WorldWideScience

Sample records for biosphere model calculations

  1. Biosphere Model Report

    International Nuclear Information System (INIS)

    M. A. Wasiolek

    2003-01-01

    The purpose of this report is to document the biosphere model, the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), which describes radionuclide transport processes in the biosphere and associated human exposure that may arise as the result of radionuclide release from the geologic repository at Yucca Mountain. The biosphere model is one of the process models that support the Yucca Mountain Project (YMP) Total System Performance Assessment (TSPA) for the license application (LA), the TSPA-LA. The ERMYN model provides the capability of performing human radiation dose assessments. This report documents the biosphere model, which includes: (1) Describing the reference biosphere, human receptor, exposure scenarios, and primary radionuclides for each exposure scenario (Section 6.1); (2) Developing a biosphere conceptual model using site-specific features, events, and processes (FEPs), the reference biosphere, the human receptor, and assumptions (Section 6.2 and Section 6.3); (3) Building a mathematical model using the biosphere conceptual model and published biosphere models (Sections 6.4 and 6.5); (4) Summarizing input parameters for the mathematical model, including the uncertainty associated with input values (Section 6.6); (5) Identifying improvements in the ERMYN model compared with the model used in previous biosphere modeling (Section 6.7); (6) Constructing an ERMYN implementation tool (model) based on the biosphere mathematical model using GoldSim stochastic simulation software (Sections 6.8 and 6.9); (7) Verifying the ERMYN model by comparing output from the software with hand calculations to ensure that the GoldSim implementation is correct (Section 6.10); and (8) Validating the ERMYN model by corroborating it with published biosphere models; comparing conceptual models, mathematical models, and numerical results (Section 7)

  2. Biosphere Model Report

    Energy Technology Data Exchange (ETDEWEB)

    D. W. Wu

    2003-07-16

    The purpose of this report is to document the biosphere model, the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), which describes radionuclide transport processes in the biosphere and associated human exposure that may arise as the result of radionuclide release from the geologic repository at Yucca Mountain. The biosphere model is one of the process models that support the Yucca Mountain Project (YMP) Total System Performance Assessment (TSPA) for the license application (LA), the TSPA-LA. The ERMYN model provides the capability of performing human radiation dose assessments. This report documents the biosphere model, which includes: (1) Describing the reference biosphere, human receptor, exposure scenarios, and primary radionuclides for each exposure scenario (Section 6.1); (2) Developing a biosphere conceptual model using site-specific features, events, and processes (FEPs), the reference biosphere, the human receptor, and assumptions (Section 6.2 and Section 6.3); (3) Building a mathematical model using the biosphere conceptual model and published biosphere models (Sections 6.4 and 6.5); (4) Summarizing input parameters for the mathematical model, including the uncertainty associated with input values (Section 6.6); (5) Identifying improvements in the ERMYN model compared with the model used in previous biosphere modeling (Section 6.7); (6) Constructing an ERMYN implementation tool (model) based on the biosphere mathematical model using GoldSim stochastic simulation software (Sections 6.8 and 6.9); (7) Verifying the ERMYN model by comparing output from the software with hand calculations to ensure that the GoldSim implementation is correct (Section 6.10); and (8) Validating the ERMYN model by corroborating it with published biosphere models; comparing conceptual models, mathematical models, and numerical results (Section 7).

  3. Biosphere Model Report

    Energy Technology Data Exchange (ETDEWEB)

    M. A. Wasiolek

    2003-10-27

    The purpose of this report is to document the biosphere model, the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), which describes radionuclide transport processes in the biosphere and associated human exposure that may arise as the result of radionuclide release from the geologic repository at Yucca Mountain. The biosphere model is one of the process models that support the Yucca Mountain Project (YMP) Total System Performance Assessment (TSPA) for the license application (LA), the TSPA-LA. The ERMYN model provides the capability of performing human radiation dose assessments. This report documents the biosphere model, which includes: (1) Describing the reference biosphere, human receptor, exposure scenarios, and primary radionuclides for each exposure scenario (Section 6.1); (2) Developing a biosphere conceptual model using site-specific features, events, and processes (FEPs), the reference biosphere, the human receptor, and assumptions (Section 6.2 and Section 6.3); (3) Building a mathematical model using the biosphere conceptual model and published biosphere models (Sections 6.4 and 6.5); (4) Summarizing input parameters for the mathematical model, including the uncertainty associated with input values (Section 6.6); (5) Identifying improvements in the ERMYN model compared with the model used in previous biosphere modeling (Section 6.7); (6) Constructing an ERMYN implementation tool (model) based on the biosphere mathematical model using GoldSim stochastic simulation software (Sections 6.8 and 6.9); (7) Verifying the ERMYN model by comparing output from the software with hand calculations to ensure that the GoldSim implementation is correct (Section 6.10); and (8) Validating the ERMYN model by corroborating it with published biosphere models; comparing conceptual models, mathematical models, and numerical results (Section 7).

  4. Illstrative probabilistic biosphere model for Yucca Mountain individual risk calculations

    International Nuclear Information System (INIS)

    Wilems, R.E.

    1994-01-01

    The proposed EPA Standards for the disposal of spent fuel, high-level and transuranic radioactive waste prescribe future biosphere--one in which no sustained human activity occurs inside the controlled zone, yet sustained use of groundwater occurs just outside the controlled zone boundary. Performance assessments have generally assumed a person at this location extracts all his water needs directly from the projected contaminated plume for all of his life. Dose to this maximally-exposed individual is too conservative a measure of performance for a nuclear waste repository and does not reflect the isolation characteristics of a site. A better measure is individual risk in which uncertainties in biosphere characteristics for the longer periods of performance, for a site like Yucca Mountain only those characteristics associated with well water scenarios need be prescribed. Such a prescription of the biosphere is appropriate because the goal of the regulations is to provide indicators of future performance so the regulators can make a responsible decision regarding reasonable assurance of public health and safety

  5. Biosphere Model Report

    Energy Technology Data Exchange (ETDEWEB)

    D.W. Wu; A.J. Smith

    2004-11-08

    The purpose of this report is to document the biosphere model, the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), which describes radionuclide transport processes in the biosphere and associated human exposure that may arise as the result of radionuclide release from the geologic repository at Yucca Mountain. The biosphere model is one of the process models that support the Yucca Mountain Project (YMP) Total System Performance Assessment (TSPA) for the license application (LA), TSPA-LA. The ERMYN provides the capability of performing human radiation dose assessments. This report documents the biosphere model, which includes: (1) Describing the reference biosphere, human receptor, exposure scenarios, and primary radionuclides for each exposure scenario (Section 6.1); (2) Developing a biosphere conceptual model using site-specific features, events, and processes (FEPs) (Section 6.2), the reference biosphere (Section 6.1.1), the human receptor (Section 6.1.2), and approximations (Sections 6.3.1.4 and 6.3.2.4); (3) Building a mathematical model using the biosphere conceptual model (Section 6.3) and published biosphere models (Sections 6.4 and 6.5); (4) Summarizing input parameters for the mathematical model, including the uncertainty associated with input values (Section 6.6); (5) Identifying improvements in the ERMYN compared with the model used in previous biosphere modeling (Section 6.7); (6) Constructing an ERMYN implementation tool (model) based on the biosphere mathematical model using GoldSim stochastic simulation software (Sections 6.8 and 6.9); (7) Verifying the ERMYN by comparing output from the software with hand calculations to ensure that the GoldSim implementation is correct (Section 6.10); (8) Validating the ERMYN by corroborating it with published biosphere models; comparing conceptual models, mathematical models, and numerical results (Section 7).

  6. Biosphere Model Report

    International Nuclear Information System (INIS)

    D.W. Wu; A.J. Smith

    2004-01-01

    The purpose of this report is to document the biosphere model, the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), which describes radionuclide transport processes in the biosphere and associated human exposure that may arise as the result of radionuclide release from the geologic repository at Yucca Mountain. The biosphere model is one of the process models that support the Yucca Mountain Project (YMP) Total System Performance Assessment (TSPA) for the license application (LA), TSPA-LA. The ERMYN provides the capability of performing human radiation dose assessments. This report documents the biosphere model, which includes: (1) Describing the reference biosphere, human receptor, exposure scenarios, and primary radionuclides for each exposure scenario (Section 6.1); (2) Developing a biosphere conceptual model using site-specific features, events, and processes (FEPs) (Section 6.2), the reference biosphere (Section 6.1.1), the human receptor (Section 6.1.2), and approximations (Sections 6.3.1.4 and 6.3.2.4); (3) Building a mathematical model using the biosphere conceptual model (Section 6.3) and published biosphere models (Sections 6.4 and 6.5); (4) Summarizing input parameters for the mathematical model, including the uncertainty associated with input values (Section 6.6); (5) Identifying improvements in the ERMYN compared with the model used in previous biosphere modeling (Section 6.7); (6) Constructing an ERMYN implementation tool (model) based on the biosphere mathematical model using GoldSim stochastic simulation software (Sections 6.8 and 6.9); (7) Verifying the ERMYN by comparing output from the software with hand calculations to ensure that the GoldSim implementation is correct (Section 6.10); (8) Validating the ERMYN by corroborating it with published biosphere models; comparing conceptual models, mathematical models, and numerical results (Section 7)

  7. Biosphere Process Model Report

    Energy Technology Data Exchange (ETDEWEB)

    J. Schmitt

    2000-05-25

    To evaluate the postclosure performance of a potential monitored geologic repository at Yucca Mountain, a Total System Performance Assessment (TSPA) will be conducted. Nine Process Model Reports (PMRs), including this document, are being developed to summarize the technical basis for each of the process models supporting the TSPA model. These reports cover the following areas: (1) Integrated Site Model; (2) Unsaturated Zone Flow and Transport; (3) Near Field Environment; (4) Engineered Barrier System Degradation, Flow, and Transport; (5) Waste Package Degradation; (6) Waste Form Degradation; (7) Saturated Zone Flow and Transport; (8) Biosphere; and (9) Disruptive Events. Analysis/Model Reports (AMRs) contain the more detailed technical information used to support TSPA and the PMRs. The AMRs consists of data, analyses, models, software, and supporting documentation that will be used to defend the applicability of each process model for evaluating the postclosure performance of the potential Yucca Mountain repository system. This documentation will ensure the traceability of information from its source through its ultimate use in the TSPA-Site Recommendation (SR) and in the National Environmental Policy Act (NEPA) analysis processes. The objective of the Biosphere PMR is to summarize (1) the development of the biosphere model, and (2) the Biosphere Dose Conversion Factors (BDCFs) developed for use in TSPA. The Biosphere PMR does not present or summarize estimates of potential radiation doses to human receptors. Dose calculations are performed as part of TSPA and will be presented in the TSPA documentation. The biosphere model is a component of the process to evaluate postclosure repository performance and regulatory compliance for a potential monitored geologic repository at Yucca Mountain, Nevada. The biosphere model describes those exposure pathways in the biosphere by which radionuclides released from a potential repository could reach a human receptor

  8. Biosphere Process Model Report

    International Nuclear Information System (INIS)

    Schmitt, J.

    2000-01-01

    To evaluate the postclosure performance of a potential monitored geologic repository at Yucca Mountain, a Total System Performance Assessment (TSPA) will be conducted. Nine Process Model Reports (PMRs), including this document, are being developed to summarize the technical basis for each of the process models supporting the TSPA model. These reports cover the following areas: (1) Integrated Site Model; (2) Unsaturated Zone Flow and Transport; (3) Near Field Environment; (4) Engineered Barrier System Degradation, Flow, and Transport; (5) Waste Package Degradation; (6) Waste Form Degradation; (7) Saturated Zone Flow and Transport; (8) Biosphere; and (9) Disruptive Events. Analysis/Model Reports (AMRs) contain the more detailed technical information used to support TSPA and the PMRs. The AMRs consists of data, analyses, models, software, and supporting documentation that will be used to defend the applicability of each process model for evaluating the postclosure performance of the potential Yucca Mountain repository system. This documentation will ensure the traceability of information from its source through its ultimate use in the TSPA-Site Recommendation (SR) and in the National Environmental Policy Act (NEPA) analysis processes. The objective of the Biosphere PMR is to summarize (1) the development of the biosphere model, and (2) the Biosphere Dose Conversion Factors (BDCFs) developed for use in TSPA. The Biosphere PMR does not present or summarize estimates of potential radiation doses to human receptors. Dose calculations are performed as part of TSPA and will be presented in the TSPA documentation. The biosphere model is a component of the process to evaluate postclosure repository performance and regulatory compliance for a potential monitored geologic repository at Yucca Mountain, Nevada. The biosphere model describes those exposure pathways in the biosphere by which radionuclides released from a potential repository could reach a human receptor

  9. Biosphere Model Report, Errata 1

    International Nuclear Information System (INIS)

    Wasolek, M.

    2003-01-01

    The purpose of this report is to document the biosphere model, the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), which describes radionuclide transport processes in the biosphere and associated human exposure that may arise as the result of radionuclide release from the geologic repository at Yucca Mountain. The biosphere model is one of the process models that support the Yucca Mountain Project (YMP) Total System Performance Assessment (TSPA) for the license application (LA), the TSPA-LA. The ERMYN model provides the capability of performing human radiation dose assessments. This report documents the biosphere model, which includes: (1) Describing the reference biosphere, human receptor, exposure scenarios, and primary radionuclides for each exposure scenario (Section 6.1); (2) Developing a biosphere conceptual model using site-specific features, events, and processes (FEPs), the reference biosphere, the human receptor, and assumptions (Section 6.2 and Section 6.3); (3) Building a mathematical model using the biosphere conceptual model and published biosphere models (Sections 6.4 and 6.5); (4) Summarizing input parameters for the mathematical model, including the uncertainty associated with input values (Section 6.6); (5) Identifying improvements in the ERMYN model compared with the model used in previous biosphere modeling (Section 6.7); (6) Constructing an ERMYN implementation tool (model) based on the biosphere mathematical model using GoldSim stochastic simulation software (Sections 6.8 and 6.9); (7) Verifying the ERMYN model by comparing output from the software with hand calculations to ensure that the GoldSim implementation is correct (Section 6.10); (8) Validating the ERMYN model by corroborating it with published biosphere models; comparing conceptual models, mathematical models, and numerical results (Section 7)

  10. Biosphere Model Report, Errata 1

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasolek

    2003-09-18

    The purpose of this report is to document the biosphere model, the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), which describes radionuclide transport processes in the biosphere and associated human exposure that may arise as the result of radionuclide release from the geologic repository at Yucca Mountain. The biosphere model is one of the process models that support the Yucca Mountain Project (YMP) Total System Performance Assessment (TSPA) for the license application (LA), the TSPA-LA. The ERMYN model provides the capability of performing human radiation dose assessments. This report documents the biosphere model, which includes: (1) Describing the reference biosphere, human receptor, exposure scenarios, and primary radionuclides for each exposure scenario (Section 6.1); (2) Developing a biosphere conceptual model using site-specific features, events, and processes (FEPs), the reference biosphere, the human receptor, and assumptions (Section 6.2 and Section 6.3); (3) Building a mathematical model using the biosphere conceptual model and published biosphere models (Sections 6.4 and 6.5); (4) Summarizing input parameters for the mathematical model, including the uncertainty associated with input values (Section 6.6); (5) Identifying improvements in the ERMYN model compared with the model used in previous biosphere modeling (Section 6.7); (6) Constructing an ERMYN implementation tool (model) based on the biosphere mathematical model using GoldSim stochastic simulation software (Sections 6.8 and 6.9); (7) Verifying the ERMYN model by comparing output from the software with hand calculations to ensure that the GoldSim implementation is correct (Section 6.10); (8) Validating the ERMYN model by corroborating it with published biosphere models; comparing conceptual models, mathematical models, and numerical results (Section 7).

  11. Models of radionuclide distribution in the biosphere for radioactive waste storage safety assessment, collection of data and calculation of the biosphere dose conversion factors. Research report

    International Nuclear Information System (INIS)

    Landa, Jiri

    2008-12-01

    The core of the report is structured as follows: The biosphere dose conversion factor (BDCF); Foreign approaches (Sweden - SKB, USA - YMP, BIOPROTA); Definition and conversion factors for activity; Effective dose rate calculation (ingestion, inhalation, external irradiation); Analysis of the activity of the surface compartment, i.e. soil; Basic conceptual models of ecosystems; BDCF calculation/determination; and Systemization of the literature. (P.A.)

  12. Biosphere modeling for HLW disposal in Japan

    International Nuclear Information System (INIS)

    Naito, Morimasa

    2001-01-01

    Concept of Reference Biosphere is defined by 'the set of assumptions and hypotheses that is necessary to provide a consistent basis for calculations of the radiological impact arising from long-term releases of repository-derived radionuclides into the biosphere'. Geological environment and biosphere interface (GBI) is the place having the high probability of introduction of radioactive nuclides to biosphere by groundwater. Reference biosphere methodology, GBI, basic models, assessment context, assumptions concerning the surface environment for the biosphere assessment, nuclides migration process, interaction matrix showing radionuclide transport pathways for biosphere modeling, conceptual model for exposure modes and pathways for each exposure group in the biosphere assessment are explained. Response of the biosphere assessment model is steady, unit flux input (1 Bq/y) of different nuclides (farming exposure group). The dose per unit input of agriculture group is 1 to 3 figures larger than that of other two fisheries groups in the case of river and coastal environment except Po-210. We can calculate easily the dose by determining the dose conversion factors derived from different GBI models. Comparison of flux to dose conversion factors derived from different GBI models is effective to know the properties of each model, process and importance of data. (S.Y.)

  13. Alternative biosphere modeling for safety assessment of HLW disposal taking account of geosphere-biosphere interface of marine environment

    International Nuclear Information System (INIS)

    Kato, Tomoko; Ishiguro, Katsuhiko; Naito, Morimasa; Ikeda, Takao; Little, Richard

    2001-03-01

    In the safety assessment of a high-level radioactive waste (HLW) disposal system, it is required to estimate radiological impacts on future human beings arising from potential radionuclide releases from a deep repository into the surface environment. In order to estimated the impacts, a biosphere model is developed by reasonably assuming radionuclide migration processes in the surface environment and relevant human lifestyles. It is important to modify the present biosphere models or to develop alternative biosphere models applying the biosphere models according to quality and quantify of the information acquired through the siting process for constructing the repository. In this study, alternative biosphere models were developed taking geosphere-biosphere interface of marine environment into account. Moreover, the flux to dose conversion factors calculated by these alternative biosphere models was compared with those by the present basic biosphere models. (author)

  14. Environmental Transport Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    M. Wasiolek

    2004-01-01

    This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment for the license application (TSPA-LA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA-LA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]) (TWP). This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA). This report is one of the five reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model and the mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed description of the model input parameters. The output of this report is used as direct input in the ''Nominal Performance Biosphere Dose Conversion Factor Analysis'' and in the ''Disruptive Event Biosphere Dose Conversion Factor Analysis'' that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios, respectively. The purpose of this analysis was to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or in volcanic ash). The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573])

  15. Environmental Transport Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek

    2004-09-10

    This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment for the license application (TSPA-LA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA-LA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]) (TWP). This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA). This report is one of the five reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model and the mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed description of the model input parameters. The output of this report is used as direct input in the ''Nominal Performance Biosphere Dose Conversion Factor Analysis'' and in the ''Disruptive Event Biosphere Dose Conversion Factor Analysis'' that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios, respectively. The purpose of this analysis was to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or in volcanic ash). The analysis

  16. Inhalation Exposure Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    K. Rautenstrauch

    2004-01-01

    This analysis is one of 10 reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. Inhalation Exposure Input Parameters for the Biosphere Model is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the Technical Work Plan for Biosphere Modeling and Expert Support (BSC 2004 [DIRS 169573]). This analysis report defines and justifies values of mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception

  17. Inhalation Exposure Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    K. Rautenstrauch

    2004-09-10

    This analysis is one of 10 reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. Inhalation Exposure Input Parameters for the Biosphere Model is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the Technical Work Plan for Biosphere Modeling and Expert Support (BSC 2004 [DIRS 169573]). This analysis report defines and justifies values of mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception.

  18. Inhalation Exposure Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    M. Wasiolek

    2006-01-01

    This analysis is one of the technical reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), referred to in this report as the biosphere model. ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. ''Inhalation Exposure Input Parameters for the Biosphere Model'' is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the biosphere model is presented in Figure 1-1 (based on BSC 2006 [DIRS 176938]). This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and how this analysis report contributes to biosphere modeling. This analysis report defines and justifies values of atmospheric mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of the biosphere model to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception. This report is concerned primarily with the

  19. Inhalation Exposure Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek

    2006-06-05

    This analysis is one of the technical reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), referred to in this report as the biosphere model. ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. ''Inhalation Exposure Input Parameters for the Biosphere Model'' is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the biosphere model is presented in Figure 1-1 (based on BSC 2006 [DIRS 176938]). This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and how this analysis report contributes to biosphere modeling. This analysis report defines and justifies values of atmospheric mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of the biosphere model to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception. This

  20. Characteristics of the Receptor for the Biosphere Model

    International Nuclear Information System (INIS)

    M. Wasiolek; K. Rautenstrauch

    2004-01-01

    This analysis report is one of a series of technical reports that document the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the geologic repository at Yucca Mountain. This report is one of the five biosphere reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model, as well as the mathematical model and its input parameters. Figure 1-1 is a graphical representation of the documentation hierarchy for the ERMYN. This figure shows relationships among the products (i.e., scientific analyses and model reports) developed for biosphere modeling and biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The purpose of this analysis report is to define values for biosphere model parameters that are related to the dietary, lifestyle, and dosimetric characteristics of the receptor. The biosphere model, consistent with the licensing rule at 10 CFR Part 63 [DIRS 156605], uses a hypothetical person called the reasonably maximally exposed individual (RMEI) to represent the potentially exposed population. The parameters that define the RMEI are based on the behaviors and characteristics of the residents of the unincorporated town of Amargosa Valley, consistent with the requirements of 10 CFR 63.312 [DIRS 156605]. The output of this report is used as direct input in the two analyses identified in Figure 1-1 that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios. The parameter values developed in this report are reflected in the TSPA through the BDCFs. The analysis was performed in accordance with AP-SIII.9Q, ''Scientific Analyses'', and the technical work plan (BSC 2004 [DIRS 169573])

  1. Characteristics of the Receptor for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek; K. Rautenstrauch

    2004-09-09

    This analysis report is one of a series of technical reports that document the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the geologic repository at Yucca Mountain. This report is one of the five biosphere reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model, as well as the mathematical model and its input parameters. Figure 1-1 is a graphical representation of the documentation hierarchy for the ERMYN. This figure shows relationships among the products (i.e., scientific analyses and model reports) developed for biosphere modeling and biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The purpose of this analysis report is to define values for biosphere model parameters that are related to the dietary, lifestyle, and dosimetric characteristics of the receptor. The biosphere model, consistent with the licensing rule at 10 CFR Part 63 [DIRS 156605], uses a hypothetical person called the reasonably maximally exposed individual (RMEI) to represent the potentially exposed population. The parameters that define the RMEI are based on the behaviors and characteristics of the residents of the unincorporated town of Amargosa Valley, consistent with the requirements of 10 CFR 63.312 [DIRS 156605]. The output of this report is used as direct input in the two analyses identified in Figure 1-1 that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios. The parameter values developed in this report are reflected in the TSPA through the BDCFs. The analysis was performed in accordance with AP-SIII.9Q, ''Scientific Analyses'', and the technical work

  2. Analysis specifications for the CC3 biosphere model biotrac

    Energy Technology Data Exchange (ETDEWEB)

    Szekely, J.G.; Wojciechowski, L.C.; Stephens, M.E.; Halliday, H.A.

    1994-12-01

    The CC3 (Canadian Concept, generation 3) model BIOTRAC (Biosphere Transport and Consequences) describes the movement in the biosphere of releases from an underground disposal vault, and the consequent radiological dose to a reference individual. Concentrations of toxic substances in different parts of the biosphere are also calculated. BIOTRAC was created specifically for the postclosure analyses of the Environmental Impact Statement that AECL is preparing on the concept for disposal of Canada`s nuclear fuel waste. The model relies on certain assumptions and constraints on the system, which are described by Davis et al. Accordingly, great care must be exercised if BIOTRAC is used for any other purpose.

  3. Inhalation Exposure Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    M. A. Wasiolek

    2003-01-01

    This analysis is one of the nine reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2003a) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents a set of input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for a Yucca Mountain repository. This report, ''Inhalation Exposure Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003b). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available at that time. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this analysis report. This analysis report defines and justifies values of mass loading, which is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Measurements of mass loading are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air surrounding crops and concentrations in air inhaled by a receptor. Concentrations in air to which the

  4. Inhalation Exposure Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. A. Wasiolek

    2003-09-24

    This analysis is one of the nine reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2003a) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents a set of input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for a Yucca Mountain repository. This report, ''Inhalation Exposure Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003b). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available at that time. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this analysis report. This analysis report defines and justifies values of mass loading, which is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Measurements of mass loading are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air surrounding crops and concentrations in air

  5. Soil-related Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    A. J. Smith

    2003-01-01

    This analysis is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the geologic repository at Yucca Mountain. The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A graphical representation of the documentation hierarchy for the ERMYN biosphere model is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003 [163602]). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. ''The Biosphere Model Report'' (BSC 2003 [160699]) describes in detail the conceptual model as well as the mathematical model and its input parameters. The purpose of this analysis was to develop the biosphere model parameters needed to evaluate doses from pathways associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation and ash

  6. Environmental Transport Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    Wasiolek, M. A.

    2003-01-01

    This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (TWP) (BSC 2003 [163602]). Some documents in Figure 1-1 may be under development and not available when this report is issued. This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA), but access to the listed documents is not required to understand the contents of this report. This report is one of the reports that develops input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2003 [160699]) describes the conceptual model, the mathematical model, and the input parameters. The purpose of this analysis is to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or volcanic ash). The analysis was performed in accordance with the TWP (BSC 2003 [163602]). This analysis develops values of parameters associated with many features, events, and processes (FEPs) applicable to the reference biosphere (DTN: M00303SEPFEPS2.000 [162452]), which are addressed in the biosphere model (BSC 2003 [160699]). The treatment of these FEPs is described in BSC (2003 [160699], Section 6.2). Parameter values

  7. Environmental Transport Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. A. Wasiolek

    2003-06-27

    This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (TWP) (BSC 2003 [163602]). Some documents in Figure 1-1 may be under development and not available when this report is issued. This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA), but access to the listed documents is not required to understand the contents of this report. This report is one of the reports that develops input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2003 [160699]) describes the conceptual model, the mathematical model, and the input parameters. The purpose of this analysis is to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or volcanic ash). The analysis was performed in accordance with the TWP (BSC 2003 [163602]). This analysis develops values of parameters associated with many features, events, and processes (FEPs) applicable to the reference biosphere (DTN: M00303SEPFEPS2.000 [162452]), which are addressed in the biosphere model (BSC 2003 [160699]). The treatment of these FEPs is described in BSC (2003 [160699

  8. BIOSPHERE MODELING AT YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    NING LIU; JEFFERY, J.; TAPPEN, DE WU; CHAO-HSIUNG TUNG

    1998-01-01

    The objectives of the biosphere modeling efforts are to assess how radionuclides potentially released from the proposed repository could be transported through a variety of environmental media. The study of these transport mechanisms, referred to as pathways, is critical in calculating the potential radiation dose to man. Since most of the existing and pending regulations applicable to the Project are radiation dose based standards, the biosphere modeling effort will provide crucial technical input to support the Viability Assessment (VA), the Working Draft of License Application (WDLA), and the Environmental Impact Statement (EIS). In 1982, the Nuclear Waste Policy Act (NWPA) was enacted into law. This federal law, which was amended in 1987, addresses the national issue of geologic disposal of high-level nuclear waste generated by commercial nuclear power plants, as well as defense programs during the past few decades. As required by the law, the Department of Energy (DOE) is conducting a site characterization project at Yucca Mountain, Nevada, approximately 100 miles northwest of Las Vegas, Nevada, to determine if the site is suitable for the nation's first high-level nuclear waste repository

  9. Characteristics of the Receptor for the Biosphere Model

    International Nuclear Information System (INIS)

    M.A. Wasiolek

    2005-01-01

    This analysis report is one of a series of technical reports that document the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the geologic repository at Yucca Mountain. This report is one of the five biosphere reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model, as well as the mathematical model and its input parameters. Figure 1-1 is a graphical representation of the documentation hierarchy for the ERMYN. This figure shows relationships among the products (i.e., scientific analyses and model reports) developed for biosphere modeling and biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2005 [DIRS 172782]). The purpose of this analysis report is to define values for biosphere model parameters that are related to the dietary, lifestyle, and dosimetric characteristics of the receptor. The biosphere model, consistent with the licensing rule at 10 CFR Part 63 [DIRS 173164], uses a hypothetical person called the reasonably maximally exposed individual (RMEI) to represent the potentially exposed population. The parameters that define the RMEI are based on the behaviors and characteristics of the residents of the unincorporated town of Amargosa Valley, consistent with the requirements of 10 CFR 63.312 [DIRS 173164]. The output of this report is used as direct input in the two analyses identified in Figure 1-1 that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios. The parameter values developed in this report are reflected in the TSPA through the BDCFs. The analysis was performed in accordance with LP-SIII.9Q-BSC, ''Scientific Analyses'', and the technical work plan (BSC 2005 [DIRS 172782]). The scope of the revision was

  10. Characteristics of the Receptor for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Wasiolek

    2005-04-05

    This analysis report is one of a series of technical reports that document the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the geologic repository at Yucca Mountain. This report is one of the five biosphere reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model, as well as the mathematical model and its input parameters. Figure 1-1 is a graphical representation of the documentation hierarchy for the ERMYN. This figure shows relationships among the products (i.e., scientific analyses and model reports) developed for biosphere modeling and biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2005 [DIRS 172782]). The purpose of this analysis report is to define values for biosphere model parameters that are related to the dietary, lifestyle, and dosimetric characteristics of the receptor. The biosphere model, consistent with the licensing rule at 10 CFR Part 63 [DIRS 173164], uses a hypothetical person called the reasonably maximally exposed individual (RMEI) to represent the potentially exposed population. The parameters that define the RMEI are based on the behaviors and characteristics of the residents of the unincorporated town of Amargosa Valley, consistent with the requirements of 10 CFR 63.312 [DIRS 173164]. The output of this report is used as direct input in the two analyses identified in Figure 1-1 that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios. The parameter values developed in this report are reflected in the TSPA through the BDCFs. The analysis was performed in accordance with LP-SIII.9Q-BSC, ''Scientific Analyses'', and the technical work

  11. Biosphere models for deep waste disposal

    International Nuclear Information System (INIS)

    Olyslaegers, G.

    2005-01-01

    The management of the radioactive waste requires the implementation of disposal systems that ensure an adequate degree of isolation of the radioactivity from man and the environment. Because there are still a lot of uncertainties and a lack of consensus with respect to the importance of the exposure pathways of man, a project BioMoSA (Biosphere Models for Safety Assessment) was elaborated in the Fifth Framework Programme of EURATOM). It aimed at improving the scientific basis for the application of biosphere models in the framework of long-term safety studies for radioactive waste disposal facilities. The section radiological evaluations of SCK-CEN took part in the BioMoSA project. n the BioMoSA project, the reference biosphere methodology developed in the IAEA programme BIOMASS (Biosphere Modelling and Assessment methods) is implemented). We used this methodology in order to increase the transparency of biosphere modelling; t evaluate the importance of the different radionuclides and pathways, and to enhance public confidence in the assessment of potential radiological dose to population groups far into the future. Five European locations, covering a wide range of environmental and agricultural conditions are described and characterised. Each participant developed a specific biosphere model for their site. In order to achieve a consistency in this model derivation, a staged approach has been followed. Successively the biosphere is described and conceptual, mathematical and numerical models are constructed. For each of the locations site-specific parameters are selected. In the project, we had the specific task to make a comparison between the model results generated by the different participants. Results from these studies are presented and discussed

  12. Soil-Related Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    Smith, A. J.

    2004-01-01

    This report presents one of the analyses that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the details of the conceptual model as well as the mathematical model and the required input parameters. The biosphere model is one of a series of process models supporting the postclosure Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A schematic representation of the documentation flow for the Biosphere input to TSPA is presented in Figure 1-1. This figure shows the evolutionary relationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (TWP) (BSC 2004 [DIRS 169573]). This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil-Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. The purpose of this analysis was to develop the biosphere model parameters associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation or ash deposition and, as a direct consequence, radionuclide concentration in other environmental media that are affected by radionuclide concentrations in soil. The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573]) where the governing procedure was defined as AP-SIII.9Q, ''Scientific Analyses''. This

  13. Soil-Related Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    A. J. Smith

    2004-09-09

    This report presents one of the analyses that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the details of the conceptual model as well as the mathematical model and the required input parameters. The biosphere model is one of a series of process models supporting the postclosure Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A schematic representation of the documentation flow for the Biosphere input to TSPA is presented in Figure 1-1. This figure shows the evolutionary relationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (TWP) (BSC 2004 [DIRS 169573]). This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil-Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. The purpose of this analysis was to develop the biosphere model parameters associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation or ash deposition and, as a direct consequence, radionuclide concentration in other environmental media that are affected by radionuclide concentrations in soil. The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573]) where the governing procedure

  14. Integrated Biosphere Simulator Model (IBIS), Version 2.5

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The Integrated Biosphere Simulator (or IBIS) is designed to be a comprehensive model of the terrestrial biosphere. Tthe model represents a wide range of...

  15. Integrated Biosphere Simulator Model (IBIS), Version 2.5

    Data.gov (United States)

    National Aeronautics and Space Administration — The Integrated Biosphere Simulator (or IBIS) is designed to be a comprehensive model of the terrestrial biosphere. Tthe model represents a wide range of processes,...

  16. Analysis specifications for the CC3 biosphere model BIOTRAC

    International Nuclear Information System (INIS)

    Szekely, J.G.; Wojciechowski, L.C.; Stephens, M.E.; Halliday, H.A.

    1994-12-01

    AECL Research is assessing a concept for disposing of Canada's nuclear fuel waste in a vault deep in plutonic rock of the Canadian Shield. A computer program called the Systems Variability Analysis Code (SYVAC) has been developed as an analytical tool for the postclosure (long-term) assessment of the concept. SYVAC3, the third generation of the code, is an executive program that directs repeated simulation of the disposal system to take into account parameter variation. For the postclosure assessment, the system model, CC3 (Canadian Concept, generation 3), was developed to describe a hypothetical disposal system that includes a disposal vault, the local geosphere and the biosphere in the vicinity of any discharge zones. BIOTRAC (BIOsphere TRansport And Consequences) is the biosphere model in the CC3 system model. The specifications for BIOTRAC, which were developed over a period of seven years, were subjected to numerous walkthrough examinations by the Biosphere Model Working Group to ensure that the intent of the model developers would be correctly specified for transformation into FORTRAN code. The FORTRAN version of BIOTRAC was written from interim versions of these specifications. Improvements to the code are based on revised versions of these specifications. The specifications consist of a data dictionary; sets of synopses, data flow diagrams and mini specs for the component models of BIOTRAC (surface water, soil, atmosphere, and food chain and dose); and supporting calculations (interface to the geosphere, consequences, and mass balance). (author). 20 refs., tabs., figs

  17. Radioecological modelling of the biosphere as illustrated by the example of the model area Oberbauenstock

    International Nuclear Information System (INIS)

    Boehringer, J.; Fritschi, M.; Schwanner, I.; Resele, G.

    1986-06-01

    The biosphere model is the final link in the chain of radionuclide transport models used for radiation dose calculations for nuclear waste repositories. The dispersion of radionuclides from a low and intermediate level waste repository in the biosphere and their uptake by man through food pathways is investigated with a compartment model. The relevant biosphere parameters were based on the model site at Oberbauenstock and compiled as a model data set for further use in the biosphere modelling. Nuclide concentrations in the biosphere compartments and foodstuffs as well as annual individual radiation doses are calculated with the computer program BIOSPH. The present report contains a description of the model area and its subdivision into 4 compartments, a compilation of the relevant parameters and the simplifying assumptions that have been made, discussion of mathematical modelling of nuclide transport in the biosphere and of the calculation of the individual radiation doses, a technical description of the computer program BIOSPH and a detailed presentation of the results from the model calculations. (author)

  18. Agricultural and Environmental Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    K. Rasmuson; K. Rautenstrauch

    2004-01-01

    This analysis is one of 10 technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) (i.e., the biosphere model). It documents development of agricultural and environmental input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the ERMYN and its input parameters

  19. Models for dose assessments. Modules for various biosphere types

    International Nuclear Information System (INIS)

    Bergstroem, U.; Nordlinder, S.; Aggeryd, I.

    1999-12-01

    The main objective of this study was to provide a basis for illustrations of yearly dose rates to the most exposed individual from hypothetical leakages of radionuclides from a deep bedrock repository for spent nuclear fuel and other radioactive waste. The results of this study will be used in the safety assessment SR 97 and in a study on the design and long-term safety for a repository planned to contain long-lived low and intermediate level waste. The repositories will be designed to isolate the radionuclides for several hundred thousands of years. In the SR 97 study, however, hypothetical scenarios for leakage are postulated. Radionuclides are hence assumed to be transported in the geosphere by groundwater, and probably discharge into the biosphere. This may occur in several types of ecosystems. A number of categories of such ecosystems were identified, and turnover of radionuclides was modelled separately for each ecosystem. Previous studies had focused on generic models for wells, lakes and coastal areas. These models were, in this study, developed further to use site-specific data. In addition, flows of groundwater, containing radionuclides, to agricultural land and peat bogs were considered. All these categories are referred to as modules in this report. The forest ecosystems were not included, due to a general lack of knowledge of biospheric processes in connection with discharge of groundwater in forested areas. Examples of each type of module were run with the assumption of a continuous annual release into the biosphere of 1 Bq for each radionuclide during 10 000 years. The results are presented as ecosystem specific dose conversion factors (EDFs) for each nuclide at the year 10 000, assuming stationary ecosystems and prevailing living conditions and habits. All calculations were performed with uncertainty analyses included. Simplifications and assumptions in the modelling of biospheric processes are discussed. The use of modules may be seen as a step

  20. Models for dose assessments. Modules for various biosphere types

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, U.; Nordlinder, S.; Aggeryd, I. [Studsvik Eco and Safety AB, Nykoeping (Sweden)

    1999-12-01

    The main objective of this study was to provide a basis for illustrations of yearly dose rates to the most exposed individual from hypothetical leakages of radionuclides from a deep bedrock repository for spent nuclear fuel and other radioactive waste. The results of this study will be used in the safety assessment SR 97 and in a study on the design and long-term safety for a repository planned to contain long-lived low and intermediate level waste. The repositories will be designed to isolate the radionuclides for several hundred thousands of years. In the SR 97 study, however, hypothetical scenarios for leakage are postulated. Radionuclides are hence assumed to be transported in the geosphere by groundwater, and probably discharge into the biosphere. This may occur in several types of ecosystems. A number of categories of such ecosystems were identified, and turnover of radionuclides was modelled separately for each ecosystem. Previous studies had focused on generic models for wells, lakes and coastal areas. These models were, in this study, developed further to use site-specific data. In addition, flows of groundwater, containing radionuclides, to agricultural land and peat bogs were considered. All these categories are referred to as modules in this report. The forest ecosystems were not included, due to a general lack of knowledge of biospheric processes in connection with discharge of groundwater in forested areas. Examples of each type of module were run with the assumption of a continuous annual release into the biosphere of 1 Bq for each radionuclide during 10 000 years. The results are presented as ecosystem specific dose conversion factors (EDFs) for each nuclide at the year 10 000, assuming stationary ecosystems and prevailing living conditions and habits. All calculations were performed with uncertainty analyses included. Simplifications and assumptions in the modelling of biospheric processes are discussed. The use of modules may be seen as a step

  1. Work in support of biosphere assessments for solid radioactive waste disposal. 2. biosphere FEP list and biosphere modelling

    International Nuclear Information System (INIS)

    Egan, M.J.; Maul, P.R.; Watkins, B.M.; Venter, A.

    2001-10-01

    In order to assist SSI in its reappraisal of the SFR safety case, QuantiSci has been appointed to develop a systematic framework within which to conduct the review of SKB's post-closure performance assessment (PA). The biosphere FEP list presented here was developed for use as reference material in conducting the review. SSI wishes to develop an independent PA capability for a time-dependent biosphere in preparation for the examination of the revised SFR safety case. This report documents the model development that has been undertaken by QuantiSci using the Amber computer code

  2. Work in support of biosphere assessments for solid radioactive waste disposal. 2. biosphere FEP list and biosphere modelling

    Energy Technology Data Exchange (ETDEWEB)

    Egan, M.J.; Maul, P.R.; Watkins, B.M.; Venter, A. [QuantiSci Ltd., Henley-on-Thames (United Kingdom)

    2001-10-01

    In order to assist SSI in its reappraisal of the SFR safety case, QuantiSci has been appointed to develop a systematic framework within which to conduct the review of SKB's post-closure performance assessment (PA). The biosphere FEP list presented here was developed for use as reference material in conducting the review. SSI wishes to develop an independent PA capability for a time-dependent biosphere in preparation for the examination of the revised SFR safety case. This report documents the model development that has been undertaken by QuantiSci using the Amber computer code.

  3. Characteristics of the Receptor for the Biosphere Model

    International Nuclear Information System (INIS)

    Wasiolek, M.A.; Rautenstrauch, K.R.

    2003-01-01

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the products (i.e., analysis and model reports) developed for biosphere modeling and biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (TWP) (BSC 2003). Some documents identified in Figure 1-1 may be under development and not available at the time this report is issued. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and access to the listed documents is not required to understand the contents of this report. This report is one of the reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2003), describes the conceptual model as well as the mathematical model and its input parameters. The purpose of this analysis report is to define values for biosphere model parameters that are related to the dietary, lifestyle, and dosimetric characteristics of the receptor. The biosphere model, consistent with the licensing rule at 10 CFR Part 63, uses a hypothetical person called the reasonably maximally exposed individual (RMEI) to represent the potentially exposed population. The parameters that define the RMEI are based on the behaviors and characteristics of the Amargosa Valley population, consistent with the requirements of 10 CFR 63.312. Amargosa Valley is the community, located in the direction of the projected groundwater flow path, where most of the farming in the area occurs. The parameter values developed in this report support the

  4. Characteristics of the Receptor for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Wasiolek; K.R. Rautenstrauch

    2003-06-27

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the products (i.e., analysis and model reports) developed for biosphere modeling and biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (TWP) (BSC 2003). Some documents identified in Figure 1-1 may be under development and not available at the time this report is issued. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and access to the listed documents is not required to understand the contents of this report. This report is one of the reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2003), describes the conceptual model as well as the mathematical model and its input parameters. The purpose of this analysis report is to define values for biosphere model parameters that are related to the dietary, lifestyle, and dosimetric characteristics of the receptor. The biosphere model, consistent with the licensing rule at 10 CFR Part 63, uses a hypothetical person called the reasonably maximally exposed individual (RMEI) to represent the potentially exposed population. The parameters that define the RMEI are based on the behaviors and characteristics of the Amargosa Valley population, consistent with the requirements of 10 CFR 63.312. Amargosa Valley is the community, located in the direction of the projected groundwater flow path, where most of the farming in the area occurs. The parameter values

  5. Biosphere models for safety assessment of radioactive waste disposal

    International Nuclear Information System (INIS)

    Proehl, G.; Olyslaegers, G.; Zeevaert, T.; Kanyar, B.; Bergstroem, U.; Hallberg, B.; Mobbs, S.; Chen, Q.; Kowe, R.

    2004-01-01

    The aim of the BioMoSA project has been to contribute in the confidence building of biosphere models, for application in performance assessments of radioactive waste disposal. The detailed objectives of this project are: development and test of practical biosphere models for application in long-term safety studies of radioactive waste disposal to different European locations, identification of features, events and processes that need to be modelled on a site-specific rather than on a generic base, comparison of the results and quantification of the variability of site-specific models developed according to the reference biosphere methodology, development of a generic biosphere tool for application in long term safety studies, comparison of results from site-specific models to those from generic one, Identification of possibilities and limitations for the application of the generic biosphere model. (orig.)

  6. Biosphere models for safety assesment of radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Proehl, G.; Olyslaegers, G.; Zeevaert, T. [SCK/CEN, Mol (Belgium); Kanyar, B. [University of Veszprem (Hungary). Dept. of Radiochemistry; Pinedo, P.; Simon, I. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Bergstroem, U.; Hallberg, B. [Studsvik Ecosafe, Nykoeping (Sweden); Mobbs, S.; Chen, Q.; Kowe, R. [NRPB, Chilton, Didcot (United Kingdom)

    2004-07-01

    The aim of the BioMoSA project has been to contribute in the confidence building of biosphere models, for application in performance assessments of radioactive waste disposal. The detailed objectives of this project are: development and test of practical biosphere models for application in long-term safety studies of radioactive waste disposal to different European locations, identification of features, events and processes that need to be modelled on a site-specific rather than on a generic base, comparison of the results and quantification of the variability of site-specific models developed according to the reference biosphere methodology, development of a generic biosphere tool for application in long term safety studies, comparison of results from site-specific models to those from generic one, Identification of possibilities and limitations for the application of the generic biosphere model. (orig.)

  7. Biosphere transport of radionuclides. First modelling by using a selected example

    International Nuclear Information System (INIS)

    Bundi, A.

    1984-12-01

    The dispersion of radionuclides in the biosphere and their uptake by man via various nutritional pathways is studied using a compartment model. The sample environment is the area of the lower Limmat and Aare valleys. General considerations of the compartmental description of the biosphere are made. The problem of the description of surface features, in particular soil, sediment and water, is studied in detail using the code BIOPATH. This study is intended to be an example of how a model of the biosphere could be constructed. It is shown that this is a reasonable model to calculate the spreading of radionuclides in the biosphere and that it indicates the relative significance of individual compartments, pathways and radionuclides. Calculated values of doses to man, however, should not be used as reference data for safety analyses. (author)

  8. Agricultural and Environmental Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    Kaylie Rasmuson; Kurt Rautenstrauch

    2003-06-20

    This analysis is one of nine technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. It documents input parameters for the biosphere model, and supports the use of the model to develop Biosphere Dose Conversion Factors (BDCF). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in the biosphere Technical Work Plan (TWP, BSC 2003a). It should be noted that some documents identified in Figure 1-1 may be under development and therefore not available at the time this document is issued. The ''Biosphere Model Report'' (BSC 2003b) describes the ERMYN and its input parameters. This analysis report, ANL-MGR-MD-000006, ''Agricultural and Environmental Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. This report defines and justifies values for twelve parameters required in the biosphere model. These parameters are related to use of contaminated groundwater to grow crops. The parameter values recommended in this report are used in the soil, plant, and carbon-14 submodels of the ERMYN.

  9. NACP Site: Terrestrial Biosphere Model Output Data in Original Format

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains the original model output data submissions from the 24 terrestrial biosphere models (TBM) that participated in the North American...

  10. NACP Site: Terrestrial Biosphere Model Output Data in Original Format

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains the original model output data submissions from the 24 terrestrial biosphere models (TBM) that participated in the North American Carbon...

  11. Biosphere modelling for safety assessment of geological disposal taking account of denudation of contaminated soils. Research document

    International Nuclear Information System (INIS)

    Kato, Tomoko

    2003-03-01

    Biosphere models for safety assessment of geological disposal have been developed on the assumption that the repository-derived radionuclides reach surface environment by groundwater. In the modelling, river, deep well and marine have been considered as geosphere-biosphere (GBIs) and some Japanese-specific ''reference biospheres'' have been developed using an approach consistent with the BIOMOVS II/BIOMASS Reference Biosphere Methodology. In this study, it is assumed that the repository-derived radionuclide would reach surface environment in the form of solid phase by uplift and erosion of contaminated soil and sediment. The radionuclides entered into the surface environment by these processes could be distributed between solid and liquid phases and could spread within the biosphere via solid phase and also liquid phase. Based on these concepts, biosphere model that considers variably saturated zone under surface soil (VSZ) as a GBI was developed for calculating the flux-to-dose conversion factors of three exposure groups (farming, freshwater fishing, marine fishing) based on the Reference Biosphere Methodology. The flux-to-dose conversion factors for faming exposure group were the highest, and ''inhalation of dust'', external irradiation from soil'' and ''ingestion of soil'' were the dominant exposure pathways for most of radionuclides considered in this model. It is impossible to compare the flux-to-dose conversion factors calculated by the biosphere model in this study with those calculated by the biosphere models developed in the previous studies because the migration processes considered when the radionuclides entered the surface environment through the aquifer are different among the models; i.e. it has been assumed that the repository-derived radionuclides entered the GBIs such as river, deep well and marine via groundwater without dilution and retardation at the aquifer in the previous biosphere models. Consequently, it must be modelled the migration of

  12. A simplified biosphere model for global climate studies

    Science.gov (United States)

    Xue, Y.; Sellers, P. J.; Kinter, J. L.; Shukla, J.

    1991-01-01

    A comprehensive analysis of the simple biosphere model (SIB) of Sellers et al. (1986) is performed in an effort to bridge the gap between the typical hydrological treatment of the land surface biosphere and the conventional general circulation model treatment, which is specified through a single parameter. Approximations are developed that stimulate the effects of reduced soil moisture more simply, maintaining the essence of the biophysical concepts utilized in SIB. Comparing the reduced parameter biosphere with those from the original formulation in a GCM and a zero-dimensional model shows the simplified version to reproduce the original results quite closely.

  13. Agricultural and Environmental Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    K. Rasmuson; K. Rautenstrauch

    2004-09-14

    This analysis is one of 10 technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) (i.e., the biosphere model). It documents development of agricultural and environmental input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the ERMYN and its input parameters.

  14. A biosphere model for use in the SKI Project SITE-94

    International Nuclear Information System (INIS)

    Barrdahl, R.A.G.

    1995-04-01

    A simple biosphere model has been designed for use in the SKI Project SITE-94 related to a hypothetical repository for spent nuclear fuel on the island of Aespoe near Oskarshamn in southern Sweden. The model provides results in terms of radiation dose per Bq/y, unless otherwise indicated, and results will thus have to be scaled with actual flux of radionuclides per year entering the primary biosphere recipients. The model does not include radioactive decay as there is assumed no delay in the model system, except for where explicitly mentioned. Specifically, no radioactive transitions resulting in daughter nuclides are considered. Calculated yearly individual and population committed (50 years) radiation doses to man are expressed in terms of Sv/y and radiation dose rates to fish are expressed as mSv/h. Calculated radiation doses resulting from the present biosphere model are hypothetical, and should under no circumstances be considered as real. Neither should they be used as quantitative information for decision purposes. The biosphere model is of a rough and primitive character and its precision, relative to the real biosphere in the surroundings of Aespoe is envisaged to be several orders of magnitude

  15. Biosphere modelling for a HLW repository - scenario and parameter variations

    International Nuclear Information System (INIS)

    Grogan, H.

    1985-03-01

    In Switzerland high-level radioactive wastes have been considered for disposal in deep-lying crystalline formations. The individual doses to man resulting from radionuclides entering the biosphere via groundwater transport are calculated. The main recipient area modelled, which constitutes the base case, is a broad gravel terrace sited along the south bank of the river Rhine. An alternative recipient region, a small valley with a well, is also modelled. A number of parameter variations are performed in order to ascertain their impact on the doses. Finally two scenario changes are modelled somewhat simplistically, these consider different prevailing climates, namely tundra and a warmer climate than present. In the base case negligibly low doses to man in the long term, resulting from the existence of a HLW repository have been calculated. Cs-135 results in the largest dose (8.4E-7 mrem/y at 6.1E+6 y) while Np-237 gives the largest dose from the actinides (3.6E-8 mrem/y). The response of the model to parameter variations cannot be easily predicted due to non-linear coupling of many of the parameters. However, the calculated doses were negligibly low in all cases as were those resulting from the two scenario variations. (author)

  16. Radionuclide transport and dose assessment modelling in biosphere assessment 2009

    International Nuclear Information System (INIS)

    Hjerpe, T.; Broed, R.

    2010-11-01

    Following the guidelines set forth by the Ministry of Trade and Industry (now Ministry of Employment and Economy), Posiva is preparing to submit a construction license application for the final disposal spent nuclear fuel at the Olkiluoto site, Finland, by the end of the year 2012. Disposal will take place in a geological repository implemented according to the KBS-3 method. The long-term safety section supporting the license application will be based on a safety case that, according to the internationally adopted definition, will be a compilation of the evidence, analyses and arguments that quantify and substantiate the safety and the level of expert confidence in the safety of the planned repository. This report documents in detail the conceptual and mathematical models and key data used in the landscape model set-up, radionuclide transport modelling, and radiological consequences analysis applied in the 2009 biosphere assessment. Resulting environmental activity concentrations in landscape model due to constant unit geosphere release rates, and the corresponding annual doses, are also calculated and presented in this report. This provides the basis for understanding the behaviour of the applied landscape model and subsequent dose calculations. (orig.)

  17. WEB-DHM: A distributed biosphere hydrological model developed by coupling a simple biosphere scheme with a hillslope hydrological model

    Science.gov (United States)

    The coupling of land surface models and hydrological models potentially improves the land surface representation, benefiting both the streamflow prediction capabilities as well as providing improved estimates of water and energy fluxes into the atmosphere. In this study, the simple biosphere model 2...

  18. Biosphere modeling for safety assessment of high-level radioactive waste geological disposal

    International Nuclear Information System (INIS)

    Baba, T.; Ishihara, Y.; Ishiguro, K.; Suzuki, Y.; Naito, M.; Ikeda, T.; Little, R.

    1999-11-01

    In the safety assessment of a high-level radioactive waste disposal system, it is required to estimate future radiological impacts on human beings. Consideration of living habits and the human environment in the future involves a large degree of uncertainty. To avoid endless speculation aimed at reducing such uncertainty, an approach is applied for identifying and justifying a 'reference biosphere' for use in safety assessment in Japan. Considering a wide range of Japanese geological environments, some specific reference biospheres' are developed using an approach consistent with the BIOMOVS II reference biosphere methodology. The models represent the components of the surface environment using compartments between which fluxes of materials (solid/water) and radionuclides are defined by transfer factors. A range of exposure pathways via which such radionuclides enter the food-chain, along with uptake and concentration factors, are also defined. The response to a step function of unit flux from the geosphere is determined for each model. The results show that it is reasonable to use steady-state biosphere responses to a unit-input flux to define nuclide-dependent factors for converting fluxes from the geosphere to doses. This simplifies safety assessment calculations, which then require only look-up tables for such flux to dose conversion rather than fully coupled biosphere models. (author)

  19. Radioactive waste disposal assessment - overview of biosphere processes and models

    International Nuclear Information System (INIS)

    Coughtrey, P.J.

    1992-09-01

    This report provides an overview of biosphere processes and models in the general context of the radiological assessment of radioactive waste disposal as a basis for HMIP's response to biosphere aspects of Nirex's submissions for disposal of radioactive wastes in a purpose-built repository at Sellafield, Cumbria. The overview takes into account published information from the UK as available from Nirex's safety and assessment research programme and HMIP's disposal assessment programme, as well as that available from studies in the UK and elsewhere. (Author)

  20. Developpement of a GoldSim Biosphere Model, Evaluation, and Its Verification

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Hwang, Yong Soo

    2009-12-01

    For the purpose of evaluating dose rate to individual due to long-term release of nuclides from the repository for an HLW or a pyroprocessing repository, a biosphere assessment model and the implemented program based on BIOMASS methodology have been developed by utilizing GoldSim, a general model developing tool. To show its practicability and usability as well as to see the sensitivity of parametric and scenario variations to the annual exposure, some probabilistic calculations are made and investigated. For the cases when changing the exposure groups and associated GBIs as well as varying selected input values, all of which seem important for the biosphere evaluation, dose rate per nuclide release rate is probabilistically calculated and analyzed. A series of comparison studies with JAEA, Japan have been also carried out to verify the model

  1. Biosphere model for assessing doses from nuclear waste disposal

    International Nuclear Information System (INIS)

    Zach, R.; Amiro, B.D.; Davis, P.A.; Sheppard, S.C.; Szekeley, J.G.

    1994-01-01

    The biosphere model, BIOTRAC, for predicting long term nuclide concentrations and radiological doses from Canada's nuclear fuel waste disposal concept of a vault deep in plutonic rock of the Canadian Shield is presented. This generic, boreal zone biosphere model is based on scenario analysis and systems variability analysis using Monte Carlo simulation techniques. Conservatism is used to bridge uncertainties, even though this creates a small amount of extra nuclide mass. Environmental change over the very long assessment period is mainly handled through distributed parameter values. The dose receptors are a critical group of humans and four generic non-human target organisms. BIOTRAC includes six integrated submodels and it interfaces smoothly with a geosphere model. This interface includes a bedrock well. The geosphere model defines the discharge zones of deep groundwater where nuclides released from the vault enter the biosphere occupied by the dose receptors. The size of one of these zones is reduced when water is withdrawn from the bedrock well. Sensitivity analysis indicates 129 I is by far the most important radionuclide. Results also show bedrock-well water leads to higher doses to man than lake water, but the former doses decrease with the size of the critical group. Under comparable circumstances, doses to the non-human biota are greater than those for man

  2. Radioactive waste management. International projects on biosphere modelling

    International Nuclear Information System (INIS)

    Carboneras, P.; Cancio, D.

    1993-01-01

    The paper presents a general overview and discussion on the state of art concerning the biospheric transfer and accumulation of contaminants. A special emphasis is given to the progress achieved in the field of radioactive contaminants and particularly to those implied in radioactive waste disposal. The objectives and advances of the international projects BIOMOVS and VAMP on validation of model predictions are also described. (Author)

  3. Biosphere modelling for the assessment of radioactive waste repositories: the development of a common basis by the BIOMOVS II working group on reference biospheres

    International Nuclear Information System (INIS)

    VanDorp, F.

    1996-01-01

    Performance criteria for radioactive waste repositories are often expressed in terms of dose or risk. The characteristics of biosphere modelling for performance assessment are that: a) potential release occurs in the distant future, b) reliable predictions of human behaviour at the time of release are impracticable, and c) the biosphere is not considered to be a barrier. For these and other reasons, many unexplained differences have arisen in the approaches to biosphere modelling. The BIOMOVS II Working Group on Reference Biospheres has developed a) a recommended methodology for biosphere model development, b) a structured electronic list of features, events and processes (FEPs), and c) an illustrative example of the recommended methodology. The Working Group has successfully tested the Interaction Matrix (or Rock Engineering Systems, RES) approach for developing conceptual models. The BIOMOVS II Working Groups on Reference Biospheres and Complementary Studies have achieved considerable harmonisation in approaches to biosphere modelling. (author)

  4. An efficient and accurate representation of complex oceanic and biospheric models of anthropogenic carbon uptake

    Science.gov (United States)

    Joos, Fortunat; Bruno, Michele; Fink, Roger; Siegenthaler, Ulrich; Stocker, Thomas F.; Le Quéré, Corinne; Sarmiento, Jorge L.

    1996-07-01

    Establishing the link between atmospheric CO2 concentration and anthropogenic carbon emissions requires the development of complex carbon cycle models of the primary sinks, the ocean and terrestrial biosphere. Once such models have been developed, the potential exists to use pulse response functions to characterize their behaviour. However, the application of response functions based on a pulse increase in atmospheric CO2 to characterize oceanic uptake, the conventional technique, does not yield a very accurate result due to nonlinearities in the aquatic carbon chemistry. Here, we propose the use of an ocean mixed-layer pulse response function that characterizes the surface to deep ocean mixing in combination with a separate equation describing air-sea exchange. The use of a mixed-layer pulse response function avoids the problem arising from the nonlinearities of the carbon chemistry and gives therefore more accurate results. The response function is also valid for tracers other than carbon. We found that tracer uptake of the HILDA and Box-Diffusion model can be represented exactly by the new method. For the Princeton 3-D model, we find that the agreement between the complete model and its pulse substitute is better than 4% for the cumulative uptake of anthropogenic carbon for the period 1765 2300 applying the IPCC stabilization scenarios S450 and S750 and better than 2% for the simulated inventory and surface concentration of bomb-produced radiocarbon. By contrast, the use of atmospheric response functions gives deviations up to 73% for the cumulative CO2 uptake as calculated with the Princeton 3-D model. We introduce the use of a decay response function for calculating the potential carbon storage on land as a substitute for terrestrial biosphere models that describe the overturning of assimilated carbon. This, in combination with an equation describing the net primary productivity permits us to exactly characterize simple biosphere models. As the time scales of

  5. Using observations to evaluate biosphere-atmosphere interactions in models

    Science.gov (United States)

    Green, Julia; Konings, Alexandra G.; Alemohammad, Seyed H.; Gentine, Pierre

    2017-04-01

    Biosphere-atmosphere interactions influence the hydrologic cycle by altering climate and weather patterns (Charney, 1975; Koster et al., 2006; Seneviratne et al., 2006), contributing up to 30% of precipitation and radiation variability in certain regions (Green et al., 2017). They have been shown to contribute to the persistence of drought in Europe (Seneviratne et al., 2006), as well as to increase rainfall in the Amazon (Spracklen et al., 2012). Thus, a true representation of these feedbacks in Earth System Models (ESMs) is crucial for accurate forecasting and planning. However, it has been difficult to validate the performance of ESMs since often-times surface and atmospheric flux data are scarce and/or difficult to observe. In this study, we use the results of a new global observational study (using remotely sensed solar-induced fluorescence to represent the biosphere flux) (Green et al., 2017) to determine how well a suite of 13 ESMs capture biosphere-atmosphere feedbacks. We perform a Conditional Multivariate Granger Causality analysis in the frequency domain with radiation, precipitation and temperature as atmospheric inputs and GPP as the biospheric input. Performing the analysis in the frequency domain allows for separation of feedbacks at different time-scales (subseasonal, seasonal or interannual). Our findings can be used to determine whether there is agreement between models, as well as, to pinpoint regions or time-scales of model bias or inaccuracy, which will provide insight on potential improvement. We demonstrate that in addition to the well-known problem of convective parameterization over land in models, the main issue in representing feedbacks between the land and the atmosphere is due to the misrepresentation of water stress. These results provide a direct quantitative assessment of feedbacks in models and how to improve them. References: Charney, J.G. Dynamics of deserts and drought in the Sahel. Quarterly Journal of the Royal Meteorological

  6. Short description of the BIOS-model, and selection of biosphere parameters to be used in radionuclide transport and dose

    International Nuclear Information System (INIS)

    Jong, E.J. de; Koester, H.W.; Vries, W.J. de.

    1990-02-01

    In the framework of the PACOMA-project (Performance assessment of confinements for medium and alpha waste), initiated by the European Commission, possible future radiation doses, due to contamination of the biosphere by radionuclides originating from radioactive waste disposed in salt-formations, were calculated. In all cases considered radionuclides coming out of the geosphere enter a river. For the biosphere calculations the BIOS-model, developed by the NRPB in England, is used. A short description of the model, as well as of the adjustments made at the RIVM to calculate the total individual and collective doses and the subdoses of different exposure pathways is given. The values of biosphere parameters selected for the model are presented, together with the literature consulted. (author). 17 refs., 3 figs.; 2 tabs

  7. Application of biosphere models in the Biomosa project: a comparative assessment of five European radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Kowe, R.; Mobbs, S.; Proehl, G.; Bergstrom, U.; Kanyar, B.; Olyslaegers, G.; Zeevaert, T.; Simon, I.

    2004-01-01

    The BIOMOSA (Biosphere Models for Safety Assessment of Radioactive Waste Disposal) project is a part of the EC fifth framework research programme. The main goal of this project is the improvement of the scientific basis for the application of biosphere models in the framework of long-term safety studies of radioactive waste disposal facilities. Furthermore, the outcome of the project will provide operators and regulatory bodies with guidelines for performance assessments of repository systems. The study focuses on the development and application of site-specific models and a generic biosphere tool BIOGEM (Biosphere Generic Model), using the experience from the national programmes and the IAEA BIOMASS reference biosphere methodology. The models were applied to 5 typical locations in the EU, resulting in estimates of the annual individual doses to the critical groups and the ranking of the importance of the pathways for each of the sites. The results of the site-specific and generic models were then compared. In all cases the doses calculated by the generic model were less than the doses obtained from the site-specific models. Uncertainty in the results was estimated by means of stochastic calculations which allow a comparison of the overall model uncertainty with the variability across the different sites considered. (author)

  8. NACP Regional: Gridded 1-deg Observation Data and Biosphere and Inverse Model Outputs

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains standardized gridded observation data, terrestrial biosphere model output data, and inverse model simulations of carbon flux...

  9. NACP Regional: Gridded 1-deg Observation Data and Biosphere and Inverse Model Outputs

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains standardized gridded observation data, terrestrial biosphere model output data, and inverse model simulations of carbon flux parameters that...

  10. NACP Regional: Original Observation Data and Biosphere and Inverse Model Outputs

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains the originally-submitted observation measurement data, terrestrial biosphere model output data, and inverse model simulations that various...

  11. NACP Regional: Original Observation Data and Biosphere and Inverse Model Outputs

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains the originally-submitted observation measurement data, terrestrial biosphere model output data, and inverse model simulations that...

  12. A comparative Study between GoldSim and AMBER Based Biosphere Assessment Models for an HLW Repository

    International Nuclear Information System (INIS)

    Lee, Youn-Myoung; Hwang, Yong-Soo

    2007-01-01

    To demonstrate the performance of a repository, the dose exposure rate to human being due to long-term nuclide releases from a high-level waste repository (HLW) should be evaluated and the results compared to the dose limit presented by the regulatory bodies. To evaluate such a dose rate to an individual, biosphere assessment models have been developed and implemented for a practical calculation with the aid of such commercial tools as AMBER and GoldSim, both of which are capable of probabilistic and deterministic calculation. AMBER is a general purpose compartment modeling tool and GoldSim is another multipurpose simulation tool for dynamically modeling complex systems, supporting a higher graphical user interface than AMBER and a postprocessing feature. And also unlike AMBER, any kind of compartment scheme can be rather simply constructed with an appropriate transition rate between compartments, GoldSim is designed to facilitate the object-oriented modules to address any specialized programs, similar to solving jig saw puzzles. During the last couple of years a compartment modeling approach for a biosphere has been mainly carried out with AMBER in KAERI in order to conservatively or rather roughly provide dose conversion factors to get the final exposure rate due to a nuclide flux into biosphere over various geosphere-biosphere interfaces (GBIs) calculated through nuclide transport modules. This caused a necessity for a newly devised biosphere model that could be coupled to a nuclide transport model with less conservatism in the frame of the development of a total system performance assessment modeling tool, which could be successfully done with the aid of GoldSim. Therefore, through the current study, some comparison results of the AMBER and the GoldSim approaches for the same case of a biosphere modeling without any consideration of geosphere transport are introduced by extending a previous study

  13. An overview of biosphere modelling for the assessment of solid waste disposal

    International Nuclear Information System (INIS)

    Smith, G.M.

    1990-01-01

    The purpose of this paper is to discuss the role of biosphere modelling in relation to the overall assessment of disposal of solid radioactive waste. Model structure and data requirements are strongly influenced by a number of basic factors. Firstly, the alternative forms of safety criteria and regulatory requirements imply different end-points for biosphere models. Secondly, alternative disposal concepts can influence the significance of the biosphere as a barrier or diluting/concentrating feature affecting exposure of man. Thirdly, the range of different possibilities for release to the biosphere, including releases following intrusion, is very extensive. The requirements and state of development of biosphere models are discussed in relation to these factors along with methods being adopted to provide some expression of confidence in model results. 37 refs

  14. Evaluation of Features, Events, and Processes (FEP) for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek; P. Rogers

    2004-10-27

    The purpose of this analysis report is to evaluate and document the inclusion or exclusion of biosphere features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for the license application (LA). A screening decision, either ''Included'' or ''Excluded'', is given for each FEP along with the corresponding technical basis for the excluded FEPs and the descriptions of how the included FEPs were incorporated in the biosphere model. This information is required by the U.S. Nuclear Regulatory Commission (NRC) regulations at 10 CFR 63.114 (d, e, and f) [DIRS 156605]. The FEPs addressed in this report concern characteristics of the reference biosphere, the receptor, and the environmental transport and receptor exposure pathways for the groundwater and volcanic ash exposure scenarios considered in biosphere modeling. This revision provides the summary of the implementation of included FEPs in TSPA-LA, (i.e., how the FEP is included); for excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded). This report is one of the 10 documents constituting the biosphere model documentation suite. A graphical representation of the documentation hierarchy for the biosphere model is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling. The ''Biosphere Model Report'' describes in detail the biosphere conceptual model and mathematical model. The input parameter reports shown to the right of the ''Biosphere Model Report'' contain detailed descriptions of the model input parameters and their development. Outputs from these six reports are used in the ''Nominal Performance Biosphere Dose Conversion Factor Analysis and Disruptive Event Biosphere Dose Conversion Factor Analysis

  15. DISRUPTIVE EVENT BIOSPHERE DOSE CONVERSION FACTOR ANALYSIS

    International Nuclear Information System (INIS)

    M.A. Wasiolek

    2005-01-01

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the volcanic ash exposure scenario, and the development of dose factors for calculating inhalation dose during volcanic eruption. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop biosphere BDCFs, which are input parameters for the TSPA model. The Biosphere Model Report (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed descriptions of the model input parameters, their development and the relationship between the parameters and specific features, events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the volcanic ash exposure scenario. This analysis receives direct input from the outputs of the ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) and from the five analyses that develop parameter values for the biosphere model (BSC 2005 [DIRS 172827]; BSC 2004 [DIRS 169672]; BSC 2004 [DIRS 169673]; BSC 2004 [DIRS 169458]; and BSC 2004 [DIRS 169459]). The results of this report are further analyzed in the ''Biosphere Dose Conversion Factor Importance and Sensitivity Analysis'' (Figure 1-1). The objective of this analysis was to develop the BDCFs for the volcanic

  16. Biosphere modelling for the assessment of radioactive waste repositories; the development of a common basis by the BIOMOVS II reference biospheres working group

    International Nuclear Information System (INIS)

    Dorp, F. van; Egan, M.; Kessler, J.H.; Nilsson, S.; Pinedo, P.; Smith, G.; Torres, C.

    1998-01-01

    Performance criteria for radioactive waste repositories are often expressed in terms of dose or risk. The characteristics of biosphere modelling for performance assessment are that: (a) potential release occurs in the distant future, (b) reliable predictions of human behaviour at the time of release are impracticable, and (c) the biosphere is not considered to be a barrier as the geosphere and the engineered barriers. For these and other reasons, differences have arisen in the approaches to biosphere modelling for repository dose and risk assessment. The BIOMOVS II Reference Biospheres Working Group has developed (a) a recommended methodology for biosphere model development, (b) a structured list of features, events and processes (FEPs) which the model should describe, and (c) an illustrative example of the recommended methodology. The Working Group has successfully tested the Interaction Matrix (or Rock Engineering Systems, RES) approach for developing conceptual models. The BIOMOVS II Working Groups on Reference Biospheres and Complementary Studies have laid the basis for considerable harmonisation in approaches to biosphere modelling of long term radionuclide releases. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  17. Biosphere Modeling for the Dose Assessment of a HLW Repository: Development of ACBIO

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youn Myoung; Hwang, Yong Soo; Kang, Chul Hyung

    2006-01-15

    For the purpose of evaluating a dose rate to an individual due to a long-term release of nuclides from a HLW repository, a biosphere assessment model and an implemented code, ACBIO, based on the BIOMASS methodology have been developed by utilizing AMBER, a general compartment modeling tool. To demonstrate its practicability and usability as well as to observe the sensitivity of the compartment scheme, the concentration, the activity in the compartments as well as the annual flux between the compartments at their peak values, were calculated and investigated. For each case when changing the structure of the compartments and GBIs as well as varying selected input Kd values, all of which seem very important among the others, the dose rate per nuclide release rate is calculated separately and analyzed. From the maximum dose rates, the flux to dose conversion factors for each nuclide were derived, which are used for converting the nuclide release rate appearing from the geosphere through various GBIs to dose rates (Sv/y) for an individual in a critical group. It has also been observed that the compartment scheme, the identification of a possible exposure group and the GBIs could all be highly sensitive to the final consequences in a biosphere modeling.

  18. 'Reference Biospheres' for solid radioactive waste disposal. Report of BIOMASS Theme 1 of the BIOsphere Modelling and ASSessment (BIOMASS) Programme. Part of the IAEA Co-ordinated Research Project on Biosphere Modelling and Assessment (BIOMASS)

    International Nuclear Information System (INIS)

    2003-07-01

    The IAEA Programme on BIOsphere Modelling and ASSessment (BIOMASS) was launched in Vienna in October 1996. The programme was concerned with developing and improving capabilities to predict the transfer of radionuclides in the environment. The programme had three themes: Theme 1: Radioactive Waste Disposal. The objective was to develop the concept of a standard or reference biosphere for application to the assessment of the long-term safety of repositories for radioactive waste. Under the general heading of 'Reference Biospheres', six Task Groups were established: Task Group 1: Principles for the Definition of Critical and Other Exposure Groups. Task Group 2: Principles for the Application of Data to Assessment Models. Task Group 3: Consideration of Alternative Assessment Contexts. Task Group 4: Biosphere System Identification and Justification. Task Group 5: Biosphere System Descriptions. Task Group 6: Model Development. Theme 2: Environmental Releases. BIOMASS provided an international forum for activities aimed at increasing the confidence in methods and models for the assessment of radiation exposure related to environmental releases. Two Working Groups addressed issues concerned with the reconstruction of radiation doses received by people from past releases of radionuclides to the environment and the evaluation of the efficacy of remedial measures. Theme 3: Biosphere Processes. The aim of this Theme was to improve capabilities for modelling the transfer of radionuclides in particular parts of the biosphere identified as being of potential radiological significance and where there were gaps in modelling approaches. This topic was explored using a range of methods including reviews of the literature, model inter-comparison exercises and, where possible, model testing against independent sources of data. Three Working Groups were established to examine the modelling of: (1) long term tritium dispersion in the environment; (2) radionuclide uptake by fruits; and (3

  19. SiB3 Modeled Global 1-degree Hourly Biosphere-Atmosphere Carbon Flux, 1998-2006

    Data.gov (United States)

    National Aeronautics and Space Administration — The Simple Biosphere Model, Version 3 (SiB3) was used to produce a global data set of hourly carbon fluxes between the atmosphere and the terrestrial biosphere for...

  20. The biosphere at Laxemar. Data, assumptions and models used in the SR-Can assessment

    International Nuclear Information System (INIS)

    Karlsson, Sara; Kautsky, Ulrik; Loefgren, Anders; Soederbaeck, Bjoern

    2006-10-01

    This is essentially a compilation of a variety of reports concerning the site investigations, the research activities and information derived from other sources important for the safety assessment. The main objective is to present prerequisites, methods and data used, in the biosphere modelling for the safety assessment SR-Can at the Laxemar site. A major part of the report focuses on how site-specific data are used, recalculated or modified in order to be applicable in the safety assessment context; and the methods and sub-models that are the basis for the biosphere modelling. Furthermore, the assumptions made as to the future states of surface ecosystems are mainly presented in this report. A similar report is provided for the Forsmark area. This report summarises the method adopted for safety assessment following a radionuclide release into the biosphere. The approach utilises the information about the site as far as possible and presents a way of calculating risk to humans. A central tool in the work is the description of the topography, where there is good understanding of the present conditions and the development over time is fairly predictable. The topography affects surface hydrology, sedimentation, size of drainage areas and the characteristics of ecosystems. Other parameters are human nutritional intake, which is assumed to be constant over time, and primary production (photosynthesis), which also is a fairly constant parameter over time. The Landscape Dose Factor approach (LDF) gives an integrated measure for the site and also resolves the issues relating to the size of the group with highest exposure. If this approach is widely accepted as method, still some improvements and refinement are necessary in collecting missing site data, reanalysing site data, reviewing radionuclide specific data, reformulating ecosystem models and evaluating the results with further sensitivity analysis

  1. The biosphere at Laxemar. Data, assumptions and models used in the SR-Can assessment

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Sara; Kautsky, Ulrik; Loefgren, Anders; Soederbaeck, Bjoern (eds.)

    2006-10-15

    This is essentially a compilation of a variety of reports concerning the site investigations, the research activities and information derived from other sources important for the safety assessment. The main objective is to present prerequisites, methods and data used, in the biosphere modelling for the safety assessment SR-Can at the Laxemar site. A major part of the report focuses on how site-specific data are used, recalculated or modified in order to be applicable in the safety assessment context; and the methods and sub-models that are the basis for the biosphere modelling. Furthermore, the assumptions made as to the future states of surface ecosystems are mainly presented in this report. A similar report is provided for the Forsmark area. This report summarises the method adopted for safety assessment following a radionuclide release into the biosphere. The approach utilises the information about the site as far as possible and presents a way of calculating risk to humans. A central tool in the work is the description of the topography, where there is good understanding of the present conditions and the development over time is fairly predictable. The topography affects surface hydrology, sedimentation, size of drainage areas and the characteristics of ecosystems. Other parameters are human nutritional intake, which is assumed to be constant over time, and primary production (photosynthesis), which also is a fairly constant parameter over time. The Landscape Dose Factor approach (LDF) gives an integrated measure for the site and also resolves the issues relating to the size of the group with highest exposure. If this approach is widely accepted as method, still some improvements and refinement are necessary in collecting missing site data, reanalysing site data, reviewing radionuclide specific data, reformulating ecosystem models and evaluating the results with further sensitivity analysis.

  2. Frozen soil parameterization in a distributed biosphere hydrological model

    Directory of Open Access Journals (Sweden)

    L. Wang

    2010-03-01

    Full Text Available In this study, a frozen soil parameterization has been modified and incorporated into a distributed biosphere hydrological model (WEB-DHM. The WEB-DHM with the frozen scheme was then rigorously evaluated in a small cold area, the Binngou watershed, against the in-situ observations from the WATER (Watershed Allied Telemetry Experimental Research. First, by using the original WEB-DHM without the frozen scheme, the land surface parameters and two van Genuchten parameters were optimized using the observed surface radiation fluxes and the soil moistures at upper layers (5, 10 and 20 cm depths at the DY station in July. Second, by using the WEB-DHM with the frozen scheme, two frozen soil parameters were calibrated using the observed soil temperature at 5 cm depth at the DY station from 21 November 2007 to 20 April 2008; while the other soil hydraulic parameters were optimized by the calibration of the discharges at the basin outlet in July and August that covers the annual largest flood peak in 2008. With these calibrated parameters, the WEB-DHM with the frozen scheme was then used for a yearlong validation from 21 November 2007 to 20 November 2008. Results showed that the WEB-DHM with the frozen scheme has given much better performance than the WEB-DHM without the frozen scheme, in the simulations of soil moisture profile at the cold regions catchment and the discharges at the basin outlet in the yearlong simulation.

  3. Carbon-14 in the biosphere: Modeling and supporting research for the Canadian Nuclear Fuel Waste Management program

    International Nuclear Information System (INIS)

    Sheppard, S.C.; Amiro, B.D.; Sheppard, M.I.; Stephenson, M.; Zach, R.; Bird, G.A.

    1994-01-01

    Carbon-14 stands apart from most of the radionuclides present in nuclear fuel waste for several reasons. It has a relatively long radiological half-life and low retardation by granitic geological media so that 14 C is superceded only by 36 Cl and 129 I in potential release to the biosphere from unprocessed used fuel. In the biosphere, its importance continues because it is readily incorporated into the carbon compounds of life. Much of the behavior of 14 C in the biosphere can be conceptualized as isotopic exchange, where the 14 C mixes with 12 C from the biosphere. However, because of lack of data, the authors model the behavior of 14 C only partly as isotopic exchange, with most of the calculations relying on compartment transfer models. The authors experimental work has shown that soil-to-plant transfer may be dominated by the soil-atmosphere-plant pathway. Gaseous loss of 14 C from soils and lakes is significant. However, recalcitrant forms may persist in soils and sediments for long time periods. The impact of these forms is expected to be relatively low because their bioavailability is correspondingly low. Future research should be directed to support full modeling of 14 C as a series of isotopic exchange processes

  4. Biosphere modelling for dose assessments of radioactive waste repositories. Final report

    International Nuclear Information System (INIS)

    Klos, R.

    1996-09-01

    The aims of the Complementary Studies Working Group were: to investigate and explain differences which exist between contemporary models with respect to how, for a given test case, they represent the modelled Features, Events and Processes (FEPs) and how the nature of these representations affects the calculational end-points; to determine the most appropriate ways of representing key FEPs; to identify where knowledge needs to be improved to give better representations of these key FEPs in the future and where simplifications of existing formulations might be possible; to show that the modelling undertaken is suitable for purpose, in that it is robust and that it is unlikely that the radiological consequences calculated by the models would be underestimated (so that any conservative bias in the models is justified); to build confidence in the available modelling tools; to extend the work undertaken in the first phase of BIOMOVS to include consideration of radiological dose. Ten modelling groups from Western Europe and Canada have participated, revealing a variety of representations of radionuclide transport processes and techniques for calculating dose. The exercise has focused on the ways in which key FEPs are represented with the intention of determining the robustness or otherwise of existing representations. This has been achieved by applying a well defined dataset representative of a Central European inland valley. Human habits and lifestyle are chosen to be representative of a subsistence agricultural community. Climatic conditions are those of the present day. Many of the conclusions have relevance beyond the immediate concerns of the Central European biospheres and, although care should be exercised when terms of reference differ greatly from the system detailed here, much has been learned which has wider applicability. The exercise has successfully compared not only the behaviour of biosphere models for waste disposal assessments, but has also provided the

  5. Biosphere modeling with climate changes for safety assessment of high-level radioactive waste geological isolation

    International Nuclear Information System (INIS)

    Kato, Tomoko; Ishihara, Yoshinao; Ishiguro, Katsuhiko; Suzuki, Yuji; Naito, Morimasa; Ikeda, Takao; Little, R.

    2001-03-01

    In the safety assessment of a high-level radioactive waste (HLW) disposal system, it is required to estimate radiological impacts on future human beings arising from potential radionuclide releases from a deep repository into the surface environment. In order to estimate the impacts, a biosphere model is developed by reasonably assuming radionuclide migration processes in the surface environment and relevant human lifestyles. Releases from the repository might not occur for many thousands of years after disposal. Over such timescales, it is anticipated that the considerable climatic change, for example, induced by the next glaciation period expected to occur in around ten thousand years from now, will have a significant influence on the near surface environment and associated human lifestyles. In case of taking these evolution effects into account in modeling, it is reasonable to develop several alternative models on biosphere evolution systems consistent with possible future conditions affected by expected climatic changes. In this study, alternative biosphere models were developed taking effects of possible climatic change into account. In the modeling, different climatic states existing in the world from the present climate condition in Japan are utilized as an analogy. Estimation of net effects of the climatic change on biosphere system was made by comparing these alternative biosphere models with a constant biosphere model consistent with the present climatic state through flux to dose conversion factors derived from each one. (author)

  6. The biosphere at Forsmark. Data, assumptions and models used in the SR-Can assessment

    International Nuclear Information System (INIS)

    Karlsson, Sara; Kautsky, Ulrik; Loefgren, Anders; Soederbaeck, Bjoern

    2006-10-01

    This report summarises the method adopted for safety assessment following a radionuclide release into the biosphere. The approach utilises the information about the site as far as possible and presents a way of calculating risk to humans. The parameters are topography, where there is good understanding of the present conditions and the development over time is fairly predictable. The topography affects surface hydrology, sedimentation, size of drainage areas and the characteristics of ecosystems. Other parameters are human nutritional intake, which is assumed to be constant over time, and primary production (photosynthesis), which also is a fairly constant parameter over time. The Landscape Dose Factor approach (LDF) gives an integrated measure for the site and also resolves the issues relating to the size of the group with highest exposure. If this approach is widely accepted as method, still some improvements and refinement are necessary, e.g. collecting missing site data, reanalysing site data, reviewing radionuclide specific data, reformulating ecosystem models and evaluating the results with further sensitivity analysis. The report presents descriptions and estimates not presented elsewhere, as well as summaries of important steps in the biosphere modelling that are presented in more detail in separate reports. The intention is to give the reader a coherent description of the steps taken to calculate doses to biota and humans, including a description of the data used, the rationale for a number of assumptions made during parameterisation, and of how the landscape context is applied in the modelling, and also to present the models used and the results obtained

  7. The biosphere at Forsmark. Data, assumptions and models used in the SR-Can assessment

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Sara; Kautsky, Ulrik; Loefgren, Anders; Soederbaeck, Bjoern (eds.)

    2006-10-15

    This report summarises the method adopted for safety assessment following a radionuclide release into the biosphere. The approach utilises the information about the site as far as possible and presents a way of calculating risk to humans. The parameters are topography, where there is good understanding of the present conditions and the development over time is fairly predictable. The topography affects surface hydrology, sedimentation, size of drainage areas and the characteristics of ecosystems. Other parameters are human nutritional intake, which is assumed to be constant over time, and primary production (photosynthesis), which also is a fairly constant parameter over time. The Landscape Dose Factor approach (LDF) gives an integrated measure for the site and also resolves the issues relating to the size of the group with highest exposure. If this approach is widely accepted as method, still some improvements and refinement are necessary, e.g. collecting missing site data, reanalysing site data, reviewing radionuclide specific data, reformulating ecosystem models and evaluating the results with further sensitivity analysis. The report presents descriptions and estimates not presented elsewhere, as well as summaries of important steps in the biosphere modelling that are presented in more detail in separate reports. The intention is to give the reader a coherent description of the steps taken to calculate doses to biota and humans, including a description of the data used, the rationale for a number of assumptions made during parameterisation, and of how the landscape context is applied in the modelling, and also to present the models used and the results obtained.

  8. The disposal of Canada's nuclear fuel waste: the biosphere model, BIOTRAC, for postclosure assessment

    International Nuclear Information System (INIS)

    Davis, P.A.; Zach, R.; Stephens, M.E.; Amiro, B.D.; Bird, G.A.; Reid, J.A.K.; Sheppard, M.I.; Sheppard, S.C.; Stephenson, M.

    1993-01-01

    The nuclear fuel waste management concept of Canada calls for disposal of the waste in a vault mined deep in plutonic rock of the Canadian Shield. The technical feasibility of this concept, and its impact on the environment and human health, will be documented in an Environmental Impact statement (EIS) by AECL. The present report is one of nine EIS primary references. The report describes the BIOTRAC model, which is used to trace nuclide movement from the geosphere through the biosphere and to calculate time-dependent environmental concentrations and radiological doses to humans and other biota for the postclosure phase. These concentrations and doses are crucial for evaluating the safety and environmental acceptability of the concept in terms of chemical and radiological toxicity. BIOTRAC was developed specifically to assess the impacts of a used-fuel disposal vault. It is a comprehensive, generic model with distributed or probabilistic parameter values to account for spatial and temporal variability and uncertainty. It is composed of four separate but closely linked submodels representing surface waters, soils, the atmosphere and the food chain. It also includes a unique model for predicting radiological doses to non-human biota, represented by generic target organisms. The mathematical formulation of each submodel is derived in detail and interpreted physically, and all the assumptions are fully evaluated and discussed. It is shown how the parameter values and distributions adopted for each submodel are derived from the available data. The interfaces between the submodels, and between BIOTRAC and the geosphere model, are presented in detail. Fluctuations in the physical state of the biosphere are accounted for through the parameter distributions. Major environmental changes, such as those caused by continental glaciation, are addressed quantitatively and through reasoned arguments, which indicate that radiological doses to humans will not increase suddenly or

  9. The status of world biosphere modelling for waste disposal assessments following BIOMOVS II

    International Nuclear Information System (INIS)

    Klos, R.; Reid, J.A.K.; Santucci, P.; Bergstrom, U.

    1996-01-01

    Biosphere modelling for radioactive waste disposal assessments faces unique problems. Models for such applications tend to be quite distinct from other similar environmental assessment tools. Over the past few years, two of the Working Groups in the second international biosphere model validation study (BIOMOVS II) have been considering the special requirements for such models. The BIOMOVS II Reference Biospheres Working Group has concentrated on the elaboration of the methodology for the definition of models for such assessments. lie Complementary Studies Working Group has dealt with how the Features, Events and Processes (FEPS) included in the participating models are represented, in the context of the representation of a temperate inland biosphere. The aim of Complementary Studies was to move forward from the first phase of BIOMOVS, with the analysis going further and deeper into principles on which the participating models are based. Ten of the leading models from around the world have participated in the Complementary Studies model intercomparison exercise. This paper presents some key findings using the international biosphere FEP-list produced by the Reference Biospheres Working Group as a framework for discussing the current state-of-the-art. Common features of the models as well as reasons for the model differences are discussed. Areas where the international community could benefit from a harmonisation of approaches are also identified, setting out possible future requirements and developments. In the Complementary Studies intercomparison, the hypothetical release of radionuclides to an inland valley biosphere was considered. The radionuclides considered in the study were selected because of their relevance for underground repositories for long-lived radioactive wastes and because their individual properties made them suitable probes for many of the important Features, Events and Processes (FEPS) in long timescale biosphere modelling. The data

  10. Review of Project SAFE: Comments on biosphere conceptual model description and risk assessment methodology

    International Nuclear Information System (INIS)

    Klos, Richard; Wilmot, Roger

    2002-09-01

    The Swedish Nuclear Fuel and Waste Management Company's (SKB's) most recent assessment of the safety of the Forsmark repository for low-level and intermediate-level waste (Project SAFE) is currently undergoing review by the Swedish regulators. As part of its review, the Swedish Radiation Protection Institute (SSI) identified that two components of SAFE require more detailed review: (i) the conceptual model description of the biosphere system, and (ii) SKB's risk assessment methodology. We have reviewed the biosphere system interaction matrix and how this has been used in the identification, justification and description of biosphere models for radiological assessment purposes. The risk assessment methodology has been reviewed considering in particular issues associated with scenario selection, assessment timescale, and the probability and risk associated with the well scenario. There is an extensive range of supporting information on which biosphere modelling in Project SAFE is based. However, the link between this material and the biosphere models themselves is not clearly set out. This leads to some contradictions and mis-matches between description and implementation. One example concerns the representation of the geosphere-biosphere interface. The supporting description of lakes indicates that interaction between groundwaters entering the biosphere through lake bed sediments could lead to accumulations of radionuclides in sediments. These sediments may become agricultural areas at some time in the future. In the numerical modelling of the biosphere carried out in Project SAFE, the direct accumulation of contaminants in bed sediments is not represented. Application of a more rigorous procedure to ensure numerical models are fit for purpose is recommended, paying more attention to issues associated with the geosphere-biosphere interface. A more structured approach to risk assessment would be beneficial, with a better explanation of the difference between

  11. Review of Project SAFE: Comments on biosphere conceptual model description and risk assessment methodology

    Energy Technology Data Exchange (ETDEWEB)

    Klos, Richard; Wilmot, Roger [Galson Sciences Ltd (United Kingdom)

    2002-09-01

    The Swedish Nuclear Fuel and Waste Management Company's (SKB's) most recent assessment of the safety of the Forsmark repository for low-level and intermediate-level waste (Project SAFE) is currently undergoing review by the Swedish regulators. As part of its review, the Swedish Radiation Protection Institute (SSI) identified that two components of SAFE require more detailed review: (i) the conceptual model description of the biosphere system, and (ii) SKB's risk assessment methodology. We have reviewed the biosphere system interaction matrix and how this has been used in the identification, justification and description of biosphere models for radiological assessment purposes. The risk assessment methodology has been reviewed considering in particular issues associated with scenario selection, assessment timescale, and the probability and risk associated with the well scenario. There is an extensive range of supporting information on which biosphere modelling in Project SAFE is based. However, the link between this material and the biosphere models themselves is not clearly set out. This leads to some contradictions and mis-matches between description and implementation. One example concerns the representation of the geosphere-biosphere interface. The supporting description of lakes indicates that interaction between groundwaters entering the biosphere through lake bed sediments could lead to accumulations of radionuclides in sediments. These sediments may become agricultural areas at some time in the future. In the numerical modelling of the biosphere carried out in Project SAFE, the direct accumulation of contaminants in bed sediments is not represented. Application of a more rigorous procedure to ensure numerical models are fit for purpose is recommended, paying more attention to issues associated with the geosphere-biosphere interface. A more structured approach to risk assessment would be beneficial, with a better explanation of the difference

  12. Using remote-sensing and the Simple Biosphere model (SiB4) to analyze the seasonality and productivity of the terrestrial biosphere.

    Science.gov (United States)

    Cheeseman, M.; Denning, S.; Baker, I. T.

    2017-12-01

    Understanding the variability and seasonality of carbon fluxes from the terrestrial biosphere is integral to understanding the mechanisms and drivers of the global carbon cycle. However, there are many regions across the globe where in situ observations are sparse, such as the Amazon rainforest and the African Sahel. The latest version of the Simple-Biosphere model (SiB4) predicts a suite of biophysical variables such as terrestrial carbon flux (GPP), solar induced fluorescence (SIF), fraction of photosynthetically active radiation (FPAR), and leaf area index (LAI). By comparing modeled values to a suite of satellite and in situ observations we produce a robust analysis of the seasonality and productivity of the terrestrial biosphere in a variety of biome types across the globe.

  13. Biosphere assessment report 2009

    International Nuclear Information System (INIS)

    Hjerpe, T.; Broed, R.; Ikonen, A.T.K.

    2010-03-01

    Following the guidelines set forth by the Ministry of Trade and Industry (now Ministry of Employment and Economy), Posiva is preparing to submit a construction license application for the final disposal spent nuclear fuel at the Olkiluoto site, Finland, by the end of the year 2012. Disposal will take place in a geological repository implemented according to the KBS-3 method. The long-term safety section supporting the license application will be based on a safety case that, according to the internationally adopted definition, will be a compilation of the evidence, analyses and arguments that quantify and substantiate the safety and the level of expert confidence in the safety of the planned repository. The present Biosphere Assessment Report represents a major contribution to the development this safety case. The report has been compiled in accordance with Posiva's current plan for preparing this safety case. A full safety case, and an updated Biosphere Assessment Report, will be developed to support the Preliminary Safety Assessment Report (PSAR) in 2012. This report summarises the biosphere assessment for the planned repository addressing the following components: the site understanding (biosphere description), development of terrain and ecosystems within the next ten millennia, calculations of radionuclide transport in the biosphere and radiological consequences analysis, i.e. dose assessments for humans and the other biota. It also presents the main models used in the assessment and summarises the input data and its quality. It discusses compliance with Finnish regulatory requirements for long-term safety of a geological repository on the basis of the calculated annual effective doses to representative members of the most exposed people and to the a larger group of exposed people and typical absorbed dose rates to plants and animals. The other aspects of the compliance are addressed in the interim Summary Report of the safety case. Various repository

  14. Post-closure biosphere assessment modelling: comparison of complex and more stylised approaches.

    Science.gov (United States)

    Walke, Russell C; Kirchner, Gerald; Xu, Shulan; Dverstorp, Björn

    2015-10-01

    Geological disposal facilities are the preferred option for high-level radioactive waste, due to their potential to provide isolation from the surface environment (biosphere) on very long timescales. Assessments need to strike a balance between stylised models and more complex approaches that draw more extensively on site-specific information. This paper explores the relative merits of complex versus more stylised biosphere models in the context of a site-specific assessment. The more complex biosphere modelling approach was developed by the Swedish Nuclear Fuel and Waste Management Co (SKB) for the Formark candidate site for a spent nuclear fuel repository in Sweden. SKB's approach is built on a landscape development model, whereby radionuclide releases to distinct hydrological basins/sub-catchments (termed 'objects') are represented as they evolve through land rise and climate change. Each of seventeen of these objects is represented with more than 80 site specific parameters, with about 22 that are time-dependent and result in over 5000 input values per object. The more stylised biosphere models developed for this study represent releases to individual ecosystems without environmental change and include the most plausible transport processes. In the context of regulatory review of the landscape modelling approach adopted in the SR-Site assessment in Sweden, the more stylised representation has helped to build understanding in the more complex modelling approaches by providing bounding results, checking the reasonableness of the more complex modelling, highlighting uncertainties introduced through conceptual assumptions and helping to quantify the conservatisms involved. The more stylised biosphere models are also shown capable of reproducing the results of more complex approaches. A major recommendation is that biosphere assessments need to justify the degree of complexity in modelling approaches as well as simplifying and conservative assumptions. In light of

  15. The Impact of Prior Biosphere Models in the Inversion of Global Terrestrial CO2 Fluxes by Assimilating OCO-2 Retrievals

    Science.gov (United States)

    Philip, Sajeev; Johnson, Matthew S.

    2018-01-01

    Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emissions and biospheric fluxes. The processes controlling terrestrial biosphere-atmosphere carbon exchange are currently not fully understood, resulting in terrestrial biospheric models having significant differences in the quantification of biospheric CO2 fluxes. Atmospheric transport models assimilating measured (in situ or space-borne) CO2 concentrations to estimate "top-down" fluxes, generally use these biospheric CO2 fluxes as a priori information. Most of the flux inversion estimates result in substantially different spatio-temporal posteriori estimates of regional and global biospheric CO2 fluxes. The Orbiting Carbon Observatory 2 (OCO-2) satellite mission dedicated to accurately measure column CO2 (XCO2) allows for an improved understanding of global biospheric CO2 fluxes. OCO-2 provides much-needed CO2 observations in data-limited regions facilitating better global and regional estimates of "top-down" CO2 fluxes through inversion model simulations. The specific objectives of our research are to: 1) conduct GEOS-Chem 4D-Var assimilation of OCO-2 observations, using several state-of-the-science biospheric CO2 flux models as a priori information, to better constrain terrestrial CO2 fluxes, and 2) quantify the impact of different biospheric model prior fluxes on OCO-2-assimilated a posteriori CO2 flux estimates. Here we present our assessment of the importance of these a priori fluxes by conducting Observing System Simulation Experiments (OSSE) using simulated OCO-2 observations with known "true" fluxes.

  16. Disruptive Event Biosphere Dose Conversion Factor Analysis

    International Nuclear Information System (INIS)

    M. A. Wasiolek

    2003-01-01

    This analysis report, ''Disruptive Event Biosphere Dose Conversion Factor Analysis'', is one of the technical reports containing documentation of the ERMYN (Environmental Radiation Model for Yucca Mountain Nevada) biosphere model for the geologic repository at Yucca Mountain, its input parameters, and the application of the model to perform the dose assessment for the repository. The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of the two reports that develop biosphere dose conversion factors (BDCFs), which are input parameters for the TSPA model. The ''Biosphere Model Report'' (BSC 2003 [DIRS 164186]) describes in detail the conceptual model as well as the mathematical model and lists its input parameters. Model input parameters are developed and described in detail in five analysis report (BSC 2003 [DIRS 160964], BSC 2003 [DIRS 160965], BSC 2003 [DIRS 160976], BSC 2003 [DIRS 161239], and BSC 2003 [DIRS 161241]). The objective of this analysis was to develop the BDCFs for the volcanic ash exposure scenario and the dose factors (DFs) for calculating inhalation doses during volcanic eruption (eruption phase of the volcanic event). The volcanic ash exposure scenario is hereafter referred to as the volcanic ash scenario. For the volcanic ash scenario, the mode of radionuclide release into the biosphere is a volcanic eruption through the repository with the resulting entrainment of contaminated waste in the tephra and the subsequent atmospheric transport and dispersion of contaminated material in the biosphere. The biosphere process

  17. Disruptive Event Biosphere Dose Conversion Factor Analysis

    Energy Technology Data Exchange (ETDEWEB)

    M. A. Wasiolek

    2003-07-21

    This analysis report, ''Disruptive Event Biosphere Dose Conversion Factor Analysis'', is one of the technical reports containing documentation of the ERMYN (Environmental Radiation Model for Yucca Mountain Nevada) biosphere model for the geologic repository at Yucca Mountain, its input parameters, and the application of the model to perform the dose assessment for the repository. The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of the two reports that develop biosphere dose conversion factors (BDCFs), which are input parameters for the TSPA model. The ''Biosphere Model Report'' (BSC 2003 [DIRS 164186]) describes in detail the conceptual model as well as the mathematical model and lists its input parameters. Model input parameters are developed and described in detail in five analysis report (BSC 2003 [DIRS 160964], BSC 2003 [DIRS 160965], BSC 2003 [DIRS 160976], BSC 2003 [DIRS 161239], and BSC 2003 [DIRS 161241]). The objective of this analysis was to develop the BDCFs for the volcanic ash exposure scenario and the dose factors (DFs) for calculating inhalation doses during volcanic eruption (eruption phase of the volcanic event). The volcanic ash exposure scenario is hereafter referred to as the volcanic ash scenario. For the volcanic ash scenario, the mode of radionuclide release into the biosphere is a volcanic eruption through the repository with the resulting entrainment of contaminated waste in the tephra and the subsequent atmospheric transport and dispersion of contaminated material in

  18. Exploring global carbon turnover and radiocarbon cycling in terrestrial biosphere models

    Science.gov (United States)

    Graven, H. D.; Warren, H.

    2017-12-01

    The uptake of carbon into terrestrial ecosystems through net primary productivity (NPP) and the turnover of that carbon through various pathways are the fundamental drivers of changing carbon stocks on land, in addition to human-induced and natural disturbances. Terrestrial biosphere models use different formulations for carbon uptake and release, resulting in a range of values in NPP of 40-70 PgC/yr and biomass turnover times of about 25-40 years for the preindustrial period in current-generation models from CMIP5. Biases in carbon uptake and turnover impact simulated carbon uptake and storage in the historical period and later in the century under changing climate and CO2 concentration, however evaluating global-scale NPP and carbon turnover is challenging. Scaling up of plot-scale measurements involves uncertainty due to the large heterogeneity across ecosystems and biomass types, some of which are not well-observed. We are developing the modelling of radiocarbon in terrestrial biosphere models, with a particular focus on decadal 14C dynamics after the nuclear weapons testing in the 1950s-60s, including the impact of carbon flux trends and variability on 14C cycling. We use an estimate of the total inventory of excess 14C in the biosphere constructed by Naegler and Levin (2009) using a 14C budget approach incorporating estimates of total 14C produced by the weapons tests and atmospheric and oceanic 14C observations. By simulating radiocarbon in simple biosphere box models using carbon fluxes from the CMIP5 models, we find that carbon turnover is too rapid in many of the simple models - the models appear to take up too much 14C and release it too quickly. Therefore many CMIP5 models may also simulate carbon turnover that is too rapid. A caveat is that the simple box models we use may not adequately represent carbon dynamics in the full-scale models. Explicit simulation of radiocarbon in terrestrial biosphere models would allow more robust evaluation of biosphere

  19. Overview of the development of a biosphere modelling capability for UK DoE (HMIP)

    International Nuclear Information System (INIS)

    Nancarrow, D.J.; Ashton, J.; Little, R.H.

    1990-01-01

    A programme of research has been funded, since 1982, by the United Kingdom Department of the Environment (Her Majesty's Inspectorate of Pollution, HMIP), to develop a procedure for post-closure radiological assessment of underground disposal facilities for low and intermediate level radioactive wastes. It is conventional to regard the disposal system as comprising the engineered barriers of the repository, the geological setting which provides natural barriers to migration, and the surface environment or biosphere. The requirement of a biosphere submodel, therefore, is to provide estimates, for given radionuclide inputs, of the dose or probability distribution function of dose to a maximally exposed individual as a function of time. This paper describes the development of the capability for biosphere modelling for HMIP in the context of the development of other assessment procedures. 11 refs., 3 figs., 2 tabs

  20. SITE-94, Biosphere Model for SKI Project on the island of Aspro

    International Nuclear Information System (INIS)

    Barrdahl, Runo Alfons Gunnar

    2003-01-01

    1 - Description of program or function: A simple biosphere model has been designed for use in the SKI project related to a hypothetical repository for spent nuclear fuel on the island of Aspro near Oskarshamn in Southern Sweden. Project SITE-94 studies the safety aspects of this hypothetical repository. Any weakness in repository performance will reveal itself as a leakage of radionuclides out of the repository, and finally into the biosphere where man and nature are at risk of being exposed. Thus, as the final link in estimating such leakage, a biosphere model will provide an estimate of resulting radiation impact on man and nature. 2 - Methods: The present biosphere model involves a stationary scenario (Reference Scenario) and a climate evolution and geological scenario (Central Scenario). The stationary and time evolution scenarios contain as primary recipients a well and the bay of Borholm, i.e., the waters surrounding the island of Aspo. The time evolution scenario additionally incorporates as primary recipients a waste sample from intrusion and, in a remote future time, the Baltic Sea. Transport of radionuclides within the model system is assumed to be essentially immediate, except for in sediment subject to land rise. Except for this pathway, radioactive decay is therefore not included at all in the model. Land rise sediment is modeled to be subject to radioactive decay from the time the sediment no longer constitutes sea bottom until the desired time point of the model. Correction for radioactive decay is thus generally supposed to be made outside the biosphere model. Unless otherwise indicated, yearly individual and population committed (50 years) radiation doses to man are considered, and all scenarios involve a constant flux of 1 Bq/y of each radionuclide considered into the respective primary recipient. Nominal values of radionuclide flux will finally be multiplied with the radiation dose per one Bq per year resulting from the model in order to obtain

  1. A GoldSim Based Biosphere Assessment Model for a HLW Repository

    International Nuclear Information System (INIS)

    Lee, Youn-Myoung; Hwang, Yong-Soo; Kang, Chul-Hyung

    2007-01-01

    To demonstrate the performance of a repository, the dose exposure to a human being due to nuclide releases from a repository should be evaluated and the results compared to the dose limit presented by the regulatory bodies. To evaluate a dose rate to an individual due to a long-term release of nuclides from a HLW repository, biosphere assessment models and their implemented codes such as ACBIO1 and ACBIO2 have been developed with the aid of AMBER during the last few years. BIOMASS methodology has been adopted for a HLW repository currently being considered in Korea, which has a similar concept to the Swedish KBS-3 HLW repository. Recently, not just only for verifying the purpose for biosphere assessment models but also for varying the possible alternatives to assess the consequences in a biosphere due to a HLW repository, another version of the assessment modesl has been newly developed in the frame of development programs for a total system performance assessment modeling tool by utilizing GoldSim. Through a current study, GoldSim approach for a biosphere modeling is introduced. Unlike AMBER by which a compartment scheme can be rather simply constructed with an appropriate transition rate between compartments, GoldSim was designed to facilitate the object-oriented modules by which specific models can be addressed in an additional manner, like solving jig saw puzzles

  2. Evaluation of Features, Events, and Processes (FEP) for the Biosphere Model

    International Nuclear Information System (INIS)

    Wasiolek, M. A.

    2003-01-01

    The purpose of this report is to document the evaluation of biosphere features, events, and processes (FEPs) that relate to the license application (LA) process as required by the U.S. Nuclear Regulatory Commission (NRC) regulations at 10 CFR 63.114 (d, e, and f) [DIRS 156605]. The evaluation determines whether specific biosphere-related FEPs should be included or excluded from consideration in the Total System Performance Assessment (TSPA). This analysis documents the technical basis for screening decisions as required at 10 CFR 63.114 (d, e, and f) [DIRS 156605]. For FEPs that are included in the TSPA, this analysis provides a TSPA disposition, which summarizes how the FEP has been included and addressed in the TSPA model, and cites the analysis reports and model reports that provide the technical basis and description of its disposition. For FEPs that are excluded from the TSPA, this analysis report provides a screening argument, which identifies the basis for the screening decision (i.e., low probability, low consequence, or by regulation) and discusses the technical basis that supports that decision. In cases, where a FEP covers multiple technical areas and is shared with other FEP analysis reports, this analysis may provide only a partial technical basis for the screening of the FEP. The full technical basis for these shared FEPs is addressed collectively by all FEP analysis reports that cover technical disciplines sharing a FEP. FEPs must be included in the TSPA unless they can be excluded by low probability, low consequence, or regulation. A FEP can be excluded from the TSPA by low probability per 10 CFR 63.114(d) [DIRS 156605], by showing that it has less than one chance in 10,000 of occurring over 10,000 years (or an approximately equivalent annualized probability of 10 -8 ). A FEP can be excluded from the TSPA by low consequence per 10 CFR 63.114 (e or f) [DIRS 156605], by showing that omitting the FEP would not significantly change the magnitude and

  3. Evaluation of Features, Events, and Processes (FEP) for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. A. Wasiolek

    2003-10-09

    The purpose of this report is to document the evaluation of biosphere features, events, and processes (FEPs) that relate to the license application (LA) process as required by the U.S. Nuclear Regulatory Commission (NRC) regulations at 10 CFR 63.114 (d, e, and f) [DIRS 156605]. The evaluation determines whether specific biosphere-related FEPs should be included or excluded from consideration in the Total System Performance Assessment (TSPA). This analysis documents the technical basis for screening decisions as required at 10 CFR 63.114 (d, e, and f) [DIRS 156605]. For FEPs that are included in the TSPA, this analysis provides a TSPA disposition, which summarizes how the FEP has been included and addressed in the TSPA model, and cites the analysis reports and model reports that provide the technical basis and description of its disposition. For FEPs that are excluded from the TSPA, this analysis report provides a screening argument, which identifies the basis for the screening decision (i.e., low probability, low consequence, or by regulation) and discusses the technical basis that supports that decision. In cases, where a FEP covers multiple technical areas and is shared with other FEP analysis reports, this analysis may provide only a partial technical basis for the screening of the FEP. The full technical basis for these shared FEPs is addressed collectively by all FEP analysis reports that cover technical disciplines sharing a FEP. FEPs must be included in the TSPA unless they can be excluded by low probability, low consequence, or regulation. A FEP can be excluded from the TSPA by low probability per 10 CFR 63.114(d) [DIRS 156605], by showing that it has less than one chance in 10,000 of occurring over 10,000 years (or an approximately equivalent annualized probability of 10{sup -8}). A FEP can be excluded from the TSPA by low consequence per 10 CFR 63.114 (e or f) [DIRS 156605], by showing that omitting the FEP would not significantly change the magnitude and

  4. Modeling the global society-biosphere-climate system : Part 2: Computed scenarios

    NARCIS (Netherlands)

    Alcamo, J.; Van Den Born, G.J.; Bouwman, A.F.; De Haan, B.J.; Klein Goldewijk, K.; Klepper, O.; Krabec, J.; Leemans, R.; Olivier, J.G.J.; Toet, A.M.C.; De Vries, H.J.M.; Van Der Woerd, H.J.

    1994-01-01

    This paper presents scenarios computed with IMAGE 2.0, an integrated model of the global environment and climate change. Results are presented for selected aspects of the society-biosphere-climate system including primary energy consumption, emissions of various greenhouse gases, atmospheric

  5. Nominal Performance Biosphere Dose Conversion Factor Analysis

    International Nuclear Information System (INIS)

    M. Wasiolek

    2004-01-01

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the groundwater exposure scenario, and the development of conversion factors for assessing compliance with the groundwater protection standard. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop biosphere BDCFs, which are input parameters for the TSPA-LA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the ''Biosphere Model Report'' in Figure 1-1, contain detailed description of the model input parameters, their development, and the relationship between the parameters and specific features events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the groundwater exposure scenario. The objectives of this analysis are to develop BDCFs for the groundwater exposure scenario for the three climate states considered in the TSPA-LA as well as conversion factors for evaluating compliance with the groundwater protection standard. The BDCFs will be used in performance assessment for calculating all-pathway annual doses for a given concentration of radionuclides in groundwater. The conversion factors will be used for calculating gross alpha particle activity in groundwater and the annual dose

  6. Evaluation of Features, Events, and Processes (FEP) for the Biosphere Model

    International Nuclear Information System (INIS)

    J. J. Tappen

    2003-01-01

    The purpose of this revision of ''Evaluation of the Applicability of Biosphere-Related Features, Events, and Processes (FEPs)'' (BSC 2001) is to document the screening analysis of biosphere-related primary FEPs, as identified in ''The Development of Information Catalogued in REV00 of the YMP FEP Database'' (Freeze et al. 2001), in accordance with the requirements of the final U.S. Nuclear Regulatory Commission (NRC) regulations at 10 CFR Part 63. This database is referred to as the Yucca Mountain Project (YMP) FEP Database throughout this document. Those biosphere-related primary FEPs that are screened as applicable will be used to develop the conceptual model portion of the biosphere model, which will in turn be used to develop the mathematical model portion of the biosphere model. As part of this revision, any reference to the screening guidance or criteria provided either by Dyer (1999) or by the proposed NRC regulations at 64 FR 8640 has been removed. The title of this revision has been changed to more accurately reflect the purpose of the analyses. In addition, this revision will address Item Numbers 19, 20, 21, 25, and 26 from Attachment 2 of ''U.S. Nuclear Regulatory Commission/U.S. Department of Energy Technical Exchange and Management Meeting on Total System Performance Assessment and Integration (August 6 through 10, 2001)'' (Reamer 2001). This Scientific Analysis Report (SAR) does not support the current revision to the YMP FEP Database (Freeze et al. 2001). Subsequent to the release of the YMP FEP Database (Freeze et al. 2001), a series of reviews was conducted on both the FEP processes used to support Total System Performance Assessment for Site Recommendation and to develop the YMP FEP Database. In response to observations and comments from these reviews, particularly the NRC/DOE TSPA Technical Exchange in August 2001 (Reamer 2001), several Key Technical Issue (KTI) Agreements were developed. ''The Enhanced Plan for Features, Events and Processes

  7. Evaluation of Features, Events, and Processes (FEP) for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    J. J. Tappen

    2003-02-16

    The purpose of this revision of ''Evaluation of the Applicability of Biosphere-Related Features, Events, and Processes (FEPs)'' (BSC 2001) is to document the screening analysis of biosphere-related primary FEPs, as identified in ''The Development of Information Catalogued in REV00 of the YMP FEP Database'' (Freeze et al. 2001), in accordance with the requirements of the final U.S. Nuclear Regulatory Commission (NRC) regulations at 10 CFR Part 63. This database is referred to as the Yucca Mountain Project (YMP) FEP Database throughout this document. Those biosphere-related primary FEPs that are screened as applicable will be used to develop the conceptual model portion of the biosphere model, which will in turn be used to develop the mathematical model portion of the biosphere model. As part of this revision, any reference to the screening guidance or criteria provided either by Dyer (1999) or by the proposed NRC regulations at 64 FR 8640 has been removed. The title of this revision has been changed to more accurately reflect the purpose of the analyses. In addition, this revision will address Item Numbers 19, 20, 21, 25, and 26 from Attachment 2 of ''U.S. Nuclear Regulatory Commission/U.S. Department of Energy Technical Exchange and Management Meeting on Total System Performance Assessment and Integration (August 6 through 10, 2001)'' (Reamer 2001). This Scientific Analysis Report (SAR) does not support the current revision to the YMP FEP Database (Freeze et al. 2001). Subsequent to the release of the YMP FEP Database (Freeze et al. 2001), a series of reviews was conducted on both the FEP processes used to support Total System Performance Assessment for Site Recommendation and to develop the YMP FEP Database. In response to observations and comments from these reviews, particularly the NRC/DOE TSPA Technical Exchange in August 2001 (Reamer 2001), several Key Technical Issue (KTI) Agreements were developed

  8. Gaian bottlenecks and planetary habitability maintained by evolving model biospheres: The ExoGaia model

    Science.gov (United States)

    Nicholson, Arwen E.; Wilkinson, David M.; Williams, Hywel T. P.; Lenton, Timothy M.

    2018-03-01

    The search for habitable exoplanets inspires the question - how do habitable planets form? Planet habitability models traditionally focus on abiotic processes and neglect a biotic response to changing conditions on an inhabited planet. The Gaia hypothesis postulates that life influences the Earth's feedback mechanisms to form a self-regulating system, and hence that life can maintain habitable conditions on its host planet. If life has a strong influence, it will have a role in determining a planet's habitability over time. We present the ExoGaia model - a model of simple `planets' host to evolving microbial biospheres. Microbes interact with their host planet via consumption and excretion of atmospheric chemicals. Model planets orbit a `star' which provides incoming radiation, and atmospheric chemicals have either an albedo, or a heat-trapping property. Planetary temperatures can therefore be altered by microbes via their metabolisms. We seed multiple model planets with life while their atmospheres are still forming and find that the microbial biospheres are, under suitable conditions, generally able to prevent the host planets from reaching inhospitable temperatures, as would happen on a lifeless planet. We find that the underlying geochemistry plays a strong role in determining long-term habitability prospects of a planet. We find five distinct classes of model planets, including clear examples of `Gaian bottlenecks' - a phenomenon whereby life either rapidly goes extinct leaving an inhospitable planet, or survives indefinitely maintaining planetary habitability. These results suggest that life might play a crucial role in determining the long-term habitability of planets.

  9. Biosphere modelling for a deep radioactive waste repository: treatment of the groundwater-soil pathway

    International Nuclear Information System (INIS)

    Baeyens, B.; Grogan, H.A.; Dorp, F. van

    1991-07-01

    The effect of radionuclide transfer from near-surface groundwater to the rooting zone soil, via a deep soil layer, is modelled in this report. The possible extent of upward solute movement is evaluated for a region in northern Switzerland. The concentration of 237 Np and 129 I in the deep and top soil, and hence growing crops, are evaluated assuming a constant unit activity concentration in the groundwater. A number of parameter variations are considered, namely variable soil sorption coefficients, reduced infiltration of rain water and decreased groundwater flow. A release to an alternative smaller recipient region in northern Switzerland is also evaluated. For the parameter ranges considered uncertainty in the solid-liquid distribution coefficient has the largest effect on overall uncertainty. These calculations have been presented within the international Biosphere Model Validation Study (BIOMOVS). A description of the test scenario, and the model calculations submitted, have been included in this report for completeness. To place the groundwater-soil-crop-man pathway in context, its contribution to the total dose to man is evaluated for the 237 Np- 233 U- 229 Th decay chain. The results obtained using the two-layer soil model, described in this report, are compared with the single-layer soil model used during Project Gewaehr 1985. The more realistic two-layer soil model indicated an increase in importance of the drinking water pathway. It should be noted, however, that not all the critical pathways have been treated in this study with the same degree of conservatism. (author) 16 figs., 15 tabs., 31 refs

  10. Transport of radionuclides in the biosphere

    International Nuclear Information System (INIS)

    Bundi, A.

    1983-10-01

    The dispersion of radionuclides in the biosphere and their uptake by man via various nutritional pathways is studied using a compartment model. The sample environment is the area of the lower Limmat and Aare valleys. General considerations of the compartmental description of the biosphere are made. The problem of the description of surface features, in particular soil, sediment and water, is studied in detail using the code BIOPATH. This study is intended to be an example of how a model of the biosphere could be constructed. It is shown that this is a reasonable model to calculate the spreading of radionuclides in the biosphere and that it indicates the relative significance of individual compartments, pathways and radionuclides. Calculated values of dose committment, however, should not be used as reference data for safety analyses. (Auth.)

  11. Safety case for the disposal of spent nuclear fuel at Olkiluoto. Surface and near-surface hydrological modelling in the biosphere assessment BSA-2012

    International Nuclear Information System (INIS)

    Karvonen, T.

    2013-05-01

    The Finnish nuclear waste disposal company, Posiva Oy, is planning an underground repository for spent nuclear fuel to be constructed on the island of Olkiluoto on the south-west coast of Finland. This study is part of the biosphere assessment (BSA-2012) within the safety case for the repository. The surface hydrological modelling described in this report is aimed at providing link between radionuclide transport in the geosphere and in the biosphere systems. The SVAT-model and Olkiluoto site scale surface hydrological model were calibrated and validated in the present day conditions using the input data provided by the Olkiluoto Monitoring Programme (OMO). During the next 10 000 years the terrain and ecosystem development is to a large extent driven by the postglacial crustal uplift. UNTAMO is a GIS toolbox developed for simulating land-uplift driven or other changes in the biosphere. All the spatial and temporal input data (excluding meteorological data) needed in the surface hydrological modelling were provided by the UNTAMO toolbox. The specific outputs given by UNTAMO toolbox are time-dependent evolution of the biosphere objects. They are continuous and sufficiently homogeneous sub-areas of the modelled area that could potentially receive radionuclides released from the repository. Possible ecosystem types for biosphere objects are coast, lake, river, forest, cropland, pasture and wetland. The primary goal of this study was to compute vertical and horizontal water fluxes in the biosphere objects. These data will be used in the biosphere radionuclide transport calculations. The method adopted here is based on calculating average vertical and horizontal fluxes for biosphere objects from the results of the full 3D-model. It was not necessary to develop any simplified hydrological model for the biosphere objects. This report includes modelling results from for the Reference Case (present day climate) and Terr M axAgri Case (maximum extent of agricultural areas and

  12. Disruptive Event Biosphere Dose Conversion Factor Analysis

    International Nuclear Information System (INIS)

    M. Wasiolek

    2004-01-01

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the volcanic ash exposure scenario, and the development of dose factors for calculating inhalation dose during volcanic eruption. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop biosphere BDCFs, which are input parameters for the TSPA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed descriptions of the model input parameters, their development and the relationship between the parameters and specific features, events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the volcanic ash exposure scenario. This analysis receives direct input from the outputs of the ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) and from the five analyses that develop parameter values for the biosphere model (BSC 2004 [DIRS 169671]; BSC 2004 [DIRS 169672]; BSC 2004 [DIRS 169673]; BSC 2004 [DIRS 169458]; and BSC 2004 [DIRS 169459]). The results of this report are further analyzed in the ''Biosphere Dose Conversion Factor Importance and Sensitivity Analysis''. The objective of this analysis was to develop the BDCFs for the volcanic ash

  13. Disruptive Event Biosphere Dose Conversion Factor Analysis

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek

    2004-09-08

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the volcanic ash exposure scenario, and the development of dose factors for calculating inhalation dose during volcanic eruption. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop biosphere BDCFs, which are input parameters for the TSPA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed descriptions of the model input parameters, their development and the relationship between the parameters and specific features, events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the volcanic ash exposure scenario. This analysis receives direct input from the outputs of the ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) and from the five analyses that develop parameter values for the biosphere model (BSC 2004 [DIRS 169671]; BSC 2004 [DIRS 169672]; BSC 2004 [DIRS 169673]; BSC 2004 [DIRS 169458]; and BSC 2004 [DIRS 169459]). The results of this report are further analyzed in the ''Biosphere Dose Conversion Factor Importance and Sensitivity Analysis''. The objective of this

  14. Studies on the radiological assessment and modeling of the biosphere in radioactive waste management in Spain; Estudio sobre la evaluacion radiologica y modelizacion de la biosfera en la gestion de residuos radioactivos en Espna

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Sanchez, D.; Trueba, C.; Robles, B.

    2011-07-01

    Assessments of long-term safety in radioactive waste management means that the annual radiation dose due to the possible release of radionuclides to the biosphere does not exceed regulatory limits for members of the public. To quantify these doses should first develop models that describe the behavior of radionuclides in the environment that could also calculate the concentrations in different compartments of the biosphere, then estimated radiation doses to humans and the environment through the different routes of exposure. This paper describes recent results obtained by developing projects related to safety assessment of the biosphere, which include several studies.

  15. Analysis of Critical Issues in Biosphere Assessment Modelling and Site Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Egan, M.J.; Thorne, M.C.; Little, R.H.; Pasco, R.F. [Quintessa Limited, Henley-on-Thames (United Kingdom)

    2003-07-01

    The aim of this document is to present a critical review of issues concerned with the treatment of the biosphere and geosphere-biosphere interface in long-term performance assessment studies for nuclear waste disposal in Sweden. The review covers three main areas of investigation: a review of SKB's plans for undertaking site investigations at candidate locations for the development of a deep geological repository for spent fuel; identification of critical uncertainties associated with SKB's treatment of the geosphere-biosphere interface in recent performance assessments; and a preliminary modelling investigation of the significance of features, events and processes in the near-surface environment in terms of their effect on the accumulation and redistribution of radionuclides at the geosphere-biosphere interface. Overall, SKB's proposals for site investigations are considered to be comprehensive and, if they can be carried out to the specification presented, will constitute a benchmark that other waste management organisations will have to work hard to emulate. The main concern is that expertise for undertaking the investigations and reporting the results could be stretched very thin. The authors have also identified weaknesses in the documentation concerning the collection of evidence for environmental change and on developing scenarios for future environmental change. A fundamental assumption adopted in the renewed assessment of the SFR 1 repository, which is not discussed or justified in any of the documentation that has been reviewed, is that radionuclides enter the water column of the coastal and lake models directly, without passing first through the bed sediments. The modelling study reported herein suggests that SKB's models are robust to range of alternative conceptual descriptions relating to the geosphere-biosphere interface. There are however situations, in which contaminated groundwater is released via sediment rather than directly

  16. Additional Research Needs to Support the GENII Biosphere Models

    Energy Technology Data Exchange (ETDEWEB)

    Napier, Bruce A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Snyder, Sandra F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Arimescu, Carmen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-11-01

    In the course of evaluating the current parameter needs for the GENII Version 2 code (Snyder et al. 2013), areas of possible improvement for both the data and the underlying models have been identified. As the data review was implemented, PNNL staff identified areas where the models can be improved both to accommodate the locally significant pathways identified and also to incorporate newer models. The areas are general data needs for the existing models and improved formulations for the pathway models.

  17. Biosphere modelling for the safety assessment of high-level radioactive waste disposal in the Japanese H12 assessment

    International Nuclear Information System (INIS)

    Kato, Tomoko; Suzuki, Yuji; Ishiguro, Katsuhiko; Naito, Morimasa; Ishiguro, Katsuhiko; Ikeda, Takao; Little, Richard H.; Smith, Graham M.

    2002-01-01

    JNC has an on-going programme of research and development relating to the safety assessment of the deep geological disposal system of high-level radioactive waste (HLW). In the safety assessment of a HLW disposal system, it is often necessary to estimate future radiological impacts on human beings (e.g. radiation dose). In order to estimate dose, consideration needs to be given to the surface environment (biosphere) into which future releases of radionuclides might occur and to the associated future human behaviour. However, for a deep repository, such releases might not occur for many thousands of years after disposal. Over such timescales, it is not possible to predict with any certainty how the biosphere and human behaviour will evolve. To avoid endless speculation aimed at reducing such uncertainty, the reference biosphere le concept has been developed for use in the safety assessment of HLW disposal. The Reference Biospheres Methodology was originally developed by the BIOMOVS II Reference Biospheres Working Group and subsequently enhanced within Theme 1 of the BIOMASS programme. As the aim of the H12 assessment with a hypothetical HLW disposal system was to demonstrate the technical feasibility and reliability of the Japanese disposal concept for a range of geological and surface environments, some assessment specific reference biospheres were developed for the biosphere modelling in the H12 assessment using an approach consistent with the BIOMOVS II/BIOMASS approach. They have been used to derive factors to convert the radionuclide flux from a geosphere to a biosphere into a dose. The influx to dose conversion factor also have been derived for a range of different geosphere-biosphere interfaces (well, river and marine) and potential exposure groups (farming, freshwater-fishing and marine-fishing). This paper summarises the approach used for the derivation of the influx to dose conversion factor also for the range of geosphere-biosphere interfaces and

  18. Nominal Performance Biosphere Dose Conversion Factor Analysis

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Wasiolek

    2003-07-25

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the groundwater exposure scenario, and the development of conversion factors for assessing compliance with the groundwater protection standard. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop biosphere BDCFs, which are input parameters for the TSPA model. The ''Biosphere Model Report'' (BSC 2003 [DIRS 164186]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports (BSC 2003 [DIRS 160964]; BSC 2003 [DIRS 160965]; BSC 2003 [DIRS 160976]; BSC 2003 [DIRS 161239]; BSC 2003 [DIRS 161241]) contain detailed description of the model input parameters. This report describes biosphere model calculations and their output, the BDCFs, for the groundwater exposure scenario. The objectives of this analysis are to develop BDCFs and conversion factors for the TSPA. The BDCFs will be used in performance assessment for calculating annual doses for a given concentration of radionuclides in groundwater. The conversion factors will be used for calculating gross alpha particle activity in groundwater and the annual dose from beta- and photon-emitting radionuclides.

  19. Experience in biosphere modelling and definition of exposed groups. Concerns on consideration of the long-term

    International Nuclear Information System (INIS)

    Pinedo, P.

    2002-01-01

    The long life of high level waste and their 'possible' releases, from the repository, in the far future during wide time frames, introduce difficulties on the ability of forecasting actual doses. Similar difficulties were found when trying to establish or recommend protection criteria for the environment and human health. The stochastic nature of the whole problem, from the causes that initiate radionuclides releases to the nature of the environmental conditions where impact is evaluated, made more complex the treatment of the radionuclide transport models and the analysis of radiological impact. The application of radiological protection principles to this management option, was also seen as different from other present-day practices. All this gave rise to the diversification of the research lines towards new areas that allow for the analysis of radionuclide transport, dose calculations and, criteria, in this new situation. The approach for the biosphere system based on the 'reference' concept, in essence the same idea as the one for the 'Reference man' concept, was promoted internationally, first within the BIOMOVS II Project and, afterwards, in the BIOMASS IAEA Programme. In parallel to the participation in these Projects and based on their conclusions, CIEMAT has been developing for ENRESA a methodology, which has to be updated and completed with recent developments from BIOMASS-Theme1. Notably, for the Justification and Identification step, the Description of Critical Groups and the use of the Data protocol. An application of this methodology was performed and published in 1998 and, its results and conclusions are summarised in the paper. Also, the paper includes main conclusions from the biosphere modelling applied in the last ENRESA2000 Spanish PA exercise and, difficulties found in the consistency between the scenario generation procedure, the treatment of the interface and the source term and, the use of the reference biosphere concept. (author)

  20. Nominal Performance Biosphere Dose Conversion Factor Analysis

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Wasiolek

    2005-04-28

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the groundwater exposure scenario, and the development of conversion factors for assessing compliance with the groundwater protection standards. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop BDCFs, which are input parameters for the TSPA-LA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the ''Biosphere Model Report'' in Figure 1-1, contain detailed description of the model input parameters, their development, and the relationship between the parameters and specific features events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the groundwater exposure scenario. This analysis receives direct input from the outputs of the ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) and the five analyses that develop parameter values for the biosphere model (BSC 2005 [DIRS 172827]; BSC 2004 [DIRS 169672]; BSC 2004 [DIRS 169673]; BSC 2004 [DIRS 169458]; BSC 2004 [DIRS 169459]). The results of this report are further analyzed in the ''Biosphere Dose Conversion Factor Importance and Sensitivity Analysis

  1. Nominal Performance Biosphere Dose Conversion Factor Analysis

    International Nuclear Information System (INIS)

    M.A. Wasiolek

    2005-01-01

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the groundwater exposure scenario, and the development of conversion factors for assessing compliance with the groundwater protection standards. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop BDCFs, which are input parameters for the TSPA-LA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the ''Biosphere Model Report'' in Figure 1-1, contain detailed description of the model input parameters, their development, and the relationship between the parameters and specific features events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the groundwater exposure scenario. This analysis receives direct input from the outputs of the ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) and the five analyses that develop parameter values for the biosphere model (BSC 2005 [DIRS 172827]; BSC 2004 [DIRS 169672]; BSC 2004 [DIRS 169673]; BSC 2004 [DIRS 169458]; BSC 2004 [DIRS 169459]). The results of this report are further analyzed in the ''Biosphere Dose Conversion Factor Importance and Sensitivity Analysis'' (Figure 1-1). The objectives of this analysis are to develop BDCFs for the

  2. Biospheric feedback effects in a synchronously coupled model of human and Earth systems

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Peter E.; Calvin, Katherine; Jones, Andrew D.; Di Vittorio, Alan V.; Bond-Lamberty, Ben; Chini, Louise; Shi, Xiaoying; Mao, Jiafu; Collins, William D.; Edmonds, Jae; Thomson, Allison; Truesdale, John; Craig, Anthony; Branstetter, Marcia L.; Hurtt, George

    2017-06-12

    Fossil fuel combustion and land-use change are the first and second largest contributors to industrial-era increases in atmospheric carbon dioxide concentration, which is itself the largest driver of present-day climate change1. Projections of fossil fuel consumption and land-use change are thus fundamental inputs for coupled Earth system models (ESM) used to estimate the physical and biological consequences of future climate system forcing2,3. While empirical datasets are available to inform historical analyses4,5, assessments of future climate change have relied on projections of energy and land use based on energy economic models, constrained using historical and present-day data and forced with assumptions about future policy, land-use patterns, and socio-economic development trajectories6. Here we show that the influence of biospheric change – the integrated effect of climatic, ecological, and geochemical processes – on land ecosystems has a significant impact on energy, agriculture, and land-use projections for the 21st century. Such feedbacks have been ignored in previous ESM studies of future climate. We find that synchronous exposure of land ecosystem productivity in the economic system to biospheric change as it develops in an ESM results in a 10% reduction of land area used for crop cultivation; increased managed forest area and land carbon; a 15-20% decrease in global crop price; and a 17% reduction in fossil fuel emissions for a low-mid range forcing scenario7. These simulation results demonstrate that biospheric change can significantly alter primary human system forcings to the climate system. This synchronous two-way coupling approach removes inconsistencies in description of climate change between human and biosphere components of the coupled model, mitigating a major source of uncertainty identified in assessments of future climate projections8-10.

  3. SiB3 Modeled Global 1-degree Hourly Biosphere-Atmosphere Carbon Flux, 1998-2006

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The Simple Biosphere Model, Version 3 (SiB3) was used to produce a global data set of hourly carbon fluxes between the atmosphere and the terrestrial...

  4. Future of Plant Functional Types in Terrestrial Biosphere Models

    Science.gov (United States)

    Wullschleger, S. D.; Euskirchen, E. S.; Iversen, C. M.; Rogers, A.; Serbin, S.

    2015-12-01

    Earth system models describe the physical, chemical, and biological processes that govern our global climate. While it is difficult to single out one component as being more important than another in these sophisticated models, terrestrial vegetation is a critical player in the biogeochemical and biophysical dynamics of the Earth system. There is much debate, however, as to how plant diversity and function should be represented in these models. Plant functional types (PFTs) have been adopted by modelers to represent broad groupings of plant species that share similar characteristics (e.g. growth form) and roles (e.g. photosynthetic pathway) in ecosystem function. In this review the PFT concept is traced from its origin in the early 1800s to its current use in regional and global dynamic vegetation models (DVMs). Special attention is given to the representation and parameterization of PFTs and to validation and benchmarking of predicted patterns of vegetation distribution in high-latitude ecosystems. These ecosystems are sensitive to changing climate and thus provide a useful test case for model-based simulations of past, current, and future distribution of vegetation. Models that incorporate the PFT concept predict many of the emerging patterns of vegetation change in tundra and boreal forests, given known processes of tree mortality, treeline migration, and shrub expansion. However, representation of above- and especially belowground traits for specific PFTs continues to be problematic. Potential solutions include developing trait databases and replacing fixed parameters for PFTs with formulations based on trait co-variance and empirical trait-environment relationships. Surprisingly, despite being important to land-atmosphere interactions of carbon, water, and energy, PFTs such as moss and lichen are largely absent from DVMs. Close collaboration among those involved in modelling with the disciplines of taxonomy, biogeography, ecology, and remote sensing will be

  5. Biosphere Modeling and Analyses in Support of Total System Performance Assessment

    International Nuclear Information System (INIS)

    Tappen, J. J.; Wasiolek, M. A.; Wu, D. W.; Schmitt, J. F.; Smith, A. J.

    2002-01-01

    The Nuclear Waste Policy Act of 1982 established the obligations of and the relationship between the U.S. Environmental Protection Agency (EPA), the U.S. Nuclear Regulatory Commission (NRC), and the U.S. Department of Energy (DOE) for the management and disposal of high-level radioactive wastes. In 1985, the EPA promulgated regulations that included a definition of performance assessment that did not consider potential dose to a member of the general public. This definition would influence the scope of activities conducted by DOE in support of the total system performance assessment program until 1995. The release of a National Academy of Sciences (NAS) report on the technical basis for a Yucca Mountain-specific standard provided the impetus for the DOE to initiate activities that would consider the attributes of the biosphere, i.e. that portion of the earth where living things, including man, exist and interact with the environment around them. The evolution of NRC and EPA Yucca Mountain-specific regulations, originally proposed in 1999, was critical to the development and integration of biosphere modeling and analyses into the total system performance assessment program. These proposed regulations initially differed in the conceptual representation of the receptor of interest to be considered in assessing performance. The publication in 2001 of final regulations in which the NRC adopted standard will permit the continued improvement and refinement of biosphere modeling and analyses activities in support of assessment activities

  6. Biosphere Modeling and Analyses in Support of Total System Performance Assessment

    International Nuclear Information System (INIS)

    Jeff Tappen; M.A. Wasiolek; D.W. Wu; J.F. Schmitt

    2001-01-01

    The Nuclear Waste Policy Act of 1982 established the obligations of and the relationship between the U.S. Environmental Protection Agency (EPA), the U.S. Nuclear Regulatory Commission (NRC), and the U.S. Department of Energy (DOE) for the management and disposal of high-level radioactive wastes. In 1985, the EPA promulgated regulations that included a definition of performance assessment that did not consider potential dose to a member of the general public. This definition would influence the scope of activities conducted by DOE in support of the total system performance assessment program until 1995. The release of a National Academy of Sciences (NAS) report on the technical basis for a Yucca Mountain-specific standard provided the impetus for the DOE to initiate activities that would consider the attributes of the biosphere, i.e. that portion of the earth where living things, including man, exist and interact with the environment around them. The evolution of NRC and EPA Yucca Mountain-specific regulations, originally proposed in 1999, was critical to the development and integration of biosphere modeling and analyses into the total system performance assessment program. These proposed regulations initially differed in the conceptual representation of the receptor of interest to be considered in assessing performance. The publication in 2001 of final regulations in which the NRC adopted standard will permit the continued improvement and refinement of biosphere modeling and analyses activities in support of assessment activities

  7. Modeling Impact of Urbanization in US Cities Using Simple Biosphere Model SiB2

    Science.gov (United States)

    Zhang, Ping; Bounoua, Lahouari; Thome, Kurtis; Wolfe, Robert

    2016-01-01

    We combine Landsat- and the Moderate Resolution Imaging Spectroradiometer (MODIS)-based products, as well as climate drivers from Phase 2 of the North American Land Data Assimilation System (NLDAS-2) in a Simple Biosphere land surface model (SiB2) to assess the impact of urbanization in continental USA (excluding Alaska and Hawaii). More than 300 cities and their surrounding suburban and rural areas are defined in this study to characterize the impact of urbanization on surface climate including surface energy, carbon budget, and water balance. These analyses reveal an uneven impact of urbanization across the continent that should inform upon policy options for improving urban growth including heat mitigation and energy use, carbon sequestration and flood prevention.

  8. The Jena Diversity Model: Towards a Richer Representation of the Terrestrial Biosphere for Earth System Modelling

    Science.gov (United States)

    Pavlick, R.; Reu, B.; Bohn, K.; Dyke, J.; Kleidon, A.

    2010-12-01

    The terrestrial biosphere is a complex, self-organizing system which is continually both adapting to and altering its global environment. It also exhibits a vast diversity of vegetation forms and functioning. However, the terrestrial biosphere components within current state-of-the-art Earth System Models abstract this diversity in to a handful of relatively static plant functional types. These coarse and static representations of functional diversity might contribute to overly pessimistic projections regarding terrestrial ecosystem responses to scenarios of global change (e.g. Amazonian and boreal forest diebacks). In the Jena Diversity (JeDi) model, we introduce a new approach to vegetation modelling with a richer representation of functional diversity, based not on plant functional types, but on unavoidable plant ecophysiological trade-offs, which we hypothesize should be more stable in time. The JeDi model tests a large number of plant growth strategies. Each growth strategy is simulated using a set of randomly generated parameter values, which characterize its functioning in terms of carbon allocation, ecophysiology, and phenology, which are then linked to the growing conditions at the land surface. The model is constructed in such a way that these parameters inherently lead to ecophysiological trade-offs, which determine whether a growth strategy is able to survive and reproduce under the prevalent climatic conditions. Kleidon and Mooney (2000) demonstrated that this approach is capable of reproducing the geographic distribution of species richness. More recently, we have shown the JeDi model can explain other biogeographical phenomena including the present-day global pattern of biomes (Reu et al., accepted), ecosystem evenness (Kleidon et al. 2009), and possible mechanisms for biome shifts and biodiversity changes under scenarios of global warming (Reu et al., submitted). We have also evaluated the simulated biogeochemical fluxes from JeDi against a variety

  9. A multi-model assessment of terrestrial biosphere model data needs

    Science.gov (United States)

    Gardella, A.; Cowdery, E.; De Kauwe, M. G.; Desai, A. R.; Duveneck, M.; Fer, I.; Fisher, R.; Knox, R. G.; Kooper, R.; LeBauer, D.; McCabe, T.; Minunno, F.; Raiho, A.; Serbin, S.; Shiklomanov, A. N.; Thomas, A.; Walker, A.; Dietze, M.

    2017-12-01

    Terrestrial biosphere models provide us with the means to simulate the impacts of climate change and their uncertainties. Going beyond direct observation and experimentation, models synthesize our current understanding of ecosystem processes and can give us insight on data needed to constrain model parameters. In previous work, we leveraged the Predictive Ecosystem Analyzer (PEcAn) to assess the contribution of different parameters to the uncertainty of the Ecosystem Demography model v2 (ED) model outputs across various North American biomes (Dietze et al., JGR-G, 2014). While this analysis identified key research priorities, the extent to which these priorities were model- and/or biome-specific was unclear. Furthermore, because the analysis only studied one model, we were unable to comment on the effect of variability in model structure to overall predictive uncertainty. Here, we expand this analysis to all biomes globally and a wide sample of models that vary in complexity: BioCro, CABLE, CLM, DALEC, ED2, FATES, G'DAY, JULES, LANDIS, LINKAGES, LPJ-GUESS, MAESPA, PRELES, SDGVM, SIPNET, and TEM. Prior to performing uncertainty analyses, model parameter uncertainties were assessed by assimilating all available trait data from the combination of the BETYdb and TRY trait databases, using an updated multivariate version of PEcAn's Hierarchical Bayesian meta-analysis. Next, sensitivity analyses were performed for all models across a range of sites globally to assess sensitivities for a range of different outputs (GPP, ET, SH, Ra, NPP, Rh, NEE, LAI) at multiple time scales from the sub-annual to the decadal. Finally, parameter uncertainties and model sensitivities were combined to evaluate the fractional contribution of each parameter to the predictive uncertainty for a specific variable at a specific site and timescale. Facilitated by PEcAn's automated workflows, this analysis represents the broadest assessment of the sensitivities and uncertainties in terrestrial

  10. Development of Advanced Eco-hydrologic and Biogeochemical Coupling Model to Re-evaluate Greenhouse Gas Budget of Biosphere

    Science.gov (United States)

    Nakayama, T.; Maksyutov, S. S.

    2015-12-01

    Inland waters including rivers, lakes, and groundwater are suggested to act as a transport pathway for water and dissolved substances, and play some role in continental biogeochemical cycling (Cole et al., 2007; Battin et al., 2009). The authors have developed process-based National Integrated Catchment-based Eco-hydrology (NICE) model (2014, 2015, etc.), which includes feedback between hydrologic-geomorphic-ecological processes. In this study, NICE was further developed to couple with various biogeochemical cycle models in biosphere, those for water quality in aquatic ecosystems, and those for carbon weathering. The NICE-biogeochemical coupling model incorporates connectivity of the biogeochemical cycle accompanied by hydrologic cycle between surface water and groundwater, hillslopes and river networks, and other intermediate regions. The model also includes reaction between inorganic and organic carbons, and its relation to nitrogen and phosphorus in terrestrial-aquatic continuum. The coupled model showed to improve the accuracy of inundation stress mechanism such as photosynthesis and primary production, which attributes to improvement of CH4 flux in wetland sensitive to fluctuations of shallow groundwater. The model also simulated CO2 evasion from inland water in global scale, and was relatively in good agreement in empirical relation (Aufdenkampe et al., 2011) which has relatively an uncertainty in the calculated flux because of pCO2 data missing in some region and effect of small tributaries, etc. Further, the model evaluated how the expected CO2 evasion might change as inland waters become polluted with nutrients and eutrophication increases from agriculture and urban areas (Pacheco et al., 2013). This advanced eco-hydrologic and biogeochemical coupling model would play important role to re-evaluate greenhouse gas budget of the biosphere, and to bridge gap between top-down and bottom-up approaches (Battin et al., 2009; Regnier et al., 2013).

  11. Root structural and functional dynamics in terrestrial biosphere models--evaluation and recommendations.

    Science.gov (United States)

    Warren, Jeffrey M; Hanson, Paul J; Iversen, Colleen M; Kumar, Jitendra; Walker, Anthony P; Wullschleger, Stan D

    2015-01-01

    There is wide breadth of root function within ecosystems that should be considered when modeling the terrestrial biosphere. Root structure and function are closely associated with control of plant water and nutrient uptake from the soil, plant carbon (C) assimilation, partitioning and release to the soils, and control of biogeochemical cycles through interactions within the rhizosphere. Root function is extremely dynamic and dependent on internal plant signals, root traits and morphology, and the physical, chemical and biotic soil environment. While plant roots have significant structural and functional plasticity to changing environmental conditions, their dynamics are noticeably absent from the land component of process-based Earth system models used to simulate global biogeochemical cycling. Their dynamic representation in large-scale models should improve model veracity. Here, we describe current root inclusion in models across scales, ranging from mechanistic processes of single roots to parameterized root processes operating at the landscape scale. With this foundation we discuss how existing and future root functional knowledge, new data compilation efforts, and novel modeling platforms can be leveraged to enhance root functionality in large-scale terrestrial biosphere models by improving parameterization within models, and introducing new components such as dynamic root distribution and root functional traits linked to resource extraction. No claim to original US Government works. New Phytologist © 2014 New Phytologist Trust.

  12. A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere

    Directory of Open Access Journals (Sweden)

    Y. P. Wang

    2010-07-01

    Full Text Available Carbon storage by many terrestrial ecosystems can be limited by nutrients, predominantly nitrogen (N and phosphorus (P, in addition to other environmental constraints, water, light and temperature. However the spatial distribution and the extent of both N and P limitation at the global scale have not been quantified. Here we have developed a global model of carbon (C, nitrogen (N and phosphorus (P cycles for the terrestrial biosphere. Model estimates of steady state C and N pool sizes and major fluxes between plant, litter and soil pools, under present climate conditions, agree well with various independent estimates. The total amount of C in the terrestrial biosphere is 2767 Gt C, and the C fractions in plant, litter and soil organic matter are 19%, 4% and 77%. The total amount of N is 135 Gt N, with about 94% stored in the soil, 5% in the plant live biomass, and 1% in litter. We found that the estimates of total soil P and its partitioning into different pools in soil are quite sensitive to biochemical P mineralization. The total amount of P (plant biomass, litter and soil excluding occluded P in soil is 17 Gt P in the terrestrial biosphere, 33% of which is stored in the soil organic matter if biochemical P mineralization is modelled, or 31 Gt P with 67% in soil organic matter otherwise.

    This model was used to derive the global distribution and uncertainty of N or P limitation on the productivity of terrestrial ecosystems at steady state under present conditions. Our model estimates that the net primary productivity of most tropical evergreen broadleaf forests and tropical savannahs is reduced by about 20% on average by P limitation, and most of the remaining biomes are N limited; N limitation is strongest in high latitude deciduous needle leaf forests, and reduces its net primary productivity by up to 40% under present conditions.

  13. The Middle Miocene climate as modelled in an atmosphere-ocean-biosphere model

    Science.gov (United States)

    Krapp, M.; Jungclaus, J. H.

    2011-11-01

    We present simulations with a coupled atmosphere-ocean-biosphere model for the Middle Miocene 15 million years ago. The model is insofar more consistent than previous models because it captures the essential interactions between ocean and atmosphere and between atmosphere and vegetation. The Middle Miocene topography, which alters both large-scale ocean and atmospheric circulations, causes a global warming of 0.7 K compared to present day. Higher than present-day CO2 levels of 480 and 720 ppm cause a global warming of 2.8 and 4.9 K. The associated water vapour feedback enhances the greenhouse effect which leads to a polar amplification of the warming. These results suggest that higher than present-day CO2 levels are necessary to drive the warm Middle Miocene climate, also because the dynamic vegetation model simulates a denser vegetation which is in line with fossil records. However, we do not find a flatter than present-day equator-to-pole temperature gradient as has been suggested by marine and terrestrial proxies. Instead, a compensation between atmospheric and ocean heat transport counteracts the flattening of the temperature gradient. The acclaimed role of the large-scale ocean circulation in redistributing heat cannot be supported by our results. Including full ocean dynamics, therefore, does not solve the problem of the flat temperature gradient during the Middle Miocene.

  14. Soil-to-Plant Concentration Ratios for Assessing Food Chain Pathways in Biosphere Models

    Energy Technology Data Exchange (ETDEWEB)

    Napier, Bruce A.; Fellows, Robert J.; Krupka, Kenneth M.

    2007-10-01

    This report describes work performed for the U.S. Nuclear Regulatory Commission’s project Assessment of Food Chain Pathway Parameters in Biosphere Models, which was established to assess and evaluate a number of key parameters used in the food-chain models used in performance assessments of radioactive waste disposal facilities. Section 2 of this report summarizes characteristics of samples of soils and groundwater from three geographical regions of the United States, the Southeast, Northwest, and Southwest, and analyses performed to characterize their physical and chemical properties. Because the uptake and behavior of radionuclides in plant roots, plant leaves, and animal products depends on the chemistry of the water and soil coming in contact with plants and animals, water and soil samples collected from these regions of the United States were used in experiments at Pacific Northwest National Laboratory to determine radionuclide soil-to-plant concentration ratios. Crops and forage used in the experiments were grown in the soils, and long-lived radionuclides introduced into the groundwater provide the contaminated water used to water the grown plants. The radionuclides evaluated include 99Tc, 238Pu, and 241Am. Plant varieties include alfalfa, corn, onion, and potato. The radionuclide uptake results from this research study show how regional variations in water quality and soil chemistry affect radionuclide uptake. Section 3 summarizes the procedures and results of the uptake experiments, and relates the soil-to-plant uptake factors derived. In Section 4, the results found in this study are compared with similar values found in the biosphere modeling literature; the study’s results are generally in line with current literature, but soil- and plant-specific differences are noticeable. This food-chain pathway data may be used by the NRC staff to assess dose to persons in the reference biosphere (e.g., persons who live and work in an area potentially affected by

  15. The Biosphere.

    Science.gov (United States)

    Cloud, Preston

    1983-01-01

    Discusses the earth's biosphere, considering how the microbial, animal and plant life (which make up the biosphere) are sustained by the earth's lithosphere, hydrosphere, and atmosphere. Also considers how these three earth features have powerfully shaped the evolution of these organisms. (JN)

  16. Modeling Surface Climate in US Cities Using Simple Biosphere Model Sib2

    Science.gov (United States)

    Zhang, Ping; Bounoua, Lahouari; Thome, Kurtis; Wolfe, Robert; Imhoff, Marc

    2015-01-01

    We combine Landsat- and the Moderate Resolution Imaging Spectroradiometer (MODIS)-based products in the Simple Biosphere model (SiB2) to assess the effects of urbanized land on the continental US (CONUS) surface climate. Using National Land Cover Database (NLCD) Impervious Surface Area (ISA), we define more than 300 urban settlements and their surrounding suburban and rural areas over the CONUS. The SiB2 modeled Gross Primary Production (GPP) over the CONUS of 7.10 PgC (1 PgC= 10(exp 15) grams of Carbon) is comparable to the MODIS improved GPP of 6.29 PgC. At state level, SiB2 GPP is highly correlated with MODIS GPP with a correlation coefficient of 0.94. An increasing horizontal GPP gradient is shown from the urban out to the rural area, with, on average, rural areas fixing 30% more GPP than urbans. Cities built in forested biomes have stronger UHI magnitude than those built in short vegetation with low biomass. Mediterranean climate cities have a stronger UHI in wet season than dry season. Our results also show that for urban areas built within forests, 39% of the precipitation is discharged as surface runoff during summer versus 23% in rural areas.

  17. Olkiluoto biosphere description 2006

    International Nuclear Information System (INIS)

    Haapanen, R.; Aro, L.; Ilvesniemi, H.; Kareinen, T.; Kirkkala, T.; Mykrae, S.; Turkki, H.; Lahdenperae, A.-M.; Ikonen, A.T.K.

    2007-02-01

    This report summarises the current knowledge of the biosphere of Olkiluoto, and it is the first Biosphere Description Report. The elements considered were climate, topography, land use, overburden, terrestrial vegetation and fauna and sea flora, fauna and water. The principal aim was to present a synthesis of the present state (now to 2020) and the main features of past evolution of the biosphere at the site using currently available data. The lack of site specific parameters and their importance was discussed. Conceptual ecosystem models are presented for land and sea. Currently available data made it possible to calculate the biomass of the terrestrial vegetation and further convert it to carbon. In the case of terrestrial animals, preliminary figures are given for moose alone due to lack of sitespecific data. For the same reason, the sea ecosystem model was not quantified within this work. The ecosystems on Olkiluoto do not deviate from the surrounding areas. Since mires are few on Olkiluoto, forests are the most important land ecosystem. However, coastal areas are the transition zones between land and sea, and also potential sites for deep groundwater discharge. The major interest concerning aquatic ecosystems was laid on four future lakes potentially developing from the sea due to the land up-lift. Current sea sediments near Olkiluoto are future land areas, and thus very important. Spatially, the forest ecosystems of Olkiluoto are now most comprehensively covered, while the temporal coverage is highest in sea ecosystems. Lack of data is greatest in terrestrial fauna and sea sediments. During this work, the system boundaries were crossed and the use of data over disciplines was started. The data were mostly in agreement, but some discrepancies were detected. To solve these, and to supplement the existing data, some recommendations were given. (orig.)

  18. A model of accumulation of radionuclides in biosphere originating from groundwater contamination

    Energy Technology Data Exchange (ETDEWEB)

    Gaerdenaes, Annemieke [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Soil Sciences; Jansson, Per-Erik; Karlberg, Louise [Royal Inst. of Technology, Stockholm (Sweden). Dept. Land and Water Resources

    2006-03-15

    The objective of this study is to introduce a module in CoupModel describing the transport and accumulation in the biosphere of a radionuclide originating from a ground water contamination. Two model approaches describing the plant uptake of a radionuclide were included, namely passive and active uptake. Passive uptake means in this study that the root uptake rate of a radionuclide is governed by water uptake. Normal mechanism for the passive water uptake is the convective flux of water from the soil to the plant. An example of element taken up passively is Ca. Active plant uptake is in this model defined as the root uptake rate of a radionuclide that is governed by carbon assimilation i.e. photosynthesis and plant growth. The actively taken up element can for example be an element essential to plant, but not available in high enough concentration by passive uptake alone, like the major nutrients N and P or an element that very well resembles a plant nutrient, like Cs resembles K. Active uptake of trace element may occur alone or in addition to passive uptake. Normal mechanism for the active uptake is molecular diffusion from the soil solution to the roots or via any other organism living in symbiosis with the roots like the mycorrhiza. Also a model approach describing adsorption was introduced. CoupModel dynamically couples and simulates the flows of water, heat, carbon and nitrogen in the soil/plant/atmosphere system. Any number of plants may be defined and are divided into roots, leaves, stem and grain. The soil is considered in one vertical profile that may be represented into a maximum of 100 layers. The model is the windows-successor and integrated version of the DOS-models SOIL and SOILN, which have been widely used on different ecosystems and climate regions during 25 years time period. To this soil/plant/atmosphere model were introduced a module describing accumulation of a radionuclide in the biosphere originating from groundwater contamination. The

  19. A model of accumulation of radionuclides in biosphere originating from groundwater contamination

    International Nuclear Information System (INIS)

    Gaerdenaes, Annemieke; Jansson, Per-Erik; Karlberg, Louise

    2006-03-01

    The objective of this study is to introduce a module in CoupModel describing the transport and accumulation in the biosphere of a radionuclide originating from a ground water contamination. Two model approaches describing the plant uptake of a radionuclide were included, namely passive and active uptake. Passive uptake means in this study that the root uptake rate of a radionuclide is governed by water uptake. Normal mechanism for the passive water uptake is the convective flux of water from the soil to the plant. An example of element taken up passively is Ca. Active plant uptake is in this model defined as the root uptake rate of a radionuclide that is governed by carbon assimilation i.e. photosynthesis and plant growth. The actively taken up element can for example be an element essential to plant, but not available in high enough concentration by passive uptake alone, like the major nutrients N and P or an element that very well resembles a plant nutrient, like Cs resembles K. Active uptake of trace element may occur alone or in addition to passive uptake. Normal mechanism for the active uptake is molecular diffusion from the soil solution to the roots or via any other organism living in symbiosis with the roots like the mycorrhiza. Also a model approach describing adsorption was introduced. CoupModel dynamically couples and simulates the flows of water, heat, carbon and nitrogen in the soil/plant/atmosphere system. Any number of plants may be defined and are divided into roots, leaves, stem and grain. The soil is considered in one vertical profile that may be represented into a maximum of 100 layers. The model is the windows-successor and integrated version of the DOS-models SOIL and SOILN, which have been widely used on different ecosystems and climate regions during 25 years time period. To this soil/plant/atmosphere model were introduced a module describing accumulation of a radionuclide in the biosphere originating from groundwater contamination. The

  20. Biospheric feedback effects in a synchronously coupled model of human and Earth systems

    Science.gov (United States)

    Thornton, Peter E.; Calvin, Katherine; Jones, Andrew D.; di Vittorio, Alan V.; Bond-Lamberty, Ben; Chini, Louise; Shi, Xiaoying; Mao, Jiafu; Collins, William D.; Edmonds, Jae; Thomson, Allison; Truesdale, John; Craig, Anthony; Branstetter, Marcia L.; Hurtt, George

    2017-07-01

    Fossil fuel combustion and land-use change are the two largest contributors to industrial-era increases in atmospheric CO 2 concentration. Projections of these are thus fundamental inputs for coupled Earth system models (ESMs) used to estimate the physical and biological consequences of future climate system forcing. While historical data sets are available to inform past and current climate analyses, assessments of future climate change have relied on projections of energy and land use from energy-economic models, constrained by assumptions about future policy, land-use patterns and socio-economic development trajectories. Here we show that the climatic impacts on land ecosystems drive significant feedbacks in energy, agriculture, land use and carbon cycle projections for the twenty-first century. We find that exposure of human-appropriated land ecosystem productivity to biospheric change results in reductions of land area used for crops; increases in managed forest area and carbon stocks; decreases in global crop prices; and reduction in fossil fuel emissions for a low-mid-range forcing scenario. The feedbacks between climate-induced biospheric change and human system forcings to the climate system--demonstrated here--are handled inconsistently, or excluded altogether, in the one-way asynchronous coupling of energy-economic models to ESMs used to date.

  1. Biospheric feedback effects in a synchronously coupled model of human and Earth systems

    Science.gov (United States)

    Thornton, P. E.; Calvin, K. V.; Jones, A. D.; Di Vittorio, A. V.; Bond-Lamberty, B. P.; Chini, L. P.; Shi, X.; Mao, J.; Collins, W. D.; Edmonds, J.; Hurtt, G. C.

    2017-12-01

    Fossil fuel combustion and land-use change are the two largest contributors to industrial-era increases in atmospheric CO2 concentration. Projections of these are thus fundamental inputs for coupled Earth system models (ESMs) used to estimate the physical and biological consequences of future climate system forcing. While historical datasets are available to inform past and current climate analyses, assessments of future climate change have relied on projections of energy and land use from energy economic models, constrained by assumptions about future policy, land-use patterns, and socio-economic development trajectories. In this work we show that the climatic impacts on land ecosystems drives significant feedbacks in energy, agriculture, land-use, and carbon cycle projections for the 21st century. We find that exposure of human appropriated land ecosystem productivity to biospheric change results in reductions of land area used for crops; increases in managed forest area and carbon stocks; decreases in global crop prices; and reduction in fossil fuel emissions for a low-mid range forcing scenario. Land ecosystem response to increased carbon dioxide concentration, increased anthropogenic nitrogen deposition, and changes in temperature and precipitation all play a role. The feedbacks between climate-induced biospheric change and human system forcings to the climate system demonstrated in this work are handled inconsistently, or excluded altogether, in the one-way asynchronous coupling of energy economic models to ESMs used to date.

  2. Multi-site assimilation of a terrestrial biosphere model (BETHY) using satellite derived soil moisture data

    Science.gov (United States)

    Wu, Mousong; Sholze, Marko

    2017-04-01

    We investigated the importance of soil moisture data on assimilation of a terrestrial biosphere model (BETHY) for a long time period from 2010 to 2015. Totally, 101 parameters related to carbon turnover, soil respiration, as well as soil texture were selected for optimization within a carbon cycle data assimilation system (CCDAS). Soil moisture data from Soil Moisture and Ocean Salinity (SMOS) product was derived for 10 sites representing different plant function types (PFTs) as well as different climate zones. Uncertainty of SMOS soil moisture data was also estimated using triple collocation analysis (TCA) method by comparing with ASCAT dataset and BETHY forward simulation results. Assimilation of soil moisture to the system improved soil moisture as well as net primary productivity(NPP) and net ecosystem productivity (NEP) when compared with soil moisture derived from in-situ measurements and fluxnet datasets. Parameter uncertainties were largely reduced relatively to prior values. Using SMOS soil moisture data for assimilation of a terrestrial biosphere model proved to be an efficient approach in reducing uncertainty in ecosystem fluxes simulation. It could be further used in regional an global assimilation work to constrain carbon dioxide concentration simulation by combining with other sources of measurements.

  3. A Biosphere Assessment: Influence due to Geosphere-Biosphere Interfaces

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Hwang, Yong Soo

    2009-01-01

    models it is necessary to treat properly all the relevant FEPs and scenarios associated with the organically coupled chain between the modeling schemes of groundwater flow and nuclide transport in the geosphere and biosphere. Since the first development of a biosphere assessment model and the implemented codes, ACBIO and ACBIO2, which has more complex modeling scheme than its predecessor, based on BIOMASS methodology by utilizing AMBER for the purpose of evaluating dose rate to individual due to the long-term release of nuclides from the HLW or LILW repositories, a couple of their successors have been further developed and finally migrated to GoldSim scheme which is more flexible to adopt complex nuclide behaviors between the geosphere and the biosphere than AMBER based ACBIOs and then currently is being implemented into a GoldSim total system performance assessment programs which is being developed for the total safety assessment of the radioactive waste repository. To show its practicability and usability as well as to see the importance of GBIs, a quantified influence of the biosphere assessment has been investigated for varying GBI schemes through this study. To this end, among a few other possibilities, two cases having a different GBI scheme, the first one of which is 'Aquifer-only' GBI and the other one is 'Allpossible GBIs', they have been evaluated and compared with each other. Two plots for the calculated results are represented where peak dose conversion factors only for farming exposure group due to 38 nuclides are shown. Which represents the case of 'Aquifer- GBI' only, some discrepancy is found for such selected nuclides as 79 Se and 135 Cs between the cases of 'existence of a well' through which groundwater in the aquifer is drawn for the farming usage. However, unlike the farming exposure group no other two exposure groups, freshwater exposure and marine water exposure groups, seem to be free from the same scheme. However, all the exposure groups are

  4. ON-LINE CALCULATOR: FORWARD CALCULATION JOHNSON ETTINGER MODEL

    Science.gov (United States)

    On-Site was developed to provide modelers and model reviewers with prepackaged tools ("calculators") for performing site assessment calculations. The philosophy behind OnSite is that the convenience of the prepackaged calculators helps provide consistency for simple calculations,...

  5. Nominal Performance Biosphere Dose Conversion Factor Analysis

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek

    2004-09-08

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the groundwater exposure scenario, and the development of conversion factors for assessing compliance with the groundwater protection standard. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop biosphere BDCFs, which are input parameters for the TSPA-LA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the ''Biosphere Model Report'' in Figure 1-1, contain detailed description of the model input parameters, their development, and the relationship between the parameters and specific features events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the groundwater exposure scenario. The objectives of this analysis are to develop BDCFs for the groundwater exposure scenario for the three climate states considered in the TSPA-LA as well as conversion factors for evaluating compliance with the groundwater protection standard. The BDCFs will be used in performance assessment for calculating all-pathway annual doses for a given concentration of radionuclides in groundwater. The conversion factors will be used for calculating gross alpha particle

  6. Quantifying the Representation Error of Land Biosphere Models using High Resolution Footprint Analyses and UAS Observations

    Science.gov (United States)

    Hanson, C. V.; Schmidt, A.; Law, B. E.; Moore, W.

    2015-12-01

    The validity of land biosphere model outputs rely on accurate representations of ecosystem processes within the model. Typically, a vegetation or land cover type for a given area (several Km squared or larger resolution), is assumed to have uniform properties. The limited spacial and temporal resolution of models prevents resolving finer scale heterogeneous flux patterns that arise from variations in vegetation. This representation error must be quantified carefully if models are informed through data assimilation in order to assign appropriate weighting of model outputs and measurement data. The representation error is usually only estimated or ignored entirely due to the difficulty in determining reasonable values. UAS based gas sensors allow measurements of atmospheric CO2 concentrations with unprecedented spacial resolution, providing a means of determining the representation error for CO2 fluxes empirically. In this study we use three dimensional CO2 concentration data in combination with high resolution footprint analyses in order to quantify the representation error for modelled CO2 fluxes for typical resolutions of regional land biosphere models. CO2 concentration data were collected using an Atlatl X6A hexa-copter, carrying a highly calibrated closed path infra-red gas analyzer based sampling system with an uncertainty of ≤ ±0.2 ppm CO2. Gas concentration data was mapped in three dimensions using the UAS on-board position data and compared to footprints generated using WRF 3.61. Chad Hanson, Oregon State University, Corvallis, OR Andres Schmidt, Oregon State University, Corvallis, OR Bev Law, Oregon State University, Corvallis, OR

  7. Effective UV radiation from model calculations and measurements

    Science.gov (United States)

    Feister, Uwe; Grewe, Rolf

    1994-01-01

    Model calculations have been made to simulate the effect of atmospheric ozone and geographical as well as meteorological parameters on solar UV radiation reaching the ground. Total ozone values as measured by Dobson spectrophotometer and Brewer spectrometer as well as turbidity were used as input to the model calculation. The performance of the model was tested by spectroradiometric measurements of solar global UV radiation at Potsdam. There are small differences that can be explained by the uncertainty of the measurements, by the uncertainty of input data to the model and by the uncertainty of the radiative transfer algorithms of the model itself. Some effects of solar radiation to the biosphere and to air chemistry are discussed. Model calculations and spectroradiometric measurements can be used to study variations of the effective radiation in space in space time. The comparability of action spectra and their uncertainties are also addressed.

  8. Development of a distributed biosphere hydrological model and its evaluation with the Southern Great Plains Experiments (SGP97 and SGP99)

    Science.gov (United States)

    A distributed biosphere hydrological model, the so called water and energy budget-based distributed hydrological model (WEB-DHM), has been developed by fully coupling a biosphere scheme (SiB2) with a geomorphology-based hydrological model (GBHM). SiB2 describes the transfer of turbulent fluxes (ener...

  9. Development of atmosphere-soil-vegetation model for investigation of radioactive materials transport in terrestrial biosphere

    International Nuclear Information System (INIS)

    Katata, Genki; Nagai, Haruyasu; Zhang, Leiming; Held, Andreas; Serca, Dominique; Klemm, Otto

    2010-01-01

    In order to investigate the transport of radionuclides in the terrestrial biosphere we have developed a one-dimensional numerical model named SOLVEG that predicts the transfer of water, heat, and gaseous and particulate matters in atmosphere-soil-vegetation system. The SOLVEG represents atmosphere, soil, and vegetation as an aggregation of several layers. Basic equations used in the model are solved using the finite difference method. Most of predicted variables are interrelated with the source/sink terms of momentum, water, heat, gases, and particles based on mathematically described biophysical processes in atmosphere, soil and vegetation. The SOLVEG can estimate dry, wet and fog deposition of gaseous and particulate matters at each canopy layer. Performance tests of the SOLVEG with several observational sites were carried out. The SOLVEG predicted the observed temporal changes in water vapor, CO 2 , and ozone fluxes over vegetated surfaces. The SOLVEG also reproduced measured fluxes of fog droplets and of fine aerosols over the forest. (author)

  10. Mesoscale covariance of transport and CO2 fluxes: Evidence from observations and simulations using the WRF-VPRM coupled atmosphere-biosphere model

    NARCIS (Netherlands)

    Ahmadov, R.; Gerbig, C.; Kretschmer, R.; Koerner, S.; Neininger, B.; Dolman, A.J.; Sarrat, C.

    2007-01-01

    We developed a modeling system which combines a mesoscale meteorological model, the Weather Research and Forecasting (WRF) model, with a diagnostic biospheric model, the Vegetation Photosynthesis and Respiration (VPRM). The WRF-VPRM modeling system was designed to realistically simulate

  11. Modelling sequential Biosphere systems under Climate change for radioactive waste disposal. Project BIOCLIM

    International Nuclear Information System (INIS)

    Texier, D.; Degnan, P.; Loutre, M.F.; Lemaitre, G.; Paillard, D.; Thorne, M.

    2000-01-01

    The BIOCLIM project (Modelling Sequential Biosphere systems under Climate change for Radioactive Waste Disposal) is part of the EURATOM fifth European framework programme. The project was launched in October 2000 for a three-year period. It is coordinated by ANDRA, the French national radioactive waste management agency. The project brings together a number of European radioactive waste management organisations that have national responsibilities for the safe disposal of radioactive wastes, and several highly experienced climate research teams. Waste management organisations involved are: NIREX (UK), GRS (Germany), ENRESA (Spain), NRI (Czech Republic) and ANDRA (France). Climate research teams involved are: LSCE (CEA/CNRS, France), CIEMAT (Spain), UPMETSIMM (Spain), UCL/ASTR (Belgium) and CRU (UEA, UK). The Environmental Agency for England and Wales provides a regulatory perspective. The consulting company Enviros Consulting (UK) assists ANDRA by contributing to both the administrative and scientific aspects of the project. This paper describes the project and progress to date. (authors)

  12. Biosphere modeling for safety assessment to high-level radioactive waste geological disposal. Application of reference biosphere methodology to safety assesment of geological disposal

    International Nuclear Information System (INIS)

    Baba, Tomoko; Ishihara, Yoshinao; Ishiguro, Katsuhiko; Suzuki, Yuji; Naito, Morimasa

    2000-01-01

    In the safety assessment of a high-level radioactive waste disposal system, it is required to estimate future radiological impacts on human beings. Consideration of living habits and the human environment in the future involves a large degree of uncertainty. To avoid endless speculation aimed at reducing such uncertainty, an approach is applied for identifying and justifying a 'reference biosphere' for use in safety assessment in Japan. considering a wide range of Japanese geological environments, saline specific reference biospheres' were developed using an approach consistent with the BIOMOVS II reference biosphere methodology. (author)

  13. Preindustrial nitrous oxide emissions from the land biosphere estimated by using a global biogeochemistry model

    Directory of Open Access Journals (Sweden)

    R. Xu

    2017-07-01

    Full Text Available To accurately assess how increased global nitrous oxide (N2O emission has affected the climate system requires a robust estimation of the preindustrial N2O emissions since only the difference between current and preindustrial emissions represents net drivers of anthropogenic climate change. However, large uncertainty exists in previous estimates of preindustrial N2O emissions from the land biosphere, while preindustrial N2O emissions on the finer scales, such as regional, biome, or sector scales, have not been well quantified yet. In this study, we applied a process-based Dynamic Land Ecosystem Model (DLEM to estimate the magnitude and spatial patterns of preindustrial N2O fluxes at the biome, continental, and global level as driven by multiple environmental factors. Uncertainties associated with key parameters were also evaluated. Our study indicates that the mean of the preindustrial N2O emission was approximately 6.20 Tg N yr−1, with an uncertainty range of 4.76 to 8.13 Tg N yr−1. The estimated N2O emission varied significantly at spatial and biome levels. South America, Africa, and Southern Asia accounted for 34.12, 23.85, and 18.93 %, respectively, together contributing 76.90 % of global total emission. The tropics were identified as the major source of N2O released into the atmosphere, accounting for 64.66 % of the total emission. Our multi-scale estimates provide a robust reference for assessing the climate forcing of anthropogenic N2O emission from the land biosphere

  14. Natural releases from contaminated groundwater, Example Reference Biosphere 2B

    International Nuclear Information System (INIS)

    Simon, I.; Naito, M.; Thorne, M.C.; Walke, R.

    2005-01-01

    Safety assessment is a tool which, by means of an iterative procedure, allows the evaluation of the performance of a disposal system and its potential impact on human health and the environment. Radionuclides from a deep geological disposal facility may not reach the surface environment until many tens of thousands of years after closure of the facility. The BIOMASS Programme on BIOsphere Modelling and ASSessment developed Examples of 'Reference Biospheres' to illustrate the use of the methodology and to demonstrate how biosphere models can be developed and justified as being fit for purpose. The practical examples are also intended to be useful in their own right. The Example Reference Biosphere 2B presented here involves the consideration of alternative types of geosphere-biosphere interfaces and calculation of doses to members of hypothetical exposure groups arising from a wide range of exposure pathways within agricultural and semi-natural environments, but without allowing for evolution of the corresponding biosphere system. The example presented can be used as a generic analysis in some situations although it was developed around a relatively specific conceptual model. It should be a useful practical example, but the above numerical results are not intended to be understood as prescribed biosphere 'conversion factors'

  15. European-wide simulations of croplands using an improved terrestrial biosphere model: Phenology and productivity

    Science.gov (United States)

    Smith, P. C.; de Noblet-Ducoudré, N.; Ciais, P.; Peylin, P.; Viovy, N.; Meurdesoif, Y.; Bondeau, A.

    2010-03-01

    Aiming at producing improved estimates of carbon source/sink spatial and interannual patterns across Europe (35% croplands), this work combines the terrestrial biosphere model Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE), for vegetation productivity, water balance, and soil carbon dynamics, and the generic crop model Simulateur Multidisciplinaire pour les Cultures Standard (STICS), for phenology, irrigation, nitrogen balance, and harvest. The ORCHIDEE-STICS model, relying on three plant functional types for the representation of temperate agriculture, is evaluated over the last few decades at various spatial and temporal resolutions. The simulated leaf area index seasonal cycle is largely improved relative to the original ORCHIDEE simulating grasslands, and compares favorably with remote-sensing observations (correlation doubles over Europe). Crop yield is derived from annual net primary productivity and compared with wheat and grain maize harvest data for five European countries. Discrepancies between 30 year mean simulated and reported yields are large in Mediterranean countries. Interannual variability amplitude expressed relative to the mean is reduced toward the observed variability (≈10%) when using ORCHIDEE-STICS. Overall, this study highlights the importance of accounting for the specific phenologies of crops sown both in winter and in spring and for irrigation applied to spring crops in regional/global models of the terrestrial carbon cycle. Limitations suggest to account for temporal and spatial variability in agricultural practices for further simulation improvement.

  16. Landscape model configuration for biosphere analysis of selected cases in TILA-99 and in KBS-3H safety evaluation, 2007

    International Nuclear Information System (INIS)

    Broed, R.

    2008-08-01

    In this report, the configuration of a landscape model based on the Terrain and ecosystems development model of the Olkiluoto site, 2006, is presented in details. The landscape model is created especially for use in the simulations of release cases in the KBS-3H safety evaluation and for recalculating some older cases originally presented in the TILA-99 safety assessment. The report presents results for constant unit release rate on the landscape doses, and activity concentrations and radionuclide inventories in the various environmental media. Results on the specific release cases are left for subsequent reports. In this report, the discussion and presentation of the results is focused on a limited set of radionuclides (Cl-36, Tc-99, I-129, Ra-226, Th-230) of different behaviour in the environment. However, same results have been calculated also for a large variety of nuclides present in the release terms to the biosphere. In the sensitivity analysis the parameters most affecting to the results are identified. They are further evaluated using data quality index, reflecting to the confidence on the underlying data and knowledge base. These are then combined in the multi-dimensional uncertainty analysis, revealing water balance, the fraction of precipitation intercepted by the foliage, concentration ratios in forests, Kds in sediments, river width and wetland parameters in general as the most important factors, in respect of the unit release rate, calling for further research at the moment, together with some structural improvements to the biosphere object modules. Uncertainties related to the release locations are studied with a number of cases assuming various patterns of release distribution to several objects as well as the release term received by single objects. The maximum landscape doses per unit release rate vary between one and less than four orders of magnitude across the cases depending on the nuclide, or from more than two less to slightly more than one

  17. Modeling the impact of climate change in Germany with biosphere models for long-term safety assessment of nuclear waste repositories

    International Nuclear Information System (INIS)

    Staudt, C.; Semiochkina, N.; Kaiser, J.C.; Pröhl, G.

    2013-01-01

    Biosphere models are used to evaluate the exposure of populations to radionuclides from a deep geological repository. Since the time frame for assessments of long-time disposal safety is 1 million years, potential future climate changes need to be accounted for. Potential future climate conditions were defined for northern Germany according to model results from the BIOCLIM project. Nine present day reference climate regions were defined to cover those future climate conditions. A biosphere model was developed according to the BIOMASS methodology of the IAEA and model parameters were adjusted to the conditions at the reference climate regions. The model includes exposure pathways common to those reference climate regions in a stylized biosphere and relevant to the exposure of a hypothetical self-sustaining population at the site of potential radionuclide contamination from a deep geological repository. The end points of the model are Biosphere Dose Conversion factors (BDCF) for a range of radionuclides and scenarios normalized for a constant radionuclide concentration in near-surface groundwater. Model results suggest an increased exposure of in dry climate regions with a high impact of drinking water consumption rates and the amount of irrigation water used for agriculture. - Highlights: ► We model Biosphere Dose Conversion Factors for a representative group exposed to radionuclides from a waste repository. ► The BDCF are modeled for different soil types. ► One model is used for the assessment of the influence of climate change during the disposal time frame.

  18. Predicting ecosystem dynamics at regional scales: an evaluation of a terrestrial biosphere model for the forests of northeastern North America.

    Science.gov (United States)

    Medvigy, David; Moorcroft, Paul R

    2012-01-19

    Terrestrial biosphere models are important tools for diagnosing both the current state of the terrestrial carbon cycle and forecasting terrestrial ecosystem responses to global change. While there are a number of ongoing assessments of the short-term predictive capabilities of terrestrial biosphere models using flux-tower measurements, to date there have been relatively few assessments of their ability to predict longer term, decadal-scale biomass dynamics. Here, we present the results of a regional-scale evaluation of the Ecosystem Demography version 2 (ED2)-structured terrestrial biosphere model, evaluating the model's predictions against forest inventory measurements for the northeast USA and Quebec from 1985 to 1995. Simulations were conducted using a default parametrization, which used parameter values from the literature, and a constrained model parametrization, which had been developed by constraining the model's predictions against 2 years of measurements from a single site, Harvard Forest (42.5° N, 72.1° W). The analysis shows that the constrained model parametrization offered marked improvements over the default model formulation, capturing large-scale variation in patterns of biomass dynamics despite marked differences in climate forcing, land-use history and species-composition across the region. These results imply that data-constrained parametrizations of structured biosphere models such as ED2 can be successfully used for regional-scale ecosystem prediction and forecasting. We also assess the model's ability to capture sub-grid scale heterogeneity in the dynamics of biomass growth and mortality of different sizes and types of trees, and then discuss the implications of these analyses for further reducing the remaining biases in the model's predictions.

  19. European Biospheric Network Takes Off

    Science.gov (United States)

    Brovkin, Victor; Reick, Christian; van Bodegom, Peter

    2010-04-01

    Opening Symposium of the TERRABITES Network; Hamburg, Germany, 9-11 February 2010; The huge amount of recently acquired information about the functioning of the terrestrial biosphere and the ever increasing spatial resolution of Earth system models call for a new level of integrating efforts among biosphere modelers, developers of ecological theory, and data-gathering communities. Responding to this call, a new European network, Terrestrial Biosphere in the Earth System (TERRABITES), held its opening symposium in Germany. The meeting was organized jointly with another recently founded European network, Advancing the Integrated Monitoring of Trace Gas Exchange Between Biosphere and Atmosphere (ABBA). Almost 100 scientific contributions covered the latest advances in modeling ecophysiological and biogeochemical processes; analyses of model constraints set by measurements of water and carbon dioxide (CO2) fluxes, including carbon isotopes; and new perspectives in using remote sensing data for evaluation of global terrestrial biosphere models.

  20. A Thermal Evolution Model of the Earth Including the Biosphere, Continental Growth and Mantle Hydration

    Science.gov (United States)

    Höning, D.; Spohn, T.

    2014-12-01

    By harvesting solar energy and converting it to chemical energy, photosynthetic life plays an important role in the energy budget of Earth [2]. This leads to alterations of chemical reservoirs eventually affecting the Earth's interior [4]. It further has been speculated [3] that the formation of continents may be a consequence of the evolution life. A steady state model [1] suggests that the Earth without its biosphere would evolve to a steady state with a smaller continent coverage and a dryer mantle than is observed today. We present a model including (i) parameterized thermal evolution, (ii) continental growth and destruction, and (iii) mantle water regassing and outgassing. The biosphere enhances the production rate of sediments which eventually are subducted. These sediments are assumed to (i) carry water to depth bound in stable mineral phases and (ii) have the potential to suppress shallow dewatering of the underlying sediments and crust due to their low permeability. We run a Monte Carlo simulation for various initial conditions and treat all those parameter combinations as success which result in the fraction of continental crust coverage observed for present day Earth. Finally, we simulate the evolution of an abiotic Earth using the same set of parameters but a reduced rate of continental weathering and erosion. Our results suggest that the origin and evolution of life could have stabilized the large continental surface area of the Earth and its wet mantle, leading to the relatively low mantle viscosity we observe at present. Without photosynthetic life on our planet, the Earth would be geodynamical less active due to a dryer mantle, and would have a smaller fraction of continental coverage than observed today. References[1] Höning, D., Hansen-Goos, H., Airo, A., Spohn, T., 2014. Biotic vs. abiotic Earth: A model for mantle hydration and continental coverage. Planetary and Space Science 98, 5-13. [2] Kleidon, A., 2010. Life, hierarchy, and the

  1. Terrestrial biosphere models underestimate photosynthetic capacity and CO2 assimilation in the Arctic.

    Science.gov (United States)

    Rogers, Alistair; Serbin, Shawn P; Ely, Kim S; Sloan, Victoria L; Wullschleger, Stan D

    2017-12-01

    Terrestrial biosphere models (TBMs) are highly sensitive to model representation of photosynthesis, in particular the parameters maximum carboxylation rate and maximum electron transport rate at 25°C (V c,max.25 and J max.25 , respectively). Many TBMs do not include representation of Arctic plants, and those that do rely on understanding and parameterization from temperate species. We measured photosynthetic CO 2 response curves and leaf nitrogen (N) content in species representing the dominant vascular plant functional types found on the coastal tundra near Barrow, Alaska. The activation energies associated with the temperature response functions of V c,max and J max were 17% lower than commonly used values. When scaled to 25°C, V c,max.25 and J max.25 were two- to five-fold higher than the values used to parameterize current TBMs. This high photosynthetic capacity was attributable to a high leaf N content and the high fraction of N invested in Rubisco. Leaf-level modeling demonstrated that current parameterization of TBMs resulted in a two-fold underestimation of the capacity for leaf-level CO 2 assimilation in Arctic vegetation. This study highlights the poor representation of Arctic photosynthesis in TBMs, and provides the critical data necessary to improve our ability to project the response of the Arctic to global environmental change. No claim to original US Government works. New Phytologist © 2017 New Phytologist Trust.

  2. Water Management in the Camargue Biosphere Reserve: Insights from Comparative Mental Models Analysis

    Directory of Open Access Journals (Sweden)

    Raphael Mathevet

    2011-03-01

    Full Text Available Mental models are the cognitive representations of the world that frame how people interact with the world. Learning implies changing these mental models. The successful management of complex social-ecological systems requires the coordination of actions to achieve shared goals. The coordination of actions requires a level of shared understanding of the system or situation; a shared or common mental model. We first describe the elicitation and analysis of mental models of different stakeholder groups associated with water management in the Camargue Biosphere Reserve in the Rhône River delta on the French Mediterranean coast. We use cultural consensus analysis to explore the degree to which different groups shared mental models of the whole system, of stakeholders, of resources, of processes, and of interactions among these last three. The analysis of the elicited data from this group structure enabled us to tentatively explore the evidence for learning in the nonstatute Water Board; comprising important stakeholders related to the management of the central Rhône delta. The results indicate that learning does occur and results in richer mental models that are more likely to be shared among group members. However, the results also show lower than expected levels of agreement with these consensual mental models. Based on this result, we argue that a careful process and facilitation design can greatly enhance the functioning of the participatory process in the Water Board. We conclude that this methodology holds promise for eliciting and comparing mental models. It enriches group-model building and participatory approaches with a broader view of social learning and knowledge-sharing issues.

  3. Assessment of Food Chain Pathway Parameters in Biosphere Models: Annual Progress Report for Fiscal Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Napier, Bruce A.; Krupka, Kenneth M.; Fellows, Robert J.; Cataldo, Dominic A.; Valenta, Michelle M.; Gilmore, Tyler J.

    2004-12-02

    This Annual Progress Report describes the work performed and summarizes some of the key observations to date on the U.S. Nuclear Regulatory Commission’s project Assessment of Food Chain Pathway Parameters in Biosphere Models, which was established to assess and evaluate a number of key parameters used in the food-chain models used in performance assessments of radioactive waste disposal facilities. Section 2 of this report describes activities undertaken to collect samples of soils from three regions of the United States, the Southeast, Northwest, and Southwest, and perform analyses to characterize their physical and chemical properties. Section 3 summarizes information gathered regarding agricultural practices and common and unusual crops grown in each of these three areas. Section 4 describes progress in studying radionuclide uptake in several representative crops from the three soil types in controlled laboratory conditions. Section 5 describes a range of international coordination activities undertaken by Project staff in order to support the underlying data needs of the Project. Section 6 provides a very brief summary of the status of the GENII Version 2 computer program, which is a “client” of the types of data being generated by the Project, and for which the Project will be providing training to the US NRC staff in the coming Fiscal Year. Several appendices provide additional supporting information.

  4. Using satellite data to improve the leaf phenology of a global terrestrial biosphere model

    Science.gov (United States)

    MacBean, N.; Maignan, F.; Peylin, P.; Bacour, C.; Bréon, F.-M.; Ciais, P.

    2015-12-01

    Correct representation of seasonal leaf dynamics is crucial for terrestrial biosphere models (TBMs), but many such models cannot accurately reproduce observations of leaf onset and senescence. Here we optimised the phenology-related parameters of the ORCHIDEE TBM using satellite-derived Normalized Difference Vegetation Index data (MODIS NDVI v5) that are linearly related to the model fAPAR. We found the misfit between the observations and the model decreased after optimisation for all boreal and temperate deciduous plant functional types, primarily due to an earlier onset of leaf senescence. The model bias was only partially reduced for tropical deciduous trees and no improvement was seen for natural C4 grasses. Spatial validation demonstrated the generality of the posterior parameters for use in global simulations, with an increase in global median correlation of 0.56 to 0.67. The simulated global mean annual gross primary productivity (GPP) decreased by ~ 10 PgC yr-1 over the 1990-2010 period due to the substantially shortened growing season length (GSL - by up to 30 days in the Northern Hemisphere), thus reducing the positive bias and improving the seasonal dynamics of ORCHIDEE compared to independent data-based estimates. Finally, the optimisations led to changes in the strength and location of the trends in the simulated vegetation productivity as represented by the GSL and mean annual fraction of absorbed photosynthetically active radiation (fAPAR), suggesting care should be taken when using un-calibrated models in attribution studies. We suggest that the framework presented here can be applied for improving the phenology of all global TBMs.

  5. Incorporating representation of agricultural ecosystems and management within a dynamic biosphere model: Approach, validation, and significance

    Science.gov (United States)

    Kucharik, C.

    2004-12-01

    At the scale of individual fields, crop models have long been used to examine the interactions between soils, vegetation, the atmosphere and human management, using varied levels of numerical sophistication. While previous efforts have contributed significantly towards the advancement of modeling tools, the models themselves are not typically applied across larger continental scales due to a lack of crucial data. Furthermore, many times crop models are used to study a single quantity, process, or cycle in isolation, limiting their value in considering the important tradeoffs between competing ecosystem services such as food production, water quality, and sequestered carbon. In response to the need for a more integrated agricultural modeling approach across the continental scale, an updated agricultural version of a dynamic biosphere model (IBIS) now integrates representations of land-surface physics and soil physics, canopy physiology, terrestrial carbon and nitrogen balance, crop phenology, solute transport, and farm management into a single framework. This version of the IBIS model (Agro-IBIS) uses a short 20 to 60-minute timestep to simulate the rapid exchange of energy, carbon, water, and momentum between soils, vegetative canopies, and the atmosphere. The model can be driven either by site-specific meteorological data or by gridded climate datasets. Mechanistic crop models for corn, soybean, and wheat use physiologically-based representations of leaf photosynthesis, stomatal conductance, and plant respiration. Model validation has been performed using a variety of temporal scale data collected at the following spatial scales: (1) the precision-agriculture scale (5 m), (2) the individual field experiment scale (AmeriFlux), and (3) regional and continental scales using annual USDA county-level yield data and monthly satellite (AVHRR) observations of vegetation characteristics at 0.5 degree resolution. To date, the model has been used with great success to

  6. The biosphere: current status

    International Nuclear Information System (INIS)

    Thorne, M.C.

    1988-06-01

    This paper outlines the biosphere models and data required to assess the post-closure radiological impact of deep geological repositories for low and intermediate level radioactive wastes. It then goes on to show how these requirements are being met either within the Nirex Safety Assessment Research Programme or from other research programmes. (Author)

  7. Integrate Data into Scientific Workflows for Terrestrial Biosphere Model Evaluation through Brokers

    Science.gov (United States)

    Wei, Y.; Cook, R. B.; Du, F.; Dasgupta, A.; Poco, J.; Huntzinger, D. N.; Schwalm, C. R.; Boldrini, E.; Santoro, M.; Pearlman, J.; Pearlman, F.; Nativi, S.; Khalsa, S.

    2013-12-01

    Terrestrial biosphere models (TBMs) have become integral tools for extrapolating local observations and process-level understanding of land-atmosphere carbon exchange to larger regions. Model-model and model-observation intercomparisons are critical to understand the uncertainties within model outputs, to improve model skill, and to improve our understanding of land-atmosphere carbon exchange. The DataONE Exploration, Visualization, and Analysis (EVA) working group is evaluating TBMs using scientific workflows in UV-CDAT/VisTrails. This workflow-based approach promotes collaboration and improved tracking of evaluation provenance. But challenges still remain. The multi-scale and multi-discipline nature of TBMs makes it necessary to include diverse and distributed data resources in model evaluation. These include, among others, remote sensing data from NASA, flux tower observations from various organizations including DOE, and inventory data from US Forest Service. A key challenge is to make heterogeneous data from different organizations and disciplines discoverable and readily integrated for use in scientific workflows. This presentation introduces the brokering approach taken by the DataONE EVA to fill the gap between TBMs' evaluation scientific workflows and cross-organization and cross-discipline data resources. The DataONE EVA started the development of an Integrated Model Intercomparison Framework (IMIF) that leverages standards-based discovery and access brokers to dynamically discover, access, and transform (e.g. subset and resampling) diverse data products from DataONE, Earth System Grid (ESG), and other data repositories into a format that can be readily used by scientific workflows in UV-CDAT/VisTrails. The discovery and access brokers serve as an independent middleware that bridge existing data repositories and TBMs evaluation scientific workflows but introduce little overhead to either component. In the initial work, an OpenSearch-based discovery broker

  8. Modeling the biophysical impacts of global change in mountain biosphere reserves

    Science.gov (United States)

    Bugmann, H.K.M.; Bjornsen, F. Ewert; Haeberli, W.; Guisan, Antoine; Fagre, Daniel B.; Kaab, A.

    2007-01-01

    Mountains and mountain societies provide a wide range of goods and services to humanity, but they are particularly sensitive to the effects of global environmental change. Thus, the definition of appropriate management regimes that maintain the multiple functions of mountain regions in a time of greatly changing climatic, economic, and societal drivers constitutes a significant challenge. Management decisions must be based on a sound understanding of the future dynamics of these systems. The present article reviews the elements required for an integrated effort to project the impacts of global change on mountain regions, and recommends tools that can be used at 3 scientific levels (essential, improved, and optimum). The proposed strategy is evaluated with respect to UNESCO's network of Mountain Biosphere Reserves (MBRs), with the intention of implementing it in other mountain regions as well. First, methods for generating scenarios of key drivers of global change are reviewed, including land use/land cover and climate change. This is followed by a brief review of the models available for projecting the impacts of these scenarios on (1) cryospheric systems, (2) ecosystem structure and diversity, and (3) ecosystem functions such as carbon and water relations. Finally, the cross-cutting role of remote sensing techniques is evaluated with respect to both monitoring and modeling efforts. We conclude that a broad range of techniques is available for both scenario generation and impact assessments, many of which can be implemented without much capacity building across many or even most MBRs. However, to foster implementation of the proposed strategy, further efforts are required to establish partnerships between scientists and resource managers in mountain areas.

  9. Advances in understanding, models and parameterisations of biosphere-atmosphere ammonia exchange

    Science.gov (United States)

    Flechard, C. R.; Massad, R.-S.; Loubet, B.; Personne, E.; Simpson, D.; Bash, J. O.; Cooter, E. J.; Nemitz, E.; Sutton, M. A.

    2013-03-01

    Atmospheric ammonia (NH3) dominates global emissions of total reactive nitrogen (Nr), while emissions from agricultural production systems contribute about two thirds of global NH3 emissions; the remaining third emanates from oceans, natural vegetation, humans, wild animals and biomass burning. On land, NH3 emitted from the various sources eventually returns to the biosphere by dry deposition to sink areas, predominantly semi-natural vegetation, and by wet and dry deposition as ammonium (NH4+) to all surfaces. However, the land/atmosphere exchange of gaseous NH3 is in fact bi-directional over unfertilized as well as fertilized ecosystems, with periods and areas of emission and deposition alternating in time (diurnal, seasonal) and space (patchwork landscapes). The exchange is controlled by a range of environmental factors, including meteorology, surface layer turbulence, thermodynamics, air and surface heterogeneous-phase chemistry, canopy geometry, plant development stage, leaf age, organic matter decomposition, soil microbial turnover, and, in agricultural systems, by fertilizer application rate, fertilizer type, soil type, crop type, and agricultural management practices. We review the range of processes controlling NH3 emission and uptake in the different parts of the soil-canopy-atmosphere continuum, with NH3 emission potentials defined at the substrate and leaf levels by different [NH4+] / [H+] ratios (Γ). Surface/atmosphere exchange models for NH3 are necessary to compute the temporal and spatial patterns of emissions and deposition at the soil, plant, field, landscape, regional and global scales, in order to assess the multiple environmental impacts of air-borne and deposited NH3 and NH4+. Models of soil/vegetation/atmosphereem NH3 exchange are reviewed from the substrate and leaf scales to the global scale. They range from simple steady-state, "big leaf" canopy resistance models, to dynamic, multi-layer, multi-process, multi

  10. Advances in understanding, models and parameterizations of biosphere-atmosphere ammonia exchange

    Science.gov (United States)

    Flechard, C. R.; Massad, R.-S.; Loubet, B.; Personne, E.; Simpson, D.; Bash, J. O.; Cooter, E. J.; Nemitz, E.; Sutton, M. A.

    2013-07-01

    Atmospheric ammonia (NH3) dominates global emissions of total reactive nitrogen (Nr), while emissions from agricultural production systems contribute about two-thirds of global NH3 emissions; the remaining third emanates from oceans, natural vegetation, humans, wild animals and biomass burning. On land, NH3 emitted from the various sources eventually returns to the biosphere by dry deposition to sink areas, predominantly semi-natural vegetation, and by wet and dry deposition as ammonium (NH4+) to all surfaces. However, the land/atmosphere exchange of gaseous NH3 is in fact bi-directional over unfertilized as well as fertilized ecosystems, with periods and areas of emission and deposition alternating in time (diurnal, seasonal) and space (patchwork landscapes). The exchange is controlled by a range of environmental factors, including meteorology, surface layer turbulence, thermodynamics, air and surface heterogeneous-phase chemistry, canopy geometry, plant development stage, leaf age, organic matter decomposition, soil microbial turnover, and, in agricultural systems, by fertilizer application rate, fertilizer type, soil type, crop type, and agricultural management practices. We review the range of processes controlling NH3 emission and uptake in the different parts of the soil-canopy-atmosphere continuum, with NH3 emission potentials defined at the substrate and leaf levels by different [NH4+] / [H+] ratios (Γ). Surface/atmosphere exchange models for NH3 are necessary to compute the temporal and spatial patterns of emissions and deposition at the soil, plant, field, landscape, regional and global scales, in order to assess the multiple environmental impacts of airborne and deposited NH3 and NH4+. Models of soil/vegetation/atmosphere NH3 exchange are reviewed from the substrate and leaf scales to the global scale. They range from simple steady-state, "big leaf" canopy resistance models, to dynamic, multi-layer, multi-process, multi-chemical species schemes

  11. Advances in understanding, models and parameterizations of biosphere-atmosphere ammonia exchange

    Directory of Open Access Journals (Sweden)

    C. R. Flechard

    2013-07-01

    Full Text Available Atmospheric ammonia (NH3 dominates global emissions of total reactive nitrogen (Nr, while emissions from agricultural production systems contribute about two-thirds of global NH3 emissions; the remaining third emanates from oceans, natural vegetation, humans, wild animals and biomass burning. On land, NH3 emitted from the various sources eventually returns to the biosphere by dry deposition to sink areas, predominantly semi-natural vegetation, and by wet and dry deposition as ammonium (NH4+ to all surfaces. However, the land/atmosphere exchange of gaseous NH3 is in fact bi-directional over unfertilized as well as fertilized ecosystems, with periods and areas of emission and deposition alternating in time (diurnal, seasonal and space (patchwork landscapes. The exchange is controlled by a range of environmental factors, including meteorology, surface layer turbulence, thermodynamics, air and surface heterogeneous-phase chemistry, canopy geometry, plant development stage, leaf age, organic matter decomposition, soil microbial turnover, and, in agricultural systems, by fertilizer application rate, fertilizer type, soil type, crop type, and agricultural management practices. We review the range of processes controlling NH3 emission and uptake in the different parts of the soil-canopy-atmosphere continuum, with NH3 emission potentials defined at the substrate and leaf levels by different [NH4+] / [H+] ratios (Γ. Surface/atmosphere exchange models for NH3 are necessary to compute the temporal and spatial patterns of emissions and deposition at the soil, plant, field, landscape, regional and global scales, in order to assess the multiple environmental impacts of airborne and deposited NH3 and NH4+. Models of soil/vegetation/atmosphere NH3 exchange are reviewed from the substrate and leaf scales to the global scale. They range from simple steady-state, "big leaf" canopy resistance models, to dynamic, multi-layer, multi-process, multi

  12. Biosphere modelling for a deep radioactive waste repository: site-specific consideration of the groundwater-soil pathway

    International Nuclear Information System (INIS)

    Grogan, H.A.; Baeyens, B.; Mueller, H.; Dorp, F. van

    1991-07-01

    Scenario evaluations indicate that groundwater is the most probable pathway for released radionuclides to reach the biosphere from a deep underground nuclear waste repository. This report considers a small valley in northern Switzerland where the transport of groundwater to surface soil might be possible. The hydrological situation has been examined to allow a system of compartments and fluxes for modelling this pathway with respect to the release of radionuclides from an underground repository to be produced. Assuming present day conditions the best estimate surface soil concentrations are calculated by dividing the soil into two layers (deep soil, surface soil) and assuming an annual upward flux of 10 mm from the groundwater through the two soil layers. A constant unit activity concentration is assumed for the radionuclides in the groundwater. It is concluded that the resultant best estimate values must still be considered to be biased on the conservative side, in view of the fact that the more typical situation is likely to be that no groundwater reaches the surface soil. Upper and lower estimates for the surface soil radionuclide concentrations are based on the parameter perturbation results which were carried out for three key parameters, i.e. precipitation surplus, upward flux and solid-liquid distribution coefficients (K d ). It is noted that attention must be given to the functional relationships which exist between various model parameters. Upper estimates for the surface soil concentration are determined assuming a higher annual upward flux (100 mm) as well as a more conservative K d value compared with the base case. This gives rise to surface soil concentrations more than two orders of magnitude higher than the best estimate values. The lower estimated are more easily assigned assuming that no activity reaches the surface soil via this pathway. (author) 18 figs., 4 tabs., refs

  13. Biosphere model simulations of interannual variability in terrestrial 13C/12C exchange.

    NARCIS (Netherlands)

    Velde, van der I.R.; Miller, J.B.; Schaefer, K.; Masarie, K.A.; Denning, S.; White, J.W.C.; Krol, M.C.; Peters, W.; Tans, P.P.

    2013-01-01

    Previous studies suggest that a large part of the variability in the atmospheric ratio of (CO2)-C-13/(12)CO(2)originates from carbon exchange with the terrestrial biosphere rather than with the oceans. Since this variability is used to quantitatively partition the total carbon sink, we here

  14. Response of Water Use Efficiency to Global Environmental Change Based on Output From Terrestrial Biosphere Models

    Science.gov (United States)

    Zhou, Sha; Yu, Bofu; Schwalm, Christopher R.; Ciais, Philippe; Zhang, Yao; Fisher, Joshua B.; Michalak, Anna M.; Wang, Weile; Poulter, Benjamin; Huntzinger, Deborah N.; Niu, Shuli; Mao, Jiafu; Jain, Atul; Ricciuto, Daniel M.; Shi, Xiaoying; Ito, Akihiko; Wei, Yaxing; Huang, Yuefei; Wang, Guangqian

    2017-11-01

    Water use efficiency (WUE), defined as the ratio of gross primary productivity and evapotranspiration at the ecosystem scale, is a critical variable linking the carbon and water cycles. Incorporating a dependency on vapor pressure deficit, apparent underlying WUE (uWUE) provides a better indicator of how terrestrial ecosystems respond to environmental changes than other WUE formulations. Here we used 20th century simulations from four terrestrial biosphere models to develop a novel variance decomposition method. With this method, we attributed variations in apparent uWUE to both the trend and interannual variation of environmental drivers. The secular increase in atmospheric CO2 explained a clear majority of total variation (66 ± 32%: mean ± one standard deviation), followed by positive trends in nitrogen deposition and climate, as well as a negative trend in land use change. In contrast, interannual variation was mostly driven by interannual climate variability. To analyze the mechanism of the CO2 effect, we partitioned the apparent uWUE into the transpiration ratio (transpiration over evapotranspiration) and potential uWUE. The relative increase in potential uWUE parallels that of CO2, but this direct CO2 effect was offset by 20 ± 4% by changes in ecosystem structure, that is, leaf area index for different vegetation types. However, the decrease in transpiration due to stomatal closure with rising CO2 was reduced by 84% by an increase in leaf area index, resulting in small changes in the transpiration ratio. CO2 concentration thus plays a dominant role in driving apparent uWUE variations over time, but its role differs for the two constituent components: potential uWUE and transpiration.

  15. Response of Water Use Efficiency to Global Environmental Change Based on Output From Terrestrial Biosphere Models

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Sha [Tsinghua Univ., Beijing (China); Yu, Bofu [Griffith Univ., Nathan Queensland (Australia); Schwalm, Christopher R. [Woods Hole Research Center, Falmouth, MA (United States); Northern Arizona Univ., Flagstaff, AZ (United States); Ciais, Philippe [Lab. des Sciences du Climat et de l' Environnement, Gif-sur-Yvette (France); Zhang, Yao [Univ. of Oklahoma, Norman, OK (United States); Fisher, Joshua B. [California Institute of Technology, Pasadena, CA (United States); Michalak, Anna M. [Carnegie Institution for Science, Stanford, CA (United States); Wang, Weile [California State Uni., Monterey Bay, Seasid, CA (United States); Poulter, Benjamin [Montana State Univ., Bozeman, MT (United States); Huntzinger, Deborah N. [Northern Arizona Univ., Flagstaff, AZ (United States); Niu, Shuli [Institute of Geographic Sciences and Natural Resources Research, Beijing (China); Chinese Academy of Sciences (CAS), Beijing (China); Mao, Jiafu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jain, Atul [Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States); Ricciuto, Daniel M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shi, Xiaoying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ito, Akihiko [Tohoku Univ., Sendai (Japan); Wei, Yaxing [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Huang, Yuefei [Tsinghua Univ., Beijing (China); Qinghai Univ., Xining (China); Wang, Guangqian [Tsinghua Univ., Beijing (China)

    2017-10-18

    Here, water use efficiency (WUE), defined as the ratio of gross primary productivity and evapotranspiration at the ecosystem scale, is a critical variable linking the carbon and water cycles. Incorporating a dependency on vapor pressure deficit, apparent underlying WUE (uWUE) provides a better indicator of how terrestrial ecosystems respond to environmental changes than other WUE formulations. Here we used 20th century simulations from four terrestrial biosphere models to develop a novel variance decomposition method. With this method, we attributed variations in apparent uWUE to both the trend and interannual variation of environmental drivers. The secular increase in atmospheric CO2 explained a clear majority of total variation (66 ± 32%: mean ± one standard deviation), followed by positive trends in nitrogen deposition and climate, as well as a negative trend in land use change. In contrast, interannual variation was mostly driven by interannual climate variability. To analyze the mechanism of the CO2 effect, we partitioned the apparent uWUE into the transpiration ratio (transpiration over evapotranspiration) and potential uWUE. The relative increase in potential uWUE parallels that of CO2, but this direct CO2 effect was offset by 20 ± 4% by changes in ecosystem structure, that is, leaf area index for different vegetation types. However, the decrease in transpiration due to stomatal closure with rising CO2 was reduced by 84% by an increase in leaf area index, resulting in small changes in the transpiration ratio. CO2 concentration thus plays a dominant role in driving apparent uWUE variations over time, but its role differs for the two constituent components: potential uWUE and transpiration.

  16. Tensit - a novel probabilistic simulation tool for safety assessments. Tests and verifications using biosphere models

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Jakob; Vahlund, Fredrik; Kautsky, Ulrik

    2004-06-01

    This report documents the verification of a new simulation tool for dose assessment put together in a package under the name Tensit (Technical Nuclide Simulation Tool). The tool is developed to solve differential equation systems describing transport and decay of radionuclides. It is capable of handling both deterministic and probabilistic simulations. The verifications undertaken shows good results. Exceptions exist only where the reference results are unclear. Tensit utilise and connects two separate commercial softwares. The equation solving capability is derived from the Matlab/Simulink software environment to which Tensit adds a library of interconnectable building blocks. Probabilistic simulations are provided through a statistical software named at{sub R}isk that communicates with Matlab/Simulink. More information about these softwares can be found at www.palisade.com and www.mathworks.com. The underlying intention of developing this new tool has been to make available a cost efficient and easy to use means for advanced dose assessment simulations. The mentioned benefits are gained both through the graphical user interface provided by Simulink and at{sub R}isk, and the use of numerical equation solving routines in Matlab. To verify Tensit's numerical correctness, an implementation was done of the biosphere modules for dose assessments used in the earlier safety assessment project SR 97. Acquired probabilistic results for deterministic as well as probabilistic simulations have been compared with documented values. Additional verification has been made both with another simulation tool named AMBER and also against the international test case from PSACOIN named Level 1B. This report documents the models used for verification with equations and parameter values so that the results can be recreated. For a background and a more detailed description of the underlying processes in the models, the reader is referred to the original references. Finally, in the

  17. Modeling the impact of climate change in Germany with biosphere models for long-term safety assessment of nuclear waste repositories.

    Science.gov (United States)

    Staudt, C; Semiochkina, N; Kaiser, J C; Pröhl, G

    2013-01-01

    Biosphere models are used to evaluate the exposure of populations to radionuclides from a deep geological repository. Since the time frame for assessments of long-time disposal safety is 1 million years, potential future climate changes need to be accounted for. Potential future climate conditions were defined for northern Germany according to model results from the BIOCLIM project. Nine present day reference climate regions were defined to cover those future climate conditions. A biosphere model was developed according to the BIOMASS methodology of the IAEA and model parameters were adjusted to the conditions at the reference climate regions. The model includes exposure pathways common to those reference climate regions in a stylized biosphere and relevant to the exposure of a hypothetical self-sustaining population at the site of potential radionuclide contamination from a deep geological repository. The end points of the model are Biosphere Dose Conversion factors (BDCF) for a range of radionuclides and scenarios normalized for a constant radionuclide concentration in near-surface groundwater. Model results suggest an increased exposure of in dry climate regions with a high impact of drinking water consumption rates and the amount of irrigation water used for agriculture. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Dose assessment considering evolution of the biosphere

    International Nuclear Information System (INIS)

    Karlsson, Sara; Bergstroem, Ulla

    2002-01-01

    Swedish Nuclear Fuel and Waste Management AB (SKB) is presently updating the safety assessment for SFR (Final repository for radioactive operational waste) in Sweden. The bio-spheric part of the analysis is performed by Studsvik Eco and Safety AB. According to the regulations the safety of the repository has to be accounted for different possible courses of the development of the biosphere. A number of studies have been carried out during the past years to investigate and document the biosphere in the area surrounding the repository. Modelling of shore-level displacement by land uplift, coastal water exchange and sedimentation have provided data for prediction of the evolution of the area. The prediction is done without considering a future change in climatic conditions. The results from this study show that accumulation of radionuclides in sediments is an important process to simulate when performing dose assessments covering biosphere evolution. The dose calculated for the first years of the period with agricultural use of the contaminated sediments may be severely underestimated in a scenario with large accumulation in coastal and lake stages. (LN)

  19. Transbios - a unified model for assessment of the effect of noxious materials in ground water to the biosphere. Compilation of the model

    International Nuclear Information System (INIS)

    Rejlek, G.

    1992-06-01

    This model of radionuclide propagation in the biosphere is part of the project 'Final Deposition of Low- and Medium- active Wastes from Hospitals, University Institutes and Industry'. The six parts are: a flow-and transport model in ground water, an evaporation-transpiration model, a transfer model soil-to-plant, a water cycle- and a food chain model. Solutions are designed and peculiarities of the program are outlined. Finally the individual parts are integrated into the overall model

  20. Biosphere assessment for high-level radioactive waste disposal: modelling experiences and discussion on key parameters by sensitivity analysis in JNC

    International Nuclear Information System (INIS)

    Kato, Tomoko; Makino, Hitoshi; Uchida, Masahiro; Suzuki, Yuji

    2004-01-01

    In the safety assessment of the deep geological disposal system of the high-level radioactive waste (HLW), biosphere assessment is often necessary to estimate future radiological impacts on human beings (e.g. radiation dose). In order to estimate the dose, the surface environment (biosphere) into which future releases of radionuclides might occur and the associated future human behaviour needs to be considered. However, for a deep repository, such releases might not occur for many thousands of years after disposal. Over such timescales, it is impossible to predict with any certainty how the biosphere and human behaviour will evolve. To avoid endless speculation aimed at reducing such uncertainty, the 'Reference Biospheres' concept has been developed for use in the safety assessment of HLW disposal. As the aim of the safety assessment with a hypothetical HLW disposal system by JNC was to demonstrate the technical feasibility and reliability of the Japanese disposal concept for a range of geological and surface environments, some biosphere models were developed using the 'Reference Biospheres' concept and the BIOMASS Methodology. These models have been used to derive factors to convert the radionuclide flux from a geosphere to a biosphere into a dose (flux to dose conversion factors). Moreover, sensitivity analysis for parameters in the biosphere models was performed to evaluate and understand the relative importance of parameters. It was concluded that transport parameters in the surface environments, annual amount of food consumption, distribution coefficients on soils and sediments, transfer coefficients of radionuclides to animal products and concentration ratios for marine organisms would have larger influence on the flux to dose conversion factors than any other parameters. (author)

  1. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model

    Science.gov (United States)

    Gebauer, S.; Grenfell, J. L.; Stock, J. W.; Lehmann, R.; Godolt, M.; von Paris, P.; Rauer, H.

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O2, whereas in the upper atmosphere, most O2 is formed abiotically via CO2 photolysis. The O2 bistability found by Goldblatt et al. (2006) is not observed in our calculations likely due to our detailed CH4 oxidation scheme. We calculate increased CH4 with increasing O2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O2 is unique. Mixing, CH4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O2 fluxes. Regarding exoplanets, different "states" of O2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases remove O2 that

  2. A comparison between the example reference biosphere model ERB 2B and a process-based model: simulation of a natural release scenario.

    Science.gov (United States)

    Almahayni, T

    2014-12-01

    The BIOMASS methodology was developed with the objective of constructing defensible assessment biospheres for assessing potential radiological impacts of radioactive waste repositories. To this end, a set of Example Reference Biospheres were developed to demonstrate the use of the methodology and to provide an international point of reference. In this paper, the performance of the Example Reference Biosphere model ERB 2B associated with the natural release scenario, discharge of contaminated groundwater to the surface environment, was evaluated by comparing its long-term projections of radionuclide dynamics and distribution in a soil-plant system to those of a process-based, transient advection-dispersion model (AD). The models were parametrised with data characteristic of a typical rainfed winter wheat crop grown on a sandy loam soil under temperate climate conditions. Three safety-relevant radionuclides, (99)Tc, (129)I and (237)Np with different degree of sorption were selected for the study. Although the models were driven by the same hydraulic (soil moisture content and water fluxes) and radiological (Kds) input data, their projections were remarkably different. On one hand, both models were able to capture short and long-term variation in activity concentration in the subsoil compartment. On the other hand, the Reference Biosphere model did not project any radionuclide accumulation in the topsoil and crop compartments. This behaviour would underestimate the radiological exposure under natural release scenarios. The results highlight the potential role deep roots play in soil-to-plant transfer under a natural release scenario where radionuclides are released into the subsoil. When considering the relative activity and root depth profiles within the soil column, much of the radioactivity was taken up into the crop from the subsoil compartment. Further improvements were suggested to address the limitations of the Reference Biosphere model presented in this paper

  3. The Biosphere International Peer Review

    International Nuclear Information System (INIS)

    Van Luik, Abraham

    2002-01-01

    Abe van Luik (US DOE- YM, USA), ended the presentation by giving feedback from the IAEA peer review on the biosphere modelling strategy developed by the DOE Yucca Mountain Site Characterisation Office (YMSCO). This review was based on available international standards and guidance. The peer review team was constituted of both experts from regulatory and waste management organisations and national advisory committees. The implementation of the review consisted of an examination of biosphere reports mainly regarding the modelling and question and answer exchanges. The final report was submitted in April 2000. It contained twenty-three recommendations within two broad classifications; one concerning the regulatory framework, the other one regarding the framework to increase stakeholders' confidence in modelling. The three main categories of recommendations were outlined, namely (i) the DOE' s Biosphere assessment Approach, (ii) the definition of the biosphere system, and (iii) the model development, data and results. Regarding in particular the treatment of the uncertainties in the biosphere, it was viewed as a key issue during the review and thus it will be re-evaluated in the future performance assessment. The summary highlighted most of the recommendations received are to be acted on, and are to be included in the License Application plan for biosphere modelling

  4. Modelling of present and future hydrology and solute transport at Forsmark. SR-Site Biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Bosson, Emma (Swedish Nuclear Fuel and Waste Management Co., Stocholm (Sweden)); Sassner, Mona; Sabel, Ulrika; Gustafsson, Lars-Goeran (DHI Sverige AB (Sweden))

    2010-10-15

    Radioactive waste from nuclear power plants in Sweden is managed by the Swedish Nuclear Fuel and Waste Management Co, SKB. SKB has performed site investigations at two different locations in Sweden, referred to as the Forsmark and Laxemar-Simpevarp areas, with the objective of siting a final repository for high-level radioactive waste. In 2009 a decision was made to focus on the Forsmark site. This decision was based on a large amount of empirical evidence suggesting Forsmark to be more suitable for a geological repository /SKB 2010b/. This report presents model results of numerical flow and transport modelling of surface water and near-surface groundwater at the Forsmark site for present and future conditions. Both temperate and periglacial climates have been simulated. Also different locations of the shoreline have been applied to the model, as well as different models of vegetation and Quaternary deposits. The modelling was performed using the modelling tool MIKE SHE and was based on the SDM-Site Forsmark MIKE SHE model (presented by Bosson et al. in SKB report R-08-09). The present work is a part of the biosphere modelling performed for the SR-Site safety assessment. The Forsmark area has a flat, small-scale topography. The study area is almost entirely below 20 m.a.s.l. (metres above sea level). There is a strong correlation between the topography of the ground surface and the ground water level in the Quaternary deposits (QD); thus, the surface water divides and the groundwater divides for the QD can be assumed to coincide. No major water courses flow through the catchment. Small brooks, which often dry out in the summer, connect the different sub-catchments with each other. The main lakes in the area, Lake Bolundsfjaerden, Lake Fiskarfjaerden, Lake Gaellsbotraesket and Lake Eckarfjaerden, all have sizes of less than one km2. The lakes are in general shallow. Approximately 70% of the catchment areas are covered by forest. Agricultural land is only present in

  5. Latest developments on the modeling of the biosphere in the management of radioactive waste in Spain; Ultimos desarrollos sobre la modelizacion de la biosfera en la gestion de residuos radiactivos en Espana

    Energy Technology Data Exchange (ETDEWEB)

    Perez Sanchez, D.; Trueba Alonso, C.

    2013-07-01

    In recent years, the CIEMAT has developed for ENRESA a methodology and tools for safety assessment of the biosphere in the management of radioactive waste. This methodology includes modeling of migration and accumulation of radionuclides in the biosphere to allow the assessment of the radiological impact of the distribution of radionuclides in the environment. The working group is developing projects related to the safety assessment of the biosphere, which comprise several studies. In this paper the latest results obtained are described. (Author)

  6. Conceptual and numerical modelling of radionuclide transport in near-surface systems at Forsmark. SR-Site Biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Pique, Angels; Grandia, Fidel; Sena, Clara; Arcos, David; Molinero, Jorge; Duro, Lara; Bruno, Jordi (Amphos21 Consulting S.L., Barcelona (Spain))

    2010-11-15

    In the framework of the SR-Site safety assessment, a conceptual and numerical modelling of radionuclide reactive transport in near-surface systems (including till and clay systems) at Forsmark has been carried out. The objective was to evaluate the retention capacity of the near-surface systems, composed of Quaternary deposits, which would be the last natural barrier for an eventual radionuclide release from the deep repository prior to reaching the biosphere. The studied radionuclides are 14C, 129I, 36Cl, 94Nb, 59Ni, 93Mo, 79Se, 99Tc, 230Th, 90Sr, 226Ra, 135Cs and U. Conceptual description and numerical simulations of radionuclide reactive transport show that cation exchange and surface complexation on illite are active processes for the retention of several radionuclides (U, Th, Ni, Cs, Sr, Ra). Surface complexation on iron hydroxide is an active process in the till system, able to effectively retain U and Ni. Another retention process of importance is the incorporation of the radionuclides into mineral phases, either by the precipitation of pure phases or solid solutions. Quantitative modelling has been useful to illustrate the incorporation of C and Sr in the carbonate solid solution in the considered model domains (till and clay), as well as the precipitation of uraninite in the clay sediments and the precipitation of native selenium and radiobarite in the till. Other mineral phases that could, a priori, retain U, Se, Nb and Tc do not precipitate in the simulations, either due to the pH-Eh conditions and/or because the dissolved concentration of the element is not high enough under the considered simulation conditions. It is important to keep in mind that changes in these parameters and in the boundary conditions could modify the predicted behaviour of these elements. The radionuclides that are most significantly retarded are Th, Ni and Cs, mainly through sorption onto illite. Therefore, if the amount of illite (or available sorption sites) decreases, the

  7. Conceptual and numerical modelling of radionuclide transport in near-surface systems at Forsmark. SR-Site Biosphere

    International Nuclear Information System (INIS)

    Pique, Angels; Grandia, Fidel; Sena, Clara; Arcos, David; Molinero, Jorge; Duro, Lara; Bruno, Jordi

    2010-11-01

    In the framework of the SR-Site safety assessment, a conceptual and numerical modelling of radionuclide reactive transport in near-surface systems (including till and clay systems) at Forsmark has been carried out. The objective was to evaluate the retention capacity of the near-surface systems, composed of Quaternary deposits, which would be the last natural barrier for an eventual radionuclide release from the deep repository prior to reaching the biosphere. The studied radionuclides are 14 C, 129 I, 36 Cl, 94 Nb, 59 Ni, 93 Mo, 79 Se, 99 Tc, 230 Th, 90 Sr, 226 Ra, 135 Cs and U. Conceptual description and numerical simulations of radionuclide reactive transport show that cation exchange and surface complexation on illite are active processes for the retention of several radionuclides (U, Th, Ni, Cs, Sr, Ra). Surface complexation on iron hydroxide is an active process in the till system, able to effectively retain U and Ni. Another retention process of importance is the incorporation of the radionuclides into mineral phases, either by the precipitation of pure phases or solid solutions. Quantitative modelling has been useful to illustrate the incorporation of C and Sr in the carbonate solid solution in the considered model domains (till and clay), as well as the precipitation of uraninite in the clay sediments and the precipitation of native selenium and radiobarite in the till. Other mineral phases that could, a priori, retain U, Se, Nb and Tc do not precipitate in the simulations, either due to the pH-Eh conditions and/or because the dissolved concentration of the element is not high enough under the considered simulation conditions. It is important to keep in mind that changes in these parameters and in the boundary conditions could modify the predicted behaviour of these elements. The radionuclides that are most significantly retarded are Th, Ni and Cs, mainly through sorption onto illite. Therefore, if the amount of illite (or available sorption sites

  8. In Depth Modeling of Nuclide Transport in the Geosphere and the Biosphere to Reduce Uncertainty (Final Report)

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Kang, Chul Kyung; Hwang, Yong Soo; Lee, Sung Ho

    2010-08-01

    The Korea Radioactive Waste Management Center (KRMC) is conducting a research on a step by step development of a safety case for the Gyeongju low- and intermediate-level radioactive waste repository (WNEMC; Wolseong Nuclear Environment Management Center). A modeling study and development of a methodology, by which an assessment of safety and performance for a low- and intermediate level radioactive waste (LILW) repository could be effectively made has been carried out. With normal or abnormal nuclide release cases associated with the various FEPs and scenarios involved in the performance of the proposed repository in view of nuclide transport and transfer both in geosphere and biosphere, a total system performance assessment (TSPA) program has been developed by utilizing such commercial development tool programs as GoldSim, AMBER, MASCOT-K, and TOUGH2 in Korea Atomic Energy Research Institute (KAERI) under contract with KRMC. The final project report especially deals much with a detailed conceptual modeling scheme by which a GoldSim program modules, all of which are integrated into a TSPA program template kit as well as the input data set currently available. In-depth system models that are conceptually and rather practically described and then ready for implementing into a GoldSim TSPA program are introduced with plenty of illustrative conceptual schemes and evaluations with data currently available. The GoldSim TSPA tempalte program and the AMBER biosphere tempalte program as well as the TOUGH-2 gas migration template program developed through this project are expected to be successfully applied to the post closure safety assessment required for WNEMC by the regulatory body with increased practicality and much reduced uncertainty and conservatism

  9. A regional-scale groundwater model supporting management of the Sian Ka'an Biosphere Reserve and its catchment, Quintana Roo, Mexico

    DEFF Research Database (Denmark)

    Gondwe, Bibi Ruth Neuman; Merediz Alonso, G.; Rebolledo Vieyra, M.

    2007-01-01

    ,000 in 1990 to 1,115,000 in 2005. This explosive growth threatens the region's water resources, which primarily consist of a less than 50m thick freshwater lens residing in the regional karst aquifer underlying the entire Yucatan Peninsula. The Sian Ka'an Biosphere Reserve, a 6400 km2 combined marine......'an Biosphere reserve and its catchment was developed. The model is implemented in MIKE SHE with a finite-difference cell size of 1 km2 and is driven with temporally averaged climate forcings. The karst aquifer is treated as an equivalent porous medium. Darcy's law is assumed to be valid over regional scales...

  10. Gene expression in the deep biosphere.

    Science.gov (United States)

    Orsi, William D; Edgcomb, Virginia P; Christman, Glenn D; Biddle, Jennifer F

    2013-07-11

    Scientific ocean drilling has revealed a deep biosphere of widespread microbial life in sub-seafloor sediment. Microbial metabolism in the marine subsurface probably has an important role in global biogeochemical cycles, but deep biosphere activities are not well understood. Here we describe and analyse the first sub-seafloor metatranscriptomes from anaerobic Peru Margin sediment up to 159 metres below the sea floor, represented by over 1 billion complementary DNA (cDNA) sequence reads. Anaerobic metabolism of amino acids, carbohydrates and lipids seem to be the dominant metabolic processes, and profiles of dissimilatory sulfite reductase (dsr) transcripts are consistent with pore-water sulphate concentration profiles. Moreover, transcripts involved in cell division increase as a function of microbial cell concentration, indicating that increases in sub-seafloor microbial abundance are a function of cell division across all three domains of life. These data support calculations and models of sub-seafloor microbial metabolism and represent the first holistic picture of deep biosphere activities.

  11. Nuclide documentation. Element specific parameter values used in the biospheric models of the safety assessments SR 97 and SAFE

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Sara; Bergstroem, Ulla [Studsvik Eco and Safety AB, Nykoeping (Sweden)

    2002-05-01

    In this report the element and nuclide specific parameter values used in the biospheric models of the safety assessments SR 97 and SAFE are presented. The references used are presented and where necessary the process of estimation of data is described. The parameters treated in this report are distribution coefficients in soil, organic soil and suspended matter in freshwater and brackish water, root uptake factors for pasturage, cereals, root crops and vegetables, bioaccumulation factors for freshwater fish, brackish water fish, freshwater invertebrates and marine water plants, transfer coefficients for transfer to milk and meat, translocation factors and dose coefficients for external exposure, ingestion (age-dependent values) and inhalation (age-dependent values). The radionuclides treated are those which could be of interest in the two safety assessments. Physical data such as half-lives and type of decay are also presented.

  12. Nuclide documentation. Element specific parameter values used in the biospheric models of the safety assessments SR 97 and SAFE

    International Nuclear Information System (INIS)

    Karlsson, Sara; Bergstroem, Ulla

    2002-05-01

    In this report the element and nuclide specific parameter values used in the biospheric models of the safety assessments SR 97 and SAFE are presented. The references used are presented and where necessary the process of estimation of data is described. The parameters treated in this report are distribution coefficients in soil, organic soil and suspended matter in freshwater and brackish water, root uptake factors for pasturage, cereals, root crops and vegetables, bioaccumulation factors for freshwater fish, brackish water fish, freshwater invertebrates and marine water plants, transfer coefficients for transfer to milk and meat, translocation factors and dose coefficients for external exposure, ingestion (age-dependent values) and inhalation (age-dependent values). The radionuclides treated are those which could be of interest in the two safety assessments. Physical data such as half-lives and type of decay are also presented

  13. BIOPROTA Key Issues in Biosphere Aspects of Assessment of the Long-term Impact of Contaminant Releases Associated with Radioactive Waste Management. Theme 2: Task 7: Modelling Processes in the Geosphere Biosphere Interface Zone

    International Nuclear Information System (INIS)

    Pinedo, P.; Smith, G.; Aguero, A.; Albrecht, A.; Bath, A.; Benhabderrahmane, H.; Van Dorp, F.; Kautsky, U.; Klos, R.; Laciok, A.; Milodowski, T.; Selroos, J.O.; Simon, I.; Texier, D.; Thorne, M.; Willans, M.

    2005-01-01

    This document reports on BIOPROTA Theme 2, task 7 which investigated modelling processes in the geosphere- biosphere interface zone (GBIZ) during performance assessments. Modelling issues in the treatment of the GBIZ are identified. A large proportion of the identified issues concern modelling radionuclide behaviour in near surface aquifers which are subject to relatively high gradients in chemical and other conditions. Other key issues concern transfer of radionuclides through the unsaturated zone above aquifers, bearing in mind the scope for erosion and variations in the level of the phreatic surface and also the consideration of environmental change. A number of research areas are highlighted that are aimed at addressing each of the identified issues in the treatment of GBIZ. These include (i) Developing of a current statement of continuing problems, and hence clarify and justify the need to do more; (ii) Conducting a review of site investigations as they have been done already, and determine whether they meet performance assessment requirements; (iii) Identifying scenarios and FEPs considered in current treatments; and, (iv) Conducting source-pathway-receptor analysis to demonstrate comprehensiveness of the overall scenario identification process. The objectives of these activities would be to determine the potential to reduce uncertainties and/or conservative assumptions in assessment of radionuclide transfer from the geosphere to biosphere domains, taking account of environmental change; and to develop guidance on site-characterisation needs at different types of site, as regards the near-surface features. (Author) 23 refs

  14. BIOPROTA Key Issues in Biosphere Aspects of Assessment of the Long-term Impact of Contaminant Releases Associated with Radioactive Waste Management Theme 2: Task 7:Modelling Processes in the Geosphere Biosphere Interface Zone

    Energy Technology Data Exchange (ETDEWEB)

    Pinedo, P.; Smith, G.; Aguero, A.; Albrecht, A.; Bath, A.; Benhabderrahmane, H.; Van Dorp, F.; Kautsky, U.; Klos, R.; Laciok, A.; Milodowski, T.; Selroos, J.O.; Simon, I.; Texier, D.; Thorne, M.; Willans, M.

    2005-07-01

    This document reports on BIOPROTA Theme 2, task 7 which investigated modelling processes in the geosphere- biosphere interface zone (GBIZ) during performance assessments. Modelling issues in the treatment of the GBIZ are identified. A large proportion of the identified issues concern modelling radionuclide behaviour in near surface aquifers which are subject to relatively high gradients in chemical and other conditions. Other key issues concern transfer of radionuclides through the unsaturated zone above aquifers, bearing in mind the scope for erosion and variations in the level of the phreatic surface and also the consideration of environmental change. A number of research areas are highlighted that are aimed at addressing each of the identified issues in the treatment of GBIZ. These include (i) Developing of a current statement of continuing problems, and hence clarify and justify the need to do more; (ii) Conducting a review of site investigations as they have been done already, and determine whether they meet performance assessment requirements; (iii) Identifying scenarios and FEPs considered in current treatments; and, (iv) Conducting source-pathway-receptor analysis to demonstrate comprehensiveness of the overall scenario identification process. The objectives of these activities would be to determine the potential to reduce uncertainties and/or conservative assumptions in assessment of radionuclide transfer from the geosphere to biosphere domains, taking account of environmental change; and to develop guidance on site-characterisation needs at different types of site, as regards the near-surface features. (Author) 23 refs.

  15. Carbon cycle modeling calculations for the IPCC

    International Nuclear Information System (INIS)

    Wuebbles, D.J.; Jain, A.K.

    1993-01-01

    We carried out essentially all the carbon cycle modeling calculations that were required by the IPCC Working Group 1. Specifically, IPCC required two types of calculations, namely, ''inverse calculations'' (input was CO 2 concentrations and the output was CO 2 emissions), and the ''forward calculations'' (input was CO 2 emissions and output was CO 2 concentrations). In particular, we have derived carbon dioxide concentrations and/or emissions for several scenarios using our coupled climate-carbon cycle modelling system

  16. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model.

    Science.gov (United States)

    Gebauer, S; Grenfell, J L; Stock, J W; Lehmann, R; Godolt, M; von Paris, P; Rauer, H

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O 2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O 2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O 2 , whereas in the upper atmosphere, most O 2 is formed abiotically via CO 2 photolysis. The O 2 bistability found by Goldblatt et al. ( 2006 ) is not observed in our calculations likely due to our detailed CH 4 oxidation scheme. We calculate increased CH 4 with increasing O 2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O 2 is unique. Mixing, CH 4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O 2 fluxes. Regarding exoplanets, different "states" of O 2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases

  17. VALORA: data base system for storage significant information used in the behavior modelling in the biosphere

    International Nuclear Information System (INIS)

    Valdes R, M.; Aguero P, A.; Perez S, D.; Cancio P, D.

    2006-01-01

    The nuclear and radioactive facilities can emit to the environment effluents that contain radionuclides, which are dispersed and/or its accumulate in the atmosphere, the terrestrial surface and the surface waters. As part of the evaluations of radiological impact, it requires to be carried out qualitative and quantitative analysis. In many of the cases it doesn't have the real values of the parameters that are used in the modelling, neither it is possible to carry out their measure, for that to be able to carry out the evaluation it needs to be carried out an extensive search of that published in the literature about the possible values of each parameter, under similar conditions to the object of study, this work can be extensive. In this work the characteristics of the VALORA Database System developed with the purpose of organizing and to automate significant information that it appears in different sources (scientific or technique literature) of the parameters that are used in the modelling of the behavior of the pollutants in the environment and the values assigned to these parameters that are used in the evaluation of the radiological impact potential is described; VALORA allows the consultation and selection of the characteristic parametric data of different situations and processes that are required by the calculation pattern implemented. The software VALORA it is a component of a group of tools computer that have as objective to help to the resolution of dispersion models and transfer of pollutants. (Author)

  18. The biosphere rules.

    Science.gov (United States)

    Unruh, Gregory C

    2008-02-01

    Sustainability, defined by natural scientists as the capacity of healthy ecosystems to function indefinitely, has become a clarion call for business. Leading companies have taken high-profile steps toward achieving it: Wal-Mart, for example, with its efforts to reduce packaging waste, and Nike, which has removed toxic chemicals from its shoes. But, says Unruh, the director of Thunderbird's Lincoln Center for Ethics in Global Management, sustainability is more than an endless journey of incremental steps. It is a destination, for which the biosphere of planet Earth--refined through billions of years of trial and error--is a perfect model. Unruh distills some lessons from the biosphere into three rules: Use a parsimonious palette. Managers can rethink their sourcing strategies and dramatically simplify the number and types of materials their companies use in production, making recycling cost-effective. After the furniture manufacturer Herman Miller discovered that its leading desk chair had 200 components made from more than 800 chemical compounds, it designed an award-winning successor whose far more limited materials palette is 96% recyclable. Cycle up, virtuously. Manufacturers should design recovery value into their products at the outset. Shaw Industries, for example, recycles the nylon fiber from its worn-out carpet into brand-new carpet tile. Exploit the power of platforms. Platform design in industry tends to occur at the component level--but the materials in those components constitute a more fundamental platform. Patagonia, by recycling Capilene brand performance underwear, has achieved energy costs 76% below those for virgin sourcing. Biosphere rules can teach companies how to build ecologically friendly products that both reduce manufacturing costs and prove highly attractive to consumers. And managers need not wait for a green technological revolution to implement them.

  19. Database description for the biosphere code BIOMOD

    International Nuclear Information System (INIS)

    Kane, P.; Thorne, M.C.; Coughtrey, P.J.

    1983-03-01

    The development of a biosphere model for use in comparative radiological assessments of UK low and intermediate level waste repositories is discussed. The nature, content and sources of data contained in the four files that comprise the database for the biosphere code BIOMOD are described. (author)

  20. An improved land biosphere module for use in the DCESS Earth system model (version 1.1 with application to the last glacial termination

    Directory of Open Access Journals (Sweden)

    R. Eichinger

    2017-09-01

    Full Text Available Interactions between the land biosphere and the atmosphere play an important role for the Earth's carbon cycle and thus should be considered in studies of global carbon cycling and climate. Simple approaches are a useful first step in this direction but may not be applicable for certain climatic conditions. To improve the ability of the reduced-complexity Danish Center for Earth System Science (DCESS Earth system model DCESS to address cold climate conditions, we reformulated the model's land biosphere module by extending it to include three dynamically varying vegetation zones as well as a permafrost component. The vegetation zones are formulated by emulating the behaviour of a complex land biosphere model. We show that with the new module, the size and timing of carbon exchanges between atmosphere and land are represented more realistically in cooling and warming experiments. In particular, we use the new module to address carbon cycling and climate change across the last glacial transition. Within the constraints provided by various proxy data records, we tune the DCESS model to a Last Glacial Maximum state and then conduct transient sensitivity experiments across the transition under the application of explicit transition functions for high-latitude ocean exchange, atmospheric dust, and the land ice sheet extent. We compare simulated time evolutions of global mean temperature, pCO2, atmospheric and oceanic carbon isotopes as well as ocean dissolved oxygen concentrations with proxy data records. In this way we estimate the importance of different processes across the transition with emphasis on the role of land biosphere variations and show that carbon outgassing from permafrost and uptake of carbon by the land biosphere broadly compensate for each other during the temperature rise of the early last deglaciation.

  1. An international peer review of the biosphere modelling programme of the US Department of Energy's Yucca mountain site characterization project. Report of the IAEA International Review Team

    International Nuclear Information System (INIS)

    2001-04-01

    The United States Department of Energy (DOE) has a project for characterizing the site of a facility for disposing of radioactive waste located at Yucca Mountain Nevada, USA (the Yucca Mountain Site Characterization Project). This Project has developed an approach for assessing the future potential impact of any releases of radionuclides to the biosphere from a potential disposal facility sited at Yucca Mountain The DOE requested the International Atomic Energy Agency (IAEA) to organize an independent international expert review of the assessment methodology being used in its biosphere modelling programme. The IAEA accepted the request in the context of its statutory obligation to provide for the application of its established international standards of safety for the protection of health, at the request of a State, to any of that State's activities in the field of atomic energy. The terms of reference of the peer review were to review the biosphere assessment methodology being used for the total system performance assessment of the potential disposal facility. The main purpose was to analyze critically the proposed rationale and methodology and to identify consistencies and inconsistencies between methods being used in the frame of the Project and those established in international standards or in international programmes such as the IAEA's Biosphere Modelling and Assessment Programme (BIOMASS). This report presents the consensus view of the international experts convened by the IAEA for carrying out the review

  2. The Biosphere: A Decadal Vision

    Science.gov (United States)

    Peterson, David L.; Curran, Paul J.; Mlynzcak, Marty; Miller, Richard

    2003-01-01

    This paper focuses on biosphere-climate interactions including the influences of human activities. Recognizing this is only one aspect of biospheric processes, this places an emphasis of those biogeochemical processes that have a profound effect on numerous other aspects of the biosphere and the services it provides, services which are critical to sustaining life on Earth. And, the paper will focus on the various scientific aspects of assessing the availability of fresh water, including its sensitivity to climate variance and land use changes. Finally, this paper hopes to emphasize the potential role that greatly expanded space observations and interactive modeling can play in developing our understanding of Earth and its the living systems.

  3. Challenging terrestrial biosphere models with data from the long-term multifactor Prairie Heating and CO2 Enrichment experiment.

    Science.gov (United States)

    De Kauwe, Martin G; Medlyn, Belinda E; Walker, Anthony P; Zaehle, Sönke; Asao, Shinichi; Guenet, Bertrand; Harper, Anna B; Hickler, Thomas; Jain, Atul K; Luo, Yiqi; Lu, Xingjie; Luus, Kristina; Parton, William J; Shu, Shijie; Wang, Ying-Ping; Werner, Christian; Xia, Jianyang; Pendall, Elise; Morgan, Jack A; Ryan, Edmund M; Carrillo, Yolima; Dijkstra, Feike A; Zelikova, Tamara J; Norby, Richard J

    2017-09-01

    Multifactor experiments are often advocated as important for advancing terrestrial biosphere models (TBMs), yet to date, such models have only been tested against single-factor experiments. We applied 10 TBMs to the multifactor Prairie Heating and CO 2 Enrichment (PHACE) experiment in Wyoming, USA. Our goals were to investigate how multifactor experiments can be used to constrain models and to identify a road map for model improvement. We found models performed poorly in ambient conditions; there was a wide spread in simulated above-ground net primary productivity (range: 31-390 g C m -2  yr -1 ). Comparison with data highlighted model failures particularly with respect to carbon allocation, phenology, and the impact of water stress on phenology. Performance against the observations from single-factors treatments was also relatively poor. In addition, similar responses were predicted for different reasons across models: there were large differences among models in sensitivity to water stress and, among the N cycle models, N availability during the experiment. Models were also unable to capture observed treatment effects on phenology: they overestimated the effect of warming on leaf onset and did not allow CO 2 -induced water savings to extend the growing season length. Observed interactive (CO 2  × warming) treatment effects were subtle and contingent on water stress, phenology, and species composition. As the models did not correctly represent these processes under ambient and single-factor conditions, little extra information was gained by comparing model predictions against interactive responses. We outline a series of key areas in which this and future experiments could be used to improve model predictions of grassland responses to global change. © 2017 John Wiley & Sons Ltd.

  4. Solid phase evolution in the Biosphere 2 hillslope experiment as predicted by modeling of hydrologic and geochemical fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Dontsova, K.; Steefel, C.I.; Desilets, S.; Thompson, A.; Chorover, J.

    2009-07-15

    A reactive transport geochemical modeling study was conducted to help predict the mineral transformations occurring over a ten year time-scale that are expected to impact soil hydraulic properties in the Biosphere 2 (B2) synthetic hillslope experiment. The modeling sought to predict the rate and extent of weathering of a granular basalt (selected for hillslope construction) as a function of climatic drivers, and to assess the feedback effects of such weathering processes on the hydraulic properties of the hillslope. Flow vectors were imported from HYDRUS into a reactive transport code, CrunchFlow2007, which was then used to model mineral weathering coupled to reactive solute transport. Associated particle size evolution was translated into changes in saturated hydraulic conductivity using Rosetta software. We found that flow characteristics, including velocity and saturation, strongly influenced the predicted extent of incongruent mineral weathering and neo-phase precipitation on the hillslope. Results were also highly sensitive to specific surface areas of the soil media, consistent with surface reaction controls on dissolution. Effects of fluid flow on weathering resulted in significant differences in the prediction of soil particle size distributions, which should feedback to alter hillslope hydraulic conductivities.

  5. Biosphere scenario development. An interim report of an SKI, SSI, SKB working group

    International Nuclear Information System (INIS)

    1989-11-01

    The Swedish Nuclear Power Inspectorate and the Swedish Nuclear Fuel and Waste Management Co have initiated a project for the development of scenarios for the behaviour of radionuclides in high level waste following deep geological disposal. The main objective is to develop a general consensus of scenarios and conceptual models. Within the project a biosphere scenarios working group was initiated to consider specific questions of the biosphere. This report describes the results of the group's deliberations up to the end of July 1989. A methodology is presented for the development of biosphere scenarios which may be considered alongside scenarios for radionuclide behaviour in the near field and geosphere. Two major biosphere elements affecting processes in the surface environment have been recognised, climate and development. Alternative states for climate and level of development are suggested and each combination can be considered with one or more of a range of biosphere receptors, such as a river or a lake. The features, events and processes relevant to each receptor are presented. Consideration is then given to biosphere assumptions for both gradual and direct releases from the geosphere, as well as biosphere effects on the repository near field or geosphere. The amount of screening which can be done at this stage to limit the number of biosphere scenarios is small. However, considerable potential exists once more details are available for geosphere release scenarios. It may be appropriate to further develop biosphere scenarios, specific to each geosphere release scenario. It may also be appropriate to consider scenarios specifically in relation to the individual radionuclides which dominate geosphere releases. Both these possibilities could result in considerably reduced requirements for calculations

  6. Low apparent quantum yield in Arctic plants suggests that terrestrial biosphere models will over estimate carbon assimilation at high latitudes

    Science.gov (United States)

    Rogers, A.; Serbin, S.; Ely, K.; Wullschleger, S.

    2017-12-01

    Estimates of Gross Primary Productivity (GPP) by terrestrial biosphere models (TBMs) rely on accurate model representation of photosynthesis. In the Arctic, TBM uncertainty over GPP is the dominant driver of an uncertain Arctic carbon cycle. Previously we have shown that TBMs underestimate light saturated photosynthesis due to poor model representation of maximum carboxylation capacity and maximum electron transport. Here we extend this work to investigate model representation of the response of photosynthesis to irradiance. TBMs use an empirical relationship, typically a non-rectangular hyperbola, to estimate potential electron transport rate from incident irradiance. The key model inputs used to parameterize this formulation are; absorptance, quantum yield, and a curvature factor. TBMs show a high divergence in the response of photosynthesis to irradiance driven in part by variation in these parameters. In addition, most existing measurements used to parameterize TBMs have been made within a narrow temperature range (20-30°C) and the scarcity of data collected at low temperature has been highlighted as an important driver of model uncertainty at high latitudes. To address this issue we measured photosynthetic light response curves at 5 and 15°C and the leaf optical properties of six species growing on the Barrow Environmental Observatory, Barrow, Alaska. We determined leaf absorbtance, the convexity term, and apparent quantum yield. Our key finding was that measured apparent quantum yield was lower than model estimates, particularly at 5°C. Our results show that TBMs that rely on relatively high theoretical estimates of apparent quantum yield will likely overestimate carbon assimilation at low temperature and low irradiance.

  7. Precipitates/Salts Model Sensitivity Calculation

    International Nuclear Information System (INIS)

    Mariner, P.

    2001-01-01

    The objective and scope of this calculation is to assist Performance Assessment Operations and the Engineered Barrier System (EBS) Department in modeling the geochemical effects of evaporation on potential seepage waters within a potential repository drift. This work is developed and documented using procedure AP-3.12Q, ''Calculations'', in support of ''Technical Work Plan For Engineered Barrier System Department Modeling and Testing FY 02 Work Activities'' (BSC 2001a). The specific objective of this calculation is to examine the sensitivity and uncertainties of the Precipitates/Salts model. The Precipitates/Salts model is documented in an Analysis/Model Report (AMR), ''In-Drift Precipitates/Salts Analysis'' (BSC 2001b). The calculation in the current document examines the effects of starting water composition, mineral suppressions, and the fugacity of carbon dioxide (CO 2 ) on the chemical evolution of water in the drift

  8. Nominal Performance Biosphere Dose Conversion Factor Analysis

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek

    2000-12-21

    The purpose of this report was to document the process leading to development of the Biosphere Dose Conversion Factors (BDCFs) for the postclosure nominal performance of the potential repository at Yucca Mountain. BDCF calculations concerned twenty-four radionuclides. This selection included sixteen radionuclides that may be significant nominal performance dose contributors during the compliance period of up to 10,000 years, five additional radionuclides of importance for up to 1 million years postclosure, and three relatively short-lived radionuclides important for the human intrusion scenario. Consideration of radionuclide buildup in soil caused by previous irrigation with contaminated groundwater was taken into account in the BDCF development. The effect of climate evolution, from the current arid conditions to a wetter and cooler climate, on the BDCF values was evaluated. The analysis included consideration of different exposure pathway's contribution to the BDCFs. Calculations of nominal performance BDCFs used the GENII-S computer code in a series of probabilistic realizations to propagate the uncertainties of input parameters into the output. BDCFs for the nominal performance, when combined with the concentrations of radionuclides in groundwater allow calculation of potential radiation doses to the receptor of interest. Calculated estimates of radionuclide concentration in groundwater result from the saturated zone modeling. The integration of the biosphere modeling results (BDCFs) with the outcomes of the other component models is accomplished in the Total System Performance Assessment (TSPA) to calculate doses to the receptor of interest from radionuclides postulated to be released to the environment from the potential repository at Yucca Mountain.

  9. Nominal Performance Biosphere Dose Conversion Factor Analysis

    International Nuclear Information System (INIS)

    Wasiolek, M.

    2000-01-01

    The purpose of this report was to document the process leading to development of the Biosphere Dose Conversion Factors (BDCFs) for the postclosure nominal performance of the potential repository at Yucca Mountain. BDCF calculations concerned twenty-four radionuclides. This selection included sixteen radionuclides that may be significant nominal performance dose contributors during the compliance period of up to 10,000 years, five additional radionuclides of importance for up to 1 million years postclosure, and three relatively short-lived radionuclides important for the human intrusion scenario. Consideration of radionuclide buildup in soil caused by previous irrigation with contaminated groundwater was taken into account in the BDCF development. The effect of climate evolution, from the current arid conditions to a wetter and cooler climate, on the BDCF values was evaluated. The analysis included consideration of different exposure pathway's contribution to the BDCFs. Calculations of nominal performance BDCFs used the GENII-S computer code in a series of probabilistic realizations to propagate the uncertainties of input parameters into the output. BDCFs for the nominal performance, when combined with the concentrations of radionuclides in groundwater allow calculation of potential radiation doses to the receptor of interest. Calculated estimates of radionuclide concentration in groundwater result from the saturated zone modeling. The integration of the biosphere modeling results (BDCFs) with the outcomes of the other component models is accomplished in the Total System Performance Assessment (TSPA) to calculate doses to the receptor of interest from radionuclides postulated to be released to the environment from the potential repository at Yucca Mountain

  10. Assessing filtering of mountaintop CO2 mole fractions for application to inverse models of biosphere-atmosphere carbon exchange

    Directory of Open Access Journals (Sweden)

    S. L. Heck

    2012-02-01

    Full Text Available There is a widely recognized need to improve our understanding of biosphere-atmosphere carbon exchanges in areas of complex terrain including the United States Mountain West. CO2 fluxes over mountainous terrain are often difficult to measure due to unusual and complicated influences associated with atmospheric transport. Consequently, deriving regional fluxes in mountain regions with carbon cycle inversion of atmospheric CO2 mole fraction is sensitive to filtering of observations to those that can be represented at the transport model resolution. Using five years of CO2 mole fraction observations from the Regional Atmospheric Continuous CO2 Network in the Rocky Mountains (Rocky RACCOON, five statistical filters are used to investigate a range of approaches for identifying regionally representative CO2 mole fractions. Test results from three filters indicate that subsets based on short-term variance and local CO2 gradients across tower inlet heights retain nine-tenths of the total observations and are able to define representative diel variability and seasonal cycles even for difficult-to-model sites where the influence of local fluxes is much larger than regional mole fraction variations. Test results from two other filters that consider measurements from previous and following days using spline fitting or sliding windows are overly selective. Case study examples showed that these windowing-filters rejected measurements representing synoptic changes in CO2, which suggests that they are not well suited to filtering continental CO2 measurements. We present a novel CO2 lapse rate filter that uses CO2 differences between levels in the model atmosphere to select subsets of site measurements that are representative on model scales. Our new filtering techniques provide guidance for novel approaches to assimilating mountain-top CO2 mole fractions in carbon cycle inverse models.

  11. Description, calibration and sensitivity analysis of the local ecosystem submodel of a global model of carbon and nitrogen cycling and the water balance in the terrestrial biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Kercher, J.R. [Lawrence Livermore National Lab., CA (United States); Chambers, J.Q. [Lawrence Livermore National Lab., CA (United States)]|[California Univ., Santa Barbara, CA (United States). Dept. of Biological Sciences

    1995-10-01

    We have developed a geographically-distributed ecosystem model for the carbon, nitrogen, and water dynamics of the terrestrial biosphere TERRA. The local ecosystem model of TERRA consists of coupled, modified versions of TEM and DAYTRANS. The ecosystem model in each grid cell calculates water fluxes of evaporation, transpiration, and runoff; carbon fluxes of gross primary productivity, litterfall, and plant and soil respiration; and nitrogen fluxes of vegetation uptake, litterfall, mineralization, immobilization, and system loss. The state variables are soil water content; carbon in live vegetation; carbon in soil; nitrogen in live vegetation; organic nitrogen in soil and fitter; available inorganic nitrogen aggregating nitrites, nitrates, and ammonia; and a variable for allocation. Carbon and nitrogen dynamics are calibrated to specific sites in 17 vegetation types. Eight parameters are determined during calibration for each of the 17 vegetation types. At calibration, the annual average values of carbon in vegetation C, show site differences that derive from the vegetation-type specific parameters and intersite variation in climate and soils. From calibration, we recover the average C{sub v} of forests, woodlands, savannas, grasslands, shrublands, and tundra that were used to develop the model initially. The timing of the phases of the annual variation is driven by temperature and light in the high latitude and moist temperate zones. The dry temperate zones are driven by temperature, precipitation, and light. In the tropics, precipitation is the key variable in annual variation. The seasonal responses are even more clearly demonstrated in net primary production and show the same controlling factors.

  12. European-wide simulations of present cropland phenology, productivity and carbon fluxes using an improved terrestrial biosphere model

    Science.gov (United States)

    Smith, P. C.; Ciais, P.; de Noblet, N.; Peylin, P.; Viovy, N.; Bondeau, A.

    2009-04-01

    Aiming at producing improved estimates of carbon source/sink spatial and interannual patterns across Europe (35% croplands), this work combines the terrestrial biosphere model ORCHIDEE (for vegetation productivity, water balance, soil carbon dynamics) and the generic crop model STICS (for phenology, irrigation, nitrogen balance, harvest). The ORCHIDEE-STICS model, relying on three plant functional types for the representation of temperate agriculture, is evaluated over the last few decades at various spatial and temporal resolutions. The simulated Leaf Area Index seasonal cycle is largely improved relative to the original ORCHIDEE simulating grasslands, and compares favourably with remote-sensing observations (the Figure of Merit in Time doubles over Europe). Crop yield is derived from annual Net Primary Productivity and compared with wheat and grain maize harvest data for five European countries. Discrepancies between 30-year mean simulated and reported yields remain large in Mediterranean countries. Interannual variability amplitude expressed relative to the mean is reduced towards the observed variability (~10%) when using ORCHIDEE-STICS. The simulated 2003 anomalous carbon source from European ecosystems to the atmosphere due to the 2003 summer heat wave is in good agreement with atmospheric inversions (~0.2 GtC, from May to October). The anomaly is twice as large in the ORCHIDEE alone simulation, owing to the unrealistically high exposure of herbaceous plants to the extreme summer conditions. Overall, this study highlights the importance of accounting for the specific phonologies of crops sown both in winter and in spring and for irrigation applied to summer crops in regional/global models of the terrestrial carbon cycle. Limitations suggest accounting for temporal and spatial variability in agricultural practices for further simulation improvement.

  13. Disruptive Event Biosphere Doser Conversion Factor Analysis

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek

    2000-12-28

    The purpose of this report was to document the process leading to, and the results of, development of radionuclide-, exposure scenario-, and ash thickness-specific Biosphere Dose Conversion Factors (BDCFs) for the postulated postclosure extrusive igneous event (volcanic eruption) at Yucca Mountain. BDCF calculations were done for seventeen radionuclides. The selection of radionuclides included those that may be significant dose contributors during the compliance period of up to 10,000 years, as well as radionuclides of importance for up to 1 million years postclosure. The approach documented in this report takes into account human exposure during three different phases at the time of, and after, volcanic eruption. Calculations of disruptive event BDCFs used the GENII-S computer code in a series of probabilistic realizations to propagate the uncertainties of input parameters into the output. The pathway analysis included consideration of different exposure pathway's contribution to the BDCFs. BDCFs for volcanic eruption, when combined with the concentration of radioactivity deposited by eruption on the soil surface, allow calculation of potential radiation doses to the receptor of interest. Calculation of radioactivity deposition is outside the scope of this report and so is the transport of contaminated ash from the volcano to the location of the receptor. The integration of the biosphere modeling results (BDCFs) with the outcomes of the other component models is accomplished in the Total System Performance Assessment (TSPA), in which doses are calculated to the receptor of interest from radionuclides postulated to be released to the environment from the potential repository at Yucca Mountain.

  14. Biosphere 2 anew

    Science.gov (United States)

    The seven scientists who volunteered to live in Biosphere 2 for the past 6.5 months will be reentering the real world this Saturday, September 17, as Biosphere's new management team shifts into high gear to revitalize the $150 million sealed ecosystem's science plan. The new management team stepped in April 1 after a court order obtained by the project's owner Ed Bass kicked out its then prevailing management team. In mid-August, Biosphere 2 announced that it had joined forces with Columbia University's Lamont-Doherty Earth Observatory in a nonprofit venture to set a new research agenda for the reportedly troubled 3.2-acre facility. Biosphere has commissioned about a dozen white papers to be written during the next 7 months to help articulate the optimum science program. “The past really isn't the issue,” says biogeochemist Bruno Marino, Biosphere's new research director.

  15. Physiological state of life in the buried biosphere: insights from amino acid racemization modeling and superresolution microscopy

    DEFF Research Database (Denmark)

    Braun, Stefan

    2016-01-01

    Ocean sediments harbor a microbial ecosystem that vertically extends into the seafloor for more than two kilometers in certain regions of the World Ocean. The activity of the microorganisms in this deep, buried biosphere bridges the biologi- cal and geological element cycles. At the seafloor...... growth and metabolic activity in the deep biosphere are, however, poorly under- stood. It is unclear whether the majority of deeply buried microbes is (i) dormant, or (ii) spending available energy and nutrients for maintaining essential biomolecules and functions, or (iii) adapting to the low energy...... decrease their water content and grow small cell sizes as adaptation to the low energy flux in the deep biosphere. Possibly, the low water content of the cells limits biomolecule decay and makes the cells less prone to intracellular damage from chemical reactions such as amino acid racemization, protein...

  16. Safety case for the disposal of spent nuclear fuel at Olkiluoto. Terrain and ecosystems development modelling in the biosphere assessment BSA-2012

    International Nuclear Information System (INIS)

    2013-12-01

    This report is one of the four supporting reports for the three main biosphere reports in the safety case for the disposal of spent nuclear fuel at Olkiluoto, 'TURVA-2012'. The focus of this report is to detail the scenario analysis of terrain and ecosystems development at the Olkiluoto repository site within a time frame of 10 000 years, whereas the input data to this modelling is detailed in the Data Basis report. The results are used further especially in the surface and near-surface hydrological modelling and in the biosphere radionuclide transport and dose modelling, both part of the biosphere assessment 'BSA-2012' feeding into the safety case. Based on the results of the 18 cases simulated in the scenario analysis, it can be outlined that the most significant differences in respect of the dose implications of the repository arise from the inputs and settings affecting the rate of coastline retreat (i.e. land uplift and sea level) and determining whether there are croplands or not in the area. (orig.)

  17. Evaluating Biosphere Model Estimates of the Start of the Vegetation Active Season in Boreal Forests by Satellite Observations

    Directory of Open Access Journals (Sweden)

    Kristin Böttcher

    2016-07-01

    Full Text Available The objective of this study was to assess the performance of the simulated start of the photosynthetically active season by a large-scale biosphere model in boreal forests in Finland with remote sensing observations. The start of season for two forest types, evergreen needle- and deciduous broad-leaf, was obtained for the period 2003–2011 from regional JSBACH (Jena Scheme for Biosphere–Atmosphere Hamburg runs, driven with climate variables from a regional climate model. The satellite-derived start of season was determined from daily Moderate Resolution Imaging Spectrometer (MODIS time series of Fractional Snow Cover and the Normalized Difference Water Index by applying methods that were targeted to the two forest types. The accuracy of the satellite-derived start of season in deciduous forest was assessed with bud break observations of birch and a root mean square error of seven days was obtained. The evaluation of JSBACH modelled start of season dates with satellite observations revealed high spatial correspondence. The bias was less than five days for both forest types but showed regional differences that need further consideration. The agreement with satellite observations was slightly better for the evergreen than for the deciduous forest. Nonetheless, comparison with gross primary production (GPP determined from CO2 flux measurements at two eddy covariance sites in evergreen forest revealed that the JSBACH-simulated GPP was higher in early spring and led to too-early simulated start of season dates. Photosynthetic activity recovers differently in evergreen and deciduous forests. While for the deciduous forest calibration of phenology alone could improve the performance of JSBACH, for the evergreen forest, changes such as seasonality of temperature response, would need to be introduced to the photosynthetic capacity to improve the temporal development of gross primary production.

  18. How well do terrestrial biosphere models simulate coarse-scale runoff in the contiguous United States?

    Science.gov (United States)

    C.R. Schwalm; D.N. Huntzinger; R.B. Cook; Y. Wei; I.T. Baker; R.P. Neilson; B. Poulter; Peter Caldwell; G. Sun; H.Q. Tian; N. Zeng

    2015-01-01

    Significant changes in the water cycle are expected under current global environmental change. Robust assessment of present-day water cycle dynamics at continental to global scales is confounded by shortcomings in the observed record. Modeled assessments also yield conflicting results which are linked to differences in model structure and simulation protocol. Here we...

  19. Carbonyl Sulfide Serves as Tattletale for Biosphere Signal

    Science.gov (United States)

    Villalba, G.; Campbell, J. E.

    2016-12-01

    Currently, anthropogenic CO2 emissions over a geographic region can be calculated in several ways: 1) based on energy consumption using emission factors within city limits, 2) using 14CO2 as tracer for fossil CO2, and 3) subtracting the biosphere signal from observation (measured) CO2 data. In order to calculate the ecosystem CO2 emissions (respiration and photosynthesis), ecosystem models such as SiB, CASA, or others are used. However, it is not clear which is the best one to determine the ecosystem signal because they all give different results in terms of GPP. We first show simulations of biosphere CO2 given by SiB, CASA, and CAN-IBIS over central California. Each model gives different values of CO2 GPP. Using these values to determine fossil fuel CO2 contribution can give very different results. We suggest that COS can be used to determine which ecosystem model best represents the biosphere signal. Just like CO2, COS is taken up by photosynthesis but is not given off in respiration and can thus be used as a trace gas to estimate GPP. We begin with COS surface fluxes provided by SiB, CASA and CAN-IBIS for a 9km-resolution domain over the Bay Area of San Francisco and part of the San Joaquin Valley. Simulations using the atmospheric model WRF provide the meteorological data, which along with the COS fluxes, are used to run the transport model STEM over a 10-day period in March 2015. Simulations of COS mixing ratio based on the various surface flux models are compared to observed data available from several locations. The model that best represents COS uptake consequently also provides the most accurate simulation of CO2 biosphere signal, and is used to estimate fossil fuel CO2 emissions.

  20. Development of ACBIO: A Biosphere Template Using AMBER for a Potential Radioactive Waste Repository

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Hwang, Yong Soo; Kang, Chul Hyung; Hahn, Pil Soo

    2005-01-01

    Nuclides in radioactive wastes are assumed to be transported in the geosphere by groundwater and probably discharged into the biosphere. Quantitative evaluation of doses to human beings due to nuclide transport in the geosphere and through the various pathways in the biosphere is the final step of safety assessment of the radioactive waste repository. To calculate the flux to dose conversion factors (DCFs) for nuclides appearing at GBIs with their decay chains, a template ACBIO which is an AMBER case file based on mathematical model for the mass transfer coefficients between the compartments has been developed considering material balance among the compartments in biosphere and then implementing to AMBER, a general and flexible software tool that allows to build dynamic compartment models. An illustrative calculation with ACBIO is shown.

  1. The Earth's Biosphere

    Science.gov (United States)

    2002-01-01

    In the last five years, scientists have been able to monitor our changing planet in ways never before possible. The Sea-viewing Wide Field-of-View Sensor (SeaWiFS), aboard the OrbView-2 satellite, has given researchers an unprecedented view of the biological engine that drives life on Earth-the countless forms of plants that cover the land and fill the oceans. 'There is no question the Earth is changing. SeaWiFS has enabled us, for the first time, to monitor the biological consequences of that change-to see how the things we do, as well as natural variability, affect the Earth's ability to support life,' said Gene Carl Feldman, SeaWiFS project manager at NASA's Goddard Space Flight Center, Greenbelt, Md. SeaWiFS data, based on continuous daily global observations, have helped scientists make a more accurate assessment of the oceans' role in the global carbon cycle. The data provide a key parameter in a number of ecological and environmental studies as well as global climate-change modeling. The images of the Earth's changing land, ocean and atmosphere from SeaWiFS have documented many previously unrecognized phenomena. The image above shows the global biosphere from June 2002 measured by SeaWiFS. Data in the oceans is chlorophyll concentration, a measure of the amount of phytoplankton (microscopic plants) living in the ocean. On land SeaWiFS measures Normalized Difference Vegetation Index, an indication of the density of plant growth. For more information and images, read: SeaWiFS Sensor Marks Five Years Documenting Earth'S Dynamic Biosphere Image courtesy SeaWiFS project and copyright Orbimage.

  2. Monitoring and modelling of biosphere/atmosphere exchange of gases and aerosols in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Erisman, Jan Willem [Energy Research Centre of the Netherlands (ECN), P.O. Box 1, 1755 ZG Petten (Netherlands)]. E-mail: erisman@ecn.nl; Vermeulen, Alex [Energy Research Centre of the Netherlands (ECN), P.O. Box 1, 1755 ZG Petten (Netherlands); Hensen, Arjan [Energy Research Centre of the Netherlands (ECN), P.O. Box 1, 1755 ZG Petten (Netherlands); Flechard, Chris [Energy Research Centre of the Netherlands (ECN), P.O. Box 1, 1755 ZG Petten (Netherlands); Daemmgen, Ulrich [Federal Agricultural Research Centre, Institute of Agroecology, D-38116 Braunschweig, (Germany); Fowler, David [CEH, Bush Estate, Penicuik, Midlothian EH26 0QB (United Kingdom); Sutton, Mark [CEH, Bush Estate, Penicuik, Midlothian EH26 0QB (United Kingdom); Gruenhage, Ludger [Institute for Plant Ecology, Justus-Liebig-University, D-35392 Giessen (Germany); Tuovinen, Juha-Pekka [Finnish Meteorological Institute, FIN-00810 Helsinki (Finland)

    2005-02-01

    Monitoring and modelling of deposition of air pollutants is essential to develop and evaluate policies to abate the effects related to air pollution and to determine the losses of pollutants from the atmosphere. Techniques for monitoring wet deposition fluxes are widely applied. A recent intercomparison experiment, however, showed that the uncertainty in wet deposition is relatively high, up to 40%, apart from the fact that most samplers are biased because of a dry deposition contribution. Wet deposition amounts to about 80% of the total deposition in Europe with a range of 10-90% and uncertainty should therefore be decreased. During recent years the monitoring of dry deposition has become possible. Three sites have been operational for 5 years. The data are useful for model development, but also for model evaluation and monitoring of progress in policy. Data show a decline in SO{sub 2} dry deposition, whereas nitrogen deposition remained constant. Furthermore, surface affinities for pollutants changed leading to changes in deposition. Deposition models have been further developed and tested with dry deposition measurements and total deposition measurements on forests as derived from throughfall data. The comparison is reasonable given the measurement uncertainties. Progress in ozone surface exchange modelling and monitoring shows that stomatal uptake can be quantified with reasonable accuracy, but external surface uptake yields highest uncertainty. - Monitoring and modelling of the deposition of sulphur and nitrogen components and the exposure of ozone has gained much progress through the research within BIATEX.

  3. A revised calculational model for fission

    International Nuclear Information System (INIS)

    Atchison, F.

    1998-09-01

    A semi-empirical parametrization has been developed to calculate the fission contribution to evaporative de-excitation of nuclei with a very wide range of charge, mass and excitation-energy and also the nuclear states of the scission products. The calculational model reproduces measured values (cross-sections, mass distributions, etc.) for a wide range of fissioning systems: Nuclei from Ta to Cf, interactions involving nucleons up to medium energy and light ions. (author)

  4. Response of a One-Biosphere Nutrient Modeling System to Regional Land Use and Management Change

    Science.gov (United States)

    A multi-media system of nitrogen and co-pollutant models describing critical physical and chemical processes that cascade synergistically and competitively through the environment, the economy and society has been developed at the USEPA Office of Research and Development (see fig...

  5. The Danube Delta Biosphere Reserve Qualitative Reasoning Model - Education and Decision Support tool for Active Behaviour in Sustainable Development of this area

    Directory of Open Access Journals (Sweden)

    CIOACA Eugenia

    2007-10-01

    Full Text Available This paper presents the three main steps necessary in preparing a new model based on Qualitative Reasoning (QR concept, for Danube Delta Biosphere Reserve (DDBR environmental system. These are: theDDBR system Concept map, the Global causal model, and the Structural model. The DDBR QR model is focused on describing the behaviour of this system related to those causes and their effects which hamper the system sustainable development, especially this system aquatic ecosystem behaviour governed by the water pollution process positive rate and its negative effect on biodiversity and human being health, for peolple living in oraround this area.

  6. Taking account of the biosphere in HLW assessment

    International Nuclear Information System (INIS)

    Smith, G.M.; Grogan, H.A.

    1992-01-01

    Evaluation of the biosphere in High level Waste assessment is beset with difficulties concerned with the disparity in timescales for geosphere and biosphere processes and prediction of the long term conditions in the biosphere. These issues are discussed against the background of developments on criteria, calculational end points, timescales, environmental change and human activities, relationship to other parts of the assessment, and uncertainty and variability. In this paper an outline for a surface environment assessment program is proposed

  7. Model calculations in correlated finite nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Guardiola, R.; Ros, J. (Granada Univ. (Spain). Dept. de Fisica Nuclear); Polls, A. (Tuebingen Univ. (Germany, F.R.). Inst. fuer Theoretische Physik)

    1980-10-21

    In order to study the convergence condition of the FAHT cluster expansion several model calculations are described and numerically tested. It is concluded that this cluster expansion deals properly with the central part of the two-body distribution function, but presents some difficulties for the exchange part.

  8. EARTHWORK VOLUME CALCULATION FROM DIGITAL TERRAIN MODELS

    Directory of Open Access Journals (Sweden)

    JANIĆ Milorad

    2015-06-01

    Full Text Available Accurate calculation of cut and fill volume has an essential importance in many fields. This article shows a new method, which has no approximation, based on Digital Terrain Models. A relatively new mathematical model is developed for that purpose, which is implemented in the software solution. Both of them has been tested and verified in the praxis on several large opencast mines. This application is developed in AutoLISP programming language and works in AutoCAD environment.

  9. The disposal of Canada's nuclear fuel waste: a study of postclosure safety of in-room emplacement of used CANDU fuel in copper containers in permeable plutonic rock. Volume 4: biosphere model

    International Nuclear Information System (INIS)

    Zach, R.; Amiro, B.D.; Bird, G.A.; Macdonald, C.R.; Sheppard, M.I.; Sheppard, S.C.; Szekely, J.G.

    1996-06-01

    AECL (Atomic Energy of Canada Limited) has developed a disposal concept for Canada's nuclear fuel waste, which calls for a vault deep in plutonic rock of the Canadian Shield. The concept has been fully, documented in an environmental impact statement (EIS) for review by a panel under the Canadian Environmental Assessment Agency. The EIS includes the results of the EIS postclosure assessment case study to address the long term safety of the disposal concept. To more fully demonstrate the flexibility of the disposal concept and our assessment methodology, we are now carrying out another postclosure assessment study, which involves different assumptions and engineering options than those used in the EIS. In response to these changes, we have updated the BIOTRAC (BIOsphere Transport and Assessment Code) model developed for the EIS postclosure assessment case study. The main changes made to the BIOTRAC model are the inclusion of 36 Cl, 137 Cs, 239 Np and 243 Am; animals inhalation pathway; International Commission on Radiological Protection 60/61 human internal dose conversion factors; all the postclosure assessment nuclides in the dose calculations for non-human biota; and groundwater dose limits for 14 C, 16 C1 and 129 I for non-human biota to parallel these limits for humans. We have also reviewed and changed several parameter values, including evasion rates of gaseous nuclides from soil and release fractions of various nuclides from domestic water, and indicated changes that affect the geosphere/biosphere interface model. These changes make the BIOTRAC model more flexible. As a result of all of these changes, the BIOTRAC model has been significantly expanded and improved, although the changes do not greatly affect model predictions. The modified model for the present study is called BIOTRAC2 (BIOTRAC - Version 2). The full documentation of the BIOTRAC2 model includes the report by Davis et al. (1993a) and this report. (author). 105 refs., 13 tabs., 8 figs

  10. VIS and NIR land surface albedo sensitivity of the Ent Terrestrial Biosphere Model to forcing leaf area index

    Science.gov (United States)

    Montes, C.; Kiang, N. Y.; Ni-Meister, W.; Yang, W.; Schaaf, C.; Aleinov, I. D.; Jonas, J.; Zhao, F. A.; Yao, T.; Wang, Z.; Sun, Q.; Carrer, D.

    2016-12-01

    Land surface albedo is a major controlling factor in vegetation-atmosphere transfers, modifying the components of the energy budget, the ecosystem productivity and patterns of regional and global climate. General Circulation Models (GCMs) are coupled to Dynamic Global Vegetation Models (DGVMs) to solve vegetation albedo by using simple schemes prescribing albedo based on vegetation classification, and approximations of canopy radiation transport for multiple plant functional types (PFTs). In this work, we aim at evaluating the sensitivity of the NASA Ent Terrestrial Biosphere Model (TBM), a demographic DGVM coupled to the NASA Goddard Institute for Space Studies (GISS) GCM, in estimating VIS and NIR surface albedo by using variable forcing leaf area index (LAI). The Ent TBM utilizes a new Global Vegetation Structure Dataset (GVSD) to account for geographically varying vegetation tree heights and densities, as boundary conditions to the gap-probability based Analytical Clumped Two-Stream (ACTS) canopy radiative transfer scheme (Ni-Meister et al., 2010). Land surface and vegetation characteristics for the Ent GVSD are obtained from a number of earth observation platforms and algorithms, including the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover and plant functional types (PFTs) (Friedl et al., 2010), soil albedo derived from MODIS (Carrer et al., 2014), and vegetation height from the Geoscience Laser Altimeter System (GLAS) on board ICESat (Ice, Cloud, and land Elevation Satellite) (Simard et al., 2011; Tang et al., 2014). Three LAI products are used as input to ACTS/Ent TBM: MODIS MOD15A2H product (Yang et al., 2006), Beijing Normal University LAI (Yuan et al., 2011), and Global Data Sets of Vegetation (LAI3g) (Zhu et al. 2013). The sensitivity of the Ent TBM VIS and NIR albedo to the three LAI products is assessed, compared against the previous GISS GCM vegetation classification and prescribed Lambertian albedoes (Matthews, 1984), and against

  11. Testing of environmental transfer models using data from the atmospheric release of Iodine-131 from the Hanford site, USA, in 1963. Report of the Dose Reconstruction Working Group of the Biosphere Modelling and Assessment (BIOMASS) Programme, Theme 2

    International Nuclear Information System (INIS)

    2003-03-01

    The IAEA Programme on BIOsphere Modelling and ASSessment (BIOMASS) was launched in Vienna in October 1996. The programme was concerned with developing and improving capabilities to predict the transfer of radionuclides in the environment. The programme had three themes: Theme 1: Radioactive Waste Disposal. The objective was to develop the concept of a standard or reference biosphere for application to the assessment of the long term safety of repositories for radioactive waste. Theme 2: Environmental Releases. BIOMASS provided an international forum for activities aimed at increasing the confidence in methods and models for the assessment of radiation exposure related to environmental releases. Two Working Groups addressed issues concerned with the reconstruction of radiation doses received by people from past releases of radionuclides to the environment and the evaluation of the efficacy of remedial measures. Theme 3: Biosphere Processes. The aim of this Theme was to improve capabilities for modelling the transfer of radionuclides in particular parts of the biosphere identified as being of potential radiological significance and where there were gaps in modelling approaches. This topic was explored using a range of methods including reviews of the literature, model inter-comparison exercises and, where possible, model testing against independent sources of data. Three Working Groups were established to examine the modelling of: (1) long term tritium dispersion in the environment; (2) radionuclide uptake by fruits; and (3) radionuclide migration and accumulation in forest ecosystems. This report describes results of the studies undertaken by the Dose Reconstruction Working Group under Theme 2

  12. ON-LINE CALCULATOR: JOHNSON ETTINGER VAPOR INTRUSION MODEL

    Science.gov (United States)

    On-Site was developed to provide modelers and model reviewers with prepackaged tools ("calculators") for performing site assessment calculations. The philosophy behind OnSite is that the convenience of the prepackaged calculators helps provide consistency for simple calculations,...

  13. Feedbacks between climate change and biosphere integrity

    Science.gov (United States)

    Lade, Steven; Anderies, J. Marty; Donges, Jonathan; Steffen, Will; Rockström, Johan; Richardson, Katherine; Cornell, Sarah; Norberg, Jon; Fetzer, Ingo

    2017-04-01

    The terrestrial and marine biospheres sink substantial fractions of human fossil fuel emissions. How the biosphere's capacity to sink carbon depends on biodiversity and other measures of biosphere integrity is however poorly understood. Here, we (1): review assumptions from literature regarding the relationships between the carbon cycle and the terrestrial and marine biospheres; and (2) explore the consequences of these different assumptions for climate feedbacks using the stylised carbon cycle model PB-INT. We find that: terrestrial biodiversity loss could significantly dampen climate-carbon cycle feedbacks; direct biodiversity effects, if they exist, could rival temperature increases from low-emission trajectories; and the response of the marine biosphere is critical for longer term climate change. Simple, low-dimensional climate models such as PB-INT can help assess the importance of still unknown or controversial earth system processes such as biodiversity loss for climate feedbacks. This study constitutes the first detailed study of the interactions between climate change and biosphere integrity, two of the 'planetary boundaries'.

  14. The EC BIOCLIM Project (2000-2003), 5. Euratom Framework Programme - Modelling sequential biosphere systems under climate change for radioactive waste disposal

    International Nuclear Information System (INIS)

    Calvez, Marianne

    2002-01-01

    Marianne Calvez (ANDRA, France) presented the new EC BIOCLIM project that started in 2001. Its main objective is to provide a scientific basis and practical methodology for assessing the possible long-term impacts on the safety of radioactive waste repositories in deep formations due to climate driven changes. She explained that BIOCLIM objective is not to predict what will be the future but will correspond to an illustration of how people could use the knowledge. The BIOCLIM project will use the outcomes from the Biomass project. Where Biomass considered discrete biospheres, the BIOCLIM project will consider the evolution of climate with a focus on the European climate for three regions in the United Kingdom, France and Spain. The consortium of BIOCLIM participants consists of various experts in climate modelling and various experts and organisations in performance assessment. The intent is to build an integrated dynamic climate model that represents all the important mechanisms for long-term climate evolution. The modelling will primarily address the next 200000 years. The final outcome will be an enhancement of the state-of-the-art treatment of biosphere system change over long periods of time through the use of a number of innovative climate modelling approaches and the application of the climate model outputs in performance assessments

  15. Earth's early biosphere

    Science.gov (United States)

    Des Marais, D. J.

    1998-01-01

    Understanding our own early biosphere is essential to our search for life elsewhere, because life arose on Earth very early and rocky planets shared similar early histories. The biosphere arose before 3.8 Ga ago, was exclusively unicellular and was dominated by hyperthermophiles that utilized chemical sources of energy and employed a range of metabolic pathways for CO2 assimilation. Photosynthesis also arose very early. Oxygenic photosynthesis arose later but still prior to 2.7 Ga. The transition toward the modern global environment was paced by a decline in volcanic and hydrothermal activity. These developments allowed atmospheric O2 levels to increase. The O2 increase created new niches for aerobic life, most notably the more advanced Eukarya that eventually spawned the megascopic fauna and flora of our modern biosphere.

  16. Matrix model calculations beyond the spherical limit

    International Nuclear Information System (INIS)

    Ambjoern, J.; Chekhov, L.; Kristjansen, C.F.; Makeenko, Yu.

    1993-01-01

    We propose an improved iterative scheme for calculating higher genus contributions to the multi-loop (or multi-point) correlators and the partition function of the hermitian one matrix model. We present explicit results up to genus two. We develop a version which gives directly the result in the double scaling limit and present explicit results up to genus four. Using the latter version we prove that the hermitian and the complex matrix model are equivalent in the double scaling limit and that in this limit they are both equivalent to the Kontsevich model. We discuss how our results away from the double scaling limit are related to the structure of moduli space. (orig.)

  17. Slowing Down Biospheric Change

    OpenAIRE

    Cairns, John

    2010-01-01

    In the latter part of the 20th century and the beginning of the 21st century, rapid climate change and damage to the biosphere have increased the risks to Homo sapiens. So much harm has already been done to the biosphere and the climate system that it will require humankind to adapt to the existing and new conditions in order to survive. In order for this information to reach and impact the public, scientists, politicians, and the news media need to work together to communicate their ideas t...

  18. Cost Calculation Model for Logistics Service Providers

    Directory of Open Access Journals (Sweden)

    Zoltán Bokor

    2012-11-01

    Full Text Available The exact calculation of logistics costs has become a real challenge in logistics and supply chain management. It is essential to gain reliable and accurate costing information to attain efficient resource allocation within the logistics service provider companies. Traditional costing approaches, however, may not be sufficient to reach this aim in case of complex and heterogeneous logistics service structures. So this paper intends to explore the ways of improving the cost calculation regimes of logistics service providers and show how to adopt the multi-level full cost allocation technique in logistics practice. After determining the methodological framework, a sample cost calculation scheme is developed and tested by using estimated input data. Based on the theoretical findings and the experiences of the pilot project it can be concluded that the improved costing model contributes to making logistics costing more accurate and transparent. Moreover, the relations between costs and performances also become more visible, which enhances the effectiveness of logistics planning and controlling significantly

  19. Shell model calculations for exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B.A. (Michigan State Univ., East Lansing, MI (USA)); Warburton, E.K. (Brookhaven National Lab., Upton, NY (USA)); Wildenthal, B.H. (New Mexico Univ., Albuquerque, NM (USA). Dept. of Physics and Astronomy)

    1990-02-01

    In this paper we review the progress of the shell-model approach to understanding the properties of light exotic nuclei (A < 40). By shell-model'' we mean the consistent and large-scale application of the classic methods discussed, for example, in the book of de-Shalit and Talmi. Modern calculations incorporate as many of the important configurations as possible and make use of realistic effective interactions for the valence nucleons. Properties such as the nuclear densities depend on the mean-field potential, which is usually separately from the valence interaction. We will discuss results for radii which are based on a standard Hartree-Fock approach with Skyrme-type interactions.

  20. Effective hamiltonian calculations using incomplete model spaces

    International Nuclear Information System (INIS)

    Koch, S.; Mukherjee, D.

    1987-01-01

    It appears that the danger of encountering ''intruder states'' is substantially reduced if an effective hamiltonian formalism is developed for incomplete model spaces (IMS). In a Fock-space approach, the proof a ''connected diagram theorem'' is fairly straightforward with exponential-type of ansatze for the wave-operator W, provided the normalization chosen for W is separable. Operationally, one just needs a suitable categorization of the Fock-space operators into ''diagonal'' and ''non-diagonal'' parts that is generalization of the corresponding procedure for the complete model space. The formalism is applied to prototypical 2-electron systems. The calculations have been performed on the Cyber 205 super-computer. The authors paid special attention to an efficient vectorization for the construction and solution of the resulting coupled non-linear equations

  1. Causes and timing of future biosphere extinctions

    Directory of Open Access Journals (Sweden)

    S. Franck

    2006-01-01

    Full Text Available We present a minimal model for the global carbon cycle of the Earth containing the reservoirs mantle, ocean floor, continental crust, biosphere, and the kerogen, as well as the combined ocean and atmosphere reservoir. The model is specified by introducing three different types of biosphere: procaryotes, eucaryotes, and complex multicellular life. During the entire existence of the biosphere procaryotes are always present. 2 Gyr ago eucaryotic life first appears. The emergence of complex multicellular life is connected with an explosive increase in biomass and a strong decrease in Cambrian global surface temperature at about 0.54 Gyr ago. In the long-term future the three types of biosphere will die out in reverse sequence of their appearance. We show that there is no evidence for an implosion-like extinction in contrast to the Cambrian explosion. In dependence of their temperature tolerance complex multicellular life and eucaryotes become extinct in about 0.8–1.2 Gyr and 1.3–1.5 Gyr, respectively. The ultimate life span of the biosphere is defined by the extinction of procaryotes in about 1.6 Gyr.

  2. Acceleration methods and models in Sn calculations

    International Nuclear Information System (INIS)

    Sbaffoni, M.M.; Abbate, M.J.

    1984-01-01

    In some neutron transport problems solved by the discrete ordinate method, it is relatively common to observe some particularities as, for example, negative fluxes generation, slow and insecure convergences and solution instabilities. The commonly used models for neutron flux calculation and acceleration methods included in the most used codes were analyzed, in face of their use in problems characterized by a strong upscattering effect. Some special conclusions derived from this analysis are presented as well as a new method to perform the upscattering scaling for solving the before mentioned problems in this kind of cases. This method has been included in the DOT3.5 code (two dimensional discrete ordinates radiation transport code) generating a new version of wider application. (Author) [es

  3. The legacy of biosphere 2 for the study of biospherics and closed ecological systems

    Science.gov (United States)

    Allen, J. P.; Nelson, M.; Alling, A.

    The unprecedented challenges of creating Biosphere 2, the world's first laboratory for biospherics, the study of global ecology and long-term closed ecological system dynamics, led to breakthrough developments in many fields, and a deeper understanding of the opportunities and difficulties of material closure. This paper will review accomplishments and challenges, citing some of the key research findings and publications that have resulted from the experiments in Biosphere 2. Engineering accomplishments included development of a technique for variable volume to deal with pressure differences between the facility and outside environment, developing methods of atmospheric leak detection and sealing, while achieving new standards of closure, with an annual atmospheric leakrate of less than 10%, or less than 300 ppm per day. This degree of closure permitted detailed tracking of carbon dioxide, oxygen, and trice gases such as nitrous oxide and ethylene over the seasonal variability of two years. Full closure also necessitated developing new approaches and technologies for complete air, water, and wastewater recycle and reuse within the facility. The development of a soil-based highly productive agricultural system was a first in closed ecological systems, and much was learned about managing a wide variety of crops using non-chemical means of pest and disease control. Closed ecological systems have different temporal biogeochemical cycling and ranges of atmospheric components because of their smaller reservoirs of air, water and soil, and higher concentration of biomass, and Biosphere 2 provided detailed examination and modeling of these accelerated cycles over a period of closure which measured in years. Medical research inside Biosphere 2 included the effects on humans of lowered oxygen: the discovery that human productivity can be maintained with good health with lowered atmospheric oxygen levels could lead to major economies on the design of space stations and

  4. Biosphere2 and Earthbuzz

    Science.gov (United States)

    Washburne, J. C.

    2009-12-01

    In an attempt to reach a broader audience, Biosphere 2, near Tucson, AZ, is participating in a network of science centers thanks to new funding through the Science Museum of Minnesota (SMM) and the National Center for Earth System Dynamics (NCED). Each of these centers will be tied together through an Earthbuzz kiosk, basically a networked web site that allows visitors to learn more about the work of leading local scientists in a very personal and captivating format. Content is currently being developed by Biosphere 2 researchers, staff, and graduate students that range from a public question and answer forum called “Scientist on the Spot” to science blogs by Biosphere 2 Fellows. It is hoped that this project will help educate the public about the Anthropocene, that is, the current geologic period that is so greatly affected by humankind’s impact on the health of the planet. Biosphere 2 provides a unique location to engage the public in this conversation for several reasons. First, no other destination on Earth gives the public such a physical immersion into what climate change might mean as does Biosphere 2. On the regular walking tour, visitors are guided through scaled down versions of an African savannah, a semi-arid thorn scrub, a coastal fog desert and a tropical rainforest. Digital displays of temperature and humidity confirm what your body is feeling - conditions ranging from desert aridity to tropical humidity. As one passes through the biomes of Biosphere 2, climate change is a whole body experience. Second, Biosphere 2 is also an active ecological research site - part of a unique network of sites run by the University of Arizona that allow scientists to study ecosystem processes across a range of scales - from microscopic root studies to studies encompassing large watersheds. In particular, a group of researchers is studying why large stands of pinion-juniper forests across the southwest have died in recent years. Biosphere2’s role in this

  5. Interim report on reference biospheres for radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Dorp, F. van [NAGRA (Switzerland)] [and others

    1994-10-01

    Primary criteria for repository safety are commonly expressed in terms of risk or dose, and a biosphere model is required to evaluate the corresponding assessment endpoints. Even when other indicators are used to express the safety goals, a biosphere model is still needed in order to justify those indicators. In safety or performance assessments of a repository, the uncertainties in space and time for the different components of the repository system have to be considered. For the biosphere component, prediction of future human habits, in particular, is extremely uncertain. This is especially important in the assessment of deep geological disposal, which involves very long timescales, particularly for wastes containing very long lived radionuclides. Thus, the results of biosphere modelling should not be seen as predictions, but as illustrations of the consequences that may occur, should the postulated release occur today or under other conditions implied by the underlying biosphere model assumptions. Differences in biosphere modelling approaches arise because of differences in regulations, the nature of the wastes to be disposed of, disposal site characteristics, disposal concepts and purposes of the assessment. Differences in treatment of uncertainties can also arise. For example, if doses or risks are anticipated to be far below regulatory limits, assessments may be based upon simplified and, necessarily, conservative biosphere models. At present biosphere models used to assess radioactive waste disposal show significant differences in the features, events and processes (FEPs) included or excluded. In general, the reasons for these differences have not been well documented or explained. Developments in radioecology have implications for biosphere modelling for radioactive waste disposal. In particular, after the Chernobyl accident, radioecological research has been significantly increased. Results of this research are already having and will continue to have a

  6. User's guide to the biosphere code ECOS

    International Nuclear Information System (INIS)

    Kane, P.; Thorne, M.C.

    1984-10-01

    This report constitutes the user's guide to the biosphere model ECOS and provides a detailed description of the processes modelled and mathematical formulations used. The FORTRAN code ECOS is an equilibrium-type compartmental biosphere code. ECOS was designed with the objective of producing a general but comprehensive code for use in the assessment of the radiological impact of unspecified geological repositories for radioactive waste. ECOS transforms the rate of release of activity from the geosphere to the rate of accumulation of weighted committed effective dose equivalent (dose). Both maximum individual dose (critical group dose) and collective dose rates may be computed. (author)

  7. Integrated simulation of snow and glacier melt runoff in a distributed biosphere hydrological modeling framework at Upper Indus Basin, Karakoram region

    Science.gov (United States)

    Shrestha, M.; Koike, T.; Xue, Y.; Wang, L.; Hirabayashi, Y.

    2014-12-01

    High mountain river basins in Hindukush Karakoram and Himalaya (HKH) regions are considered as 'water towers' of Asia with abundant source of fresh water as snow and glaciers. Upper Indus basin is one of the mega scale river basin in HKH region where snow and glaciermelt runoff is the major contributor to the annual runoff. The hostile climate, remote and extreme rough topography imposes many restraints regarding hydro-meteorological and glaciological observations, leading towards limited understanding of hydrological processes of river basins in this region. It is vital to integrate snow and glacier melt processes in a distributed biosphere hydrological framework to estimate the snow and glacier melt runoff and to quantify the river flow composition (snowmelt, glacier melt and rainfall contribution). An integrated system of distributed biosphere hydrological modeling framework with multilayer energy balance based snow and glaciermelt runoff schemes (WEB-DHM-S model) was implemented at Upper Indus basin (207300 km2) with a spatial resolution of 1 km and temporal resolution of an hour. Model input were meteorological forcing from Global Land Data Assimilation System (GLDAS), APHRODITE precipitation and de-trended gridded air temperature from observations. Simulations were carried out for two hydrological years (2002-2003). Discharge simulation results at multiple gauges showed good agreement with the observed one having Nash efficiency at 0.86. The spatial distribution of snow cover is simulated well as compared to the Moderate Resolution Imaging Spectroradiometer (MODIS) derived eight-day maximum snow-cover extent data (MOD10A2). Model accuracy, overestimation error and underestimation error in snow cover simulation were obtained at 78%, 7% and 15% respectively. Uncertainty in precipitation was the main reason for the biases in seasonal variation of snow pixel errors. The model demonstrated its sound capability in comprehensive simulation of discharge with its flow

  8. Factual biosphere database for Sellafield and the surrounding area

    International Nuclear Information System (INIS)

    Broderick, M.A.

    1991-12-01

    This report documents from open published sources a factual database appropriate to the Sellafield region including the coastal marine environment for present day biosphere conditions. A detailed description of the present day environment in the Sellafield area is provided. This includes a description of the natural environment and climate. Site specific data required for biosphere modelling are also outlined. (author)

  9. Reviewing Biosphere Reserves globally: effective conservation action or bureaucratic label?

    Science.gov (United States)

    Coetzer, Kaera L; Witkowski, Edward T F; Erasmus, Barend F N

    2014-02-01

    The Biosphere Reserve (BR) model of UNESCO's Man and the Biosphere Programme reflects a shift towards more accountable conservation. Biosphere Reserves attempt to reconcile environmental protection with sustainable development; they explicitly acknowledge humans, and human interests in the conservation landscape while still maintaining the ecological values of existing protected areas. Conceptually, this model is attractive, with 610 sites currently designated globally. Yet the practical reality of implementing dual 'conservation' and 'development' goals is challenging, with few examples successfully conforming to the model's full criteria. Here, we review the history of Biosphere Reserves from first inception in 1974 to the current status quo, and examine the suitability of the designation as an effective conservation model. We track the spatial expansion of Biosphere Reserves globally, assessing the influence of the Statutory Framework of the World Network of Biosphere Reserves and Seville strategy in 1995, when the BR concept refocused its core objectives on sustainable development. We use a comprehensive range of case studies to discuss conformity to the Programme, the social and ecological consequences associated with implementation of the designation, and challenges in aligning conservation and development. Given that the 'Biosphere Reserve' label is a relatively unknown designation in the public arena, this review also provides details on popularising the Biosphere Reserve brand, as well as prospects for further research, currently unexploited, but implicit in the designation. © 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.

  10. Factual biosphere database for Dounreay and the surrounding area

    International Nuclear Information System (INIS)

    Broderick, M.A.

    1991-12-01

    This report documents from open published sources a factual database appropriate to the Dounreay region including the coastal marine environment for present day biosphere conditions. A detailed description of the present day environment in the Dounreay area is provided. This includes a description of the natural environment and climate. Site specific data required for biosphere modelling are also outlined. (author)

  11. Reconnecting to the biosphere.

    Science.gov (United States)

    Folke, Carl; Jansson, Asa; Rockström, Johan; Olsson, Per; Carpenter, Stephen R; Chapin, F Stuart; Crépin, Anne-Sophie; Daily, Gretchen; Danell, Kjell; Ebbesson, Jonas; Elmqvist, Thomas; Galaz, Victor; Moberg, Fredrik; Nilsson, Måns; Osterblom, Henrik; Ostrom, Elinor; Persson, Asa; Peterson, Garry; Polasky, Stephen; Steffen, Will; Walker, Brian; Westley, Frances

    2011-11-01

    Humanity has emerged as a major force in the operation of the biosphere, with a significant imprint on the Earth System, challenging social-ecological resilience. This new situation calls for a fundamental shift in perspectives, world views, and institutions. Human development and progress must be reconnected to the capacity of the biosphere and essential ecosystem services to be sustained. Governance challenges include a highly interconnected and faster world, cascading social-ecological interactions and planetary boundaries that create vulnerabilities but also opportunities for social-ecological change and transformation. Tipping points and thresholds highlight the importance of understanding and managing resilience. New modes of flexible governance are emerging. A central challenge is to reconnect these efforts to the changing preconditions for societal development as active stewards of the Earth System. We suggest that the Millennium Development Goals need to be reframed in such a planetary stewardship context combined with a call for a new social contract on global sustainability. The ongoing mind shift in human relations with Earth and its boundaries provides exciting opportunities for societal development in collaboration with the biosphere--a global sustainability agenda for humanity.

  12. Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions.

    Science.gov (United States)

    Tian, Hanqin; Lu, Chaoqun; Yang, Jia; Banger, Kamaljit; Huntzinger, Deborah N; Schwalm, Christopher R; Michalak, Anna M; Cook, Robert; Ciais, Philippe; Hayes, Daniel; Huang, Maoyi; Ito, Akihiko; Jain, Atul K; Lei, Huimin; Mao, Jiafu; Pan, Shufen; Post, Wilfred M; Peng, Shushi; Poulter, Benjamin; Ren, Wei; Ricciuto, Daniel; Schaefer, Kevin; Shi, Xiaoying; Tao, Bo; Wang, Weile; Wei, Yaxing; Yang, Qichun; Zhang, Bowen; Zeng, Ning

    2015-06-01

    Soil is the largest organic carbon (C) pool of terrestrial ecosystems, and C loss from soil accounts for a large proportion of land-atmosphere C exchange. Therefore, a small change in soil organic C (SOC) can affect atmospheric carbon dioxide (CO 2 ) concentration and climate change. In the past decades, a wide variety of studies have been conducted to quantify global SOC stocks and soil C exchange with the atmosphere through site measurements, inventories, and empirical/process-based modeling. However, these estimates are highly uncertain, and identifying major driving forces controlling soil C dynamics remains a key research challenge. This study has compiled century-long (1901-2010) estimates of SOC storage and heterotrophic respiration (Rh) from 10 terrestrial biosphere models (TBMs) in the Multi-scale Synthesis and Terrestrial Model Intercomparison Project and two observation-based data sets. The 10 TBM ensemble shows that global SOC estimate ranges from 425 to 2111 Pg C (1 Pg = 10 15  g) with a median value of 1158 Pg C in 2010. The models estimate a broad range of Rh from 35 to 69 Pg C yr -1 with a median value of 51 Pg C yr -1 during 2001-2010. The largest uncertainty in SOC stocks exists in the 40-65°N latitude whereas the largest cross-model divergence in Rh are in the tropics. The modeled SOC change during 1901-2010 ranges from -70 Pg C to 86 Pg C, but in some models the SOC change has a different sign from the change of total C stock, implying very different contribution of vegetation and soil pools in determining the terrestrial C budget among models. The model ensemble-estimated mean residence time of SOC shows a reduction of 3.4 years over the past century, which accelerate C cycling through the land biosphere. All the models agreed that climate and land use changes decreased SOC stocks, while elevated atmospheric CO 2 and nitrogen deposition over intact ecosystems increased SOC stocks-even though the responses varied

  13. Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions

    Science.gov (United States)

    Tian, Hanqin; Lu, Chaoqun; Yang, Jia; Banger, Kamaljit; Huntzinger, Deborah N.; Schwalm, Christopher R.; Michalak, Anna M.; Cook, Robert; Ciais, Philippe; Hayes, Daniel; Huang, Maoyi; Ito, Akihiko; Jain, Atul K.; Lei, Huimin; Mao, Jiafu; Pan, Shufen; Post, Wilfred M.; Peng, Shushi; Poulter, Benjamin; Ren, Wei; Ricciuto, Daniel; Schaefer, Kevin; Shi, Xiaoying; Tao, Bo; Wang, Weile; Wei, Yaxing; Yang, Qichun; Zhang, Bowen; Zeng, Ning

    2015-06-01

    Soil is the largest organic carbon (C) pool of terrestrial ecosystems, and C loss from soil accounts for a large proportion of land-atmosphere C exchange. Therefore, a small change in soil organic C (SOC) can affect atmospheric carbon dioxide (CO2) concentration and climate change. In the past decades, a wide variety of studies have been conducted to quantify global SOC stocks and soil C exchange with the atmosphere through site measurements, inventories, and empirical/process-based modeling. However, these estimates are highly uncertain, and identifying major driving forces controlling soil C dynamics remains a key research challenge. This study has compiled century-long (1901-2010) estimates of SOC storage and heterotrophic respiration (Rh) from 10 terrestrial biosphere models (TBMs) in the Multi-scale Synthesis and Terrestrial Model Intercomparison Project and two observation-based data sets. The 10 TBM ensemble shows that global SOC estimate ranges from 425 to 2111 Pg C (1 Pg = 1015 g) with a median value of 1158 Pg C in 2010. The models estimate a broad range of Rh from 35 to 69 Pg C yr-1 with a median value of 51 Pg C yr-1 during 2001-2010. The largest uncertainty in SOC stocks exists in the 40-65°N latitude whereas the largest cross-model divergence in Rh are in the tropics. The modeled SOC change during 1901-2010 ranges from -70 Pg C to 86 Pg C, but in some models the SOC change has a different sign from the change of total C stock, implying very different contribution of vegetation and soil pools in determining the terrestrial C budget among models. The model ensemble-estimated mean residence time of SOC shows a reduction of 3.4 years over the past century, which accelerate C cycling through the land biosphere. All the models agreed that climate and land use changes decreased SOC stocks, while elevated atmospheric CO2 and nitrogen deposition over intact ecosystems increased SOC stocks—even though the responses varied significantly among models. Model

  14. Linking Metabolism, Elemental Cycles, and Environmental Conditions in the Deep Biosphere: Growth of a Model Extremophile, Archaeoglobus fulgidus, Under High-Pressure Conditions

    Science.gov (United States)

    Oliver, G. C. M.; Cario, A.; Rogers, K. L.

    2015-12-01

    A majority of Earth's biosphere is hosted in subsurface environments where global-scale biogeochemical and energy cycles are driven by diverse microbial communities that operate on and are influenced by micro-scale environmental variables. While the subsurface hosts a variety of geochemical and geothermal conditions, elevated pressures are common to all subsurface ecosystems. Understanding how microbes adapt to and thrive in high-pressure environments is essential to linking microbial subsurface processes with global-scale cycles. Here we are using a model extremophile, Archaeoglobus fulgidus, to determine how elevated pressures affect the growth, metabolism, and physiology of subsurface microorganisms. A. fulgidus cycles carbon and sulfur via heterotrophic and autotrophic sulfate reduction in various high temperature and high-pressure niches including shallow marine vents, deep-sea hydrothermal vents, and deep oil reservoirs. Here we report the results of A. fulgidus growth experiments at optimum temperature, 83°C, and pressures up to 600 bars. Exponential growth was observed over the entire pressure range, though growth rates were diminished at 500 and 600 bars compared to ambient pressure experimental controls. At pressures up to 400 bars, cell density yields and growth rates were at least as high as ambient pressure controls. Elevated pressures and extended incubation times stimulated cell flocculation, a common stress response in this strain, and cellular morphology was affected at pressures exceeding 400 bars. These results suggest that A. fulgidus continues carbon, sulfur and energy cycling unaffected by elevated pressures up to 400 bars, representing a variety of subsurface environments. The ability of subsurface organisms to drive biogeochemical cycles at elevated pressures is a critical link between the surface and subsurface biospheres and understanding how species-scale processes operate under these conditions is a vital part of global

  15. A Component Model for Cable System Calculations

    NARCIS (Netherlands)

    Nijs, J.M.M. de; Boschma, J.J.

    2012-01-01

    Unfortunately, no method yet exists for system calculations to support cable engineers with the technical challenge of increasing digital loads when confronted with ever-increasing capacity demands from commercial departments. This article introduces a reliable method of cable system calculations.

  16. Use of contaminated well water, example reference biospheres 1 and 2A

    International Nuclear Information System (INIS)

    Santucci, P.; Kontic, B.; Coughtrey, P.; McKenney, C.; Smith, G.

    2005-01-01

    The BIOMASS programme's Theme 1 evaluated a number of scenarios, which assisted in the development of practical guidance. A total of four Example Reference Biospheres were fully developed, with the assumptions, data, and models thoroughly documented. These Examples display both the practicality and the transparency available through the use of the Reference Biosphere Methodology. While the methodology is designed to promote transparency and traceability, proper documentation and justification is still the responsibility of the user. The Examples can also be used as generic analyses in some situations. Although it is anticipated that each of the Reference Biospheres explored within BIOMASS Theme 1 should be a useful practical example, the quantitative results of the model calculations are not intended to be understood as prescribed biosphere 'conversion factors'. In choosing to implement an Example, careful consideration would need to be given to their relevance (including associated data) to the particular assessment context at hand. In general, the more complex the model is, the more limited applicability it has for generic purposes. For example, ERB1A (direct use of well water for drinking) can be used straightforwardly, with minor or no adjustments, at a number of generic sites. Example 2A, however, for which climatic conditions and agricultural practices need to be specified, would need to be implemented for each specific situation

  17. Neutron transport model for standard calculation experiment

    International Nuclear Information System (INIS)

    Lukhminskij, B.E.; Lyutostanskij, Yu.S.; Lyashchuk, V.I.; Panov, I.V.

    1989-01-01

    The neutron transport calculation algorithms in complex composition media with a predetermined geometry are realized by the multigroups representations within Monte Carlo methods in the MAMONT code. The code grade was evaluated with benchmark experiments comparison. The neutron leakage spectra calculations in the spherical-symmetric geometry were carried out for iron and polyethylene. The MAMONT code utilization for metrological furnishes of the geophysics tasks is proposed. The code is orientated towards neutron transport and secondary nuclides accumulation calculations in blankets and geophysics media. 7 refs.; 2 figs

  18. The interactions between soil-biosphere-atmosphere land surface model with a multi-energy balance (ISBA-MEB) option in SURFEXv8 - Part 1: Model description

    Science.gov (United States)

    Boone, Aaron; Samuelsson, Patrick; Gollvik, Stefan; Napoly, Adrien; Jarlan, Lionel; Brun, Eric; Decharme, Bertrand

    2017-02-01

    Land surface models (LSMs) are pushing towards improved realism owing to an increasing number of observations at the local scale, constantly improving satellite data sets and the associated methodologies to best exploit such data, improved computing resources, and in response to the user community. As a part of the trend in LSM development, there have been ongoing efforts to improve the representation of the land surface processes in the interactions between the soil-biosphere-atmosphere (ISBA) LSM within the EXternalized SURFace (SURFEX) model platform. The force-restore approach in ISBA has been replaced in recent years by multi-layer explicit physically based options for sub-surface heat transfer, soil hydrological processes, and the composite snowpack. The representation of vegetation processes in SURFEX has also become much more sophisticated in recent years, including photosynthesis and respiration and biochemical processes. It became clear that the conceptual limits of the composite soil-vegetation scheme within ISBA had been reached and there was a need to explicitly separate the canopy vegetation from the soil surface. In response to this issue, a collaboration began in 2008 between the high-resolution limited area model (HIRLAM) consortium and Météo-France with the intention to develop an explicit representation of the vegetation in ISBA under the SURFEX platform. A new parameterization has been developed called the ISBA multi-energy balance (MEB) in order to address these issues. ISBA-MEB consists in a fully implicit numerical coupling between a multi-layer physically based snowpack model, a variable-layer soil scheme, an explicit litter layer, a bulk vegetation scheme, and the atmosphere. It also includes a feature that permits a coupling transition of the snowpack from the canopy air to the free atmosphere. It shares many of the routines and physics parameterizations with the standard version of ISBA. This paper is the first of two parts; in part one

  19. A summary of biospheric research 1975-1997

    International Nuclear Information System (INIS)

    Edlund, O.; Bergstroem, U.; Hallberg, B.; Karlsson, Sara

    1999-12-01

    The aim of this study is to present a summary of the work performed within the frame of SKB's biosphere programme during 1975 - 1997. The studies focused on field studies and theoretical model development. Important problems identified during this time period are pointed out. Summaries of the biospheric parts of the safety analyses performed since 1977 are given. Models are described as well as basic assumptions. Already the first analysis had an overall approach including dispersion from local to global zones with multiple exposure pathways. Compartment models have been used whereby the rate constants in the first assessments were mostly based on observed redistribution of radionuclides in nature. During the years emphasis has been laid on the description of processes mathematically and additional processes have been included in the models. In general, standard biospheres with constant environmental conditions were applied with focus on releases of radionuclides to wells, lakes and coastal areas. Drinking water has shown to be an important exposure pathway but not always the dominant one. Some screening calculations performed showed that peat bogs may be important recipients when doses to humans are concerned. The field studies initially focused on the naturally existing isotopes of U and Ra. A lot of studies were performed to gain data concerning the levels of these radionuclides in soils and waters. The studies also obtained information about back-ground values and the distribution between various biospheric components which was used to support model assumptions. A special sampling programme with the purpose to outline influence of drying up of lakes on the dose to individuals of critical group was also performed. The dose calculations showed that the doses could increase two orders of magnitude for immobile elements when the lake had dried up. Investigations of the natural abundance of radionuclides in soil and flora were performed later. After the Chernobyl

  20. The Legacy of Biosphere 2 for Biospherics and Closed Ecological System Research

    Science.gov (United States)

    Allen, J.; Alling, A.; Nelson, M.

    The unprecedented challenges of creating Biosphere 2, the world's first laboratory for biospherics, the study of global ecology and long-term closed ecological system dynamics led to breakthrough developments in many fields, and a deeper understanding of the opportunities and difficulties of material closure. This paper will review these accomplishments and challenges, citing some of the key research accomplishments and publications which have resulted from the experiments in Biosphere 2. Engineering accomplishments included development of a technique for variable volume to deal with pressure differences between the facility and outside environment, developing methods of leak detection and sealing, and achieving new standards of closure, with an annual atmospheric leakrate of less than 10%, or less than 300 ppm per day. This degree of closure permitted detailed tracking of carbon dioxide, oxygen, and trace gases such as nitrous oxide and ethylene over the seasonal variability of two years. Full closure also necessitated developing new approaches and technologies for complete air, water, and wastewater recycle and reuse within the facility. The development of a soil-based highly productive agricultural system was a first in closed ecological systems, and much was learned about managing a wide variety of crops using non-chemical means of pest and disease control. Closed ecological systems have different temporal b ogeochemical cycling and ranges ofi atmospheric components because of their smaller reservoirs of air, water and soil, and higher concentration of biomass, and Biosphere 2 provided detailed examination and modeling of these accelerated cycles over a period of closure which measured in years. Medical research inside Biosphere 2 included the effects on humans of lowered oxygen: the discovery that human productivity can be maintained down to 15% oxygen could lead to major economies on the design of space stations and planetary/lunar settlements. The improved

  1. Shell model calculations for exotic nuclei

    International Nuclear Information System (INIS)

    Brown, B.A.; Wildenthal, B.H.

    1991-01-01

    A review of the shell-model approach to understanding the properties of light exotic nuclei is given. Binding energies including p and p-sd model spaces and sd and sd-pf model spaces; cross-shell excitations around 32 Mg, including weak-coupling aspects and mechanisms for lowering the ntw excitations; beta decay properties of neutron-rich sd model, of p-sd and sd-pf model spaces, of proton-rich sd model space; coulomb break-up cross sections are discussed. (G.P.) 76 refs.; 12 figs

  2. A comparative radiological assessment of five European biosphere systems in the context of potential contamination of well water from the hypothetical disposal of radioactive waste

    International Nuclear Information System (INIS)

    Olyslaegers, G; Zeevaert, T; Pinedo, P; Simon, I; Proehl, G; Kowe, R; Chen, Q; Mobbs, S; Bergstroem, U; Hallberg, B; Katona, T; Eged, K; Kanyar, B

    2005-01-01

    In the framework of the BioMoSA project for the development of biosphere assessment models for radioactive waste disposal the Reference Biosphere Methodology developed in the IAEA programme BIOMASS was applied to five locations, situated in different European countries. Specific biosphere models were applied to assess the hypothetical contamination of a range of agricultural and environmental pathways and the dose to individuals, following contamination of well water. The results of these site-specific models developed by the different BioMoSA partners, and the individual normalised dose to the exposure groups were compared against each other. Ingestion of drinking water, fruit and vegetables were found to be among the most important pathways for almost all radionuclides. Stochastic calculations revealed that consumption habits, transfer factors, irrigation rates and distribution coefficients (Kd s ) were the most important parameters that influence the end results. Variations in the confidence intervals were found to be higher for sorbing elements (e.g. 36 Cl, 237 Np, 99 Tc, 238 U, 129 I) than for mobile elements (e.g. 226 Ra, 79 Se, 135 Cs, 231 Pa, 239 Pu). The influence of daughter products, for which the distribution into the biosphere was calculated individually, was also shown to be important. This paper gives a brief overview of the deterministic and stochastic modelling results and the parameter sensitivity. A screening methodology was introduced to identify the most important pathways, simplify a generic biosphere tool and refine the existing models

  3. Biosphere 2: The True Story.

    Science.gov (United States)

    O'Keeffe, Michael

    1992-01-01

    Discusses the history and current developments of the Biosphere 2 Project, a prototype for enclosed self-sustaining structures for space colonization built in the Arizona Desert. Biosphere 2 was created to educate and provide solutions to environmental problems and revenue from research. (MCO)

  4. A Regional-Scale Groundwater Model Supporting Management of the Sian Ka'an Biosphere Reserve and its Catchment, Quintana Roo, Mexico

    Science.gov (United States)

    Neuman, B. R.; Merediz Alonso, G.; Rebolledo Vieyra, M.; Marin, L.; Supper, R.; Bauer-Gottwein, P.

    2007-05-01

    The Caribbean Coast of the Yucatan Peninsula is a rapidly developing area featuring a booming tourism industry. The number of hotel rooms in the Riviera Maya has increased from 2600 in 1996 to 26,000 in 2005, while the total population in the Mexican federal state of Quintana Roo has grown from 500,000 in 1990 to 1,115,000 in 2005. This explosive growth threatens the region's water resources, which primarily consist of a less than 50m thick freshwater lens residing in the regional karst aquifer underlying the entire Yucatan Peninsula. The Sian Ka'an Biosphere Reserve, a 6400 km2 combined marine/terrestrial nature protection area is situated south of Tulum (approx. 87.3° - 88° W, 19° - 20° N). The site is listed as a UNESCO world heritage site and is protected under the Ramsar Convention. It includes extensive freshwater wetlands, saline/brackish mangrove swamps, tropical rainforests and parts of the world's second largest coral reef. The freshwater supply to the system occurs primarily via subsurface inflow. Large freshwater springs emerge through vertical sinkholes (cenotes) in the lagoons of Sian Ka'an. Management of this unique ecosystem in view of the rapid development and urbanization of the surrounding areas requires detailed knowledge on the groundwater flow paths in and around the reserve. Moreover, mapping and delineation of its groundwater catchment zone and groundwater traveling time zones is essential. To this end, a regional-scale steady-state groundwater flow model of the Sian Ka'an Biosphere reserve and its catchment was developed. The model is implemented in MIKE SHE with a finite-difference cell size of 1 km2 and is driven with temporally averaged climate forcings. The karst aquifer is treated as an equivalent porous medium. Darcy's law is assumed to be valid over regional scales and the main structural elements of the karst aquifer are included in the model as zones of varying hydraulic conductivity. High conductivity zones in the Sian Ka

  5. Calibração do "simplified simple biosphere model - SSiB" para áreas de pastagem e floresta na Amazônia com dados do LBA Calibration of the simplified simple biosphere model (SSiB for Amazonian pasture and forest sites using LBA data

    Directory of Open Access Journals (Sweden)

    Francis Wagner Silva Correia

    2005-06-01

    Full Text Available Os parâmetros do "Simplified Simple Biosphere Model"-SSiB foram validados e posteriormente calibrados para os sítios de pastagem da Fazenda Nossa Senhora Aparecida (62º22'W; 10º45'S e de floresta da Reserva Biológica do Jaru (62º22'W; 10º45'S, ambos situados no estado de Rondônia. Foram utilizadas medidas micrometeorológicas e hidrológicas obtidas durante o período seco de 2001, como parte do Experimento de Grande Escala da Biosfera-Atmosfera na Amazônia - LBA. Os resultados indicam que o modelo simulou bem o saldo de radiação, tanto na pastagem quanto na floresta. O fluxo de calor latente foi superestimado nos dois sítios nos períodos de simulação, o que deve estar relacionado aos parâmetros utilizados no cálculo dessa variável. O modelo subestimou o fluxo de calor sensível na pastagem e na floresta, principalmente no período noturno; porém, para a floresta, os valores foram mais próximos daqueles observados. Com os parâmetros ajustados, melhores estimativas dos fluxos de calor latente e de calor sensível foram geradas e, conseqüentemente, representou melhor as partições de energia na floresta e na pastagem.The parameters of the Simplified Simple Biosphere Model - SSiB were validated and subsequently calibrated for the Fazenda Nossa Senhora Aparecida (62º22'W; 10º45'S pasture site and the Reserva Biológica do Jaru (62º22'W; 10º45'S forest site, both located in the state of Rondônia. Micrometeorological and hydrological data collected during the dry period of 2001, as part of the Large-Scale Biosphere-Atmosphere Experiment in Amazonia - LBA, were used. The results showed that the model simulated well the net radiation, both at the pasture and at the forest. The latent heat flux was super-estimated in both sites. The model sub-estimated the sensible heat flux at the pasture and at the forest, mainly during the night period; notwithstanding, the values for the forest were nearer to the observed ones. With the

  6. Interim report on reference biospheres for radioactive waste disposal

    International Nuclear Information System (INIS)

    Dorp, F. van

    1994-10-01

    Primary criteria for repository safety are commonly expressed in terms of risk or dose, and a biosphere model is required to evaluate the corresponding assessment endpoints. Even when other indicators are used to express the safety goals, a biosphere model is still needed in order to justify those indicators. In safety or performance assessments of a repository, the uncertainties in space and time for the different components of the repository system have to be considered. For the biosphere component, prediction of future human habits, in particular, is extremely uncertain. This is especially important in the assessment of deep geological disposal, which involves very long timescales, particularly for wastes containing very long lived radionuclides. Thus, the results of biosphere modelling should not be seen as predictions, but as illustrations of the consequences that may occur, should the postulated release occur today or under other conditions implied by the underlying biosphere model assumptions. Differences in biosphere modelling approaches arise because of differences in regulations, the nature of the wastes to be disposed of, disposal site characteristics, disposal concepts and purposes of the assessment. Differences in treatment of uncertainties can also arise. For example, if doses or risks are anticipated to be far below regulatory limits, assessments may be based upon simplified and, necessarily, conservative biosphere models. At present biosphere models used to assess radioactive waste disposal show significant differences in the features, events and processes (FEPs) included or excluded. In general, the reasons for these differences have not been well documented or explained. Developments in radioecology have implications for biosphere modelling for radioactive waste disposal. In particular, after the Chernobyl accident, radioecological research has been significantly increased. Results of this research are already having and will continue to have a

  7. Decadal trends in the seasonal-cycle amplitude of terrestrial CO2 exchange resulting from the ensemble of terrestrial biosphere models

    Directory of Open Access Journals (Sweden)

    Akihiko Ito

    2016-05-01

    Full Text Available The seasonal-cycle amplitude (SCA of the atmosphere–ecosystem carbon dioxide (CO2 exchange rate is a useful metric of the responsiveness of the terrestrial biosphere to environmental variations. It is unclear, however, what underlying mechanisms are responsible for the observed increasing trend of SCA in atmospheric CO2 concentration. Using output data from the Multi-scale Terrestrial Model Intercomparison Project (MsTMIP, we investigated how well the SCA of atmosphere–ecosystem CO2 exchange was simulated with 15 contemporary terrestrial ecosystem models during the period 1901–2010. Also, we made attempt to evaluate the contributions of potential mechanisms such as atmospheric CO2, climate, land-use, and nitrogen deposition, through factorial experiments using different combinations of forcing data. Under contemporary conditions, the simulated global-scale SCA of the cumulative net ecosystem carbon flux of most models was comparable in magnitude with the SCA of atmospheric CO2 concentrations. Results from factorial simulation experiments showed that elevated atmospheric CO2 exerted a strong influence on the seasonality amplification. When the model considered not only climate change but also land-use and atmospheric CO2 changes, the majority of the models showed amplification trends of the SCAs of photosynthesis, respiration, and net ecosystem production (+0.19 % to +0.50 % yr−1. In the case of land-use change, it was difficult to separate the contribution of agricultural management to SCA because of inadequacies in both the data and models. The simulated amplification of SCA was approximately consistent with the observational evidence of the SCA in atmospheric CO2 concentrations. Large inter-model differences remained, however, in the simulated global tendencies and spatial patterns of CO2 exchanges. Further studies are required to identify a consistent explanation for the simulated and observed amplification trends, including their

  8. Uncertainty calculation in transport models and forecasts

    DEFF Research Database (Denmark)

    Manzo, Stefano; Prato, Carlo Giacomo

    . Forthcoming: European Journal of Transport and Infrastructure Research, 15-3, 64-72. 4 The last paper4 examined uncertainty in the spatial composition of residence and workplace locations in the Danish National Transport Model. Despite the evidence that spatial structure influences travel behaviour...... to increase the quality of the decision process and to develop robust or adaptive plans. In fact, project evaluation processes that do not take into account model uncertainty produce not fully informative and potentially misleading results so increasing the risk inherent to the decision to be taken...

  9. Temperature Calculations in the Coastal Modeling System

    Science.gov (United States)

    2017-04-01

    with the change of water turbidity in coastal and estuarine systems. Water quality and ecological models often require input of water temperature...of the American Society of Civil Engineers 81(717): 1–11. Sánchez, A., W. Wu, H. Li, M. E. Brown, C. W. Reed, J. D. Rosati, and Z. Demirbilek. 2014

  10. Biosphere reserves: Attributes for success.

    Science.gov (United States)

    Van Cuong, Chu; Dart, Peter; Hockings, Marc

    2017-03-01

    Biosphere reserves established under the UNESCO Man and the Biosphere Program aim to harmonise biodiversity conservation and sustainable development. Concerns over the extent to which the reserve network was living up to this ideal led to the development of a new strategy in 1995 (the Seville Strategy) to enhance the operation of the network of reserves. An evaluation of effectiveness of management of the biosphere reserve network was called for as part of this strategy. Expert opinion was assembled through a Delphi Process to identify successful and less successful reserves and investigate common factors influencing success or failure. Ninety biosphere reserves including sixty successful and thirty less successful reserves in 42 countries across all five Man and the Biosphere Program regions were identified. Most successful sites are the post-Seville generation while the majority of unsuccessful sites are pre-Seville that are managed as national parks and have not been amended to conform to the characteristics that are meant to define a biosphere reserve. Stakeholder participation and collaboration, governance, finance and resources, management, and awareness and communication are the most influential factors in the success or failure of the biosphere reserves. For success, the biosphere reserve concept needs to be clearly understood and applied through landscape zoning. Designated reserves then need a management system with inclusive good governance, strong participation and collaboration, adequate finance and human resource allocation and stable and responsible management and implementation. All rather obvious but it is difficult to achieve without commitment to the biosphere reserve concept by the governance authorities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Safety case for the disposal of spent nuclear fuel at Olkiluoto. Data basis for the Biosphere Assessment BSA-2012. Part 1-2, Appendices

    International Nuclear Information System (INIS)

    2014-01-01

    The purpose of the report is to document and justify the input data used in the models of the biosphere assessment. Methodology similar to that presented in the Models and Data for the Repository System report has been followed. After more introductory parts, chapter 3 lays the foundation of data selection by describing typical properties of the soil and sediment types and biotopes, and summarises the representative plants and animals selected in the Biosphere Description report. The conceptual models on pools and fluxes of elements in the ecosystems are presented in chapter 4. These, together with the more qualitative descriptions of the succession lines in the Biosphere Description report, are simplified into the actual assessment models (summarised in chapter 5) in an iterative manner. Chapter 6 briefly presents the scenarios and calculation cases of the biosphere assessment, detailed in the Formulation of Radionuclide Releases Scenarios report. The account of the actual input data to the assessment models begins in chapter 7 with the data needed to identify the biotopes and compartments common to all assessment models. Chapters 8 to 13, grouped by the sub-models, address the input data to the terrain and ecosystems development modelling (detailed in the Terrain and Ecosystems Development Modelling report), and chapter 14 those to the surface and near-surface hydrological model (the Surface and Near-Surface Hydrological Modelling report). Chapters 15 to 18 address the data to the radionuclide transport modelling in the biosphere, and chapter 19 those needed for the dose assessment for humans (the Biosphere Radionuclide Transport and Dose Assessment report). Finally, before conclusions in chapter 21, the input data specific to the dose assessment for plants and animals (the Dose Assessment for the Plants and Animals report) are addressed in chapter 20. However, several parameters are common to the assessment models and are presented in connection to the model

  12. Post-closure performance assessment treatment of the biosphere

    International Nuclear Information System (INIS)

    Broderick, M.A.; Egan, M.J.; Thorne, M.C.; Williams, J.A.

    1996-01-01

    The Nirex strategy for radioactive waste disposal is based on a system of engineered and natural barriers, providing long-term isolation of the waste from those parts of the environment that are in contact with or readily available for use by humans (i.e. the biosphere). Even so, there remains the possibility that, on a timescale of thousands to tens of thousands of years, small quantities of poorly-sorbed, long-lived radionuclides may be released from the engineered disposal system, ultimately to emerge into the biosphere. Biosphere models are used in post-closure performance assessments to quantify the competing effects of dilution and accumulation processes on radionuclide concentrations in the accessible environment. Understanding biosphere processes and their time dependence is necessary not only to determine the radiological impact of possible future releases, but also to characterise the dynamics of transport in groundwater and the location, duration and extent of any such releases. Nirex is developing a new biosphere model for use in post-closure radiological assessments for the proposed Sellafield repository. A compartment modelling approach has been adopted, as in studies performed previously, but the system will be dynamic, allowing changes with time in both the properties of compartments and the transfers between compartments. The transport model considers both mass transport within the biosphere and the migration of radionuclides, thereby ensuring that a self-consistent description of the biosphere, in a spatially-extensive domain is maintained. The above approach is designed to link the assessment models used by the Nirex assessment team more closely into the Nirex biosphere research programme than has hitherto been possible with time-invariant assessment models. (author)

  13. Sensitivity study of land biosphere CO2 exchange through an atmospheric tracer transport model using satellite-derived vegetation index data

    International Nuclear Information System (INIS)

    Knorr, W.; Heimann, M.

    1994-01-01

    We develop a simple, globally uniform model of CO 2 exchange between the atmosphere and the terrestrial biosphere by coupling the model with a three-dimensional atmospheric tracer transport model using observed winds, and checking results against observed concentrations of CO 2 at various monitoring sites. CO 2 fluxes are derived from observed greenness using satellite-derived Global Vegetation Index data, combined with observations of temperature, radiation, and precipitation. We explore a range of CO 2 flux formulations together with some modifications of the modelled atmospheric transport. We find that while some formulations can be excluded, it cannot be decided whether or not to make CO 2 uptake and release dependent on water stress. It appears that the seasonality of net CO 2 fluxes in the tropics, which would be expected to be driven by water availability, is small and is therefore not visible in the seasonal cycle of atmospheric CO 2 . The latter is dominated largely by northern temperate and boreal vegetation, where seasonality is mostly temperature determined. We find some evidence that there is still considerable CO 2 release from soils during northern-hemisphere winter. An exponential air temperature dependence of soil release with a Q 10 of 1.5 is found to be most appropriate, with no cutoff at low freezing temperatures. This result is independent of the year from which observed winds were taken. This is remarkable insofar as year-to-year changes in modelled CO 2 concentrations caused by changes in the wind data clearly outweigh those caused by year-to-year variability in the climate and vegetation index data. (orig.)

  14. Development of new model for high explosives detonation parameters calculation

    Directory of Open Access Journals (Sweden)

    Jeremić Radun

    2012-01-01

    Full Text Available The simple semi-empirical model for calculation of detonation pressure and velocity for CHNO explosives has been developed, which is based on experimental values of detonation parameters. Model uses Avakyan’s method for determination of detonation products' chemical composition, and is applicable in wide range of densities. Compared with the well-known Kamlet's method and numerical model of detonation based on BKW EOS, the calculated values from proposed model have significantly better accuracy.

  15. Biospheric Changes are Threat Multipliers

    OpenAIRE

    Cairns, John

    2010-01-01

    A threat multiplier is defined as another agent that impacts a current situation, creating an additional set of problems while also making existing problems worse. Sometimes a seemingly innocent change in the biosphere can cause major alterations and become a threat multiplier. Because the biosphere is a highly interactive system, damage to a single component, like the ocean for example, will produce a ripple effect throughout the entire system. In order for humans to eliminate threat multip...

  16. Some viewpoints on reference biospheres in Finnish performance assessments

    International Nuclear Information System (INIS)

    Rasilainen, K.; Kattilakoski, E.; Suolanen, V.; Vieno, T.; Vuori, S.

    2002-01-01

    Viewpoints are presented concerning biosphere studies in performance assessments of nuclear waste disposal. The points are based on experiences from several Finnish performance assessments. The latest performance assessment for spent fuel disposal, TILA-99, was considered in the Decision in Principle process for the site selection of the repository. The points given are also based on experiences from participation in international projects dealing with biosphere modelling, for instance BIOMOVS and BIOMASS. (author)

  17. European-wide simulations of croplands using an improved terrestrial biosphere model: 2. Interannual yields and anomalous CO2 fluxes in 2003

    Science.gov (United States)

    Smith, P. C.; Ciais, P.; Peylin, P.; de Noblet-Ducoudré, N.; Viovy, N.; Meurdesoif, Y.; Bondeau, A.

    2010-12-01

    Aiming at producing improved estimates of carbon source/sink spatial and interannual patterns across Europe (35% croplands), this work uses the ORCHIDEE-STICS terrestrial biosphere model including a more realistic representation of croplands, described in part 1 (Smith et al., 2010). Crop yield is derived from annual Net Primary Productivity and compared with wheat and grain maize harvest data for five European countries. Over a 34 year period, the best correlation coefficient obtained between observed and simulated yield time series is for irrigated maize in Italy (R = 0.73). In the data as well as in the model, 1976 and 2003 appear as climate anomalies causing a ≈40% yield drop in the most affected regions. Simulated interannual yield anomalies and the spatial pattern of the yield drop in 2003 are found to be more realistic than the results from ORCHIDEE with no representation of croplands. The simulated 2003 anomalous carbon source from European ecosystems to the atmosphere due to the 2003 summer heat wave is in good agreement with atmospheric inversions (0.20GtC, from May to October). The anomaly is twice too large in the ORCHIDEE alone simulation, owing to the unrealistically high exposure of herbaceous plants to the extreme summer conditions. The mechanisms linking abnormally high summer temperatures, the crop productivity drop, and significant carbon source from European ecosystems in 2003 are discussed. Overall, this study highlights the importance of accounting for the specific phenologies of crops sown both in winter and in spring and for irrigation applied to summer crops in regional/global models of the terrestrial carbon cycle.

  18. Spanish methodological approach for biosphere assessment of radioactive waste disposal

    International Nuclear Information System (INIS)

    Agueero, A.; Pinedo, P.; Cancio, D.; Simon, I.; Moraleda, M.; Perez-Sanchez, D.; Trueba, C.

    2007-01-01

    The development of radioactive waste disposal facilities requires implementation of measures that will afford protection of human health and the environment over a specific temporal frame that depends on the characteristics of the wastes. The repository design is based on a multi-barrier system: (i) the near-field or engineered barrier, (ii) far-field or geological barrier and (iii) the biosphere system. Here, the focus is on the analysis of this last system, the biosphere. A description is provided of conceptual developments, methodological aspects and software tools used to develop the Biosphere Assessment Methodology in the context of high-level waste (HLW) disposal facilities in Spain. This methodology is based on the BIOMASS 'Reference Biospheres Methodology' and provides a logical and systematic approach with supplementary documentation that helps to support the decisions necessary for model development. It follows a five-stage approach, such that a coherent biosphere system description and the corresponding conceptual, mathematical and numerical models can be built. A discussion on the improvements implemented through application of the methodology to case studies in international and national projects is included. Some facets of this methodological approach still require further consideration, principally an enhanced integration of climatology, geography and ecology into models considering evolution of the environment, some aspects of the interface between the geosphere and biosphere, and an accurate quantification of environmental change processes and rates

  19. Coupled Climate-Economy-Biosphere (CoCEB) model - Part 2: Deforestation control and investment in carbon capture and storage technologies

    Science.gov (United States)

    Ogutu, K. B. Z.; D'Andrea, F.; Ghil, M.; Nyandwi, C.; Manene, M. M.; Muthama, J. N.

    2015-04-01

    This study uses the global climate-economy-biosphere (CoCEB) model developed in Part 1 to investigate economic aspects of deforestation control and carbon sequestration in forests, as well as the efficiency of carbon capture and storage (CCS) technologies as policy measures for climate change mitigation. We assume - as in Part 1 - that replacement of one technology with another occurs in terms of a logistic law, so that the same law also governs the dynamics of reduction in carbon dioxide emission using CCS technologies. In order to take into account the effect of deforestation control, a slightly more complex description of the carbon cycle than in Part 1 is needed. Consequently, we add a biomass equation into the CoCEB model and analyze the ensuing feedbacks and their effects on per capita gross domestic product (GDP) growth. Integrating biomass into the CoCEB and applying deforestation control as well as CCS technologies has the following results: (i) low investment in CCS contributes to reducing industrial carbon emissions and to increasing GDP, but further investment leads to a smaller reduction in emissions, as well as in the incremental GDP growth; and (ii) enhanced deforestation control contributes to a reduction in both deforestation emissions and in atmospheric carbon dioxide concentration, thus reducing the impacts of climate change and contributing to a slight appreciation of GDP growth. This effect is however very small compared to that of low-carbon technologies or CCS. We also find that the result in (i) is very sensitive to the formulation of CCS costs, while to the contrary, the results for deforestation control are less sensitive.

  20. Precipitates/Salts Model Calculations for Various Drift Temperature Environments

    International Nuclear Information System (INIS)

    Marnier, P.

    2001-01-01

    The objective and scope of this calculation is to assist Performance Assessment Operations and the Engineered Barrier System (EBS) Department in modeling the geochemical effects of evaporation within a repository drift. This work is developed and documented using procedure AP-3.12Q, Calculations, in support of ''Technical Work Plan For Engineered Barrier System Department Modeling and Testing FY 02 Work Activities'' (BSC 2001a). The primary objective of this calculation is to predict the effects of evaporation on the abstracted water compositions established in ''EBS Incoming Water and Gas Composition Abstraction Calculations for Different Drift Temperature Environments'' (BSC 2001c). A secondary objective is to predict evaporation effects on observed Yucca Mountain waters for subsequent cement interaction calculations (BSC 2001d). The Precipitates/Salts model is documented in an Analysis/Model Report (AMR), ''In-Drift Precipitates/Salts Analysis'' (BSC 2001b)

  1. A computer model of the biosphere, to estimate stochastic and non-stochastic effects of radionuclides on humans

    International Nuclear Information System (INIS)

    Laurens, J.M.

    1985-01-01

    A computer code was written to model food chains in order to estimate the internal and external doses, for stochastic and non-stochastic effects, on humans (adults and infants). Results are given for 67 radionuclides, for unit concentration in water (1 Bq/L) and in atmosphere (1 Bq/m 3 )

  2. A Strategy for Describing the Biosphere at Candidate Sites for Repositories of Nuclear Waste: Linking Ecosystem and Landscape Modeling

    International Nuclear Information System (INIS)

    Lindborg, Tobias; Loefgren, Anders; Soederbaeck, Bjoern; Kautsky, Ulrik; Lindborg, Regina; Bradshaw, Clare

    2006-01-01

    To provide information necessary for a license application for a deep repository for spent nuclear fuel, the Swedish Nuclear Fuel and Waste Management Co. has started site investigations at two sites in Sweden. In this paper, we present a strategy to integrate site-specific ecosystem data into spatially explicit models needed for safety assessment studies and the environmental impact assessment. The site-specific description of ecosystems is developed by building discipline-specific models from primary data and by identifying interactions and stocks and flows of matter among functional units at the sites. The conceptual model is a helpful initial tool for defining properties needed to quantify system processes, which may reveal new interfaces between disciplines, providing a variety of new opportunities to enhance the understanding of the linkages between ecosystem characteristics and the functional properties of landscapes. This type of integrated ecosystem-landscape characterization model has an important role in forming the implementation of a safety assessment for a deep repository

  3. Modelling regulating ecosystem services trade-offs across landscape scenarios in Trebonsko Wetlands Biosphere Reserve, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Harmáčková, Veronika Zuzana; Vačkář, David

    2015-01-01

    Roč. 295, SI (2015), s. 207-215 ISSN 0304-3800 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA TA ČR TD010026 Institutional support: RVO:67179843 Keywords : climate regulation * water quality regulation * InVEST models * decision support * social-ecological systems Subject RIV: DO - Wilderness Conservation Impact factor: 2.275, year: 2015

  4. Monitoring Hydrological Patterns of Temporary Lakes Using Remote Sensing and Machine Learning Models: Case Study of La Mancha Húmeda Biosphere Reserve in Central Spain

    Directory of Open Access Journals (Sweden)

    Carolina Doña

    2016-07-01

    Full Text Available The Biosphere Reserve of La Mancha Húmeda is a wetland-rich area located in central Spain. This reserve comprises a set of temporary lakes, often saline, where water level fluctuates seasonally. Water inflows come mainly from direct precipitation and runoff of small lake watersheds. Most of these lakes lack surface outlets and behave as endorheic systems, where water withdrawal is mainly due to evaporation, causing salt accumulation in the lake beds. Remote sensing was used to estimate the temporal variation of the flooded area in these lakes and their associated hydrological patterns related to the seasonality of precipitation and evapotranspiration. Landsat 7 ETM+ satellite images for the reference period 2013–2015 were jointly used with ground-truth datasets. Several inverse modeling methods, such as two-band and multispectral indices, single-band threshold, classification methods, artificial neural network, support vector machine and genetic programming, were applied to retrieve information on the variation of the flooded areas. Results were compared to ground-truth data, and the classification errors were evaluated by means of the kappa coefficient. Comparative analyses demonstrated that the genetic programming approach yielded the best results, with a kappa value of 0.98 and a total error of omission-commission of 2%. The dependence of the variations in the water-covered area on precipitation and evaporation was also investigated. The results show the potential of the tested techniques to monitor the hydrological patterns of temporary lakes in semiarid areas, which might be useful for management strategy-linked lake conservation and specifically to accomplish the goals of both the European Water Framework Directive and the Habitats Directive.

  5. In-Drift Microbial Communities Model Validation Calculations

    Energy Technology Data Exchange (ETDEWEB)

    D. M. Jolley

    2001-09-24

    The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS M&O 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS M&O 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN MO9909SPAMING1.003 using its replacement DTN MO0106SPAIDM01.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS M&O (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 2001) which includes controls for the management of electronic data.

  6. In-Drift Microbial Communities Model Validation Calculation

    Energy Technology Data Exchange (ETDEWEB)

    D. M. Jolley

    2001-10-31

    The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS M&O 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS M&O 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN MO9909SPAMING1.003 using its replacement DTN MO0106SPAIDM01.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS M&O (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 2001) which includes controls for the management of electronic data.

  7. In-Drift Microbial Communities Model Validation Calculations

    International Nuclear Information System (INIS)

    Jolley, D.M.

    2001-01-01

    The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS MandO 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS MandO 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN MO9909SPAMING1.003 using its replacement DTN MO0106SPAIDM01.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS MandO 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS MandO (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 2001) which includes controls for the management of electronic data

  8. IN-DRIFT MICROBIAL COMMUNITIES MODEL VALIDATION CALCULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    D.M. Jolley

    2001-12-18

    The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS M&O 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS M&O 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN M09909SPAMINGl.003 using its replacement DTN M00106SPAIDMO 1.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS M&O (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 200 1) which includes controls for the management of electronic data.

  9. IN-DRIFT MICROBIAL COMMUNITIES MODEL VALIDATION CALCULATIONS

    International Nuclear Information System (INIS)

    D.M. Jolley

    2001-01-01

    The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS M andO 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS M andO 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN M09909SPAMINGl.003 using its replacement DTN M00106SPAIDMO 1.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS M andO 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS M andO (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 200 1) which includes controls for the management of electronic data

  10. The accuracy of heavy ion optical model calculations

    International Nuclear Information System (INIS)

    Kozik, T.

    1980-01-01

    There is investigated in detail the sources and magnitude of numerical errors in heavy ion optical model calculations. It is shown on example of 20 Ne + 24 Mg scattering at Esub(LAB)=100 MeV. (author)

  11. Modeling and Calculator Tools for State and Local Transportation Resources

    Science.gov (United States)

    Air quality models, calculators, guidance and strategies are offered for estimating and projecting vehicle air pollution, including ozone or smog-forming pollutants, particulate matter and other emissions that pose public health and air quality concerns.

  12. A methodology for constructing the calculation model of scientific spreadsheets

    NARCIS (Netherlands)

    Vos, de M.; Wielemaker, J.; Schreiber, G.; Wielinga, B.; Top, J.L.

    2015-01-01

    Spreadsheets models are frequently used by scientists to analyze research data. These models are typically described in a paper or a report, which serves as single source of information on the underlying research project. As the calculation workflow in these models is not made explicit, readers are

  13. TAME - the terrestrial-aquatic model of the environment: model definition

    International Nuclear Information System (INIS)

    Klos, R.A.; Mueller-Lemans, H.; Dorp, F. van; Gribi, P.

    1996-10-01

    TAME - the Terrestrial-Aquatic Model of the Environment is a new computer model for use in assessments of the radiological impact of the release of radionuclides to the biosphere, following their disposal in underground waste repositories. Based on regulatory requirements, the end-point of the calculations is the maximum annual individual dose to members of a hypothetical population group inhabiting the biosphere region. Additional mid- and end-points in the TAME calculations are dose as function of time from eleven exposure pathways, foodstuff concentrations and the distribution of radionuclides in the modelled biosphere. A complete description of the mathematical representations of the biosphere in TAME is given in this document, based on a detailed review of the underlying conceptual framework for the model. Example results are used to illustrate features of the conceptual and mathematical models. The end-point of dose is shown to be robust for the simplifying model assumptions used to define the biosphere for the example calculations. TAME comprises two distinct sub-models - one representing the transport of radionuclides in the near-surface environment and one for the calculation of dose to individual inhabitants of that biosphere. The former is the result of a detailed review of the modelling requirements for such applications and is based on a comprehensive consideration of all features, events and processes (FEPs) relevant to Swiss biospheres, both in the present-day biosphere and in potential future biosphere states. Representations of the transport processes are derived from first principles. Mass balance for water and solid material fluxes is used to determine the rates of contaminant transfer between components of the biosphere system. The calculation of doses is based on existing representations of exposure pathways and draws on experience both from Switzerland and elsewhere. (author) figs., tabs., refs

  14. TAME - the terrestrial-aquatic model of the environment: model definition

    Energy Technology Data Exchange (ETDEWEB)

    Klos, R.A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Mueller-Lemans, H. [Tergoso AG fuer Umweltfragen, Sargans (Switzerland); Dorp, F. van [Nationale Genossenschaft fuer die Lagerung Radioaktiver Abfaelle (NAGRA), Baden (Switzerland); Gribi, P. [Colenco AG, Baden (Switzerland)

    1996-10-01

    TAME - the Terrestrial-Aquatic Model of the Environment is a new computer model for use in assessments of the radiological impact of the release of radionuclides to the biosphere, following their disposal in underground waste repositories. Based on regulatory requirements, the end-point of the calculations is the maximum annual individual dose to members of a hypothetical population group inhabiting the biosphere region. Additional mid- and end-points in the TAME calculations are dose as function of time from eleven exposure pathways, foodstuff concentrations and the distribution of radionuclides in the modelled biosphere. A complete description of the mathematical representations of the biosphere in TAME is given in this document, based on a detailed review of the underlying conceptual framework for the model. Example results are used to illustrate features of the conceptual and mathematical models. The end-point of dose is shown to be robust for the simplifying model assumptions used to define the biosphere for the example calculations. TAME comprises two distinct sub-models - one representing the transport of radionuclides in the near-surface environment and one for the calculation of dose to individual inhabitants of that biosphere. The former is the result of a detailed review of the modelling requirements for such applications and is based on a comprehensive consideration of all features, events and processes (FEPs) relevant to Swiss biospheres, both in the present-day biosphere and in potential future biosphere states. Representations of the transport processes are derived from first principles. Mass balance for water and solid material fluxes is used to determine the rates of contaminant transfer between components of the biosphere system. The calculation of doses is based on existing representations of exposure pathways and draws on experience both from Switzerland and elsewhere. (author) figs., tabs., refs.

  15. Tree Throw, Soil Production, and Disturbance Ecology: A Model Illustrating a Coupling Between the Geosphere and the Biosphere

    Science.gov (United States)

    Gabet, E. J.; Mudd, S. M.

    2009-05-01

    The question of the acoustic impact of a falling tree is best left to the philosophers. However, geologists know that when a tree falls over, it displaces significant quantities of soil and if the tree is anchored into bedrock, large clasts may be ripped out of the ground. Indeed, tree throw may be the dominant agent of physical weathering in forests and likely leads to high rates of soil production. Because this process is dependent on tree density and because stand density, itself, is dependent on soil thickness, a coupled system materializes between bedrock erosion, soil production, and forest development. This system is explored with a numerical model that provides some interesting results. 1) A humped relationship between soil depth and soil production emerges naturally from this coupled system. 2) The soil production rate on a bedrock surface decreases with the size of the bedrock surface. 3) Soil is not produced uniformally across a hillslope but forms in patches that then spread out. In addition, other examples will be given to answer the question "What is Biogeoscience?" The role of vegetative ash in accelerating post-fire erosion rates will described as well as the role of biotic crusts in armoring soils against wind erosion.

  16. Forecasting carbon budget under climate change and CO2 fertilization for subtropical region in China using integrated biosphere simulator (IBIS) model

    Science.gov (United States)

    Zhu, Q.; Jiang, H.; Liu, J.; Peng, C.; Fang, X.; Yu, S.; Zhou, G.; Wei, X.; Ju, W.

    2011-01-01

    The regional carbon budget of the climatic transition zone may be very sensitive to climate change and increasing atmospheric CO2 concentrations. This study simulated the carbon cycles under these changes using process-based ecosystem models. The Integrated Biosphere Simulator (IBIS), a Dynamic Global Vegetation Model (DGVM), was used to evaluate the impacts of climate change and CO2 fertilization on net primary production (NPP), net ecosystem production (NEP), and the vegetation structure of terrestrial ecosystems in Zhejiang province (area 101,800 km2, mainly covered by subtropical evergreen forest and warm-temperate evergreen broadleaf forest) which is located in the subtropical climate area of China. Two general circulation models (HADCM3 and CGCM3) representing four IPCC climate change scenarios (HC3AA, HC3GG, CGCM-sresa2, and CGCM-sresb1) were used as climate inputs for IBIS. Results show that simulated historical biomass and NPP are consistent with field and other modelled data, which makes the analysis of future carbon budget reliable. The results indicate that NPP over the entire Zhejiang province was about 55 Mt C yr-1 during the last half of the 21st century. An NPP increase of about 24 Mt C by the end of the 21st century was estimated with the combined effects of increasing CO2 and climate change. A slight NPP increase of about 5 Mt C was estimated under the climate change alone scenario. Forests in Zhejiang are currently acting as a carbon sink with an average NEP of about 2.5 Mt C yr-1. NEP will increase to about 5 Mt C yr-1 by the end of the 21st century with the increasing atmospheric CO2 concentration and climate change. However, climate change alone will reduce the forest carbon sequestration of Zhejiang's forests. Future climate warming will substantially change the vegetation cover types; warm-temperate evergreen broadleaf forest will be gradually substituted by subtropical evergreen forest. An increasing CO2 concentration will have little

  17. Mathematical models for calculating radiation dose to the fetus

    International Nuclear Information System (INIS)

    Watson, E.E.

    1992-01-01

    Estimates of radiation dose from radionuclides inside the body are calculated on the basis of energy deposition in mathematical models representing the organs and tissues of the human body. Complex models may be used with radiation transport codes to calculate the fraction of emitted energy that is absorbed in a target tissue even at a distance from the source. Other models may be simple geometric shapes for which absorbed fractions of energy have already been calculated. Models of Reference Man, the 15-year-old (Reference Woman), the 10-year-old, the five-year-old, the one-year-old, and the newborn have been developed and used for calculating specific absorbed fractions (absorbed fractions of energy per unit mass) for several different photon energies and many different source-target combinations. The Reference woman model is adequate for calculating energy deposition in the uterus during the first few weeks of pregnancy. During the course of pregnancy, the embryo/fetus increases rapidly in size and thus requires several models for calculating absorbed fractions. In addition, the increases in size and changes in shape of the uterus and fetus result in the repositioning of the maternal organs and in different geometric relationships among the organs and the fetus. This is especially true of the excretory organs such as the urinary bladder and the various sections of the gastrointestinal tract. Several models have been developed for calculating absorbed fractions of energy in the fetus, including models of the uterus and fetus for each month of pregnancy and complete models of the pregnant woman at the end of each trimester. In this paper, the available models and the appropriate use of each will be discussed. (Author) 19 refs., 7 figs

  18. Model for calculating the boron concentration in PWR type reactors

    International Nuclear Information System (INIS)

    Reis Martins Junior, L.L. dos; Vanni, E.A.

    1986-01-01

    A PWR boron concentration model has been developed for use with RETRAN code. The concentration model calculates the boron mass balance in the primary circuit as the injected boron mixes and is transported through the same circuit. RETRAN control blocks are used to calculate the boron concentration in fluid volumes during steady-state and transient conditions. The boron reactivity worth is obtained from the core concentration and used in RETRAN point kinetics model. A FSAR type analysis of a Steam Line Break Accident in Angra I plant was selected to test the model and the results obtained indicate a sucessfull performance. (Author) [pt

  19. Summary of the IAEA's BIOMASS reference biosphere methodology for Environment Agency staff

    International Nuclear Information System (INIS)

    Coughtrey, P.

    2001-01-01

    The International Atomic Energy Agency (IAEA) programme on BIOsphere Modelling and ASSessment (BIOMASS) was launched in October 1996, and will complete during 2001. The BIOMASS programme aimed to develop and apply a methodology for defining biospheres for practical radiological assessment of releases from radioactive waste disposal. This report provides a summary description of the BIOMASS methodology. The BIOMASS methodology has been developed through international collaboration and represents a major milestone in biosphere modelling. It provides an approach supported by a wide range of developers, regulators, biosphere experts and safety assessment specialists. The Environment Agency participated actively in the BIOMASS programme

  20. Posiva biosphere assessment: Revised structure and status 2006

    International Nuclear Information System (INIS)

    Ikonen, A.

    2006-12-01

    Posiva's Safety Case is organised into a portfolio consisting of ten main component reports of which the Biosphere Assessment is one. To better facilitate the iterative assessment process by different task groups, the Biosphere Assessment is now organised into a sub-portfolio having folders for reports on specific topics: Site and evolution describes the past, present and future conditions of the surface system of the Olkiluoto site; Biosphere processes contain descriptions of processes prevailing at the site now and in future; Module Descriptions document the radionuclide transport models; Biosphere Assessment Data reports the parameter data used in the assessment with full references to their origin; Cases and variants provide mainly the simulated concentrations in the environmental media as a part of the actual assessment; Exposures of total environment draw conclusions on the dose and effect implications on the basis of the concentrations provided in Cases and variants. Finally, the biosphere assessment is consolidated in the summary report providing the needed high-level information to the main Safety Case and referring to the individual background reports for the details. In addition to the specific folders of the Biosphere Assessment Portfolio, there are also a number of overlapping issues to be considered throughout the assessment. Most important of those are the handling of the geosphere-biosphere interface and the future human activities, and the thorough knowledge quality assessment, the last of which provides tools to evaluate the overall uncertainty and consistency of and confidence to the assessment. In this report, the current strategy of modelling the different aspects of the biosphere from the site investigations to the doses is discussed, and the Biosphere Assessment Portfolio is introduced. Requirements and recommendations are given to the individual folders and/or reports to steer the extensive biosphere modelling and assessment work towards a

  1. HOM study and parameter calculation of the TESLA cavity model

    CERN Document Server

    Zeng, Ri-Hua; Gerigk Frank; Wang Guang-Wei; Wegner Rolf; Liu Rong; Schuh Marcel

    2010-01-01

    The Superconducting Proton Linac (SPL) is the project for a superconducting, high current H-accelerator at CERN. To find dangerous higher order modes (HOMs) in the SPL superconducting cavities, simulation and analysis for the cavity model using simulation tools are necessary. The. existing TESLA 9-cell cavity geometry data have been used for the initial construction of the models in HFSS. Monopole, dipole and quadrupole modes have been obtained by applying different symmetry boundaries on various cavity models. In calculation, scripting language in HFSS was used to create scripts to automatically calculate the parameters of modes in these cavity models (these scripts are also available in other cavities with different cell numbers and geometric structures). The results calculated automatically are then compared with the values given in the TESLA paper. The optimized cavity model with the minimum error will be taken as the base for further simulation of the SPL cavities.

  2. Microbial Communities Model Parameter Calculation for TSPA/SR

    Energy Technology Data Exchange (ETDEWEB)

    D. Jolley

    2001-07-16

    This calculation has several purposes. First the calculation reduces the information contained in ''Committed Materials in Repository Drifts'' (BSC 2001a) to useable parameters required as input to MING V1.O (CRWMS M&O 1998, CSCI 30018 V1.O) for calculation of the effects of potential in-drift microbial communities as part of the microbial communities model. The calculation is intended to replace the parameters found in Attachment II of the current In-Drift Microbial Communities Model revision (CRWMS M&O 2000c) with the exception of Section 11-5.3. Second, this calculation provides the information necessary to supercede the following DTN: M09909SPAMING1.003 and replace it with a new qualified dataset (see Table 6.2-1). The purpose of this calculation is to create the revised qualified parameter input for MING that will allow {Delta}G (Gibbs Free Energy) to be corrected for long-term changes to the temperature of the near-field environment. Calculated herein are the quadratic or second order regression relationships that are used in the energy limiting calculations to potential growth of microbial communities in the in-drift geochemical environment. Third, the calculation performs an impact review of a new DTN: M00012MAJIONIS.000 that is intended to replace the currently cited DTN: GS9809083 12322.008 for water chemistry data used in the current ''In-Drift Microbial Communities Model'' revision (CRWMS M&O 2000c). Finally, the calculation updates the material lifetimes reported on Table 32 in section 6.5.2.3 of the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000c) based on the inputs reported in BSC (2001a). Changes include adding new specified materials and updating old materials information that has changed.

  3. Microbial Communities Model Parameter Calculation for TSPA/SR

    International Nuclear Information System (INIS)

    D. Jolley

    2001-01-01

    This calculation has several purposes. First the calculation reduces the information contained in ''Committed Materials in Repository Drifts'' (BSC 2001a) to useable parameters required as input to MING V1.O (CRWMS M and O 1998, CSCI 30018 V1.O) for calculation of the effects of potential in-drift microbial communities as part of the microbial communities model. The calculation is intended to replace the parameters found in Attachment II of the current In-Drift Microbial Communities Model revision (CRWMS M and O 2000c) with the exception of Section 11-5.3. Second, this calculation provides the information necessary to supercede the following DTN: M09909SPAMING1.003 and replace it with a new qualified dataset (see Table 6.2-1). The purpose of this calculation is to create the revised qualified parameter input for MING that will allow ΔG (Gibbs Free Energy) to be corrected for long-term changes to the temperature of the near-field environment. Calculated herein are the quadratic or second order regression relationships that are used in the energy limiting calculations to potential growth of microbial communities in the in-drift geochemical environment. Third, the calculation performs an impact review of a new DTN: M00012MAJIONIS.000 that is intended to replace the currently cited DTN: GS9809083 12322.008 for water chemistry data used in the current ''In-Drift Microbial Communities Model'' revision (CRWMS M and O 2000c). Finally, the calculation updates the material lifetimes reported on Table 32 in section 6.5.2.3 of the ''In-Drift Microbial Communities'' AMR (CRWMS M and O 2000c) based on the inputs reported in BSC (2001a). Changes include adding new specified materials and updating old materials information that has changed

  4. [Co-piloting economic development and the biosphere].

    Science.gov (United States)

    Passet, R

    1992-01-01

    Development has reached a stage of evolution in which its effects on the biosphere have become critical, but the discipline of economics has not yet fully absorbed this change. Economic development is in conflict with the ability of ecosystems to regulate themselves largely because of its focus on the immediate exploitation of resources and neglect of bio- geo-chemical cycles and of effects on the larger environment. Development driven solely by economic considerations is destined to end in destruction. A co-management of economic development and the biosphere is required. Economics suffers from a reductionism in which the natural and the social are both denied their rightful places, and a single type of variable, usually monetary, is overemphasized. A new, multidimensional view of the relationship of the economy to the world is needed. The economy finds its raw materials and disposes of its wastes in the natural sphere, but its purpose and ends reside in the sociocultural sphere. The natural and social spheres are related to the economy, but they obey their own laws, which must be respected in economic calculations. The reproductive and renewing mechanisms of the biosphere should be considered constraints to be respected by development and included in economic calculations. Growth in per capita income should not be considered development when, as often happens, it is accompanied by destruction of sociocultural values and degradation of the relationship between individuals and their environment. The reality of economic development is that it is a process of creative destruction in which minerals, raw materials, and energy are transformed to create objects, while material and energy wastes are discarded in the environment. The models used by economists should take account of these processes. The concept of a multidimensional development in perpetual transformation and sensitive to human activity suggests the responsibility of each generation to its successors. Human

  5. batman: BAsic Transit Model cAlculatioN in Python

    Science.gov (United States)

    Kreidberg, Laura

    2015-11-01

    I introduce batman, a Python package for modeling exoplanet transit light curves. The batman package supports calculation of light curves for any radially symmetric stellar limb darkening law, using a new integration algorithm for models that cannot be quickly calculated analytically. The code uses C extension modules to speed up model calculation and is parallelized with OpenMP. For a typical light curve with 100 data points in transit, batman can calculate one million quadratic limb-darkened models in 30 seconds with a single 1.7 GHz Intel Core i5 processor. The same calculation takes seven minutes using the four-parameter nonlinear limb darkening model (computed to 1 ppm accuracy). Maximum truncation error for integrated models is an input parameter that can be set as low as 0.001 ppm, ensuring that the community is prepared for the precise transit light curves we anticipate measuring with upcoming facilities. The batman package is open source and publicly available at https://github.com/lkreidberg/batman .

  6. What impact does ionising radiation have on humans and the environment? Use of SCK-CEN biosphere models in international studies

    International Nuclear Information System (INIS)

    Vandenhove, H.

    2011-01-01

    Certain nuclear activities may have an impact on man and the environment. To understand the precise magnitude of the effect, one must first understand the distribution and behaviour of radioactive substances in the environment. This knowledge is also necessary in order to take appropriate measures to reduce radiation exposure. analysing the environmental effects of MYRRHA and of waste disposal facilities are just some of the applications of SCK-CEN biosphere impact studies.

  7. Microscopic interacting boson model calculations for even–even ...

    Indian Academy of Sciences (India)

    one of the goals of the present study is to test interacting boson model calculations in the mass region of A ∼= 130 by comparing them with some previous experimental and theoretical results. The interacting boson model offers a simple Hamiltonian, capable of describing collective nuclear properties across a wide range of ...

  8. Biosphere dose conversion Factor Importance and Sensitivity Analysis

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek

    2004-10-15

    This report presents importance and sensitivity analysis for the environmental radiation model for Yucca Mountain, Nevada (ERMYN). ERMYN is a biosphere model supporting the total system performance assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis concerns the output of the model, biosphere dose conversion factors (BDCFs) for the groundwater, and the volcanic ash exposure scenarios. It identifies important processes and parameters that influence the BDCF values and distributions, enhances understanding of the relative importance of the physical and environmental processes on the outcome of the biosphere model, includes a detailed pathway analysis for key radionuclides, and evaluates the appropriateness of selected parameter values that are not site-specific or have large uncertainty.

  9. Biosphere dose conversion Factor Importance and Sensitivity Analysis

    International Nuclear Information System (INIS)

    M. Wasiolek

    2004-01-01

    This report presents importance and sensitivity analysis for the environmental radiation model for Yucca Mountain, Nevada (ERMYN). ERMYN is a biosphere model supporting the total system performance assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis concerns the output of the model, biosphere dose conversion factors (BDCFs) for the groundwater, and the volcanic ash exposure scenarios. It identifies important processes and parameters that influence the BDCF values and distributions, enhances understanding of the relative importance of the physical and environmental processes on the outcome of the biosphere model, includes a detailed pathway analysis for key radionuclides, and evaluates the appropriateness of selected parameter values that are not site-specific or have large uncertainty

  10. Calculating gait kinematics using MR-based kinematic models.

    Science.gov (United States)

    Scheys, Lennart; Desloovere, Kaat; Spaepen, Arthur; Suetens, Paul; Jonkers, Ilse

    2011-02-01

    Rescaling generic models is the most frequently applied approach in generating biomechanical models for inverse kinematics. Nevertheless it is well known that this procedure introduces errors in calculated gait kinematics due to: (1) errors associated with palpation of anatomical landmarks, (2) inaccuracies in the definition of joint coordinate systems. Based on magnetic resonance (MR) images, more accurate, subject-specific kinematic models can be built that are significantly less sensitive to both error types. We studied the difference between the two modelling techniques by quantifying differences in calculated hip and knee joint kinematics during gait. In a clinically relevant patient group of 7 pediatric cerebral palsy (CP) subjects with increased femoral anteversion, gait kinematic were calculated using (1) rescaled generic kinematic models and (2) subject-specific MR-based models. In addition, both sets of kinematics were compared to those obtained using the standard clinical data processing workflow. Inverse kinematics, calculated using rescaled generic models or the standard clinical workflow, differed largely compared to kinematics calculated using subject-specific MR-based kinematic models. The kinematic differences were most pronounced in the sagittal and transverse planes (hip and knee flexion, hip rotation). This study shows that MR-based kinematic models improve the reliability of gait kinematics, compared to generic models based on normal subjects. This is the case especially in CP subjects where bony deformations may alter the relative configuration of joint coordinate systems. Whilst high cost impedes the implementation of this modeling technique, our results demonstrate that efforts should be made to improve the level of subject-specific detail in the joint axes determination. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Optimizing the calculation grid for atmospheric dispersion modelling.

    Science.gov (United States)

    Van Thielen, S; Turcanu, C; Camps, J; Keppens, R

    2015-04-01

    This paper presents three approaches to find optimized grids for atmospheric dispersion measurements and calculations in emergency planning. This can be useful for deriving optimal positions for mobile monitoring stations, or help to reduce discretization errors and improve recommendations. Indeed, threshold-based recommendations or conclusions may differ strongly on the shape and size of the grid on which atmospheric dispersion measurements or calculations of pollutants are based. Therefore, relatively sparse grids that retain as much information as possible, are required. The grid optimization procedure proposed here is first demonstrated with a simple Gaussian plume model as adopted in atmospheric dispersion calculations, which provides fast calculations. The optimized grids are compared to the Noodplan grid, currently used for emergency planning in Belgium, and to the exact solution. We then demonstrate how it can be used in more realistic dispersion models. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. On the CO2 exchange between the atmosphere and the biosphere: the role of synoptic and mesoscale processes

    International Nuclear Information System (INIS)

    Chan, Douglas; Higuchi, Kaz; Shashkov, Alexander; Worthy, Douglas; Liu, Jane; Chen Jing; Yuen Chiu Wai

    2004-01-01

    Estimating global carbon fluxes by inverting atmospheric CO 2 through the use of atmospheric transport models has shown the importance of the covariance between biospheric fluxes and atmospheric transport on the carbon budget. This covariance or coupling occurs on many time scales. This study examines the coupling of the biosphere and the atmosphere on the meso- and synoptic scales using a coupled atmosphere-biosphere regional model covering Canada. The results are compared with surface and light aircraft measurement campaigns at two boreal forest sites in Canada. Associated with cold and warm frontal features, the model results showed that the biospheric fluxes are strongly coupled to the atmosphere through radiative forcing. The presence of cloud near frontal regions usually results in reduced photosynthetic uptake, producing CO 2 concentration gradients across the frontal regions on the order of 10 parts per million (ppm). Away from the frontal region, the biosphere is coupled to the mesoscale variations in similar ways, resulting in mesoscale variations in CO 2 concentrations of about 5 ppm. The CO 2 field is also coupled strongly to the atmospheric dynamics. In the presence of frontal circulation, the CO 2 near the surface can be transported to the mid to upper troposphere. Mesoscale circulation also plays a significant part in transporting the CO 2 from the planetary boundary layer (PBL) to the mid-troposphere. In the absence of significant mesoscale or synoptic scale circulation, the CO 2 in the PBL has minimal exchange with the free troposphere, leading to strong gradients across the top of the PBL. We speculate that the ubiquity of the common synoptic and mesoscale processes in the atmosphere may contribute significantly to the rectifier effect and hence CO 2 inversion calculations

  13. Lignocellulose deconstruction in the biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Bomble, Yannick J.; Lin, Chien-Yuan; Amore, Antonella; Wei, Hui; Holwerda, Evert K.; Ciesielski, Peter N.; Donohoe, Bryon S.; Decker, Stephen R.; Lynd, Lee R.; Himmel, Michael E.

    2017-12-01

    Microorganisms have evolved different and yet complementary mechanisms to degrade biomass in the biosphere. The chemical biology of lignocellulose deconstruction is a complex and intricate process that appears to vary in response to specific ecosystems. These microorganisms rely on simple to complex arrangements of glycoside hydrolases to conduct most of these polysaccharide depolymerization reactions and also, as discovered more recently, oxidative mechanisms via lytic polysaccharide monooxygenases or non-enzymatic Fenton reactions which are used to enhance deconstruction. It is now clear that these deconstruction mechanisms are often more efficient in the presence of the microorganisms. In general, a major fraction of the total plant biomass deconstruction in the biosphere results from the action of various microorganisms, primarily aerobic bacteria and fungi, as well as a variety of anaerobic bacteria. Beyond carbon recycling, specialized microorganisms interact with plants to manage nitrogen in the biosphere. Understanding the interplay between these organisms within or across ecosystems is crucial to further our grasp of chemical recycling in the biosphere and also enables optimization of the burgeoning plant-based bioeconomy.

  14. Lignocellulose deconstruction in the biosphere.

    Science.gov (United States)

    Bomble, Yannick J; Lin, Chien-Yuan; Amore, Antonella; Wei, Hui; Holwerda, Evert K; Ciesielski, Peter N; Donohoe, Bryon S; Decker, Stephen R; Lynd, Lee R; Himmel, Michael E

    2017-12-01

    Microorganisms have evolved different and yet complementary mechanisms to degrade biomass in the biosphere. The chemical biology of lignocellulose deconstruction is a complex and intricate process that appears to vary in response to specific ecosystems. These microorganisms rely on simple to complex arrangements of glycoside hydrolases to conduct most of these polysaccharide depolymerization reactions and also, as discovered more recently, oxidative mechanisms via lytic polysaccharide monooxygenases or non-enzymatic Fenton reactions which are used to enhance deconstruction. It is now clear that these deconstruction mechanisms are often more efficient in the presence of the microorganisms. In general, a major fraction of the total plant biomass deconstruction in the biosphere results from the action of various microorganisms, primarily aerobic bacteria and fungi, as well as a variety of anaerobic bacteria. Beyond carbon recycling, specialized microorganisms interact with plants to manage nitrogen in the biosphere. Understanding the interplay between these organisms within or across ecosystems is crucial to further our grasp of chemical recycling in the biosphere and also enables optimization of the burgeoning plant-based bioeconomy. Copyright © 2017. Published by Elsevier Ltd.

  15. Monitoring Biospheric Health and Integrity

    OpenAIRE

    Cairns, John

    2010-01-01

    The biosphere serves as the life support system for Earth and also is the basis of the human economy; therefore it should be maintained in optimal condition. In order for this maintenance to occur, a response team must be established to respond with immediate corrective action when quality control conditions are not being met.

  16. LIMITS OF THE EARTH BIOSPHERE

    Directory of Open Access Journals (Sweden)

    Karel KUDRNA

    2011-01-01

    Full Text Available Evaluation of the state of CO2 accumulation in the atmosphere demands knowledge on possibilities of the biosphere – its photosynthetizing apparatus, conditions and limits of absorption. A decisive precondition is to determine relation of CO2 accumulation by photosynthesis in dependence on the water balance, especially on its control quantity – transpiration, which is stabilized by supporting of underground waters.

  17. Approximate dynamic fault tree calculations for modelling water supply risks

    International Nuclear Information System (INIS)

    Lindhe, Andreas; Norberg, Tommy; Rosén, Lars

    2012-01-01

    Traditional fault tree analysis is not always sufficient when analysing complex systems. To overcome the limitations dynamic fault tree (DFT) analysis is suggested in the literature as well as different approaches for how to solve DFTs. For added value in fault tree analysis, approximate DFT calculations based on a Markovian approach are presented and evaluated here. The approximate DFT calculations are performed using standard Monte Carlo simulations and do not require simulations of the full Markov models, which simplifies model building and in particular calculations. It is shown how to extend the calculations of the traditional OR- and AND-gates, so that information is available on the failure probability, the failure rate and the mean downtime at all levels in the fault tree. Two additional logic gates are presented that make it possible to model a system's ability to compensate for failures. This work was initiated to enable correct analyses of water supply risks. Drinking water systems are typically complex with an inherent ability to compensate for failures that is not easily modelled using traditional logic gates. The approximate DFT calculations are compared to results from simulations of the corresponding Markov models for three water supply examples. For the traditional OR- and AND-gates, and one gate modelling compensation, the errors in the results are small. For the other gate modelling compensation, the error increases with the number of compensating components. The errors are, however, in most cases acceptable with respect to uncertainties in input data. The approximate DFT calculations improve the capabilities of fault tree analysis of drinking water systems since they provide additional and important information and are simple and practically applicable.

  18. Summary of Calculation Performed with NPIC's New FGR Model

    International Nuclear Information System (INIS)

    Jiao Yongjun; Li Wenjie; Zhou Yi; Xing Shuo

    2013-01-01

    1. Introduction The NPIC modeling group has performed calculations on both real cases and idealized cases in FUMEX II and III data packages. The performance code we used is COPERNIC 2.4 developed by AREVA but a new FGR model has been added. Therefore, a comparison study has been made between the Bernard model (V2.2) and the new model, in order to evaluate the performance of the new model. As mentioned before, the focus of our study lies in thermal fission gas release, or more specifically the grain boundary bubble behaviors. 2. Calculation method There are some differences between the calculated burnup and measured burnup in many real cases. Considering FGR is significant dependent on rod average burnup, a multiplicative factor on fuel rod linear power, i.e. FQE, is applied and adjusted in the calculations to ensure the calculated burnup generally equals the measured burnup. Also, a multiplicative factor on upper plenum volume, i.e. AOPL, is applied and adjusted in the calculations to ensure the calculated free volume equals pre-irradiation data of total free volume in rod. Cladding temperatures were entered if they were provided . Otherwise the cladding temperatures are calculated from the inlet coolant temperature. The results are presented in excel form as an attachment of this paper, including thirteen real cases and three idealized cases. Three real cases (BK353, BK370, US PWR TSQ022) are excluded from validation of the new model, because the athermal release predicted is even greater than release measured, which means a negative thermal release. Obviously it is not reasonable for validation, but the results are also listed in excel (sheet 'Cases excluded from validation'). 3. Results The results of 10 real cases are listed in sheet 'Steady case summary', which summarizes measured and predicted values of Bu, FGR for each case, and plots M/P ratio of FGR calculation by different models in COPERNIC. A statistic comparison was also made with three indexes, i

  19. Model calculations of groundwater conditions on Sternoe peninsula

    International Nuclear Information System (INIS)

    Axelsson, C.-L.; Carlsson, L.

    1979-09-01

    The groundwater condition within the bedrock of Sternoe was calculated by the use of a two-dimensional FEM-model. Five sections were laid out over the area. The sections had a depth of five km and length between two and six km. First the piezometric head was calculated in two major tectonic zones where the hydraulic conductivity was set to 10 -6 m/s. In the other sections of which two cross the tectonic zones, the bedrock was assumed to have hydraulic conductivities of 10 -8 m/s in the uppermost 300 m and 10 -11 m/s in the rest. From the maps of the piezometric head obtained, the flow time was calculated for the groundwater from 500 meters depth to a tectonic zone or to the 300 meters level below the sea. This calculation was performed for two sections both with and without tectonic zones. Also the influence of groundwater discharge from a well in one point in one of the tectonic zones was calculated. The kinematic porosity was assumed 10 -4 . The result showed that the flow time varied between 1000 to 500 000 years within the area with the exception of the nearest 100 m zone to any of the tectonic zones. For further calculations the use of three-dimensional models was proposed. (Auth.)

  20. The enhancement of a biosphere code for use in the assessment of deep repositories for radioactive waste

    International Nuclear Information System (INIS)

    Ashton, J.; Little, R.H.

    1991-01-01

    A disposal system for radioactive waste is conventionally considered to consist of the engineered barriers of the repository, the geosphere and the surface environment or biosphere. Computer codes have been developed to assist in assessing the impact of radionuclides migrating from the repository through the disposal system. Codes have been developed to represent the repository, the geosphere and the biosphere. The fundamental role of the biosphere codes is, for radionuclide inputs, to estimate the dose, or probability distribution function of dose, to a maximally exposed individual as a function of time. In the United Kingdom, the primary target for long-term radiological impacts from a single disposal facility is that the risk of fatal cancer to an individual in any one year should not exceed one in a million at any time. The recent revival of interest in the UK in the deep disposal of radioactive waste has resulted in the need for the risk to be estimated over timescales up to a million years, since a deep geologic repository might be able to withstand the effects of several future glacial episodes. Biosphere modelling for deep disposal of radioactive waste poses particular problems since the surface environment is expected to evolve as a result of changes in climatic conditions. Consequently the effect of climate induced changes in geomorphology, land use and sea level on the calculated risk have to be considered. This paper outlines the development of a new version of the dynamic biosphere model DECOS, which was developed originally in the context of shallow site assessments. The new version of the code, called DECOS-MG, is capable of simulating the effect of multiple glacial cycles and changes in sea level. (14 refs., 3 figs., 2 tabs.)

  1. Optimizing the calculation grid for atmospheric dispersion modelling

    International Nuclear Information System (INIS)

    Van Thielen, S.; Turcanu, C.; Camps, J.; Keppens, R.

    2015-01-01

    This paper presents three approaches to find optimized grids for atmospheric dispersion measurements and calculations in emergency planning. This can be useful for deriving optimal positions for mobile monitoring stations, or help to reduce discretization errors and improve recommendations. Indeed, threshold-based recommendations or conclusions may differ strongly on the shape and size of the grid on which atmospheric dispersion measurements or calculations of pollutants are based. Therefore, relatively sparse grids that retain as much information as possible, are required. The grid optimization procedure proposed here is first demonstrated with a simple Gaussian plume model as adopted in atmospheric dispersion calculations, which provides fast calculations. The optimized grids are compared to the Noodplan grid, currently used for emergency planning in Belgium, and to the exact solution. We then demonstrate how it can be used in more realistic dispersion models. - Highlights: • Grid points for atmospheric dispersion calculations are optimized. • Using heuristics the optimization problem results into different grid shapes. • Comparison between optimized models and the Noodplan grid is performed

  2. Precision calculations in supersymmetric extensions of the Standard Model

    International Nuclear Information System (INIS)

    Slavich, P.

    2013-01-01

    This dissertation is organized as follows: in the next chapter I will summarize the structure of the supersymmetric extensions of the standard model (SM), namely the MSSM (Minimal Supersymmetric Standard Model) and the NMSSM (Next-to-Minimal Supersymmetric Standard Model), I will provide a brief overview of different patterns of SUSY (supersymmetry) breaking and discuss some issues on the renormalization of the input parameters that are common to all calculations of higher-order corrections in SUSY models. In chapter 3 I will review and describe computations on the production of MSSM Higgs bosons in gluon fusion. In chapter 4 I will review results on the radiative corrections to the Higgs boson masses in the NMSSM. In chapter 5 I will review the calculation of BR(B → X s γ in the MSSM with Minimal Flavor Violation (MFV). Finally, in chapter 6 I will briefly summarize the outlook of my future research. (author)

  3. Ab initio calculations and modelling of atomic cluster structure

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Lyalin, Andrey G.; Solov'yov, Andrey V.

    2004-01-01

    framework for modelling the fusion process of noble gas clusters is presented. We report the striking correspondence of the peaks in the experimentally measured abundance mass spectra with the peaks in the size-dependence of the second derivative of the binding energy per atom calculated for the chain...... of the noble gas clusters up to 150 atoms....

  4. TTS-Polttopuu - cost calculation model for fuelwood

    International Nuclear Information System (INIS)

    Naett, H.; Ryynaenen, S.

    1999-01-01

    The TTS-Institutes's Forestry Department has developed a computer based cost-calculation model, 'TTS-Polttopuu', for the calculation of unit costs and resource needs in the harvesting systems for wood chips and split firewood. The model enables to determine the productivity and device cost per operating hour by each working stage of the harvesting system. The calculation model also enables the user to find out how changes in the productivity and cost bases of different harvesting chains influence the unit cost of the whole system. The harvesting chain includes the cutting of delimbed and non-delimbed fuelwood, forest haulage, road transportation, chipping and chopping of longwood at storage. This individually operating software was originally developed to serve research needs, but it also serves the needs of the forestry and agricultural education, training and extension as well as individual firewood producers. The system requirements for this cost calculation model are at least 486- level processor with the Windows 95/98 -operating system, 16 MB of memory (RAM) and 5 MB of available hard-disk. This development work was carried out in conjunction with the nation-wide BIOENERGY-research programme. (orig.)

  5. A modified calculation model for groundwater flowing to horizontal ...

    Indian Academy of Sciences (India)

    All these valleys are located in Loess plateau of northern Shaanxi, China. The existing calculation model for single hori- zontal seepage well was built by Wang and Zhang. (2007) based on theory of coupled seepage-pipe flow and equivalent hydraulic conductivity (Chen. 1995; Chen and Lin 1998a, 1998b; Chen and.

  6. A kinematic model for calculating the magnitude of angular ...

    African Journals Online (AJOL)

    Keplerian velocity laws imply the existence of velocity shear and shear viscosity within an accretion disk. Due to this viscosity, angular momentum is transferred from the faster moving inner regions to the slower-moving outer regions of the disk. Here we have formulated a model for calculating the magnitude of angular ...

  7. Black Hole Entropy Calculation in a Modified Thin Film Model

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... The thin film model is modified to calculate the black hole entropy. The difference from the original method is that the Parikh–Wilczek tunnelling framework is introduced and the self-gravitation of the emission particles is taken into account. In terms of our improvement, if the entropy is still proportional to the ...

  8. The role of hand calculations in ground water flow modeling.

    Science.gov (United States)

    Haitjema, Henk

    2006-01-01

    Most ground water modeling courses focus on the use of computer models and pay little or no attention to traditional analytic solutions to ground water flow problems. This shift in education seems logical. Why waste time to learn about the method of images, or why study analytic solutions to one-dimensional or radial flow problems? Computer models solve much more realistic problems and offer sophisticated graphical output, such as contour plots of potentiometric levels and ground water path lines. However, analytic solutions to elementary ground water flow problems do have something to offer over computer models: insight. For instance, an analytic one-dimensional or radial flow solution, in terms of a mathematical expression, may reveal which parameters affect the success of calibrating a computer model and what to expect when changing parameter values. Similarly, solutions for periodic forcing of one-dimensional or radial flow systems have resulted in a simple decision criterion to assess whether or not transient flow modeling is needed. Basic water balance calculations may offer a useful check on computer-generated capture zones for wellhead protection or aquifer remediation. An easily calculated "characteristic leakage length" provides critical insight into surface water and ground water interactions and flow in multi-aquifer systems. The list goes on. Familiarity with elementary analytic solutions and the capability of performing some simple hand calculations can promote appropriate (computer) modeling techniques, avoids unnecessary complexity, improves reliability, and is likely to save time and money. Training in basic hand calculations should be an important part of the curriculum of ground water modeling courses.

  9. Improvement of biosphere assessment methodology for performance assessment of geological disposal facility. 2. Outline

    International Nuclear Information System (INIS)

    Miki, Takahito; Yoshida, Hideji; Ikeda, Takao

    2002-02-01

    This report contains results on study of Geosphere-Biosphere Interface (GBI), development of biosphere assessment model for gaseous and volatile radionuclides, review of biosphere assessment and research on safety indicators. Regarding study of Geosphere-Biosphere Interface (GBI), FEP database for the Geosphere-Biosphere Transitions Zone (GBTZ) were compiled. Furthermore, release scenarios were identified from the FEP database, and review of conservativeness and robustness of the conceptual and mathematical models developed previously by JNC were undertaken. Regarding development of biosphere assessment model for gaseous and volatile radionuclides, the conceptual and mathematical models were developed, and it was confirmed that the impact of the exposure pathway regarding gas release to flux-to-dose conversion factor is small. Regarding review of biosphere assessment data, the parameters which were used on JNC second progress report were reviewed and classified using the biosphere data protocol categories. Furthermore, the data for key parameter (important but poorly characterized parameters) were revised. Regarding research on safety indicator, some kinds of safety indicators, especially for the non-radioactive contaminant and for the non-human biota, are reviewed. (author)

  10. Nuclear reaction matrix calculations with a shell-model Q

    International Nuclear Information System (INIS)

    Barrett, B.R.; McCarthy, R.J.

    1976-01-01

    Das Barrett-Hewitt-McCarthy (BHM) method for calculating the nuclear reaction matrix G is used to compute shell-model matrix elements for A = 18 nuclei. The energy denominators in intermediate states containing one unoccupied single-particle (s.p.) state and one valence s.p. state are treated correctly, in contrast to previous calculations. These corrections are not important for valence-shell matrix elements but are found to lead to relatively large changes in cross-shell matrix elements involved in core-polarization diagrams. (orig.) [de

  11. Reactor burning calculations for a model reversed field pattern

    International Nuclear Information System (INIS)

    Yeung, B.C.; Long, J.W.; Newton, A.A.

    1976-01-01

    An outline pinch reactor scheme and a study of electrical engineering problems for cyclic operation has been further developed and a comparison of physics aspects and capital cost made with Tokamak which has many similar features. Since the properties of reversed field pinches (RFP) are now better understood more detailed studies have been made and first results of burn calculations given. Results of the burn calculations are summarised. These are based on a D-T burning model used for Tokamak with changes appropriate for RFP. (U.K.)

  12. World campaign for the biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Worthington, E.B.

    1982-07-01

    Four aims are included in the Draft Declaration about the Champaign for The Biosphere; 1) education and allied activities, 2) scientific understanding, 3) practical activities, and 4) accommodation of humanity to The Biosphere. There is a strong case for application to practical affairs of what is already known. The campaign might focus initially on problems that illustrate changing attitudes which are the result of research and experience. Examples include the Green revolution in agriculture and, in engineering, the swing of changing attitudes to the primary and ancillary effects of large projects for hydro-power and irrigation. The need for conservation of natural resources by rational, ecologically wise use is stressed. Educational and medical programs for planned parenthood are already available. The problem will be to boost them to top priority in the countries that need them most. (JMT)

  13. Modelling and parallel calculation of a kinetic boundary layer

    International Nuclear Information System (INIS)

    Perlat, Jean Philippe

    1998-01-01

    This research thesis aims at addressing reliability and cost issues in the calculation by numeric simulation of flows in transition regime. The first step has been to reduce calculation cost and memory space for the Monte Carlo method which is known to provide performance and reliability for rarefied regimes. Vector and parallel computers allow this objective to be reached. Here, a MIMD (multiple instructions, multiple data) machine has been used which implements parallel calculation at different levels of parallelization. Parallelization procedures have been adapted, and results showed that parallelization by calculation domain decomposition was far more efficient. Due to reliability issue related to the statistic feature of Monte Carlo methods, a new deterministic model was necessary to simulate gas molecules in transition regime. New models and hyperbolic systems have therefore been studied. One is chosen which allows thermodynamic values (density, average velocity, temperature, deformation tensor, heat flow) present in Navier-Stokes equations to be determined, and the equations of evolution of thermodynamic values are described for the mono-atomic case. Numerical resolution of is reported. A kinetic scheme is developed which complies with the structure of all systems, and which naturally expresses boundary conditions. The validation of the obtained 14 moment-based model is performed on shock problems and on Couette flows [fr

  14. Modelling of Control Bars in Calculations of Boiling Water Reactors

    International Nuclear Information System (INIS)

    Khlaifi, A.; Buiron, L.

    2004-01-01

    The core of a nuclear reactor is generally composed of a neat assemblies of fissile material from where neutrons were descended. In general, the energy of fission is extracted by a fluid serving to cool clusters. A reflector is arranged around the assemblies to reduce escaping of neutrons. This is made outside the reactor core. Different mechanisms of reactivity are generally necessary to control the chain reaction. Manoeuvring of Boiling Water Reactor takes place by controlling insertion of absorbent rods to various places of the core. If no blocked assembly calculations are known and mastered, blocked assembly neutronic calculation are delicate and often treated by case to case in present studies [1]. Answering the question how to model crossbar for the control of a boiling water reactor ? requires the choice of a representation level for every chain of variables, the physical model, and its representing equations, etc. The aim of this study is to select the best applicable parameter serving to calculate blocked assembly of a Boiling Water Reactor. This will be made through a range of representative configurations of these reactors and used absorbing environment, in order to illustrate strategies of modelling in the case of an industrial calculation. (authors)

  15. Application of nuclear models to neutron nuclear cross section calculations

    International Nuclear Information System (INIS)

    Young, P.G.

    1983-01-01

    Nuclear theory is used increasingly to supplement and extend the nuclear data base that is available for applied studies. Areas where theoretical calculations are most important include the determination of neutron cross sections for unstable fission products and transactinide nuclei in fission reactor or nuclear waste calculations and for meeting the extensive dosimetry, activation, and neutronic data needs associated with fusion reactor development, especially for neutron energies above 14 MeV. Considerable progress has been made in the use of nuclear models for data evaluation and, particularly, in the methods used to derive physically meaningful parameters for model calculations. Theoretical studies frequently involve use of spherical and deformed optical models, Hauser-Feshbach statistical theory, preequilibrium theory, direct-reaction theory and often make use of gamma-ray strength function models and phenomenological (or microscopic) level density prescriptions. The development, application and limitations of nuclear models for data evaluation are discussed in this paper, with emphasis on the 0.1 to 50 MeV energy range. (Auth.)

  16. Dumb Growth and the Biosphere

    OpenAIRE

    Cairns, John

    2011-01-01

    Dumb growth is defined as any growth that is unsustainable on a finite planet. Growth in population and consumption of finite resources are not sustainable practices and have already damaged the biospheric life support system in a way that is difficult to eradicate. In fact, all eight interactive global crises (human economy, climate change, exponential human population growth, ecological overshoot, biotic impoverishment and reduction of biodiversity, renewable resources depletion, energy al...

  17. Investigation of Transformer Model for TRV Calculation by EMTP

    Science.gov (United States)

    Thein, Myo Min; Ikeda, Hisatoshi; Harada, Katsuhiko; Ohtsuka, Shinya; Hikita, Masayuki; Haginomori, Eiichi; Koshiduka, Tadashi

    Analysis of the EMTP transformer model was performed with the 4kVA two windings low voltage transformer with the current injection (CIJ) measurement method to study a transient recovery voltage (TRV) at the transformer limited fault (TLF) current interrupting condition. Tested transformer's impedance was measured by the frequency response analyzer (FRA). From FRA measurement graphs leakage inductance, stray capacitance and resistance were calculated. The EMTP transformer model was constructed with those values. The EMTP simulation was done for a current injection circuit by using transformer model. The experiment and simulation results show a reasonable agreement.

  18. Community Assembly Processes of the Microbial Rare Biosphere.

    Science.gov (United States)

    Jia, Xiu; Dini-Andreote, Francisco; Falcão Salles, Joana

    2018-03-14

    Our planet teems with microorganisms that often present a skewed abundance distribution in a local community, with relatively few dominant species coexisting alongside a high number of rare species. Recent studies have demonstrated that these rare taxa serve as limitless reservoirs of genetic diversity, and perform disproportionate types of functions despite their low abundances. However, relatively little is known about the mechanisms controlling rarity and the processes promoting the development of the rare biosphere. Here, we propose the use of multivariate cut-offs to estimate rare species and phylogenetic null models applied to predefined rare taxa to disentangle the relative influences of ecoevolutionary processes mediating the assembly of the rare biosphere. Importantly, the identification of the factors controlling rare species assemblages is critical for understanding the types of rarity, how the rare biosphere is established, and how rare microorganisms fluctuate over spatiotemporal scales, thus enabling prospective predictions of ecosystem responses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. The biosphere today and tomorrow in the SFR area

    International Nuclear Information System (INIS)

    Kautsky, Ulrik

    2001-06-01

    This report is a compilation of the work done mainly in the SAFE project for the biosphere from about 14 reports. The SAFE project is the updated safety analysis of SFR-1, the LLW and ILW repository at Forsmark. The aim of the report is to summarize the available information about the present-day biosphere in the area surrounding SFR and to use this information, together with information about the previous development of the biosphere, to predict the future development of the area in a more comparable way than the underlying reports. The data actually used for the models have been taken from the original reports which also justify or validate the data. The report compiles information about climate, oceanography, landscape, sedimentation, shoreline displacement, marine, lake and terrestrial ecosystems

  20. The biosphere today and tomorrow in the SFR area

    Energy Technology Data Exchange (ETDEWEB)

    Kautsky, Ulrik (ed.)

    2001-06-01

    This report is a compilation of the work done mainly in the SAFE project for the biosphere from about 14 reports. The SAFE project is the updated safety analysis of SFR-1, the LLW and ILW repository at Forsmark. The aim of the report is to summarize the available information about the present-day biosphere in the area surrounding SFR and to use this information, together with information about the previous development of the biosphere, to predict the future development of the area in a more comparable way than the underlying reports. The data actually used for the models have been taken from the original reports which also justify or validate the data. The report compiles information about climate, oceanography, landscape, sedimentation, shoreline displacement, marine, lake and terrestrial ecosystems.

  1. A note on vector flux models for radiation dose calculations

    International Nuclear Information System (INIS)

    Kern, J.W.

    1994-01-01

    This paper reviews and extends modelling of anisotropic fluxes for radiation belt protons to provide closed-form equations for vector proton fluxes and proton flux anisotropy in terms of standard omnidirectional flux models. These equations provide a flexible alternative to the date-based vector flux models currently available. At higher energies, anisotropy of trapped proton flux in the upper atmosphere depends strongly on the variation of atmospheric density with altitude. Calculations of proton flux anisotropies using present models require specification of the average atmospheric density along trapped particle trajectories and its variation with mirror point altitude. For an isothermal atmosphere, calculations show that in a dipole magnetic field, the scale height of this trajectory-averaged density closely approximates the scale height of the atmosphere at the mirror point of the trapped particle. However, for the earth's magnetic field, the altitudes of mirror points vary for protons drifting in longitude. This results in a small increase in longitude-averaged scale heights compared to the atmospheric scale heights at minimum mirror point altitudes. The trajectory-averaged scale heights are increased by about 10-20% over scale heights from standard atmosphere models for protons mirroring at altitudes less than 500 km in the South Atlantic Anomaly Atmospheric losses of protons in the geomagnetic field minimum in the South Atlantic Anomaly control proton flux anisotropies of interest for radiation studies in low earth orbit. Standard atmosphere models provide corrections for diurnal, seasonal and solar activity-driven variations. Thus, determination of an ''equilibrium'' model of trapped proton fluxes of a given energy requires using a scale height that is time-averaged over the lifetime of the protons. The trajectory-averaged atmospheric densities calculated here lead to estimates for trapped proton lifetimes. These lifetimes provide appropriate time

  2. Reference biospheres for the long term safety assessment of radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Crossland, I.G.; Torres, C.

    2002-01-01

    Regulatory guidance on the safety assessment of radioactive waste disposals usually requires the consequences of any radionuclide releases to be considered in terms of their potential impact on human health. This requires consideration of the prevailing biosphere and the habits of the potentially exposed humans within it. However, it could take many thousands of years for migrating radionuclides to reach the surface environment. In these circumstances, an assessment model that was based on the present-day biosphere could be inappropriate while future biospheres would be unpredictable. These and other considerations suggest that a standardised, or reference biosphere, approach may be useful. Theme 1 of the IAEA BIOMASS project was established to develop the concept of reference biospheres into a practical system that can be applied to the assessment of the long term safety of geological disposal facilities for radioactive waste. The technical phase of the project lasted for four years until November 2000 and brought together disparate interests from many countries including waste disposal agencies, regulators and technical experts. Building on the experience from earlier BIOMOVS projects, a methodology was constructed for the logical and defensible construction of mathematical biosphere models that can be used in the total system performance assessment of radioactive waste disposal. The methodology was then further developed through the creation of a series of BIOMASS Example Reference Biospheres ('Examples'). These are stylised biosphere models that, in addition to illustrating the methodology, are intended to be useful assessment tools in their own right. (author)

  3. The Geosphere - Biosphere international program and the global change

    International Nuclear Information System (INIS)

    Chanin, M.L.

    1991-01-01

    The objective of the Geosphere-Biosphere International Program (GBIP) is to achieve a correct approach of the various biogeochemical interactions between the different components of the environment (oceans, atmosphere, biosphere). The main themes are: study of the chemical regulation in the global atmosphere and influence of natural and anthropogenic processes on trace element cycles; influence of the oceanic biogeochemical processes on climates and their response to climatic changes; influence of soil utilization modification (especially coastal) on climates and ecosystems; interaction between vegetation and the water cycle; interaction between climatic changes, ecosystems and agricultural productivity; approaches to climate modelling. French component of the GBIP is presented [fr

  4. TTS-Polttopuu - cost calculation model for fuelwood

    International Nuclear Information System (INIS)

    Naett, H.; Ryynaenen, S.

    1998-01-01

    The TTS-Institutes's Forestry Department has developed a computer based costcalculation model, 'TTS-Polttopuu', for the calculation of unit costs and resource needs in the harvesting systems for wood chips and split firewood. The model enables to determine the productivity and device cost per operating hour by each working stage of the harvesting system. The calculation model also enables the user to find out how changes in the productivity and cost bases of different harvesting chains influence the unit cost of the whole system. The harvesting chain includes the cutting of delimbed and non-delimbed fuelwood, forest haulage, road transportation chipping and chopping of longwood at storage. This individually operating software was originally developed to serve research needs, but it also serves the needs of the forestry and agricultural education, training and extension as well as individual firewood producers. The system requirements for this cost calculation model are at least 486-level processor with the Windows 95/98 -operating system, 16 MB of memory (RAM) and 5 MB of available hard-disk. This development work was carried out in conjunction with the nation-wide BIOENERGY Research Programme. (orig.)

  5. The EDF/SEPTEN crisis team calculation tools and models

    International Nuclear Information System (INIS)

    De Magondeaux, B.; Grimaldi, X.

    1993-01-01

    Electricite de France (EDF) has developed a set of simplified tools and models called TOUTEC and CRISALIDE which are devoted to be used by the French utility National Crisis Team in order to perform the task of diagnosis and prognosis during an emergency situation. As a severe accident could have important radiological consequences, this method is focused on the diagnosis of the state of the safety barriers and on the prognosis of their behaviour. These tools allow the crisis team to deliver public authorities with information on the radiological risk and to provide advices to manage the accident on the damaged unit. At a first level, TOUTEC is intended to complement the hand-book with simplified calculation models and predefined relationships. It can avoid tedious calculation during stress conditions. The main items are the calculation of the primary circuit breach size and the evaluation of hydrogen over pressurization. The set of models called CRISALIDE is devoted to evaluate the following critical parameters: delay before core uncover, which would signify more severe consequences if it occurs, containment pressure behaviour and finally source term. With these models, crisis team comes able to take into account combinations of boundary conditions according to safety and auxiliary systems availability

  6. Use of the Strong Collision Model to Calculate Spin Relaxation

    Science.gov (United States)

    Wang, D.; Chow, K. H.; Smadella, M.; Hossain, M. D.; MacFarlane, W. A.; Morris, G. D.; Ofer, O.; Morenzoni, E.; Salman, Z.; Saadaoui, H.; Song, Q.; Kiefl, R. F.

    The strong collision model is used to calculate spin relaxation of a muon or polarized radioactive nucleus in contact with a fluctuating environment. We show that on a time scale much longer than the mean time between collisions (fluctuations) the longitudinal polarization decays exponentially with a relaxation rate equal to a sum of Lorentzians-one for each frequency component in the static polarization function ps(t).

  7. Model and calculation of in situ stresses in anisotropic formations

    Energy Technology Data Exchange (ETDEWEB)

    Yuezhi, W.; Zijun, L.; Lixin, H. [Jianghan Petroleum Institute, (China)

    1997-08-01

    In situ stresses in transversely isotropic material in relation to wellbore stability have been investigated. Equations for three horizontal in- situ stresses and a new formation fracture pressure model were described, and the methodology for determining the elastic parameters of anisotropic rocks in the laboratory was outlined. Results indicate significantly smaller differences between theoretically calculated pressures and actual formation pressures than results obtained by using the isotropic method. Implications for improvements in drilling efficiency were reviewed. 13 refs., 6 figs.

  8. Calculation of relativistic model stars using Regge calculus

    International Nuclear Information System (INIS)

    Porter, J.

    1987-01-01

    A new approach to the Regge calculus, developed in a previous paper, is used in conjunction with the velocity potential version of relativistic fluid dynamics due to Schutz [1970, Phys. Rev., D, 2, 2762] to calculate relativistic model stars. The results are compared with those obtained when the Tolman-Oppenheimer-Volkov equations are solved by other numerical methods. The agreement is found to be excellent. (author)

  9. Structure-dynamic model verification calculation of PWR 5 tests

    International Nuclear Information System (INIS)

    Engel, R.

    1980-02-01

    Within reactor safety research project RS 16 B of the German Federal Ministry of Research and Technology (BMFT), blowdown experiments are conducted at Battelle Institut e.V. Frankfurt/Main using a model reactor pressure vessel with a height of 11,2 m and internals corresponding to those in a PWR. In the present report the dynamic loading on the pressure vessel internals (upper perforated plate and barrel suspension) during the DWR 5 experiment are calculated by means of a vertical and horizontal dynamic model using the CESHOCK code. The equations of motion are resolved by direct integration. (orig./RW) [de

  10. Migration of radionuclides with ground water: a discussion of the relevance of the input parameters used in model calculations

    International Nuclear Information System (INIS)

    Jensen, B.S.

    1982-01-01

    It is probably obvious to all, that establishing the scientific basis of geological waste disposal by going deeper and deeper in detail, may fill out the working hours of hundreds of scientists for hundreds of years. Such an endeavor is, however, impossible to attain, and we are forced to define some criteria telling us and others when knowledge and insight is sufficient. In thepresent case of geological disposal one need to be able to predict migration behavior of a series of radionuclides under diverse conditions to ascertain that unacceptable transfer to the biosphere never occurs. We have already collected a huge amount of data concerning migration phenomena, some very useful, oter less so, but we still need investigatoins departing from the simple ideal concepts, which most often have provided modellers with input data to their calculations. I therefore advocate that basic research is pursued to the point where it is possible to put limits on the effect of the lesser known factors on the migration behavior of radionuclides. When such limits have been established, it will be possible to make calculations on the worst cases, which may also occur. Although I personally believe, that these extra investigations will prove additional safety in geological disposal, this fact will convince nobody, only experimental facts will do

  11. Biosphere analyses for the safety assessment SR-Site - synthesis and summary of results

    International Nuclear Information System (INIS)

    Saetre, Peter

    2010-12-01

    This report summarises nearly 20 biosphere reports and gives a synthesis of the work performed within the SR-Site Biosphere project, i.e. the biosphere part of SR-Site. SR-Site Biosphere provides the main project with dose conversion factors (LDFs), given a unit release rate, for calculation of human doses under different release scenarios, and assesses if a potential release from the repository would have detrimental effects on the environment. The intention of this report is to give sufficient details for an overview of methods, results and major conclusions, with references to the biosphere reports where methods, data and results are presented and discussed in detail. The philosophy of the biosphere assessment was to make estimations of the radiological risk for humans and the environment as realistic as possible, based on the knowledge of present-day conditions at Forsmark and the past and expected future development of the site. This was achieved by using the best available knowledge, understanding and data from extensive site investigations from two sites. When sufficient information was not available, uncertainties were handled cautiously. A systematic identification and evaluation of features and processes that affect transport and accumulation of radionuclides at the site was conducted, and the results were summarised in an interaction matrix. Data and understanding from the site investigation was an integral part of this work, the interaction matrix underpinned the development of the radionuclide model used in the biosphere assessment. Understanding of the marine, lake and river and terrestrial ecosystems at the site was summarized in a conceptual model, and relevant features and process have been characterized to capture site specific parameter values. Detailed investigations of the structure and history of the regolith at the site and simulations of regolith dynamics were used to describe the present day state at Forsmark and the expected development of

  12. Mathematical model of kinetostatithic calculation of flat lever mechanisms

    Directory of Open Access Journals (Sweden)

    A. S. Sidorenko

    2016-01-01

    Full Text Available Currently widely used graphical-analytical methods of analysis largely obsolete, replaced by various analytical methods using computer technology. Therefore, of particular interest is the development of a mathematical model kinetostatical calculation mechanisms in the form of library procedures of calculation for all powered two groups Assyrians (GA and primary level. Before resorting to the appropriate procedure that computes all the forces in the kinematic pairs, you need to compute inertial forces, moments of forces of inertia and all external forces and moments acting on this GA. To this end shows the design diagram of the power analysis for each species GA of the second class, as well as the initial link. Finding reactions in the internal and external kinematic pairs based on equilibrium conditions with the account of forces of inertia and moments of inertia forces (Dalembert principle. Thus obtained equations of kinetostatical for their versatility have been solved by the Cramer rule. Thus, for each GA of the second class were found all 6 unknowns: the forces in the kinematic pairs, the directions of these forces as well as forces the shoulders. If we study kinetostatic mechanism with parallel consolidation of two GA in the initial link, in this case, power is the geometric sum of the forces acting on the primary link from the discarded GA. Thus, the obtained mathematical model kinetostatical calculation mechanisms in the form of libraries of mathematical procedures for determining reactions of all GA of the second class. The mathematical model kinetostatical calculation makes it relatively simple to implement its software implementation.

  13. Methodology for biosphere analysis in high level waste disposal. Application to the Mediterranean system

    International Nuclear Information System (INIS)

    Pinedo, P.; Simon, I.; Aguero, A.; Cancio, D.

    2000-01-01

    For several years CIEMAT has been developing for ENRESA a conceptual approach and tools to support the modelling of the migration and accumulation of radionuclides within the biosphere once those radionuclides are released or reach one or more parts of the biosphere (atmosphere, water bodies or soils). The model development also includes evaluation of radiological impacts arising from the resulting distribution of radionuclides in the biosphere. At the time when the methodology was proposed, the level of development of the different aspects proposed within it was quite heterogeneous and, while aspects of radionuclide transport modelling were already well developed in theoretical and practical terms, other aspects, like the procedure for conceptual model development and the description of biosphere systems representatives of the long term needed further developments. The developments have been performed in parallel to international projects, within which there were and are an active participation, mainly, the BIOphere Models Validation Study (BIOMOVS II) international Project, within which it was developed the so called Reference Biosphere Methodology and, the International Atomic Energy Agency (IAEA) Programme on BIOsphere Modelling and ASSessment methods (BIOMASS), that is under development at present. The methodology been made takes account of these international developments. The purpose of the work summarised herein is the application of the methodology to the 1997 performance assessment (PA) exercise made by ENRESA, using from it the general and particular information about the assessment context, the source term, and the geo-biosphere interface data. (author)

  14. The biomass theme 1 project: Reference biospheres

    International Nuclear Information System (INIS)

    Crossland, I.; Torres-Vidal, C.

    2000-01-01

    The long-term safety of a facility for the disposal of long-lived radioactive waste would principally depend upon a combination of engineered and natural barriers which would ensure that the radioactivity was prevented from reaching the biosphere. To assess radiological safety over extended timescales requires the construction of 'assessment biospheres'. A possibility is the development of 'Reference Biospheres', a series of stylised, internationally-agreed assessment biospheres that could be used to support post-closure assessments in a wide variety of situations. Current activities in this subject area are described. (author)

  15. Freight Calculation Model: A Case Study of Coal Distribution

    Science.gov (United States)

    Yunianto, I. T.; Lazuardi, S. D.; Hadi, F.

    2018-03-01

    Coal has been known as one of energy alternatives that has been used as energy source for several power plants in Indonesia. During its transportation from coal sites to power plant locations is required the eligible shipping line services that are able to provide the best freight rate. Therefore, this study aims to obtain the standardized formulations for determining the ocean freight especially for coal distribution based on the theoretical concept. The freight calculation model considers three alternative transport modes commonly used in coal distribution: tug-barge, vessel and self-propelled barge. The result shows there are two cost components very dominant in determining the value of freight with the proportion reaching 90% or even more, namely: time charter hire and fuel cost. Moreover, there are three main factors that have significant impacts on the freight calculation, which are waiting time at ports, time charter rate and fuel oil price.

  16. Improved SVR Model for Multi-Layer Buildup Factor Calculation

    International Nuclear Information System (INIS)

    Trontl, K.; Pevec, D.; Smuc, T.

    2006-01-01

    The accuracy of point kernel method applied in gamma ray dose rate calculations in shielding design and radiation safety analysis is limited by the accuracy of buildup factors used in calculations. Although buildup factors for single-layer shields are well defined and understood, buildup factors for stratified shields represent a complex physical problem that is hard to express in mathematical terms. The traditional approach for expressing buildup factors of multi-layer shields is through semi-empirical formulas obtained by fitting the results of transport theory or Monte Carlo calculations. Such an approach requires an ad-hoc definition of the fitting function and often results with numerous and usually inadequately explained and defined correction factors added to the final empirical formula. Even more, finally obtained formulas are generally limited to a small number of predefined combinations of materials within relatively small range of gamma ray energies and shield thicknesses. Recently, a new approach has been suggested by the authors involving one of machine learning techniques called Support Vector Machines, i.e., Support Vector Regression (SVR). Preliminary investigations performed for double-layer shields revealed great potential of the method, but also pointed out some drawbacks of the developed model, mostly related to the selection of one of the parameters describing the problem (material atomic number), and the method in which the model was designed to evolve during the learning process. It is the aim of this paper to introduce a new parameter (single material buildup factor) that is to replace the existing material atomic number as an input parameter. The comparison of two models generated by different input parameters has been performed. The second goal is to improve the evolution process of learning, i.e., the experimental computational procedure that provides a framework for automated construction of complex regression models of predefined

  17. Overall strategy for management of parameters and data in the biosphere assessment portfolio

    International Nuclear Information System (INIS)

    Hjerpe, T.

    2006-12-01

    Throughout the biosphere assessment, the parameters selected to represent the present and future biosphere and choices of data values are crucial issues, greatly affecting the end result. The necessity of clear strategy for managing parameters and data is obvious; how to handle the variability of parameters as such, the selection from different sources, the derivation of values of model parameters not readily available, storage of the data in a proper manner, and assuring the quality throughout the whole assessment programme. In this working report a proposed set of broad guidelines for the overall strategy for the management of parameters and data in the biosphere assessment strategy is first presented. Thereafter, a scheme is proposed for assuring the knowledge quality of data. Finally, a proposal for requirements and management of the biosphere assessment database and the current status of the on-going work building the biosphere assessment database and interfaces to other tools are presented. (orig.)

  18. 2HDMC — two-Higgs-doublet model calculator

    Science.gov (United States)

    Eriksson, David; Rathsman, Johan; Stål, Oscar

    2010-04-01

    We describe version 1.0.6 of the public C++ code 2HDMC, which can be used to perform calculations in a general, CP-conserving, two-Higgs-doublet model (2HDM). The program features simple conversion between different parametrizations of the 2HDM potential, a flexible Yukawa sector specification with choices of different Z-symmetries or more general couplings, a decay library including all two-body — and some three-body — decay modes for the Higgs bosons, and the possibility to calculate observables of interest for constraining the 2HDM parameter space, as well as theoretical constraints from positivity and unitarity. The latest version of the 2HDMC code and full documentation is available from: http://www.isv.uu.se/thep/MC/2HDMC. New version program summaryProgram title: 2HDMC Catalogue identifier: AEFI_v1_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFI_v1_1.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL No. of lines in distributed program, including test data, etc.: 12 110 No. of bytes in distributed program, including test data, etc.: 92 731 Distribution format: tar.gz Programming language: C++ Computer: Any computer running Linux Operating system: Linux RAM: 5 Mb Catalogue identifier of previous version: AEFI_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2010) 189 Classification: 11.1 External routines: GNU Scientific Library ( http://www.gnu.org/software/gsl/) Does the new version supersede the previous version?: Yes Nature of problem: Determining properties of the potential, calculation of mass spectrum, couplings, decay widths, oblique parameters, muon g-2, and collider constraints in a general two-Higgs-doublet model. Solution method: From arbitrary potential and Yukawa sector, tree-level relations are used to determine Higgs masses and couplings. Decay widths are calculated at leading order, including FCNC decays when applicable. Decays to off

  19. Development of a reference biospheres methodology for radioactive waste disposal. Final report

    International Nuclear Information System (INIS)

    Dorp, F. van

    1996-09-01

    the Working Group assumes a requirement to calculate annual individual doses arising from long term release of radionuclides in groundwater at an inland site. Though to a degree limited, this context is broadly relevant to many assessments and so the FEP List may be useful as a generic starting point for new model development or for auditing existing biosphere assessments. An example illustration of how to apply the methodology has been provided, based on the case description of the Complementary Studies Working Group of BIOMOVS II. (The results of the Complementary Studies exercise are provided in a separate BIOMOVS II Technical Report.) The application of the International FEP List to the Complementary Studies case description has been examined. A major component of the methodology is the development of a conceptual model from the available information about processes and the related data. Several approaches are discussed, including 'process influence diagrams', 'event trees', and the Rock Engineering System (RES) Interaction Matrix Methodology. The latter was tested in some depth by the Working Group and found to be effective at helping to distinguish the more and less important FEPs, and in identifying the important interactions between components of the system being modelled. An interesting feature of the interaction matrix methodology is that the FEP List applied to the matrix construction process can be developed independently from the matrix. If the matrix were to be developed by the same people as the FEP List then there could be legitimate criticism that the matrix, and hence the conceptual models, had been designed in a closed loop of assessment modelers. However, any issue can be introduced by any interested party through the FEP List. The auditing step allows these other issues to be introduced in model development and so forces the assessment team to explain how the issues are to be dealt with. At the same time, previous experience within the assessment

  20. Application of the Biosphere Assessment Methodology to the ENRESA, 1997 Performance and Safety Assessment

    International Nuclear Information System (INIS)

    Pinedo, P.; Simon, I.; Aguero, A.

    1998-01-01

    For several years CIEMAT has been developing for ENRESA knowledge and tools to support the modelling of the migration and accumulation of radionuclides within the biosphere once those radionuclides are released or reach one or more parts of the biosphere (atmosphere, water bodies or soils). The model development also includes evaluation of radiological impacts arising from the resulting distribution of radionuclides in the biosphere. In 1996, a Methodology to analyse the biosphere in this context proposed to ENRESA. The level of development of the different aspects proposed within the Methodology was quite heterogeneous and, while aspects of radionuclide transport modelling were already well developed in theoretical and practical terms, other aspects like the procedure for conceptual model development and the description of biosphere system representatives of the long term needed further developments. At present, the International Atomic Energy Agency (IAEA) Programme on Biosphere Modelling and Assessment (BIOMASS) in collaboration with several national organizations, ENRESA and CIEMAT among them, is working to complete and augment the Reference Biosphere Methodology and to produce some practical descriptions of Reference Systems. The overall purpose of this document is to apply the Methodology, taking account of on-going developments in biosphere modelling, to the last performance assessment (PA) exercise made by ENRESA (ENRESA, 1997), using from it the general and particular information about the assessment context, radionuclide information, geosphere and geobiosphere interface data. There are three particular objectives to this work: (a) to determine the practicability of the Methodology in an application to a realistic assessment situation, (b) To compare and contrast previous biosphere modelling in HLW PA and, (c) to test software development related with data management and modelling. (Author) 42 refs

  1. EMPIRICAL MODEL FOR HYDROCYCLONES CORRECTED CUT SIZE CALCULATION

    Directory of Open Access Journals (Sweden)

    André Carlos Silva

    2012-12-01

    Full Text Available Hydrocyclones are devices worldwide used in mineral processing for desliming, classification, selective classification, thickening and pre-concentration. A hydrocyclone is composed by one cylindrical and one conical section joint together, without any moving parts and it is capable of perform granular material separation in pulp. The mineral particles separation mechanism acting in a hydrocyclone is complex and its mathematical modelling is usually empirical. The most used model for hydrocyclone corrected cut size is proposed by Plitt. Over the years many revisions and corrections to Plitt´s model were proposed. The present paper shows a modification in the Plitt´s model constant, obtained by exponential regression of simulated data for three different hydrocyclones geometry: Rietema, Bradley and Krebs. To validate the proposed model literature data obtained from phosphate ore using fifteen different hydrocyclones geometry are used. The proposed model shows a correlation equals to 88.2% between experimental and calculated corrected cut size, while the correlation obtained using Plitt´s model is 11.5%.

  2. Calculation of mass discharge of the Greenland ice sheet in the Earth System Model

    Directory of Open Access Journals (Sweden)

    O. O. Rybak

    2016-01-01

    Full Text Available Mass discharge calculation is a challenging task for the ice sheet modeling aimed at evaluation of their contribution to the global sea level rise during past interglacials, as well as one of the consequences of future climate change. In Greenland, ablation is the major source of fresh water runoff. It is approximately equal to the dynamical discharge (iceberg calving. Its share might have still larger during the past interglacials when the margins of the GrIS retreated inland. Refreezing of the melted water and its retention are two poorly known processes playing as a counterpart of melting and, thus, exerting influence on the run off. Interaction of ice sheets and climate is driven by energy and mass exchange processes and is complicated by numerous feed-backs. To study the complex of these processes, coupling of an ice sheet model and a climate model (i.e. models of the atmosphere and the ocean in one model is required, which is often called the Earth System Model (ESM. Formalization of processes of interaction between the ice sheets and climate within the ESM requires elaboration of special techniques to deal with dramatic differences in spatial and temporal variability scales within each of three ESM’s blocks. In this paper, we focus on the method of coupling of a Greenland ice sheet model (GrISM with the climate model INMCM having been developed in the Institute of Numerical Mathematics of Russian Academy of Sciences. Our coupling approach consists in applying of a special buffer model, which serves as an interface between GrISM and INMCM. A simple energy and water exchange model (EWBM-G allows realistic description of surface air temperature and precipitation fields adjusted to a relief of elevation of the GrIS surface. In a series of diagnostic numerical experiments with the present-day GrIS geometry and the modeled climate we studied sensitivity of the modeled surface mass balance and run off to the key EWBM-G parameters and compared

  3. Posiva's Strategy for Biosphere Studies

    International Nuclear Information System (INIS)

    Hautojaervi, Aimo; Vieno, Timo

    2002-01-01

    Aimo Hautojaervi (Posiva, Finland) explained that Posiva follows the regulation from authorities that will be published soon on the STUK Web site in an English version. As an example, he said that a dose constraint of 0.1 mSv/a must be considered for several thousand years and release rate constraint for the long term. The values for these constraints were given by STUK and Posiva needs to demonstrate compliance. Posiva welcomes the regulator's clear requirements and guidance in the field of biosphere analyses. Moreover, Aimo Hautojaervi presented the planned future work that will be carried out by Posiva. As well as carrying out biosphere modelling for potential recipients at Olkiluoto, Posiva will conduct biosphere analyses for wells, lakes, seas, etc., and further evaluate human actions and develop biosphere models in close cooperation with SKB. Posiva is also actively seeking international cooperation in these new researches fields, for example within IAEA. Two potentially problematic radionuclides were also mentioned: C-14 and Radon plus decay products. These two radionuclides will be studied in depth in the future Posiva research and development programme

  4. Absorbed Dose and Dose Equivalent Calculations for Modeling Effective Dose

    Science.gov (United States)

    Welton, Andrew; Lee, Kerry

    2010-01-01

    While in orbit, Astronauts are exposed to a much higher dose of ionizing radiation than when on the ground. It is important to model how shielding designs on spacecraft reduce radiation effective dose pre-flight, and determine whether or not a danger to humans is presented. However, in order to calculate effective dose, dose equivalent calculations are needed. Dose equivalent takes into account an absorbed dose of radiation and the biological effectiveness of ionizing radiation. This is important in preventing long-term, stochastic radiation effects in humans spending time in space. Monte carlo simulations run with the particle transport code FLUKA, give absorbed and equivalent dose data for relevant shielding. The shielding geometry used in the dose calculations is a layered slab design, consisting of aluminum, polyethylene, and water. Water is used to simulate the soft tissues that compose the human body. The results obtained will provide information on how the shielding performs with many thicknesses of each material in the slab. This allows them to be directly applicable to modern spacecraft shielding geometries.

  5. A modified microdosimetric kinetic model for relative biological effectiveness calculation

    Science.gov (United States)

    Chen, Yizheng; Li, Junli; Li, Chunyan; Qiu, Rui; Wu, Zhen

    2018-01-01

    In the heavy ion therapy, not only the distribution of physical absorbed dose, but also the relative biological effectiveness (RBE) weighted dose needs to be taken into account. The microdosimetric kinetic model (MKM) can predict the RBE value of heavy ions with saturation-corrected dose-mean specific energy, which has been used in clinical treatment planning at the National Institute of Radiological Sciences. In the theoretical assumption of the MKM, the yield of the primary lesion is independent of the radiation quality, while the experimental data shows that DNA double strand break (DSB) yield, considered as the main primary lesion, depends on the LET of the particle. Besides, the β parameter of the MKM is constant with LET resulting from this assumption, which also differs from the experimental conclusion. In this study, a modified MKM was developed, named MMKM. Based on the experimental DSB yield of mammalian cells under the irradiation of ions with different LETs, a RBEDSB (RBE for the induction of DSB)-LET curve was fitted as the correction factor to modify the primary lesion yield in the MKM, and the variation of the primary lesion yield with LET is considered in the MMKM. Compared with the present the MKM, not only the α parameter of the MMKM for mono-energetic ions agree with the experimental data, but also the β parameter varies with LET and the variation trend of the experimental result can be reproduced on the whole. Then a spread-out Bragg peaks (SOBP) distribution of physical dose was simulated with Geant4 Monte Carlo code, and the biological and clinical dose distributions were calculated, under the irradiation of carbon ions. The results show that the distribution of clinical dose calculated with the MMKM is closed to the distribution with the MKM in the SOBP, while the discrepancy before and after the SOBP are both within 10%. Moreover, the MKM might overestimate the clinical dose at the distal end of the SOBP more than 5% because of its

  6. Development of a reference biospheres methodology for radioactive waste disposal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dorp, F. van [NAGRA (Switzerland)] [and others

    1996-09-01

    detail by the Working Group assumes a requirement to calculate annual individual doses arising from long term release of radionuclides in groundwater at an inland site. Though to a degree limited, this context is broadly relevant to many assessments and so the FEP List may be useful as a generic starting point for new model development or for auditing existing biosphere assessments. An example illustration of how to apply the methodology has been provided, based on the case description of the Complementary Studies Working Group of BIOMOVS II. (The results of the Complementary Studies exercise are provided in a separate BIOMOVS II Technical Report.) The application of the International FEP List to the Complementary Studies case description has been examined. A major component of the methodology is the development of a conceptual model from the available information about processes and the related data. Several approaches are discussed, including 'process influence diagrams', 'event trees', and the Rock Engineering System (RES) Interaction Matrix Methodology. The latter was tested in some depth by the Working Group and found to be effective at helping to distinguish the more and less important FEPs, and in identifying the important interactions between components of the system being modelled. An interesting feature of the interaction matrix methodology is that the FEP List applied to the matrix construction process can be developed independently from the matrix. If the matrix were to be developed by the same people as the FEP List then there could be legitimate criticism that the matrix, and hence the conceptual models, had been designed in a closed loop of assessment modelers. However, any issue can be introduced by any interested party through the FEP List. The auditing step allows these other issues to be introduced in model development and so forces the assessment team to explain how the issues are to be dealt with. At the same time, previous

  7. Microbial metagenomes from three aquifers in the Fennoscandian shield terrestrial deep biosphere reveal metabolic partitioning among populations.

    Science.gov (United States)

    Wu, Xiaofen; Holmfeldt, Karin; Hubalek, Valerie; Lundin, Daniel; Åström, Mats; Bertilsson, Stefan; Dopson, Mark

    2016-05-01

    Microorganisms in the terrestrial deep biosphere host up to 20% of the earth's biomass and are suggested to be sustained by the gases hydrogen and carbon dioxide. A metagenome analysis of three deep subsurface water types of contrasting age (from 86% coverage. The populations were dominated by Proteobacteria, Candidate divisions, unclassified archaea and unclassified bacteria. The estimated genome sizes of the biosphere. The data were finally used to create a combined metabolic model of the deep terrestrial biosphere microbial community.

  8. Basic theory and model calculations of the Venus ionosphere

    Science.gov (United States)

    Nagy, A. F.; Cravens, T. E.; Gombosi, T. I.

    1983-01-01

    An assessment is undertaken of current understanding of the physical and chemical processes that control Venus's ionospheric behavior, in view of the data that has been made available by the Venera and Pioneer Venus missions. Attention is given to the theoretical framework used in general planetary ionosphere studies, especially to the equations describing the controlling physical and chemical processes, and to the current status of the ion composition, density and thermal structure models developed to reproduce observed ionospheric behavior. No truly comprehensive and successful model of the nightside ionosphere has been published. Furthermore, although dayside energy balance calculations yield electron and ion temperature values that are in close agreement with measured values, the energetics of the night side eludes understanding.

  9. Determination of appropriate models and parameters for premixing calculations

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ik-Kyu; Kim, Jong-Hwan; Min, Beong-Tae; Hong, Seong-Wan

    2008-03-15

    The purpose of the present work is to use experiments that have been performed at Forschungszentrum Karlsruhe during about the last ten years for determining the most appropriate models and parameters for premixing calculations. The results of a QUEOS experiment are used to fix the parameters concerning heat transfer. The QUEOS experiments are especially suited for this purpose as they have been performed with small hot solid spheres. Therefore the area of heat exchange is known. With the heat transfer parameters fixed in this way, a PREMIX experiment is recalculated. These experiments have been performed with molten alumina (Al{sub 2}O{sub 3}) as a simulant of corium. Its initial temperature is 2600 K. With these experiments the models and parameters for jet and drop break-up are tested.

  10. Site and Regional Data for Biosphere Assessment BSA-2009 Supplement to Olkiluoto Biosphere Description 2009

    International Nuclear Information System (INIS)

    Aro, L.; Haapanen, R.; Puhakka, L.; Hjerpe, T.; Kirkkala, T.; Koivunen, S.; Lahdenperae, A.-M.; Salo, T.; Ikonen, A.T.K.; Helin, J.

    2010-06-01

    The safety case for a spent nuclear fuel repository at Olkiluoto includes a computational safety assessment. A site-specific biosphere assessment is an integral part of them both. In 2009 an assessment was conducted to demonstrate preparedness to apply for construction license to the repository in 2012. As a part of the biosphere assessment, the present conditions at the site are described in Olkiluoto biosphere description report for an analogue of the future conditions being simulated in the safety assessment. This report is a supplement to the biosphere description report of 2009 and documents the site and regional data used in the biosphere assessment 'BSA-2009' with respective rationales. (orig.)

  11. Recent Developments in No-Core Shell-Model Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Navratil, P; Quaglioni, S; Stetcu, I; Barrett, B R

    2009-03-20

    We present an overview of recent results and developments of the no-core shell model (NCSM), an ab initio approach to the nuclear many-body problem for light nuclei. In this aproach, we start from realistic two-nucleon or two- plus three-nucleon interactions. Many-body calculations are performed using a finite harmonic-oscillator (HO) basis. To facilitate convergence for realistic inter-nucleon interactions that generate strong short-range correlations, we derive effective interactions by unitary transformations that are tailored to the HO basis truncation. For soft realistic interactions this might not be necessary. If that is the case, the NCSM calculations are variational. In either case, the ab initio NCSM preserves translational invariance of the nuclear many-body problem. In this review, we, in particular, highlight results obtained with the chiral two- plus three-nucleon interactions. We discuss efforts to extend the applicability of the NCSM to heavier nuclei and larger model spaces using importance-truncation schemes and/or use of effective interactions with a core. We outline an extension of the ab initio NCSM to the description of nuclear reactions by the resonating group method technique. A future direction of the approach, the ab initio NCSM with continuum, which will provide a complete description of nuclei as open systems with coupling of bound and continuum states is given in the concluding part of the review.

  12. Modeling and calculation of open carbon dioxide refrigeration system

    International Nuclear Information System (INIS)

    Cai, Yufei; Zhu, Chunling; Jiang, Yanlong; Shi, Hong

    2015-01-01

    Highlights: • A model of open refrigeration system is developed. • The state of CO 2 has great effect on Refrigeration capacity loss by heat transfer. • Refrigeration capacity loss by remaining CO 2 has little relation to the state of CO 2 . • Calculation results are in agreement with the test results. - Abstract: Based on the analysis of the properties of carbon dioxide, an open carbon dioxide refrigeration system is proposed, which is responsible for the situation without external electricity unit. A model of open refrigeration system is developed, and the relationship between the storage environment of carbon dioxide and refrigeration capacity is conducted. Meanwhile, a test platform is developed to simulation the performance of the open carbon dioxide refrigeration system. By comparing the theoretical calculations and the experimental results, several conclusions are obtained as follows: refrigeration capacity loss by heat transfer in supercritical state is much more than that in two-phase region and the refrigeration capacity loss by remaining carbon dioxide has little relation to the state of carbon dioxide. The results will be helpful to the use of open carbon dioxide refrigeration

  13. Sensitivity of the terrestrial biosphere to climatic changes: impact on the carbon cycle.

    Science.gov (United States)

    Friedlingstein, P; Müller, J F; Brasseur, G P

    1994-01-01

    The biosphere is a major pool in the global carbon cycle; its response to climatic change is therefore of great importance. We developed a 5 degrees x 5 degrees longitude-latitude resolution model of the biosphere in which the global distributions of the major biospheric variables, i.e. the vegetation types and the main carbon pools and fluxes, are determined from climatic variables. We defined nine major broad vegetation types: perennial ice, desert and semi-desert, tundra, coniferous forest, temperate deciduous forest, grassland and shrubland, savannah, seasonal tropical forest and evergreen tropical forest. Their geographical repartition is parameterized using correlations between observed vegetation type, precipitation and biotemperature distributions. The model computes as a function of climate and vegetation type, the variables related to the continental biospheric carbon cycle, i.e. the carbon pools such as the phytomass, the litter and the soil organic carbon; and carbon fluxes such as net primary production, litter production and heterotrophic respiration. The modeled present-day biosphere is in good agreement with observation. The model is used to investigate the response of the terrestrial biosphere to climatic changes as predicted by different General Circulation Models (GCM). In particular, the impact on the biosphere of climatic conditions corresponding to the last glacial climate (LGM), 18 000 years ago, is investigated. Comparison with results from present-day climate simulations shows the high sensitivity of the geographical distribution of vegetation types and carbon content as well as biospheric trace gases emissions to climatic changes. The general trend for LGM compared to the present is an increase in low density vegetation types (tundra, desert, grassland) to the detriment of forested areas, in tropical as well as in other regions. Consequently, the biospheric activity (carbon fluxes and trace gases emissions) was reduced.

  14. The Study of Socio-Biospheric Problems.

    Science.gov (United States)

    Scott, Andrew M.

    Concepts, tools, and a methodology are needed which will permit the analysis of emergent socio-biospheric problems and facilitate their effective management. Many contemporary problems may be characterized as socio-biospheric; for example, pollution of the seas, acid rain, the growth of cities, and an atmosphere loaded with carcinogens. However,…

  15. Biosphere analyses for the safety assessment SR-Site - synthesis and summary of results

    Energy Technology Data Exchange (ETDEWEB)

    Saetre, Peter (comp.)

    2010-12-15

    This report summarises nearly 20 biosphere reports and gives a synthesis of the work performed within the SR-Site Biosphere project, i.e. the biosphere part of SR-Site. SR-Site Biosphere provides the main project with dose conversion factors (LDFs), given a unit release rate, for calculation of human doses under different release scenarios, and assesses if a potential release from the repository would have detrimental effects on the environment. The intention of this report is to give sufficient details for an overview of methods, results and major conclusions, with references to the biosphere reports where methods, data and results are presented and discussed in detail. The philosophy of the biosphere assessment was to make estimations of the radiological risk for humans and the environment as realistic as possible, based on the knowledge of present-day conditions at Forsmark and the past and expected future development of the site. This was achieved by using the best available knowledge, understanding and data from extensive site investigations from two sites. When sufficient information was not available, uncertainties were handled cautiously. A systematic identification and evaluation of features and processes that affect transport and accumulation of radionuclides at the site was conducted, and the results were summarised in an interaction matrix. Data and understanding from the site investigation was an integral part of this work, the interaction matrix underpinned the development of the radionuclide model used in the biosphere assessment. Understanding of the marine, lake and river and terrestrial ecosystems at the site was summarized in a conceptual model, and relevant features and process have been characterized to capture site specific parameter values. Detailed investigations of the structure and history of the regolith at the site and simulations of regolith dynamics were used to describe the present day state at Forsmark and the expected development of

  16. Improved perturbative calculations in field theory; Calculation of the mass spectrum and constraints on the supersymmetric standard model; Calculs perturbatifs variationnellement ameliores en theorie des champs; Calcul du spectre et contraintes sur le modele supersymetrique standard

    Energy Technology Data Exchange (ETDEWEB)

    Kneur, J.L

    2006-06-15

    This document is divided into 2 parts. The first part describes a particular re-summation technique of perturbative series that can give a non-perturbative results in some cases. We detail some applications in field theory and in condensed matter like the calculation of the effective temperature of Bose-Einstein condensates. The second part deals with the minimal supersymmetric standard model. We present an accurate calculation of the mass spectrum of supersymmetric particles, a calculation of the relic density of supersymmetric black matter, and the constraints that we can infer from models.

  17. Assimilating solar-induced chlorophyll fluorescence into the terrestrial biosphere model BETHY-SCOPE v1.0: model description and information content

    Science.gov (United States)

    Norton, Alexander J.; Rayner, Peter J.; Koffi, Ernest N.; Scholze, Marko

    2018-04-01

    The synthesis of model and observational information using data assimilation can improve our understanding of the terrestrial carbon cycle, a key component of the Earth's climate-carbon system. Here we provide a data assimilation framework for combining observations of solar-induced chlorophyll fluorescence (SIF) and a process-based model to improve estimates of terrestrial carbon uptake or gross primary production (GPP). We then quantify and assess the constraint SIF provides on the uncertainty in global GPP through model process parameters in an error propagation study. By incorporating 1 year of SIF observations from the GOSAT satellite, we find that the parametric uncertainty in global annual GPP is reduced by 73 % from ±19.0 to ±5.2 Pg C yr-1. This improvement is achieved through strong constraint of leaf growth processes and weak to moderate constraint of physiological parameters. We also find that the inclusion of uncertainty in shortwave down-radiation forcing has a net-zero effect on uncertainty in GPP when incorporated into the SIF assimilation framework. This study demonstrates the powerful capacity of SIF to reduce uncertainties in process-based model estimates of GPP and the potential for improving our predictive capability of this uncertain carbon flux.

  18. Development of nuclear models for higher energy calculations

    International Nuclear Information System (INIS)

    Bozoian, M.; Siciliano, E.R.; Smith, R.D.

    1988-01-01

    Two nuclear models for higher energy calculations have been developed in the regions of high and low energy transfer, respectively. In the former, a relativistic hybrid-type preequilibrium model is compared with data ranging from 60 to 800 MeV. Also, the GNASH exciton preequilibrium-model code with higher energy improvements is compared with data at 200 and 318 MeV. In the region of low energy transfer, nucleon-nucleus scattering is predominately a direct reaction involving quasi-elastic collisions with one or more target nucleons. We discuss various aspects of quasi-elastic scattering which are important in understanding features of cross sections and spin observables. These include (1) contributions from multi-step processes; (2) damping of the continuum response from 2p-2h excitations; (3) the ''optimal'' choice of frame in which to evaluate the nucleon-nucleon amplitudes; and (4) the effect of optical and spin-orbit distortions, which are included in a model based on the RPA the DWIA and the eikonal approximation. 33 refs., 15 figs

  19. Environmental transport and long-term exposure for tritium released in the biosphere

    International Nuclear Information System (INIS)

    Bergman, R.; Bergstroem, U.; Evans, S.

    1979-01-01

    Global cycling of tritium is studied with regard to long-term exposure and dose. Dose and dose commitment are calculated for releases at different latitudes to the troposphere, land and upper ocean layer, with particular regard to effects from release into recipients of intermediate size as, for example, the Baltic Sea. The global transport of tritium appears to be governed by first order kinetics. Compartment models based on linear differential equation systems, as used in this study, should therefore be adequate. The realism and applicability of ecological compartment models are analysed with respect to completeness of the systems of reservoirs and pathways as well as accuracy in assumed reservoir sizes and exchange rates. By introducing different biospheric reservoirs and transfer mechanisms, important carriers and recipients are identified for the analysis of tritium released to air, land and water. Terrestrial biota and groundwater are shown to be significant both with regard to reservoir sizes and influence on the land-troposphere and land-sea exchange of tritium. Model studies regarding the conversion of HT to HTO in different biospheric reservoirs indicate that an atmospheric release of HT may yield up to 1.7 times the dose commitment obtained after release of the same amount of tritium as HTO. The global collective dose commitment from a tropospheric release of tritium is 0.002-0.004 man.rem per Ci depending on the latitude at the release point. Release to the surface ocean layers gives a ten times lower collective dose. (author)

  20. Quantum plasmonics: from jellium models to ab initio calculations

    Directory of Open Access Journals (Sweden)

    Varas Alejandro

    2016-08-01

    Full Text Available Light-matter interaction in plasmonic nanostructures is often treated within the realm of classical optics. However, recent experimental findings show the need to go beyond the classical models to explain and predict the plasmonic response at the nanoscale. A prototypical system is a nanoparticle dimer, extensively studied using both classical and quantum prescriptions. However, only very recently, fully ab initio time-dependent density functional theory (TDDFT calculations of the optical response of these dimers have been carried out. Here, we review the recent work on the impact of the atomic structure on the optical properties of such systems. We show that TDDFT can be an invaluable tool to simulate the time evolution of plasmonic modes, providing fundamental understanding into the underlying microscopical mechanisms.

  1. Selection of models to calculate the LLW source term

    International Nuclear Information System (INIS)

    Sullivan, T.M.

    1991-10-01

    Performance assessment of a LLW disposal facility begins with an estimation of the rate at which radionuclides migrate out of the facility (i.e., the source term). The focus of this work is to develop a methodology for calculating the source term. In general, the source term is influenced by the radionuclide inventory, the wasteforms and containers used to dispose of the inventory, and the physical processes that lead to release from the facility (fluid flow, container degradation, wasteform leaching, and radionuclide transport). In turn, many of these physical processes are influenced by the design of the disposal facility (e.g., infiltration of water). The complexity of the problem and the absence of appropriate data prevent development of an entirely mechanistic representation of radionuclide release from a disposal facility. Typically, a number of assumptions, based on knowledge of the disposal system, are used to simplify the problem. This document provides a brief overview of disposal practices and reviews existing source term models as background for selecting appropriate models for estimating the source term. The selection rationale and the mathematical details of the models are presented. Finally, guidance is presented for combining the inventory data with appropriate mechanisms describing release from the disposal facility. 44 refs., 6 figs., 1 tab

  2. Use of the food-chain model FOOD III and the soil model SCEMR to assess irrigation as a biosphere pathway

    International Nuclear Information System (INIS)

    Sheppard, S.C.

    1985-02-01

    Irrigation of contaminated water onto crop land is a relatively direct pathway for radionuclides to deliver a radiation dose to man. Irrigation was not originally included in the SYVAC assessment model for the Precambrian Shield because no irrigation is currently practised in the region. This report re-evaluates this decision. An analysis of meteorological data shows that crop yield in northern Ontario would benefit from irrigation. Thus, incentives are present for subsistence-scale, and perhaps commercial-scale, irrigation of surface or well water. A food-chain analysis indicated that irrigation with contaminated water could deliver a dose comparable to direct consumption (drinking) of the same water, for some radionuclides. Long-term contamination of soil through irrigation was predicted to be a substantial hazard, even when soil leaching was incorporated into the food-chain model. This report presents parameter estimates that could be used to incorporate irrigation as a pathway in the SYVAC code and will constitute the basis for further decisions concerning this pathway

  3. Calculational models of close-spaced thermionic converters

    International Nuclear Information System (INIS)

    McVey, J.B.

    1983-01-01

    Two new calculational models have been developed in conjunction with the SAVTEC experimental program. These models have been used to analyze data from experimental close-spaced converters, providing values for spacing, electrode work functions, and converter efficiency. They have also been used to make performance predictions for such converters over a wide range of conditions. Both models are intended for use in the collisionless (Knudsen) regime. They differ from each other in that the simpler one uses a Langmuir-type formulation which only considers electrons emitted from the emitter. This approach is implemented in the LVD (Langmuir Vacuum Diode) computer program, which has the virtue of being both simple and fast. The more complex model also includes both Saha-Langmuir emission of positive cesium ions from the emitter and collector back emission. Computer implementation is by the KMD1 (Knudsen Mode Diode) program. The KMD1 model derives the particle distribution functions from the Vlasov equation. From these the particle densities are found for various interelectrode motive shapes. Substituting the particle densities into Poisson's equation gives a second order differential equation for potential. This equation can be integrated once analytically. The second integration, which gives the interelectrode motive, is performed numerically by the KMD1 program. This is complicated by the fact that the integrand is often singular at one end point of the integration interval. The program performs a transformation on the integrand to make it finite over the entire interval. Once the motive has been computed, the output voltage, current density, power density, and efficiency are found. The program is presently unable to operate when the ion richness ratio β is between about .8 and 1.0, due to the occurrence of oscillatory motives

  4. Calculation of extreme wind atlases using mesoscale modeling. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, X.G..; Badger, J.

    2012-06-15

    The objective of this project is to develop new methodologies for extreme wind atlases using mesoscale modeling. Three independent methodologies have been developed. All three methodologies are targeted at confronting and solving the problems and drawbacks in existing methods for extreme wind estimation regarding the use of modeled data (coarse resolution, limited representation of storms) and measurements (short period and technical issues). The first methodology is called the selective dynamical downscaling method. For a chosen area, we identify the yearly strongest storms through global reanalysis data at each model grid point and run a mesoscale model, here the Weather Research and Forecasting (WRF) model, for all storms identified. Annual maximum winds and corresponding directions from each mesoscale grid point are then collected, post-processed and used in Gumbel distribution to obtain the 50-year wind. The second methodology is called the statistical-dynamical downscaling method. For a chosen area, the geostrophic winds at a representative grid point from the global reanalysis data are used to obtain the annual maximum winds in 12 sectors for a period of 30 years. This results in 360 extreme geostrophic winds. Each of the 360 winds is used as a stationary forcing in a mesoscale model, here KAMM. For each mesoscale grid point the annual maximum winds are post-processed and used to a Gumbel fit to obtain the 50-year wind. For the above two methods, the post-processing is an essential part. It calculates the speedup effects using a linear computation model (LINCOM) and corrects the winds from the mesoscale modeling to a standard condition, i.e. 10 m above a homogeneous surface with a roughness length 5 cm. Winds of the standard condition can then be put into a microscale model to resolve the local terrain and roughness effects around particular turbine sites. By converting both the measured and modeled winds to the same surface conditions through the post

  5. Estimation of Mangrove Net Primary Production and Carbon Sequestration service using Light Use Efficiency model in the Sunderban Biosphere region, India

    Science.gov (United States)

    Sannigrahi, Srikanta; Sen, Somnath; Paul, Saikat

    2016-04-01

    Net Primary Production (NPP) of mangrove ecosystem and its capacity to sequester carbon from the atmosphere may be used to quantify the regulatory ecosystem services. Three major group of parameters has been set up as BioClimatic Parameters (BCP): (Photosynthetically Active Radiation (PAR), Absorbed PAR (APAR), Fraction of PAR (FPAR), Photochemical Reflectance Index (PRI), Light Use Efficiency (LUE)), BioPhysical Parameters (BPP) :(Normalize Difference Vegetation Index (NDVI), scaled NDVI, Enhanced Vegetation Index (EVI), scaled EVI, Optimised and Modified Soil Adjusted Vegetation Index (OSAVI, MSAVI), Leaf Area Index (LAI)), and Environmental Limiting Parameters (ELP) (Temperature Stress (TS), Land Surface Water Index (LSWI), Normalize Soil Water Index (NSWI), Water Stress Scalar (WS), Inversed WS (iWS) Land Surface Temperature (LST), scaled LST, Vapor Pressure Deficit (VPD), scaled VPD, and Soil Water Deficit Index (SWDI)). Several LUE models namely Carnegie Ames Stanford Approach (CASA), Eddy Covariance - LUE (EC-LUE), Global Production Efficiency Model (GloPEM), Vegetation Photosynthesis Model (VPM), MOD NPP model, Temperature and Greenness Model (TG), Greenness and Radiation model (GR) and MOD17 was adopted in this study to assess the spatiotemporal nature of carbon fluxes. Above and Below Ground Biomass (AGB & BGB) was calculated using field based estimation of OSAVI and NDVI. Microclimatic zonation has been set up to assess the impact of coastal climate on environmental limiting factors. MODerate Resolution Imaging Spectroradiometer (MODIS) based yearly Gross Primary Production (GPP) and NPP product MOD17 was also tested with LUE based results with standard model validation statistics: Root Mean Square of Error (RMSE), Mean Absolute Error (MEA), Bias, Coefficient of Variation (CV) and Coefficient of Determination (R2). The performance of CASA NPP was tested with the ground based NPP with R2 = 0.89 RMSE = 3.28 P = 0.01. Among the all adopted models, EC

  6. Calculating ε'/ε in the standard model

    International Nuclear Information System (INIS)

    Sharpe, S.R.

    1988-01-01

    The ingredients needed in order to calculate ε' and ε are described. Particular emphasis is given to the non-perturbative calculations of matrix elements by lattice methods. The status of the electromagnetic contribution to ε' is reviewed. 15 refs

  7. Anthropogenic transformation of the terrestrial biosphere.

    Science.gov (United States)

    Ellis, Erle C

    2011-03-13

    Human populations and their use of land have transformed most of the terrestrial biosphere into anthropogenic biomes (anthromes), causing a variety of novel ecological patterns and processes to emerge. To assess whether human populations and their use of land have directly altered the terrestrial biosphere sufficiently to indicate that the Earth system has entered a new geological epoch, spatially explicit global estimates of human populations and their use of land were analysed across the Holocene for their potential to induce irreversible novel transformation of the terrestrial biosphere. Human alteration of the terrestrial biosphere has been significant for more than 8000 years. However, only in the past century has the majority of the terrestrial biosphere been transformed into intensively used anthromes with predominantly novel anthropogenic ecological processes. At present, even were human populations to decline substantially or use of land become far more efficient, the current global extent, duration, type and intensity of human transformation of ecosystems have already irreversibly altered the terrestrial biosphere at levels sufficient to leave an unambiguous geological record differing substantially from that of the Holocene or any prior epoch. It remains to be seen whether the anthropogenic biosphere will be sustained and continue to evolve.

  8. Comparative analysis of calculation models of railway subgrade

    Directory of Open Access Journals (Sweden)

    I.O. Sviatko

    2013-08-01

    Full Text Available Purpose. In transport engineering structures design, the primary task is to determine the parameters of foundation soil and nuances of its work under loads. It is very important to determine the parameters of shear resistance and the parameters, determining the development of deep deformations in foundation soils, while calculating the soil subgrade - upper track structure interaction. Search for generalized numerical modeling methods of embankment foundation soil work that include not only the analysis of the foundation stress state but also of its deformed one. Methodology. The analysis of existing modern and classical methods of numerical simulation of soil samples under static load was made. Findings. According to traditional methods of analysis of ground masses work, limitation and the qualitative estimation of subgrade deformations is possible only indirectly, through the estimation of stress and comparison of received values with the boundary ones. Originality. A new computational model was proposed in which it will be applied not only classical approach analysis of the soil subgrade stress state, but deformed state will be also taken into account. Practical value. The analysis showed that for accurate analysis of ground masses work it is necessary to develop a generalized methodology for analyzing of the rolling stock - railway subgrade interaction, which will use not only the classical approach of analyzing the soil subgrade stress state, but also take into account its deformed one.

  9. Variability of Phenology and Fluxes of Water and Carbon with Observed and Simulated Soil Moisture in the Ent Terrestrial Biosphere Model (Ent TBM Version 1.0.1.0.0)

    Science.gov (United States)

    Kim, Y.; Moorcroft, P. R.; Aleinov, Igor; Puma, M. J.; Kiang, N. Y.

    2015-01-01

    The Ent Terrestrial Biosphere Model (Ent TBM) is a mixed-canopy dynamic global vegetation model developed specifically for coupling with land surface hydrology and general circulation models (GCMs). This study describes the leaf phenology submodel implemented in the Ent TBM version 1.0.1.0.0 coupled to the carbon allocation scheme of the Ecosystem Demography (ED) model. The phenology submodel adopts a combination of responses to temperature (growing degree days and frost hardening), soil moisture (linearity of stress with relative saturation) and radiation (light length). Growth of leaves, sapwood, fine roots, stem wood and coarse roots is updated on a daily basis. We evaluate the performance in reproducing observed leaf seasonal growth as well as water and carbon fluxes for four plant functional types at five Fluxnet sites, with both observed and prognostic hydrology, and observed and prognostic seasonal leaf area index. The phenology submodel is able to capture the timing and magnitude of leaf-out and senescence for temperate broadleaf deciduous forest (Harvard Forest and Morgan- Monroe State Forest, US), C3 annual grassland (Vaira Ranch, US) and California oak savanna (Tonzi Ranch, US). For evergreen needleleaf forest (Hyytiäla, Finland), the phenology submodel captures the effect of frost hardening of photosynthetic capacity on seasonal fluxes and leaf area. We address the importance of customizing parameter sets of vegetation soil moisture stress response to the particular land surface hydrology scheme. We identify model deficiencies that reveal important dynamics and parameter needs.

  10. Accurate Holdup Calculations with Predictive Modeling & Data Integration

    Energy Technology Data Exchange (ETDEWEB)

    Azmy, Yousry [North Carolina State Univ., Raleigh, NC (United States). Dept. of Nuclear Engineering; Cacuci, Dan [Univ. of South Carolina, Columbia, SC (United States). Dept. of Mechanical Engineering

    2017-04-03

    In facilities that process special nuclear material (SNM) it is important to account accurately for the fissile material that enters and leaves the plant. Although there are many stages and processes through which materials must be traced and measured, the focus of this project is material that is “held-up” in equipment, pipes, and ducts during normal operation and that can accumulate over time into significant quantities. Accurately estimating the holdup is essential for proper SNM accounting (vis-à-vis nuclear non-proliferation), criticality and radiation safety, waste management, and efficient plant operation. Usually it is not possible to directly measure the holdup quantity and location, so these must be inferred from measured radiation fields, primarily gamma and less frequently neutrons. Current methods to quantify holdup, i.e. Generalized Geometry Holdup (GGH), primarily rely on simple source configurations and crude radiation transport models aided by ad hoc correction factors. This project seeks an alternate method of performing measurement-based holdup calculations using a predictive model that employs state-of-the-art radiation transport codes capable of accurately simulating such situations. Inverse and data assimilation methods use the forward transport model to search for a source configuration that best matches the measured data and simultaneously provide an estimate of the level of confidence in the correctness of such configuration. In this work the holdup problem is re-interpreted as an inverse problem that is under-determined, hence may permit multiple solutions. A probabilistic approach is applied to solving the resulting inverse problem. This approach rates possible solutions according to their plausibility given the measurements and initial information. This is accomplished through the use of Bayes’ Theorem that resolves the issue of multiple solutions by giving an estimate of the probability of observing each possible solution. To use

  11. The Sword of Damocles and the Biosphere

    OpenAIRE

    Cairns, John

    2011-01-01

    The tale of the sword of Damocles can be used to describe the sword hanging by a thread over humankind with the damage it is doing to the present biosphere. The sixth biosphere, or the current biosphere, is experiencing a significant reduction in species caused by human-related activities. The signs of risk have markedly increased by the signs differ considerably from one are to another, and people tend do discount global change because it is unnoticeable in their local area. If humans begin...

  12. Nuclear fuel waste management - biosphere program highlights - 1978 to 1996

    International Nuclear Information System (INIS)

    Zach, R.

    1997-07-01

    The biosphere program in support of the development of the disposal concept for Canadian nuclear fuel waste since 1978 is scheduled for close-out. AECL's Environmental Science Branch (ESB) was mainly responsible for work in this program. In order to preserve as much information as possible, this report highlights many of the key achievements of the program, particularly those related to the development of the BIOTRAC biosphere model and its supporting research. This model was used for the assessment and review of the disposal concept in an environmental impact statement (EIS). The report also treats highlights related to alternative models, external scientific/technical reviews, EIS feedback, and the international BIOMOVS model validation program. Furthermore, it highlights basic aspects of future modelling and research needs in relation to siting a disposal facility. In this, feedback from the various reviews and the EIS is taken into account. Appendices of the report include listings of key ESB staff involved in the program, all the scientific/technical reports and papers produced under the program, contracts let to outside agencies, and issues raised by various participants or intervenors during the EIS review. Although the report is concerned with close-out of the biosphere program, it also provides valuable information for a continuing program concerned with siting a disposal facility. One of the conclusions of the report is that such a program is essential for successfully siting such a facility. (author)

  13. Regionally Strong Feedbacks between the Atmosphere and Terrestrial Biosphere

    Science.gov (United States)

    Green, J. K.; Konings, A. G.; Alemohammad, S. H.; Berry, J. A.; Kolassa, J.; Lee, J. E.; Gentine, P.

    2017-12-01

    Vegetation variability modulates water and energy fluxes to the atmosphere with the potential to impact climate and weather patterns that in turn regulate vegetation dynamics. In this study, we quantify variations in the strength of biosphere-atmosphere feedbacks (influencing the hydrologic cycle) across different biomes and timescales and evaluate the ability of Earth System Models to capture them. We use remote sensing data (using Solar Induced Fluorescence as a proxy for photosynthesis) combined with a statistical Multivariate Granger Causality technique to evaluate the feedback strength and the timescale in which they occur, which is then used as a benchmark for model assessment. Our conclusions have the potential to improve climate and weather predictions and provide insight of ecohydrological processes that have regional scale impact (Green, J.K. et al. 2017). Green, Julia K., et al. Regionally strong feedbacks between the atmosphere and terrestrial biosphere. Nature Geoscience. 10, 410-414 (2017).

  14. The interactions between soil-biosphere-atmosphere (ISBA) land surface model multi-energy balance (MEB) option in SURFEXv8 - Part 2: Introduction of a litter formulation and model evaluation for local-scale forest sites

    Science.gov (United States)

    Napoly, Adrien; Boone, Aaron; Samuelsson, Patrick; Gollvik, Stefan; Martin, Eric; Seferian, Roland; Carrer, Dominique; Decharme, Bertrand; Jarlan, Lionel

    2017-04-01

    Land surface models (LSMs) need to balance a complicated trade-off between computational cost and complexity in order to adequately represent the exchanges of energy, water and matter with the atmosphere and the ocean. Some current generation LSMs use a simplified or composite canopy approach that generates recurrent errors in simulated soil temperature and turbulent fluxes. In response to these issues, a new version of the interactions between soil-biosphere-atmosphere (ISBA) land surface model has recently been developed that explicitly solves the transfer of energy and water from the upper canopy and the forest floor, which is characterized as a litter layer. The multi-energy balance (MEB) version of ISBA is first evaluated for three well-instrumented contrasting local-scale sites, and sensitivity tests are performed to explore the behavior of new model parameters. Second, ISBA-MEB is benchmarked against observations from 42 forested sites from the global micro-meteorological network (FLUXNET) for multiple annual cycles.It is shown that ISBA-MEB outperforms the composite version of ISBA in improving the representation of soil temperature, ground, sensible and, to a lesser extent, latent heat fluxes. Both versions of ISBA give comparable results in terms of simulated latent heat flux because of the similar formulations of the water uptake and the stomatal resistance. However, MEB produces a better agreement with the observations of sensible heat flux than the previous version of ISBA for 87.5 % of the simulated years across the 42 forested FLUXNET sites. Most of this improvement arises owing to the improved simulation of the ground conduction flux, which is greatly improved using MEB, especially owing to the forest litter parameterization. It is also shown that certain processes are also modeled more realistically (such as the partitioning of evapotranspiration into transpiration and ground evaporation), even if certain statistical performances are neutral. The

  15. Full waveform modelling and misfit calculation using the VERCE platform

    Science.gov (United States)

    Garth, Thomas; Spinuso, Alessandro; Casarotti, Emanuele; Magnoni, Federica; Krischner, Lion; Igel, Heiner; Schwichtenberg, Horst; Frank, Anton; Vilotte, Jean-Pierre; Rietbrock, Andreas

    2016-04-01

    simulated and recorded waveforms, enabling seismologists to specify and steer their misfit analyses using existing python tools and libraries such as Pyflex and the dispel4py data-intensive processing library. All these processes, including simulation, data access, pre-processing and misfit calculation, are presented to the users of the gateway as dedicated and interactive workspaces. The VERCE platform can also be used to produce animations of seismic wave propagation through the velocity model, and synthetic shake maps. We demonstrate the functionality of the VERCE platform with two case studies, using the pre-loaded velocity model and mesh for Chile and Northern Italy. It is envisioned that this tool will allow a much greater range of seismologists to access these full waveform inversion tools, and aid full waveform tomographic and source inversion, synthetic shake map production and other full waveform applications, in a wide range of tectonic settings.

  16. Governing Portable Conservation and Development Landscapes: Reconsidering Evidence in the Context of the Mbaracayú Biosphere Reserve

    Science.gov (United States)

    Elgert, Laureen

    2014-01-01

    Conservation-with-development landscapes, such as UNESCO's Man and Biosphere Reserves, differentiate between areas of "nature" and "society". In Paraguay's Mbaracayú Biosphere Reserve, as elsewhere, this model has been used to support governance that focuses on conservation in the "core area" and sustainable…

  17. The development of biosphere codes for use in assessment of the radiological impact of geological repositories for radioactive waste

    International Nuclear Information System (INIS)

    Coughtrey, P.J.; Kane, P.; Thorne, M.C.

    1982-12-01

    A statement of radiological protection criteria and measures of dose, forms the preface to a review of extant biosphere codes. Consideration is given to the implementation of the codes FOODII and NEPTUN for use with SYVAC. The selection of nuclides for consideration in SYVAC is discussed. Detailed specifications are provided for biosphere model developments desirable in the longer term. (author)

  18. Biomedical program at Space Biospheres Ventures

    Science.gov (United States)

    Walford, Roy

    1990-01-01

    There are many similarities and some important differences between potential health problems of Biosphere 2 and those of which might be anticipated for a space station or a major outpost on Mars. The demands of time, expense, and equipment would not readily allow medical evacuation from deep space for a serious illness or major trauma, whereas personnel can easily be evacuated from Biosphere 2 if necessary. Treatment facilities can be somewhat less inclusive, since distance would not compel the undertaking of heroic measures or highly complicated surgical procedures on site, and with personnel not fully trained for these procedures. The similarities are given between medical requirements of Biosphere 2 and the complex closed ecological systems of biospheres in space or on Mars. The major problems common to all these would seem to be trauma, infection, and toxicity. It is planned that minor and moderate degrees of trauma, including debridement and suturing of wounds, x ray study of fractures, will be done within Biosphere 2. Bacteriologic and fungal infections, and possibly allergies to pollen or spores are expected to be the commonest medical problem within Biosphere 2.

  19. Improvements in the model of neutron calculations for research reactors

    International Nuclear Information System (INIS)

    Calzetta, O.; Leszczynski, F.

    1987-01-01

    Within the research program in the field of neutron physics calculations being carried out in the Nuclear Engineering Division at the Centro Atomico Bariloche, the errors which due to some typical approximations appear in the final results, are being researched. For research MTR type reactors, two approximations, for high and low enrichment are investigated: the treatment of the geometry and the method of few-group cell cross-sections calculation, particularly in the resonance energy region. Commonly, the cell constants used for the entire reactor calculation are obtained making an homogenization of the full fuel elements by means of one-dimensional calculations. An improvement is made that explicitly includes the fuel element frames in the core calculation geometry. Besides, a detailed treatment-in energy and space- is used to find the resonance few-group cross sections, and a comparison of the results with detailed and approximated calculations is made. The least number and the best mesh of energy groups needed for cell calculations is fixed too. (Author)

  20. Improvements in the model of neutron calculations for research reactors

    International Nuclear Information System (INIS)

    Calzetta, Osvaldo; Leszczynski, Francisco

    1987-01-01

    Within the research program in the field of neutron physics calculations being carried out in the Nuclear Engineering Division at the Centro Atomico Bariloche, the errors which due to some typical approximations appear in the final results are researched. For research MTR type reactors, two approximations, for high and low enrichment are investigated: the treatment of the geometry and the method of few-group cell cross-sections calculation, particularly in the resonance energy region. Commonly, the cell constants used for the entire reactor calculation are obtained making an homogenization of the full fuel elements, by one-dimensional calculations. An improvement is made that explicitly includes the fuel element frames in the core calculation geometry. Besides, a detailed treatment-in energy and space- is used to find the resonance few-group cross sections, and a comparison of the results with detailed and approximated calculations is made. The least number and the best mesh of energy groups needed for cell calculations is fixed too. (Author) [es

  1. Sensitivity analysis for modules for various biosphere types

    International Nuclear Information System (INIS)

    Karlsson, Sara; Bergstroem, U.; Rosen, K.

    2000-09-01

    This study presents the results of a sensitivity analysis for the modules developed earlier for calculation of ecosystem specific dose conversion factors (EDFs). The report also includes a comparison between the probabilistically calculated mean values of the EDFs and values gained in deterministic calculations. An overview of the distribution of radionuclides between different environmental parts in the models is also presented. The radionuclides included in the study were 36 Cl, 59 Ni, 93 Mo, 129 I, 135 Cs, 237 Np and 239 Pu, sel to represent various behaviour in the biosphere and some are of particular importance from the dose point of view. The deterministic and probabilistic EDFs showed a good agreement, for most nuclides and modules. Exceptions from this occurred if very skew distributions were used for parameters of importance for the results. Only a minor amount of the released radionuclides were present in the model compartments for all modules, except for the agricultural land module. The differences between the radionuclides were not pronounced which indicates that nuclide specific parameters were of minor importance for the retention of radionuclides for the simulated time period of 10 000 years in those modules. The results from the agricultural land module showed a different pattern. Large amounts of the radionuclides were present in the solid fraction of the saturated soil zone. The high retention within this compartment makes the zone a potential source for future exposure. Differences between the nuclides due to element specific Kd-values could be seen. The amount of radionuclides present in the upper soil layer, which is the most critical zone for exposure to humans, was less then 1% for all studied radionuclides. The sensitivity analysis showed that the physical/chemical parameters were the most important in most modules in contrast to the dominance of biological parameters in the uncertainty analysis. The only exception was the well module where

  2. Project SAFE. Update of the SFR-1 safety assessment. Phase 1. Appendix A6: Biosphere

    International Nuclear Information System (INIS)

    Kautsky, U.; Bergstroem, U.

    1998-01-01

    There has been a considerable development of models used for describing the turnover of radionuclides or other pollutants in the biosphere. New regulations require realistic assessments and description of effects on fauna and flora. Thus the use of trophic transfer models will be a more appropriate way to model the biosphere. These models take all accumulations of radio-nuclides in the ecosystem into account, not only direct pathways to man. Thus these models must be developed for this area. Moreover the turnover of loose deposits needs to be modelled. To be able to use these models there is a need to collect data on sediment composition, ecosystem structure and potential changes due e.g. sea-level fluctuations. These data will be collected from literature and where it is necessary complemented with field surveys. In some cases new models need to be developed. The integration of the geosphere and biosphere models is identified as an important issue

  3. Landscape modeling for dose calculations in the safety assessment of a repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    Lindborg, Tobias; Kautsky, Ulrik; Brydsten, Lars

    2007-01-01

    The Swedish Nuclear Fuel and Waste Management Co.,(SKB), pursues site investigations for the final repository for spent nuclear fuel at two sites in the south eastern part of Sweden, the Forsmark- and the Laxemar site. Data from the two site investigations are used to build site descriptive models of the areas. These models describe the bedrock and surface system properties important for designing the repository, the environmental impact assessment, and the long-term safety, i.e. up to 100,000 years, in a safety assessment. In this paper we discuss the methodology, and the interim results for, the landscape model, used in the safety assessment to populate the Forsmark site in the numerical dose models. The landscape model is built upon ecosystem types, e.g. a lake or a mire, (Biosphere Objects) that are connected in the landscape via surface hydrology. Each of the objects have a unique set of properties derived from the site description. The objects are identified by flow transport modeling, giving discharge points at the surface for all possible flow paths from the hypothetical repository in the bedrock. The landscape development is followed through time by using long-term processes e.g. shoreline displacement and sedimentation. The final landscape model consists of a number of maps for each chosen time period and a table of properties that describe the individual objects which constitutes the landscape. The results show a landscape that change over time during 20,000 years. The time period used in the model equals the present interglacial and can be used as an analogue for a future interglacial. Historically, the model area was covered by sea, and then gradually changes into a coastal area and, in the future, into a terrestrial inland landscape. Different ecosystem types are present during the landscape development, e.g. sea, lakes, agricultural areas, forest and wetlands (mire). The biosphere objects may switch from one ecosystem type to another during the

  4. 40 CFR 600.207-93 - Calculation of fuel economy values for a model type.

    Science.gov (United States)

    2010-07-01

    ... Values § 600.207-93 Calculation of fuel economy values for a model type. (a) Fuel economy values for a... update sales projections at the time any model type value is calculated for a label value. (iii) The... those intended for sale in other states, he will calculate fuel economy values for each model type for...

  5. Safety case for the disposal of spent nuclear fuel at Olkiluoto - Biosphere assessment 2012

    International Nuclear Information System (INIS)

    2013-09-01

    Biosphere Assessment sits within Posiva Oy's safety case 'TURVA-2012' report portfolio and has the objectives of presenting the assessment methodology, a summary of the surface environment at the Olkiluoto site and an assessment of the surface environment scenarios that have been identified in Formulation of Radionuclide Release Scenarios. A base scenario, variant scenarios and disturbance scenarios are considered. For the base scenario, a Reference Case has been identified and analysed. For the other scenarios, a range of biosphere calculation cases has been identified and analysed. All calculation cases, except cases addressing inadvertent human intrusion, are based on repository calculation cases, assessed in Assessment of Radionuclide Release Scenarios, in which failure of a single spent fuel canister gives radionuclide releases to the biosphere within the dose assessment time window of ten millennia. The biosphere calculation cases take into account uncertainties in the development of the terrain and the ecosystems, land use, location of the releases to the surface environment, radionuclide transport properties and dietary profiles. The resulting annual doses to humans for all calculation cases for the base and variant scenarios are below the radiation dose constraints for most exposed people and other people, as set out by the Finnish regulator, generally by more than two orders of magnitude. The resulting absorbed doses rates to plants and animals for all calculation cases imply that any radiological impacts of these releases will be negligible (orig.)

  6. Impact of a global warming on biospheric sources of methane and its climatic consequences

    Science.gov (United States)

    Hameed, S.; Cess, R. D.

    1980-01-01

    Most of atmospheric methane originates by bacterial processes in anaerobic environments within the soil which are found to become more productive with increases in ambient temperature. A warming of climate, due to increasing levels of industrial gases resulting from fossil fuel burning, is thus likely to increase methane abundance within the atmosphere. This may lead to further heating of the atmosphere, since both methane and ozone (which is generated in the troposphere from reactions of methane) have greenhouse effects. This feedback mechanism has been explored with the use of a coupled climate-chemical model of the troposphere, by the calculation of the impact of the predicted global warming due to increased emissions of carbon dioxide and other industrial gases on the biospheric sources of methane.

  7. Calculational advance in the modeling of fuel-coolant interactions

    International Nuclear Information System (INIS)

    Bohl, W.R.

    1982-01-01

    A new technique is applied to numerically simulate a fuel-coolant interaction. The technique is based on the ability to calculate separate space- and time-dependent velocities for each of the participating components. In the limiting case of a vapor explosion, this framework allows calculation of the pre-mixing phase of film boiling and interpenetration of the working fluid by hot liquid, which is required for extrapolating from experiments to a reactor hypothetical accident. Qualitative results are compared favorably to published experimental data where an iron-alumina mixture was poured into water. Differing results are predicted with LMFBR materials

  8. Living microbial ecosystems within the active zone of catagenesis: Implications for feeding the deep biosphere

    Science.gov (United States)

    Horsfield, B.; Schenk, H. J.; Zink, K.; Ondrak, R.; Dieckmann, V.; Kallmeyer, J.; Mangelsdorf, K.; di Primio, R.; Wilkes, H.; Parkes, R. J.; Fry, J.; Cragg, B.

    2006-06-01

    proven using 14C-radiolabelled substrates for methanogenesis, bacterial cell counts and intact phospholipids. Altogether, these results point to an overlap of abiotic thermal degradation reactions going on in the same part of the sedimentary column as where a deep biosphere exists. The organic matter preserved in Nankai Trough sediments is of the type that generates putative feedstocks for microbial activity, namely oxygenated compounds and hydrocarbons. Furthermore, the rates of thermal degradation calculated from the kinetic model closely resemble rates of respiration and electron donor consumption independently measured in other deep biosphere environments. We deduce that abiotically driven degradation reactions have provided substrates for microbial activity in deep sediments at this convergent continental margin.

  9. Developing Starlight connections with UNESCO sites through the Biosphere Smart

    Science.gov (United States)

    Marin, Cipriano

    2015-08-01

    The large number of UNESCO Sites around the world, in outstanding sites ranging from small islands to cities, makes it possible to build and share a comprehensive knowledge base on good practices and policies on the preservation of the night skies consistent with the protection of the associated scientific, natural and cultural values. In this context, the Starlight Initiative and other organizations such as IDA play a catalytic role in an essential international process to promote comprehensive, holistic approaches on dark sky preservation, astronomical observation, environmental protection, responsible lighting, sustainable energy, climate change and global sustainability.Many of these places have the potential to become models of excellence to foster the recovery of the dark skies and its defence against light pollution, included some case studies mentioned in the Portal to the Heritage of Astronomy.Fighting light pollution and recovering starry sky are already elements of a new emerging culture in biosphere reserves and world heritage sites committed to acting on climate change and sustainable development. Over thirty territories, including biosphere reserves and world heritage sites, have been developed successful initiatives to ensure night sky quality and promote sustainable lighting. Clear night skies also provide sustainable income opportunities as tourists and visitors are eagerly looking for sites with impressive night skies.Taking into account the high visibility and the ability of UNESCO sites to replicate network experiences, the Starlight Initiative has launched an action In cooperation with Biosphere Smart, aimed at promoting the Benchmark sites.Biosphere Smart is a global observatory created in partnership with UNESCO MaB Programme to share good practices, and experiences among UNESCO sites. The Benchmark sites window allows access to all the information of the most relevant astronomical heritage sites, dark sky protected areas and other places

  10. Inferring CO2 Fluxes from OCO-2 for Assimilation into Land Surface Models to Calculate Net Ecosystem Exchange

    Science.gov (United States)

    Prouty, R.; Radov, A.; Halem, M.; Nearing, G. S.

    2016-12-01

    Investigations of mid to high latitude atmospheric CO2 show a growing seasonal amplitude. Land surface models poorly predict net ecosystem exchange (NEE) and are unable to substantiate these sporadic observations. An investigation of how the biosphere has reacted to changes in atmospheric CO2 is essential to our understanding of potential climate-vegetation feedbacks. A global, seasonal investigation of CO2-flux is then necessary in order to assimilate into land surface models for improving the prediction of annual NEE. The Atmospheric Radiation Measurement program (ARM) of DOE collects CO2-flux measurements (in addition to CO2 concentration and various other meteorological quantities) at several towers located around the globe at half hour temporal frequencies. CO2-fluxes are calculated via the eddy covariance technique, which utilizes CO2-densities and wind velocities to calculate CO2-fluxes. The global coverage of CO2 concentrations as provided by the Orbiting Carbon Observatory (OCO-2) provide satellite-derived CO2 concentrations all over the globe. A framework relating the satellite-inferred CO2 concentrations collocated with the ground-based ARM as well as Ameriflux stations would enable calculations of CO2-fluxes far from the station sites around the entire globe. Regression techniques utilizing deep-learning neural networks may provide such a framework. Additionally, meteorological reanalysis allows for the replacement of the ARM multivariable meteorological variables needed to infer the CO2-fluxes. We present the results of inferring CO2-fluxes from OCO-2 CO2 concentrations for a two year period, Sept. 2014- Sept. 2016 at the ARM station located near Oklahoma City. A feed-forward neural network (FFNN) is used to infer relationships between the following data sets: F([ARM CO2-density], [ARM Meteorological Data]) = [ARM CO2-Flux] F([OCO-2 CO2-density],[ARM Meteorological Data]) = [ARM CO2-Flux] F([ARM CO2-density],[Meteorological Reanalysis]) = [ARM CO2-Flux

  11. Comparison of Calculation Models for Bucket Foundation in Sand

    DEFF Research Database (Denmark)

    Vaitkunaite, Evelina; Molina, Salvador Devant; Ibsen, Lars Bo

    The possibility of fast and rather precise preliminary offshore foundation design is desirable. The ultimate limit state of bucket foundation is investigated using three different geotechnical calculation tools: [Ibsen 2001] an analytical method, LimitState:GEO and Plaxis 3D. The study has focuse...

  12. National Stormwater Calculator - Version 1.1 (Model)

    Science.gov (United States)

    EPA’s National Stormwater Calculator (SWC) is a desktop application that estimates the annual amount of rainwater and frequency of runoff from a specific site anywhere in the United States (including Puerto Rico). The SWC estimates runoff at a site based on available information ...

  13. Conch, Cooperatives, and Conflict: Conservation and Resistance in the Banco Chinchorro Biosphere Reserve

    Directory of Open Access Journals (Sweden)

    David M Hoffman

    2014-01-01

    Full Text Available In theory, biosphere reserves link biodiversity conservation with development, primarily through sustainable resource utilisation, and alternative, conservation-compatible economies in the buffer and transition zones outside the core area. Successful management should reduce pressure on natural resources within its core area as well as enable local communities to participate in the management of buffer zone resources in a sustainable manner. The Banco Chinchorro Biosphere Reserve was declared in 1996 to protect coral reefs and marine biodiversity, while also enabling fishing cooperatives to maintain their livelihoods based upon the sustainable extraction of lobster, conch, and scalefish. In 2004, eight years after the Reserve′s declaration, Mexican authorities struggled to control marine resource use in the reserve, especially the extraction of queen conch (Strombus gigas. This article provides an overview of the long struggle to conserve queen conch populations in the area. Particular attention is paid to describing the various forms of resistance fishermen employed to counter the increasing regulation and vigilance that accompanied the creation of the Banco Chinchorro Biosphere Reserve. This case chronicles the resistance to regulation and interpersonal violence that erupts when entrenched attitudes and practices are confronted with increasing surveillance. Thus, what was observed in the Banco Chinchorro Biosphere Reserve parallels other research that depicts the forms of resistance to conservation that local people enact when confronted with conservation interventions. Finally, the plight of queen conch in the Banco Chinchorro Biosphere Reserve clearly reflects the conflicts and difficulties found across Mexico in the implementation of the biosphere reserve model.

  14. Perturbation theory calculations of model pair potential systems

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Jianwu [Iowa State Univ., Ames, IA (United States)

    2016-01-01

    Helmholtz free energy is one of the most important thermodynamic properties for condensed matter systems. It is closely related to other thermodynamic properties such as chemical potential and compressibility. It is also the starting point for studies of interfacial properties and phase coexistence if free energies of different phases can be obtained. In this thesis, we will use an approach based on the Weeks-Chandler-Anderson (WCA) perturbation theory to calculate the free energy of both solid and liquid phases of Lennard-Jones pair potential systems and the free energy of liquid states of Yukawa pair potentials. Our results indicate that the perturbation theory provides an accurate approach to the free energy calculations of liquid and solid phases based upon comparisons with results from molecular dynamics (MD) and Monte Carlo (MC) simulations.

  15. Review of geosphere-biosphere interface processes and their handling in the safety case of Posiva

    International Nuclear Information System (INIS)

    Lahdenperae, A.-M.

    2006-12-01

    The report describes list of databases of the Features, Events and Processes (FEPs) on the basis of the current knowledge and ranks them for their potential importance of radionuclide transport in the Safety Case. Due to vast amount of FEPs, only those assessed as potentially significant for the geosphere-biosphere interface zone (GBIZ) are described in detail. However, for scientific understanding also general main FEPs in the GBIZ are incorporated whether they affect directly radionuclide transport or not. The geosphere-biosphere interface zone, or the boundaries between the geosphere and biosphere modelling domains of the safety assessment, has been raised to an important issue but, according to the reports, it has so far taken into account rather poorly or not at all. Thus, it is acknowledged that a genuine site-specific treatment and incorporation of (deeper) overburden and aquifers into the biosphere models are needed to cover all relevant FEPs and to treat properly the zone in the modeling chain of groundwater flow and geosphere and biosphere transport of radionuclides. The principal variability in the GBIZ, especially in the biosphere, is driven by climatic change. The change from bedrock groundwater to bioavailable region takes place without gaps in the top bedrock to the overburden. However, it is important to recognise that there are regions in GBIZ that overlap the geosphere and biosphere model domains problems envisaged with the treatment of the GBIZ are associated with defining the boundary conditions for both far field and biosphere models. The GBIZ is not a separate modelling domain and the processes and events affecting the transport of radionuclides within the GBIZ should not be considered to be unidirectional. The biosphere is a diverse system under continuous development and impossible to model accurately. Thus, some inherent uncertainty already in the conceptual level of modelling has to be accepted. In addition of needs to handle spatial and

  16. Performance Calculations - and Appendix I - Model XC-120 (M-107)

    Science.gov (United States)

    1950-09-25

    and cargo and& point. Drop nack and return to bass. Take-off cargo Fnd return to Cross weight defined at base without pack. Takel halfway point. off...Steciolonditions or Standard Airaraft Chearsoterim tios Performance pressented herein ir. tha~t requiredby roferernee ()for Standard. Airaraft...horsepower available as used in the performance calculations of this report in defined an: THP : ) ) -• re : BiP = engine brake horsepower from engine

  17. Calculation of single chain cellulose elasticity using fully atomistic modeling

    Science.gov (United States)

    Xiawa Wu; Robert J. Moon; Ashlie Martini

    2011-01-01

    Cellulose nanocrystals, a potential base material for green nanocomposites, are ordered bundles of cellulose chains. The properties of these chains have been studied for many years using atomic-scale modeling. However, model predictions are difficult to interpret because of the significant dependence of predicted properties on model details. The goal of this study is...

  18. A modified calculation model for groundwater flowing to horizontal ...

    Indian Academy of Sciences (India)

    The simulation models for groundwater flowing to horizontal seepage wells proposed by Wang and Zhang (2007) are based on the theory of coupled seepage-pipe flow model which treats the well pipe as a highly permeable medium. However, the limitations of the existing model were found during applications. Specifically ...

  19. Comparison of the performance of net radiation calculation models

    DEFF Research Database (Denmark)

    Kjærsgaard, Jeppe Hvelplund; Cuenca, R.H.; Martinez-Cob, A.

    2009-01-01

    Daily values of net radiation are used in many applications of crop-growth modeling and agricultural water management. Measurements of net radiation are not part of the routine measurement program at many weather stations and are commonly estimated based on other meteorological parameters. Daily....... The performance of the empirical models was nearly identical at all sites. Since the empirical models were easier to use and simpler to calibrate than the physically based models, the results indicate that the empirical models can be used as a good substitute for the physically based ones when available...

  20. Components, processes and interactions in the biosphere

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-15

    This report describes the processes and interactions between components in the biosphere that may be important in a safety assessment for radioactive waste disposal. The processes are general, i.e. they can be used in all safety analyses for underground repositories and are not specific to a particular method or location. Processes related to the geosphere and specific repository types (e.g. the KBS-3 method) can be found in /Skagius et al. 1995, SKB 2001, 2006, 2010a/. This report describes a biosphere interaction matrix that has been used in support of SR-Site and that can be used in future safety assessments. The work of defining and characterising processes in the biosphere is ongoing and many persons from different disciplines have been involved in the identification and characterisation of processes

  1. Components, processes and interactions in the biosphere

    International Nuclear Information System (INIS)

    2010-12-01

    This report describes the processes and interactions between components in the biosphere that may be important in a safety assessment for radioactive waste disposal. The processes are general, i.e. they can be used in all safety analyses for underground repositories and are not specific to a particular method or location. Processes related to the geosphere and specific repository types (e.g. the KBS-3 method) can be found in /Skagius et al. 1995, SKB 2001, 2006, 2010a/. This report describes a biosphere interaction matrix that has been used in support of SR-Site and that can be used in future safety assessments. The work of defining and characterising processes in the biosphere is ongoing and many persons from different disciplines have been involved in the identification and characterisation of processes

  2. Reconciling estimates of the contemporary North American carbon balance among terrestrial biosphere models, atmospheric inversions, and a new approach for estimating net ecosystem exchange from inventory-based data

    Science.gov (United States)

    Hayes, Daniel J.; Turner, David P.; Stinson, Graham; McGuire, A. David; Wei, Yaxing; West, Tristram O.; Heath, Linda S.; de Jong, Bernardus; McConkey, Brian G.; Birdsey, Richard A.; Kurz, Werner A.; Jacobson, Andrew R.; Huntzinger, Deborah N.; Pan, Yude; Post, W. Mac; Cook, Robert B.

    2012-01-01

    We develop an approach for estimating net ecosystem exchange (NEE) using inventory-based information over North America (NA) for a recent 7-year period (ca. 2000–2006). The approach notably retains information on the spatial distribution of NEE, or the vertical exchange between land and atmosphere of all non-fossil fuel sources and sinks of CO2, while accounting for lateral transfers of forest and crop products as well as their eventual emissions. The total NEE estimate of a -327 ± 252 TgC yr-1 sink for NA was driven primarily by CO2 uptake in the Forest Lands sector (-248 TgC yr-1), largely in the Northwest and Southeast regions of the US, and in the Crop Lands sector (-297 TgC yr-1), predominantly in the Midwest US states. These sinks are counteracted by the carbon source estimated for the Other Lands sector (+218 TgC yr-1), where much of the forest and crop products are assumed to be returned to the atmosphere (through livestock and human consumption). The ecosystems of Mexico are estimated to be a small net source (+18 TgC yr-1) due to land use change between 1993 and 2002. We compare these inventory-based estimates with results from a suite of terrestrial biosphere and atmospheric inversion models, where the mean continental-scale NEE estimate for each ensemble is -511 TgC yr-1 and -931 TgC yr-1, respectively. In the modeling approaches, all sectors, including Other Lands, were generally estimated to be a carbon sink, driven in part by assumed CO2 fertilization and/or lack of consideration of carbon sources from disturbances and product emissions. Additional fluxes not measured by the inventories, although highly uncertain, could add an additional -239 TgC yr-1 to the inventory-based NA sink estimate, thus suggesting some convergence with the modeling approaches.

  3. Modelling the transfer of radionuclides to fruit. Report of the Fruits Working Group of BIOMASS Theme 3. Part of the IAEA Co-ordinated Research Project on Biosphere Modelling and Assessment (BIOMASS)

    International Nuclear Information System (INIS)

    2003-07-01

    This report contains a description of the activities carried out by the Fruits Working Group and presents the main results such as conceptual advances, quantitative data and models on the transfer of radionuclides to fruit in the context of the overall objective of BIOMASS Theme 3. The aim of the study was to improve understanding of the processes affecting the migration of radionuclides in the fruit system and to identify the uncertainties associated with modelling the transfer of radionuclides to fruit. The overall objective was to improve the accuracy of risk assessment that should translate to improved health safety for the population and associated cost savings. The significance of fruit, intended as that particular component of the human diet generally consumed as a dessert item, derives from its high economic value, the agricultural area devoted to its cultivation, and its consumption rates. These are important factors for some countries and groups of population. Fruits may become contaminated with radioactive material from nuclear facilities during routine operation, as a consequence of nuclear accidents, or due to migration through the biosphere of radionuclides from radioactive waste disposal facilities. Relevant radionuclides when considering transfer to fruit from atmospheric deposition were identified as 3 H, 14 C, 35 S, 36 Cl, 90 Sr, 129 I, 134 Cs and 137 Cs. The transfer of radionuclides to fruit is complex and involves many interactions between biotic and abiotic components. Edible fruit is borne by different plant species, such as herbaceous plants, shrubs and trees, that can grow under different climatic conditions and may be found in agricultural or natural ecosystems. A review of experimental, field and modelling information on the transfer of radionuclides to fruit was carried out at the inception of the activities of the Group, taking into account results from a Questionnaire circulated to radioecologists. Results on current experimental

  4. CLEAR (Calculates Logical Evacuation And Response): A generic transportation network model for the calculation of evacuation time estimates

    International Nuclear Information System (INIS)

    Moeller, M.P.; Desrosiers, A.E.; Urbanik, T. II

    1982-03-01

    This paper describes the methodology and application of the computer model CLEAR (Calculates Logical Evacuation And Response) which estimates the time required for a specific population density and distribution to evacuate an area using a specific transportation network. The CLEAR model simulates vehicle departure and movement on a transportation network according to the conditions and consequences of traffic flow. These include handling vehicles at intersecting road segments, calculating the velocity of travel on a road segment as a function of its vehicle density, and accounting for the delay of vehicles in traffic queues. The program also models the distribution of times required by individuals to prepare for an evacuation. In order to test its accuracy, the CLEAR model was used to estimate evacuation times for the emergency planning zone surrounding the Beaver Valley Nuclear Power Plant. The Beaver Valley site was selected because evacuation time estimates had previously been prepared by the licensee, Duquesne Light, as well as by the Federal Emergency Management Agency and the Pennsylvania Emergency Management Agency. A lack of documentation prevented a detailed comparison of the estimates based on the CLEAR model and those obtained by Duquesne Light. However, the CLEAR model results compared favorably with the estimates prepared by the other two agencies. (author)

  5. Extraproximal approach to calculating equilibriums in pure exchange models

    Science.gov (United States)

    Antipin, A. S.

    2006-10-01

    Models of economic equilibrium are a powerful tool of mathematical modeling of various markets. However, according to many publications, there are as yet no universal techniques for finding equilibrium prices that are solutions to such models. A technique of this kind that is a natural implementation of the Walras idea of tatonnements (i.e., groping for equilibrium prices) is proposed, and its convergence is proved.

  6. Expanding of reactor power calculation model of RELAP5 code

    International Nuclear Information System (INIS)

    Lin Meng; Yang Yanhua; Chen Yuqing; Zhang Hong; Liu Dingming

    2007-01-01

    For better analyzing of the nuclear power transient in rod-controlled reactor core by RELAP5 code, a nuclear reactor thermal-hydraulic best-estimate system code, it is expected to get the nuclear power using not only the point neutron kinetics model but also one-dimension neutron kinetics model. Thus an existing one-dimension nuclear reactor physics code was modified, to couple its neutron kinetics model with the RELAP5 thermal-hydraulic model. The detailed example test proves that the coupling is valid and correct. (authors)

  7. Ecology and exploration of the rare biosphere.

    Science.gov (United States)

    Lynch, Michael D J; Neufeld, Josh D

    2015-04-01

    The profound influence of microorganisms on human life and global biogeochemical cycles underlines the value of studying the biogeography of microorganisms, exploring microbial genomes and expanding our understanding of most microbial species on Earth: that is, those present at low relative abundance. The detection and subsequent analysis of low-abundance microbial populations—the 'rare biosphere'—have demonstrated the persistence, population dynamics, dispersion and predation of these microbial species. We discuss the ecology of rare microbial populations, and highlight molecular and computational methods for targeting taxonomic 'blind spots' within the rare biosphere of complex microbial communities.

  8. Ciliates and the rare biosphere: a review.

    Science.gov (United States)

    Dunthorn, Micah; Stoeck, Thorsten; Clamp, John; Warren, Alan; Mahé, Frédéric

    2014-01-01

    Here we provide a brief review of the rare biosphere from the perspective of ciliates and other microbial eukaryotes. We trace research on rarity from its lack of much in-depth focus in morphological and Sanger sequencing projects, to its central importance in analyses using high throughput sequencing strategies. The problem that the rare biosphere is potentially comprised of mostly errors is then discussed in the light of asking community-comparative, novel-diversity, and ecosystem-functioning questions. © 2014 The Author(s) Journal of Eukaryotic Microbiology © 2014 International Society of Protistologists.

  9. A Monte Carlo model of complex spectra of opacity calculations

    International Nuclear Information System (INIS)

    Klapisch, M.; Duffy, P.; Goldstein, W.H.

    1991-01-01

    We are developing a Monte Carlo method for calculating opacities of complex spectra. It should be faster than atomic structure codes and is more accurate than the UTA method. We use the idea that wavelength-averaged opacities depend on the overall properties, but not the details, of the spectrum; our spectra have the same statistical properties as real ones but the strength and energy of each line is random. In preliminary tests we can get Rosseland mean opacities within 20% of actual values. (orig.)

  10. Carbon dioxide fluid-flow modeling and injectivity calculations

    Science.gov (United States)

    Burke, Lauri

    2011-01-01

    At present, the literature lacks a geologic-based assessment methodology for numerically estimating injectivity, lateral migration, and subsequent long-term containment of supercritical carbon dioxide that has undergone geologic sequestration into subsurface formations. This study provides a method for and quantification of first-order approximations for the time scale of supercritical carbon dioxide lateral migration over a one-kilometer distance through a representative volume of rock. These calculations provide a quantified foundation for estimating injectivity and geologic storage of carbon dioxide.

  11. Long-Term Calculations with Large Air Pollution Models

    DEFF Research Database (Denmark)

    Ambelas Skjøth, C.; Bastrup-Birk, A.; Brandt, J.

    1999-01-01

    Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998......Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998...

  12. Numerical calculation of path integrals : The small-polaron model

    NARCIS (Netherlands)

    Raedt, Hans De; Lagendijk, Ad

    1983-01-01

    The thermodynamic properties of the small-polaron model are studied by means of a discrete version of the Feynman path-integral representation of the partition function. This lattice model describes a fermion interacting with a boson field. The bosons are treated analytically, the fermion

  13. A review of Higgs mass calculations in supersymmetric models

    DEFF Research Database (Denmark)

    Draper, P.; Rzehak, H.

    2016-01-01

    The discovery of the Higgs boson is both a milestone achievement for the Standard Model and an exciting probe of new physics beyond the SM. One of the most important properties of the Higgs is its mass, a number that has proven to be highly constraining for models of new physics, particularly those...... related to the electroweak hierarchy problem. Perhaps the most extensively studied examples are supersymmetric models, which, while capable of producing a 125 GeV Higgs boson with SM-like properties, do so in non-generic parts of their parameter spaces. We review the computation of the Higgs mass...

  14. Marine biosphere reserves - Need of the 21st century

    Digital Repository Service at National Institute of Oceanography (India)

    Dhargalkar, V.K.; Untawale, A.G.

    remains, needs to be conserved and managed for posterity. Biosphere Reserve conserves and maintains genetic diversity of plant and animal species and helps to manage the natural resources on a sustainable basis. So far five Marine Biosphere Reserves have...

  15. Light, temperature, and leaf nitrogen distribution in the tropical rain forest of Biosphere 2 and their importance in the mathematical models for global environmental changes

    Science.gov (United States)

    Tohda, Motofumi

    1997-01-01

    As the environmental changes occur throughout the world in rapid rate, we need to have further understandings for our planet. Since the ecosystems are so complex, it is almost impossible for us to integrate every factor. However, mathematical models are powerful tools which can be used to simulate those ecosystems with limited data. In this project, I collected light intensity, canopy leaf temperature and Air Handler (AHU) temperature, and nitrogen concentration in the leaves for different profiles in the rainforest mesocosm. These data will later be put into mathematical models such as "big-leaf" and "sun/shade" models to determine how these factors will affect CO2 exchange in the rainforest. As rainforests are diminishing from our planet and their existence is very important for all living things on earth, it is necessary for us to learn more about the unique system of rainforests and how we can co-exist rather than destroy.

  16. What do business models do? Narratives, calculation and market exploration

    OpenAIRE

    Liliana Doganova; Marie Renault

    2008-01-01

    http://www.csi.ensmp.fr/Items/WorkingPapers/Download/DLWP.php?wp=WP_CSI_012.pdf; CSI WORKING PAPERS SERIES 012; International audience; Building on a case study of an entrepreneurial venture, we investigate the role played by business models in the innovation process. Rather than debating their accuracy and efficiency, we adopt a pragmatic approach to business models -- we examine them as market devices, focusing on their materiality, use and dynamics. Taking into account the variety of its f...

  17. A simple model for calculating air pollution within street canyons

    Science.gov (United States)

    Venegas, Laura E.; Mazzeo, Nicolás A.; Dezzutti, Mariana C.

    2014-04-01

    This paper introduces the Semi-Empirical Urban Street (SEUS) model. SEUS is a simple mathematical model based on the scaling of air pollution concentration inside street canyons employing the emission rate, the width of the canyon, the dispersive velocity scale and the background concentration. Dispersive velocity scale depends on turbulent motions related to wind and traffic. The parameterisations of these turbulent motions include two dimensionless empirical parameters. Functional forms of these parameters have been obtained from full scale data measured in street canyons at four European cities. The sensitivity of SEUS model is studied analytically. Results show that relative errors in the evaluation of the two dimensionless empirical parameters have less influence on model uncertainties than uncertainties in other input variables. The model estimates NO2 concentrations using a simple photochemistry scheme. SEUS is applied to estimate NOx and NO2 hourly concentrations in an irregular and busy street canyon in the city of Buenos Aires. The statistical evaluation of results shows that there is a good agreement between estimated and observed hourly concentrations (e.g. fractional bias are -10.3% for NOx and +7.8% for NO2). The agreement between the estimated and observed values has also been analysed in terms of its dependence on wind speed and direction. The model shows a better performance for wind speeds >2 m s-1 than for lower wind speeds and for leeward situations than for others. No significant discrepancies have been found between the results of the proposed model and that of a widely used operational dispersion model (OSPM), both using the same input information.

  18. Uncertainty modelling and analysis of volume calculations based on a regular grid digital elevation model (DEM)

    Science.gov (United States)

    Li, Chang; Wang, Qing; Shi, Wenzhong; Zhao, Sisi

    2018-05-01

    The accuracy of earthwork calculations that compute terrain volume is critical to digital terrain analysis (DTA). The uncertainties in volume calculations (VCs) based on a DEM are primarily related to three factors: 1) model error (ME), which is caused by an adopted algorithm for a VC model, 2) discrete error (DE), which is usually caused by DEM resolution and terrain complexity, and 3) propagation error (PE), which is caused by the variables' error. Based on these factors, the uncertainty modelling and analysis of VCs based on a regular grid DEM are investigated in this paper. Especially, how to quantify the uncertainty of VCs is proposed by a confidence interval based on truncation error (TE). In the experiments, the trapezoidal double rule (TDR) and Simpson's double rule (SDR) were used to calculate volume, where the TE is the major ME, and six simulated regular grid DEMs with different terrain complexity and resolution (i.e. DE) were generated by a Gauss synthetic surface to easily obtain the theoretical true value and eliminate the interference of data errors. For PE, Monte-Carlo simulation techniques and spatial autocorrelation were used to represent DEM uncertainty. This study can enrich uncertainty modelling and analysis-related theories of geographic information science.

  19. An hydrodynamic model for the calculation of oil spills trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Paladino, Emilio Ernesto; Maliska, Clovis Raimundo [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Dinamica dos Fluidos Computacionais]. E-mails: emilio@sinmec.ufsc.br; maliska@sinmec.ufsc.br

    2000-07-01

    The aim of this paper is to present a mathematical model and its numerical treatment to forecast oil spills trajectories in the sea. The knowledge of the trajectory followed by an oil slick spilled on the sea is of fundamental importance in the estimation of potential risks for pipeline and tankers route selection, and in combating the pollution using floating barriers, detergents, etc. In order to estimate these slicks trajectories a new model, based on the mass and momentum conservation equations is presented. The model considers the spreading in the regimes when the inertial and viscous forces counterbalance gravity and takes into account the effects of winds and water currents. The inertial forces are considered for the spreading and the displacement of the oil slick, i.e., is considered its effects on the movement of the mass center of the slick. The mass loss caused by oil evaporation is also taken into account. The numerical model is developed in generalized coordinates, making the model easily applicable to complex coastal geographies. (author)

  20. Uncertain hybrid model for the response calculation of an alternator

    International Nuclear Information System (INIS)

    Kuczkowiak, Antoine

    2014-01-01

    The complex structural dynamic behavior of alternator must be well understood in order to insure their reliable and safe operation. The numerical model is however difficult to construct mainly due to the presence of a high level of uncertainty. The objective of this work is to provide decision support tools in order to assess the vibratory levels in operation before to restart the alternator. Based on info-gap theory, a first decision support tool is proposed: the objective here is to assess the robustness of the dynamical response to the uncertain modal model. Based on real data, the calibration of an info-gap model of uncertainty is also proposed in order to enhance its fidelity to reality. Then, the extended constitutive relation error is used to expand identified mode shapes which are used to assess the vibratory levels. The robust expansion process is proposed in order to obtain robust expanded mode shapes to parametric uncertainties. In presence of lack-of knowledge, the trade-off between fidelity-to-data and robustness-to-uncertainties which expresses that robustness improves as fidelity deteriorates is emphasized on an industrial structure by using both reduced order model and surrogate model techniques. (author)

  1. 40 CFR 600.207-86 - Calculation of fuel economy values for a model type.

    Science.gov (United States)

    2010-07-01

    ... Values § 600.207-86 Calculation of fuel economy values for a model type. (a) Fuel economy values for a... update sales projections at the time any model type value is calculated for a label value. (iii) The... the projected sales and fuel economy values for each base level within the model type. (1) If the...

  2. Model for calculation of concentration and load on behalf of accidents with radioactive materials

    International Nuclear Information System (INIS)

    Janssen, L.A.M.; Heugten, W.H.H. van

    1987-04-01

    In the project 'Information- and calculation-system for disaster combatment', by order of the Dutch government, a demonstration model has been developed for a diagnosis system for accidents. In this demonstration a model is used to calculate the concentration- and dose-distributions caused by incidental emissions of limited time. This model is described in this report. 4 refs.; 2 figs.; 3 tabs

  3. The World Campaign for the Biosphere.

    Science.gov (United States)

    Barman, Charles R.

    1984-01-01

    Lists and discusses goals of The World Campaign for the Biosphere and strategies designed to achieve these goals. Also lists eight suggestions for science teachers to help incorporate the goals into school curricula and programs. These include organizing assemblies which present information about environmental problems and presenting environmental…

  4. A modified calculation model for groundwater flowing to horizontal ...

    Indian Academy of Sciences (India)

    well pipe and aquifer couples the turbulent flow inside the horizontal seepage well with laminar flow in the aquifer. .... In the well pipe, the relatio