of petroleum contamination and the bioremediation potential of compost amendment, as enhancer of the microbial activity in semiarid soils, were evaluated in a model experiment. The analysis of phospholipid fatty-acids (PLFAs) and metaproteomics allowed the study of biomass, phylogenetic and physiological responses of the microbial community in polluted semiarid soils. Petroleum pollution induced an increase of proteobacterial proteins during the contamination, while the relative abundance of Rhizobiales lowered in comparison to the non-contaminated soil. Despite only 0.55% of the metaproteome of the compost-treated soil was involved in biodegradation processes, the addition of compost promoted the removal of polycyclic aromatic hydrocarbons (PAHs) and alkanes up to 88% after 50 days. However, natural biodegradation of hydrocarbons was not significant in soils without compost. Compost-assisted bioremediation was mainly driven by Sphingomonadales and uncultured bacteria that showed an increased abundance of catabolic enzymes such as catechol 2,3-dioxygenases, cis-dihydrodiol dehydrogenase and 2-hydroxymuconic semialdehyde. For the first time, metaproteomics revealed the functional and phylogenetic relationships of petroleum contamination in soil and the microbial key players involved in the compost-assisted bioremediation.

  11. Evaluation of hydrocarbons and organochlorine pesticides and their tolerant microorganisms from an agricultural soil to define its bioremediation feasibility.

    Science.gov (United States)

    Islas-García, Alejandro; Vega-Loyo, Libia; Aguilar-López, Ricardo; Xoconostle-Cázares, Beatriz; Rodríguez-Vázquez, Refugio

    2015-01-01

    The concentrations of hydrocarbons and organochlorine pesticides (OCPs), nutrients and tolerant microorganisms in an agricultural soil from a locality in Tepeaca, Puebla, Mexico, were determined to define its feasibility for bioremediation. The OCPs detected were heptachlor, aldrin, trans-chlordane, endosulfán I, endosulfán II, 1,1,1-bis-(4-chlorophenyl)-2,2-trichloroethane (4,4'-DDT), 1,1-bis-(4-chlorophenyl)-2,2-dichloroethene (4,4'-DDE) and endrin aldehyde, with values of 0.69-30.81 ng g(-1). The concentration of hydrocarbons in the soil of Middle Hydrocarbons Fraction (MHF), C10 to C28, was 4608-27,748 mg kg(-1) and 1117-19,610 mg kg(-1) for Heavy Hydrocarbons Fraction (HHF), C28 to C35, due to an oil spill from the rupture of a pipeline. The soil was deficient in nitrogen (0.03-0.07%) and phosphorus (0 ppm), and therefore it was advisable to fertilize to bio-stimulate the native microorganisms of soil. In the soil samples, hydrocarbonoclast fungi 3.72 × 10(2) to 44.6 × 10(2) CFU g(-1) d.s. and hydrocarbonoclast bacteria (0.17 × 10(5) to 8.60 × 10(5) CFU g(-1) d.s.) were detected, with a tolerance of 30,000 mg kg(-1) of diesel. Moreover, pesticideclast fungi (5.13 × 10(2) to 42.2 × 10(2) CFU g(-1) d.s.) and pesticideclast bacteria (0.15 × 10(5) to 9.68 × 10(5) CFU g(-1) d.s.) were determined with tolerance to 20 mg kg(-1) of OCPs. Fungi and bacteria tolerant to both pollutants were also quantified. Therefore, native microorganisms had potential to be stimulated to degrade hydrocarbons and pesticides or both pollutants. The concentration of pollutants and the microbial activity analyzed indicated that bioremediation of the soil contaminated with hydrocarbons and pesticides using bio-stimulation of native microorganisms was feasible.

  12. 浅谈污染土壤的生物修复%Discussion on Bioremediation of Polluted Soil

    Institute of Scientific and Technical Information of China (English)

    刘有哲

    2015-01-01

    随着我国人口的迅速增长、社会工业化速度的加快.在经济迅速发展的同时,人类向自然界中排放的有毒和有害化学物质越来越多,这对我们的环境,尤其是对我们的土壤污染极其严重.本文论述了土壤环境的特征、土壤中主要的污染物质、污染土壤生态修复的基本原理、以及对生物修复方面研究的展望.%With the rapid growth of China's population,the high speed of social industrialization and the rapid development of economy, human beings discharge more and more poisonous and harmful chemicals to the nature, which is very serious pollution to the environment, especially to the soil. This paper discusses the characteristics of soil environment,the main pollutants in soil,the basic principle of soil ecological restoration and the prospect of the research on bioremediation.

  13. Solarization and biosolarization using organic wastes for the bioremediation of soil polluted with terbuthylazine and linuron residues.

    Science.gov (United States)

    Fenoll, José; Hellín, Pilar; Flores, Pilar; Lacasa, Alfredo; Navarro, Simón

    2014-10-01

    Strategies for remediation of polluted soils are needed to accelerate the degradation and natural attenuation of pesticides. This study was conducted to assess the effect of solarization (S) and biosolarization (BS) during the summer season using organic wastes (composted sheep manure and sugar beet vinasse) for the bioremediation of soil containing residues of terbuthylazine and linuron. The results showed that both S and BS enhanced herbicide dissipation rates compared with the non-disinfected control, an effect which was attributed to the increased soil temperature and organic matter. Linuron showed similar behavior under S and BS conditions. However, terbuthylazine was degraded to a greater extent in the biosolarization experiment using sugar beet vinasse than in the both the solarization and biosolarization experiments using composted sheep manure treatments. The main organic intermediates detected during the degradation of terbuthylazine and linuron were identified, enabling the main steps of degradation to be proposed. The results confirm that both S and BS techniques can be considered as a remediation tools for polluted soils containing these herbicides.

  14. [Comparison of bioremediation of polycyclic aromatic hydrocarbons (PAHs) contaminated soil by composting in the spring and winter].

    Science.gov (United States)

    Fang, Yun; Zhao, Xiu-Lan; Wei, Yuan-Song; Yang, Yu; Shen, Ying; Zheng, Jia-Xi

    2010-06-01

    In this study, lab-scale bioremediation experiments of soil contaminated by polycyclic aromatic hydrocarbon (PAHs) with aerated composting were compared in the Spring and Winter. Results showed that PAHs degradation rate in the winter was higher than that in the spring, and the total PAHs degradation rates were over 70% for both Pile 1 (the dry weight ratio of soil, swine manure and sawdust as 1: 1: 1) and Pile 2 (the dry weight ratio of soil, swine manure and sawdust as 1: 3: 1), but the PAHs degradation rate of Pile 1 as 74.61% was higher than that of Pile 2 the degradation rates of low, middle, high benzene-ring types PAHs were 66.46%, 79.12%, 75.88%, respectively. After composting most of kinds of PAHs contents in soil were less than 1 000 microg/kg (dry weight) except BbF, for example, BbF contents of these two piles in the Spring, 25 000 microg/kg and 20 000 microg/kg, respectively, were much higher than those in the winter experiments, both less than 5 000 microg/kg. The first reaction order model was used to simulate degradation of PAHs during composting, and results showed that the model was fitted better in winter (R2 > 0.6) than in spring, and the half-life of PAHs degradation in winter was about 13 d.

  15. Phytoremediation of Polycyclic Aromatic Hydrocarbons in Soils Artificially Polluted Using Plant-Associated-Endophytic Bacteria and Dactylis glomerata as the Bioremediation Plant.

    Science.gov (United States)

    Gałązka, Ann; Gałązka, Rafał

    2015-01-01

    The reaction of soil microorganisms to the contamination of soil artificially polluted with polycyclic aromatic hydrocarbons (PAHs) was evaluated in pot experiments. The plant used in the tests was cock's foot (Dactylis glomerata). Three different soils artificially contaminated with PAHs were applied in the studies. Three selected PAHs (anthracene, phenanthrene, and pyrene) were used at the doses of 100, 500, and 1000 mg/kg d.m. of soil and diesel fuel at the doses of 100, 500, and 1000 mg/kg d.m. of soil. For evaluation of the synergistic effect of nitrogen fixing bacteria, the following strains were selected: associative Azospirillum spp. and Pseudomonas stutzerii. Additionally, in the bioremediation process, the inoculation of plants with a mixture of the bacterial strains in the amount of 1 ml suspension per 500 g of soil was used. Chamber pot-tests were carried out in controlled conditions during four weeks of plant growth period. The basic physical, microbiological and biochemical properties in contaminated soils were determined. The obtained results showed a statistically important increase in the physical properties of soils polluted with PAHs and diesel fuel compared with the control and also an important decrease in the content of PAHs and heavy metals in soils inoculated with Azospirillum spp. and P. stutzeri after cock's foot grass growth. The bioremediation processes were especially intensive in calcareous rendzina soil artificially polluted with PAHs.

  16. Bioremediation of hydrocarbon-contaminated soils in cold regions: Development of a pre-optimized biostimulation biopile-scale field assay in Antarctica.

    Science.gov (United States)

    Martínez Álvarez, L M; Ruberto, Lam; Lo Balbo, A; Mac Cormack, W P

    2017-03-02

    Bioremediation proved to be an effective approach to deal with soil contamination, especially in isolated, cold environments such as Antarctica. Biostimulation, involving the addition of macronutrients -mainly nitrogen and phosphorous- is considered the simplest and cheapest bioremediation process. Optimizing the levels of these nutrients is a key step prior to the application of a biostimulation strategy. In this work, N and P levels, optimized by Response Surface Methodology (RSM) at lab-scale, were applied to an Antarctic hydrocarbon contaminated soil. The process was performed on-site, using high density polyethylene geomembranes (800μm) to isolate treated soil from the surroundings and under environmental conditions at Carlini station (Antarctica) during 50days. Two 0.5ton biopiles were used as experimental units; a control biopile (CC), and a biostimulated system (BS), amended with N and P. At the end of the assay, hydrocarbon removal was significantly higher in BS system compared to CC (75.79% and 49.54% respectively), showing that the applied strategy was effective enough to perform a field-assay in Antarctica that significantly reduce soil contamination levels; and proving that RSM represents a fundamental tool for the optimization of nutrient levels to apply during bioremediation of fuel contaminated cold soils.

  17. Bioremediation of polycyclic aromatic hydrocarbon-contaminated saline-alkaline soils of the former Lake Texcoco.

    Science.gov (United States)

    Betancur-Galvis, L A; Alvarez-Bernal, D; Ramos-Valdivia, A C; Dendooven, L

    2006-03-01

    Polycyclic aromatic hydrocarbons (PAHs) such as phenanthrene, anthracene and Benzo[a]pyrene (BaP) are toxic for the environment. Removing these components from soil is difficult as they are resistant to degradation and more so in soils with high pH and large salt concentrations as in soil of the former lake Texcoco, but stimulating soil micro-organisms growth by adding nutrients might accelerate soil restoration. Soil of Texcoco and an agricultural Acolman soil, which served as a control, were spiked with phenanthrene, anthracene and BaP, added with or without biosolid or inorganic fertilizer (N, P), and dynamics of PAHs, N and P were monitored in a 112-day incubation. Concentrations of phenanthrene did not change significantly in sterilized Acolman soil, but decreased 2-times in unsterilized soil and >25-times in soil amended with biosolid and NP. The concentration of phenanthrene in unsterilized soil of Texcoco was 1.3-times lower compared to the sterilized soil, 1.7-times in soil amended with NP and 2.9-times in soil amended with biosolid. In unsterilized Acolman soil, degradation of BaP was faster in soil amended with biosolid than in unamended soil and soil amended with NP. In unsterilized soil of Texcoco, degradation of BaP was similar in soil amended with biosolid and NP but faster than in the unamended soil. It was found that application of biosolid and NP increased degradation of phenanthrene, anthracene and BaP, but to a different degree in alkaline-saline soil of Texcoco compared to an agricultural Acolman soil.

  18. Biosurfactant from red ash trees enhances the bioremediation of PAH contaminated soil at a former gasworks site.

    Science.gov (United States)

    Blyth, Warren; Shahsavari, Esmaeil; Morrison, Paul D; Ball, Andrew S

    2015-10-01

    Polycyclic aromatic hydrocarbons (PAHs) are persistent contaminants that accumulate in soil, sludge and on vegetation and are produced through activities such as coal burning, wood combustion and in the use of transport vehicles. Naturally occurring surfactants have been known to enhance PAH-removal from soil by improving PAH solubilization thereby increasing PAH-microbe interactions. The aim of this research was to determine if a biosurfactant derived from the leaves of the Australian red ash (Alphitonia excelsa) would enhance bioremediation of a heavily PAH-contaminated soil and to determine how the microbial community was affected. Results of GC-MS analysis show that the extracted biosurfactant was significantly more efficient than the control in regards to the degradation of total 16 US EPA priority PAHs (78.7% degradation compared to 62.0%) and total petroleum hydrocarbons (TPH) (92.9% degradation compared to 44.3%). Furthermore the quantification of bacterial genes by qPCR analysis showed that there was an increase in the number of gene copies associated with Gram positive PAH-degrading bacteria. The results suggest a commercial potential for the use of the Australian red ash tree as a source of biosurfactant for use in the accelerated degradation of hydrocarbons.

  19. Effect of various amendments on heavy mineral oil bioremediation and soil microbial activity.

    Science.gov (United States)

    Lee, Sang-Hwan; Oh, Bang-Il; Kim, Jeong-gyu

    2008-05-01

    To examine the effects of amendments on the degradation of heavy mineral oil, we conducted a pilot-scale experiment in the field for 105 days. During the experiment, soil samples were collected and analyzed periodically to determine the amount of residual hydrocarbons and evaluate the effects of the amendments on microbial activity. After 105 days, the initial level of contamination (7490+/-480 mg hydrocarbon kg(-1) soil) was reduced by 18-40% in amended soils, whereas it was only reduced by 9% in nonamended soil. Heavy mineral oil degradation was much faster and more complete in compost-amended soil than in hay-, sawdust-, and mineral nutrient-amended soils. The enhanced degradation of heavy mineral oil in compost-amended soil may be a result of the significantly higher microbial activity in this soil. Among the studied microbial parameters, soil dehydrogenase, lipase, and urease activities were strongly and negatively correlated with heavy mineral oil biodegradation (Pamended soil.

  20. GRACE BIOREMEDIATION TECHNOLOGIES - DARAMEND™ BIOREMEDIATION TECHNOLOGY. INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    Grace Dearborn's DARAMEND™ Bioremediation Technology was developed to treat soils/sediment contaminated with organic contaminants using solid-phase organic amendments. The amendments increase the soil’s ability to supply biologically available water/nutrients to micro...

  1. Tenax TA extraction to understand the rate-limiting factors in methyl-β-cyclodextrin-enhanced bioremediation of PAH-contaminated soil.

    Science.gov (United States)

    Sun, Mingming; Luo, Yongming; Teng, Ying; Christie, Peter; Jia, Zhongjun; Li, Zhengao

    2013-06-01

    The effectiveness of many bioremediation systems for PAH-contaminated soil may be constrained by low contaminant bioaccessibility due to limited aqueous solubility or large sorption capacity. Information on the extent to which PAHs can be readily biodegraded is of vital importance in the decision whether or not to remediate a contaminated soil. In the present study the rate-limiting factors in methyl-β-cyclodextrin (MCD)-enhanced bioremediation of PAH-contaminated soil were evaluated. MCD amendment at 10 % (w/w) combined with inoculation with the PAH-degrading bacterium Paracoccus sp. strain HPD-2 produced maximum removal of total PAHs of up to 35 %. The desorption of PAHs from contaminated soil was determined before and after 32 weeks of bioremediation. 10 % (w/w) MCD amendment (M2) increased the Tenax extraction of total PAHs from 12 to 30 % and promoted degradation by up to 26 % compared to 6 % in the control. However, the percentage of Tenax extraction for total PAHs was much larger than that of degradation. Thus, in the control and M2 treatment it is likely that during the initial phase the bioaccessibility of PAHs is high and biodegradation rates may be limited by microbial processes. On the other hand, when the soil was inoculated with the PAH-degrading bacterium (CKB and MB2), the slowly and very slowly desorbing fractions (F sl and F vl ) became larger and the rate constants of slow and very slow desorption (k sl and k vl ) became extremely small after bioremediation, suggesting that desorption is likely rate limiting during the second, slow phase of biotransformation. These results have practical implications for site risk assessment and cleanup strategies.

  2. Bioremediation of high molecular weight polyaromatic hydrocarbons co-contaminated with metals in liquid and soil slurries by metal tolerant PAHs degrading bacterial consortium.

    Science.gov (United States)

    Thavamani, Palanisami; Megharaj, Mallavarapu; Naidu, Ravi

    2012-11-01

    Bioremediation of polyaromatic hydrocarbons (PAH) contaminated soils in the presence of heavy metals have proved to be difficult and often challenging due to the ability of toxic metals to inhibit PAH degradation by bacteria. In this study, a mixed bacterial culture designated as consortium-5 was isolated from a former manufactured gas plant (MGP) site. The ability of this consortium to utilise HMW PAHs such as pyrene and BaP as a sole carbon source in the presence of toxic metal Cd was demonstrated. Furthermore, this consortium has proven to be effective in degradation of HMW PAHs even from the real long term contaminated MGP soil. Thus, the results of this study demonstrate the great potential of this consortium for field scale bioremediation of PAHs in long term mix contaminated soils such as MGP sites. To our knowledge this is the first study to isolate and characterize metal tolerant HMW PAH degrading bacterial consortium which shows great potential in bioremediation of mixed contaminated soils such as MGP.

  3. Bioremediation of Cd by strain GZ-22 isolated from mine soil based on biosorption and microbially induced carbonate precipitation.

    Science.gov (United States)

    Zhao, Yue; Yao, Jun; Yuan, Zhimin; Wang, Tianqi; Zhang, Yiyue; Wang, Fei

    2017-01-01

    Microbially induced carbonate precipitation (MICP) is an emerging and promising bioremediation technology to restore the environment polluted by heavy metals. Carbonate-biomineralization microbe can immobilize heavy metals from mobile species into stable crystals. In the present manuscript, laboratory batch studies were conducted to evaluate the Cd removal ability based on biosorption and MICP, using carbonate-biomineralization microbe GZ-22 isolated from a mine soil. This strain was identified as a Bacillus sp. according to 16S rDNA gene sequence analysis. Results of batch experiments revealed that MICP of the strain GZ-22 showed a greater potential to remove Cd than biomass biosorption under different impact factors such as pH, initial Cd concentration, and contact time. The optimum pH for MICP was 6 (50.34 %), while for biomass biosorption, it was 5 (38.81 %). When the initial concentration of Cd was 10 mg/L, removal efficiency induced by MICP was 53.06 % after 3 h, which was about 11 % greater than the removal efficiency induced by adsorption. The Cd removal efficiency increased as reaction time. The maximum removal efficiency based on MICP can reach 60.72 % at 10 mg/L for 48 h compared with 56.27 % by biosorption. X-ray diffractomer (XRD) revealed that Cd was transformed into CdCO3 by MICP of GZ-22. The present illustrated that the carbonate-biomineralization microbe GZ-22 can offer an effective and eco-friendly approach to immobilize soluble Cd and that MICP may play an important role in heavy metal bioremediation.

  4. Degradability of n-alkanes during ex situ natural bioremediation of soil contaminated by heavy residual fuel oil (mazut

    Directory of Open Access Journals (Sweden)

    Ali Ramadan Mohamed Muftah

    2013-01-01

    Full Text Available It is well known that during biodegradation of oil in natural geological conditions, or oil pollutants in the environment, a degradation of hydrocarbons occurs according to the well defined sequence. For example, the major changes during the degradation process of n-alkanes occur in the second, slight and third, moderate level (on the biodegradation scale from 1 to 10. According to previous research, in the fourth, heavy level, when intensive changes of phenanthrene and its methyl isomers begin, n-alkanes have already been completely removed. In this paper, the ex situ natural bioremediation (unstimulated bioremediation, without addition of biomass, nutrient substances and biosurfactant of soil contaminated with heavy residual fuel oil (mazut was conducted during the period of 6 months. Low abundance of n-alkanes in the fraction of total saturated hydrocarbons in the initial sample (identification was possible only after concentration by urea adduction technique showed that the investigated oil pollutant was at the boundary between the third and the fourth biodegradation level. During the experiment, an intense degradation of phenanthrene and its methyl-, dimethyl-and trimethyl-isomers was not followed by the removal of the remaining n-alkanes. The abundance of n-alkanes remained at the initial low level, even at end of the experiment when the pollutant reached one of the highest biodegradation levels. These results showed that the unstimulated biodegradation of some hydrocarbons, despite of their high biodegradability, do not proceed completely to the end, even at final degradation stages. In the condition of the reduced availability of some hydrocarbons, microorganisms tend to opt for less biodegradable but more accessible hydrocarbons.

  5. Developments in Bioremediation of Soils and Sediments Polluted with Metals and Radionuclides: 2. Field Research on Bioremediation of Metals and Radionuclides

    OpenAIRE

    Hazen, Terry C.

    2010-01-01

    Bioremediation of metals and radionuclides has had many field tests, demonstrations, and full-scale implementations in recent years. Field research in this area has occurred for many different metals and radionuclides using a wide array of strategies. These strategies can be generally characterized in six major categories: biotransformation, bioaccumulation/bisorption, biodegradation of chelators, volatilization, treatment trains, and natural attenuation. For all field applications there are ...

  6. Low accessibility and chemical activity of PAHs restrict bioremediation and risk of exposure in a manufactured gas plant soil

    Energy Technology Data Exchange (ETDEWEB)

    Reichenberg, Fredrik; Karlson, Ulrich Gosewinkel [Department of Environmental Chemistry and Microbiology, National Environmental Research Institute, Aarhus University, P.O. Box 358, 4000 Roskilde (Denmark); Gustafsson, Orjan [Stockholm University, Department of Applied Environmental Science (ITM), 10691 Stockholm (Sweden); Long, Sara M. [Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Huntingdon, Cambridgeshire PE28 2LS (United Kingdom); Pritchard, Parmely H. [Department of Environmental Chemistry and Microbiology, National Environmental Research Institute, Aarhus University, P.O. Box 358, 4000 Roskilde (Denmark); Department of Biology, Portland State University, PO Box 751, Portland, OR 97207 (United States); Mayer, Philipp, E-mail: phm@dmu.d [Department of Environmental Chemistry and Microbiology, National Environmental Research Institute, Aarhus University, P.O. Box 358, 4000 Roskilde (Denmark)

    2010-05-15

    Composting of manufactured gas plant soil by a commercial enterprise had removed most of its polycyclic aromatic hydrocarbons (PAHs), but concentrations remained above regulatory threshold levels. Several amendments and treatments were first tested to restart the PAH degradation, albeit with little success. The working hypothesis was then that PAHs were 'stuck' due to strong sorption to black carbon. Accessibility was measured with cyclodextrin extractions and on average only 4% of the PAHs were accessible. Chemical activity of the PAHs was measured by equilibrium sampling, which confirmed a low exposure level. These results are consistent with strong sorption to black carbon (BC), which constituted 59% of the total organic carbon. Composting failed to remove the PAHs, but it succeeded to minimize PAH accessibility and chemical activity. This adds to accumulating evidence that current regulatory thresholds based on bulk concentrations are questionable and alternative approaches probing actual risk should be considered. - Bioremediation of MGP soil failed to eliminate PAHs but it succeeded to limit their accessibility, chemical activity and the remaining risk of biological exposure.

  7. Bioremediation of Petroleum hydrocarbon by using Pseudomonas species isolated from Petroleum contaminated soil

    Directory of Open Access Journals (Sweden)

    Vijay Kumar

    2014-12-01

    Full Text Available A newly isolated strain Pseudomonas fluorescens (Accession number KF 279042.1 have potential in diesel degradation and can be recommended for bioremediation of sites that are contaminated with diesel. This bacterium was characterized on the basis of microbiological, biochemical and molecular analysis. Bacterial growth optimization was studied based on carbon source, nitrogen source, pH and temperature. The strain was selected based on its ability to show growth in medium containing diesel. In addition, optimum temperature and pH for increased growth by the isolate were found to be 37oC and pH 8.0 indicating the maximum utilization of diesel. At the same time, production of protease and urease enzymes during the utilization of diesel was also assayed following the standard procedures.

  8. Decreasing the contamination and toxicity of a heavily contaminated soil by in situ bioremediation

    Science.gov (United States)

    Groudev, Stoyan; Georgiev, Plamen; Spasova, Irena; Nikolova, Marina

    2013-04-01

    An experimental plot of 140 m2 consisting of acidic soil heavily contaminated with uranium, non-ferrous metals (mainly Cu, Zn and Cd) and arsenic was treated in situ under real field conditions using the activity of the indigenous soil microflora. This activity was enhanced by suitable changes of some essential environmental factors such as pH and water, oxygen and nutrient contents of the soil. The treatment was connected with solubilization and removal of contaminants from the top soil layers (horizon A) due to the joint action of the soil microorganisms (mainly acidophilic chemolithotrophic bacteria) and leach solutions (diluted sulphuric acid). The dissolved contaminants were transferred to the soil horizon B and were removed from the soil profile through a system of drainage collecting pipes. The contaminated soil effluents were treated by means of a multi-component passive system consisting of an anoxic alkalizing drain, a permeable reactive multibarrier and a rock filter. The contamination and toxicity of the soil were regularly tested during the cleaning procedure and were considerably decreased at the end of the treatment.

  9. Novel Technique to improve the pH of Acidic Barren Soil using Electrokinetic-bioremediation with the application of Vetiver Grass

    Science.gov (United States)

    Azhar, A. T. S.; Nabila, A. T. A.; Nurshuhaila, M. S.; Zaidi, E.; Azim, M. A. M.; Zahin, A. M. F.

    2016-11-01

    Residual acidic slopes which are not covered by vegetation greatly increases the risk of soil erosion. In addition, low soil pH can bring numerous problems such as Al and Fe toxicity, land degradation issues and some problems related to vegetation. In this research, a series of electrokinetic bioremediation (EK-Bio) treatments using Bacillus sphaericus, Bacillus subtilis and Pseudomonas putida with a combination of Vetiver grass were performed in the laboratory. Investigations were conducted for 14 days and included the observation of changes in the soil pH and the mobilization of microorganism cells through an electrical gradient of 50 V/m under low pH. Based on the results obtained, this study has successfully proven that the pH of soil increases after going through electrokinetic bioremediation (EK-Bio). The treatment using Bacillus sphaericus increases the pH from 2.95 up to 4.80, followed by Bacillus subtilis with a value of 4.66. Based on the overall performance, Bacillus sphaericus show the highest number of bacterial cells in acidic soil with a value of 6.6 × 102 cfu/g, followed by Bacillus subtilis with a value of 5.7 × 102 cfu/g. In conclusion, Bacillus sphaericus and Bacillus subtilis show high survivability and is suitable to be used in the remediation of acidic soil.

  10. Evaluation of microbial population and functional genes during the bioremediation of petroleum-contaminated soil as an effective monitoring approach.

    Science.gov (United States)

    Shahi, Aiyoub; Aydin, Sevcan; Ince, Bahar; Ince, Orhan

    2016-03-01

    This study investigated the abundance and diversity of soil n-alkane and polycyclic aromatic hydrocarbon (PAH)-degrading bacterial communities. It also investigated the quantity of the functional genes, the occurrence of horizontal gene transfer (HGT) in the identified bacterial communities and the effect that such HGT can have on biostimulation process. Illumina sequencing was used to detect the microbial diversity of petroleum-polluted soil prior to the biostimulation process, and quantitative real-time PCR was used to determine changes in the bacterial community and functional genes (alkB, phnAc and nah) expressions throughout the biostimulation of petroleum-contaminated soil. The illumine results revealed that γ-proteobacteria, Chloroflexi, Firmicutes, and δ-proteobacteria were the most dominant bacterial phyla in the contaminated site, and that most of the strains were Gram-negative. The results of the gene expression results revealed that gram-negative bacteria and alkB are critical to successful bioremediation. Failure to maintain the stability of hydrocarbon-degrading bacteria and functional gene will reduce the extend to which alkanes and PAHs are degraded. According to the results of the study, the application of a C:N:P ratio of was 100:15:1 in the biodegradation experiment resulted in the highest rate at which petroleum hydrocarbons were biodegraded. The diversity of pollutant-degrading bacteria and the effective transfer of degrading genes among resident microorganisms are essential factors for the successful biostimulation of petroleum hydrocarbons. As such, screening these factors throughout the biostimulation process represents an effective monitoring approach by which the success of the biostimulation can be assessed.

  11. Fenpropathrin biodegradation pathway in Bacillus sp. DG-02 and its potential for bioremediation of pyrethroid-contaminated soils.

    Science.gov (United States)

    Chen, Shaohua; Chang, Changqing; Deng, Yinyue; An, Shuwen; Dong, Yi Hu; Zhou, Jianuan; Hu, Meiying; Zhong, Guohua; Zhang, Lian-Hui

    2014-03-12

    The widely used insecticide fenpropathrin in agriculture has become a public concern because of its heavy environmental contamination and toxic effects on mammals, yet little is known about the kinetic and metabolic behaviors of this pesticide. This study reports the degradation kinetics and metabolic pathway of fenpropathrin in Bacillus sp. DG-02, previously isolated from the pyrethroid-manufacturing wastewater treatment system. Up to 93.3% of 50 mg L(-1) fenpropathrin was degraded by Bacillus sp. DG-02 within 72 h, and the degradation rate parameters qmax, Ks, and Ki were determined to be 0.05 h(-1), 9.0 mg L(-1), and 694.8 mg L(-1), respectively. Analysis of the degradation products by gas chromatography-mass spectrometry led to identification of seven metabolites of fenpropathrin, which suggest that fenpropathrin could be degraded first by cleavage of its carboxylester linkage and diaryl bond, followed by degradation of the aromatic ring and subsequent metabolism. In addition to degradation of fenpropathrin, this strain was also found to be capable of degrading a wide range of synthetic pyrethroids including deltamethrin, λ-cyhalothrin, β-cypermethrin, β-cyfluthrin, bifenthrin, and permethrin, which are also widely used insecticides with environmental contamination problems with the degradation process following the first-order kinetic model. Bioaugmentation of fenpropathrin-contaminated soils with strain DG-02 significantly enhanced the disappearance rate of fenpropathrin, and its half-life was sharply reduced in the soils. Taken together, these results depict the biodegradation mechanisms of fenpropathrin and also highlight the promising potentials of Bacillus sp. DG-02 in bioremediation of pyrethroid-contaminated soils.

  12. Bioremediation of PAHs contaminated soil and its impacts on soil enzyme activity%生物修复PAHs污染土壤对酶活性的影响

    Institute of Scientific and Technical Information of China (English)

    王洪; ; 李海波; 孙铁珩; 胡筱

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are an important group of organic micropollutants (xenobiotics) which are widely distributed in the environment.This study aimed to compare the PAHs degradation effects by biorenediation using immobilized microbes, phytoreraediation using ryegrass (Lolium perenne L.) and alfalfa (Medicago sativ L.), and combination of the above two approaches on the PAHs contaminated soil.Attention was paid on variation of the soil enzyme activity, as well as correlation between the PAHs removal rate and the enzyme activity during the bioremediation process.The experimental results showed that although phytoremediation, microbial remediation and integrated plant-microorganism bioremediatien would all degrade PAHs effectively, the PAHs removal by ryegrass-(immobilized) microbe and alfalfa-(immobilized) microbe would reach up to 37.57% and 38.41%, respectively, which were 100% higher than either phytoremediation or microbial remediation method.It was found that bioremediation/phytoremediation of PAHs contaminated soil would increase the soil enzyme activity of dehydrogenase,polyphenol oxidase, urease, and decrease the enzyme activity of catalase.In particular, rhizosphere soil dehydrogenase and polyphenol oxidase activities were significantly correlated to concentration of PAlls.They might thus be taken as degradation indicators of soil PAHs during bioremediation process.%在PAHs污染土壤生物修复过程中,以黑麦草、苜蓿为修复植物,固定化微生物菌剂为外源微生物,通过盆栽实验研究了不同处理对土壤酶活性的影响,以及酶活性与PAHs的去除效果之间的相关性.结果表明,植物修复、微生物修复及两者联合修复均显著提高了土壤PAHs的去除效果,其中黑麦草和苜蓿与微生物菌剂联合修复效果分别达到37.57%和38.41%,比单独的植物修复和菌剂修复高出一倍左右.各种生物修复同时促进了土壤多酚氧化酶、脱氢酶及脲酶的

  13. J.R. SIMPLOT EX-SITU BIOREMEDIATION TECHNOLOGY FOR TREATMENT OF TNT-CONTAMINATED SOILS - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    This report summarizes the findings of the second evaluation of the J.R. Simplot Ex-situ Bioremediation Technology also known as the Simplot Anaerobic Bioremediation (SABRE™) process. This technology was developed by the J.R. Simplot Company to biologically degrade nitroaromatic...

  14. APPLICATION STRATEGIES AND DESIGN CRITERIA FOR IN SITU BIOREMEDIATION OF SOIL AND GROUNDWATER IMPACTED BY PAHS

    Science.gov (United States)

    Biotreatability studies conducted in our laboratory used soils from two former wood-treatment facilities to evaluate the use of in situ bioventing and biosparging applications for their potential ability to remediate soil and groundwater containing creosote. The combination of ph...

  15. Removal of Pah from clay soil contaminated with diesel oil by bioremediation treatments

    Energy Technology Data Exchange (ETDEWEB)

    Changas-spinelli, A. C. O.; Kato, M. T.; Lima, E. S.; Gavazza, S.

    2009-07-01

    Diesel oil is one of the most common soil organic pollutants, as a consequence of spilling of storage tank spills and accidental leaks. In Pernambuco State, Northeast part of Brazil, there are several evidences of soil contamination by petroleum derivates due to gas station leaking. (Author)

  16. Bioremediation of diesel oil-contaminated soil by composting with biowaste.

    Science.gov (United States)

    Van Gestel, Kristin; Mergaert, Joris; Swings, Jean; Coosemans, Jozef; Ryckeboer, Jaak

    2003-01-01

    Soil spiked with diesel oil was mixed with biowaste (vegetable, fruit and garden waste) at a 1:10 ratio (fresh weight) and composted in a monitored composting bin system for 12 weeks. Pure biowaste was composted in parallel. In order to discern the temperature effect from the additional biowaste effect on diesel degradation, one recipient with contaminated soil was hold at room temperature, while another was kept at the actual composting temperature. Measurements of composting parameters together with enumerations and identifications of microorganisms demonstrate that the addition of the contaminated soil had a minor impact on the composting process. The first-order rate constant of diesel degradation in the biowaste mixture was four times higher than in the soil at room temperature, and 1.2 times higher than in the soil at composting temperature.

  17. Influence of aggregate sizes and microstructures on bioremediation assessment of field-contaminated soils in pilot-scale biopiles

    Science.gov (United States)

    Chang, W.; Akbari, A.; Frigon, D.; Ghoshal, S.

    2011-12-01

    Petroleum hydrocarbon contamination of soils and groundwater is an environmental concern. Bioremediation has been frequently considered a cost-effective, less disruptive remedial technology. Formation of soil aggregate fractions in unsaturated soils is generally believed to hinder aerobic hydrocarbon biodegradation due to the slow intra-pore diffusion of nutrients and oxygen within the aggregate matrix and to the reduced bioavailability of hydrocarbons. On the other hand, soil aggregates may harbour favourable niches for indigenous bacteria, providing protective microsites against various in situ environmental stresses. The size of the soil aggregates is likely to be a critical factor for these processes and could be interpreted as a relevant marker for biodegradation assessment. There have been only limited attempts in the past to assess petroleum hydrocarbon biodegradation in unsaturated soils as a function of aggregate size. This study is aimed at investigating the roles of aggregate sizes and aggregate microstructures on biodegradation activity. Field-aged, contaminated, clayey soils were shipped from Norman Wells, Canada. Attempts were made to stimulate indigenous microbial activity by soil aeration and nutrient amendments in a pilot-scale biopile tank (1m L×0.65m W×0.3 m H). A control biopile was maintained without the nutrient amendment but was aerated. The initial concentrations of petroleum hydrocarbons in the field-contaminated soils increased with increasing aggregate sizes, which were classified in three fractions: micro- (250-2000 μm) and macro-aggregates (>2000 μm). Compared to the TPH analyses at whole-soil level, the petroleum hydrocarbon analyses based on the aggregate-size levels demonstrated more clearly the extent of biodegradation of non-volatile, heavier hydrocarbons (C16-C34) in the soil. The removal of the C16-C34 hydrocarbons was 44% in macro-aggregates, but only 13% in meso-aggregates. The increased protein concentrations in macro

  18. Noncompetitive microbial diversity patterns in soils: their causes and implications for bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    James M. Tiedje; Jizhong Zhou; Anthony Palumbo; Nathaniel Ostrom; Terence L. Marsh

    2007-07-05

    This funding provided support for over nine years of research on the structure and function of microbial communities in subsurface environments. The overarching goal during these years was to understand the impact of mixed contaminants, particularly heavy metals like uranium, on the structure and function of microbial communities. In addition we sought to identify microbial populations that were actively involved in the reduction of metals because these species of bacteria hold the potential for immobilizing soluble metals moving in subsurface water. Bacterial mediated biochemical reduction of metals like uranium, technetium and chromium, greatly reduces their mobility through complexation and precipitation. Hence, by taking advantage of natural metabolic capabilities of subsurface microbial populations it is possible to bioremediate contaminated subsurface environments with a cost-effective in situ approach. Towards this end we have i.) identified bacterial populations that have thrived under the adverse conditions at the contaminated FRC site, ii.) phylogenetically identified populations that respond to imposed remediation conditions at the FRC, iii.) used metagenomics to begin a reconstruction of the metabolic web in a contaminated subsurface zone, iv.) investigated the metal reducing attributes of a Gram-positive spore forming rod also capable of dechlorination.

  19. Bioremediation Techlology of Phthalic Acid Esters in Soil%邻苯二甲酸酯污染土壤的生物修复技术

    Institute of Scientific and Technical Information of China (English)

    卢利清; 叶常茂

    2016-01-01

    邻苯二甲酸酯是一类普遍使用的有机化合物,主要用作增塑剂。由于其具有致癌、致畸和致突变性,近年来引起了广泛的关注。由于农用地膜的广泛使用,邻苯二甲酸酯在农用土壤中均造成了不同程度污染。该文对邻苯二甲酸酯污染土壤的生物修复技术研究进展进行了介绍,总结了细菌、真菌、植物和联合修复是目前邻苯二甲酸酯污染土壤的主要生物修复方式。%Phthalic acid esters(PAEs)are commonly used organic substances,mainly used as plasticizer. Due to their teratogenicity,mutagenicity and carcinogenicity,PAEs have been received considerable attention recently. As the widespread use of agricultural of plastic film,agriculture soil is polluted to different degrees by PAEs.In this pa⁃per,the study and progress of bioremediation of PAEs in soil are included,and the main types of bioremediation in⁃cluding bacteria,fungi,plant and combination bioremediation are summarized.

  20. Present Situation and Prospect of Bioremediation Technology for Soil Pollution%土壤污染的生物修复技术及其研究进展

    Institute of Scientific and Technical Information of China (English)

    杨秋红; 吕航; 宋倩; 但德忠

    2009-01-01

    近年来土壤污染呈现加重的趋势,有关污染土壤的修复研究正日益受到重视.生物修复技术是一项用于污染土壤治理的新技术.介绍了污染土壤生物修复技术,综述了近年来国内外土壤生物修复技术的研究和应用现状,并评述了土壤生物修复技术存在的问题以及污染土壤生物修复的发展方向.%In recent years,soil pollution was increasingly becoming an important environmental problem.Bioremediation technology was rapidly developing for treating soil pollution.And it was considered of the most promising technology.This paper briefly introduced the concept of bioremediation and the methods,and focused on the application of bioremediation of organic and heavy metals contamination,as well as reviewed the present problems of bioremediafion and its prospect.

  1. Bioremediation trial on aged PCB-polluted soils--a bench study in Iceland.

    Science.gov (United States)

    Lehtinen, Taru; Mikkonen, Anu; Sigfusson, Bergur; Ólafsdóttir, Kristín; Ragnarsdóttir, Kristín Vala; Guicharnaud, Rannveig

    2014-02-01

    Polychlorinated biphenyls (PCBs) pose a threat to the environment due to their high adsorption capacity to soil organic matter, stability and low reactivity, low water solubility, toxicity and ability to bioaccumulate. With Icelandic soils, research on contamination issues has been very limited and no data has been reported either on PCB degradation potential or rate. The goals of this research were to assess the bioavailability of aged PCBs in the soils of the old North Atlantic Treaty Organization facility in Keflavík, Iceland and to find the best biostimulation method to decrease the pollution. The effectiveness of different biostimulation additives (N fertiliser, white clover and pine needles) at different temperatures (10 and 30 °C) and oxygen levels (aerobic and anaerobic) were tested. PCB bioavailability to soil fauna was assessed with earthworms (Eisenia foetida). PCBs were bioavailable to earthworms (bioaccumulation factor 0.89 and 0.82 for earthworms in 12.5 ppm PCB soil and in 25 ppm PCB soil, respectively), with less chlorinated congeners showing higher bioaccumulation factors than highly chlorinated congeners. Biostimulation with pine needles at 10 °C under aerobic conditions resulted in nearly 38 % degradation of total PCBs after 2 months of incubation. Detection of the aerobic PCB degrading bphA gene supports the indigenous capability of the soils to aerobically degrade PCBs. Further research on field scale biostimulation trials with pine needles in cold environments is recommended in order to optimise the method for onsite remediation.

  2. Effect of metals on a siderophore producing bacterial isolate and its implications on microbial assisted bioremediation of metal contaminated soils.

    Science.gov (United States)

    Gaonkar, Teja; Bhosle, Saroj

    2013-11-01

    A bacterial isolate producing siderophore under iron limiting conditions, was isolated from mangroves of Goa. Based on morphological, biochemical, chemotaxonomical and 16S rDNA studies, the isolate was identified as Bacillus amyloliquefaciens NAR38.1. Preliminary characterization of the siderophore indicated it to be catecholate type with dihydroxy benzoate as the core component. Optimum siderophore production was observed at pH 7 in mineral salts medium (MSM) without any added iron with glucose as the carbon source. Addition of NaCl in the growth medium showed considerable decrease in siderophore production above 2% NaCl. Fe(+2) and Fe(+3) below 2 μM and 40 μM concentrations respectively, induced siderophore production, above which the production was repressed. Binding studies of the siderophore with Fe(+2) and Fe(+3) indicated its high affinity towards Fe(+3). The siderophore concentration in the extracellular medium was enhanced when MSM was amended with essential metals Zn, Co, Mo and Mn, however, decreased with Cu, while the concentration was reduced with abiotic metals As, Pb, Al and Cd. Significant increase in extracellular siderophore production was observed with Pb and Al at concentrations of 50 μM and above. The effect of metals on siderophore production was completely mitigated in presence of Fe. The results implicate effect of metals on the efficiency of siderophore production by bacteria for potential application in bioremediation of metal contaminated iron deficient soils especially in the microbial assisted phytoremediation processes.

  3. Isolation and characterization of a Sphingomonas sp. strain F-7 degrading fenvalerate and its use in bioremediation of contaminated soil.

    Science.gov (United States)

    Yu, Fang B; Shan, Sheng D; Luo, Lin P; Guan, Li B; Qin, Hua

    2013-01-01

    A fenvalerate-degrading bacterial strain F-7 was isolated from long-term contaminated sludge. Based on morphological, physiological and biochemical characterization, and phylogenetic analysis of 16S rRNA gene sequence, strain F-7 was identified as Sphingomonas sp. The bacterium could utilize fenvalerate as the sole source of carbon. An amount measuring 100 mg L(-1) fenvalerate was completely degraded within 72 h and 3-phenoxybenzoic acid (3-PBA) was detected as a major metabolite. The result indicates that S. sp. F-7 might metabolize fenvalerate by hydrolysis of carboxylester linkage. It was capable of degrading permethrin, fenpropathrin, beta-cypermethrin, cyhalothrin, deltamethrin, bifenthrin and 3-PBA. Further studies demonstrated that the strain was multi-resistant to heavy metals and antibiotics. In addition, degradative enzymes involved were confirmed as intracellular distributed and constitutively expressed. Furthermore, application of the strain was found to accelerate the removal of fenvalerate in soil. This is the first report of fenvalerate degrading strain isolated from S. sp. These results might help with future research in better understanding of pyrethroid biodegradation and highlight S. sp. F-7 might have potential for practical application in bioremediation of fenvalerate-contaminated sites.

  4. Enhanced Bioremediation of Soil Artificially Contaminated with Petroleum Hydrocarbons after Amendment with Capra aegagrus hircus (Goat Manure

    Directory of Open Access Journals (Sweden)

    T. P. Nwogu

    2015-01-01

    Full Text Available This study was carried out to evaluate the biostimulant potentials of Capra aegagrus hircus manure for bioremediation of crude oil contaminated soil (COCS under tropical conditions. 1 kg of COCS sample was amended with 0.02 kg of C. a. hircus manure and monitored at 14-day intervals for total petroleum hydrocarbon (TPH, nutrient content, and changes in microbial counts. At the end of the study period, there was 62.08% decrease in the concentration of TPH in the amended sample compared to 8.15% decrease in the unamended sample, with significant differences (P<0.05 in TPH concentrations for both samples at different time intervals. Similarly, there was a gradual decrease in the concentrations of total organic carbon, nitrogen, phosphorus, and potassium in both samples. The culturable hydrocarbon-utilizing bacteria (CHUB increased steadily from 8.5 × 105 cfu/g to 2.70 × 106 cfu/g and from 8.0 × 105 cfu/g to 1.78 × 106 cfu/g for both samples. Acinetobacter, Achromobacter, Bacillus, Flavobacterium, Klebsiella, Micrococcus, Pseudomonas, and Staphylococcus were isolated from amended sample with Pseudomonas being the predominant isolated bacterial genus. This study demonstrated that C. a. hircus manure is a good biostimulant, which enhanced the activities of indigenous hydrocarbonoclastic bacteria resulting in significant decrease in TPH concentration of COCS.

  5. Biostimulatory Effect Of Processed Sewage Sludge In Bioremediation Of Engine Oil Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Kamaluddeen

    2015-08-01

    Full Text Available A study was conducted to evaluate the influence of sewage sludge on biodegradation of engine oil in contaminated soil. Soil samples were collected from a mechanics workshop in Sokoto metropolis. The Soil samples were taken to the laboratory for isolation of engine oil degrading bacteria. About 1 g of soil sample was used to inoculate 9 ml of trypticase soy broth and incubated at 28oC for 24 h. The growth obtained was sub-cultured in mineral salt medium overlaid with crude oil and allowed to stand at 28oC for 72 h. The culture obtained was then maintained on tryticase soy agar plates at 28oC for 48 h. A combination of microscopy and biochemical tests was carried out to identify the colonies. The sewage sludge was obtained from sewage collection point located behind Jibril Aminu Hall of Usmanu Danfodiyo University Sokoto and processed i.e. dried grounded and sterilized. A portion of land obtained in a botanical garden was divided into small portions 30 X 30 cm and the soil was excavated in-situ and sterilized in the laboratory. A polythene bag was subsequently used to demarcate between the sterilized soil and the garden soil. The sterilized soil plots were artificially contaminated with equal amount of used engine oil to represent a typical farmland oil spill. The plots were amended with various amount of processed sewage sludge i.e. 200 g 300 g and 400 g respectively. A pure culture of the bacteria was maintained on trypticase soy broth and was introduced into the sterile amended soil. The plots were watered twice daily for ten days. The degree of biodegradation and heavy metal content were assessed using standard procedures and the results obtained indicate a remarkable reduction in poly aromatic hydrocarbons PAHs total petroleum hydrocarbon TPH and heavy metal content.

  6. PAHs污染土壤生物修复强化技术研究进展%Research progress in enhanced bioremediation of polycyclic aromatic hydrocarbons contaminated soil

    Institute of Scientific and Technical Information of China (English)

    王洪; 李海波; 孙铁珩; 胡筱敏

    2011-01-01

    为提高生物修复多环芳烃(PAHs)污染土壤的效率,从PAHs生物修复的原理和强化措施出发,综述了PAHs污染土壤生物修复的物理化学强化技术和生物强化技术,分析了各种技术的原理与适用条件,提出了植物强化微生物修复是PAHs污染土壤生物修复的重要发展方向.在进行强化修复的过程中,要注重现场应用和安全性评价.%This paper is aimed to present a general review on the enhanced measures to the bioremediation of polycyclic aromatic hydrocarbons contaminated soil. Polycyclic aromatic hydrocarbons (PAHs) are well known as a group of persistent organic pollutants (POPs) and more than 90% of PAHs present in the soil, which are toxic to the environment and pose as a hazard in food chain to human health.Bioremediation technology is the primary method to treat the PAHs contaminated soil and the enhanced measures of bioremediation treatment are essential to improve the degradation rate and adapt to the needs of field application. Referring to the reported literature at home and abroad in recent years, this paper comes out with a detail introduction and discussion on the principles and application of physicalchemical and biological based enhancement. The enhanced measures of physical-chemical included the application of surfactants, nutrient addition and co-metabolic substrate addition as well as the electron acceptors addition and utilization of chemical oxidants. The enhanced measures of bioremediation included the addition of highly efficient PAH-degrading bacteria and immobilization of bacteria, utilization of mycorrhizal fungi and application of bio-surfactants. The combined remediation of phytoremediation and microorganism on the PAHs conlaminated soil is an important direction of development and field application technology. At the same time, safety evaluation in the process of enhanced bioremediation is necessary in order to avoid new pollution and other security risks to

  7. [Improving Agricultural Safety of Soils Contaminated with Polycyclic Aromatic Hydrocarbons by In Situ Bioremediation].

    Science.gov (United States)

    Jiao, Hai-huan; Pan, Jian-gang; Xu, Shena-jun; Bai, Zhi-hui; Wang, Dong; Huang, Zhan-bin

    2015-08-01

    In order to reduce the risk of enrichment of polycyclic aromatic hydrocarbons (PAHs) in crops, reduce the potential hazards of food-sourced PAHs to human and increase the agricultural safety of PAHs contaminated soils, the bio-augmented removal of polycyclic aromatic hydrocarbons (PAHs) was investigated through in situ remediation by introducing Rhodobacter sphaeroides (RS) into the agricultural soil contaminated by PAHs. The 50-times diluted RS was sprayed on leaf surface (in area B) or irrigated to roots (in area D). The treatment of spraying water of the equal amount was taken as the control (A) and the wheat field without any treatment as the blank (CK). Treatments were conducted since wheat seeding. Soil and wheat samples were collected in the mature period to analyze the changes of community structure of the soil microorganisms and the concentration of PAHs in soils and investigate the strengthening and restoration effects of RS on PAHs contaminated soils. Compared to the CK Area, the areas B and D revealed that the variation ratio of phospholipid fatty acids (PLFAs) that were the biomarker of soil microorganisms was 29.6%, and the ratio of total PAHs removed was increased 1.59 times and 1.68 times, respectively. The dry weight of wheat grain of 50 spikes was increased by 8.95% and 12.5%, respectively, and the enrichment factor of total PAHs was decreased by 58.9% and 62.2% respectively in the wheat grains. All the results suggested that RS reduced enrichment of PAHs in wheat grains and increased wheat yield, which had great exploitation and utilization potentiality in repairing and improving the agricultural safety of the soils contaminated with PHAs.

  8. Bioremediation of multi-metal contaminated soil using biosurfactant — a novel approach

    OpenAIRE

    Juwarkar, Asha A.; Dubey, Kirti V.; Nair, Anupa; Singh, Sanjeev Kumar

    2008-01-01

    An unconventional nutrient medium, distillery spent wash (1:3) diluted) was used to produce di-rhamnolipid biosurfactant by Pseudomonas aeruginosa strain BS2. This research further assessed the potential of the biosurfactant as a washing agent for metal removal from multimetal contaminated soil (Cr-940 ppm; Pb-900 ppm; Cd-430 ppm; Ni-880 ppm; Cu-480 ppm). Out of the treatments of contaminated soil with tap water and rhamnolipid biosurfactant, the latter was found to be potent in mobilization ...

  9. Combined bioremediation of atrazine-contaminated soil by Pennisetum and Arthrobacter sp. strain DNS10.

    Science.gov (United States)

    Zhang, Ying; Ge, Shijie; Jiang, Mingyue; Jiang, Zhao; Wang, Zhigang; Ma, Bingbing

    2014-05-01

    Strain DNS10 was isolated from the black soil collected from the northeast of China which had been cultivated with atrazine as the sole nitrogen source. Pennisetum is a common plant in Heilongjiang Province of China. The main objective of this paper was to evaluate the efficiency of plant-microbe joint interactions (Arthrobacter sp. DNS10 + Pennisetum) in atrazine degradation compared with single-strain and single-plant effects. Plant-microbe joint interactions degraded 98.10 % of the atrazine, while single strain and single plant only degraded 87.38 and 66.71 % after a 30-day experimental period, respectively. The results indicated that plant-microbe joint interactions had a better degradation effect. Meanwhile, we found that plant-microbe joint interactions showed a higher microbial diversity. The results of microbial diversity illustrated that the positive effects of cropping could improve soil microbial growth and activity. In addition, we planted atrazine-sensitive plants (soybean) in the soil after repair. The results showed that soybean growth in soil previously treated with the plant-microbe joint interactions treatment was better compared with other treatments after 20 days of growth. This was further proved that the soil is more conducive for crop cultivation. Hence, plant-microbe joint interactions are considered to be a potential tool in the remediation of atrazine-contaminated soil.

  10. Potential of grasses and rhizosphere bacteria for bioremediation of diesel-contaminated soils

    Directory of Open Access Journals (Sweden)

    Melissa Paola Mezzari

    2011-12-01

    Full Text Available The techniques available for the remediation of environmental accidents involving petroleum hydrocarbons are generally high-cost solutions. A cheaper, practical and ecologically relevant alternative is the association of plants with microorganisms that contribute to the degradation and removal of hydrocarbons from the soil. The growth of three tropical grass species (Brachiaria brizantha, Brachiaria decumbens and Paspalum notatum and the survival of root-associated bacterial communities was evaluated at different diesel oil concentrations. Seeds of three grass species were germinated in greenhouse and at different doses of diesel (0, 2.5, 5 and 10 g kg-1 soil. Plants were grown for 10 weeks with periodic assessment of germination, growth (fresh and dry weight, height, and number of bacteria in the soil (pots with or without plants. Growth and biomass of B. decumbens and P. notatum declined significantly when planted in diesel-oil contaminated soils. The presence of diesel fuel did not affect the growth of B. brizantha, which was highly tolerant to this pollutant. Bacterial growth was significant (p < 0.05 and the increase was directly proportional to the diesel dose. Bacteria growth in diesel-contaminated soils was stimulated up to 5-fold by the presence of grasses, demonstrating the positive interactions between rhizosphere and hydrocarbon-degrading bacteria in the remediation of diesel-contaminated soils.

  11. Intensification of the aerobic bioremediation of an actual site soil historically contaminated by polychlorinated biphenyls (PCBs through bioaugmentation with a non acclimated, complex source of microorganisms

    Directory of Open Access Journals (Sweden)

    Fava Fabio

    2006-03-01

    Full Text Available Abstract Background The biotreatability of actual-site polychlorinated biphenyl (PCB-contaminated soils is often limited by their poor content of autochthonous pollutant-degrading microorganisms. In such cases, inoculation might be the solution for a successful bioremediation. Some pure and mixed cultures of characterized PCB degrading bacteria have been tested to this purpose. However, several failures have been recorded mostly due to the inability of inoculated microbes to compete with autochthonous microflora and to face the toxicity and the scarcity of nutrients occurring in the contaminated biotope. Complex microbial systems, such as compost or sludge, normally consisting of a large variety of robust microorganisms and essential nutrients, would have better chances to succeed in colonizing degraded contaminated soils. However, such sources of microorganisms have been poorly applied in soil bioremediation and in particular in the biotreatment of soil with PCBs. Thus, in this study the effects of Enzyveba, i.e. a consortium of non-adapted microorganisms developed from composted material, on the slurry- and solid-phase aerobic bioremediation of an actual-site, aged PCB-contaminated soil were studied. Results A slow and only partial biodegradation of low-chlorinated biphenyls, along with a moderate depletion of initial soil ecotoxicity, were observed in the not-inoculated reactors. Enzyveba significantly increased the availability and the persistence of aerobic PCB- and chlorobenzoic acid-degrading cultivable bacteria in the bioreactors, in particular during the earlier phase of treatment. It also markedly enhanced PCB-biodegradation rate and extent (from 50 to 100% as well as the final soil detoxification, in particular under slurry-phase conditions. Taken together, data obtained suggest that Enzyveba enhanced the biotreatability of the selected soil by providing exogenous bacteria and fungi able to remove inhibitory or toxic intermediates of

  12. Bioremediation of bisphenol-A polluted soil by Sphingomonas bisphenolicum AO1 and the microbial community existing in the soil.

    Science.gov (United States)

    Matsumura, Yoshinobu; Akahira-Moriya, Ayako; Sasaki-Mori, Miho

    2015-01-01

    Bisphenol A (BPA, 2,2'-Bis (4-hydroxyphenyl) propane) is an artificial pollutant that is easily detected in soil and water environments. BPA decomposition and removal from the environment is relatively difficult due to its stability. This study evaluated the BPA decomposition and removal activities of the microbial community existing in the soil with or without Sphingomonas bisphenolicum AO1, and revealed the toxic effects of BPA towards the microbial community. The microbial community in soil was able to degrade BPA at 1.0 mg·g(-1) soil or lower, although its degradation was slow. On the other hand, BPA at more than 10 mg·g(-1) soil was not only degraded by the microbial community but also decreased its diversity, suggesting that BPA is harmful to many microorganisms. PCR-TTGE analysis and the cloned 16S rRNA gene sequence analysis indicated that Sphingomonadales, Xanthomonadales, Burkholderiales and Pseudomonadales in the microbial community might independently or cooperatively degrade BPA. On the other hand, supplementation with strain AO1 was able to significantly improve the BPA decomposition activity of the microbial community in soil even at 10 mg BPA·g(-1) soil, although BPA at 100 mg·g(-1) soil overwhelmed the BPA decomposition activity of strain AO1. Furthermore, it was also concluded that strain AO1 could not inhabit BPA purified soil after decomposition of BPA by strain AO1 and the soil microbial community, suggesting that the application of strain AO1 could be a low-burden method for the decomposition and removal of BPA from the natural environment.

  13. TECHNOLOGY OF SOIL BIOREMEDIATION AND CONVERSION OF CONTAMINATED PHYTOMASS INTO USABLE ENERGY FORMS

    Directory of Open Access Journals (Sweden)

    Andrej ULICNY

    2013-09-01

    Full Text Available The work solves scientific problem of decontamination of the soil using biomass. Our investigation was subject to Cu, Pb, Hg and As with aim to examine whether plants are able to accumulate heavy metals. The laboratory experiment was performed in order to determine heavy metals content is the soil before plast sowing and after is harvesting. Amaranth (amaranthus was used as a bioaccumulator. As significant amount of the heawy metals is accumulated in the root, there arise task to harvest plant and its root. Roots leaving in the soil mean retrograde contamination after the plant decomposition. But, there is lack of agricultural machinery able to harvest amaranth together with the root. Next part of the study is focused on the amaranth utilization as energy. Energy value is comparable with other biomass materials as wooden sawdust, grain straw etc. The final phase of the research is dealing with means suitable to trip the solid remainders after burning in the smoke.

  14. Biological quality of soils containing hydrocarbons and efficacy of ecological risk reduction by bioremediation alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, A.J.; Napolitano, G.E.; Sample, B.E.

    1996-06-01

    This project provides technical support to the Petroleum Environmental Research Forum (PERF; a consortium of petroleum companies) on environmentally acceptable endpoints that may be used to help assess the ecological risk of petroleum hydrocarbon residuals in soils. The project, was designed in consultation with PERF representatives and focuses on the relationship between {open_quotes}chemically available{close_quotes} and {open_quotes}biologically available{close_quotes} measurements of petroleum hydrocarbon compounds in soils, a discrepancy of considerable interest to the petroleum industry. Presently, clean-up standards for soils contaminated with total petroleum hydrocarbon (TPH) constituents are based on concentrations of TPH, as measured in solvent extracts of soil samples. Interestingly, TPH includes a complex mixture of compounds which differ from one another in molecular weight and toxicity. Based on various studies with insecticides, herbicides and metals, some compounds apparently can slowly permeate into soil particles. If this situation occurs, the particle-embedded compounds may be extractable by use of organic solvents, and yet be unavailable biologically. This hypothesis serves as the central focus for our study. If this hypothesis is correct, then soil clean-up standards based on solvent-extractable TPH data may be more stringent than necessary to achieve a desired level of environmental risk. The economic significance of this possibility is considerable, because clean-up costs to achieve a low-risk status would, in most cases, be lower than those needed to achieve a standard based on present limits, which are based on measurements of {open_quotes}extractable{close_quotes} TPH.

  15. Bioremediation of Cd-DDT co-contaminated soil using the Cd-hyperaccumulator Sedum alfredii and DDT-degrading microbes

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhi-qiang [MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Zijingang Campus, Hangzhou 310058 (China); College of Agriculture, Hainan University, Renmin Road 58, Haikou 570228 (China); Yang, Xiao-e, E-mail: xyang@zju.edu.cn [MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Zijingang Campus, Hangzhou 310058 (China); Wang, Kai; Huang, Hua-gang; Zhang, Xincheng [MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Zijingang Campus, Hangzhou 310058 (China); Fang, Hua [Department of Plant Protection, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058 (China); Li, Ting-qiang [MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Zijingang Campus, Hangzhou 310058 (China); Alva, A.K. [U.S. Department of Agriculture-Agricultural Research Service, Prosser, WA (United States); He, Zhen-li [University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Fort Pierce, FL 34945 (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Planting of S. alfredii is an effective technique for phytoextraction of Cd and DDs. Black-Right-Pointing-Pointer Soil inoculation with Pseudomonas sp. DDT-1 increases root biomass of S. alfredii. Black-Right-Pointing-Pointer Soil inoculation with Pseudomonas sp. DDT-1 improves the removal efficiency of DDs. Black-Right-Pointing-Pointer The plant-microbe strategy is promising for remediation of Cd-DDT co-contaminated soil. - Abstract: The development of an integrated strategy for the remediation of soil co-contaminated by heavy metals and persistent organic pollutants is a major research priority for the decontamination of soil slated for use in agricultural production. The objective of this study was to develop a bioremediation strategy for fields co-contaminated with cadmium (Cd), dichlorodiphenyltrichloroethane (DDT), and its metabolites 1, 1-dichloro-2, 2-bis (4-chlorophenyl) ethylene (DDE) and 1, 1-dichloro-2, 2-bis (4-chlorophenyl) ethane (DDD) (DDT, DDE, and DDD are collectively called DDs) using an identified Cd-hyperaccumulator plant Sedum alfredii (SA) and DDT-degrading microbes (DDT-1). Initially, inoculation with DDT-1 was shown to increase SA root biomass in a pot experiment. When SA was applied together with DDT-1, the levels of Cd and DDs in the co-contaminated soil decreased by 32.1-40.3% and 33.9-37.6%, respectively, in a pot experiment over 18 months compared to 3.25% and 3.76% decreases in soil Cd and DDs, respectively, in unplanted, untreated controls. A subsequent field study (18-month duration) in which the levels of Cd and DDs decreased by 31.1% and 53.6%, respectively, confirmed the beneficial results of this approach. This study demonstrates that the integrated bioremediation strategy is effective for the remediation of Cd-DDs co-contaminated soils.

  16. Removal of heavy metals and arsenic from contaminated soils using bioremediation and chelant extraction techniques.

    Science.gov (United States)

    Vaxevanidou, Katerina; Papassiopi, Nymphodora; Paspaliaris, Ioannis

    2008-02-01

    A combined chemical and biological treatment scheme was evaluated in this study aiming at obtaining the simultaneous removal of metalloid arsenic and cationic heavy metals from contaminated soils. The treatment involved the use of the iron reducing microorganism Desulfuromonas palmitatis, whose activity was combined with the chelating strength of EDTA. Taking into consideration that soil iron oxides are the main scavengers of As, treatment with iron reducing microorganisms aimed at inducing the reductive dissolution of soil oxides and thus obtaining the release of the retained As. The main objective of using EDTA was the removal of metal contaminants, such as Pb and Zn, through the formation of soluble metal chelates. Experimental results however indicated that EDTA was also indispensable for the biological reduction of Fe(III) oxides. The bacterial activity was found to have a pronounced positive effect on the removal of arsenic, which increased from the value of 35% obtained during the pure chemical treatment up to 90% in the presence of D. palmitatis. In the case of Pb, the major part, i.e. approximately 85%, was removed from soil with purely chemical mechanisms, whereas the biological activity slightly improved the extraction, increasing the final removal up to 90%. Co-treatment had negative effect only for Zn, whose removal was reduced from 80% under abiotic condition to approximately 50% in the presence of bacteria.

  17. Suitability of oil bioremediation in an Artic soil using surplus heating from an incineration facility

    DEFF Research Database (Denmark)

    Couto, Nazare; Fritt-Rasmussen, Janne; Jensen, Pernille Erland;

    2014-01-01

    A 168-day period field study, carried out in Sisimiut, Greenland, assessed the potential to enhance soil remediation with the surplus heating from an incineration facility. This approach searches a feasible ex situ remediation process that could be extended throughout the year with low costs. Ind...

  18. Application of backpropagation artificial neural network prediction model for the PAH bioremediation of polluted soil.

    Science.gov (United States)

    Olawoyin, Richard

    2016-10-01

    The backpropagation (BP) artificial neural network (ANN) is a renowned and extensively functional mathematical tool used for time-series predictions and approximations; which also define results for non-linear functions. ANNs are vital tools in the predictions of toxicant levels, such as polycyclic aromatic hydrocarbons (PAH) potentially derived from anthropogenic activities in the microenvironment. In the present work, BP ANN was used as a prediction tool to study the potential toxicity of PAH carcinogens (PAHcarc) in soils. Soil samples (16 × 4 = 64) were collected from locations in South-southern Nigeria. The concentration of PAHcarc in laboratory cultivated white melilot, Melilotus alba roots grown on treated soils was predicted using ANN model training. Results indicated the Levenberg-Marquardt back-propagation training algorithm converged in 2.5E+04 epochs at an average RMSE value of 1.06E-06. The averagedR(2) comparison between the measured and predicted outputs was 0.9994. It may be deduced from this study that, analytical processes involving environmental risk assessment as used in this study can successfully provide prompt prediction and source identification of major soil toxicants.

  19. Bioremediation of oil contaminated soil from service stations. Evaluation of biological treatment

    Energy Technology Data Exchange (ETDEWEB)

    Puustinen, J.; Jorgensen, K.S.; Strandberg, T.; Suortti, A.M.

    1995-11-01

    Biological treatment of contaminated soil has received much attention during the last decade. Microbes are known to be able to degrade many oil hydrocarbons. However, research is needed to ensure that new technologies are implemented in a safe and reliable way under Finnish climatic conditions. The main points of interest are the rate of the degradation as well as the survival and efficiency of microbial inoculants possibly introduced during the treatment. During 1993 the biotreatability of oil-contaminated soil from service stations was investigated in cooperation with the Finnish Petroleum Federation. The goal of this field-scale study was to test how fast lubrication oil can be composted during one Finnish summer season and to find out whether microbial inoculants would enhance the degradation rate. The soil was excavated from three different service stations in the Helsinki metropolitan area and was transported to a controlled composting area. The soil was sieved and compost piles, also called biopiles, were constructed on the site. Bark chips were used as the bulking agent and nutrients and lime were added to enhance the biological activity. Two different commercial bacterial inoculants were added to two of the piles. The piles were turned by a tractor-drawn screw-type mixer at two to four weeks interval. Between the mixings, the piles were covered with tarpaulins to prevent evaporation and potential excessive wetting. Several microbiological parameters were determined during the test period as well as the temperature and mineral oil content

  20. Bioremediation of petroleum-contaminated soil by a combined system of biostimulation-bioaugmentation with yeast.

    Science.gov (United States)

    Fan, Mei-Ying; Xie, Rui-Jie; Qin, Gang

    2014-01-01

    This paper presents a study of the effect of a combined biostimulation-bioaugmentation treatment applied to a clay-loam soil contaminated with 16,300 mg/kg of total petroleum hydrocarbons (TPH), which comprised 51% saturated hydrocarbons and 31% aromatic hydrocarbons. The bioaugmentation was performed with yeast Candida tropicalis SK21 isolated from petroleum-contaminated soil. The strain was able to grow in a pH range of 3-9 in liquid culture, and the optimum pH was found to be 6 for both growth and biosurfactant production. At pH 6, 96% and 42% of TPH were degraded by the strain at the initial diesel oil concentrations of 0.5% and 5% (v/v), respectively. The remediation via inoculating the yeast removed 83% of TPH in 180 days while the experiment with the indigenous microorganisms alone removed 61%. Microbial enumeration showed that the yeast SK21 could grow good in the soil. It was also found that dehydrogenase and polyphenoloxidase activities in soil were remarkably enhanced by the inoculation of the yeast.

  1. BIOREMEDIATION TRAINING

    Science.gov (United States)

    Bioremediation encompasses a collection of technologies which use microbes to degrade or transform contaminants. Three technologies have an established track record of acceptable performance: aerobic bioventing for fuels; enhanced reductive dechlorination for chlorinated solvent...

  2. Bioremediation of soils co-contaminated with heavy metals and 2,4,5-trichlorophenol by fruiting body of Clitocybe maxima.

    Science.gov (United States)

    Liu, Hongying; Guo, Shanshan; Jiao, Kai; Hou, Junjun; Xie, Han; Xu, Heng

    2015-08-30

    Pot experiments were performed to investigate the single effect of 2,4,5-trichlorophenol (TCP) or heavy metals (Cu, Cd, Cu+Cd) and the combined effects of metals-TCP on the growth of Clitocybe maxima together with the accumulation of heavy metals as well as dissipation of TCP. Results showed a negative effect of contaminations on fruiting time and biomass of the mushroom. TCP decreased significantly in soils accounting for 70.66-96.24% of the initial extractable concentration in planted soil and 66.47-91.42% in unplanted soil, which showed that the dissipation of TCP was enhanced with mushroom planting. Higher biological activities (bacterial counts, soil respiration and laccase activity) were detected in planted soils relative to unplanted controls, and the enhanced dissipation of TCP in planted soils might be derived from the increased biological activities. The metals accumulation in mushroom increased with the augment of metal load, and the proportion of acetic acid (HOAc) extractable metal in soils with C. maxima was larger than that in unplanted soils, which may be an explanation of metal uptake by C. maxima. These results suggested that the presence of C. maxima was effective in promoting the bioremediation of soil contaminated with heavy metals and TCP.

  3. Evolution of bacterial community during bioremediation of PAHs in a coal tar contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Lors, C.; Ryngaert, A.; Perie, F.; Diels, L.; Damidot, D. [University of Lille, Lille (France)

    2010-11-15

    The monitoring of a windrow treatment applied to soil contaminated by mostly 2, 3- and 4-ring PAHs produced by coal tar distillation was performed by following the evolution of both PAH concentration and the bacterial community. Total and PAH-degrading bacterial community structures were followed by 165 rRNA PCR-DGGE in parallel with quantification by bacterial counts and 16 PAH measurements. Six months of biological treatment led to a strong decrease in 2-, 3- and 4-ring PAH concentrations (98, 97 and 82%, respectively). This result was associated with the activity of bacterial PAH-degraders belonging mainly to the Gamma proteobacteria, in particular the Enterobacteria and Pseudomonas genera which were detected over the course of the treatment. This group was considered to be a good bioindicator to determine the potential PAH biodegradation of contaminated soil. Conversely other species like the Beta proteobacteria were detected after 3 months when 2-, 3- and 4-ring PAHs were almost completely degraded. Thus presence of the Beta proteobacteria group could be considered a good candidate indicator to estimate the endpoint of biotreatment of this type of PAH contaminated soil.

  4. Bioremediation assessment of diesel-biodiesel-contaminated soil using an alternative bioaugmentation strategy.

    Science.gov (United States)

    Colla, Tatiana Simonetto; Andreazza, Robson; Bücker, Francielle; de Souza, Marcela Moreira; Tramontini, Letícia; Prado, Gerônimo Rodrigues; Frazzon, Ana Paula Guedes; Camargo, Flávio Anastácio de Oliveira; Bento, Fátima Menezes

    2014-02-01

    This study investigated the effectiveness of successive bioaugmentation, conventional bioaugmentation, and biostimulation of biodegradation of B10 in soil. In addition, the structure of the soil microbial community was assessed by polymerase chain reaction-denaturing gradient gel electrophoresis. The consortium was inoculated on the initial and the 11th day of incubation for successive bioaugmentation and only on the initial day for bioaugmentation and conventional bioaugmentation. The experiment was conducted for 32 days. The microbial consortium was identified based on sequencing of 16S rRNA gene and consisted as Pseudomonas aeruginosa, Achromobacter xylosoxidans, and Ochrobactrum intermedium. Nutrient introduction (biostimulation) promoted a positive effect on microbial populations. The results indicate that the edaphic community structure and dynamics were different according to the treatments employed. CO2 evolution demonstrated no significant difference in soil microbial activity between biostimulation and bioaugmentation treatments. The total petroleum hydrocarbon (TPH) analysis indicated a biodegradation level of 35.7 and 32.2 % for the biostimulation and successive bioaugmentation treatments, respectively. Successive bioaugmentation displayed positive effects on biodegradation, with a substantial reduction in TPH levels.

  5. Bioremediation of diesel oil in a co-contaminated soil by bioaugmentation with a microbial formula tailored with native strains selected for heavy metals resistance.

    Science.gov (United States)

    Alisi, Chiara; Musella, Rosario; Tasso, Flavia; Ubaldi, Carla; Manzo, Sonia; Cremisini, Carlo; Sprocati, Anna Rosa

    2009-04-01

    The aim of the work is to assess the feasibility of bioremediation of a soil, containing heavy metals and spiked with diesel oil (DO), through a bioaugmentation strategy based on the use of a microbial formula tailored with selected native strains. The soil originated from the metallurgic area of Bagnoli (Naples, Italy). The formula, named ENEA-LAM, combines ten bacterial strains selected for multiple resistance to heavy metals among the native microbial community. The biodegradation process of diesel oil was assessed in biometer flasks by monitoring the following parameters: DO composition by GC-MS, CO2 evolution rate, microbial load and composition of the community by T-RFLP, physiological profile in Biolog ECOplates and ecotoxicity of the system. The application of this microbial formula allowed to obtain, in the presence of heavy metals, the complete degradation of n-C(12-20), the total disappearance of phenantrene, a 60% reduction of isoprenoids and an overall reduction of about 75% of the total diesel hydrocarbons in 42 days. Concurrently with the increase of metabolic activity at community level and the microbial load, the gradual abatement of the ecotoxicity was observed. The T-RFLP analysis highlighted that most of the ENEA-LAM strains survived and some minor native strains, undetectable in the soil at the beginning of the experiment, developed. Such a bioaugmentation approach allows the newly established microbial community to strike a balance between the introduced and the naturally present microorganisms. The results indicate that the use of a tailored microbial formula may efficiently facilitate and speed up the bioremediation of matrices co-contaminated with hydrocarbons and heavy metals. The study represents the first step for the scale up of the system and should be verified at a larger scale. In this view, this bioaugmentation strategy may contribute to overcome a critical bottleneck of the bioremediation technology.

  6. Impact of bioaccessible pyrene on the abundance of antibiotic resistance genes during Sphingobium sp.- and sophorolipid-enhanced bioremediation in soil.

    Science.gov (United States)

    Sun, Mingming; Ye, Mao; Wu, Jun; Feng, Yanfang; Shen, Fangyuan; Tian, Da; Liu, Kuan; Hu, Feng; Li, Huixin; Jiang, Xin; Yang, Linzhang; Kengara, Fredrick Orori

    2015-12-30

    Soils are exposed to various types of chemical contaminants due to anthropogenic activities; however, research on persistent organic pollutants and the existence of antibiotic resistance genes (ARGs) is limited. To our knowledge, the present work for the first time focused on the bioremediation of soil co-contaminated with pyrene and tetracycline/sulfonamide-resistance genes. After 90 days of incubation, the pyrene concentration and the abundance of the four ARGs (tetW, tetM, sulI, and sulII) significantly decreased in different treatment conditions (psoil treated with sophorolipid alone. Tenax extraction methods and linear correlation analysis indicated a strong positive relationship between the rapidly desorbing fraction (Fr) of pyrene and ARG abundance. Therefore, we conclude that bioaccessible pyrene rather than total pyrene plays a major role in the maintenance and fluctuation of ARG abundance in the soil.

  7. Evaluation of chemical pretreatment of contaminated soil for improved PAH bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Piskonen, R.; Itaevaara, M. [VTT Biotechnology, Espoo (Finland)

    2004-10-01

    The efficiency of several chemical treatments as potential enhancers of the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil was evaluated by analyzing the mineralization of {sup 14}C-labeled phenanthrene, pyrene, and benzo(a)pyrene. The effect of nonionic surfactants with Fenton oxidation and combinations of surfactants with the Fenton oxidation was evaluated in a microtiter plate assay. The surfactants selected for the study were Tween 80, Brij 35, Tergitol NP-10, and Triton X-100. The addition of Fenton's reagent significantly enhanced the mineralization of pyrene at the two concentrations studied: 2.8 M H{sub 2}O{sub 2} with 0.1 M FeSO{sub 4} and 0.7 M H{sub 2}O{sub 2} with 0.025 M FeSO{sub 4}. Phenanthrene mineralization was also positively induced by the Fenton treatments. However, none of the treatments had a significant effect on benzo(a)pyrene mineralization. Surfactant additions at concentrations of 20% and 80% of the aqueous critical micelle concentration did not significantly affect the mineralization rates. When surfactant addition was combined with the Fenton oxidation, reduced mineralization rates were obtained when compared with mineralization after Fenton's treatment alone. The results indicate that the addition of Fenton's reagent may enhance the mineralization of PAHs in contaminated soil, whereas the addition of surfactants has no significant beneficial effect. The efficiency of the Fenton oxidation may decrease when surfactants are added simultaneously with Fenton's reagent to contaminated soil. (orig.)

  8. Bioremediation of Petroleum Contaminated Soil%石油污染土壤生物修复

    Institute of Scientific and Technical Information of China (English)

    顾传辉; 陈桂珠

    2001-01-01

    概述了石油降解微生物的种群组成,介绍了几种主要的石油污染土壤的生物修复技术以及这一领域的研究现状,讨论了应用前景。%The composition of the petroleum-degrading microbial populationwas summarized.Several main methods of microbial treatment of petroleum contaminated soils and the study results and current situation in this field were reviewed.The application of this technology in our country in the future was discussed.

  9. Bioremediation of Chromium (VI from Textile Industry’s Effluent and Contaminated Soil Using Pseudomonas putida

    Directory of Open Access Journals (Sweden)

    Deepali

    2011-01-01

    Full Text Available Nine bacterial colonies were screened for the Cr(VI removal efficiency and out of these three bacterial strains Pseudomonas putida, Pseudomonas aeruginosa and Bacillus sp. were isolated from soil and used to remove Cr(VI from aqueous solution. The effect of time and concentrations on the removal rate of hexavalent chromium were studied using batch experiment. Maximum Cr (VI removal was noted 75.0% by Bacillus sp. at 10mg/l, 69.70% by Pseudomonas aeruginosa at 40mg/l and 90.88% by Pseudomonas putida at 10mg/l of synthetic solution, during 96 hours. Among these three bacteria, the maximum Cr(VI removal was reported by Pseudomonas putida on lower concentration. On the basis of highest removal rate, Pseudomonas putida was selected and used for further chromium removal from samples. It was found to be removed the highest Cr(VI by 82.92%, from effluent and 74.41% from soil during 96 hours. The present study depicts that bacteria removes chromium efficiently and this could be used for industrial waste management and other environmental contaminants.

  10. Production of CO2 in crude oil bioremediation in clay soil

    Directory of Open Access Journals (Sweden)

    Sandro José Baptista

    2005-06-01

    Full Text Available The aim of the present work was to evaluate the biodegradation of petroleum hydrocarbons in clay soil a 45-days experiment. The experiment was conducted using an aerobic fixed bed reactor, containing 300g of contaminated soil at room temperature with an air rate of 6 L/h. The growth medium was supplemented with 2.5% (w/w (NH42SO4 and 0.035% (w/w KH2PO4. Biodegradation of the crude oil in the contaminated clay soil was monitored by measuring CO2 production and removal of organic matter (OM, oil and grease (OandG, and total petroleum hydrocarbons (TPH, measured before and after the 45-days experiment, together with total heterotrophic and hydrocarbon-degrading bacterial count. The best removals of OM (50%, OandG (37% and TPH (45% were obtained in the bioreactors in which the highest CO2 production was achieved.O objetivo do trabalho foi avaliar a biodegradação de petróleo em solo argiloso durante 45 dias de ensaios. Os ensaios de biodegradação foram conduzidos em biorreatores aeróbios de leito fixo, com 300 g de solo contaminado, à temperatura ambiente e com uma vazão de ar de 6 L/h. As deficiências nutricionais foram corrigidas com 2,5% (p/p (NH42SO4 e com 0,035% (p/p KH2PO4. O monitoramento foi realizado em função da produção de CO2, da remoção de matéria orgânica (OM, de óleos e graxas (OandG e de hidrocarbonetos totais de petróleo (TPH, além bactérias heterotróficas totais (BHT e hidrocarbonoclásticas (BHc, no início e após 45 dias. Nos biorreatores onde houve maior crescimento de bactérias hidrocarbonoclásticas e maior produção de CO2, obteve-se os melhores percentuais de remoções de MO (50%, OandG (37% e TPH (45%.

  11. Bioremediation of Soil Pollution in Orchard%果园土壤污染的生物修复

    Institute of Scientific and Technical Information of China (English)

    王宝申; 王炳华; 高树青; 刘秀春; 高艳敏; 陈宝江; 杨华

    2009-01-01

    [Objective] The aim was to study the bioremediation mechanism of soil pollution. [Method] The effects of applying biological organic fertilizers on the bioremediation of soil pollution in orchard were studid by experiment in orchard field and soil simulative experiment. [Result] The biological organic fertilizers improved the activities of enzymes like polyphenol oxidase, urease, phosphatase, etc. in root-zone soil, promoted the passivation of heavy metals like Cd2+, Pb2+, Cr3+, As6+, etc. in root-zone soil, increased the quantities of useful active bacterium like beneficial fungi, actinomycetes, bacterium, etc. and decreased the quantities of harmful biology (like Fusarium oxysporum, Moniliophthora roreri, Ruselliniu necutrix/Helicobasidium mompa, nematode, etc. [Conclusion] The study results provide some references for the popularization and application of biological organic fertilizers on fruit trees.%[目的]弄清土壤污染的生物修复作用机理.[方法]通过果园田间试验和土壤模拟试验,研究施用果树生物有机肥对果园土壤中酶活性(土壤多酚氧化酶用邻苯三酚比色法测定,蔗糖酶用磷钼酸比色法测定,磷酸酶用磷酸苯二钠法测定,脲酶用靛酚比色法测定)、有害重金属的吸附-解吸作用、土壤微生物区系、有害病源菌数量的影响,以摸清施用果树生物有机肥对果园土壤生物修复的作用.[结果]生物有机肥提高了根域土壤多酚氧化酶、脲酶、磷酸酶的活力,提高幅度分别为0.4~0.7 mg/g、0.09~0.12 mg/g、0.4~0.5 mg/g;降低了土壤蔗糖酶活性,降低幅度为0.4~0.8 mg/g.生物有机肥促进了根域土壤对Pb2+等重金属的钝化.吸附曲线表明,生物有机肥、鸡粪对Pb2+的吸附量在溶液中Pb2+的初始浓度为200 mg/L时达到最大(分别为61.7、24.7 mg/kg),且生物有机肥对Pb2+的吸附量始终大于干鸡粪(高6.0%~20%);解吸曲线表明,生物肥、鸡粪在溶液中Pb2+初始浓度为600 mg

  12. Changes in bacterial community of anthracene bioremediation in municipal solid waste composting soil

    Institute of Scientific and Technical Information of China (English)

    Shu-ying ZHANG; Qing-feng WANG; Rui WAN; Shu-guang XIE

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are common contaminants in a municipal solid waste (MSW) composting site.Knowledge of changes in microbial structure is useful to identify particular PAH degraders.However,the microbial community in the MSW composting soil and its change associated with prolonged exposure to PAHs and subsequent biodegradation remain largely unknown.In this study,anthracene was selected as a model compound.The bacterial community structure was investigated using terminal restriction fragment length polymorphism (TRFLP) and 16S rRNA gene clone library analysis.The two bimolecular tools revealed a large shift of bacterial community structure after anthracene amendment and subsequent biodegradation.Genera Methylophilus,Mesorhizobium,and Terrimonas had potential links to anthracene biodegradation,suggesting a consortium playing an active role.

  13. Desorption of polycyclic aromatic hydrocarbons from field-contaminated soil to a two-dimensional hydrophobic surface before and after bioremediation.

    Science.gov (United States)

    Hu, Jing; Aitken, Michael D

    2012-10-01

    Dermal exposure can represent a significant health risk in settings involving potential contact with soil contaminated with polycyclic aromatic hydrocarbons (PAHs). However, there is limited work on the ability of PAHs in contaminated soil to reach the skin surface via desorption from the soil. We evaluated PAH desorption from a field-contaminated soil to a two-dimensional hydrophobic surface (C18 extraction disk) as a measure of potential dermal exposure as a function of soil loading (5-100 mg dry soil cm(-2)), temperature (20-40°C), and soil moisture content (2-40%) over periods up to 16d. The efficacy of bioremediation in removing the most readily desorbable PAH fractions was also evaluated. Desorption kinetics were described well by an empirical two-compartment kinetic model. PAH mass desorbed to the C18 disk kept increasing at soil loadings well above the estimated monolayer coverage, suggesting mechanisms for PAH transport to the surface other than by direct contact. Such mechanisms were reinforced by observations that desorption occurred even with dry or moist glass microfiber filters placed between the C18 disk and the soil. Desorption of all PAHs was substantially reduced at a soil moisture content corresponding to field capacity, suggesting that transport through pore air contributed to PAH transport to the C18 disk. The lower molecular weight PAHs had greater potential to desorb from soil than higher molecular weight PAHs. Biological treatment of the soil in a slurry-phase bioreactor completely eliminated PAH desorption to the C18 disks.

  14. Cometabolic bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2009-02-15

    Cometabolic bioremediation is probably the most under appreciated bioremediation strategy currently available. Cometabolism strategies stimulate only indigenous microbes with the ability to degrade the contaminant and cosubstrate e.g. methane, propane, toluene and others. This highly targeted stimulation insures that only those microbes that can degrade the contaminant are targeted, thus reducing amendment costs, well and formation plugging, etc. Cometabolic bioremediation has been used on some of the most recalcitrant contaminants, e.g. PCE, TCE, MTBE, TNT, dioxane, atrazine, etc. Methanotrophs have been demonstrated to produce methane monooxygense, an oxidase that can degrade over 300 compounds. Cometabolic bioremediation also has the advantage of being able to degrade contaminants to trace concentrations, since the biodegrader is not dependent on the contaminant for carbon or energy. Increasingly we are finding that in order to protect human health and the environment that we must remediate to lower and lower concentrations, especially for compounds like endocrine disrupters, thus cometabolism may be the best and maybe the only possibility that we have to bioremediate some contaminants.

  15. Comparative plant uptake and microbial degradation of trichloroethylene in the rhizospheres of five plant species-- implications for bioremediation of contaminated surface soils

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, T.A. (Tennessee Univ., Knoxville, TN (United States)); Walton, B.T. (Oak Ridge National Lab., TN (United States))

    1992-01-01

    The objective of this study was to collect data that would provide a foundation for the concept of using vegetation to enhance in situ bioremediation of contaminated surface soils. Soil and vegetation (Lespedeza cuneata, Paspalum notatum, Pinus taeda, and Solidago sp.) samples from the Miscellaneous Chemicals Basin (MCB) at the Savannah River Site were used in tests to identify critical plant and microbiological variables affecting the fate of trichloroethylene (TCE) in the root zone. Microbiological assays including phospholipid acid analyses, and {sup 14}C-acetate incorporation were conducted to elucidate differences in rhizosphere and nonvegetated soil microbial communities from the MCB. The microbial activity, biomass, and degradation of TCE in rhizosphere soils were significantly greater than corresponding nonvegetated soils. Vegetation had a positive effect on microbial degradation of {sup 14}C-TCE in whole-plant experiments. Soils from the MCB containing Lespedeza cuneata, Pinus taeda, and Glycine max mineralized greater than 25% of the {sup 14}C- TCE added compared with less than 20% in nonvegetated soils. Collectively, these results provide evidence for the positive role of vegetation in enhancing biodegradation.

  16. Bioremediation using Novosphingobium strain DY4 for 2,4-dichlorophenoxyacetic acid-contaminated soil and impact on microbial community structure.

    Science.gov (United States)

    Dai, Yu; Li, Ningning; Zhao, Qun; Xie, Shuguang

    2015-04-01

    The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) is commonly used for weed control. The ubiquity of 2,4-D has gained increasing environmental concerns. Biodegradation is an attractive way to clean up 2,4-D in contaminated soil. However, information on the bioaugmentation trial for remediating contaminated soil is still very limited. The impact of bioaugmentation using 2,4-D-degraders on soil microbial community remains unknown. The present study investigated the bioremediation potential of a novel degrader (strain DY4) for heavily 2,4-D-polluted soil and its bioaugmentation impact on microbial community structure. The strain DY4 was classified as a Novosphingobium species within class Alphaproteobacteria and harbored 2,4-D-degrading TfdAα gene. More than 50 and 95 % of the herbicide could be dissipated in bioaugmented soil (amended with 200 mg/kg 2,4-D) respectively in 3-4 and 5-7 days after inoculation of Novosphingobium strain DY4. A significant growth of the strain DY4 was observed in bioaugmented soil with the biodegradation of 2,4-D. Moreover, herbicide application significantly altered soil bacterial community structure but bioaumentation using the strain DY4 showed a relatively weak impact.

  17. Use of sugarcane filter cake and nitrogen, phosphorus and potassium fertilization in the process of bioremediation of soil contaminated with diesel.

    Science.gov (United States)

    Tellechea, Fernando Reynel Fundora; Martins, Marco Antônio; da Silva, Alexsandro Araujo; da Gama-Rodrigues, Emanuela Forestieri; Martins, Meire Lelis Leal

    2016-09-01

    This study evaluated the use of sugarcane filter cake and nitrogen, phosphorus and potassium (NPK) fertilization in the bioremediation of a soil contaminated with diesel fuel using a completely randomized design. Five treatments (uncontaminated soil, T1; soil contaminated with diesel, T2; soil contaminated with diesel and treated with 15 % (wt) filter cake, T3; soil contaminated with diesel and treated with NPK fertilizer, T4; and soil contaminated with diesel and treated with 15 % (wt) filter cake and NPK fertilizer, T5) and four evaluation periods (1, 60, 120, and 180 days after the beginning of the experiment) were used according to a 4 × 5 factorial design to analyze CO2 release. The variables total organic carbon (TOC) and total petroleum hydrocarbons (TPH) remaining in the soil were analyzed using a 5 × 2 factorial design, with the same treatments described above and two evaluation periods (1 and 180 days after the beginning of the experiment). In T3 and T5, CO2 release was significantly higher, compared with the other treatments. Significant TPH removal was observed on day 180, when percent removal values were 61.9, 70.1, 68.2, and 75.9 in treatments T2, T3, T4, and T5, respectively, compared with the initial value (T1).

  18. A Review on Bioremediation Technologies of Organic Pollutants Contaminated Soils%土壤有机污染物生物修复技术研究进展

    Institute of Scientific and Technical Information of China (English)

    周际海; 袁颖红; 朱志保; 姚春阳; 张谷雨; 高琪

    2015-01-01

    biphenyls (PCBs) and Antibiotics (ATBs), worsen soil organic matter pollution, thus making remediation of organic pollutants contaminated soils a pressing issue. The remediation of contaminated soils is a qualitative process in which pollutant concentration is reduced to an acceptable level, or poisonous and harmful pollutants transformed into innoxious substances through absorption, degradation, transfer and transformation in soils using physical, chemical or biological methods. It includes physical remediation technology, chemical remediation technology and bioremediation technology. Among all kinds of soil remediation techniques, bioremediation is receiving more and more attention because of its safety and low cost. Besides, it won’t cause secondary pollution. The bioremediation of organic pollutants contaminated soils consists of phytoremediation technologies, soil fauna remediation technologies and microbial remediation technologies. The microbial bioremediation as an important component of the bioremediation of contaminated soils, boasts the most value in development and application in biological environmental protection. This paper systematically introduces the bioremediation technologies of organic pollutants contaminated soils at home and abroad in terms of their principles, the research progresses, the advantages and limitations. In the meantime, we cast a brief look into the prospects of the research of soil fauna remediation in future. Hopefully, it will provide references for research on bioremediation of organic pollutants contaminated soils.

  19. Study on the Bioremediation of Soil Pollution in Orchard%果园土壤污染生物修复研究

    Institute of Scientific and Technical Information of China (English)

    王宝申; 王炳华; 高树青; 刘秀春; 高艳敏; 陈宝江; 杨华

    2009-01-01

    [目的]弄清土壤污染的生物修复作用机理.[方法]通过果园田间试验和土壤模拟试验,研究施用果树生物有机肥对果园土壤生物修复的作用.[结果]生物有机肥提高了根域土壤多酚氧化酶、脲酶、磷酸酶等酶的活力;促进了根域土壤对Pb2+等重金属的钝化;增加了有益真菌、放线菌、细菌等活性菌的数量,降低了根腐病菌、疫腐病菌、白/紫纹羽病菌和线虫等有害生物的数量.[结论]该研究为生物有机肥在果树上的推广应用提供了依据.%[ Objective] The aim was to study the bioremediation mechanism of soil pollution. [ Method] The effects of applying biological organic fertilizers on the bioremediation of soil pollution in orchard were studied by orchard field experiment and soil simulation experiment. [Result] The biological organic fertilizers improved the activities of enzymes (like polyphenol oxidase, urease, phosphatase etc) in root-zone soil, promoted the passivation of heavy metals (Pb~(2+)) by root-zone soil, increased the quantity of active bacterium (like beneficial fungi, ac-tinomycetes, bacterium etc) and decreased the quantity of harmful biology (like Fusarium oxysporum, Moniliophthora roreri, Ruselliniu necu-trix/Helicobasidium mompa Tanakae, nematode etc). [Conclusion] The study results provide some references for the popularization and application of biological organic fertilizers on fruit trees.

  20. Characterization of cell-free extracts from fenpropathrin-degrading strain Bacillus cereus ZH-3 and its potential for bioremediation of pyrethroid-contaminated soils.

    Science.gov (United States)

    Liu, Jie; Huang, Wenwen; Han, Haitao; She, Changchun; Zhong, Guohua

    2015-08-01

    Synthetic pyrethroid fenpropathrin has received increasing attention because of its environmental contamination and toxic effects on non-target organisms including human beings. Here we report the degradation characteristics of cell-free extracts from fenpropathrin-degrading strain Bacillus cereus ZH-3 and its potential for pyrethroid bioremediation in soils. 50mg·L(-1) of fenpropathrin was decreased to 20.6mg·L(-1) by the enzymatic extracts (869.4mg·L(-1)) within 30min. Kinetic constants Km and Vm were determined to be 1006.7nmol·L(-1) and 56.8nmol·min(-1), respectively. Degradation products were identified as 3-phenoxybenzaldehyde, α-hydroxy-3-phenoxy-benzeneacetonitrile and phenol by gas chromatography-mass spectrometry (GC-MS). In addition to degradation of fenpropathrin, the cell-free extracts could degrade other pyrethroids including beta-cypermethrin, cyfluthrin, deltamethrin and cypermethrin. Additionally, the reaction conditions were optimized. In the sterile and non-sterile soils, 50mg·kg(-1) of fenpropathrin was reduced to 15.3 and 13.9mg·L(-1) in 1d, respectively. Sprayed 100 and 300mg·kg(-1) of fenpropathrin emulsifiable concentrate (EC), up to 84.6% and 92.1% of soil fenpropathrin were removed from soils within 7d, respectively. Taken together, our results depict the biodegradation characteristics of cell-free extracts from B. cereus ZH-3, highlight its promising potential in bioremediation of pyrethroid-contaminated soils and also provide new insights into the utilization of degrading microbes.

  1. Characterisation of Newly Polar Psychrotrophic Streptomycetes Isolates from Polar Soils with Cold Adapted Bioremediation Potential

    Directory of Open Access Journals (Sweden)

    Mihaela COTARLET

    2010-06-01

    Full Text Available Novel polar streptomycetes coded 4 Alga, P2C4 and MIUG 12P, isolated from soil and vegetation samples prelevated from East Antarctica, were genetically and biochemically characterized in order to set up the phylogeny and to identify the capability to grow at lower temperature and to generate amylase and protease cold-active. The 16S rRNA gene sequence of isolate coded 4 Alga was 100% identical to sequences of Streptomyces sp. isolates from Norway and from Solomon Islands, which also were the closest relatives of P2C4 (99.53% and MIUG 12P (99.53% isolates. The data emphasised the skills of the strains Streptomyces 4 Alga, Streptomyces P2C4 and Streptomyces MIUG 12P to biosynthesis cold-adapted amylases and proteases suitable in bioconversion processes at low temperature. These results are quit valuable, because only few streptomycetes, particularly psychrotolerant ones, have so far been explored for their enzymatic potential in cold conditions.

  2. Bioremediation potential of a highly mercury resistant bacterial strain Sphingobium SA2 isolated from contaminated soil.

    Science.gov (United States)

    Mahbub, Khandaker Rayhan; Krishnan, Kannan; Megharaj, Mallavarapu; Naidu, Ravi

    2016-02-01

    A mercury resistant bacterial strain, SA2, was isolated from soil contaminated with mercury. The 16S rRNA gene sequence of this isolate showed 99% sequence similarity to the genera Sphingobium and Sphingomonas of α-proteobacteria group. However, the isolate formed a distinct phyletic line with the genus Sphingobium suggesting the strain belongs to Sphingobium sp. Toxicity studies indicated resistance to high levels of mercury with estimated EC50 values 4.5 mg L(-1) and 44.15 mg L(-1) and MIC values 5.1 mg L(-1) and 48.48 mg L(-1) in minimal and rich media, respectively. The strain SA2 was able to volatilize mercury by producing mercuric reductase enzyme which makes it potential candidate for remediating mercury. ICP-QQQ-MS analysis of Hg supplemented culture solutions confirmed that almost 79% mercury in the culture suspension was volatilized in 6 h. A very small amount of mercury was observed to accumulate in cell pellets which was also evident according to ESEM-EDX analysis. The mercuric reductase gene merA was amplified and sequenced. The deduced amino acid sequence demonstrated sequence homology with α-proteobacteria and Ascomycota group.

  3. Suitability of oil bioremediation in an Artic soil using surplus heating from an incineration facility.

    Science.gov (United States)

    Couto, Nazaré; Fritt-Rasmussen, Janne; Jensen, Pernille E; Højrup, Mads; Rodrigo, Ana P; Ribeiro, Alexandra B

    2014-05-01

    A 168-day period field study, carried out in Sisimiut, Greenland, assessed the potential to enhance soil remediation with the surplus heating from an incineration facility. This approach searches a feasible ex situ remediation process that could be extended throughout the year with low costs. Individual and synergistic effects of biostimulation were also tested, in parallel. An interim evaluation at the end of the first 42 days showed that biostimulation and active heating, as separate treatments, enhanced petroleum hydrocarbon (PHC) removal compared to natural attenuation. The coupling of both technologies was even more effective, corroborating the benefits of both techniques in a remediation strategy. However, between day 42 and day 168, there was an opposite remediation trend with all treatments suggesting a stabilization except for natural attenuation, where PHC values continued to decrease. This enforces the "self-purification" capacity of the system, even at low temperatures. Coupling biostimulation with active heating was the best approach for PHC removal, namely for a short period of time (42 days). The proposed remediation scheme can be considered a reliable option for faster PHC removal with low maintenance and using "waste heating" from an incineration facility.

  4. 菌根在污染土壤生物修复中的作用%Effect of Mycorrhiza on Bioremediation of Polluted Soil

    Institute of Scientific and Technical Information of China (English)

    王曙光; 林先贵

    2001-01-01

    Mycorrhiza,existing extensively in nature,are symbioticassociations of plant roots with certain soil fungi. They can improve the host plant in nutrient uptake and growth,and hence its endurance and resistance to environmental stress. Therefore,mycorrhiza-accreted plants can be used as a suitable bioremediation carrier. A review is made of studies,at home and abroad,on role of mycorrhiza in bioremediating soils polluted by non-organic,organic and radioactive contaminants.%菌根是土壤真菌-植物根系形成的共生体,广泛存在于自然界中,它能增强植物的吸收能力,改善植物的生长,提高植株的抗逆能力和耐受能力等。所以,菌根化植物可作为很好的生物修复载体。本文主要从无机、有机以及放射性污染3方面对国内外关于菌根在污染土壤生物修复中的作用进行了综述。

  5. In-situ Bioremediation Technology for Soil Pesticide Pollution and Its Research Progress%土壤农药污染原位生物修复技术及其研究进展

    Institute of Scientific and Technical Information of China (English)

    王新; 姚梦琴; 祝虹钰; 曹宇; 鲍佳; 张惠文

    2016-01-01

    介绍了农药污染土壤的生物修复和原位生物修复技术及其研究现状,分析了其研究方向与发展趋势,以期为农药污染土壤原位生物修复技术的理论研究和应用提供参考。%Based upon a review on the pesticide contaminated soil bioremediation and in situ bioremediation technology research progress , the research direction and development trend could be demonstrated, in order to provide a reference for theory research and application of pesti-cide-contaminated soil and in situ bioremediation technology.

  6. Use of emulsified vegetable oil to support bioremediation of TCE DNAPL in soil columns

    Science.gov (United States)

    Harkness, Mark; Fisher, Angela

    2013-08-01

    The interaction between emulsified vegetable oil (EVO) and trichloroethylene (TCE) dense non-aqueous phase liquid (DNAPL) was observed using two soil columns and subsequent reductive dechlorination of TCE was monitored over a three year period. Dyed TCE DNAPL (~ 75 g) was emplaced in one column (DNAPL column), while the second was DNAPL-free (plume column). EVO was added to both columns and partitioning of the EVO into the TCE DNAPL was measured and quantified. TCE (1.9 mM) was added to the influent of the plume column to simulate conditions down gradient of a DNAPL source area and the columns were operated independently for more than one year, after which they were connected in series. Initially limited dechlorination of TCE to cDCE was observed in the DNAPL column, while the plume column supported complete reductive dechlorination of TCE to ethene. Upon connection and reamendment of the plume column with EVO, near saturation levels of TCE from the effluent of the DNAPL column were rapidly dechlorinated to c-DCE and VC in the plume column; however, this high rate dechlorination produced hydrochloric acid which overwhelmed the buffering capacity of the system and caused the pH to drop below 6.0. Dechlorination efficiency in the columns subsequently deteriorated, as measured by the chloride production and Dehalococcoides counts, but was restored by adding sodium bicarbonate buffer to the influent groundwater. Robust dechlorination was eventually observed in the DNAPL column, such that the TCE DNAPL was largely removed by the end of the study. Partitioning of the EVO into the DNAPL provided significant operational benefits to the remediation system both in terms of electron donor placement and longevity.

  7. Use of emulsified vegetable oil to support bioremediation of TCE DNAPL in soil columns.

    Science.gov (United States)

    Harkness, Mark; Fisher, Angela

    2013-08-01

    The interaction between emulsified vegetable oil (EVO) and trichloroethylene (TCE) dense non-aqueous phase liquid (DNAPL) was observed using two soil columns and subsequent reductive dechlorination of TCE was monitored over a three year period. Dyed TCE DNAPL (~75 g) was emplaced in one column (DNAPL column), while the second was DNAPL-free (plume column). EVO was added to both columns and partitioning of the EVO into the TCE DNAPL was measured and quantified. TCE (1.9 mM) was added to the influent of the plume column to simulate conditions down gradient of a DNAPL source area and the columns were operated independently for more than one year, after which they were connected in series. Initially limited dechlorination of TCE to cDCE was observed in the DNAPL column, while the plume column supported complete reductive dechlorination of TCE to ethene. Upon connection and reamendment of the plume column with EVO, near saturation levels of TCE from the effluent of the DNAPL column were rapidly dechlorinated to c-DCE and VC in the plume column; however, this high rate dechlorination produced hydrochloric acid which overwhelmed the buffering capacity of the system and caused the pH to drop below 6.0. Dechlorination efficiency in the columns subsequently deteriorated, as measured by the chloride production and Dehalococcoides counts, but was restored by adding sodium bicarbonate buffer to the influent groundwater. Robust dechlorination was eventually observed in the DNAPL column, such that the TCE DNAPL was largely removed by the end of the study. Partitioning of the EVO into the DNAPL provided significant operational benefits to the remediation system both in terms of electron donor placement and longevity.

  8. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation.

    Science.gov (United States)

    Agnello, A C; Bagard, M; van Hullebusch, E D; Esposito, G; Huguenot, D

    2016-09-01

    Biological remediation technologies are an environmentally friendly approach for the treatment of polluted soils. This study evaluated through a pot experiment four bioremediation strategies: a) natural attenuation, b) phytoremediation with alfalfa (Medicago sativa L.), c) bioaugmentation with Pseudomonas aeruginosa and d) bioaugmentation-assisted phytoremediation, for the treatment of a co-contaminated soil presenting moderate levels of heavy metals (Cu, Pb and Zn at 87, 100 and 110mgkg(-1) DW, respectively) and petroleum hydrocarbons (3800mgkg(-1) DW). As demonstrated by plant biomass and selected physiological parameters alfalfa plants were able to tolerate and grow in the co-contaminated soil, especially when soil was inoculated with P. aeruginosa, which promoted plant growth (56% and 105% increase for shoots and roots, respectively) and appeared to alleviate plant stress. The content of heavy metals in alfalfa plants was limited and followed the order: Zn>Cu>Pb. Heavy metals were mainly concentrated in plant roots and were poorly translocated, favouring their stabilization in the root zone. Bioaugmentation of planted soil with P. aeruginosa generally led to a decrease of plant metal concentration and translocation. The highest degree of total petroleum hydrocarbon removal was obtained for bioaugmentation-assisted phytoremediation treatment (68%), followed by bioaugmentation (59%), phytoremediation (47%) and natural attenuation (37%). The results of this study demonstrated that the combined use of plant and bacteria was the most advantageous option for the treatment of the present co-contaminated soil, as compared to natural attenuation, bioaugmentation or phytoremediation applied alone.

  9. Research Progress in Bioremediation of Contaminated Soil%土壤污染的生物修复技术研究进展

    Institute of Scientific and Technical Information of China (English)

    程芳; 亓恒振; 孙俊玲

    2014-01-01

    Soil contamination has become a serious problem in our country. This paper reviews the research developments and new methods applications in bioremediation. Trends and perspectives of soil remediation are also introduced. We hope this review could be beneficial to further research in this area.%土壤污染已经成为我国当前面临的一个严重的环境问题。本文综述了国内外土壤污染生物修复技术的研究现状,总结了该领域内新技术的应用,并展望了土壤污染修复技术的发展趋势,以期为今后这方面的研究提供参考。

  10. Enhancement of the microbial community biomass and diversity during air sparging bioremediation of a soil highly contaminated with kerosene and BTEX.

    Science.gov (United States)

    Kabelitz, Nadja; Machackova, Jirina; Imfeld, Gwenaël; Brennerova, Maria; Pieper, Dietmar H; Heipieper, Hermann J; Junca, Howard

    2009-03-01

    In order to obtain insights in complexity shifts taking place in natural microbial communities under strong selective pressure, soils from a former air force base in the Czech Republic, highly contaminated with jet fuel and at different stages of a bioremediation air sparging treatment, were analyzed. By tracking phospholipid fatty acids and 16S rRNA genes, a detailed monitoring of the changes in quantities and composition of the microbial communities developed at different stages of the bioventing treatment progress was performed. Depending on the length of the air sparging treatment that led to a significant reduction in the contamination level, we observed a clear shift in the soil microbial community being dominated by Pseudomonads under the harsh conditions of high aromatic contamination to a status of low aromatic concentrations, increased biomass content, and a complex composition with diverse bacterial taxonomical branches.

  11. Enhancement of the microbial community biomass and diversity during air sparging bioremediation of a soil highly contaminated with kerosene and BTEX

    Energy Technology Data Exchange (ETDEWEB)

    Kabelitz, Nadja; Heipieper, Hermann J. [Helmholtz Centre for Environmental Research (UFZ), Leipzig (Germany). Dept. of Bioremediation; Machackova, Jirina [Earth Tech CZ s.r.o., Prague (Czech Republic); Imfeld, Gwenael [Helmholtz Centre for Environmental Research (UFZ), Leipzig (Germany). Dept. of Isotope Biogeochemistry; Brennerova, Maria [Czech Academy of Sciences, Prague (CZ). Inst. of Microbiology (IMIC); Pieper, Dietmar H.; Junca, Howard [Helmholtz Centre for Infection Research (HZI), Braunschweig (Germany). Biodegradation Research Group

    2009-03-15

    In order to obtain insights in complexity shifts taking place in natural microbial communities under strong selective pressure, soils from a former air force base in the Czech Republic, highly contaminated with jet fuel and at different stages of a bioremediation air sparging treatment, were analyzed. By tracking phospholipid fatty acids and 16S rRNA genes, a detailed monitoring of the changes in quantities and composition of the microbial communities developed at different stages of the bioventing treatment progress was performed. Depending on the length of the air sparging treatment that led to a significant reduction in the contamination level, we observed a clear shift in the soil microbial community being dominated by Pseudomonads under the harsh conditions of high aromatic contamination to a status of low aromatic concentrations, increased biomass content, and a complex composition with diverse bacterial taxonomical branches. (orig.)

  12. J.R. SIMPLOT EX-SITU BIOREMEDIATION TECHNOLOGY FOR TREATMENT OF DINOSEB-CONTAMINATED SOILS - INNOVATIVE TECHNOLOGY REPORT

    Science.gov (United States)

    This report summarizes the findings of an evaluation of the J.R. Simplot Ex-Situ Bioremediation Technology on the degradation of dinoseb (2-set-butyl-4,6-dinitrophenol) an agricultural herbicide. This technology was developed by the J.R. Simplot Company (Simplot) to biologically ...

  13. Impact of chemical oxidation on indigenous bacteria and mobilization of nutrients and subsequent bioremediation of crude oil-contaminated soil.

    Science.gov (United States)

    Xu, Jinlan; Deng, Xin; Cui, Yiwei; Kong, Fanxing

    2016-12-15

    Fenton pre-oxidation provides nutrients to promote bioremediation. However, the effects of the indigenous bacteria that remain following Fenton oxidation on nutrient mobilization and subsequent bioremediation remain unclear. Experiments were performed with inoculation with native bacteria and foreign bacteria or without inoculation after four regimens of stepwise pre-oxidations. The effects of the indigenous bacteria remaining after stepwise oxidation on nutrient mobilization and subsequent bioremediation over 80 days were investigated. After stepwise Fenton pre-oxidation at a low H2O2 concentration (225×4), the remaining indigenous bacterial populations reached their peak (4.8±0.17×10(6)CFU/g), the nutrients were mobilized rapidly, and the subsequent bioremediation of crude oil was improved (biodegradation efficiency of 35%). However, after stepwise Fenton pre-oxidation at a high H2O2 concentration (450×4), only 3.6±0.16×10(3)CFU/g of indigenous bacteria remained, and the indigenous bacteria that degrade C15-C30 alkanes were inhibited. The nutrient mobilization was then highly limited, and only 19% of total petroleum hydrocarbon was degraded. Furthermore, the recovery period after the low H2O2 concentration stepwise Fenton pre-oxidation (225×4) was less than 20 days, which was 20-30 days shorter than with the other pre-oxidation treatments. Therefore, stepwise Fenton pre-oxidation at a low H2O2 concentration protects indigenous bacterial populations and improves the nutrient mobilization and subsequent bioremediation.

  14. TREATABILITY STUDY REPORT OF GREEN MOUNTAIN LABORATORIES, INC.'S BIOREMEDIATION PROCESS, TREATMENT OF PCB CONTAMINATED SOILS, AT BEEDE WASTE OIL/CASH ENERGY SUPERFUND SITE, PLAISTOW, NEW HAMPSHIRE

    Science.gov (United States)

    In 1998, Green Mountain Laboratories, Inc. (GML) and the USEPA agreed to carry out a Superfund Innovative Technology Evaluation (SITE) project to evaluate the effectiveness of GML's Bioremediation Process for the treatment of PCB contaminated soils at the Beede Waste Oil/Cash Ene...

  15. Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leachability in soil

    Energy Technology Data Exchange (ETDEWEB)

    Cassidy, Daniel P., E-mail: daniel.cassidy@wmich.edu [Department of Geosciences, Western Michigan University, Kalamazoo, MI 49008 (United States); Srivastava, Vipul J., E-mail: vipul.srivastava@ch2m.com [CH2M HILL, 125S Wacker, Ste 3000, Chicago, IL 60606 (United States); Dombrowski, Frank J., E-mail: frank.dombrowski@we-energies.com [We Energies, 333W Everett St., A231, Milwaukee, WI 53203 (United States); Lingle, James W., E-mail: jlingle@epri.com [Electric Power Research Institute (EPRI), 4927W Willow Road, Brown Deer, WI 53223 (United States)

    2015-10-30

    Highlights: • Portland cement and lime activated persulfate by increasing pH and temperature. • Chemical oxidation achieved BTEX and PAH removal ranging from 55% to 75%. • Activating persulfate with ISS amendments reduced leachability more than NaOH. • Native sulfate-reducing bacteria degraded PAHs within weeks after ISCO finished. • ISCO, ISS, and anaerobic bioremediation were combined in a single application. - Abstract: Laboratory batch reactors were maintained for 32 weeks to test the potential for an in situ remedy that combines chemical oxidation, stabilization, and anaerobic bioremediation in a single application to treat soil from a manufactured gas plant, contaminated with polycyclic aromatic hydrocarbons (PAH) and benzene, toluene, ethylbenzene, and xylenes (BTEX). Portland cement and slaked lime were used to activate the persulfate and to stabilize/encapsulate the contaminants that were not chemically oxidized. Native sulfate-reducing bacteria degraded residual contaminants using the sulfate left after persulfate activation. The ability of the combined remedy to reduce contaminant mass and leachability was compared with NaOH-activated persulfate, stabilization, and sulfate-reducing bioremediation as stand-alone technologies. The stabilization amendments increased pH and temperature sufficiently to activate the persulfate within 1 week. Activation with both stabilization amendments and NaOH removed between 55% and 70% of PAH and BTEX. However, combined persulfate and stabilization significantly reduced the leachability of residual BTEX and PAH compared with NaOH activation. Sulfide, 2-naphthoic acid, and the abundance of subunit A of the dissimilatory sulfite reductase gene (dsrA) were used to monitor native sulfate-reducing bacteria, which were negatively impacted by activated persulfate, but recovered completely within weeks.

  16. Characterization of successional changes in bacterial community composition during bioremediation of used motor oil-contaminated soil in a boreal climate.

    Science.gov (United States)

    Yan, Lijuan; Sinkko, Hanna; Penttinen, Petri; Lindström, Kristina

    2016-01-15

    The widespread use of motor oil makes it a notable risk factor to cause scattered contamination in soil. The monitoring of microbial community dynamics can serve as a comprehensive tool to assess the ecological impact of contaminants and their disappearance in the ecosystem. Hence, a field study was conducted to monitor the ecological impact of used motor oil under different perennial cropping systems (fodder galega, brome grass, galega-brome grass mixture and bare fallow) in a boreal climate zone. Length heterogeneity PCR characterized a successional pattern in bacterial community following oil contamination over a four-year bioremediation period. Soil pH and electrical conductivity were associated with the shifts in bacterial community composition. Crops had no detectable effect on bacterial community composition or complexity. However, the legume fodder galega increased soil microbial biomass, expressed as soil total DNA. Oil contamination induced an abrupt change in bacterial community composition at the early stage, yet the effect did not last as long as the oil in soil. The successional variation in bacterial community composition can serve as a sensitive ecological indicator of oil contamination and remediation in situ.

  17. Bioremediation of Cd and carbendazim co-contaminated soil by Cd-hyperaccumulator Sedum alfredii associated with carbendazim-degrading bacterial strains.

    Science.gov (United States)

    Xiao, Wendan; Wang, Huan; Li, Tingqiang; Zhu, Zhiqiang; Zhang, Jie; He, Zhenli; Yang, Xiaoe

    2013-01-01

    The objective of this study was to develop a bioremediation strategy for cadmium (Cd) and carbendazim co-contaminated soil using a hyperaccumulator plant (Sedum alfredii) combined with carbendazim-degrading bacterial strains (Bacillus subtilis, Paracoccus sp., Flavobacterium and Pseudomonas sp.). A pot experiment was conducted under greenhouse conditions for 180 days with S. alfredii and/or carbendazim-degrading strains grown in soil artificially polluted with two levels of contaminants (low level, 1 mg kg(-1) Cd and 21 mg kg(-1) carbendazim; high level, 6 mg kg(-1) Cd and 117 mg kg(-1) carbendazim). Cd removal efficiencies were 32.3-35.1 % and 7.8-8.2 % for the low and high contaminant level, respectively. Inoculation with carbendazim-degrading bacterial strains significantly (P soil microbial biomass, dehydrogenase activities and microbial diversities by 46.2-121.3 %, 64.2-143.4 %, and 2.4-24.7 %, respectively. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis revealed that S. alfredii stimulated the activities of Flavobacteria and Bradyrhizobiaceae. The association of S. alfredii with carbendazim-degrading bacterial strains enhanced the degradation of carbendazim by changing microbial activity and community structure in the soil. The results demonstrated that association of S. alfredii with carbendazim-degrading bacterial strains is promising for remediation of Cd and carbendazim co-contaminated soil.

  18. Bioremediation of PAH-contamined soils: Consequences on formation and degradation of polar-polycyclic aromatic compounds and microbial community abundance.

    Science.gov (United States)

    Biache, Coralie; Ouali, Salma; Cébron, Aurélie; Lorgeoux, Catherine; Colombano, Stéfan; Faure, Pierre

    2017-05-05

    A bioslurry batch experiment was carried out over five months on three polycyclic aromatic compound (PAC) contaminated soils to study the PAC (PAH and polar-PAC) behavior during soil incubation and to evaluate the impact of PAC contamination on the abundance of microbial communities and functional PAH-degrading populations. Organic matter characteristics and reactivity, assessed through solvent extractable organic matter and PAC contents, and soil organic matter mineralization were monitored during 5 months. Total bacteria and fungi, and PAH-ring hydroxylating dioxygenase genes were quantified. Results showed that PAHs and polar-PACs were degraded with different degradation dynamics. Differences in degradation rates were observed among the three soils depending on PAH distribution and availability. Overall, low molecular weight compounds were preferentially degraded. Degradation selectivity between isomers and structurally similar compounds was observed which could be used to check the efficiency of bioremediation processes. Bacterial communities were dominant over fungi and were most likely responsible for PAC degradation. Abundance of PAH-degrading bacteria increased during incubations, but their proportion in the bacterial communities tended to decrease. The accumulation of some oxygenated-PACs during the bioslurry experiment underlines the necessity to monitor these compounds during application of remediation treatment on PAH contaminated soils.

  19. Bioremediation of contaminated mixtures of desert mining soil and sawdust with fuel oil by aerated in-vessel composting in the Atacama Region (Chile).

    Science.gov (United States)

    Godoy-Faúndez, Alex; Antizar-Ladislao, Blanca; Reyes-Bozo, Lorenzo; Camaño, Andrés; Sáez-Navarrete, César

    2008-03-01

    Since early 1900s, with the beginning of mining operations and especially in the last decade, small, although repetitive spills of fuel oil had occurred frequently in the Chilean mining desert industry during reparation and maintenance of machinery, as well as casual accidents. Normally, soils and sawdust had been used as cheap readily available sorbent materials of spills of fuel oil, consisting of complex mixtures of aliphatic and aromatic hydrocarbons. Chilean legislation considers these fuel oil contaminated mixtures of soil and sawdust as hazardous wastes, and thus they must be contained. It remains unknown whether it would be feasible to clean-up Chilean desert soils with high salinity and metal content, historically polluted with different commercial fuel oil, and contained during years. Thus, this study evaluated the feasibility of aerated in-vessel composting at a laboratory scale as a bioremediation technology to clean-up contaminated desert mining soils (fuel concentration>50,000 mg kg(-1)) and sawdust (fuel concentration>225,000 mg kg(-1)) in the Atacama Region. The composting reactors were operated using five soil to sawdust ratios (S:SD, 1:0, 3:1, 1:1, 1:3, 0:1, on a dry weight basis) under mesophilic temperatures (30-40 degrees C), constant moisture content (MC, 50%) and continuous aeration (16 l min(-1)) during 56 days. Fuel oil concentration and physico-chemical changes in the composting reactors were monitored following standard procedures. The highest (59%) and the lowest (35%) contaminant removals were observed in the contaminated sawdust and contaminated soil reactors after 56 days of treatment, respectively. The S:SD ratio, time of treatment and interaction between both factors had a significant effect (p<0.050) on the contaminant removal. The results of this research indicate that bioremediation of an aged contaminated mixture of desert mining soil and sawdust with fuel oil is feasible. This study recommends a S:SD ratio 1:3 and a correct

  20. Bioremediation of contaminated mixtures of desert mining soil and sawdust with fuel oil by aerated in-vessel composting in the Atacama Region (Chile)

    Energy Technology Data Exchange (ETDEWEB)

    Godoy-Faundez, Alex [Department of Chemical Engineering and Bioprocesses, Pontifica Universidad Catolica de Chile (Chile)], E-mail: agodoy@puc.cl; Antizar-Ladislao, Blanca [Department of Water and Environment Science and Technology, University of Bulevar Ronda Rufino Peon, 39316 Torrelavega, Cantabria (Spain)], E-mail: b_antizar@hotmail.com; Reyes-Bozo, Lorenzo [Department of Chemical Engineering and Bioprocesses, Pontifica Universidad Catolica de Chile (Chile); Camano, Andres [Minera Escondida Ltd. (Chile); Saez-Navarrete, Cesar [Department of Chemical Engineering and Bioprocesses, Pontifica Universidad Catolica de Chile (Chile)], E-mail: csaez@ing.puc.cl

    2008-03-01

    Since early 1900s, with the beginning of mining operations and especially in the last decade, small, although repetitive spills of fuel oil had occurred frequently in the Chilean mining desert industry during reparation and maintenance of machinery, as well as casual accidents. Normally, soils and sawdust had been used as cheap readily available sorbent materials of spills of fuel oil, consisting of complex mixtures of aliphatic and aromatic hydrocarbons. Chilean legislation considers these fuel oil contaminated mixtures of soil and sawdust as hazardous wastes, and thus they must be contained. It remains unknown whether it would be feasible to clean-up Chilean desert soils with high salinity and metal content, historically polluted with different commercial fuel oil, and contained during years. Thus, this study evaluated the feasibility of aerated in-vessel composting at a laboratory scale as a bioremediation technology to clean-up contaminated desert mining soils (fuel concentration > 50,000 mg kg{sup -1}) and sawdust (fuel concentration > 225,000 mg kg{sup -1}) in the Atacama Region. The composting reactors were operated using five soil to sawdust ratios (S:SD, 1:0, 3:1, 1:1, 1:3, 0:1, on a dry weight basis) under mesophilic temperatures (30-40 deg. C), constant moisture content (MC, 50%) and continuous aeration (16 l min{sup -1}) during 56 days. Fuel oil concentration and physico-chemical changes in the composting reactors were monitored following standard procedures. The highest (59%) and the lowest (35%) contaminant removals were observed in the contaminated sawdust and contaminated soil reactors after 56 days of treatment, respectively. The S:SD ratio, time of treatment and interaction between both factors had a significant effect (p < 0.050) on the contaminant removal. The results of this research indicate that bioremediation of an aged contaminated mixture of desert mining soil and sawdust with fuel oil is feasible. This study recommends a S:SD ratio 1

  1. Case study: Bioremediation in the Aleutian Islands

    Energy Technology Data Exchange (ETDEWEB)

    Steward, K.J.; Laford, H.D. [URS Consultants, Inc., Seattle, WA (United States)

    1995-12-31

    This case study describes the design, construction, and operation of a bioremediation pile on Adak Island, which is located in the Aleutian Island chain. Approximately 1,900 m{sup 3} of petroleum-contaminated soil were placed in the bioremediation pile. The natural bioremediation process was enhanced by an oxygen and nutrient addition system to stimulate microbial activity. Despite the harsh weather on the island, after the first 6 months of operation, laboratory analyses of soil samples indicated a significant (80%) reduction in diesel concentrations.

  2. Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leachability in soil.

    Science.gov (United States)

    Cassidy, Daniel P; Srivastava, Vipul J; Dombrowski, Frank J; Lingle, James W

    2015-10-30

    Laboratory batch reactors were maintained for 32 weeks to test the potential for an in situ remedy that combines chemical oxidation, stabilization, and anaerobic bioremediation in a single application to treat soil from a manufactured gas plant, contaminated with polycyclic aromatic hydrocarbons (PAH) and benzene, toluene, ethylbenzene, and xylenes (BTEX). Portland cement and slaked lime were used to activate the persulfate and to stabilize/encapsulate the contaminants that were not chemically oxidized. Native sulfate-reducing bacteria degraded residual contaminants using the sulfate left after persulfate activation. The ability of the combined remedy to reduce contaminant mass and leachability was compared with NaOH-activated persulfate, stabilization, and sulfate-reducing bioremediation as stand-alone technologies. The stabilization amendments increased pH and temperature sufficiently to activate the persulfate within 1 week. Activation with both stabilization amendments and NaOH removed between 55% and 70% of PAH and BTEX. However, combined persulfate and stabilization significantly reduced the leachability of residual BTEX and PAH compared with NaOH activation. Sulfide, 2-naphthoic acid, and the abundance of subunit A of the dissimilatory sulfite reductase gene (dsrA) were used to monitor native sulfate-reducing bacteria, which were negatively impacted by activated persulfate, but recovered completely within weeks.

  3. Biodegradation and bioremediation

    DEFF Research Database (Denmark)

    Albrechtsen, H.-J.

    1996-01-01

    Anmeldelse af Alexander,M.: Biodegradation and bioremediation. Academic Press, Sandiego, USA, 1994......Anmeldelse af Alexander,M.: Biodegradation and bioremediation. Academic Press, Sandiego, USA, 1994...

  4. Pilot scale ex-situ bioremediation of heavily PAHs-contaminated soil by indigenous microorganisms and bioaugmentation by a PAHs-degrading and bioemulsifier-producing strain.

    Science.gov (United States)

    Sun, Guang-Dong; Xu, Yang; Jin, Jing-Hua; Zhong, Zhi-Ping; Liu, Ying; Luo, Mu; Liu, Zhi-Pei

    2012-09-30

    This study aims at the remediation of heavily PAH-contaminated soil containing 375 mg of total PAHs per kilogram dry soil. Pilot scale bioremediation experiments were carried out by three approaches with contaminated soil from abandoned sites of Beijing Coking Plant using outdoor pot trials. The first approach was bioaugmentation with a bacterial strain which degrades PAH and produces bioemulsifier, the second approach comprised of biostimulation of indigenous microorganisms with supplementing nutrients and the last approach involved the combination of both biostimulation and bioaugmentation. An on-site land farming group was set as a control in which the total PAHs and 4-6 ring-PAHs were reduced by 23.4% and 10.1%, respectively after 175 days. Meanwhile, in the first approach group, the total PAHs and 4-6 ring-PAHs were reduced by 26.82% and 35.36%, respectively; in the second approach group both percentages were 33.9% and 11.0%, respectively; while in the third approach group, these pollutants were reduced by 43.9% and 55.0%, respectively. The results obtained suggested that biostimulation and bioaugmentation combined could significantly enhance the removal of PAHs in the contaminated soil.

  5. Research progress on bioremediation of radionuclides contaminated soils%生物修复放射性污染土壤的研究进展

    Institute of Scientific and Technical Information of China (English)

    查忠勇; 王定娜; 冯孝杰; 秦冰; 祁芳芳; 张楠; 方振东; 夏传琴

    2014-01-01

    核能的利用给人类带来了福利也带来了灾难。部分土壤被放射性物质污染,放射性物质通过食物链进入人体,威胁人类健康。目前各国科研工作者正在积极寻找可行的办法解决土壤的放射性污染问题,并发展起来许多方法来修复放射性污染的土壤。本文就放射性污染土壤的来源、危害、处理等进行综述,并重点介绍了生物修复放射性污染土壤的研究进展。%The use of nuclear energy brings not only benefit but also disaster to human society.Part of soils were contaminated with radioactive substances.Radioactive substanceshave entered human body through food chain and threatened to human health .The re-searchers worldwide are actively looking for feasible ways to solve the problem of radioactive contaminated soils ,and many methods have been developed.The paper here hase discussed the source ,harms and remediation of radioactive contaminated soils and high-lighted the research progress on bioremediation of radionuclides contaminated soils .

  6. Biorremediação de solos contaminados com hidrocarbonetos aromáticos policíclicos Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons

    Directory of Open Access Journals (Sweden)

    Rodrigo Josemar Seminoti Jacques

    2007-08-01

    capacity to degrade them, which results in its accumulation in the atmosphere and contamination of the ecosystems. A strategy for PAHs elimination from the soil is through the bioremediation, where microorganisms having capacity to metabolize these compounds will transform them in inert substances, CO2 and water. However, this biotechnology can be limited by the lack of specific HAP microbial-degraders in soil, by unfavorable environmental conditions to these microorganisms or by the low bioavailability of those contaminants to the microorganisms. To overcome these limitations and to promote an efficient removal of the pollutants to the atmosphere, several bioremediation techniques were developed as passive bioremediation, bioaugmentation, biostimulation, phytoremediation, landfarming, composting and bioreactors. This revision aims at discussing microbial metabolism of PAHs, present the main chemical and physical factors that influence the survival and the activity of these microorganisms and to show the bioremediation techniques that are being used now for the PAHs removal in soil.

  7. Technology Development and Applications of Bioremediation for Persistent Organic Pollutants Contaminated Soil and Sites%土壤及场地持久性有机污染的生物修复技术发展及应用

    Institute of Scientific and Technical Information of China (English)

    滕应; 骆永明; 李秀芬; 潘澄; 马文亭; 宋静; 刘五星; 李振高; 吴龙华; 陈梦舫

    2011-01-01

    This paper reviewed current researches and development of bioremediation in soils polluted by persistent organic pollutants at home and abroad. Furthermore, in term of facing new characteristics of soil poilution in China, we have put forward some new development trends and research directions in order to enrich and develop the technique and application of bioremediation in polluted soil and sites.%以土壤及场地持久性有机污染物为对象,较为系统地综合评述了国内外污染土壤及场地的生物修复技术发展与应用,并结合当前土壤及场地污染的新特点,提出了生物修复的发展趋势和研究方向.

  8. Bioremediation of petroleum contaminated soil to combat toxicity on Withania somnifera through seed priming with biosurfactant producing plant growth promoting rhizobacteria.

    Science.gov (United States)

    Das, Amar Jyoti; Kumar, Rajesh

    2016-06-01

    Soil contaminated by Petroleum oil cannot be utilized for agricultural purposes due to hydrocarbon toxicity. Oil contaminated soil induces toxicity affecting germination, growth and productivity. Several technologies have been proposed for bioremediation of oil contaminated sites, but remediation through biosurfactant producing plant growth promontory rhizobacteria (PGPR) is considered to be most promising methods. In the present study the efficacy of seed priming on growth and pigment of Withania somnifera under petroleum toxicity is explored. Seeds of W. somnifera were primed with biosurfactant producing Pseudomonas sp. AJ15 with plant growth promoting traits having potentiality to utilized petroleum as carbon source. Results indicates that plant arose from priming seeds under various petroleum concentration expressed high values for all the parameters studied namely germination, shoot length, root length, fresh and dry weight and pigments (chlorophyll and carotenoid) as compared to non primed seed. Hence, the present study signifies that petroleum degrarding biosurfactant producing PGPR could be further used for management and detoxification of petroleum contaminated soils for growing economically important crops.

  9. Sugarcane bagasse as support for immobilization of Bacillus pumilus HZ-2 and its use in bioremediation of mesotrione-contaminated soils.

    Science.gov (United States)

    Liu, Jie; Chen, Shaohua; Ding, Jie; Xiao, Ying; Han, Haitao; Zhong, Guohua

    2015-12-01

    The degrading microorganisms isolated from environment usually fail to degrade pollutants when used for bioremediation of contaminated soils; thus, additional treatments are needed to enhance biodegradation. In the present study, the potential of sugarcane bagasse as bacteria-immobilizing support was investigated in mesotrione biodegradation. A novel isolate Bacillus pumilus HZ-2 was applied in bacterial immobilization, which was capable of degrading over 95 % of mesotrione at initial concentrations ranging from 25 to 200 mg L(-1) within 4 days in flask-shaking tests. Scanning electron microscope (SEM) images showed that the bacterial cells were strongly absorbed and fully dispersed on bagasse surface after immobilization. Specially, 86.5 and 82.9 % of mesotrione was eliminated by bacteria immobilized on bagasse of 100 and 60 mesh, respectively, which indicated that this immobilization was able to maintain a high degrading activity of the bacteria. Analysis of the degradation products determined 2-amino-4-methylsulfonylbenzoic acid (AMBA) and 4-methylsulfonyl-2-nitrobenzoic acid (MNBA) as the main metabolites in the biodegradation pathway of mesotrione. In the sterile soil, approximately 90 % of mesotrione was degraded after supplementing 5.0 % of molasses in bacteria-bagasse composite, which greatly enhanced microbial adaptability and growth in the soil environment. In the field tests, over 75 % of mesotrione in soil was degraded within 14 days. The immobilized preparation demonstrated that mesotrione could be degraded at a wide range of pH values (5.0-8.0) and temperatures (25-35 °C), especially at low concentrations of mesotrione (5 to 20 mg kg(-1)). These results showed that sugarcane bagasse might be a good candidate as bacteria-immobilizing support to enhance mesotrione degradation by Bacillus p. HZ-2 in contaminated soils.

  10. Biodegradation of 2,3,7,8 TCDD by anaerobic and aerobic microcosms collected from bioremediation treatments for cleaning up dioxin contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Dang Thi; Tuan, Mai Anh; Viet, Nguyen Quoc; Sanh, Nguyen Thi [Vietnamese Academy of Science and Technology (VAST) (Viet Nam). Inst. of Biotechnology; Sau, Trinh Khac [Vietnam-Russian Tropical Center (Viet Nam); Papke, O. [ERGO Forschungsgesellschaft, Hamburg (Germany)

    2004-09-15

    There are many microbes that can degrade polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurants (PCDFs) and polychlorinated biphenyls (PCBs) have been isolated including purified bacteria, actinomycetes, white rods, filamentous fungi, anaerobes and also anaerobic and aerobic consortia. Bioremediation one of biological remediation has been studied as hopeful alternative to physical and chemical treatments that using for cleaning up PCDDs, PCDFs. In Vietnam for cleaning up ''hot spot'' of some former military air bases, bioremediation has been studying in different scales of Danang site. After 18 to 24 month treatments, the reduction of toxicity was significally detected. In order to study biodegradability by different groups and one of dominated strain that are existing microorganisms in our treatments, the investigation of 2,3,7,8 TCDD anaerobic and aerobic degradations was carried out in the laboratory condition. Anaerobic microbial consortium containing three different bacteria such as two Gram- negative vibrio and rod and one gram positive cocoides bacteria. This consortium could degrade 118 pg TEQ/ml 2,3,7,8 TCDD after 133 days under sulfate reduction. Concentration of 2,3,7,8 TCDD in the soil extract that adding to medium at starting point of cultivation was 144.6 pg TEQ/ml. About 81% toxicity was removed. Aerobic consortium containing all three Gram-negative bacteria and one fungal strain. After 9 day shaking at 180 rpm/min and 30 C, 85.6 % of 164.45 pg TEQ/ml 2,3,7,8 TCDD was removed. Other preliminary results of study of 2,3,7,8 TCDD biodegradation as sole carbon and energy by show that this strain FDN30 could remove 43,45 pg TEQ/ml (59%) of 73,1 pgTEQ/ml adding dioxin after two weeks. These findings explain why high concentration of contaminants in treated soil was decreased after two year treatment. Indigenous microorganisms play leading role in the detoxification of 2,3,7,8 TCDD in contaminated soils.

  11. Study on the Change Law of Petroleum Component in Soil Bioremediation%土壤生物修复过程中石油类组分变化规律的研究

    Institute of Scientific and Technical Information of China (English)

    桑玉全; 郑经堂

    2011-01-01

    [目的]研究土壤生物修复过程中石油类组分的变化规律.[方法]采用微生物修复和植物修复法对油污土壤进行修复,通过分析土壤生物修复过程中石油类含量厦组分的变化来评价污染土壤的生物修复效果.[结果]随着修复时间的延长,土壤中矿物油可降到3 000 mg/kg以下;土壤中石油类总烃所占比例大幅下降,而沥青质所占比例明显上升;修复前土壤中石油类以C24为主,微生物修复后(41 d)主碳峰为C29,植物修复后(139 d)主碳峰为C17和C18.[结论]该研究为今后油污土壤生物修复效果的评价提供了科学依据.%[ Objective] Our study was carried out to research the change law of petroleum component in soil bioremediation. [ Method] By means of microbial remediation and plant remediation to restore oily soil, the bioremediation effect of oily soil was assessed based on analysis on the change of petroleum content and component in soil bioremediation. [ Result ] With the increase of remediation time, mineral oil in soil decreased to below 3 000 mg/kg; the proportion of total hydrocarbon in petroleum went down greatly, while asphaltene proportion in petroleum went up obviously; the main carbon peak of petroleum in soil was C24 before bioremediation and C29 after microbial remediation (41 d), while it changed into C17 and C18 after plant remediation ( 139 d). [ Conclusion] Our study could provide scientific reference for the assessment on the bioremediation effect of oily soil in the further.

  12. Microbial community structure changes during bioremediation of PAHs in an aged coal-tar contaminated soil by in-vessel composting

    Energy Technology Data Exchange (ETDEWEB)

    Antizar-Ladislao, B.; Spanova, K.; Beck, A.J.; Russell, N.J. [University of London Imperial College for Science Technology & Medicine, Ashford (United Kingdom)

    2008-06-15

    The microbial community structure changes of an aged-coal-tar soil contaminated with polycyclic aromatic hydrocarbons (PAHs) were investigated during simulated bioremediation at the laboratory-scale using an in-vessel composting approach. The composting reactors were operated using a logistic three-factor factorial design with three temperatures (T = 38, 55 or 70 {sup o}C), four soil to green-waste amendment ratios (S:GW = 0.6:1, 0.7:1, 0.8:1 or 0.9:1 on a dry weight basis) and three moisture contents (MC = 40%, 60% or 80%). Relative changes in microbial populations were investigated by following the dynamics of phospholipid fatty acid (PLFA) signatures using a {sup 13}C-labeled palmitic acid internal standard and sensitive GC/MS analysis during in-vessel composting over 98 days. The results of this investigation indicated that fungal to bacterial PLFA ratios were significantly influenced by temperature (p<0.05), and Gram-positive to Gram-negative bacterial ratios were significantly influenced by temperature (p<0.001) and S:GW ratio (p<0.01) during in-vessel composting. Additionally, the Gram-positive to Gram-negative bacterial ratios were correlated to the extent of PAH losses)<0.005) at 70{sup o}C.

  13. Characterization of hydrocarbon-degrading and biosurfactant-producing Pseudomonas sp. P-1 strain as a potential tool for bioremediation of petroleum-contaminated soil.

    Science.gov (United States)

    Pacwa-Płociniczak, Magdalena; Płaza, Grażyna Anna; Poliwoda, Anna; Piotrowska-Seget, Zofia

    2014-01-01

    The Pseudomonas sp. P-1 strain, isolated from heavily petroleum hydrocarbon-contaminated soil, was investigated for its capability to degrade hydrocarbons and produce a biosurfactant. The strain degraded crude oil, fractions A5 and P3 of crude oil, and hexadecane (27, 39, 27 and 13% of hydrocarbons added to culture medium were degraded, respectively) but had no ability to degrade phenanthrene. Additionally, the presence of gene-encoding enzymes responsible for the degradation of alkanes and naphthalene in the genome of the P-1 strain was reported. Positive results of blood agar and methylene blue agar tests, as well as the presence of gene rhl, involved in the biosynthesis of rhamnolipid, confirmed the ability of P-1 for synthesis of glycolipid biosurfactant. 1H and 13C nuclear magnetic resonance, Fourier transform infrared spectrum and mass spectrum analyses indicated that the extracted biosurfactant was affiliated with rhamnolipid. The results of this study indicate that the P-1 and/or biosurfactant produced by this strain have the potential to be used in bioremediation of hydrocarbon-contaminated soils.

  14. Bioremediation of BTEX hydrocarbons: Effect of soil inoculation with the toluenegrowing fungus Cladophialophora sp strain T1

    NARCIS (Netherlands)

    Prenafeta, F.X.; Ballerstedt, H.; Gerritse, J.; Grotenhuis, J.T.C.

    2004-01-01

    The biodegradation of a mixture of benzene, toluene, ethylbenzene, xylene, (BTEX) and methyl-tert-butyl ether (MTBE) was studied in soil microcosms. Soil inoculation with the toluene-metabolising fungusCladophialophora sp. strain T1 was evaluated in sterile and non-sterile soil. Induction of biodegr

  15. Monitoring of ground water quality and heavy metals in soil during large scale bioremediation of petroleum hydrocarbon contaminated waste in India: case studies

    OpenAIRE

    Ajoy Kumar Mandal; Atanu Jana; Mr. Abhijit Datta; Sarma, Priyangshu M.; Banwari Lal; Jayati Datta

    2014-01-01

    Bioremediation using microbes has been well accepted as an environmentally friendly and economical treatment method for disposal of hazardous petroleum hydrocarbon contaminated waste (oily waste) and this type of bioremediation has been successfully conducted in laboratory and on a pilot scale in various countries, including India. Presently there are no federal regulatory guidelines available in India for carrying out field-scale bioremediation of oily waste using microbes. The results of th...

  16. 16种EPA-PAHs复合污染土壤的菌群修复%Bioremediation of 16 EPA-PAHs combined contaminated-soil with microbial consortium

    Institute of Scientific and Technical Information of China (English)

    李政; 赵朝成; 张云波; 赵东风

    2012-01-01

    通过富集筛选获得一组PAHs降解混合菌群和3株降解单菌,利用变性梯度凝胶电泳(DGGE)技术分析混合菌群的组成,对16种多环芳烃(PAHs)复合污染土壤进行生物修复,同时考察混合菌群和单菌株在PAHs复合污染土壤中的生物修复效果.结果表明:混合菌群主要由3株已分离获得的降解单菌和5株未可分离培养的单菌组成;经过30 d的生物修复,混合菌群对土壤中总PAHs的降解率(54.17%)高于单一菌株(28.40%,31.95%,24.64%),并且对高相对分子质量PAHs的降解表现出了较大的优势,4环、5环、6环PAHs的降解率分别可达到71.26%、39.76%和42.86%;利用混合菌群来修复16种PAHs复合污染的土壤,可以避免一些未可分离培养的关键菌株的丢失,使PAHs的降解更加全面有效.%For bioremediation of polycyclic aromatic hydrocarbons ( PAHs) combined contaminated-soil, a microbial consortium and three strains were isolated from PAHs contaminated-soil containing sixteen US Environmental Protection Agency priority control PAHs. Denaturing gradient gel electrophoresis (DGGE) was used to analyze the structure of the microbial consortium , and the biodegradation effect of PAHs mixtures with the inoculation of mixed microbial consortium and single strain was studied. The results show that the consortium is mainly composed of three isolated strains and five uncultured bacterias. After 30 days bioremediation, the degradation efficiency of total PAHs by microbial consortium (54. 17% ) is higher than any single strain's (28. 40% ,31. 95% ,24. 64% ). Microbial consortium shows a great advantage in degradation of high relative molecular mass PAHs, and the degradation efficiencies of four-rings, five-rings and six-rings PAHs are 71. 26% , 39. 76% , 42. 86% , respectively. Microbial consortium is capable of degrading PAHs which can avoid the loss of key strains and has a good application prospect in the bioremediation of PAHs

  17. Bioremediation of oil-contaminated sites

    Energy Technology Data Exchange (ETDEWEB)

    Balba, T. [Conestoga-Rovers and Associates, Calgary, AB (Canada)

    2003-07-01

    One of the most prevalent contaminants in subsurface soil and groundwater are petroleum hydrocarbons. This paper presented bioremediation of petroleum hydrocarbons as one of the most promising treatment technologies. Petroleum hydrocarbons are categorized into four simple fractions: saturates, aromatics, resins, and asphaltenes. Bioremediation refers to the treatment process whereby contaminants are metabolized into less toxic or nontoxic compounds by naturally occurring organisms. The various strategies include: use of constitutive enzymes, enzyme induction, co-metabolism, transfer of plasmids coding for certain metabolic pathways, and production of biosurfactants to enhance bioavailability of hydrophobic compounds. Three case studies were presented: (1) bioremediation of heavy oils in soil at a locomotive maintenance yard in California, involving a multi-step laboratory treatability study followed by a field demonstration achieving up to 94 per cent removal of TPH in less than 16 weeks, (2) bioremediation of light oils in soil at an oil refinery in Germany where a dual process was applied (excavation and in-situ treatment), achieving an 84 per cent reduction within 24 weeks, and (3) bioremediation of oil-contaminated desert soil in Kuwait which involved landfarming, composting piles, and bioventing soil piles, achieving an 80 per cent reduction within 12 months. 7 refs., 1 tab., 3 figs.

  18. A novel arsenic methyltransferase gene of Westerdykella aurantiaca isolated from arsenic contaminated soil: phylogenetic, physiological, and biochemical studies and its role in arsenic bioremediation.

    Science.gov (United States)

    Verma, Shikha; Verma, Pankaj Kumar; Meher, Alok Kumar; Dwivedi, Sanjay; Bansiwal, Amit Kumar; Pande, Veena; Srivastava, Pankaj Kumar; Verma, Praveen Chandra; Tripathi, Rudra Deo; Chakrabarty, Debasis

    2016-03-01

    Elevated arsenic concentration in the environment and agricultural soil is a serious concern to crop production and human health. Among different detoxification mechanisms, the methylation of arsenic is a widespread phenomenon in nature. A number of microorganisms are able to methylate arsenic, but less is known about the arsenic metabolism in fungi. We identified a novel arsenic methyltransferase (WaarsM) gene from a soil fungus, Westerdykella aurantiaca. WaarsM showed sequence homology with all known arsenic methyltransferases having three conserved SAM binding motifs. The expression of WaarsM enhanced arsenic resistance in E. coli (Δars) and S. cerevisiae (Δacr2) strains by biomethylation and required endogenous reductants, preferably GSH, for methyltransferase activity. The purified WaarsM catalyzes the production of methylated arsenicals from both AsIII and AsV, and also displays AsV reductase activity. It displayed higher methyltransferase activity and lower KM 0.1945 ± 0.021 mM and KM 0.4034 ± 0.078 mM for AsIII and AsV, respectively. S. cerevisiae (Δacr2) cells expressing WaarsM produced 2.2 ppm volatile arsenic and 0.64 ppm DMA(v) with 0.58 ppm volatile arsenicals when exposed to 20 ppm AsV and 2 ppm AsIII, respectively. Arsenic tolerance in rice after co-culture with genetically engineered yeast suggested its potential role in arsenic bioremediation. Thus, characterization of WaarsM provides a potential strategy to reduce arsenic concentration in soil with reduced arsenic accumulation in crops grown in arsenic contaminated areas, and thereby alleviating human health risks.

  19. Bioremediation of cadmium contaminated soil using symbiosis between leguminous plant and recombinant rhizobia with the MTL4 and the PCS genes.

    Science.gov (United States)

    Ike, Akiko; Sriprang, Rutchadaporn; Ono, Hisayo; Murooka, Yoshikatsu; Yamashita, Mitsuo

    2007-01-01

    Cadmium contamination in rice grains is one of the important issues in Asian countries. We have developed a novel bio-remediation system based on the symbiosis between leguminous plant and genetically engineered rhizobia. We designed two types of recombinant rhizobia, carrying two genes, synthetic tetrameric metallothionein (MTL4) and cDNA encoding phytochelatin synthase from Arabidopsis thaliana (AtPCS). The MTL4 and AtPCS genes were transferred to Mesorhizobium huakuii subsp. rengei B3, which can infect and form nodules on Chinese milk vetch, Astragalus sinicus. The two genes were fused to the nolB or nifH promoter, which generated nodule specific expression of these genes in strain B3. The two recombinant strains, B3(pMPnolBMTL4nifHPCS) and B3::nifHMTL4(pMPnifHPCS), showed 25 and 12-fold increase in Cd concentration, in the free-living cells, respectively. When these recombinant strains established the symbiotic relationship with A. sinicus, the symbionts increased Cd accumulation in nodules by two-fold in hydroponic culture. The expression of the both MTL4 and AtPCS genes showed additive effect on cadmium accumulation in nodules. We also applied these recombinant bacteria to rice paddy soil polluted with Cd (1mgkg(-1) dry weight soil). The accumulation of Cd increased not only in nodules but also in the roots of A. sinicus infected by the recombinant rhizobia. The accumulation of Cd in the plant roots infected by B3(pMPnolBMTL4nifHPCS) achieved three-fold than that by the wild-type B3. After two months of cultivation of the symbiont, a maximum of 9% of Cd in paddy soil was removed. Thus, the symbiosis will be useful in phytoremediation for heavy metals.

  20. Ecotoxicological characteristic of a soil polluted by radioactive elements and heavy metals before and after its bioremediation

    Science.gov (United States)

    Georgiev, P.; Groudev, S.; Spasova, I.; Nikolova, M.

    2012-04-01

    Cinnamon soils from southeastern Bulgaria are heavily polluted with radionuclides (uranium, radium) and toxic heavy metals (copper and lead) due to the winds transportation of fine particles from flotation dumps to the soil surface. As a result of this, the polluted soils are characterized by a slightly alkaline pH (7.82) and positive net neutralization potential (+136.8 kg CaCO3/t). A fresh sample of cinnamon soil was subjected to remediation under laboratory conditions in four lysimeters each containing 70 kg of soil. The preliminary study revealed that most of the pollutants were presented as carbonate, reducible and oxidisable mobility fractions, i.e. pollutants ions were specifically adsorbed by carbonate and ferric iron minerals or were capsulated in sulfides. The applied soil treatment was connected with leaching of the pollutants located mainly in the horizon A, their transportation through the soil profile as soluble forms, and their precipitation in the rich-in-clay subhorizon B3. The efficiency of leaching depended on the activity of the indigenous microflora and on the chemical processes connected with solubilization of pollutants and formation of stable complexes with some organic compounds, chloride and hydrocarbonate ions. These processes were considerably enhanced by adding hay to the horizon A and irrigating the soil with water solutions containing the above-mentioned ions and some nutrients. After 18 months of treatment, each of the soil profiles in the different lysimeters was divided into five sections reflecting the different soil layers. The soil in these sections was subjected to a detailed chemical analysis and the data obtained were compared with the relevant data obtained before the start of the experiment. The best leaching of pollutants from horizon A was measured in the variants where soil mulching was applied. For example, the best leaching of lead (54.5 %) was found in the variant combining this technique and irrigation with solutions

  1. Bioremediation of Petroleum Hydrocarbon Contaminated Sites

    Energy Technology Data Exchange (ETDEWEB)

    Fallgren, Paul

    2009-03-30

    Bioremediation has been widely applied in the restoration of petroleum hydrocarbon-contaminated. Parameters that may affect the rate and efficiency of biodegradation include temperature, moisture, salinity, nutrient availability, microbial species, and type and concentration of contaminants. Other factors can also affect the success of the bioremediation treatment of contaminants, such as climatic conditions, soil type, soil permeability, contaminant distribution and concentration, and drainage. Western Research Institute in conjunction with TechLink Environmental, Inc. and the U.S. Department of Energy conducted laboratory studies to evaluate major parameters that contribute to the bioremediation of petroleum-contaminated drill cuttings using land farming and to develop a biotreatment cell to expedite biodegradation of hydrocarbons. Physical characteristics such as soil texture, hydraulic conductivity, and water retention were determined for the petroleum hydrocarbon contaminated soil. Soil texture was determined to be loamy sand to sand, and high hydraulic conductivity and low water retention was observed. Temperature appeared to have the greatest influence on biodegradation rates where high temperatures (>50 C) favored biodegradation. High nitrogen content in the form of ammonium enhanced biodegradation as well did the presence of water near field water holding capacity. Urea was not a good source of nitrogen and has detrimental effects for bioremediation for this site soil. Artificial sea water had little effect on biodegradation rates, but biodegradation rates decreased after increasing the concentrations of salts. Biotreatment cell (biocell) tests demonstrated hydrocarbon biodegradation can be enhanced substantially when utilizing a leachate recirculation design where a 72% reduction of hydrocarbon concentration was observed with a 72-h period at a treatment temperature of 50 C. Overall, this study demonstrates the investigation of the effects of

  2. 放射性污染土壤生物修复的研究进展%Research advances review over the bioremediation of soil contaminated by radionuclide

    Institute of Scientific and Technical Information of China (English)

    范婷; 张晓文; 吕俊文; 唐东山; 陈亮

    2011-01-01

    土壤中放射性核素主要为天然来源和人为来源.而人为来源主要包括核试验、核武器制造、核能生产、核事故、放射性同位素的生产应用和矿物的开采冶炼等.综述了放射性核素污染土壤的植物修复、菌根修复、微生物修复等生物修复技术的研究进展,侧重探讨了这3种修复技术的协同作用,并对其研究的发展方向及今后的应用前景进行了讨论.%The present paper would like to give a general revision of research advances on the bioremediation of soil contaminated by ra-dionuclide. As the nuclear industry has been developing fast, the ra-dionuclide in the soil has become one of the major factors threatening human health and eco-toxicology. And, in turn, it has been found from the research channels that the rqain sources of the radionuclide pollution in the soil are coming from the nuclear tests, nuclear weapons production, the energy production of the nuclear power stations, nuclear accidents, as well as the production and application of radioisotopes and refining and application of minerals. It is just for the above reasons that we believe it necessary to point out the ever more great significance of such research advances in helping to reclaim the contaminated land soil and then illustrate some more effective and efficient new pollution-reducing and -removing techniques. Among them, the bioremediation technology is universally considered to be safest and most reliable. What is more, it also enjoys the obvious technological advantages of low cost, subtle disturbance on the environment with its capability of removing pollutants from the surrounding conditions of soil or water along with the radioactive contaminations. In addition, we also think it worthwhile to make a review of their new research advances, such as, phytoremediation, microbial remediation and mycorhiza remediation technologies. In spite of this, we would also like to put our emphasis on the limitations

  3. Biodegradation of fenvalerate and 3-phenoxybenzoic acid by a novel Stenotrophomonas sp. strain ZS-S-01 and its use in bioremediation of contaminated soils.

    Science.gov (United States)

    Chen, Shaohua; Yang, Liu; Hu, Meiying; Liu, Jingjing

    2011-04-01

    A bacterial strain ZS-S-01, newly isolated from activated sludge, could effectively degrade fenvalerate and its hydrolysis product 3-phenoxybenzoic acid (3-PBA). Based on the morphology, physiological biochemical characteristics, and 16 S rDNA sequence, strain ZS-S-01 was identified as Stenotrophomonas sp. Strain ZS-S-01 could also degrade and utilize deltamethrin, beta-cypermethrin, beta-cyfluthrin, and cyhalothrin as substrates for growth. Strain ZS-S-01 was capable of degrading fenvalerate rapidly without a lag phase over a wide range of pH and temperature, even in the presence of other carbon sources, and metabolized it to yield 3-PBA, then completely degraded it. No persistent accumulative product was detected by HPLC and GC/MS analysis. Studies on biodegradation in various soils showed that strain ZS-S-01 demonstrated efficient degradation of fenvalerate and 3-PBA (both 50 mg·kg(-1)) with a rate constant of 0.1418-0.3073 d(-1), and half-lives ranged from 2.3 to 4.9 days. Compared with the controls, the half-lives for fenvalerate and 3-PBA reduced by 16.9-156.3 days. These results highlight strain ZS-S-01 may have potential for use in bioremediation of pyrethroid-contaminated environment.

  4. 根际环境内污染土壤的生物修复研究%Bioremediation of Contaminated Soil Within the Rhizosphere Environment

    Institute of Scientific and Technical Information of China (English)

    李克中; 朱永恒

    2012-01-01

    The rhizosphere is an important environmental interface, and plays an extremely important role in the bioremediation of contaminated soil, thus,it become a hot topic in the current soil and environmental sci- ence. This article firstly discusses the absorption, degradation, fixation ecological functions of plant roots and root exudates to remedy contaminated soils, accumulate and solidify heavy metals, and absorb and degrade or- ganic pollutants in rhizosphere. And then it analyzes the adsorption, oxidation--reduction and chemotaxis functions of bacteria to remedy the heavy mentals and organic pollutants in contaminated soils in the rhizo- sphere environment. Moreover,it also introduces the absorption barriers and chelation functions of mycorrhi- zal fungi in the rhizosphere environment. Finally,it discusses the crushing, decomposition, digestion and en- richment functions of the soil fauna in the rhizosphere. Besides, the article also points out the directions of fu- ture research.%指出了根际环境是根系和土壤相互耦合的生态和环境界面,对根际环境在污染修复过程中的研究成为当前土壤学和土壤生态学研究中的一个重要课题。总结了根际环境内根系和根系分泌物对污染土壤中重金属,有机污染物的吸收、降解、固定的生态功能;根际环境内的细菌对污染土壤中重金属,有机污染物的吸附、氧化一还原以及趋化性作用;根际环境内的菌根真菌对污染土壤中重金属,有机污染物的吸收、屏障及螯合作用;根际环境内的土壤动物对污染土壤中重金属,有机污染物的破碎、分解、消化和富集作用,并探讨了应该加深的研究方向。

  5. Emerging technologies in bioremediation: constraints and opportunities.

    Science.gov (United States)

    Rayu, Smriti; Karpouzas, Dimitrios G; Singh, Brajesh K

    2012-11-01

    Intensive industrialisation, inadequate disposal, large-scale manufacturing activities and leaks of organic compounds have resulted in long-term persistent sources of contamination of soil and groundwater. This is a major environmental, policy and health issue because of adverse effects of contaminants on humans and ecosystems. Current technologies for remediation of contaminated sites include chemical and physical remediation, incineration and bioremediation. With recent advancements, bioremediation offers an environmentally friendly, economically viable and socially acceptable option to remove contaminants from the environment. Three main approaches of bioremediation include use of microbes, plants and enzymatic remediation. All three approaches have been used with some success but are limited by various confounding factors. In this paper, we provide a brief overview on the approaches, their limitations and highlights emerging technologies that have potential to revolutionise the enzymatic and plant-based bioremediation approaches.

  6. Rapid Development of Microbial Strains for Bioremediation of Military Soils and Dredged Materials Contaminated with Polycyclic Aromatic Hydrocarbons.

    Science.gov (United States)

    1993-09-01

    xella, Sphingobacterium, Acinetobacter, Klebsiella , and Hemophilus. Enrichment and Screening Tests on Jennison- Wright Soils The total number of...microorganism, Klebsiella pnewnonia A, was also commonly isolated (30 percent of isolates). Several microorganisms in Jennison-Wright soil used one or...examination of water and wastewater ." 14th ed., New York. Atlas, R. M. (1981). "Microbial degradation of petroleum hydrocarbons: an environmental perspective

  7. Assessment of the physicochemical and microbiological status of western Niger Delta soil for crude oil pollution bioremediation potential.

    Science.gov (United States)

    Ejechi, Bernard O; Ozochi, Chizoba A

    2015-06-01

    The physical, chemical and microbiological characteristics of the soil across the western Niger Delta area of Nigeria were determined to assess its potential for natural remediation of crude oil pollution. The pH (oil-producing area, 6.1 ± 1.1; non-oil producing, 5.9 ± 0.9) and temperature (28-35 °C in both areas) were favourable to natural remediation, while the fluctuating moisture (7.7-45.6 %) and the dominant sandy soil textural classes (70 %) were limitations. The carbon nitrogen phosphorus (CNP) ratio markedly exceeded recommended 100:10:1, while the cation exchange capacity was below acceptable range. Counts of heterotrophic bacteria, fungi and hydrocarbon-utilising and nitrogen-fixing bacteria (mean range log10 3.8 ± 1.5-6.52 ± 0.9 cfu/g) were favourable having markedly exceeded the minimum counts required. Crude oil loss was highest in loam soil, but significantly (P = 0.00) increased in all soil textural classes including sandy soils after amendment with cow dung/poultry dropping and manual aeration in laboratory and 8-month field tests as indicated by two-way ANOVA. Thus, the overall assessment is that while CNP can be viewed as the major limiting factor to natural oil pollution remediation in the western Niger Delta soil, its influence can be minimised by the amendment indicated in the study.

  8. Advanced Review of Microbial Bio-remediating Organic Polluted Soils%有机污染土壤的微生物修复研究进展

    Institute of Scientific and Technical Information of China (English)

    王晓锋; 张磊

    2013-01-01

    Soil pollution has become a global environmental issue in recent years, and the remediation for polyaromatic hydrocarbon (PAHs) and polychlorinated biphenyl (PCBs) has been more aware because of their potential carcinogenicity and teratogenicity. Bioremediation is a very promising new environmental technology in light of its economic and no secondary pollution characteristics. Based on up-date publications worldwide, this paper mainly review PAHs and PCBs pollution remediation by microbial procedures in soil by focusing on introduction of development on screening microbial species which can degrade and adsorption these two organic pollutants, as well as on the methods and mechanism of microbial remediation to proceed systematically integrated effect. At last, we sum the trend of this researching field in China.%土壤污染已经成为全球性的重要环境问题之一.多环芳烃(polyaromatic hydrocarbon,PAHs)和多氯联苯(polychlorinated biphenyl,PCBs)等有机污染物具有潜在的致癌性和致畸性,其修复研究近年来受到广泛关注.微生物修复技术既经济且无二次污染,具有其他修复技术难以比拟的优势.结合最新文献,综合阐述了目前利用微生物修复这2种有机污染物的研究进展及存在问题,重点介绍了降解微生物的筛选、降解过程和机理的研究成果,综合评述了微生物修复有机污染土壤的发展方向和发展趋势.

  9. Isolation and characterization of atrazine-degrading Arthrobacter sp. AD26 and use of this strain in bioremediation of contaminated soil

    Institute of Scientific and Technical Information of China (English)

    LI Qingyan; LI Ying; ZHU Xikun; CAI Baoli

    2008-01-01

    A bacterial strain (AD26) capable of utilizing atrazine as a sole nitrogen source for growth was isolated from an industrial wastewatersample by enrichment culture. The 16S rRNA gene sequencing identified AD26 as anArthrobacter sp. PCR assays indicated that AD26contained atrazine-degrading genes trzN and atzBC. The trzN gene of AD26 only differs from the trzN ofArthrobacter aurescens TC1by one base (A→T at 907) and one amino acid (Met→Leu at 303). The specific activity of trzN of AD26 in crude cell extract was0.28 U/mg, which was 1.2 times that of TC 1. This strain has shown faster growth and atrazine-degradation rates in atrazine-containingminimal media than two well characterized atrazine-degrading bacteria, Pseudomonas sp. ADP and Arthrobacter aurescens TC 1. Afterincubating for 48 h at 30℃, the OD600 of AD26 reached 2.6 compared with 1.33 of ADP. AD26 was capable of degrading 500 mg/Lof atrazine in minimal medium at 95% in 72 h, while the degradative rates by TC1 and ADP were only 90% and 86%, respectively. Abioremediation trial of contaminated soil has indicated that AD26 can degrade as high as 98% of atrazine contained in soil (300 mg/kg)after incubating for 20 d at 26℃, nominating this strain as a good candidate for use in bioremediation programs.

  10. 含盐量对石油污染土壤生物修复的影响%Effect of the salt contentin soil on bioremediation of soil by contaminated petroleum

    Institute of Scientific and Technical Information of China (English)

    秦晓; 李德生; 唐景春; 张清敏; 高晶

    2013-01-01

    模拟野外漫灌洗盐并控制洗盐次数得到不同含盐量的土壤,比较单纯生物刺激、生物刺激加生物强化处理对不同含盐量的石油污染土壤的修复效果.结果表明:无论是单纯的生物刺激,还是生物刺激加生物强化处理下,土壤含盐量均有一定程度的降低,可有效提高石油烃的降解率.当土壤含盐量为0.22%(质量分数)时,添加4%菌剂修复第3天时,石油烃降解率可达24.98%;当土壤含盐量为0.01%时,生物刺激加生物强化处理28 d后石油烃的降解率是单纯生物强化的1.1倍;低含盐量添加4%菌剂处理下土壤石油烃降解率是高含盐量加4%菌剂处理的1.22倍.各处理下土壤脱氢酶活性随着培养时间逐渐增强,pH则随着培养时间有所下降,土壤盐碱性得到改良;土壤环境得到改善,微生物的种类及数量增加.%This study attempts to analyze the effects of different concentrations of soil salinityon bioremediation of petroleum-contaminated soil using biostimulation appended bioaugmentation or not. The saline-alkali soil collected from Tianjin Dagang oilfield and leached several times by analog field irrigation. The results showed that both the bioremediation-could reduce the soil salt content and raise oil petroleum hydrocarbon degradation rate. When soil salt content on the degree of 0. 22% , biostimulation appended bioaugmentation could raise oil degradation rate to 24. 98% after 3 days remediation. When soil salt content was on the degree of 0.01% , after 28 days biostimulation, the degradation rate by using biostimulation appended bioaugmentation was 1. 1 times higher than that using pure biostimulation. The degradation rate of the low salt content soil was 1. 22 times higher than that of the high salt content soilunder biostimulation appended bioaugmentation treatment. As the incubation time extended, soil dehydrogenase activity gradually increased, while soil pH value declined and soil

  11. 铁细菌A生物修复铅铜污染土壤%Bioremediation of soil contaminated by Pb2+or Cu2+using iron bacteria A

    Institute of Scientific and Technical Information of China (English)

    许朝阳; 柏庭春; 孟涛; 周锋; 吕惠; 庞一山

    2015-01-01

    为改善生物修复重金属污染土壤的方法,利用铁细菌A代谢作用形成的铁基络合物对Pb2+、Cu2+污染土进行生物修复。采用不同灌浆方式研究修复效果;借助扫描电镜( SEM)、X射线衍射( XRD)、傅里叶转换红外光谱( FTIR)等方法对铁基络合物的组成和结构进行分析与表征,分析重金属的沉积机理。结果表明:1次生物灌浆后有效态Pb2+、Cu2+含量分别减少64.6%~70.4%和47.6%~49.2%,2次灌浆后分别减少75.1%~85.5%和73.3%~78.9%;微区分析显示,铁基络合物晶形较差,但含有具有优异絮凝效能、较大比表面积的施氏矿物及碱式磷酸铁等物质。铁基络合物通过吸附和共沉作用实现了对污染环境中重金属的固定。%In order to improve the method for bioremediation of soil contaminated by heavy metals, iron-based complexes produced by the metabolism of iron bacteria A were used to remediate soil contaminated by Pb2+or Cu2+. The effects of bioremediation through different grouting methods were investigated. Methods including scanning electron microscopy ( SEM) , X-ray diffraction ( XRD) , and Fourier transform infrared spectroscopy ( FTIR) were used to identify the composition and structure of iron-based complexes and to analyze the deposition mechanism of heavy metals. Results showed that the concentrations of available Pb2+ and Cu2+ in soil decreased by 64. 6% to 70. 4% and 47. 6% to 49. 2%, respectively, after one round of bio-grouting, and decreased by 75. 1% to 85. 5%and 73. 3% to 78. 9%, respectively, after two rounds of bio-grouting. Microscopy analyses showed that the iron-based complexes, which contained schwertmannite and Ferrum oxydatum phosphate, as well as other substances with excellent flocculation efficiency and large specific surface area, had poor crystalline form, but could fix heavy metals in a contaminated environment through adsorption and co-precipitation.

  12. BACTERIAL COMMUNITY DYNAMICS AND ECOTOXICOLOGICAL ASSESSMENT DURING BIOREMEDIATION OF SOILS CONTAMINATED BY BIODIESEL AND DIESEL/BIODIESEL BLENDS.

    Science.gov (United States)

    Matos, G I; Junior, C S; Oliva, T C; Subtil, D F; Matsushita, L Y; Chaves, A L; Lutterbach, M T; Sérvulo, E F; Agathos, S N; Stenuit, B

    2015-01-01

    The gradual introduction of biodiesel in the Brazilian energy landscape has primarily occurred through its blending with conventional petroleum diesel (e.g., B20 (20% biodiesel) and B5 (5% biodiesel) formulations). Because B20 and lower-level blends generally do not require engine modifications, their use as transportation fuel is increasing in the Brazilian distribution networks. However, the environmental fate of low-level biodiesel blends and pure biodiesel (B100) is poorly understood and the ecotoxicological-safety endpoints of biodiesel-contaminated environments are unknown. Using laboratory microcosms consisting of closed reactor columns filled with clay loam soil contaminated with pure biodiesel (EXPB100) and a low-level blend (EXPB5) (10% w/v), this study presents soil ecotoxicity assessement and dynamics of culturable heterotrophic bacteria. Most-probable-number (MPN) procedures for enumeration of bacteria, dehydrogenase assays and soil ecotoxicological tests using Eisenia fetida have been performed at different column depths over the course of incubation. After 60 days of incubation, the ecotoxicity of EXPB100-derived samples showed a decrease from 63% of mortality to 0% while EXPB5-derived samples exhibited a reduction from 100% to 53% and 90% on the top and at the bottom of the reactor column, respectively. The dehydrogenase activity of samples from EXPB100 and EXPB5 increased significantly compared to pristine soil after 60 days of incubation. Growth of aerobic bacterial biomass was only observed on the top of the reactor column while the anaerobic bacteria exhibited significant growth at different column depths in EXPB100 and EXPB5. These preliminary results suggest the involvement of soil indigenous microbiota in the biodegradation of biodiesel and blends. However, GC-FID analyses for quantification of fatty acid methyl esters (FAMEs) and aliphatic hydrocarbons and targeted sequencing of 16S rRNA tags using illumina platforms will provide important

  13. Pyrosequencing analysis of bacterial diversity in soils contaminated long-term with PAHs and heavy metals: Implications to bioremediation.

    Science.gov (United States)

    Kuppusamy, Saranya; Thavamani, Palanisami; Megharaj, Mallavarapu; Venkateswarlu, Kadiyala; Lee, Yong Bok; Naidu, Ravi

    2016-11-05

    Diversity, distribution and composition of bacterial community of soils contaminated long-term with both polycyclic aromatic hydrocarbons (PAHs) and heavy metals were explored for the first time following 454 pyrosequencing. Strikingly, the complete picture of the Gram positive (+ve) and Gram negative (-ve) bacterial profile obtained in our study illustrates novel postulates that include: (1) Metal-tolerant and PAH-degrading Gram -ves belonging to the class Alphaproteobacteria persist relatively more in the real contaminated sites compared to Gram +ves, (2) Gram +ves are not always resistant to heavy metal toxicity, (3) Stenotrophomonas followed by Burkholderia and Pseudomonas are the dominant genera of PAH degraders with high metabolic activity in long-term contaminated soils, (4) Actinobacteria is the predominant group among the Gram +ves in soils contaminated with high molecular weight PAHs that co-exist with toxic heavy metals like Pb, Cu and Zn, (5) Microbial communities are nutrient-driven in natural environments and (6) Catabolically potential Gram +/-ves with diverse applicability to remediate the real contaminated sites evolve eventually in the historically-polluted soils. Thus, the most promising indigenous Gram +/-ve strains from the long-term contaminated sites with increased catabolic potential, enzymatic activity and metal tolerance need to be harnessed for mixed contaminant cleanups.

  14. Review on AM Fungi and Plant Bioremediation of Petroleumcontaminated Soil%丛枝菌根真菌-植物联合修复石油污染土壤研究进展

    Institute of Scientific and Technical Information of China (English)

    山宝琴; 刘亚峰; 付小康; 王彩琴; 薛婷

    2011-01-01

    Arbuscular mycorrhiza (AM) are ubiquitous symbiotic associations between plants and microbes found in natural ecosystems. AM fungi are essential components of sustainable soil-plant systems. Indigenous and exogenous AM fungi infection can increase the bioremediation efficiency of petroleum-contaminated soil by improving soil microenvironment in the rhizosphere of host plant and by influencing microbial activities. Existing researches showed that AM bioremediation is an available and effective technology. Effects of AM fungi and plant bioremediation were discussed, as well as analysis of the limitations and distance between the research development and practical application. Progress and achievement of AM biotechnology were introduced including its main shortcomings and application prospect of AM bioremediation to petroleum-contaminated soil, which aimed at facilitating the practical application of AM biotechnology in oil contaminated soil.%丛枝菌根(Arbuscular mycorrhiza,AM)是由丛枝菌根真菌与植物根系所建立的一种互惠共生体,在自然界分布广泛,具有降解复杂有机污染物的能力.石油污染土壤中,利用土著的或外接的丛枝菌根真菌可以明显改善植物根际环境,提高土壤生物活性,从而加速土壤中石油污染物的降解.现有研究已证明丛枝菌根真菌修复石油污染土壤的可行性,并就丛枝菌根真菌与土壤其它微生物及植物联合修复效果等进行了多方面的有益探索,然而这一技术的研发与实际应用尚有很大距离.文章重点综述了国内外丛枝菌根真菌-植物联合修复石油污染土壤的研究现状,并探讨了这一生物修复技术在石油污染土壤治理中存在的限制因素、发展趋势和应用前景,旨在促进菌根生物技术在石油污染土壤修复中的应用与发展.

  15. Monitoring of ground water quality and heavy metals in soil during large scale bioremediation of petroleum hydrocarbon contaminated waste in India: case studies

    Directory of Open Access Journals (Sweden)

    Ajoy Kumar Mandal

    2014-10-01

    Full Text Available Bioremediation using microbes has been well accepted as an environmentally friendly and economical treatment method for disposal of hazardous petroleum hydrocarbon contaminated waste (oily waste and this type of bioremediation has been successfully conducted in laboratory and on a pilot scale in various countries, including India. Presently there are no federal regulatory guidelines available in India for carrying out field-scale bioremediation of oily waste using microbes. The results of the present study describe the analysis of ground water quality as well as selected heavy metals in oily waste in some of the large-scale field case studies on bioremediation of oily waste (solid waste carried out at various oil installations in India. The results show that there was no contribution of oil and grease and selected heavy metals to the ground water in the nearby area due to adoption of this bioremediation process. The results further reveal that there were no changes in pH and EC of the groundwater due to bioremediation. In almost all cases the selected heavy metals in residual oily waste were within the permissible limits as per Schedule – II of Hazardous Waste Management, Handling and Transboundary Movement Act, Amendment 2008, (HWM Act 2008, by the Ministry of Environment and Forests (MoEF, Government of India (GoI.

  16. Primary Study on the Bio-remediation of Oil Contaminated Soil of Karamay Oilfield%克拉玛依石油污染土壤生物修复的初步研究

    Institute of Scientific and Technical Information of China (English)

    赵东风; 吴伟林; 张云波; 杨海滨; 赵朝成

    2012-01-01

    The optimal launch conditions were investigated by study on the bio-remediation of oil contaminated soil of Karamay oilfield, and the changes of soil physicochemical properties, microbiological characteristics, oil components were also studied during the soil bioremediation. The results showed that the main factors of bioremediation were the bacteria dosage, moisture content and manure dosage. The optimal launch conditions were as follows: microbial dosage per 1 kg oil polluted soil of 200 mL, moisture content of 15%, chicken manure of 20 g, wheat bran of 50 g and surfactant of 30 mL. The oil degradation rate reached 56. 31% after 75 d bioremediation under above condition. The physicochemical properties and microbiological characteristics of the soil were significant changed at different stages of bioremediation, the urease, dehydrogenase activities decreased and catalase activity increased. The four components separation test and simulation distillation experiments for oil sample from oil polluted soil after bioremediation showed that the degradation ability order of the hydrocarbon components by microbe from high to low was saturated, aromatic, resin and asphaltene. The short chain n-alkanes (C12— C14 ) were first degraded by bacteria, which could not be detected after 70 d degradation. The GC peak shape of n-alkanes changed greatly, from symmetrical to "left slow, right steep", and the relative content of isoparaffin increased, the base line of GC was significantly elevated.%进行了克拉玛依石油污染土壤生物模拟修复实验,考察了最佳启动条件,分析了在生物修复过程中土壤理化性质、微生物学特性、石油烃组分的变化.结果表明,影响生物修复效果的主要因子为菌剂的投加量、水分含量以及鸡粪投加量;最佳启动条件为每1 kg污染土壤菌剂投加量200mL、水分含量15%、鸡粪投加量120 g、麦糠投加量50 g、表面活性剂30mL,经75 d修复后

  17. Response of Soil Microbial Community to the Bioremediation of Soil Contaminated with PAHs%土壤微生物群落对多环芳烃污染土壤生物修复过程的响应

    Institute of Scientific and Technical Information of China (English)

    张晶; 林先贵; 刘魏魏; 尹睿

    2012-01-01

    The diversity of bacterial community in soil contaminated with polycyclic aromatic hydrocarbons(PAHs) was investigated during the plant-microbe remediation enhanced by biosurfactant rhamnolips(RH),using the polymerase chain reaction-denaturing gradient gel electrophoresis(PCR-DGGE) method.The results showed that Shannon-Weaver diversity index was only 3.17 before bioremediation,and increased to 3.24-3.45 after bioremediation,in particular,highest value was found in the treatment of alfalfa(AL) inoculated with arbuscular mycorrhizal fungi(AM) and PAHs-degrading bacteria(DB) among all the treatments.The clustering analysis showed that the similarities of soil bacterial community of AL,AL+RH,AL+AM and AL+AM+RH were above 90%.At the same time,the similarity of AL+DB was much closer to those of the four treatments mentioned above.Additionally,when the bacterial communities of AL+DB+RH,AL+DB+AM and AL+DB+AM+RH were grouped together,the similarities of these three treatments were also higher than 80%.By sequence alignment,it was found that the predominant and characteristic bands in DGGE patterns were closely related with PAHs-degrading bacteria,such as Bacillus,Pseudomonas,Acidobacteria,Sphingmonas,Rhodopseudomonas,Firmicutes,and Methylocytaceae.Application of rhamnolipids in plant-microbe bioremediation not only improved the bioavailability of PAHs,but also had a simultaneous influence on the diversity of soil bacterial community,resulting in the efficient promotion of PAHs removal from soils.%采用聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)方法,研究了土壤微生物群落多样性对生物表面活性剂强化的植物-微生物联合修复多环芳烃(PAHs)污染土壤的响应.结果表明,细菌群落的Shannon-Weaver指数修复前为3.17,修复后为3.24~3.45,多样性整体呈上升趋势,其中以植物-菌根真菌-降解菌处理最高,但各处理间无显著差异(P〉0.05).聚

  18. DEMONSTRATION BULLETIN: GRACE DEARBORN INC. DARAMEND™ BIOREMEDIATION TECHNOLOGY

    Science.gov (United States)

    The DARAMEND™ Bioremediation Technology may be applied to the remediation of soils and sediments contaminated by a wide variety of organic contaminants including chlorinated phenols, polynuclear aromatic hydrocarbons (PAHs), and petroleum hydrocarbons. The technology may be ap...

  19. Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes

    OpenAIRE

    Ruchita Dixit; Wasiullah; Deepti Malaviya; Kuppusamy Pandiyan; Singh, Udai B; Asha Sahu; Renu Shukla; Singh, Bhanu P.; Jai P. Rai; Pawan Kumar Sharma; Harshad Lade; Diby Paul

    2015-01-01

    Heavy metals are natural constituents of the environment, but indiscriminate use for human purposes has altered their geochemical cycles and biochemical balance. This results in excess release of heavy metals such as cadmium, copper, lead, nickel, zinc etc. into natural resources like the soil and aquatic environments. Prolonged exposure and higher accumulation of such heavy metals can have deleterious health effects on human life and aquatic biota. The role of microorganisms and plants in bi...

  20. 土壤修复微生物研究现状∗%Research Status of Soil Bioremediation by Microbials

    Institute of Scientific and Technical Information of China (English)

    张宇; 李朋朋; 李士侠; 张迪; 谭善娇; 陈坤

    2016-01-01

    我国耕地受农药和化肥等污染严重,威胁粮食及生态安全。土壤中微生物具有改良土壤结构、促进农作物增产、提高农作物品质、减少和降解农药和化肥污染、保护生态环境等功效,同时也对污染土壤具有修复作用。本文着眼于土壤修复相关微生物研究的最新进展,对相关微生物种属在土壤修复中的作用、研究与发展现状及研究趋势等方面进行综述。%Cultivated land is heavily polluted by pesticides and fertilizers in China. Soil microbial can improve the soil, promote crop growth and increase production, reduce the amount of pesticides and fertilizers, etc. The role of microorganisms in soil remediation was discussed, and the situation of research and development of relative microbial were summarized.

  1. Efficacy of Ganoderma sp. JAS4 in bioremediation of chlorpyrifos and its hydrolyzing metabolite TCP from agricultural soil.

    Science.gov (United States)

    Silambarasan, Sivagnanam; Abraham, Jayanthi

    2014-01-01

    A novel fungal strain JAS4 was isolated from agricultural soil and was found to be highly effective in degrading chlorpyrifos and its major degradation product 3,5,6-trichloro-2-pyridinol (TCP). The molecular characterization based on 18S rRNA sequence analysis, revealed strain JAS4 as Ganoderma sp. which could able to degrade chlorpyrifos and its metabolite in an aqueous medium with rate constant of 0.8460 day(-1), following first order rate kinetics, and the time in which the initial insecticide concentration was reduced by 50% (DT(50)) was 0.81 days. Studies on biodegradation in soil with nutrients showed that JAS4 strain exhibited efficient degradation of insecticide with a rate constant of 0.9 day(-1), and DT(50) was 0.73 day. In contrast, degradation of insecticide in soil without nutrients was characterized by a rate constant of 0.7576 day(-1) and the DT(50) was 0.91 day.

  2. DEMONSTRATION BULLETIN: NEW YORK STATE MULTI-VENDOR BIOREMEDIATION - R.E. WRIGHT ENVIRONMENTAL, INC.'S IN-SITU BIOREMEDIATION TREATMENT SYSTEM

    Science.gov (United States)

    The R.E. Wright Environmental, Inc.‘s (REWEI) In-situ Bioremediation Treatment System is an in-situ bioremediation technology for the treatment of soils contaminated with organic compounds. According to the Developer, contaminated soils are remediated in-situ by stimulating the a...

  3. Hazards and Bioremediation of Oil-pollutants in Soil Yellow River Delta and Coastal Wetland%黄河三角洲滨海湿地土壤石油污染危害及生物修复技术

    Institute of Scientific and Technical Information of China (English)

    秦玉广; 刘超; 李秀启; 陈秀丽; 陈有光; 董贯仓; 刘峰; 王亚楠; 冷春梅; 朱士文

    2011-01-01

    概述了黄河三角洲滨海湿地土壤石油污染现状和石油污染物对该地区土壤、水、空气以及对人类自身造成的危害,论述了石油污染土壤的各种生物修复技术特点及适用范围,并对生物修复技术的研究进展进行了热点分析,最后结合“蓝、黄”两大发展战略对黄河三角洲滨海湿地石油污染土壤修复治理进行了展望.%The status of oil-contaminated soil in the Yellow River delta and coastal wetland region and its hazards to soil, water, air, and human being in the area were overviwed in this article. Then varieties of bioremediation techniques, their characteriazation and utilization scope were outlined; and the research focus of the bioremediation was reviewed. In the end, accompanied by two national economic development strategies: "Eco-efficient Yellow River Delta Economic Zone Development Plan" & "Blue Shandong Peninsula Economic Zone Development Plan", the procspect of Oil-contaminated soil remediation was briefly presented.

  4. Effect of Soft Enzyme Activities During Bioremediation of Crude Oil-Contaminated Soil%石油污染土壤生物修复对土壤酶活性的影响

    Institute of Scientific and Technical Information of China (English)

    王华金; 朱能武; 杨崇; 党志; 吴平霄

    2013-01-01

    土壤酶活性是土壤微生物生物化学过程的综合反映.为了探究石油污染土壤生物修复过程中土壤酶活性变化规律研究,采用筛选和分离的3株对石油烃有良好降解效果的降解菌构建了混合菌体系,开展了石油污染土壤模拟生物修复实验,考察了不同修复时期土壤石油烃残留量、石油烃表观降解率以及四种土壤酶(脲酶、过氧化氢酶、脱氢酶、脂肪酶)活性的变化.结果表明,石油污染土壤经40d生物修复后,石油烃表观降解率达到64.4%.在石油污染土壤的生物修复过程中,脲酶活性在0~24d上升较快,24d后趋于稳定;过氧化氢酶和脱氢酶活性的变化规律相似,均在前期上升随后略有下降;脂肪酶活性有一个快速上升阶段(0~16d),而后又出现明显的下降.进一步统计分析表明,脲酶与石油烃残留量呈显著负相关性(r=-0.916,P<0.05);过氧化氢酶和脱氢酶活性与石油烃残留量呈极显著负相关性,相关系数分别为-0.974(P<0.01)和-0.969(P<0.01);而脂肪酶活性与石油烃残留量的相关性不显著(P>0.05).%Soil enzyme activity comprehensively reflects the soil microorganism biochemical process.In order to explore the changes of soil enzyme activities during bioremediation of crude oil-contaminated soil,constructed crude oil degrading bacterial consortium were built withthree strains isolated from oil-contaminated soil,bioremediation experiments of crude oil-contaminated soil were conducted,and the change of total petroleum hydrocarbon(TPH),apparent degradation effciencies and soil enzyme activities (urease,catalase,dehydrogenase and lipase) were examined during the crude oil-contaminated soil bioremediation.The results showed that the apparent degradation effciency of crude oil reached 64.4% after 40 d of bioremediation.Urease activity rapidly increased during 0~24 d,then tended to be stable.The catalase activity and dehydrogenase activity

  5. STUDY OF BIOREMEDIATION USING IRON BACTERIA FOR ARTIFICIALLY ZINC POLLUTION SOIL%铁细菌修复锌污染土壤的试验研究∗

    Institute of Scientific and Technical Information of China (English)

    许朝阳; 柏庭春; 黄建璋; 庞一山; 周锋

    2016-01-01

    利用铁细菌A代谢作用形成的铁基络合物,对Zn2+污染土进行生物灌浆修复,借助X射线衍射( XRD)、扫描电镜( SEM)、傅里叶转换红外光谱( FTIR)等方法对铁基络合物进行鉴定,并分析重金属的沉积机理。结果表明:经三次灌浆后,有效态Zn2+的浓度减少了64�7%~73�3%。显微技术测试显示:铁基络合物晶形不明显,但含有优异絮凝效能、比表面积大的施氏矿物等物质,其通过吸附和共沉作用实现了对污染环境中重金属的固定。%Bio⁃grouting using iron⁃based complexes produced by the metabolism of iron bacteria A was conducted to remediate artificially zinc pollution soil and the effect of bioremediation was investigated. Scanning Electron Microscopy ( SEM) , X⁃ray Diffraction ( XRD) , and Fourier Transform Infrared Spectroscopy ( FTIR) were used to identify the composition and the structure of iron⁃based complexes and analyze the deposition mechanism of heavy metal. The results showed that the concentration of available Zn2+ in soil reduced by 64�7% ~73�3% after three times bio⁃grouting. Microscopy analyses showed that the iron⁃based complexes, which containing schwertmannite, as well as other substances with excellent flocculation efficiency and large specific surface area, had poor crystalline form, but could fix heavy metals in a contaminated environment through adsorption and co⁃precipitation.

  6. In situ groundwater bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2009-02-01

    In situ groundwater bioremediation of hydrocarbons has been used for more than 40 years. Most strategies involve biostimulation; however, recently bioaugmentation have been used for dehalorespiration. Aquifer and contaminant profiles are critical to determining the feasibility and strategy for in situ groundwater bioremediation. Hydraulic conductivity and redox conditions, including concentrations of terminal electron acceptors are critical to determine the feasibility and strategy for potential bioremediation applications. Conceptual models followed by characterization and subsequent numerical models are critical for efficient and cost effective bioremediation. Critical research needs in this area include better modeling and integration of remediation strategies with natural attenuation.

  7. The influence of bioaugmentation and biosurfactant addition on bioremediation efficiency of diesel-oil contaminated soil: feasibility during field studies.

    Science.gov (United States)

    Szulc, Alicja; Ambrożewicz, Damian; Sydow, Mateusz; Ławniczak, Łukasz; Piotrowska-Cyplik, Agnieszka; Marecik, Roman; Chrzanowski, Łukasz

    2014-01-01

    The study focused on assessing the influence of bioaugmentation and addition of rhamnolipids on diesel oil biodegradation efficiency during field studies. Initial laboratory studies (measurement of emitted CO2 and dehydrogenase activity) were carried out in order to select the consortium for bioaugmentation as well as to evaluate the most appropriate concentration of rhamnolipids. The selected consortium consisted of following bacterial taxa: Aeromonas hydrophila, Alcaligenes xylosoxidans, Gordonia sp., Pseudomonas fluorescens, Pseudomonas putida, Rhodococcus equi, Stenotrophomonas maltophilia, Xanthomonas sp. It was established that the application of rhamnolipids at 150 mg/kg of soil was most appropriate in terms of dehydrogenase activity. Based on the obtained results, four treatment methods were designed and tested during 365 days of field studies: I) natural attenuation; II) addition of rhamnolipids; III) bioaugmentation; IV) bioaugmentation and addition of rhamnolipids. It was observed that bioaugmentation contributed to the highest diesel oil biodegradation efficiency, whereas the addition of rhamnolipids did not notably influence the treatment process.

  8. Interaction of Actinide Species with Microorganisms & Microbial Chelators: Cellular Uptake, Toxicity, & Implications for Bioremediation of Soil & Ground Water.

    Energy Technology Data Exchange (ETDEWEB)

    Hakim Boukhalfa

    2006-03-28

    Microorganisms influence the natural cycle of major elements, including C, N, P, S, and transition metals such as Mn and Fe. Bacterial processes can also influence the behavior of actinides in soil and ground water. While radionuclides have no known biological utility, they have the potential to interact with microorganisms and to interfere with processes involving other elements such as Fe and Mn. These interactions can transform radionuclides and affect their fate and transport. Organic acids, extruded by-products of cell metabolism, can solubilize radionuclides and facilitate their transport. The soluble complexes formed can be taken up by the cells and incorporated into biofilm structures. We have examined the interactions of Pu species with bacterial metabolites, studied Pu uptake by microorganisms and examined the toxicity of Pu and other toxic metals to environmentally relevant bacteria. We have also studied the speciation of Pu(IV) in the presence of natural and synthetic chelators.

  9. In situ bioremediation of nitrate and perchlorate in vadose zone soil for groundwater protection using gaseous electron donor injection technology.

    Science.gov (United States)

    Evans, Patrick J; Trute, Mary M

    2006-12-01

    When present in the vadose zone, potentially toxic nitrate and perchlorate anions can be persistent sources of groundwater contamination. Gaseous electron donor injection technology (GEDIT), an anaerobic variation of petroleum hydrocarbon bioventing, involves injecting electron donor gases, such as hydrogen or ethyl acetate, into the vadose zone, to stimulate biodegradation of nitrate and perchlorate. Laboratory microcosm studies demonstrated that hydrogen and ethanol promoted nitrate and perchlorate reduction in vadose zone soil and that moisture content was an important factor. Column studies demonstrated that transport of particular electron donors varied significantly; ethyl acetate and butyraldehyde were transported more rapidly than butyl acetate and ethanol. Nitrate removal in the column studies, up to 100%, was best promoted by ethyl acetate. Up to 39% perchlorate removal was achieved with ethanol and was limited by insufficient incubation time. The results demonstrate that GEDIT is a promising remediation technology warranting further validation.

  10. 石油污染土壤长料堆式异位生物修复技术研究%n off site petroleum-contaminated soil bioremediation technology: soil compesttng in windrow

    Institute of Scientific and Technical Information of China (English)

    姜昌亮; 孙铁珩; 李培军; 张春桂; 张海荣; 马学军; 姚德明; 杨桂芬 杨桂芬

    2001-01-01

    With off-site bioremediation tectmolgy, a soil contaminated by crude oil from Liaohe Oil Field was treated on a 20 ×10m prepared bed. 8 composting windrow units were set, each measured 8m in length, 2m in width, and 0.35m in height. The results showed that when the pollutant petroleum hydrocarbon (TPH)was within the range of 4.16~7.72g· 100g- 1 soil, the total degradation rate of TPH reached 45.19 96 ~ 56.74 96 after 53 days operation, which indicared that a technological basis would be provided for the oremediafion of oil-contaminated soil.%应用长料堆式处理技术在长20m、宽10m的实用规模预制床上对辽河油田不同类型原油污染土壤进行了处理.处理工程设8个长条状堆料单元,每个堆料单元长8m、宽2m、高0.35m.当稀油、稠油和高凝油污染土壤中石油烃总量(TPH)为4.16~7.72g·100g-1土时,经过53d的运行,TPH去除率45.19%~56.74%.本研究为石油污染土壤异位生物修复实用化提供了技术支持.

  11. 石油污染湿地土壤生物修复研究进展%Research Progress on Bioremediation of Petroleum-contaminated Soils in Wetlands

    Institute of Scientific and Technical Information of China (English)

    阚兴艳; 于君宝; 王雪宏; 谢文军; 韩广轩; 马向明; 陈景春; 林乾欣

    2012-01-01

    plant and microbial. Therefore, It would be become the future focus of the bioremediation study for petroleum-contaminated soils in wetlands that lowering petroleum pollution concentrations within the biodegradable scope of plants and microbial and improving the efficiency of the degradation of combined plants and microbial.

  12. Microbiological study on bioremediation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) contaminated soil by agricultural waste composting.

    Science.gov (United States)

    Chen, Yaoning; Ma, Shuang; Li, Yuanping; Yan, Ming; Zeng, Guangming; Zhang, Jiachao; Zhang, Jie; Tan, Xuebin

    2016-11-01

    This paper studied the degradation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in contaminated soil under composting and natural conditions, respectively. BDE-47 residue in agricultural waste-composting pile was determined during 45-day composting. The microbial communities were determined by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), and the relationships between the DGGE results and physico-chemical parameters were evaluated by redundancy analysis (RDA) and heatmap-clustering analysis. The results showed that the degradation rate of BDE-47 was significantly higher in agricultural waste-composting pile compared with control group, which was enhanced up to almost 15 % at the end of composting. There were different environmental factors which affected the distribution of composting bacterial and fungal communities. The bacterial community composition was more significantly affected by the addition of BDE-47 compared with other physico-chemical parameters, and BDE-47 had stronger influences on bacterial community than fungal community during the composting. Meanwhile, the most variation in distribution of fungal community was explained by pile temperature.

  13. The influence of nickel on the bioremediation of multi-component contaminated tropical soil: microcosm and batch bioreactor studies.

    Science.gov (United States)

    Taketani, Natália Franco; Taketani, Rodrigo Gouvêa; Leite, Selma Gomes Ferreira; Rizzo, Andrea Camardella de Lima; Tsai, Siu Mui; da Cunha, Cláudia Duarte

    2015-07-01

    Large petrochemical discharges are responsible for organic and inorganic pollutants in the environment. The purpose of this study was to evaluate the influence of nickel, one of the most abundant inorganic element in crude oil and the main component of hydrogen catalysts for oil refining, on the microbial community structure in artificially petroleum-contaminated microcosms and in solid phase bioreactor studies. In the presence of metals, the oil biodegradation in microcosms was significantly delayed during the first 7 days of operation. Also, increasing amounts of moisture generated a positive influence on the biodegradation processes. The oil concentration, exhibiting the most negative influence at the end of the treatment period. Molecular fingerprinting analyses (denaturing gradient gel electrophoresis--DGGE) indicated that the inclusion of nickel into the contaminated soil promoted direct changes to the microbial community structure. By the end of the experiments, the results of the total petroleum hydrocarbons removal in the bioreactor and the microcosm were similar, but reductions in the treatment times were observed with the bioreactor experiments. An analysis of the microbial community structure by DGGE using various markers showed distinct behaviors between two treatments containing high nickel concentrations. The main conclusion of this study was that Nickel promotes a significant delay in oil biodegradation, despite having only a minor effect over the microbial community.

  14. Bioremediation of heavy metals by employing resistant microbial isolates from agricultural soil irrigated with Industrial Waste water

    Directory of Open Access Journals (Sweden)

    Vijay Kumar

    2015-03-01

    Full Text Available This study was focused to isolate the most efficient bacteria from heavy metal contaminated soil from Ludhiana, Punjab. A total of 14 microbial isolates were characterized and out of 14, IS1 and IS14 were observed to be most effective because of their high relative growth and resistance against heavy metals. Further, these two isolates were assessed for their ability to remove Zinc and Lead from medium amended with heavy metals. IS1, Bacillus thuringiensis strain “Simi” (Accession number KF 916618.1 was found to be more effective as compared to IS14, Bacillus subtilis strain PSB (Accession number KF 279045.1 for the remediation of heavy metals. IS1 showed mean of 54% biodegradation efficacy in the first three days and from day 4 on wards the mean percentage of biodegradation efficacy decreased to around 31%. The results of the present study showed that the metal resistant bacteria can be used for heavy metal bio accumulation.

  15. Quantification of decreasing of human health risk by bioremediation of a contaminated soil with petroleum hydrocarbons; Quantificacao do decrescimo de risco associado a biorremediacao de um solo contaminado por hidrocarbonetos de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Cristiane A.; Castilhos, Zuleica C.; Rizzo, Andrea C.L. [Centro de Tecnologia Mineral (CETEM), Rio de Janeiro, RJ (Brazil); Leite, Selma G.F. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica

    2004-07-01

    The main objective of this work was to evaluate the efficiency of four different bioremediation processes in the decrease of organic pollutants present in a soil contaminated with crude oil, using a toxicological approach based on the human health risk assessment methodology (USEPA, 1989). The different techniques of bioremediation utilized (biostimulation, bioaugmentation and addition of enzymatic solution) were efficient in the removal of the organic pollutants, especially of PAHs, considered highly recalcitrant. In the human health risk assessment, the exposure pathway that resulted in higher hazards of no-carcinogenic effects and risks of carcinogenic effects in the population (children and adult) was dermal contact with soil. The pollutant that contributed more in the different exposure pathways was benzo(a)pyrene. When carcinogenic and no-carcinogenic effects in children and adults were evaluated, the different treatments showed efficiency, once they were capable to reduce the risk and the hazard index (HI) bellow target levels (< 1 x 10{sup -4} and 1, respectively), showing that these treatments were efficient to decrease the potential damage in the exposed population. (author)

  16. Study on Combined Bioindicators in Ecotoxicity Monitoring of Oil-contaminated Soil during Bioremediation%微生物修复石油污染土壤的生态毒性指示

    Institute of Scientific and Technical Information of China (English)

    沈伟航; 朱能武; 尹富华; 王华金; 党志

    2015-01-01

    order to explore the soil ecotoxicity patterns and biological indicator effects, bioremediation of oil-contaminated soil were conducted. Oil degrading bacterial consortium were built with three strains isolated from oil-contaminated soil. Bacterial luminescence, chlorophyll a and carotene contents, and soil catalase activity was employed to evaluate the ecotoxicity of soil sampled in different bioremediation phases. Good consistency can be obtained among phytotoxicity tests, soil enzyme activity and Photobacterium phosphoreum ecotoxicity tests. The results showed that the application of a mixed bacterial consortium was illustrated to effectively remediate oil-contaminated soil due to the high TPH removal efficiency, which reduced the crude oil concentration from 5 000 mg·kg-1 soil to 1 781 mg·kg-1 in only 40 d. The maximum inhibition of bacterial luminescence for Photobacterium phosphoreum in the dichloromethane/dimethyl sulfoxide extracts was observed at the initial stage of bioremediation and gradually dropped to normal. Compared with the control group, the chlorophyll a content of Triticum acstivnm L. was significantly inhibited in the different phases of bioremediation. In soils S1, the chlorophyll a content decreased by 39.3%to (1.36±0.04) mg·g-1. A significant negative correlation can be found between soil catalase activity and the residue of petroleum hydrocarbon. The correlation coefficient is-0.973. Soil extract on the 8th day of the bioremediation remained constant at a relative luminosity of 18.1%, with toxicity equivalent to that of 0.187 mg·L-1 HgCl2. Therefore, bacterial luminescence, phytotoxicity (inhibition of chlorophyll a and carotene contents), and soil catalase activity could potentially be sensitive indicators to evaluate the effectiveness of bioremediation techniques.

  17. BIOREMEDIATION OF CONTAMINATED SOIL BY SLUDGE OIL USING THE BIOPILES AMELIORATED = BIORREMEDIAÇÃO DE SOLO CONTAMINADO POR BORRA DE ÓLEO POR BIOPILHAS MELHORADAS

    Directory of Open Access Journals (Sweden)

    Eduardo Beraldo de Morais

    2014-06-01

    Full Text Available The bioremediation of contaminated soil by sludge oil from petroleum refinery using amended biopiles through bio-stimulation and/or bio-augmentation was objective of this work. Four biopiles were constructed as follows: B1. control; B2. Bio-supplemented with oil-sludge-degrading bacteria and fungus; B3. Bio-supplemented and bio-stimulated with nutrients (N and P; B4. Bio-supplemented and bio-stimulated with nutrients and rice husk. The study lasted 50 weeks and three different biodegradation stages were found during this period: an initial stage in which the reduction of oil and grease was greatest (up to 10 weeks; a stage with low biodegradation rates of the residue (10-30 weeks, and a late stage (30-50 weeks in which it was observed an increase of the oily sludge biodegradation after the biopiles were covered with black plastic in thirtieth week. This procedure increased the internal temperature of biopiles and showed the importance of this parameter in the biodegradation process. The bio-stimulation using rice husk improved soil aeration and allowed the development of microorganisms added and increased their metabolic activities; consequently, the oil and grease removal was greater (79.1%. The bacteria and fungus added in biopiles B2 and B3 did not survive, so it is necessary to produce inoculum more competitive and adapted. The biopiles system proved to be a viable technology for the bioremediation of soil polluted by oily sludge from petroleum refinery and the bio-stimulation by addition of materials such as rice husk increases its efficiency. = A biorremediação de solo contaminado por borra de óleo de refinaria de petróleo por meio de biopilhas bioestimuladas e/ou bioenriquecidas foi objetivo deste trabalho. Quatro biopilhas foram construídas, sendo: B1. controle; B2. adicionada de inóculo constituído por bactérias e fungos degradadores de borra de óleo; B3. adicionada de inóculo e nutrientes (N e P; B4. com inóculo, nutrientes

  18. Research Advances in Application of Microorganism in Biological Control and Soil Bioremediation%微生物在生物防治和土壤修复中的研究进展

    Institute of Scientific and Technical Information of China (English)

    安霞

    2011-01-01

    Extensive application of chemical insecticides results in insects and pathogens resistance to these insecticides, pollution of soil and crops, potential hazards to environment and human health. It will be of great significance to make use of microorganism in biological control and soil bioremediation for eontinuable development of agriculture.%长期以来,大量化学农药的使用不仅造成的了病原菌和害虫的抗药性,还导致了土壤和作物中的农药残留,而利用微生物进行生物防治和土壤修复可以同时解决上述问题,对农业的可持续发展具有重要意义。

  19. Preliminary evaluation of the utilization of biopiles technology to the bioremediation of the soil of Guamare/RN (Brazil); Avaliacao preliminar da aplicacao da tecnologia de biopilhas para a biorremediacao do solo de Guamare/RN (Brasil)

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Edmilson P.; Macedo, Gorete R.; Duarte, Marcia M.L. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. de Engenharia Quimica; Costa, Alex S.S. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2004-07-01

    The aim of this work was to evaluate the use of biopiles to the bioremediation of the soil of Stabilization Station of Guamare-RN-Brazil. The evaluation was performed by the characterization of the soil, tests of biodegradation in laboratory scale and by the use of a complete 2{sup 3} factorial design with triplicate at the central point. The input variables were: Nitrogen concentration; diesel-oil concentration; and inoculum concentration. The response variable was the percentage gravimetric loss of organic matter. Statistical analyses of the main factors and their interactions on the response variable were performed using contour curves and Pareto obtained from the software STATISTICA for Windows, Release 5.5. The results showed that biopiles technology can be used to remediate eventual contaminated areas in that region. (author)

  20. Study on construction of degradable microorganisms for lubricant-castor and its bioremediation to soil%蓖麻基润滑油降解菌群的构建及对土壤的修复作用

    Institute of Scientific and Technical Information of China (English)

    王昌禄; 赵璇; 王玉荣; 孟祥云

    2011-01-01

    以添加蓖麻基润滑油的土壤为模拟实验对象,从大港油田油井附近受污染的土壤和污水中筛选出优势降解菌株,构建高效降解菌群,确定了BM-1+BM-2+BM-4+BM-5菌株为最佳组合.将菌群投加到模拟被润滑油污染的土壤中进行生物修复,以土壤生物活性及土壤呼吸强度作为考核指标,40 d后土壤含油量从89 g·kg-1下降到24 g·kg-1,降解率达73.03%,比自然条件下降解率提高34.83%.结果表明,投加该菌群的污染土壤生物修复能力强于未投加菌群的污染土壤;蓖麻基润滑油为可生物降解型油品.%Through the experiments of lubricant-castor degradation, a series of microorganisms were screened to construct a high-effective microbial consortium, and confirmed the optimal combination was BM-I+BM-2+BM-4+BM-5.Adding it to the soil polluted by lubricant-castor for biological repairing, with soil respiration intensity and biological activity of change as indicators ofbioremediation, the results showed that during the process of40-day bioremediation, the degradation rate was improved by 34.83% compared with that in nature condition, plus bacteria bioremediation of soil strength significantly larger than that without bacteria with soil samples, lubricant-castor was biodegradable oil.

  1. SITE TECHNOLOGY CAPSULE: GRACE DEARBORN INC.'S DARAMEND BIOREMEDIATION TECHNOLOGY

    Science.gov (United States)

    Grace Dearborn's DARAMEND Bioremediation Technology was developed to treat soils/sediment contaminated with organic contaminants using solid-phase organic amendments. The amendments increase the soil's ability to supply biologically available water/nutrients to microorganisms and...

  2. Review of Remediation Technologies for Oil -Contaminated Soil and Effect of Different Soil Amendments on Bioremediation Efficacy%石油污染土壤的原位生物修复技术和多种土壤改良剂应用研究

    Institute of Scientific and Technical Information of China (English)

    尚俊腾; 王志

    2016-01-01

    土壤中的石油污染是一类严重的环境危害.针对石油污染的土壤修复技术有物理法、化学法和生物法.其中原位生物修复法由于简易性和生态可持续等优点成为了具有前景的一个发展方向.土壤改良剂的选取和添加是原位生物修复法中重要的一个部分,对生物修复的改进起到了至关重要的作用.土壤改良剂的种类有无机改良剂、有机改良剂和吸附性改良剂.以N、P、K为主的无机改良剂主要为生物生长提供营养元素;有机改良剂则可提高石油污染物流动性,提供生物碳源;吸附改良剂则通过吸附污染物,减少毒性,提供生物生长依附.通过对不同种类改良剂的分析和讨论,可为生物修复发展提供进一步的理论基础.%Oil pollution incurred during transporting and refining is a big environmental concern, because the heavy hydrocar-bons in oil can cause serious damage to soil and the species residing in soil .The remediation technologies targeting oil-polluted sites are generally categorized into three types-physical, chemical and biological remediation methods .Among them, bioremedi-ation is considered a promising technology by academia and industry due to its cost-effective and eco-friendly features.Soil a-mendments, such as inorganic fertilizers, organic amendments and adsorbents, play a vital role in bioremediation process.The appropriate selection of soil amendments and the addition ratio can improve removal efficiency and accelerate treatment processes . This paper reviews all the soil amendments and their effect on bioremediation process, hoping to provide some expertise for further development of bioremediation technology.

  3. 聚合物污染土壤的微生物固定化修复%Microbial immobilization bioremediation of HPAM-containing soil

    Institute of Scientific and Technical Information of China (English)

    刘江红; 徐瑞丹; 潘洋; 芦艳

    2013-01-01

    从大庆油田采油污水污染土壤中筛选出以聚丙烯酰胺为唯一氮源和唯一碳源的4株聚丙烯酰胺降解菌R1、R2、R3、Y3.通过游离菌与固定化菌降解聚丙烯酰胺效果的实验数据比较,证明了微生物固定化法降解聚丙烯酰胺具有优势.因此,采用微生物固定法修复采油污水污染土壤,通过固定化颗粒的制备难易程度、强度、费用及对聚丙烯酰胺和原油的去除率等条件,比较了5种包埋固定化制备方法,考察了优选出的包埋固化法对土壤中污染物的降解能力.结果表明:PVA+海藻酸钠+添加剂法得到的固定化颗粒强度好,操作简单,不易破损,且费用低,对土壤中聚丙烯酰胺去除率为79.5%,对原油的去除率可达到98.7%.对筛选出的4种菌株鉴定得知R1为芽孢乳杆菌属,R2为微球菌属,R3、Y3为假单胞菌属菌株.%Four kinds of polyacrylamide(HPAM)-degrading bacteria Rl, R2, R3 and Y3 were obtained by separation and purification experiments from petroleum-contaminated soil of Daqing Oil Field, in which HPAM is used as the only nitrogen source and the sole carbon source. In order to improve the biodegradation effect of pollutants in oil fields and reduce the loss of bacteria, the bioremediation method of immobilized microorganism was utilized. Five kinds of embedding immobilization methods were compared, including difficulty degree of immobilized granules preparation, strength, cost and removal rate of oil and HPAM. The degradation performance of embedding immobilization methods on soil pollutant was investigated. The experimental results showed that the immobilized microorganism granules made by polyvinyl alcohols (PVA)+sodium alginate+additives had high strength, simple operation, not easy dilapidation and low cost. Degradation rate of HPAM reached 79.6% and degradation rate of crude oil reached 98.7%. Rl was affiliated to Sporolactobacillus sp., R2 was affiliated to Micrococcus sp. and R3 and Y3

  4. Development and application of the lux gene for environmental bioremediation

    Science.gov (United States)

    Burlage, Robert S.; Yang, Zamin; Palmer, Robert J., Jr.; Sayler, Gary S.; Khang, Yongho

    1996-11-01

    Bioremediation is the use of living systems, usually microorganisms, to treat a quantity of soil or water for the presence of hazardous wastes. Bioremediation has many advantages over other remediation approaches, including cost savings, versatility, and the ability to treat the wastes in situ. In order to study the processes of microbial bioremediation, we have constructed bacterial strains that incorporate genetically engineered bioreporter genes. These bioreporter genes allow the bacteria to be detected during in situ processes, as manifested by their ability to bioluminesce or to fluoresce. This bioreporter microorganisms are described, along with the technology for detecting them and the projects which are benefiting from their application.

  5. Development and application of the lux gene for environmental bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Burlage, R.S.; Yang, Z. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Palmer, R.J. [Univ. of Tennessee, Knoxville, TN (United States). Center for Environmental Biotechnology; Khang, Y. [Yeungnam Univ., Kyongsan (Korea, Republic of)

    1996-09-01

    Bioremediation is the use of living systems, usually microorganisms, to treat a quantity of soil or water for the presence of hazardous wastes. Bioremediation has many advantages over other remediation approaches, including cost savings, versatility, and the ability to treat the wastes in situ. In order to study the processes of microbial bioremediation, the authors have constructed bacterial strains that incorporate genetically engineered bioreporter genes. These bioreporter genes allow the bacteria to be detected during in situ processes, as manifested by their ability to bioluminescence or to fluoresce. This bioreporter microorganisms are described, along with the technology for detecting them and the projects which are benefiting from their application.

  6. Fungi in Bioremediation

    Science.gov (United States)

    Gadd, G. M.

    2001-12-01

    Bioremediation research has concentrated on organic pollutants, although the range of substances that can be transformed or detoxified by microorganisms includes both natural and synthetic organic materials and inorganic pollutants. The majority of applications developed to date involve bacteria, with a distinct lack of appreciation of the potential roles and involvement of fungi in bioremediation, despite clear evidence of their metabolic and morphological versatility. This book highlights the potential of filamentous fungi, including mycorrhizas, in bioremediation and discusses the physiology and chemistry of pollutant transformations.

  7. Research Progress on the Bioremediation Technology of Polycyclic Aromatic Hydrocarbons Contaminated Soil%多环芳烃污染土壤生物修复技术研究进展

    Institute of Scientific and Technical Information of China (English)

    杨辉; 王海霞; 李晓军; 毛华军; 吴海燕; 于秀娜; 罗宏宇

    2011-01-01

    With the biomass fuels widely used, the area and extent of the PAH-Contaminated soil increased quickly. Thus, the study on the remediation technology of PAH-Contaminated soil is becoming extremely urgent. Compared with physical and chemical remediation, bioremediation is cheap, effective and secondary pollution-free. Plant-microbial remediation system is the most effective technology with the largest market potential. The paper introduces in details the mechanism and application of microbial and plant-microbial remediation, and forecasts the development tendency of the bioremediation of polyeyclic aromatic hydrocarbons contaminated soil.%多环芳烃污染土壤的面积伴随着生物质燃料的广泛应用不断增加,污染程度亦随之增强,研究污染土壤高效修复方法已刻不容缓.生物修复相对于物理和化学修复具有费用低、效果好、不产生二次污染等优点.植物-微生物联合修复体系则是其中最为高效、最具市场潜力的修复技术.详细介绍了微生物修复与植物-微生物联合修复技术的机理及应用, 并展望了多环芳烃污染土壤生物修复的发展趋势.

  8. Bioremediation of chlorothalonil-contaminated soil by utilizing Pseudomonas sp.strain CTN-3%假单胞菌菌株CTN-3对百菌清污染土壤的生物修复

    Institute of Scientific and Technical Information of China (English)

    王光利; 陈宏宏; 毕萌; 李顺鹏

    2012-01-01

    Chlorothalonil is the priority organic pollutant listed by the U. S. Environmental Protection Agency. To utilize the function of microbial degradation in the bioremediation of chlorothalonil-contaminated soil is of practical significance. In this study, a chlorothalonil-degrading Pseudomonas sp. strain CTN-3 isolated from pesticide-contaminated soil was used to examine the chlorothalonil-degrading capacity of the strain and related affecting factors in a microcosm. In sterilized soil, the effect of CTN-3 on chlorothalonil degradation was better than that in unsterilized soil. Various factors, including soil pH, temperature, initial chlorothalonil concentration, and inoculum size, affected the degradation of chlorothalonil by the strain. With the inoculum size of 10 CFU · g-1soil, the CTN-3 at 15-30 ℃ and pH 5. 8-8. 3 could effectively degrade 10-200 mg · kg-1 of chlorothalonil, suggesting that the strain CTN-3 had great potential in the bioremediation of chlorothalonil-contaminated soil.%百菌清被美国环境保护署列为优先控制污染物,利用微生物的降解作用修复被污染的土壤、清除环境中的污染物等具有重要的现实意义.假单胞菌(Pseudomonas sp.)菌株CTN-3是一株从污染土壤中分离得到的百菌清降解菌,考察了其在实验室条件下对百菌清污染土壤的生物修复能力及其影响因素.结果表明:降解菌株在灭菌土壤中的降解效果略好于未灭菌土壤;在外源添加降解菌106 CFU·g-1、温度15 ~ 30℃和pH5.8~8.3条件下,该菌株能有效降解土壤中10 ~200 mg·kg-1的百菌清.菌株CTN-3在百菌清污染土壤的生物修复中具有良好的应用前景.

  9. Field Implementation of Bioremediation at INDOT Facilities-Phase I

    OpenAIRE

    Nies, Loring F.; Baldwin, Brett Robert; Mesarch, Matthew B.

    2000-01-01

    Bioremediation is often the most cost-effective and successful technique available for the remediation of soils and groundwater contaminated with organic pollutants (e.g. petroleum). The goal of bioremediation is to stimulate naturally occurring microorganisms to biodegrade the contaminants to harmless products. To be in compliance with EPA regulations all underground fuel storage tanks must have spill, leak and corrosion protection. Many older obsolete tanks had deteriorated to the extent th...

  10. Effects and Biological Response on Bioremediation of petroleum Contaminated Soil%石油污染土壤的生物修复技术及微生物生态效应

    Institute of Scientific and Technical Information of China (English)

    杨茜; 吴蔓莉; 聂麦茜; 王婷婷; 张明辉

    2015-01-01

    Bioaugmentation and biostimulation were used to remediate petroleum-contaminated soil which were collected from Zichang city in North of Shaanxi. The optimal bioremediation method was obtained by determining the total petroleum hydrocarbon(TPH) using the infrared spectroscopy. During the bioremediation, number of degrading strains, TPH catabolic genes, and soil microbial community diversity were determined by Most Probable Number(MPN), polymerase chain reaction(PCR) combined agarose electrophoresis, and PCR- denaturing gradient electrophoresis(DGGE). The results in different treatments showed different biodegradation effects towards total petroleum hydrocarbon (TPH). Biostimulation by adding N and P to soils achieved the best degradation effects towards TPH, and the bioaugmentation was achieved by inoculating strain SZ- 1 to soils. Further analysis indicated the positive correlation between catabolic genes and TPH removal efficiency. During the bioremediation, the number of TPH and alkanes degrading strains was higher than the number of aromatic degrading strains. The results of PCR-DGGE showed microbial inoculums could enhance microbial community functional diversity. These results contribute to understand the ecologically microbial effects during the bioremediation of petroleum-polluted soil.%利用投菌法和生物刺激法对陕北子长石油污染土壤进行微生物修复研究。通过利用红外分光光度法测定不同处理方法对石油烃的去除效果确定了修复陕北石油污染土壤的最佳方案。修复过程中利用最大可能计数法(MPN)、 PCR-琼脂糖电泳法、 PCR-DGGE 法分别测定了石油烃降解菌数目、催化基因、土壤微生物多样性对土壤微生物生态效应进行研究。结果发现石油污染土壤不同生物处理修复效果为:生物刺激(加入 N、 P 营养物质)﹥生物强化(投加降解菌)﹥其他。土壤中石油烃降解率与可降解石油烃的催化基因含量之间存

  11. 五氯酚污染土壤及沉积物的生物修复技术及机制研究进展%Research Progress of Bioremediation Technology and Mechanisms of Treating Pentachlorophenol Contaminated Soil and Sediment

    Institute of Scientific and Technical Information of China (English)

    赵良元; 林莉; 吴敏; 李青云; 黄茁

    2015-01-01

    五氯酚(PCP)曾作为杀钉螺剂在长江中下游血吸虫疫区大面积使用,目前虽然已被禁止使用,但仍然存在较为严重的环境污染,PCP 会对水生态系统及人体健康造成潜在威胁。土壤及沉积物是 PCP 最大的蓄积库。生物修复技术是利用生物对环境污染物的吸收、代谢、降解等功能,加速去除环境中污染物质的过程,是当前 PCP 污染处理的趋势。对 PCP 污染环境的生物修复类型(包括植物修复技术、微生物修复技术、植物-微生物联合修复技术、动物修复技术及堆肥降解技术)、效果及机制进行综述及展望,并提出未来研究趋势,旨在为促进污染区土壤环境生物修复技术的深入研究以及 PCP 污染环境的生态修复提供理论参考。%Pentachlorophenol (PCP)has been widely used for killing oncomelania,the only intermediate host of schistosome in the middle and lower reaches of Yangtze River where schistosomiasis is epidemic in recent decades. Although the production and use of PCP is restricted currently,severe PCP contamination still exists in environ-ment,which posed a potential danger to the aquatic ecosystem and human health.Soil and sediment are the prima-ry containers of PCP in environment.Bioremediation is an option that may accelerate the removal of various envi-ronmental contaminants using the functions of biomes absorbing,metabolizing and biodegrading the contaminants, thus,bioremediation technology becomes a preferred way of treating PCP pollution.In the present paper,the effect and mechanism of bioremediation technology,inclusive of phytoremediation,microbial remediation,plant-microbial degradation technology,soil fauna remediation technology and composting technology are reviewed,and the future trend of bioremediation technology is predicted.The present paper aims to provide scientific basis and application fundamental for further research in the bioremediation technology

  12. Biorremediação de um solo contaminado com antraceno sob diferentes condições físicas e químicas Bioremediation of a soil contaminated with anthracene under different chemical and physical conditions

    Directory of Open Access Journals (Sweden)

    Rodrigo Josemar Seminoti Jacques

    2010-02-01

    Full Text Available O antraceno e os demais hidrocarbonetos aromáticos policíclicos (HAPs podem ser removidos do solo pela biorremediação, cuja eficiência é limitada se as condições físicas e químicas não forem favoráveis à sobrevivência e à atividade dos microrganismos degradadores. O objetivo do presente estudo foi avaliar a influência do pH, da umidade e da disponibilidade de nitrogênio, de fósforo, de ferro e de enxofre na biorremediação de um solo contaminado com antraceno. Para tanto, amostras de um solo arenoso foram contaminadas em laboratório com 500mg kg-1 de antraceno e a mineralização desse poluente foi quantificada por respirometria. As maiores mineralizações ocorreram nos tratamentos com as maiores umidades e os pH avaliados. A adição de 100kg ha-1 ou mais de nitrogênio no solo e a redução da relação C HAP-N para valores inferiores a 120:17 diminuíram a mineralização do antraceno. O aumento da disponibilidade do fósforo, do ferro e do enxofre e a presença de amplas relações C HAP:P no solo não influenciaram a mineralização do antraceno. A correção do pH e o adequado fornecimento de água possibilitaram a biorremediação desse solo em curto período de tempo.The anthracene, as well as the others polycyclic aromatic hydrocarbons (PAH, can be removed from the soil by bioremediation, whose efficiency is limited under unfavorable physical and chemical conditions to the survival and activity of the microbial degraders. The objective of this study was to evaluate the influence of pH, water content, and nitrogen, phosphorus, iron and sulfur concentrations in the bioremediation of a soil contaminated with anthracene. Samples of a sandy soil were contaminated in laboratory with anthracene (500mg kg-1 and the mineralization was evaluated by respirometry. The highest anthracene mineralization was verified in the soil with the highest water content and pH value studied. The addition of 100kg ha-1 nitrogen in the soil

  13. 二氯喹啉酸污染土壤生物修复的研究现状与发展方向%Progress and Development Direction of Bioremediation for Quinclorac-contaminated Soil

    Institute of Scientific and Technical Information of China (English)

    齐丹; 任立伟; 卢滇楠; 刘永民

    2016-01-01

    为有效控制除草剂二氯喹啉酸对后茬作物的危害,恢复农田的种植能力,介绍了二氯喹啉酸的作用机理以及危害烟草等作物生长的原因,简述了采用物理、化学及生物法修复二氯喹啉酸残留土壤的研究进展,分析并指出3类方法的优势与不足。深入剖析了生物法降解二氯喹啉酸所取得的研究成果,提出外源微生物的安全性难以保障、缺少多菌种协同修复及相关机理研究,以及如何处理基因工程与生物修复的关系等问题是掣肘二氯喹啉酸生物修复走向实际应用的关键。上述问题的解决可能成为二氯喹啉酸污染土壤生物修复研究的发展方向。%In order to reduce the impact of herbicide-quinclorac to the after-reap crops and restore the farmland's capacity to support farming, this paper gave a brief introduction to the weed control mechanism of quinclorac and reviewed the recent progresses of the remediation techniques for quinclorac-contaminated soil, which were categorized into physical, chemical and biological techniques, pointing out the pros and cons of three methods. Furthermore, research on biodegradation of quinclorac conducted was discussed. The safety of exogenous microbes, the lack of researches on synergetic remediation of co-strains consortia and the usage of gene engineering microbes in bioremediation are the critical questions in putting the bioremediation techniques into practical application. Through the researches on above problems, the bioremediation techniques of quinclorac-contaminated soil may be developed.

  14. 石油污染土壤的生物修复室内模拟实验研究%Experimental study on bioremediation of oil-contaminated soil

    Institute of Scientific and Technical Information of China (English)

    王旭辉; 晁群芳; 徐鑫; 李磊

    2012-01-01

    在实验室模拟的条件下,利用从克拉玛依的石油污染土壤中筛选出的4株高效降解菌,以石油烃降解率、脱氢酶活性、呼吸强度、微生物量碳氮和土壤毒性作为评价指标,研究不加生物菌剂不翻耕、不加生物菌剂翻耕、加生物菌剂不翻耕、加生物菌剂翻耕、加固定化菌剂不翻耕和加固定化菌剂翻耕6种不同实验条件对石油污染土壤修复的效果。结果表明,在63 d的修复过程中,加固定化菌剂翻耕实验F组的石油去除率达到了78.7%,比不加生物菌剂不翻耕实验A组的石油去除率提高了49.5%。随着土壤毒性逐渐降低,玉米(Zea mays L.)和赤子爱胜蚓(Eisenia fetida)可以在F组土壤中良好的生长,达到了修复的效果。%The bioremediation effect of six different methods on oil-contaminated soil,by using of four strains isolated in oil-contaminated soil of Karamay areas,was studied under laboratory simulative conditions.All these methods were implemented by certain treatment on the contaminated soil,including:natural condition(without strain inoculums as well as ploughing),only ploughing,only bacteria strain inoculums,bacteria strain inoculums and ploughing,only immobilized microbial agents,immobilized microbial agents and ploughing,meanwhile,the biodegradation efficiency,dehydrogenase activity,microbial biomass and toxicity of the studied soil were strictly monitored during these six different treatments in pot experiments.The results showed that the removal efficiency of group F,with ploughing and immobilized microbial agents,was 78.7%.It was 49.5% higher than that of group A with neither strain inoculums nor ploughing in 63 days.Due to the decreasing of the soil toxicity,Zea mays L.and Eisenia fetida could grow well,which suggested that the bioremediation worked well.

  15. Bioremediation of quinolin-contaminated soil by white rot fungi%白腐真菌对受喹啉污染模拟土壤的生物修复研究

    Institute of Scientific and Technical Information of China (English)

    瞿晶晶; 王玲; 王晓书; 沈珊; 任大军

    2011-01-01

    通过引入白腐真菌对受喹啉污染的模拟土壤进行生物修复.结果表明,白腐真菌对受喹啉污染土壤的生物修复是可行的;土壤含水率升高,喹啉去除率提高;投菌量越大,喹啉的去除效果越显著;不同pH土壤中的白腐真菌对喹啉降解差异不大,添加木屑能为白腐真菌提供额外的营养源,对土壤中喹啉的降解起到了促进作用.%White rot fungi Pleurotus ostreatus was selected to degrade quinoline in simulated soil,and the effect of soil moisture,fungi inoculum size,soil pH and wood dust on degradation efficiency was investigated. Results showed it was feasible to bioremediation quinolin-contaminated soil by white rot fungi. The removal rate of quinoline was increased with'increasing the soil moisture,higher inoculim size of fungi resulted in a higher degradation rate of quinoline,while soil pH had little effect on quinoline degradation. Addition of wood dust could promote quinoline degradation for it provided nutrition source to white rot fungi. The mechanism of quinoline degradation by white rot fungi still needed further exploration and study.

  16. 外源微生物对土壤中烟嘧磺隆的降解作用研究%Bioremediation of exogenous degrading bacteria to the nicosulfuron-contaminated soil

    Institute of Scientific and Technical Information of China (English)

    马晓亮; 于佩博; 高鹤南; 张浩

    2011-01-01

    为了探索外源微生物N80(Serratia marcecens)对烟嘧磺隆污染土壤生物修复的可行性,在实验室条件下,分析了温度、土壤pH值、接菌量、农药初始质量比等因素对N80降解烟嘧磺隆效果的影响.同时以小白菜、甜菜、菠菜为供试作物,采用室内盆栽试验法处理污染土壤,液相色谱仪(UVD)测定土壤中烟嘧磺降残留量.结果表明:1)向污染土壤中添加外源微生物菌株N80可以促进土壤中烟嘧磺隆的降解,第30d时,最高降解率可达79.7%;2)N80降解污染土壤中烟嘧磺隆的最适宜条件为25℃,pH=7.0,接种量108 cfu/g,初始质量比10mg/kg.研究表明,向污染土壤中接种一定量的外源微生物菌株N80可以有效降低土壤中烟嘧磺隆的残留量,减轻烟嘧磺隆对敏感作物的药害,达到了预期的生物修复效果.%The present essay is to give a general introduction to our experimental study of the bioremediation for the nicosulfuron contaminated soil by using exogenous microbial N80 (serratia marcecens, isolated in our lab). First of all, we have examined the bioremediate function of N80 strain-a kind of serratia marcecens in the nicosulfuron contaminated soil under laboratory conditions. Analyzing it carefully let us make clear that of all the essential factors of degrading nicosulfuron by N80, the temperature, pH of the soil, the inoculation and initial nicosulfuron concentration are the key ones. It has also become possible to measure the soil residues of the nicosulfuron because of using the liquid chromatography ( UVD). The results of our measurements indicate that N80 grows with nicosulfuron as the unique nitrogen source at the optimal temperature range of 25 ℃ with its pH value being 7.0 in the soil. As a result of the nicosulfuron degradation by N80, the enzyme activity tends to be reduced by the improper temperature and pH value. However, adding N80 can speed up the nicosulfuron degradation in the soil at a rate of 10 mg

  17. Bioremediation of Petroleum Contaminated Soil Using Bio-Slurry Reactor Process%生物反应器法处理油泥污染土壤的研究

    Institute of Scientific and Technical Information of China (English)

    张海荣; 姜昌亮; 赵彦; 李培军; 许华夏; 杨桂芬

    2001-01-01

    Bio-remidiation possibility of soil contaminated by oil mud,and the optimization of the technological conditions for the bioremediation were studied using bio-slurry reactor in pilot-scale.A group of micro-orgamism which are addicted to oil and rich in both amount and species in oil contaminated soil was discovered.Fusarium sp.was screeded for its high crude oil degradation rate.Oil mud with high concentration of crude oil was mixed with clean soil in the ratio of 1∶1,and 10% complex organic fertilizer and inorganic nutrients in proper proportion were added before treatment. Particularly,microbiological agent of indigenous superior strains for crude oil degradation was applied. Other operative conditions of the reactor included 25℃ for temperature and intermittent venting. After 75 days operation,the contents of total petroleum hydrocarbon (TPH) in oil mud was decreased from 43.39 to 0.72g*kg-1.The degradation rate of TPH reached 98.3% under optimal conditions.

  18. 四种石油污染土壤生物修复技术研究%Bioremediation on 4 Soils Contaminated by Petroleum Oils Using Prepared Bed Processes

    Institute of Scientific and Technical Information of China (English)

    张海荣; 李培军; 孙铁珩; 姜昌亮; 许华夏; 张春桂; 马学军; 姚德明

    2001-01-01

    In this investigation, the soils contaminated by crude oil fromLiaohe Oil Field were treated using prepared bed bioremediation technology. The results showed that degrading rate of TPHs were reached 38%—60% after 84 days treatment, when the concentrations of total petroleum hydrocarbons (TPHs) in soils were in a range of 25.8 g·kg-1 —77.2 g·kg-1. It was found that the composition of the oils greatly affected the degradation rate, having a degradation order of different oils as pollutants in soils with: thin oil > high condensed oil > thick oil > extremely thick oil. It has been indicated that the bioremediation of soil contaminated by oil is a practical technology.%在实验室小试和现场中试的基础上,采用预制床处理工艺对辽河油田4种不同类型石油污染土壤进行实用规模的生物处理技术研究。工程运行结果表明,当稀油、稠油、特稠油和高凝油污染土壤中石油烃总量(TPH)为25.8—77.2g.kg-1时,经过84d的运行,TPH去除率为38%—60%。TPH的降解速率除与微生物的生长环境有关外还与石油的理化性质密切相关。4种油污染土壤的降解速率依次为:稀油>高凝油>稠油>特稠油,TPH的组分对其降解速率有重要影响。本研究为大规模石油污染土壤异位生物修复提供了技术支持

  19. Evaluation of effectiveness of bioremediation based on PAHs desorption characteristics in soil%基于土壤中多环芳烃解吸特性的生物修复效果评价

    Institute of Scientific and Technical Information of China (English)

    钟茂生; 姜林; 夏天翔; 姚珏君; 丁爱中; 陈刚

    2012-01-01

    The desorption characteristics of four targeted PAHs ( fluoranthene, benz[ a] anthracene, benzo [ a] pyrene, benzo[ ghil perylene) in soil before and after biopile treatment was studied by using XAD-2 assisted desorption experiment and the bioremediation effectiveness was further evaluated based on the study of the desorption results. The findings revealed that the accumulative amount of desorbed PAHs in the experiment increased with time while the desorption rate decreased, which followed the "dual - phase" desorption model. The fast desorbable part of the four PAHs was 32% - 70% before bioremediation and dropped down to 14% -39% after 6 month bioremediation. The remediation effectiveness based on the bioavailable fluoranthene, benz[ a] anthracene, benzol a] pyrene, benzo[ ghi] perylene was 82.9% ,79.7% ,64.9% ,54.3% , respectively, which were higher than those calculated based on the total concentration of each contaminant, which was about 61.0% ,51.7% ,37.2% ,38.7% correspondingly.%采用XAD-2树脂辅助解吸方法测试了生物堆修复前后土壤中荧蒽、苯并(a)蒽、苯并(a)芘、苯并苝这4种PAHs的解吸特性,并根据解吸结果进行了生物修复效果评价.结果表明,土壤中这4种PAHs的累计解吸量随解吸时间延长而增加,但解吸速率逐渐降低,符合"两阶段"解吸模型,生物修复前土壤中不同种类PAHs"快解吸"量占PAHs总量的32%~70%,修复后土壤中不同种类PAHs"快解吸"量占PAHs总量的14%~39%.经过6个月的生物修复,基于生物可利用含量变化的荧蒽、苯并(a)蒽、苯并(a)芘、苯并苝修复效率依次为82.9%、79.7%、64.9%、54.3%,,明显高于基于PAHs总含量的生物修复效率61.0%、51.7%、37.2%、38.7%.

  20. Bioremediation of petroleum hydrocarbon-contaminated soils by cold-adapted microorganisms:Research advance%低温微生物修复石油烃类污染土壤研究进展

    Institute of Scientific and Technical Information of China (English)

    王世杰; 王翔; 卢桂兰; 汪群慧; 李发生; 郭观林

    2011-01-01

    Cold-adapted microorganisms such as psychrotrophs and psychrophiles widely exist in the soils of sub-Arctic, Arctic, Antarctic, alpine, and high mountains, being the important microbial resources for the biodegradation of petroleum hydrocarbons at low temperature. Using the unique advantage of cold-adapted microorganisms to the bioremediation of petroleum hydrocarbon-contaminated soils in low temperature region has become a research hotspot. This paper summarized the category and cold-adaptation mechanisms of the microorganisms able to degrade petroleum hydrocarbon at low temperature, biodegradation characteristics and mechanisms of different petroleum fractions under the action of cold-adapted microorganisms. bio-stimulation techniques for improving biodegradation efficiency, e. g. , inoculating petroleum-degrading microorganisms and adding nutrients or bio-surfactants. and the present status of applying molecular biotechnology in this research field,aimed to provide references to the development of bioremediation techniques for petroleum hydrocarbon-contaminated soils.%耐冷菌、嗜冷菌等低温微生物广泛存在于极地、高山以及高纬度等土壤环境中,是石油烃类污染物在低温条件下降解与转化的重要微生物资源.利用低温微生物的独特优势,石油污染土壤的低温生物修复技术的研究成为当前热点领域.本文系统综述了低温石油烃降解菌的分类及冷适机制,低温微生物对不同类型石油烃组分的降解特征和降解机理,低温环境中接种降解菌、添加营养物质和表面活性剂等强化技术在石油污染土壤中生物修复的应用.以及微生物分子生物学技术在低温微生物降解石油烃的研究现状,为拓展我国石油污染土壤生物修复技术提供参考.

  1. Bioremediation of nanomaterials

    Science.gov (United States)

    Chen, Frank Fanqing; Keasling, Jay D; Tang, Yinjie J

    2013-05-14

    The present invention provides a method comprising the use of microorganisms for nanotoxicity study and bioremediation. In some embodiment, the microorganisms are bacterial organisms such as Gram negative bacteria, which are used as model organisms to study the nanotoxicity of the fullerene compounds: E. coli W3110, a human related enterobacterium and Shewanella oneidensis MR-1, an environmentally important bacterium with versatile metabolism.

  2. Natural and accelerated bioremediation research program plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This draft plan describes a ten-year program to develop the scientific understanding needed to harness and develop natural and enhanced biogeochemical processes to bioremediate contaminated soils, sediments and groundwater at DOE facilities. The Office of Health and Environmental Research (OHER) developed this program plan, with advice and assistance from DOE`s Office of Environmental Management (EM). The program builds on OHER`s tradition of sponsoring fundamental research in the life and environmental sciences and was motivated by OHER`s and Office of Energy Research`s (OER`s) commitment to supporting DOE`s environmental management mission and the belief that bioremediation is an important part of the solution to DOE`s environmental problems.

  3. Application of Fingerprinting Molecular Methods in Bioremediation Studies

    Science.gov (United States)

    Karpouzas, Dimitrios G.; Singh, Brajesh K.

    Bioremediation has been identified as a beneficial and effective strategy for the removal of recalcitrant environmental contaminants. Bioaugmentation of polluted environments with exogenous degrading microorganisms constitutes a major strategy of bioremediation. However, the ecological role of these strains and their impact on the endogenous microbial community of the micro-ecosystems where they are released should be known. Fingerprinting PCR-based methods, like denaturating gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (TRFLP), could be used in studies exploring the ecology of pollutant-degrading microorganisms and their effects on the structure of the soil microbial community. This chapter provides a brief outline of the technical details involved in the application of DGGE and TRFLP fingerprinting in soil microbial ecology, with particular reference to bioremediation studies.

  4. SITE TECHNOLOGY CAPSULE: J.R. SIMPLOT EX-SITU BIOREMEDIATION TECHNOLOGY: DINOSEB

    Science.gov (United States)

    The J.R. Simplot Ex-Situ Bioremediation Technology is designed to anaerobically degrade nitroaromatic and energetic compounds in soils and liquids without forming identifiable toxic intermediate compounds produced by other biotreatment methods. This technology was evaluated un...

  5. Augmented In Situ Subsurface Bioremediation Process™BIO-REM, Inc. - Demonstration Bulletin

    Science.gov (United States)

    The Augmented In Situ Subsurface Bioremediation Process™ developed by BIO-REM, Inc., uses microaerophilic bacteria and micronutrients (H-10) and surface tension depressants/penetrants for the treatment of hydrocarbon contaminated soils and groundwater. The bacteria utilize hydroc...

  6. Study on Soil Properties Variation in Bioremediation Process for North and South Oil Shale Dump in Maoming%茂名南、北排土场生物修复中土壤性状变化的研究

    Institute of Scientific and Technical Information of China (English)

    刘华; 郭先霞; 李璐

    2012-01-01

    During the oil shale production in Maoming, Guangdong Province, ihere are 2.4 × 108 t waste residue in two waste dumps that cover an area of 8. 1 km2 located in the north and south of the mine pit. The physicochemical properties, microbe quantity and biochemical activity of soil on different test plots of bare land and 5-year plantation in the north oil shale dump and 16-year plantation and grassland for 20-year natural remediation in the soulh oil shale dump were compared and analyzed. The results demonstrated that soil at the oil shale dump in the north was desiccated, impoverished of nutrient, and strongly acidified, and,that after 16 years of plantation, the amount of microbe in the soil of oil shale dump in the south turned to be more than that in the bare land, enzyme activity and soil respiration rate increased significantly and' soil physicochemical properties were also improved, whereas after 5 years of plantation, these test indexes remained almost unchanged in oil shale dump in the north. Studies also indicated that plantation of Acacia auricalaformis is better than that of Eucalyptus for soil improvement of oil shale. The results showed that the process of bioremediation for waste dump of oil shale is very slow, so it is imperative that we take measures, such as making plantations, to accelerate bioremediation for oil shale dump.%广东茂名在油页岩生产过程中共产生废渣2.4×108t,堆放场占地面积8.1 km2,分别堆放在采矿场的南北两地,称为南、北排土场.通过对北排土场裸地、植林5年和南排土场植林16年、天然恢复20年的草地试验区的理化性质、土壤微生物数量及英生化活性进行对比分析,结果表明:北排裸地土壤含水差、贫瘠、酸性强;植林16年多的南排土壤理化性质、微生物、酶活性以及土壤呼吸都明显改善;但植林5年的北排土壤与裸地相差土壤性状变化不大.研究还发现,大叶相思树种对土壤改良的效果比桉

  7. Study on the bioremediation of indole-contaminated soil by white rot fungi%白腐真菌对受吲哚污染模拟土壤的修复研究

    Institute of Scientific and Technical Information of China (English)

    任大军; 鲍欣; 瞿晶晶; 张元元; 许琴; 张淑琴; 吴高明

    2013-01-01

    White rot fungi Pleurotus ostreatus was selected to degrade indole in simulated soil.The degradation processes of single indole and indole with co-metabolism substrate of quinoline were studied.Results showed that it was feasible to bioremediate indole-contamianted soil by white rot fungi.The pH value of soil had little effect on indole degradation.Addition of wood dust could promote indole degradation as it provided extra nutrition source to white rot fungi.Indole and quinoline could be degraded efficiently by white rot fungi,but indole degradation was inhibited by quionline.%选用白腐真菌对受吲哚污染的模拟土壤进行生物修复,研究了白腐真菌对吲哚单基质体系和以喹啉作为吲哚的共代谢因子的共基质体系的降解过程.结果表明:白腐真菌对受吲哚污染土壤的生物修复是可行的;不同pH土壤中的白腐真菌对吲哚降解差异不大;添加木屑能为白腐真菌提供额外的营养源,对土壤中吲哚的降解起到了促进作用.白腐真菌可以同时对吲哚和喹啉进行生物修复,喹啉对吲哚的降解主要产生抑制作用.

  8. Predicting bioremediation of hydrocarbons: laboratory to field scale.

    Science.gov (United States)

    Diplock, E E; Mardlin, D P; Killham, K S; Paton, G I

    2009-06-01

    There are strong drivers to increasingly adopt bioremediation as an effective technique for risk reduction of hydrocarbon impacted soils. Researchers often rely solely on chemical data to assess bioremediation efficiently, without making use of the numerous biological techniques for assessing microbial performance. Where used, laboratory experiments must be effectively extrapolated to the field scale. The aim of this research was to test laboratory derived data and move to the field scale. In this research, the remediation of over thirty hydrocarbon sites was studied in the laboratory using a range of analytical techniques. At elevated concentrations, the rate of degradation was best described by respiration and the total hydrocarbon concentration in soil. The number of bacterial degraders and heterotrophs as well as quantification of the bioavailable fraction allowed an estimation of how bioremediation would progress. The response of microbial biosensors proved a useful predictor of bioremediation in the absence of other microbial data. Field-scale trials on average took three times as long to reach the same endpoint as the laboratory trial. It is essential that practitioners justify the nature and frequency of sampling when managing remediation projects and estimations can be made using laboratory derived data. The value of bioremediation will be realised when those that practice the technology can offer transparent lines of evidence to explain their decisions.

  9. Laboratory study on the bioremediation of diesel oil contaminated soil from a petrol station Estudo laboratorial da biorremediação de solo de posto de combustíveis contaminado com óleo diesel

    Directory of Open Access Journals (Sweden)

    Adriano Pinto Mariano

    2007-06-01

    Full Text Available The purpose of the present study was to investigate possible methods to enhance the rate of aerobic biodegradation of hydrocarbons (ex-situ treatments. In this work, the bioremediation processes were applied to a sandy soil with a high level of contamination originated from the leakage of a diesel oil underground storage tank at a petrol station. Laboratory scale experiments (Bartha biometer flasks were used to evaluate the biodegradation of the diesel oil. Enhancement of biodegradation was carried out through biostimulation (addition of nitrogen and phosphorus solutions or Tween 80 surfactant and bioaugmentation (bacterial consortium isolated from a landfarming system. To investigate interactions between optimizing factors, and to find the right combination of these agents, the study was based on full factorial experimental design. Efficiency of biodegradation was simultaneously measured by two methods: respirometric (microbial CO2 production and gas chromatography. Acute toxicity tests with Daphnia similis were applied for examination of the efficiency of the processes in terms of the generation of less toxic products. Results showed that all bioremediation strategies enhanced the natural bioremediation of the contaminated soil and the best results were obtained when treatments had nutritional amendment. Respirometric data indicated a maximum hydrocarbon mineralization of 19.8%, obtained through the combination of the three agents, with a total petroleum hydrocarbons (TPH removal of 45.5% in 55 days of treatment. At the end of the experiments, two predominant bacteria species were isolated and identified (Staphylococcus hominis and Kocuria palustris.O objetivo do presente estudo foi investigar possíveis métodos para aumentar a taxa de biodegradação aeróbia de hidrocarbonetos (tratamentos ex-situ. Neste trabalho, processos de biorremediação foram aplicados a um solo arenoso com alto nível de contaminação ocasionada por um vazamento de

  10. Affecting Factors of Bioremediation in Improving Soil Contaminated by Thickened Oil%石油烃降解混合菌修复稠油污染土壤的影响因素

    Institute of Scientific and Technical Information of China (English)

    董亚明; 刘其友; 赵东风; 赵朝成; 高泊

    2013-01-01

    Thickened oil causes inevitably the serious contamination of edatope and impacts human health and environment in its mining,storage,transportation,refining and using process.It is necessary to take effective measures for improving soil contaminated by thickened oil.The microbial screened consortium KL9-1 was used to research the bioremediation for improving soil contaminated by thickened oil,and the factors in the biodegradation progress were studied.The results showed that the pH value,inoculum size,soil N/P,surfactant dosage,tillage frequency,watering frequency and raising agent affected significantly the bioremediation.In the soil contaminated by thickened oil per kilogram,the initial conditions of pH of 8.0,inoculum of 70.0 mL,N/P of 3:1 and surfactant dosage of 4.0 g were controlled,the soil was watered every two days and plowed every four days,rice husks were used as a raising agent,and the petroleum hydrocarbon degradation rate could be as high as 54.07% after carrying out a biodegradation for 70 days.%稠油在开采、贮运、炼制加工及使用过程中,不可避免的污染土壤环境,对人体健康和环境造成严重影响,因此有必要采取有效措施对稠油污染土壤进行修复.利用筛选获得的石油烃降解混合菌KL9-1,对稠油污染土壤进行修复研究,考察修复过程中的影响因素.结果表明:pH、接种量、土壤中N/P、表面活性剂用量、翻耕频率、浇水频率和膨松剂种类等因素对污染土壤修复有明显的影响.在每千克稠油污染土壤体系中,控制初始pH为8.0,接种量为70.0 mL,N:P为3:1,表面活性剂用量为4.0g,每2d浇水1次,4d翻耕1次,稻壳作为膨松剂,在此条件下经过70 d的生物修复,石油烃降解率最高可达54.07%.

  11. Study of the Bioremediation of Atrazine under Variable Carbon and Nitrogen Sources by Mixed Bacterial Consortium Isolated from Corn Field Soil in Fars Province of Iran

    Directory of Open Access Journals (Sweden)

    Mansooreh Dehghani

    2013-01-01

    Full Text Available Atrazine herbicide that is widely used in corn production is frequently detected in water resources. The main objectives of this research were focused on assessing the effects of carbon and nitrogen sources on atrazine biodegradation by mixed bacterial consortium and by evaluating the feasibility of using mixed bacterial consortium in soil culture. Shiraz corn field soil with a long history of atrazine application has been explored for their potential of atrazine biodegradation. The influence of different carbon compounds and the effect of nitrogen sources and a different pH (5.5–8.5 on atrazine removal efficiency by mixed bacterial consortium in liquid culture were investigated. Sodium citrate and sucrose had the highest atrazine biodegradation rate (87.22% among different carbon sources. Atrazine biodegradation rate decreased more quickly by the addition of urea (26.76% compared to ammonium nitrate. Based on the data obtained in this study, pH of 7.0 is optimum for atrazine biodegradation. After 30 days of incubation, the percent of atrazine reduction rates were significantly enhanced in the inoculated soils (60.5% as compared to uninoculated control soils (12% at the soil moisture content of 25%. In conclusion, bioaugmentation of soil with mixed bacterial consortium may enhance the rate of atrazine degradation in a highly polluted soil.

  12. Fungal degradation of pesticides - construction of microbial consortia for bioremediation

    DEFF Research Database (Denmark)

    Ellegaard-Jensen, Lea

    in groundwater contamination. New technologies are therefore needed for cleaning up contaminated soil and water resources. This PhD was part of the project entitled Microbial Remediation of Contaminated Soil and Water Resources (MIRESOWA) where the overall aim is to develop new technologies for bioremediation...... of pesticide contaminated soil and water. The objectives of this PhD were to investigate fungal degradation of pesticides and following to construct microbial consortia for bioremediation. In Manuscript I the fungal degradation of the phenylurea herbicide diuron was studied. Isolates of soil fungi of the genus...... be a result of co-operative catabolism or physical interactions between the organisms improving growth and/or distribution of fungi and bacteria. The bacterial strains applied were Sphingomonas sp. SRS2, Variovorax sp. SRS16 and Arthrobacter globiformis D47 and the fungal strains were Mortierella sp. LEJ702...

  13. 降解菌HQ-C-01对克百威污染土壤的生物修复%Bioremediation of Carbofuran-contaminated Soil by Degrading Fungi Stain HQ-C-01

    Institute of Scientific and Technical Information of China (English)

    杨柳; 陈少华; 胡美英; 郝卫宁

    2011-01-01

    Under the lab simulated conditions, the bioremediation of Fungi Stain HQ-C-01 on carbofiiran-contaminated soil and the factors affecting the degradation capacity were studied, meanwhile the influences of carbofuran and Fungi Stain HQ-C-01 on soil microflora were also investigated. The results showed that there was positive correlation between the degradation rate and the inoculation quantity. The degradation rate for SO mg/kg carbofuran after 10 days was 82.89% with 2.09× 108 CFU/g inoculation quantity. The degradation rate was low if the inoculation quantity was less than 106 CFU/g. The effect of soil moisture on the degradation rate was obvious, the degradation rate was best (85.32%) when soil moisture was 600 g/kg, but was lower when soil moisture lower than 200 g/kg. Fungi Stain HQ-C-01 had higher degradation rate when the temperature ranged from 25°C to 3S°C. Soil Ph value influenced the degradation rate significantly, the degradation rate for SO mg/kg carbofuran after 10 days reached highest (85.629%) when soil Ph value was about 7. Carbofuran has certain influence on soil microflora by intensively stimulating soil fungi, but the application of Fungi Stain HQ-C-01 can remit the influence and thus can remediate the contaminated soil.%在室内模拟条件下,研究了降解菌HQ-C-01(Pichia anomala)对克百威污染土壤的修复作用及其影响因素,同时研究了克百威及该菌株对土壤微生物的影响.结果表明,克百威降解率与降解菌HQ-C-01接种量呈正相关,降解菌接种量为2.09× 108 CFU/g干土时,对土壤中50 mg/kg克百威10天降解率达82.89%;当降解菌接种量低于106 CFU/g干土时,降解菌对克百威的降解效果较弱.土壤含水量显著影响降解菌对克百威的降解率,含水量为600 g/kg时降解效果最好,降解率达85.32%,而当含水量低于200 g/kg时降解效果较差.在温度范围25℃~35℃降解菌对克百威都具有较好的降解效果.不同土壤pH值对降解菌

  14. Brevibacterium frigoritolerans as a Novel Organism for the Bioremediation of Phorate.

    Science.gov (United States)

    Jariyal, Monu; Gupta, V K; Mandal, Kousik; Jindal, Vikas

    2015-11-01

    Phorate, an organophosphorus insecticide, has been found effective for the control of various insect pests. However, it is an extremely hazardous insecticide and causes a potential threat to ecosystem. Bioremediation is a promising approach to degrade the pesticide from the soil. The screening of soil from sugarcane fields resulted in identification of Brevibacterium frigoritolerans, a microorganism with potential for phorate bioremediation was determined. B. frigoritolerans strain Imbl 2.1 resulted in the active metabolization of phorate by between 89.81% and 92.32% from soils amended with phorate at different levels (100, 200, 300 mg kg(-1) soil). But in case of control soil, 33.76%-40.92% degradation were observed. Among metabolites, sulfone was found as the main metabolite followed by sulfoxide. Total phorate residues were not found to follow the first order kinetics. This demonstrated that B. frigoritolerans has potential for bioremediation of phorate both in liquid cultures and agricultural soils.

  15. 中原油田石油污染土壤原位生物修复技术实验研究%Experimental study on in-situ bioremediation technique for oil contaminated soil in Zhongyuan Oil Field

    Institute of Scientific and Technical Information of China (English)

    陈立; 张发旺; 刘少玉; 何泽; 张胜

    2011-01-01

    The degradation microbial communities which were lab selective enrichment cultured from oil polluted soil of Zhongyuan Oil Field could fast grow using crude oil as carbon source.These microbial communities binding with Ryegrass and Alfalfa were used in experiments on combined in-situ bioremediation of oil contaminated soil.The experimental area was divided into five: microbial communities with Ryegrass,microbial communities with Alfalfa,only microbial communities,only Ryegrass and blank.After 99 d bioremediation,the cumulative degradation rate of petroleum hydrocarbon could reach 43.27% to 67.38%,which were much higher in the two areas of microbial communities with Ryegrass or Alfalfa.Whereas the cumulative degradation rate of blank area was lower than 2.5%.Those results showed that the selected microbial communities could obviously degrade the oil polluted soil in central plains oil field.The experimental results indicated that the inoculated degradation microbial communities generally need 1~3 d adaptive phase then being active,few nutriment such as soluble salt,NO-3,Cl-,etc could infiltrate into the lower soil layer(50 cm).The nitrogen fixation of Alfalfa roots may cause the distinct increase of NH+4.In addition,some factors containing temperature,water,oxygen,nutriment and minigeoenvirorment were optimized in the experiments.%通过实验室选择性富集培养,从中原油田石油污染土壤中获得了能以中原原油为碳源快速生长的石油降解菌群。结合黑麦草(Ryegrass)和苜蓿(Alfalfa),采用该降解菌群对原油污染土壤进行了原位生物联合修复实验。接入降解菌的实验区分种植黑麦草、种植苜蓿、未种植区,另设黑麦草区和空白区。经过99 d的生物修复,石油烃累计降解率达43.27%~67.38%,尤以2个微生物植物联合区修复效果为最佳,而空白区的累计降解率不足2.5%,说明所选菌群对中原油田污染土壤有明显的降解作用

  16. 复合茵群的构建及其对石油污染土壤修复的研究%Construction of Multiple Bacterial Consortium and Its Application in Bioremediation of Petroleum-contaminated Soil

    Institute of Scientific and Technical Information of China (English)

    赵硕伟; 沈嘉澍; 沈标

    2011-01-01

    used in bioremediation of petroleum-contaminated soil.it could remove more than 50% petroleum in soil. In condition of 10~30℃, pH 6.5-9.5 and inoculum106 CFU ·g-1, the consortium D could degrade petroleum faster. The results indicated that Consortium D had potential used in bioremediation of petroleum-contaminated soil.

  17. 固体微生物菌剂在克拉玛依石油污染土壤生物修复中的应用%Application of Solid Microbial Agent in Bioremediation of Petroleum Contaminated Soil in Karamay Oilfield

    Institute of Scientific and Technical Information of China (English)

    李政; 顾贵洲; 宁春莹; 李法云; 杨磊

    2016-01-01

    In order to study solid microbial agent bioremediation for petroleum contaminated soil in Karamay oilfield,the physicochemical properties of soil were analyzed.The optimal bioremediation conditions and the changes of soil microbe quantity,enzyme activity and hydrocarbon component in the process of bioremediation were investigated.The results showed that the Karamay petroleum contaminated soil was silt-based gray desert soil with low H 2 O content,high oil content,weak alkaline,and the available content of three major nutrients (nitrogen,phosphorus and potassium) was low,which was not conducive to the growth of microorganisms.The optimal bioremediation conditions were soil porosity 55%,moisture mass fraction 25%,inoculation amount of microbial agent 5%,nitrogen/phosphorus molar ratio 10 and the addition amount of biosurfactant 0.5%. After 60 d bioremediation under the optimal conditions,the oil content in petroleum contaminated soil dropped from 4.07% to 1.81% with the degradation rate 55.53%,and n-alkanes less than C2 7 were biodegraded obviously.In this process,both the microbe quantity and enzyme activities (dehydrogenase activity, catalase activity and polyphenol oxidase activity ) in the soil were improved.In the bioremediation process,only the improvement of external environment conditions for biostimulation could not effectively remove petroleum hydrocarbons,while the addition of microbial agents for bioaugmentation on the basis was the key factor to remove petroleum pollutants from soil.%分析了克拉玛依石油污染土壤的理化性质,采用固体微生物菌剂对该土壤进行生物修复,考察了最优修复条件及修复过程中土壤微生物数量、酶活性和石油烃组分的变化。结果表明,克拉玛依石油污染土壤是以粉砂为主的灰漠土,含水率低,含油率高,弱碱性,土壤中三大营养元素(氮、磷、钾)的有效含量低,不利于微生物的生长繁殖。最优

  18. POTENTIAL FUNGI FOR BIOREMEDIATION OF INDUSTRIAL EFFLUENTS

    Directory of Open Access Journals (Sweden)

    Vara Saritha

    2010-02-01

    Full Text Available Two fungi (unidentified were isolated from soil and marine environ-ments. These isolates were used for bioremediation of pulp and paper mill effluent at the laboratory scale. The treatment resulted in the reduction of color, lignin, and COD of the effluent in the order of 78.6%, 79.0%, and 89.4% in 21 days. A major part of reductions in these parameters occurred within 5 days of the treatment, which was also characterized by a steep decline in the pH of the effluent. The enzyme activity of these fungi was also tested, and the clearance zone was obtained in the plate assay.

  19. POTENTIAL FUNGI FOR BIOREMEDIATION OF INDUSTRIAL EFFLUENTS

    OpenAIRE

    Vara Saritha; Avasn Maruthi; Mukkanti, K.

    2010-01-01

    Two fungi (unidentified) were isolated from soil and marine environ-ments. These isolates were used for bioremediation of pulp and paper mill effluent at the laboratory scale. The treatment resulted in the reduction of color, lignin, and COD of the effluent in the order of 78.6%, 79.0%, and 89.4% in 21 days. A major part of reductions in these parameters occurred within 5 days of the treatment, which was also characterized by a steep decline in the pH of the effluent. The enzyme activity of t...

  20. Bioremediation of PAHs and VOCs: Advances in clay mineral-microbial interaction.

    Science.gov (United States)

    Biswas, Bhabananda; Sarkar, Binoy; Rusmin, Ruhaida; Naidu, Ravi

    2015-12-01

    Bioremediation is an effective strategy for cleaning up organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Advanced bioremediation implies that biotic agents are more efficient in degrading the contaminants completely. Bioremediation by microbial degradation is often employed and to make this process efficient, natural and cost-effective materials can serve as supportive matrices. Clay/modified clay minerals are effective adsorbents of PAHs/VOCs, and readily available substrate and habitat for microorganisms in the natural soil and sediment. However, the mechanism underpinning clay-mediated biodegradation of organic compounds is often unclear, and this requires critical investigation. This review describes the role of clay/modified clay minerals in hydrocarbon bioremediation through interaction with microbial agents in specific scenarios. The vision is on a faster, more efficient and cost-effective bioremediation technique using clay-based products. This review also proposes future research directions in the field of clay modulated microbial degradation of hydrocarbons.

  1. Research Progress About Bioremediation of Polycyclic Aromatic Hydrocarbons Contaminated Soil with Immobilized Microorganism Technique%固定化微生物技术修复PAHs污染土壤的研究进展

    Institute of Scientific and Technical Information of China (English)

    钱林波; 元妙新; 陈宝梁

    2012-01-01

    Polycyclic aromatic hydrocarbons(PAHs),ubiquitous in the environment,are a typical organic pollutants.Green remediation of PAHs contaminated soil has become a hot research focus.As a novel microbial remediation technique,the immobilized microorganism technology(IMT) is attracting more and more attention to restore organic contaminated soil.This paper reviewed bioremediation of polycyclic aromatic hydrocarbons contaminated soil with immobilized microorganism technique.The IMT remediation principles,selection of the immobilized carries,screening of efficient PAHs-degradation microorganism,and methods of microorganism immobilized were summarized.The research trends and currently existing problems in IMT remediation of contaminated soil were prospected.%多环芳烃(PAHs)是环境中普遍存在的一类典型有机污染物,绿色修复PAHs污染土壤已成为国内外环境和土壤界共同关注的热点问题之一.作为一种新型的微生物修复技术,固定化微生物修复有机污染土壤正受到越来越多的关注,国内外相关研究刚刚开始.本文重点评述了近几年国内外有关固定化微生物技术修复PAHs污染土壤的最新进展,总结了固定化微生物技术的修复原理、微生物固定化载体的选择、高效降解菌的筛选、固定化方法及影响因素等方面,并提出今后的发展方向,为我国开展固定化微生物技术修复有机污染土壤的研究提供参考.

  2. Isolamento e seleção de fungos para biorremediação a partir de solo contaminado com herbicidas triazínicos Isolation and screening of fungi to bioremediation from triazine herbicide contaminated soil

    Directory of Open Access Journals (Sweden)

    Luciane Maria Colla

    2008-06-01

    Full Text Available A biorremediação é uma tecnologia que utiliza o metabolismo de microrganismos para eliminação ou redução, a níveis aceitáveis, de poluentes presentes no ambiente. Os herbicidas triazínicos são usados intensivamente no controle de ervas daninhas, principalmente na cultura de milho. Objetivou-se, neste trabalho, isolar fungos filamentosos de solos contaminados com herbicidas triazínicos (atrazine e simazine e selecionar os microrganismos isolados quanto à capacidade de crescimento em meio adicionado de atrazine. Os microrganismos foram isolados, cultivados em meio Ágar-Batata-Dextrose (BDA acidificado com ácido tartárico 10%, adicionado de 50 mg.Kg-1 de atrazine e incubados por 5 dias a 25ºC. Foi realizada a medida diária do crescimento fúngico e calculada a velocidade de crescimento radial através de regressão linear dos raios das colônias utilizando-se a equação r(t = a + VCR .t (r:raio; t: tempo; VCR: velocidade de crescimento radial. Os resultados de VCR foram analisados através de Anova simples e do teste de Tukey, para comparação de médias. Foram isolados 15 fungos, pertencentes aos gêneros Aspergillus, Penicillium e Trichoderma. As maiores VCRs foram obtidas com fungos Aspergillus (A1 e Penicillium (AS1, isolados de solo contaminado com atrazine e atrazine adicionado de simazine, respectivamente, que apresentaram VCRs de 1,57 mm.d-1 e 1,28 mm.d-1. O crescimento dos fungos em meio contaminado com a atrazine indica a possibilidade de utilização desses fungos em estudos de biorremediação de solos contaminados com herbicidas triazínicos.Bioremediation is a technology that uses microrganism metabolism to quickly eliminate or reduce pollutants to acceptable levels into the environment. The triazine herbicides are intensively used to control harmful grass in the culture of maize. The aim of this work was to isolate filamentous fungi from soil contaminated with triazine herbicides and screening these fungi due to

  3. Mineralization of PCBs by the genetically modified strain Cupriavidus necator JMS34 and its application for bioremediation of PCBs in soil

    Energy Technology Data Exchange (ETDEWEB)

    Saavedra, Juan Matias; Acevedo, Francisca; Gonzalez, Myriam; Seeger, Michael [Universidad Tecnica Federico Santa Maria, Valparaiso (Chile). Lab. de Microbiologia Molecular y Biotecnologia

    2010-07-15

    Polychlorobiphenyls (PCBs) are classified as ''high-priority pollutants''. Diverse microorganisms are able to degrade PCBs. However, bacterial degradation of PCBs is generally incomplete, leading to the accumulation of chlorobenzoates (CBAs) as dead-end metabolites. To obtain a microorganism able to mineralize PCB congeners, the bph locus of Burkholderia xenovorans LB400, which encodes one of the most effective PCB degradation pathways, was incorporated into the genome of the CBA-degrading bacterium Cupriavidus necator JMP134-X3. The bph genes were transferred into strain JMP134-X3, using the mini-Tn5 transposon system and biparental mating. The genetically modified derivative, C. necator strain JMS34, had only one chromosomal insertion of bph locus, which was stable under nonselective conditions. This modified bacterium was able to grow on biphenyl, 3-CBA and 4-CBA, and degraded 3,5-CBA in the presence of m-toluate. The strain JMS34 mineralized 3-CB, 4-CB, 2,4{sup '}-CB, and 3,5-CB, without accumulation of CBAs. Bioaugmentation of PCB-polluted soils with C. necator strain JMS34 and with the native B. xenovorans LB400 was monitored. It is noteworthy that strain JMS34 degraded, in 1 week, 99% of 3-CB and 4-CB and approximately 80% of 2,4{sup '}-CB in nonsterile soil, as well as in sterile soil. Additionally, the bacterial count of strain JMS34 increased by almost two orders of magnitude in PCB-polluted nonsterile soil. In contrast, the presence of native microflora reduced the degradation of these PCBs by strain LB400 from 73% (sterile soil) to approximately 50% (nonsterile soil). This study contributes to the development of improved biocatalysts for remediation of PCB-contaminated environments. (orig.)

  4. Bioremediation of Carbendazim by Streptomyces albogriseolus

    Directory of Open Access Journals (Sweden)

    Ridhima Arya

    2014-08-01

    Full Text Available Carbendazim (methyl-1H-benzimidazol-2-ylcarbamate, or MBC is a benzimidazole fungicide which is used to protect crops against the attack of fungi. MBC has a half-life of about 3-12 months and remain persistent in the environment which may lead to many harmful consequences. Besides chemical and photo-catalytic degradation of pesticides, microbial degradation has now been evolved as a much effective and safer way to eliminate these harmful compounds from the environment. However, in the literature very few reports are available where microbial community is involved in degrading MBC. Hence, the present study was planned to investigate the role of microbes isolated from the field soils for the bioremediation of MBC. Soil samples were collected from wheat fields of northern regions of India. Enrichment culture technique was employed to isolate the bacterium which was found to be growing at higher concentrations of MBC up to 500µg/ml. After biochemical and morphological analysis, the bacterium was identified as Streptomyces albogriseolus. Streptomyces albogriseolus was found to degrade MBC in a time-dependent manner from the initial concentration of 29 ppm to 285.67ppb and 62.73ppb in 24hrs and 48hrs respectively. LCMS-MS analysis was carried out to detect 2-aminobenzimidazole, a metabolite formed after degradation in 10 hrs of growth which eventually disappeared after 24hrs of growth. The strain Streptomyces albogriseolus holds a promising potential to be an efficient MBC bioremediation agent.

  5. DEMONSTRATION BULLETIN: NEW YORK STATE MULTI-VENDOR BIOREMEDIATION - ENSR CONSULTING AND ENGINEERING/LARSEN ENGINEERS EX-SITU BIOVAULT

    Science.gov (United States)

    The ENSR Biovault Treatment Process is an ex-situ bioremediation technology for the treatment of organic contaminated soils. Contaminated soils placed in specially designed soil piles, referred to as biovaults, are remediated by stimulating the indigenous soil microbes to prolife...

  6. Bioremediation of diesel-polluted soil using biostimulation as post-treatment after oxidation with Fenton-like reagents: assays in a pilot plant.

    Science.gov (United States)

    Silva-Castro, Gloria Andrea; Rodelas, Belén; Perucha, Carlos; Laguna, Jaime; González-López, Jesús; Calvo, Concepción

    2013-02-15

    The present study focuses on the remediation of diesel-polluted soil using modified Fenton treatment coupled with inorganic NPK fertilizer ("Fenton+NPK"). Studies were carried out in a pilot plant containing 1 m(3) of sandy soil contaminated with 20,000 mg kg(-1) of diesel, placed outdoors at a temperature ranging between 5 and 10 °C. Results showed that NPK-fertilizer as post-treatment stimulated culturable degrading bacteria and enhanced dehydrogenase activity. Fenton+NPK treatment increased total petroleum hydrocarbon (TPH) removal efficacy. Natural attenuation removed 49% of TPH in the surface layer, 23% of TPH in the non-saturated layer and 4% of the TPH in the saturated layer, while the percentage removed of TPH after Fenton+NPK treatment was 58%, 57% and 32% respectively. The results from our study showed that, immediately after soil contamination, occurred a specialization and differentiation of the bacterial community, but after this initial modification, no significant changes of bacterial diversity was observed under natural attenuation conditions. In contrast, when the Fenton's reagent was applied a reduction of the bacterial biodiversity was observed. However, the post-biostimulation did enhance the degrading microbiota and stimulated their degrading biological activity. In conclusion, biostimulation, as a post-treatment step in chemical oxidation, is an effective solution to remediate hydrocarbon-polluted sites.

  7. Metagenomic and functional analyses of the consequences of reduction of bacterial diversity on soil functions and bioremediation in diesel-contaminated microcosms.

    Science.gov (United States)

    Jung, Jaejoon; Philippot, Laurent; Park, Woojun

    2016-03-14

    The relationship between microbial biodiversity and soil function is an important issue in ecology, yet most studies have been performed in pristine ecosystems. Here, we assess the role of microbial diversity in ecological function and remediation strategies in diesel-contaminated soils. Soil microbial diversity was manipulated using a removal by dilution approach and microbial functions were determined using both metagenomic analyses and enzymatic assays. A shift from Proteobacteria- to Actinobacteria-dominant communities was observed when species diversity was reduced. Metagenomic analysis showed that a large proportion of functional gene categories were significantly altered by the reduction in biodiversity. The abundance of genes related to the nitrogen cycle was significantly reduced in the low-diversity community, impairing denitrification. In contrast, the efficiency of diesel biodegradation was increased in the low-diversity community and was further enhanced by addition of red clay as a stimulating agent. Our results suggest that the relationship between microbial diversity and ecological function involves trade-offs among ecological processes, and should not be generalized as a positive, neutral, or negative relationship.

  8. Concept and advances of applied bioremediation for organic pollutants in soil and water%土壤与水体有机污染的生物修复及其应用研究进展

    Institute of Scientific and Technical Information of China (English)

    王庆仁; 刘秀梅; 崔岩山; 董艺婷

    2001-01-01

    系统论述了土壤、水有机污染物的主要来源、特点、有机污染生物修复的概念、应用范围、成功实例与研究进展等,特别是对于泄漏石油污染的生物成功降解方法、效果,土壤中易爆炸物如TNT、废水中有机污染物的有效降解等,评价了生物修复所具有的突出优势。对有机、无机污染物降解过程中植物、微生物筛选、基因修饰、分子克隆与转基因植物方面近年来所取得的惊人成果与突破性进展,无疑正激励着人们开拓更大的应用范围。预计不久的将来,更多具有环境净化与生物修复功能的商业性综合技术与高效性工程生物将投入应用。%Major sources and characteristics of organic pollutants in soil and water were systematically reviewed. It deals with the concept, application and advances of bioremediation.The success in biodegradation of petroleum spill, some hazardous pollutants, waste water treatment and other striking results in the field and laboratory were described. The advances in screening, gene modification and genetic engineering etc. have obtained some successful approaches. As more progress made in this area, it is estimated that integrated techniques with more effective engineered plants or microbes will meet peoples' requirement in the future.

  9. 不同生物修复技术处理油污土壤的效果研究%On the Effect of Treating Petroleum-contaminated Soil by Different Bioremediation Technologies

    Institute of Scientific and Technical Information of China (English)

    孙先锋; 杨波波; 朱欣洁

    2016-01-01

    In order to explore the effect of bio-remedying petroleum-contaminated soil,the biological stimulation and biological enhancement technologies were employed to study the changes of petroleum hydrocarbon component,surface tension,the quantity of microorganism,and enzyme activity index in the remediation process. The results showed that biological stimulation was better than biological enhancement in the degradation of saturated hydrocarbon,the reduction of the surface tension,increasing the quantity of microorganism,and the improving enzyme activity;while biological enhancement degraded refractory aromatic hydrocarbon better than biological stimulation,each of them had its own advantages.%为了探究生物修复技术对油污土壤的处理效果,研究采用生物刺激和生物强化修复技术研究在修复过程中石油烃组分含量、表面张力、微生物数量、酶活性指标的变化。结果表明:生物刺激在降解饱和烃、降低土壤中溶液表面张力、增加微生物数量、提高土壤酶活性方面优于生物强化,而生物强化则对于石油烃中难降解的芳香烃有很好的降解效果,两者各有优势。

  10. Bioremediation approaches for organic pollutants: a critical perspective.

    Science.gov (United States)

    Megharaj, Mallavarapu; Ramakrishnan, Balasubramanian; Venkateswarlu, Kadiyala; Sethunathan, Nambrattil; Naidu, Ravi

    2011-11-01

    Due to human activities to a greater extent and natural processes to some extent, a large number of organic chemical substances such as petroleum hydrocarbons, halogenated and nitroaromatic compounds, phthalate esters, solvents and pesticides pollute the soil and aquatic environments. Remediation of these polluted sites following the conventional engineering approaches based on physicochemical methods is both technically and economically challenging. Bioremediation that involves the capabilities of microorganisms in the removal of pollutants is the most promising, relatively efficient and cost-effective technology. However, the current bioremediation approaches suffer from a number of limitations which include the poor capabilities of microbial communities in the field, lesser bioavailability of contaminants on spatial and temporal scales, and absence of bench-mark values for efficacy testing of bioremediation for their widespread application in the field. The restoration of all natural functions of some polluted soils remains impractical and, hence, the application of the principle of function-directed remediation may be sufficient to minimize the risks of persistence and spreading of pollutants. This review selectively examines and provides a critical view on the knowledge gaps and limitations in field application strategies, approaches such as composting, electrobioremediation and microbe-assisted phytoremediation, and the use of probes and assays for monitoring and testing the efficacy of bioremediation of polluted sites.

  11. Bioremediation of soil contaminated with hydrocarbons using sewage sludge as an alternative source of nutrients; Biorremediacion de suelo contaminado con hidrocarburos empleando lodos residuales como fuente alterna de nutrientes

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Prado, Adriana [Instituto Tecnologico de Durango, Durango, Durango (Mexico)]. E-mail: adriana.martinez@orst.edu; Perez Lopez, Ma. Elena [Centro Interdisciplinario de Investigacion para el Desarrollo Integral Regional (IPN-CIIDIR) Unidad Durango, Durango, Durango (Mexico); Pinto Espinoza, Joaquin; Gurrola Nevarez, Blanca Amelia; Osorio Rodriguez, Ana Lilia [Instituto Tecnologico de Durango, Durango, Durango (Mexico)

    2011-07-01

    In this research an aerobic bioremediation process, of a petroleum hydrocarbon contaminated soil, was evaluated using residual sludge (biosolids) from a local domestic wastewater treatment plant, as an alternative micro and macro nutrient source. Contamination of the soil resulted from accidental spills with hydrocarbons, mainly diesel, gasoline, and residual oils, from the San Antonio mining unit which belongs to Goldcorp Mexico Company, located in Tayoltita, from the municipality of San Dimas, Durango. Laboratory and pilot experiments were conducted, adjusting soil water content to field capacity and carbon:nitrogen (C:N) ratio to 10:1, evaluating the effect of addition of nutrients, density of the material being remediated, and the influence of soil particle size in the remediation process. It was demonstrated that the biosolids stimulated the native microorganisms of the polluted soil; consequently the hydrocarbon degradation process was accelerated. The hydrocarbons were used as carbon and electron donor source, coupling the oxidation-reduction reaction with oxygen which served as the electron acceptor. Treated soil was remediated and reached the maximum permissible limit (MPL), established in the Mexican current regulations (NOM-138-SEMARNAT/SS-2003), at both stages, and it is recommended as an optional process to the mining company to fulfill with the Clean Industry Program. [Spanish] En la presente investigacion se evaluo el proceso de biorremediacion aerobica de un suelo contaminado con hidrocarburos de petroleo empleando lodos residuales (biosolidos), provenientes de una planta de tratamiento de aguas residuales (PTAR) domesticas de la localidad, como fuente alterna de macro y micronutrientes. La contaminacion del suelo fue resultado de derrames accidentales de diesel, aceite y grasas en la unidad minera San Antonio perteneciente al grupo Goldcorp Mexico, ubicada en el municipio de San Dimas, en Tayoltita, Durango. Se realizaron experimentos a escala

  12. Integrated Nanozero Valent Iron and Biosurfactant-Aided Remediation of PCB-Contaminated Soil

    Directory of Open Access Journals (Sweden)

    He Zhang

    2016-01-01

    Full Text Available Polychlorobiphenyls (PCBs have been identified as environmental hazards for years. Due to historical issues, a considerable amount of PCBs was released deep underground in Canada. In this research, a nanoscale zero valent iron- (nZVI- aided dechlorination followed by biosurfactant enhanced soil washing method was developed to remove PCBs from soil. During nZVI-aided dechlorination, the effects of nZVI dosage, initial pH level, and temperature were evaluated, respectively. Five levels of nZVI dosage and two levels of initial pH were experimented to evaluate the PCB dechlorination rate. Additionally, the temperature changes could positively influence the dechlorination process. In soil washing, the presence of nanoiron particles played a key role in PCB removal. The crude biosurfactant was produced using a bacterial stain isolated from the Atlantic Ocean and was applied for soil washing. The study has led to a promising technology for PCB-contaminated soil remediation.

  13. BIOREMEDIATION OF PETROLEUM HYDROCARBONS: A FLEXIBLE VARIABLE SPEED TECHNOLOGY

    Science.gov (United States)

    The bioremediation of petroleum hydrocarbons has evolved into a number of different processes. These processes include in-situ aquifer bioremediation, bioventing, biosparging, passive bioremediation with oxygen release compounds, and intrinsic bioremediation. Although often viewe...

  14. 砷污染土壤的生物修复研究进展%Research Advance in Bioremediation<