WorldWideScience

Sample records for biosphere atmosphere experiment

  1. TRMM LBA (LARGE SCALE BIOSPHERE-ATMOSPHERE) EXPERIMENT (AMPR) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Microwave Precipitation Radiometer (AMPR) was deployed during the Tropical Rainfall Measuring Mission - Large Scale Biosphere-Atmosphere Experiment...

  2. The Large-Scale Biosphere-Atmosphere Experiment in Amazonia: Analyzing Regional Land Use Change Effects.

    Science.gov (United States)

    Michael Keller; Maria Assunção Silva-Dias; Daniel C. Nepstad; Meinrat O. Andreae

    2004-01-01

    The Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) is a multi-disciplinary, multinational scientific project led by Brazil. LBA researchers seek to understand Amazonia in its global context especially with regard to regional and global climate. Current development activities in Amazonia including deforestation, logging, cattle ranching, and agriculture...

  3. The large scale biosphere-atmosphere experiment in Amazonia (LBA); concise experimental plan

    NARCIS (Netherlands)

    LBAScience Planning Group (Cachoeira Paulista),

    1996-01-01

    The large-scale biosphere-atmosphere experiment in Amazonia (LBA) aims at enhancing knowledge of the climatological, ecological, biogeochemical, and hydrological functioning of Amazonia. It will address the effects of changes in land use and climate on these functions, including also the

  4. Ecological research in the large-scale biosphere-atmosphere experiment in Amazonia: early results

    NARCIS (Netherlands)

    Keller, M.; Alencar, A.; Asner, G.P.; Braswell, B.; Bustamante, M.; Davidson, E.; Feldpausch, T.; Fernandes, E.; Goulden, M.; Kabat, P.; Kruijt, B.; Luizão, F.; Miller, S.; Markewitz, D.; Nobre, A.D.; Nobre, C.A.; Priante Filho, N.; Rocha, da H.; Silva Dias, P.; Randow, von C.; Vourlitis, G.L.

    2004-01-01

    The Large-scale Biosphere-Atmosphere Experiment in Amazonia (LBA) is a multinational, interdisciplinary research program led by Brazil. Ecological studies in LBA focus on how tropical forest conversion, regrowth, and selective logging influence carbon storage,. nutrient dynamics, trace gas fluxes,

  5. Workplan for Catalyzing Collaboration with Amazonian Universities in the Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA)

    Science.gov (United States)

    Brown, I. Foster; Moreira, Adriana

    1997-01-01

    Success of the Large-Scale Biosphere-Atmospheric Experiment in Amazonia (LBA) program depends on several critical factors, the most important being the effective participation of Amazonian researchers and institutions. Without host-county counterparts, particularly in Amazonia, many important studies cannot he undertaken due either to lack of qualified persons or to legal constraints. No less important, the acceptance of the LBA program in Amazonia is also dependent on what LBA can do for improving the scientific expertise in Amazonia. Gaining the active investment of Amazonian scientists in a comprehensive research program is not a trivial task. Potential collaborators are few, particularly where much of the research was to be originally focused - the southern arc of Brazilian Amazonia. The mid-term goals of the LBA Committee on Training and Education are to increase the number of collaborators and to demonstrate that LBA will be of benefit to the region.

  6. Studies of land-cover, land-use, and biophysical properties of vegetation in the Large Scale Biosphere Atmosphere experiment in Amazonia.

    Science.gov (United States)

    Dar A. Robertsa; Michael Keller; Joao Vianei Soares

    2003-01-01

    We summarize early research on land-cover, land-use, and biophysical properties of vegetation from the Large Scale Biosphere Atmosphere (LBA) experiment in Amazoˆnia. LBA is an international research program developed to evaluate regional function and to determine how land-use and climate modify biological, chemical and physical processes there. Remote sensing has...

  7. Using observations to evaluate biosphere-atmosphere interactions in models

    Science.gov (United States)

    Green, Julia; Konings, Alexandra G.; Alemohammad, Seyed H.; Gentine, Pierre

    2017-04-01

    Society 101, 193-202 (1975). Green, J.K., Konings, A.G., Alemohammad, S.H., Berry, J., Entekhabi, D., Kolassa, J., Lee, J.E., Gentine, P. Hotspots of terrestrial biosphere-atmosphere feedbacks. In review. (2017). Koster, R. D. et al. GLACE: The Global Land - Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeorol. 7, 611-625 (2006). Seneviratne, S.I., Lüthi, D., Litschi M., Schär, C. Land-atmosphere coupling and climate change in Europe. Nature 443, 205-209 (2006). Spracklen, D.V, Arnold, S.R., Taylor, C.M. Observations of increased tropical rainfall preceded by air passage over forests. Nature 489, 282-285 (2012).

  8. Cloud and rain processes in a biosphere-atmosphere interaction context in the Amazon Region

    NARCIS (Netherlands)

    Silva Dias, M.A.F.; Rutledge, S.; Kabat, P.; Silva Dias, P.L.; Nobre, C.; Fisch, G.; Dolman, A.J.; Zipser, E.; Garstang, M.; Manzi, A.O.; Fuentes, J.D.; Rocha, H.R.; Marengo, J.; Plana-Fattori, A.; Sá, L.D.A.; Alvalá, R.C.S.; Andreae, M.O.; Artaxo, P.; Gielow, R.; Gatti, L.

    2002-01-01

    This paper presents an overview of the results from the first major mesoscale atmospheric campaign of the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) Program. The campaign, collocated with a Tropical Rainfall Measuring Mission (TRMM) satellite validation campaigns, was conducted in

  9. Contributions of primary and secondary biogenic VOC tototal OH reactivity during the CABINEX (Community Atmosphere-Biosphere INteractions Experiments-09 field campaign

    Directory of Open Access Journals (Sweden)

    S. Kim

    2011-08-01

    Full Text Available We present OH reactivity measurements using the comparative reactivity method with a branch enclosure technique for four different tree species (red oak, white pine, beech and red maple in the UMBS PROPHET tower footprint during the Community Atmosphere Biosphere INteraction EXperiment (CABINEX field campaign in July of 2009. Proton Transfer Reaction-Mass Spectrometry (PTR-MS was sequentially used as a detector for OH reactivity and BVOC concentrations including isoprene and monoterpenes (MT for enclosure air. Therefore, the measurement dataset contains both measured and calculated OH reactivity from well-known BVOC. The results indicate that isoprene and MT, and in one case a sesquiterpene, can account for the measured OH reactivity. Significant discrepancy between measured OH reactivity and calculated OH reactivity from isoprene and MT is found for the red maple enclosure dataset but it can be reconciled by adding reactivity from emission of a sesquiterpene, α-farnesene, detected by GC-MS. This leads us to conclude that no significant unknown BVOC emission contributed to ambient OH reactivity from these trees at least during the study period. However, this conclusion should be followed up by more comprehensive side-by-side intercomparison between measured and calculated OH reactivity and laboratory experiments with controlled temperature and light environments to verify effects of those essential parameters towards unknown/unmeasured reactive BVOC emissions. This conclusion leads us to explore the contribution towards ambient OH reactivity (the dominant OH sink in this ecosystem oxidation products such as hydroxyacetone, glyoxal, methylglyoxal and C4 and C5-hydroxycarbonyl using recently published isoprene oxidation mechanisms (Mainz Isoprene Mechanism II and Leuven Isoprene Mechanism. Evaluation of conventionally unmeasured first generation oxidation products of isoprene and their possible contribution to ambient missing OH reactivity

  10. Regionally Strong Feedbacks between the Atmosphere and Terrestrial Biosphere

    Science.gov (United States)

    Green, J. K.; Konings, A. G.; Alemohammad, S. H.; Berry, J. A.; Kolassa, J.; Lee, J. E.; Gentine, P.

    2017-12-01

    Vegetation variability modulates water and energy fluxes to the atmosphere with the potential to impact climate and weather patterns that in turn regulate vegetation dynamics. In this study, we quantify variations in the strength of biosphere-atmosphere feedbacks (influencing the hydrologic cycle) across different biomes and timescales and evaluate the ability of Earth System Models to capture them. We use remote sensing data (using Solar Induced Fluorescence as a proxy for photosynthesis) combined with a statistical Multivariate Granger Causality technique to evaluate the feedback strength and the timescale in which they occur, which is then used as a benchmark for model assessment. Our conclusions have the potential to improve climate and weather predictions and provide insight of ecohydrological processes that have regional scale impact (Green, J.K. et al. 2017). Green, Julia K., et al. Regionally strong feedbacks between the atmosphere and terrestrial biosphere. Nature Geoscience. 10, 410-414 (2017).

  11. Biosphere reserves in action: Case studies of the American experience

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-06-26

    For nearly 20 years, biosphere reserves have offered a unique framework for building the knowledge, skills, and attitudes required for conservation and sustainable use of ecosystems. The 12 case studies in this volume chronicle many of the cooperative efforts to implement the biosphere reserve concept in the United States. Considered together, these efforts involve more than 20 types of protected areas, and the participation of all levels of government, and many private organizations, academic institutions, citizens groups, and individuals. Biosphere reserves are multi-purpose areas that are nominated by the national committee of the Man and the Biosphere Program (MAB) and designated by the United Nations Educational, Scientific and Cultural Organization (UNESCO) to serve as demonstration areas for cooperation in building harmonious relationships between human activities and the conservation of ecosystems and biological diversity. Each biosphere reserve exemplifies the characteristic ecosystems of one of the worlds biogeographical regions. It is a land or coas%arine area involving human communities as integral components and including resources managed for objectives ranging from complete protection to intensive, yet sustainable development. A biosphere reserve is envisioned as a regional ''landscape for learning'' in which monitoring, research, education, and training are encouraged to support sustainable conservation of natural and managed ecosystems. It is a framework for regional cooperation involving government decisionmakers, scientists, resource managers, private organizations and local people (i.e., the biosphere reserve ''stakeholders''). Finally, each biosphere reserve is part of a global network for sharing information and experience to help address complex problems of conservation and development. The 12 case studies presented in this report represent only a few of the possible evolutions of a biosphere reserve in

  12. SiB3 Modeled Global 1-degree Hourly Biosphere-Atmosphere Carbon Flux, 1998-2006

    Data.gov (United States)

    National Aeronautics and Space Administration — The Simple Biosphere Model, Version 3 (SiB3) was used to produce a global data set of hourly carbon fluxes between the atmosphere and the terrestrial biosphere for...

  13. Group dynamics challenges: Insights from Biosphere 2 experiments.

    Science.gov (United States)

    Nelson, Mark; Gray, Kathelin; Allen, John P

    2015-07-01

    Successfully managing group dynamics of small, physically isolated groups is vital for long duration space exploration/habitation and for terrestrial CELSS (Controlled Environmental Life Support System) facilities with human participants. Biosphere 2 had important differences and shares some key commonalities with both Antarctic and space environments. There were a multitude of stress factors during the first two year closure experiment as well as mitigating factors. A helpful tool used at Biosphere 2 was the work of W.R. Bion who identified two competing modalities of behavior in small groups. Task-oriented groups are governed by conscious acceptance of goals, reality-thinking in relation to time and resources, and intelligent management of challenges. The opposing unconscious mode, the "basic-assumption" ("group animal") group, manifests through Dependency/Kill the Leader, Fight/Flight and Pairing. These unconscious dynamics undermine and can defeat the task group's goal. The biospherians experienced some dynamics seen in other isolated teams: factions developing reflecting personal chemistry and disagreements on overall mission procedures. These conflicts were exacerbated by external power struggles which enlisted support of those inside. Nevertheless, the crew evolved a coherent, creative life style to deal with some of the deprivations of isolation. The experience of the first two year closure of Biosphere 2 vividly illustrates both vicissitudes and management of group dynamics. The crew overrode inevitable frictions to creatively manage both operational and research demands and opportunities of the facility, thus staying 'on task' in Bion's group dynamics terminology. The understanding that Biosphere 2 was their life support system may also have helped the mission to succeed. Insights from the Biosphere 2 experience can help space and remote missions cope successfully with the inherent challenges of small, isolated crews. Copyright © 2015 The Committee on

  14. Group dynamics challenges: Insights from Biosphere 2 experiments

    Science.gov (United States)

    Nelson, Mark; Gray, Kathelin; Allen, John P.

    2015-07-01

    Successfully managing group dynamics of small, physically isolated groups is vital for long duration space exploration/habitation and for terrestrial CELSS (Controlled Environmental Life Support System) facilities with human participants. Biosphere 2 had important differences and shares some key commonalities with both Antarctic and space environments. There were a multitude of stress factors during the first two year closure experiment as well as mitigating factors. A helpful tool used at Biosphere 2 was the work of W.R. Bion who identified two competing modalities of behavior in small groups. Task-oriented groups are governed by conscious acceptance of goals, reality-thinking in relation to time and resources, and intelligent management of challenges. The opposing unconscious mode, the "basic-assumption" ("group animal") group, manifests through Dependency/Kill the Leader, Fight/Flight and Pairing. These unconscious dynamics undermine and can defeat the task group's goal. The biospherians experienced some dynamics seen in other isolated teams: factions developing reflecting personal chemistry and disagreements on overall mission procedures. These conflicts were exacerbated by external power struggles which enlisted support of those inside. Nevertheless, the crew evolved a coherent, creative life style to deal with some of the deprivations of isolation. The experience of the first two year closure of Biosphere 2 vividly illustrates both vicissitudes and management of group dynamics. The crew overrode inevitable frictions to creatively manage both operational and research demands and opportunities of the facility, thus staying 'on task' in Bion's group dynamics terminology. The understanding that Biosphere 2 was their life support system may also have helped the mission to succeed. Insights from the Biosphere 2 experience can help space and remote missions cope successfully with the inherent challenges of small, isolated crews.

  15. Studying biosphere-atmosphere exchange of CO2 through Carbon-13 stable isotopes

    NARCIS (Netherlands)

    Velde, van der I.R.

    2015-01-01

    Summary Thesis ‘Studying biosphere-atmosphere exchange of CO2 through carbon-13 stable isotopes’ Ivar van der Velde Making predictions of future climate is difficult, mainly due to large uncertainties in the carbon cycle. The rate at which carbon is stored in the oceans and terrestrial

  16. Studying biosphere-atmosphere exchange of CO2 through Carbon-13 stable isotopes

    NARCIS (Netherlands)

    Velde, van der I.R.

    2015-01-01

    Summary Thesis ‘Studying biosphere-atmosphere exchange of CO2 through

    carbon-13 stable isotopes’

    Ivar van der Velde

    Making predictions of future climate is difficult, mainly due to large uncertainties in the carbon cycle. The rate at which carbon is stored in the oceans and

  17. Challenges in quantifying biosphere-atmosphere exchange of nitrogen species

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, M.A. [Centre for Ecology and Hydrology (CEH), Edinburgh Research Station, Bush Estate, Penicuik, EH26 0QB (United Kingdom)], E-mail: ms@ceh.ac.uk; Nemitz, E. [Centre for Ecology and Hydrology (CEH), Edinburgh Research Station, Bush Estate, Penicuik, EH26 0QB (United Kingdom); Erisman, J.W. [ECN, Clean Fossil Fuels, PO Box 1, 1755 ZG Petten (Netherlands); Beier, C. [Riso National Laboratory, PO Box 49, DK-4000 Roskilde (Denmark); Bahl, K. Butterbach [Institute of Meteorology and Climate Research, Atmos. Environ. Research (IMK-IFU), Research Centre Karlsruhe GmbH, Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen (Germany); Cellier, P. [INRA Unite Mixte de Recherche, 78850 Thiverval-Grignon (France); Vries, W. de [Alterra, Green World Research, PO Box 47, 6700 AA Wageningen (Netherlands); Cotrufo, F. [Dip. Scienze Ambientali, Seconda Universita degli Studi di Napoli, via Vivaldi 43, 81100 Caserta (Italy); Skiba, U.; Di Marco, C.; Jones, S. [Centre for Ecology and Hydrology (CEH), Edinburgh Research Station, Bush Estate, Penicuik, EH26 0QB (United Kingdom); Laville, P.; Soussana, J.F.; Loubet, B. [INRA Unite Mixte de Recherche, 78850 Thiverval-Grignon (France); Twigg, M.; Famulari, D. [Centre for Ecology and Hydrology (CEH), Edinburgh Research Station, Bush Estate, Penicuik, EH26 0QB (United Kingdom); Whitehead, J.; Gallagher, M.W. [School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL (United Kingdom); Neftel, A.; Flechard, C.R. [Agroscope FAL Reckenholz, Federal Research Station for Agroecology and Agriculture, PO Box, CH 8046 Zurich (Switzerland)] (and others)

    2007-11-15

    Recent research in nitrogen exchange with the atmosphere has separated research communities according to N form. The integrated perspective needed to quantify the net effect of N on greenhouse-gas balance is being addressed by the NitroEurope Integrated Project (NEU). Recent advances have depended on improved methodologies, while ongoing challenges include gas-aerosol interactions, organic nitrogen and N{sub 2} fluxes. The NEU strategy applies a 3-tier Flux Network together with a Manipulation Network of global-change experiments, linked by common protocols to facilitate model application. Substantial progress has been made in modelling N fluxes, especially for N{sub 2}O, NO and bi-directional NH{sub 3} exchange. Landscape analysis represents an emerging challenge to address the spatial interactions between farms, fields, ecosystems, catchments and air dispersion/deposition. European up-scaling of N fluxes is highly uncertain and a key priority is for better data on agricultural practices. Finally, attention is needed to develop N flux verification procedures to assess compliance with international protocols. - Current N research is separated by form; the challenge is to link N components, scales and issues.

  18. Challenges in quantifying biosphere-atmosphere exchange of nitrogen species

    DEFF Research Database (Denmark)

    Sutton, M.A.; Nemitz, E.; Erisman, J.W.

    2007-01-01

    Recent research in nitrogen exchange with the atmosphere has separated research communities according to N form. The integrated perspective needed to quantify the net effect of N on greenhouse-gas balance is being addressed by the NitroEurope Integrated Project (NEU). Recent advances have depende...

  19. Global biomass burning: Atmospheric, climatic, and biospheric implications

    International Nuclear Information System (INIS)

    Levine, J.S.

    1991-01-01

    As a significant source of atmospheric gases, biomass burning must be addressed as a major environmental problem. Biomass burning includes burning forests and savanna grasslands for land clearing and conversion, burning agricultural stubble and waste after harvesting, and burning biomass fuels. The editor discusses the history of biomass burning and provides an overview of the individual chapters

  20. Global biomass burning. Atmospheric, climatic, and biospheric implications

    International Nuclear Information System (INIS)

    Levine, J.S.

    1991-01-01

    Biomass burning is a significant source of atmospheric gases and, as such, may contribute to global climate changes. Biomass burning includes burning forests and savanna grasslands for land clearing, burning agricultural stubble and waste after harvesting, and burning biomass fuels. The chapters in this volume include the following topics: remote sensing of biomass burning from space;geographical distribution of burning; combustion products of burning in tropical, temperate and boreal ecosystems; burning as a global source of atmospheric gases and particulates; impacts of biomass burning gases and particulates on global climate; and the role of biomass burning on biodiversity and past global extinctions. A total of 1428 references are cited for the 63 chapters. Individual chapters are indexed separately for the data bases

  1. SiB3 Modeled Global 1-degree Hourly Biosphere-Atmosphere Carbon Flux, 1998-2006

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The Simple Biosphere Model, Version 3 (SiB3) was used to produce a global data set of hourly carbon fluxes between the atmosphere and the terrestrial...

  2. The Biosphere.

    Science.gov (United States)

    Cloud, Preston

    1983-01-01

    Discusses the earth's biosphere, considering how the microbial, animal and plant life (which make up the biosphere) are sustained by the earth's lithosphere, hydrosphere, and atmosphere. Also considers how these three earth features have powerfully shaped the evolution of these organisms. (JN)

  3. Atmospheric dynamics in Laboratory Biosphere with wheat and sweet potato crops

    Science.gov (United States)

    Dempster, W. F.; Allen, J. P.; Alling, A.; Nelson, M.; Silvertone, S.; van Thillo, M.

    Laboratory Biosphere is a 40 m3 closed life system equipped with 12000 watts of high pressure sodium lamps over planting beds with 5.37 m2 of soil. Atmospheric composition changes due to photosynthetic fixation of carbon dioxide and corresponding production of oxygen or the reverse, respiration, are observed in short timeframes, eg. hourly. To focus on inherent characteristics of the crop as distinct from its area or the volume of the chamber, we report fixation and respiration rates in millimoles per hour per square meter of planted area. An 85 day crop of USU Apogee wheat under a 16 hour lighted / 8 hour dark regime peaked in fixation rate at about 100 mmol h-1 m-2 approximately 24 days after planting. Light intensity was about 840 mol m-2 s-1. Dark respiration peaked at about 31 mmol h-1 m-2 at the same time. Thereafter, both fixation and respiration declined toward zero as harvest time approached. A residual soil respiration rate of about 1.9 mmol h-1 m-2 was observed in the dark closed chamber for 100 days after the harvest. A 126 day crop of Tuskegee TU-82-155 sweet potato behaved quite differently. Under a 680 mol m-2 s-1, 18 hour lighted / 6 hour dark regime, fixation during lighted hours rose to a plateau ranging from about 27 to 48 mmol h-1 m-2 after 42 days and respiration settled into a range of 12 to 23 mmol h-1 m-2. These rates continued unabated until the harvest at 126 days, suggesting that tuber biomass production might have continued at about the same rate for some time beyond the harvest time that was exercised in this experiment. In both experiments CO2 levels were allowed to range widely from a few hundred ppm to about 3000 ppm, which permitted observation of fixation rates both at varying CO2 concentrations and at each number of days after planting. This enables plotting the fixation rate as a function of both variables. Understanding the atmospheric dynamics of individual crops will be essential for design and atmospheric management of more

  4. Development of atmosphere-soil-vegetation model for investigation of radioactive materials transport in terrestrial biosphere

    International Nuclear Information System (INIS)

    Katata, Genki; Nagai, Haruyasu; Zhang, Leiming; Held, Andreas; Serca, Dominique; Klemm, Otto

    2010-01-01

    In order to investigate the transport of radionuclides in the terrestrial biosphere we have developed a one-dimensional numerical model named SOLVEG that predicts the transfer of water, heat, and gaseous and particulate matters in atmosphere-soil-vegetation system. The SOLVEG represents atmosphere, soil, and vegetation as an aggregation of several layers. Basic equations used in the model are solved using the finite difference method. Most of predicted variables are interrelated with the source/sink terms of momentum, water, heat, gases, and particles based on mathematically described biophysical processes in atmosphere, soil and vegetation. The SOLVEG can estimate dry, wet and fog deposition of gaseous and particulate matters at each canopy layer. Performance tests of the SOLVEG with several observational sites were carried out. The SOLVEG predicted the observed temporal changes in water vapor, CO 2 , and ozone fluxes over vegetated surfaces. The SOLVEG also reproduced measured fluxes of fog droplets and of fine aerosols over the forest. (author)

  5. The Middle Miocene climate as modelled in an atmosphere-ocean-biosphere model

    Science.gov (United States)

    Krapp, M.; Jungclaus, J. H.

    2011-11-01

    We present simulations with a coupled atmosphere-ocean-biosphere model for the Middle Miocene 15 million years ago. The model is insofar more consistent than previous models because it captures the essential interactions between ocean and atmosphere and between atmosphere and vegetation. The Middle Miocene topography, which alters both large-scale ocean and atmospheric circulations, causes a global warming of 0.7 K compared to present day. Higher than present-day CO2 levels of 480 and 720 ppm cause a global warming of 2.8 and 4.9 K. The associated water vapour feedback enhances the greenhouse effect which leads to a polar amplification of the warming. These results suggest that higher than present-day CO2 levels are necessary to drive the warm Middle Miocene climate, also because the dynamic vegetation model simulates a denser vegetation which is in line with fossil records. However, we do not find a flatter than present-day equator-to-pole temperature gradient as has been suggested by marine and terrestrial proxies. Instead, a compensation between atmospheric and ocean heat transport counteracts the flattening of the temperature gradient. The acclaimed role of the large-scale ocean circulation in redistributing heat cannot be supported by our results. Including full ocean dynamics, therefore, does not solve the problem of the flat temperature gradient during the Middle Miocene.

  6. On the CO2 exchange between the atmosphere and the biosphere: the role of synoptic and mesoscale processes

    International Nuclear Information System (INIS)

    Chan, Douglas; Higuchi, Kaz; Shashkov, Alexander; Worthy, Douglas; Liu, Jane; Chen Jing; Yuen Chiu Wai

    2004-01-01

    Estimating global carbon fluxes by inverting atmospheric CO 2 through the use of atmospheric transport models has shown the importance of the covariance between biospheric fluxes and atmospheric transport on the carbon budget. This covariance or coupling occurs on many time scales. This study examines the coupling of the biosphere and the atmosphere on the meso- and synoptic scales using a coupled atmosphere-biosphere regional model covering Canada. The results are compared with surface and light aircraft measurement campaigns at two boreal forest sites in Canada. Associated with cold and warm frontal features, the model results showed that the biospheric fluxes are strongly coupled to the atmosphere through radiative forcing. The presence of cloud near frontal regions usually results in reduced photosynthetic uptake, producing CO 2 concentration gradients across the frontal regions on the order of 10 parts per million (ppm). Away from the frontal region, the biosphere is coupled to the mesoscale variations in similar ways, resulting in mesoscale variations in CO 2 concentrations of about 5 ppm. The CO 2 field is also coupled strongly to the atmospheric dynamics. In the presence of frontal circulation, the CO 2 near the surface can be transported to the mid to upper troposphere. Mesoscale circulation also plays a significant part in transporting the CO 2 from the planetary boundary layer (PBL) to the mid-troposphere. In the absence of significant mesoscale or synoptic scale circulation, the CO 2 in the PBL has minimal exchange with the free troposphere, leading to strong gradients across the top of the PBL. We speculate that the ubiquity of the common synoptic and mesoscale processes in the atmosphere may contribute significantly to the rectifier effect and hence CO 2 inversion calculations

  7. Atmosphere-biosphere exchange of CH4, CO2, and O3

    International Nuclear Information System (INIS)

    Fan, Songmiao.

    1991-01-01

    The atmosphere-biosphere exchange was measured for CO 2 and O 3 in a tropical rain forest in the wet season of 1987, and for CO 2 , CH 4 , and O 3 in a subarctic tundra in summer 1988. Photosynthesis and respiration were found to be in approximate balance in the rain forest. Net ecosystem uptake of CO 2 in the forest increased with intensity of light in the range of measurements. It is suggested that photosynthesis of a well-watered forest is primarily controlled by photosynthetically active radiation. Changes in the distribution of cloud cover, associated for example with El Nino, might induce globally significant changes in primary productivity and carbon storage. Soil moisture controls in tundra the distribution and association of vegetation types and the atmosphere-biosphere exchange Of CO 2 , although light intensity also influences the daily and seasonal net exchange of CO 2 . Methane fluxes from the subarctic tundra averaged 25 ± 1 (SE) mgCH 4 /M 2 /d, representing 6 percent the net uptake of carbon for the 30 days of measurement. Ozone deposition fluxes averaged ∼1.0 x 10 11 molecules cm -2 s -1 in the tropical forest and in the arctic tundra, similar in magnitude to the estimated mean stratospheric input. Ozone deposition fluxes were proportional to O 3 concentrations in the surface layer and regulated by turbulent transport and stomatal activity. Day-time ozone concentrations and deposition velocities measured at ∼10 m above canopy averaged ∼5 ppb and 1.8 cm s -1 over the tropical forest and ∼25 ppb and 0.25 cm s -1 over the subarctic tundra, respectively. These results imply that widespread deforestation in the tropics may impact on the ozone budget and the photochemistry of the troposphere in the region

  8. Land-Atmosphere Interactions in Cold Environments (LATICE): The role of Atmosphere - Biosphere - Cryosphere - Hydrosphere interactions in a changing climate

    Science.gov (United States)

    Burkhart, J. F.; Tallaksen, L. M.; Stordal, F.; Berntsen, T.; Westermann, S.; Kristjansson, J. E.; Etzelmuller, B.; Hagen, J. O.; Schuler, T.; Hamran, S. E.; Lande, T. S.; Bryn, A.

    2015-12-01

    Climate change is impacting the high latitudes more rapidly and significantly than any other region of the Earth because of feedback processes between the atmosphere and the underlying surface. A warmer climate has already led to thawing of permafrost, reducing snow cover and a longer growing season; changes, which in turn influence the atmospheric circulation and the hydrological cycle. Still, many studies rely on one-way coupling between the atmosphere and the land surface, thereby neglecting important interactions and feedbacks. The observation, understanding and prediction of such processes from local to regional and global scales, represent a major scientific challenge that requires multidisciplinary scientific effort. The successful integration of earth observations (remote and in-situ data) and model development requires a harmonized research effort between earth system scientists, modelers and the developers of technologies and sensors. LATICE, which is recognized as a priority research area by the Faculty of Mathematics and Natural Sciences at the University of Oslo, aims to advance the knowledge base concerning land atmosphere interactions and their role in controlling climate variability and climate change at high northern latitudes. The consortium consists of an interdisciplinary team of experts from the atmospheric and terrestrial (hydrosphere, cryosphere and biosphere) research groups, together with key expertise on earth observations and novel sensor technologies. LATICE addresses critical knowledge gaps in the current climate assessment capacity through: Improving parameterizations of processes in earth system models controlling the interactions and feedbacks between the land (snow, ice, permafrost, soil and vegetation) and the atmosphere at high latitudes, including the boreal, alpine and artic zone. Assessing the influence of climate and land cover changes on water and energy fluxes. Integrating remote earth observations with in-situ data and

  9. Biosphere-atmosphere Exchange of CO2 in a Subtropical Mangrove Wetland in Hong Kong

    Science.gov (United States)

    Liu, J.; Neogi, S.; Lai, D. Y. F.

    2017-12-01

    Mangrove ecosystems play an important role in the global carbon cycle due to their high primary productivity, carbon-rich sediment, and sensitivity to climate change. Yet, there is currently a paucity of studies that quantify the biosphere-atmosphere exchange of GHGs in mangrove wetlands continuously at the ecosystem level. In this study, the temporal variability of net ecosystem CO2 exchange (NEE) between the Kandelia obovata mangrove and the atmosphere was determined in the Mai Po Marshes Nature Reserve of subtropical Hong Kong using an eddy covariance system between February 2016 and January 2017. The daytime half-hourly NEE ranged between -5.0 and +3.3 µmol m-2 s-1, while the maximum nighttime NEE could reach +5.0 µmol m-2 s-1 during the wet, warm season. Temperature, photosynthetic photon flux density (PPFD), vapor pressure deficit (VPD), and surface water salinity were some key physical and hydrological controls of NEE. Tidal activity could also exert profound influence on CO2 fluxes in this mangrove ecosystem by exporting dissolved carbon to adjacent estuary and inhibiting soil respiration during the inundation period. Overall, this coastal mangrove was a net sink of atmospheric CO2. Our results suggest that the ability of subtropical mangrove ecosystems in sequestering CO2 could be highly dependent on future changes in temperature, precipitation, and salinity.

  10. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model

    Science.gov (United States)

    Gebauer, S.; Grenfell, J. L.; Stock, J. W.; Lehmann, R.; Godolt, M.; von Paris, P.; Rauer, H.

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O2, whereas in the upper atmosphere, most O2 is formed abiotically via CO2 photolysis. The O2 bistability found by Goldblatt et al. (2006) is not observed in our calculations likely due to our detailed CH4 oxidation scheme. We calculate increased CH4 with increasing O2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O2 is unique. Mixing, CH4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O2 fluxes. Regarding exoplanets, different "states" of O2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases remove O2 that

  11. Evidence for chlorine recycling - Hydrosphere, biosphere, atmosphere - In a forested wet zone on the Canadian Shield

    Science.gov (United States)

    Milton, G.M.; Milton, J.C.D.; Schiff, S.; Cook, P.; Kotzer, T.G.; Cecil, L.D.

    2003-01-01

    The ability to measure environmental levels of 36Cl by Accelerator Mass Spectrometry and 3H by 3He-ingrowth Mass Spectrometry has made it possible to use the pulses of these two isotopes released into the atmosphere during nuclear weapons testing as tracers of Cl and water movement in soils and groundwater. The authors have investigated the movement of these tracers below a forested wet zone, and have found that both are retarded to a differing extent in the near surface because of vegetative uptake and recycling. Adsorption by clay particles, followed by slow release to the groundwater, may also be significant. The data accumulated in this region of near vertical recharge have gone a considerable distance towards explaining the anomalously low concentrations of 36Cl measured in the 5 Laurentian Great Lakes, as well as indicating possible mechanisms for large scale Cl- recycling in the atmosphere and biosphere. Identification of the near-term non-conservative behaviour of the Cl- is significant, since such a phenomenon could introduce errors in many watershed calculations, e.g. water residence times, evaporation rates, and mixing calculations. Published by Elsevier Science Ltd.

  12. Atmospheric Ozone And Its Biosphere - Atmosphere Exchange In A Mangrove Forest Ecosystem A Case Study From Sundarbans NE Coast Of India

    Directory of Open Access Journals (Sweden)

    Manab Kumar Dutta

    2015-01-01

    Full Text Available ABSTRACT Temporal variation of atmospheric O3 and its biosphere atmosphere exchange were monitored in the Sundarbans mangrove forest from January 2011 to December 2011 on bimonthly basis. O3 mixing ratios at 10 m and 20 m heights over the forest atmosphere ranged between 14.66 1.88 to 37.90 0.91 and 19.32 6.27 to 39.80 10.13 ppbv respectively having maximal premonsoon and minimal monsoon periods. Average daytime O3 mixing ratio was 1.69 times higher than nighttime indicates significant photo chemical production of O3 in forest atmosphere. Annual averaged O3 mixing ratio in 10 m height was 13.2 lower than 20 m height induces exchange of O3 across mangrove biosphere atmosphere interface depending upon micrometeorological conditions of the forest ecosystem. Annual average biosphere atmosphere O3 exchange flux in this mangrove forest environment was 0.441 g m-2 s-1. Extrapolating the value for entire forest surface area the mangrove ecosystem acts as a sink of 58.4GgO3 annually indicating significant contribution of Sundarbans mangroves towards regional atmospheric O3 budget as well as climate change.

  13. Modern Microbial Ecosystems are a Key to Understanding Our Biosphere's Early Evolution and its Contributions To The Atmosphere and Rock Record

    Science.gov (United States)

    DesMarais, David J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The survival of our early biosphere depended upon efficient coordination anion- diverse microbial populations. Microbial mats exhibit a 3.46-billion-year fossil record, thus they are the oldest known ecosystems. Photosynthetic microbial mats were key because, today, sunlight powers more than 99 percent of global primary productivity. Thus photosynthetic ecosystems have affected the atmosphere profoundly and have created the most pervasive, easily-detected fossils. Photosynthetic biospheres elsewhere will be most detectible via telescopes or spacecraft. As a part of the Astrobiology Institute, our Ames Microbial Ecosystems group examines the roles played by ecological processes in the early evolution of our biosphere, as recorded in geologic fossils and in the macromolecules of living cells: (1) We are defining the microbial mat microenvironment, which was an important milieu for early evolution. (2) We are comparing mats in contrasting environments to discern strategies of adaptation and diversification, traits that were key for long-term survival. (3) We have selected sites that mimic key environmental attributes of early Earth and thereby focus upon evolutionary adaptations to long-term changes in the global environment. (4) Our studies of gas exchange contribute to better estimates of biogenic gases in Earth's early atmosphere. This group therefore directly addresses the question: How have the Earth and its biosphere influenced each other over time Our studies strengthen the systematics for interpreting the microbial fossil record and thereby enhance astrobiological studies of martian samples. Our models of biogenic gas emissions will enhance models of atmospheres that might be detected on inhabited extrasolar planets. This work therefore also addresses the question: How can other biospheres be recogniZed" Our choice of field sites helps us explore Earth's evolving early environment. For example, modern mats that occupy thermal springs and certain freshwater

  14. Advances in understanding, models and parameterizations of biosphere-atmosphere ammonia exchange

    Science.gov (United States)

    Flechard, C. R.; Massad, R.-S.; Loubet, B.; Personne, E.; Simpson, D.; Bash, J. O.; Cooter, E. J.; Nemitz, E.; Sutton, M. A.

    2013-07-01

    Atmospheric ammonia (NH3) dominates global emissions of total reactive nitrogen (Nr), while emissions from agricultural production systems contribute about two-thirds of global NH3 emissions; the remaining third emanates from oceans, natural vegetation, humans, wild animals and biomass burning. On land, NH3 emitted from the various sources eventually returns to the biosphere by dry deposition to sink areas, predominantly semi-natural vegetation, and by wet and dry deposition as ammonium (NH4+) to all surfaces. However, the land/atmosphere exchange of gaseous NH3 is in fact bi-directional over unfertilized as well as fertilized ecosystems, with periods and areas of emission and deposition alternating in time (diurnal, seasonal) and space (patchwork landscapes). The exchange is controlled by a range of environmental factors, including meteorology, surface layer turbulence, thermodynamics, air and surface heterogeneous-phase chemistry, canopy geometry, plant development stage, leaf age, organic matter decomposition, soil microbial turnover, and, in agricultural systems, by fertilizer application rate, fertilizer type, soil type, crop type, and agricultural management practices. We review the range of processes controlling NH3 emission and uptake in the different parts of the soil-canopy-atmosphere continuum, with NH3 emission potentials defined at the substrate and leaf levels by different [NH4+] / [H+] ratios (Γ). Surface/atmosphere exchange models for NH3 are necessary to compute the temporal and spatial patterns of emissions and deposition at the soil, plant, field, landscape, regional and global scales, in order to assess the multiple environmental impacts of airborne and deposited NH3 and NH4+. Models of soil/vegetation/atmosphere NH3 exchange are reviewed from the substrate and leaf scales to the global scale. They range from simple steady-state, "big leaf" canopy resistance models, to dynamic, multi-layer, multi-process, multi-chemical species schemes

  15. Advances in understanding, models and parameterizations of biosphere-atmosphere ammonia exchange

    Directory of Open Access Journals (Sweden)

    C. R. Flechard

    2013-07-01

    Full Text Available Atmospheric ammonia (NH3 dominates global emissions of total reactive nitrogen (Nr, while emissions from agricultural production systems contribute about two-thirds of global NH3 emissions; the remaining third emanates from oceans, natural vegetation, humans, wild animals and biomass burning. On land, NH3 emitted from the various sources eventually returns to the biosphere by dry deposition to sink areas, predominantly semi-natural vegetation, and by wet and dry deposition as ammonium (NH4+ to all surfaces. However, the land/atmosphere exchange of gaseous NH3 is in fact bi-directional over unfertilized as well as fertilized ecosystems, with periods and areas of emission and deposition alternating in time (diurnal, seasonal and space (patchwork landscapes. The exchange is controlled by a range of environmental factors, including meteorology, surface layer turbulence, thermodynamics, air and surface heterogeneous-phase chemistry, canopy geometry, plant development stage, leaf age, organic matter decomposition, soil microbial turnover, and, in agricultural systems, by fertilizer application rate, fertilizer type, soil type, crop type, and agricultural management practices. We review the range of processes controlling NH3 emission and uptake in the different parts of the soil-canopy-atmosphere continuum, with NH3 emission potentials defined at the substrate and leaf levels by different [NH4+] / [H+] ratios (Γ. Surface/atmosphere exchange models for NH3 are necessary to compute the temporal and spatial patterns of emissions and deposition at the soil, plant, field, landscape, regional and global scales, in order to assess the multiple environmental impacts of airborne and deposited NH3 and NH4+. Models of soil/vegetation/atmosphere NH3 exchange are reviewed from the substrate and leaf scales to the global scale. They range from simple steady-state, "big leaf" canopy resistance models, to dynamic, multi-layer, multi-process, multi

  16. Isotopic study of water exchange between atmosphere and biosphere at Changa Manga site in Pakistan

    International Nuclear Information System (INIS)

    Fazil, M.; Ali, M.; Latif, Z.; Butt, S.

    2012-01-01

    Study of water exchange between atmosphere and biosphere was initiated to understand the ties between these two spheres. Samples of leaves and stems of 23 woody plants along with soil from the surface and from the depth of 7 cm were collected from Changa Manga forest. Moisture content from these samples was extracted using the vacuum distillation method and analyzed for stable isotopes (/sup 18/O and /sup 2/H). Air moisture was also collected in the field. Isotopic data plotted long with the Local Meteoric Water Line (LMWL) indicates that /sup 18/O and /sup 2/H contents of moisture in the leaves of woody plants are higher than their respective stems. This behavior is due to the evaporative enrichment trend originating from the soil moisture in active root zone and also from the leaf surface. The stem samples did not show any significant variation in gamma /sup 18/O suggesting no significant evaporation from stems of big trees. Degree of enrichment of leave samples of woody plants indicated the species-specific effects in isotopes during transpiration. Pine and Eucalyptus leaves showed more variation in the isotopic contents as compared to other species. Temporal variations of /sup 18/O and /sup 2/H in the leaves indicated enriched isotopic values during hot and dry periods as compared to those during wet period (monsoon and winter rains) mainly due to higher transpiration rates at high temperature and low humidity. (orig./A.B.)

  17. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere.

    Science.gov (United States)

    Tian, Hanqin; Lu, Chaoqun; Ciais, Philippe; Michalak, Anna M; Canadell, Josep G; Saikawa, Eri; Huntzinger, Deborah N; Gurney, Kevin R; Sitch, Stephen; Zhang, Bowen; Yang, Jia; Bousquet, Philippe; Bruhwiler, Lori; Chen, Guangsheng; Dlugokencky, Edward; Friedlingstein, Pierre; Melillo, Jerry; Pan, Shufen; Poulter, Benjamin; Prinn, Ronald; Saunois, Marielle; Schwalm, Christopher R; Wofsy, Steven C

    2016-03-10

    The terrestrial biosphere can release or absorb the greenhouse gases, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), and therefore has an important role in regulating atmospheric composition and climate. Anthropogenic activities such as land-use change, agriculture and waste management have altered terrestrial biogenic greenhouse gas fluxes, and the resulting increases in methane and nitrous oxide emissions in particular can contribute to climate change. The terrestrial biogenic fluxes of individual greenhouse gases have been studied extensively, but the net biogenic greenhouse gas balance resulting from anthropogenic activities and its effect on the climate system remains uncertain. Here we use bottom-up (inventory, statistical extrapolation of local flux measurements, and process-based modelling) and top-down (atmospheric inversions) approaches to quantify the global net biogenic greenhouse gas balance between 1981 and 2010 resulting from anthropogenic activities and its effect on the climate system. We find that the cumulative warming capacity of concurrent biogenic methane and nitrous oxide emissions is a factor of about two larger than the cooling effect resulting from the global land carbon dioxide uptake from 2001 to 2010. This results in a net positive cumulative impact of the three greenhouse gases on the planetary energy budget, with a best estimate (in petagrams of CO2 equivalent per year) of 3.9 ± 3.8 (top down) and 5.4 ± 4.8 (bottom up) based on the GWP100 metric (global warming potential on a 100-year time horizon). Our findings suggest that a reduction in agricultural methane and nitrous oxide emissions, particularly in Southern Asia, may help mitigate climate change.

  18. Advances in understanding, models and parameterisations of biosphere-atmosphere ammonia exchange

    Science.gov (United States)

    Flechard, C. R.; Massad, R.-S.; Loubet, B.; Personne, E.; Simpson, D.; Bash, J. O.; Cooter, E. J.; Nemitz, E.; Sutton, M. A.

    2013-03-01

    Atmospheric ammonia (NH3) dominates global emissions of total reactive nitrogen (Nr), while emissions from agricultural production systems contribute about two thirds of global NH3 emissions; the remaining third emanates from oceans, natural vegetation, humans, wild animals and biomass burning. On land, NH3 emitted from the various sources eventually returns to the biosphere by dry deposition to sink areas, predominantly semi-natural vegetation, and by wet and dry deposition as ammonium (NH4+) to all surfaces. However, the land/atmosphere exchange of gaseous NH3 is in fact bi-directional over unfertilized as well as fertilized ecosystems, with periods and areas of emission and deposition alternating in time (diurnal, seasonal) and space (patchwork landscapes). The exchange is controlled by a range of environmental factors, including meteorology, surface layer turbulence, thermodynamics, air and surface heterogeneous-phase chemistry, canopy geometry, plant development stage, leaf age, organic matter decomposition, soil microbial turnover, and, in agricultural systems, by fertilizer application rate, fertilizer type, soil type, crop type, and agricultural management practices. We review the range of processes controlling NH3 emission and uptake in the different parts of the soil-canopy-atmosphere continuum, with NH3 emission potentials defined at the substrate and leaf levels by different [NH4+] / [H+] ratios (Γ). Surface/atmosphere exchange models for NH3 are necessary to compute the temporal and spatial patterns of emissions and deposition at the soil, plant, field, landscape, regional and global scales, in order to assess the multiple environmental impacts of air-borne and deposited NH3 and NH4+. Models of soil/vegetation/atmosphereem NH3 exchange are reviewed from the substrate and leaf scales to the global scale. They range from simple steady-state, "big leaf" canopy resistance models, to dynamic, multi-layer, multi-process, multi

  19. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model.

    Science.gov (United States)

    Gebauer, S; Grenfell, J L; Stock, J W; Lehmann, R; Godolt, M; von Paris, P; Rauer, H

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O 2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O 2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O 2 , whereas in the upper atmosphere, most O 2 is formed abiotically via CO 2 photolysis. The O 2 bistability found by Goldblatt et al. ( 2006 ) is not observed in our calculations likely due to our detailed CH 4 oxidation scheme. We calculate increased CH 4 with increasing O 2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O 2 is unique. Mixing, CH 4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O 2 fluxes. Regarding exoplanets, different "states" of O 2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases

  20. The first IGAC scientific conference: global atmospheric-biospheric chemistry. Book of abstracts

    International Nuclear Information System (INIS)

    1993-04-01

    Various global/transfrontier air pollution problems are described. The causes of these problems are presented. The impact on ecology and biosphere are discussed. Special attention is given to the greenhouse causing agents

  1. Δ17O Trends of Collected Atmospheric CO2 Resulting from Seasonal Changes in the Biosphere

    Science.gov (United States)

    Kehoe, H.; Chakraborty, S.; Pham, T. L. C.; Alvarado, E.; Thiemens, M. H.

    2016-12-01

    The greenhouse gas carbon dioxide (CO2) and the carbon cycle as a whole play a critical role in our understanding of global climate change. In order to constrain the carbon budget, the flux of CO2 between major carbon reservoirs, such as the atmosphere and biosphere, should be quantified. The common tracers used to probe the atmospheric and biogeochemical cycles of CO2 are δ13C and δ18O. More recently, the clumped isotopes Δ47 are also being used. The uncommon isotopes of oxygen, such as 17O, are rarely used because of technical challenges. However, it has been argued that the simultaneous utilization of δ17O and δ18O better constrain the fluxes associated with terrestrial processes [1, 2, 3]. Whole air atmospheric samples are collected at UCSD in a 2-liter bulb routinely (about once every week). Using cryogenic techniques, CO2 is separated from the whole air samples, totally dried, then quantified and measured in a mass spectrometer for δ13C and δ18O. Adopting the method developed by Mahata et al., the CO2 sample is equilibrated with an equal amount of ultra high purity oxygen in the presence of platinum at 700 °C in a quartz reactor for two hours [2]. Thereafter, O2 is separated from the CO2 and δ17O and δ18O of O2 are measured. The isotopic composition of the initial unreacted O2 is also measured for each sample, allowing the δ17O and Δ17O (= δ18O - 0.516 × δ17O) values to be calculated via a projection method. Initial test runs show a reproducibility of less than 0.05‰ (1-σ standard deviation). After ten months of data collection, we find a seasonal trend in Δ17O by applying a moving average to the data. The Δ17O values average 0.2‰ during the summer and fall, but depreciate to about -0.3‰ during the winter and spring. This depreciation may be due to San Diego's more frequent rainfall during the winter, causing an increase in both plant life and CO2 turnover. We further analyze the data by applying a Fourier transform to the Δ17O values

  2. The ACCENT-VOCBAS field campaign on biosphere-atmosphere interactions in a Mediterranean ecosystem

    Science.gov (United States)

    Fares, S.; Mereu, S.; Scarascia Mugnozza, G.; Vitale, M.; Manes, F.; Frattoni, M.; Ciccioli, P.; Loreto, F.

    2009-04-01

    Biosphere-atmosphere interactions were investigated on a sandy dune Mediterranean ecosystem in a field campaign held in 2007 within the frame of the European Projects ACCENT and VOCBAS. The campaign was carried out in the Presidential estate of Castelporziano, a peri-urban park close to Rome where several investigations on the emission of biogenic volatile organic compounds (BVOC) in Mediterranean area were performed in the past 15 years. While specific aspects of the campaign will be discussed in companion papers, the general climatic and physiological aspects will be presented here together with information regarding BVOC emission from the most common plants present in this ecosystem. During the campaign regular air movements were observed, dominated by moderate nocturnal land breeze and diurnal sea breeze. A regular daily increase of ozone concentration in the air was also observed, but daily peaks of ozone were much lower than those measured downwind of the Rome conurbation. The site was ideal as a natural photochemical reactor to observe reaction, transport and deposition processes occurring in the Mediterranean basin, where a sea-land breeze circulation system allows a strong mixing between biogenic and anthropogenic emissions and secondary pollutants. The campaign investigated emissions from a poorly studied and largely biodiverse ecosystem, often subjected to a combination of environmental stresses and to anthropogenic pollution. Measurements were run in May, when plant physiological conditions were still optimal, in absence of severe drought and heat stress. Foliar rates of photosynthesis and transpiration were as high as generally recorded in unstressed Mediterranean sclerophyllous plants. Most of the plant species emitted high level of monoterpenes, despite measurements being made in a period in which emissions of volatile isoprenoids could be restrained by developmental and environmental factors, such as leaf age and relatively low air temperature. No

  3. Atmospheric Climate Experiment Plus

    Science.gov (United States)

    Lundahl, K.

    ACE+ is an atmospheric sounding mission using radio occultation techniques and is a combination of the two Earth Explorer missions ACE and WATS earlier proposed to ESA. ACE was highly rated by ESA in the Call for Earth Explorer Opportunity Missions in 1999 and was prioritised as number three and selected as a "hot-stand-by". A phase A study was carried out during 2000 and 2001. ACE will observe atmospheric parameters using radio occultations from an array of 6 micro-satellites which track the L- band signal of GPS satellites to map the detailed refractivity and thermal structure of the global atmosphere from surface to space. Water vapour and wind in Atmospheric Troposphere and Stratosphere WATS was the response to ESA's Call for Ideas for the next Earth Explorer Core Missions in 2001. WATS combines ACE GPS atmospheric occultations and LEO-LEO cross-link occultations. Cross-links strongly enhance the capability of measuring humidity relative to the ACE mission. The Earth Science Advisory Committée at ESA noted that the LEO-GNSS occultation technique is already well established through several missions in recent years and could not recommend WATS for a Phase A study as an Earth Explorer Core Mission. The ESAC was, however, deeply impressed by the LEO-LEO component of the WATS proposal and would regard it as regrettable if this science would be lost and encourages the ACE/WATS team to explore other means to achieve its scientific goal. ACE+ is therefore the response to ESA's 2nd Call for Earth Explorer Opportunity Missions in 2001 and will contribute in a significant manner to ESA's Living Planet Programme. ACE+ will considerably advance our knowledge about atmosphere physics and climate change processes. The mission will demonstrate a highly innovative approach using radio occultations for globally measuring profiles of humidity and temperature throughout the atmosphere and stratosphere. A constellation of 4 small satellites, tracking L-band GPS/GALILEO signals and

  4. ECOLOGICAL RESEARCH IN THE LARGE-SCALE BIOSPHERE–ATMOSPHERE EXPERIMENT IN AMAZONIA: EARLY RESULTS.

    Science.gov (United States)

    M. Keller; A. Alencar; G. P. Asner; B. Braswell; M. Bustamente; E. Davidson; T. Feldpausch; E. Fern ndes; M. Goulden; P. Kabat; B. Kruijt; F. Luizao; S. Miller; D. Markewitz; A. D. Nobre; C. A. Nobre; N. Priante Filho; H. Rocha; P. Silva Dias; C von Randow; G. L. Vourlitis

    2004-01-01

    The Large-scale Biosphere–Atmosphere Experiment in Amazonia (LBA) is a multinational, interdisciplinary research program led by Brazil. Ecological studies in LBA focus on how tropical forest conversion, regrowth, and selective logging influence carbon storage, nutrient dynamics, trace gas fluxes, and the prospect for sustainable land use in the Amazon region. Early...

  5. The Atmospheric Chemistry Experiment (ACE)

    International Nuclear Information System (INIS)

    Bernath, P.F.

    2017-01-01

    The Atmospheric Chemistry Experiment (ACE), also called SCISAT, is a Canadian-led small satellite mission for remote sensing of the Earth’s atmosphere. ACE was launched into a low Earth circular orbit by NASA on August 12, 2003 and it continues to function nominally. The ACE instruments are a high spectral resolution (0.02 cm −1 ) Fourier Transform Spectrometer (FTS) operating from 2.2 to 13.3 μm (750–4400 cm −1 ), a spectrophotometer known as Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation (MAESTRO) with wavelength coverage of 285–1020 nm and two filtered detector arrays to image the Sun at 0.525 and 1.02 μm. ACE operates in solar occultation mode to provide altitude profiles of temperature, pressure, atmospheric extinction and the volume mixing ratios (VMRs) for several dozen molecules and related isotopologues. This paper presents a mission overview and a summary of selected scientific results. - Highlights: • Overview of Atmospheric Chemistry Experiment (ACE) satellite mission. • Infrared and optical spectroscopy of the Earth's atmosphere by solar occultation. • Science highlights of ACE (also called SCISAT) mission.

  6. Imprint of CO2 emission in atmosphere and biosphere on the basis of 14C and 13C measurements

    Science.gov (United States)

    Pazdur, Anna; Gabryś, Alicja; Kuc, Tadeusz; Pawełczyk, Sławomira; Piotrowska, Natalia; Rakowski, Andrzej; Różański, Kazimierz; Sensuła, Barbara

    2015-04-01

    As is shown in the IPCC (Intergovernmental Panel on Climate Change) report, the observed climate changes are caused, among others, by human activity. Mainly emission of CO2 to the atmosphere coming from the burning of fossil fuels, can have dire consequences for life on Earth and development of humankind. The report uses, among others, data obtained from isotopic measurements in the biosphere. Measurements of 14C and 13C concentration in modern atmospheric carbon dioxide and biosphere allow the determination of the decrease of the concentration of this isotope. Furthermore, the magnitude of emission to the atmosphere of carbon dioxide not containing the isotope 14C can be estimated on this basis. Such emission stems from fossil fuel combustion - petroleum, natural gas and black coal. A sensitive bioindicator of the emission are annual tree rings. The measurements of 14C concentration in tree ring material using AMS allow to see its seasonal changes. Trees, treated as an archive of changes in conjunction with information about the isotopic composition of carbon can be used for monitoring of environment as sensitive bioindicators on local, as well as on the global scale. Regular investigations of isotopic composition of carbon in trees have been carried out in the GADAM Centre for the urban areas of both Poland and worldwide. This method can be applied in the study of the emission of CO2 to the atmosphere and its spatial and temporal distribution connected with the production of energy by power plants based on fossil fuel combustion for the area of southern Poland. Modelling of CO2 emission using both 14C and 13C carbon isotopes measured in pine tree rings on the background of climatic changes will be presented. The national ecological policy in the era of global warming requires the manufacturers of energy to get involved in the development of methods suitable for monitoring the state of the environment. Hence, the interest in the area of monitoring the fossil fuel

  7. NASA's atmospheric variability experiments /AVE/

    Science.gov (United States)

    Hill, K.; Turner, R. E.

    1977-01-01

    A series of seven mesoscale experiments were conducted under the NASA program, Atmospheric Variability Experiments (AVE). Rawinsonde, satellite, aircraft, and ground observations were recorded during specially selected meteorological periods lasting from 1 to 3 days. Details are presented for each AVE relative to observation times, experiment size and location, and significant weather. Some research results based on the use of these AVE data are referenced. These include contributions to regional numerical prediction; relations between wind shears, instability, and thunderstorm motion and development; relations between moisture and temperature and the probability of convection; retrieval of tropospheric temperature profiles from cloud-contaminated satellite data; variation of convection intensity as a result of atmospheric variability; and effects of cloud rotation on their trajectories.

  8. Monitoring and modelling of biosphere/atmosphere exchange of gases and aerosols in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Erisman, Jan Willem [Energy Research Centre of the Netherlands (ECN), P.O. Box 1, 1755 ZG Petten (Netherlands)]. E-mail: erisman@ecn.nl; Vermeulen, Alex [Energy Research Centre of the Netherlands (ECN), P.O. Box 1, 1755 ZG Petten (Netherlands); Hensen, Arjan [Energy Research Centre of the Netherlands (ECN), P.O. Box 1, 1755 ZG Petten (Netherlands); Flechard, Chris [Energy Research Centre of the Netherlands (ECN), P.O. Box 1, 1755 ZG Petten (Netherlands); Daemmgen, Ulrich [Federal Agricultural Research Centre, Institute of Agroecology, D-38116 Braunschweig, (Germany); Fowler, David [CEH, Bush Estate, Penicuik, Midlothian EH26 0QB (United Kingdom); Sutton, Mark [CEH, Bush Estate, Penicuik, Midlothian EH26 0QB (United Kingdom); Gruenhage, Ludger [Institute for Plant Ecology, Justus-Liebig-University, D-35392 Giessen (Germany); Tuovinen, Juha-Pekka [Finnish Meteorological Institute, FIN-00810 Helsinki (Finland)

    2005-02-01

    Monitoring and modelling of deposition of air pollutants is essential to develop and evaluate policies to abate the effects related to air pollution and to determine the losses of pollutants from the atmosphere. Techniques for monitoring wet deposition fluxes are widely applied. A recent intercomparison experiment, however, showed that the uncertainty in wet deposition is relatively high, up to 40%, apart from the fact that most samplers are biased because of a dry deposition contribution. Wet deposition amounts to about 80% of the total deposition in Europe with a range of 10-90% and uncertainty should therefore be decreased. During recent years the monitoring of dry deposition has become possible. Three sites have been operational for 5 years. The data are useful for model development, but also for model evaluation and monitoring of progress in policy. Data show a decline in SO{sub 2} dry deposition, whereas nitrogen deposition remained constant. Furthermore, surface affinities for pollutants changed leading to changes in deposition. Deposition models have been further developed and tested with dry deposition measurements and total deposition measurements on forests as derived from throughfall data. The comparison is reasonable given the measurement uncertainties. Progress in ozone surface exchange modelling and monitoring shows that stomatal uptake can be quantified with reasonable accuracy, but external surface uptake yields highest uncertainty. - Monitoring and modelling of the deposition of sulphur and nitrogen components and the exposure of ozone has gained much progress through the research within BIATEX.

  9. The impact of forest canopy structure on simulations of atmosphere-biosphere NO

    NARCIS (Netherlands)

    Firanj, Ana; Lalic, Branislava; Ganzeveld, Laurens; Podrascanin, Zorica

    2015-01-01

    The concentrations and fluxes of reactive nitrogen species in the land-atmosphere system are controlled by complex interactions between emissions, turbulent transfer, dry deposition and chemical transformations. The forest canopy can significantly affect turbulent fluxes between the atmosphere,

  10. Assessing filtering of mountaintop CO2 mole fractions for application to inverse models of biosphere-atmosphere carbon exchange

    Directory of Open Access Journals (Sweden)

    S. L. Heck

    2012-02-01

    Full Text Available There is a widely recognized need to improve our understanding of biosphere-atmosphere carbon exchanges in areas of complex terrain including the United States Mountain West. CO2 fluxes over mountainous terrain are often difficult to measure due to unusual and complicated influences associated with atmospheric transport. Consequently, deriving regional fluxes in mountain regions with carbon cycle inversion of atmospheric CO2 mole fraction is sensitive to filtering of observations to those that can be represented at the transport model resolution. Using five years of CO2 mole fraction observations from the Regional Atmospheric Continuous CO2 Network in the Rocky Mountains (Rocky RACCOON, five statistical filters are used to investigate a range of approaches for identifying regionally representative CO2 mole fractions. Test results from three filters indicate that subsets based on short-term variance and local CO2 gradients across tower inlet heights retain nine-tenths of the total observations and are able to define representative diel variability and seasonal cycles even for difficult-to-model sites where the influence of local fluxes is much larger than regional mole fraction variations. Test results from two other filters that consider measurements from previous and following days using spline fitting or sliding windows are overly selective. Case study examples showed that these windowing-filters rejected measurements representing synoptic changes in CO2, which suggests that they are not well suited to filtering continental CO2 measurements. We present a novel CO2 lapse rate filter that uses CO2 differences between levels in the model atmosphere to select subsets of site measurements that are representative on model scales. Our new filtering techniques provide guidance for novel approaches to assimilating mountain-top CO2 mole fractions in carbon cycle inverse models.

  11. Coupled models for the hydrological cycle; integrating atmosphere, biosphere, and pedosphere

    NARCIS (Netherlands)

    Bronstert, A.; Carrera, J.; Kabat, P.; Lütkemeier, S.

    2005-01-01

    Hydrologists, climatologists, soil scientists and environmental engineers are frequently asked to analyse complex environmental problems. It is becoming increasingly apparent that these problems usually involve feedbacks between atmospheric, ecological, and hydrological systems, as well as human

  12. The legacy of biosphere 2 for the study of biospherics and closed ecological systems

    Science.gov (United States)

    Allen, J. P.; Nelson, M.; Alling, A.

    The unprecedented challenges of creating Biosphere 2, the world's first laboratory for biospherics, the study of global ecology and long-term closed ecological system dynamics, led to breakthrough developments in many fields, and a deeper understanding of the opportunities and difficulties of material closure. This paper will review accomplishments and challenges, citing some of the key research findings and publications that have resulted from the experiments in Biosphere 2. Engineering accomplishments included development of a technique for variable volume to deal with pressure differences between the facility and outside environment, developing methods of atmospheric leak detection and sealing, while achieving new standards of closure, with an annual atmospheric leakrate of less than 10%, or less than 300 ppm per day. This degree of closure permitted detailed tracking of carbon dioxide, oxygen, and trice gases such as nitrous oxide and ethylene over the seasonal variability of two years. Full closure also necessitated developing new approaches and technologies for complete air, water, and wastewater recycle and reuse within the facility. The development of a soil-based highly productive agricultural system was a first in closed ecological systems, and much was learned about managing a wide variety of crops using non-chemical means of pest and disease control. Closed ecological systems have different temporal biogeochemical cycling and ranges of atmospheric components because of their smaller reservoirs of air, water and soil, and higher concentration of biomass, and Biosphere 2 provided detailed examination and modeling of these accelerated cycles over a period of closure which measured in years. Medical research inside Biosphere 2 included the effects on humans of lowered oxygen: the discovery that human productivity can be maintained with good health with lowered atmospheric oxygen levels could lead to major economies on the design of space stations and

  13. Exploration of a Subsurface Biosphere in a Volcanic Massive Sulfide: Results of the Mars Analog Rio Tinto Drilling Experiment

    Science.gov (United States)

    Stoker, C. R.; Stevens, T.; Amils, R.; Fernandez, D.

    2005-12-01

    Biological systems on Earth require three key ingredients-- liquid water, an energy source, and a carbon source, that are found in very few extraterrestrial environments. Previous examples of independent subsurface ecosystems have been found only in basalt aquifers. Such lithotrophic microbial ecosystems (LME) have been proposed as models for steps in the early evolution of Earth's biosphere and for potential biospheres on other planets where the surface is uninhabitable, such as Mars and Europa.. The Mars Analog Rio Tinto Experiment (MARTE) has searched in a volcanic massive sulfide deposit in Rio Tinto Spain for a subsurface biosphere capable of living without sunlight or oxygen and found a subsurface ecosystem driven by the weathering of the massive sulfide deposit (VMS) in which the rock matrix provides sufficient resources to support microbial metabolism, including the vigorous production of H2 by water-rock interactions. Microbial production of methane and sulfate occurred in the sulfide orebody and microbial production of methane and hydrogen sulfide continued in an anoxic plume downgradient from the sulfide ore. Organic carbon concentrations in the parent rock were too low to support microbes. The Rio Tinto system thus represents a new type of subsurface ecosystem with strong relevance for exobiological studies. Commercial drilling was used to reach the aquifer system at 100 m depth and conventional laboratory techniques were used to identify and characterize the biosphere. Then, the life search strategy that led to successful identification of this biosphere was applied to the development of a robotic drilling, core handling, inspection, subsampling, and life detection system built on a prototype planetary lander that was deployed in Rio Tinto Spain in September 2005 to test the capability of a robotic drilling system to search for subsurface life. A remote science team directed the simulation and analyzed the data from the MARTE robotic drill. The results

  14. Biosphere-Atmosphere Exchange of NOx and O3 in Central Amazon

    Science.gov (United States)

    Wiedemann, K. T.; Swofsy, S. C.; Munger, J. W.; Saleska, S. R.; Rizzo, L. V.; Silva Campos, K.

    2017-12-01

    The primary source of atmospheric OH is the photolysis of O3 in the presence of water vapor. NOx gases are the main precursors of O3 and OH. In NOx-rich environments that have both high humidity and high solar radiation, OH concentrations are enhanced, making tropical forests dominant in global oxidation of long lived gases. The Amazon rain forest has a unique combination of vegetation with diverse characteristics, climate, and a dynamic land use, factors that altogether govern the emission and fate of trace gases, particle formation and atmospheric chemistry. Understanding the interactions among the mechanisms that govern local precursor emissions will lead to a better description of the local atmospheric chemistry and its global impacts. As part of the GoAmazon project, an array of complementary measurements was conducted in a research site in central Amazon, near Santarem (PA, Brazil), inside the Tapajos National Forest. The research site is surrounded by intact rain forest in a 6km radius, and a 45m canopy. The 67m tower was assembled in the site in 2001 for flux measurements (CO2 and H2O). In mid 2014 additional instrumentation were added, measuring NOx, O3, CH4, and SO2 fluxes and profiles. The low concentrations of SO2 (up to 0.1ppb during the peak of the dry season), and a small vertical gradient, suggest the predominance of biogenic sources. O3 show no significant seasonality between the daytime and nighttime vertical profiles, but occasional nighttime high concentrations for levels below canopy were observed. Hourly ozone fluxes suggest a production of O3 under canopy. NO soil emissions are indicated by concentrations in the ppb range for lower profile levels, decreasing to a few hundreds ppt above the canopy, and emission rates of NO from Amazonian soils may be higher than expected from earlier measurements. Daytime data indicate that not all of this NOx escapes to the atmosphere, however. Fluxes of NO average 133x109 molec cm-2 s-1, a factor of 4 higher

  15. Geochemical determination of biospheric CO/sub 2/ fluxes to the atmosphere. Annual progress report, June 1, 1979-August 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Stuiver, M

    1981-03-24

    Research progress is reported - for an investigation of aspects of the carbon cycle through the use of C13/C12 and C14/C12 abundance ratios. The objective is to increase knowledge of past biospheric carbon reservoir changes that have resulted in increases or reductions of atmospheric CO/sub 2/ levels. C13 trends in trees from Kodiak Island, Alaska, and from Chile were determined. (ACR)

  16. Biosphere-atmosphere exchange of volatile organic compounds over C4 biofuel crops

    Science.gov (United States)

    Graus, Martin; Eller, Allyson S. D.; Fall, Ray; Yuan, Bin; Qian, Yaling; Westra, Philip; de Gouw, Joost; Warneke, Carsten

    2013-02-01

    Significant amounts of ethanol are produced from biofuel crops such as corn and, in the future, likely switchgrass. The atmospheric effects of growing these plant species on a large scale are investigated here by measuring the plant-atmosphere exchange of volatile organic compounds (VOCs). Field grown corn and switchgrass emit VOCs at flux rates of 4.4 nmolC m-2 s-1 (10-9 mol carbon per square meter leaf area per second) and 2.4 nmolC m-2 s-1, respectively. Methanol contributes ˜60% to the molar flux but small emissions of carbonyls, aromatic compounds and terpenoids are relatively more important for potential air quality impacts. Switchgrass can act as a sink for carbonyls and aromatic compounds with compensation points of a few hundred pptv. In switchgrass moderate drought stress may induce enhanced emissions of monoterpenes, carbonyls and aromatics. Per liter of fuel ethanol produced, the estimated VOC emissions associated with the biomass growth of corn (7.8 g l-1) or switchgrass (6.2 g l-1) are in the same range as the VOC emissions from the use of one liter gasoline in vehicle engines. VOC emissions from the growing of biofuel crops can therefore be a significant contributor to the VOC emissions in the life cycle of biofuels. The VOC emissions from corn and switchgrass are small compared to those of tree species suggested as biofuel crops. Due to their reactivity with respect to OH the emissions from corn and switchgrass are not likely to have a significant impact on regional ozone formation.

  17. Crop yield and light / energy efficiency in a closed ecological system: two laboratory biosphere experiments

    Science.gov (United States)

    Nelson, M.; Dempster, W. F.; Silverstone, S.; Alling, A.; Allen, J. P.; van Thillo, M.

    Two crop growth experiments in the soil-based closed ecological facity, Laboratory Biosphere, were conducted from 2003-2004 with candidate space life support crops. Apogee wheat (Utah State University variety) was grown, planted in 2 densities, 400 and 800 seeds m-2. The lighting regime for the wheat crop was 16 hours of light -- 8 hours dark at a total light intensity of around 840 mol m2 sec-1 and 48.4 mol m-2 d-1 over 84 days Average biomass was 1395 g m-2, 16.0 g m-2 day-1 and average seed production was 689 g m-2 and 7.9 g m2 day-1. The less densely planted side was more productive than the denser planting, with 1634 g m-2 and 18.8g m-2 day-1 of biomass vs. 1156 g m-2 and 13.3 g m-2 day-1; and a seed harvest of 812.3 g m-2 and 9.3 g m-2 day-1 vs. 566.5 g m-2 and 6.5 g m-2 day-1 Harvest index was 0.49 for the wheat crop. The experiment with sweet potato used TU-82-155, a compact variety developed at Tuskegee University. Light during the sweet potato experiment, on a 16 hour on/8 hours dark cycle, totalled 5568 total moles of light in 126 days for the sweet potatoes, or an average of 44.2 moles m-2 day-1. Temperature regime was 28 deg +/- 3 deg C day /22 deg +/- 4 deg C night. Sweet potato tuber yield was 39.7 kg wet weight, or an average of 7.4 kg m-2 and 7.7 kg dry weight of tubers since dry weight was about 18.6% wet weight.^Average per day production was 58.7 g m-2 day-1 wet weight and 11.3 g m-2 day-1. For the wheat, average light efficiency was 0.34 grams biomass per mole, and 0.17 grams seed per mole. The best area of wheat had an efficiency of light utilization of 0.51 g biomass per mole and 0.22 g seed per mole. For the sweet potato crop, light efficiency per tuber wet weight was 7.13 g/mole and 1.38 g dry weight of tuber per mole of light. The best area of tuber production had 9.49 g/mole wet weight and 1.85 g/mole of light dry weight. Production from the wheat was The Laboratory Biosphere experiment's light efficiency was somewhat higher than the USU

  18. Atmospheric Entry Experiments at IRS

    Science.gov (United States)

    Auweter-Kurtz, M.; Endlich, P.; Herdrich, G.; Kurtz, H.; Laux, T.; Löhle, S.; Nazina, N.; Pidan, S.

    2002-01-01

    Entering the atmosphere of celestial bodies, spacecrafts encounter gases at velocities of several km/s, thereby being subjected to great heat loads. The thermal protection systems and the environment (plasma) have to be investigated by means of computational and ground facility based simulations. For more than a decade, plasma wind tunnels at IRS have been used for the investigation of TPS materials. Nevertheless, ground tests and computer simulations cannot re- place space flights completely. Particularly, entry mission phases encounter challenging problems, such as hypersonic aerothermodynamics. Concerning the TPS, radiation-cooled materials used for reuseable spacecrafts and ablator tech- nologies are of importance. Besides the mentioned technologies, there is the goal to manage guidance navigation, con- trol, landing technology and inflatable technologies such as ballutes that aim to keep vehicles in the atmosphere without landing. The requirement to save mass and energy for planned interplanetary missions such as Mars Society Balloon Mission, Mars Sample Return Mission, Mars Express or Venus Sample Return mission led to the need for manoeuvres like aerocapture, aero-breaking and hyperbolic entries. All three are characterized by very high kinetic vehicle energies to be dissipated by the manoeuvre. In this field flight data are rare. The importance of these manoeuvres and the need to increase the knowledge of required TPS designs and behavior during such mission phases point out the need of flight experiments. As result of the experience within the plasma diagnostic tool development and the plasma wind tunnel data base, flight experiments like the PYrometric RE-entry EXperiment PYREX were developed, fully qualified and successfully flown. Flight experiments such as the entry spectrometer RESPECT and PYREX on HOPE-X are in the conceptual phase. To increase knowledge in the scope of atmospheric manoeuvres and entries, data bases have to be created combining both

  19. IKONOS imagery for the Large Scale Biosphere–Atmosphere Experiment in Amazonia (LBA).

    Science.gov (United States)

    George Hurtt; Xiangming Xiao; Michael Keller; Michael Palace; Gregory P. Asner; Rob Braswell; Brond& #305; Eduardo S. zio; Manoel Cardoso; Claudio J.R. Carvalho; Matthew G. Fearon; Liane Guild; Steve Hagen; Scott Hetrick; Berrien Moore III; Carlos Nobre; Jane M. Read; S& aacute; Tatiana NO-VALUE; Annette Schloss; George Vourlitis; Albertus J. Wickel

    2003-01-01

    The LBA-ECO program is one of several international research components under the Brazilian-led Large Scale Biosphere–Atmosphere Experiment in Amazonia (LBA). The field-oriented research activities of this study are organized along transects and include a set of primary field sites, where the major objective is to study land-use change and ecosystem dynamics, and a...

  20. ROLE OF LEAF SURFACE WATER IN THE BI-DIRECTIONAL AMMONIA EXCHANGE BETWEEN THE ATMOSPHERE AND TERRESTRIAL BIOSPHERE

    Science.gov (United States)

    A field experiment was conducted to study the ammonia exchange between plants and the atmosphere in a soybean field in Duplin County, North Carolina during the summer of 2002. Measurements indicate that the net canopy-scale ammonia exchange is bi-directional and has a significant...

  1. The Radiometer Atmospheric Cubesat Experiment

    Science.gov (United States)

    Lim, B.; Bryk, M.; Clark, J.; Donahue, K.; Ellyin, R.; Misra, S.; Romero-Wolf, A.; Statham, S.; Steinkraus, J.; Lightsey, E. G.; Fear, A.; Francis, P.; Kjellberg, H.; McDonald, K.

    2014-12-01

    The Jet Propulsion Laboratory (JPL) has been developing the Radiometer Atmospheric CubeSat Experiment (RACE) since 2012, which consists of a water vapor radiometer integrated on a 3U CubeSat platform. RACE will measure 2 channels of the 183 GHz water vapor line, and will be used to validate new low noise amplifier (LNA) technology and a novel amplifier based internal calibration subsystem. The 3U spacecraft is provided by the University of Texas at Austin's Satellite Design Laboratory. RACE will advance the technology readiness level (TRL) of the 183 GHz receiver subsystem from TRL 4 to TRL 6 and a CubeSat 183 GHz radiometer system from TRL 4 to TRL 7. Measurements at 183 GHz are used to retrieve integrated products and vertical profiles of water vapor. Current full scale satellite missions that can utilize the technology include AMSU, ATMS, SSMIS and Megha-Tropiques. The LNAs are designed at JPL, based on a 35 nm indium phosphide (InP) high-electron-mobility transistors (HEMT) technology developed by Northrop Grumman. The resulting single chip LNAs require only 25 mW of power. Current pre-launch instrument performance specifications include an RF gain of over 30 dB and a room noise figure of 5dB. If a coupler based calibration system is shown to be sufficient, future receiver systems will have noise figures temperature is approximately 0.55 dB/K. The NEDT of the system is CubeSat Launch Initiative (CSLI) selection, RACE is manifested for launch on the Orbital 3 (Orb-3) mission scheduled for October 2014. RACE will be deployed from the International Space Station (ISS) by NanoRacks.

  2. Earth's early biosphere

    Science.gov (United States)

    Des Marais, D. J.

    1998-01-01

    Understanding our own early biosphere is essential to our search for life elsewhere, because life arose on Earth very early and rocky planets shared similar early histories. The biosphere arose before 3.8 Ga ago, was exclusively unicellular and was dominated by hyperthermophiles that utilized chemical sources of energy and employed a range of metabolic pathways for CO2 assimilation. Photosynthesis also arose very early. Oxygenic photosynthesis arose later but still prior to 2.7 Ga. The transition toward the modern global environment was paced by a decline in volcanic and hydrothermal activity. These developments allowed atmospheric O2 levels to increase. The O2 increase created new niches for aerobic life, most notably the more advanced Eukarya that eventually spawned the megascopic fauna and flora of our modern biosphere.

  3. The Economic Impact of Labeled Regional Products: The Experience of the UNESCO Biosphere Reserve Entlebuch

    Directory of Open Access Journals (Sweden)

    Florian Knaus

    2017-02-01

    Full Text Available Protected area management bodies are increasingly required to address economic development alongside the original goal of conservation. This is especially true for United Nations Educational, Scientific and Cultural Organization (UNESCO biosphere reserves, which are expected to function as models for sustainable development. Economic development has been achieved in many places through nature-based tourism. Sale of products labeled as coming from protected areas is considered promising in this respect too, especially in Europe, but their economic impact has not been assessed so far. This study estimated the gross added value generated by labeled products from the UNESCO Biosphere Reserve Entlebuch—a rural, mountainous region in Switzerland. After a management-guided phase of building up credibility, identity, and innovations, labeled products generated a remarkable gross added value of US$ 5.8 million in 2014, 13 years after the product label was introduced. This corresponds to 4% of the jobs in agriculture and forestry and 1% of all jobs in the region. Given potential synergies with biodiversity, tourism, individual well-being, and other assets, labeled products can be true advantages for protected areas and their managers.

  4. Lidar Atmospheric Sensing Experiment (LASE) Validation

    Data.gov (United States)

    National Aeronautics and Space Administration — An extensive validation experiment was conducted in September 1995 from Wallops Island, Virginia, to evaluate the performance of the LASE (Lidar Atmospheric Sensing...

  5. The Legacy of Biosphere 2 for Biospherics and Closed Ecological System Research

    Science.gov (United States)

    Allen, J.; Alling, A.; Nelson, M.

    The unprecedented challenges of creating Biosphere 2, the world's first laboratory for biospherics, the study of global ecology and long-term closed ecological system dynamics led to breakthrough developments in many fields, and a deeper understanding of the opportunities and difficulties of material closure. This paper will review these accomplishments and challenges, citing some of the key research accomplishments and publications which have resulted from the experiments in Biosphere 2. Engineering accomplishments included development of a technique for variable volume to deal with pressure differences between the facility and outside environment, developing methods of leak detection and sealing, and achieving new standards of closure, with an annual atmospheric leakrate of less than 10%, or less than 300 ppm per day. This degree of closure permitted detailed tracking of carbon dioxide, oxygen, and trace gases such as nitrous oxide and ethylene over the seasonal variability of two years. Full closure also necessitated developing new approaches and technologies for complete air, water, and wastewater recycle and reuse within the facility. The development of a soil-based highly productive agricultural system was a first in closed ecological systems, and much was learned about managing a wide variety of crops using non-chemical means of pest and disease control. Closed ecological systems have different temporal b ogeochemical cycling and ranges ofi atmospheric components because of their smaller reservoirs of air, water and soil, and higher concentration of biomass, and Biosphere 2 provided detailed examination and modeling of these accelerated cycles over a period of closure which measured in years. Medical research inside Biosphere 2 included the effects on humans of lowered oxygen: the discovery that human productivity can be maintained down to 15% oxygen could lead to major economies on the design of space stations and planetary/lunar settlements. The improved

  6. European Biospheric Network Takes Off

    Science.gov (United States)

    Brovkin, Victor; Reick, Christian; van Bodegom, Peter

    2010-04-01

    Opening Symposium of the TERRABITES Network; Hamburg, Germany, 9-11 February 2010; The huge amount of recently acquired information about the functioning of the terrestrial biosphere and the ever increasing spatial resolution of Earth system models call for a new level of integrating efforts among biosphere modelers, developers of ecological theory, and data-gathering communities. Responding to this call, a new European network, Terrestrial Biosphere in the Earth System (TERRABITES), held its opening symposium in Germany. The meeting was organized jointly with another recently founded European network, Advancing the Integrated Monitoring of Trace Gas Exchange Between Biosphere and Atmosphere (ABBA). Almost 100 scientific contributions covered the latest advances in modeling ecophysiological and biogeochemical processes; analyses of model constraints set by measurements of water and carbon dioxide (CO2) fluxes, including carbon isotopes; and new perspectives in using remote sensing data for evaluation of global terrestrial biosphere models.

  7. Soil and crop management experiments in the Laboratory Biosphere: An analogue system for the Mars on Earth ® facility

    Science.gov (United States)

    Silverstone, S.; Nelson, M.; Alling, A.; Allen, J. P.

    During the years 2002 and 2003, three closed system experiments were carried out in the "Laboratory Biosphere" facility located in Santa Fe, New Mexico. The program involved experimentation of "Hoyt" Soy Beans, (experiment #1) USU Apogee Wheat (experiment #2) and TU-82-155 sweet potato (experiment #3) using a 5.37 m 2 soil planting bed which was 30 cm deep. The soil texture, 40% clay, 31% sand and 28% silt (a clay loam), was collected from an organic farm in New Mexico to avoid chemical residues. Soil management practices involved minimal tillage, mulching, returning crop residues to the soil after each experiment and increasing soil biota by introducing worms, soil bacteria and mycorrhizae fungi. High soil pH of the original soil appeared to be a factor affecting the first two experiments. Hence, between experiments #2 and #3, the top 15 cm of the soil was amended using a mix of peat moss, green sand, humates and pumice to improve soil texture, lower soil pH and increase nutrient availability. This resulted in lowering the initial pH of 8.0-6.7 at the start of experiment #3. At the end of the experiment, the pH was 7.6. Soil nitrogen and phosphorus has been adequate, but some chlorosis was evident in the first two experiments. Aphid infestation was the only crop pest problem during the three experiments and was handled using an introduction of Hyppodamia convergens. Experimentation showed there were environmental differences even in this 1200 cubic foot ecological system facility, such as temperature and humidity gradients because of ventilation and airflow patterns which resulted in consequent variations in plant growth and yield. Additional humidifiers were added to counteract low humidity and helped optimize conditions for the sweet potato experiment. The experience and information gained from these experiments are being applied to the future design of the Mars On Earth ® facility (Silverstone et al., Development and research program for a soil

  8. The Impact of Prior Biosphere Models in the Inversion of Global Terrestrial CO2 Fluxes by Assimilating OCO-2 Retrievals

    Science.gov (United States)

    Philip, Sajeev; Johnson, Matthew S.

    2018-01-01

    Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emissions and biospheric fluxes. The processes controlling terrestrial biosphere-atmosphere carbon exchange are currently not fully understood, resulting in terrestrial biospheric models having significant differences in the quantification of biospheric CO2 fluxes. Atmospheric transport models assimilating measured (in situ or space-borne) CO2 concentrations to estimate "top-down" fluxes, generally use these biospheric CO2 fluxes as a priori information. Most of the flux inversion estimates result in substantially different spatio-temporal posteriori estimates of regional and global biospheric CO2 fluxes. The Orbiting Carbon Observatory 2 (OCO-2) satellite mission dedicated to accurately measure column CO2 (XCO2) allows for an improved understanding of global biospheric CO2 fluxes. OCO-2 provides much-needed CO2 observations in data-limited regions facilitating better global and regional estimates of "top-down" CO2 fluxes through inversion model simulations. The specific objectives of our research are to: 1) conduct GEOS-Chem 4D-Var assimilation of OCO-2 observations, using several state-of-the-science biospheric CO2 flux models as a priori information, to better constrain terrestrial CO2 fluxes, and 2) quantify the impact of different biospheric model prior fluxes on OCO-2-assimilated a posteriori CO2 flux estimates. Here we present our assessment of the importance of these a priori fluxes by conducting Observing System Simulation Experiments (OSSE) using simulated OCO-2 observations with known "true" fluxes.

  9. Group Dynamics as a Critical Component of Successful Space Exploration: Conceptual Theory and Insights from the Biosphere 2 Closure Experiment

    Science.gov (United States)

    Nelson, Mark; Allen, John P.

    As space exploration and eventually habitation achieves longer durations, successfully managing group dynamics of small, physically isolated groups will become vital. The paper summarizes important underlying research and conceptual theory and how these manifested in a well-documented example: the closure experiments of Biosphere 2. Key research breakthroughs in discerning the operation of small human groups comes from the pioneering work of W.R. Bion. He discovered two competing modalities of behavior. The first is the “task-oriented” or work group governed by shared acceptance of goals, reality-thinking in relation to time, resources and rational, and intelligent management of challenges presented. The opposing, usually unconscious, modality is what Bion called the “basic-assumption” group and alternates between three “group animal” groups: dependency/kill the leader; fight/flight and pairing. If not dealt with, these dynamics work to undermine and defeat the conscious task group’s goal achievement. The paper discusses crew training and selection, various approaches to structuring the work and hierarchy of the group, the importance of contact with a larger population through electronic communication and dealing with the “us-them” syndrome frequently observed between crew and Mission Control. The experience of the first two year closure of Biosphere 2 is drawn on in new ways to illustrate vicissitudes and management of group dynamics especially as both the inside team of biospherians and key members of Mission Control had training in working with group dynamics. Insights from that experience may help mission planning so that future groups in space cope successfully with inherent group dynamics challenges that arise.

  10. GRIP LIDAR ATMOSPHERIC SENSING EXPERIMENT (LASE) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GRIP Lidar Atmospheric Sensing Experiment (LASE) dataset was collected by NASA's Lidar Atmospheric Sensing Experiment (LASE) system, which is an airborne...

  11. Carbon dioxide fixation and respiration relationships observed during closure experiments in Biosphere 2

    Science.gov (United States)

    Nelson, Mark; Dempster, William; Allen, John P.

    Biosphere 2 enclosed several ecosystems - ones analogous to rainforest, tropical savannah, thornscrub, desert, marsh and coral reef - and a diverse agro-ecology, with dozens of food crops, in virtual material isolation from Earth's environment. This permits a detailed examination of fixation and respiration from the continuous record of carbon dioxide concentration from sensors inside the facility. Unlike the Earth, all the ecosystems were active during sunlight hours, while phyto and soil respiration dominated nighttime hours. This resulted in fluctuations of as much as 600-700 ppm CO2 daily during days of high sunlight input. We examine the relationships between daytime fixation as driven by photosynthesis to nighttime respiration and also fixation and respiration as related to carbon dioxide concentration. Since carbon dioxide concentrations varied from near Earth ambient levels to over 3000 ppm (during low-light winter months), the response of the plant communities and impact on phytorespiration and soil respiration may be of relevance to the global climate change research community. An investigation of these dynamics will also allow the testing of models predicting the response of community metabolism to variations in sunlight and degree of previous net carbon fixation.

  12. Experiments with the living dead: Plants as monitors and recorders of Biosphere Geosphere interactions.

    Science.gov (United States)

    Lomax, Barry; Fraser, Wesley

    2016-04-01

    Understanding variations in the Earth's climate history will enhance our understanding of and capacity to predict future climate change. Importantly this information can then be used to reduce uncertainty around future climate change predictions. However to achieve this, it is necessary to develop well constrained and robustly tested palaeo-proxies. Plants are innately coupled to the atmosphere requiring both sunlight and CO2 to drive photosynthesis and carbon assimilation. When combined with their resilience and persistence, the study of plant responses to climate change in concert with the analysis of fossil plants offer the opportunity to monitor past atmospheric conditions and infer palaeoclimate change. In this presentation we highlight how this approach is leading to the development of mechanistic palaeoproxies tested on palaeobotanically relevant extant species showing that plant fossils can be used as both monitors and geochemical recorders of atmospheric changes.

  13. Understanding changes of stomatal conductance under different atmospheric humidity levels for different tropical rainforest species in Biosphere 2

    Science.gov (United States)

    Tornito, A. J. G.

    2016-12-01

    Understanding the dynamics of climate change is one of the biggest questions that scientists across the globe ask today. With understanding climate change comes the need to understand the ecological systems and how their biological and chemical processes contribute to climate change. As ocean ecosystems, rainforests are very productive systems and are responsible for most of the world's carbon budget. To maintain cooler conditions, tropical forests mitigate warming through evapotranspiration. The purpose of this project was to measure short-term plasticity by looking at stomatal conductance levels of different tropical rainforest species of plants in the rainforest, savannah, and desert habitats in the Biosphere 2 facility in Oracle, Arizona. It is known that stomatal conductance is affected by CO2, H2O, and light availability. It has been observed that temperature levels may not affect stomatal conductance because of the variability associated with it. Results indicated that there is a potential trend amongst these rainforest species when placed in different humidity percentage areas. By understanding stomatal conductance in response to humidity, we can better understand how productive rainforest systems are when humidity levels decrease, which may potentially occur as Earth undergoes global climate change.

  14. Challenging terrestrial biosphere models with data from the long-term multifactor Prairie Heating and CO2 Enrichment experiment.

    Science.gov (United States)

    De Kauwe, Martin G; Medlyn, Belinda E; Walker, Anthony P; Zaehle, Sönke; Asao, Shinichi; Guenet, Bertrand; Harper, Anna B; Hickler, Thomas; Jain, Atul K; Luo, Yiqi; Lu, Xingjie; Luus, Kristina; Parton, William J; Shu, Shijie; Wang, Ying-Ping; Werner, Christian; Xia, Jianyang; Pendall, Elise; Morgan, Jack A; Ryan, Edmund M; Carrillo, Yolima; Dijkstra, Feike A; Zelikova, Tamara J; Norby, Richard J

    2017-09-01

    Multifactor experiments are often advocated as important for advancing terrestrial biosphere models (TBMs), yet to date, such models have only been tested against single-factor experiments. We applied 10 TBMs to the multifactor Prairie Heating and CO 2 Enrichment (PHACE) experiment in Wyoming, USA. Our goals were to investigate how multifactor experiments can be used to constrain models and to identify a road map for model improvement. We found models performed poorly in ambient conditions; there was a wide spread in simulated above-ground net primary productivity (range: 31-390 g C m -2  yr -1 ). Comparison with data highlighted model failures particularly with respect to carbon allocation, phenology, and the impact of water stress on phenology. Performance against the observations from single-factors treatments was also relatively poor. In addition, similar responses were predicted for different reasons across models: there were large differences among models in sensitivity to water stress and, among the N cycle models, N availability during the experiment. Models were also unable to capture observed treatment effects on phenology: they overestimated the effect of warming on leaf onset and did not allow CO 2 -induced water savings to extend the growing season length. Observed interactive (CO 2  × warming) treatment effects were subtle and contingent on water stress, phenology, and species composition. As the models did not correctly represent these processes under ambient and single-factor conditions, little extra information was gained by comparing model predictions against interactive responses. We outline a series of key areas in which this and future experiments could be used to improve model predictions of grassland responses to global change. © 2017 John Wiley & Sons Ltd.

  15. Sensitivity study of land biosphere CO2 exchange through an atmospheric tracer transport model using satellite-derived vegetation index data

    International Nuclear Information System (INIS)

    Knorr, W.; Heimann, M.

    1994-01-01

    We develop a simple, globally uniform model of CO 2 exchange between the atmosphere and the terrestrial biosphere by coupling the model with a three-dimensional atmospheric tracer transport model using observed winds, and checking results against observed concentrations of CO 2 at various monitoring sites. CO 2 fluxes are derived from observed greenness using satellite-derived Global Vegetation Index data, combined with observations of temperature, radiation, and precipitation. We explore a range of CO 2 flux formulations together with some modifications of the modelled atmospheric transport. We find that while some formulations can be excluded, it cannot be decided whether or not to make CO 2 uptake and release dependent on water stress. It appears that the seasonality of net CO 2 fluxes in the tropics, which would be expected to be driven by water availability, is small and is therefore not visible in the seasonal cycle of atmospheric CO 2 . The latter is dominated largely by northern temperate and boreal vegetation, where seasonality is mostly temperature determined. We find some evidence that there is still considerable CO 2 release from soils during northern-hemisphere winter. An exponential air temperature dependence of soil release with a Q 10 of 1.5 is found to be most appropriate, with no cutoff at low freezing temperatures. This result is independent of the year from which observed winds were taken. This is remarkable insofar as year-to-year changes in modelled CO 2 concentrations caused by changes in the wind data clearly outweigh those caused by year-to-year variability in the climate and vegetation index data. (orig.)

  16. The Study of Socio-Biospheric Problems.

    Science.gov (United States)

    Scott, Andrew M.

    Concepts, tools, and a methodology are needed which will permit the analysis of emergent socio-biospheric problems and facilitate their effective management. Many contemporary problems may be characterized as socio-biospheric; for example, pollution of the seas, acid rain, the growth of cities, and an atmosphere loaded with carcinogens. However,…

  17. Solid phase evolution in the Biosphere 2 hillslope experiment as predicted by modeling of hydrologic and geochemical fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Dontsova, K.; Steefel, C.I.; Desilets, S.; Thompson, A.; Chorover, J.

    2009-07-15

    A reactive transport geochemical modeling study was conducted to help predict the mineral transformations occurring over a ten year time-scale that are expected to impact soil hydraulic properties in the Biosphere 2 (B2) synthetic hillslope experiment. The modeling sought to predict the rate and extent of weathering of a granular basalt (selected for hillslope construction) as a function of climatic drivers, and to assess the feedback effects of such weathering processes on the hydraulic properties of the hillslope. Flow vectors were imported from HYDRUS into a reactive transport code, CrunchFlow2007, which was then used to model mineral weathering coupled to reactive solute transport. Associated particle size evolution was translated into changes in saturated hydraulic conductivity using Rosetta software. We found that flow characteristics, including velocity and saturation, strongly influenced the predicted extent of incongruent mineral weathering and neo-phase precipitation on the hillslope. Results were also highly sensitive to specific surface areas of the soil media, consistent with surface reaction controls on dissolution. Effects of fluid flow on weathering resulted in significant differences in the prediction of soil particle size distributions, which should feedback to alter hillslope hydraulic conductivities.

  18. Atmospheric CO2 Observations Reveal Strong Correlation Between Regional Net Biospheric Carbon Uptake and Solar-Induced Chlorophyll Fluorescence

    Science.gov (United States)

    Shiga, Yoichi P.; Tadić, Jovan M.; Qiu, Xuemei; Yadav, Vineet; Andrews, Arlyn E.; Berry, Joseph A.; Michalak, Anna M.

    2018-01-01

    Recent studies have shown the promise of remotely sensed solar-induced chlorophyll fluorescence (SIF) in informing terrestrial carbon exchange, but analyses have been limited to either plot level ( 1 km2) or hemispheric/global ( 108 km2) scales due to the lack of a direct measure of carbon exchange at intermediate scales. Here we use a network of atmospheric CO2 observations over North America to explore the value of SIF for informing net ecosystem exchange (NEE) at regional scales. We find that SIF explains space-time NEE patterns at regional ( 100 km2) scales better than a variety of other vegetation and climate indicators. We further show that incorporating SIF into an atmospheric inversion leads to a spatial redistribution of NEE estimates over North America, with more uptake attributed to agricultural regions and less to needleleaf forests. Our results highlight the synergy of ground-based and spaceborne carbon cycle observations.

  19. Biosphere2 and Earthbuzz

    Science.gov (United States)

    Washburne, J. C.

    2009-12-01

    In an attempt to reach a broader audience, Biosphere 2, near Tucson, AZ, is participating in a network of science centers thanks to new funding through the Science Museum of Minnesota (SMM) and the National Center for Earth System Dynamics (NCED). Each of these centers will be tied together through an Earthbuzz kiosk, basically a networked web site that allows visitors to learn more about the work of leading local scientists in a very personal and captivating format. Content is currently being developed by Biosphere 2 researchers, staff, and graduate students that range from a public question and answer forum called “Scientist on the Spot” to science blogs by Biosphere 2 Fellows. It is hoped that this project will help educate the public about the Anthropocene, that is, the current geologic period that is so greatly affected by humankind’s impact on the health of the planet. Biosphere 2 provides a unique location to engage the public in this conversation for several reasons. First, no other destination on Earth gives the public such a physical immersion into what climate change might mean as does Biosphere 2. On the regular walking tour, visitors are guided through scaled down versions of an African savannah, a semi-arid thorn scrub, a coastal fog desert and a tropical rainforest. Digital displays of temperature and humidity confirm what your body is feeling - conditions ranging from desert aridity to tropical humidity. As one passes through the biomes of Biosphere 2, climate change is a whole body experience. Second, Biosphere 2 is also an active ecological research site - part of a unique network of sites run by the University of Arizona that allow scientists to study ecosystem processes across a range of scales - from microscopic root studies to studies encompassing large watersheds. In particular, a group of researchers is studying why large stands of pinion-juniper forests across the southwest have died in recent years. Biosphere2’s role in this

  20. Atmospheric tracer experiments for regional dispersion studies

    International Nuclear Information System (INIS)

    Heffter, J.L.; Ferber, G.J.

    1980-01-01

    Tracer experiments are being conducted to verify atmospheric transport and dispersion calculations at distances from tens to hundreds of km from pollutant sources. In one study, a 2 1/2 year sampling program has been carried out at 13 sites located 30 to 140 km from a source of 85 Kr at the Savannah River Plant in South Carolina. Average weekly concentrations as well as twice-daily concentrations were obtained. Sampling data and meteorological data, including surface, tower, and rawinsonde observations are available on magnetic tape for model verification studies. Some verification results for the Air Resources Laboratories Atmospheric Transort and Dispersion Model (ARL-ATAD) are shown for averaging periods from one week to two years

  1. Crop yield and light/energy efficiency in a closed ecological system: Laboratory Biosphere experiments with wheat and sweet potato

    Science.gov (United States)

    Nelson, M.; Dempster, W. F.; Silverstone, S.; Alling, A.; Allen, J. P.; van Thillo, M.

    Two crop growth experiments in the soil-based closed ecological facility, Laboratory Biosphere, were conducted from 2003 to 2004 with candidate space life support crops. Apogee wheat (Utah State University variety) was grown, planted at two densities, 400 and 800 seeds m -2. The lighting regime for the wheat crop was 16 h of light - 8 h dark at a total light intensity of around 840 μmol m -2 s -1 and 48.4 mol m -2 d -1 over 84 days. Average biomass was 1395 g m -2, 16.0 g m -2 d -1 and average seed production was 689 g m -2 and 7.9 g m -2 d -1. The less densely planted side was more productive than the denser planting, with 1634 g m -2 and 18.8 g m -2 d -1 of biomass vs. 1156 g m -2 and 13.3 g m -2 d -1; and a seed harvest of 812.3 g m -2 and 9.3 g m -2 d -1 vs. 566.5 g m -2 and 6.5 g m -2 d -1. Harvest index was 0.49 for the wheat crop. The experiment with sweet potato used TU-82-155 a compact variety developed at Tuskegee University. Light during the sweet potato experiment, on a 18 h on/6 h dark cycle, totaled 5568 total moles of light per square meter in 126 days for the sweet potatoes, or an average of 44.2 mol m -2 d -1. Temperature regime was 28 ± 3 °C day/22 ± 4 °C night. Sweet potato tuber yield was 39.7 kg wet weight, or an average of 7.4 kg m -2, and 7.7 kg dry weight of tubers since dry weight was about 18.6% wet weight. Average per day production was 58.7 g m -2 d -1 wet weight and 11.3 g m -2 d -1. For the wheat, average light efficiency was 0.34 g biomass per mole, and 0.17 g seed per mole. The best area of wheat had an efficiency of light utilization of 0.51 g biomass per mole and 0.22 g seed per mole. For the sweet potato crop, light efficiency per tuber wet weight was 1.33 g mol -1 and 0.34 g dry weight of tuber per mole of light. The best area of tuber production had 1.77 g mol -1 wet weight and 0.34 g mol -1 of light dry weight. The Laboratory Biosphere experiment's light efficiency was somewhat higher than the USU field results but

  2. LIMITS OF THE EARTH BIOSPHERE

    Directory of Open Access Journals (Sweden)

    Karel KUDRNA

    2011-01-01

    Full Text Available Evaluation of the state of CO2 accumulation in the atmosphere demands knowledge on possibilities of the biosphere – its photosynthetizing apparatus, conditions and limits of absorption. A decisive precondition is to determine relation of CO2 accumulation by photosynthesis in dependence on the water balance, especially on its control quantity – transpiration, which is stabilized by supporting of underground waters.

  3. DISRUPTIVE EVENT BIOSPHERE DOSE CONVERSION FACTOR ANALYSIS

    International Nuclear Information System (INIS)

    M.A. Wasiolek

    2005-01-01

    ash exposure scenario and the dose factors for calculating inhalation doses during volcanic eruption (eruption phase of the volcanic event). For the volcanic ash exposure scenario, the mode of radionuclide release into the biosphere is a volcanic eruption through the repository with the resulting entrainment of contaminated waste in the tephra and the subsequent atmospheric transport and dispersion of contaminated material in the biosphere. The biosphere process model for this scenario uses the surface deposition of contaminated ash as the source of radionuclides in the biosphere. The initial atmospheric transport and dispersion of the ash as well as its subsequent redistribution by fluvial and aeolian processes are not addressed within the biosphere model. These processes influence the value of the source term that is calculated elsewhere and then combined with the BDCFs in the TSPA model to calculate expected dose to the receptor

  4. Mesoscale covariance of transport and CO2 fluxes: Evidence from observations and simulations using the WRF-VPRM coupled atmosphere-biosphere model

    NARCIS (Netherlands)

    Ahmadov, R.; Gerbig, C.; Kretschmer, R.; Koerner, S.; Neininger, B.; Dolman, A.J.; Sarrat, C.

    2007-01-01

    We developed a modeling system which combines a mesoscale meteorological model, the Weather Research and Forecasting (WRF) model, with a diagnostic biospheric model, the Vegetation Photosynthesis and Respiration (VPRM). The WRF-VPRM modeling system was designed to realistically simulate

  5. The interactions between soil-biosphere-atmosphere land surface model with a multi-energy balance (ISBA-MEB) option in SURFEXv8 - Part 1: Model description

    Science.gov (United States)

    Boone, Aaron; Samuelsson, Patrick; Gollvik, Stefan; Napoly, Adrien; Jarlan, Lionel; Brun, Eric; Decharme, Bertrand

    2017-02-01

    Land surface models (LSMs) are pushing towards improved realism owing to an increasing number of observations at the local scale, constantly improving satellite data sets and the associated methodologies to best exploit such data, improved computing resources, and in response to the user community. As a part of the trend in LSM development, there have been ongoing efforts to improve the representation of the land surface processes in the interactions between the soil-biosphere-atmosphere (ISBA) LSM within the EXternalized SURFace (SURFEX) model platform. The force-restore approach in ISBA has been replaced in recent years by multi-layer explicit physically based options for sub-surface heat transfer, soil hydrological processes, and the composite snowpack. The representation of vegetation processes in SURFEX has also become much more sophisticated in recent years, including photosynthesis and respiration and biochemical processes. It became clear that the conceptual limits of the composite soil-vegetation scheme within ISBA had been reached and there was a need to explicitly separate the canopy vegetation from the soil surface. In response to this issue, a collaboration began in 2008 between the high-resolution limited area model (HIRLAM) consortium and Météo-France with the intention to develop an explicit representation of the vegetation in ISBA under the SURFEX platform. A new parameterization has been developed called the ISBA multi-energy balance (MEB) in order to address these issues. ISBA-MEB consists in a fully implicit numerical coupling between a multi-layer physically based snowpack model, a variable-layer soil scheme, an explicit litter layer, a bulk vegetation scheme, and the atmosphere. It also includes a feature that permits a coupling transition of the snowpack from the canopy air to the free atmosphere. It shares many of the routines and physics parameterizations with the standard version of ISBA. This paper is the first of two parts; in part one

  6. Atmospheric Neutral Density Experiment Mission Update

    Science.gov (United States)

    Nicholas, A.; Bruninga, B.; Picone, J.; Emmert, J.; Gilbreath, G.; Healy, L.; Wasiczko, L.

    The Atmospheric Neutral Density Experiment (ANDE) Risk Reduction flight was launched on Dec 9, 2006 and deployed into orbit by the Space Shuttle Discovery on December 21, 2006. The primary mission objective is to test the deployment mechanism from the Shuttle for the ANDE flight in mid 2009. Scientific objectives of the ANDE risk reduction flight include; monitor total neutral density along the orbit for improved orbit determination of resident space objects, monitor the spin rate and orientation of the spacecraft, provide a test object for polarimetry studies using the HI-CLASS system. Each of the two ANDE missions consists of two spherical spacecraft fitted with retro-reflectors for satellite laser ranging (SLR). The ANDE risk reduction mission spacecraft each contain a small lightweight payload designed to determine the spin rate and orientation of the spacecraft from on-orbit measurements and from ground based observations. The follow-on ANDE mission scheduled for launch in 2009 will consist of two spherical spacecraft also fitted with retro-reflectors for SLR. One of these spacecraft will also carry instrumentation to measure the in-situ atmospheric density, composition and winds. This paper presents a mission overview and emphasis will be placed on the scientific results from the risk reduction mission and a brief overview of the follow-on mission.

  7. Dimers and organosulfates derived from biogenic oxidation products in aerosols during the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX) in California 2007 and 2009 (Invited)

    Science.gov (United States)

    Glasius, M.; Worton, D. R.; Kristensen, K.; Nguyen, Q.; Surratt, J.; Enggrob, K. L.; Bouvier-Brown, N. C.; Farmer, D.; Docherty, K. S.; Platt, S.; Bilde, M.; Nøjgaard, J. K.; Seinfeld, J.; Jimenez, J. L.; Goldstein, A.

    2010-12-01

    Oxidation products of biogenic volatile organic compounds, such as monoterpenes and isoprene, contribute to biogenic secondary organic aerosol (BSOA). The organosulfate derivatives of these compounds are formed through heterogeneous reactions involving sulphur compounds, with a considerable contribution from anthropogenic sources. Organosulfate derivatives of biogenic oxidation products thus belong to a new group of anthropogenic enhanced biogenic SOA (ABSOA). The Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX) during summers of 2007 and 2009 provided an excellent platform at Blodgett Forest, California (a ponderosa pine plantation) for studying ABSOA. Typically, polluted air masses were transported upslope from the California Central Valley during day, while night conditions were influenced by downslope transport of air masses, low local atmospheric mixing and formation of a shallow boundary layer. We collected particle samples (PM2.5) as one nighttime and two daytime samples per day. After extraction of filters in polar organic solvents (i.e. acetonitrile or methanol), organic aerosol constituents were analyzed by HPLC coupled through an electrospray inlet to a quadrupole time-of-flight mass spectrometer (qTOF-MS). Organosulfates and nitrooxy organosulfates derived from oxidation products of α-pinene, β-pinene, limonene and isoprene were identified based on their molecular mass and MS fragmentation patterns. Measurements by High Resolution Time of Flight Aerosol Mass Spectrometry (HR-ToF-AMS) show high mass loadings of nitrate in the night and morning samples with highest levels of the nitrooxy organosulfates with MW 295 and MW 297. This may indicate that elevated levels of nitrate and nitrooxy organosulfates are formed in the same polluted air mass, probably through nitrate radical reactions. Terpenylic acid, diterpenylic acid acetate, and methylbutane tricarboxylic acid were found at concentrations comparable to pinic acid. A dimer of

  8. GRIP LIDAR ATMOSPHERIC SENSING EXPERIMENT (LASE) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Lidar Atmospheric Sensing Experiment (LASE) system is an airborne DIAL (Differential Absorption Lidar) system used to measure water vapor, aerosols, and...

  9. NAMMA LIDAR ATMOSPHERIC SENSING EXPERIMENT (LASE) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Lidar Atmospheric Sensing Experiment (LASE) system using the DIAL (Differential Absorption Lidar) system was operated during the NASA African Monsoon...

  10. Experience in biosphere modelling and definition of exposed groups. Concerns on consideration of the long-term

    International Nuclear Information System (INIS)

    Pinedo, P.

    2002-01-01

    The long life of high level waste and their 'possible' releases, from the repository, in the far future during wide time frames, introduce difficulties on the ability of forecasting actual doses. Similar difficulties were found when trying to establish or recommend protection criteria for the environment and human health. The stochastic nature of the whole problem, from the causes that initiate radionuclides releases to the nature of the environmental conditions where impact is evaluated, made more complex the treatment of the radionuclide transport models and the analysis of radiological impact. The application of radiological protection principles to this management option, was also seen as different from other present-day practices. All this gave rise to the diversification of the research lines towards new areas that allow for the analysis of radionuclide transport, dose calculations and, criteria, in this new situation. The approach for the biosphere system based on the 'reference' concept, in essence the same idea as the one for the 'Reference man' concept, was promoted internationally, first within the BIOMOVS II Project and, afterwards, in the BIOMASS IAEA Programme. In parallel to the participation in these Projects and based on their conclusions, CIEMAT has been developing for ENRESA a methodology, which has to be updated and completed with recent developments from BIOMASS-Theme1. Notably, for the Justification and Identification step, the Description of Critical Groups and the use of the Data protocol. An application of this methodology was performed and published in 1998 and, its results and conclusions are summarised in the paper. Also, the paper includes main conclusions from the biosphere modelling applied in the last ENRESA2000 Spanish PA exercise and, difficulties found in the consistency between the scenario generation procedure, the treatment of the interface and the source term and, the use of the reference biosphere concept. (author)

  11. Probing the Rare Biosphere of the North-West Mediterranean Sea: An Experiment with High Sequencing Effort.

    Science.gov (United States)

    Crespo, Bibiana G; Wallhead, Philip J; Logares, Ramiro; Pedrós-Alió, Carlos

    2016-01-01

    High-throughput sequencing (HTS) techniques have suggested the existence of a wealth of species with very low relative abundance: the rare biosphere. We attempted to exhaustively map this rare biosphere in two water samples by performing an exceptionally deep pyrosequencing analysis (~500,000 final reads per sample). Species data were derived by a 97% identity criterion and various parametric distributions were fitted to the observed counts. Using the best-fitting Sichel distribution we estimate a total species richness of 1,568-1,669 (95% Credible Interval) and 5,027-5,196 for surface and deep water samples respectively, implying that 84-89% of the total richness in those two samples was sequenced, and we predict that a quadrupling of the present sequencing effort would suffice to observe 90% of the total richness in both samples. Comparing the HTS results with a culturing approach we found that most of the cultured taxa were not obtained by HTS, despite the high sequencing effort. Culturing therefore remains a useful tool for uncovering marine bacterial diversity, in addition to its other uses for studying the ecology of marine bacteria.

  12. Probing the Rare Biosphere of the North-West Mediterranean Sea: An Experiment with High Sequencing Effort.

    Directory of Open Access Journals (Sweden)

    Bibiana G Crespo

    Full Text Available High-throughput sequencing (HTS techniques have suggested the existence of a wealth of species with very low relative abundance: the rare biosphere. We attempted to exhaustively map this rare biosphere in two water samples by performing an exceptionally deep pyrosequencing analysis (~500,000 final reads per sample. Species data were derived by a 97% identity criterion and various parametric distributions were fitted to the observed counts. Using the best-fitting Sichel distribution we estimate a total species richness of 1,568-1,669 (95% Credible Interval and 5,027-5,196 for surface and deep water samples respectively, implying that 84-89% of the total richness in those two samples was sequenced, and we predict that a quadrupling of the present sequencing effort would suffice to observe 90% of the total richness in both samples. Comparing the HTS results with a culturing approach we found that most of the cultured taxa were not obtained by HTS, despite the high sequencing effort. Culturing therefore remains a useful tool for uncovering marine bacterial diversity, in addition to its other uses for studying the ecology of marine bacteria.

  13. Disruptive Event Biosphere Dose Conversion Factor Analysis

    International Nuclear Information System (INIS)

    M. A. Wasiolek

    2003-01-01

    This analysis report, ''Disruptive Event Biosphere Dose Conversion Factor Analysis'', is one of the technical reports containing documentation of the ERMYN (Environmental Radiation Model for Yucca Mountain Nevada) biosphere model for the geologic repository at Yucca Mountain, its input parameters, and the application of the model to perform the dose assessment for the repository. The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of the two reports that develop biosphere dose conversion factors (BDCFs), which are input parameters for the TSPA model. The ''Biosphere Model Report'' (BSC 2003 [DIRS 164186]) describes in detail the conceptual model as well as the mathematical model and lists its input parameters. Model input parameters are developed and described in detail in five analysis report (BSC 2003 [DIRS 160964], BSC 2003 [DIRS 160965], BSC 2003 [DIRS 160976], BSC 2003 [DIRS 161239], and BSC 2003 [DIRS 161241]). The objective of this analysis was to develop the BDCFs for the volcanic ash exposure scenario and the dose factors (DFs) for calculating inhalation doses during volcanic eruption (eruption phase of the volcanic event). The volcanic ash exposure scenario is hereafter referred to as the volcanic ash scenario. For the volcanic ash scenario, the mode of radionuclide release into the biosphere is a volcanic eruption through the repository with the resulting entrainment of contaminated waste in the tephra and the subsequent atmospheric transport and dispersion of contaminated material in the biosphere. The biosphere process

  14. Disruptive Event Biosphere Dose Conversion Factor Analysis

    Energy Technology Data Exchange (ETDEWEB)

    M. A. Wasiolek

    2003-07-21

    This analysis report, ''Disruptive Event Biosphere Dose Conversion Factor Analysis'', is one of the technical reports containing documentation of the ERMYN (Environmental Radiation Model for Yucca Mountain Nevada) biosphere model for the geologic repository at Yucca Mountain, its input parameters, and the application of the model to perform the dose assessment for the repository. The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of the two reports that develop biosphere dose conversion factors (BDCFs), which are input parameters for the TSPA model. The ''Biosphere Model Report'' (BSC 2003 [DIRS 164186]) describes in detail the conceptual model as well as the mathematical model and lists its input parameters. Model input parameters are developed and described in detail in five analysis report (BSC 2003 [DIRS 160964], BSC 2003 [DIRS 160965], BSC 2003 [DIRS 160976], BSC 2003 [DIRS 161239], and BSC 2003 [DIRS 161241]). The objective of this analysis was to develop the BDCFs for the volcanic ash exposure scenario and the dose factors (DFs) for calculating inhalation doses during volcanic eruption (eruption phase of the volcanic event). The volcanic ash exposure scenario is hereafter referred to as the volcanic ash scenario. For the volcanic ash scenario, the mode of radionuclide release into the biosphere is a volcanic eruption through the repository with the resulting entrainment of contaminated waste in the tephra and the subsequent atmospheric transport and dispersion of contaminated material in

  15. The Earth's Biosphere

    Science.gov (United States)

    2002-01-01

    In the last five years, scientists have been able to monitor our changing planet in ways never before possible. The Sea-viewing Wide Field-of-View Sensor (SeaWiFS), aboard the OrbView-2 satellite, has given researchers an unprecedented view of the biological engine that drives life on Earth-the countless forms of plants that cover the land and fill the oceans. 'There is no question the Earth is changing. SeaWiFS has enabled us, for the first time, to monitor the biological consequences of that change-to see how the things we do, as well as natural variability, affect the Earth's ability to support life,' said Gene Carl Feldman, SeaWiFS project manager at NASA's Goddard Space Flight Center, Greenbelt, Md. SeaWiFS data, based on continuous daily global observations, have helped scientists make a more accurate assessment of the oceans' role in the global carbon cycle. The data provide a key parameter in a number of ecological and environmental studies as well as global climate-change modeling. The images of the Earth's changing land, ocean and atmosphere from SeaWiFS have documented many previously unrecognized phenomena. The image above shows the global biosphere from June 2002 measured by SeaWiFS. Data in the oceans is chlorophyll concentration, a measure of the amount of phytoplankton (microscopic plants) living in the ocean. On land SeaWiFS measures Normalized Difference Vegetation Index, an indication of the density of plant growth. For more information and images, read: SeaWiFS Sensor Marks Five Years Documenting Earth'S Dynamic Biosphere Image courtesy SeaWiFS project and copyright Orbimage.

  16. Lidar Atmospheric Sensing Experiment (LASE) Data Obtained During the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lidar Atmospheric Sensing Experiment (LASE) Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) data set was collected over the Western...

  17. Biosphere Model Report

    International Nuclear Information System (INIS)

    M. A. Wasiolek

    2003-01-01

    The purpose of this report is to document the biosphere model, the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), which describes radionuclide transport processes in the biosphere and associated human exposure that may arise as the result of radionuclide release from the geologic repository at Yucca Mountain. The biosphere model is one of the process models that support the Yucca Mountain Project (YMP) Total System Performance Assessment (TSPA) for the license application (LA), the TSPA-LA. The ERMYN model provides the capability of performing human radiation dose assessments. This report documents the biosphere model, which includes: (1) Describing the reference biosphere, human receptor, exposure scenarios, and primary radionuclides for each exposure scenario (Section 6.1); (2) Developing a biosphere conceptual model using site-specific features, events, and processes (FEPs), the reference biosphere, the human receptor, and assumptions (Section 6.2 and Section 6.3); (3) Building a mathematical model using the biosphere conceptual model and published biosphere models (Sections 6.4 and 6.5); (4) Summarizing input parameters for the mathematical model, including the uncertainty associated with input values (Section 6.6); (5) Identifying improvements in the ERMYN model compared with the model used in previous biosphere modeling (Section 6.7); (6) Constructing an ERMYN implementation tool (model) based on the biosphere mathematical model using GoldSim stochastic simulation software (Sections 6.8 and 6.9); (7) Verifying the ERMYN model by comparing output from the software with hand calculations to ensure that the GoldSim implementation is correct (Section 6.10); and (8) Validating the ERMYN model by corroborating it with published biosphere models; comparing conceptual models, mathematical models, and numerical results (Section 7)

  18. Biosphere Model Report

    Energy Technology Data Exchange (ETDEWEB)

    D. W. Wu

    2003-07-16

    The purpose of this report is to document the biosphere model, the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), which describes radionuclide transport processes in the biosphere and associated human exposure that may arise as the result of radionuclide release from the geologic repository at Yucca Mountain. The biosphere model is one of the process models that support the Yucca Mountain Project (YMP) Total System Performance Assessment (TSPA) for the license application (LA), the TSPA-LA. The ERMYN model provides the capability of performing human radiation dose assessments. This report documents the biosphere model, which includes: (1) Describing the reference biosphere, human receptor, exposure scenarios, and primary radionuclides for each exposure scenario (Section 6.1); (2) Developing a biosphere conceptual model using site-specific features, events, and processes (FEPs), the reference biosphere, the human receptor, and assumptions (Section 6.2 and Section 6.3); (3) Building a mathematical model using the biosphere conceptual model and published biosphere models (Sections 6.4 and 6.5); (4) Summarizing input parameters for the mathematical model, including the uncertainty associated with input values (Section 6.6); (5) Identifying improvements in the ERMYN model compared with the model used in previous biosphere modeling (Section 6.7); (6) Constructing an ERMYN implementation tool (model) based on the biosphere mathematical model using GoldSim stochastic simulation software (Sections 6.8 and 6.9); (7) Verifying the ERMYN model by comparing output from the software with hand calculations to ensure that the GoldSim implementation is correct (Section 6.10); and (8) Validating the ERMYN model by corroborating it with published biosphere models; comparing conceptual models, mathematical models, and numerical results (Section 7).

  19. Biosphere Model Report

    Energy Technology Data Exchange (ETDEWEB)

    M. A. Wasiolek

    2003-10-27

    The purpose of this report is to document the biosphere model, the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), which describes radionuclide transport processes in the biosphere and associated human exposure that may arise as the result of radionuclide release from the geologic repository at Yucca Mountain. The biosphere model is one of the process models that support the Yucca Mountain Project (YMP) Total System Performance Assessment (TSPA) for the license application (LA), the TSPA-LA. The ERMYN model provides the capability of performing human radiation dose assessments. This report documents the biosphere model, which includes: (1) Describing the reference biosphere, human receptor, exposure scenarios, and primary radionuclides for each exposure scenario (Section 6.1); (2) Developing a biosphere conceptual model using site-specific features, events, and processes (FEPs), the reference biosphere, the human receptor, and assumptions (Section 6.2 and Section 6.3); (3) Building a mathematical model using the biosphere conceptual model and published biosphere models (Sections 6.4 and 6.5); (4) Summarizing input parameters for the mathematical model, including the uncertainty associated with input values (Section 6.6); (5) Identifying improvements in the ERMYN model compared with the model used in previous biosphere modeling (Section 6.7); (6) Constructing an ERMYN implementation tool (model) based on the biosphere mathematical model using GoldSim stochastic simulation software (Sections 6.8 and 6.9); (7) Verifying the ERMYN model by comparing output from the software with hand calculations to ensure that the GoldSim implementation is correct (Section 6.10); and (8) Validating the ERMYN model by corroborating it with published biosphere models; comparing conceptual models, mathematical models, and numerical results (Section 7).

  20. Biosphere Model Report

    Energy Technology Data Exchange (ETDEWEB)

    D.W. Wu; A.J. Smith

    2004-11-08

    The purpose of this report is to document the biosphere model, the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), which describes radionuclide transport processes in the biosphere and associated human exposure that may arise as the result of radionuclide release from the geologic repository at Yucca Mountain. The biosphere model is one of the process models that support the Yucca Mountain Project (YMP) Total System Performance Assessment (TSPA) for the license application (LA), TSPA-LA. The ERMYN provides the capability of performing human radiation dose assessments. This report documents the biosphere model, which includes: (1) Describing the reference biosphere, human receptor, exposure scenarios, and primary radionuclides for each exposure scenario (Section 6.1); (2) Developing a biosphere conceptual model using site-specific features, events, and processes (FEPs) (Section 6.2), the reference biosphere (Section 6.1.1), the human receptor (Section 6.1.2), and approximations (Sections 6.3.1.4 and 6.3.2.4); (3) Building a mathematical model using the biosphere conceptual model (Section 6.3) and published biosphere models (Sections 6.4 and 6.5); (4) Summarizing input parameters for the mathematical model, including the uncertainty associated with input values (Section 6.6); (5) Identifying improvements in the ERMYN compared with the model used in previous biosphere modeling (Section 6.7); (6) Constructing an ERMYN implementation tool (model) based on the biosphere mathematical model using GoldSim stochastic simulation software (Sections 6.8 and 6.9); (7) Verifying the ERMYN by comparing output from the software with hand calculations to ensure that the GoldSim implementation is correct (Section 6.10); (8) Validating the ERMYN by corroborating it with published biosphere models; comparing conceptual models, mathematical models, and numerical results (Section 7).

  1. Biosphere Model Report

    International Nuclear Information System (INIS)

    D.W. Wu; A.J. Smith

    2004-01-01

    The purpose of this report is to document the biosphere model, the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), which describes radionuclide transport processes in the biosphere and associated human exposure that may arise as the result of radionuclide release from the geologic repository at Yucca Mountain. The biosphere model is one of the process models that support the Yucca Mountain Project (YMP) Total System Performance Assessment (TSPA) for the license application (LA), TSPA-LA. The ERMYN provides the capability of performing human radiation dose assessments. This report documents the biosphere model, which includes: (1) Describing the reference biosphere, human receptor, exposure scenarios, and primary radionuclides for each exposure scenario (Section 6.1); (2) Developing a biosphere conceptual model using site-specific features, events, and processes (FEPs) (Section 6.2), the reference biosphere (Section 6.1.1), the human receptor (Section 6.1.2), and approximations (Sections 6.3.1.4 and 6.3.2.4); (3) Building a mathematical model using the biosphere conceptual model (Section 6.3) and published biosphere models (Sections 6.4 and 6.5); (4) Summarizing input parameters for the mathematical model, including the uncertainty associated with input values (Section 6.6); (5) Identifying improvements in the ERMYN compared with the model used in previous biosphere modeling (Section 6.7); (6) Constructing an ERMYN implementation tool (model) based on the biosphere mathematical model using GoldSim stochastic simulation software (Sections 6.8 and 6.9); (7) Verifying the ERMYN by comparing output from the software with hand calculations to ensure that the GoldSim implementation is correct (Section 6.10); (8) Validating the ERMYN by corroborating it with published biosphere models; comparing conceptual models, mathematical models, and numerical results (Section 7)

  2. A Spectacular Experiment Exhibiting Atmospheric Pressure

    Science.gov (United States)

    Le Noxaïc, Armand

    2014-01-01

    The experiment described here is fairly easy to reproduce and dramatically shows the magnitude of ambient air pressure. Two circular plates of aluminum are applied one against the other. How do you make their separation very difficult? With only the help of an elastic band! You don't have to use a vacuum pump for this experiment.

  3. Biosphere 2 anew

    Science.gov (United States)

    The seven scientists who volunteered to live in Biosphere 2 for the past 6.5 months will be reentering the real world this Saturday, September 17, as Biosphere's new management team shifts into high gear to revitalize the $150 million sealed ecosystem's science plan. The new management team stepped in April 1 after a court order obtained by the project's owner Ed Bass kicked out its then prevailing management team. In mid-August, Biosphere 2 announced that it had joined forces with Columbia University's Lamont-Doherty Earth Observatory in a nonprofit venture to set a new research agenda for the reportedly troubled 3.2-acre facility. Biosphere has commissioned about a dozen white papers to be written during the next 7 months to help articulate the optimum science program. “The past really isn't the issue,” says biogeochemist Bruno Marino, Biosphere's new research director.

  4. NAMMA LIDAR ATMOSPHERIC SENSING EXPERIMENT (LASE) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NAMMA Lidar Atmospheric Sensing Experiment (LASE) dataset used the LASE system using the Differential Absorption Lidar (DIAL) system was operated during the NASA...

  5. NOE: atmospheric and long baseline neutrino oscillation experiment

    International Nuclear Information System (INIS)

    Barbarino, G.C.; Campana, D.; Guarino, F.; Lauro, A.; Osteria, G.; Angelillo, E.; Bernardini, P.; Mancarella, G.; Surdo, A.; De Vincenzi, M.; Lamanna, E.; Margiotta, A.; Rubizzo, U.; Spurio, M.

    1996-01-01

    A design for a large underground experiment using scintillating fiber calorimeter and tracking system is presented. Its calorimeter has been conceived for atmospheric and LBL neutrino oscillation studies. (orig.)

  6. CAMEX-4 LIDAR ATMOSPHERIC SENSING EXPERIMENT (LASE) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CAMEX-4 LIDAR Atmospheric Sensing Experiment (LASE) dataset was collected by the LASE instrument, which is an airborne DIAL (Differential Absorption Lidar)...

  7. Disruptive Event Biosphere Dose Conversion Factor Analysis

    International Nuclear Information System (INIS)

    M. Wasiolek

    2004-01-01

    exposure scenario and the dose factors for calculating inhalation doses during volcanic eruption (eruption phase of the volcanic event). For the volcanic ash exposure scenario, the mode of radionuclide release into the biosphere is a volcanic eruption through the repository with the resulting entrainment of contaminated waste in the tephra and the subsequent atmospheric transport and dispersion of contaminated material in the biosphere. The biosphere process model for this scenario uses the surface deposition of contaminated ash as the source of radionuclides in the biosphere. The initial atmospheric transport and dispersion of the ash as well as its subsequent redistribution by fluvial and aeolian processes are not addressed within the biosphere model. These processes influence the value of the source term that is calculated elsewhere and then combined with the BDCFs in the TSPA model to calculate expected dose to the receptor. Another objective of this analysis was to re-qualify the output of the previous revision (BSC 2003 [DIRS 163958])

  8. Disruptive Event Biosphere Dose Conversion Factor Analysis

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek

    2004-09-08

    analysis was to develop the BDCFs for the volcanic ash exposure scenario and the dose factors for calculating inhalation doses during volcanic eruption (eruption phase of the volcanic event). For the volcanic ash exposure scenario, the mode of radionuclide release into the biosphere is a volcanic eruption through the repository with the resulting entrainment of contaminated waste in the tephra and the subsequent atmospheric transport and dispersion of contaminated material in the biosphere. The biosphere process model for this scenario uses the surface deposition of contaminated ash as the source of radionuclides in the biosphere. The initial atmospheric transport and dispersion of the ash as well as its subsequent redistribution by fluvial and aeolian processes are not addressed within the biosphere model. These processes influence the value of the source term that is calculated elsewhere and then combined with the BDCFs in the TSPA model to calculate expected dose to the receptor. Another objective of this analysis was to re-qualify the output of the previous revision (BSC 2003 [DIRS 163958]).

  9. Development of a distributed biosphere hydrological model and its evaluation with the Southern Great Plains Experiments (SGP97 and SGP99)

    Science.gov (United States)

    A distributed biosphere hydrological model, the so called water and energy budget-based distributed hydrological model (WEB-DHM), has been developed by fully coupling a biosphere scheme (SiB2) with a geomorphology-based hydrological model (GBHM). SiB2 describes the transfer of turbulent fluxes (ener...

  10. Biosphere Process Model Report

    Energy Technology Data Exchange (ETDEWEB)

    J. Schmitt

    2000-05-25

    To evaluate the postclosure performance of a potential monitored geologic repository at Yucca Mountain, a Total System Performance Assessment (TSPA) will be conducted. Nine Process Model Reports (PMRs), including this document, are being developed to summarize the technical basis for each of the process models supporting the TSPA model. These reports cover the following areas: (1) Integrated Site Model; (2) Unsaturated Zone Flow and Transport; (3) Near Field Environment; (4) Engineered Barrier System Degradation, Flow, and Transport; (5) Waste Package Degradation; (6) Waste Form Degradation; (7) Saturated Zone Flow and Transport; (8) Biosphere; and (9) Disruptive Events. Analysis/Model Reports (AMRs) contain the more detailed technical information used to support TSPA and the PMRs. The AMRs consists of data, analyses, models, software, and supporting documentation that will be used to defend the applicability of each process model for evaluating the postclosure performance of the potential Yucca Mountain repository system. This documentation will ensure the traceability of information from its source through its ultimate use in the TSPA-Site Recommendation (SR) and in the National Environmental Policy Act (NEPA) analysis processes. The objective of the Biosphere PMR is to summarize (1) the development of the biosphere model, and (2) the Biosphere Dose Conversion Factors (BDCFs) developed for use in TSPA. The Biosphere PMR does not present or summarize estimates of potential radiation doses to human receptors. Dose calculations are performed as part of TSPA and will be presented in the TSPA documentation. The biosphere model is a component of the process to evaluate postclosure repository performance and regulatory compliance for a potential monitored geologic repository at Yucca Mountain, Nevada. The biosphere model describes those exposure pathways in the biosphere by which radionuclides released from a potential repository could reach a human receptor

  11. Biosphere Process Model Report

    International Nuclear Information System (INIS)

    Schmitt, J.

    2000-01-01

    To evaluate the postclosure performance of a potential monitored geologic repository at Yucca Mountain, a Total System Performance Assessment (TSPA) will be conducted. Nine Process Model Reports (PMRs), including this document, are being developed to summarize the technical basis for each of the process models supporting the TSPA model. These reports cover the following areas: (1) Integrated Site Model; (2) Unsaturated Zone Flow and Transport; (3) Near Field Environment; (4) Engineered Barrier System Degradation, Flow, and Transport; (5) Waste Package Degradation; (6) Waste Form Degradation; (7) Saturated Zone Flow and Transport; (8) Biosphere; and (9) Disruptive Events. Analysis/Model Reports (AMRs) contain the more detailed technical information used to support TSPA and the PMRs. The AMRs consists of data, analyses, models, software, and supporting documentation that will be used to defend the applicability of each process model for evaluating the postclosure performance of the potential Yucca Mountain repository system. This documentation will ensure the traceability of information from its source through its ultimate use in the TSPA-Site Recommendation (SR) and in the National Environmental Policy Act (NEPA) analysis processes. The objective of the Biosphere PMR is to summarize (1) the development of the biosphere model, and (2) the Biosphere Dose Conversion Factors (BDCFs) developed for use in TSPA. The Biosphere PMR does not present or summarize estimates of potential radiation doses to human receptors. Dose calculations are performed as part of TSPA and will be presented in the TSPA documentation. The biosphere model is a component of the process to evaluate postclosure repository performance and regulatory compliance for a potential monitored geologic repository at Yucca Mountain, Nevada. The biosphere model describes those exposure pathways in the biosphere by which radionuclides released from a potential repository could reach a human receptor

  12. World campaign for the biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Worthington, E.B.

    1982-07-01

    Four aims are included in the Draft Declaration about the Champaign for The Biosphere; 1) education and allied activities, 2) scientific understanding, 3) practical activities, and 4) accommodation of humanity to The Biosphere. There is a strong case for application to practical affairs of what is already known. The campaign might focus initially on problems that illustrate changing attitudes which are the result of research and experience. Examples include the Green revolution in agriculture and, in engineering, the swing of changing attitudes to the primary and ancillary effects of large projects for hydro-power and irrigation. The need for conservation of natural resources by rational, ecologically wise use is stressed. Educational and medical programs for planned parenthood are already available. The problem will be to boost them to top priority in the countries that need them most. (JMT)

  13. Simulation of containment atmosphere stratification experiment using local instantaneous description

    International Nuclear Information System (INIS)

    Babic, M.; Kljenak, I.

    2004-01-01

    An experiment on mixing and stratification in the atmosphere of a nuclear power plant containment at accident conditions was simulated with the CFD code CFX4.4. The original experiment was performed in the TOSQAN experimental facility. Simulated nonhomogeneous temperature, species concentration and velocity fields are compared to experimental results. (author)

  14. Atmospheric Line of Site Experiment (ALOSE) Final Campaign Summary

    Energy Technology Data Exchange (ETDEWEB)

    Smith, W. [Atmospheric Radiation Measurement (ARM) Climate Research Facility, Washington, DC (United States); Green, S. [Atmospheric Radiation Measurement (ARM) Climate Research Facility, Washington, DC (United States); Howard, M. [Atmospheric Radiation Measurement (ARM) Climate Research Facility, Washington, DC (United States); Yesalusky, M. [Atmospheric Radiation Measurement (ARM) Climate Research Facility, Washington, DC (United States); Modlin, N. [Atmospheric Radiation Measurement (ARM) Climate Research Facility, Washington, DC (United States)

    2016-03-01

    The Atmospheric Line of Site Experiment (ALOSE) was a project to produce best-estimate atmospheric state measurements at the: 1. DOE Atmospheric Radiation Measurement (ARM) Clouds and Radiation Test-bed (CART) site located in Lamont, Oklahoma (11–14 December 2012) 2. Poker Flat Alaska Research Range (PFRR) located in Poker Flat, Alaska (19–26 February 2013) 3. DOE ARM CART site located in Lamont, Oklahoma (24–28 April 2013) 4. DOE ARM CART site located in Lamont, Oklahoma (9–15 July 2013) 5. DOE ARM Tropical Western Pacific (TWP) site located in Darwin, Australia (27 September–3 October 2013).

  15. Data of long term atmospheric diffusion experiments (Winter, 1992)

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Takashi; Chino, Masamichi; Yamazawa, Hiromi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1998-10-01

    The data were obtained in the long-term atmospheric diffusion experiments in the Tokai area, autumn, 1991 which were a part of the Evaluation Safety Demonstration Experiments of Environmental Radiation entrusted with the Science and Technology Agency. The experiments were conducted by JAERI in cooperation with the Japan Weather Association. The report includes tracer concentration data of surface sampling points and meteorological data. (author)

  16. Lidar Atmospheric Sensing Experiment (LASE) Data Obtained During the Convection And Moisture Experiment (CAMEX-3)

    Data.gov (United States)

    National Aeronautics and Space Administration — LASE_CAMEX3 data are Lidar Atmospheric Sensing Experiment water vapor and aerosol data measurements taken during the 3rd Convection and Moisture Experiment...

  17. Biosphere assessment for high-level radioactive waste disposal: modelling experiences and discussion on key parameters by sensitivity analysis in JNC

    International Nuclear Information System (INIS)

    Kato, Tomoko; Makino, Hitoshi; Uchida, Masahiro; Suzuki, Yuji

    2004-01-01

    In the safety assessment of the deep geological disposal system of the high-level radioactive waste (HLW), biosphere assessment is often necessary to estimate future radiological impacts on human beings (e.g. radiation dose). In order to estimate the dose, the surface environment (biosphere) into which future releases of radionuclides might occur and the associated future human behaviour needs to be considered. However, for a deep repository, such releases might not occur for many thousands of years after disposal. Over such timescales, it is impossible to predict with any certainty how the biosphere and human behaviour will evolve. To avoid endless speculation aimed at reducing such uncertainty, the 'Reference Biospheres' concept has been developed for use in the safety assessment of HLW disposal. As the aim of the safety assessment with a hypothetical HLW disposal system by JNC was to demonstrate the technical feasibility and reliability of the Japanese disposal concept for a range of geological and surface environments, some biosphere models were developed using the 'Reference Biospheres' concept and the BIOMASS Methodology. These models have been used to derive factors to convert the radionuclide flux from a geosphere to a biosphere into a dose (flux to dose conversion factors). Moreover, sensitivity analysis for parameters in the biosphere models was performed to evaluate and understand the relative importance of parameters. It was concluded that transport parameters in the surface environments, annual amount of food consumption, distribution coefficients on soils and sediments, transfer coefficients of radionuclides to animal products and concentration ratios for marine organisms would have larger influence on the flux to dose conversion factors than any other parameters. (author)

  18. Lower Atmospheric Boundary Layer Experiment (LABLE) Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Klein, P [University of Oklahoma - School of Meteorology; Bonin, TA; Newman, JF [National Renewable Energy Laboratory; Turner, DD [National Oceanic and Atmospheric Administration; Chilson, P [University of Oklahoma; Blumberg, WG [University of Oklahoma; Mishra, S; Wainwright, CE; Carney, M [University of Oklahoma - School of Meteorology; Jacobsen, EP [University of Oklahoma; Wharton, S [Lawrence Livermore National Laboratory

    2015-11-01

    The Lower Atmospheric Boundary Layer Experiment (LABLE) included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was designed as a multi-phase, low-cost collaboration among the University of Oklahoma, the National Severe Storms Laboratory, Lawrence Livermore National Laboratory, and the ARM program. A unique aspect was the role of graduate students in LABLE. They served as principal investigators and took the lead in designing and conducting experiments using different sampling strategies to best resolve boundary-layer phenomena.

  19. Verification of atmospheric diffusion models using data of long term atmospheric diffusion experiments

    International Nuclear Information System (INIS)

    Tamura, Junji; Kido, Hiroko; Hato, Shinji; Homma, Toshimitsu

    2009-03-01

    Straight-line or segmented plume models as atmospheric diffusion models are commonly used in probabilistic accident consequence assessment (PCA) codes due to cost and time savings. The PCA code, OSCAAR developed by Japan Atomic Energy Research Institute (Present; Japan Atomic Energy Agency) uses the variable puff trajectory model to calculate atmospheric transport and dispersion of released radionuclides. In order to investigate uncertainties involved with the structure of the atmospheric dispersion/deposition model in OSCAAR, we have introduced the more sophisticated computer codes that included regional meteorological models RAMS and atmospheric transport model HYPACT, which were developed by Colorado State University, and comparative analyses between OSCAAR and RAMS/HYPACT have been performed. In this study, model verification of OSCAAR and RAMS/HYPACT was conducted using data of long term atmospheric diffusion experiments, which were carried out in Tokai-mura, Ibaraki-ken. The predictions by models and the results of the atmospheric diffusion experiments indicated relatively good agreements. And it was shown that model performance of OSCAAR was the same degree as it of RAMS/HYPACT. (author)

  20. Causes and timing of future biosphere extinctions

    Directory of Open Access Journals (Sweden)

    S. Franck

    2006-01-01

    Full Text Available We present a minimal model for the global carbon cycle of the Earth containing the reservoirs mantle, ocean floor, continental crust, biosphere, and the kerogen, as well as the combined ocean and atmosphere reservoir. The model is specified by introducing three different types of biosphere: procaryotes, eucaryotes, and complex multicellular life. During the entire existence of the biosphere procaryotes are always present. 2 Gyr ago eucaryotic life first appears. The emergence of complex multicellular life is connected with an explosive increase in biomass and a strong decrease in Cambrian global surface temperature at about 0.54 Gyr ago. In the long-term future the three types of biosphere will die out in reverse sequence of their appearance. We show that there is no evidence for an implosion-like extinction in contrast to the Cambrian explosion. In dependence of their temperature tolerance complex multicellular life and eucaryotes become extinct in about 0.8–1.2 Gyr and 1.3–1.5 Gyr, respectively. The ultimate life span of the biosphere is defined by the extinction of procaryotes in about 1.6 Gyr.

  1. Controlled experiments of hillslope co-evolution at the Biosphere 2 Landscape Evolution Observatory: toward prediction of coupled hydrological, biogeochemical, and ecological change

    Science.gov (United States)

    Volkmann, T. H. M.; Sengupta, A.; Pangle, L.; Abramson, N.; Barron-Gafford, G.; Breshears, D. D.; Bugaj, A.; Chorover, J.; Dontsova, K.; Durcik, M.; Ferre, T. P. A.; Harman, C. J.; Hunt, E.; Huxman, T. E.; Kim, M.; Maier, R. M.; Matos, K.; Alves Meira Neto, A.; Meredith, L. K.; Monson, R. K.; Niu, G. Y.; Pelletier, J. D.; Rasmussen, C.; Ruiz, J.; Saleska, S. R.; Schaap, M. G.; Sibayan, M.; Tuller, M.; Van Haren, J. L. M.; Wang, Y.; Zeng, X.; Troch, P. A.

    2017-12-01

    Understanding the process interactions and feedbacks among water, microbes, plants, and porous geological media is crucial for improving predictions of the response of Earth's critical zone to future climatic conditions. However, the integrated co-evolution of landscapes under change is notoriously difficult to investigate. Laboratory studies are typically limited in spatial and temporal scale, while field studies lack observational density and control. To bridge the gap between controlled lab and uncontrolled field studies, the University of Arizona - Biosphere 2 built a macrocosm experiment of unprecedented scale: the Landscape Evolution Observatory (LEO). LEO consists of three replicated, 330-m2 hillslope landscapes inside a 5000-m2 environmentally controlled facility. The engineered landscapes contain 1-m depth of basaltic tephra ground to homogenous loamy sand that will undergo physical, chemical, and mineralogical changes over many years. Each landscape contains a dense sensor network capable of resolving water, carbon, and energy cycling processes at sub-meter to whole-landscape scale. Embedded sampling devices allow for quantification of biogeochemical processes, and facilitate the use of chemical tracers applied with the artificial rainfall. LEO is now fully operational and intensive forcing experiments have been launched. While operating the massive infrastructure poses significant challenges, LEO has demonstrated the capacity of tracking multi-scale matter and energy fluxes at a level of detail impossible in field experiments. Initial sensor, sampler, and restricted soil coring data are already providing insights into the tight linkages between water flow, weathering, and (micro-) biological community development during incipient landscape evolution. Over the years to come, these interacting processes are anticipated to drive the model systems to increasingly complex states, potentially perturbed by changes in climatic forcing. By intensively monitoring

  2. Slowing Down Biospheric Change

    OpenAIRE

    Cairns, John

    2010-01-01

    In the latter part of the 20th century and the beginning of the 21st century, rapid climate change and damage to the biosphere have increased the risks to Homo sapiens. So much harm has already been done to the biosphere and the climate system that it will require humankind to adapt to the existing and new conditions in order to survive. In order for this information to reach and impact the public, scientists, politicians, and the news media need to work together to communicate their ideas t...

  3. Inhalation Exposure Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    K. Rautenstrauch

    2004-01-01

    This analysis is one of 10 reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. Inhalation Exposure Input Parameters for the Biosphere Model is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the Technical Work Plan for Biosphere Modeling and Expert Support (BSC 2004 [DIRS 169573]). This analysis report defines and justifies values of mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception

  4. Inhalation Exposure Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    K. Rautenstrauch

    2004-09-10

    This analysis is one of 10 reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. Inhalation Exposure Input Parameters for the Biosphere Model is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the Technical Work Plan for Biosphere Modeling and Expert Support (BSC 2004 [DIRS 169573]). This analysis report defines and justifies values of mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception.

  5. Molecular line parameters for the atmospheric trace molecule spectroscopy experiment

    Science.gov (United States)

    Brown, L. R.; Farmer, C. B.; Toth, R. A.; Rinsland, Curtis P.

    1987-01-01

    During its first mission in 1985 onboard Spacelab 3, the ATMOS (atmospheric trace molecule spectroscopy) instrument, a high speed Fourier transform spectrometer, produced a large number of high resolution infrared solar absorption spectra recorded in the occultation mode. The analysis and interpretation of these data in terms of composition, chemistry, and dynamics of the earth's upper atmosphere required good knowledge of the molecular line parameters for those species giving rise to the absorptions in the atmospheric spectra. This paper describes the spectroscopic line parameter database compiled for the ATMOS experiment and referenced in other papers describing ATMOS results. With over 400,000 entries, the linelist catalogs parameters of 46 minor and trace species in the 1-10,000/cm region.

  6. Study of the atmospheric neutrino oscillations in the Frejus experiment

    International Nuclear Information System (INIS)

    Perdereau, O.

    1989-05-01

    The behavior of atmospheric neutrinos is investigated. It is a zero mass, zero charge and weak interacting particle. The aim of the investigation is to search for non standard phenomena, such as neutrino oscillations. The neutrino theoretical properties are discussed and the physical parameters experimental limits are recalled. The analysis of the approximately 200 events from atmospheric neutrinos observed in Frejus detector is carried out. The results and simulation of neutrino interactions are presented. The data analysis induces to the exclusion of neutrino oscillation hypothesis from some models. Three cases of oscillations involving two neutrino flavors are analyzed. The effect of a third flavor is also taken into account. The present data and those from IMB and Kamiokande experiments are compared. Topics involving investigations on the superposition of a signal and the atmospheric neutrinos are included [fr

  7. The biosphere: current status

    International Nuclear Information System (INIS)

    Thorne, M.C.

    1988-06-01

    This paper outlines the biosphere models and data required to assess the post-closure radiological impact of deep geological repositories for low and intermediate level radioactive wastes. It then goes on to show how these requirements are being met either within the Nirex Safety Assessment Research Programme or from other research programmes. (Author)

  8. Biosphere assessment report 2009

    International Nuclear Information System (INIS)

    Hjerpe, T.; Broed, R.; Ikonen, A.T.K.

    2010-03-01

    Following the guidelines set forth by the Ministry of Trade and Industry (now Ministry of Employment and Economy), Posiva is preparing to submit a construction license application for the final disposal spent nuclear fuel at the Olkiluoto site, Finland, by the end of the year 2012. Disposal will take place in a geological repository implemented according to the KBS-3 method. The long-term safety section supporting the license application will be based on a safety case that, according to the internationally adopted definition, will be a compilation of the evidence, analyses and arguments that quantify and substantiate the safety and the level of expert confidence in the safety of the planned repository. The present Biosphere Assessment Report represents a major contribution to the development this safety case. The report has been compiled in accordance with Posiva's current plan for preparing this safety case. A full safety case, and an updated Biosphere Assessment Report, will be developed to support the Preliminary Safety Assessment Report (PSAR) in 2012. This report summarises the biosphere assessment for the planned repository addressing the following components: the site understanding (biosphere description), development of terrain and ecosystems within the next ten millennia, calculations of radionuclide transport in the biosphere and radiological consequences analysis, i.e. dose assessments for humans and the other biota. It also presents the main models used in the assessment and summarises the input data and its quality. It discusses compliance with Finnish regulatory requirements for long-term safety of a geological repository on the basis of the calculated annual effective doses to representative members of the most exposed people and to the a larger group of exposed people and typical absorbed dose rates to plants and animals. The other aspects of the compliance are addressed in the interim Summary Report of the safety case. Various repository

  9. Reconciling estimates of the contemporary North American carbon balance among terrestrial biosphere models, atmospheric inversions, and a new approach for estimating net ecosystem exchange from inventory-based data

    Science.gov (United States)

    Hayes, Daniel J.; Turner, David P.; Stinson, Graham; McGuire, A. David; Wei, Yaxing; West, Tristram O.; Heath, Linda S.; de Jong, Bernardus; McConkey, Brian G.; Birdsey, Richard A.; Kurz, Werner A.; Jacobson, Andrew R.; Huntzinger, Deborah N.; Pan, Yude; Post, W. Mac; Cook, Robert B.

    2012-01-01

    We develop an approach for estimating net ecosystem exchange (NEE) using inventory-based information over North America (NA) for a recent 7-year period (ca. 2000–2006). The approach notably retains information on the spatial distribution of NEE, or the vertical exchange between land and atmosphere of all non-fossil fuel sources and sinks of CO2, while accounting for lateral transfers of forest and crop products as well as their eventual emissions. The total NEE estimate of a -327 ± 252 TgC yr-1 sink for NA was driven primarily by CO2 uptake in the Forest Lands sector (-248 TgC yr-1), largely in the Northwest and Southeast regions of the US, and in the Crop Lands sector (-297 TgC yr-1), predominantly in the Midwest US states. These sinks are counteracted by the carbon source estimated for the Other Lands sector (+218 TgC yr-1), where much of the forest and crop products are assumed to be returned to the atmosphere (through livestock and human consumption). The ecosystems of Mexico are estimated to be a small net source (+18 TgC yr-1) due to land use change between 1993 and 2002. We compare these inventory-based estimates with results from a suite of terrestrial biosphere and atmospheric inversion models, where the mean continental-scale NEE estimate for each ensemble is -511 TgC yr-1 and -931 TgC yr-1, respectively. In the modeling approaches, all sectors, including Other Lands, were generally estimated to be a carbon sink, driven in part by assumed CO2 fertilization and/or lack of consideration of carbon sources from disturbances and product emissions. Additional fluxes not measured by the inventories, although highly uncertain, could add an additional -239 TgC yr-1 to the inventory-based NA sink estimate, thus suggesting some convergence with the modeling approaches.

  10. Atlantic Coast Unique Regional Atmospheric Tracer Experiment (ACURATE)

    International Nuclear Information System (INIS)

    Schubert, J.F.; Heffter, J.L.; Mead, G.A.

    1983-05-01

    The Atlantic Coast Unique Regional Atmospheric Tracer Experiment (ACURATE) is a program designed to obtain data necessary to evaluate atmospheric transport and diffusion models used to calculate regional population doses caused by nuclear facility emissions to the atmosphere. This experiment will significantly improve the basis for evaluating the cost effectiveness of different methods of managing airborne nuclear wastes. During the period from March 1982 through September 1982, twice daily air samples have been collected at each of five sampling stations located on a radial from the SRP to Murray Hill, NJ (1000 km). Kr-85 emitted from the F and H area chemical separations facilities is being used as a tracer to determine the transport and diffusion of atmospheric releases from the SRP. The Kr-85 concentrations in the air samples will be compared with the calculated concentrations as predicted by the transport and diffusion models. The Kr-85 data and the meteorological data are being archived and will be made available to the modeling community

  11. The first experiments on dielectric barrier discharge under atmospheric pressure

    International Nuclear Information System (INIS)

    Nob, Harada; Yusuke Watabe; Tsuyoshi Watanabe; Ikuo Oshio

    2002-01-01

    In order to obtain uniform and stable discharge plasma in atmospheric pressure, dielectric barrier discharge experiments were carried out. Main purpose is to examine the applicability of dielectric barrier discharge to production processes of semi-conductors. LSIs and flat display panels. In the experiments, at first, quite stable and uniform discharge was obtained at atmospheric pressure. Effects of applied voltage and frequency on plasma uniformity were studied. Improvement of discharge uniformity by introducing gas flow of helium or nitrogen between the discharge gap was observed. Finally, surface cleaning effect of the present plasma was confirmed by observing contact angle of liquid droplet. At least for cleaning process, possibility of application as process plasma was suggested

  12. A natural experiment on plant acclimation: lifetime stomatal frequency response of an individual tree to annual atmospheric CO2increase

    NARCIS (Netherlands)

    Wagner, F.; Below, R.; Klerk, P. de; Dilcher, D.L.; Joosten, H.; Kürschner, W.M.; Visscher, H.

    1996-01-01

    Carbon dioxide (CO2) has been increasing in atmospheric concentration since the Industrial Revolution. A decreasing number of stomata on leaves of land plants still provides the only morphological evidence that this man-made increase has already affected the biosphere. The current rate of CO2

  13. Global carbon export from the terrestrial biosphere controlled by erosion.

    Science.gov (United States)

    Galy, Valier; Peucker-Ehrenbrink, Bernhard; Eglinton, Timothy

    2015-05-14

    Riverine export of particulate organic carbon (POC) to the ocean affects the atmospheric carbon inventory over a broad range of timescales. On geological timescales, the balance between sequestration of POC from the terrestrial biosphere and oxidation of rock-derived (petrogenic) organic carbon sets the magnitude of the atmospheric carbon and oxygen reservoirs. Over shorter timescales, variations in the rate of exchange between carbon reservoirs, such as soils and marine sediments, also modulate atmospheric carbon dioxide levels. The respective fluxes of biospheric and petrogenic organic carbon are poorly constrained, however, and mechanisms controlling POC export have remained elusive, limiting our ability to predict POC fluxes quantitatively as a result of climatic or tectonic changes. Here we estimate biospheric and petrogenic POC fluxes for a suite of river systems representative of the natural variability in catchment properties. We show that export yields of both biospheric and petrogenic POC are positively related to the yield of suspended sediment, revealing that POC export is mostly controlled by physical erosion. Using a global compilation of gauged suspended sediment flux, we derive separate estimates of global biospheric and petrogenic POC fluxes of 157(+74)(-50) and 43(+61)(-25) megatonnes of carbon per year, respectively. We find that biospheric POC export is primarily controlled by the capacity of rivers to mobilize and transport POC, and is largely insensitive to the magnitude of terrestrial primary production. Globally, physical erosion rates affect the rate of biospheric POC burial in marine sediments more strongly than carbon sequestration through silicate weathering. We conclude that burial of biospheric POC in marine sediments becomes the dominant long-term atmospheric carbon dioxide sink under enhanced physical erosion.

  14. Inhalation Exposure Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    M. Wasiolek

    2006-01-01

    This analysis is one of the technical reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), referred to in this report as the biosphere model. ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. ''Inhalation Exposure Input Parameters for the Biosphere Model'' is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the biosphere model is presented in Figure 1-1 (based on BSC 2006 [DIRS 176938]). This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and how this analysis report contributes to biosphere modeling. This analysis report defines and justifies values of atmospheric mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of the biosphere model to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception. This report is concerned primarily with the

  15. Inhalation Exposure Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek

    2006-06-05

    This analysis is one of the technical reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), referred to in this report as the biosphere model. ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. ''Inhalation Exposure Input Parameters for the Biosphere Model'' is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the biosphere model is presented in Figure 1-1 (based on BSC 2006 [DIRS 176938]). This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and how this analysis report contributes to biosphere modeling. This analysis report defines and justifies values of atmospheric mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of the biosphere model to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception. This

  16. Atmospheric statistical dynamic models. Climate experiments: albedo experiments with a zonal atmospheric model

    International Nuclear Information System (INIS)

    Potter, G.L.; Ellsaesser, H.W.; MacCracken, M.C.; Luther, F.M.

    1978-06-01

    The zonal model experiments with modified surface boundary conditions suggest an initial chain of feedback processes that is largest at the site of the perturbation: deforestation and/or desertification → increased surface albedo → reduced surface absorption of solar radiation → surface cooling and reduced evaporation → reduced convective activity → reduced precipitation and latent heat release → cooling of upper troposphere and increased tropospheric lapse rates → general global cooling and reduced precipitation. As indicated above, although the two experiments give similar overall global results, the location of the perturbation plays an important role in determining the response of the global circulation. These two-dimensional model results are also consistent with three-dimensional model experiments. These results have tempted us to consider the possibility that self-induced growth of the subtropical deserts could serve as a possible mechanism to cause the initial global cooling that then initiates a glacial advance thus activating the positive feedback loop involving ice-albedo feedback (also self-perpetuating). Reversal of the cycle sets in when the advancing ice cover forces the wave-cyclone tracks far enough equatorward to quench (revegetate) the subtropical deserts

  17. Land-Atmosphere Feedback Experiment (LAFE) Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wulfmeyer, Volker [University of Hohenheim; Turner, David [NOAA National Severe Storms Laboratory

    2016-07-01

    The Land-Atmosphere Feedback Experiment (LAFE; pronounced “la-fey”) deploys several state-of-the-art scanning lidar and remote sensing systems to the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) site. These instruments will augment the ARM instrument suite in order to collect a data set for studying feedback processes between the land surface and the atmosphere. The novel synergy of remote-sensing systems will be applied for simultaneous measurements of land-surface fluxes and horizontal and vertical transport processes in the atmospheric convective boundary layer (CBL). The impact of spatial inhomogeneities of the soil-vegetation continuum on land-surface-atmosphere (LSA) feedback will be studied using the scanning capability of the instrumentation. The time period of the observations is August 2017, because large differences in surface fluxes between different fields and bare soil can be observed, e.g., pastures versus fields where the wheat has already been harvested. The remote sensing system synergy will consist of three components: 1) The SGP water vapor and temperature Raman lidar (SRL), the SGP Doppler lidar (SDL), and the National Center for Atmospheric Research (NCAR) water vapor differential absorption lidar (DIAL) (NDIAL) mainly in vertical staring modes to measure mean profiles and gradients of moisture, temperature, and horizontal wind. They will also measure profiles of higher-order turbulent moments in the water vapor and wind fields and profiles of the latent heat flux. 2) A novel scanning lidar system synergy consisting of the National Oceanic and Atmospheric Administration (NOAA) High-Resolution Doppler lidar (HRDL), the University of Hohenheim (UHOH) water-vapor differential absorption lidar (UDIAL), and the UHOH temperature Raman lidar (URL). These systems will perform coordinated range-height indicator (RHI) scans from just above the canopy level to the

  18. Reconnecting to the biosphere.

    Science.gov (United States)

    Folke, Carl; Jansson, Asa; Rockström, Johan; Olsson, Per; Carpenter, Stephen R; Chapin, F Stuart; Crépin, Anne-Sophie; Daily, Gretchen; Danell, Kjell; Ebbesson, Jonas; Elmqvist, Thomas; Galaz, Victor; Moberg, Fredrik; Nilsson, Måns; Osterblom, Henrik; Ostrom, Elinor; Persson, Asa; Peterson, Garry; Polasky, Stephen; Steffen, Will; Walker, Brian; Westley, Frances

    2011-11-01

    Humanity has emerged as a major force in the operation of the biosphere, with a significant imprint on the Earth System, challenging social-ecological resilience. This new situation calls for a fundamental shift in perspectives, world views, and institutions. Human development and progress must be reconnected to the capacity of the biosphere and essential ecosystem services to be sustained. Governance challenges include a highly interconnected and faster world, cascading social-ecological interactions and planetary boundaries that create vulnerabilities but also opportunities for social-ecological change and transformation. Tipping points and thresholds highlight the importance of understanding and managing resilience. New modes of flexible governance are emerging. A central challenge is to reconnect these efforts to the changing preconditions for societal development as active stewards of the Earth System. We suggest that the Millennium Development Goals need to be reframed in such a planetary stewardship context combined with a call for a new social contract on global sustainability. The ongoing mind shift in human relations with Earth and its boundaries provides exciting opportunities for societal development in collaboration with the biosphere--a global sustainability agenda for humanity.

  19. Atmospheric natural disasters in Serbia: Management experience and economic effects

    Directory of Open Access Journals (Sweden)

    Nikolić Jugoslav

    2013-01-01

    Full Text Available Natural disasters occur as a result of an action of natural forces and represent limitations in spatial planning and efficient spatial development, with different consequences in terms of scope on humans, living things and tangible property. Consequences can be ecological, economic, in terms of health, demographic, social, psychological, etc. Weather modification management involves policies, methods, techniques and technologies that affect atmospheric features in order to make atmospheric water useful for humans, while eliminating its negative effects. Highly significant risk of natural disasters in Serbia is related to hailstorm disasters and droughts as atmospheric elementary disasters. The goal of this paper is to present certain methodologies and experience in Serbia in the weather modification management, mainly in the hailstorm processes. This paper provides analysis and critical review of the methodology of an action, with the analysis of the economic benefits. Cost-benefit analysis of a hail suppression project in Serbia was performed. The results point to the economic justification of some aspects of artificial influence on weather disasters.

  20. Vertical profiles of CO2 above eastern Amazonia suggest a net carbon flux to the atmosphere and balanced biosphere between 2000 and 2009

    International Nuclear Information System (INIS)

    Gatti, L.V.; D'Amelio, M.T.S.; Martinewski, A.; Basso, L.S.; Miller, J.B.; Tans, P.; Gloor, M.E.; Wofsy, S.

    2010-01-01

    From 2000 until January 2010 vertical profiles were collected above eastern Amazonia to help determine regional-scale (∼10 5 -10 6 km 2 ) fluxes of carbon cycle-related greenhouse gases. Samples were collected aboard light aircraft between the surface and 4.3 km and a column integration technique was used to determine the CO 2 flux. Measured CO 2 profiles were differenced from the CO 2 background determined from measurements in the tropical Atlantic. The observed annual flux between the coast and measurement sites was 0.40 ± 0.27 gC/m 2 /d (90% confidence interval using a bootstrap analysis). The wet season (January-June) mean flux was 0.44 ± 0.38 gC/m 2 /d (positive fluxes defined as a source to the atmosphere) and the dry season mean flux was 0.35 ± 0.17 gC/m 2 /d (July-December). The observed flux variability is high, principally in the wet season. The influence of biomass burning has been removed using co-measured CO, and revealed the presence of a significant dry season sink. The annual mean vegetation flux, after the biomass burning correction, was 0.02 ± 0.27 gC/m 2 /d, and a clear sink was observed between August and November of -0.70 ± 0.21 gC/m 2 /d where for all of the dry season it was -0.24 ± 0.17 gC/m 2 /d.

  1. Vertical profiles of CO{sub 2} above eastern Amazonia suggest a net carbon flux to the atmosphere and balanced biosphere between 2000 and 2009

    Energy Technology Data Exchange (ETDEWEB)

    Gatti, L.V.; D' Amelio, M.T.S.; Martinewski, A.; Basso, L.S. (Inst. de Pesquisas Energeticas e Nucleares (IPEN), Atmospheric Chemistry Laboratory, Sao Paulo (Brazil)); Miller, J.B.; Tans, P. (National Oceanic and Atmospheric Administration (NOAA), Earth System Research Laboratory, Boulder (United States)); Gloor, M.E. (Univ. of Leeds (United Kingdom)); Wofsy, S. (Harvard Univ., Cambridge, MA (United States))

    2010-11-15

    From 2000 until January 2010 vertical profiles were collected above eastern Amazonia to help determine regional-scale (approx105-106 km2) fluxes of carbon cycle-related greenhouse gases. Samples were collected aboard light aircraft between the surface and 4.3 km and a column integration technique was used to determine the CO{sub 2} flux. Measured CO{sub 2} profiles were differenced from the CO{sub 2} background determined from measurements in the tropical Atlantic. The observed annual flux between the coast and measurement sites was 0.40 +- 0.27 gC/m2/d (90% confidence interval using a bootstrap analysis). The wet season (January-June) mean flux was 0.44 +- 0.38 gC/m2/d (positive fluxes defined as a source to the atmosphere) and the dry season mean flux was 0.35 +- 0.17 gC/m2/d (July-December). The observed flux variability is high, principally in the wet season. The influence of biomass burning has been removed using co-measured CO, and revealed the presence of a significant dry season sink. The annual mean vegetation flux, after the biomass burning correction, was 0.02 +- 0.27 gC/m2/d, and a clear sink was observed between August and November of -0.70 +- 0.21 gC/m2/d where for all of the dry season it was -0.24 +- 0.17 gC/m2/d.

  2. Biosphere Model Report, Errata 1

    International Nuclear Information System (INIS)

    Wasolek, M.

    2003-01-01

    The purpose of this report is to document the biosphere model, the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), which describes radionuclide transport processes in the biosphere and associated human exposure that may arise as the result of radionuclide release from the geologic repository at Yucca Mountain. The biosphere model is one of the process models that support the Yucca Mountain Project (YMP) Total System Performance Assessment (TSPA) for the license application (LA), the TSPA-LA. The ERMYN model provides the capability of performing human radiation dose assessments. This report documents the biosphere model, which includes: (1) Describing the reference biosphere, human receptor, exposure scenarios, and primary radionuclides for each exposure scenario (Section 6.1); (2) Developing a biosphere conceptual model using site-specific features, events, and processes (FEPs), the reference biosphere, the human receptor, and assumptions (Section 6.2 and Section 6.3); (3) Building a mathematical model using the biosphere conceptual model and published biosphere models (Sections 6.4 and 6.5); (4) Summarizing input parameters for the mathematical model, including the uncertainty associated with input values (Section 6.6); (5) Identifying improvements in the ERMYN model compared with the model used in previous biosphere modeling (Section 6.7); (6) Constructing an ERMYN implementation tool (model) based on the biosphere mathematical model using GoldSim stochastic simulation software (Sections 6.8 and 6.9); (7) Verifying the ERMYN model by comparing output from the software with hand calculations to ensure that the GoldSim implementation is correct (Section 6.10); (8) Validating the ERMYN model by corroborating it with published biosphere models; comparing conceptual models, mathematical models, and numerical results (Section 7)

  3. Biosphere Model Report, Errata 1

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasolek

    2003-09-18

    The purpose of this report is to document the biosphere model, the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), which describes radionuclide transport processes in the biosphere and associated human exposure that may arise as the result of radionuclide release from the geologic repository at Yucca Mountain. The biosphere model is one of the process models that support the Yucca Mountain Project (YMP) Total System Performance Assessment (TSPA) for the license application (LA), the TSPA-LA. The ERMYN model provides the capability of performing human radiation dose assessments. This report documents the biosphere model, which includes: (1) Describing the reference biosphere, human receptor, exposure scenarios, and primary radionuclides for each exposure scenario (Section 6.1); (2) Developing a biosphere conceptual model using site-specific features, events, and processes (FEPs), the reference biosphere, the human receptor, and assumptions (Section 6.2 and Section 6.3); (3) Building a mathematical model using the biosphere conceptual model and published biosphere models (Sections 6.4 and 6.5); (4) Summarizing input parameters for the mathematical model, including the uncertainty associated with input values (Section 6.6); (5) Identifying improvements in the ERMYN model compared with the model used in previous biosphere modeling (Section 6.7); (6) Constructing an ERMYN implementation tool (model) based on the biosphere mathematical model using GoldSim stochastic simulation software (Sections 6.8 and 6.9); (7) Verifying the ERMYN model by comparing output from the software with hand calculations to ensure that the GoldSim implementation is correct (Section 6.10); (8) Validating the ERMYN model by corroborating it with published biosphere models; comparing conceptual models, mathematical models, and numerical results (Section 7).

  4. The Third Tibetan Plateau Atmospheric Scientific Experiment for Understanding the Earth-Atmosphere Coupled System

    Science.gov (United States)

    Zhao, P.; Xu, X.; Chen, F.; Guo, X.; Zheng, X.; Liu, L. P.; Hong, Y.; Li, Y.; La, Z.; Peng, H.; Zhong, L. Z.; Ma, Y.; Tang, S. H.; Liu, Y.; Liu, H.; Li, Y. H.; Zhang, Q.; Hu, Z.; Sun, J. H.; Zhang, S.; Dong, L.; Zhang, H.; Zhao, Y.; Yan, X.; Xiao, A.; Wan, W.; Zhou, X.

    2016-12-01

    The Third Tibetan Plateau atmospheric scientific experiment (TIPEX-III) was initiated jointly by the China Meteorological Administration, the National Natural Scientific Foundation, and the Chinese Academy of Sciences. This paper presents the background, scientific objectives, and overall experimental design of TIPEX-III. It was designed to conduct an integrated observation of the earth-atmosphere coupled system over the Tibetan Plateau (TP) from land surface, planetary boundary layer (PBL), troposphere, and stratosphere for eight to ten years by coordinating ground- and air-based measurement facilities for understanding spatial heterogeneities of complex land-air interactions, cloud-precipitation physical processes, and interactions between troposphere and stratosphere. TIPEX-III originally began in 2014, and is ongoing. It established multiscale land-surface and PBL observation networks over the TP and a tropospheric meteorological radiosonde network over the western TP, and executed an integrated observation mission for cloud-precipitation physical features using ground-based radar systems and aircraft campaigns and an observation task for atmospheric ozone, aerosol, and water vapor. The archive, management, and share policy of the observation data are also introduced herein. Some TIPEX-III data have been preliminarily applied to analyze the features of surface sensible and latent heat fluxes, cloud-precipitation physical processes, and atmospheric water vapor and ozone over the TP, and to improve the local precipitation forecast. Furthermore, TIPEX-III intends to promote greater scientific and technological cooperation with international research communities and broader organizations. Scientists working internationally are invited to participate in the field campaigns and to use the TIPEX-III data for their own research.

  5. ZZ SIESTA, Atmospheric Dispersion Experiment over Complex Terrain

    International Nuclear Information System (INIS)

    2000-01-01

    1 - Name of experiment: SIESTA. 2 - Computer for which program is designed and other machine version packages available: To request or retrieve programs click on the one of the active versions below. A password and special authorization is required. Explanation of the status codes. Program-name: ZZ-SIESTA; Package-ID Status: NEA-1617/01 Tested; Machines used: Package-ID: NEA-1617/01; Orig. Computer: DEC VAX 6000; Test Computer: DEC VAX 6000. 3 - Purpose and phenomena tested: The aim of the project was to obtain knowledge of the general nature of the turbulence, advection and atmospheric dispersion in the two flow regimes parallel to the Swiss Jura ridge, which represent the most frequent wind systems occurring on the Swiss Plain. 4 - Description of the experimental set-up used: The atmospheric dispersion process was investigated by carrying out SF 6 tracer experiments. The tracer was released about 6 m above ground level near the Goesgen meteo tower. Sampling units were placed on ellipses around the release point. Total sampling time was at least one hour. Tracer concentrations were determined after each experiment by Gas chromatography. 5 - Special features: Because of the uncertainty in the transport direction of the tracer plume, a mobile tracer analyzing system was used. 6 - Description of experiment and analysis: To investigate the flow field in the test region, the following measuring setups were used: (1) Three tethered balloon sounding systems to measure temperature, humidity, wind speed and direction; (2) a meteo tower to measure 10-minute averages of wind direction and velocity at two fixed heights; (3) sonic anemometers to measure heat flux, friction velocity, Monin-Obukhov length, and wind speed at the release point and at a certain distance; (4) 2-m masts to measure wind speed and direction continuously. The wind flow system was measured by radar-tracked tetroons

  6. Olkiluoto biosphere description 2006

    International Nuclear Information System (INIS)

    Haapanen, R.; Aro, L.; Ilvesniemi, H.; Kareinen, T.; Kirkkala, T.; Mykrae, S.; Turkki, H.; Lahdenperae, A.-M.; Ikonen, A.T.K.

    2007-02-01

    This report summarises the current knowledge of the biosphere of Olkiluoto, and it is the first Biosphere Description Report. The elements considered were climate, topography, land use, overburden, terrestrial vegetation and fauna and sea flora, fauna and water. The principal aim was to present a synthesis of the present state (now to 2020) and the main features of past evolution of the biosphere at the site using currently available data. The lack of site specific parameters and their importance was discussed. Conceptual ecosystem models are presented for land and sea. Currently available data made it possible to calculate the biomass of the terrestrial vegetation and further convert it to carbon. In the case of terrestrial animals, preliminary figures are given for moose alone due to lack of sitespecific data. For the same reason, the sea ecosystem model was not quantified within this work. The ecosystems on Olkiluoto do not deviate from the surrounding areas. Since mires are few on Olkiluoto, forests are the most important land ecosystem. However, coastal areas are the transition zones between land and sea, and also potential sites for deep groundwater discharge. The major interest concerning aquatic ecosystems was laid on four future lakes potentially developing from the sea due to the land up-lift. Current sea sediments near Olkiluoto are future land areas, and thus very important. Spatially, the forest ecosystems of Olkiluoto are now most comprehensively covered, while the temporal coverage is highest in sea ecosystems. Lack of data is greatest in terrestrial fauna and sea sediments. During this work, the system boundaries were crossed and the use of data over disciplines was started. The data were mostly in agreement, but some discrepancies were detected. To solve these, and to supplement the existing data, some recommendations were given. (orig.)

  7. The biosphere rules.

    Science.gov (United States)

    Unruh, Gregory C

    2008-02-01

    Sustainability, defined by natural scientists as the capacity of healthy ecosystems to function indefinitely, has become a clarion call for business. Leading companies have taken high-profile steps toward achieving it: Wal-Mart, for example, with its efforts to reduce packaging waste, and Nike, which has removed toxic chemicals from its shoes. But, says Unruh, the director of Thunderbird's Lincoln Center for Ethics in Global Management, sustainability is more than an endless journey of incremental steps. It is a destination, for which the biosphere of planet Earth--refined through billions of years of trial and error--is a perfect model. Unruh distills some lessons from the biosphere into three rules: Use a parsimonious palette. Managers can rethink their sourcing strategies and dramatically simplify the number and types of materials their companies use in production, making recycling cost-effective. After the furniture manufacturer Herman Miller discovered that its leading desk chair had 200 components made from more than 800 chemical compounds, it designed an award-winning successor whose far more limited materials palette is 96% recyclable. Cycle up, virtuously. Manufacturers should design recovery value into their products at the outset. Shaw Industries, for example, recycles the nylon fiber from its worn-out carpet into brand-new carpet tile. Exploit the power of platforms. Platform design in industry tends to occur at the component level--but the materials in those components constitute a more fundamental platform. Patagonia, by recycling Capilene brand performance underwear, has achieved energy costs 76% below those for virgin sourcing. Biosphere rules can teach companies how to build ecologically friendly products that both reduce manufacturing costs and prove highly attractive to consumers. And managers need not wait for a green technological revolution to implement them.

  8. Some viewpoints on reference biospheres in Finnish performance assessments

    International Nuclear Information System (INIS)

    Rasilainen, K.; Kattilakoski, E.; Suolanen, V.; Vieno, T.; Vuori, S.

    2002-01-01

    Viewpoints are presented concerning biosphere studies in performance assessments of nuclear waste disposal. The points are based on experiences from several Finnish performance assessments. The latest performance assessment for spent fuel disposal, TILA-99, was considered in the Decision in Principle process for the site selection of the repository. The points given are also based on experiences from participation in international projects dealing with biosphere modelling, for instance BIOMOVS and BIOMASS. (author)

  9. The Geosphere - Biosphere international program and the global change

    International Nuclear Information System (INIS)

    Chanin, M.L.

    1991-01-01

    The objective of the Geosphere-Biosphere International Program (GBIP) is to achieve a correct approach of the various biogeochemical interactions between the different components of the environment (oceans, atmosphere, biosphere). The main themes are: study of the chemical regulation in the global atmosphere and influence of natural and anthropogenic processes on trace element cycles; influence of the oceanic biogeochemical processes on climates and their response to climatic changes; influence of soil utilization modification (especially coastal) on climates and ecosystems; interaction between vegetation and the water cycle; interaction between climatic changes, ecosystems and agricultural productivity; approaches to climate modelling. French component of the GBIP is presented [fr

  10. The Biosphere as a Living System. On Peculiarities of the Evolutionary Process on the Biosphere Level

    Directory of Open Access Journals (Sweden)

    Alexej Yablokov

    2016-10-01

    sovereign (“suprime” living system. The main functional feature of the biosphere is almost a vicious turnover of the matters; a phytomass becomes zoomass and mikrobiomass, and after their dying off both become a nekromass (mineral mass. Photosynthesis transforms of mineral mass again into a phytomass. This turnover of matter based on the division of all living organisms on the producers (autotrophs, of consumers (heterotrophs, and decomposers (reducents. Before the Anthropocene the degree of closure of the turnover of matter in the Earth’ ecosystem have reached, apparently, extreme values in 90–99%. This was due to more efficient utilization of waste of each of the trophic level, thanks to the growth of a biodiversity. During evolution of the biosphere intensity of turnover of chemical elements on the planet grew. The turnover rate in warm-blooded animals hundreds times higher than in cold-blooded ones. Although most of the biomass is turn into nekromass, a small portion turn into the propaguls (seeds, spores, eggs, etc., transferred by the arrow of time and providing the self-renewal of ecosystems. Its nonlinearity was essential feature of evolution of the biosphere – the periods of smooth development were replaced accelerated (including under the influence of the astrophysical factors. Maintenance of life on the planet was the main functional imperative of the biosphere at all stages of its evolution to an Anthropocene. A "memory" of the biosphere (the results of its evolution as in the form of the morphological and functional differentiation of biosystems, as soon as in forms of biogenous changes of a lithosphere, hydrosphere and atmosphere canalizes occurring in the biosphere subsequent changes. This a "memory" allows to multiply successful evolutionary discoveries (which are, in fact, the technologies of survival of ecosystems, and resulted of the emergence of more and more complex forms of life. The basis of the matter turnover is the trophic chain (transfer

  11. The interactions between soil-biosphere-atmosphere (ISBA) land surface model multi-energy balance (MEB) option in SURFEXv8 - Part 2: Introduction of a litter formulation and model evaluation for local-scale forest sites

    Science.gov (United States)

    Napoly, Adrien; Boone, Aaron; Samuelsson, Patrick; Gollvik, Stefan; Martin, Eric; Seferian, Roland; Carrer, Dominique; Decharme, Bertrand; Jarlan, Lionel

    2017-04-01

    Land surface models (LSMs) need to balance a complicated trade-off between computational cost and complexity in order to adequately represent the exchanges of energy, water and matter with the atmosphere and the ocean. Some current generation LSMs use a simplified or composite canopy approach that generates recurrent errors in simulated soil temperature and turbulent fluxes. In response to these issues, a new version of the interactions between soil-biosphere-atmosphere (ISBA) land surface model has recently been developed that explicitly solves the transfer of energy and water from the upper canopy and the forest floor, which is characterized as a litter layer. The multi-energy balance (MEB) version of ISBA is first evaluated for three well-instrumented contrasting local-scale sites, and sensitivity tests are performed to explore the behavior of new model parameters. Second, ISBA-MEB is benchmarked against observations from 42 forested sites from the global micro-meteorological network (FLUXNET) for multiple annual cycles.It is shown that ISBA-MEB outperforms the composite version of ISBA in improving the representation of soil temperature, ground, sensible and, to a lesser extent, latent heat fluxes. Both versions of ISBA give comparable results in terms of simulated latent heat flux because of the similar formulations of the water uptake and the stomatal resistance. However, MEB produces a better agreement with the observations of sensible heat flux than the previous version of ISBA for 87.5 % of the simulated years across the 42 forested FLUXNET sites. Most of this improvement arises owing to the improved simulation of the ground conduction flux, which is greatly improved using MEB, especially owing to the forest litter parameterization. It is also shown that certain processes are also modeled more realistically (such as the partitioning of evapotranspiration into transpiration and ground evaporation), even if certain statistical performances are neutral. The

  12. Biosphere 2: The True Story.

    Science.gov (United States)

    O'Keeffe, Michael

    1992-01-01

    Discusses the history and current developments of the Biosphere 2 Project, a prototype for enclosed self-sustaining structures for space colonization built in the Arizona Desert. Biosphere 2 was created to educate and provide solutions to environmental problems and revenue from research. (MCO)

  13. Soil-related Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    A. J. Smith

    2003-01-01

    deposition and, as a direct consequence, radionuclide concentration in resuspended particulate matter in the atmosphere. The analysis was performed in accordance with the technical work plan for the biosphere modeling and expert support (TWP) (BSC 2003 [163602]). This analysis revises the previous one titled ''Evaluate Soil/Radionuclide Removal by Erosion and Leaching'' (CRWMS M and O 2001 [152517]). In REV 00 of this report, the data generated were fixed (i.e., taking no account of uncertainty and variability) values. This revision incorporates uncertainty and variability into the values for the bulk density, elemental partition coefficients, average annual loss of soil from erosion, resuspension enhancement factor, and field capacity water content

  14. Dialectic Atmosphere of Architecture: on Aesthetic Experience and Meteorology

    Directory of Open Access Journals (Sweden)

    Ana Vignjević

    2017-04-01

    Full Text Available This paper seeks to trace the genealogy between two different terms of ‘atmosphere’. On the one hand, the term is primarily understood as a meteorological phenomenon. On the other hand, the word ‘atmosphere’ has found its way into the field of aesthetics, as the spatial diffusion of a certain mood. But, as Tim Ignold remarks, current aesthetic approach to atmosphere is mostly all about sensory experience, with no mention of meteorology at all. Similar to this exclusion, current attitudes to climate change often reduce nature-culture relations to a merely technical concern. The purpose of this paper is to permeate these two divergent positions through three different architectural concepts. The first one – Flying refers to Derek McCormack’s theoretical concept of balloon flight, combining the imaginative force of flying with balloon’s technical ability to enable this desire. This position is further reviewed through balloon-like architecture of 1960s, as in its contemporary revival. The second concept – Sensitivity starts from the premise that our imaginative and perceptual activities are forced – not in the static beauty of ideal weather conditions, but in their constant oscillation and contingency. This state is elaborated in the work of architect Philippe Rahm. Finally, the third concept Breathing is a critical response to a meteorological idealization, which is manifested in technical perfection of Le Corbusier’s exact air. As opposed to such intellectual air control, postmodern approach explores imaginative force of an anti air – dust, pollution, fog.   Article received: December 14, 2016; Article accepted: January 18, 2017; Published online: April 20, 2017 Original scholarly paper How to cite this article: Vignjević, Ana. "Dialectic Atmosphere of Architecture: on Aesthetic Experience and Meteorology." AM Journal of Art and Media Studies 12 (2017: 41-54. doi: 10.25038/am.v0i12.166

  15. An improved land biosphere module for use in the DCESS Earth system model (version 1.1 with application to the last glacial termination

    Directory of Open Access Journals (Sweden)

    R. Eichinger

    2017-09-01

    Full Text Available Interactions between the land biosphere and the atmosphere play an important role for the Earth's carbon cycle and thus should be considered in studies of global carbon cycling and climate. Simple approaches are a useful first step in this direction but may not be applicable for certain climatic conditions. To improve the ability of the reduced-complexity Danish Center for Earth System Science (DCESS Earth system model DCESS to address cold climate conditions, we reformulated the model's land biosphere module by extending it to include three dynamically varying vegetation zones as well as a permafrost component. The vegetation zones are formulated by emulating the behaviour of a complex land biosphere model. We show that with the new module, the size and timing of carbon exchanges between atmosphere and land are represented more realistically in cooling and warming experiments. In particular, we use the new module to address carbon cycling and climate change across the last glacial transition. Within the constraints provided by various proxy data records, we tune the DCESS model to a Last Glacial Maximum state and then conduct transient sensitivity experiments across the transition under the application of explicit transition functions for high-latitude ocean exchange, atmospheric dust, and the land ice sheet extent. We compare simulated time evolutions of global mean temperature, pCO2, atmospheric and oceanic carbon isotopes as well as ocean dissolved oxygen concentrations with proxy data records. In this way we estimate the importance of different processes across the transition with emphasis on the role of land biosphere variations and show that carbon outgassing from permafrost and uptake of carbon by the land biosphere broadly compensate for each other during the temperature rise of the early last deglaciation.

  16. Research Experiences for Undergraduates in Estuarine and Atmospheric Processes

    Science.gov (United States)

    Aller, J. Y.

    2009-12-01

    Our program in the School of Marine and Atmospheric Sciences at Stony Brook University is unique in emphasizing the interdisciplinary study of coastal ocean and atmospheric processes. We attract a large number of both male and female undergraduate applicants representing diverse ethnic groups from across the country. Many are multi-discipline majors merging geology, biology, chemistry, or physics with engineering, and/or mathematics and welcome the opportunity to combine their academic training to examine environmental problems. Our goal is a program reflective of today’s world and environmental challenges, one that provides a ‘hands-on’ research experience which illustrates the usefulness of scientific research for understanding real-world problems or phenomena, and one in which students are challenged to apply their academic backgrounds to develop intuition about natural systems and processes. Projects this past summer focused on assessing climate change and its effects on coastal environments and processes. Projects addressed the implications of a changing global climate over the next 50 years on hydrologic cycles and coastal environments like barrier islands and beaches, on seasonal weather conditions and extreme events, on aerosols and the Earth’s radiative balance, and on aquatic habitats and biota. Collaborative field and laboratory or computer-based projects involving two or three REU students, graduate students, and several mentors, enable undergraduate students appreciate the importance of teamwork in addressing specific scientific questions or gaining maximum insight into a particular phenomenon or process. We believe that our approach allows students to understand what their role will be as scientists in the next phase of our earth’s evolution.

  17. Biosphere reserves: Attributes for success.

    Science.gov (United States)

    Van Cuong, Chu; Dart, Peter; Hockings, Marc

    2017-03-01

    Biosphere reserves established under the UNESCO Man and the Biosphere Program aim to harmonise biodiversity conservation and sustainable development. Concerns over the extent to which the reserve network was living up to this ideal led to the development of a new strategy in 1995 (the Seville Strategy) to enhance the operation of the network of reserves. An evaluation of effectiveness of management of the biosphere reserve network was called for as part of this strategy. Expert opinion was assembled through a Delphi Process to identify successful and less successful reserves and investigate common factors influencing success or failure. Ninety biosphere reserves including sixty successful and thirty less successful reserves in 42 countries across all five Man and the Biosphere Program regions were identified. Most successful sites are the post-Seville generation while the majority of unsuccessful sites are pre-Seville that are managed as national parks and have not been amended to conform to the characteristics that are meant to define a biosphere reserve. Stakeholder participation and collaboration, governance, finance and resources, management, and awareness and communication are the most influential factors in the success or failure of the biosphere reserves. For success, the biosphere reserve concept needs to be clearly understood and applied through landscape zoning. Designated reserves then need a management system with inclusive good governance, strong participation and collaboration, adequate finance and human resource allocation and stable and responsible management and implementation. All rather obvious but it is difficult to achieve without commitment to the biosphere reserve concept by the governance authorities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Unifying Dynamic Prognostic Phenology, Heterogeneous Soil and Vegetation Fluxes, and Ecosystem Biomass and Carbon Stocks To Predict the Terrestrial Carbon Cycle and Land-Atmosphere Exchanges in the Simple Biosphere Model (SiB4)

    Science.gov (United States)

    Haynes, K. D.; Baker, I. T.; Denning, S.

    2016-12-01

    Future climate projections require process-based models that incorporate the mechanisms and feedbacks controlling the carbon cycle. Over the past three decades, land surface models have been key contributors to Earth system models, evolving from predicting latent (LE) and sensible (SH) heat fluxes to energy and water budgets, momentum transfer, and terrestrial carbon exchange and storage. This study presents the latest version of the Simple Biosphere Model (SiB4), which builds on a compilation of previous versions and adds a new mechanistic-based scheme that fully predicts the terrestrial carbon cycle. The main SiB4 updates can be summarized as follows: (i) Incorporation of carbon pools that use new respiration and transfer methods, (ii) Creation of a new dynamic phenology scheme that uses mechanistic-based seasonal stages, and (iii) Unification of carbon pools, phenology and disturbance to close the carbon cycle. SiB4 removes the dependence on satellite-based vegetation indices, and instead uses a single mathematical framework to prognose self-consistent land-atmosphere exchanges of carbon, water, energy, radiation, and momentum, as well as carbon storage. Since grasslands cover 30% of land and are highly seasonal, we investigated forty grass sites. Diurnal cycles of gross primary productivity (GPP), ecosystem respiration (RE), net ecosystem exchange (NEE), LE and SH have third-quartile root mean squared (RMS) errors less than 2.0 µmol m-2 s-1, 1.9 µmol m-2 s-1, 2.0 µmol m-2 s-1, 42 W m-2, and 78 W m-2, respectively. On the synoptic timeframe, all sites have significant LE correlation coefficients of non-seasonal daily data; and all but one have significant SH correlations. Mean seasonal cycles for leaf area index (LAI), GPP, RE, LE, and SH have third-quartile normalized RMS errors less than 32%, 25%, 28%, 16%, and 48%, respectively. On multi-year timescales, daily correlations of LAI, GPP, RE, and LE are all statistically significant, with third-quartile RMS

  19. Testing of environmental transfer models using data from the atmospheric release of Iodine-131 from the Hanford site, USA, in 1963. Report of the Dose Reconstruction Working Group of the Biosphere Modelling and Assessment (BIOMASS) Programme, Theme 2

    International Nuclear Information System (INIS)

    2003-03-01

    The IAEA Programme on BIOsphere Modelling and ASSessment (BIOMASS) was launched in Vienna in October 1996. The programme was concerned with developing and improving capabilities to predict the transfer of radionuclides in the environment. The programme had three themes: Theme 1: Radioactive Waste Disposal. The objective was to develop the concept of a standard or reference biosphere for application to the assessment of the long term safety of repositories for radioactive waste. Theme 2: Environmental Releases. BIOMASS provided an international forum for activities aimed at increasing the confidence in methods and models for the assessment of radiation exposure related to environmental releases. Two Working Groups addressed issues concerned with the reconstruction of radiation doses received by people from past releases of radionuclides to the environment and the evaluation of the efficacy of remedial measures. Theme 3: Biosphere Processes. The aim of this Theme was to improve capabilities for modelling the transfer of radionuclides in particular parts of the biosphere identified as being of potential radiological significance and where there were gaps in modelling approaches. This topic was explored using a range of methods including reviews of the literature, model inter-comparison exercises and, where possible, model testing against independent sources of data. Three Working Groups were established to examine the modelling of: (1) long term tritium dispersion in the environment; (2) radionuclide uptake by fruits; and (3) radionuclide migration and accumulation in forest ecosystems. This report describes results of the studies undertaken by the Dose Reconstruction Working Group under Theme 2

  20. WEB-DHM: A distributed biosphere hydrological model developed by coupling a simple biosphere scheme with a hillslope hydrological model

    Science.gov (United States)

    The coupling of land surface models and hydrological models potentially improves the land surface representation, benefiting both the streamflow prediction capabilities as well as providing improved estimates of water and energy fluxes into the atmosphere. In this study, the simple biosphere model 2...

  1. Biospheric Changes are Threat Multipliers

    OpenAIRE

    Cairns, John

    2010-01-01

    A threat multiplier is defined as another agent that impacts a current situation, creating an additional set of problems while also making existing problems worse. Sometimes a seemingly innocent change in the biosphere can cause major alterations and become a threat multiplier. Because the biosphere is a highly interactive system, damage to a single component, like the ocean for example, will produce a ripple effect throughout the entire system. In order for humans to eliminate threat multip...

  2. The Biosphere International Peer Review

    International Nuclear Information System (INIS)

    Van Luik, Abraham

    2002-01-01

    Abe van Luik (US DOE- YM, USA), ended the presentation by giving feedback from the IAEA peer review on the biosphere modelling strategy developed by the DOE Yucca Mountain Site Characterisation Office (YMSCO). This review was based on available international standards and guidance. The peer review team was constituted of both experts from regulatory and waste management organisations and national advisory committees. The implementation of the review consisted of an examination of biosphere reports mainly regarding the modelling and question and answer exchanges. The final report was submitted in April 2000. It contained twenty-three recommendations within two broad classifications; one concerning the regulatory framework, the other one regarding the framework to increase stakeholders' confidence in modelling. The three main categories of recommendations were outlined, namely (i) the DOE' s Biosphere assessment Approach, (ii) the definition of the biosphere system, and (iii) the model development, data and results. Regarding in particular the treatment of the uncertainties in the biosphere, it was viewed as a key issue during the review and thus it will be re-evaluated in the future performance assessment. The summary highlighted most of the recommendations received are to be acted on, and are to be included in the License Application plan for biosphere modelling

  3. Validation of ozone measurements from the Atmospheric Chemistry Experiment (ACE

    Directory of Open Access Journals (Sweden)

    E. Dupuy

    2009-01-01

    Full Text Available This paper presents extensive {bias determination} analyses of ozone observations from the Atmospheric Chemistry Experiment (ACE satellite instruments: the ACE Fourier Transform Spectrometer (ACE-FTS and the Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation (ACE-MAESTRO instrument. Here we compare the latest ozone data products from ACE-FTS and ACE-MAESTRO with coincident observations from nearly 20 satellite-borne, airborne, balloon-borne and ground-based instruments, by analysing volume mixing ratio profiles and partial column densities. The ACE-FTS version 2.2 Ozone Update product reports more ozone than most correlative measurements from the upper troposphere to the lower mesosphere. At altitude levels from 16 to 44 km, the average values of the mean relative differences are nearly all within +1 to +8%. At higher altitudes (45–60 km, the ACE-FTS ozone amounts are significantly larger than those of the comparison instruments, with mean relative differences of up to +40% (about +20% on average. For the ACE-MAESTRO version 1.2 ozone data product, mean relative differences are within ±10% (average values within ±6% between 18 and 40 km for both the sunrise and sunset measurements. At higher altitudes (~35–55 km, systematic biases of opposite sign are found between the ACE-MAESTRO sunrise and sunset observations. While ozone amounts derived from the ACE-MAESTRO sunrise occultation data are often smaller than the coincident observations (with mean relative differences down to −10%, the sunset occultation profiles for ACE-MAESTRO show results that are qualitatively similar to ACE-FTS, indicating a large positive bias (mean relative differences within +10 to +30% in the 45–55 km altitude range. In contrast, there is no significant systematic difference in bias found for the ACE-FTS sunrise and sunset measurements.

  4. Upper-Atmospheric Space and Earth Weather Experiment

    Data.gov (United States)

    National Aeronautics and Space Administration — The USEWX project is seeking to monitor, record, and distribute atmospheric measurements of the radiation environment by installing a variety of dosimeters and other...

  5. An Archean Biosphere Initiative

    Science.gov (United States)

    Anbar, A. D.; Boyd, E. S.; Buick, R.; Claire, M.; DesMarais, D.; Domagal-Goldman, D.; Eigenbrode, J.; Erwin, D.; Freeman, K.; Hazen, R.; hide

    2011-01-01

    The search for life on extrasolar planets will necessarily focus on the imprints of biolgy on the composition of planetary atmospheres. The most notable biological imprint on the modern terrestrial atmosphere is the presence of 21 % O2, However, during most of the past 4 billion years, life and the surface environments on Earth were profoundly different than they are today. It is therefore a major goal of the astrobiology community to ascertain how the O2 content of the atmosphere has varied with time. and to understand the causes of these variations. The NAI and NASA Exobiology program have played critical roles in developing our current understanding of the ancient Earth's atmosphere, supporting diverse observational, analytical, and computational research in geoscience, life science, and related fields. In the present incarnation of the NAI, ongoing work is investigating (i) variations in atmospheric O2 in the Archean to the Cambrian, (ii) characterization of the redox state of the oceans shortly before, during and after the Great Oxidation Event (GOE), and (iii) unraveling the complex connections between environmental oxygenation, global climate, and the evolution of life.

  6. Atmospheric Dispersion from Elevated Sources in an Urban Area: Comparison between Tracer Experiments and Model Calculations

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Lyck, Erik

    1984-01-01

    Results from tracer experiments carried out to study the ability of the atmosphere to disperse nonbuoyant effluents released from an elevated point source in an urban environment are described.......Results from tracer experiments carried out to study the ability of the atmosphere to disperse nonbuoyant effluents released from an elevated point source in an urban environment are described....

  7. The Radiometer Atmospheric Cubesat Experiment Post-Launch Results

    Science.gov (United States)

    Lim, B.; Misra, S.

    2015-12-01

    The Jet Propulsion Laboratory (JPL) developed the Radiometer Atmospheric CubeSat Experiment (RACE) that was lost during the Orbital 3 (Orb-3) launch anomaly on October 28, 2014. The 3U CubeSat mission would have measured 2 channels of the 183 GHz water vapor line and raised the technology readiness level (TRL) of various subsystems to 6. Despite the launch failure, several hundreds of hours of instrument operation data was taken, including measurements in thermal vacuum of the complete spacecraft system. These data is used to evaluate the 35 nm Indium Phosphide (InP) receivers, and the low noise amplifier (LNA) based internal calibration system. The thermal vacuum measurements included frequent observations of a 'cold' and 'hot' target allowing for various receiver parameters to be calculated. The payload thermal vacuum data show that the receiver front ends performed as expected in terms of the gain (>35 dB) and drift (0.06 dB/K). The data also shows that integration could be performed with decreasing noise up to ~30 seconds, allowing for the system to be calibrated within that time period. The expected spacecraft calibration period would have been every 12 seconds. The injected noise from the load terminated LNA show magnitudes from 50 - 150 K that can be tuned which would meet most requirements. However the temperature coefficient is large at ~3 K/K which is over an order of magnitude larger than typical noise diodes. For nanosatellite class spacecraft, the power required to properly maintain the physical temperature range (±0.1K) would be challenging. On larger spacecraft, this methodology may still be viable, depending on the availability of suitable noise diodes at 183 GHz. While the CubeSat did not take measurements in space, the ground data in the relevant environment and extensive testing allows us to raise the following subsystems to TRL 6: 1) 183 GHz 35 nm InP receiver, 2) 183 GHz direct detect receiver and 3) 183 GHz LNA based calibration system.

  8. The Viking atmosphere structure experiment - techniques, instruments, and expected accuracies

    International Nuclear Information System (INIS)

    Seiff, A.

    1976-01-01

    During high speed entry and descent through the atmosphere of Mars, the two Viking spacecraft will make in situ measurements of the structure of the atmosphere. The profiles of temperature, pressure, and density with altitude will be defined from an altitude of about 100 km to touchdown, from measurements of the atmospherically induced deceleration and directly measured temperatures and pressures, the latter at altitudes below about 20 km. These data will be supplemented by on-board-radar altitudes and, below 8 km, by three component Doppler radar velocities. Winds will be derived from the Doppler velocities and from gyro records of vehicle attitude changes. The planet radius at the landing site, needed to interpret the atmospheric data, will be defined to within a few tenths of a kilometer from the measured acceleration due to gravity after landing. It is expected that temperature will be determined to within about 1 K in the lower atmosphere, and to within a few degrees up to 100 km; pressures to within a few percent; and wind velocities to within about 2 meters/second below 8 km. The design of the sensors is described, with emphasis on acceleration, temperature, and pressure, and the basis for the above error estimates is established. (Auth.)

  9. The Biosphere: A Decadal Vision

    Science.gov (United States)

    Peterson, David L.; Curran, Paul J.; Mlynzcak, Marty; Miller, Richard

    2003-01-01

    This paper focuses on biosphere-climate interactions including the influences of human activities. Recognizing this is only one aspect of biospheric processes, this places an emphasis of those biogeochemical processes that have a profound effect on numerous other aspects of the biosphere and the services it provides, services which are critical to sustaining life on Earth. And, the paper will focus on the various scientific aspects of assessing the availability of fresh water, including its sensitivity to climate variance and land use changes. Finally, this paper hopes to emphasize the potential role that greatly expanded space observations and interactive modeling can play in developing our understanding of Earth and its the living systems.

  10. Impact of Manaus City on the Amazon Green Ocean atmosphere: Ozone production, precursor sensitivity and aerosol load

    NARCIS (Netherlands)

    Kuhn, U.; Ganzeveld, L.N.

    2010-01-01

    As a contribution to the Large-Scale Biosphere-Atmosphere Experiment in Amazonia – Cooperative LBA Airborne Regional Experiment (LBA-CLAIRE-2001) field campaign in the heart of the Amazon Basin, we analyzed the temporal and spatial dynamics of the urban plume of Manaus City during the wet-to-dry

  11. Optical Profiling of the Atmospheric Limb CubeSat Experiment

    Science.gov (United States)

    Jeppesen, M.; Taylor, M. J.; Swenson, C.; Marchant, A.

    2014-12-01

    The Earth's lower thermosphere is an important interface region between the neutral atmosphere and the "space weather" environment. While the high-latitude region of the thermosphere responds promptly to energy inputs, relatively little is known about the global/regional response to these energy inputs. Global temperatures are predicted to respond within 3-6 hours, but the details of the thermal response of the atmosphere as energy transports away from high-latitude source regions is not well understood. The Optical Profiling of the Atmospheric Limb (OPAL) mission aims to characterize this thermal response through observation of the temperature structure of the lower thermosphere at mid- and low-latitudes. The OPAL instrument is designed to map global thermospheric temperature variability over the critical "thermospheric gap" region (~100-140 km altitude) by spectroscopic analysis of molecular oxygen A-band emission (758 - 768 nm). The OPAL instrument is a grating-based imaging spectrometer with refractive optics and a high-efficiency volume holographic grating (VHG). The scene is sampled by 7 parallel slits that form non-overlapping spectral profiles at the focal plane with resolution of 0.5 nm (spectral), 1.5 km (limb profiling), and 60 km (horizontal sampling). A CCD camera at the instrument focal plane delivers low noise and high sensitivity. The instrument is designed to strongly reject stray light from daylight regions of the earth. The OPAL mission is funded by the National Science Foundation (NSF) CubeSat-based Science Missions for Geospace and Atmospheric Research program. The OPAL instrument and mission will be designed, built and executed by a team comprised of students and professors from Utah State University, Dixie State University and the University of Maryland Eastern Shore, with support from professional scientists and engineers from the Space Dynamics Laboratory and Hawk Institute for Space Science.

  12. A Biosphere Assessment: Influence due to Geosphere-Biosphere Interfaces

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Hwang, Yong Soo

    2009-01-01

    Recently the geosphere-biosphere interfaces (GBIs), which is recognized as a zone (GBIZ) beyond the simple conceptual boundaries between the geosphere and biosphere modeling domains for safety assessment, has been raised to an important issue for the biosphere assessment. For the licensing process of the repository, the final step of a series of safety and performance assessment should be concerned how nuclides released from the geological media could make their farther transfer in the biosphere giving rise to doses to humans. Unlike in the case of geosphere, the distinct characteristics of biosphere modeling includes the potential release and subsequent exposure taking place not in the near future with rather unreliable predictions of human behavior at the time of its release. And also unlike the near- and far-field of geospheres such as near field engineering structures and natural geological media, the biosphere is not conceived as a barrier itself that could be well designed or optimized, which always causes the necessity of site-specific modeling approach as much as possible. Through every step of whole geosphere and biosphere modeling, nuclides transport from various geological media to the biosphere over the GBI, biosphere modeling can be done independently, not even knowing what happens in the geosphere, making access possible to it in a separate manner, even though, to some extent, it might somehow need to be accounted for geosphere transport, as is similarly being currently done in many other countries. In general, to show the performance of the repository, dose exposure to the critical group due to nuclide release from the repository should be evaluated and the results compared to the risk or dose presented by regulatory bodies, as safety and performance criteria for HLW repository are usually expressed in terms of quantitative risk or dose. For a real site-specific treatment and incorporation of geological features such as aquifers into the biosphere

  13. Emission and role of biogenic volatile organic compounds in biosphere

    International Nuclear Information System (INIS)

    Saleem, A.R.

    2013-01-01

    Plants are an essential part of the biosphere. Under the influence of climate change, plants respond in multiple ways within the ecosystem. One such way is the release of assimilated carbon back to the atmosphere in form of biogenic volatile organic compounds (BVOCs), which are produced by plants and are involved in plant growth, reproduction, defense and other . These compounds are emitted from vegetation into the atmosphere under different environmental situations. Plants produce an extensive range of BVOCs, including isoprenoids, sequisterpenes, aldehydes, alcohols and terpenes in different tissues above and below the ground. The emission rates vary with various environmental conditions and the plant growth stage in its life span.BVOCs are released under biotic and abiotic stress changes, like heat, drought, land-use changes, higher atmospheric CO concentrations, increased UV radiation and insect or disease attack. Plants emit BVOCs in atmosphere in order to avoid stress, and adapt to harsh circumstances. These compounds also have a significant role in plant-plant interaction, communication and competition. BVOCs have the ability to alter atmospheric chemistry; they readily react with atmospheric pollutant gases under high temperature and form tropospheric ozone, which is a potent air pollutant for global warming and disease occurrence. BVOCs may be a cause of photochemical smog and increase the stay of other GHGs in the atmosphere. Therefore, further study is required to assess the behavior of BVOCs in the biosphere as well as the atmosphere. (author)

  14. Lignocellulose deconstruction in the biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Bomble, Yannick J.; Lin, Chien-Yuan; Amore, Antonella; Wei, Hui; Holwerda, Evert K.; Ciesielski, Peter N.; Donohoe, Bryon S.; Decker, Stephen R.; Lynd, Lee R.; Himmel, Michael E.

    2017-12-01

    Microorganisms have evolved different and yet complementary mechanisms to degrade biomass in the biosphere. The chemical biology of lignocellulose deconstruction is a complex and intricate process that appears to vary in response to specific ecosystems. These microorganisms rely on simple to complex arrangements of glycoside hydrolases to conduct most of these polysaccharide depolymerization reactions and also, as discovered more recently, oxidative mechanisms via lytic polysaccharide monooxygenases or non-enzymatic Fenton reactions which are used to enhance deconstruction. It is now clear that these deconstruction mechanisms are often more efficient in the presence of the microorganisms. In general, a major fraction of the total plant biomass deconstruction in the biosphere results from the action of various microorganisms, primarily aerobic bacteria and fungi, as well as a variety of anaerobic bacteria. Beyond carbon recycling, specialized microorganisms interact with plants to manage nitrogen in the biosphere. Understanding the interplay between these organisms within or across ecosystems is crucial to further our grasp of chemical recycling in the biosphere and also enables optimization of the burgeoning plant-based bioeconomy.

  15. Lignocellulose deconstruction in the biosphere.

    Science.gov (United States)

    Bomble, Yannick J; Lin, Chien-Yuan; Amore, Antonella; Wei, Hui; Holwerda, Evert K; Ciesielski, Peter N; Donohoe, Bryon S; Decker, Stephen R; Lynd, Lee R; Himmel, Michael E

    2017-12-01

    Microorganisms have evolved different and yet complementary mechanisms to degrade biomass in the biosphere. The chemical biology of lignocellulose deconstruction is a complex and intricate process that appears to vary in response to specific ecosystems. These microorganisms rely on simple to complex arrangements of glycoside hydrolases to conduct most of these polysaccharide depolymerization reactions and also, as discovered more recently, oxidative mechanisms via lytic polysaccharide monooxygenases or non-enzymatic Fenton reactions which are used to enhance deconstruction. It is now clear that these deconstruction mechanisms are often more efficient in the presence of the microorganisms. In general, a major fraction of the total plant biomass deconstruction in the biosphere results from the action of various microorganisms, primarily aerobic bacteria and fungi, as well as a variety of anaerobic bacteria. Beyond carbon recycling, specialized microorganisms interact with plants to manage nitrogen in the biosphere. Understanding the interplay between these organisms within or across ecosystems is crucial to further our grasp of chemical recycling in the biosphere and also enables optimization of the burgeoning plant-based bioeconomy. Copyright © 2017. Published by Elsevier Ltd.

  16. Monitoring Biospheric Health and Integrity

    OpenAIRE

    Cairns, John

    2010-01-01

    The biosphere serves as the life support system for Earth and also is the basis of the human economy; therefore it should be maintained in optimal condition. In order for this maintenance to occur, a response team must be established to respond with immediate corrective action when quality control conditions are not being met.

  17. Measurements of atmospheric and gamma rays-balloon experiments at subantartic region

    International Nuclear Information System (INIS)

    Jayanthi, U.B.; Correa, R.V.; Blanco, F.G.

    1986-01-01

    The results of two stratospheric balloon experiments conducted to measure the atmospheric X and gamma rays are presented. These experiments, conducted at Comandante Ferraz base in subantarctic region, have provided the spectrum of ground radioactivity in gamma rays (0.2 to 2.9 MeV) and atmospheric X-ray spectra at different altitudes. We specifically chose to discuss the observed ceiling spectrum of X-rays in the 28 to 180KeV region observed at 7.0 g. cm -2 . We have utilized the data of other experiments with different telescope geometries, to evaluate the builup effects due to cosmic ray secondaries in atmosphere. This behaviour, previoulsy studied for atmospheric gamma rays, permitted to compare the up/down flux rations to explain the observed atmospheric X-ray spectrum. (Author) [pt

  18. NASA Cold Land Processes Experiment (CLPX 2002/03): Atmospheric analyses datasets

    Science.gov (United States)

    Glen E. Liston; Daniel L. Birkenheuer; Christopher A. Hiemstra; Donald W. Cline; Kelly Elder

    2008-01-01

    This paper describes the Local Analysis and Prediction System (LAPS) and the 20-km horizontal grid version of the Rapid Update Cycle (RUC20) atmospheric analyses datasets, which are available as part of the Cold Land Processes Field Experiment (CLPX) data archive. The LAPS dataset contains spatially and temporally continuous atmospheric and surface variables over...

  19. Experiments on cylindrically converging blast waves in atmospheric air

    Science.gov (United States)

    Matsuo, Hideo; Nakamura, Yuichi

    1980-06-01

    Cylindrically converging blast waves have been produced in normal atmospheric conditions by the detonation of the explosives, pentaerythritoltetranitrate, (PETN), over cylindrical surfaces. The shocks generated in this way are so strong that the fronts propagating through the air become luminous of themselves. The production and the propagation of the shocks have been monitored with a framing camera and a streak camera, and the time-space relations of the shock propagations have been determined using an electrical ionization probing system. The results have shown that the trajectory of the shock fronts near the axis of the cylinder can be approximately represented by the Guderley's formula.

  20. Biogeochemical cycling of carbon, water, energy, trace gases and aerosols in Amazonia: the LBA EUSTACH experiments

    NARCIS (Netherlands)

    Andreae, M.O.; Artaxo, P.; Brandão, C.; Carswell, F.E.; Ciccioli, P.; Costa, da A.L.; Culf, A.D.; Esteves, J.L.; Gash, J.H.C.; Grace, J.; Kabat, P.; Lelieveld, J.; Malhi, Y.; Manzi, A.O.; Meixner, F.X.; Nobre, A.D.; Nobre, C.; Lourdes Ruivo, de M.; Silva-Dias, M.A.; Stefani, P.; Valentini, R.; Jouanne, von J.; Waterloo, M.J.

    2002-01-01

    The biogeochemical cycling of carbon, water, energy, aerosols, and trace gases in the Amazon Basin was investigated in the project European Studies on Trace Gases and Atmospheric Chemistry as a Contribution to the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA-EUSTACH). We present an

  1. Environmental Consequences of an Emerging Biosphere

    Science.gov (United States)

    DesMarais, David J.

    2003-01-01

    It seems feasible to detect biological signatures ("biosignatures") in other planetary systems using the tools of astronomy. There are at least two types of biosignatures; spectral and/or polarization features created by biological products, and electromagnetic signals created by technology. The latter example of a biosignature requires SETI-like searches. This presentation addresses only spectral signatures of biological products and properties of habitable planets. Spectral biosignatures are indeed promising targets for near-term exploration. They can arise from organic constituents (e.g., vegetation) and/or inorganic products (e.g., atmospheric O2). Features originating from a planet's surface are likely to be localized in specific regions, whereas gaseous biosignatures can become globally distributed by atmospheric circulation. Biosignatures should be most abundant within environments that are, or once were, habitable. We currently believe that habitable environments necessarily provide Liquid water and biochemically useful energy. However, we do not yet fully comprehend the diversity of features that might arise within these environments that are non-biological in origin, yet mimic biosignatures. For example, atmospheres reflect the events leading to their origins as well as a host of ongoing planetary processes that might include biological activity. We are persuaded that abundant atmospheric oxygen in an environment with abundant liquid water constitutes definitive evidence of life. However, our own early biosphere thrived for more than a billion years in the absence of abundant atmospheric oxygen. The production of other, more reduced, gaseous biomarkers of "young" and/or anaerobic biospheres has not been systematically studied. Biological gas production is strongly controlled by the structure and function of microbial ecosystems. Investigations of microbial ecosystems that are close analogs of ancient communities offer multiple benefits. Such studies can

  2. A compilation of studies from Atmospheric Variability Experiment (AVE)

    Science.gov (United States)

    Scoggins, J. R.; Fuelberg, H. E.; Carlson, R. D.; Phelps, R. W.; Bellue, D. G.

    1973-01-01

    Five methods for obtaining the sign of vertical motion at various levels in the atmosphere were investigated to determine which gave the best explanation for areas of rain and no-rain in the southeastern United States during the period February 19-22, 1964. The methods used were the terrain-induced vertical motion, the kinematic method including the terrain effect, the adiabatic method, the omega equation, and the vorticity equation combined with Dines' Compensation Principle. Stability and moisture availability were considered but not as extensively as vertical motion. Values of vertical motion obtained by the kinetic method, including orographic lifting produced the best agreement with the observed areas. When terms in the omega equation were added through use of constant multipliers, results comparable to the adiabatic method were obtained. Without this addition large uncertainties occurred. Maps showing areas where terms of the omega equation would indicate positive vertical motion did not correlate well with the observed rainfall patterns.

  3. The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment

    DEFF Research Database (Denmark)

    Schofield, J.T.; Barnes, J.R.; Crisp, D.

    1997-01-01

    The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment measured the vertical density, pressure, and temperature structure of the martian atmosphere from the surface to 160 km, and monitored surface meteorology and climate for 83 sols (1 sol = 1 martian day = 24...... nighttime upper atmosphere; atmospheric temperatures that are 10 to 12 degrees kelvin warmer near the surface; light slope-controlled winds; and dust devils, identified by their pressure, wind, and temperature signatures. The results are consistent with the warm, moderately dusty atmosphere seen by VL-1........7 hours). The atmospheric structure and the weather record are similar to those observed by the Viking 1 lander (VL-1) at the same latitude, altitude, and season 21 years ago, but there are differences related to diurnal effects and the surface properties of the landing site. These include a cold...

  4. Analysis specifications for the CC3 biosphere model BIOTRAC

    International Nuclear Information System (INIS)

    Szekely, J.G.; Wojciechowski, L.C.; Stephens, M.E.; Halliday, H.A.

    1994-12-01

    AECL Research is assessing a concept for disposing of Canada's nuclear fuel waste in a vault deep in plutonic rock of the Canadian Shield. A computer program called the Systems Variability Analysis Code (SYVAC) has been developed as an analytical tool for the postclosure (long-term) assessment of the concept. SYVAC3, the third generation of the code, is an executive program that directs repeated simulation of the disposal system to take into account parameter variation. For the postclosure assessment, the system model, CC3 (Canadian Concept, generation 3), was developed to describe a hypothetical disposal system that includes a disposal vault, the local geosphere and the biosphere in the vicinity of any discharge zones. BIOTRAC (BIOsphere TRansport And Consequences) is the biosphere model in the CC3 system model. The specifications for BIOTRAC, which were developed over a period of seven years, were subjected to numerous walkthrough examinations by the Biosphere Model Working Group to ensure that the intent of the model developers would be correctly specified for transformation into FORTRAN code. The FORTRAN version of BIOTRAC was written from interim versions of these specifications. Improvements to the code are based on revised versions of these specifications. The specifications consist of a data dictionary; sets of synopses, data flow diagrams and mini specs for the component models of BIOTRAC (surface water, soil, atmosphere, and food chain and dose); and supporting calculations (interface to the geosphere, consequences, and mass balance). (author). 20 refs., tabs., figs

  5. Study of atmospheric aerosols by IBA techniques: The LABEC experience

    Science.gov (United States)

    Lucarelli, F.; Calzolai, G.; Chiari, M.; Nava, S.; Carraresi, L.

    2018-02-01

    At the 3 MV Tandetron accelerator of the LABEC laboratory of INFN (Florence, Italy) an external beam facility is fully dedicated to PIXE-PIGE measurements of the elemental composition of atmospheric aerosols. All the elements with Z > 10 are simultaneously detected by PIXE typically in one minute. This setup allows us an easy automatic positioning, changing and scanning of samples collected by different kinds of devices: long series of daily PM (Particulate Matter) samples can be analysed in short times, as well as size-segregated and high time-resolution aerosol samples. Thanks to the capability of detecting all the crustal elements, PIXE-PIGE analyses are unrivalled in the study of mineral dust: consequently, they are very effective in the study of natural aerosols, like, for example, Saharan dust intrusions. Among the detectable elements there are also important markers of anthropogenic sources, which allow effective source apportionment studies in polluted urban environments using a multivariate method like Positive Matrix Factorization (PMF). Examples regarding recent monitoring campaigns, performed in urban and remote areas, both daily and with high time resolution (hourly samples), as well as with size selection, are presented. The importance of the combined use of the Particle Induced Gamma Ray emission technique (PIGE) and of other complementary (non-nuclear) techniques is highlighted.

  6. Dumb Growth and the Biosphere

    OpenAIRE

    Cairns, John

    2011-01-01

    Dumb growth is defined as any growth that is unsustainable on a finite planet. Growth in population and consumption of finite resources are not sustainable practices and have already damaged the biospheric life support system in a way that is difficult to eradicate. In fact, all eight interactive global crises (human economy, climate change, exponential human population growth, ecological overshoot, biotic impoverishment and reduction of biodiversity, renewable resources depletion, energy al...

  7. Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios

    NARCIS (Netherlands)

    Stocker, B.D.; Roth, R.; Joos, F.; Spahni, R.; Steinacher, M.; Zaehle, S.; Bouwman, L.; Xu, R.; Prentice, I.C.

    2013-01-01

    Atmospheric concentrations of the three important greenhouse gases (GHGs) CO2, CH4 and N2O are mediated by processes in the terrestrial biosphere that are sensitive to climate and CO2. This leads to feedbacks between climate and land and has contributed to the sharp rise in atmospheric

  8. Investigations on iodine-129 in the biosphere

    International Nuclear Information System (INIS)

    Handl, J.; Oliver, E.; Jakob, D.

    1992-01-01

    In order to detect characteristic regional differences or temporal changes of iodine-129 concentrations in the biosphere, thyroids from humans, grazing livestock and roedeer (Capreolus capreolus L.) are collected in various parts of the world, which are differing in the exposure to I-129 immissions from nuclear sources. For reasons of comparison all samples are analysed for their I-129/I-127 atom ratios. Human thyroids taken from Lower Saxony (Federal Republic of Germany), which is a region not directly affected by reprocessing plants showed I-129/I-127 values between 8x10 -9 and 6x10 -8 for a period from February 1988 to September 1990. Those atom ratios correspond to the level of biospheric I-129 in background areas of Europe exposed to fallout atmospheric nuclear weapons tests during the 1950s and 1960s. Thyroid glands of roedeer taken from the Heby commune in Middle Sweden during spring 1990 showed I-129/I-127 ratios between 2x10 -7 and 4x10 -7 . Two soil samples taken from Krasnaya Gora and Mirny locations in Russia (about 200 km northwest of Chernobyl) exhibited ratios of about 1x10 -6 . According to the Cs-137 levels, the Swedish Heby area as well as both Russian locations were found to be seriously Chernobyl contaminated. Ratios found in human and bovine thyroids collected in the 10th Region in southern Chile (40deg-42degS) indicated values between 1x10 -10 and 9x10 -9 . On the basis of the prenuclear range of I-129/I-127 ratios between 4x10 -11 and 3x10 -9 , which were found in human thyroids analysed in the USA before 1945 the Chilean values can be considered only slightly elevated as compared to those determined in samples of Northern Hemisphere today. (orig.) [de

  9. Methodology for biosphere analysis in high level waste disposal. Application to the Mediterranean system

    International Nuclear Information System (INIS)

    Pinedo, P.; Simon, I.; Aguero, A.; Cancio, D.

    2000-01-01

    For several years CIEMAT has been developing for ENRESA a conceptual approach and tools to support the modelling of the migration and accumulation of radionuclides within the biosphere once those radionuclides are released or reach one or more parts of the biosphere (atmosphere, water bodies or soils). The model development also includes evaluation of radiological impacts arising from the resulting distribution of radionuclides in the biosphere. At the time when the methodology was proposed, the level of development of the different aspects proposed within it was quite heterogeneous and, while aspects of radionuclide transport modelling were already well developed in theoretical and practical terms, other aspects, like the procedure for conceptual model development and the description of biosphere systems representatives of the long term needed further developments. The developments have been performed in parallel to international projects, within which there were and are an active participation, mainly, the BIOphere Models Validation Study (BIOMOVS II) international Project, within which it was developed the so called Reference Biosphere Methodology and, the International Atomic Energy Agency (IAEA) Programme on BIOsphere Modelling and ASSessment methods (BIOMASS), that is under development at present. The methodology been made takes account of these international developments. The purpose of the work summarised herein is the application of the methodology to the 1997 performance assessment (PA) exercise made by ENRESA, using from it the general and particular information about the assessment context, the source term, and the geo-biosphere interface data. (author)

  10. Reference biospheres for the long term safety assessment of radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Crossland, I.G.; Torres, C.

    2002-01-01

    Regulatory guidance on the safety assessment of radioactive waste disposals usually requires the consequences of any radionuclide releases to be considered in terms of their potential impact on human health. This requires consideration of the prevailing biosphere and the habits of the potentially exposed humans within it. However, it could take many thousands of years for migrating radionuclides to reach the surface environment. In these circumstances, an assessment model that was based on the present-day biosphere could be inappropriate while future biospheres would be unpredictable. These and other considerations suggest that a standardised, or reference biosphere, approach may be useful. Theme 1 of the IAEA BIOMASS project was established to develop the concept of reference biospheres into a practical system that can be applied to the assessment of the long term safety of geological disposal facilities for radioactive waste. The technical phase of the project lasted for four years until November 2000 and brought together disparate interests from many countries including waste disposal agencies, regulators and technical experts. Building on the experience from earlier BIOMOVS projects, a methodology was constructed for the logical and defensible construction of mathematical biosphere models that can be used in the total system performance assessment of radioactive waste disposal. The methodology was then further developed through the creation of a series of BIOMASS Example Reference Biospheres ('Examples'). These are stylised biosphere models that, in addition to illustrating the methodology, are intended to be useful assessment tools in their own right. (author)

  11. The nitrogen cycle: Atmosphere interactions

    Science.gov (United States)

    Levine, J. S.

    1984-01-01

    Atmospheric interactions involving the nitrogen species are varied and complex. These interactions include photochemical reactions, initiated by the absorption of solar photons and chemical kinetic reactions, which involve both homogeneous (gas-to-gas reactions) and heterogeneous (gas-to-particle) reactions. Another important atmospheric interaction is the production of nitrogen oxides by atmospheric lightning. The nitrogen cycle strongly couples the biosphere and atmosphere. Many nitrogen species are produced by biogenic processes. Once in the atmosphere nitrogen oxides are photochemically and chemically transformed to nitrates, which are returned to the biosphere via precipitation, dry deposition and aerosols to close the biosphere-atmosphere nitrogen cycle. The sources, sinks and photochemistry/chemistry of the nitrogen species; atmospheric nitrogen species; souces and sinks of nitrous oxide; sources; sinks and photochemistry/chemistry of ammonia; seasonal variation of the vertical distribution of ammonia in the troposphere; surface and atmospheric sources of the nitrogen species, and seasonal variation of ground level ammonia are summarized.

  12. Presentation and interpretation of field experiments of gaseous UF6 releases in the atmosphere

    International Nuclear Information System (INIS)

    Crabol, B.; Boulaud, D.; Deville-Cavelin, G.

    1992-01-01

    An experimental programme concerning the behaviour of UF 6 released in gaseous phase in the atmosphere has been conducted in the years 1986-1989 by the french Atomic Energy Commission and Eurodif. Three field tests have been performed on the CEA/CESTA experimental site. These experiments permitted to get informations about the kinetics of the hydrolysis reaction of the UF 6 , the behaviour of the hydrolysis products in the atmosphere and the granulometry of the solid particles

  13. TransCom model simulations of hourly atmospheric CO2: Experimental overview and diurnal cycle results for 2002

    NARCIS (Netherlands)

    Law, R. M.; Peters, W.; Roedenbeck, C.; Aulagnier, C.; Baker, I.; Bergmann, D. J.; Bousquet, P.; Brandt, J.; Bruhwiler, L.; Cameron-Smith, P. J.; Christensen, J. H.; Delage, F.; Denning, A. S.; Fan, S.; Geels, C.; Houweling, S.; Imasu, R.; Karstens, U.; Kawa, S. R.; Kleist, J.; Krol, M. C.; Lin, S. -J.; Lokupitiya, R.; Maki, T.; Maksyutov, S.; Niwa, Y.; Onishi, R.; Parazoo, N.; Patra, P. K.; Pieterse, G.; Rivier, L.; Satoh, M.; Serrar, S.; Taguchi, S.; Takigawa, M.; Vautard, R.; Vermeulen, A. T.; Zhu, Z.

    2008-01-01

    [1] A forward atmospheric transport modeling experiment has been coordinated by the TransCom group to investigate synoptic and diurnal variations in CO2. Model simulations were run for biospheric, fossil, and air-sea exchange of CO2 and for SF6 and radon for 2000-2003. Twenty-five models or model

  14. TransCom model simulations of hourly atmospheric CO2: Experimental overview and diurnal cycle results for 2002

    NARCIS (Netherlands)

    Law, R. M.; Peters, W.; RöDenbeck, C.; Aulagnier, C.; Baker, I.; Bergmann, D. J.; Bousquet, P.; Brandt, J.; Bruhwiler, L.; Cameron-Smith, P. J.; Christensen, J. H.; Delage, F.; Denning, A. S.; Fan, S.; Geels, C.; Houweling, S.; Imasu, R.; Karstens, U.; Kawa, S. R.; Kleist, J.; Krol, M. C.; Lin, S.-J.; Lokupitiya, R.; Maki, T.; Maksyutov, S.; Niwa, Y.; Onishi, R.; Parazoo, N.; Patra, P. K.; Pieterse, G.; Rivier, L.; Satoh, M.; Serrar, S.; Taguchi, S.; Takigawa, M.; Vautard, R.; Vermeulen, A. T.; Zhu, Z.

    2008-01-01

    A forward atmospheric transport modeling experiment has been coordinated by the TransCom group to investigate synoptic and diurnal variations in CO2. Model simulations were run for biospheric, fossil, and air-sea exchange of CO2 and for SF6 and radon for 2000-2003. Twenty-five models or model

  15. Biosphere modeling for HLW disposal in Japan

    International Nuclear Information System (INIS)

    Naito, Morimasa

    2001-01-01

    Concept of Reference Biosphere is defined by 'the set of assumptions and hypotheses that is necessary to provide a consistent basis for calculations of the radiological impact arising from long-term releases of repository-derived radionuclides into the biosphere'. Geological environment and biosphere interface (GBI) is the place having the high probability of introduction of radioactive nuclides to biosphere by groundwater. Reference biosphere methodology, GBI, basic models, assessment context, assumptions concerning the surface environment for the biosphere assessment, nuclides migration process, interaction matrix showing radionuclide transport pathways for biosphere modeling, conceptual model for exposure modes and pathways for each exposure group in the biosphere assessment are explained. Response of the biosphere assessment model is steady, unit flux input (1 Bq/y) of different nuclides (farming exposure group). The dose per unit input of agriculture group is 1 to 3 figures larger than that of other two fisheries groups in the case of river and coastal environment except Po-210. We can calculate easily the dose by determining the dose conversion factors derived from different GBI models. Comparison of flux to dose conversion factors derived from different GBI models is effective to know the properties of each model, process and importance of data. (S.Y.)

  16. The biomass theme 1 project: Reference biospheres

    International Nuclear Information System (INIS)

    Crossland, I.; Torres-Vidal, C.

    2000-01-01

    The long-term safety of a facility for the disposal of long-lived radioactive waste would principally depend upon a combination of engineered and natural barriers which would ensure that the radioactivity was prevented from reaching the biosphere. To assess radiological safety over extended timescales requires the construction of 'assessment biospheres'. A possibility is the development of 'Reference Biospheres', a series of stylised, internationally-agreed assessment biospheres that could be used to support post-closure assessments in a wide variety of situations. Current activities in this subject area are described. (author)

  17. ACS experiment for atmospheric studies on "ExoMars-2016" Orbiter

    Science.gov (United States)

    Korablev, O. I.; Montmessin, F.; Fedorova, A. A.; Ignatiev, N. I.; Shakun, A. V.; Trokhimovskiy, A. V.; Grigoriev, A. V.; Anufreichik, K. A.; Kozlova, T. O.

    2015-12-01

    ACS is a set of spectrometers for atmospheric studies (Atmospheric Chemistry Suite). It is one of the Russian instruments for the Trace Gas Orbiter (TGO) of the Russian-European "ExoMars" program. The purpose of the experiment is to study the Martian atmosphere by means of two observations regimes: sensitive trace gases measurements in solar occultations and by monitoring the atmospheric state during nadir observations. The experiment will allow us to approach global problems of Mars research such as current volcanism, and the modern climate status and its evolution. Also, the experiment is intended to solve the mystery of methane presence in the Martian atmosphere. Spectrometers of the ACS set cover the spectral range from the near IR-range (0.7 μm) to the thermal IR-range (17 μm) with spectral resolution λ/Δλ reaching 50000. The ACS instrument consists of three independent IR spectrometers and an electronics module, all integrated in a single unit with common mechanical, electrical and thermal interfaces. The article gives an overview of scientific tasks and presents the concept of the experiment.

  18. Application of the Biosphere Assessment Methodology to the ENRESA, 1997 Performance and Safety Assessment

    International Nuclear Information System (INIS)

    Pinedo, P.; Simon, I.; Aguero, A.

    1998-01-01

    For several years CIEMAT has been developing for ENRESA knowledge and tools to support the modelling of the migration and accumulation of radionuclides within the biosphere once those radionuclides are released or reach one or more parts of the biosphere (atmosphere, water bodies or soils). The model development also includes evaluation of radiological impacts arising from the resulting distribution of radionuclides in the biosphere. In 1996, a Methodology to analyse the biosphere in this context proposed to ENRESA. The level of development of the different aspects proposed within the Methodology was quite heterogeneous and, while aspects of radionuclide transport modelling were already well developed in theoretical and practical terms, other aspects like the procedure for conceptual model development and the description of biosphere system representatives of the long term needed further developments. At present, the International Atomic Energy Agency (IAEA) Programme on Biosphere Modelling and Assessment (BIOMASS) in collaboration with several national organizations, ENRESA and CIEMAT among them, is working to complete and augment the Reference Biosphere Methodology and to produce some practical descriptions of Reference Systems. The overall purpose of this document is to apply the Methodology, taking account of on-going developments in biosphere modelling, to the last performance assessment (PA) exercise made by ENRESA (ENRESA, 1997), using from it the general and particular information about the assessment context, radionuclide information, geosphere and geobiosphere interface data. There are three particular objectives to this work: (a) to determine the practicability of the Methodology in an application to a realistic assessment situation, (b) To compare and contrast previous biosphere modelling in HLW PA and, (c) to test software development related with data management and modelling. (Author) 42 refs

  19. Climate and atmosphere simulator for experiments on ecological systems in changing environments.

    Science.gov (United States)

    Verdier, Bruno; Jouanneau, Isabelle; Simonnet, Benoit; Rabin, Christian; Van Dooren, Tom J M; Delpierre, Nicolas; Clobert, Jean; Abbadie, Luc; Ferrière, Régis; Le Galliard, Jean-François

    2014-01-01

    Grand challenges in global change research and environmental science raise the need for replicated experiments on ecosystems subjected to controlled changes in multiple environmental factors. We designed and developed the Ecolab as a variable climate and atmosphere simulator for multifactor experimentation on natural or artificial ecosystems. The Ecolab integrates atmosphere conditioning technology optimized for accuracy and reliability. The centerpiece is a highly contained, 13-m(3) chamber to host communities of aquatic and terrestrial species and control climate (temperature, humidity, rainfall, irradiance) and atmosphere conditions (O2 and CO2 concentrations). Temperature in the atmosphere and in the water or soil column can be controlled independently of each other. All climatic and atmospheric variables can be programmed to follow dynamical trajectories and simulate gradual as well as step changes. We demonstrate the Ecolab's capacity to simulate a broad range of atmospheric and climatic conditions, their diurnal and seasonal variations, and to support the growth of a model terrestrial plant in two contrasting climate scenarios. The adaptability of the Ecolab design makes it possible to study interactions between variable climate-atmosphere factors and biotic disturbances. Developed as an open-access, multichamber platform, this equipment is available to the international scientific community for exploring interactions and feedbacks between ecological and climate systems.

  20. Haze production rates in super-Earth and mini-Neptune atmosphere experiments

    Science.gov (United States)

    Hörst, Sarah M.; He, Chao; Lewis, Nikole K.; Kempton, Eliza M.-R.; Marley, Mark S.; Morley, Caroline V.; Moses, Julianne I.; Valenti, Jeff A.; Vuitton, Véronique

    2018-03-01

    Numerous Solar System atmospheres possess photochemically generated hazes, including the characteristic organic hazes of Titan and Pluto. Haze particles substantially impact atmospheric temperature structures and may provide organic material to the surface of a world, potentially affecting its habitability. Observations of exoplanet atmospheres suggest the presence of aerosols, especially in cooler (particles, and the cooler (300 and 400 K) 1,000× solar metallicity (`H2O-dominated' and CH4-rich) experiments exhibited haze production rates higher than our standard Titan simulation ( 10 mg h-1 versus 7.4 mg h-1 for Titan13). However, the particle production rates varied greatly, with measured rates as low as 0.04 mg h-1 (for the case with 100× solar metallicity at 600 K). Here, we show that we should expect great diversity in haze production rates, as some—but not all—super-Earth and mini-Neptune atmospheres will possess photochemically generated haze.

  1. Site and Regional Data for Biosphere Assessment BSA-2009 Supplement to Olkiluoto Biosphere Description 2009

    International Nuclear Information System (INIS)

    Aro, L.; Haapanen, R.; Puhakka, L.; Hjerpe, T.; Kirkkala, T.; Koivunen, S.; Lahdenperae, A.-M.; Salo, T.; Ikonen, A.T.K.; Helin, J.

    2010-06-01

    The safety case for a spent nuclear fuel repository at Olkiluoto includes a computational safety assessment. A site-specific biosphere assessment is an integral part of them both. In 2009 an assessment was conducted to demonstrate preparedness to apply for construction license to the repository in 2012. As a part of the biosphere assessment, the present conditions at the site are described in Olkiluoto biosphere description report for an analogue of the future conditions being simulated in the safety assessment. This report is a supplement to the biosphere description report of 2009 and documents the site and regional data used in the biosphere assessment 'BSA-2009' with respective rationales. (orig.)

  2. Database description for the biosphere code BIOMOD

    International Nuclear Information System (INIS)

    Kane, P.; Thorne, M.C.; Coughtrey, P.J.

    1983-03-01

    The development of a biosphere model for use in comparative radiological assessments of UK low and intermediate level waste repositories is discussed. The nature, content and sources of data contained in the four files that comprise the database for the biosphere code BIOMOD are described. (author)

  3. Stable Atmospheric Boundary Layer Experiment in Spain (SABLES 98) : a report

    NARCIS (Netherlands)

    Cuxart, J.; Yague, C.; Morales, G.; Terradelles, E.; Orbe, J.; Calvo, J.; Vilu-Guerau, de J.; Soler, M.R.; Infante, C.; Buenestado, P.; Espinalt, A.; Jorgensem, H.E.

    2000-01-01

    This paper describes the Stable Atmospheric Boundary Layer Experiment in Spain (SABLES 98), which took place over the northern Spanish plateau comprising relatively flat grassland, in September 1998. The main objectives of the campaign were to study the properties of the mid-latitude stable boundary

  4. Results from solar, atmospheric and K2K experiments and future ...

    Indian Academy of Sciences (India)

    Recent results from solar, reactor, atmospheric and long baseline (K2K) experiments are discussed. With the improved data statistics and analyses, our ... Takaaki Kajita1. Research Center for Cosmic Neutrinos, Institute for Cosmic Ray Research, University of Tokyo, Kashiwa-no-ha 5-1-5, Kashiwa, Chiba 277-8582, Japan ...

  5. Results from solar, atmospheric and K2K experiments and future ...

    Indian Academy of Sciences (India)

    Abstract. Recent results from solar, reactor, atmospheric and long baseline (K2K) ex- periments are discussed. With the improved data statistics and analyses, our knowledge on the neutrino masses and mixing angles are steadily improving. T2K is the next gener- ation neutrino oscillation experiment between J-PARC in ...

  6. Stable atmospheric boundary-layer experiment in Spain (SABLES 98): A report

    DEFF Research Database (Denmark)

    Cuxart, J.; Yague, C.; Morales, G.

    2000-01-01

    This paper describes the Stable Atmospheric Boundary Layer Experiment in Spain (SABLES 98), which took place over the northern Spanish plateau comprising relatively flat grassland, in September 1998. The main objectives of the campaign were to study the properties of the mid-latitude stable...

  7. Modelling of atmospheric mid-infrared radiative transfer: the AMIL2DA algorithm intercomparison experiment

    International Nuclear Information System (INIS)

    Clarmann, T. von; Hoepfner, M.; Funke, B.; Lopez-Puertas, M.; Dudhia, A.; Jay, V.; Schreier, F.; Ridolfi, M.; Ceccherini, S.; Kerridge, B.J.; Reburn, J.; Siddans, R.

    2003-01-01

    When retrieving atmospheric parameters from radiance spectra, the forward modelling of radiative transfer through the Earth's atmosphere plays a key role, since inappropriate modelling directly maps on to the retrieved state parameters. In the context of pre-launch activities of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) experiment, which is a high resolution limb emission sounder for measurement of atmospheric composition and temperature, five scientific groups intercompared their forward models within the framework of the Advanced MIPAS Level 2 Data Analysis (AMIL2DA) project. These forward models have been developed, or, in certain respects, adapted in order to be used as part of the groups' MIPAS data processing. The following functionalities have been assessed: the calculation of line strengths including non-local thermodynamic equilibrium, the evaluation of the spectral line shape, application of chi-factors and semi-empirical continua, the interpolation of pre-tabulated absorption cross sections in pressure and temperature, line coupling, atmospheric ray tracing, the integration of the radiative transfer equation through an inhomogeneous atmosphere, the convolution of monochromatic spectra with an instrument line shape function, and the integration of the incoming radiances over the instrument field of view

  8. Haze production rates in super-Earth and mini-Neptune atmosphere experiments

    Science.gov (United States)

    Hörst, Sarah M.; He, Chao; Lewis, Nikole K.; Kempton, Eliza M.-R.; Marley, Mark S.; Morley, Caroline V.; Moses, Julianne I.; Valenti, Jeff A.; Vuitton, Véronique

    2018-04-01

    Numerous Solar System atmospheres possess photochemically generated hazes, including the characteristic organic hazes of Titan and Pluto. Haze particles substantially impact atmospheric temperature structures and may provide organic material to the surface of a world, potentially affecting its habitability. Observations of exoplanet atmospheres suggest the presence of aerosols, especially in cooler (Earth- and mini-Neptune-type planets5, the most frequently occurring type of planet in our galaxy6. It is expected that photochemical haze will play a much greater role in the atmospheres of planets with average temperatures below 1,000 K (ref. 7), especially those planets that may have enhanced atmospheric metallicity and/or enhanced C/O ratios, such as super-Earths and Neptune-mass planets8-12. We explored temperatures from 300 to 600 K and a range of atmospheric metallicities (100×, 1,000× and 10,000× solar). All simulated atmospheres produced particles, and the cooler (300 and 400 K) 1,000× solar metallicity (`H2O-dominated' and CH4-rich) experiments exhibited haze production rates higher than our standard Titan simulation ( 10 mg h-1 versus 7.4 mg h-1 for Titan13). However, the particle production rates varied greatly, with measured rates as low as 0.04 mg h-1 (for the case with 100× solar metallicity at 600 K). Here, we show that we should expect great diversity in haze production rates, as some—but not all—super-Earth and mini-Neptune atmospheres will possess photochemically generated haze.

  9. Atlas of the global distribution of atmospheric heating during the global weather experiment

    Science.gov (United States)

    Schaack, Todd K.; Johnson, Donald R.

    1991-01-01

    Global distributions of atmospheric heating for the annual cycle of the Global Weather Experiment are estimated from the European Centre for Medium-Range Weather Forecasts (ECMWF) Level 3b data set. Distributions of monthly, seasonally, and annually averaged heating are presented for isentropic and isobaric layers within the troposphere and for the troposphere as a whole. The distributions depict a large-scale structure of atmospheric heating that appears spatially and temporally consistent with known features of the global circulation and the seasonal evolution.

  10. Numerical experiments on the atmospheric response to cold Equatorial Pacific conditions ('La Nina') during northern summer

    International Nuclear Information System (INIS)

    Storch, H. von; Schriever, D.; Arpe, K.; Branstator, G.W.; Legnani, R.; Ulbrich, U.

    1993-01-01

    The effect of cold conditions in the central and eastern Equatorial Pacific during Northern Summer is examined in a series of numerical experiments with the low resolution (T21) atmospheric general circulation model ECHAM2. Anomalous sea surface temperatures (SST) as observed in June 1988 were prescribed and the effect on the global circulation is examined. In the model atmosphere, the anomalous cold water in the Equatorial Pacific excites a strong and stable response over the tropical Central and East Pacific. From here stationary Rossby waves radiate into both hemispheres. The Northern Hemisphere wave train is weak and affects only the Northeast Pacific area; the Southern Hemisphere wave train arches from the Central Pacific over the southern tip of South America to the South Atlantic. This response is not only present in the basic anomaly experiment with the T21 GCM but also in experiments with SST anomalies confined to the tropics and with an envelope-formulation of the SST anomalies, in experiments with a linear model, and in high resolution (T42) model experiments. The model output is also compared to the actually observed atmospheric state in June 1988. (orig./KW)

  11. Carbonyl Sulfide Serves as Tattletale for Biosphere Signal

    Science.gov (United States)

    Villalba, G.; Campbell, J. E.

    2016-12-01

    Currently, anthropogenic CO2 emissions over a geographic region can be calculated in several ways: 1) based on energy consumption using emission factors within city limits, 2) using 14CO2 as tracer for fossil CO2, and 3) subtracting the biosphere signal from observation (measured) CO2 data. In order to calculate the ecosystem CO2 emissions (respiration and photosynthesis), ecosystem models such as SiB, CASA, or others are used. However, it is not clear which is the best one to determine the ecosystem signal because they all give different results in terms of GPP. We first show simulations of biosphere CO2 given by SiB, CASA, and CAN-IBIS over central California. Each model gives different values of CO2 GPP. Using these values to determine fossil fuel CO2 contribution can give very different results. We suggest that COS can be used to determine which ecosystem model best represents the biosphere signal. Just like CO2, COS is taken up by photosynthesis but is not given off in respiration and can thus be used as a trace gas to estimate GPP. We begin with COS surface fluxes provided by SiB, CASA and CAN-IBIS for a 9km-resolution domain over the Bay Area of San Francisco and part of the San Joaquin Valley. Simulations using the atmospheric model WRF provide the meteorological data, which along with the COS fluxes, are used to run the transport model STEM over a 10-day period in March 2015. Simulations of COS mixing ratio based on the various surface flux models are compared to observed data available from several locations. The model that best represents COS uptake consequently also provides the most accurate simulation of CO2 biosphere signal, and is used to estimate fossil fuel CO2 emissions.

  12. Earth's Early Biosphere and the Biogeochemical Carbon Cycle

    Science.gov (United States)

    DesMarais, David

    2004-01-01

    Our biosphere has altered the global environment principally by influencing the chemistry of those elements most important for life, e g., C, N, S, O, P and transition metals (e.g., Fe and Mn). The coupling of oxygenic photosynthesis with the burial in sediments of photosynthetic organic matter, and with the escape of H2 to space, has increased the state of oxidation of the Oceans and atmosphere. It has also created highly reduced conditions within sedimentary rocks that have also extensively affected the geochemistry of several elements. The decline of volcanism during Earth's history reduced the flow of reduced chemical species that reacted with photosynthetically produced O2. The long-term net accumulation of photosynthetic O2 via biogeochemical processes has profoundly influenced our atmosphere and biosphere, as evidenced by the O2 levels required for algae, multicellular life and certain modem aerobic bacteria to exist. When our biosphere developed photosynthesis, it tapped into an energy resource that was much larger than the energy available from oxidation-reduction reactions associated with weathering and hydrothermal activity. Today, hydrothermal sources deliver globally (0.13-1.1)x10(exp l2) mol yr(sup -1) of reduced S, Fe(2+), Mn(2+), H2 and CH4; this is estimated to sustain at most about (0.2-2)xl0(exp 12)mol C yr(sup -1) of organic carbon production by chemautotrophic microorganisms. In contrast, global photosynthetic productivity is estimated to be 9000x10(exp 12) mol C yr(sup -1). Thus, even though global thermal fluxes were greater in the distant geologic past than today, the onset of oxygenic photosynthesis probably increased global organic productivity by some two or more orders of magnitude. This enormous productivity materialized principally because oxygenic photosynthesizers unleashed a virtually unlimited supply of reduced H that forever freed life from its sole dependence upon abiotic sources of reducing power such as hydrothermal emanations

  13. Biosphere of the earth as a life-support system (LSS) for mankind

    Science.gov (United States)

    Pechurkin, Nickolay

    As a component of biosphere the mankind became the most powerful and active link recently. Exponential growth of human population number and of some technological indicators of its development becomes menacing for steady (stationary or close-to-stationary) functioning of biosphere as single whole. Anyway, we should be able to estimate quantitatively limits of pos-sible anthropogenic impact on functional parameters of biosphere. Considering biosphere as a natural LSS, we can receive the helpful information for working out and creation of artificial LSS of various types. Big biotic cycle induced with flows of a solar energy, is a basis of func-tioning of biosphere and its basic cells -ecosystems. In comparison with the majority natural ecosystems, the biosphere has very high factor of closure of substance circulation, especially limiting biogenic elements: nitrogen and phosphorus. Voluntarily or not, the mankind interferes in big biotic cycle and modifies it. For example, extracting mineral fertilizers for cultivation of agricultural crops, we return in circulation lost before substances, type nitric, potassic, phos-phoric salts. Burning fossils of organic carbon (oil, gas, coal), we raise concentration of carbon dioxide in atmosphere. The melting of a permafrost connected with activity of mankind, is capable to lead to excretion of other greenhouse gases, in particular, methane. It's possible to summarize briefly the main functional properties of the biosphere: Integrity, Closure, Substance cycling, Steady state, Energy dependence. These properties of the biosphere, as a LSS, ensure potentially everlasting life under the conditions of a limited quantity of substrate suitable for the life on the planet. But the selfish mankind is able to destroy harmonic adjustment of this unique natural mechanism

  14. Environmental Mechanics: Water, Mass and Energy Transfer in the Biosphere

    Science.gov (United States)

    Raats, Peter A. C.; Smiles, David; Warrick, Arthur W.

    Modern theories of mass and heat transfer in the biosphere, based on notions of a soil-plant-atmosphere thermodynamic continuum focused on water, were generally formulated by the mid-20th century. They tended to be reductionist and flow equations combined macroscopic laws of flow and of material and energy balance. They were difficult to solve because material transfer properties tend to be strongly related to the local concentration of an entity of concern, to the location, or to both. The architecture of the soil and the plant canopy also complicated their formulation, the scale of their application and their test.

  15. Anthropogenic transformation of the terrestrial biosphere.

    Science.gov (United States)

    Ellis, Erle C

    2011-03-13

    Human populations and their use of land have transformed most of the terrestrial biosphere into anthropogenic biomes (anthromes), causing a variety of novel ecological patterns and processes to emerge. To assess whether human populations and their use of land have directly altered the terrestrial biosphere sufficiently to indicate that the Earth system has entered a new geological epoch, spatially explicit global estimates of human populations and their use of land were analysed across the Holocene for their potential to induce irreversible novel transformation of the terrestrial biosphere. Human alteration of the terrestrial biosphere has been significant for more than 8000 years. However, only in the past century has the majority of the terrestrial biosphere been transformed into intensively used anthromes with predominantly novel anthropogenic ecological processes. At present, even were human populations to decline substantially or use of land become far more efficient, the current global extent, duration, type and intensity of human transformation of ecosystems have already irreversibly altered the terrestrial biosphere at levels sufficient to leave an unambiguous geological record differing substantially from that of the Holocene or any prior epoch. It remains to be seen whether the anthropogenic biosphere will be sustained and continue to evolve.

  16. Thermospheric Density Fluctuations Derived from the Atmospheric Neutral Density Experiment Risk Reduction Mission

    Science.gov (United States)

    Nicholas, A. C.; Budzien, S. A.; Healy, L.; Davis, M.

    2008-12-01

    The Atmospheric Neutral Density Experiment (ANDE) Risk Reduction flight was launched on Dec 9, 2006 and deployed into orbit by the Space Shuttle Discovery on December 21, 2006. The primary mission objective is to test the deployment mechanism from the Shuttle for the ANDE flight in mid 2009. Scientific objectives of the ANDE risk reduction flight include: monitor total neutral density along the orbit for improved orbit determination of resident space objects, monitor the spin rate and orientation of the spacecraft, and provide a test object for polarimetry studies. The two ANDERR spacecraft decayed on December 25, 2007 and May 21, 2008, atmospheric densities derived from observations of the ANDERR spacecraft will be presented and compared to atmospheric models and drivers.

  17. Definition of Atmospheric Science Experiments and Techniques: Wake Zone Mapping Experiments

    Science.gov (United States)

    Taeusch, D. R.

    1976-01-01

    The development of a subsatellite system has been proposed for the shuttle program which would provide to the scientific community a platform for experiments which would be tethered to the shuttle spacecraft orbiting at about 200 km altitude. Experiments which can perform measurements of aeronomic interest onboard or utilizing the tethered satellite concept are described and recommended.

  18. Space, place and atmosphere. Emotion and peripherical perception in architectural experience

    Directory of Open Access Journals (Sweden)

    Juhani Pallasmaa

    2014-07-01

    Full Text Available Architectural experiences are essentially multi-sensory and simultaneous, and a complex entity is usually grasped as an atmosphere, ambience or feeling. In fact, the judgement concerning the character of a space or place calls for categories of sensing that extend beyond the five Aristotelian senses, such as the embodied existential sense, and, as a result, the entity is perceived in a diffuse, peripheral and unconscious manner. Paradoxically, we grasp an atmosphere before we have consciously identified its constituent factors and ingredients. «We perceive atmospheres through our emotional sensibility – a form of perception that works incredibly quickly, and which we humans evidently need to help us survive», Peter Zumthor suggests. We are mentally and emotionally affected by works of art before we understand them, or we may not understand them intellectually at all. Sensitive artists and architects intuit experiential and emotive qualities of spaces, places and images. This capacity calls for a specific kind of imagination, an emphatic imagination. Atmospheres are percieved peripherally through diffuse vision interacting with other sense modalities, and they are experienced emotionally rather than intellectually. The studies on the differentiation of the two brain hemispheres suggest that atmospheres are perceived through the right hemisphere. Somewhat surprisingly, atmospheres are more conscious objectives in literature, cinema, theater, painting and music than in architecture, which has been traditionally approached formally and perceived primarily through focused vision. Yet, when we see a thing in focus, we are outsiders to it, whereas the experience of being in a space calls for peripheral and unfocused perception. One of the reasons for the experiential poverty of contemporary settings could be in the poverty of their peripheral stimuli.

  19. International RADAGAST Experiment in Niamey, Niger: Changes and Drivers of Atmospheric Radiation Balance

    Energy Technology Data Exchange (ETDEWEB)

    Kassianov, Evgueni I.; McFarlane, Sally A.; Barnard, James C.; Flynn, Connor J.; Slingo, A.; Bharmal, N.; Robinson, G. J.; Turner, David D.; Miller, Mark; Ackerman, Thomas P.; Miller, R.

    2009-03-11

    The Sahara desert is notorious as a source of massive dust storms. This dust dramatically influences the Earth-atmosphere energy budget through reflecting and absorbing the incoming sunlight. However, this budget is poorly understood, and in particular, we lack quantitative understanding of how the diurnal and seasonal variation of meteorological variables and aerosol properties influence the propagation of solar irradiance through the desert atmosphere. To improve our understanding of these influences, coincident and collocated observations of fluxes, measured from both space and the surface, are highly desirable. Recently, the unique capabilities of the African Monsoon Multidisciplinary Analysis (AMMA) Experiment, the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF), the Geostationary Earth Radiation Budget (GERB) instrument, and the Spinning Enhanced Visible and Infrared Imager (SEVIRI) were combined effectively as part of a large international project: the Radiative Atmospheric Divergence using AMF, GERB data and AMMA Stations (RADAGAST), which took place in Niamey, Niger, in 2006. The RADAGAST objectives, instrumentation, and scientific background are presented in [1]. Initial results from RADAGAST documented the strong radiative impact of a major Saharan dust storm on the Earth’s radiation budget [2]. A special issue of the Journal of Geophysical Research will include a collection of papers with the more complete results from RADAGAST (e.g., [1,3], and references therein). In particular, a year-long time series from RADAGAST are used to investigate (i) the factors that control the radiative fluxes and the divergence of radiation across the atmosphere [3-5], (ii) seasonal changes in the surface energy balance and associated variations in atmospheric constituents (water vapor, clouds, aerosols) [6], and (iii) sensitivity of microphysical, chemical and optical properties of aerosols to their sources and the atmospheric conditions [7]. Here we show

  20. The Sword of Damocles and the Biosphere

    OpenAIRE

    Cairns, John

    2011-01-01

    The tale of the sword of Damocles can be used to describe the sword hanging by a thread over humankind with the damage it is doing to the present biosphere. The sixth biosphere, or the current biosphere, is experiencing a significant reduction in species caused by human-related activities. The signs of risk have markedly increased by the signs differ considerably from one are to another, and people tend do discount global change because it is unnoticeable in their local area. If humans begin...

  1. Composition of the earth's atmosphere by shock-layer radiometry during the PAET entry probe experiment.

    Science.gov (United States)

    Whiting, E. E.; Arnold, J. O.; Page, W. A.; Reynolds, R. M.

    1973-01-01

    A determination of the composition of the earth's atmosphere obtained from onboard radiometer measurements of the spectra emitted from the bow shock layer of a high-speed entry probe is reported. The N2, O2, CO2, and noble gas concentrations in the earth's atmosphere were determined to good accuracy by this technique. The results demonstrate unequivocally the feasibility of determining the composition of an unknown planetary atmosphere by means of a multichannel radiometer viewing optical emission from the heated atmospheric gases in the region between the bow shock wave and the vehicle surface. The spectral locations in this experiment were preselected to enable the observation of CN violet, N2(+) first negative and atomic oxygen emission at 3870, 3910, and 7775 A, respectively. The atmospheric gases were heated and compressed by the shock wave to a peak temperature of about 6100 K and a corresponding pressure of 0.4 atm. Complete descriptions of the data analysis technique and the onboard radiometer and its calibration are given.

  2. Patterns of new versus recycled primary production in the terrestrial biosphere

    Science.gov (United States)

    Nitrogen (N) and phosphorus (P) availability regulate plant productivity throughout the terrestrial biosphere, influencing the patterns and magnitude of net primary production (NPP) by land plants both now and into the future. These nutrients enter ecosystems via geologic and atmospheric pathways, a...

  3. Europe's terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions

    NARCIS (Netherlands)

    Janssens, I.A.; Freibauer, A.; Ciais, P.; Smith, P.; Nabuurs, G.J.; Folberth, G.; Schlamadinger, B.; Hutjes, R.W.A.; Ceulemans, R.; Schulze, E.D.; Valentini, R.; Dolman, A.J.

    2003-01-01

    Most inverse atmospheric models report considerable uptake of carbon dioxide in Europe's terrestrial biosphere. In contrast, carbon stocks in terrestrial ecosystems increase at a much smaller rate, with carbon gains in forests and grassland soils almost being offset by carbon losses from cropland

  4. Modeling the global society-biosphere-climate system : Part 2: Computed scenarios

    NARCIS (Netherlands)

    Alcamo, J.; Van Den Born, G.J.; Bouwman, A.F.; De Haan, B.J.; Klein Goldewijk, K.; Klepper, O.; Krabec, J.; Leemans, R.; Olivier, J.G.J.; Toet, A.M.C.; De Vries, H.J.M.; Van Der Woerd, H.J.

    1994-01-01

    This paper presents scenarios computed with IMAGE 2.0, an integrated model of the global environment and climate change. Results are presented for selected aspects of the society-biosphere-climate system including primary energy consumption, emissions of various greenhouse gases, atmospheric

  5. Biosphere model simulations of interannual variability in terrestrial 13C/12C exchange.

    NARCIS (Netherlands)

    Velde, van der I.R.; Miller, J.B.; Schaefer, K.; Masarie, K.A.; Denning, S.; White, J.W.C.; Krol, M.C.; Peters, W.; Tans, P.P.

    2013-01-01

    Previous studies suggest that a large part of the variability in the atmospheric ratio of (CO2)-C-13/(12)CO(2)originates from carbon exchange with the terrestrial biosphere rather than with the oceans. Since this variability is used to quantitatively partition the total carbon sink, we here

  6. Feasibility study of a zero-gravity (orbital) atmospheric cloud physics experiments laboratory

    Science.gov (United States)

    Hollinden, A. B.; Eaton, L. R.

    1972-01-01

    A feasibility and concepts study for a zero-gravity (orbital) atmospheric cloud physics experiment laboratory is discussed. The primary objective was to define a set of cloud physics experiments which will benefit from the near zero-gravity environment of an orbiting spacecraft, identify merits of this environment relative to those of groundbased laboratory facilities, and identify conceptual approaches for the accomplishment of the experiments in an orbiting spacecraft. Solicitation, classification and review of cloud physics experiments for which the advantages of a near zero-gravity environment are evident are described. Identification of experiments for potential early flight opportunities is provided. Several significant accomplishments achieved during the course of this study are presented.

  7. Developing Starlight connections with UNESCO sites through the Biosphere Smart

    Science.gov (United States)

    Marin, Cipriano

    2015-08-01

    The large number of UNESCO Sites around the world, in outstanding sites ranging from small islands to cities, makes it possible to build and share a comprehensive knowledge base on good practices and policies on the preservation of the night skies consistent with the protection of the associated scientific, natural and cultural values. In this context, the Starlight Initiative and other organizations such as IDA play a catalytic role in an essential international process to promote comprehensive, holistic approaches on dark sky preservation, astronomical observation, environmental protection, responsible lighting, sustainable energy, climate change and global sustainability.Many of these places have the potential to become models of excellence to foster the recovery of the dark skies and its defence against light pollution, included some case studies mentioned in the Portal to the Heritage of Astronomy.Fighting light pollution and recovering starry sky are already elements of a new emerging culture in biosphere reserves and world heritage sites committed to acting on climate change and sustainable development. Over thirty territories, including biosphere reserves and world heritage sites, have been developed successful initiatives to ensure night sky quality and promote sustainable lighting. Clear night skies also provide sustainable income opportunities as tourists and visitors are eagerly looking for sites with impressive night skies.Taking into account the high visibility and the ability of UNESCO sites to replicate network experiences, the Starlight Initiative has launched an action In cooperation with Biosphere Smart, aimed at promoting the Benchmark sites.Biosphere Smart is a global observatory created in partnership with UNESCO MaB Programme to share good practices, and experiences among UNESCO sites. The Benchmark sites window allows access to all the information of the most relevant astronomical heritage sites, dark sky protected areas and other places

  8. Transport of radionuclides in the biosphere

    International Nuclear Information System (INIS)

    Bundi, A.

    1983-10-01

    The dispersion of radionuclides in the biosphere and their uptake by man via various nutritional pathways is studied using a compartment model. The sample environment is the area of the lower Limmat and Aare valleys. General considerations of the compartmental description of the biosphere are made. The problem of the description of surface features, in particular soil, sediment and water, is studied in detail using the code BIOPATH. This study is intended to be an example of how a model of the biosphere could be constructed. It is shown that this is a reasonable model to calculate the spreading of radionuclides in the biosphere and that it indicates the relative significance of individual compartments, pathways and radionuclides. Calculated values of dose committment, however, should not be used as reference data for safety analyses. (Auth.)

  9. Rocket experiment in a coupling process between neutral atmosphere and plasma

    Science.gov (United States)

    Watanabe, S.; Liu, H.; Abe, T.; Ono, T.; Otsuka, Y.; Saito, A.; Yamamoto, M.; Yamamoto, M. Y.

    Rocket experiment is carried out to investigate a coupling process between neutral atmosphere and plasma of thermosphere and ionosphere at Kagoshima Space Center KSC of JAXA The rocket launch window is in the evening of July 31 - August 15 2007 Momentum transfer through collisional process of the neutral atmosphere and the plasma is a basic problem of atmospheric circulation and super rotation in the low latitude thermosphere and a medium scale traveling ionospheric disturbance MS-TID occurring in the mid-latitude ionosphere but the direct observation is not yet performed In the rocket experiment we observe plasma drift velocity plasma density and temperature and its fluctuations electric field magnetic field and neutral wind The neutral winds are estimated from the movements of Lithium clouds which are released at altitudes between 150km and 300km and scatter sunlight by resonance scattering with wavelength of 670 nm The Lithium clouds are observed by CCD imagers on ground The plan of rocket experiment ground observation system and science objectives are presented

  10. Nominal Performance Biosphere Dose Conversion Factor Analysis

    International Nuclear Information System (INIS)

    M. Wasiolek

    2004-01-01

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the groundwater exposure scenario, and the development of conversion factors for assessing compliance with the groundwater protection standard. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop biosphere BDCFs, which are input parameters for the TSPA-LA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the ''Biosphere Model Report'' in Figure 1-1, contain detailed description of the model input parameters, their development, and the relationship between the parameters and specific features events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the groundwater exposure scenario. The objectives of this analysis are to develop BDCFs for the groundwater exposure scenario for the three climate states considered in the TSPA-LA as well as conversion factors for evaluating compliance with the groundwater protection standard. The BDCFs will be used in performance assessment for calculating all-pathway annual doses for a given concentration of radionuclides in groundwater. The conversion factors will be used for calculating gross alpha particle activity in groundwater and the annual dose

  11. The effect of high-resolution orography on numerical modelling of atmospheric flow: a preliminary experiment

    International Nuclear Information System (INIS)

    Scarani, C.; Tampieri, F.; Tibaldi, S.

    1983-01-01

    The effect of increasing the resolution of the topography in models of numerical weather prediction is assessed. Different numerical experiments have been performed, referring to a case of cyclogenesis in the lee of the Alps. From the comparison, it appears that the lower atmospheric levels are better described by the model with higherresolution topography; comparable horizontal resolution runs with smoother topography appear to be less satisfactory in this respect. It turns out also that the vertical propagation of the signal due to the front-mountain interaction is faster in the high-resolution experiment

  12. Biomedical program at Space Biospheres Ventures

    Science.gov (United States)

    Walford, Roy

    1990-01-01

    There are many similarities and some important differences between potential health problems of Biosphere 2 and those of which might be anticipated for a space station or a major outpost on Mars. The demands of time, expense, and equipment would not readily allow medical evacuation from deep space for a serious illness or major trauma, whereas personnel can easily be evacuated from Biosphere 2 if necessary. Treatment facilities can be somewhat less inclusive, since distance would not compel the undertaking of heroic measures or highly complicated surgical procedures on site, and with personnel not fully trained for these procedures. The similarities are given between medical requirements of Biosphere 2 and the complex closed ecological systems of biospheres in space or on Mars. The major problems common to all these would seem to be trauma, infection, and toxicity. It is planned that minor and moderate degrees of trauma, including debridement and suturing of wounds, x ray study of fractures, will be done within Biosphere 2. Bacteriologic and fungal infections, and possibly allergies to pollen or spores are expected to be the commonest medical problem within Biosphere 2.

  13. Feedbacks between climate change and biosphere integrity

    Science.gov (United States)

    Lade, Steven; Anderies, J. Marty; Donges, Jonathan; Steffen, Will; Rockström, Johan; Richardson, Katherine; Cornell, Sarah; Norberg, Jon; Fetzer, Ingo

    2017-04-01

    The terrestrial and marine biospheres sink substantial fractions of human fossil fuel emissions. How the biosphere's capacity to sink carbon depends on biodiversity and other measures of biosphere integrity is however poorly understood. Here, we (1): review assumptions from literature regarding the relationships between the carbon cycle and the terrestrial and marine biospheres; and (2) explore the consequences of these different assumptions for climate feedbacks using the stylised carbon cycle model PB-INT. We find that: terrestrial biodiversity loss could significantly dampen climate-carbon cycle feedbacks; direct biodiversity effects, if they exist, could rival temperature increases from low-emission trajectories; and the response of the marine biosphere is critical for longer term climate change. Simple, low-dimensional climate models such as PB-INT can help assess the importance of still unknown or controversial earth system processes such as biodiversity loss for climate feedbacks. This study constitutes the first detailed study of the interactions between climate change and biosphere integrity, two of the 'planetary boundaries'.

  14. Atmospheric Radiation Measurement Madden-Julian Oscillation Investigation Experiment Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Long, Chuck [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States). Earth System Research Lab.

    2016-07-01

    Every 30–90 days during the Northern Hemisphere winter, the equatorial tropical atmosphere experiences pulses of extraordinarily strong deep convection and rainfall. This phenomenon is referred to as the Madden–Julian Oscillation, or MJO, named after the scientists who identified this cycle. The MJO significantly affects weather and rainfall patterns around the world (Zhang 2013). To improve predictions of the MJO—especially about how it forms and evolves throughout its lifecycle—an international group of scientists collected an unprecedented set of observations from the Indian Ocean and western Pacific region from October 2011 through March 2012 through several coordinated efforts. The coordinated field campaigns captured six distinct MJO cycles in the Indian Ocean. The rich set of observations capturing several MJO events from these efforts will be used for many years to study the physics of the MJO. Here we highlight early research results using data from the Atmospheric Radiation Measurement (ARM) Madden-Julian Oscillation Investigation Experiment (AMIE), sponsored by the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility.

  15. Nominal Performance Biosphere Dose Conversion Factor Analysis

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Wasiolek

    2005-04-28

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the groundwater exposure scenario, and the development of conversion factors for assessing compliance with the groundwater protection standards. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop BDCFs, which are input parameters for the TSPA-LA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the ''Biosphere Model Report'' in Figure 1-1, contain detailed description of the model input parameters, their development, and the relationship between the parameters and specific features events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the groundwater exposure scenario. This analysis receives direct input from the outputs of the ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) and the five analyses that develop parameter values for the biosphere model (BSC 2005 [DIRS 172827]; BSC 2004 [DIRS 169672]; BSC 2004 [DIRS 169673]; BSC 2004 [DIRS 169458]; BSC 2004 [DIRS 169459]). The results of this report are further analyzed in the ''Biosphere Dose Conversion Factor Importance and Sensitivity Analysis

  16. Nominal Performance Biosphere Dose Conversion Factor Analysis

    International Nuclear Information System (INIS)

    M.A. Wasiolek

    2005-01-01

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the groundwater exposure scenario, and the development of conversion factors for assessing compliance with the groundwater protection standards. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop BDCFs, which are input parameters for the TSPA-LA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the ''Biosphere Model Report'' in Figure 1-1, contain detailed description of the model input parameters, their development, and the relationship between the parameters and specific features events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the groundwater exposure scenario. This analysis receives direct input from the outputs of the ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) and the five analyses that develop parameter values for the biosphere model (BSC 2005 [DIRS 172827]; BSC 2004 [DIRS 169672]; BSC 2004 [DIRS 169673]; BSC 2004 [DIRS 169458]; BSC 2004 [DIRS 169459]). The results of this report are further analyzed in the ''Biosphere Dose Conversion Factor Importance and Sensitivity Analysis'' (Figure 1-1). The objectives of this analysis are to develop BDCFs for the

  17. The relationship between sea surface temperature anomalies and atmospheric circulation in general circulation model experiments

    International Nuclear Information System (INIS)

    Kharin, V.V.

    1994-01-01

    Several multi-year integrations of the Hamburg version of the ECMWF/T21 general circulation model driven by the sea surface temperature (SST) observed in the period 1970-1988 were examined to study the extratropical response of the atmospheric circulation to SST anomalies in the Northern Hemisphere in winter. In the first 19-years run SST anomalies were prescribed globally (GAGO run), and in two others SST variability was limited to extratropical regions (MOGA run) and to tropics (TOGA run), respectively. A canonical correlation analysis was applied to the monthly means to find the best correlated patterns of SST anomalies in the Atlantic and Pacific Oceans and the Northern Hemisphere atmospheric flow. Contrary to expectation, the extratropical response in the GAGO run is not equal to the linear combination of the responses in the MOGA and TOGA runs. In the GAGO integration with globally prescribed SST the best correlated atmospheric pattern is global and is characterized by dipole structures of the same polarity in the North Atlantic and the North Pacific sectors. In the MOGA and TOGA experiments the atmospheric response is more local with main centers in the North Atlantic and North Pacific, respectively. The atmospheric modes found by the CCA were compared with the normal modes of the barotropic vorticity equation linearized about the 500 mb winter climate of the control integration driven by the climatological SST. The normal modes with smallest eigenvalues are similar to the canonical patterns of 500 mb geopotential height. The corresponding eigenvectors of the adjoint operator, which represent an external forcing optimal for exciting normal modes, have a longitudinal structure with maxima in regions characterized by enhanced high frequency baroclinic activity over both oceans. It was suggested that variability of storm tracks could play an important role in variability of the barotropic normal modes. (orig.)

  18. Nominal Performance Biosphere Dose Conversion Factor Analysis

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Wasiolek

    2003-07-25

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the groundwater exposure scenario, and the development of conversion factors for assessing compliance with the groundwater protection standard. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop biosphere BDCFs, which are input parameters for the TSPA model. The ''Biosphere Model Report'' (BSC 2003 [DIRS 164186]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports (BSC 2003 [DIRS 160964]; BSC 2003 [DIRS 160965]; BSC 2003 [DIRS 160976]; BSC 2003 [DIRS 161239]; BSC 2003 [DIRS 161241]) contain detailed description of the model input parameters. This report describes biosphere model calculations and their output, the BDCFs, for the groundwater exposure scenario. The objectives of this analysis are to develop BDCFs and conversion factors for the TSPA. The BDCFs will be used in performance assessment for calculating annual doses for a given concentration of radionuclides in groundwater. The conversion factors will be used for calculating gross alpha particle activity in groundwater and the annual dose from beta- and photon-emitting radionuclides.

  19. Biosphere models for deep waste disposal

    International Nuclear Information System (INIS)

    Olyslaegers, G.

    2005-01-01

    The management of the radioactive waste requires the implementation of disposal systems that ensure an adequate degree of isolation of the radioactivity from man and the environment. Because there are still a lot of uncertainties and a lack of consensus with respect to the importance of the exposure pathways of man, a project BioMoSA (Biosphere Models for Safety Assessment) was elaborated in the Fifth Framework Programme of EURATOM). It aimed at improving the scientific basis for the application of biosphere models in the framework of long-term safety studies for radioactive waste disposal facilities. The section radiological evaluations of SCK-CEN took part in the BioMoSA project. n the BioMoSA project, the reference biosphere methodology developed in the IAEA programme BIOMASS (Biosphere Modelling and Assessment methods) is implemented). We used this methodology in order to increase the transparency of biosphere modelling; t evaluate the importance of the different radionuclides and pathways, and to enhance public confidence in the assessment of potential radiological dose to population groups far into the future. Five European locations, covering a wide range of environmental and agricultural conditions are described and characterised. Each participant developed a specific biosphere model for their site. In order to achieve a consistency in this model derivation, a staged approach has been followed. Successively the biosphere is described and conceptual, mathematical and numerical models are constructed. For each of the locations site-specific parameters are selected. In the project, we had the specific task to make a comparison between the model results generated by the different participants. Results from these studies are presented and discussed

  20. Pressure Contact Sounding Data for NASA's Atmospheric Variability Experiment (AVE 3)

    Science.gov (United States)

    Fuelberg, H. E.; Hill, C. K.; Turner, R. E.; Long, K. E.

    1975-01-01

    The basic rawinsonde data are described at each pressure contact from the surface to sounding termination for the 41 stations participating in the AVE III measurement program that began at 0000 GMT on February 6 and ended at 1200 GMT on February 7, 1975. Soundings were taken at 3-hour intervals during a large period of the experiment from most stations within the United States east of about 105 degrees west longitude. Methods of data processing, change in reduction scheme since the AVE II pilot experiment, and data accuracy are briefly discussed. An example of contact data is presented, and microfiche cards of all the contact data are included in the appendix. The AVE III project was conducted to better understand and establish the extent of applications for meteorological satellite sensor data through correlative ground truth experiments and to provide basic experimental data for use in studies of atmospheric scales of-motion interrelationships.

  1. Pressure contact sounding data for NASA's Atmospheric Variability Experiment (AVE 2). [rawinsondes

    Science.gov (United States)

    Fuelberg, H. E.; Turner, R. E.

    1975-01-01

    The basic rawinsonde data are described at each pressure contact from the surface to sounding termination for the 54 stations participating in the AVE 2 pilot experiment. Soundings were taken at three-hour intervals from stations within the United States east of about 105 degrees west longitude. Methods of data reduction and estimates of data accuracy are discussed. Examples of the data records produced are shown. The AVE 2 pilot experiment was conducted as part of NASA's program to better understand and establish the extent of applications for meteorological satellite sensor data through correlative ground truth experiments and to provide basic experimental data for use in studies of atmospheric scales-of-motion interrelationships.

  2. Focal and Ambient Processing of Built Environments: Intellectual and Atmospheric Experiences of Architecture

    Science.gov (United States)

    Rooney, Kevin K.; Condia, Robert J.; Loschky, Lester C.

    2017-01-01

    Neuroscience has well established that human vision divides into the central and peripheral fields of view. Central vision extends from the point of gaze (where we are looking) out to about 5° of visual angle (the width of one’s fist at arm’s length), while peripheral vision is the vast remainder of the visual field. These visual fields project to the parvo and magno ganglion cells, which process distinctly different types of information from the world around us and project that information to the ventral and dorsal visual streams, respectively. Building on the dorsal/ventral stream dichotomy, we can further distinguish between focal processing of central vision, and ambient processing of peripheral vision. Thus, our visual processing of and attention to objects and scenes depends on how and where these stimuli fall on the retina. The built environment is no exception to these dependencies, specifically in terms of how focal object perception and ambient spatial perception create different types of experiences we have with built environments. We argue that these foundational mechanisms of the eye and the visual stream are limiting parameters of architectural experience. We hypothesize that people experience architecture in two basic ways based on these visual limitations; by intellectually assessing architecture consciously through focal object processing and assessing architecture in terms of atmosphere through pre-conscious ambient spatial processing. Furthermore, these separate ways of processing architectural stimuli operate in parallel throughout the visual perceptual system. Thus, a more comprehensive understanding of architecture must take into account that built environments are stimuli that are treated differently by focal and ambient vision, which enable intellectual analysis of architectural experience versus the experience of architectural atmosphere, respectively. We offer this theoretical model to help advance a more precise understanding of the

  3. High Temperature, Controlled-Atmosphere Aerodynamic Levitation Experiments with Applications in Planetary Science

    Science.gov (United States)

    Macris, C. A.; Badro, J.; Eiler, J. M.; Stolper, E. M.

    2016-12-01

    The aerodynamic levitation laser apparatus is an instrument in which spherical samples are freely floated on top of a stream of gas while being heated with a CO2laser to temperatures up to about 3500 °C. Laser heated samples, ranging in size from 0.5 to 3.5 mm diameter, can be levitated in a variety of chemically active or inert atmospheres in a gas-mixing chamber (e.g., Hennet et al. 2006; Pack et al. 2010). This allows for containerless, controlled-atmosphere, high temperature experiments with potential for applications in earth and planetary science. A relatively new technique, aerodynamic levitation has been used mostly for studies of the physical properties of liquids at high temperatures (Kohara et al. 2011), crystallization behavior of silicates and oxides (Arai et al. 2004), and to prepare glasses from compositions known to crystallize upon quenching (Tangeman et al. 2001). More recently, however, aerodynamic levitation with laser heating has been used as an experimental technique to simulate planetary processes. Pack et al. (2010) used levitation and melting experiments to simulate chondrule formation by using Ar-H2 as the flow gas, thus imposing a reducing atmosphere, resulting in reduction of FeO, Fe2O3, and NiO to metal alloys. Macris et al. (2015) used laser heating with aerodynamic levitation to reproduce the textures and diffusion profiles of major and minor elements observed in impact ejecta from the Australasian strewn field, by melting a powdered natural tektite mixed with 60-100 μm quartz grains on a flow of pure Ar gas. These experiments resulted in quantitative modeling of Si and Al diffusion, which allowed for interpretations regarding the thermal histories of natural tektites and their interactions with the surrounding impact vapor plume. Future experiments will employ gas mixing (CO, CO2, H2, O, Ar) in a controlled atmosphere levitation chamber to explore the range of fO2applicable to melt-forming impacts on other rocky planetary bodies

  4. Locating the Source of Atmospheric Contamination Based on Data From the Kori Field Tracer Experiment

    Directory of Open Access Journals (Sweden)

    Piotr Kopka

    2015-01-01

    Full Text Available Accidental releases of hazardous material into the atmosphere pose high risks to human health and the environment. Thus it would be valuable to develop an emergency reaction system which can recognize the probable location of the source based only on concentrations of the released substance as reported by a network of sensors. We apply a methodology combining Bayesian inference with Sequential Monte Carlo (SMC methods to the problem of locating the source of an atmospheric contaminant. The input data for this algorithm are the concentrations of a given substance gathered continuously in time. We employ this algorithm to locating a contamination source using data from a field tracer experiment covering the Kori nuclear site and conducted in May 2001. We use the second-order Closure Integrated PUFF Model (SCIPUFF of atmospheric dispersion as the forward model to predict concentrations at the sensors' locations. We demonstrate that the source of continuous contamination may be successfully located even in the very complicated, hilly terrain surrounding the Kori nuclear site. (original abstract

  5. From Clusters to Atmospheric Aerosol Particles: Nucleation in the CLOUD Experiment at CERN

    Science.gov (United States)

    Baltensperger, Urs

    2015-03-01

    Globally, a significant source of cloud condensation nuclei for cloud formation is thought to originate from new particle formation (aerosol nucleation). Despite extensive research, many questions remain about the dominant nucleation mechanisms. Specifically, a quantitative understanding of the dependence of the nucleation rate on the concentration of the nucleating substances such as gaseous sulfuric acid, ammonia, water vapor and others has not been reached. This is of relevance for climate as the atmospheric concentrations of sulfuric acid, ammonia and other nucleating agents are strongly influenced by anthropogenic emissions. By providing extremely well controlled and essentially contaminant free conditions in the CLOUD chamber, we were able to show that indeed sulfuric acid is an important component for such new particle formation, however, for the typical temperatures encountered in the planetary boundary layer the concentrations of sulfuric acid are not high enough to explain the atmospheric observations. Moreover, the effect of ammonia, amines and oxidized organic molecules on the nucleation rate of sulfuric acid has been investigated in CLOUD so far. Recent developments in instrument technology such as the Atmospheric Pressure interface-Time Of Flight (APi-TOF) mass spectrometer have allowed us to investigate the chemical composition of charged as well as neutral clusters during such nucleation experiments. The CLOUD (Cosmics Leaving OUtdoor Droplets) collaboration consists of 20 institutions from Europe and the United States and is funded by national funding institutions as well as the EU training network CLOUD-TRAIN (http://www.cloud-train.eu/).

  6. Work in support of biosphere assessments for solid radioactive waste disposal. 2. biosphere FEP list and biosphere modelling

    International Nuclear Information System (INIS)

    Egan, M.J.; Maul, P.R.; Watkins, B.M.; Venter, A.

    2001-10-01

    In order to assist SSI in its reappraisal of the SFR safety case, QuantiSci has been appointed to develop a systematic framework within which to conduct the review of SKB's post-closure performance assessment (PA). The biosphere FEP list presented here was developed for use as reference material in conducting the review. SSI wishes to develop an independent PA capability for a time-dependent biosphere in preparation for the examination of the revised SFR safety case. This report documents the model development that has been undertaken by QuantiSci using the Amber computer code

  7. Work in support of biosphere assessments for solid radioactive waste disposal. 2. biosphere FEP list and biosphere modelling

    Energy Technology Data Exchange (ETDEWEB)

    Egan, M.J.; Maul, P.R.; Watkins, B.M.; Venter, A. [QuantiSci Ltd., Henley-on-Thames (United Kingdom)

    2001-10-01

    In order to assist SSI in its reappraisal of the SFR safety case, QuantiSci has been appointed to develop a systematic framework within which to conduct the review of SKB's post-closure performance assessment (PA). The biosphere FEP list presented here was developed for use as reference material in conducting the review. SSI wishes to develop an independent PA capability for a time-dependent biosphere in preparation for the examination of the revised SFR safety case. This report documents the model development that has been undertaken by QuantiSci using the Amber computer code.

  8. Experiments with the Mesoscale Atmospheric Simulation System (MASS) using the synthetic relative humidity

    Science.gov (United States)

    Chang, Chia-Bo

    1994-01-01

    This study is intended to examine the impact of the synthetic relative humidity on the model simulation of mesoscale convective storm environment. The synthetic relative humidity is derived from the National Weather Services surface observations, and non-conventional sources including aircraft, radar, and satellite observations. The latter sources provide the mesoscale data of very high spatial and temporal resolution. The synthetic humidity data is used to complement the National Weather Services rawinsonde observations. It is believed that a realistic representation of initial moisture field in a mesoscale model is critical for the model simulation of thunderstorm development, and the formation of non-convective clouds as well as their effects on the surface energy budget. The impact will be investigated based on a real-data case study using the mesoscale atmospheric simulation system developed by Mesoscale Environmental Simulations Operations, Inc. The mesoscale atmospheric simulation system consists of objective analysis and initialization codes, and the coarse-mesh and fine-mesh dynamic prediction models. Both models are a three dimensional, primitive equation model containing the essential moist physics for simulating and forecasting mesoscale convective processes in the atmosphere. The modeling system is currently implemented at the Applied Meteorology Unit, Kennedy Space Center. Two procedures involving the synthetic relative humidity to define the model initial moisture fields are considered. It is proposed to perform several short-range (approximately 6 hours) comparative coarse-mesh simulation experiments with and without the synthetic data. They are aimed at revealing the model sensitivities should allow us both to refine the specification of the observational requirements, and to develop more accurate and efficient objective analysis schemes. The goal is to advance the MASS (Mesoscal Atmospheric Simulation System) modeling expertise so that the model

  9. Formation of Amino Acids and Nucleotide Bases in a Titan Atmosphere Simulation Experiment

    Science.gov (United States)

    Yelle, R.V.; Buch, A.; Carrasco, N.; Cernogora, G.; Dutuit, O.; Quirico, E.; Sciamma-O'Brien, E.; Smith, M.A.; Somogyi, Á.; Szopa, C.; Thissen, R.; Vuitton, V.

    2012-01-01

    Abstract The discovery of large (>100 u) molecules in Titan's upper atmosphere has heightened astrobiological interest in this unique satellite. In particular, complex organic aerosols produced in atmospheres containing C, N, O, and H, like that of Titan, could be a source of prebiotic molecules. In this work, aerosols produced in a Titan atmosphere simulation experiment with enhanced CO (N2/CH4/CO gas mixtures of 96.2%/2.0%/1.8% and 93.2%/5.0%/1.8%) were found to contain 18 molecules with molecular formulae that correspond to biological amino acids and nucleotide bases. Very high-resolution mass spectrometry of isotopically labeled samples confirmed that C4H5N3O, C4H4N2O2, C5H6N2O2, C5H5N5, and C6H9N3O2 are produced by chemistry in the simulation chamber. Gas chromatography–mass spectrometry (GC-MS) analyses of the non-isotopic samples confirmed the presence of cytosine (C4H5N3O), uracil (C5H4N2O2), thymine (C5H6N2O2), guanine (C5H5N5O), glycine (C2H5NO2), and alanine (C3H7NO2). Adenine (C5H5N5) was detected by GC-MS in isotopically labeled samples. The remaining prebiotic molecules were detected in unlabeled samples only and may have been affected by contamination in the chamber. These results demonstrate that prebiotic molecules can be formed by the high-energy chemistry similar to that which occurs in planetary upper atmospheres and therefore identifies a new source of prebiotic material, potentially increasing the range of planets where life could begin. Key Words: Astrochemistry—Planetary atmospheres—Titan—Astrobiology. Astrobiology 12, 809–817. PMID:22917035

  10. Formation of amino acids and nucleotide bases in a Titan atmosphere simulation experiment.

    Science.gov (United States)

    Hörst, S M; Yelle, R V; Buch, A; Carrasco, N; Cernogora, G; Dutuit, O; Quirico, E; Sciamma-O'Brien, E; Smith, M A; Somogyi, A; Szopa, C; Thissen, R; Vuitton, V

    2012-09-01

    The discovery of large (>100 u) molecules in Titan's upper atmosphere has heightened astrobiological interest in this unique satellite. In particular, complex organic aerosols produced in atmospheres containing C, N, O, and H, like that of Titan, could be a source of prebiotic molecules. In this work, aerosols produced in a Titan atmosphere simulation experiment with enhanced CO (N(2)/CH(4)/CO gas mixtures of 96.2%/2.0%/1.8% and 93.2%/5.0%/1.8%) were found to contain 18 molecules with molecular formulae that correspond to biological amino acids and nucleotide bases. Very high-resolution mass spectrometry of isotopically labeled samples confirmed that C(4)H(5)N(3)O, C(4)H(4)N(2)O(2), C(5)H(6)N(2)O(2), C(5)H(5)N(5), and C(6)H(9)N(3)O(2) are produced by chemistry in the simulation chamber. Gas chromatography-mass spectrometry (GC-MS) analyses of the non-isotopic samples confirmed the presence of cytosine (C(4)H(5)N(3)O), uracil (C(5)H(4)N(2)O(2)), thymine (C(5)H(6)N(2)O(2)), guanine (C(5)H(5)N(5)O), glycine (C(2)H(5)NO(2)), and alanine (C(3)H(7)NO(2)). Adenine (C(5)H(5)N(5)) was detected by GC-MS in isotopically labeled samples. The remaining prebiotic molecules were detected in unlabeled samples only and may have been affected by contamination in the chamber. These results demonstrate that prebiotic molecules can be formed by the high-energy chemistry similar to that which occurs in planetary upper atmospheres and therefore identifies a new source of prebiotic material, potentially increasing the range of planets where life could begin.

  11. Components, processes and interactions in the biosphere

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-15

    This report describes the processes and interactions between components in the biosphere that may be important in a safety assessment for radioactive waste disposal. The processes are general, i.e. they can be used in all safety analyses for underground repositories and are not specific to a particular method or location. Processes related to the geosphere and specific repository types (e.g. the KBS-3 method) can be found in /Skagius et al. 1995, SKB 2001, 2006, 2010a/. This report describes a biosphere interaction matrix that has been used in support of SR-Site and that can be used in future safety assessments. The work of defining and characterising processes in the biosphere is ongoing and many persons from different disciplines have been involved in the identification and characterisation of processes

  12. Components, processes and interactions in the biosphere

    International Nuclear Information System (INIS)

    2010-12-01

    This report describes the processes and interactions between components in the biosphere that may be important in a safety assessment for radioactive waste disposal. The processes are general, i.e. they can be used in all safety analyses for underground repositories and are not specific to a particular method or location. Processes related to the geosphere and specific repository types (e.g. the KBS-3 method) can be found in /Skagius et al. 1995, SKB 2001, 2006, 2010a/. This report describes a biosphere interaction matrix that has been used in support of SR-Site and that can be used in future safety assessments. The work of defining and characterising processes in the biosphere is ongoing and many persons from different disciplines have been involved in the identification and characterisation of processes

  13. Atmospheric chemistry and physics in the atmosphere of a developed megacity (London: an overview of the REPARTEE experiment and its conclusions

    Directory of Open Access Journals (Sweden)

    R. M. Harrison

    2012-03-01

    Full Text Available The REgents PARk and Tower Environmental Experiment (REPARTEE comprised two campaigns in London in October 2006 and October/November 2007. The experiment design involved measurements at a heavily trafficked roadside site, two urban background sites and an elevated site at 160–190 m above ground on the BT Tower, supplemented in the second campaign by Doppler lidar measurements of atmospheric vertical structure. A wide range of measurements of airborne particle physical metrics and chemical composition were made as well as measurements of a considerable range of gas phase species and the fluxes of both particulate and gas phase substances. Significant findings include (a demonstration of the evaporation of traffic-generated nanoparticles during both horizontal and vertical atmospheric transport; (b generation of a large base of information on the fluxes of nanoparticles, accumulation mode particles and specific chemical components of the aerosol and a range of gas phase species, as well as the elucidation of key processes and comparison with emissions inventories; (c quantification of vertical gradients in selected aerosol and trace gas species which has demonstrated the important role of regional transport in influencing concentrations of sulphate, nitrate and secondary organic compounds within the atmosphere of London; (d generation of new data on the atmospheric structure and turbulence above London, including the estimation of mixed layer depths; (e provision of new data on trace gas dispersion in the urban atmosphere through the release of purposeful tracers; (f the determination of spatial differences in aerosol particle size distributions and their interpretation in terms of sources and physico-chemical transformations; (g studies of the nocturnal oxidation of nitrogen oxides and of the diurnal behaviour of nitrate aerosol in the urban atmosphere, and (h new information on the chemical composition and source apportionment of particulate

  14. Interactions between spacecraft motions and the atmospheric cloud physics laboratory experiments

    Science.gov (United States)

    Anderson, B. J.

    1981-01-01

    In evaluating the effects of spacecraft motions on atmospheric cloud physics laboratory (ACPL) experimentation, the motions of concern are those which will result in the movement of the fluid or cloud particles within the experiment chambers. Of the various vehicle motions and residual forces which can and will occur, three types appear most likely to damage the experimental results: non-steady rotations through a large angle, long-duration accelerations in a constant direction, and vibrations. During the ACPL ice crystal growth experiments, the crystals are suspended near the end of a long fiber (20 cm long by 200 micron diameter) of glass or similar material. Small vibrations of the supported end of the fiber could cause extensive motions of the ice crystal, if care is not taken to avoid this problem.

  15. The effect of the atmospheric condition on the extensive air shower analysis at the Telescope Array experiment

    International Nuclear Information System (INIS)

    Kobayashi, Y.; Tsunesada, Y.; Tokuno, H.; Kakimoto, F.; Tomida, T.

    2011-01-01

    The accuracies in determination of air shower parameters such as longitudinal profiles or primary energies with the fluorescence detection technique are strongly dependent on atmospheric conditions of the molecular and aerosol components. Moreover, air fluorescence photon yield depends on the atmospheric density, and the transparency of the air for fluorescence photons depends on the atmospheric conditions from EAS to FDs. In this paper, we describe the atmospheric monitoring system in the Telescope Array (TA experiment), and the impact of the atmospheric conditions in air shower reconstructions. The systematic uncertainties of the determination of the primary cosmic ray energies and of the measurement of depth of maximum development (X max ) of EASs due to atmospheric variance are evaluated by Monte Carlo simulation.

  16. Asian Tracer Experiment and Atmospheric Modeling (TEAM) Project: Draft Field Work Plan for the Asian Long-Range Tracer Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Allwine, K Jerry; Flaherty, Julia E.

    2007-08-01

    This report provides an experimental plan for a proposed Asian long-range tracer study as part of the international Tracer Experiment and Atmospheric Modeling (TEAM) Project. The TEAM partners are China, Japan, South Korea and the United States. Optimal times of year to conduct the study, meteorological measurements needed, proposed tracer release locations, proposed tracer sampling locations and the proposed durations of tracer releases and subsequent sampling are given. Also given are the activities necessary to prepare for the study and the schedule for completing the preparation activities leading to conducting the actual field operations. This report is intended to provide the TEAM members with the information necessary for planning and conducting the Asian long-range tracer study. The experimental plan is proposed, at this time, to describe the efforts necessary to conduct the Asian long-range tracer study, and the plan will undoubtedly be revised and refined as the planning goes forward over the next year.

  17. User's guide to the biosphere code ECOS

    International Nuclear Information System (INIS)

    Kane, P.; Thorne, M.C.

    1984-10-01

    This report constitutes the user's guide to the biosphere model ECOS and provides a detailed description of the processes modelled and mathematical formulations used. The FORTRAN code ECOS is an equilibrium-type compartmental biosphere code. ECOS was designed with the objective of producing a general but comprehensive code for use in the assessment of the radiological impact of unspecified geological repositories for radioactive waste. ECOS transforms the rate of release of activity from the geosphere to the rate of accumulation of weighted committed effective dose equivalent (dose). Both maximum individual dose (critical group dose) and collective dose rates may be computed. (author)

  18. Ecology and exploration of the rare biosphere.

    Science.gov (United States)

    Lynch, Michael D J; Neufeld, Josh D

    2015-04-01

    The profound influence of microorganisms on human life and global biogeochemical cycles underlines the value of studying the biogeography of microorganisms, exploring microbial genomes and expanding our understanding of most microbial species on Earth: that is, those present at low relative abundance. The detection and subsequent analysis of low-abundance microbial populations—the 'rare biosphere'—have demonstrated the persistence, population dynamics, dispersion and predation of these microbial species. We discuss the ecology of rare microbial populations, and highlight molecular and computational methods for targeting taxonomic 'blind spots' within the rare biosphere of complex microbial communities.

  19. Ciliates and the rare biosphere: a review.

    Science.gov (United States)

    Dunthorn, Micah; Stoeck, Thorsten; Clamp, John; Warren, Alan; Mahé, Frédéric

    2014-01-01

    Here we provide a brief review of the rare biosphere from the perspective of ciliates and other microbial eukaryotes. We trace research on rarity from its lack of much in-depth focus in morphological and Sanger sequencing projects, to its central importance in analyses using high throughput sequencing strategies. The problem that the rare biosphere is potentially comprised of mostly errors is then discussed in the light of asking community-comparative, novel-diversity, and ecosystem-functioning questions. © 2014 The Author(s) Journal of Eukaryotic Microbiology © 2014 International Society of Protistologists.

  20. Nominal Performance Biosphere Dose Conversion Factor Analysis

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek

    2004-09-08

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the groundwater exposure scenario, and the development of conversion factors for assessing compliance with the groundwater protection standard. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop biosphere BDCFs, which are input parameters for the TSPA-LA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the ''Biosphere Model Report'' in Figure 1-1, contain detailed description of the model input parameters, their development, and the relationship between the parameters and specific features events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the groundwater exposure scenario. The objectives of this analysis are to develop BDCFs for the groundwater exposure scenario for the three climate states considered in the TSPA-LA as well as conversion factors for evaluating compliance with the groundwater protection standard. The BDCFs will be used in performance assessment for calculating all-pathway annual doses for a given concentration of radionuclides in groundwater. The conversion factors will be used for calculating gross alpha particle

  1. Integrated Biosphere Simulator Model (IBIS), Version 2.5

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The Integrated Biosphere Simulator (or IBIS) is designed to be a comprehensive model of the terrestrial biosphere. Tthe model represents a wide range of...

  2. Integrated Biosphere Simulator Model (IBIS), Version 2.5

    Data.gov (United States)

    National Aeronautics and Space Administration — The Integrated Biosphere Simulator (or IBIS) is designed to be a comprehensive model of the terrestrial biosphere. Tthe model represents a wide range of processes,...

  3. Marine biosphere reserves - Need of the 21st century

    Digital Repository Service at National Institute of Oceanography (India)

    Dhargalkar, V.K.; Untawale, A.G.

    remains, needs to be conserved and managed for posterity. Biosphere Reserve conserves and maintains genetic diversity of plant and animal species and helps to manage the natural resources on a sustainable basis. So far five Marine Biosphere Reserves have...

  4. Biosphere and atmosphere interactions in Sierra Nevada forests

    Science.gov (United States)

    Allen H. Goldstein

    2004-01-01

    In the Sierra Nevada, studies are being conducted to assess the impacts of both anthropogenic and biogenic hydrocarbon emissions on regional tropospheric ozone and fine aerosol production. Impacts of ozone deposition and management practices on ecosystem health are also being studied. Human-induced changes in regional air quality have consequences for Sierra Nevada...

  5. Ground-based acoustic parametric generator impact on the atmosphere and ionosphere in an active experiment

    Directory of Open Access Journals (Sweden)

    Y. G. Rapoport

    2017-01-01

    Full Text Available We develop theoretical basics of active experiments with two beams of acoustic waves, radiated by a ground-based sound generator. These beams are transformed into atmospheric acoustic gravity waves (AGWs, which have parameters that enable them to penetrate to the altitudes of the ionospheric E and F regions where they influence the electron concentration of the ionosphere. Acoustic waves are generated by the ground-based parametric sound generator (PSG at the two close frequencies. The main idea of the experiment is to design the output parameters of the PSG to build a cascade scheme of nonlinear wave frequency downshift transformations to provide the necessary conditions for their vertical propagation and to enable penetration to ionospheric altitudes. The PSG generates sound waves (SWs with frequencies f1 = 600 and f2 = 625 Hz and large amplitudes (100–420 m s−1. Each of these waves is modulated with the frequency of 0.016 Hz. The novelty of the proposed analytical–numerical model is due to simultaneous accounting for nonlinearity, diffraction, losses, and dispersion and inclusion of the two-stage transformation (1 of the initial acoustic waves to the acoustic wave with the difference frequency Δf = f2 − f1 in the altitude ranges 0–0.1 km, in the strongly nonlinear regime, and (2 of the acoustic wave with the difference frequency to atmospheric acoustic gravity waves with the modulational frequency in the altitude ranges 0.1–20 km, which then reach the altitudes of the ionospheric E and F regions, in a practically linear regime. AGWs, nonlinearly transformed from the sound waves, launched by the two-frequency ground-based sound generator can increase the transparency of the ionosphere for the electromagnetic waves in HF (MHz and VLF (kHz ranges. The developed theoretical model can be used for interpreting an active experiment that includes the PSG impact on the atmosphere–ionosphere system

  6. Experience with novel technologies for direct measurement of atmospheric NO2

    Science.gov (United States)

    Hueglin, Christoph; Hundt, Morten; Mueller, Michael; Schwarzenbach, Beat; Tuzson, Bela; Emmenegger, Lukas

    2017-04-01

    Nitrogen dioxide (NO2) is an air pollutant that has a large impact on human health and ecosystems, and it plays a key role in the formation of ozone and secondary particulate matter. Consequently, legal limit values for NO2 are set in the EU and elsewhere, and atmospheric observation networks typically include NO2 in their measurement programmes. Atmospheric NO2 is principally measured by chemiluminescence detection, an indirect measurement technique that requires conversion of NO2 into nitrogen monoxide (NO) and finally calculation of NO2 from the difference between total nitrogen oxides (NOx) and NO. Consequently, NO2 measurements with the chemiluminescence method have a relatively high measurement uncertainty and can be biased depending on the selectivity of the applied NO2 conversion method. In the past years, technologies for direct and selective measurement of NO2 have become available, e.g. cavity attenuated phase shift spectroscopy (CAPS), cavity enhanced laser absorption spectroscopy and quantum cascade laser absorption spectrometry (QCLAS). These technologies offer clear advantages over the indirect chemiluminescence method. We tested the above mentioned direct measurement techniques for NO2 over extended time periods at atmospheric measurement stations and report on our experience including comparisons with co-located chemiluminescence instruments equipped with molybdenum as well as photolytic NO2 converters. A still open issue related to the direct measurement of NO2 is instrument calibration. Accurate and traceable reference standards and NO2 calibration gases are needed. We present results from the application of different calibration strategies based on the use of static NO2 calibration gases as well as dynamic NO2 calibration gases produced by permeation and by gas-phase titration (GPT).

  7. Atmospheric PCDD/F measurement in Taiwan and Southeast Asia during Dongsha Experiment

    Science.gov (United States)

    Thuan, Ngo Thi; Chi, Kai Hsien; Wang, Sheng-Hsiang; Chang, Moo Been; Lin, Neng-Huei; Sheu, Guey-Rong; Peng, Chi-Ming

    2013-10-01

    The international campaign of Dongsha Experiment was conducted in the northern Southeast Asian region during March-May 2010. To address the effects of long-range transport on the persistent organic pollutants and further understand the PCDD/F contamination in Vietnam, atmospheric PCDD/Fs were evaluated at a coastal station (Pingtung County, Sites A) in southern Taiwan, remote island station in South China Sea (Dongsha Island, Site B) and coastal station (Da Nang City, Site C) in central Vietnam during different sampling periods in this study. The measurements indicated that the atmospheric PCDD/F concentrations were 1.01-27.4 fg I-TEQ/m3 (n = 22), 1.52-10.8 fg I-TEQ/m3 (n = 17) and 23.4-146 fg I-TEQ/m3 (n = 16) at Sites A, B and C, respectively, during different periods in 2010. In March 2010, an Asian dust storm (ADS) that originated in Gobi deserts eventually reached populated areas of East Asia, including Taiwan and the island in northern South China Sea. During the ADS episode, measurements made in southern Taiwan and South China Sea on 16 and 21 March 2010 indicate that the atmospheric PCDD/F concentration increased 6.5 and 6.9 times at Sites A and B, respectively. Furthermore, the significantly higher PCDD/F concentrations and contents in suspended particles (134-546 pg I-TEQ/g-TSP) were measured at Site C in the central Vietnam. In addition, the distribution of PCDD/F congeners measured in Central Vietnam was quite different from those measured at other stations with high PCDD distribution (>80%) especially in OCDD (>70%). During the Vietnam conflict, United States (US) forces had sprayed a greater volume of defoliant with higher PCDD/F contents than originally estimated. We consider that the high fraction of PCDDs observed in Vietnam probably originated as anthropogenic emission from specific source in Vietnam.

  8. The World Campaign for the Biosphere.

    Science.gov (United States)

    Barman, Charles R.

    1984-01-01

    Lists and discusses goals of The World Campaign for the Biosphere and strategies designed to achieve these goals. Also lists eight suggestions for science teachers to help incorporate the goals into school curricula and programs. These include organizing assemblies which present information about environmental problems and presenting environmental…

  9. Dose assessment considering evolution of the biosphere

    International Nuclear Information System (INIS)

    Karlsson, Sara; Bergstroem, Ulla

    2002-01-01

    Swedish Nuclear Fuel and Waste Management AB (SKB) is presently updating the safety assessment for SFR (Final repository for radioactive operational waste) in Sweden. The bio-spheric part of the analysis is performed by Studsvik Eco and Safety AB. According to the regulations the safety of the repository has to be accounted for different possible courses of the development of the biosphere. A number of studies have been carried out during the past years to investigate and document the biosphere in the area surrounding the repository. Modelling of shore-level displacement by land uplift, coastal water exchange and sedimentation have provided data for prediction of the evolution of the area. The prediction is done without considering a future change in climatic conditions. The results from this study show that accumulation of radionuclides in sediments is an important process to simulate when performing dose assessments covering biosphere evolution. The dose calculated for the first years of the period with agricultural use of the contaminated sediments may be severely underestimated in a scenario with large accumulation in coastal and lake stages. (LN)

  10. Alternative biosphere modeling for safety assessment of HLW disposal taking account of geosphere-biosphere interface of marine environment

    International Nuclear Information System (INIS)

    Kato, Tomoko; Ishiguro, Katsuhiko; Naito, Morimasa; Ikeda, Takao; Little, Richard

    2001-03-01

    In the safety assessment of a high-level radioactive waste (HLW) disposal system, it is required to estimate radiological impacts on future human beings arising from potential radionuclide releases from a deep repository into the surface environment. In order to estimated the impacts, a biosphere model is developed by reasonably assuming radionuclide migration processes in the surface environment and relevant human lifestyles. It is important to modify the present biosphere models or to develop alternative biosphere models applying the biosphere models according to quality and quantify of the information acquired through the siting process for constructing the repository. In this study, alternative biosphere models were developed taking geosphere-biosphere interface of marine environment into account. Moreover, the flux to dose conversion factors calculated by these alternative biosphere models was compared with those by the present basic biosphere models. (author)

  11. Variations in atmospheric pressure as a source of errors in polychromatic X-ray experiments

    CERN Document Server

    Matjushin, A M

    2000-01-01

    The influence of the atmospheric pressure on the accuracy of energy diffractometry (ED), X-ray fluorescence analysis (XRF) using a semiconductor Si(Li) detector, polychromatic diffractometry without the energy dispersion (PDWED) using a coordinate detector has been considered. It is shown that in the interval of pressures 710-810 mm Hg, errors in the determination of interplanar spaces can reach 2% for PDWED, which is caused by the displacement of the maximum of spectral distribution due to changes in absorption by air gaps of the device, and by changes in the quantum efficiency of the coordinate detector. In the ED and XRF methods, changes in the spectrum lead to errors in the determination of relative intensities of diffraction and fluorescence peaks, respectively. The changes in integral intensity are about 1% and can be neglected in the majority of experiments. The curves of the displacement of the spectral distribution maximum and spectral changes were calculated as a function of the atmospheric pressure...

  12. Improved VAS regression soundings of mesoscale temperature structure observed during the 1982 atmospheric variability experiment

    Science.gov (United States)

    Chesters, Dennis; Keyser, Dennis A.; Larko, David E.; Uccellini, Louis W.

    1987-01-01

    An Atmospheric Variability Experiment (AVE) was conducted over the central U.S. in the spring of 1982, collecting radiosonde date to verify mesoscale soundings from the VISSR Atmospheric Sounder (VAS) on the GOES satellite. Previously published VAS/AVE comparisons for the 6 March 1982 case found that the satellite retrievals scarcely detected a low level temperature inversion or a mid-tropospheric cold pool over a special mesoscale radiosonde verification network in north central Texas. The previously published regression and physical retrieval algorithms did not fully utilize VAS' sensitivity to important subsynoptic thermal features. Therefore, the 6 March 1982 case was reprocessed adding two enhancements to the VAS regression retrieval algorithm: (1) the regression matrix was determined using AVE profile data obtained in the region at asynoptic times, and (2) more optimistic signal-to-noise statistical conditioning factors were applied to the VAS temperature sounding channels. The new VAS soundings resolve more of the low level temperature inversion and mid-level cold pool. Most of the improvements stems from the utilization of asynoptic radiosonde observations at NWS sites. This case suggests that VAS regression soundings may require a ground-based asynoptic profiler network to bridge the gap between the synoptic radiosonde network and the high resolution geosynchronous satellite observations during the day.

  13. Atmospheric dispersion experiments over complex terrain in a spanish valley site (Guardo-90)

    International Nuclear Information System (INIS)

    Ibarra, J.I.

    1991-01-01

    An intensive field experimental campaign was conducted in Spain to quantify atmospheric diffusion within a deep, steep-walled valley in rough, mountainous terrain. The program has been sponsored by the spanish companies of electricity and is intended to validate existing plume models and to provide the scientific basis for future model development. The atmospheric dispersion and transport processes in a 40x40 km domain were studied in order to evaluate SO 2 and SF 6 releases from an existing 185 m chimney and ground level sources in a complex terrain valley site. Emphasis was placed on the local mesoscale flows and light wind stable conditions. Although the measuring program was intensified during daytime for dual tracking of SO 2 /SF 6 from an elevated source, nighttime experiments were conducted for mountain-valley flows characterization. Two principle objectives were pursued: impaction of plumes upon elevated terrain, and diffusion of gases within the valley versus diffusion over flat, open terrain. Artificial smoke flows visualizations provided qualitative information: quantitative diffusion measurements were obtained using sulfur hexafluoride gas with analysis by highly sensitive electron capture gas chromatographs systems. Fourteen 2 hours gaseous tracer releases were conducted

  14. Consumption of energy and release of entropy into the biosphere

    International Nuclear Information System (INIS)

    Deutscher, G.

    2014-01-01

    The short-term threat on humanity is not the shortage of energy but rather the contamination of the environment. The concept of entropy is useful to assess the impact of humane activities on the environment. During most of earth history the increase of entropy was more than compensated by the energy brought by the sun. Today the intensive use of fossil fuels has reversed the trend: the biosphere entropy increases as CO 2 piles up in the atmosphere. The release of entropy is linked to the amount of energy we consume and to the efficiency of the process we use to produce it. Nuclear power plants release entropy as low-temperature heat but this amount of entropy is far less than the entropy released by fossil-fuel power plants under the form of CO 2 . (A.C.)

  15. Atmospheric benzenoid emissions from plants rival those from fossil fuels.

    Science.gov (United States)

    Misztal, P K; Hewitt, C N; Wildt, J; Blande, J D; Eller, A S D; Fares, S; Gentner, D R; Gilman, J B; Graus, M; Greenberg, J; Guenther, A B; Hansel, A; Harley, P; Huang, M; Jardine, K; Karl, T; Kaser, L; Keutsch, F N; Kiendler-Scharr, A; Kleist, E; Lerner, B M; Li, T; Mak, J; Nölscher, A C; Schnitzhofer, R; Sinha, V; Thornton, B; Warneke, C; Wegener, F; Werner, C; Williams, J; Worton, D R; Yassaa, N; Goldstein, A H

    2015-07-13

    Despite the known biochemical production of a range of aromatic compounds by plants and the presence of benzenoids in floral scents, the emissions of only a few benzenoid compounds have been reported from the biosphere to the atmosphere. Here, using evidence from measurements at aircraft, ecosystem, tree, branch and leaf scales, with complementary isotopic labeling experiments, we show that vegetation (leaves, flowers, and phytoplankton) emits a wide variety of benzenoid compounds to the atmosphere at substantial rates. Controlled environment experiments show that plants are able to alter their metabolism to produce and release many benzenoids under stress conditions. The functions of these compounds remain unclear but may be related to chemical communication and protection against stress. We estimate the total global secondary organic aerosol potential from biogenic benzenoids to be similar to that from anthropogenic benzenoids (~10 Tg y(-1)), pointing to the importance of these natural emissions in atmospheric physics and chemistry.

  16. Basic Research in Human–Computer–Biosphere Interaction

    Directory of Open Access Journals (Sweden)

    Hill Hiroki Kobayashi

    2014-09-01

    Full Text Available In this study, we present a vision of how a human–computer–biosphere interaction (HCBI can facilitate a sustainable society. HCBI extends and transforms the subject of human–computer interaction from countable people, objects, pets, and plants into an auditory biosphere that is an uncountable, a complex, and a non-linguistic soundscape. As an example, utilizing HCBI to experience forest soundscapes can help us feel one with nature, without physically being present in nature. The goal of HCBI is to achieve ecological interactions between humans and nature through computer systems without causing environmental destruction. To accomplish this, information connectivity must be created despite the physical separation between humans and the environment. This combination should also ensure ecological neutrality. In this paper, we present an overview of an HCBI concept, related work, methodologies, and developed interfaces. We used pre-recorded animal calls to enable a bio-acoustical feedback from the target wildlife. In this study, we primarily focus on the design and evaluation of a bio-acoustic interaction system utilizing tracking collars, microphones, speakers, infrared cameras, infrared heat sensors, micro-climate sensors, radio-tracking devices, GPS devices, radio clocks, embedded Linux boards, high-capacity batteries, and high-speed wireless communication devices. Our experiments successfully demonstrated bio-acoustic interactions between wildlife—more specifically, an endangered species of a wild cat—and human beings via a computer system, thus validating the HCBI concept.

  17. Recent developments in assessment of long-term radionuclide behavior in the geosphere-biosphere subsystem.

    Science.gov (United States)

    Smith, G M; Smith, K L; Kowe, R; Pérez-Sánchez, D; Thorne, M; Thiry, Y; Read, D; Molinero, J

    2014-05-01

    Decisions on permitting, controlling and monitoring releases of radioactivity into the environment rely on a great variety of factors. Important among these is the prospective assessment of radionuclide behavior in the environment, including migration and accumulation among and within specific environmental media, and the resulting environmental and human health impacts. Models and techniques to undertake such assessments have been developed over several decades based on knowledge of the ecosystems involved, as well as monitoring of previous radionuclide releases to the environment, laboratory experiments and other related research. This paper presents developments in the assessment of radiation doses and related research for some of the key radionuclides identified as of potential significance in the context of releases to the biosphere from disposal facilities for solid radioactive waste. Since releases to the biosphere from disposal facilities involve transfers from the geosphere to the biosphere, an important aspect is the combined effects of surface hydrology, near-surface hydrogeology and chemical gradients on speciation and radionuclide mobility in the zone in which the geosphere and biosphere overlap (herein described as the geosphere-biosphere subsystem). In turn, these aspects of the environment can be modified as a result of environmental change over the thousands of years that have to be considered in radioactive waste disposal safety assessments. Building on the experience from improved understanding of the behavior of the key radionuclides, this paper proceeds to describe development of a generic methodology for representing the processes and environmental changes that are characteristic of the interface between the geosphere and the biosphere. The information that is provided and the methodology that is described are based on international collaborative work implemented through the BIOPROTA forum, www.bioprota.org. Copyright © 2013 Elsevier Ltd. All

  18. Climate change and the biosphere option: moving to a sustainable future

    International Nuclear Information System (INIS)

    Layzell, D.B.; Mitchell, H.M.

    1999-01-01

    Human activities resulting in greenhouse gas (GHG) emissions have been implicated as the primary factor forcing climate change. This evidence led to a landmark international agreement in Kyoto, (1997) committing the developed countries of the world to reductions in GHG emissions. In Canada, fossil fuel use over the past few centuries has released about 5200 Mt C into the atmosphere. An equivalent amount has probably been added as a result of deforestation and agricultural practice in this country. If we can manage our biosphere better and return even a fraction of the lost biosphere C, we can make a significant contribution to reducing Canada's current annual GHG emission. In the process, plants ( including trees) will trap the sun's energy and build an energy-rich biomass that we can learn to utilize as an energy, chemical and material resource for the future. In doing so, we will relieve the escalating demand for fossil fuels. The BIOCAP Network will be a multidisciplinary group of university, government and industry researchers dedicated to exploring the scientific, technological and policy implications of this 'biosphere option'. Canada's 'biosphere option' for GHG management is both a national opportunity and a global responsibility

  19. The Atmospheric Waves Experiment (AWE): Quantifying the Impact of Gravity Waves on the Edge of Space

    Science.gov (United States)

    Taylor, M. J.; Forbes, J. M.; Fritts, D. C.; Eckermann, S. D.; Snively, J. B.; Liu, H.; Janches, D.; Syrstad, E. A.; Esplin, R. W.; Pautet, P. D.; Zhao, Y.; Pendleton, W. R.

    2017-12-01

    New theory and modeling now indicate that upward-propagating gravity waves (GWs) originating in the lower atmosphere have profound effects on the variability and mean state of the ionosphere-thermosphere-mesosphere (ITM) system. A major unknown is the spectrum of small-scale ( 30-300 km) GWs entering this system from below. Yet, this part of the spectrum contains most of the waves that will produce the greatest ITM effects. To address this knowledge gap, the Atmospheric Waves Experiment (AWE) plans to deploy a high-resolution imager (based on the successful Utah State University Advanced Mesospheric Temperature Mapper) on the International Space Station (ISS) to gain a transformative set of GW-resolving temperature measurements using the OH nightglow emission (altitude 87 km). The ISS provides the ideal combination of altitude, geographic and local time coverage to accomplish our proposed science objectives, which seeks not only near-global measurements of GW characteristics in the mesopause region, but also quantification of GW momentum and energy fluxes driving the IT from below. Combined with state-of-the-art high-resolution models, the AWE mission will also assess the relative importance of sources versus propagation conditions in explaining the observed spatial and temporal variability of the GWs. The AWE mission was recently selected for a "Phase A" study as part of the NASA 2016 Heliophysics Explorers Mission of Opportunity (MO) Program. In this presentation, we describe the primary goals of this program and introduce our proposed research methods using proven IR instrument technology. AWE's exceptional capabilities are illustrated with recent discoveries in observing GWs from the ground and from aircraft during the NSF DEEPWAVE campaign, promising a major step forward in understanding how troposphere weather translates to space weather.

  20. CO2 Dissociation using the Versatile Atmospheric Dielectric Barrier Discharge Experiment (VADER)

    Science.gov (United States)

    Lindon, Michael Allen

    As of 2013, the Carbon Dioxide Information Analysis Center (CDIAC) estimates that the world emits approximately 36 trillion metric tons of Carbon Dioxide (CO2) into the atmosphere every year. These large emissions have been correlated to global warming trends that have many consequences across the globe, including glacial retraction, ocean acidification and increased severity of weather events. With green technologies still in the infancy stage, it can be expected that CO2 emissions will stay this way for along time to come. Approximately 41% of the emissions are due to electricity production, which pump out condensed forms of CO2. This danger to our world is why research towards new and innovative ways of controlling CO2 emissions from these large sources is necessary. As of now, research is focused on two primary methods of CO2 reduction from condensed CO2 emission sources (like fossil fuel power plants): Carbon Capture and Sequestration (CCS) and Carbon Capture and Utilization (CCU). CCS is the process of collecting CO2 using absorbers or chemicals, extracting the gas from those absorbers and finally pumping the gas into reservoirs. CCU on the other hand, is the process of reacting CO2 to form value added chemicals, which can then be recycled or stored chemically. A Dielectric Barrier discharge (DBD) is a pulsed, low temperature, non-thermal, atmospheric pressure plasma which creates high energy electrons suitable for dissociating CO2 into its components (CO and O) as one step in the CCU process. Here I discuss the viability of using a DBD for CO2 dissociation on an industrial scale as well as the fundamental physics and chemistry of a DBD for CO2 dissociation. This work involved modeling the DBD discharge and chemistry, which showed that there are specific chemical pathways and plasma parameters that can be adjusted to improve the CO2 reaction efficiencies and rates. Experimental studies using the Versatile Atmospheric dielectric barrier Discharge ExpeRiment

  1. Zero-Gravity Atmospheric Cloud Physics Experiment Laboratory engineering concepts/design tradeoffs. Volume 1: Study results

    Science.gov (United States)

    Greco, R. V.; Eaton, L. R.; Wilkinson, H. C.

    1974-01-01

    The work is summarized which was accomplished from January 1974 to October 1974 for the Zero-Gravity Atmospheric Cloud Physics Laboratory. The definition and development of an atmospheric cloud physics laboratory and the selection and delineation of candidate experiments that require the unique environment of zero gravity or near zero gravity are reported. The experiment program and the laboratory concept for a Spacelab payload to perform cloud microphysics research are defined. This multimission laboratory is planned to be available to the entire scientific community to utilize in furthering the basic understanding of cloud microphysical processes and phenomenon, thereby contributing to improved weather prediction and ultimately to provide beneficial weather control and modification.

  2. New experience in atmospheric monitoring in Moscow city on the base of WSN technology

    Science.gov (United States)

    Asavin, Alex; Litvinov, Artur; Baskakov, Sergey; Chesalova, Elena

    2016-04-01

    coordinates of each node. We use GIS project for visualization and data analysis. Experiences revealed the inverse relationship between H2 concentration and temperature and pressure. Also we revealed periodicity of gas concentration with different harmonics. We could not find in literatures the similar works of H2 monitoring in cites. Exclusion is the work of (Necki et al., 2014) to organize continue monitoring in Krakow and it neighborhood. Authors also note periodicity in gas concentration affected by the seasons (increase in wintertime), day time (auto traffic). The received data we consider as first experiments in organization of long time monitoring of cites atmosphere, using new technologies (WSN). This results we consider to be the first methodological experiments in the field of monitoring the atmosphere of the city by WSN technic. It is planned to update the correctness of the analysis based on a comparison with other gas analysis methods. Acknowledgements This study was supported by the program 44 presidium RAS "Search basic research for the development of the Russian Arctic" Reference Necki, Jaroslaw M.; Chmura, Lukasz; Bielewski, Jaroslaw; et al. Variability of Molecular Hydrogen in the Urban Atmosphere Based on Continuous Measurements in Krakow //Polish Journal of Environmental Studies 2014, V.23, Iss. 2, P. 427-434.

  3. Earth’s Biosphere in Peril

    OpenAIRE

    Cairns, John

    2013-01-01

    Sustainable use of the planet is an attractive goal, especially concerning intergenerational ethics. However, a major ecological tipping point has been passed (e.g, melting glaciers) and, in the last three years, evidence has been growing that six interactive global crises are worsening: (1) climate change, (2) overpopulation, (3) loss of biodiversity, (4) ecological overshoot, (5) excessive use of fossil fuels, and (6) inadequate food and water. Earth's biosphere is being increasingly damage...

  4. Eco-ethics and the Biosphere

    OpenAIRE

    Cairns, John

    2012-01-01

    Sustainable use of the planet is an attractive goal, especially concerning intergenerational ethics. However, a major ecological tipping point has been passed (e.g, melting glaciers) and, in the last three years, evidence has been growing that six interactive global crises are worsening: (1) climate change, (2) overpopulation, (3) loss of biodiversity, (4) ecological overshoot, (5) excessive use of fossil fuels, and (6) inadequate food and water. Earth's biosphere is being increasingly damage...

  5. Improved VAS regression soundings of mesoscale temperature features observed during the atmospheric variability experiment on 6 March 1982. [VISSR Atmospheric Sounder

    Science.gov (United States)

    Chesters, Dennis; Keyser, Dennis A.; Larko, David E.; Uccellini, Louis W.

    1988-01-01

    In 1982, the VISSR Atmospheric Sounder (VAS) on the GOES satellite performed the Atmospheric Variability Experiment (AVE) to verify VAS's mesoscale-sounding capabilities. Attention is given to the AVE network in the late afternoon of March 6, 1982, after a winter storm had passed over Texas, in order to ascertain whether such temperature profile deviations from the average lapse rate as a midlevel cold pool (which should decrease the brightness of several IR channels) can be retrieved from VAS radiances. Two simple enhancements are introduced: the regression matrix is calculated using the AVE asynoptic radiosondes launched from NWS sites in the region, and a change of the statistical conditioning factor from the conservative 10/1 SNR to a more optimistic 100/1 for those VAS channels that are more sensitive to tropospheric temperature.

  6. Gene expression in the deep biosphere.

    Science.gov (United States)

    Orsi, William D; Edgcomb, Virginia P; Christman, Glenn D; Biddle, Jennifer F

    2013-07-11

    Scientific ocean drilling has revealed a deep biosphere of widespread microbial life in sub-seafloor sediment. Microbial metabolism in the marine subsurface probably has an important role in global biogeochemical cycles, but deep biosphere activities are not well understood. Here we describe and analyse the first sub-seafloor metatranscriptomes from anaerobic Peru Margin sediment up to 159 metres below the sea floor, represented by over 1 billion complementary DNA (cDNA) sequence reads. Anaerobic metabolism of amino acids, carbohydrates and lipids seem to be the dominant metabolic processes, and profiles of dissimilatory sulfite reductase (dsr) transcripts are consistent with pore-water sulphate concentration profiles. Moreover, transcripts involved in cell division increase as a function of microbial cell concentration, indicating that increases in sub-seafloor microbial abundance are a function of cell division across all three domains of life. These data support calculations and models of sub-seafloor microbial metabolism and represent the first holistic picture of deep biosphere activities.

  7. Harvesting the biosphere: the human impact.

    Science.gov (United States)

    Smil, Vaclav

    2011-01-01

    The human species has evolved to dominate the biosphere: global anthropomass is now an order of magnitude greater than the mass of all wild terrestrial mammals. As a result, our dependence on harvesting the products of photosynthesis for food, animal feed, raw materials, and energy has grown to make substantial global impacts. During the past two millennia these harvests, and changes of land use due to deforestation and conversions of grasslands and wetlands, have reduced the stock of global terrestrial plant mass by as much as 45 percent, with the twentieth-century reduction amounting to more than 15 percent. Current annual harvests of phytomass have been a significant share of the global net primary productivity (NPP, the total amount of new plant tissues created by photosynthesis). Some studies put the human appropriation of NPP (the ratio of these two variables) as high as 40 percent but the measure itself is problematic. Future population growth and improved quality of life will result in additional claims on the biosphere, but options to accommodate these demands exist without severely compromising the irreplaceable biospheric services.

  8. An efficient and accurate representation of complex oceanic and biospheric models of anthropogenic carbon uptake

    Science.gov (United States)

    Joos, Fortunat; Bruno, Michele; Fink, Roger; Siegenthaler, Ulrich; Stocker, Thomas F.; Le Quéré, Corinne; Sarmiento, Jorge L.

    1996-07-01

    Establishing the link between atmospheric CO2 concentration and anthropogenic carbon emissions requires the development of complex carbon cycle models of the primary sinks, the ocean and terrestrial biosphere. Once such models have been developed, the potential exists to use pulse response functions to characterize their behaviour. However, the application of response functions based on a pulse increase in atmospheric CO2 to characterize oceanic uptake, the conventional technique, does not yield a very accurate result due to nonlinearities in the aquatic carbon chemistry. Here, we propose the use of an ocean mixed-layer pulse response function that characterizes the surface to deep ocean mixing in combination with a separate equation describing air-sea exchange. The use of a mixed-layer pulse response function avoids the problem arising from the nonlinearities of the carbon chemistry and gives therefore more accurate results. The response function is also valid for tracers other than carbon. We found that tracer uptake of the HILDA and Box-Diffusion model can be represented exactly by the new method. For the Princeton 3-D model, we find that the agreement between the complete model and its pulse substitute is better than 4% for the cumulative uptake of anthropogenic carbon for the period 1765 2300 applying the IPCC stabilization scenarios S450 and S750 and better than 2% for the simulated inventory and surface concentration of bomb-produced radiocarbon. By contrast, the use of atmospheric response functions gives deviations up to 73% for the cumulative CO2 uptake as calculated with the Princeton 3-D model. We introduce the use of a decay response function for calculating the potential carbon storage on land as a substitute for terrestrial biosphere models that describe the overturning of assimilated carbon. This, in combination with an equation describing the net primary productivity permits us to exactly characterize simple biosphere models. As the time scales of

  9. Quantifying the influence of the terrestrial biosphere on glacial-interglacial climate dynamics

    Science.gov (United States)

    Davies-Barnard, Taraka; Ridgwell, Andy; Singarayer, Joy; Valdes, Paul

    2017-10-01

    The terrestrial biosphere is thought to be a key component in the climatic variability seen in the palaeo-record. It has a direct impact on surface temperature through changes in surface albedo and evapotranspiration (so-called biogeophysical effects) and, in addition, has an important indirect effect through changes in vegetation and soil carbon storage (biogeochemical effects) and hence modulates the concentrations of greenhouse gases in the atmosphere. The biogeochemical and biogeophysical effects generally have opposite signs, meaning that the terrestrial biosphere could potentially have played only a very minor role in the dynamics of the glacial-interglacial cycles of the late Quaternary. Here we use a fully coupled dynamic atmosphere-ocean-vegetation general circulation model (GCM) to generate a set of 62 equilibrium simulations spanning the last 120 kyr. The analysis of these simulations elucidates the relative importance of the biogeophysical versus biogeochemical terrestrial biosphere interactions with climate. We find that the biogeophysical effects of vegetation account for up to an additional -0.91 °C global mean cooling, with regional cooling as large as -5 °C, but with considerable variability across the glacial-interglacial cycle. By comparison, while opposite in sign, our model estimates of the biogeochemical impacts are substantially smaller in magnitude. Offline simulations show a maximum of +0.33 °C warming due to an increase of 25 ppm above our (pre-industrial) baseline atmospheric CO2 mixing ratio. In contrast to shorter (century) timescale projections of future terrestrial biosphere response where direct and indirect responses may at times cancel out, we find that the biogeophysical effects consistently and strongly dominate the biogeochemical effect over the inter-glacial cycle. On average across the period, the terrestrial biosphere has a -0.26 °C effect on temperature, with -0.58 °C at the Last Glacial Maximum. Depending on

  10. Recent developments in assessment of long-term radionuclide behavior in the geosphere-biosphere subsystem

    International Nuclear Information System (INIS)

    Smith, G.M.; Smith, K.L.; Kowe, R.; Pérez-Sánchez, D.; Thorne, M.; Thiry, Y.; Read, D.; Molinero, J.

    2014-01-01

    Decisions on permitting, controlling and monitoring releases of radioactivity into the environment rely on a great variety of factors. Important among these is the prospective assessment of radionuclide behavior in the environment, including migration and accumulation among and within specific environmental media, and the resulting environmental and human health impacts. Models and techniques to undertake such assessments have been developed over several decades based on knowledge of the ecosystems involved, as well as monitoring of previous radionuclide releases to the environment, laboratory experiments and other related research. This paper presents developments in the assessment of radiation doses and related research for some of the key radionuclides identified as of potential significance in the context of releases to the biosphere from disposal facilities for solid radioactive waste. Since releases to the biosphere from disposal facilities involve transfers from the geosphere to the biosphere, an important aspect is the combined effects of surface hydrology, near-surface hydrogeology and chemical gradients on speciation and radionuclide mobility in the zone in which the geosphere and biosphere overlap (herein described as the geosphere-biosphere subsystem). In turn, these aspects of the environment can be modified as a result of environmental change over the thousands of years that have to be considered in radioactive waste disposal safety assessments. Building on the experience from improved understanding of the behavior of the key radionuclides, this paper proceeds to describe development of a generic methodology for representing the processes and environmental changes that are characteristic of the interface between the geosphere and the biosphere. The information that is provided and the methodology that is described are based on international collaborative work implemented through the BIOPROTA forum, (www.bioprota.org). - Highlights: • Geological

  11. Experiences of sexual relationships of young black women in an atmosphere of coercion.

    Science.gov (United States)

    Clüver, Frances; Elkonin, Diane; Young, Charles

    2013-03-01

    Negotiations surrounding sexual activity are characterised by multiple power disparities that include race, social status and age, with gender being the most dominant differential in heterosexual interactions. Research has shown that women are physiologically more at risk of contracting HIV than men, as indicated by the higher infection rates of the former. Many African societies operate via a hegemonic masculinity, with patriarchal governance and female subordination being the norm, placing women at even greater risk of HIV infection. In this qualitative phenomenological study, four black school-going adolescent women living in Grahamstown were interviewed using a semi-structured interview to gather data. An interpretative phenomenological analysis was conducted on the data to provide subjective insights of the experiences of the participants with regard to their interactions with men. From the findings, it became apparent that the participants felt pressured, coerced or manipulated by male counterparts. This pressure and coercion was not just felt in their interactions with older men, but also in their romantic partnerships. Three of the participants experienced pressure to engage in sexual intercourse with their boyfriends when they were unwilling or unready, and they reported being faced with additional pressure to engage in unprotected sex. Furthermore, it became apparent that each participant had an underlying fear of being raped and considered this as a genuine threat to her safety and sexual health. The atmosphere within which these participants negotiate their sexual agency is thus heavily informed by male control, coercion and the threat of violence or rape.

  12. Iterative ensemble Kalman filter for atmospheric dispersion in nuclear accidents: An application to Kincaid tracer experiment.

    Science.gov (United States)

    Zhang, X L; Su, G F; Chen, J G; Raskob, W; Yuan, H Y; Huang, Q Y

    2015-10-30

    Information about atmospheric dispersion of radionuclides is vitally important for planning effective countermeasures during nuclear accidents. Results of dispersion models have high spatial and temporal resolutions, but they are not accurate enough due to the uncertain source term and the errors in meteorological data. Environmental measurements are more reliable, but they are scarce and unable to give forecasts. In this study, our newly proposed iterative ensemble Kalman filter (EnKF) data assimilation scheme is used to combine model results and environmental measurements. The system is thoroughly validated against the observations in the Kincaid tracer experiment. The initial first-guess emissions are assumed to be six magnitudes underestimated. The iterative EnKF system rapidly corrects the errors in the emission rate and wind data, thereby significantly improving the model results (>80% reduction of the normalized mean square error, r=0.71). Sensitivity tests are conducted to investigate the influence of meteorological parameters. The results indicate that the system is sensitive to boundary layer height. When the heights from the numerical weather prediction model are used, only 62.5% of reconstructed emission rates are within a factor two of the actual emissions. This increases to 87.5% when the heights derived from the on-site observations are used. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Nanosecond Repetitively Pulsed Discharges in Air at Atmospheric Pressure -- Experiment and Theory of Regime Transitions

    Science.gov (United States)

    Pai, David; Lacoste, Deanna; Laux, Christophe

    2009-10-01

    In atmospheric pressure air preheated from 300 to 1000 K, the Nanosecond Repetitively Pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and inter-electrode gap distance) of each discharge regime. Notably, there is a minimum gap distance for the existence of the glow regime that increases with decreasing gas temperature. A theory is developed to describe the Corona-to-Glow (C-G) and Glow-to-Spark (G-S) transitions for NRP discharges. The C-G transition is shown to depend on the Avalanche-to-Streamer Transition (AST) as well as the electric field strength in the positive column. The G-S transition is due to the thermal ionization instability. The minimum gap distance for the existence of the glow regime can be understood by considering that the applied voltage of the AST must be lower than that of the thermal ionization instability. This is a previously unknown criterion for generating glow discharges, as it does not correspond to the Paschen minimum or to the Meek-Raether criterion.

  14. Intercomparison experiments of systems for the measurement of xenon radionuclides in the atmosphere.

    Science.gov (United States)

    Auer, M; Axelsson, A; Blanchard, X; Bowyer, T W; Brachet, G; Bulowski, I; Dubasov, Y; Elmgren, K; Fontaine, J P; Harms, W; Hayes, J C; Heimbigner, T R; McIntyre, J I; Panisko, M E; Popov, Y; Ringbom, A; Sartorius, H; Schmid, S; Schulze, J; Schlosser, C; Taffary, T; Weiss, W; Wernsperger, B

    2004-06-01

    Radioactive xenon monitoring is one of the main technologies used for the detection of underground nuclear explosions. Precise and reliable measurements of (131m)Xe, (133g)Xe, (133m)Xe, and (135g)Xe are required as part of the International Monitoring System for compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). For the first time, simultaneous testing of four highly sensitive and automated fieldable radioxenon measurement systems has been performed and compared to established laboratory techniques. In addition to an intercomparison of radioxenon monitoring equipment of different design, this paper also presents a set of more than 2000 measurements of activity concentrations of radioactive xenon made in the city of Freiburg, Germany in 2000. The intercomparison experiment showed, that the results from the newly developed systems agree with each other and the equipment fulfills the fundamental requirements for their use in the verification regime of the CTBT. For 24-h measurements, concentrations as low as 0.1 mBqm(-3) were measured for atmospheric samples ranging in size from 10 to 80 m(3). The (133)Xe activity concentrations detected in the ambient air ranged from below 1 mBqm(-3) to above 100 mBqm(-3).

  15. Development of the Lidar Atmospheric Sensing Experiment (LASE): An Advanced Airborne DIAL Instrument

    Science.gov (United States)

    Moore, Alvah S., Jr.; Brown, Kevin E.; Hall, William M.; Barnes, James C.; Edwards, William C.; Petway, Larry B.; Little, Alan D.; Luck, William S., Jr.; Jones, Irby W.; Antill, Charles W., Jr.

    1997-01-01

    The Lidar Atmospheric Sensing Experiment (LASE) Instrument is the first fully-engineered, autonomous Differential Absorption Lidar (DIAL) System for the measurement of water vapor in the troposphere (aerosol and cloud measurements are included). LASE uses a double-pulsed Ti:Sapphire laser for the transmitter with a 30 ns pulse length and 150 mJ/pulse. The laser beam is "seeded" to operate on a selected water vapor absorption line in the 815-nm region using a laser diode and an onboard absorption reference cell. A 40 cm diameter telescope collects the backscattered signals and directs them onto two detectors. LASE collects DIAL data at 5 Hz while onboard a NASA/Ames ER-2 aircraft flying at altitudes from 16-21 km. LASE was designed to operate autonomously within the environment and physical constraints of the ER-2 aircraft and to make water vapor profile measurements across the troposphere to better than 10% accuracy. LASE has flown 19 times during the development of the instrument and the validation of the science data. This paper describes the design, operation, and reliability of the LASE Instrument.

  16. Climate regulates the erosional carbon export from the terrestrial biosphere

    Science.gov (United States)

    Hilton, Robert G.

    2017-01-01

    Erosion drives the export of particulate organic carbon from the terrestrial biosphere (POCbiosphere) and its delivery to rivers. The carbon transfer is globally significant and can result in drawdown of atmospheric carbon dioxide (CO2) if the eroded POCbiosphere escapes degradation during river transfer and sedimentary deposition. Despite this recognition, we lack a global perspective on how the tectonic and climatic factors which govern physical erosion regulate POCbiosphere discharge, obscuring linkages between mountain building, climate, and CO2 drawdown. To fill this deficit, geochemical (δ13C, 14C and C/N), hydrometric (water discharge, suspended sediment concentration) and geomorphic (slope) measurements are combined from 33 globally-distributed forested mountain catchments. Radiocarbon activity is used to account for rock-derived organic carbon and reveals that POCbiosphere eroded from mountain forests is mostly Climate is shown to regulate POCbiosphere discharge by mountain rivers, by controlling hydrologically-driven erosion processes. In catchments where discharge measurements are available (8 of the 33) a significant relationship exists between daily runoff (mm day- 1) and POCbiosphere concentration (mg L- 1) (r = 0.53, P law and suggests a high connectivity between forested hillslopes and mountain river channels. As a result, annual POCbiosphere yields are significantly correlated with mean annual runoff (r = 0.64, P climate sensitivity of this carbon flux to be assessed for the first time. For a 1% increase in annual runoff, POCbiosphere discharge is predicted to increase by 4%. In steeper catchments, POCbiosphere discharge increases more rapidly with an increase in annual runoff. For comparison, a 1% increase in annual runoff is predicted to increase carbon transfers by silicate weathering solute fluxes in mountains by 0.4-0.7%. Depending on the fate of the eroded POCbiosphere, river export of POCbiosphere from mountains may act as an important

  17. CalWater 2 - Precipitation, Aerosols, and Pacific Atmospheric Rivers Experiment

    Science.gov (United States)

    Spackman, Ryan; Ralph, Marty; Prather, Kim; Cayan, Dan; DeMott, Paul; Dettinger, Mike; Fairall, Chris; Leung, Ruby; Rosenfeld, Daniel; Rutledge, Steven; Waliser, Duane; White, Allen

    2014-05-01

    Emerging research has identified two phenomena that play key roles in the variability of the water supply and the incidence of extreme precipitation events along the West Coast of the United States. These phenomena include the role of (1) atmospheric rivers (ARs) in delivering much of the precipitation associated with major storms along the U.S. West Coast, and (2) aerosols—from local sources as well as those transported from remote continents—and their modulating effects on western U.S. precipitation. A better understanding of these processes is needed to reduce uncertainties in weather predictions and climate projections of extreme precipitation and its effects, including the provision of beneficial water supply. This presentation summarizes science gaps associated with (1) the evolution and structure of ARs including cloud and precipitation processes and air-sea interaction, and (2) aerosol interaction with ARs and the impact on precipitation, including locally-generated aerosol effects on orographic precipitation along the U.S. West Coast. Observations are proposed for multiple winter seasons as part of a 5-year broad interagency vision referred to as CalWater 2 to address these science gaps (http://esrl.noaa.gov/psd/calwater). In the near term, a science investigation is being planned including a targeted set of aircraft and ship-based measurements and associated evaluation of data in near-shore regions of California and in the eastern Pacific for an intensive observing period between January 2015 and March 2015. DOE's Atmospheric Radiation Measurement (ARM) program and NOAA are coordinating on deployment of airborne and ship-borne facilities for this period in a DOE-sponsored study called ACAPEX (ARM Cloud Aerosol and Precipitation Experiment) to complement CalWater 2. The motivation for this major study is based on findings that have emerged in the last few years from airborne and ground-based studies including CalWater and NOAA's HydroMeterology Testbed

  18. Laboratory Experiments and Instrument Development for the Study of Atmospheric Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Davidovits, Paul

    2011-12-10

    Soot particles are generated by incomplete combustion of fossil and biomass fuels. Through direct effects clear air aerosols containing black carbon (BC) such as soot aerosols, absorb incoming light heating the atmosphere, while most other aerosols scatter light and produce cooling. Even though BC represents only 1-2% of the total annual emissions of particulate mass to the atmosphere, it has been estimated that the direct radiative effect of BC is the second-most important contributor to global warming after absorption by CO2. Ongoing studies continue to underscore the climate forcing importance of black carbon. However, estimates of the radiative effects of black carbon on climate remain highly uncertain due to the complexity of particles containing black carbon. Quantitative measurement of BC is challenging because BC often occurs in highly non-spherical soot particles of complex morphology. Freshly emitted soot particles are typically fractal hydrophobic aggregates. The aggregates consist of black carbon spherules with diameters typically in the range of about 15-40 nm, and they are usually coated by adsorbed polyaromatic hydrocarbons (PAHs) produced during combustion. Diesel-generated soot particles are often emitted with an organic coating composed primarily of lubricating oil and unburned fuel, as well as well as PAH compounds. Sulfuric acid has also been detected in diesel and aircraft-emitted soot particles. In the course of aging, these particle coatings may be substantially altered by chemical reactions and/or the deposition of other materials. Such processes transform the optical and CCN properties of the soot aerosols in ways that are not yet well understood. Our work over the past seven years consisted of laboratory research, instrument development and characterization, and field studies with the central focus of improving our understanding of the black carbon aerosol climate impacts. During the sixth year as well as during this seventh year (no

  19. Exploring global carbon turnover and radiocarbon cycling in terrestrial biosphere models

    Science.gov (United States)

    Graven, H. D.; Warren, H.

    2017-12-01

    The uptake of carbon into terrestrial ecosystems through net primary productivity (NPP) and the turnover of that carbon through various pathways are the fundamental drivers of changing carbon stocks on land, in addition to human-induced and natural disturbances. Terrestrial biosphere models use different formulations for carbon uptake and release, resulting in a range of values in NPP of 40-70 PgC/yr and biomass turnover times of about 25-40 years for the preindustrial period in current-generation models from CMIP5. Biases in carbon uptake and turnover impact simulated carbon uptake and storage in the historical period and later in the century under changing climate and CO2 concentration, however evaluating global-scale NPP and carbon turnover is challenging. Scaling up of plot-scale measurements involves uncertainty due to the large heterogeneity across ecosystems and biomass types, some of which are not well-observed. We are developing the modelling of radiocarbon in terrestrial biosphere models, with a particular focus on decadal 14C dynamics after the nuclear weapons testing in the 1950s-60s, including the impact of carbon flux trends and variability on 14C cycling. We use an estimate of the total inventory of excess 14C in the biosphere constructed by Naegler and Levin (2009) using a 14C budget approach incorporating estimates of total 14C produced by the weapons tests and atmospheric and oceanic 14C observations. By simulating radiocarbon in simple biosphere box models using carbon fluxes from the CMIP5 models, we find that carbon turnover is too rapid in many of the simple models - the models appear to take up too much 14C and release it too quickly. Therefore many CMIP5 models may also simulate carbon turnover that is too rapid. A caveat is that the simple box models we use may not adequately represent carbon dynamics in the full-scale models. Explicit simulation of radiocarbon in terrestrial biosphere models would allow more robust evaluation of biosphere

  20. Agricultural and Environmental Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    K. Rasmuson; K. Rautenstrauch

    2004-01-01

    This analysis is one of 10 technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) (i.e., the biosphere model). It documents development of agricultural and environmental input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the ERMYN and its input parameters

  1. The Passy-2015 field experiment: wintertime atmospheric dynamics and air quality in a narrow alpine valley

    Science.gov (United States)

    Paci, Alexandre; Staquet, Chantal

    2016-04-01

    Wintertime anticyclonic conditions lead to the formation of persistent stable boundary layers which may induce severe air pollution episodes in urban or industrialized area, particularly in mountain regions. The Arve river valley in the Northern Alps is very sensitive to this phenomenon, in particular close to the city of Passy (Haute-Savoie), 20 km down valley past Chamonix. This place is indeed one of the worst place in France regarding air quality, the concentration of fine particles and Benzo(a)pyrene (a carcinogenic organic compound) regularly exceeding the EU legal admissible level during winter. Besides air quality measurements, such as the ones presently carried in the area by the local air quality agency Air Rhône-Alpes or in the DECOMBIO project led by LGGE, it is crucial to improve our knowledge of the atmospheric boundary layer dynamics and processes at the valley scale under these persistent stable conditions in order to improve our understanding on how it drives pollutant dispersion. These issues motivated the Passy-2015 field experiment which took place during the winter 2014-2015. A relatively large set-up of instruments was deployed on a main measurement site in the valley center and on four other satellite sites. It includes several remote sensing instruments, a surface flux station, a 10 m instrumented tower, a large aperture scintillometer, a fog monitoring station among others. Most of the instruments were present from early January to the end of February. During two intensive observation periods, 6-14 February and 17-20 February, the instrumental set-up was completed on the main site with high frequency radio-soundings (up to one per 1h30), a tethered balloon, a remote controlled drone quadcopter and a sodar. The field campaign, the instruments, the meteorological situations observed and preliminary results will be presented. This field experiment is part of the Passy project funded by ADEME through the French national programme LEFE/INSU and

  2. Data processing technique for multiangle lidar sounding of poorly stratified polluted atmospheres: Theory and experiment

    Science.gov (United States)

    Cyle E. Wold; Vladimir A. Kovalev; Alexander P. Petkov; Wei Min Hao

    2012-01-01

    Scanning elastic lidar, which can operate in different slant directions, is the most appropriate remote sensing tool for investigating the optical properties of smoke-polluted atmospheres. However, the commonly used methodologies of multiangle measurements are based on the assumption of horizontal stratification of the searched atmosphere1,2. When working in real...

  3. Physical analysis of multivariate measurements in the Atmospheric high-energy physics experiments within ADEI platform

    International Nuclear Information System (INIS)

    Avakyan, K.; Chilingarian, A.; Karapetyan, T.; Chilingaryan, S.

    2017-01-01

    To make transformational scientific progress in Space science and geophysics, the Sun, heliosphere, magnetosphere and different layers of the atmosphere must be studied as a coupled system. Presented paper describes how information on complicated physical processes on Sun, in the heliosphere, magnetosphere and atmosphere can be made immediately assessable for researchers via advanced multivariate visualization system with simple statistical analysis package. Research of the high-energy phenomena in the atmosphere and the atmospheric discharges is of special importance. The relationship between thundercloud electrification, lightning activity, wideband radio emission and particle fluxes have not been yet unambiguously established. One of most intriguing opportunities opening by observation of the high-energy processes in the atmosphere is their relation to lightning initiation. Investigations of the accelerated structures in the geospace plasmas can as well shed light on particle acceleration up to much higher energies in the similar structures of space plasmas in the distant objects of the Universe. (author)

  4. Environmental Transport Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    M. Wasiolek

    2004-01-01

    This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment for the license application (TSPA-LA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA-LA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]) (TWP). This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA). This report is one of the five reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model and the mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed description of the model input parameters. The output of this report is used as direct input in the ''Nominal Performance Biosphere Dose Conversion Factor Analysis'' and in the ''Disruptive Event Biosphere Dose Conversion Factor Analysis'' that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios, respectively. The purpose of this analysis was to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or in volcanic ash). The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573])

  5. Taking account of the biosphere in HLW assessment

    International Nuclear Information System (INIS)

    Smith, G.M.; Grogan, H.A.

    1992-01-01

    Evaluation of the biosphere in High level Waste assessment is beset with difficulties concerned with the disparity in timescales for geosphere and biosphere processes and prediction of the long term conditions in the biosphere. These issues are discussed against the background of developments on criteria, calculational end points, timescales, environmental change and human activities, relationship to other parts of the assessment, and uncertainty and variability. In this paper an outline for a surface environment assessment program is proposed

  6. Environmental Transport Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek

    2004-09-10

    This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment for the license application (TSPA-LA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA-LA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]) (TWP). This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA). This report is one of the five reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model and the mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed description of the model input parameters. The output of this report is used as direct input in the ''Nominal Performance Biosphere Dose Conversion Factor Analysis'' and in the ''Disruptive Event Biosphere Dose Conversion Factor Analysis'' that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios, respectively. The purpose of this analysis was to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or in volcanic ash). The analysis

  7. Quantifying the influence of the terrestrial biosphere on glacial–interglacial climate dynamics

    Directory of Open Access Journals (Sweden)

    T. Davies-Barnard

    2017-10-01

    Full Text Available The terrestrial biosphere is thought to be a key component in the climatic variability seen in the palaeo-record. It has a direct impact on surface temperature through changes in surface albedo and evapotranspiration (so-called biogeophysical effects and, in addition, has an important indirect effect through changes in vegetation and soil carbon storage (biogeochemical effects and hence modulates the concentrations of greenhouse gases in the atmosphere. The biogeochemical and biogeophysical effects generally have opposite signs, meaning that the terrestrial biosphere could potentially have played only a very minor role in the dynamics of the glacial–interglacial cycles of the late Quaternary. Here we use a fully coupled dynamic atmosphere–ocean–vegetation general circulation model (GCM to generate a set of 62 equilibrium simulations spanning the last 120 kyr. The analysis of these simulations elucidates the relative importance of the biogeophysical versus biogeochemical terrestrial biosphere interactions with climate. We find that the biogeophysical effects of vegetation account for up to an additional −0.91 °C global mean cooling, with regional cooling as large as −5 °C, but with considerable variability across the glacial–interglacial cycle. By comparison, while opposite in sign, our model estimates of the biogeochemical impacts are substantially smaller in magnitude. Offline simulations show a maximum of +0.33 °C warming due to an increase of 25 ppm above our (pre-industrial baseline atmospheric CO2 mixing ratio. In contrast to shorter (century timescale projections of future terrestrial biosphere response where direct and indirect responses may at times cancel out, we find that the biogeophysical effects consistently and strongly dominate the biogeochemical effect over the inter-glacial cycle. On average across the period, the terrestrial biosphere has a −0.26 °C effect on temperature, with −0.58 °C at the

  8. Validation of NO2 and NO from the Atmospheric Chemistry Experiment (ACE

    Directory of Open Access Journals (Sweden)

    M. Schneider

    2008-10-01

    Full Text Available Vertical profiles of NO2 and NO have been obtained from solar occultation measurements by the Atmospheric Chemistry Experiment (ACE, using an infrared Fourier Transform Spectrometer (ACE-FTS and (for NO2 an ultraviolet-visible-near-infrared spectrometer, MAESTRO (Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation. In this paper, the quality of the ACE-FTS version 2.2 NO2 and NO and the MAESTRO version 1.2 NO2 data are assessed using other solar occultation measurements (HALOE, SAGE II, SAGE III, POAM III, SCIAMACHY, stellar occultation measurements (GOMOS, limb measurements (MIPAS, OSIRIS, nadir measurements (SCIAMACHY, balloon-borne measurements (SPIRALE, SAOZ and ground-based measurements (UV-VIS, FTIR. Time differences between the comparison measurements were reduced using either a tight coincidence criterion, or where possible, chemical box models. ACE-FTS NO2 and NO and the MAESTRO NO2 are generally consistent with the correlative data. The ACE-FTS and MAESTRO NO2 volume mixing ratio (VMR profiles agree with the profiles from other satellite data sets to within about 20% between 25 and 40 km, with the exception of MIPAS ESA (for ACE-FTS and SAGE II (for ACE-FTS (sunrise and MAESTRO and suggest a negative bias between 23 and 40 km of about 10%. MAESTRO reports larger VMR values than the ACE-FTS. In comparisons with HALOE, ACE-FTS NO VMRs typically (on average agree to ±8% from 22 to 64 km and to +10% from 93 to 105 km, with maxima of 21% and 36%, respectively. Partial column comparisons for NO2 show that there is quite good agreement between the ACE instruments and the FTIRs, with a mean difference of +7.3% for ACE-FTS and +12.8% for MAESTRO.

  9. Iterative ensemble Kalman filter for atmospheric dispersion in nuclear accidents: An application to Kincaid tracer experiment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.L.; Su, G.F.; Chen, J.G. [Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Raskob, W. [Institute for Nuclear and Energy Technologies, Karlsruhe Institute of Technology, Karlsruhe, D-76021 (Germany); Yuan, H.Y., E-mail: hy-yuan@outlook.com [Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Huang, Q.Y. [Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)

    2015-10-30

    Highlights: • We integrate the iterative EnKF method into the POLYPHEMUS platform. • We thoroughly evaluate the data assimilation system against the Kincaid dataset. • The data assimilation system substantially improves the model predictions. • More than 60% of the retrieved emissions are within a factor two of actual values. • The results reveal that the boundary layer height is the key influential factor. - Abstract: Information about atmospheric dispersion of radionuclides is vitally important for planning effective countermeasures during nuclear accidents. Results of dispersion models have high spatial and temporal resolutions, but they are not accurate enough due to the uncertain source term and the errors in meteorological data. Environmental measurements are more reliable, but they are scarce and unable to give forecasts. In this study, our newly proposed iterative ensemble Kalman filter (EnKF) data assimilation scheme is used to combine model results and environmental measurements. The system is thoroughly validated against the observations in the Kincaid tracer experiment. The initial first-guess emissions are assumed to be six magnitudes underestimated. The iterative EnKF system rapidly corrects the errors in the emission rate and wind data, thereby significantly improving the model results (>80% reduction of the normalized mean square error, r = 0.71). Sensitivity tests are conducted to investigate the influence of meteorological parameters. The results indicate that the system is sensitive to boundary layer height. When the heights from the numerical weather prediction model are used, only 62.5% of reconstructed emission rates are within a factor two of the actual emissions. This increases to 87.5% when the heights derived from the on-site observations are used.

  10. Biospheric Cooling and the Emergence of Intelligence

    Science.gov (United States)

    Schwartzman, David; Middendorf, George

    The long-term cooling history of the Earth's biosphere implies a temperature constraint on the timing of major events in biologic evolution, e.g., emergence of cyanobacteria, eucaryotes and Metazoa apparently occurred at times when temperatures were near their upper growth limits. Could biospheric cooling also have been a necessary condition for the emergence of veterbrates and their encephalization? The upper temperature limit for vertebrate growth is about 10 degrees below the limit for Metazoa (50 degrees C). Heterothermy followed by full homeothermy was likely a necessary condition for greater encephalization because of the energy requirement of larger brains. The temperature differential between an animal and a cooler environment, all other factors equal, will increase the efficiency of heat loss from the brain, but too large a differential will shift metabolic energy away from the brain to the procurement of food. Encephalization has also entailed the evolution of internal cooling mechanisms to avoid overheating the brain. The two periods of pronounced Phanerozoic cooling, the PermoCarboniferous and late Cenozoic, corresponded to the emergence of mammal-like reptiles and hominids respectively, with a variety of explanations offered for the apparent link. The origin of highly encephalized whales, dolphins and porpoises occurred with the drop in ocean temperatures 25-30 mya. Of course, other possible paths to encephalization are conceivable, with radically different solutions to the problem of heat dissipation. But the intrinsic requirements for information processing capacity necessary for intelligence suggest our terrestrial pattern may resemble those of alien biospheres given similar histories.

  11. Mechanistic insights on the responses of plant and ecosystem gas exchange to global environmental change: lessons from Biosphere 2.

    Science.gov (United States)

    Gonzalez-Meler, Miquel A; Rucks, Jessica S; Aubanell, Gerard

    2014-09-01

    Scaling up leaf processes to canopy/ecosystem level fluxes is critical for examining feedbacks between vegetation and climate. Collectively, studies from Biosphere 2 Laboratory have provided important insight of leaf-to-ecosystem investigations of multiple environmental parameters that were not before possible in enclosed or field studies. B2L has been a testing lab for the applicability of new technologies such as spectral approaches to detect spatial and temporal changes in photosynthesis within canopies, or for the development of cavity ring-down isotope applications for ecosystem evapotranspiration. Short and long term changes in atmospheric CO2, drought or temperature allowed for intensive investigation of the interactions between photosynthesis and leaf, soil and ecosystem respiration. Experiments conducted in the rainforest biome have provided some of the most comprehensive dataset to date on the effects of climate change variables on tropical ecosystems. Results from these studies have been later corroborated in natural rainforest ecosystems and have improved the predictive capabilities of models that now show increased resilience of tropics to climate change. Studies of temperature and CO2 effects on ecosystem respiration and its leaf and soil components have helped reconsider the use of simple first-order kinetics for characterizing respiration in models. The B2L also provided opportunities to quantify the rhizosphere priming effect, or establish the relationships between net primary productivity, atmospheric CO2 and isoprene emissions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. 1.3 Radioactivity in the biosphere

    International Nuclear Information System (INIS)

    1985-01-01

    The term biosphere is defined comprising specific properties of the live envelope of the Earth. The classification of its sources is discussed. The concepts of ecology and ecosystem are defined and the differences are characterized between the aquatic and terrestrial ecosystems. Radiation ecology studies the interaction of radioactive materials and of radiation with the environment. Ecologically important radionuclides are listed with their ecological importance and the highest permissible concentrations in the air and water. Radionuclides are classified by their relative toxicity. (J.C.)

  13. Do global change experiments overestimate impacts on terrestrial ecosystems?

    DEFF Research Database (Denmark)

    Leuzinger, Sebastian; Luo, Yiqi; Beier, Claus

    2011-01-01

    In recent decades, many climate manipulation experiments have investigated biosphere responses to global change. These experiments typically examined effects of elevated atmospheric CO2, warming or drought (driver variables) on ecosystem processes such as the carbon and water cycle (response...... of the responses to decline with higher-order interactions, longer time periods and larger spatial scales. This means that on average, both positive and negative global change impacts on the biosphere might be dampened more than previously assumed....... variables). Because experiments are inevitably constrained in the number of driver variables tested simultaneously, as well as in time and space, a key question is how results are scaled up to predict net ecosystem responses. In this review, we argue that there might be a general trend for the magnitude...

  14. Man and the Biosphere: Ground Truthing Coral Reefs for the St. John Island Biosphere Reserve.

    Science.gov (United States)

    Brody, Michael J.; And Others

    Research on the coral species composition of St. John's reefs in the Virgin Islands was conducted through the School for Field Studies (SFS) Coral Reef Ecology course (winter 1984). A cooperative study program based on the United Nations Educational, Scientific, and Cultural Organization's (Unesco) program, Man and the Biosphere, was undertaken by…

  15. Tracer experiment data sets for the verification of local and meso-scale atmospheric dispersion models including topographic effects

    International Nuclear Information System (INIS)

    Sartori, E.; Schuler, W.

    1992-01-01

    Software and data for nuclear energy applications are acquired, tested and distributed by several information centres; in particular, relevant computer codes are distributed internationally by the OECD/NEA Data Bank (France) and by ESTSC and EPIC/RSIC (United States). This activity is coordinated among the centres and is extended outside the OECD area through an arrangement with the IAEA. This article proposes more specifically a scheme for acquiring, storing and distributing atmospheric tracer experiment data (ATE) required for verification of atmospheric dispersion models especially the most advanced ones including topographic effects and specific to the local and meso-scale. These well documented data sets will form a valuable complement to the set of atmospheric dispersion computer codes distributed internationally. Modellers will be able to gain confidence in the predictive power of their models or to verify their modelling skills. (au)

  16. Results from a Set of Three-Dimensional Numerical Experiments of a Hot Jupiter Atmosphere

    Science.gov (United States)

    Mayne, Nathan J.; Debras, Flirian; Baraffe, Isabelle; Thuburn, John; Amundsen, David S.; Acreman, David M.; Smith, Chris; Browning, Matthew K.; Manners, James; Wood Nigel

    2017-01-01

    We present highlights from a large set of simulations of a hot Jupiter atmosphere, nominally based on HD 209458b, aimed at exploring both the evolution of the deep atmosphere, and the acceleration of the zonal flow or jet. We find the occurrence of a super-rotating equatorial jet is robust to changes in various parameters, and over long timescales, even in the absence of strong inner or bottom boundary drag. This jet is diminished in one simulation only, where we strongly force the deep atmosphere equator-to-pole temperature gradient over long timescales. Finally, although the eddy momentum fluxes in our atmosphere show similarities with the proposed mechanism for accelerating jets on tidally-locked planets, the picture appears more complex. We present tentative evidence for a jet driven by a combination of eddy momentum transport and mean flow.

  17. Characteristics of the Receptor for the Biosphere Model

    International Nuclear Information System (INIS)

    Wasiolek, M.A.; Rautenstrauch, K.R.

    2003-01-01

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the products (i.e., analysis and model reports) developed for biosphere modeling and biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (TWP) (BSC 2003). Some documents identified in Figure 1-1 may be under development and not available at the time this report is issued. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and access to the listed documents is not required to understand the contents of this report. This report is one of the reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2003), describes the conceptual model as well as the mathematical model and its input parameters. The purpose of this analysis report is to define values for biosphere model parameters that are related to the dietary, lifestyle, and dosimetric characteristics of the receptor. The biosphere model, consistent with the licensing rule at 10 CFR Part 63, uses a hypothetical person called the reasonably maximally exposed individual (RMEI) to represent the potentially exposed population. The parameters that define the RMEI are based on the behaviors and characteristics of the Amargosa Valley population, consistent with the requirements of 10 CFR 63.312. Amargosa Valley is the community, located in the direction of the projected groundwater flow path, where most of the farming in the area occurs. The parameter values developed in this report support the

  18. Characteristics of the Receptor for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Wasiolek; K.R. Rautenstrauch

    2003-06-27

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the products (i.e., analysis and model reports) developed for biosphere modeling and biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (TWP) (BSC 2003). Some documents identified in Figure 1-1 may be under development and not available at the time this report is issued. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and access to the listed documents is not required to understand the contents of this report. This report is one of the reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2003), describes the conceptual model as well as the mathematical model and its input parameters. The purpose of this analysis report is to define values for biosphere model parameters that are related to the dietary, lifestyle, and dosimetric characteristics of the receptor. The biosphere model, consistent with the licensing rule at 10 CFR Part 63, uses a hypothetical person called the reasonably maximally exposed individual (RMEI) to represent the potentially exposed population. The parameters that define the RMEI are based on the behaviors and characteristics of the Amargosa Valley population, consistent with the requirements of 10 CFR 63.312. Amargosa Valley is the community, located in the direction of the projected groundwater flow path, where most of the farming in the area occurs. The parameter values

  19. Implementing Numerical Experiments Based on the Coupled Model of Atmospheric General Circulation and Thermohaline Ocean One

    Directory of Open Access Journals (Sweden)

    V. P. Parhomenko

    2015-01-01

    Full Text Available The paper presents a realized hydrodynamic three-dimensional global climatic model, which comprises the model blocks of atmospheric general circulation, thermohaline large-scale circulation of the ocean, and sea ice evolution. Before rather strongly aggregated heat-moisturebalance model of the atmosphere for temperature and humidity of a surface layer was used as a model of the atmosphere. The atmospheric general circulation model is significantly more complicated and allows us to describe processes in the atmosphere more adequately. Functioning of a coupled climatic model is considered in conditions of the seasonal cycle of solar radiation.The paper considers a procedure for coupled calculation of the ocean model and atmospheric general circulation model. Synchronization of a number of parameters in both models is necessary for their joint action. In this regard a procedure of two-dimensional interpolation of data defined on the grids of the ocean model and atmosphere model and back is developed. A feature of this task is discrepancy of grid nodes and continental configurations in models. Coupled model-based long-term calculations for more than 400 years have shown its stable work. Calculation results and comparison with observation data are under discussion.The paper shows distribution of mean global atmosphere temperature versus time in stable conditions to demonstrate that there is inter-annual variability of atmosphere temperature at the steady state of a climate system. It presents distribution of temperature difference of the ocean surface from the observations and from the model of the ocean thermohaline circulation for January. Noticeable deviations of temperature are observed near Antarctica. Apparently, it is because of inaccurate calculation of the sea ice distribution in model. The geographical distribution of the ocean surface temperature for January with coupled calculation shows, in general, a zonal uniform structure of isolines

  20. Studies of the Terrestrial Molecular Oxygen and Carbon Cycles in Sand Dune Gases and in Biosphere 2.

    Science.gov (United States)

    Severinghaus, Jeffrey Peck

    Molecular oxygen in the atmosphere is coupled tightly to the terrestrial carbon cycle by the processes of photosynthesis, respiration, and burning. This dissertation examines different aspects of this coupling in four chapters. Chapter 1 explores the feasibility of using air from sand dunes to reconstruct atmospheric O_2 composition centuries ago. Such a record would reveal changes in the mass of the terrestrial biosphere, after correction for known fossil fuel combustion, and constrain the fate of anthropogenic CO_2. Test drilling in sand dunes shows that sand dunes do contain old air, as shown by the concentrations of chlorofluorocarbons and ^{85}Kr. Diffusion is shown to dominate mixing rather than advection. However, biological respiration in dunes corrupts the signal, and isotopic analysis of O_2 and N _2 shows that fractionation of the gases precludes use of sand dunes as archives. Chapter 2 further explores this fractionation, revealing a previously unknown "water vapor flux fractionation" process. A flux of water vapor out of the moist dune into the dry desert air sweeps out the other gases, forcing them to diffuse back into the dune. The heavy isotopes of N_2 and O_2 diffuse more slowly, creating a steady state depletion of heavy isotopes in the dune interior. Molecular diffusion theory and a laboratory simulation of the effect agree well with the observations. Additional fractionation of the dune air occurs via thermal diffusion and gravitational settling, and it is predicted that soil gases in general will enjoy all three effects. Chapter 3 examines the cause of a mysterious drop in O _2 concentrations in the closed ecosystem of Biosphere 2, located near Tucson, Arizona. The organic -rich soil manufactured for the experiment is shown to be the culprit, with CO_2 produced by bacterial respiration of the organic matter reacting with the extensive concrete surfaces inside. Chapter 4 examines the O_2:C stoichiometry of terrestrial soil respiration and

  1. BIOSPHERE MODELING AT YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    NING LIU; JEFFERY, J.; TAPPEN, DE WU; CHAO-HSIUNG TUNG

    1998-01-01

    The objectives of the biosphere modeling efforts are to assess how radionuclides potentially released from the proposed repository could be transported through a variety of environmental media. The study of these transport mechanisms, referred to as pathways, is critical in calculating the potential radiation dose to man. Since most of the existing and pending regulations applicable to the Project are radiation dose based standards, the biosphere modeling effort will provide crucial technical input to support the Viability Assessment (VA), the Working Draft of License Application (WDLA), and the Environmental Impact Statement (EIS). In 1982, the Nuclear Waste Policy Act (NWPA) was enacted into law. This federal law, which was amended in 1987, addresses the national issue of geologic disposal of high-level nuclear waste generated by commercial nuclear power plants, as well as defense programs during the past few decades. As required by the law, the Department of Energy (DOE) is conducting a site characterization project at Yucca Mountain, Nevada, approximately 100 miles northwest of Las Vegas, Nevada, to determine if the site is suitable for the nation's first high-level nuclear waste repository

  2. Distribution of unusual archaea in subsurface biosphere

    Science.gov (United States)

    Takai, Ken; Inagaki, Fumio; Horikoshi, Koki

    Recent microbiological surveys of terrestrial and oceanic subsurface biospheres have revealed that sizable microbial populations are present in global subsurface environments. However, little is known about the community structure, genetic diversity, and distribution pattern of subsurface bacteria and archaea since these surveys are mainly dependent on microscopic observations and conventional cultivation techniques. Culture-independent, molecular phylogenetic techniques are now utilized to explore microbial communities in various subsurface environments such as underground mines, subterrestrial rocks, continental and ocean oil reservoirs, subseafloor sediments and subvent microbial ecosystems. It has become apparent that unique archaeal components are commonly present in these subsurface microbial habitats. The most frequently recovered genetic signatures are of members of the hyperthermophiles Thermococcus. Their unexpected ubiquity even in non-extreme subsurface environments may represent the great biomass potential of probably dormant extremophilic archaea in the global subsurface biosphere. Archaeal populations in deep-sea hydrothermal vents and subvent environments might serve as sources of dormant extremophiles. It therefore appears likely that global and local ocean hydrothermal activities have had a persistent and significant impact on the formation of subsurface microbial communities and the distribution of subsurface microorganisms.

  3. The natural radioactivity of the biosphere

    International Nuclear Information System (INIS)

    Pertsov, L.A.

    1967-01-01

    Of the approximately 1200 isotopes presently known more than 900 are radioactive. The nuclei of these isotopes are unstable and decay spontaneously emitting ionizing gamma-, alpha- or beta-radiation. The overwhelming majority of known radioactive isotopes have been obtained artificially; only a few are natural. Numerous investigations have shown that many of the natural radioactive isotopes can be grouped into three radioactive families. Each such family is characterized by the existence of one long-lived isotope - the family parent, one gaseous isotope of radon, intermediate radioactive decay products and final stable isotopes of atomic weights 206, 207 and 208. No such generic relationship has been established among the remaining natural radioactive isotopes. The purpose of the book, in contrast to some recent review works, is to present, in addition to a summary of reference data characterizing the radioactivity levels of various components of the biosphere, a description of those phenomena and regularities which will apparently make it possible to understand more completely the basic dynamics of the natural radioactivity of the biosphere and, consequently, contribute to a more correct interpretation of radiation-hygiene in each specific case

  4. Interim report on reference biospheres for radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Dorp, F. van [NAGRA (Switzerland)] [and others

    1994-10-01

    Primary criteria for repository safety are commonly expressed in terms of risk or dose, and a biosphere model is required to evaluate the corresponding assessment endpoints. Even when other indicators are used to express the safety goals, a biosphere model is still needed in order to justify those indicators. In safety or performance assessments of a repository, the uncertainties in space and time for the different components of the repository system have to be considered. For the biosphere component, prediction of future human habits, in particular, is extremely uncertain. This is especially important in the assessment of deep geological disposal, which involves very long timescales, particularly for wastes containing very long lived radionuclides. Thus, the results of biosphere modelling should not be seen as predictions, but as illustrations of the consequences that may occur, should the postulated release occur today or under other conditions implied by the underlying biosphere model assumptions. Differences in biosphere modelling approaches arise because of differences in regulations, the nature of the wastes to be disposed of, disposal site characteristics, disposal concepts and purposes of the assessment. Differences in treatment of uncertainties can also arise. For example, if doses or risks are anticipated to be far below regulatory limits, assessments may be based upon simplified and, necessarily, conservative biosphere models. At present biosphere models used to assess radioactive waste disposal show significant differences in the features, events and processes (FEPs) included or excluded. In general, the reasons for these differences have not been well documented or explained. Developments in radioecology have implications for biosphere modelling for radioactive waste disposal. In particular, after the Chernobyl accident, radioecological research has been significantly increased. Results of this research are already having and will continue to have a

  5. Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments

    Directory of Open Access Journals (Sweden)

    C. Hoose

    2012-10-01

    Full Text Available A small subset of the atmospheric aerosol population has the ability to induce ice formation at conditions under which ice would not form without them (heterogeneous ice nucleation. While no closed theoretical description of this process and the requirements for good ice nuclei is available, numerous studies have attempted to quantify the ice nucleation ability of different particles empirically in laboratory experiments. In this article, an overview of these results is provided. Ice nucleation "onset" conditions for various mineral dust, soot, biological, organic and ammonium sulfate particles are summarized. Typical temperature-supersaturation regions can be identified for the "onset" of ice nucleation of these different particle types, but the various particle sizes and activated fractions reported in different studies have to be taken into account when comparing results obtained with different methodologies. When intercomparing only data obtained under the same conditions, it is found that dust mineralogy is not a consistent predictor of higher or lower ice nucleation ability. However, the broad majority of studies agrees on a reduction of deposition nucleation by various coatings on mineral dust. The ice nucleation active surface site (INAS density is discussed as a simple and empirical normalized measure for ice nucleation activity. For most immersion and condensation freezing measurements on mineral dust, estimates of the temperature-dependent INAS density agree within about two orders of magnitude. For deposition nucleation on dust, the spread is significantly larger, but a general trend of increasing INAS densities with increasing supersaturation is found. For soot, the presently available results are divergent. Estimated average INAS densities are high for ice-nucleation active bacteria at high subzero temperatures. At the same time, it is shown that INAS densities of some other biological aerosols, like certain pollen grains, fungal

  6. Validation Study for an Atmospheric Dispersion Model, Using Effective Source Heights Determined from Wind Tunnel Experiments in Nuclear Safety Analysis

    Directory of Open Access Journals (Sweden)

    Masamichi Oura

    2018-03-01

    Full Text Available For more than fifty years, atmospheric dispersion predictions based on the joint use of a Gaussian plume model and wind tunnel experiments have been applied in both Japan and the U.K. for the evaluation of public radiation exposure in nuclear safety analysis. The effective source height used in the Gaussian model is determined from ground-level concentration data obtained by a wind tunnel experiment using a scaled terrain and site model. In the present paper, the concentrations calculated by this method are compared with data observed over complex terrain in the field, under a number of meteorological conditions. Good agreement was confirmed in near-neutral and unstable stabilities. However, it was found to be necessary to reduce the effective source height by 50% in order to achieve a conservative estimation of the field observations in a stable atmosphere.

  7. Decadal trends in the seasonal-cycle amplitude of terrestrial CO2 exchange resulting from the ensemble of terrestrial biosphere models

    Directory of Open Access Journals (Sweden)

    Akihiko Ito

    2016-05-01

    Full Text Available The seasonal-cycle amplitude (SCA of the atmosphere–ecosystem carbon dioxide (CO2 exchange rate is a useful metric of the responsiveness of the terrestrial biosphere to environmental variations. It is unclear, however, what underlying mechanisms are responsible for the observed increasing trend of SCA in atmospheric CO2 concentration. Using output data from the Multi-scale Terrestrial Model Intercomparison Project (MsTMIP, we investigated how well the SCA of atmosphere–ecosystem CO2 exchange was simulated with 15 contemporary terrestrial ecosystem models during the period 1901–2010. Also, we made attempt to evaluate the contributions of potential mechanisms such as atmospheric CO2, climate, land-use, and nitrogen deposition, through factorial experiments using different combinations of forcing data. Under contemporary conditions, the simulated global-scale SCA of the cumulative net ecosystem carbon flux of most models was comparable in magnitude with the SCA of atmospheric CO2 concentrations. Results from factorial simulation experiments showed that elevated atmospheric CO2 exerted a strong influence on the seasonality amplification. When the model considered not only climate change but also land-use and atmospheric CO2 changes, the majority of the models showed amplification trends of the SCAs of photosynthesis, respiration, and net ecosystem production (+0.19 % to +0.50 % yr−1. In the case of land-use change, it was difficult to separate the contribution of agricultural management to SCA because of inadequacies in both the data and models. The simulated amplification of SCA was approximately consistent with the observational evidence of the SCA in atmospheric CO2 concentrations. Large inter-model differences remained, however, in the simulated global tendencies and spatial patterns of CO2 exchanges. Further studies are required to identify a consistent explanation for the simulated and observed amplification trends, including their

  8. Factual biosphere database for Sellafield and the surrounding area

    International Nuclear Information System (INIS)

    Broderick, M.A.

    1991-12-01

    This report documents from open published sources a factual database appropriate to the Sellafield region including the coastal marine environment for present day biosphere conditions. A detailed description of the present day environment in the Sellafield area is provided. This includes a description of the natural environment and climate. Site specific data required for biosphere modelling are also outlined. (author)

  9. Reviewing Biosphere Reserves globally: effective conservation action or bureaucratic label?

    Science.gov (United States)

    Coetzer, Kaera L; Witkowski, Edward T F; Erasmus, Barend F N

    2014-02-01

    The Biosphere Reserve (BR) model of UNESCO's Man and the Biosphere Programme reflects a shift towards more accountable conservation. Biosphere Reserves attempt to reconcile environmental protection with sustainable development; they explicitly acknowledge humans, and human interests in the conservation landscape while still maintaining the ecological values of existing protected areas. Conceptually, this model is attractive, with 610 sites currently designated globally. Yet the practical reality of implementing dual 'conservation' and 'development' goals is challenging, with few examples successfully conforming to the model's full criteria. Here, we review the history of Biosphere Reserves from first inception in 1974 to the current status quo, and examine the suitability of the designation as an effective conservation model. We track the spatial expansion of Biosphere Reserves globally, assessing the influence of the Statutory Framework of the World Network of Biosphere Reserves and Seville strategy in 1995, when the BR concept refocused its core objectives on sustainable development. We use a comprehensive range of case studies to discuss conformity to the Programme, the social and ecological consequences associated with implementation of the designation, and challenges in aligning conservation and development. Given that the 'Biosphere Reserve' label is a relatively unknown designation in the public arena, this review also provides details on popularising the Biosphere Reserve brand, as well as prospects for further research, currently unexploited, but implicit in the designation. © 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.

  10. Factual biosphere database for Dounreay and the surrounding area

    International Nuclear Information System (INIS)

    Broderick, M.A.

    1991-12-01

    This report documents from open published sources a factual database appropriate to the Dounreay region including the coastal marine environment for present day biosphere conditions. A detailed description of the present day environment in the Dounreay area is provided. This includes a description of the natural environment and climate. Site specific data required for biosphere modelling are also outlined. (author)

  11. Infrasound Predictions Using the Weather Research and Forecasting Model: Atmospheric Green's Functions for the Source Physics Experiments 1-6.

    Energy Technology Data Exchange (ETDEWEB)

    Poppeliers, Christian; Aur, Katherine Anderson; Preston, Leiph

    2018-03-01

    This report shows the results of constructing predictive atmospheric models for the Source Physics Experiments 1-6. Historic atmospheric data are combined with topography to construct an atmo- spheric model that corresponds to the predicted (or actual) time of a given SPE event. The models are ultimately used to construct atmospheric Green's functions to be used for subsequent analysis. We present three atmospheric models for each SPE event: an average model based on ten one- hour snap shots of the atmosphere and two extrema models corresponding to the warmest, coolest, windiest, etc. atmospheric snap shots. The atmospheric snap shots consist of wind, temperature, and pressure profiles of the atmosphere for a one-hour time window centered at the time of the predicted SPE event, as well as nine additional snap shots for each of the nine preceding years, centered at the time and day of the SPE event.

  12. Atmospheric proton and deuterium energy spectra determination with the MASS2 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Grimani, C.; Brunetti, M.T.; Codino, A.; Finetti, N. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); Papini, P.; Massimo Brancaccio, F. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Basini, G.; Bongiorno, F. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Golden, R.L. [New Mexico State Univ., Las Cruces, NM (United States). Particle Astrophysics Lab.; Hof, M. [Siegen Univ. (Germany). Fachbereich Physik

    1995-09-01

    The energy spectra of atmospheric-secondary protons and deuterium nuclei have been measured during the September 23, 1991, balloon flight of the NMSU/Wizard - MASS2 instrument. The apparatus was launched from Fort Sumner, New Mexico. The geomagnetic cutoff at the launch site is about 4.5 GV/c. The instrument was flown for 9.8 hours at an altitude of over 100,000 feet. Particles detected below the geomagnetic cutoff have been produced mainly by the interactions of the primary cosmic rays with the atmosphere. The measurement of cosmic ray energy spectra below the geomagnetic cutoff provide direct insights into the particle production mechanism and allows comparison to atmospheric cascade calculations.

  13. The Biosphere as a Living System. On the Harmonization of Human and Biosphere Relationship

    Directory of Open Access Journals (Sweden)

    Alexey Yablokov

    2017-02-01

    Full Text Available The evolution of the biosphere has led to creation of astrophysical and telluric stable perfect system biotic regulation, which based on a high degree of closure of natural cycles. The development of human beings as bio-social, beyond the biological patterns, break these closed cycles, and dramatically broke the biotic regulation of the biosphere. As results — sustainable biosphere has become unsustainable anthroposphere. As with the origin of life physico-chemical regularities of the structure of matter turned out to be “mastered” life, as soon as with the emergence of anthroposphere physical-chemicalbiological regularities of evolution are complemented by social ones (including technology development and of the technosphere — as the essential content of anthroposphere. The result of the violation of natural biotic regulation broke a global environmental crisis that boomerang begins it is dangerous to human. It is theoretically possible to overcome this ecological crisis by the transition from the Neolithic paradigm of “nature conquest”, to the organization of “crisis management” of the biosphere (world system governance by the activity of the society restore and “repair” the damaged processes in the biosphere. This requires a new organization in all areas of human activity, i.e., a fundamentally new paradigm of human behavior on the planet. Development within the paradigm of the Neolithic culture (extensive use of natural resources, is inevitably associated with different kinds of wars in their redistribution, leads to an increasing accumulation of non-degradable waste (tertiary anthropogenic products, determines the fatal instability of anthroposphere and, therefore, unsustainable development of civilization. It is a mistake to assume that human’s dependence on nature is reduced — it takes a different form. The forces of human as an intelligence being, “recollecting himself”, about the offense with lifesupporting

  14. Atmospheric Transport Modeling with 3D Lagrangian Dispersion Codes Compared with SF6 Tracer Experiments at Regional Scale

    Directory of Open Access Journals (Sweden)

    François Van Dorpe

    2007-01-01

    Full Text Available The results of four gas tracer experiments of atmospheric dispersion on a regional scale are used for the benchmarking of two atmospheric dispersion modeling codes, MINERVE-SPRAY (CEA, and NOSTRADAMUS (IBRAE. The main topic of this comparison is to estimate the Lagrangian code capability to predict the radionuclide atmospheric transfer on a large field, in the case of risk assessment of nuclear power plant for example. For the four experiments, the results of calculations show a rather good agreement between the two codes, and the order of magnitude of the concentrations measured on the soil is predicted. Simulation is best for sampling points located ten kilometers from the source, while we note a divergence for more distant points results (difference in concentrations by a factor 2 to 5. This divergence may be explained by the fact that, for these four experiments, only one weather station (near the point source was used on a field of 10 000 km2, generating the simulation of a uniform wind field throughout the calculation domain.

  15. Biosphere models for safety assessment of radioactive waste disposal

    International Nuclear Information System (INIS)

    Proehl, G.; Olyslaegers, G.; Zeevaert, T.; Kanyar, B.; Bergstroem, U.; Hallberg, B.; Mobbs, S.; Chen, Q.; Kowe, R.

    2004-01-01

    The aim of the BioMoSA project has been to contribute in the confidence building of biosphere models, for application in performance assessments of radioactive waste disposal. The detailed objectives of this project are: development and test of practical biosphere models for application in long-term safety studies of radioactive waste disposal to different European locations, identification of features, events and processes that need to be modelled on a site-specific rather than on a generic base, comparison of the results and quantification of the variability of site-specific models developed according to the reference biosphere methodology, development of a generic biosphere tool for application in long term safety studies, comparison of results from site-specific models to those from generic one, Identification of possibilities and limitations for the application of the generic biosphere model. (orig.)

  16. Biosphere models for safety assesment of radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Proehl, G.; Olyslaegers, G.; Zeevaert, T. [SCK/CEN, Mol (Belgium); Kanyar, B. [University of Veszprem (Hungary). Dept. of Radiochemistry; Pinedo, P.; Simon, I. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Bergstroem, U.; Hallberg, B. [Studsvik Ecosafe, Nykoeping (Sweden); Mobbs, S.; Chen, Q.; Kowe, R. [NRPB, Chilton, Didcot (United Kingdom)

    2004-07-01

    The aim of the BioMoSA project has been to contribute in the confidence building of biosphere models, for application in performance assessments of radioactive waste disposal. The detailed objectives of this project are: development and test of practical biosphere models for application in long-term safety studies of radioactive waste disposal to different European locations, identification of features, events and processes that need to be modelled on a site-specific rather than on a generic base, comparison of the results and quantification of the variability of site-specific models developed according to the reference biosphere methodology, development of a generic biosphere tool for application in long term safety studies, comparison of results from site-specific models to those from generic one, Identification of possibilities and limitations for the application of the generic biosphere model. (orig.)

  17. Characteristics of the Receptor for the Biosphere Model

    International Nuclear Information System (INIS)

    M. Wasiolek; K. Rautenstrauch

    2004-01-01

    This analysis report is one of a series of technical reports that document the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the geologic repository at Yucca Mountain. This report is one of the five biosphere reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model, as well as the mathematical model and its input parameters. Figure 1-1 is a graphical representation of the documentation hierarchy for the ERMYN. This figure shows relationships among the products (i.e., scientific analyses and model reports) developed for biosphere modeling and biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The purpose of this analysis report is to define values for biosphere model parameters that are related to the dietary, lifestyle, and dosimetric characteristics of the receptor. The biosphere model, consistent with the licensing rule at 10 CFR Part 63 [DIRS 156605], uses a hypothetical person called the reasonably maximally exposed individual (RMEI) to represent the potentially exposed population. The parameters that define the RMEI are based on the behaviors and characteristics of the residents of the unincorporated town of Amargosa Valley, consistent with the requirements of 10 CFR 63.312 [DIRS 156605]. The output of this report is used as direct input in the two analyses identified in Figure 1-1 that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios. The parameter values developed in this report are reflected in the TSPA through the BDCFs. The analysis was performed in accordance with AP-SIII.9Q, ''Scientific Analyses'', and the technical work plan (BSC 2004 [DIRS 169573])

  18. Characteristics of the Receptor for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek; K. Rautenstrauch

    2004-09-09

    This analysis report is one of a series of technical reports that document the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the geologic repository at Yucca Mountain. This report is one of the five biosphere reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model, as well as the mathematical model and its input parameters. Figure 1-1 is a graphical representation of the documentation hierarchy for the ERMYN. This figure shows relationships among the products (i.e., scientific analyses and model reports) developed for biosphere modeling and biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The purpose of this analysis report is to define values for biosphere model parameters that are related to the dietary, lifestyle, and dosimetric characteristics of the receptor. The biosphere model, consistent with the licensing rule at 10 CFR Part 63 [DIRS 156605], uses a hypothetical person called the reasonably maximally exposed individual (RMEI) to represent the potentially exposed population. The parameters that define the RMEI are based on the behaviors and characteristics of the residents of the unincorporated town of Amargosa Valley, consistent with the requirements of 10 CFR 63.312 [DIRS 156605]. The output of this report is used as direct input in the two analyses identified in Figure 1-1 that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios. The parameter values developed in this report are reflected in the TSPA through the BDCFs. The analysis was performed in accordance with AP-SIII.9Q, ''Scientific Analyses'', and the technical work

  19. Risk of severe climate change impact on the terrestrial biosphere

    International Nuclear Information System (INIS)

    Heyder, Ursula; Schaphoff, Sibyll; Gerten, Dieter; Lucht, Wolfgang

    2011-01-01

    The functioning of many ecosystems and their associated resilience could become severely compromised by climate change over the 21st century. We present a global risk analysis of terrestrial ecosystem changes based on an aggregate metric of joint changes in macroscopic ecosystem features including vegetation structure as well as carbon and water fluxes and stores. We apply this metric to global ecosystem simulations with a dynamic global vegetation model (LPJmL) under 58 WCRP CMIP3 climate change projections. Given the current knowledge of ecosystem processes and projected climate change patterns, we find that severe ecosystem changes cannot be excluded on any continent. They are likely to occur (in > 90% of the climate projections) in the boreal-temperate ecotone where heat and drought stress might lead to large-scale forest die-back, along boreal and mountainous tree lines where the temperature limitation will be alleviated, and in water-limited ecosystems where elevated atmospheric CO 2 concentration will lead to increased water use efficiency of photosynthesis. Considerable ecosystem changes can be expected above 3 K local temperature change in cold and tropical climates and above 4 K in the temperate zone. Sensitivity to temperature change increases with decreasing precipitation in tropical and temperate ecosystems. In summary, there is a risk of substantial restructuring of the global land biosphere on current trajectories of climate change.

  20. TransCom satellite intercomparison experiment: construction of a bias corrected atmospheric CO2 climatology

    NARCIS (Netherlands)

    Saito, R.; Houweling, S.; Patra, P. K.; Belikov, D.; Lokupitiya, R.; Niwa, Y.; Chevallier, F.; Saeki, T.; Maksyutov, S.

    2011-01-01

    A model-based three-dimensional (3-D) climatology of atmospheric CO2 concentrations has been constructed for the analysis of satellite observations, as a priori information in retrieval calculations, and for preliminary evaluation of remote sensing products. The locations of ground-based instruments

  1. Atmospheric Neutrinos

    Directory of Open Access Journals (Sweden)

    Takaaki Kajita

    2012-01-01

    Full Text Available Atmospheric neutrinos are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith angle and energy-dependent deficit of muon-neutrino events. It was found that neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. This paper discusses atmospheric neutrino experiments and the neutrino oscillation studies with these neutrinos.

  2. Picture the Atmosphere: Adding the Arts to Weather, Climate, and Air Quality Learning Experiences

    Science.gov (United States)

    Gardiner, L. S.; Hatheway, B.; Ristvey, J. D., Jr.; Kirn, M.

    2017-12-01

    This presentation will highlight projects that connect visual arts and atmospheric science education - profiling varied strategies designed to help learners of all ages grow their understanding of weather, climate, and air quality with connections to the arts including (1) ways of combining art and geoscience in K-12 education, (2) methods of using art to communicate about science in museum exhibits and the web, and (3) opportunities for fostering a dialog between artists, geoscientists, and the public. For K-12 education, we have developed classroom resources that incorporate the arts in science learning in ways that help students grow their observational skills. Making observations of the environment is a skill that many artists and scientist share, although the observations are for different purposes. Emphasizing the observational skills that both artists and scientists use provides additional pathways for students to understand geoscience. For informal education, we have developed museum exhibits and content for websites and social media that utilize visual art and illustration to facilitate science communication. This allows explanation of atmospheric phenomena and processes that are too small to see, such as greenhouse gases trapping heat or ozone formation, or too large to see such as global atmospheric circulation. These illustrations also help connect with audiences that are not often drawn to geoscience. To foster a dialog between artists, geoscientists, and the public, we host temporary exhibits and public events at the National Center for Atmospheric Research Mesa Lab in Boulder, Colorado, that feature numerous exhibits highlighting connections between art and atmospheric science. This provides innovative opportunities for science education and communication and a forum for conversations between artists and scientists that provides people with different ways of exploring and describing the Earth to find common ground.

  3. Summer Research Internships at Biosphere 2 Center

    Science.gov (United States)

    1998-01-01

    Through the support of NASA's Mission to Planet Earth, Biosphere 2 Center hosted 10 research interns for a 10 week period during the summer of 1998. In addition, we were able to offer scholarships to 10 students for Columbia University summer field courses. Students participating in these programs were involved in numerous earth systems activities, collecting data in the field and conducting analyses in the laboratory. Students enrolled in the field program were expected to design independent research projects as part of their coursework. In addition to laboratory and field research, students participated in weekly research seminars by resident and visiting scientists. Field school students were involved in field trips exposing them to the geology and ecology of the region including Arizona Sonora Desert Museum, Mount Lemmon, Aravaipa Canyon and the Gulf of California. Interns participated in laboratory-based research. All students were expected to complete oral and written presentations of their work during the summer.

  4. BIOPROTA: international collaboration on key technical issues in biosphere aspects of long-term radiological assessment

    International Nuclear Information System (INIS)

    Smith, G.M.; Kerrigan, E.L.; Degnan, P.

    2006-01-01

    BIOPROTA is an international collaborative project which was set up to address key uncertainties in biosphere aspects of assessment of the long-term impact of contaminant releases associated with radioactive waste management. The project began in 2002 and has benefited from the knowledge and experience of organisations from Canada, Finland, France, Japan, Russia, Spain, Sweden, UK and the USA. This paper describes the BIOPROTA objectives and scope, the on-going work programme and methods of work. (author)

  5. Nominal Performance Biosphere Dose Conversion Factor Analysis

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek

    2000-12-21

    The purpose of this report was to document the process leading to development of the Biosphere Dose Conversion Factors (BDCFs) for the postclosure nominal performance of the potential repository at Yucca Mountain. BDCF calculations concerned twenty-four radionuclides. This selection included sixteen radionuclides that may be significant nominal performance dose contributors during the compliance period of up to 10,000 years, five additional radionuclides of importance for up to 1 million years postclosure, and three relatively short-lived radionuclides important for the human intrusion scenario. Consideration of radionuclide buildup in soil caused by previous irrigation with contaminated groundwater was taken into account in the BDCF development. The effect of climate evolution, from the current arid conditions to a wetter and cooler climate, on the BDCF values was evaluated. The analysis included consideration of different exposure pathway's contribution to the BDCFs. Calculations of nominal performance BDCFs used the GENII-S computer code in a series of probabilistic realizations to propagate the uncertainties of input parameters into the output. BDCFs for the nominal performance, when combined with the concentrations of radionuclides in groundwater allow calculation of potential radiation doses to the receptor of interest. Calculated estimates of radionuclide concentration in groundwater result from the saturated zone modeling. The integration of the biosphere modeling results (BDCFs) with the outcomes of the other component models is accomplished in the Total System Performance Assessment (TSPA) to calculate doses to the receptor of interest from radionuclides postulated to be released to the environment from the potential repository at Yucca Mountain.

  6. Disruptive Event Biosphere Doser Conversion Factor Analysis

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek

    2000-12-28

    The purpose of this report was to document the process leading to, and the results of, development of radionuclide-, exposure scenario-, and ash thickness-specific Biosphere Dose Conversion Factors (BDCFs) for the postulated postclosure extrusive igneous event (volcanic eruption) at Yucca Mountain. BDCF calculations were done for seventeen radionuclides. The selection of radionuclides included those that may be significant dose contributors during the compliance period of up to 10,000 years, as well as radionuclides of importance for up to 1 million years postclosure. The approach documented in this report takes into account human exposure during three different phases at the time of, and after, volcanic eruption. Calculations of disruptive event BDCFs used the GENII-S computer code in a series of probabilistic realizations to propagate the uncertainties of input parameters into the output. The pathway analysis included consideration of different exposure pathway's contribution to the BDCFs. BDCFs for volcanic eruption, when combined with the concentration of radioactivity deposited by eruption on the soil surface, allow calculation of potential radiation doses to the receptor of interest. Calculation of radioactivity deposition is outside the scope of this report and so is the transport of contaminated ash from the volcano to the location of the receptor. The integration of the biosphere modeling results (BDCFs) with the outcomes of the other component models is accomplished in the Total System Performance Assessment (TSPA), in which doses are calculated to the receptor of interest from radionuclides postulated to be released to the environment from the potential repository at Yucca Mountain.

  7. Nominal Performance Biosphere Dose Conversion Factor Analysis

    International Nuclear Information System (INIS)

    Wasiolek, M.

    2000-01-01

    The purpose of this report was to document the process leading to development of the Biosphere Dose Conversion Factors (BDCFs) for the postclosure nominal performance of the potential repository at Yucca Mountain. BDCF calculations concerned twenty-four radionuclides. This selection included sixteen radionuclides that may be significant nominal performance dose contributors during the compliance period of up to 10,000 years, five additional radionuclides of importance for up to 1 million years postclosure, and three relatively short-lived radionuclides important for the human intrusion scenario. Consideration of radionuclide buildup in soil caused by previous irrigation with contaminated groundwater was taken into account in the BDCF development. The effect of climate evolution, from the current arid conditions to a wetter and cooler climate, on the BDCF values was evaluated. The analysis included consideration of different exposure pathway's contribution to the BDCFs. Calculations of nominal performance BDCFs used the GENII-S computer code in a series of probabilistic realizations to propagate the uncertainties of input parameters into the output. BDCFs for the nominal performance, when combined with the concentrations of radionuclides in groundwater allow calculation of potential radiation doses to the receptor of interest. Calculated estimates of radionuclide concentration in groundwater result from the saturated zone modeling. The integration of the biosphere modeling results (BDCFs) with the outcomes of the other component models is accomplished in the Total System Performance Assessment (TSPA) to calculate doses to the receptor of interest from radionuclides postulated to be released to the environment from the potential repository at Yucca Mountain

  8. How Close Are We to the Temperature Tipping Point of the Biosphere?

    Science.gov (United States)

    Duffy, K. H.

    2017-12-01

    All biological processes accelerate rapidly with increasing temperature (Tinf); reaching a maximum rate (Tmax), after which they decline. However different biological processes may not be synchronised in their response to increasing temperatures resulting in major dis-equilibria of ecosystem processes. Particularly, the linked processes of photosynthesis and respiration have different curvature that is determined by their inherent sensitivity to temperature. Constraining the difference in temperature curves between photosynthesis and respiration allows us to quantify changes to global carbon metabolism and the land sink of carbon as a whole. During the last century the biosphere has acted as a sink of carbon from the atmosphere partly mitigating accumulation of CO2 derived from burning of fossil fuels Here we ask the following questions: As global temperature increases will photosynthesis and respiration become de-coupled and when? What is Tmax for the land sink, and where is current mean temperature range in regard to this important threshold? At what global and regional temperatures do we expect the biosphere to become a source of carbon to the atmosphere? To address these questions we used the recently released FLUXNET2015 dataset comprised of 212 eddy covariance flux tower sites which concurrently measure land-atmosphere carbon exchange along with micro-meteorological variables. Here, we illustrate our results for Tinf and Tmax of the land sink by biome and for the biosphere as a whole. Our results suggest that recent warming has already pushed us past the inflection point of photosynthesis, and that any additional warming will increase the cumulative annual dose of time spent past Tmax for the land sink. Even under moderate climate projections, we expect to see a slowing of the terrestrial carbon sink by as early as 2040.

  9. Precambrian paleontology and acrochrons of the biosphere evolution: On the theory of the expanding biosphere

    Science.gov (United States)

    Sokolov, B. S.

    2012-04-01

    What is pre-life? We have no idea, since it is hidden in chemical molecules that conceal its future genetic potential. From the biological standpoint, a prokaryotic cyanobacteria cell represents a culmination of biochemical evolution. Its appearance on the Earth marked the starting point of the formation of the first biogeocoenosis on the planet, i.e., the onset of its biosphere. After having started, approximately 4.0-3.7 Ga ago, biosphere evolution has continued uninterrupted on the Earth. Its whole course is reflected in the geochronological record of the stratisphere, the stratified shell of the Earth. In the stratigraphic sense, this record comprises the Archean, Proterozoic (i.e., Karelian and Riphean), and Phanerozoic (i.e., Paleozoic, Mesozoic, and Cenozoic). They correspond to acrochrons, i.e., the main stages in biosphere evolution. According to the Precambrian paleontology, the first three acrochrons represent a pre-Vendian stage in the evolution of unicellular prokaryotic and eukaryotic organisms that terminated in the Riphean with the appearance of their colonial communities. The true metacellular structure of tissue Metaphyta and Metazoa started forming only in the Late Neoproterozoic (Late Riphean). The Vendian Period was marked by a radiation of macrotaxonomic diversity with the appearance of the main multicellular types of the Phanerozoic organization level. Therefore, the last acrochron (lasting from approximately 650 Ma ago) should be considered as corresponding to the Vendian-Phanerozoic period. The Cambrian explosion corresponds to the mass expansion of skeletal Metazoa.

  10. Biospheric feedback effects in a synchronously coupled model of human and Earth systems

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Peter E.; Calvin, Katherine; Jones, Andrew D.; Di Vittorio, Alan V.; Bond-Lamberty, Ben; Chini, Louise; Shi, Xiaoying; Mao, Jiafu; Collins, William D.; Edmonds, Jae; Thomson, Allison; Truesdale, John; Craig, Anthony; Branstetter, Marcia L.; Hurtt, George

    2017-06-12

    Fossil fuel combustion and land-use change are the first and second largest contributors to industrial-era increases in atmospheric carbon dioxide concentration, which is itself the largest driver of present-day climate change1. Projections of fossil fuel consumption and land-use change are thus fundamental inputs for coupled Earth system models (ESM) used to estimate the physical and biological consequences of future climate system forcing2,3. While empirical datasets are available to inform historical analyses4,5, assessments of future climate change have relied on projections of energy and land use based on energy economic models, constrained using historical and present-day data and forced with assumptions about future policy, land-use patterns, and socio-economic development trajectories6. Here we show that the influence of biospheric change – the integrated effect of climatic, ecological, and geochemical processes – on land ecosystems has a significant impact on energy, agriculture, and land-use projections for the 21st century. Such feedbacks have been ignored in previous ESM studies of future climate. We find that synchronous exposure of land ecosystem productivity in the economic system to biospheric change as it develops in an ESM results in a 10% reduction of land area used for crop cultivation; increased managed forest area and land carbon; a 15-20% decrease in global crop price; and a 17% reduction in fossil fuel emissions for a low-mid range forcing scenario7. These simulation results demonstrate that biospheric change can significantly alter primary human system forcings to the climate system. This synchronous two-way coupling approach removes inconsistencies in description of climate change between human and biosphere components of the coupled model, mitigating a major source of uncertainty identified in assessments of future climate projections8-10.

  11. Incorporating representation of agricultural ecosystems and management within a dynamic biosphere model: Approach, validation, and significance

    Science.gov (United States)

    Kucharik, C.

    2004-12-01

    At the scale of individual fields, crop models have long been used to examine the interactions between soils, vegetation, the atmosphere and human management, using varied levels of numerical sophistication. While previous efforts have contributed significantly towards the advancement of modeling tools, the models themselves are not typically applied across larger continental scales due to a lack of crucial data. Furthermore, many times crop models are used to study a single quantity, process, or cycle in isolation, limiting their value in considering the important tradeoffs between competing ecosystem services such as food production, water quality, and sequestered carbon. In response to the need for a more integrated agricultural modeling approach across the continental scale, an updated agricultural version of a dynamic biosphere model (IBIS) now integrates representations of land-surface physics and soil physics, canopy physiology, terrestrial carbon and nitrogen balance, crop phenology, solute transport, and farm management into a single framework. This version of the IBIS model (Agro-IBIS) uses a short 20 to 60-minute timestep to simulate the rapid exchange of energy, carbon, water, and momentum between soils, vegetative canopies, and the atmosphere. The model can be driven either by site-specific meteorological data or by gridded climate datasets. Mechanistic crop models for corn, soybean, and wheat use physiologically-based representations of leaf photosynthesis, stomatal conductance, and plant respiration. Model validation has been performed using a variety of temporal scale data collected at the following spatial scales: (1) the precision-agriculture scale (5 m), (2) the individual field experiment scale (AmeriFlux), and (3) regional and continental scales using annual USDA county-level yield data and monthly satellite (AVHRR) observations of vegetation characteristics at 0.5 degree resolution. To date, the model has been used with great success to

  12. Automated CO2 extraction from air for clumped isotope analysis in the atmo- and biosphere

    Science.gov (United States)

    Hofmann, Magdalena; Ziegler, Martin; Pons, Thijs; Lourens, Lucas; Röckmann, Thomas

    2015-04-01

    The conventional stable isotope ratios 13C/12C and 18O/16O in atmospheric CO2 are a powerful tool for unraveling the global carbon cycle. In recent years, it has been suggested that the abundance of the very rare isotopologue 13C18O16O on m/z 47 might be a promising tracer to complement conventional stable isotope analysis of atmospheric CO2 [Affek and Eiler, 2006; Affek et al. 2007; Eiler and Schauble, 2004; Yeung et al., 2009]. Here we present an automated analytical system that is designed for clumped isotope analysis of atmo- and biospheric CO2. The carbon dioxide gas is quantitatively extracted from about 1.5L of air (ATP). The automated stainless steel extraction and purification line consists of three main components: (i) a drying unit (a magnesium perchlorate unit and a cryogenic water trap), (ii) two CO2 traps cooled with liquid nitrogen [Werner et al., 2001] and (iii) a GC column packed with Porapak Q that can be cooled with liquid nitrogen to -30°C during purification and heated up to 230°C in-between two extraction runs. After CO2 extraction and purification, the CO2 is automatically transferred to the mass spectrometer. Mass spectrometric analysis of the 13C18O16O abundance is carried out in dual inlet mode on a MAT 253 mass spectrometer. Each analysis generally consists of 80 change-over-cycles. Three additional Faraday cups were added to the mass spectrometer for simultaneous analysis of the mass-to-charge ratios 44, 45, 46, 47, 48 and 49. The reproducibility for δ13C, δ18O and Δ47 for repeated CO2 extractions from air is in the range of 0.11o (SD), 0.18o (SD) and 0.02 (SD)o respectively. This automated CO2 extraction and purification system will be used to analyse the clumped isotopic signature in atmospheric CO2 (tall tower, Cabauw, Netherlands) and to study the clumped isotopic fractionation during photosynthesis (leaf chamber experiments) and soil respiration. References Affek, H. P., Xu, X. & Eiler, J. M., Geochim. Cosmochim. Acta 71, 5033

  13. Gaian bottlenecks and planetary habitability maintained by evolving model biospheres: The ExoGaia model

    Science.gov (United States)

    Nicholson, Arwen E.; Wilkinson, David M.; Williams, Hywel T. P.; Lenton, Timothy M.

    2018-03-01

    The search for habitable exoplanets inspires the question - how do habitable planets form? Planet habitability models traditionally focus on abiotic processes and neglect a biotic response to changing conditions on an inhabited planet. The Gaia hypothesis postulates that life influences the Earth's feedback mechanisms to form a self-regulating system, and hence that life can maintain habitable conditions on its host planet. If life has a strong influence, it will have a role in determining a planet's habitability over time. We present the ExoGaia model - a model of simple `planets' host to evolving microbial biospheres. Microbes interact with their host planet via consumption and excretion of atmospheric chemicals. Model planets orbit a `star' which provides incoming radiation, and atmospheric chemicals have either an albedo, or a heat-trapping property. Planetary temperatures can therefore be altered by microbes via their metabolisms. We seed multiple model planets with life while their atmospheres are still forming and find that the microbial biospheres are, under suitable conditions, generally able to prevent the host planets from reaching inhospitable temperatures, as would happen on a lifeless planet. We find that the underlying geochemistry plays a strong role in determining long-term habitability prospects of a planet. We find five distinct classes of model planets, including clear examples of `Gaian bottlenecks' - a phenomenon whereby life either rapidly goes extinct leaving an inhospitable planet, or survives indefinitely maintaining planetary habitability. These results suggest that life might play a crucial role in determining the long-term habitability of planets.

  14. Impact of a global warming on biospheric sources of methane and its climatic consequences

    Science.gov (United States)

    Hameed, S.; Cess, R. D.

    1980-01-01

    Most of atmospheric methane originates by bacterial processes in anaerobic environments within the soil which are found to become more productive with increases in ambient temperature. A warming of climate, due to increasing levels of industrial gases resulting from fossil fuel burning, is thus likely to increase methane abundance within the atmosphere. This may lead to further heating of the atmosphere, since both methane and ozone (which is generated in the troposphere from reactions of methane) have greenhouse effects. This feedback mechanism has been explored with the use of a coupled climate-chemical model of the troposphere, by the calculation of the impact of the predicted global warming due to increased emissions of carbon dioxide and other industrial gases on the biospheric sources of methane.

  15. Remote probing of atmospheric particulates from radiation extinction experiments: A review of methods

    Science.gov (United States)

    Fymat, A. L.

    1976-01-01

    The existing methodology for reconstructing the particle size distribution and inferring the refractive index of absorbing and scattering atmospheric particulates is critically reviewed. Emphasis is placed on method capabilities and shortcomings and, wherever possible, on achievable accuracy. The nature of the associated remote probing problem is analyzed with regard to the effects of the particulates on EM wave propagation in the atmosphere. The parameterization of size distribution is studied within the unifying framework of Pearson's distribution curves. The inversions of extinction measurements and their ratios are considered separately, and the potentialities of each type of measurement are identified. Work lacking in each of the methods reviewed is indicated. A method of determining both the effective complex refractive index and size distribution model parameters from the same data is also presented. Lastly, determination from extinction ratio data of the complex refractive index independent of size distribution is discussed and error analyzed.

  16. Application of biosphere models in the Biomosa project: a comparative assessment of five European radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Kowe, R.; Mobbs, S.; Proehl, G.; Bergstrom, U.; Kanyar, B.; Olyslaegers, G.; Zeevaert, T.; Simon, I.

    2004-01-01

    The BIOMOSA (Biosphere Models for Safety Assessment of Radioactive Waste Disposal) project is a part of the EC fifth framework research programme. The main goal of this project is the improvement of the scientific basis for the application of biosphere models in the framework of long-term safety studies of radioactive waste disposal facilities. Furthermore, the outcome of the project will provide operators and regulatory bodies with guidelines for performance assessments of repository systems. The study focuses on the development and application of site-specific models and a generic biosphere tool BIOGEM (Biosphere Generic Model), using the experience from the national programmes and the IAEA BIOMASS reference biosphere methodology. The models were applied to 5 typical locations in the EU, resulting in estimates of the annual individual doses to the critical groups and the ranking of the importance of the pathways for each of the sites. The results of the site-specific and generic models were then compared. In all cases the doses calculated by the generic model were less than the doses obtained from the site-specific models. Uncertainty in the results was estimated by means of stochastic calculations which allow a comparison of the overall model uncertainty with the variability across the different sites considered. (author)

  17. Characteristics of coupled atmosphere-ocean CO2 sensitivity experiments with different ocean formulations

    International Nuclear Information System (INIS)

    Washington, W.M.; Meehl, G.A.

    1990-01-01

    The Community Climate Model at the National Center for Atmospheric Research has been coupled to a simple mixed-layer ocean model and to a coarse-grid ocean general circulation model (OGCM). This paper compares the responses of simulated climate to increases of atmospheric carbon dioxide (CO 2 ) in these two coupled models. Three types of simulations were run: (1) control runs with both ocean models, with CO 2 held constant at present-day concentrations, (2) instantaneous doubling of atmospheric CO 2 (from 330 to 660 ppm) with both ocean models, and (3) a gradually increasing (transient) CO 2 concentration starting at 330 ppm and increasing linearly at 1% per year, with the OGCM. The mixed-layer and OGCM cases exhibit increases of 3.5 C and 1.6 C, respectively, in globally averaged surface air temperature for the instantaneous doubling cases. The transient-forcing case warms 0.7 C by the end of 30 years. The mixed-layer ocean yields warmer-than-observed tropical temperatures and colder-than-observed temperatures in the higher latitudes. The coarse-grid OGCM simulates lower-than-observed sea surface temperatures (SSTs) in the tropics and higher-than-observed SSTs and reduced sea-ice extent at higher latitudes. Sensitivity in the OGCM after 30 years is much lower than in simulations with the same atmosphere coupled to a 50-m slab-ocean mixed layer. The OGCM simulates a weaker thermohaline circulation with doubled CO 2 as the high-latitude ocean-surface layer warms and freshens and the westerly wind stress decreases. Convective overturning in the OGCM decreases substantially with CO 2 warming

  18. Characteristics of coupled atmosphere-ocean CO2 sensitivity experiments with different ocean formulations

    International Nuclear Information System (INIS)

    Washington, W.M.; Meehl, G.A.

    1991-01-01

    The Community Climate Model at the National Center for Atmospheric Research has been coupled to a simple mixed-layer ocean model and to a coarse-grid ocean general circulation model (OGCM). This paper compares the responses of simulated climate to increases of atmospheric carbon dioxide (CO 2 ) in these two coupled models. Three types of simulations were run: (1) control runs with both ocean models, with CO 2 held constant at present-day concentrations, (2) instantaneous doubling of atmospheric CO 2 (from 330 to 660 ppm) with both ocean models, and (3) a gradually increasing (transient) CO 2 concentration starting at 330 ppm and increasing linearly at 1% per year, with the OGCM. The mixed-layer and OGCM cases exhibit increases of 3.5 C and 1.6 C, respectively, in globally averaged surface air temperature for the instantaneous doubling cases. The transient-forcing case warms 0.7 C by the end of 30 years. The mixed-layer ocean yields warmer-than-observed tropical temperatures and colder-than-observed temperatures in the higher latitudes. The coarse-grid OGCM simulates lower-than-observed sea surface temperatures (SSTs) in the tropics and higher-than-observed SSTs and reduced sea-ice extent at higher latitudes. Sensitivity in the OGCM after 30 years is much lower than in simulations with the same atmosphere coupled to a 50-m slab-ocean mixed layer. The OGCM simulates a weaker thermohaline circulation with doubled CO 2 as the high-latitude ocean-surface layer warms and freshens and the westerly wind stress decreases. Convective overturning in the OGCM decreases substantially with CO 2 warming. 46 refs.; 20 figs.; 1 tab

  19. The Optical Profiling of the Atmospheric Limb (OPAL) CubeSat Experiment

    Science.gov (United States)

    Jeppesen, M.; Miller, J.; Cox, W.; Taylor, M. J.; Swenson, C.; Neilsen, T. L.; Fish, C. S.; Scherliess, L.; Christensen, A. B.; Cleave, M.

    2015-12-01

    The Earth's lower thermosphere is an important interface region between the neutral atmosphere and the "space weather" environment. While the high-latitude region of the thermosphere responds promptly to energy inputs, relatively little is known about the global/regional response to these energy inputs. Global temperatures are predicted to respond within 3-6 hours, but the details of the thermal response of the atmosphere as energy transports away from high-latitude source regions is not well understood. The Optical Profiling of the Atmospheric Limb (OPAL) mission aims to characterize this thermal response through observation of the temperature structure of the lower thermosphere at mid- and low-latitudes. The OPAL instrument is designed to map global thermospheric temperature variability over the critical "thermospheric gap" region (~100-140 km altitude) by spectroscopic analysis of molecular oxygen A-band emission (758 - 768 nm). The OPAL instrument is a grating-based imaging spectrometer with refractive optics and a high-efficiency volume holographic grating (VHG). The scene is sampled by 7 parallel slits that form non-overlapping spectral profiles at the focal plane with resolution of 0.5 nm (spectral), 1.5 km (limb profiling), and 60 km (horizontal sampling). A CCD camera at the instrument focal plane delivers low noise and high sensitivity. The instrument is designed to strongly reject stray light from daylight regions of the earth. The OPAL mission is funded by the National Science Foundation (NSF) CubeSat-based Science Missions for Geospace and Atmospheric Research program. The OPAL instrument, CubeSat bus and mission are being designed, built and executed by a team comprised of students and professors from Utah State University, Dixie State University and the University of Maryland Eastern Shore, with support from professional scientists and engineers from the Space Dynamics Laboratory and Hawk Institute for Space Science.

  20. Social-ecological resilience and biosphere-based sustainability science

    Directory of Open Access Journals (Sweden)

    Carl Folke

    2016-09-01

    Full Text Available Humanity has emerged as a major force in the operation of the biosphere. The focus is shifting from the environment as externality to the biosphere as precondition for social justice, economic development, and sustainability. In this article, we exemplify the intertwined nature of social-ecological systems and emphasize that they operate within, and as embedded parts of the biosphere and as such coevolve with and depend on it. We regard social-ecological systems as complex adaptive systems and use a social-ecological resilience approach as a lens to address and understand their dynamics. We raise the challenge of stewardship of development in concert with the biosphere for people in diverse contexts and places as critical for long-term sustainability and dignity in human relations. Biosphere stewardship is essential, in the globalized world of interactions with the Earth system, to sustain and enhance our life-supporting environment for human well-being and future human development on Earth, hence, the need to reconnect development to the biosphere foundation and the need for a biosphere-based sustainability science.

  1. Natural releases from contaminated groundwater, Example Reference Biosphere 2B

    International Nuclear Information System (INIS)

    Simon, I.; Naito, M.; Thorne, M.C.; Walke, R.

    2005-01-01

    Safety assessment is a tool which, by means of an iterative procedure, allows the evaluation of the performance of a disposal system and its potential impact on human health and the environment. Radionuclides from a deep geological disposal facility may not reach the surface environment until many tens of thousands of years after closure of the facility. The BIOMASS Programme on BIOsphere Modelling and ASSessment developed Examples of 'Reference Biospheres' to illustrate the use of the methodology and to demonstrate how biosphere models can be developed and justified as being fit for purpose. The practical examples are also intended to be useful in their own right. The Example Reference Biosphere 2B presented here involves the consideration of alternative types of geosphere-biosphere interfaces and calculation of doses to members of hypothetical exposure groups arising from a wide range of exposure pathways within agricultural and semi-natural environments, but without allowing for evolution of the corresponding biosphere system. The example presented can be used as a generic analysis in some situations although it was developed around a relatively specific conceptual model. It should be a useful practical example, but the above numerical results are not intended to be understood as prescribed biosphere 'conversion factors'

  2. Agricultural and Environmental Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    Kaylie Rasmuson; Kurt Rautenstrauch

    2003-06-20

    This analysis is one of nine technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. It documents input parameters for the biosphere model, and supports the use of the model to develop Biosphere Dose Conversion Factors (BDCF). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in the biosphere Technical Work Plan (TWP, BSC 2003a). It should be noted that some documents identified in Figure 1-1 may be under development and therefore not available at the time this document is issued. The ''Biosphere Model Report'' (BSC 2003b) describes the ERMYN and its input parameters. This analysis report, ANL-MGR-MD-000006, ''Agricultural and Environmental Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. This report defines and justifies values for twelve parameters required in the biosphere model. These parameters are related to use of contaminated groundwater to grow crops. The parameter values recommended in this report are used in the soil, plant, and carbon-14 submodels of the ERMYN.

  3. Pharmaceutical Residues Affecting the UNESCO Biosphere Reserve Kristianstads Vattenrike Wetlands

    DEFF Research Database (Denmark)

    Björklund, Erland; Svahn, Ola; Bak, Søren Alex

    2016-01-01

    This study is the first to investigate the pharmaceutical burden from point sources affecting the UNESCO Biosphere Reserve Kristianstads Vattenrike, Sweden. The investigated Biosphere Reserve is a >1000 km(2) wetland system with inflows from lakes, rivers, leachate from landfill, and wastewater....../L). A small risk assessment showed that adverse single-substance toxicity on aquatic organisms within the UNESCO Biosphere Reserve is unlikely. However, the effects of combinations of a large number of known and unknown pharmaceuticals, metals, and nutrients are still unknown....

  4. A simplified biosphere model for global climate studies

    Science.gov (United States)

    Xue, Y.; Sellers, P. J.; Kinter, J. L.; Shukla, J.

    1991-01-01

    A comprehensive analysis of the simple biosphere model (SIB) of Sellers et al. (1986) is performed in an effort to bridge the gap between the typical hydrological treatment of the land surface biosphere and the conventional general circulation model treatment, which is specified through a single parameter. Approximations are developed that stimulate the effects of reduced soil moisture more simply, maintaining the essence of the biophysical concepts utilized in SIB. Comparing the reduced parameter biosphere with those from the original formulation in a GCM and a zero-dimensional model shows the simplified version to reproduce the original results quite closely.

  5. Analysis specifications for the CC3 biosphere model biotrac

    Energy Technology Data Exchange (ETDEWEB)

    Szekely, J.G.; Wojciechowski, L.C.; Stephens, M.E.; Halliday, H.A.

    1994-12-01

    The CC3 (Canadian Concept, generation 3) model BIOTRAC (Biosphere Transport and Consequences) describes the movement in the biosphere of releases from an underground disposal vault, and the consequent radiological dose to a reference individual. Concentrations of toxic substances in different parts of the biosphere are also calculated. BIOTRAC was created specifically for the postclosure analyses of the Environmental Impact Statement that AECL is preparing on the concept for disposal of Canada`s nuclear fuel waste. The model relies on certain assumptions and constraints on the system, which are described by Davis et al. Accordingly, great care must be exercised if BIOTRAC is used for any other purpose.

  6. Demonstration of DECOS: representation of four biosphere states

    International Nuclear Information System (INIS)

    Ashton, J.

    1988-09-01

    This report describes the use of the dynamic biosphere code, DECOS, in stand alone mode, to represent a site in four possible biosphere states. The biosphere states have been chosen to illustrate a range of conditions which may prevail at the site. The behaviour of the system in each state has been considered and the capability of DECOS to switch between the states has been demonstrated. The intention of this work is to test the function of DECOS. Results in this report are illustrative and do not form any part of a radiological assessment of the site. (author)

  7. Interim report on reference biospheres for radioactive waste disposal

    International Nuclear Information System (INIS)

    Dorp, F. van

    1994-10-01

    Primary criteria for repository safety are commonly expressed in terms of risk or dose, and a biosphere model is required to evaluate the corresponding assessment endpoints. Even when other indicators are used to express the safety goals, a biosphere model is still needed in order to justify those indicators. In safety or performance assessments of a repository, the uncertainties in space and time for the different components of the repository system have to be considered. For the biosphere component, prediction of future human habits, in particular, is extremely uncertain. This is especially important in the assessment of deep geological disposal, which involves very long timescales, particularly for wastes containing very long lived radionuclides. Thus, the results of biosphere modelling should not be seen as predictions, but as illustrations of the consequences that may occur, should the postulated release occur today or under other conditions implied by the underlying biosphere model assumptions. Differences in biosphere modelling approaches arise because of differences in regulations, the nature of the wastes to be disposed of, disposal site characteristics, disposal concepts and purposes of the assessment. Differences in treatment of uncertainties can also arise. For example, if doses or risks are anticipated to be far below regulatory limits, assessments may be based upon simplified and, necessarily, conservative biosphere models. At present biosphere models used to assess radioactive waste disposal show significant differences in the features, events and processes (FEPs) included or excluded. In general, the reasons for these differences have not been well documented or explained. Developments in radioecology have implications for biosphere modelling for radioactive waste disposal. In particular, after the Chernobyl accident, radioecological research has been significantly increased. Results of this research are already having and will continue to have a

  8. A rotating annulus driven by localized convective forcing: a new atmosphere-like experiment

    Science.gov (United States)

    Scolan, Hélène; Read, Peter L.

    2017-06-01

    We present an experimental study of flows in a cylindrical rotating annulus convectively forced by local heating in an annular ring at the bottom near the external wall and via a cooled circular disk near the axis at the top surface of the annulus. This new configuration is distinct from the classical thermally driven annulus analogue of the atmosphere circulation, in which thermal forcing is applied uniformly on the sidewalls, but with a similar aim to investigate the baroclinic instability of a rotating, stratified flow subjected to zonally symmetric forcing. Two vertically and horizontally displaced heat sources/sinks are arranged, so that in the absence of background rotation, statically unstable Rayleigh-Bénard convection would be induced above the source and beneath the sink, thereby relaxing strong constraints placed on background temperature gradients in previous experimental configurations based on the conventional rotating annulus. This better emulates local vigorous convection in the tropics and polar regions of the atmosphere while also allowing stably-stratified baroclinic motion in the central zone of the annulus, as in mid-latitude regions in the Earth's atmosphere. Regimes of flow are identified, depending mainly upon control parameters that in turn depend on rotation rate and the strength of differential heating. Several regimes exhibit baroclinically unstable flows which are qualitatively similar to those previously observed in the classical thermally driven annulus. However, in contrast to the classical configuration, they typically exhibit more spatio-temporal complexity. Thus, several regimes of flow demonstrate the equilibrated co-existence of, and interaction between, free convection and baroclinic wave modes. These new features were not previously observed in the classical annulus and validate the new setup as a tool for exploring fundamental atmosphere-like dynamics in a more realistic framework. Thermal structure in the fluid is

  9. Carbon-14 in the biosphere: Modeling and supporting research for the Canadian Nuclear Fuel Waste Management program

    International Nuclear Information System (INIS)

    Sheppard, S.C.; Amiro, B.D.; Sheppard, M.I.; Stephenson, M.; Zach, R.; Bird, G.A.

    1994-01-01

    Carbon-14 stands apart from most of the radionuclides present in nuclear fuel waste for several reasons. It has a relatively long radiological half-life and low retardation by granitic geological media so that 14 C is superceded only by 36 Cl and 129 I in potential release to the biosphere from unprocessed used fuel. In the biosphere, its importance continues because it is readily incorporated into the carbon compounds of life. Much of the behavior of 14 C in the biosphere can be conceptualized as isotopic exchange, where the 14 C mixes with 12 C from the biosphere. However, because of lack of data, the authors model the behavior of 14 C only partly as isotopic exchange, with most of the calculations relying on compartment transfer models. The authors experimental work has shown that soil-to-plant transfer may be dominated by the soil-atmosphere-plant pathway. Gaseous loss of 14 C from soils and lakes is significant. However, recalcitrant forms may persist in soils and sediments for long time periods. The impact of these forms is expected to be relatively low because their bioavailability is correspondingly low. Future research should be directed to support full modeling of 14 C as a series of isotopic exchange processes

  10. Investigation of the external flow analysis for density measurements at high altitude. [shuttle upper atmosphere mass spectrometer experiment

    Science.gov (United States)

    Bienkowski, G. K.

    1983-01-01

    A Monte Carlo program was developed for modeling the flow field around the space shuttle in the vicinity of the shuttle upper atmosphere mass spectrometer experiment. The operation of the EXTERNAL code is summarized. Issues associated with geometric modeling of the shuttle nose region and the modeling of intermolecular collisions including rotational energy exchange are discussed as well as a preliminary analysis of vibrational excitation and dissociation effects. The selection of trial runs is described and the parameters used for them is justified. The original version and the modified INTERNAL code for the entrance problem are reviewed. The code listing is included.

  11. Low-energy-electron interactions with DNA: approaching cellular conditions with atmospheric experiments

    International Nuclear Information System (INIS)

    Alizadeh, E.; Sanche, L.

    2014-01-01

    A novel technique has been developed to investigate low energy electron (LEE)-DNA interactions in the presence of small biomolecules (e.g., N 2 , O 2 , H 2 O) found near DNA in the cell nucleus, in order to simulate cellular conditions. In this technique, LEEs are emitted from a metallic surface exposed by soft X-rays and interact with DNA thin films at standard ambient temperature and pressure (SATP). Whereas atmospheric N 2 had little effect on the yields of LEE-induced single and double strand breaks, both O 2 and H 2 O considerably modified and increased such damage. The highest yields were obtained when DNA is embedded in a combined O 2 and H 2 O atmosphere. In this case, the amount of additional double strand breaks was supper-additive. The effect of modifying the chemical and physical stability of DNA by platinum-based chemotherapeutic agents (Pt-drugs) including cisplatin, carboplatin and oxaliplatin was also investigated with this technique. The results obtained provide information on the role played by subexcitation-energy electrons and dissociative electron attachment in the radiosensitization of DNA by Pt-drugs, which is an important step to unravel the mechanisms of radiosensitization of these agents in chemo-radiation cancer therapy. (authors)

  12. Uptake of atmospheric trace gases by organic films: experiment and modelling

    Science.gov (United States)

    Donaldson, D. J.; Demou, E.; Visram, H.; Makar, P. A.; Chaudhuri, S. R.

    2003-04-01

    The presence of large mass fractions of organic compounds in atmospheric particles impacts both on the cloud-condensation nucleating abilities of these particle and on the sequesterization of trace atmospheric gases by them. We are using thin (a few micrometers thick) organic films as model laboratory substrates for studying the sequesterization of trace gases in a controlled fashion. I will describe our results on the uptake of water and of trace organic species onto organic films containing a range of functional groups, using a combination of experimental and absorptive partitioning calculations. The uptake of water onto organic films is measured using a quartz crystal microbalance; uptake of trace organics is studied in a newly built Knudsen cell apparatus. Gas-condensed phase modelling using UNIFAC predicts the water uptake curves for some partially oxidized substrates (1-octanol, octanoic acid, 1,5 dipentanol) moderately well, but has much lower accuracy for dodecane, malonic acid or 1,8 dioctanol. Quantitative comparisons of the model with measurements will be presented, and the causes for the differences in accuracy will be discussed.

  13. Low-energy-electron interactions with DNA: approaching cellular conditions with atmospheric experiments

    Science.gov (United States)

    Alizadeh, Elahe; Sanche, Léon

    2014-04-01

    A novel technique has been developed to investigate low energy electron (LEE)-DNA interactions in the presence of small biomolecules (e.g., N2, O2, H2O) found near DNA in the cell nucleus, in order to simulate cellular conditions. In this technique, LEEs are emitted from a metallic surface exposed by soft X-rays and interact with DNA thin films at standard ambient temperature and pressure (SATP). Whereas atmospheric N2 had little effect on the yields of LEE-induced single and double strand breaks, both O2 and H2O considerably modified and increased such damage. The highest yields were obtained when DNA is embedded in a combined O2 and H2O atmosphere. In this case, the amount of additional double strand breaks was supper-additive. The effect of modifying the chemical and physical stability of DNA by platinum-based chemotherapeutic agents (Pt-drugs) including cisplatin, carboplatin and oxaliplatin was also investigated with this technique. The results obtained provide information on the role played by subexcitation-energy electrons and dissociative electron attachment in the radiosensitization of DNA by Pt-drugs, which is an important step to unravel the mechanisms of radiosensitisation of these agents in chemoradiation cancer therapy.

  14. Remote sensing for global change, climate change and atmosphere and ocean forecasting. Volume 1

    International Nuclear Information System (INIS)

    1992-01-01

    This volume is separated in three sessions. First part is on remote sensing for global change (with global modelling, land cover change on global scale, ocean colour studies of marine biosphere, biological and hydrological interactions and large scale experiments). Second part is on remote sensing for climate change (with earth radiation and clouds, sea ice, global climate research programme). Third part is on remote sensing for atmosphere and ocean forecasting (with temperatures and humidity, winds, data assimilation, cloud imagery, sea surface temperature, ocean waves and topography). (A.B.). refs., figs., tabs

  15. Rewiring food systems to enhance human health and biosphere stewardship

    Science.gov (United States)

    Gordon, Line J.; Bignet, Victoria; Crona, Beatrice; Henriksson, Patrik J. G.; Van Holt, Tracy; Jonell, Malin; Lindahl, Therese; Troell, Max; Barthel, Stephan; Deutsch, Lisa; Folke, Carl; Jamila Haider, L.; Rockström, Johan; Queiroz, Cibele

    2017-10-01

    Food lies at the heart of both health and sustainability challenges. We use a social-ecological framework to illustrate how major changes to the volume, nutrition and safety of food systems between 1961 and today impact health and sustainability. These changes have almost halved undernutrition while doubling the proportion who are overweight. They have also resulted in reduced resilience of the biosphere, pushing four out of six analysed planetary boundaries across the safe operating space of the biosphere. Our analysis further illustrates that consumers and producers have become more distant from one another, with substantial power consolidated within a small group of key actors. Solutions include a shift from a volume-focused production system to focus on quality, nutrition, resource use efficiency, and reduced antimicrobial use. To achieve this, we need to rewire food systems in ways that enhance transparency between producers and consumers, mobilize key actors to become biosphere stewards, and re-connect people to the biosphere.

  16. Environmental Transport Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    Wasiolek, M. A.

    2003-01-01

    This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (TWP) (BSC 2003 [163602]). Some documents in Figure 1-1 may be under development and not available when this report is issued. This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA), but access to the listed documents is not required to understand the contents of this report. This report is one of the reports that develops input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2003 [160699]) describes the conceptual model, the mathematical model, and the input parameters. The purpose of this analysis is to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or volcanic ash). The analysis was performed in accordance with the TWP (BSC 2003 [163602]). This analysis develops values of parameters associated with many features, events, and processes (FEPs) applicable to the reference biosphere (DTN: M00303SEPFEPS2.000 [162452]), which are addressed in the biosphere model (BSC 2003 [160699]). The treatment of these FEPs is described in BSC (2003 [160699], Section 6.2). Parameter values

  17. Biosphere reserves – learning sites of sustainable development?

    Czech Academy of Sciences Publication Activity Database

    Kušová, Drahomíra; Těšitel, Jan; Bartoš, Michael

    2008-01-01

    Roč. 14, č. 3 (2008), s. 221-234 ISSN 1211-7420 Institutional research plan: CEZ:AV0Z60870520 Keywords : nature protection * learning sites * biosphere reserves * sustainable development Subject RIV: DO - Wilderness Conservation

  18. NACP Site: Terrestrial Biosphere Model Output Data in Original Format

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains the original model output data submissions from the 24 terrestrial biosphere models (TBM) that participated in the North American...

  19. NACP Site: Terrestrial Biosphere Model Output Data in Original Format

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains the original model output data submissions from the 24 terrestrial biosphere models (TBM) that participated in the North American Carbon...

  20. Environmental Transport Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. A. Wasiolek

    2003-06-27

    This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (TWP) (BSC 2003 [163602]). Some documents in Figure 1-1 may be under development and not available when this report is issued. This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA), but access to the listed documents is not required to understand the contents of this report. This report is one of the reports that develops input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2003 [160699]) describes the conceptual model, the mathematical model, and the input parameters. The purpose of this analysis is to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or volcanic ash). The analysis was performed in accordance with the TWP (BSC 2003 [163602]). This analysis develops values of parameters associated with many features, events, and processes (FEPs) applicable to the reference biosphere (DTN: M00303SEPFEPS2.000 [162452]), which are addressed in the biosphere model (BSC 2003 [160699]). The treatment of these FEPs is described in BSC (2003 [160699

  1. Inhalation Exposure Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    M. A. Wasiolek

    2003-01-01

    This analysis is one of the nine reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2003a) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents a set of input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for a Yucca Mountain repository. This report, ''Inhalation Exposure Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003b). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available at that time. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this analysis report. This analysis report defines and justifies values of mass loading, which is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Measurements of mass loading are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air surrounding crops and concentrations in air inhaled by a receptor. Concentrations in air to which the

  2. Inhalation Exposure Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. A. Wasiolek

    2003-09-24

    This analysis is one of the nine reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2003a) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents a set of input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for a Yucca Mountain repository. This report, ''Inhalation Exposure Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003b). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available at that time. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this analysis report. This analysis report defines and justifies values of mass loading, which is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Measurements of mass loading are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air surrounding crops and concentrations in air

  3. Characteristics of the Receptor for the Biosphere Model

    International Nuclear Information System (INIS)

    M.A. Wasiolek

    2005-01-01

    This analysis report is one of a series of technical reports that document the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the geologic repository at Yucca Mountain. This report is one of the five biosphere reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model, as well as the mathematical model and its input parameters. Figure 1-1 is a graphical representation of the documentation hierarchy for the ERMYN. This figure shows relationships among the products (i.e., scientific analyses and model reports) developed for biosphere modeling and biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2005 [DIRS 172782]). The purpose of this analysis report is to define values for biosphere model parameters that are related to the dietary, lifestyle, and dosimetric characteristics of the receptor. The biosphere model, consistent with the licensing rule at 10 CFR Part 63 [DIRS 173164], uses a hypothetical person called the reasonably maximally exposed individual (RMEI) to represent the potentially exposed population. The parameters that define the RMEI are based on the behaviors and characteristics of the residents of the unincorporated town of Amargosa Valley, consistent with the requirements of 10 CFR 63.312 [DIRS 173164]. The output of this report is used as direct input in the two analyses identified in Figure 1-1 that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios. The parameter values developed in this report are reflected in the TSPA through the BDCFs. The analysis was performed in accordance with LP-SIII.9Q-BSC, ''Scientific Analyses'', and the technical work plan (BSC 2005 [DIRS 172782]). The scope of the revision was

  4. Characteristics of the Receptor for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Wasiolek

    2005-04-05

    This analysis report is one of a series of technical reports that document the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the geologic repository at Yucca Mountain. This report is one of the five biosphere reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model, as well as the mathematical model and its input parameters. Figure 1-1 is a graphical representation of the documentation hierarchy for the ERMYN. This figure shows relationships among the products (i.e., scientific analyses and model reports) developed for biosphere modeling and biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2005 [DIRS 172782]). The purpose of this analysis report is to define values for biosphere model parameters that are related to the dietary, lifestyle, and dosimetric characteristics of the receptor. The biosphere model, consistent with the licensing rule at 10 CFR Part 63 [DIRS 173164], uses a hypothetical person called the reasonably maximally exposed individual (RMEI) to represent the potentially exposed population. The parameters that define the RMEI are based on the behaviors and characteristics of the residents of the unincorporated town of Amargosa Valley, consistent with the requirements of 10 CFR 63.312 [DIRS 173164]. The output of this report is used as direct input in the two analyses identified in Figure 1-1 that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios. The parameter values developed in this report are reflected in the TSPA through the BDCFs. The analysis was performed in accordance with LP-SIII.9Q-BSC, ''Scientific Analyses'', and the technical work

  5. Sensitivity of global greenhouse gas budgets to tropospheric ozone pollution mediated by the biosphere

    Science.gov (United States)

    Wang, Bin; Shugart, Herman H.; Lerdau, Manuel T.

    2017-08-01

    Tropospheric ozone (O3), a harmful secondary air pollutant, can affect the climate via direct radiative forcing and by modifying the radiative forcing of aerosols through its role as an atmospheric oxidant. Moreover, O3 exerts a strong oxidative pressure on the biosphere and indirectly influences the climate by altering the materials and energy exchange between terrestrial ecosystems and the atmosphere. However, the magnitude by which O3 affects the global budgets of greenhouse gases (GHGs: CO2, CH4, and N2O) through altering the land-atmosphere exchange is largely unknown. Here we assess the sensitivity of these budgets to tropospheric O3 pollution based on a meta-analysis of experimental studies on the effects of elevated O3 on GHG exchange between terrestrial ecosystems and the atmosphere. We show that across ecosystems, elevated O3 suppresses N2O emissions and both CH4 emissions and uptake, and has little impact on stimulation of soil CO2 emissions except at relatively high concentrations. Therefore, the soil system would be transformed from a sink into a source of GHGs with O3 levels increasing. The global atmospheric budget of GHGs is sensitive to O3 pollution largely because of the carbon dioxide accumulation resulting from suppressed vegetation carbon uptake; the negative contributions from suppressed CH4 and N2O emissions can offset only ˜10% of CO2 emissions from the soil-vegetation system. Based on empirical data, this work, though with uncertainties, provides the first assessment of sensitivity of global budgets of GHGs to O3 pollution, representing a necessary step towards fully understanding and evaluating O3-climate feedbacks mediated by the biosphere.

  6. Post-closure performance assessment treatment of the biosphere

    International Nuclear Information System (INIS)

    Broderick, M.A.; Egan, M.J.; Thorne, M.C.; Williams, J.A.

    1996-01-01

    The Nirex strategy for radioactive waste disposal is based on a system of engineered and natural barriers, providing long-term isolation of the waste from those parts of the environment that are in contact with or readily available for use by humans (i.e. the biosphere). Even so, there remains the possibility that, on a timescale of thousands to tens of thousands of years, small quantities of poorly-sorbed, long-lived radionuclides may be released from the engineered disposal system, ultimately to emerge into the biosphere. Biosphere models are used in post-closure performance assessments to quantify the competing effects of dilution and accumulation processes on radionuclide concentrations in the accessible environment. Understanding biosphere processes and their time dependence is necessary not only to determine the radiological impact of possible future releases, but also to characterise the dynamics of transport in groundwater and the location, duration and extent of any such releases. Nirex is developing a new biosphere model for use in post-closure radiological assessments for the proposed Sellafield repository. A compartment modelling approach has been adopted, as in studies performed previously, but the system will be dynamic, allowing changes with time in both the properties of compartments and the transfers between compartments. The transport model considers both mass transport within the biosphere and the migration of radionuclides, thereby ensuring that a self-consistent description of the biosphere, in a spatially-extensive domain is maintained. The above approach is designed to link the assessment models used by the Nirex assessment team more closely into the Nirex biosphere research programme than has hitherto been possible with time-invariant assessment models. (author)

  7. Human Effects Upon Revolutionary Processes in the Biosphere

    OpenAIRE

    Cairns, John

    2011-01-01

    Persuasive evidence indicates that the biosphere is experiencing a major biotic crisis and even if humankind ceases stress on natural systems, the crisis will most likely disrupt or alter the surviving ecosystems. The new altered biosphere will be difficult to understand and adapt to within the next five to ten generations. Extinction is a continual process; however, at great intervals, a mass extinction occurs and new species will replace most of the extinct species. The global problems caus...

  8. Spanish methodological approach for biosphere assessment of radioactive waste disposal

    International Nuclear Information System (INIS)

    Agueero, A.; Pinedo, P.; Cancio, D.; Simon, I.; Moraleda, M.; Perez-Sanchez, D.; Trueba, C.

    2007-01-01

    The development of radioactive waste disposal facilities requires implementation of measures that will afford protection of human health and the environment over a specific temporal frame that depends on the characteristics of the wastes. The repository design is based on a multi-barrier system: (i) the near-field or engineered barrier, (ii) far-field or geological barrier and (iii) the biosphere system. Here, the focus is on the analysis of this last system, the biosphere. A description is provided of conceptual developments, methodological aspects and software tools used to develop the Biosphere Assessment Methodology in the context of high-level waste (HLW) disposal facilities in Spain. This methodology is based on the BIOMASS 'Reference Biospheres Methodology' and provides a logical and systematic approach with supplementary documentation that helps to support the decisions necessary for model development. It follows a five-stage approach, such that a coherent biosphere system description and the corresponding conceptual, mathematical and numerical models can be built. A discussion on the improvements implemented through application of the methodology to case studies in international and national projects is included. Some facets of this methodological approach still require further consideration, principally an enhanced integration of climatology, geography and ecology into models considering evolution of the environment, some aspects of the interface between the geosphere and biosphere, and an accurate quantification of environmental change processes and rates

  9. 'Reference Biospheres' for solid radioactive waste disposal: the BIOMASS Methodology

    International Nuclear Information System (INIS)

    Crossland, I.G.; Pinedo, P.; Kessler, J.H.; Torres-Vidal, C.; Walters, B.

    2005-01-01

    The BIOMASS Theme 1 project has developed a methodology for the logical and defensible construction of 'assessment biospheres': mathematical representations of biospheres used in the total system performance assessment of radioactive waste disposal. The BIOMASS Methodology provides a systematic approach to decision making, including decisions on how to address biosphere change. The BIOMASS Methodology was developed through consultation and collaboration with many relevant organisations, including regulators, operators and a variety of independent experts. It has been developed to be practical and to be consistent with recommendations from ICRP and IAEA on radiation protection in the context of the disposal of long-lived solid radioactive wastes. The five main steps in the methodology are described in this paper. The importance of a clear assessment context, to clarify intentions and to support a coherent biosphere assessment process within an overall repository performance assessment, is strongly emphasised. A well described assessment context is an important tool for ensuring consistency across the performance assessment as a whole. The use of interaction matrices has been found to be helpful in clarifying the interactions between different habitats within the biosphere system and the significant radionuclide transfer pathways within the biosphere system. Matrices also provide a useful means of checking for consistency

  10. Agricultural and Environmental Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    K. Rasmuson; K. Rautenstrauch

    2004-09-14

    This analysis is one of 10 technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) (i.e., the biosphere model). It documents development of agricultural and environmental input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the ERMYN and its input parameters.

  11. Sulfuric Acid Vapor in the Atmosphere of Venus as Observed by the Venus Express Radio Science Experiment VeRa

    Science.gov (United States)

    Oschlisniok, Janusz; Pätzold, Martin; Häusler, Bernd; Tellmann, Silvia; Bird, Michael; Andert, Thomas

    2017-10-01

    The cloud deck within Venus' atmosphere, which covers the entire planet between approx. 50 and 70 km altitude, consists mostly of liquid and gaseous sulfuric acid. The gaseous part increases strongly just below the main clouds and builds an approx. 15 km thick haze layer of H2SO4. This region is responsible for a strong absorption of radio waves as seen in Mariner, Pioneer Venus, Magellan and Venera radio science observations. The amount of H2SO4 is derived from the observed absorption as a function of altitude and latitude. The radio science experiment VeRa onboard Venus Express probed the atmosphere of Venus between 2006 and 2015 with radio signals at 13 cm (S-band) and 3.6 cm (X-band) wavelengths. The orbit of the Venus Express spacecraft allowed to sound the atmosphere over a wide range of latitudes and local times providing a global picture of the sulfuric acid vapor distribution. We present absorptivity and H2SO4 profiles derived from X-band signal attenuation for the time of the entire Venus Express mission. More than 600 H2SO4 profiles show the global sulfuric acid vapor distribution covering the northern and southern hemisphere on the day- and night side of the planet. A distinct latitudinal H2SO4 gradient and a southern northern symmetry are clearly visible. Observations over 8 years allow to study also long-term variations. Indications for temporal H2SO4 variations are found, at least at northern polar latitudes. The results shall be compared with observations retrieved by other experiments (VIRTIS, SPICAV) onboard Venus Express as well as with previous observations like Mariner, Pioneer Venus and the Magellan spacecraft.

  12. Sulfuric Acid Vapor in the Atmosphere of Venus as observed by the Venus Express Radio Science Experiment VeRa.

    Science.gov (United States)

    Oschlisniok, J.; Paetzold, M.; Häusler, B.; Tellmann, S.; Bird, M. K.; Andert, T.

    2017-12-01

    The cloud deck within Venus' atmosphere, which covers the entire planet between approx. 50 and 70 km altitude, consists mostly of liquid and gaseous sulfuric acid. The gaseous part increases strongly just below the main clouds and builds an approx. 15 km thick haze layer of H2SO4. This region is responsible for a strong absorption of radio waves as seen in Mariner, Pioneer Venus, Magellan and Venera radio science observations. The amount of H2SO4 is derived from the observed absorption as a function of altitude and latitude. The radio science experiment VeRa onboard Venus Express probed the atmosphere of Venus between 2006 and 2015 with radio signals at 13 cm (S-band) and 3.6 cm (X-band) wavelengths. The orbit of the Venus Express spacecraft allowed to sound the atmosphere over a wide range of latitudes and local times providing a global picture of the sulfuric acid vapor distribution. We present absorptivity and H2SO4 profiles derived from X-band signal attenuation for the time of the entire Venus Express mission. More than 600 H2SO4 profiles show the global sulfuric acid vapor distribution covering the northern and southern hemisphere on the day- and night side of the planet. A distinct latitudinal H2SO4 gradient and a southern northern symmetry are clearly visible. Observations over 8 years allow to study also long-term variations. Indications for temporal H2SO4 variations are found, at least at northern polar latitudes. The results shall be compared with observations retrieved by other experiments (VIRTIS, SPICAV) onboard Venus Express as well as with previous observations like Mariner, Pioneer Venus and the Magellan spacecraft.

  13. Urban atmospheres.

    Science.gov (United States)

    Gandy, Matthew

    2017-07-01

    What is an urban atmosphere? How can we differentiate an 'atmosphere' from other facets of urban consciousness and experience? This essay explores some of the wider cultural, political, and philosophical connotations of atmospheres as a focal point for critical reflections on space and subjectivity. The idea of an 'affective atmosphere' as a distinctive kind of mood or shared corporeal phenomenon is considered in relation to recent developments in phenomenology, extended conceptions of agency, and new understandings of materialism. The essay draws in particular on the changing characteristics of air and light to reflect on different forms of sensory experience and their wider cultural and political connotations. The argument highlights some of the tensions and anomalies that permeate contemporary understandings of urban atmospheres.

  14. Global atmospheric response to specific linear combinations of the main SST modes. Part I: numerical experiments and preliminary results

    Directory of Open Access Journals (Sweden)

    S. Trzaska

    1996-10-01

    Full Text Available This article investigates through numerical experiments the controversial question of the impact of El Niño-Southern Oscillation (ENSO phenomena on climate according to large-scale and regional-scale interhemispheric thermal contrast. Eight experiments (two considering only inversed Atlantic thermal anomalies and six combining ENSO warm phase with large-scale interhemispheric contrast and Atlantic anomaly patterns were performed with the Météo-France atmospheric general circulation model. The definition of boundary conditions from observed composites and principal components is presented and preliminary results concerning the month of August, especially over West Africa and the equatorial Atlantic are discussed. Results are coherent with observations and show that interhemispheric and regional scale sea-surface-temperature anomaly (SST patterns could significantly modulate the impact of ENSO phenomena: the impact of warm-phase ENSO, relative to the atmospheric model intercomparison project (AMIP climatology, seems stronger when embedded in global and regional SSTA patterns representative of the post-1970 conditions [i.e. with temperatures warmer (colder than the long-term mean in the southern hemisphere (northern hemisphere]. Atlantic SSTAs may also play a significant role.

  15. Experiment plan for characterization of the properties of molten rock at atmospheric and elevated pressures: Magma Energy Research Project

    Energy Technology Data Exchange (ETDEWEB)

    Modreski, P.J.

    1979-02-01

    Knowledge of the properties of molten rock (magma) is of importance to the Magma Energy Research Project of Sandia Laboratories. Facilities have been set up at Sandia to study the physical properties, chemistry, and corrosive nature of magma to 1600/sup 0/C and from atmospheric pressure to 4 kbar (400 MPa). Experiments at atmospheric pressure are being done in the presence of multicomponent gas mixtures to control the chemical activities of oxygen and sulfur. The high-pressure apparatus includes cold-seal small-volume pressure vessels (to 1100/sup 0/C and 1 kbar) and a large (750 cm/sup 3/ sample volume), internally heated pressure vessel (to 1600/sup 0/C and 4 kbar). The large vessel contains a number of penetrations for electrical leads and pressure lines, and is linked to a computer for data acquisition and control of experiments. Water and other dissolved volatiles (CO/sub 2/, CO, SO/sub 2/, S/sub 2/, H/sub 2/S, HCl, HF) have significant effects on all the properties of magma, and these effects will be studied in the high-pressure apparatus. Phase equilibria, viscosity, electrical conductivity, and materials compatibility will be the first properties to be examined under pressure. This report includes a review of the nature and chemical basis for the effects of dissolved volatiles on these properties of magma. 70 references, 10 figures.

  16. Scaling water and energy fluxes in climate systems - Three land-atmospheric modeling experiments

    Science.gov (United States)

    Wood, Eric F.; Lakshmi, Venkataraman

    1993-01-01

    Three numerical experiments that investigate the scaling of land-surface processes - either of the inputs or parameters - are reported, and the aggregated processes are compared to the spatially variable case. The first is the aggregation of the hydrologic response in a catchment due to rainfall during a storm event and due to evaporative demands during interstorm periods. The second is the spatial and temporal aggregation of latent heat fluxes, as calculated from SiB. The third is the aggregation of remotely sensed land vegetation and latent and sensible heat fluxes using TM data from the FIFE experiment of 1987 in Kansas. In all three experiments it was found that the surface fluxes and land characteristics can be scaled, and that macroscale models based on effective parameters are sufficient to account for the small-scale heterogeneities investigated.

  17. Perdigão 2015: methodology for atmospheric multi-Doppler lidar experiments

    Science.gov (United States)

    Vasiljević, Nikola; Palma, José M. L. M.; Angelou, Nikolas; Matos, José Carlos; Menke, Robert; Lea, Guillaume; Mann, Jakob; Courtney, Michael; Frölen Ribeiro, Luis; Gomes, Vitor M. M. G. C.

    2017-09-01

    The long-range and short-range WindScanner systems (LRWS and SRWS), multi-Doppler lidar instruments, when combined together can map the turbulent flow around a wind turbine and at the same time measure mean flow conditions over an entire region such as a wind farm. As the WindScanner technology is novel, performing field campaigns with the WindScanner systems requires a methodology that will maximize the benefits of conducting WindScanner-based experiments. Such a methodology, made up of 10 steps, is presented and discussed through its application in a pilot experiment that took place in a complex and forested site in Portugal, where for the first time the two WindScanner systems operated simultaneously. Overall, this resulted in a detailed site selection criteria, a well-thought-out experiment layout, novel flow mapping methods and high-quality flow observations, all of which are presented in this paper.

  18. Perdigão 2015: methodology for atmospheric multi-Doppler lidar experiments

    Directory of Open Access Journals (Sweden)

    N. Vasiljević

    2017-09-01

    Full Text Available The long-range and short-range WindScanner systems (LRWS and SRWS, multi-Doppler lidar instruments, when combined together can map the turbulent flow around a wind turbine and at the same time measure mean flow conditions over an entire region such as a wind farm. As the WindScanner technology is novel, performing field campaigns with the WindScanner systems requires a methodology that will maximize the benefits of conducting WindScanner-based experiments. Such a methodology, made up of 10 steps, is presented and discussed through its application in a pilot experiment that took place in a complex and forested site in Portugal, where for the first time the two WindScanner systems operated simultaneously. Overall, this resulted in a detailed site selection criteria, a well-thought-out experiment layout, novel flow mapping methods and high-quality flow observations, all of which are presented in this paper.

  19. Studies of the terrestrial O2 and carbon cycles in sand dune gases and in biosphere 2

    Energy Technology Data Exchange (ETDEWEB)

    Severinghaus, Jeffrey Peck [Columbia Univ., New York, NY (United States)

    1995-01-01

    Molecular oxygen in the atmosphere is coupled tightly to the terrestrial carbon cycle by the processes of photosynthesis, respiration, and burning. This dissertation examines different aspects of this coupling in four chapters. Chapter 1 explores the feasibility of using air from sand dunes to reconstruct atmospheric O2 composition centuries ago. Such a record would reveal changes in the mass of the terrestrial biosphere, after correction for known fossil fuel combustion, and constrain the fate of anthropogenic CO2.

  20. Cactus Nurseries and Conservation in a Biosphere Reserve in Mexico

    Directory of Open Access Journals (Sweden)

    María T. Pulido

    2013-09-01

    Full Text Available Documenting how socio-ecosystem conservation knowledge and practice arise and are modified are issues of ethnobiological interest. In the Barranca de Metztitlán Biosphere Reserve (RBBM, plant nurseries, some of which were created as Environmental Management Units (UMAs, have been established to grow and conserve cacti. This paper describes these nurseries, their role in cactus conservation, and the benefits and limitations for the people managing them. The nurseries have helped decrease illegal traffic in cacti and have enabled ex situ conservation of 22 cacti species. Cactus management has changed from extraction to cultivation, as a result of the knowledge and actions of multiple actors. The main limitation is marketing, a recurring problem for non-timber forest products (NTFP. Greater coordination among stakeholders is recommended, such as involvement by non-governmental organizations to improve their probability of success, as well as learning from the experience of other cactus UMAs. Improving the market for cacti is an issue that needs an immediate solution; otherwise conservation efforts could relapse.

  1. Solar energy and ecosystem. ; Japanized biosphere simulator (restructing of artificial ecosystem originating in the biosphere). Taiyo energy to ecosystem. ; Nipponban biosphere simulator (biosphere ni manabu jinkoteki ecosystem no kochiku)

    Energy Technology Data Exchange (ETDEWEB)

    Azuma, K. (Hazama Gumi, Ltd., Tokyo (Japan))

    1992-11-30

    The present report introduces Japanized biosphere (BS) simulator which was structured in order for the BS research committee composed of people of experience or academic standing and related industrials to elucidate the CO2 circulation behavior in the biological sphere of temperate zone. Its principal structural factors were ocean, grassland and broad-leaved tree forest, while river and lake were assumed to be those for the water circulation. Animals and plants which were necessary for the ecological system were taken as biological elements, while the installed system technology facilities covered the air, water, lighting, monitoring and energy. Those facilities are 40000m[sup 2], 60m and 2400000m[sup 3] in total area, height and volume, respectively on the site expanding to a scale of 20ha. Apart, land and ocean were arranged on the ground expanding to 2000000m[sup 2]. The quantification of different circulating substances is being studied, while the material balance is controlled so as to totally result in zero. Nobody can enter the facilities because of simplification in experimental model. The meteorological condition is monitored. The structuring was done by taking the biological sphere of BS-II Project, USA as an object. As the basic survey has been generally completed, an investigation team is on the point of being organized. 2 figs., 1 tab.

  2. Posiva biosphere assessment: Revised structure and status 2006

    International Nuclear Information System (INIS)

    Ikonen, A.

    2006-12-01

    Posiva's Safety Case is organised into a portfolio consisting of ten main component reports of which the Biosphere Assessment is one. To better facilitate the iterative assessment process by different task groups, the Biosphere Assessment is now organised into a sub-portfolio having folders for reports on specific topics: Site and evolution describes the past, present and future conditions of the surface system of the Olkiluoto site; Biosphere processes contain descriptions of processes prevailing at the site now and in future; Module Descriptions document the radionuclide transport models; Biosphere Assessment Data reports the parameter data used in the assessment with full references to their origin; Cases and variants provide mainly the simulated concentrations in the environmental media as a part of the actual assessment; Exposures of total environment draw conclusions on the dose and effect implications on the basis of the concentrations provided in Cases and variants. Finally, the biosphere assessment is consolidated in the summary report providing the needed high-level information to the main Safety Case and referring to the individual background reports for the details. In addition to the specific folders of the Biosphere Assessment Portfolio, there are also a number of overlapping issues to be considered throughout the assessment. Most important of those are the handling of the geosphere-biosphere interface and the future human activities, and the thorough knowledge quality assessment, the last of which provides tools to evaluate the overall uncertainty and consistency of and confidence to the assessment. In this report, the current strategy of modelling the different aspects of the biosphere from the site investigations to the doses is discussed, and the Biosphere Assessment Portfolio is introduced. Requirements and recommendations are given to the individual folders and/or reports to steer the extensive biosphere modelling and assessment work towards a

  3. Dust ablation laboratory experiments to measure the plasma and light production of meteoroids in the atmosphere

    Science.gov (United States)

    Sternovsky, Z.; DeLuca, M.; Janches, D.; Marshall, R. A.; Munsat, T.; Plane, J. M. C.; Horanyi, M.

    2017-12-01

    Radars play an important role in characterizing the distribution of meteoroids entering Earth's atmosphere, and they are sensitive to the size range where most of the mass input occurs. The interpretation of meteor radar measurements, however, is handicapped by the incomplete understanding of the microphysical processes relevant to meteoric ablation. A facility has been developed to simulate the ablation of small dust particles in laboratory conditions and to determine the most critical parameters. An electrostatic dust accelerator is used to generate iron, aluminum and meteoric analog particles with velocities of 1-70 km/s. The particles are then introduced into a cell filled with nitrogen, air, oxygen, or carbon dioxide gas with pressures adjustable in the 0.02 - 0.5 Torr range, where partial or complete ablation occurs over a short distance. An array of biased electrodes is used to collect the ionized products with spatial resolution along the ablating particles' path. An optical observation setup using a 64 channel PMT system allows direct observation of the particle and estimating the light output. A new addition to the facility, using pickup tube detectors and precise timing, allows measurement of the drag coefficient of the particle's slowdown, which we find to be significantly higher than commonly used in existing models. Measurements also indicated that the ionization efficiency of iron and aluminum at low velocities is larger than previously expected.

  4. An overview of organically bound tritium experiments in plants following a short atmospheric HTO exposure.

    Science.gov (United States)

    Galeriu, D; Melintescu, A; Strack, S; Atarashi-Andoh, M; Kim, S B

    2013-04-01

    The need for a less conservative, but reliable risk assessment of accidental tritium releases is emphasized in the present debate on the nuclear energy future. The development of a standard conceptual model for accidental tritium releases must be based on the process level analysis and the appropriate experimental database. Tritium transfer from atmosphere to plants and the subsequent conversion into organically bound tritium (OBT) strongly depends on the plant characteristics, seasons, and meteorological conditions, which have a large variability. The present study presents an overview of the relevant experimental data for the short term exposure, including the unpublished information, also. Plenty of experimental data is provided for wheat, rice, and soybean and some for potato, bean, cherry tomato, radish, cabbage, and tangerine as well. Tritiated water (HTO) uptake by plants during the daytime and nighttime has an important role in further OBT synthesis. OBT formation in crops depends on the development stage, length, and condition of exposure. OBT translocation to the edible plant parts differs between the crops analyzed. OBT formation during the nighttime is comparable with that during the daytime. The present study is a preliminary step for the development of a robust model of crop contamination after an HTO accidental release. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Closure experiment in a cloudfree continental atmosphere. Final report; Saeulen-Schliessungsexperiment in einer wolkenfreien kontinentalen Atmosphaere. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Verbeek, B.; Wiegner, M.; Schluessel, P.; Seefeldner, M.

    2000-11-01

    In the frame of the Lindenberger Aerosol-Charakterisierungs-Experiment (LACE), the Meteorological Institute of the University of Munich operated a sun photometer and a mobile lidar. The photometer was equipped with 10 channels between 372 and 1009 nm wavelengths. Several independent sets of data, characterizing aerosol properties and components of the radiation field, gained from ground-based, airborne and satellite platforms and measured in-situ or from remote sensing techniques, were used to obtain a comprehensive picture of a continental atmosphere. The focus of this study was the attempt to provide a closure of radiances at the top of the atmosphere by linking all available data by radiative transfer calculations. For this purpose, the 6S-code by Vermote et al. was applied. This code was also used for a sensitivity study to assess the required accuracy of measured surface and atmospheric parameters. Unfortunately, only satellite data from SeaWIFS were available for the closure. It was confirmed by the numerical studies that the bi-directional reflectance of the surface is the crucial parameter for the radiation field at the top of the atmosphere. This information was, however, not available at Lindenberg for an area equivalent to a SeaWIFS pixel. The closure did not show any inconsistency between the satellite radiances and the calculated ones, if standard surface properties were used. It can be concluded that a pre-requisite for having a chance to derive aerosol parameters from passive radiometry is the accurate knowledge of the surface properties. (orig.) [German] Im Rahmen des Lindenberger Aerosol-Charakterisierungs-Experiments (LACE) wurden vom Meteorologischen Institut Muenchen Messungen mit einem 10-Kanal-Interferenzfilteraktionometer (IFA) und einem schwenkbaren Lidar durchgefuehrt. Diese Messungen fanden, zusammen mit boden- und flugzeuggestuetzten Messungen anderer Gruppen, Eingang in Strahlungstransportrechnungen mit dem Ziel, eine Schliessung anhand

  6. The Biosphere Under Potential Paris Outcomes

    Science.gov (United States)

    Ostberg, Sebastian; Boysen, Lena R.; Schaphoff, Sibyll; Lucht, Wolfgang; Gerten, Dieter

    2018-01-01

    Rapid economic and population growth over the last centuries have started to push the Earth out of its Holocene state into the Anthropocene. In this new era, ecosystems across the globe face mounting dual pressure from human land use change (LUC) and climate change (CC). With the Paris Agreement, the international community has committed to holding global warming below 2°C above preindustrial levels, yet current pledges by countries to reduce greenhouse gas emissions appear insufficient to achieve that goal. At the same time, the sustainable development goals strive to reduce inequalities between countries and provide sufficient food, feed, and clean energy to a growing world population likely to reach more than 9 billion by 2050. Here, we present a macro-scale analysis of the projected impacts of both CC and LUC on the terrestrial biosphere over the 21st century using the Representative Concentration Pathways (RCPs) to illustrate possible trajectories following the Paris Agreement. We find that CC may cause major impacts in landscapes covering between 16% and 65% of the global ice-free land surface by the end of the century, depending on the success or failure of achieving the Paris goal. Accounting for LUC impacts in addition, this number increases to 38%-80%. Thus, CC will likely replace LUC as the major driver of ecosystem change unless global warming can be limited to well below 2°C. We also find a substantial risk that impacts of agricultural expansion may offset some of the benefits of ambitious climate protection for ecosystems.

  7. Soil-Related Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    Smith, A. J.

    2004-01-01

    This report presents one of the analyses that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the details of the conceptual model as well as the mathematical model and the required input parameters. The biosphere model is one of a series of process models supporting the postclosure Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A schematic representation of the documentation flow for the Biosphere input to TSPA is presented in Figure 1-1. This figure shows the evolutionary relationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (TWP) (BSC 2004 [DIRS 169573]). This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil-Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. The purpose of this analysis was to develop the biosphere model parameters associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation or ash deposition and, as a direct consequence, radionuclide concentration in other environmental media that are affected by radionuclide concentrations in soil. The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573]) where the governing procedure was defined as AP-SIII.9Q, ''Scientific Analyses''. This

  8. Soil-Related Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    A. J. Smith

    2004-09-09

    This report presents one of the analyses that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the details of the conceptual model as well as the mathematical model and the required input parameters. The biosphere model is one of a series of process models supporting the postclosure Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A schematic representation of the documentation flow for the Biosphere input to TSPA is presented in Figure 1-1. This figure shows the evolutionary relationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (TWP) (BSC 2004 [DIRS 169573]). This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil-Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. The purpose of this analysis was to develop the biosphere model parameters associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation or ash deposition and, as a direct consequence, radionuclide concentration in other environmental media that are affected by radionuclide concentrations in soil. The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573]) where the governing procedure

  9. Book Review: Fluxes as functions of ecosystem and drivers of atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Lianhong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-01

    The review is of the book Terrestrial biosphere-atmospheric fluxes, by Russell Monson and Dennis Baldochi. The book was published by Cambridge University Press, NY, 487 p. in 2014. ISBN 978-1-107-04065-6

  10. MAPSS: Mapped Atmosphere-Plant-Soil System Model, Version 1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: MAPSS (Mapped Atmosphere-Plant-Soil System) is a landscape to global vegetation distribution model that was developed to simulate the potential biosphere...

  11. MAPSS: Mapped Atmosphere-Plant-Soil System Model, Version 1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — MAPSS (Mapped Atmosphere-Plant-Soil System) is a landscape to global vegetation distribution model that was developed to simulate the potential biosphere impacts and...

  12. The terrestrial biosphere in the SFR region

    Energy Technology Data Exchange (ETDEWEB)

    Jerling, L.; Isaeus, M. [Stockholm Univ. (Sweden). Dept. of Botany; Lanneck, J. [Stockholm Univ. (Sweden). Dept. of Physical Geography; Lindborg, T.; Schueldt, R. [Danish Nature Council, Copenhagen (Denmark)

    2001-03-01

    This report is a part of the SKB project 'SAFE' (Safety Assessment of the Final Repository of Radioactive Operational Waste). The aim of project SAFE is to update the previous safety analysis of SFR-1.SFR-1 is a facility for disposal of low and intermediate level radioactive waste, which is situated in bedrock beneath the Baltic Sea, one km off the coast near the Forsmark nuclear power plant in Northern Uppland. A part of the SAFE-analysis aims at analysing the transport of radionuclides in the ecosystems.To do so one has to build a model that includes a large amount of information concerning the biosphere.The first step is to collect and compile descriptions of the biosphere.This report is a first attempt to characterise the terrestrial environment of the SFR area of Forsmark. In the first part of the report the terrestrial environment, land class distribution and production of the area is described. The primary production in different terrestrial ecosystems is estimated for a model area in the Forsmark region. The estimations are based on the actual land class distribution and the values for the total primary production (d.w. above ground biomass)and the amount carbon produced, presented as g/m{sup 2} for each land class respectively. An important aspect of the biosphere is the vegetation and its development. The future development of vegetation is of interest since production,decomposition and thus storage of organic material, vary strongly among vegetation types and this has strong implications for the transport of radionuclides.Therefore an attempt to describe the development of terrestrial vegetation has been made in the second part. Any prediction of future vegetation is based on knowledge of the past together with premises for the future development.The predictions made, thus, becomes marred with errors enforced by the assumptions and incomplete information of the past. The assumptions made for the predictions in this report are crude and results

  13. The terrestrial biosphere in the SFR region

    International Nuclear Information System (INIS)

    Jerling, L.; Isaeus, M.

    2001-03-01

    This report is a part of the SKB project 'SAFE' (Safety Assessment of the Final Repository of Radioactive Operational Waste). The aim of project SAFE is to update the previous safety analysis of SFR-1.SFR-1 is a facility for disposal of low and intermediate level radioactive waste, which is situated in bedrock beneath the Baltic Sea, one km off the coast near the Forsmark nuclear power plant in Northern Uppland. A part of the SAFE-analysis aims at analysing the transport of radionuclides in the ecosystems.To do so one has to build a model that includes a large amount of information concerning the biosphere.The first step is to collect and compile descriptions of the biosphere.This report is a first attempt to characterise the terrestrial environment of the SFR area of Forsmark. In the first part of the report the terrestrial environment, land class distribution and production of the area is described. The primary production in different terrestrial ecosystems is estimated for a model area in the Forsmark region. The estimations are based on the actual land class distribution and the values for the total primary production (d.w. above ground biomass)and the amount carbon produced, presented as g/m 2 for each land class respectively. An important aspect of the biosphere is the vegetation and its development. The future development of vegetation is of interest since production,decomposition and thus storage of organic material, vary strongly among vegetation types and this has strong implications for the transport of radionuclides.Therefore an attempt to describe the development of terrestrial vegetation has been made in the second part. Any prediction of future vegetation is based on knowledge of the past together with premises for the future development.The predictions made, thus, becomes marred with errors enforced by the assumptions and incomplete information of the past. The assumptions made for the predictions in this report are crude and results in a coarse

  14. Transient desorption of water vapor - A potential source of error in upper atmosphere rocket experiments

    Science.gov (United States)

    Kendall, B. R. F.; Weeks, J. O.

    1974-01-01

    Results of measurements of the outgassing rates of samples of materials and surface finishes used on the outer skins of rocket-borne experiment packages in simulated rocket ascents. The results showed outgassing rates for anodized aluminum in the second minute of flight which are two to three orders of magnitude higher than those given in typical tables of outgassing rates. The measured rates for aluminum with chromate conversion surface coatings were also abnormally high. These abnormally high initial rates fell quickly after about five to ten minutes to values comparable with those in the published literature. It is concluded that anodized and chromate conversion coatings on the aluminum outer surfaces of a sounding rocket experiment package will cause gross distortion of the true water vapor environment.

  15. Perdigão 2015: methodology for atmospheric multi-Doppler lidar experiments

    OpenAIRE

    N. Vasiljević; J. M. L. M. Palma; N. Angelou; J. Carlos Matos; R. Menke; G. Lea; J. Mann; M. Courtney; L. Frölen Ribeiro; L. Frölen Ribeiro; V. M. M. G. C. Gomes

    2017-01-01

    The long-range and short-rangeWindScanner systems (LRWS and SRWS), multi-Doppler lidar instruments, when combined together can map the turbulent flow around a wind turbine and at the same time measure mean flow conditions over an entire region such as a wind farm. As theWind- Scanner technology is novel, performing field campaigns with the WindScanner systems requires a methodology that will maximize the benefits of conducting WindScannerbased experiments. Such a metho...

  16. The response of the terrestrial biosphere to urbanization: land cover conversion, climate, and urban pollution

    Directory of Open Access Journals (Sweden)

    K. Trusilova

    2008-11-01

    Full Text Available Although urban areas occupy a relatively small fraction of land, they produce major disturbances of the carbon cycle through land use change, climate modification, and atmospheric pollution. In this study we quantify effects of urban areas on the carbon cycle in Europe. Among urbanization-driven environmental changes, which influence carbon sequestration in the terrestrial biosphere, we account for: (1 proportion of land covered by impervious materials, (2 local urban meteorological conditions, (3 urban high CO2 concentrations, and (4 elevated atmospheric nitrogen deposition. We use the terrestrial ecosystem model BIOME-BGC to estimate fluxes of carbon exchange between the biosphere and the atmosphere in response to these urban factors.

    We analysed four urbanization-driven changes individually, setting up our model in such a way that only one of the four was active at a time. From these model simulations we found that fertilization effects from the elevated CO2 and the atmospheric nitrogen deposition made the strongest positive contributions to the carbon uptake (0.023 Pg C year−1 and 0.039 Pg C year−1, respectively, whereas, the impervious urban land and local urban meteorological conditions resulted in a reduction of carbon uptake (−0.005 Pg C year−1 and −0.007 Pg C year−1, respectively. The synergetic effect of the four urbanization-induced changes was an increase of the carbon sequestration in Europe of 0.058 Pg C year−1.

  17. An experience in Montenegro with atmospheric pollution by means of lichens

    International Nuclear Information System (INIS)

    Jovanovic, S.

    2000-01-01

    The very first study of the atmospheric pollution by means of bioindicators in the region of Montenegro was performed in 1992-93. The study, supported by the Commission of the European Union, was focused to the impact of an aluminium smelter plant to the air pollution in its surroundings. The plant (KAP) is situated 10 km to the south of Podgorica (capital of Montenegro) and produces some 100,000 tons of cast aluminium per year, using French (Pechine) technology. The technological process contributes in several manners to the atmospheric pollution. We investigated an area up to 50 km distances from the plant. Epiphytic lichens (Hypogymnia caperata) were collected from the tree bark 2 m above the ground. In the near vicinity of the plant no epiphytic lichens could have been found (died out due to high pollution levels). Instead, the more resistant lithophytic varieties (Lecanora expallens) were collected therein. Samples of wild grasses and pine needles were taken at the same spots, so as to compare the three indicators. We further found 5-10 times higher pollutant accumulation factors in lichens than in grasses or pine needles, emphasising thus the monitoring sensitivity of the lichens. Soil samples were also taken at the spots and analysed, but no impact factors for the soil were calculated. Samples were analysed by means of the k 0 -method of neutron activation analysis at 'Pierre Sue' Laboratory, Nuclear Research Centre, Saclay/Paris, France. Three types of analyses were made: (i) with short (matter of a few minutes) irradiations at the reactor ORPHEE , followed by analysing the short lived nuclides; (ii) with long (matter of hours) irradiations at the reactor OSIRIS, followed by analysing the long lived nuclides and occasionally - when necessary - (iii) epithermal analyses, in order to suppress the induced activities of certain matrix elements (e.g.Na) and obtain better sensitivity for the other elements. The following elements were determined down to

  18. The Atmospheric Detergent and the Elusive Criegee Biradical

    Science.gov (United States)

    Percival, Carl; Burke, Rhodelle

    2011-01-01

    Chemicals entering the atmosphere come from a number of sources but, in broad terms, are either from human activity or from the biosphere (natural systems). What happens to these chemicals once in the atmosphere is very important, of course. If they are toxic they can impact on the health of humans, animals and natural ecosystems. Therefore, it is…

  19. Perdigão 2015: methodology for atmospheric multi-Doppler lidar experiments

    OpenAIRE

    Vasiljević, Nikola; Palma, José M. L. M.; Angelou, Nikolas; Matos, José Carlos; Menke, Robert; Lea, Guillaume; Mann, Jakob; Courtney, Michael; Ribeiro, Luis Frölen; Gomes, Vitor M. M. G. C.

    2017-01-01

    The long-range and short-range WindScanner systems, multi-Doppler lidar instruments, can map the turbulent flow around a wind turbine and at the same time measure mean flow conditions over an entire region such as a wind farm. As the WindScanner technology is novel, performing field campaigns with the WindScanner systems requires a methodology that will maximize the benefits of conducting WindScanner-based experiments. Such a methodology is presented and discussed through its application in a...

  20. A modified surface-resistance approach for representing bare-soil evaporation: wind tunnel experiments under various atmospheric conditions

    International Nuclear Information System (INIS)

    Yamanaka, T.; Takeda, A.; Sugita, F.

    1997-01-01

    A physically based (i.e., nonempirical) representation of surface-moisture availability is proposed, and its applicability is investigated. This method is based on the surface-resistance approaches, and it uses the depth of evaporating surface rather than the water content of the surface soil as the determining factor of surface-moisture availability. A simple energy-balance model including this representation is developed and tested against wind tunnel experiments under various atmospheric conditions. This model can estimate not only the latent heat flux but also the depth of the evaporating surface simultaneously by solving the inverse problem of energy balance at both the soil surface and the evaporating surface. It was found that the depth of the evaporating surface and the latent heat flux estimated by the model agreed well with those observed. The agreements were commonly found out under different atmospheric conditions. The only limitation of this representation is that it is not valid under conditions of drastic change in the radiation input, owing to the influence of transient phase transition of water in the dry surface layer. The main advantage of the approach proposed is that it can determine the surface moisture availability on the basis of the basic properties of soils instead of empirical fitting, although further investigations on its practical use are needed

  1. The Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program: The First Field Experiment (MATERHORN-X1)

    Science.gov (United States)

    Fernando, H.; Pardyjak, E.; Zajic, D.; De Wekker, S.; Pace, J.

    2012-12-01

    The prediction of weather in complex terrain continues to be a difficult challenge due to a host of physical and thermodynamic processes and numerical issues involved. While many theoretical and observational studies have been conducted on flow over gradually varying low slopes (hills), flow over high mountains with steep slopes of practical consequence under diurnal forcing still remains an understudied topic. The atmospheric boundary layer therein is forced by diurnal thermal forcing (valley and slope flows), large-scale synoptic influence or a combination thereof, and in all cases the boundary layer is replete with interesting sub-grid scale phenomena that are paramount for mesoscale modeling. Parameterizations of such processes, reducing model errors and their growth, model validations and new technologies for measurements are some of the overarching issues that need to be addressed in improving weather predictions in mountainous terrain. To this end, the MATERHORN program was conceived in response to the 2011 Multidisciplinary University Research Initiative (MURI) of the Department of Defense to address scientific issues akin to mountain weather. The participants include the University of Notre Dame, Naval Post Graduate School, University of California at Berkeley, University of Utah, University of Virginia, Naval Research Laboratory, US Army Dugway Proving Ground (DPG) and the Army Research Laboratory. The MATERHORN includes a comprehensive field experimental component (MATERHORN-X) in the Granite Mountain Atmospheric Test Bed (GMAST) of DPG; the first experiment is to be conducted during September 25-October 25, 2012. Preliminary experimental results of the program will be described in this presentation.

  2. EAQUATE: An International Experiment for Hyper-Spectral Atmospheric Sounding Validation

    Science.gov (United States)

    Taylor, J. P.; Smith, W.; Cuomo, V.; Larar, A.; Zhou, D.; Serio, C.; Maestri, T.; Rizzi, R.; Newman, S.; Antonelli, P.; hide

    2008-01-01

    The international experiment called EAQUATE (European AQUA Thermodynamic Experiment) was held in September 2004 in Italy and the United Kingdom to demonstrate certain ground-based and airborne systems useful for validating hyperspectral satellite sounding observations. A range of flights over land and marine surfaces were conducted to coincide with overpasses of the AIRS instrument on the EOS Aqua platform. Direct radiance evaluation of AIRS using NAST-I and SHIS has shown excellent agreement. Comparisons of level 2 retrievals of temperature and water vapor from AIRS and NAST-I validated against high quality lidar and drop sonde data show that the 1K/1km and 10%/1km requirements for temperature and water vapor (respectively) are generally being met. The EAQUATE campaign has proven the need for synergistic measurements from a range of observing systems for satellite cal/val and has paved the way for future cal/val activities in support of IASI on the European Metop platform and CrIS on the US NPP/NPOESS platform.

  3. An analysis of the AVE-SESAME I period using statistical structure and correlation functions. [Atmospheric Variability Experiment-Severe Environmental Storm and Mesoscale Experiment

    Science.gov (United States)

    Fuelberg, H. E.; Meyer, P. J.

    1984-01-01

    Structure and correlation functions are used to describe atmospheric variability during the 10-11 April day of AVE-SESAME 1979 that coincided with the Red River Valley tornado outbreak. The special mesoscale rawinsonde data are employed in calculations involving temperature, geopotential height, horizontal wind speed and mixing ratio. Functional analyses are performed in both the lower and upper troposphere for the composite 24 h experiment period and at individual 3 h observation times. Results show that mesoscale features are prominent during the composite period. Fields of mixing ratio and horizontal wind speed exhibit the greatest amounts of small-scale variance, whereas temperature and geopotential height contain the least. Results for the nine individual times show that small-scale variance is greatest during the convective outbreak. The functions also are used to estimate random errors in the rawinsonde data. Finally, sensitivity analyses are presented to quantify confidence limits of the structure functions.

  4. Quantifying point source emissions with atmospheric inversions and aircraft measurements: the Aliso Canyon natural gas leak as a tracer experiment

    Science.gov (United States)

    Gourdji, S.; Yadav, V.; Karion, A.; Mueller, K. L.; Kort, E. A.; Conley, S.; Ryerson, T. B.; Nehrkorn, T.

    2017-12-01

    The ability of atmospheric inverse models to detect, spatially locate and quantify emissions from large point sources in urban domains needs improvement before inversions can be used reliably as carbon monitoring tools. In this study, we use the Aliso Canyon natural gas leak from October 2015 to February 2016 (near Los Angeles, CA) as a natural tracer experiment to assess inversion quality by comparison with published estimates of leak rates calculated using a mass balance approach (Conley et al., 2016). Fourteen dedicated flights were flown in horizontal transects downwind and throughout the duration of the leak to sample CH4 mole fractions and collect meteorological information for use in the mass-balance estimates. The same CH4 observational data were then used here in geostatistical inverse models with no prior assumptions about the leak location or emission rate and flux sensitivity matrices generated using the WRF-STILT atmospheric transport model. Transport model errors were assessed by comparing WRF-STILT wind speeds, wind direction and planetary boundary layer (PBL) height to those observed on the plane; the impact of these errors in the inversions, and the optimal inversion setup for reducing their influence was also explored. WRF-STILT provides a reasonable simulation of true atmospheric conditions on most flight dates, given the complex terrain and known difficulties in simulating atmospheric transport under such conditions. Moreover, even large (>120°) errors in wind direction were found to be tolerable in terms of spatially locating the leak rate within a 5-km radius of the actual site. Errors in the WRF-STILT wind speed (>50%) and PBL height have more negative impacts on the inversions, with too high wind speeds (typically corresponding with too low PBL heights) resulting in overestimated leak rates, and vice-versa. Coarser data averaging intervals and the use of observed wind speed errors in the model-data mismatch covariance matrix are shown to

  5. The atmospheric composition geostationary satellite constellation for air quality and climate science: Evaluating performance with Observation System Simulation Experiments

    Science.gov (United States)

    Edwards, D. P.; Barre, J.; Worden, H. M.; Arellano, A. F.; Gaubert, B.; Anderson, J. L.; Mizzi, A. P.; Lahoz, W. A.

    2014-12-01

    Current satellite observations of tropospheric composition made from low Earth orbit provide at best one or two measurements each day at any given location. Coverage is global but sparse, often with large uncertainties in individual measurements that limit examination of local and regional atmospheric composition over short time periods. This has hindered the operational uptake of these data for monitoring air quality and population exposure, and for initializing and evaluating chemical weather forecasts. By the end of the current decade there are planned geostationary Earth orbit (GEO) satellite missions for atmospheric composition over North America, East Asia and Europe with additional missions proposed. Together, these present the possibility of a constellation of GEO platforms to achieve continuous time-resolved high-density observations of continental domains for mapping pollutant sources and variability on diurnal and local scales. We describe Observing System Simulation Experiments (OSSEs) to evaluate the contributions of these GEO missions to improve knowledge of near-surface air pollution due to intercontinental long-range transport and quantify chemical precursor emissions. We discuss the requirements on measurement simulation, chemical transport modeling, and data assimilation for a successful OSSE infrastructure. Our approach uses an efficient computational method to sample a high-resolution global GEOS-5 chemistry Nature Run over each geographical region of the GEO constellation. The demonstration carbon monoxide (CO) observation simulator, which is being expanded to other chemical pollutants, currently produces multispectral retrievals and captures realistic scene-dependent variation in measurement vertical sensitivity and cloud cover. We use the DART Ensemble Adjustment Kalman Filter to assimilate the simulated observations in a CAM-Chem global chemistry-climate model Control Run. The impact of observing over each region is evaluated using data

  6. The atmospheric impacts of monoterpene ozonolysis on global stabilised Criegee intermediate budgets and SO2 oxidation: experiment, theory and modelling

    Directory of Open Access Journals (Sweden)

    M. J. Newland

    2018-05-01

    Full Text Available The gas-phase reaction of alkenes with ozone is known to produce stabilised Criegee intermediates (SCIs. These biradical/zwitterionic species have the potential to act as atmospheric oxidants for trace pollutants such as SO2, enhancing the formation of sulfate aerosol with impacts on air quality and health, radiative transfer and climate. However, the importance of this chemistry is uncertain as a consequence of limited understanding of the abundance and atmospheric fate of SCIs. In this work we apply experimental, theoretical and numerical modelling methods to quantify the atmospheric impacts, abundance and fate of the structurally diverse SCIs derived from the ozonolysis of monoterpenes, the second most abundant group of unsaturated hydrocarbons in the atmosphere. We have investigated the removal of SO2 by SCIs formed from the ozonolysis of three atmospherically important monoterpenes (α-pinene, β-pinene and limonene in the presence of varying amounts of water vapour in large-scale simulation chamber experiments that are representative of boundary layer conditions. The SO2 removal displays a clear dependence on water vapour concentration, but this dependence is not linear across the range of [H2O] explored. At low [H2O] a strong dependence of SO2 removal on [H2O] is observed, while at higher [H2O] this dependence becomes much weaker. This is interpreted as being caused by the production of a variety of structurally (and hence chemically different SCIs in each of the systems studied, which displayed different rates of reaction with water and of unimolecular rearrangement or decomposition. The determined rate constants, k(SCI+H2O, for those SCIs that react primarily with H2O range from 4 to 310  ×  10−15 cm3 s−1. For those SCIs that predominantly react unimolecularly, determined rates range from 130 to 240 s−1. These values are in line with previous results for the (analogous stereo-specific SCI system of syn-/anti-CH3

  7. Biosphere modelling for the assessment of radioactive waste repositories: the development of a common basis by the BIOMOVS II working group on reference biospheres

    International Nuclear Information System (INIS)

    VanDorp, F.

    1996-01-01

    Performance criteria for radioactive waste repositories are often expressed in terms of dose or risk. The characteristics of biosphere modelling for performance assessment are that: a) potential release occurs in the distant future, b) reliable predictions of human behaviour at the time of release are impracticable, and c) the biosphere is not considered to be a barrier. For these and other reasons, many unexplained differences have arisen in the approaches to biosphere modelling. The BIOMOVS II Working Group on Reference Biospheres has developed a) a recommended methodology for biosphere model development, b) a structured electronic list of features, events and processes (FEPs), and c) an illustrative example of the recommended methodology. The Working Group has successfully tested the Interaction Matrix (or Rock Engineering Systems, RES) approach for developing conceptual models. The BIOMOVS II Working Groups on Reference Biospheres and Complementary Studies have achieved considerable harmonisation in approaches to biosphere modelling. (author)

  8. Biosphere dose conversion Factor Importance and Sensitivity Analysis

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek

    2004-10-15

    This report presents importance and sensitivity analysis for the environmental radiation model for Yucca Mountain, Nevada (ERMYN). ERMYN is a biosphere model supporting the total system performance assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis concerns the output of the model, biosphere dose conversion factors (BDCFs) for the groundwater, and the volcanic ash exposure scenarios. It identifies important processes and parameters that influence the BDCF values and distributions, enhances understanding of the relative importance of the physical and environmental processes on the outcome of the biosphere model, includes a detailed pathway analysis for key radionuclides, and evaluates the appropriateness of selected parameter values that are not site-specific or have large uncertainty.

  9. Biosphere dose conversion Factor Importance and Sensitivity Analysis

    International Nuclear Information System (INIS)

    M. Wasiolek

    2004-01-01

    This report presents importance and sensitivity analysis for the environmental radiation model for Yucca Mountain, Nevada (ERMYN). ERMYN is a biosphere model supporting the total system performance assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis concerns the output of the model, biosphere dose conversion factors (BDCFs) for the groundwater, and the volcanic ash exposure scenarios. It identifies important processes and parameters that influence the BDCF values and distributions, enhances understanding of the relative importance of the physical and environmental processes on the outcome of the biosphere model, includes a detailed pathway analysis for key radionuclides, and evaluates the appropriateness of selected parameter values that are not site-specific or have large uncertainty

  10. An Estimate of the Total DNA in the Biosphere.

    Science.gov (United States)

    Landenmark, Hanna K E; Forgan, Duncan H; Cockell, Charles S

    2015-06-01

    Modern whole-organism genome analysis, in combination with biomass estimates, allows us to estimate a lower bound on the total information content in the biosphere: 5.3 × 1031 (±3.6 × 1031) megabases (Mb) of DNA. Given conservative estimates regarding DNA transcription rates, this information content suggests biosphere processing speeds exceeding yottaNOPS values (1024 Nucleotide Operations Per Second). Although prokaryotes evolved at least 3 billion years before plants and animals, we find that the information content of prokaryotes is similar to plants and animals at the present day. This information-based approach offers a new way to quantify anthropogenic and natural processes in the biosphere and its information diversity over time.

  11. Community Assembly Processes of the Microbial Rare Biosphere.

    Science.gov (United States)

    Jia, Xiu; Dini-Andreote, Francisco; Falcão Salles, Joana

    2018-03-14

    Our planet teems with microorganisms that often present a skewed abundance distribution in a local community, with relatively few dominant species coexisting alongside a high number of rare species. Recent studies have demonstrated that these rare taxa serve as limitless reservoirs of genetic diversity, and perform disproportionate types of functions despite their low abundances. However, relatively little is known about the mechanisms controlling rarity and the processes promoting the development of the rare biosphere. Here, we propose the use of multivariate cut-offs to estimate rare species and phylogenetic null models applied to predefined rare taxa to disentangle the relative influences of ecoevolutionary processes mediating the assembly of the rare biosphere. Importantly, the identification of the factors controlling rare species assemblages is critical for understanding the types of rarity, how the rare biosphere is established, and how rare microorganisms fluctuate over spatiotemporal scales, thus enabling prospective predictions of ecosystem responses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. The biosphere today and tomorrow in the SFR area

    International Nuclear Information System (INIS)

    Kautsky, Ulrik

    2001-06-01

    This report is a compilation of the work done mainly in the SAFE project for the biosphere from about 14 reports. The SAFE project is the updated safety analysis of SFR-1, the LLW and ILW repository at Forsmark. The aim of the report is to summarize the available information about the present-day biosphere in the area surrounding SFR and to use this information, together with information about the previous development of the biosphere, to predict the future development of the area in a more comparable way than the underlying reports. The data actually used for the models have been taken from the original reports which also justify or validate the data. The report compiles information about climate, oceanography, landscape, sedimentation, shoreline displacement, marine, lake and terrestrial ecosystems

  13. The biosphere today and tomorrow in the SFR area

    Energy Technology Data Exchange (ETDEWEB)

    Kautsky, Ulrik (ed.)

    2001-06-01

    This report is a compilation of the work done mainly in the SAFE project for the biosphere from about 14 reports. The SAFE project is the updated safety analysis of SFR-1, the LLW and ILW repository at Forsmark. The aim of the report is to summarize the available information about the present-day biosphere in the area surrounding SFR and to use this information, together with information about the previous development of the biosphere, to predict the future development of the area in a more comparable way than the underlying reports. The data actually used for the models have been taken from the original reports which also justify or validate the data. The report compiles information about climate, oceanography, landscape, sedimentation, shoreline displacement, marine, lake and terrestrial ecosystems.

  14. Data for NASA's AVE 3 experiment: 25-mb sounding data and synoptic charts. [investigation of atmospheric parameters detected from satellite data under conditions of heavy snow cover

    Science.gov (United States)

    Fuelberg, H. E.; Turner, R. E.

    1975-01-01

    The atmospheric variability experiment (AVE 3) is described and tabulated rawinsonde data at 25-mb intervals from the surface to 25 mb for the 41 stations is presented. The experiment was conducted between February 6 and February 7, 1975. Brief discussions are given on methods of data processing, changes in the reduction scheme since the AVE 2 pilot experiment, and data accuracy. An example of contact data is presented as well as synoptic charts prepared from the data.

  15. Soil-to-Plant Concentration Ratios for Assessing Food Chain Pathways in Biosphere Models

    Energy Technology Data Exchange (ETDEWEB)

    Napier, Bruce A.; Fellows, Robert J.; Krupka, Kenneth M.

    2007-10-01

    This report describes work performed for the U.S. Nuclear Regulatory Commission’s project Assessment of Food Chain Pathway Parameters in Biosphere Models, which was established to assess and evaluate a number of key parameters used in the food-chain models used in performance assessments of radioactive waste disposal facilities. Section 2 of this report summarizes characteristics of samples of soils and groundwater from three geographical regions of the United States, the Southeast, Northwest, and Southwest, and analyses performed to characterize their physical and chemical properties. Because the uptake and behavior of radionuclides in plant roots, plant leaves, and animal products depends on the chemistry of the water and soil coming in contact with plants and animals, water and soil samples collected from these regions of the United States were used in experiments at Pacific Northwest National Laboratory to determine radionuclide soil-to-plant concentration ratios. Crops and forage used in the experiments were grown in the soils, and long-lived radionuclides introduced into the groundwater provide the contaminated water used to water the grown plants. The radionuclides evaluated include 99Tc, 238Pu, and 241Am. Plant varieties include alfalfa, corn, onion, and potato. The radionuclide uptake results from this research study show how regional variations in water quality and soil chemistry affect radionuclide uptake. Section 3 summarizes the procedures and results of the uptake experiments, and relates the soil-to-plant uptake factors derived. In Section 4, the results found in this study are compared with similar values found in the biosphere modeling literature; the study’s results are generally in line with current literature, but soil- and plant-specific differences are noticeable. This food-chain pathway data may be used by the NRC staff to assess dose to persons in the reference biosphere (e.g., persons who live and work in an area potentially affected by

  16. Demonstration of Technologies for Remote and in Situ Sensing of Atmospheric Methane Abundances - a Controlled Release Experiment

    Science.gov (United States)

    Aubrey, A. D.; Thorpe, A. K.; Christensen, L. E.; Dinardo, S.; Frankenberg, C.; Rahn, T. A.; Dubey, M.

    2013-12-01

    It is critical to constrain both natural and anthropogenic sources of methane to better predict the impact on global climate change. Critical technologies for this assessment include those that can detect methane point and concentrated diffuse sources over large spatial scales. Airborne spectrometers can potentially fill this gap for large scale remote sensing of methane while in situ sensors, both ground-based and mounted on aerial platforms, can monitor and quantify at small to medium spatial scales. The Jet Propulsion Laboratory (JPL) and collaborators recently conducted a field test located near Casper, WY, at the Rocky Mountain Oilfield Test Center (RMOTC). These tests were focused on demonstrating the performance of remote and in situ sensors for quantification of point-sourced methane. A series of three controlled release points were setup at RMOTC and over the course of six experiment days, the point source flux rates were varied from 50 LPM to 2400 LPM (liters per minute). During these releases, in situ sensors measured real-time methane concentration from field towers (downwind from the release point) and using a small Unmanned Aerial System (sUAS) to characterize spatiotemporal variability of the plume structure. Concurrent with these methane point source controlled releases, airborne sensor overflights were conducted using three aircraft. The NASA Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) participated with a payload consisting of a Fourier Transform Spectrometer (FTS) and an in situ methane sensor. Two imaging spectrometers provided assessment of optical and thermal infrared detection of methane plumes. The AVIRIS-next generation (AVIRIS-ng) sensor has been demonstrated for detection of atmospheric methane in the short wave infrared region, specifically using the absorption features at ~2.3 μm. Detection of methane in the thermal infrared region was evaluated by flying the Hyperspectral Thermal Emission Spectrometer (Hy

  17. Radioactive waste disposal assessment - overview of biosphere processes and models

    International Nuclear Information System (INIS)

    Coughtrey, P.J.

    1992-09-01

    This report provides an overview of biosphere processes and models in the general context of the radiological assessment of radioactive waste disposal as a basis for HMIP's response to biosphere aspects of Nirex's submissions for disposal of radioactive wastes in a purpose-built repository at Sellafield, Cumbria. The overview takes into account published information from the UK as available from Nirex's safety and assessment research programme and HMIP's disposal assessment programme, as well as that available from studies in the UK and elsewhere. (Author)

  18. Wave data from buoy deployments from the R/V KEXUE #1 as part of the Coupled Ocean-Atmosphere Response Experiment (COARE) and Tropical Ocean Global Atmosphere (TOGA) projects from 1992-11-01 to 1993-02-20 (NODC Accession 9600021)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Wave data were collected from buoy deployments from the R/V KEXUE #1 as part of the Coupled Ocean-Atmosphere Response Experiment (COARE) and Tropical Ocean Global...

  19. Biospheric feedback effects in a synchronously coupled model of human and Earth systems

    Science.gov (United States)

    Thornton, Peter E.; Calvin, Katherine; Jones, Andrew D.; di Vittorio, Alan V.; Bond-Lamberty, Ben; Chini, Louise; Shi, Xiaoying; Mao, Jiafu; Collins, William D.; Edmonds, Jae; Thomson, Allison; Truesdale, John; Craig, Anthony; Branstetter, Marcia L.; Hurtt, George

    2017-07-01

    Fossil fuel combustion and land-use change are the two largest contributors to industrial-era increases in atmospheric CO 2 concentration. Projections of these are thus fundamental inputs for coupled Earth system models (ESMs) used to estimate the physical and biological consequences of future climate system forcing. While historical data sets are available to inform past and current climate analyses, assessments of future climate change have relied on projections of energy and land use from energy-economic models, constrained by assumptions about future policy, land-use patterns and socio-economic development trajectories. Here we show that the climatic impacts on land ecosystems drive significant feedbacks in energy, agriculture, land use and carbon cycle projections for the twenty-first century. We find that exposure of human-appropriated land ecosystem productivity to biospheric change results in reductions of land area used for crops; increases in managed forest area and carbon stocks; decreases in global crop prices; and reduction in fossil fuel emissions for a low-mid-range forcing scenario. The feedbacks between climate-induced biospheric change and human system forcings to the climate system--demonstrated here--are handled inconsistently, or excluded altogether, in the one-way asynchronous coupling of energy-economic models to ESMs used to date.

  20. Global redox cycle of biospheric carbon: Interaction of photosynthesis and earth crust processes.

    Science.gov (United States)

    Ivlev, Alexander A

    2015-11-01

    A model of the natural global redox cycle of biospheric carbon is introduced. According to this model, carbon transfer between biosphere and geospheres is accompanied by a conversion of the oxidative forms, presented by CO2, bicarbonate and carbonate ions, into the reduced forms, produced in photosynthesis. The mechanism of carbon transfer is associated with two phases of movement of lithospheric plates. In the short-term orogenic phase, CO2 from the subduction (plates' collisions) zones fills the "atmosphere-hydrosphere" system, resulting in climate warming. In the long-term quiet (geosynclynal) phase, weathering and photosynthesis become dominant depleting the oxidative forms of carbon. The above asymmetric periodicity exerts an impact on climate, biodiversity, distribution of organic matter in sedimentary deposits, etc. Along with photosynthesis expansion, the redox carbon cycle undergoes its development until it reaches the ecological compensation point, at which CO2 is depleted to the level critical to support the growth and reproduction of plants. This occurred in the Permo-Carboniferous time and in the Neogene. Shorter-term perturbations of the global carbon cycle in the form of glacial-interglacial oscillations appear near the ecological compensation point. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Biospheric feedback effects in a synchronously coupled model of human and Earth systems

    Science.gov (United States)

    Thornton, P. E.; Calvin, K. V.; Jones, A. D.; Di Vittorio, A. V.; Bond-Lamberty, B. P.; Chini, L. P.; Shi, X.; Mao, J.; Collins, W. D.; Edmonds, J.; Hurtt, G. C.

    2017-12-01

    Fossil fuel combustion and land-use change are the two largest contributors to industrial-era increases in atmospheric CO2 concentration. Projections of these are thus fundamental inputs for coupled Earth system models (ESMs) used to estimate the physical and biological consequences of future climate system forcing. While historical datasets are available to inform past and current climate analyses, assessments of future climate change have relied on projections of energy and land use from energy economic models, constrained by assumptions about future policy, land-use patterns, and socio-economic development trajectories. In this work we show that the climatic impacts on land ecosystems drives significant feedbacks in energy, agriculture, land-use, and carbon cycle projections for the 21st century. We find that exposure of human appropriated land ecosystem productivity to biospheric change results in reductions of land area used for crops; increases in managed forest area and carbon stocks; decreases in global crop prices; and reduction in fossil fuel emissions for a low-mid range forcing scenario. Land ecosystem response to increased carbon dioxide concentration, increased anthropogenic nitrogen deposition, and changes in temperature and precipitation all play a role. The feedbacks between climate-induced biospheric change and human system forcings to the climate system demonstrated in this work are handled inconsistently, or excluded altogether, in the one-way asynchronous coupling of energy economic models to ESMs used to date.

  2. BIOSPHERIC ORGANIZATION AS A “CONTINENTS – OCEANIC BASINS” SYSTEM

    Directory of Open Access Journals (Sweden)

    Sergei P. Gorshkov

    2016-01-01

    Full Text Available The functional characteristics of the biosphere are reflected in its binominale frame: continents – oceanic basins. The river-basin land, on the one hand, and pericontinental oceanic waters on the other hand, are the main components of the homeostatic mechanism of the biosphere. In the Archean and Early-Middle Proterozoic, seawater biofiltration did not exist. In the Late Proterozoic and part of the Early Paleozoic, biofiltration started to develop and the oceans have become the main heat-engine of the Earth. Today, the maximum concentration of productive phytoplankton and zooplankton – filter bio-systems – is in the pericontinental oceanic zones. This is a response to the maximal flow of nutrients from the land carried mainly with river flow. This is the main signal of a direct link between terrestrial and oceanic ecosystems. The feedback is the atmospheric precipitation induced by heat and moisture flows and carried from the oceans to the land within its primary river-basin part. These links are experiencing anthropogenic destabilization due to some misplaced priorities of sustainable development and its implementation.

  3. Environmental transport and long-term exposure for tritium released in the biosphere

    International Nuclear Information System (INIS)

    Bergman, R.; Bergstroem, U.; Evans, S.

    1979-01-01

    Global cycling of tritium is studied with regard to long-term exposure and dose. Dose and dose commitment are calculated for releases at different latitudes to the troposphere, land and upper ocean layer, with particular regard to effects from release into recipients of intermediate size as, for example, the Baltic Sea. The global transport of tritium appears to be governed by first order kinetics. Compartment models based on linear differential equation systems, as used in this study, should therefore be adequate. The realism and applicability of ecological compartment models are analysed with respect to completeness of the systems of reservoirs and pathways as well as accuracy in assumed reservoir sizes and exchange rates. By introducing different biospheric reservoirs and transfer mechanisms, important carriers and recipients are identified for the analysis of tritium released to air, land and water. Terrestrial biota and groundwater are shown to be significant both with regard to reservoir sizes and influence on the land-troposphere and land-sea exchange of tritium. Model studies regarding the conversion of HT to HTO in different biospheric reservoirs indicate that an atmospheric release of HT may yield up to 1.7 times the dose commitment obtained after release of the same amount of tritium as HTO. The global collective dose commitment from a tropospheric release of tritium is 0.002-0.004 man.rem per Ci depending on the latitude at the release point. Release to the surface ocean layers gives a ten times lower collective dose. (author)

  4. Application of open-path Fourier transform infrared spectroscopy for atmospheric monitoring of a CO2 back-production experiment at the Ketzin pilot site (Germany).

    Science.gov (United States)

    Sauer, Uta; Borsdorf, H; Dietrich, P; Liebscher, A; Möller, I; Martens, S; Möller, F; Schlömer, S; Schütze, C

    2018-02-03

    During a controlled "back-production experiment" in October 2014 at the Ketzin pilot site, formerly injected CO 2 was retrieved from the storage formation and directly released to the atmosphere via a vent-off stack. Open-path Fourier transform infrared (OP FTIR) spectrometers, on-site meteorological parameter acquisition systems, and distributed CO 2 point sensors monitored gas dispersion processes in the near-surface part of the atmospheric boundary layer. The test site provides a complex and challenging mosaic-like surface setting for atmospheric monitoring which can also be found at other storage sites. The main aims of the atmospheric monitoring of this experiment were (1) to quantify temporal and spatial variations in atmospheric CO 2 concentrations around the emitting vent-off stack and (2) to test if and how atmospheric monitoring can cope with typical environmental and operational challenges. A low environmental risk was encountered during the whole CO 2 back-production experiment. The study confirms that turbulent wind conditions favor atmospheric mixing processes and are responsible for rapid dilution of the released CO 2 leading to decreased detectability at all sensors. In contrast, calm and extremely stable wind conditions (especially occurring during the night) caused an accumulation of gases in the near-ground atmospheric layer with the highest amplitudes in measured gas concentration. As an important benefit of OP FTIR spectroscopic measurements and their ability to detect multiple gas species simultaneously, emission sources could be identified to a much higher certainty. Moreover, even simulation models using simplified assumptions help to find suitable monitoring network designs and support data analysis for certain wind conditions in such a complex environment.

  5. A Comparison between Predicted and Observed Atmospheric States and their Effects on Infrasonic Source Time Function Inversion at Source Physics Experiment 6

    Science.gov (United States)

    Aur, K. A.; Poppeliers, C.; Preston, L. A.

    2017-12-01

    The Source Physics Experiment (SPE) consists of a series of underground chemical explosions at the Nevada National Security Site (NNSS) designed to gain an improved understanding of the generation and propagation of physical signals in the near and far field. Characterizing the acoustic and infrasound source mechanism from underground explosions is of great importance to underground explosion monitoring. To this end we perform full waveform source inversion of infrasound data collected from the SPE-6 experiment at distances from 300 m to 6 km and frequencies up to 20 Hz. Our method requires estimating the state of the atmosphere at the time of each experiment, computing Green's functions through these atmospheric models, and subsequently inverting the observed data in the frequency domain to obtain a source time function. To estimate the state of the atmosphere at the time of the experiment, we utilize the Weather Research and Forecasting - Data Assimilation (WRF-DA) modeling system to derive a unified atmospheric state model by combining Global Energy and Water Cycle Experiment (GEWEX) Continental-scale International Project (GCIP) data and locally obtained sonde and surface weather observations collected at the time of the experiment. We synthesize Green's functions through these atmospheric models using Sandia's moving media acoustic propagation simulation suite (TDAAPS). These models include 3-D variations in topography, temperature, pressure, and wind. We compare inversion results using the atmospheric models derived from the unified weather models versus previous modeling results and discuss how these differences affect computed source waveforms with respect to observed waveforms at various distances. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear

  6. Hydrogeologic Controls on the Deep Terrestrial Biosphere - Chemolithotrophic Energy for Subsurface Life on Earth and Mars

    Science.gov (United States)

    Sherwood Lollar, B.; Moran, J.; Tille, S.; Voglesonger, K.; Lacrampe-Couloume, G.; Onstott, T.; Pratt, L.; Slater, G.

    2009-05-01

    As exploration for gold, diamonds and base metals expand mine workings to depths of almost 3 km below the Earth's surface, the mines of the Canadian Shield provide a window into the deep biosphere as diverse, but to date less well-explored than the South African Gold Mines. To date investigations of the deep biosphere have, in most cases, focused on the marine subsurface, including deep sea sediments, hydrothermal vents, off-axis spreading centers and cold seeps. Yet the deep terrestrial subsurface hosted in the fracture waters of Archean Shield rocks provides an important analog and counterpoint to studies of the deep marine biosphere. Depending on the particular geologic and hydrogeologic setting, sites vary from those dominated by paleometeoric waters and microbial hydrocarbon production, to those in which H2 and hydrocarbon gases have been suggested to be a function of long-term accumulation of the products of water-rock interaction in the deepest, most saline fracture waters with residence times on the order of tens of millions of years. The hydrogeologically isolated fracture-controlled ground water system periodically generates steep redox gradients and chemical disequilibrium due to fracture opening, and episodic release of mM levels of H2 that support a redox driven microbial community of H2-utilizing sulfate reducers and methanogens. Exploration of these systems may provide information about the limits of the deep terrestrial biosphere, controls on the distribution of deep subsurface life, and the diversity of geochemical reactions that produce substrates on which microbiological communities at great depths survive. The geologically stable Precambrian cratons of Earth are arguably the closest analogs available to single-plate planets such as Mars. Studies of these Earth analogs imply that the habitability of the Martian crust might similarly not be restricted to sites of localized hydrothermal activity. While the presence of the Martian cryosphere and

  7. General radioactive contamination of the biosphere measurements in the Netherlands 1974

    International Nuclear Information System (INIS)

    1975-01-01

    For several years, measurements have been performed in the Netherlands to determine radioactive contamination of the biosphere. These measurements are carried out by various institutes responsible to three ministries: the Ministery of 'Health and Environmental Protection', of 'Agriculture and Fisheries' and of 'Transport and Water', (Dutch: 'Verkeer en Waterstaat', under the supervision of the Coordination Commission Radioactive Measurements (CCRA)). Besides radionuclides, many other elements and compounds are considered harmful for man, animal and the environment. A systematic control of the extent of the contamination of the biosphere, in the same way as is in operation for radionuclides, has been proposed for a number of the most harmful contaminants of the biosphere. The measurements are divided into measurements for the National Measuring Programme and additional Measurements. The former include the analyses essential for an efficacious control of the radioactivity of the biosphere. Measurements are performed in air, soil, surface water, milk and in deposition on the surface of the earth. Besides the determination of the usual radionuclides, as performed up to 1970, deposited radioactivity and surface water are also tested for some other specific radionuclides which may be set free at nuclear installations. Finally, samples of milk and grass from the surroundings of nuclear reactors and water from drinking-waterreservoirs have been analysed. Results are given of determination of tritium in drinking water of four big cities, and of radionuclides in some fishery products from the Dutch coastal waters in view of the potential of some marine organisms to concentrate fission products and especially activated corrosion products from nuclear installations. Adiitionally are given the results of measurements by the licensees of the Dutch nuclear installations of samples from the surroundings of their plants. After a discussion of the results of the analyses of the

  8. Pan-Eurasian experiment (PEEX) establishing a process towards high level Pan-Eurasian atmosphere-ecosystem observation networks

    Science.gov (United States)

    Lappalainen, Hanna K.; Petäjä, Tuukka; Zaytzeva, Nina; Viisanen, Yrjö; Kotlyakov, Vladimir; Kasimov, Nikolay; Bondur, Valery; Matvienko, Gennady; Zilitinkevich, Sergej; Kulmala, Markku

    2014-05-01

    Pan-Eurasian Experiment (PEEX) is a new multidisciplinary research approach aiming at resolving the major uncertainties in the Earth system science and global sustainability questions in the Arctic and boreal Pan-Eurasian regions (Kulmala et al. 2011). The main goal of PEEX Research agenda is to contribute to solving the scientific questions that are specifically important for the Pan-Eurasian region in the coming years, in particular the global climate change and its consequences to nature and human society. Pan Eurasian region represents one the Earth most extensive areas of boreal forest (taiga) and the largest natural wetlands, thus being a significant source area of trace gas emissions, biogenic aerosol particles, and source and sink area for the greenhouse gas (GHG) exchange in a global scale (Guenther et al. 1995, Timkovsky et al. 2010, Tunved et al. 2006, Glagolev et al. 2010). One of the first activities of the PEEX initiative is to establish a process towards high level Pan-Eurasian Observation Networks. Siberian region is currently lacking a coordinated, coherent ground based atmosphere-ecosystem measurement network, which would be crucial component for observing and predicting the effects of climate change in the Northern Pan- Eurasian region The vision of the Pan-Eurasion network will be based on a hierarchical SMEAR-type (Stations Measuring Atmosphere-Ecosystem Interactions) integrated land-atmosphere observation system (Hari et al. 2009). A suite of stations have been selected for the Preliminary Phase of PEEX Observation network. These Preliminary Phase stations includes the SMEAR-type stations in Finland (SMEAR-I-II-II-IV stations), in Estonia (SMEAR-Järviselja) and in China (SMEAR-Nanjing) and selected stations in Russia and ecosystem station network in China. PEEX observation network will fill in the current observational gap in the Siberian region and bring the Siberian observation setup into international context with the with standardized or

  9. Closing the dimethyl sulfide budget in the tropical marine boundary layer during the Pacific Atmospheric Sulfur Experiment

    Directory of Open Access Journals (Sweden)

    A. Bandy

    2009-11-01

    Full Text Available Fourteen research flights were conducted with the National Center for Atmospheric Research (NCAR C-130 near Christmas Island (2° N, 157° W during the summer of 2007 as part of the Pacific Atmospheric Sulfur Experiment (PASE. In order to tightly constrain the scalar budget of DMS, vertical eddy fluxes were measured at various levels in the marine boundary layer (MBL from ~30 m to the top of the mixed layer (~500 m providing improved accuracy of the flux divergence calculation in the DMS budget. The observed mean mole fraction of DMS in the MBL exhibited the well-known diurnal cycle, ranging from 50–95 pptv in the daytime to 90–110 pptv at night. Contributions from horizontal advection are included using a multivariate regression of all DMS flight data within the MBL to estimate the mean gradients and trends. With this technique we can use the residual term in the DMS budget as an estimate of overall photochemical oxidation. Error analysis of the various terms in the DMS budget indicate that chemical losses acting on time scales of up to 110 h can be inferred with this technique. On average, photochemistry accounted for ~7.4 ppt hr −1 loss rate for the seven daytime flights, with an estimated error of 0.6 ppt hr−1. The loss rate due to expected OH oxidation is sufficient to explain the net DMS destruction without invoking the action of additional oxidants (e.g., reactive halogens. The observed ocean flux of DMS averaged 3.1 (±1.5 μmol m−2 d−1, and generally decreased throughout the sunlit hours. Over the entire mission, the horizontal advection contribution to the overall budget was merely -0.1 ppt hr−1, indicating a mean atmospheric DMS gradient nearly perpendicular to the east-southeasterly trade winds and the chlorophyll gradient in the equatorial upwelling ocean. Nonetheless, horizontal advection was a significant term in the budget of any given flight, ranging from −1

  10. Linkage between the Biosphere and Geomagnetic field: Knowns and Unknowns

    Science.gov (United States)

    Pan, Y.; Zhu, R.

    2017-12-01

    The geomagnetic field extends from Earth's interior into space, and protects our planets habitability by shielding the planet from solar winds and cosmic rays. Recently, single zircon paleomagnetic study provides evidence of the field to ages as old as 4.2 Ga. Many great questions remain, including whether the emergence of life on Earth was a consequence of the field's protection, how organisms utilize the field, and if field variations (polarity reversal, excursion and secular variation) impact the evolution of the biosphere. In the past decade, great efforts have been made to probe these very complex and great challenging questions through the inter-disciplinary subject of biogeomagnetism. Numerous birds, fish, sea turtles, bats and many other organisms utilize the geomagnetic field during orientation and long-distance navigation. We recently found that bats, the second most abundant order of mammals, can use the direction of magnetic field with a weak strength comparable to polarity transitions/excursions, which is indicative of advanced magnetoreception developed in bats co-evolving with the geomagnetic field since the Eocene. Magnetotactic bacteria swim along the geomagnetic field lines by synthesizing intracellular nano-sized and chain-arranged magnetic minerals (magnetosomes). Recent field surveys in China, Europe, America and Australia have shown that these microbes are ubiquitous in aqueous habitats. Both their biogeography distribution and magnetotactic swimming speed are field intensity dependent. On the other hand, it is increasingly accepted that the geomagnetic field influences life through several indirect pathways. For example, it has been discovered that solar wind erosion enhanced the atmospheric oxygen escape during periods of weak magnetic field and global mean ionospheric electron density profiles can be affected by geomagnetic field strength variation. In addition, depletion of the ozone layer during a weak magnetic field could result in

  11. Development of a reference biospheres methodology for radioactive waste disposal. Final report

    International Nuclear Information System (INIS)

    Dorp, F. van

    1996-09-01

    The BIOMOVS II Working Group on Reference Biospheres has focused on the definition and testing of a methodology for developing models to analyse radionuclide behaviour in the biosphere and associated radiological exposure pathways (a Reference Biospheres Methodology). The Working Group limited the scope to the assessment of the long-term implications of solid radioactive waste disposal. Nevertheless, it is considered that many of the basic principles would be equally applicable to other areas of biosphere assessment. The recommended methodology has been chosen to be relevant to different types of radioactive waste and disposal concepts. It includes the justification, arguments and documentation for all the steps in the recommended methodology. The previous experience of members of the Reference Biospheres Working Group was that the underlying premises of a biosphere assessment have often been taken for granted at the early stages of model development, and can therefore fail to be recognized later on when questions of model sufficiency arise, for example, because of changing regulatory requirements. The intention has been to define a generic approach for the formation of an 'audit trail' and hence provide demonstration that a biosphere model is fit for its intended purpose. The starting point for the methodology has three. The Assessment Context sets out what the assessment has to achieve, eg. in terms of assessment purpose and related regulatory criteria, as well as information about the repository system and types of release from the geosphere. The Basic System Description includes the fundamental premises about future climate conditions and human behaviour which, to a significant degree, are beyond prediction. The International FEP List is a generically relevant list of Features, Events and Processes potentially important for biosphere model development. The International FEP List includes FEPs to do with the assessment context. The context examined in detail by

  12. Long-Term cosmic ray experiment in the atmosphere: Energetic electron precipitation events during the 20-23 solar activity cycles.

    Science.gov (United States)

    Makhmutov, V. S.; Bazilevskaya, G. A.; Krainev, M. B.; Storini, M.

    2001-08-01

    More than 400 energetic electron precipitation events (EPEs) were observed in the Earth's Northern polar atmosphere (Murmansk region, 68°57'N, 33°03'E) during a long-term cosmic ray balloon experiment (from 1957 up to now). It is shown that the significant X-ray fluxes, caused by precipitating electrons at the top of the atmosphere, sometimes penetrated down to the atmospheric depth of ~60 g· cm-2 (about 20 km). It means that primary energy of precipitating electrons was more than ~ 6 10 MeV. Here we summarize only the characteristics of the energetic electron precipitation events recorded during solar activity cycles 20 to 23. We dis cuss results from the analyses of the interplanetary and geomagnetic conditions related to these events in the atmosphere.

  13. Terrestrial acidification during the end-Permian biosphere crisis?

    NARCIS (Netherlands)

    Sephton, Mark A.; Jiao, Dan; Engel, Michael H.; Looy, Cindy V.; Visscher, Henk

    Excessive acid rainfall associated with emplacement of the Siberian Traps magmatic province is increasingly accepted as a major contributing factor to the end-Permian biosphere crisis. However, direct proxy evidence of terrestrial acidification is so far not available. In this paper, we seek to

  14. Ecotourism and its effects on wildlife of Pachmarhi Biosphere Reserve

    African Journals Online (AJOL)

    use

    sustainable use of wildlife in the Manu Biosphere. Reserve and Puero Maldonado National Parks of Peru in. (Groom et al., 2000), recognizes the benefits of ecotourism as it helps to .... leading tour companies that collaborate with lodges and tour groups. Therefore, the local communities do not benefit from the revenue.

  15. Bird checklist, Guánica Biosphere Reserve, Puerto Rico

    Science.gov (United States)

    Wayne J. Arendt; John Faaborg; Miguel Canals; Jerry Bauer

    2015-01-01

    This research note compiles 43 years of research and monitoring data to produce the first comprehensive checklist of the dry forest avian community found within the Guánica Biosphere Reserve. We provide an overview of the reserve along with sighting locales, a list of 185 birds with their resident status and abundance, and a list of the available bird habitats....

  16. Evidence for an active rare biosphere within freshwater protists community.

    Science.gov (United States)

    Debroas, Didier; Hugoni, Mylène; Domaizon, Isabelle

    2015-03-01

    Studies on the active rare biosphere at the RNA level are mainly focused on Bacteria and Archaea and fail to include the protists, which are involved in the main biogeochemical cycles of the earth. In this study, the richness, composition and activity of the rare protistan biosphere were determined from a temporal survey of two lakes by pyrosequencing. In these ecosystems, the always rare OTUs represented 77.2% of the total OTUs and 76.6% of the phylogenetic diversity. From the various phylogenetic indices computed, the phylogenetic units (PUs) constituted exclusively by always rare OTUs were discriminated from the other PUs. Therefore, the rare biosphere included mainly taxa that are distant from the reference databases compared to the dominant ones. In addition, the rarest OTUs represented 59.8% of the active biosphere depicted by rRNA and the activity (rRNA:rDNA ratio) increased with the rarity. The high rRNA:rDNA ratio determined in the rare fraction highlights that some protists were active at low abundances and contribute to ecosystem functioning. Interestingly, the always rare and active OTUs were characterized by seasonal changes in relation with the main environmental parameters measured. In conclusion, the rare eukaryotes represent an active, dynamic and overlooked fraction in the lacustrine ecosystems. © 2015 John Wiley & Sons Ltd.

  17. Putting the Deep Biosphere and Gas Hydrates on the Map

    Science.gov (United States)

    Sikorski, Janelle J.; Briggs, Brandon R.

    2016-01-01

    Microbial processes in the deep biosphere affect marine sediments, such as the formation of gas hydrate deposits. Gas hydrate deposits offer a large source of natural gas with the potential to augment energy reserves and affect climate and seafloor stability. Despite the significant interdependence between life and geology in the ocean, coverage…

  18. Posiva's Strategy for Biosphere Studies

    International Nuclear Information System (INIS)

    Hautojaervi, Aimo; Vieno, Timo

    2002-01-01

    Aimo Hautojaervi (Posiva, Finland) explained that Posiva follows the regulation from authorities that will be published soon on the STUK Web site in an English version. As an example, he said that a dose constraint of 0.1 mSv/a must be considered for several thousand years and release rate constraint for the long term. The values for these constraints were given by STUK and Posiva needs to demonstrate compliance. Posiva welcomes the regulator's clear requirements and guidance in the field of biosphere analyses. Moreover, Aimo Hautojaervi presented the planned future work that will be carried out by Posiva. As well as carrying out biosphere modelling for potential recipients at Olkiluoto, Posiva will conduct biosphere analyses for wells, lakes, seas, etc., and further evaluate human actions and develop biosphere models in close cooperation with SKB. Posiva is also actively seeking international cooperation in these new researches fields, for example within IAEA. Two potentially problematic radionuclides were also mentioned: C-14 and Radon plus decay products. These two radionuclides will be studied in depth in the future Posiva research and development programme

  19. Socio-economic conditions in selected biosphere reserves

    Czech Academy of Sciences Publication Activity Database

    Kušová, Drahomíra; Těšitel, Jan; Matějka, K.; Bartoš, Michael

    2006-01-01

    Roč. 12, č. 3 (2006), s. 157-169 ISSN 1211-7420 R&D Projects: GA MŽP(CZ) SM/610/3/03 Institutional research plan: CEZ:AV0Z60870520 Keywords : nature protection * socio-economic conditions * biosphere reserves * sustainable development Subject RIV: EH - Ecology, Behaviour

  20. Parasitic infections of amphibians in the Pendjari Biosphere ...

    African Journals Online (AJOL)

    Parasitic infections of amphibians in the Pendjari Biosphere Reserve, Benin. ... Results obtained show the possible influence of land-use pattern on parasite distribution. For example, the ... Furthermore, this infection pattern may be indicative of an immunosuppressive effect of pesticides on the frogs of the Agricultural Zone.

  1. Ecotourism and its effects on wildlife of Pachmarhi Biosphere Reserve

    African Journals Online (AJOL)

    The present paper focused on ecotourism and its effects on wildlife. In the present scenario the ecotourism is a grooming sector in developing nations. However, its impact on wildlife and indigenous people has become a controversial issue. Pachmarhi Biosphere Reserve site explores the multitude of interactions that exist ...

  2. Implementation of the Biosphere Compatibility Principle in Urban Planning: How to Train Next-Generation Specialists

    Science.gov (United States)

    Ivanova, Zinaida Ilyinichna; Yudenkova, Olga Valeryevna; Ishkov, Aleksandr Dmitrievich; Shnyrenkov, Evgeny Anatolyevich

    2015-01-01

    The co-authors address the relevant issues concerning the need to implement the principle of the biosphere compatibility as the core prerequisite for the symbiotic co-existence of man and nature. Caring treatment of the biosphere, termination of its excessive exploitation, analysis of the ratio between the biospheric potential of specific areas…

  3. 10 CFR 63.305 - Required characteristics of the reference biosphere.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Required characteristics of the reference biosphere. 63... Standards § 63.305 Required characteristics of the reference biosphere. (a) Features, events, and processes that describe the reference biosphere must be consistent with present knowledge of the conditions in...

  4. A model of accumulation of radionuclides in biosphere originating from groundwater contamination

    Energy Technology Data Exchange (ETDEWEB)

    Gaerdenaes, Annemieke [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Soil Sciences; Jansson, Per-Erik; Karlberg, Louise [Royal Inst. of Technology, Stockholm (Sweden). Dept. Land and Water Resources

    2006-03-15

    The objective of this study is to introduce a module in CoupModel describing the transport and accumulation in the biosphere of a radionuclide originating from a ground water contamination. Two model approaches describing the plant uptake of a radionuclide were included, namely passive and active uptake. Passive uptake means in this study that the root uptake rate of a radionuclide is governed by water uptake. Normal mechanism for the passive water uptake is the convective flux of water from the soil to the plant. An example of element taken up passively is Ca. Active plant uptake is in this model defined as the root uptake rate of a radionuclide that is governed by carbon assimilation i.e. photosynthesis and plant growth. The actively taken up element can for example be an element essential to plant, but not available in high enough concentration by passive uptake alone, like the major nutrients N and P or an element that very well resembles a plant nutrient, like Cs resembles K. Active uptake of trace element may occur alone or in addition to passive uptake. Normal mechanism for the active uptake is molecular diffusion from the soil solution to the roots or via any other organism living in symbiosis with the roots like the mycorrhiza. Also a model approach describing adsorption was introduced. CoupModel dynamically couples and simulates the flows of water, heat, carbon and nitrogen in the soil/plant/atmosphere system. Any number of plants may be defined and are divided into roots, leaves, stem and grain. The soil is considered in one vertical profile that may be represented into a maximum of 100 layers. The model is the windows-successor and integrated version of the DOS-models SOIL and SOILN, which have been widely used on different ecosystems and climate regions during 25 years time period. To this soil/plant/atmosphere model were introduced a module describing accumulation of a radionuclide in the biosphere originating from groundwater contamination. The

  5. A model of accumulation of radionuclides in biosphere originating from groundwater contamination

    International Nuclear Information System (INIS)

    Gaerdenaes, Annemieke; Jansson, Per-Erik; Karlberg, Louise

    2006-03-01

    The objective of this study is to introduce a module in CoupModel describing the transport and accumulation in the biosphere of a radionuclide originating from a ground water contamination. Two model approaches describing the plant uptake of a radionuclide were included, namely passive and active uptake. Passive uptake means in this study that the root uptake rate of a radionuclide is governed by water uptake. Normal mechanism for the passive water uptake is the convective flux of water from the soil to the plant. An example of element taken up passively is Ca. Active plant uptake is in this model defined as the root uptake rate of a radionuclide that is governed by carbon assimilation i.e. photosynthesis and plant growth. The actively taken up element can for example be an element essential to plant, but not available in high enough concentration by passive uptake alone, like the major nutrients N and P or an element that very well resembles a plant nutrient, like Cs resembles K. Active uptake of trace element may occur alone or in addition to passive uptake. Normal mechanism for the active uptake is molecular diffusion from the soil solution to the roots or via any other organism living in symbiosis with the roots like the mycorrhiza. Also a model approach describing adsorption was introduced. CoupModel dynamically couples and simulates the flows of water, heat, carbon and nitrogen in the soil/plant/atmosphere system. Any number of plants may be defined and are divided into roots, leaves, stem and grain. The soil is considered in one vertical profile that may be represented into a maximum of 100 layers. The model is the windows-successor and integrated version of the DOS-models SOIL and SOILN, which have been widely used on different ecosystems and climate regions during 25 years time period. To this soil/plant/atmosphere model were introduced a module describing accumulation of a radionuclide in the biosphere originating from groundwater contamination. The

  6. Calibração do "simplified simple biosphere model - SSiB" para áreas de pastagem e floresta na Amazônia com dados do LBA Calibration of the simplified simple biosphere model (SSiB for Amazonian pasture and forest sites using LBA data

    Directory of Open Access Journals (Sweden)

    Francis Wagner Silva Correia

    2005-06-01

    Full Text Available Os parâmetros do "Simplified Simple Biosphere Model"-SSiB foram validados e posteriormente calibrados para os sítios de pastagem da Fazenda Nossa Senhora Aparecida (62º22'W; 10º45'S e de floresta da Reserva Biológica do Jaru (62º22'W; 10º45'S, ambos situados no estado de Rondônia. Foram utilizadas medidas micrometeorológicas e hidrológicas obtidas durante o período seco de 2001, como parte do Experimento de Grande Escala da Biosfera-Atmosfera na Amazônia - LBA. Os resultados indicam que o modelo simulou bem o saldo de radiação, tanto na pastagem quanto na floresta. O fluxo de calor latente foi superestimado nos dois sítios nos períodos de simulação, o que deve estar relacionado aos parâmetros utilizados no cálculo dessa variável. O modelo subestimou o fluxo de calor sensível na pastagem e na floresta, principalmente no período noturno; porém, para a floresta, os valores foram mais próximos daqueles observados. Com os parâmetros ajustados, melhores estimativas dos fluxos de calor latente e de calor sensível foram geradas e, conseqüentemente, representou melhor as partições de energia na floresta e na pastagem.The parameters of the Simplified Simple Biosphere Model - SSiB were validated and subsequently calibrated for the Fazenda Nossa Senhora Aparecida (62º22'W; 10º45'S pasture site and the Reserva Biológica do Jaru (62º22'W; 10º45'S forest site, both located in the state of Rondônia. Micrometeorological and hydrological data collected during the dry period of 2001, as part of the Large-Scale Biosphere-Atmosphere Experiment in Amazonia - LBA, were used. The results showed that the model simulated well the net radiation, both at the pasture and at the forest. The latent heat flux was super-estimated in both sites. The model sub-estimated the sensible heat flux at the pasture and at the forest, mainly during the night period; notwithstanding, the values for the forest were nearer to the observed ones. With the

  7. Development of a reference biospheres methodology for radioactive waste disposal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dorp, F. van [NAGRA (Switzerland)] [and others

    1996-09-01

    The BIOMOVS II Working Group on Reference Biospheres has focused on the definition and testing of a methodology for developing models to analyse radionuclide behaviour in the biosphere and associated radiological exposure pathways(a Reference Biospheres Methodology). The Working Group limited the scope to the assessment of the long-term implications of solid radioactive waste disposal. Nevertheless, it is considered that many of the basic principles would be equally applicable to other areas of biosphere assessment. The recommended methodology has been chosen to be relevant to different types of radioactive waste and disposal concepts. It includes the justification, arguments and documentation for all the steps in the recommended methodology. The previous experience of members of the Reference Biospheres Working Group was that the underlying premises of a biosphere assessment have often been taken for granted at the early stages of model development, and can therefore fail to be recognized later on when questions of model sufficiency arise, for example, because of changing regulatory requirements. The intention has been to define a generic approach for the formation of an 'audit trail' and hence provide demonstration that a biosphere model is fit for its intended purpose. The starting point for the methodology has three. The Assessment Context sets out what the assessment has to achieve, eg. in terms of assessment purpose and related regulatory criteria, as well as information about the repository system and types of release from the geosphere. The Basic System Description includes the fundamental premises about future climate conditions and human behaviour which, to a significant degree, are beyond prediction. The International FEP List is a generically relevant list of Features, Events and Processes potentially important for biosphere model development. The International FEP List includes FEPs to do with the assessment context. The context examined in

  8. Biosphere reserves - an attempt to form sustainable landscapes (A case study of three biosphere reserves in the Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Kušová, Drahomíra; Těšitel, Jan; Matějka, K.; Bartoš, Michael

    2008-01-01

    Roč. 84, č. 1 (2008), s. 38-51 ISSN 0169-2046 R&D Projects: GA MŽP(CZ) SM/610/3/03 Institutional research plan: CEZ:AV0Z60870520 Keywords : biosphere reserve * nature protection * socio-economic development * sustainable development * triangulation Subject RIV: DO - Wilderness Conservation Impact factor: 1.953, year: 2008

  9. Search for galactic diffuse gamma-ray emission around 100 GeV with the Celeste Cherenkov atmospheric experiment

    International Nuclear Information System (INIS)

    Britto, R.

    2006-12-01

    The physics of the Galactic diffuse emission is an important topic in GeV gamma-ray astronomy as it allows the study of charged cosmic rays in our Galaxy. As there are only few measurements above 10 GeV, we have searched for these diffuse emission in the Off-source data of the CELESTE experiment, which is the first atmospheric Cherenkov detector with an energy threshold below 100 GeV. The production and study of a large set of Monte Carlo simulations showed the simulation/data compatibility for gamma rays and allowed estimations of the CELESTE sensitivity of diffuse gamma-ray radiation. With the intent of detecting Galactic diffuse gamma-rays mostly located at low Galactic latitudes, we performed the analysis of some CELESTE Off source data, comparing data taken near the Galactic plane with data taken away from the Galactic plane. Data used in this study was selected with criteria based on atmospheric and acquisition stability. A first step in this analysis was to verify that there is no significant systematic effect in the Off / Off pair association of high Galactic latitudes data taken at different dates but at the same local coordinates in the sky. A second step was to perform Off-Off analysis with other Off acquisitions taken at different dates to search for an event excess from the data acquisitions the nearest to the Galactic equator. Since models and extrapolations from fluxes measured at lower energies predict a rather low signal, we used an analysis method based on a composed discriminant variable - based on the geometric and timing properties of the Cherenkov wavefront - to improve the sensitivity of the instrument to discriminate between signal and background events. With 108 min of data in the Galactic anti-centre region, an upper limit with a 95 % C.L. was provided at 100 GeV, giving a limited integral flux of the Galactic gamma-ray diffuse emission: Φ int UL (E ≥ 100 GeV ) ∼ 6.6*10 -3 m -2 *s -1 *sr -1 . (author)

  10. Can the confidence in long range atmospheric transport models be increased? The Pan-European experience of ENSEMBLE

    DEFF Research Database (Denmark)

    Galmarini, S.; Bianconi, R.; Klug, W.

    2004-01-01

    Is atmospheric dispersion forecasting an important asset of the early-phase nuclear emergency response management? Is there a 'perfect atmospheric dispersion model'? Is there a way to make the results of dispersion models more reliable and trustworthy? While seeking to answer these questions the ...

  11. Geographical, biological and remote sensing aspects of the Hydrologic Atmospheric Pilot Experiment in the Sahel (HAPEX-Sahel)

    NARCIS (Netherlands)

    Prince, S.D.; Kerr, Y.H.; Goutorbe, J.P.; Lebel, T.; Tinga, A.; Bessemoulin, P.; Brouwer, J.; Dolman, A.J.; Engman, E.T.; Gash, J.H.C.; Hoepffner, M.; Kabat, P.; Monteny, B.; Said, F.; Sellers, P.; Wallace, J.

    1995-01-01

    HAPEX-Sahel was an international programme focused on the soil-plant-atmosphere energy, water and carbon balances in the West African Sahel. It was aimed at improving our understanding of the interaction between the Sahel and the general atmospheric circulation, providing a baseline for studies of

  12. Sea level variability in the eastern tropical Pacific as observed by TOPEX and Tropical Ocean-Global Atmosphere Tropical Atmosphere-Ocean Experiment

    Science.gov (United States)

    Giese, Benjamin S.; Carton, James A.; Holl, Lydia J.

    1994-01-01

    Sea surface height measurements from the TOPEX altimeter and dynamic height from Tropical Ocean-Global Atmosphere Tropical Atmosphere-Ocean (TOGA TAO) moorings are used to explore sea level variability in the northeastern tropical Pacific Ocean. Afetr the annual harmonic is removed, there are two distinct bands of variability: one band is centered at 5 deg N to 7 deg N and extends from 165 deg W to 110 deg W, and the other band is centered at 10 deg N to 12 deg N and extends from 120 deg W to the coast of Central America. The correspondence between the two independent observation data sets at 5 deg N is excellent with correlations of about 90%. The variability at 5 deg-7 deg N is identified as instability waves formed just south of the North Equatorial Countercurrent during the months of July and March. Wave amplitudes are largest in the range of longitudes 160 deg-140 deg W, where they can exceed 10 cm. The waves disappear when the equatorial current system weakens, during the months of March and May. The variability at 11 deg N in 1993 has the form of anticyclone eddies. These eddies propagate westward at a speed of about 17 cm/s, consistent with the dispersion characteristics of free Rossby waves. The eddies are shown to have their origin near the coast of central America during northern fall and winter. Their formation seems to result from intense wind bursts across the Gulfs of Tehuantepec and Papagayo which generate strong anticyclonic ocean eddies. The disappearance of the eddies in the summer of 1993 coincidences with the seasonal intensification of equatorial currents. Thus the variability at 11 deg N has very little overlap in time with the variability at 5 deg N.

  13. Exploring frontiers of the deep biosphere through scientific ocean drilling

    Science.gov (United States)

    Inagaki, F.; D'Hondt, S.; Hinrichs, K. U.

    2015-12-01

    Since the first deep biosphere-dedicated Ocean Drilling Program (ODP) Leg 201 using the US drill ship JOIDES Resolution in 2002, scientific ocean drilling has offered unique opportunities to expand our knowledge of the nature and extent of the deep biosphere. The latest estimate of the global subseafloor microbial biomass is ~1029cells, accounting for 4 Gt of carbon and ~1% of the Earth's total living biomass. The subseafloor microbial communities are evolutionarily diverse and their metabolic rates are extraordinarily slow. Nevertheless, accumulating activity most likely plays a significant role in elemental cycles over geological time. In 2010, during Integrated Ocean Drilling Program (IODP) Expedition 329, the JOIDES Resolutionexplored the deep biosphere in the open-ocean South Pacific Gyre—the largest oligotrophic province on our planet. During Expedition 329, relatively high concentrations of dissolved oxygen and significantly low biomass of microbial populations were observed in the entire sediment column, indicating that (i) there is no limit to life in open-ocean sediment and (ii) a significant amount of oxygen reaches through the sediment to the upper oceanic crust. This "deep aerobic biosphere" inhabits the sediment throughout up to ~37 percent of the world's oceans. The remaining ~63 percent of the oceans is comprised of higher productivity areas that contain the "deep anaerobic biosphere". In 2012, during IODP Expedition 337, the Japanese drill ship Chikyu explored coal-bearing sediments down to 2,466 meters below the seafloor off the Shimokita Peninsula, Japan. Geochemical and microbiological analyses consistently showed the occurrence of methane-producing communities associated with the coal beds. Cell concentrations in deep sediments were notably lower than those expected from the global regression line, implying that the bottom of the deep biosphere is approached in these beds. Taxonomic composition of the deep coal-bearing communities profoundly

  14. Models for dose assessments. Modules for various biosphere types

    International Nuclear Information System (INIS)

    Bergstroem, U.; Nordlinder, S.; Aggeryd, I.

    1999-12-01

    The main objective of this study was to provide a basis for illustrations of yearly dose rates to the most exposed individual from hypothetical leakages of radionuclides from a deep bedrock repository for spent nuclear fuel and other radioactive waste. The results of this study will be used in the safety assessment SR 97 and in a study on the design and long-term safety for a repository planned to contain long-lived low and intermediate level waste. The repositories will be designed to isolate the radionuclides for several hundred thousands of years. In the SR 97 study, however, hypothetical scenarios for leakage are postulated. Radionuclides are hence assumed to be transported in the geosphere by groundwater, and probably discharge into the biosphere. This may occur in several types of ecosystems. A number of categories of such ecosystems were identified, and turnover of radionuclides was modelled separately for each ecosystem. Previous studies had focused on generic models for wells, lakes and coastal areas. These models were, in this study, developed further to use site-specific data. In addition, flows of groundwater, containing radionuclides, to agricultural land and peat bogs were considered. All these categories are referred to as modules in this report. The forest ecosystems were not included, due to a general lack of knowledge of biospheric processes in connection with discharge of groundwater in forested areas. Examples of each type of module were run with the assumption of a continuous annual release into the biosphere of 1 Bq for each radionuclide during 10 000 years. The results are presented as ecosystem specific dose conversion factors (EDFs) for each nuclide at the year 10 000, assuming stationary ecosystems and prevailing living conditions and habits. All calculations were performed with uncertainty analyses included. Simplifications and assumptions in the modelling of biospheric processes are discussed. The use of modules may be seen as a step

  15. Models for dose assessments. Modules for various biosphere types

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, U.; Nordlinder, S.; Aggeryd, I. [Studsvik Eco and Safety AB, Nykoeping (Sweden)

    1999-12-01

    The main objective of this study was to provide a basis for illustrations of yearly dose rates to the most exposed individual from hypothetical leakages of radionuclides from a deep bedrock repository for spent nuclear fuel and other radioactive waste. The results of this study will be used in the safety assessment SR 97 and in a study on the design and long-term safety for a repository planned to contain long-lived low and intermediate level waste. The repositories will be designed to isolate the radionuclides for several hundred thousands of years. In the SR 97 study, however, hypothetical scenarios for leakage are postulated. Radionuclides are hence assumed to be transported in the geosphere by groundwater, and probably discharge into the biosphere. This may occur in several types of ecosystems. A number of categories of such ecosystems were identified, and turnover of radionuclides was modelled separately for each ecosystem. Previous studies had focused on generic models for wells, lakes and coastal areas. These models were, in this study, developed further to use site-specific data. In addition, flows of groundwater, containing radionuclides, to agricultural land and peat bogs were considered. All these categories are referred to as modules in this report. The forest ecosystems were not included, due to a general lack of knowledge of biospheric processes in connection with discharge of groundwater in forested areas. Examples of each type of module were run with the assumption of a continuous annual release into the biosphere of 1 Bq for each radionuclide during 10 000 years. The results are presented as ecosystem specific dose conversion factors (EDFs) for each nuclide at the year 10 000, assuming stationary ecosystems and prevailing living conditions and habits. All calculations were performed with uncertainty analyses included. Simplifications and assumptions in the modelling of biospheric processes are discussed. The use of modules may be seen as a step

  16. Prokaryotic silicon utilizing microorganisms in the biosphere

    Science.gov (United States)

    Gupta, D.; Das, S.

    2012-12-01

    Although a little study has been done to determine the silicon utilizing prokaryotes, our previous experiments indicated that almost all Gram-positive bacteria are silicon utilizing; one of them, Streptococci survived exposure on the lunar surface for a long period in experiment done by others. Our initial experiments with these Gram positive microorganisms showed that there were limited growths of these microorganisms on carbon free silicate medium probably with the help of some carry over carbon and nitrogen during cultivation procedures. However, increase in growth rate after repeated subcultures could not be explained at present. The main groups of prokaryotes which were found silicon utilizing microorganisms were Mycobacterium, Bacillus, Nocardia, Streptomyces, Staphylococcus, Streptococcus, Lactobacillus, and Clostridium. In a another previous study by us when silicon level was studied in such grown up cells on carbon "free" silicate medium by electron prove microanalyser, it was found that silicon in cells grown on carbon "free" silicate medium was much higher (24.9%) than those grown on conventional carbon based medium (0.84%). However, these initial findings are encouraging for our future application of this group of organisms on extraterrestrial surfaces for artificial micro-ecosystem formation. It was found that when electropositive elements are less in extraterrestrial situation, then polymerization of silicon-oxygen profusion may occur easily, particularly in carbon and nitrogen paucity in the rocky worlds of the Universe.

  17. Impact disruption and recovery of the deep subsurface biosphere

    DEFF Research Database (Denmark)

    Cockell, Charles S.; Voytek, Mary A.; Gronstal, Aaaron L

    2012-01-01

    Although a large fraction of the world's biomass resides in the subsurface, there has been no study of the effects of catastrophic disturbance on the deep biosphere and the rate of its subsequent recovery. We carried out an investigation of the microbiology of a 1.76 km drill core obtained from......, by fracturing subsurface rocks, impacts can extend the depth of the biosphere. This phenomenon would have provided deep refugia for life on the more heavily bombarded early Earth, and it shows that the deeply fractured regions of impact craters are promising targets to study the past and present habitability...... of Mars. Key Words: Asteroid—Impacts—Subsurface biosphere—Subterranean environment—Geobiology. Astrobiology 12, 231–246....

  18. Information in the Biosphere: Biological and Digital Worlds.

    Science.gov (United States)

    Gillings, Michael R; Hilbert, Martin; Kemp, Darrell J

    2016-03-01

    Evolution has transformed life through key innovations in information storage and replication, including RNA, DNA, multicellularity, and culture and language. We argue that the carbon-based biosphere has generated a cognitive system (humans) capable of creating technology that will result in a comparable evolutionary transition. Digital information has reached a similar magnitude to information in the biosphere. It increases exponentially, exhibits high-fidelity replication, evolves through differential fitness, is expressed through artificial intelligence (AI), and has facility for virtually limitless recombination. Like previous evolutionary transitions, the potential symbiosis between biological and digital information will reach a critical point where these codes could compete via natural selection. Alternatively, this fusion could create a higher-level superorganism employing a low-conflict division of labor in performing informational tasks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Retail design: lighting as an atmospheric tool, creating experiences which influence consumers’ mood and behaviour in commercial spaces

    OpenAIRE

    Quartier, Katelijn; Christiaans, Henri; Van Cleempoel, Koenraad

    2009-01-01

    Retail design is no new discipline, but a scientific approach is of rather recent date. Since atmosphere has been proven to have an influence on consumer’s behaviour from a marketing point of view, this Ph.D. focuses on the designers’ perspective. This paper addresses one aspect of atmosphere: lighting and its influence on consumers’ mood and buying behaviour. Following an introduction in the discipline of retail design, we discuss the notion of ‘atmosphere’ and its relationship to lighting. ...

  20. Development of the biosphere code BIOMOD: final report

    International Nuclear Information System (INIS)

    Kane, P.

    1983-05-01

    Final report to DoE on the development of the biosphere code BIOMOD. The work carried out under the contract is itemised. Reference is made to the six documents issued along with the final report. These consist of two technical notes issued as interim consultative documents, a user's guide and a programmer's guide to BIOMOD, a database description, program test document and a technical note entitled ''BIOMOD - preliminary findings''. (author)

  1. SeaWiFS Third Anniversary Global Biosphere

    Science.gov (United States)

    2002-01-01

    September 18,2000 is the third anniversary of the start of regular SeaWiFS operations of this remarkable planet called Earth. This SeaWiFS image is of the Global Biosphere depicting the ocean's long-term average phytoplankton chlorophyll concentration acquired between September 1997 and August 2000 combined with the SeaWiFS-derived Normalized Difference Vegetation Index (NDVI) over land during July 2000.

  2. Radioactive waste management. International projects on biosphere modelling

    International Nuclear Information System (INIS)

    Carboneras, P.; Cancio, D.

    1993-01-01

    The paper presents a general overview and discussion on the state of art concerning the biospheric transfer and accumulation of contaminants. A special emphasis is given to the progress achieved in the field of radioactive contaminants and particularly to those implied in radioactive waste disposal. The objectives and advances of the international projects BIOMOVS and VAMP on validation of model predictions are also described. (Author)

  3. Biosphere model for assessing doses from nuclear waste disposal

    International Nuclear Information System (INIS)

    Zach, R.; Amiro, B.D.; Davis, P.A.; Sheppard, S.C.; Szekeley, J.G.

    1994-01-01

    The biosphere model, BIOTRAC, for predicting long term nuclide concentrations and radiological doses from Canada's nuclear fuel waste disposal concept of a vault deep in plutonic rock of the Canadian Shield is presented. This generic, boreal zone biosphere model is based on scenario analysis and systems variability analysis using Monte Carlo simulation techniques. Conservatism is used to bridge uncertainties, even though this creates a small amount of extra nuclide mass. Environmental change over the very long assessment period is mainly handled through distributed parameter values. The dose receptors are a critical group of humans and four generic non-human target organisms. BIOTRAC includes six integrated submodels and it interfaces smoothly with a geosphere model. This interface includes a bedrock well. The geosphere model defines the discharge zones of deep groundwater where nuclides released from the vault enter the biosphere occupied by the dose receptors. The size of one of these zones is reduced when water is withdrawn from the bedrock well. Sensitivity analysis indicates 129 I is by far the most important radionuclide. Results also show bedrock-well water leads to higher doses to man than lake water, but the former doses decrease with the size of the critical group. Under comparable circumstances, doses to the non-human biota are greater than those for man

  4. Nuclear fuel waste management - biosphere program highlights - 1978 to 1996

    International Nuclear Information System (INIS)

    Zach, R.